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Abstract: In recent years, atmospheric ozone pollution has become more and more serious in
many areas of China due to the rapid development of industrialization and urbanization. The
increase in atmospheric ozone concentration will not only cause harm to the human respiratory
tract, nervous system and immune system, but also cause obvious harm to crops, which will lead to
reductions in crop production. Therefore, the study of atmospheric ozone pollution should not be
ignored in research on the atmospheric environment. In this paper, we summarized the formation
mechanisms of atmospheric ozone, the spatiotemporal distribution characteristics of atmospheric
ozone in some areas of China, the relationship between atmospheric ozone and its precursors, and
the main factors affecting the concentration of atmospheric ozone. Then, the control countermeasures
against atmospheric ozone pollution were put forward in combination with the actual situation
in China.

Keywords: atmospheric ozone pollution; spatiotemporal characteristics; precursors; influencing
factors; prevention and control countermeasures

1. Introduction

Ozone (O3) is one of the gas components in the atmosphere. More than 90% of all O3
is concentrated in the stratosphere, and less than 10% is distributed in the troposphere [1].
As is known, the ozone layer in the stratosphere can protect life on Earth by absorbing
most of ultraviolet radiation from the sun. However, O3 in the troposphere is a secondary
pollutant, which is the main driving force of atmospheric photochemical reactions and is
one of the key factors in controlling atmospheric pollution [2]. As a characteristic product of
photochemical smog, O3 is a strong oxidant that can threaten human health and vegetation.
Excessive inhalation of O3 may cause respiratory infections, neurotoxic reactions or directly
damage the human immune system [3]. High concentrations of O3 can inhibit the growth
of plants, resulting in a reduction in crop yields [4]. Furthermore, tropospheric O3 is
one of the most important greenhouse gases, and it may contribute to climate change.
Therefore, tropospheric ozone pollution has attracted more and more attention, especially
in recent years.

There are two main sources of tropospheric O3. One is from stratosphere through
the stratospheric–tropospheric exchange. In the stratosphere, oxygen molecules may
absorb ultraviolet radiation with a wavelength of less than 240 nm and decompose into
oxygen atoms, which can combine with oxygen molecules to form O3, and this O3 may
be transmitted down to the troposphere and become the source of tropospheric O3 [5].
The prospective O3 transmission from stratosphere to troposphere was studied using the
most advanced chemical–climate model, and the results showed that the global average
annual mass fluxes of stratospheric O3 into the troposphere were expected to increase
by 53% from 2000 to 2100 [6]. It was reported that O3 in the mid-latitude stratosphere
would intrude into the lower troposphere due to the convective activities over the tropical
Pacific [7]. Similar stratosphere–troposphere interactions have been observed over the
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eastern Mediterranean [8,9]. Recent model studies and some studies based on observational
constraints indicate that more than 10% of the ozone in the troposphere is transmitted
from the stratosphere, while the rest is photochemically formed in the troposphere [10].
Previous observations indicate that the spring maximum in the lower troposphere over East
Asia is contributed by stratospheric-to-tropospheric transport and regional photochemical
O3 production [11]. That is, the tropospheric O3 can be generated by the photochemical
reactions of primary pollutants such as volatile organic compounds (VOCs) and nitrogen
oxides (NOx, mainly including NO and NO2). The main sources of NOx in the troposphere
are the combustion of coal, vehicle exhausts and the burning of other fossil fuels. VOCs
come from a wide range of sources, including natural sources such as plant emissions,
and anthropogenic sources such as biomass combustion, coal combustion, solvent usage,
and the chemical industry [12]. Under strong sunlight, NO2 may photolyze to generate
atomic oxygen, which can react with oxygen molecules to generate ozone. The existence of
massive VOCs in the air will hinder the decomposition of O3, resulting in tropospheric O3
accumulation [13]. Primary pollutants such as NOx and VOCs, as the precursors of O3, are
closely related to the generation and change of tropospheric O3. Therefore, studying the
correlation between O3 and its precursors is helpful to understand the changing pattern of
tropospheric O3 pollution and to provide a scientific basis for creating effective measures
to control the composite atmospheric pollution.

With the development of urbanization, industrialization, and traffic, tropospheric O3
pollution has become increasingly serious in many areas of China. According to ozone
observation data from 74 Chinese cities, the mean daily maximum 8 h average mass
concentration of O3 (O3-max-8 h) increased from 149 μg·m−3 in 2013 to 161 μg·m−3 in
2015 [14]. The atmospheric O3 concentration has the characteristics of spatiotemporal
distribution, and can be affected by factors such as the precursors and meteorological
factors. In recent years, the frequency of photochemical smog and the concentration of
atmospheric O3 have been increasing year by year, which has increased the complexity
of air pollution and the urgency of improving air quality. As a result, much attention
has been paid to the formation mechanism of atmospheric O3, the pollution status and
the influencing factors of tropospheric O3, and the sensitivity relationship between O3
and its precursors, which has become one of the research topics of current atmospheric
environmental science [15]. Therefore, the formation mechanism of tropospheric O3, the
spatiotemporal distribution characteristics of tropospheric O3 in some regions of China,
the relationship between O3 and its precursors, and the factors affecting tropospheric O3
levels, were reviewed in this paper. Furthermore, some countermeasures for controlling
tropospheric O3 pollution were put forward based on the actual situation in China.

2. Photochemical Formation Mechanism of Tropospheric O3

Most of the tropospheric O3 is generated due to the photochemical reactions of some
primary pollutants, such as NOx and VOCs, under the strong sunlight in the troposphere.
Some main reactions of the formation and loss mechanisms of tropospheric ozone are
summarized in Table 1.

In the reactions in Table 1, R and M stand for organic group and other matters in the
atmosphere, respectively. Tropospheric O3 is formed by the photolysis of NO2, with the
reactions R1 and R2 [16]. The three reactions from R1 to R3 constitute a rapid cyclic process,
which can reach a dynamic equilibrium under certain conditions without causing an
increase in the total amount of O3 when no other chemical species are involved. However,
in the atmosphere polluted by organic matter, peroxy radicals (such as RO2· and HO2·) can
replace the O3 in reaction R3, so the conversion of NO to NO2 does not need to consume
O3, but the continuous reactions of R1 and R2 occur subsequently, thereby destroying the
photochemical reaction cycle of NO2-NO-O3, resulting in the accumulation of O3. The
rate of photochemical O3 production is primarily determined by the reaction of NO with
peroxy radicals such as RO2· and HO2·, with the reactions of R4 and R5. Peroxy radicals
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RO2 and HO2· can be produced by the reactions of ·OH with hydrocarbon (abbreviated as
RH) and CO, with the reactions from R6 to R9.

Table 1. Main reactions of the formation and loss mechanisms of tropospheric ozone.

Reaction Reaction Number

NO2 + hν (λ < 420 nm) → NO + O
(3P
)

(R1)
O
(3P
)
+ O2 + M → O3 + M (R2)

NO + O3 → NO2 + O2 (R3)
RO2 + NO → RO + NO2 (R4)
HO2 + NO → NO2 + OH (R5)

OH + RH → R + H2O (R6)
R + O2 + M → RO2 + M (R7)
OH + CO → H + CO2 (R8)

H + O2 + M → HO2 + M (R9)
O3 + hν → O2 + O

(1D
)

(R10)
O
(1D
)
+ H2O → 2OH (R11)

HONO + hν → OH + NO (R12)
O3 + Ole f ins → products (R13)
O3 + OH → HO2 + O2 (R14)
O3 + HO2 → OH + 2O2 (R15)

There is a series of chain reactions centered on various free radicals, resulting in the
accumulation of O3 [17]. In the clean troposphere, the ·OH radicals are mainly derived
from the reaction of water vapor with O (1D) atoms, which are usually produced by the
photolysis of O3, with the reactions R10–R11. In the polluted troposphere, the OH radicals
are mainly formed from the photolysis of HONO, with reaction R12. At the same time,
O3 can be removed from the atmosphere by some reactions such as R3, R10 and R13–R15.
Hence, the net generation rate of O3 is equal to the total generation rate minus the removal
rate. It was reported that the destruction of O3 could occur in many ways, and the most
important pathway is the surface deposition [18]. For example, O3 consumption pathways
can be achieved by oxidation of SO2 in the liquid phase reaction. The rates of these reactions
vary greatly depending on the meteorological and photolysis conditions, in addition to the
rate of competitive transport and removal processes.

3. Spatiotemporal Distribution of Tropospheric Ozone in China

Tropospheric O3 exhibits different characteristics in different regions. Understanding
the spatiotemporal characteristics of O3 concentration is essential for controlling atmo-
spheric O3 pollution. Since 2012, the Chinese government has included atmospheric O3 as
a regular pollutant monitoring indicator, and the national monitoring network has brought
convenience to the study of the spatial and temporal characteristics of atmospheric O3.

Most of Chinese population lives in the east of China, especially in the three most
developed regions of Jing-Jin-Ji (JJJ, including Beijing, Tianjin, and Hebei province), Yangtze
River Delta (YRD, including Shanghai, Zhejiang, Jiangsu, and Anhui provinces), and Pearl
River Delta (PRD, including nine cities in south-central of Guangdong province). These
regions are also the areas with the highest emissions of anthropogenic NOx and VOCs,
thus leading to serious regional atmospheric ozone pollution. Therefore, these regions
are the key areas for preventing and controlling air pollution. Figure 1 shows the spatial
distribution of annual average O3-max-8 h in China from 2013 to 2018 [19]. The overall
O3 concentration presented a spatial distribution pattern of higher in the east and lower
in the west. The high-value areas of O3-max-8 h were mainly concentrated in the North
China Plain in the east, such as Hebei province and Shandong province, where O3-max-8
h was higher than 180 μg·m−3; followed by the Yangtze River Delta and its nearby areas
with an O3-max-8 h ranging from 120 to 160 μg·m−3. The O3-max-8 h in the southern Pearl
River Delta region was also in the range of 120 to 160 μg·m−3, but the high-value area
was smaller than the Yangtze River Delta area. The O3-max-8 h was lower in the western
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region, ranging from 70 to 100 μg·m−3, and reaching as low as 62 μg·m−3 in the Hami area.
The spatial distribution of O3-max-8 h was consistent with the distribution pattern of its
precursor emissions. The NOx emission intensity was higher in the east than that in the
west, with the highest values distributing in the Beijing–Tianjin–Hebei region, Yangtze
River Delta and Pearl River Delta. From 2013 to 2018, the 90th percentile of O3-max-8 h
concentration in China gradually increased with an annual growth rate of 2.6 μg·m−3 per
year. The highest O3-max-8 h (≥180 μg·m−3) zone mainly occurred in the North China and
Yangtze River Plains, which gradually expanded in the North China Plain (NCP) while
shrinking in the YRD and PRD.

Figure 1. Spatial distribution of annual average O3-max-8 h in China from 2013 to 2018. Reprinted with a permission from
ref. [19]. Copyright 2021 Li Ze Yuan.

Based on the data of ozone monitoring instruments (OMI) from 2005 to 2014, the
tropospheric ozone trend in mid-eastern China (including 10 major cities) was studied [20].
The results showed that the mixing ratios of tropospheric ozone column were fairly stable,
but those of ground-level clearly increased, by 12.38%. The concentration of ground-level
ozone reached the maximum value from May to June, while the minimum value was from
November to December. The concentrations of ground-level ozone increased with the
cumulative increments of 6.3, 6.6, and 10.2 ppbv (parts per billion by volume) in Beijing,
Shijiazhuang and Tianjin, respectively, from 2005 to 2014. Additionally, the concentration
of ground-level ozone increased rapidly in Tianjin during 2012-2014, showing an increase
of 13.25% compared with 2010–2011, which might be due to the more rubber and chemical
companies around Tianjin. In contrast, the concentration of ground-surface O3 in the
Beijing area showed a slower rising trend from 2005 to 2014. According to previous studies,
atmospheric O3 pollution often appeared in the region of Beijing–Tianjin–Hebei, among
which Beijing and Baoding were more polluted [21,22].

The temporal and spatial distribution characteristics of atmospheric O3 in the Beijing–
Tianjin–Hebei region during 2013–2015 indicated that O3 concentration presented obvious
seasonal variation, with the highest concentration in late spring and summer, and showed
a single peak distribution during daytime, with the maximum value appearing around
15:00. In contrast, the concentration was lower and had little fluctuation throughout the
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day in autumn and winter. The higher values of O3-max-8 h were mainly distributed in
north-central Beijing, Chengde and Hengshui [23]. The seasonal variations of tropospheric
O3 concentration distribution in Beijing, Shanghai, Guangzhou and Chengdu were similar,
with the highest value generally occurring in summer and the lowest value generally
appearing in winter [24]. Table 2 summarizes the tropospheric ozone concentrations in
some regions of China.

Table 2. Summary of tropospheric ozone concentrations in some regions of China.

Region Period
Maximum Value or

Range (ppbv)
Precursors Reference

Jing-Jin-Ji Urban Agglomeration 2013–2015 (O3-8 h) 77.5–81 * [23]
Jing-Jin-Ji region January–December 2017 (O3-1 h) 139.5 [22]

Chang Ping, Beijing 21 June–31 July 2005 (O3-1 h) 286
VOCs (Alkenes,

aromatics)
[25]

Beijing 2014–2017 (O3-8 h) 98–103 * [24]

Nantong, Jiangsu 2013–2015 (O3-8 h) 83.5 *
CO, VOCs

(propene, ethane,
xylene, acetylene)

[26]

Taicang, Shanghai 4 May–1 June 2005 (O3-1 h) 127
VOCs (Alkenes,

aromatics)
[25]

Shanghai 2014–2017 (O3-8 h) 76–94 * [24]
Jiaxing, Zhejiang 27 June–31 August 2013 (O3-1 h) 84 * CO, NO2 [27]
Shouxian, Anhui January 2015–December 2018 (Monthly mean) 51.3 [28]

Wan Qing Sha, Guangzhou 20 April–26 May 2004 (O3-1 h) 178 VOCs (aromatics) [25]
Guangzhou 2014–2017 (O3-8 h) 76–85 * [24]

Renshoushan Park, Lanzhou 19 June–16 July 2006 (O3-1 h) 143 VOCs (alkenes) [25]
Shenyang, Liaoning 2013–2015 (O3-8 h) 77 * NO2, CO [29]

Jiangxi January 2015–August 2017 (O3-1 h) 40.5–70 * [30]
Chengdu, Sichuan January 2014–December 2016 (O3-8 h) 2.5–146.5 * [31]

Chengdu 2014–2017 (O3-8 h) 68–94 * [24]
Sichuan July 2017 (O3-8 h) 141.3 * VOCs [32]

NCP June 2017 (O3-1 h) 91 * [33]

1. O3-1 h: Maximum 1 h average; O3-8 h: Maximum 8 h average. 2. Note: * For rough estimates from the literature.

The summer–winter differences are due to the general meteorological conditions
including the variability of irradiation levels affecting free-tropospheric and boundary-
layer photochemistry, which is also one of the main sources of the high background O3 on
the surface [9]. From 2013 to 2019, the weather in the North China Plain (NCP) drove an
increase in surface O3 [34]. The hot weather in the NCP in summer is usually driven by a
wide range of anticyclone conditions, which is regarded as a typical climate pattern for the
number of days of O3 pollution [33]. The influence of the boundary layer on ozone in the
summer afternoon cannot be ignored. Under the conditions of free convection, the stronger
the ultraviolet radiation (UV), the higher the temperature, the lower the relative humidity
(RH) and the higher the boundary-layer height (BLH), the more serious the ozone pollution
was in Shijiazhuang in summer of 2018–2019 [35]. The increase in radiation during the
day may cause the boundary layer to rise, and the accumulated O3 may mix down to the
boundary layer, affecting the near-surface ozone concentration. The history of the air mass
is an important factor in determining the magnitude and potential signs of the impact of
entrainment on surface O3 through atmospheric boundary-layer growth [36]. As the height
of the boundary layer increases, the O3 in the residual layer (RL) is transported to the
boundary layer. Some studies have found that the mixed ozone from the RL contributes
50–70% of the maximum concentration near the surface for the next day, and the rest comes
from chemical production and possible advection [37,38].

Based on the tropospheric O3 concentration data of 16 urban monitoring stations from
June 2013 to May 2014, the spatiotemporal distribution characteristics of atmospheric O3
in the Yangtze River Delta region were studied [27]. The results showed that the annual

5



Atmosphere 2021, 12, 1675

average O3 concentration was higher in the cities near the sea and lower in the cities that
are inland. The concentration of atmospheric O3 showed a seasonal variation, with higher
concentration in summer and lower concentration in winter. The higher O3 pollution area
was located in the north of Hangzhou Bay in summer, while the higher O3 pollution area
was located in the eastern coastal zone in winter. The diurnal variation of O3 concentration
in the Yangtze River Delta was unimodal throughout the four seasons. The daily minimum
O3 concentration appeared around 06:00 in summer, and was delayed by about one hour
in the other seasons, and the daily maximum O3 concentration appeared around 15:00 in
all seasons. Based on the OMI data, the spatiotemporal distribution of the tropospheric O3
in the Yangtze River Delta region showed a significant zonal difference, increasing with
latitude [39]. According to the monitoring data of 72 state-controlled stations in Jiangsu
province from 2013 to 2015, the spatiotemporal distribution characteristics of tropospheric
O3 were studied [26]. The results indicated that the annual mean value of atmospheric O3 in
Jiangsu province showed a significant spatial difference, with the concentration gradually
decreasing from coast to inland. Tropospheric O3 showed the highest concentration in
Yancheng city, while it was lower in Changzhou, eastern Wuxi and Xuzhou cities. The 90th
percentile concentrations of O3-8 h were significantly different from north to south. The
atmospheric O3 concentration was relatively higher in the cities of Nanjing, Yangzhou and
Zhenjiang, while the lower concentrations were found in the cities of Xuzhou and Suqian.
It was reported that the atmospheric O3 peak occurred in the afternoon in Shanghai from
2006 to 2016 [2]. The areas with O3 concentration exceeding the limit of Chinese national
ambient air quality standards were mainly in the southwest suburbs of Shanghai, and the
atmospheric O3 concentration decreased from the southwest suburb to the northeast urban
areas. It was reported that the tropospheric O3 pollution in the Yangtze River Delta region
was more serious in Shanghai, Ningbo and other cities [28]. It should be noted that the
concentrations of near-ground-surface O3 in Shanghai, Hangzhou, Hefei and Nanjing in
the Yangtze River Delta region have increased slightly during the past 10 years (from 2005
to 2014), but the increase degree was smaller than that in the Beijing–Tianjin–Hebei region.
The distribution of atmospheric O3 pollution in the Yangtze River Delta showed relatively
obvious flaky distribution characteristics, and the higher emissions from motor vehicles
in the Yangtze River Delta urban cities were the main sources of atmospheric O3 in this
region [20].

The average near-ground-surface O3 concentration in the Pearl River Delta region was
slightly lower than those in the Beijing–Tianjin–Hebei region and the Yangtze River Delta
region during 2013–2018 [19]. The characteristics of atmospheric O3 pollution in the Pearl
River Delta region and Guangdong province were reported based on the large-scale and
long-term continuous O3 monitoring data of recent years [40]. The results showed that the
atmospheric O3 concentration in the Pearl River Delta region was higher than that in the
northwest of Guangdong province. Outside of the Pearl River Delta region, the eastern
area of Guangdong province has the highest atmospheric O3 level. The O3 concentration
was higher in the central southern part of the Pearl River Delta and the eastern part of
Guangdong, while it was lower in the west. The concentration of atmospheric O3 was
higher in summer and autumn, and lower in winter and spring. Due to the large differences
of the climate between the Pearl River Delta region and the Beijing–Tianjin–Hebei region
and the Yangtze River Delta region, the better atmospheric diffusion conditions made it
difficult for atmospheric O3 to accumulate in the Pearl River Delta region.

In addition to the regions of Beijing–Tianjin–Hebei, the Yangtze River Delta and the
Pearl River Delta, other regions in China have also been conducted research on local atmo-
spheric O3 pollution. The spatial and temporal distribution of atmospheric O3 pollution
in the Bohai Rim region of Liaoning province was reported [41]. The results showed that
the atmospheric O3 pollution presented obvious seasonal variation characteristics, and the
main months in which the O3 concentration exceeded the limit of Chinese national ambient
air quality standards were from May to August. The diurnal variation of atmospheric
O3 was unimodal, and the peak concentration appeared in the afternoon. The higher O3
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concentration areas were mainly located in Yingkou in the central Bohai Sea Economic
Rim of Liaoning, while the O3 level was relatively lower in Dalian and Huludao. The
investigation of atmospheric O3 pollution in Shenyang area from 2013 to 2015 showed that
the concentration of O3 in the periphery of the city was higher than that in the center of the
city [29]. Compared with the periphery of the city, the concentration of NO emissions is
higher in urban centers. The increase in NO emissions leads to an increase in the titration
of O3, which inhibits the accumulation of O3. The variation of O3 concentration showed
obvious seasonal characteristics, with the highest being in summer and the lowest in winter.
The diurnal variation showed a unimodal distribution, with the trough value at 06:00 and
the peak value at 14:00. Over continental sites, important nocturnal ozone destruction
is observed due to dry deposition and NO titration [42]. The tropospheric O3 concentra-
tions showed significant “weekend effects”, with higher O3 concentrations in weekends
than in weekdays during the daytime while little difference at night. The spatiotemporal
distribution characteristics of surface O3 concentrations in Fujian province in 2016 was stud-
ied [43]. The results showed that the O3 concentration was higher in spring and autumn,
whereas it was lower in winter. The O3 concentrations in the coastal cities were higher than
those in the inland cities. The monthly changes in O3 concentration presented a bimodal
pattern, with peaks generally appearing in May and September. The diurnal variation
curve of O3 concentration was a single peak, which usually appeared at about 14:00. The
spatiotemporal distribution characteristics of the atmospheric O3 concentrations in Jiangxi
province during 2015–2017 showed that the higher values of atmospheric O3 were mainly
distributed in the northeast areas such as Nanchang city and Jiujiang city, while the lower
values were mainly distributed in the western areas such as Xinyu city and Yichun city [30].
The monthly variation of atmospheric O3 concentration showed a double-peak pattern
with higher values in May and September, while the daily variation showed a single-peak
pattern with higher values at 14:00–16:00. The temporal characteristics of atmospheric
O3 pollution and the meteorological factors in Chengdu during 2014–2016 were reported,
and the results showed that the situation of atmospheric O3 pollution in Chengdu became
worse in recent years [31]. The concentrations of atmospheric O3 showed obvious seasonal
variation characteristics—higher in summer and spring, while lower in winter and au-
tumn. The diurnal variation of O3 concentration showed a unimodal distribution, with
the peak appearing at around 15:00, which was consistent with the diurnal variation of
air temperature and solar irradiance. The distribution of surface O3 in Chongqing city in
2018 showed that the O3 concentration in spring to autumn exceeded the limit of Chinese
national ambient air quality standards [44]. It was pointed out that the concentration of
atmospheric O3 was the highest and the pollution lasted for a long time in summer. Severe
O3 pollution in the Sichuan basin in summer was also reported [32].

For most urban stations, the potential ozone (Ox = O3 + NO2) is a conservative
amount over a short time scale. When the freshly emitted NO reacts with O3, NO2 is
formed in a few minutes, so some local NO2 in the troposphere is produced at the expense
of O3 [45,46]. Generally, the surface ozone production is controlled by NOx. The diurnal
patterns of O3 and nitrogen dioxide were opposite in Chengdu, indicating that the O3
sensitivity was VOC-limited [32]. The relationship between atmospheric O3 with non-
methane hydrocarbons (NMHCs) and NOx in Guangzhou in 2011 was discussed, and the
results showed that controlling highly reactive NMHCs and NOx could effectively reduce
O3 concentration [47]. It should be noted that the reduction in NOx may have positive or
negative impact on local ozone production. Ozone sensitivity was different at different
stages, and reducing NOx emissions had a negative impact on Shenzhen’s ozone pollution
control from 2015 to 2018 [48].

4. Relationship between Tropospheric Ozone and Its Precursors

As mentioned before, tropospheric O3 can be produced by photochemical reactions
of VOCs, NOx and other primary pollutants under solar radiation. Theoretically, the
content of O3 in the troposphere can be controlled by controlling the emission of VOCs
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and NOx. However, the execution difficulty is that the relationship between the generation
of O3 with VOCs and NOx is nonlinear. An investigation into the relationship between
the atmospheric O3 with NOx and VOCs showed that the formation of O3 depended on
NOx in rural areas, while it depended on both NOx and VOCs in urban areas [49]. A
study on the formation of tropospheric O3 and the effect of VOCs in Shanghai found that
alkanes and aromatic hydrocarbons were the dominant VOCs, and aromatic hydrocarbons
contributed most to the chemical production of atmospheric O3 [50]. Similar results were
found in Guangzhou, where aromatics accounted for 70% of the atmospheric O3 formation
potential (OFP) [51].

A numerical simulation control of atmospheric O3 pollution was carried out in Shen-
zhen city based on the two-dimensional air-quality model [52]. The results showed that
the generation of atmospheric O3 was the product of the interaction between NOx and
VOCs, and the emission of VOCs was more important. The co-emission reduction in the
precursors might effectively reduce the atmospheric O3 pollution. As one of the major
species of VOCs emitted from biogenic sources, isoprene is highly reactive and plays an
important role in the generation of oxidants for a range of photochemical reactions. A
study on the contribution of isoprene emissions to the ground-level O3 formation in Beijing
showed that isoprene emissions accounted for almost half (49.5%) of OFP at 13:00 in August
of 2010, suggesting that isoprene played an important role in the ozone formation [53].
According to the results of field sampling, the most influential substances related to OFP in
Zhengzhou urban area were ethanol, 2-hexanone, o-trimethylbenzene, and the industrial
VOCs were a source of O3 pollution in Zhengzhou [54]. It is reported that fire can affect
NOx, CO and VOCs, which will significantly affect the background value of O3 [55].

Therefore, the prevention and control of atmospheric O3 pollution cannot be simply
through a programmed control of primary pollutants. The influence of VOCs and NOx
on atmospheric O3 production can be characterized by a VOCs-sensitive zone and NOx-
sensitive zone [56]. In general, the oxidation of VOCs with high concentrations of VOCs
can produce higher concentrations of RO2·, and the emission of NO can lead to reaction R4
enhancement. Therefore, the amount of O3 production increases with the increase in NOx,
and this type of O3 generation mechanism is described as the NOx-sensitive (limiting)
type. When the concentration of NOx is high and the concentration of VOCs is low, the
reaction rate of NO + O3 is faster than that of NO + RO2·. In this case, the cumulative
amount of O3 may decrease with the increase in NOx, and may increase with the increase
in VOCs, hence this mechanism is described as VOC-sensitive (limiting) or NOx saturation.
When the generation of O3 is restricted by VOCs, the O3 generation can be controlled
by reducing the emission of VOCs. Similarly, when the formation mechanism of O3 is
NOx-limiting type, the O3 content can be controlled by reducing the emission of NOx. The
sensitivity of summer O3 in Beijing during 2010–2015 was studied [57]. The results showed
that when VOCs/NOx was 2.0, the urban areas were more sensitive to VOCs and high
concentrations of VOCs persisted in western and northern rural areas. When VOCs/NOx
was 3.0~5.0, O3 precursors aged, and lower VOCs concentrations appeared in the northern
and southern suburbs. A comprehensive investigation into O3 and its precursors and low
tropospheric aerosols over a survey site located at the University of Chinese Academy of
Sciences in Beijing showed that the photochemical generation of O3 in the boundary layer
was restricted by VOCs in hazy weather, while the photochemical reaction of O3 became
VOCs–NOx-limiting in the clean weather [58]. According to the sensitivity analysis, the
atmospheric O3 generation was largely determined by VOCs when air masses came from
the polluted areas in the south. Therefore, reducing VOCs emissions from the industrial
areas and urbanized areas could help to reduce the ozone pollution at this site.

Currently, there are a variety of methods that can be used to study the sensitivity of
atmospheric ozone generation. Some commonly used methods are as follows.

(1) Ozone production efficiency (OPE, defined as the number of ozone molecules pro-
duced for each NOx molecule oxidized). A lower OPE value (<4) indicates that
the free radical cycling efficiency is lower, so VOCs are the limiting factor, and the
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formation of O3 is controlled by VOCs. Conversely, a higher OPE value (>7) indicates
that the free radical cycling is efficient and the formation of O3 is limited by NOx.
When the OPE value is medium (4–7), O3 generation is controlled by both VOCs and
NOx. The OPE values in rural and suburban areas of Beijing were measured during
the 2008 Olympics [59]. The results showed that higher OPE values corresponded
to NOx limiting under low NOx conditions, whereas OPE values were lower under
high NOx conditions.

(2) Relative incremental reactivity (RIR, defined as the ratio of the decrease in O3 pro-
duction rate to a given reduction in the precursor concentration) is a measure of
the sensitivity of a single precursor. Cardelino et al. [60] first used a scenario test
calculated by a box model to simulate the response of ozone to changes in precursors.
The calculation result can be expressed by the following formula.

RIR(X) =
ΔO3(X)/O3

ΔC(X)/C(X)

where X represents a group of major pollutants, and O3 represents the modelled O3
concentration. ΔC(X)/C(X) gives the relative change in the primary pollutants in one
of the sensitivity tests, and the relative change in modelled ozone concentration is
given by ΔO3(X)/O 3. In the study on atmospheric ozone pollution conducted in
Chengdu in September 2016, the anthropogenic variation of the main pollutant in the
sensitivity test was chosen as 20% in the RIR analysis, because when the variation
value was greater than 20%, the RIR value deviated due to the significant change
in the simulated free radical concentration [61]. The RIR results demonstrated that
anthropogenic VOCs reduction is the most efficient way to mitigate ozone pollution,
of which alkenes dominated more than 50% of the ozone production [61].

(3) H2O2/HNO3 ratio method. A ratio of 0.8–1.2 is used to separate NOx-sensitive and
VOC-sensitive regions. If the ratio is small, it can be considered as a sensitive area
of VOCs, otherwise it is a sensitive area of NOx. Based on this method, the urban
areas were sensitive to VOCs while the rural areas were sensitive to NOx in Hong
Kong [62].

(4) Empirical kinetic modelling approach (EKMA). The EKMA model can give the iso-
line of O3 maxima under different NOx and VOCs due to photochemical reactions.
The initial design was to simulate the maximum O3 concentrations under different
precursor emission scenarios to develop O3-polluting precursor emission mitigation
strategies [48]. The EKMA diagram illustrates the sensitivity of O3 to VOCs and NOx
and how the ratio of VOCs/NOx affects the production of O3. The ridge line of the
EKMA curve is formed by connecting the convex points of each curve. EKMA is
divided into two parts: when the VOCs/NOx ratio is located in the left of the ridge
line, the O3 formation is limited by VOCs, otherwise the O3 formation is limited
by NOx [63]. The advantages of the EKMA curve method are as follows: Firstly, it
can provide both a qualitative and quantitative basis for O3 prevention and control;
Secondly, it is a link between secondary and primary pollutants, which can better
express the relationship between the two types of pollutants; Thirdly, the shape of
EKMA will change under different conditions, which can better reflect the specific
local conditions. For example, a Chinese EKMA was developed by following the tra-
ditional approach of constructing EKMA curves to explore the cost-effective emission
reduction strategies for both O3 and PM2.5, suggesting that a strategy of “focusing
on VOCs first, then NOx” could be effective in controlling PM2.5 and O3 pollution
mitigation in the long term [64].

According to current research on atmospheric ozone formation regimes, most of the
urban areas in China are in VOCs-limited zones, with anthropogenic VOCs (especially
reactive aromatics and alkenes) playing a dominant role. However, some variations were
found in the chemistry regime of atmospheric ozone formation in different regions.
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5. Factors Affecting Atmospheric Ozone Level

5.1. Precursors

Photochemical reactions are the main source of tropospheric O3, whose concentration
is closely related to the concentrations of NOX and VOCs. Generally, the ozone concentra-
tion in urban and suburban areas is mainly affected by photochemistry. The transmission
of the “aging” urban plume has resulted in extremely high O3 levels (up to 286 ppbv) in
rural sites downwind of Beijing, which are most affected by local photochemistry. In the
suburbs of Shanghai, Guangzhou, and Lanzhou, strong in situ photochemical produc-
tion is the main focus [25]. The characteristics of VOCs pollution and its contribution to
atmospheric O3 formation in Wuhan city was studied [65]. The results showed that the
local pollution source was the main source of VOCs pollution, and olefins had the highest
chemical activity and the biggest contribution to atmospheric O3. Based on the observed
data of atmospheric O3 and its precursors in Beijing in autumn 2004, the O3 generation
efficiency in the region near the main traffic lines was calculated, and the results suggested
that the reduction in VOCs emission was beneficial to the reduction in atmospheric O3
concentration [66]. Carbonyl compounds are important members of the VOCs family
and are important precursors of secondary organic aerosols (SOA); alkenes, aromatics,
and isoprene are primarily secondary products of carbonyl compounds; carbonyl groups
are usually dominant in the formation of atmospheric O3 in rural areas [67]. Biovolatile
organic compounds (BVOCs) played an important role in the formation of tropospheric
O3, especially in urban areas [68]. The effects of BVOCs emission on the formation of
tropospheric O3 and SOA were studied by using a WRF-CMAQ simulation system, and
the results showed that the biogenic emission peaked in summer and decreased gradually
from south China to north China [69]. High BVOCs emissions in eastern and southwestern
China increased the ground-level ozone, particularly in the Beijing–Tianjin–Hebei region,
Sichuan Basin, Yangtze River Delta and the central Pearl River Delta. The ozone isolines in
the summer of 2013 showed that the O3 concentrations were controlled by NOx in most
areas of China, and the effect of VOCs reduction on O3 concentration was less, except in
the urban areas of Shanghai and Guangzhou [70]. An investigation into the O3 exposure
indices and the source contributions in the forests of China throughout the entire year of
2013 suggested that the O3 production was much more due to NOx than due to VOCs [71].

5.2. Meteorological Factors

Tropospheric O3 concentration was found to be positively correlated with ambient
air temperature, and negatively correlated with wind speed and relative humidity. On the
contrary, NOx was positively correlated with relative humidity, and negatively correlated
with temperature [72]. Under normal conditions, temperature can affect the concentration
of O3 by influencing the reaction rate, while wind speed can affect the dilution and diffusion
of pollutants. Relative humidity has some influence on photochemical reaction processes,
and higher relative humidity can cause wet deposition and even lead to the erosion of
pollutants by rainwater. It was reported that aerosol could change the photolysis rate of
trace gases [73]. Absorption of aerosols can reduce UV flux throughout the troposphere,
resulting in a reduction in near-surface O3. Based on the analysis of the meteorological
effect on atmospheric O3 in Tianjin from 2009 to 2015, it was concluded that the tropospheric
O3 level was more dependent on temperature in the afternoon than in the morning since
the daily maximum temperature usually occurred in the afternoon [74]. In spring and
summer, the maximum daily O3 was less dependent on the solar radiation than the
ambient temperature. In autumn and winter, solar radiation played a more important
role in determining O3 level. The concentration of atmospheric O3 had a weak negative
correlation with the wind speed in spring, summer, and autumn, but a weak positive
correlation with the wind speed in winter. Moisture in spring and autumn also had an
effect on atmospheric O3 concentration due to the compensation between water vapor and
O3. Air with high humidity raised ·OH radicals and produced higher O3 concentration in
the areas with high NOx. At the same time, a rise in water vapor also consumed excited
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oxygen atoms and increased the loss of O3. The relationship between heat waves and
the concentration of atmospheric O3 in the Yangtze River Delta was discussed [75]. The
results showed that under the action of heat waves, the water vapor content and the cloud
cover of the Yangtze River Delta were reduced because of the anticyclone controlled by
the downdraft, which increased the concentration of atmospheric O3 in the presence of
intense solar radiation. In the case of climate warming, the chemical reaction may cause
the atmospheric O3 content to increase significantly, and the high temperature can also
promote vertical turbulence and horizontal advection to some extent, which is beneficial to
the removal of O3, but the extent is much less than that of the chemical action. Relevant
studies have shown that the heat-island effect was directly or indirectly related to the
increase in the emission of atmospheric O3 and its precursors. The pollution of atmospheric
O3 in the Yangtze River Delta is becoming more and more serious, and the heat-island
effect is the key factor affecting the atmospheric O3 level. There was a positive correlation
between heat-island effect and the atmospheric O3 concentration in the Yangtze River Delta.
The factors influencing the urban heat-island effect and atmospheric O3 include landscape,
topography and population, but land surface temperature and vegetation index are the
most important [76]. It was reported that the structure and evolution of weather was of
great significance to the atmospheric photochemical pollution [77]. The level of ozone
concentration affected by the surface and the boundary layer depends on the main weather
conditions that are conducive to large-scale subsidence [78]. The eastern and central
basins of the Mediterranean have obvious top-down ozone deposition, which is caused
by adiabatic convection over the Persian Gulf during the Indian monsoon season [79].
The influence of Asian continental outflow on the regional background ozone level in the
northern South China Sea was studied, and the results indicated that the Asian continental
outflows brought about by the winter monsoon could be immense, and intense enough to
affect regions from far south, at latitudes similar to Antarctica [80].

5.3. Atmospheric Particulates

Aerosols are small particles suspended in the atmosphere and play an important
role in the earth’s radiation balance, air quality and cloud microphysics. They directly
affect the regional and global climate by absorbing and scattering solar and terrestrial
radiation, and indirectly affect the global climate by altering cloud formation characteristics.
Ambient aerosol particles are mainly derived from anthropogenic activities and natural
sources, such as residential heating, automobile exhausts, open-air combustion and volcanic
activities [81]. The Asian monsoon brought in aerosols from biomass burning in southeast
Asia, which were mixed with moist air particles in southern China, eventually reaching
high aerosol concentrations in the spring, which reached the lowest concentration in
winter [82]. There was a significant negative correlation between O3 and particulate matter
in the margin of Tarim Basin, indicating that the effect of dust on solar transmittance in
the atmosphere lead to a decrease in net O3 productivity [83]. The concentration of O3
was influenced by the nonuniform chemical processes occurring on the surface of particles,
so increasing the concentration of PM2.5 could weaken the atmospheric radiation. This
would allow the O3 level to be suppressed by eliminating ultraviolet light, which was
consistent with the conclusions of Wang et al. [22] and Qu et al. [84]. In 2017, 338 main cities
in China were selected to sample ambient air for 365 days to compare the concentrations
of O3, NO2, SO2, particulate matter and CO in the atmosphere [85]. The results showed
that O3 concentrations were significantly correlated with PM10 in 238 cities, among which,
the coefficients in 142 cities were positive whereas those in 96 cities were negative. Most
cities with positive correlations were mainly located in the south and northeast, while most
cities with negative correlations were mainly located in the north of China. There was
no significant correlation between O3 concentration and PM10 concentration in 100 cities.
O3 concentrations were significantly correlated with PM2.5 in 250 cities, among which,
the coefficients in 117 cities were positive and those in 133 cities were negative. Most
cities with positive correlations were mainly located in the south, while most cities with
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negative correlations were mainly located in the north. There was no significant correlation
between O3 concentration and PM2.5 concentration in 88 cities. The possible reason for the
above results was that NOx and VOCs would simultaneously increase significantly on the
particulate matter (PM) pollution days in many cities, and the increase in these precursors
influences the atmospheric O3 concentration more than the particulates. Atmospheric
O3 was usually used as a tracer for photochemical reactions. A large amount of O3 was
used as an oxidant to enrich the secondary components of PM2.5 through a secondary
photochemical process, so higher PM2.5/PM10 usually indicated the existence of more
active photochemical reactions. To some extent, PM2.5/PM10 could be used as a reference
index for the types of air pollution, that is, higher or lower PM2.5/PM10 indicated the
complicated pollution types related to photochemical reaction [86].

The main fixed sources of PM2.5 and PM10 are smoke and dust produced by fuel
combustion and gas oil during heating in industrial enterprises, such as power generation,
oil and printing. The main moving source is exhaust gas emitted by road traffic vehicles
into the atmosphere. The temporal characteristics of PM2.5 in Anhui province showed
that PM2.5 decreased from January to July, and increased from July to December, that
is, the concentrations of PM2.5 were lower in summer and higher in winter [87]. Some
studies showed that PM2.5 and PM10 were positively correlated with NO2 and CO, and
weakly correlated with O3. The high concentration of O3 in highly oxidized air in high-
temperature seasons promoted the formation of secondary particulate matter, which made
PM2.5 positively correlated with O3 [88]. Several studies have found that reducing PM2.5
might lead to an increase in atmospheric O3, and reducing emissions of NOx and VOCs
is required to overcome this effect. A more important factor affecting O3 trends in the
North China Plain (NCP) from 2013 to 2017 was the reduction in PM2.5, which slowed
down the sink of hydroperoxy radicals, thus speeding up O3 production [89]. In addition,
atmospheric particles could directly affect the scattering and absorption of radiation,
consequently changing the intensity of incident ultraviolet radiation, and affecting the
production of O3. The formation of O3 decreased with the decrease in UV radiation or light
scattering associated with PM2.5 [90].

5.4. Weekend Effect

The weekend effect refers to the phenomenon of different atmospheric pollutants
concentration between weekends and weekdays, mainly caused by human activities. On
weekdays, the main anthropogenic precursor emissions are due to commuting driving,
especially during the day. However, on the weekends, the main anthropogenic precursors
might come from family-related recreational activities. The difference in vehicle emissions
between weekdays and weekends is mainly related to fuel combustion products, fuel
consumption, and the traffic patterns of gasoline and diesel vehicles. Heavy-duty diesel
vehicles are the main source of NOx and black carbon (BC), while light-duty gasoline vehi-
cles are the main source of CO2. In general, the diesel-fueled vehicles showed a significant
reduction during weekends, resulting in a significant reduction in NOx and BC emissions.
If the atmospheric system was at nitrogen oxide saturation in urban areas, the reduction
in NOx emission on weekends may lead to a reduction in O3 titrations, which can reduce
the inhibition of O3 formation, resulting in an increased O3 concentration on weekends.
The “ozone quenching hypothesis” and “NOx reduction hypothesis” in the weekend ef-
fect prove that NOx plays a complex role in ozone production and termination [16]. The
concentration of atmospheric O3 increased from weekdays to weekends for a number of
sites in the Northern Front Range metropolitan area (NFRMA) of Colorado, with weekend
reductions in NO2 at two sites in downtown Denver between 2000 and 2015, indicating
that the region was in a NOx-saturated ozone production regime [91]. Similar results were
found in Shenyang city from 2013 to 2015 [29]. Koo et al. [92] investigated the weekend
effect in the Midwest (north-central and northeast) of the United States in the summer
of 2005, and the results showed that the reduction in O3 on weekends depends on the
increase in NOx emissions leading to an increase in O3 titration. The investigation of the
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weekend effect on O3 in Beijing in 2014 showed that the O3 concentration at weekends was
overall higher than that on weekdays, especially in urban centers [93]. The atmospheric O3
generation might be limited by VOCs during summer, autumn and winter. However, the
weekend O3 concentration was lower than on the working days in spring, suggesting that
O3 production might be limited by NOx in this season. On the urban scale, the weekend
effect in the central area of the city was larger than that in the suburb, but on the local
scale, the weekend effect showed a downward trend, with an increase in urbanization.
Weekend O3 changes depend on the intensity of the sunshine and the ratio of VOCs to
NOx emissions [94].

6. Prevention and Control Measures for Tropospheric Ozone Pollution

In a particular region, the level of tropospheric O3 depends on meteorology and the
interaction between O3 precursors. The distinction of these impacts is important for evalu-
ating the effectiveness of past emission reduction measures and clarifying the direction of
future control plans [95]. In order to effectively reduce the tropospheric O3 pollution, it is
necessary to strengthen the prevention and control of corresponding pollutants.

(1) The technology and energy structures should be improved, and the emissions of
NOx and highly reactive VOCs should be controlled. Pollution can be reduced
by closing high-polluting factories, setting up coal-free zones, restricting vehicles,
installing tailpipe cleaners and promoting the use of “three-way” catalytic converters.
In addition, improving the fuel, changing the composition of gasoline, or using
alternative fuels can reduce the pollution of tail gas.

(2) The monitoring and management should be strengthened. Measures should be
taken to avoid the occurrence of photochemical smog by using warnings issued
from monitoring equipment. When oxidant concentrations reach dangerous levels,
authorities should prohibit garbage incineration, reduce road vehicles or shut down
some factories temporarily. Emissions from oil refineries, petrochemical plants and
nitrogen fertilizer plants should be severely restricted by regulations. The VOCs from
landfills have been reported to contribute to the formation of O3 and photochemical
smog [96]. Therefore, there is a need for integrated waste management policies,
including source reduction and waste recovery, to reduce VOCs emissions.

(3) The prevention and control of VOCs and NOx pollution should be strengthened. The
control measures should focus on the industries with relatively serious pollution,
such as petrochemicals and printing. The comprehensive treatments for the waste
gas produced by these processes should be strengthened. The waste-gas-containing
pollutants should be centralized processing, and the treated tail gas should be recycled.
The use of raw and auxiliary materials with low VOCs content and low reactivity
should be promoted, and the production processes should be optimized as much as
possible. The implementation of urban forest measures for O3 should be undertaken
in noncompliant areas, that is, the gradual replacement of high-BVOC-emission
species with low-emission species, which can effectively control the emission of
VOCs to reduce O3 production [97]. Some regions have been effective in curbing O3
pollution through synergistic control of VOCs and NOx, but O3 remains a problem
in most places, especially in areas with high ozone pollution such as Beijing–Tianjin–
Hebei, the Yangtze River Delta and the Pearl River Delta. Xiang et al. [64] pointed out
that equally reducing NOx and VOCs emissions in the initial stage may have the least
benefit for air pollution improvement in Beijing–Tianjin–Hebei and the surrounding
areas because the NOx-focused strategies may exacerbate O3 pollution. Emission
reduction programs should be optimized in conjunction with short-term or long-term
targets to control VOCs and NOx emissions more scientifically.

(4) O3 pollution should be controlled in coordination with PM2.5/PM10. O3 and PM2.5
co-pollution conditions occur under meteorological conditions of high relative hu-
midity, high surface air temperature and low wind speed [98]. When PM2.5 and O3
interact under different ambient meteorological conditions, it depends on the domi-
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nant party. Tropospheric O3 and particulate matter interact through aerosol formation,
nonhomogeneous reactions on the surface of the particulate matter and changes in
the aerosol-induced photolysis rate. The relationship between PM2.5/PM10 and the
atmospheric ozone is therefore complex. High PM2.5/PM10 concentrations can affect
the aerosol radiative effects and the surface inhomogeneous reactions, which are also
influenced by different regions and meteorology, with long-range transport of air
masses bringing about cross-regional pollution of PM2.5 and O3 [99]. Long-term
mitigation of PM2.5 and O3 pollution control should be addressed by optimizing the
zoning of prevention and control areas and implementing local and targeted mea-
sures. Predictive simulation models and representative regional monitoring networks
should be developed, and synergistic mitigation strategies for PM2.5 and O3 pollution
should be explored. The effective synergistic control measures remain a difficult area
for future research.

7. Summary and Recommendations

High ozone concentrations are harmful to humans and the ecological environment,
and atmospheric ozone pollution is becoming a major environmental problem that has been
plaguing the economic development in China. There are significant regional differences
in the distribution of O3-max-8 h in China. The overall level of O3-max-8 h in the NCP is
higher than that of other regions. Due to economic development and dense population, the
eastern region has a higher level of O3-max-8 h, and the high-value areas are distributed
in flakes and bands. The high O3-max-8 h areas are mainly concentrated in the Beijing–
Tianjin–Hebei region, the Yangtze River Delta and the Pearl River Delta. In general, the
tropospheric ozone concentration is higher in summer while lower in winter, and higher
in coastal areas and lower inland. The concentration of tropospheric O3 is related to its
precursors, air temperature, solar radiation, air humidity, wind speed and the boundary-
layer height. There is a highly nonlinear relationship between O3 and its precursors (NOx
and VOCs), and the influencing mechanisms of NOx and VOCs in different regions are
quite different. Generally speaking, the rural area is controlled by NOx and the urban area
is controlled by VOCs. In addition, the influence of meteorological factors on tropospheric
ozone concentration also has large regional differences. The control of atmospheric O3
should, first of all, be at a specific location. Secondly, the control of atmospheric O3 should
be time-dependent, and largely depends on the meteorological conditions. Finally, in all
cases, the optimal VOCs/NOx ratio for controlling emissions should be studied in detail.
Through the coordinated control of O3 and other air pollution, such as PM2.5/PM10, we
can realize people’s high expectations of the air environment.
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Abstract: Long-term trends in sunshine duration in Chinese cities have been closely linked to factors
caused by air pollution. To understand this impact on sunshine duration (SD), surface solar radiation
from 1981 to 2020, annual PM2.5 concentration from 2012 to 2020 and air pollution index (API) data
from 2013 to 2020 collected in ten representative cities in China were investigated, and the long-term
relationship of SD with diffuse fraction (DF), aerosol option depth (AOD), annual PM2.5 concentration
and API were analyzed. The results indicated that trends in SD varied across cities. SD decreased in
seven of the ten selected cities’ stations in the past 40 years, and the annual mean SD decreased from
−0.03 h d−1 per decade to −0.36 h d−1 per decade—particularly in the Beijing North China Plain,
Shanghai and Wuhan stations in the Yangtze River delta, where the trend coefficients were lower than
−0.5. Conversely, increases in varying degrees of SD were found in Kunming (0.38 h d−1 per decade),
Guangzhou and Shenyang in Southwest, South and Northeast China, respectively—with the biggest
trend coefficient of 0.54 in Kunming. In addition to the SD variation, the DF in the ten city stations
increased continuously from 1981 to 2010 and then declined after 2010, which is closely related to
decreases in the annual PM2.5 concentration after 2012. The correlation coefficients between DF
and SD ranged from −0.04 to −0.62, validating their negative relationship and the slight increasing
trend in SD in recent ten years. The annual averages for SD and the DF plateaued in the 2010s due
to the stringent pollution controls established by the Chinese government after 2010. Furthermore,
the correlation coefficients between SD and the API ranged from −0.12 to −0.58, demonstrating a
negative relationship between SD and the API.

Keywords: air pollution index; diffuse fraction; sunshine duration; clearness index

1. Introduction

Over the past decades, China has become one of the most rapidly industrialized and
urbanized countries worldwide. The growing population and intensified anthropogenic
activities have led to the continuous increase in anthropogenic pollutant emissions in
China. Moreover, the exacerbation of air pollution through aerosol radiative forcing has
highly affected the radiation balance of the surface-atmosphere system. As an important
indicator of solar radiation, sunshine duration (SD)—defined by the World Meteorological
Organization (WMO) in 1989—is “the sum of the time for which the direct solar irradiance
exceeds 120 W·m−2” [1]. As SD reflects the solar energy absorbed from the sun, it has
become an important thermodynamic factor for large-scale atmospheric movements [2,3].
Small changes in SD may have a tremendous impact on weather and climate [4–6]. However,
with the increase of anthropogenic aerosol loading in the atmosphere, the absorption
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and scattering of solar radiation by aerosols intensifies the reduction of surface solar
radiation [7]. In addition, acting as cloud condensation nuclei, aerosol particles enhance
the longevity of clouds and their reflection of extraterrestrial radiation, further reducing
SD [8]. Therefore, it is of great significance to study the effect of air pollution on SD.

Several studies have focused on the impact of air pollution on long-term trends in
sunshine duration and solar radiation. Fu et al. found that in large cities and medium-sized
cities throughout China, due to extensive anthropogenic activities and the air pollution
represented by aerosol optical depth (AOD) and tropospheric column NO2 (TroNO2), sunny
SD presented with a decrease of −0.13 h d−1 per decade from 1960 to 2005 [9,10]. Bartoszek
et al. researched the relationships between cloudiness, aerosol optical thickness, and sun-
shine duration in Poland from 1980 to 2018; they found a growing trend in area-average
values of relative sunshine duration in each season of the year with reductions in aerosol
optical thickness [11]. Wang et al. analyzed the spatiotemporal changes of surface solar
radiation over East China during 2000–2016, pointing out that aerosol-induced radiation
reduction could result in about a mean 6.74% reduction in rice yield over East China [12].
Chen et al. analyzed trends in global radiation and sunshine hours at 51 stations during
1961–1998 in mainland China and found decreasing trends in global radiation at 47 stations,
with 42 stations showing a reduced trend in sunshine hours [13]. Song et al. reported
that SD in eastern China decreased throughout the year at an annual rate of −0.132 h d−1

per decade during 1961–2014, suggesting that urbanization and industrialization may be
responsible [14]. Kaiser and Qian reported an average decrease of approximately 1% per
decade in possible SD in China from 1954 to 1998 and proposed that the increased atmo-
spheric anthropogenic aerosol loading due to growing fossil fuel combustion accounted
for the decline in SD [15]. Liao et al. pointed out that the attenuation of visibility and SD
was consistent during 1980–2012 in South China and suggested that increases in pollutants
are responsible for sunlight obstruction and reductions in visibility [16]. Wang et al. in-
vestigated the long-term trends in surface solar radiation from 1960 to 2000 in China and
found that surface solar radiation in most regions of China began to increase after 1990,
which was attributed to decreases in cirrus and cirrostratus clouds [17]. Qi et al. reported
that the interannual trends and variations of surface solar radiation decreased in both East
and West China during 1961–2010, and suggested that aerosol pollutants were the main
factor causing the reduction of surface solar radiation in East China [18]. Furthermore, they
determined that an abrupt change occurring in the early 1990s, followed by a sustained
increase—possibly due to the Chinese government’s environmental protection plans [18].
The abovementioned studies improve our understanding of air pollution related to changes
in SD. However, most of these studies have focused on the influence of air pollution on
trends in solar radiation separately, rather than combined with SD, or the impacts have
only covered limited land areas or weather conditions. Discussion of the influence of
air pollution on long-term SD trends in representative cities of China under all weather
conditions are rare in previous studies.

In this study, we examined SD and related solar radiation data from ten typical cities
in different climate regions over China from 1981 to 2020, mainly focusing on the long-term
trends in and associations between SD, the diffuse fraction (DF), annual PM2.5 concentration
and the air pollution index (API)—which is related to increases in anthropogenic aerosols.
This paper aims to provide an improved understanding of SD changes influenced by severe
environmental issues that have occurred during the industrialization and urbanization
caused by China’s reform and opening policy of 1980. The present article is organized
as follows: Section 2 introduces the data source and the methods. Section 3 presents
interannual SD trends and seasonal SD trends from 1981 to 2020, followed by discussions
of the relationships between SD changes and the DF and API. The main conclusions are
presented in Section 4.
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2. Methodology

2.1. Data

The SD and solar radiation data were collected from ten China Meteorological Radi-
ation Data International Exchange Stations located in seven climate regions in mainland
China [19] (Figure 1), with station information shown in Table 1. Daily SD, global solar
radiation and diffuse radiation were measured simultaneously from 1981 to 2020—except
for Shanghai, from 1991 to 2020. SD was measured using a Jordan Sunshine Recorder
with an absolute error of ±0.1 h and global solar radiation and diffuse radiation were
measured horizontally using a thermopile-based pyranometer with a relative error of ±2%.
The daily data were archived at the National Meteorological Information Center of China
Meteorological Administration (http://data.cma.cn/, accessed on 31 August 2021). The
annual and seasonal averages of SD and solar radiation deduced from daily data were
analyzed. In this study, spring, summer, autumn and winter corresponded to March–May,
June–August, September–November and December–February, respectively.

Figure 1. Locations of the ten investigated stations and their climate conditions. NC for North China,
NE for Northeast China, CC for Central China, SC for South China, SW for Southwest China, EA for
Eastern arid regions, WA for Western arid/semi-arid regions, TP for the Tibetan plateau.

Table 1. Geographical information of the investigated stations used in this study.

Station Name Longitude/E◦ Latitude/N◦ Altitude/m asl. Climate Regions

Beijing 116.47 39.81 32.8 NC
Shenyang 123.51 41.73 51.0 NE

Harbin 126.57 45.93 118.3 NE
Shanghai 121.44 31.39 5.5 CC
Wuhan 114.05 30.60 23.6 CC

Guangzhou 113.48 23.21 70.7 SC
Chengdu 103.86 30.75 547.7 SW
Kunming 102.65 25.01 1888.1 SW
Urumqi 87.65 43.78 935.0 WA
Lanzhou 104.14 35.87 1874.4 EA

The DF and clearness index (CI) are introduced in this article. The DF is defined as
the ratio of diffuse radiation to global solar radiation and is an important indicator of the
global transmissivity of the atmosphere. The clearness index, which varies primarily due to
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cloud cover and cloud type, is the ratio of global solar radiation to extraterrestrial radiation.
To obtain the clearness index, the equation for calculating the extraterrestrial radiation
(MJ/m2) on a horizontal surface, H0, is as follows [20,21]:

H0 =
24 × 3600 × Isc

π

[
1 + 0.033 cos

(
360n

365

)]
×
[
cos ϕ cos δ sin ws +

πws

180◦ sin ϕ sin δ
]

(1)

where Isc is the solar constant (1367 W m−2), n is the day number of the year—starting
from January 1—ϕ is the latitude of the station in degrees, δ is the declination of the
sun in degrees and ws is the sunrise hour angle in degrees. δ and ws can be obtained by
Equations (2) and (3) [20,21]:

δ = 23.45 sin
[

360(n + 284)
365

]
(2)

ws = arccos[− tan δ tan ϕ] (3)

To ensure the quality of the SD and solar radiation data, some quality control criteria
were applied to the daily data. The criteria included: (1) daily collections were rejected if
either SD or solar radiation was missing; (2) only daily collections meeting 0 < DF < 1 and
0 < CI < 1 simultaneously were used; (3) the month was rejected if more than ten days of
SD or solar radiation were missing in that month.

API is a dimensionless parameter describing the comprehensive conditions of urban
environmental air quality. The higher the API, the more serious the comprehensive pollu-
tion. API includes six pollutants: SO2, NO2, PM10, PM2.5, CO and O3; it is calculated using
the sub-index of the six pollutants derived from daily or monthly average concentrations.
The equations are as follows:

Ii =
Ci

Si
(4)

API =
6

∑
i=1

Ii (5)

where Ii is the sub-index of the ith pollutant of the six pollutants, Ci is the concentration of
the ith pollutant of the six pollutants; when the ith pollutant is either SO2, NO2, PM10 or
PM2.5, Ci is the monthly mean concentration; when the ith pollutant is either CO or O3, Ci

is the concentration at a specific percentile. Si is the secondary standard of the ith pollutant;
when the ith pollutant is either SO2, NO2, PM10 or PM2.5, Si is the secondary standard for
the annual mean; when the ith pollutant is CO, Si is the secondary standard for the daily
mean; and when the ith pollutant is O3, Si is the secondary standard for the 8 h mean.

The monthly API data used in this study were obtained from the China National
Environmental Monitoring Centre (http://www.cnemc.cn/jcbg/kqzlzkbg/, accessed on
31 August 2021); however, the data consistent with the SD and global solar radiation
stations are only available from January 2013 to August 2020 because the observation
starting time and data were unavailable for this study. In addition, the annual PM2.5
concentration data from 2012 to 2020 were used in this study, which were obtained from the
Tracking Air Pollution in China website: http://tapdata.org.cn/ (accessed on 11 May 2022).

2.2. Methods

The linear regression method was used to analyze the inclination of climatic elements
over a long time scale. To evaluate inclination, we established the unary linear regression
equation y = a + bx between the SD (y) and time series (x, year), where a is the regression
constant and b is the regression coefficient—namely, the inclination rate. Both a and b can
be calculated using the least square method. b > 0 indicates that y increases with an increase
in time x; on the contrary, b < 0 means y decreases as time x increases.
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A moving average was introduced to investigate the SD trends in this study. For a
climate element series, its moving average series can be depicted using Equation (6):

yj =
1
k

k

∑
i=1

yi+j−1 (j = 1, 2, . . . , n − k + 1) (6)

where n stands for the number of years, yj is the jth moving average of SD, k is the step
length and ith is the sequence of the step length. From the curve of the moving average, we
can see whether the climate variable is increasing or decreasing, which helps determine the
turning point of the climate variable.

We also analyzed the trend coefficient ryx, which is defined as a correlation coeffi-
cient between the climatic element series and the time series, and can be expressed as in
Equation (7) [10]:

ryx =
∑

n
i=1(yi − y)(i − x)√

∑
n
i=1(yi − y)2

∑
n
i=1(i − x)2

(7)

where n denotes the number of years, i is the year sequence, yi is the element value in
the ith year, y represents the mean of all the element values in n years and x is equal to
(n + 1)/2. If ryx > 0, the element increases during n years, whereas if ryx < 0, the trend in
the element declines during n years; ryx = 0 means no change. Furthermore, correlation
and fitting analyses were used in our study.

3. Results and Discussion

3.1. Trends in Sunshine Duration from 1981 to 2020

Figure 2 shows the spatial distribution of the trend coefficients of SD for the ten stations
over China from 1981 to 2020. SD trend coefficients are presented in Table 2. There was
a clear decline in SD at seven stations, but not in Kunming, Guangzhou and Shenyang—
located in Southwest, South and Northeast China, respectively. Owing to its environment
and high altitude, Kunming showed a significant increase in SD, with a trend coefficient
greater than 0.5. Guangzhou, thanks to its being an inshore region in southeast China and
its advanced technology and tertiary industry, had a positive trend coefficient of 0.21. The
trend coefficient of Shenyang was 0.03; hence, the increase in SD in this region was minimal.
In contrast, stations in the other representative cities in China showed a decreasing trend
in SD. The Beijing, Shanghai and Wuhan stations had trend coefficients lower than −0.5.
Notably, in Beijing and Shanghai, the trend coefficients were both less than −0.6, which
were attributed to their larger population densities and levels of anthropogenic pollution
due to urbanization.

Figure 2. Trend coefficients of SD from 1981 to 2020 for the ten selected stations.
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Table 2. Statistical summary of SD.

Station
Mean

(h d−1)
Std.

(h d−1)
Trend

Coefficient
Regression
Equation

Correlation
Coefficients
of SD vs. DF

Beijing 6.93 0.44 −0.62 y = −0.023x + 7.40 −0.41
Shenyang 6.62 0.41 0.03 y = 0.001x + 6.60 −0.30

Harbin 6.50 0.74 −0.34 y = −0.022x + 6.95 −0.40
Shanghai 5.05 0.48 −0.70 y = −0.036x + 5.64 −0.44
Wuhan 4.98 0.48 −0.51 y = −0.021x + 5.41 −0.59

Guangzhou 4.28 0.39 0.21 y = 0.007x + 4.14 −0.48
Chengdu 2.71 0.36 −0.27 y = −0.008x + 2.89 −0.35
Kunming 6.13 0.81 0.54 y = 0.038x + 5.36 −0.53
Urumqi 7.77 0.53 −0.39 y = −0.018x + 8.14 −0.04
Lanzhou 7.08 0.31 −0.10 y = −0.003x + 7.14 −0.62

Through a regression analysis of the daily average SD, a ranking of the cities with
decreasing SD trends can be obtained: Lanzhou < Chengdu < Urumqi < Wuhan < Harbin
< Beijing < Shanghai, ranging from −0.03 h d−1 per decade to −0.36 h d−1 per decade.
Increasing trends in SD were found in Kunming, Guangzhou and Shenyang, with the
biggest increasing trend of 0.38 h d−1 per decade in Kunming. The regression equations
are listed in Table 2.

Setting the step length k as 5 years, the moving average curves of the annual daily
mean SD of the ten stations are shown in Figure 3. Except for obvious upward trends in
Kunming and Guangzhou and a weak upward trend in Shenyang, downward trends in the
SD of the other seven stations can be observed from Figure 3—which is consistent with the
results of the linear analysis and trend analysis. Moreover, except for the turning points
of Urumqi and Harbin in 2015 and Shenyang in 2006, inflection points in the SD of most
stations could be identified at around 2010.

Figure 3. Moving average of the daily mean sunshine duration per year.

Figure 4 shows the seasonal trends in SD from 1981 to 2020. Consistently, the changes
in SD in the studied cities exhibited a similar variation. The overall SD decreased in 1981–
2010 and started increasing after 2010. This fall–rise trend might be due to environmental
protection measures taken by the Chinese government over the past decade. In Shanghai,
Wuhan and Chengdu, SD trends seasonally varied in fall–rise and rise–fall patterns. This
was primarily due to the climate characteristics of spring and winter in these areas, which
are not conducive to the diffusion of pollutants, further reducing the solar radiation reaching
the ground, and consequently reducing SD.
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Figure 4. Seasonal trends in SD from 1981 to 2020 for the ten selected stations. (a) Seasonal trends
in SD for Beijing; (b) Seasonal trends in SD for Shenyang; (c) Seasonal trends in SD for Harbin;
(d) Seasonal trends in SD for Shanghai; (e) Seasonal trends in SD for Wuhan; (f) Seasonal trends in
SD for Guangzhou; (g) Seasonal trends in SD for Chengdu; (h) Seasonal trends in SD for Kunming;
(i) Seasonal trends in SD for Urumqi; (j) Seasonal trends in SD for Lanzhou.
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3.2. DF and SD Trends

Generally, DF is an important indicator of levels of diffuse radiation, which are closely
related to the aerosol content in the air, and can uncover the effects of pollutants on SD
measurements. The correlation coefficients between DF and SD, listed in Table 2, ranged
from −0.04 to −0.62, indicating that there was a negative relationship between the DF
and SD. Therefore, sunshine duration decreased when diffuse radiation increased, and
vice versa.

However, the bar graph of the DF trend coefficients shown in Figure 5 provides a
different perspective. Long-term trend coefficients of DF during 1981 to 2020 were both
positive and negative, with no distinct relationship between SD and the DF. According to
the previous analysis on seasonal trends in SD, most SD trends took 2010 as the node—first
decreasing and then increasing. We recalculated the trend coefficients of DF according to
the 2010 node. From Figure 5, the DF trend coefficients of all the studied stations were
positive before 2010 and negative from 2011 to 2020. This indicates that the diffuse radiation
component increased continuously from 1981 to 2010, and began to decrease after 2010,
just contrary to the seasonal trends in SD depicted in Section 3.1.

Figure 5. Trend coefficients of DF from 1981 to 2020 for the ten selected stations.

The opposite trend observed between SD and DF might be closely related to an-
thropogenic emissions. To understand the impact of the anthropogenic emissions on the
relationship between SD and DF, AOD, as an important physical property of particle
pollutants, is introduced to validate the negative correlation. The spatial–temporal varia-
tion and trends in MERRA-2 AOD over China from 1980 to 2017 have been analyzed by
Sun et al. [22]. High AOD values mainly appeared in agglomerations such as the North
China Plain (the city cluster of Beijing–Tianjin–Hebei), Pearl River Delta (the city cluster of
Guangzhou–Shenzhen–Zhuhai), Yangtze River delta (the city cluster of Shanghai–Nanjing–
Wuhan) and part of the Sichuan Basin (the city cluster of Chengdu), while low AOD values
mainly appeared in western China. The annual Mean MERRA-2 AOD of the whole of
China showed a slight increase from the 1980s to the 1990s, a sharp increase from 2001 to
2010 and a decrease from 2010 to 2017—which is almost identical to the trends and turning
points of the DF and SD. Furthermore, He et al. [23] investigated the AOD spatial–temporal
distribution during 2003 to 2016 throughout China. Their statistical results showed that
high AOD values mainly occurred in developed agglomerations; the overall annual mean
AOD showed a declining trend of −0.0018 per year from 2004 to 2016 over the whole of
China. A remarkable upward trend of 0.012 year−1 from 2003 to 2008 and a significant
decrease from 2008 to 2016 could be found; the turnaround appeared in 2008, which is
adjacent to the inflection point of the SD and DF at around 2010. Obviously, the variation
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in AOD had a good positive correlation with the DF, and an evident negative correlation
with SD. The possible reason for this might be that the surged anthropogenic emissions
could lead to an increase in aerosols and AOD; through scattering and absorbing, a large
number of aerosols will increase the diffuse radiation in the atmosphere and reduce the
direct radiation reaching the ground—thus reducing the SD. Regarding the turning point
shown in the SD, DF and AOD trends, this is most likely due to the Chinese government
taking a series of stringent pollution controls from around 2010.

In this study, we took annual PM2.5 concentration as an example to investigate the
influence of anthropogenic emissions on the relationship between SD and DF. As the
particle concentration data from throughout China before 2012 are not available, we could
only illustrate the spatial distributions in annual PM2.5 concentrations during 2012 to
2020 in Figure 6—which correlate well with the trends in SD and DF after 2010 and are
consistent with previous studies [22,23]. From 2012, high concentrations of PM2.5 have
been distributed over the North China Plain (the city cluster of Beijing–Tianjin–Hebei),
Yangtze River delta (the city cluster of Shanghai–Nanjing–Wuhan), Northeast Plain (the city
cluster of Shenyang–Jilin–Harbin), Northwest Plateau (the city cluster of Xi’an–Lanzhou–
Urumqi) and Sichuan Basin (the city cluster of Chengdu). All these regions are the fastest
developing areas in China. However, the interannual trend in PM2.5 concentration is
getting better year by year. This is likely to be closely related to the Air Pollution Prevention
and Control Action Plan (2013–2017) and the Blue Sky Protection Campaign (2018–2020),
implemented since 2013. According to statistical studies, the Air Pollution Prevention and
Control Action Plan reduced the annual population-weighted mean PM2.5 from 62.5 μg/m3

in 2013 to 44.4 μg/m3 in 2017, and the Blue Sky Protection Campaign further reduced
PM2.5 concentrations to 33.1 μg/m3 in 2020 [24–26]. The decrease in anthropogenic aerosols
resulted in a decrease in the DF, which further increased the solar radiation reaching the
ground and raised SD. Correspondingly, except for Urumqi—which had a decreasing trend
of SD before 2015—the other nine cities had an overall decrease before 2010; after that, the
SD trends of the cities rose gradually, which is consistent with the analysis results in Figure 5,
validating the negative relationship between SD and DF related to the concentrations of
aerosol particles.

3.3. Connections between API and SD Trends

Figure 7 displays the time series of the annual mean API from 2013 to 2020. A negative
correlation was observed between SD and API, which confirms that light pollution will
result in high SD. Furthermore, sharp decreases in API were observed after 2015 for all sta-
tions, along with a slight improvement in SD during this period. This might correlate with
pollution controls such as supersessions in polluting industrial equipment and enterprises,
and reductions in emissions of sulfur and nitrogen oxides from large plants.

Using only the available API data, the correlation coefficients between SD and the API
were calculated and listed in Table 3, ranging from −0.12 to −0.58. Correlation coefficients
of less than −0.3 could be found in the urban agglomerations in North China Plain, Yangtze
River delta, Northeast Plain, and Northwest Plateau, this is supported by the distribution
of annual PM2.5 concentration across China.
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Table 3. The correlation coefficients between SD and API.

Station Correlation Coefficients of SD vs. API

Beijing −0.55
Shenyang −0.39

Harbin −0.33
Shanghai −0.32
Wuhan −0.37

Guangzhou −0.22
Chengdu −0.12
Kunming −0.17
Urumqi −0.33
Lanzhou −0.58

Figure 6. The spatial distributions of annual PM2.5 concentrations from 2012 to 2020 (Source:
http://tapdata.org.cn, accessed on 11 May 2022).
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Figure 7. Cont.
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Figure 7. Interannual changes in averaged SD, DF and API for the ten cities from 1981 to 2020. (a) For
Beijing; (b) For Shenyang; (c) For Harbin; (d) For Shanghai; (e) For Wuhan; (f) For Guangzhou; (g) For
Chengdu; (h) For Kunming; (i) For Urumqi; (j) For Lanzhou.

4. Conclusions

In this study, the SD, surface solar radiation, PM2.5 concentration and API data from ten
China Meteorological Radiation Data International Exchange Stations in ten representative
cities were collected to examine the trends between DF and SD from 1981 to 2020, PM2.5
concentration and SD from 2012–2020, and API and SD from 2013–2020. Our analysis
indicates that solar radiation and SD are associated closely with aerosol pollutants due to
urbanization and industrialization.

Overall, SD decreased in seven of the ten selected cities’ stations from 1981 to 2020,
with a decreasing rate of −0.03 h d−1 per decade to −0.36 h d−1 per decade—notable in
Beijing, Shanghai and Wuhan, where trend coefficients were lower than −0.5. By contrast,
SD increased in Kunming, Guangzhou and Shenyang, with the largest trend coefficient
of 0.54 and the largest increasing rate of 0.38 h d−1 per decade in Kunming. Seasonal
trends in SD showed a fluctuating decrease in SD from 1981 to 2010 and increases from
2011 to 2020. In contrast to the seasonal trends in SD, the DF trend coefficients suggested
that diffuse radiation increased continuously from 1981 to 2010, peaking in the 2010s and
decreasing after 2010. The correlation coefficients between DF and SD ranged from −0.04
to −0.62, validating the negative relationship between DF and SD—this was supported by
the improvement in annual PM2.5 concentrations due to the stringent pollution controls in
place since 2013 throughout China. Furthermore, the correlation coefficients ranging from
−0.12 to −0.58 demonstrated a negative relationship between SD and API; sharp decreases
in API were observed after 2015 for the ten typical cities’ stations and slight improvements
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in SD during this period were found which accounted for the pollution impact on SD trends
from the other side.

Because many factors can affect the transmission of solar radiation in the atmosphere,
some factors might not have been accounted for in this study. SD and diffuse radiation
are not only affected by air pollution, but also by clouds. As cloud coverage data are not
available for this study, we only adopted the clearness index related to the cloud cover,
without analyzing the relationship between SD and cloud cover. We will further explore
the influence of clouds on SD in subsequent studies.
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Abstract: Spatial and temporal variation of aerosol optical depth (AOD) and optical depth of dif-
ferent aerosol types derived from the second Modern-Era Retrospective analysis for Research and
Applications (MERRA-2) over the South China Sea (SCS) between 1980 and 2020 were studied. AOD
distribution showed different characteristics throughout the entire SCS. Sulfate Aerosol Optical
Depth (SO4AOD) and Sea Salt Aerosol Optical Depth (SSAOD) mainly contributed to the spatial and
temporal variation of AOD over the SCS. A significant increasing trend followed by a decreasing
trend of AOD could be observed in the north of the SCS from 1980 to 2020. Mean MERRA-2 AOD
between 1980 and 2020 showed that AOD was high in the north and low in the south and that AOD
gradually decreased from north to south over the SCS. AOD after 2000 was obviously higher than
that of the 1980s and 1990s. Higher AOD appeared in the spring and winter, and low AOD appeared
in the summer. The spatial distribution of scattering aerosol optical depth (SAOD) was similar to
AOD distribution over the SCS. SO4AOD and SSAOD were obviously higher than black carbon
aerosol optical depth (BCAOD), organic carbon aerosol optical depth (OCAOD), and dust aerosol
optical depth (DUAOD) over the SCS. SO4AOD accounted for over 50% of total AOD (TAOD) over
the north of the SCS, while BCAOD and DUAOD accounted for less than 10% of TAOD over the
entire SCS. An obvious annual mean TAOD increase between 1980 and 2007 could be observed over
the northern part of the SCS (NSCS), while a TAOD decrease happened from 2008 to 2020 in this
region. The correlation coefficient between TAOD and SO4AOD over NSCS from 1980 to 2020 was
about 0.93, indicating SO4AOD was the driving factor of TAOD variation in this area. Different
AOD variation trends over the different areas of the SCS could be observed during the two periods
including 1980–2007 and 2008–2020. AOD increase appeared over most of the SCS during the period
from 1980 to 2007, while AOD decrease could be observed over most of the SCS from 2008 to 2020.

Keywords: aerosol optical depth; MERRA-2; South China Sea; climate

1. Introduction

Aerosol is an important constituent of the atmosphere, and plays a key role in the
radiation balance, regional and global climate change, and human health [1–11]. Aerosol is
released to the atmosphere through both natural and anthropogenic processes. To have
a better understanding of aerosol, a large number of studies about aerosol have been
conducted by researchers around the world [12–25]. However, at present, aerosol optical
property is still one of the largest sources of uncertainty in estimating climate change. AOD
represents extinction of light over the vertical column of atmosphere. As an important
measure of aerosol loading, AOD is a crucial metric in assessment of global climate change
and the impact of aerosol on precipitation, radiation, and clouds [26]. Ground-based
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measurement with high accuracy is an effective method to obtain AOD, and is always used
to validate satellite and reanalysis data.

Ground-based observation networks mainly include AERONET, China Aerosol Re-
mote Sensing Network (CARSNET), and Sky Radiometer Network (SKYNET). AERONET
could provide consistent measurements of aerosol optical properties, and was known as a
global sun-photometer network [27–31]. Established by the China Meteorological Adminis-
tration (CMA) in 2002, CARSNET is an independent aerosol monitoring network with the
same type of sun-photometer as AERONET [32–35]. SKYNET equipped with pyranome-
ter and sun/sky photometer is a radiation network [36]. Ground-based observation has
high accuracy, but it offers limited temporal and spatial coverage. Compared with sparse
ground-based observation, satellite remote sensing can provide measurements covering
large areas. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS)
aerosol products are usually used in aerosol analysis. Although MODIS data can cover a
large area, the study period is only about 20 years. In addition, there are limitations under
cloudy conditions for satellite data. Reanalysis product plays an important role in the
areas which lack measurements or only have short-term observations. MERRA-2 aerosol
products not only can cover large areas, but also provide long-term aerosol data from 1980
to present. Moreover, MERRA-2 also can offer aerosol data under cloudy conditions.

Due to rapid industrial development, air pollution has become a serious problem in
the regions where people live. A lot of researchers have carried out studies about aerosol
characteristics over land. Yu et al. [37] did research about aerosol optical properties in
Beijing with AERONET measurements between 2002 and 2007, finding an obvious seasonal
variation with higher AOD values in spring and summer. Kang et al. [38] conducted
research about aerosol optical property in Nanjing through ground-based measurements
from September 2007 to August 2008, and arrived at the conclusion that aerosol over
Nanjing mainly contained the mixed type, urban-industrial type, and biomass burning
type. Che et al. [39] studied aerosol pollution in eastern China with ground-based measure-
ments between 2011 and 2015 from seven observation sites, pointing out that—different
from northern China—AOD in the Yangtze River Delta during July and August is lower
than in January and February because of particle dispersion. Due to air mass transport,
natural and anthropogenic aerosol can spread through the atmosphere over a large spa-
tial scale. The transport of atmospheric aerosol from continental areas to oceans leads to
the spatiotemporal heterogeneity of the atmospheric aerosol characteristics over oceans,
which can influence the regional climate [40]. Therefore, aerosol study over the oceans is
also important.

As a low-latitude sea, the South China Sea (SCS) is located in the south of China and
is adjacent to several Asian countries. The SCS is a major sea route which connects the
Pacific Ocean and the Indian Ocean. With abundant marine resources, the SCS is the largest
marginal sea of China. Large amounts of atmospheric aerosols from these surrounding
regions transport to the SCS [41]. The deposition of aerosol over sea has an important
impact on the seawater. In order to comprehensively understand the significant role of
aerosol in climate change and the biogeochemical cycle, variation of aerosol properties
over sea needs to be studied. At present, much attention has been given to the SCS. Sun
et al. [42] conducted research about variability of AOD in the SCS and concluded that
AOD had an obvious dependence on the wind speed. Zhang et al. [43] investigated the
aerosol properties over the SCS with ground-based observations in two sites, including
Taiping and Dongsha. The study found that AOD in Taiping is less than 0.2 and that
AOD in Dongsha was between 0 and 0.6. Li et al. [44] studied the aerosol properties over
the northern area of the SCS between 9 August and 7 September 2016 with a shipborne
micro-pulse lidar, finding that AOD was lower over the southwest side than the northeast
side of the cruise region.

Although investigations about aerosol properties over the SCS have been conducted,
the study period of most studies is not long enough. It is essential to conduct investigation
on the long-term variation of aerosol loadings over the SCS. In this study, variations of
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MERRA-2 AOD, BCAOD, OCAOD, SO4AOD, DUAOD, and SSAOD from 1980 to 2020
were analyzed to offer a better understanding of aerosol property over the SCS.

2. Materials and Methods

MERRA-2 is a NASA reanalysis product from 1980 onward. With a 0.625◦ × 0.5◦

longitude-by-latitude grid, MERRA-2 offers data collections including AOD products,
radiation diagnostics, and so on. The resolution of MERRA-2 is approximately 50 × 50 km.
In this study, monthly MERRA-2 AOD, BCAOD, OCAOD, SO4AOD, DUAOD, and SSAOD
were used to study the long-term variation of aerosol over the SCS. Three regions of interest
over the SCS were chosen for a better analysis of the aerosol variation. In addition, linear
regression method was used to calculate the MERRA-2 AOD variation trend over the SCS
in two periods, including 1980–2007 and 2008–2020.

Figure 1 showed the map of the SCS and the locations of the northern part of the South
China Sea (NSCS), the middle part of the South China Sea (MSCS), and the southern part
of the South China Sea (SSCS).

Figure 1. Map of the South China Sea (SCS). The black boxes represent the three selected regions of
interest: the northern part of the South China Sea (NSCS), the middle part of the South China Sea
(MSCS), and the southern part of the South China Sea (SSCS).

3. Results and Discussion

3.1. Accuracy of MERRA-2 AOD

As AOD are retrieved and assimilated from AERONET, MISR, MODIS, and AVHRR,
MERRA-2 AOD agreed well with the ground-based measurements [45]. The correlation
coefficients between AERONET and MERRA-2 AOD were 0.84, 0.88, and 0.90 in Xianghe,
Beijing, and the Yangtze River Basin [46]. MERRA-2 AOD was compared with ground-
based AOD from 29 CARSNET stations throughout China during 2002–2014, and good
agreement was also obtained [47]. The good agreement between MERRA-2 and ground-
based AOD offered an important theoretical basis for the following study of temporal and
spatial distributions of MERRA-2 AOD over the SCS from 1980 to 2020.
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3.2. Spatial Distribution and Temporal Variation of MERRA-2 AOD

There are 41 years from 1980 to 2020, totalling 492 months. With the monthly MERRA-
2 AOD data, we obtained the mean value of MERRA-2 AOD during the period between
1980 and 2020. In Figure 2, the four-decade-long mean MERRA-2 AOD over the SCS was
obviously high in the north and low in the south, and gradually decreased from the north
to south. More obvious AOD variation could be seen in the north of the SCS. The highest
AOD between 0.35 and 0.40 is over China’s offshore region. This is due to the aerosol
transport from land with higher AOD (over 0.40) to the ocean. The aerosol over the offshore
region can be easily affected by the aerosol over land because of the short distance. The
lowest AOD appeared in the southern part of the SCS where AOD was less than 0.15. In
the middle of the SCS, AOD value was between 0.15 and 0.20. The mean MERRA-2 AOD
value over Dongsha was between 0.275 and 0.30, while the AOD value over Taiping was
between 0.15 and 0.175. AOD over Dongsha was higher than AOD over Taiping, which
was consistent with the conclusion by Zhang et al. [43].

Figure 2. Spatial distribution of mean values of the 550 nm MERRA-2 AOD over the SCS in the
period of 1980–2020.

As shown in Figure 3, the spatial distributions of mean MERRA-2 AOD over the SCS
in eight 5-year periods showed similar distribution from 1980 to 2020. High AOD appeared
in the north of the SCS, and low AOD appeared in the south of the SCS in the eight 5-year
periods. In the period of 1980–1985, AOD in the north of the SCS was between 0.20 and
0.30, and AOD in the majority of the southern region of the SCS was between 0.15 and 0.20.
In the period of 1986–1990, AOD in the south of the SCS was only between 0.10 and 0.15,
which was obviously lower than that in 1980–1985. This could be due to the eruption of
the El Chichon volcano in 1982 [48], which caused relatively higher AOD in 1980–1985.
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Because of the eruption of Pinatubo volcano in 1991 in the Philippines [49], AOD rose
obviously in the period of 1991–1995, and was higher than that in 1986–1990 over the entire
SCS. With the gradual deposition of volcanic pollutants, an obvious AOD decrease could
be observed in 1996–2000. During 1996–2000, AOD was again below 0.15 in the south of
the SCS. After 2000, rapid industrial development of China and the aerosol transport from
the land to ocean contributed to the AOD increase over the SCS. AOD over the offshore
region of China in the north of the SCS after 2000 was obviously higher than that before
2000. Affected by the high AOD over land, AOD over the offshore region of China could
exceed 0.35 after 2000. The sea area to the west of Hainan Island, whose location could
be seen in Figure 2, is about 0.40 in the period of 2001–2005. The AOD of this sea area
exceeded 0.50 in 2006–2010 and 2011–2015, and then decreased to about 0.40 in 2016–2020.

Figure 3. Variation of MERRA-2 AOD in 5-year intervals in the period of 1980–2020.

Figure 4 illustrated the mean AOD in each month over the SCS between 1980 and 2020.
In most months, similar spatial distribution could be observed. High AOD appeared in the
north and low AOD occurred in the south. In addition, high AOD could be observed in
spring and winter, while low AOD occurred in summer. In March and April, AOD over
the north of the SCS exceeded 0.50, while in June and July AOD over the north of the SCS
was only about 0.20. In September, higher AOD could be observed in the south than in
the middle of the SCS. These could be explained by the following facts. With a monsoon
climate, the SCS has a northeast monsoon in winter and spring, and a southwest monsoon in
summer and autumn. In winter and spring, dust and pollution transported from mainland
China and Japan in the northeast, while during summer and autumn, the SCS received
biomass burning pollutants from Malaysia and Indonesia from the southwest [41].
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Figure 4. Spatial distribution of mean MERRA-2 AOD in each month in the period of 1980–2020.

3.3. Spatial Distribution of MERRA-2 SAOD and AAOD

Scattering aerosol optical depth (SAOD) could be obtained by subtracting absorption
aerosol optical depth (AAOD) from the total aerosol optical depth (TAOD) [50]. Mean
values of MERRA-2 SAOD and AAOD between 1980 and 2020 over the SCS were shown in
Figure 5. In Figure 5a, the spatial distribution of SAOD was similar to AOD distribution
in Figure 2. SAOD was high in the north and low in the south, and gradually decreased
from the north to south over the SCS. On the whole, SAOD was a little lower than AOD
over the SCS. The north of the SCS showed more obvious SAOD variation. The highest
SAOD between 0.325 and 0.375 occurred in the offshore area of China, while the lowest
SAOD between 0.125 and 0.15 could be observed in the south of the SCS. In the middle
of the SCS, SAOD was between 0.15 and 0.175. As shown in Figure 5b, high AAOD
(0.015–0.0175) appeared in the north and low AAOD (0.0025–0.005) was in the south of
the SCS. AAOD gradually decreased from the north to the south. More obvious AAOD
variation could be observed in the north of the SCS. In the middle of the SCS, AAOD
was between 0.005 and 0.0075. Over the entire SCS, AAOD was much lower than SAOD,
indicating scattering extinction played a major role in this area.
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Figure 5. Spatial distribution of mean values of (a) scattering aerosol optical depth (SAOD) and
(b) absorption aerosol optical depth (AAOD) over the SCS in the period of 1980–2020.

3.4. Spatial Distribution and Temporal Variation of MERRA-2 AOD of Different
Aerosol Compositions

Black carbon, organic carbon, dust, sulfate, and sea salt aerosol are the main compo-
nents in the aerosol. MERRA-2 AOD is the sum of SO4AOD, BCAOD, OCAOD, DUAOD,
and SSAOD. As shown in Figure 6, the mean BCAOD, OCAOD, DUAOD, SO4AOD, and
SSAOD during 1980 and 2020 showed different characteristics over the SCS. SO4AOD and
SSAOD had higher values than BCAOD, OCAOD, and DUAOD. BCAOD and DUAOD
had the lowest values which were less than 0.02 over the entire SCS. OCAOD was also
low, and was under 0.04 over most part of the SCS. Only in the north of the SCS, OCAOD
exceeded 0.04. SO4AOD showed similar spatial distribution to the total AOD mentioned
above, while the spatial distribution of BCAOD and DUAOD was completely different
from that of total AOD. The spatial distribution of BCAOD over the SCS showed almost
no difference, and so did DUAOD. The spatial distribution with most obvious difference
over the SCS was SO4AOD. SO4AOD was high in the north and relatively low in the south,
and gradually decreased from the north to south over the SCS. More obvious SO4AOD
variation appeared in the north of the SCS. The highest SO4AOD (over 0.20) appeared in
the north of the SCS, and the lowest SO4AOD (under 0.06) occurred in the south of the
SCS. SO4AOD in the middle of the SCS was mainly between 0.06 and 0.08. The SSAOD
was between 0.06 and 0.10 over most part of the SCS, and the highest SSAOD values were
mainly between 0.08 and 0.10. Total AOD over SCS was mainly affected by SO4AOD
and SSAOD.

The contribution of SO4AOD, BCAOD, OCAOD, DUAOD, and SSAOD to AOD was
obtained through the equations

SO4AOD Percent = SO4AOD/AOD (1)

BCAOD Percent = BCAOD/AOD (2)

OCAOD Percent = OCAOD/AOD (3)

DUAOD Percent = DUAOD/AOD (4)
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SSAOD Percent = SSAOD/AOD (5)

Figure 6. Spatial distribution of mean MERRA-2 values of (a) SO4AOD, (b) BCAOD, (c) OCAOD,
(d) DUAOD, and (e) SSAOD over the SCS during the period of 1980–2020.

Figure 7 showed the contributions of SO4AOD, BCAOD, OCAOD, DUAOD, and
SSAOD to the total AOD over the SCS, respectively. SO4AOD Percent and SSAOD Percent
were obviously higher than BCAOD Percent, OCAOD Percent, and DUAOD Percent.
BCAOD Percent and DUAOD Percent had the lowest values which were less than 10% over
the entire SCS. OCAOD Percent was mainly between 10% and 20%, and only a small part in
the middle of the SCS was under 10%. SO4AOD Percent decreased from north to the south
over the SCS. The highest values of SO4AOD Percent appeared in the north of the SCS,
which were between 50% and 60%. Relatively lower values of SO4AOD Percent, between
30% and 40%, occurred in the middle and south of the SCS. Different from SO4AOD Percent,
SSAOD Percent was low in the north, and higher in the middle and south of the SCS. In
the north of the SCS, SSAOD Percent was between 10% and 20%, which was the lowest
over the SCS. Most SSAOD Percent values over the SCS were between 30% and 50%. The
highest SSAOD Percent values (between 50% and 60%) appeared in a small part in the
middle of the SCS.
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Figure 7. Spatial distribution of (a) SO4AOD Percent, (b) BCAOD Percent, (c) OCAOD Percent,
(d) DUAOD Percent, and (e) SSAOD Percent over the SCS during the period of 1980–2020.

As shown in Figure 8a, an obvious annual mean TAOD increase followed by a decrease
could be observed over NSCS during the period of 1980–2020, and the same was for
SO4AOD which was higher than BCAOD, OCAOD, DUAOD, and SSAOD in this region.
The TAOD maxima at the beginning of the 1980s and 1990s was due to the El Chichon
eruption in Mexico in 1982 [48] and the Pinatubo eruption in the Philippines in 1991 [49].
With the deposition of the pollutants, TAOD gradually decreased after 1982 and 1991,
respectively. He et al. [51] studied the MODIS AOD over the entire area of mainland China
between 2002 and 2015, and found an upward tendency pre-2008 due to booming economy
and a downward tendency post-2008 as a result of the Chinese government’s environmental
protection policy which lead to emission reduction. In this study, the increase of TAOD
(SO4AOD) during the period of 1980–2007 was 0.0029 (0.0013) per year, while the decrease
of TAOD (SO4AOD) from 2008 to 2020 was −0.0033 (−0.0029) per year over NSCS. The
mean value of SO4AOD during the period of 1980–2020 accounted for 47.9% of TAOD over
NSCS. The R between TAOD and SO4AOD from 1980 to 2020 was about 0.93, indicating
that the variation of TAOD was mainly due to the variation of SO4AOD in this area. In
Figure 8b,c, no significant variation trend of TAOD and SO4AOD could be observed from
1980 to 2020. This could be due to the far distance of MSCS and SSCS from mainland China.
SSAOD was higher than SO4AOD in MSCS and SSCS. SSAOD accounted for 46.5% and
41.7%, while SO4AOD accounted for 37.9% and 35.6% in MSCS and SSCS, respectively.
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Figure 8. Variation of annual mean values of TAOD, BCAOD, OCAOD, DUAOD, SO4AOD, and
SSAOD over (a) NSCS, (b) MSCS, and (c) SSCS during the period of 1980–2020.

3.5. Variation Trend of MERRA-2 AOD

In Figure 9a, an AOD increase could be observed over most part of the SCS from 1980
to 2007. In this period, highest AOD increase (between 0.005 and 0.01 per year) could be
seen in the north of the SCS, and the AOD increase (between 0 and 0.005 per year) occurred
in the north and middle of the SCS. p-values of less than 0.05 mainly appeared in the north
of the SCS. Hse et al. [52] studied the global trends of AOD over ocean with SeaWiFS data,
and also found annual AOD increase trend over ocean from 1998 to 2010. In Figure 9b,
AOD decreased over most of the SCS. AOD decrease (between −0.01 and −0.005 per year)
appeared over the north of the SCS, and AOD decrease (between −0.005 and 0 per year)
was over the north and middle of the SCS. p-values of less than 0.05 mainly occurred in the
north of the SCS and a small part in the middle of the SCS. The AOD increase or decrease
was more significant over the coastal region of mainland China due to the aerosol transport
from land to ocean.

Figure 9. Variation trend of MERRA−2 AOD over the SCS during the period (a) 1980−2007 and
(b) 2008−2020 (the small black dot represents p < 0.05).
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4. Conclusions

We analyzed spatial and temporal variation of AOD and optical depth of different
aerosol types during the period of 1980–2020 with MERRA-2 dataset, and the difference of
spatial and temporal distribution of AOD was obtained. SO4AOD and SSAOD dominated
the variation of AOD over the SCS. An AOD upward trend followed by a downward
trend occurred in the north of the SCS in this period. Mean MERRA-2 AOD from 1980 to
2020 was high in the north and low in the south over the SCS, and gradually decreased
from the north to the south in this region. Due to rapid economic development, AOD
after 2000 reached a higher value than that in 1980s and 1990s. Mean AOD in each month
from 1980 to 2020 was analyzed. Higher AOD was in spring and winter, and low AOD
appeared in summer. Similar spatial distribution could be observed between SAOD and
AOD over the SCS, and AAOD was much lower than SAOD in this region. SO4AOD and
SSAOD had higher values than BCAOD, OCAOD, and DUAOD over the SCS. Over the
north of the SCS, SO4AOD accounted for more than 50% of TAOD, while BCAOD and
DUAOD accounted for only less than 10% of TAOD all over the SCS. TAOD over NSCS
showed an upward trend from 1980 to 2007 and a downward trend from 2008 to 2020.
Similar annual variation between TAOD and SO4AOD over NSCS from 1980 to 2020 could
be observed, and the R between them reached 0.93. This indicated that variation of the
SO4AOD was the driving force of the variation of TAOD over NSCS from 1980 to 2020. The
spatial distribution of AOD variation trend over the SCS in two periods was also analyzed.
Different AOD variation trends over the different areas of the SCS appeared during the two
periods including 1980–2007 and 2008–2020. AOD increase could be observed over most of
the SCS between 1980 and 2007, while AOD decrease was observed over most of the SCS
from 2008 to 2020.
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Abstract: Haze is a majorly disastrous type of weather in China, especially central and eastern of
China. The development of haze is mainly caused by highly concentrated fine particles (PM2.5) on a
regional scale. Here, we present the results from an autumn and winter study conducted from 2013
to 2020 in seven highly polluted areas (27 representative stations) in central and eastern China to
analyze the growth mechanism of PM2.5. At the same time, taking Beijing Station as an example, the
characteristics of aerosol composition and particle size in the growth phase are analyzed. Taking
into account the regional and inter-annual differences of fine particles (PM2.5) distribution, the local
average PM2.5 growth value of the year is used as the boundary value for dividing slow, rapid, and
explosive growth (only focuses on the hourly growth rate greater than 0). The average value of PM2.5

in the autumn and winter of each regional representative station shows a decreasing trend as a whole,
especially after 2017, whereby the decreasing trend was significant. The distribution value of +ΔPM2.5

(PM2.5 hourly growth rate) in the north of the Huai River is lower than that in the south of the Huai
River, and both of the +ΔPM2.5 after 2017 showed a significant decreasing trend. The average PM2.5

threshold before the explosive growth is 70.8 μg m−3, and the threshold that is extremely prone to
explosive growth is 156 μg m−3 to 277 μg m−3 in north of the Huai River. For the area south of the
Huai River, the threshold for PM2.5 explosive growth is relatively low, as a more stringent threshold
also puts forward stricter requirements on atmospheric environmental governance. For example,
in Beijing, the peak diameters gradually shift to larger sizes when the growth rate increases. The
number concentration increasing mainly distributed in Aitken mode (AIM) and Accumulation mode
(ACM) during explosive growth. Among the various components of submicron particulate matter
(PM1), organic aerosol (OA), especially primary OA (POA), have become one of the most critical
components for the PM2.5 explosive growth in Beijing. During the growth period, the contribution of
secondary particulate matter (SPM) to the accumulated pollutants is significantly higher than that of
primary particulate matter (PPM). However, the proportion of SPM gradually decreases when the
growth rate increases. The contribution of the PPM can reach 48% in explosive growth. Compared to
slow and rapid growth, explosive growth mainly occurs in the stable atmosphere of higher humidity,
lower pressure, lower temperature, small winds, and low mixed layers.

Keywords: PM2.5; explosive growth; chemical compositions; diameter; threshold

1. Introduction

Regional-scale, high-concentration aerosols are important causes of haze in central
and eastern China [1,2]. Among a variety of pollutants, high concentrations of PM2.5 are
still the most important aerosol pollutant, as well as the main cause of haze [3–5]. Elevated
PM2.5 affects human health, the environment, and even climate [6,7]. The main causes
that affect the production and consumption of PM2.5 include chemical reaction processes,
meteorological factors, and emission sources [8–10]. When the emission source is stable,
the temporal and spatial characteristics of air pollution mainly depend on meteorological
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factors [11]. The meteorology can influence the particulate matter (PM) evolution through
many ways, e.g., secondary formation, accumulation or dilution, liquid-phase and hetero-
geneous reactions to secondary aerosols, etc. [12,13]. Under adverse atmospheric diffusion
conditions, generally characterized by weak wind speeds, high relative humidity (RH), and
low planetary boundary layer height, PM2.5 can quickly accumulate to a very high concen-
tration [8]. The study by Zhang et al. [14] shows that the unfavorable weather elements
in the winter of Beijing-Tianjin-Hebei can cause the PM2.5 concentration to increase by
about 40% to 100% compared with other seasons. In light of single meteorological elements,
Sun et al. revealed that, at low RH levels (<50%), PM increases linearly as a function of
RH, among which OAs present the largest mass increase rate at 11.4 mg m−3/10% RH
during wintertime in Beijing. In addition, the secondary formation is also one of the most
important factors for the occurrence and development of haze weather [15]. Quan et al. [16]
found that the conversion from NOx and SO2 to nitrate and sulfate was likely accelerated,
and that both significantly increased in haze events. The secondary formation also pro-
motes the formation of organic aerosols under certain conditions, and the rapid formation
of secondary OA (SOA) under strong photochemical reactions can lead to more serious air
pollution [17,18].

As a result of large reductions in anthropogenic emissions, the air pollution has
been significantly improved with the successful implementation of “Action Plan on Pre-
vention and Control of Air Pollution” in 2013 in China [19]. However, severe haze
episodes still happen in some areas of central and eastern China (including Beijing-Tianjin-
Hebei [10], Yangtze River Delta [20], Sichuan-Chongqing area [21], Fenwei Plain [22],
Central China [23], etc.) in autumn and winter. For example, the rapidly spread coron-
avirus disease limited people’s outdoor activities and, hence, caused substantial reductions
in anthropogenic emissions in 2020; however, there are still two persistent heavy pollution
incidents from January 25 to 28 and February 8 to 14 in Beijing [24].

In heavy haze pollution, pollutants exhibit different growth rates at various stages of
accumulation. Under different meteorological conditions, they may exhibit slow growth
or rapid growth, and may increase by tens or even hundreds in one hour or several hours
called “explosive growth” in the later stage of pollution. There is no qualitative conclusion
about the cause of the rapid and even explosive growth of PM2.5. Zheng et al. [25] highlight
that the trans-regional transportation of pollutants has led to a rapid increase in pollution.
Wang et al. [26] believed that the secondary transformation and nucleation effect of aerosols
played a more important role through simulation studies. The study by Zhong et al. [13]
attributed the rapid increase in pollution more to the effect of meteorological factors, and
their study concluded that more than 70% of the increase in PM2.5 can be attributed to
the feedback effect after the persistent deterioration of the boundary layer meteorological
conditions. Zhong et al. [27] conducted a study of 28 pollution episodes in Beijing from 2013
to 2017 and concluded that a threshold value for PM2.5 explosive growth is 100 μg m−3 in
Beijing. Above this threshold, the positive feedback from aerosols to near-ground radiative
cooling to anomalous inversion is effectively triggered. However, faced with the decreasing
PM2.5 concentration year by year, this threshold may change over time and show some
geographical differences. Regional emission controls were effective in reducing the PM2.5
mass concentration. However, the changes in SOA and inorganic aerosol were comparably
small and even had slight increases [24]. Therefore, exploring the chemical component
contribution and particle size evolution of aerosol particles is of great significance for further
understanding the growth characteristics and physicochemical mechanism of PM2.5. In
this study, ground-based PM2.5 observation data and meteorological element data are used
to discuss the thresholds and year-on-year changes of PM2.5 in several major polluted areas
in China from 2013 to 2020 under three growth mechanisms (slow, rapid, and explosive).
The correlation between meteorological elements and the accumulation rate of pollutants
is also discussed. At the same time, using the PM chemical composition and particle size
distribution data, the contribution of PM composition and size distribution at different
rates of pollutant cumulative stage is analyzed.
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2. Materials and Methods

The following data are used in this study. (1) Hourly PM2.5 mass concentration from
2013 to 2020 in autumn and winter (October of the current year to February of the following
year) is obtained by controlled stations of the Ministry of Environmental Protection in
Northeast China (including Harbin (HEB), Changchun (CC) and Shenyang (SY)), Beijing-
Tianjin-Hebei and surrounding areas (including Beijing (BJ), Tangshan (TS), Shijiazhuang
(SJZ), Xingtai (XT), Jinan (JN) and Zhengzhou (ZZ)), Feiwei Plain (LinFen (LF), BaoJi (BaJ),
XiAn (XA)), Yangtze River Delta (Nanjing (NJ), Hefei (HF), Shanghai (SH), Hangzhou (HZ)),
Sichuan-Chongqing (Chengdu (CD) and Chongqing (CQ)), Central China (Wuhan (WH),
Huangshi (HS), Nanchang (NC) and Changsha (CS)) and Pearl River Delta (Guangzhou
(GZ), Shenzhen (SZ), and Zhuhai (ZH)). The data used were the mean values of urban
observation stations. The geographical location of the relevant stations is shown in Figure 1.
(2) To match the above area, the hourly conventional meteorological element data, including
wind speed, relative humidity, wind direction, pressure, temperature etc., are provided by
National Meteorological Information Center of the China Meteorological Administration
(urban stations average). The time resolution of meteorological elements is 1 h. In order to
more intuitively show the growth periods of PM2.5, taking Beijing as an example, Figure A1
in Appendix A shows the time series of PM2.5 and meteorological elements in January
2015 in Beijing. Furthermore, the average diurnal of PM2.5 and meteorological variables
from 2013 to 2020 in autumn and winter in Beijing is shown in Figure A2. (3) The chemical
composition data of submicron PM (PM1) were sampled from Institute of Atmospheric
Physics (IAP, 39◦58′28′ ′ N, 116◦22′16′ ′ E), an urban site located between the north 3rd and
4th ring road in Beijing (Jiang et al., 2015). The sampling time was October 2012 to February
2013. The sampling instrument was the Aerosol Chemical Speciation Monitor (ACSM), with
a time resolution of ~15 min. ACSM mainly detects particles below 1 μm, which can realize
real-time online determination of OA, sulfate (SO4

2−), nitrate (NO3
−), ammonium salt

(NH4
+), and chloride (Chl). The detailed description of the relevant instrument principles

and parameters of the ACSMs have been to the references of Sun et al. [28] and Ng et al. [29].
At vaporizer temperature of ~600 ◦C, the ACSM cannot detect refractory materials, e.g.,
mineral dust and black carbon (BC). Thus, an aethalometer (Model AE22, Magee Scientific
Corporation, Berkeley CA, USA) is used to simultaneously measure BC in PM2.5. The
PM2.5 and gaseous species (including CO, SO2, NO, NOx, and Ox) were measured by
a heated Tapered Element Oscillating Microbalance (1400a, Thermo Scientific, Waltham,
MA, USA) and various gas analyzers (Thermo Scientific). (4) The data of aerosol number
spectrum from 27 November 2014 to 28 February 2015, with a time resolution of 3 min
and a measurement range of 14.6 nm to 661.2 nm, were measured by an scanning mobility
particle sizer (SMPS), provided by the Beijing Meteorological Bureau, China. (5) The PM2.5
grid distribution data come from a 1-km-resolution PM2.5 dataset, called China High Air
Pollutants (CHAP, https://weijing-rs.github.io/product.html (accessed on 18 September
2021)) from 2013 to 2020 across China, generated by the Moderate Resolution Imaging
Spectroradiometer (MODIS, MODIS Collection 6 MAIAC AOD product (MCD19A2))
and multi-angle implementation of the atmospheric correction (MAIAC) algorithm (Wei
et al., 2021). The inversion method is the space–time extra-trees (STET) model with high
accuracies (i.e., cross-validation coefficient of determination, CV-R2 = 0.86–0.90) and strong
predictive powers (i.e., R2 = 0.80–0.82) [30].

The Roche method is used to calculate the height of the atmospheric mixing layer
height (MLH). It is a method proposed by Nozaki et al. [31] in 1973 to estimate the height
of the mixed layer using ground meteorological data. This method takes into account
that the atmospheric mixing layer is the result of the combined action of thermal and
dynamic turbulence. Moreover, the movement of the atmosphere in the upper boundary
layer often interconnect and feedback with ground meteorological elements, so ground
meteorological parameters can be used to estimate the height of the mixed layer. In addition,
positive matrix factorization (PMF) [32] was preformed to resolve distinct OA factors from
specific sources on ACSM mass spectra. The related principles and steps of this method are
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detailed in Ulbrich et al. [33] and Decarlo et al. [34]. In this study, we limit PMF analysis
to m/z 12–125 considering the low contribution of m/z 125–150 to the total signal. An Igor
Pro-based PMF evaluation tool (PET, v 2.04) is used to further evaluated the results of PMF.

Figure 1. Average PM2.5 mass concentration distribution during the autumn and winter of 2013–2020
in the central and eastern of China. The circle is the approximate position of the region.

3. Results and Discussion

3.1. Average Distribution of PM2.5 in Autumn and Winter of China from 2013 to 2020

Figure 1 shows the average distribution of PM2.5 mass concentration in the autumn
and winter (October of the current year to February of the following year) of 2013–2020
based on satellite inversion in the central and eastern of China. On average, Northeast
China, Beijing-Tianjin-Hebei, and surrounding areas (Fenwei, Yangtze River Delta, Sichuan-
Chongqing, Central China, and Pearl River Delta (seven regions)) are the major areas where
PM2.5 concentration is relatively high in China. The following research on the growth law of
PM2.5 is also mainly carried out for the above-mentioned regions and representative cities.

We carried out annual statistics on the average concentration of PM2.5 in autumn and
winter (Hereinafter refers to as average PM2.5 concentration) of selected representative
stations since 2013. As shown in Figure 2, from the perspective of the evolution of the time
series, since 2013, the PM2.5 of the seven regional representative stations shows an overall
decreasing trend. For the three regional representative stations of Northeast China, Beijing-
Tianjin-Hebei and surrounding areas and Fenwei (north of the Huai River in China), the
pollution of PM2.5 in autumn and winter is significantly lower after 2016 than before. From
2013 to 2016, 30% of the representative stations in the above three regions had an average
PM2.5 mass concentration more than 115 μg m−3 (115 μg m−3 is the limit concentration of
average daily moderate pollution stipulated by the Ministry of Environmental Protection
of the People’s Republic of China), and 87% of statistical values exceed 75 μg m−3 (the
second grade of NAAQS released in 2012 by the Ministry of Environmental Protection of
the People’s Republic of China, http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/
201203/t20120302224165.htm (accessed on 7 September 2021)). The highest average value
of PM2.5 exceeds 200 μg m−3 (Shijiazhuang in 2013). However, in the autumn and winter
from 2017 to 2020, the average PM2.5 concentration is lower than 115 μg m−3, and only 30%
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of sites have an average PM2.5 more than 75 μg m−3 north of the Huai River. Especially by
2020, the statistics of all sites in the three regions are lower than 75 μg m−3.

Figure 2. Statistics of PM2.5 mean values of 7 regional representative stations in central and eastern
China from 2013 to 2020 in autumn and winter.

The other four areas with a lower latitude south of the Huai River in China (Yangtze
River Delta, Sichuan-Chongqing, Central China, and Pearl River Delta) have significantly
less fine particulate pollution than the three areas north of the Huai River (Northeast,
Beijing-Tianjin-Hebei and surrounding areas, and Fenwei). Among the valid data, except
for HF and WH in 2013, which average PM2.5 concentration exceeded 115 μg m−3, other
statistical values are all lower than 115 μg m−3. For the Pearl River Delta region, after 2015,
the average PM2.5 value was lower than 35 μg m−3 (24-h NAAQS of US EPA). Among sites
south of the Huai River, the proportion of average PM2.5 concentration exceeds 75 μg m−3,
which accounts for 26% from 2013 to 2017. However, from 2018 to 2020, the average of
PM2.5 is all below 75 μg m−3. A number of studies showed that the main reason for the
gradual decrease in the concentration of PM2.5 in central and eastern China is the decrease
in the concentration of gaseous precursors under the joint emission controls and, hence, the
suppression of secondary growth and formation [35,36]. However, many studies have also
pointed out the importance of meteorological conditions, which can help to explain the
reduction in PM2.5 concentration of over 50% [14]. The combined effect of meteorological
factors and anthropogenic emissions makes the cause of air quality improvement still
uncertain [37]. The main reason that the PM2.5 concentration in the north of Huaihe River
is higher than that in the south of the Huaihe River is the comprehensive effect of industrial
layout, industrial structure, meteorological factors (precipitation, atmospheric diffusion
conditions), and topography, etc.

3.2. Classification of PM2.5 Growth Periods in Central and Eastern China form 2013 to 2020

To explore the growth mechanism of PM2.5 in autumn and winter, the data of PM2.5
growth periods (GP, hourly growth rate > 0) from 2013 to 2020 were selected year by year.
Unless otherwise specified, the following research only focuses on the hourly growth rate
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greater than 0, that is, the data during the positive GP. The hourly growth rate of PM2.5 (unit:
μg m−3/h) is expressed as +ΔPM2.5. Figure 3 shows the statistical value of +ΔPM2.5 at
different representative stations in autumn and winter year by year. Similar to the average
PM2.5 concentration, with the Huai River as the boundary, the +ΔPM2.5 of the representative
station in the southerly latitude area is lower than that of the northerly latitude station
(autumn and winter). In terms of average value, the mean range of +ΔPM2.5 north of the
Huai River is 10.7–40.9 μg m−3/h between 2013 to 2017 (on the left side of the dotted line).
Among them, the maximum value of 40.9 μg m−3/h appeared in the Harbin (Northeast
China) in 2013. Except for Shijiazhuang and Changchun, the average +ΔPM2.5 of 12 of the
14 sites (north of Huai river) in 2015–2016 was lower than that in 2013 and 2014. However,
the +ΔPM2.5 of eight sites rebounded in 2016 comparing to 2015. After 2017, +ΔPM2.5
has a stepwise decline. Except for Linfen (Fenwei) and Harbin (Northeast China), whose
+ΔPM2.5 is 27.2 and 21.5 μg m−3/h, respectively, all other stations decreased by less than
19 μg m−3/h. Especially in 2021, the maximum value of +ΔPM2.5 is only 15.3 μg m−3/h
with a relatively concentrated distribution range of each site between 15.3 μg m−3/h and
9.4 μg m−3/h. For the representative stations south of the Huai River (on the right side of
the dotted line), the average of +ΔPM2.5 is less than 20 μg m−3/h except for Hefei in 2013,
which was 21.6 μg m−3/h. After 2017, all stations of +ΔPM2.5 educe to within 15 μg m−3/h
and within 10 μg m−3/h in 2020.

The statistical results of the 25th, 50th, and 75th percentiles of +ΔPM2.5 are similar to
the average overall. The distribution value of +ΔPM2.5 in the north of the Huai River is
lower than that in the south of the Huai River, and the +ΔPM2.5 after 2017 also showed
a significant decreasing trend compared with that before 2017. In the statistical results,
the value of the 50th (median value) of the +ΔPM2.5 is significantly lower than that of the
average, indicating that values greater than the 50th deviate are higher than those less than
the 50th.

The PM2.5 concentration before the start of growth is classified with 75 μg m−3 as the
boundary, divided into clean and pollution, of which pollution is further divided into light
(75–115 μg m−3), moderate (115–150 μg m−3), and heavy pollution (>150 μg m−3). The
+ΔPM2.5 is compared based on the PM2.5 background mass concentration (clean, lightly
polluted, moderately polluted, and severely polluted) before the start of the growth. At
the same time, the proportions of pollution background, as well as the proportions of light,
moderate, and severe pollution (under pollution background) before the start of growth,
are shown in Figure 4. Still using the Huai River as the division, the proportion of PM2.5
growth occurring in the pollution background in south of the Huai River is significantly
lower than that of the sites north of the Huai River. Among the representative stations
in the Pearl River Delta, only 7–8% of PM2.5 growth occurred in pollution. Among other
representative stations south of the Huai River, the highest probability of PM2.5 growth
occurring in the pollution is Wuhan (42.0%), followed by Nanjing (40.0%) and Changsha
(40.1%). Other sites are all below 40%. For the 14 representative stations north of the Huai
River, the proportion of the PM2.5 increase in pollution is higher than 33%, and 78.6% of
the stations are higher than 40%. For the stations of Shijiazhuang and Xingtai, in particular,
the proportion of pollution background is as high as 55.5% and 56.8%, respectively. Further
classifying pollution into light, moderate, severely pollution, as indicated in Figure 4, in the
pollution background, the sites south of the Huai River are dominated by light pollution,
with the lowest being 55% (Hefei) and an average of 71.2%. In contrast, more than 50%
of the PM2.5 growth occurs in moderate and heavy pollution in the pollution background
of the stations north of the Huai River. It is noteworthy that the proportion of heavy
pollution is significantly higher than that of moderate, especially for Shijiazhuang and
Xingtai, where the proportion of the PM2.5 growth occurs in heavy pollution (53.7% and
48.0%, respectively) once the light pollution is exceeded.

The average of +ΔPM2.5 corresponding to clean, light pollution, moderate pollution,
and heavy pollution background was calculated before growth in GP (Figure 4 below). It
can be seen from Figure 4 that, among all representative stations, the average of +ΔPM2.5
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corresponding to the clean background before GP is the lowest, followed by light, moderate,
and heavy pollution. Among them, the average of +ΔPM2.5 under a clean background
generally less than 15 μg m−3 and the increase value is generally under 10 μg m−3 h−1

in most areas south of the Huai River. Under the background of light pollution, the
distribution range of the average +ΔPM2.5 at stations north of the Huai River is between
11.2 μg m−3 h−1 and 24 μg m−3 h−1, with an average of 16.1 μg m−3 h−1. South of
the Huai River is slightly lower, with an average of 10.2 μg m−3 h−1 of +ΔPM2.5 under
a light pollution background. Under moderate and severe backgrounds, the average
+ΔPM2.5 at stations north of the Huai River were 19.0 μg m−3 h−1 and 26.6 μg m−3 h−1,
respectively. The average +ΔPM2.5 south of the Huai River (moderate: 12.3 μg m−3 h−1,
severe: 15.1 μg m−3 h−1) is significantly lower than that in the north of the Huai River, but
still higher than the average +ΔPM2.5 under the background of clean and light pollution
of the site. Therefore, in each regional representative site, the background concentration
of PM2.5 before GP has an important impact on the PM2.5 growth rate. Overall, a higher
degree of air pollution before the growth leads to a faster average growth rate of the PM2.5.

The PM2.5 shows different growth rates during GP (+ΔPM2.5 > 0). According to the
value of +ΔPM2.5, we divided GP into three categories as slow growth (SLG), rapid growth
(RAG), and explosive growth (EXG). The atmosphere aerosol background concentration
and the growth rate of PM2.5 both show obvious regional and inter-annual differences
(Figures 2–4). We define the average annual +ΔPM2.5 from 2013 to 2020 as the threshold
Ak,year (K represents the region) for determining the type of growth (SLG, RAG, or EXG)
of the stations in that year. Figure 3a shows the value of Ak,year. Slow growth (SLGk, year),
defined as the +ΔPM2.5, is less than Ak, i.e., SLGk, year < Ak,year; the interval of rapid growth
(RAGk, year) is between 1 and 2 times of Ak,year, i.e., Ak,year ≤ RAGk, year ≤ 2* Ak,year; and
the +ΔPM2.5 of explosive growth (EXGk, year) is more than double that of the threshold, i.e.,
EXGk, year > 2* Ak,year.

Figure 3. Statistical graph of annual average (a), 25th (b), 50th (c), and 75th (d) percentile value of
+ΔPM2.5 in representative stations of each region in central and eastern China from 2013 to 2020 in
autumn and winter.
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Figure 4. The average growth rate of PM2.5 (+ΔPM2.5) at each representative station during clean,
light pollution, moderate pollution and heavy pollution before growth (below) and the proportion
of PM2.5 above 75 μg m−3 before the growth and the proportion of light, moderate, and heavy
pollution (upper).

Since the +ΔPM2.5 in GP is closely related to the initial PM2.5 concentration, there
should be a certain PM2.5 concentration threshold to judge the rapid or even explosive
growth of PM2.5. Zhong et al. [13] found that, when PM2.5 reached a certain threshold, the
positive feedback from aerosols to near-ground radiative cooling to anomalous inversion
is effectively triggered, which subsequently results in explosive rising of PM2.5. In each
representative station, the proportion of EXG in GP is 6.2–13.8%, with an average of 10.3%
(Figure 5). Among them, the EXG of Tangshan (Beijing-Tianjin-Hebei and surrounding
areas) accounted for more than 20% of the GP, which was the highest among all representa-
tive stations. Although the proportion of the EXG is lower than the RAG and the SLG, the
EXG played a vital role in the occurrence and development of the heavy pollution process.
It is necessary to quantify the relevant threshold of the EXG.

Figure 5 presents the average PM2.5 concentration thresholds before EXG in represen-
tative stations in each region during autumn and winter from 2013 to 2020. The statistical
value of the lower quartile (25th) of PM2.5 before EXG can be used as the reference threshold
of PM2.5 concentration for EXG, and the upper quartile (75th) characterizes that exceeding
this critical value is extremely prone to EXG [13,27]. In the relatively heavily polluted
stations north of the Huai River, the average PM2.5 threshold before the EXG is 70.8 μg m−3.
Among them, the threshold in Beijing is 68.3 μg m−3, which is slightly lower than the
strict threshold (71 μg m−3) proposed by Zhong et al. [13] for the EXG of PM2.5 in Beijing.
The stations with the highest EXG threshold is Shijiazhuang (91.0 μg m−3), followed by
Harbin (89.1 μg m−3) and Zhengzhou (88.9 μg m−3). Although the PM2.5 concentration
threshold is the highest, the probability of EXG in these three cities (Shijiazhuang, Harbin
and Zhengzhou) is still higher than the average proportion in the north of the Huai River
(11.5%). For the area south of the Huai River, air pollution is relatively light, but at the same
time, the threshold for PM2.5 explosive growth is relatively low, and a more stringent thresh-
old also puts forward stricter requirements for atmospheric environmental governance. The
upper quartile of the initial PM2.5 mass concentration values is much higher than the lower
quartile (threshold) with the distribution interval from 156 μg m−3 to 277 μg m−3 for the

54



Atmosphere 2022, 13, 134

area north of the Huai River. Beijing’s upper quartile value is 156 μg m−3, which indicates
that an explosive growth of PM2.5 will likely occur once it is higher than this value.

As a comparison, the statistical values of SLG and RAG are lower than that of EXG,
while the relevant thresholds can also be used as a stage indicator of prevention and control
measures.

Figure 5. Thresholds for slow growth (SLG), rapid growth (RAG), and explosive growth (EXG) of
each region and its representative stations, and the fraction of three growth methods. The dot is
the average; the vertical line is the 10th percentile (bottom) and the 90th percentile (top); and the
horizontal line is the 25th, 50th, and 75th percentile from top to bottom (the picture below is the same).

3.3. Size Distribution

Figure 6 shows a comparison of average size distributions before and after GP, SLG,
RAG, and EXG in Beijing (27 November 2014 to 28 February 2015). As indicated in Figure 6,
from SLG, RAG, to EXG, the peak number concentration gradually increasing. The peak
number concentration spectrum distribution of GP is between SLG and RAG. After the
growth started, the peak number concentration of the three growth rates all increased
significantly. However, there is no significant difference in the peak number concentration
particle size before and after the growth of the three growth ways. According to the
definition of Hussein et al. (2004), different particle sizes could be divided into four modes:
the nucleation mode (0.01~0.02 μm), the Aitken mode (0.02~0.1 μm), the accumulation
mode (0.1~1 μm), and the coarse mode (1~10 μm) [38]. Limited by the measuring range
of the instrument, the coarse mode is not studied in this article. In terms of the number
of concentrations, before and after the three growth ways, the number concentration of
the nucleation mode (NUM), the Aitken mode (AIM), and the accumulation mode (ACM)
all show varying degrees of growth (Table 1). Among RAG and EXG, the increasing
number concentration of AIM and ACM is more significant. Calculated from Table 1,
during the SLG, the particles’ concentration growth rate of the NUM, AIM, and ACM are
1691/cm−3 h−1, 586/cm−3 h−1, and 325/cm−3 h−1, respectively. However, the growth rate
of the number concentration of NUM decreases to 941/cm−3 h−1 and 668/cm−3 h−1 in the
RAG and EXG, respectively. Simultaneously, the growth rate of AIM in the RAG and EXG
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is 3.5 times and 7.7 times higher than that of SLG, respectively. For the ACM, in particular,
the growth rate in the EXG can reach 4483/cm−3 h−1 in Beijing during autumn and winter.

Figure 6. Average size distribution of aerosol particle before and after slow growth (SLG), rapid
growth (RAG), explosive growth (EXG), and all growth period (GP) in Beijing.

Table 1. Statistical values of particle number concentration in each mode before and after (1-h interval)
slow, rapid, and explosive growth in Beijing.

Particle Size Mode
Before

Growth/cm−3
After

Growth/cm−3
Number of

Samples

SLG

Nucleation mode 1241 2932

425Aitken mode 9687 10,273

Accumulation mode 5529 5854

RAG

Nucleation mode 2190 3131

201Aitken mode 11,696 13,760

Accumulation mode 7098 9838

EXG

Nucleation mode 3601 4269

115Aitken mode 13,451 17,972

Accumulation mode 9252 13,735

Comparing with the three growth rates, the peak diameters gradually shift to larger
sizes with the growth rate increasing. The particle diameters corresponding to the peak
concentration of SLG is ~65 nm, and the peak particle diameters of RAG and EXG grow to
~94 nm and ~103 nm, respectively. Since the growth rate of PM2.5 is closely related to the
degree of air pollution, the average growth rate under pollution background is, on average,
higher than that of clean conditions, which is similar to the results of Guo et al. [39], who
showed that the average particle diameters of aerosols in Beijing gradually increase from
cleaning to pollution with an average daily mass growth of 50~110 μg m−3. The study
by Xu et al. [40] showed that the increased particle size of OA mainly corresponds to
SOA, while the particle size of POA hardly changes. At the same time, the hygroscopicity
parameter of OA increased substantially with particle size and has played a further role in
promoting the increase in pollution.

Figure 7 shows the number concentration spectrum distribution of 12 times PM2.5
episodes in 2014 and 2015 during autumn and winter. In the cumulative phase of the
pollution process, slow, rapid, and explosive growth alternately occur. Before reaching the
peak concentration in most heavy pollution episodes (especially the peak concentration of
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PM2.5 exceeding 200 μg m−3), it is accompanied by an obvious explosive increase in PM2.5.
Consistent with the above conclusions, when the EXG occurs, the number concentration
of NUM does not increase significantly, and the particle size with increased concentration
is mainly distributed in AIM and ACM. Since the growth rate of pollution is related to
the mass concentration of PM2.5 (Section 3.2), the rapid and explosive growth usually
occurs in severe air pollution. On the one hand, there is a noticeable absence of new
particle formation as the pollution episode develops. On the other hand, with the stable
atmospheric situation, small particles keep growing by collision and hygroscopic growth.
While the NUM particles contribute negligibly to the particle mass concentration, the severe
pollution episodes (high growth rate) are attributable to the presence of numerous large
particles.

Figure 7. The number concentration spectrum distribution and temporal evolution of PM2.5 mass
concentration (right axis) during PM2.5 episodes in 2014 (top) and 2015 (bottom) in Beijing. The
colors of PM2.5 mass concentration represent slow, rapid, and explosive growth. The white line
indicates the concentration drop phase.

3.4. Chemical Composition

To explore the contribution of aerosol components in SLG, RAG, and EXG during
autumn and winter in Beijing (October 2012 to February 2013), Figure 8a shows the average
contribution of PM1 species (PM1 = OA + SO4

2− + NO3
− + NH4

+ + Chl + BC) to the increas-
ing mass concentration in GP. Among the growing concentration of PM1, the contribution
of OA exceeds 50% on average (discuss only in the increased concentration, same below).
With the increase in +ΔPM2.5, in particular, the proportion of OA gradually increases. The
contribution of OA to the EXG reaches 57.3%, which is significantly higher than the RAG
(52.1%) and SLG (54.3%). Among the inorganic components (SO4

2− + NO3
− + NH4

+ + Chl),
in addition to the EXG, NO3

− contributes the most in SLG and RAG, followed by NH4
+

and SO4
2−. However, when the growth rate increases, the contribution of NO3

− gradually
decreases, while the contribution of SO4

2− is the opposite. In the EXG, the contribution
of SO4

2− is slightly higher than that of NO3
−, becoming the largest contributor to the

inorganic components. Sun et al. [41] concluded that with the increase in relative humidity
in autumn and winter, SO4

2− increased rapidly through liquid phase chemical reactions,
while NO3

− mainly existed in the form of particulate matter, gas-particle transformation
was inhibited. Photochemical reactions during the day become the main production mecha-
nism of NO3

−. It can be seen from Figure 9 that the relative humidity (RH) before the EXG
is significantly higher than that of RAG and SLG. Higher RH accelerated the growth rate of
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SO4
2−, resulting in a significant increase in the proportion of SO4

2− in the accumulated
pollutants.

Figure 8. Average mass fractions of PM species ((a): Org, SO4
2−, NO3

−, NH4
+, Chl, and BC) ((b): SPM

and PPM) and OA factors ((c): HOA and OOA) in increasing concentration during GP, SLG, RAG,
and EXG and the proportion of the three growth methods in the total growth (d) in Beijing.

Figure 9. Statistic graphs of temperature (Temp), pressure (Pres), wind speed (WS), humidity (RH),
and mixed layer height (MLH) before the explosive, fast, and slow growth in Beijing.

PMF analysis of ACSM mass spectra of OA identified two components, i.e., hydrocarbon-
like OA (HOA) and oxygenated OA (OOA), as compared to the simultaneous observation
of gas components (O3, SO2, NOx, and CO, etc.), and various organic source spectra. In
this study, HOA is closely related to BC (a tracer for combustion emissions, r2 = ~0.63)
and NOx (r2 = ~0.57), indicating the important contribution of vehicle sources. OOA has a
high correlation with SO4

2− (r2 = ~0.68) and NO3
− (r2 = ~0.77), which are both secondary

inorganic species, indicating that OOA is driven by regional production mostly. In the
RAG and EXG, POA (in this study = HOA) contributes more than 60% to the growth
concentration of OA on average, which is significantly higher than the average proportion
of POA in all growth periods (~55.8%) (Figure 8c). The high proportion of HOA is also
reflected the important contribution of traffic sources to the accumulation of pollutants in
the RAG and EXG. Contrary to the change in humidity, the average temperature before the
EXG is the lowest among the three growth rates, followed by RAG (Figure 10b). Studies
have shown that the decrease in temperature is conducive to the increase in POA mass con-
centration [42], which also partly explains the higher proportion of POA in the accumulated
OA during the EXG. Therefore, among the various components of PM1, OA, especially
POA, have become one of the most critical components for the EXG in Beijing during
autumn and winter. In the GP, SOA (in this study = OOA) contributed 47.1% of OA in SLG.
Furthermore, in the RAG and EXG, the contribution of SOA decreased to 39% and 34% on
average. Figure 10 shows the mass spectra of average OA before and after GP and three
growth ways. As illustrated, the intensities of hydrocarbon ion series of m/z 55 (mainly
C3H3O+, C4H7

+), m/z 57 (mainly C3H5O+, C4H9
+), and m/z 43, characterized by a mass

spectral pattern of HOA, show a significant increase after three growth ways. Among them,
the growth intensity of EXG is higher than that of SLG and RAG. OOA is characterized
by the prominent peak of m/z 44 (CO2

+). Before and after growth, the intensities of m/z
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44 decreased significantly. In the EXG, the intensity of m/z 44 decreases from 11.3% to
10.2% of the total OA signals. Although the proportion of SOA is significantly lower than
that of POA in GP, the proportion of SOA in GP is significantly higher than the average
observed throughout the autumn and winter (31%). The research of Xu et al. [40] also
showed that SOA plays an enhanced role during more severely polluted days. Therefore,
in the process of pollution accumulation, SOA also plays a vital role in the increase in OA.

Figure 10. Mass spectra of average OA before and after GP (a), SLG (b), RAG (c), and EXG (d).

Secondary aerosol (SPM = SO4
2− + NO3

− + NH4
+ + OOA) is the most important

component of PM1, accounting for ~71% of PM1 in autumn and winter in Beijing on average,
and has a significant impact on atmospheric extinction [43]. During the GP, the contribution
of SPM to the accumulated pollutants is still significantly higher than that of PPM (Chl +
BC + HOA). However, from slow to rapid to explosive growth, the proportion of SPM in
the increased PM gradually decreases (63% to 59% to 52%) (Figure 8b). During the EXG,
the contribution of the PPM can reach to 48% in the increasing concentration of pollutants.
PPM mainly comes from local biomass combustion, traffic and catering emissions, and
its contribution to pollution accumulation cannot be underestimated. Figure 8d shows
that, during the observation period, the proportions of SLG, RAG, and EXG are 71%, 21%,
and 8%, respectively, in Beijing during observation. Compared to SLG and RAG, EXG
mainly occurs in the quiet and stable atmosphere of higher humidity, lower pressure, lower
temperature, small winds, and low MLH (Figure 10).

4. Conclusions

We select a total of 27 representative stations in seven areas (Northeast China, Beijing-
Tianjin-Hebei and surrounding areas, Feiwei Plain, Yangtze River Delta, Sichuan-Chongqing,
Central China and Pearl River Delta) in central and eastern China to analyze the year-on-
year evolution trend of PM2.5 pollution in the autumn and winter from 2013 to 2020. The
increased stage of pollutants is divided into SLG, RAG, and EXG, according to the different
accumulation rate of pollution. Taking Beijing as an example, a comparative study is
conducted on the distribution characteristics of aerosol particle size, the contribution of
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chemical components, and the differences in meteorological conditions in three growth
rates. The average value of PM2.5 in the autumn and winter of each regional representative
station shows a decreasing trend as a whole, especially after 2017, where the decreasing
trend was significant. The +ΔPM2.5 in the north of the Huai River is lower than that in the
south of the Huai River, and the +ΔPM2.5 after 2017 also showed a significant decreasing
trend compared with that before 2017. The average PM2.5 threshold before the EXG is
70.8 μg m−3, and the threshold that is extremely prone to EXG ranges from 156 μg m−3 to
277 μg m−3 in the stations north of the Huai River. For the area south of the Huai River,
the threshold for PM2.5 EXG is relatively low, while a more stringent threshold also puts
forward stricter requirements for atmospheric environmental governance. With the growth
rate increase, the peak number concentration diameters gradually shift to a larger size in
Beijing. The number concentration increasing mainly distributed in AIM and ACM during
EXG. Among the various components of PM1, OAs, especially POA, have become one
of the most critical components for the EXG of pollutants in Beijing. During the GP, the
contribution of SPM to the accumulated pollutants is significantly higher than that of PPM.
However, with the increase in growth rate, the proportion of SPM gradually decrease. In
the EXG, the contribution of the PPM can reach up to 48%. Compared to SLG and RAG,
EXG mainly occurs in the stable atmosphere of higher humidity, lower pressure, lower
temperature, small winds, and low MLH.
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Appendix A

Figure A1. Time series of (a) Mixed layer height (MLH); (b) relative humidity (RH) and temperature
(Temp); (c) wind speed (WS) and wind direction (WD); (d) PM2.5 and pressure (Pres.) during January
2015 in Beijing.
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Figure A2. Diurnal of PM2.5 and meteorological variables for the entire study.
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Abstract: As a major gaseous pollutant, ozone (O3) adversely affects human health and ecosystems.
In recent years, ozone pollution in China has gradually become a prominent issue, especially in
the North China Plain (NCP). To study the long-term spatio-temporal variation patterns of O3 in
the NCP, this study selected 230 monitoring stations in the NCP from 2016 to 2020 as research
objects, used the Kriging interpolation method and global Moran’s index to discuss the spatial-
temporal distribution of O3, combining meteorological and social statistical data to analyze the
causes underlying regional differences. The temporal analysis demonstrated that the O3-8h average
concentrations increased annually from 2016 to 2018 and decreased from 2019 to 2020. The O3

concentrations were higher in spring and summer (117.89–154.20 μg/m3) and lower in autumn and
winter (53.81–92.95 μg/m3). The spatial analysis revealed that O3 concentrations were low in the
north and south of the NCP but high in the central area. The spatial distribution of O3 exhibited
considerable cross-seasonal variability. Both meteorological conditions of high temperature and low
pressure increased O3 concentrations. The spatial distribution of O3 varied depending on the period.
However, the central and western regions of the Shandong Province were constantly characterized
by high O3 concentrations. This pattern has been likely formed by heavy industry in the Shandong
Province, as large-scale industrial production and frequent traffic flows produce a large amount
of precursors, thereby exacerbating regional O3 pollution. These characteristics were attributed
to emission reduction policies, meteorological conditions, the emission intensity of anthropogenic
sources, and regional transport in the NCP. Overall, for cities with heavy industrial facilities in the
central NCP, a timely adjustment of the energy and industrial structure, effectively controlling the
emission of precursors, promoting new clean energy, and strengthening regional joint prevention and
control are effective ways to alleviate O3 pollution.

Keywords: North China Plain; ozone; temporal and spatial distribution; pollution analysis

1. Introduction

Photochemical pollution is one of the major types of atmospheric environmental
pollution in China. With rapid urbanization and industrialization, the problem of ozone
pollution has recently become acute, thereby attracting the attention of atmospheric and
environmental researchers [1,2]. As a secondary photochemical pollutant, near-ground
ozone (O3) is mainly formed by photochemical reactions of precursors such as nitrogen
oxides (NOx) and volatile organic compounds (VOCs) [3,4]. Unlike particulate pollution
(e.g., aerosol pollution), O3 pollution is insidious; it occurs even in sunny weather, and
its detection and quantification are challenging. These challenges must be alleviated
as near-ground O3 concentrations, exceeding a certain threshold, can cause a series of
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adverse effects on human health, the ecological environment and crops [5,6]. At present,
O3 has replaced fine particulate matter as the primary pollutant, inherently affecting the
number of good air days in spring and summer [7,8]. O3 concentrations have already
directly affected the ranking of cities based on urban air quality. Therefore, identifying
the pollution characteristics and the related drivers is quintessential for formulating air
pollution prevention and control strategies.

In the past, scholars usually studied O3 based on satellite data due to the lack of
large-scale and long-term monitoring networks. For instance, Liu et al. [9] used OMI
satellite data to analyze the trend of O3 changes in east-central China from 2005 to 2014.
Zhang et al. [10] used satellite observations of tropospheric O3 data to assess the spatial
distribution of O3 in China. Since 2013, the Ministry of Environmental Protection has
been monitoring the pollutant on a large scale in China. Many studies are exploring
O3 concentrations and distribution in various regions of China based on O3 data from
monitoring stations, yielding a multitude of results. For instance, Meng [11] conducted
O3 monitoring in 74 Chinese cities over 3 consecutive years. In particular, it has been
previously reported that O3 concentrations had been increasing annually, and O3 pollution
exhibited distinct regional patterns. Zhang et al. [12] obtained O3 concentrations data
for the Chengdu-Chongqing urban agglomeration from 2015 to 2019 using monitoring
station data to discuss the spatio-temporal variation patterns of O3 in the study region. In
addition, the chemical transport model has been implemented to analyze O3 formation
and transport. For instance, Li et al. [13] used the WRF/CMAQ model to simulate the
response of PM2.5 and O3 to emission reduction policies in the Yangtze River Delta region.
Guo et al. [14] examined the characteristics of O3 pollution, elucidating its sensitivity to
emissions using isolines. They showed that NOx drives O3 concentrations in most areas
of China, hinting that a reduction in NOx can substantially reduce the concentration of
O3. Fundamentally, O3 pollution is not only affected by anthropogenic emissions but
also by meteorological factors. On a meteorological scale, Wang et al. [15] argued that O3
concentrations were closely associated with meteorological conditions. High concentrations
of O3 pollution were usually observed under strong solar radiation and low wind speed.
Li et al. [16] concluded that O3 concentrations negatively correlated with relative humidity
by analyzing the correlation between O3 and meteorological factors in 74 Chinese cities.
Cui et al. [17] integrated O3 concentrations with dynamic meteorological factors in the
Beijing–Tianjin–Hebei region and found that the O3 concentrations positively correlated
with temperature and evaporation; however, there was a distinct regional difference in the
wind direction and the wind speed.

The NCP is one of the most densely populated areas in the world. The Beijing–Tianjin–
Hebei region has a large population and represents China’s political and cultural center,
where the air pollution issue has become increasingly urgent [18]. The Jiangsu–Anhui–
Shandong–Henan region in the southern part of the NCP is the connecting belt of air
pollution in the Beijing–Tianjin–Hebei region and the Yangtze River Delta [19]. Only a
few studies described the O3 pollution in the above areas, and the progress toward im-
proving air quality is slow. With its rapid economic development, the NCP suffers from
severe air pollution due to anthropogenic emissions, accumulation, and regional transmis-
sion [20]. Thus far, the lack of long-term research on the spatio-temporal characteristics
of O3 constrains the progress in this regard. To address this gap, this study investigated
the spatio-temporal distribution and drivers of O3 pollution in the NCP using data on O3
concentrations (from 230 air monitoring stations), meteorology (from 54 meteorological sta-
tions), and social factors between 2016 and 2020 to provide a reference for the management
of O3 pollution.

2. Materials and Methods

2.1. Study Area

As shown in Figure 1, the North China Plain (NCP) is located between 32◦–40◦ N and
114◦–121◦ E along the east coast of China. It represents 1 of the 3 major plains in China,
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including Beijing, Tianjin, 9 cities in the Hebei Province, 15 cities in the Henan Province,
16 cities in the Shandong Province, 6 cities in the Anhui Province, and 5 cities in the Jiangsu
Province. The names and abbreviations of all cities are shown in Table S1. The study area
extends from the south foot of Yanshan Mountain in the north, Taihang Mountain and
Funiu Mountain in the west, Dabie Mountain in the south, and the Bohai and Yellow Seas
in the east. The total area of the study region is 300,000 km2. The topography is flat and
low in altitude, with numerous rivers and lakes and a dense population. Most cities in the
study area are characterized by a temperate monsoon climate, whereas a few provinces
(such as Jiangsu and Anhui) have a subtropical monsoon climate. The four seasons of
the study region have been changing significantly, driven by the monsoon climate. The
region is characterized by hot and rainy summers, while winters are cold and dry. The
precipitation mostly occurs between June and September. Notably, the region stands out
with exceptional natural conditions, rendering it an important grain base and geographical
space in China [21–23].

Figure 1. The geographical location of the study area.

2.2. Data Source and Processing

The O3 data used in this study were obtained from the national urban air quality
real-time release platform of the China National Environmental Monitoring Centre (http:
//106.37.208.233:20035/) (accessed on 6 May 2021). The daily surface monitoring data
of O3 in the NCP from 2016 to 2020 were used. This study analyzed data from 230 sites
within the study area. The selection was performed after removing the inactive sites and
those with incomplete data. According to Ambient Air Quality Standards (GB 3095-2012),
the daily maximum 8-h moving average of O3 is considered the actual O3 concentration
(hereafter referred to as O3-8h). In addition, the daily arithmetic average of O3-8h in a
calendar month is taken as the monthly average concentration. Note that it is implied that
spring lasts from March to May, summer lasts from June to August, autumn lasts from
September to November, and winter lasts from December to February of the following
year. The quarterly average concentrations were calculated from the arithmetic average of
the daily O3-8h concentrations. The arithmetic average of daily O3-8h concentrations in
a calendar year was taken as the annual average concentration. The meteorological data
were obtained from the China Meteorological Data Service Centre (http://data.cma.cn)
(accessed on 12 May 2021). More specifically, temperature (TEM, ◦C) and air pressure
(Pa, hPa) from 54 meteorological stations in the NCP from 2016–2020 were selected. The
point of interest data for the plants were obtained from AutoNavi (https://amap.com/)
(accessed on 1 August 2021). The administrative boundary vector data and the digital
elevation model (DEM 500 m) data were obtained from the Institute of Geographical
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Sciences and Natural Resources Research, CAS (https://www.resdc.cn/) (accessed on 12
May 2021). To this end, the statistical data for 2016–2020 were obtained from the China
Statistical Yearbook, China Urban Statistical Yearbook, China Environmental Statistical
Yearbook, and the Local Statistical Bulletin of National Economic and Social Development
(http://www.stats.gov.cn/tjsj/ndsj/, https://data.cnki.net/NewHome/Index) (accessed
on 2 December 2021). The time described in this study is Chinese Standard Time (CST).

2.3. Statistical Methods

2.3.1. Kriging Interpolation

Kriging interpolation is fundamentally based on the variogram and basic assumption
of a spatially related prior model. Given the dual characteristics of randomness and the
structure of natural phenomena in space, the Kriging method can be utilized to quantita-
tively analyze environmental parameters [24,25]. It has been extensively used in numerous
fields such as geology, meteorology, and remote sensing [26]. The Kriging interpolation
method was utilized in this study to predict the spatial-temporal distribution of O3.

2.3.2. Spatial Autocorrelation Test

The first law of geography stipulates that the closer things are in space, the stronger
their correlation, also referred to as “spatial autocorrelation” [27]. To elucidate the spatial
distribution of O3, global Moran’s index I was utilized according to Equation (1):

I =
N ∑i ∑j Wij(Xi − X)(Xj − X)

(∑i ∑j Wij)∑i(Xi − X)2
(1)

where N represents the number of municipal administrative divisions, Xi and Xj represent
the average value of O3 concentrations in administrative regions i and j, respectively; X
represents the mean value of O3 concentrations in all administrative regions; and Wij

represents the spatial weight matrix. The value range of I was considered [−1, 1]. Note
that I < 0, I = 0, and I > 0 indicate a spatially negative correlation, the absence of correlation,
and positive spatial correlation, respectively, whereas the closer I is to 1, the stronger the
spatial correlation is.

To facilitate the interpretation, I is usually transformed into a standardized statistic,
Z(I), using Equation (2):

Z(I) =
[I − E(I)]√

Var(I)
(2)

where Z(I) represents the significance level of the global Moran’s index, E(I) represents
the expected value, and Var(I) represents the variance. In particular, Z < −2.58 indicates
that O3 concentrations have a negative spatial correlation, and −2.58 < Z < 2.58 indicates
that the spatial correlation is not significant. Finally, Z > 2.58 indicates the positive spatial
autocorrelation of O3 concentrations [28,29].

3. Results

3.1. Characteristics of Ozone Time Variation

3.1.1. Interannual Variation Characteristics

According to the Ambient Air Quality Standard (GB 3095-2012), the first-level standard
limit of the maximum 8-h average concentrations of O3 per day is 100 μg/m3, while the
secondary level standard is 160 μg/m3. On this basis, our study considered the secondary
standard limit concentrations as the threshold, implying that when O3-8h is >160 μg/m3,
the standard is exceeded. The annual statistics for O3-8h are provided in Table 1. As seen,
the annual average concentrations of O3 from 2016 to 2020 were 97.84 ± 4.55, 107.96 ± 5.40,
110.28 ± 5.82, 108.05 ± 4.94, and 104.04 ± 8.87 μg/m3, respectively.
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Table 1. Statistics of O3-8h data in the NCP from 2016 to 2020. (Mean ± sd).

Date/year
Mean

(μg/m3)
Minimum

(μg/m3)
Maximum

(μg/m3)

2020 104.04 ± 8.87 25.63 203.56
2019 108.05 ± 4.94 19.77 216.30
2018 110.28 ± 5.82 25.83 219.83
2017 107.96 ± 5.40 24.81 223.70
2016 97.84 ± 4.55 19.54 190.23

By ranking the average O3 concentrations in the NCP, the following order was iden-
tified: 2018 > 2019 > 2017 > 2020 > 2016. O3 concentrations exhibited an increasing trend
since 2016, peaked in 2018, and then gradually decreased. We suggest that the change
in O3 concentrations after 2018 is closely related to the following environmental policies.
In 2017, China issued “The 2017 work plan for air pollution prevention and control in
Beijing, Tianjin, Hebei, and surrounding areas”, which urged Beijing–Tianjin–Hebei and
surrounding cities to adjust their industrial structure; banned small, scattered polluting
enterprises; and actively promoted the substitution of clean energy, such as electricity and
natural gas, for coal. These measures bolstered the efficiency of treatment of industrial
air pollution, strengthened the control of motor vehicle emissions, and tightened NOx
emissions control.

The analysis of the statistical yearbook data indicated that the total NOx emissions in
the study area remarkably decreased in 2018. Namely, the total NOx emissions decreased
by 21.34% compared with 2017. The total NOx emissions in 2019 and 2020 also exhibited a
downward trend, with decreases of 26.57% and 48.14%, respectively, compared with 2017.
In 2018, China also issued “The Action Plan for Comprehensive Treatment of Air Pollution
in Autumn and Winter from 2018 to 2019 in Beijing, Tianjin, Hebei, and surrounding
areas”, which put forward special treatment of VOCs in key industries for the first time and
achieved its first tangible results by 2019 [30]. Given the efficient control of the emissions
of O3 precursors, the average O3 concentrations decreased. Notably, O3 concentrations
declined in 2020. We argue that this concurrent reduction was attributed to the reduction in
industrial production and anthropogenic activities under the measures enforced to control
and prevent the spread of COVID-19 in China in 2020 [31].

3.1.2. Seasonal Variations

The seasonal variations in the O3 concentrations from 2016 to 2020 are shown in
Figure 2. As shown, the variation trend of O3 average concentrations was approximately
the same in different years in the NCP. Moreover, O3 concentrations gradually increased
during spring, peaked in summer (132.53–154.20 μg/m3), and decreased gradually in
autumn and winter, reaching the lowest value in winter (53.81–61.75 μg/m3). The sea-
sonal variation characteristics of O3 concentrations were ranked in the following order:
summer > spring > autumn > winter. Overall, O3 pollution mainly developed in summer,
as higher concentrations were identified in spring and summer, while lower concentrations
were observed in autumn and winter.

The changes in O3 concentrations are fundamentally closely related to meteorological
conditions. The photochemical reaction process can be formalized by Equations (3)–(5)
(see below) [32,33]. The main process is NO oxidation by atmospheric oxidants to generate
NO2, whose photolysis generates O3. Temperature and solar radiation play important
roles in the formation and transport of O3. For instance, Xu, et al. [34] reported that O3
concentrations positively correlated with temperature and the intensity of solar radiation
because intense solar radiation and high temperature promoted the photochemical reaction
process. We found that the temperature in the NCP gradually increased from spring,
while summer was characterized by the strongest solar radiation and highest temperature
throughout the year. Therefore, this period was the most conducive for O3 formation,
whose concentrations reached the highest level. In autumn and winter, the solar radiation
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intensity and irradiation time gradually weakened. Thus, O3 concentrations gradually
dwindled, reaching the lowest value in winter. We identified only a slight difference in
temperature between spring and autumn. However, O3 concentrations in spring were
significantly higher compared with those in autumn due to the influence of more precursors,
drought, and less precipitation in spring:

NO + O3→NO2 + O2 (3)

NO2 + hv→NO + O (4)

O + O2→O3 (5)
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Figure 2. Seasonal changes in O3 concentrations in the NCP from 2016 to 2020.

3.2. Spatial Distribution Characteristics of O3

3.2.1. Spatial Aggregation Characteristics

To analyze the spatial aggregation and trends of O3, we performed a global spatial
autocorrelation analysis of the average annual O3 concentrations. As a result, we obtained
Moran’s I and Z values. Table 2 demonstrates that Moran’s I from 2016 to 2020 were 0.17,
0.36, 0.45, 0.45, and 0.51, respectively, while Z values were all >2.58 with an upward trend
(p < 0.01). This indicates that the administrative units with high O3 concentrations or those
with low O3 concentrations were significantly clustered in space (e.g., they are spatially
positive). The O3 spatial aggregation increased annually in recent years. We noted a strong
spatial autocorrelation and possible spatial aggregation.

Table 2. Spatial autocorrelation test results.

Index 2016 2017 2018 2019 2020

Moran’s I 0.17 0.36 0.45 0.45 0.51
Z-score 5.03 10.14 12.65 12.66 14.36
p-value <0.01 <0.01 <0.01 <0.01 <0.01

To further discuss the spatial aggregation of O3 concentrations, this study analyzed
the cold hotspot map for O3 concentrations in the NCP; the results are shown in Figure 3.
As shown in the figure, the hotspots in the NCP in 2016–2017 were mainly concentrated
in the southwestern area of Shandong bordering Henan and Anhui Province. Jiangsu
Province was also relatively concentrated. From 2018 to 2020, hotspots were concentrated
in the western part of Shandong Province and the junction area of Henan Province and
Hebei. From 2016–2020, cold spots were concentrated in Beijing, Tianjin, and surrounding
areas, while the agglomeration in other areas was not prominent. Furthermore, after 2016,
the spatial correlation of O3 in the western part of Shandong became increasingly more
pronounced, and the aggregation characteristics were the most prominent in 2018, showing
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the clustering characteristics of the Hebei–Henan–Shandong–Anhui region. Overall, the
comprehensive 2016–2020 trends of O3 spatial aggregation changes show that the western
area of Shandong bordering other provinces forms a stable high-value aggregation feature,
whereas Beijing, Tianjin, and the surrounding areas form a stable low-value aggregation.
These two parts of the regional spatial correlation of O3 concentrations were substantial
and not easily influenced by other regions.

Figure 3. Spatial aggregation characteristics of O3 concentrations in the NCP from 2016–2020.

3.2.2. Annual Variation of the Spatial Distribution of O3

The spatial distribution of O3 in the NCP is shown in Figure 4. As shown, the spatial
distribution of O3 was approximately the same and consistent with the spatial aggregation
trend (Figure 3) from 2016 to 2020. Overall, the study area exhibited a spatial variation trend
characterized by low O3 concentrations in the north and south and high concentrations in
the central area. Among these, O3 concentrations in the west of the Shandong Province and
the junction of the Jiangsu, Shandong, Hebei, Henan, and Anhui provinces were high, with
a maximum value of 120.79 μg/m3. This area was characterized by high O3 concentrations,
which are related to the presence of industrialized cities in the region. Meanwhile, the
O3 concentrations in Beijing, southern cities of Henan Province, Anhui Province, Jiangsu
Province, and coastal areas of Shandong Peninsula were low, with the lowest value being
85.58 μg/m3. Furthermore, O3 concentrations in the study area significantly increased
from 2016 to 2018, while the high-value area of O3 concentrations gradually expanded.
In 2019, O3 concentrations in Jiangsu Province and some surrounding cities in the south
of the NCP decreased. In 2020, the pattern changed, and the overall O3 concentrations
in the study area decreased. In previous years, O3 concentrations in Henan and Hebei
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Provinces with higher O3 concentrations significantly decreased, while some areas with
high concentrations persisted in the central and western regions of the Shandong Province.

 

 

Figure 4. Annual spatial distribution map of O3 in the NCP from 2016 to 2020: (a) Spatial distribution
of O3 in 2016, (b) Spatial distribution of O3 in 2017, (c) Spatial distribution of O3 in 2018, (d) Spatial
distribution of O3 in 2019, (e) Spatial distribution of O3 in 2020.

Precursors are essential for O3 formation. The sources of O3 precursors can be fun-
damentally divided into natural and anthropogenic sources. Natural sources include soil,
lightning, and plant emissions, while anthropogenic sources include motor vehicle exhaust,
coal combustion, and industrial and power plant emissions [35]. As the compilation of the
VOC source emission inventory was delayed and underwent changes every year, no latest
VOC source emission data were available for 2020. Due to this, the NOx emissions data
were taken as the measurement index of precursors. Note that, as a precursor of O3, the
NOx concentration is closely related to that of O3 [36,37]. The total NOx emissions com-
prise industrial, motor vehicle, and domestic emissions. According to data from the China
Environmental Statistics Yearbook (2019), industrial and motor vehicle emissions account
for more than 90% of the total emissions in China. Since municipal-level data on NOx
emitted by motor vehicles were not available, industrial NOx emissions and civil vehicle
ownership were selected as relevant indicators to measure the change in O3 concentrations.
Given the lack of statistical data for some years, we considered the data of industrial NOx
emissions in 2017 and civil vehicle ownership in 2019 as examples to shed light on the
impact of O3 precursors on the spatial distribution of O3. The results are shown in Figure 5.
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Figure 5. (a) Spatial distribution of civil vehicle ownership in the NCP in 2019; (b) Spatial distribution
of industrial NOx emissions in the NCP in 2017.

Figure 5a shows the civilian car ownership map. As seen, the car ownership in Beijing–
Tianjin–Hebei is generally high. The capital city of Beijing, being the political and cultural
center of China, is characterized by the highest car ownership of 5.908 million, followed by
Zhengzhou (Henan Province), with car ownership of 3.814 million. Jinan, Linyi and the
Shandong Peninsula are also characterized by high car ownership. This pattern is driven by
the population density of the Beijing–Tianjin–Hebei urban agglomeration. The area is large,
and the degree of social and economic development is also high. As a highly populated
province, the Shandong Province had a population of >100 million people in 2017 (Chinese
Statistic Year, 2018), and motor vehicles were used extensively. As a result, these regions are
characterized by the largest car ownership, whereas car ownership in most regions of the
Henan and Anhui Provinces is low (the lowest car ownership is equal to 282,300 in the Hebi
City of the Henan Province). The distribution map of industrial NOx emissions (Figure 5b)
indicated that Tianjin, Tangshan, Qinhuangdao, southern Hebei Province, and central
Shandong Province, such as Binzhou and Zibo, and other cities had higher industrial NOx
emissions. Of these administrative units, Tangshan was characterized by the strongest
annual emissions (196,572 tons/year), followed by Tianjin (73,249 tons/year). These cities
are heavily industrialized with an economy focused on structure, metallurgy, chemical
industry, building materials, and high-energy consuming industries, causing emissions
of large amounts of pollutants. However, in the southern part of the study area (the
Henan and Anhui Provinces), the emissions of industrial NOx were relatively low, with the
lowest value being 2296 tons. Moreover, the emissions of industrial NOx in Beijing and the
Shandong Peninsula were also relatively low. We combined the number of heavy industrial
plants in each province in the study area, shown in Figure 6, and showed that Shandong
Province had the largest number of heavy industrial plants, followed by Hebei Province.
We argue that this is a manifestation of the convergence of the industrial structure between
the provinces and the cities in Beijing–Tianjin–Hebei and the surrounding areas.
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Figure 6. Number of heavy industrial plants in each province of the NCP.

Combined with the analysis results in Figure 4, the areas with high O3 concentra-
tions were mainly clustered in the central and western regions of Shandong Province,
the southern part of Hebei Province, and the junction of Jiangsu, Shandong, Henan, and
Anhui Provinces. This finding is in line with the regions characterized by a large number
of motor vehicles and large industrial NOx emissions. However, although Beijing and
Tianjin were characterized by a large number of motor vehicles, the O3 concentrations
in the area remained low. This pattern was driven by the strict motor vehicle emission
reduction policies implemented by key cities such as Beijing and Tianjin, which effectively
controlled the pollution of motor vehicle emissions [38]. Generally, precursor emissions are
closely related to O3 concentrations [39]. Large-scale industrial production and massive
traffic flow lead to larger NOx emissions. Namely, the greater the NOx emissions in the
region, the more conducive the photochemical reaction conditions are and the greater the
O3 concentration. However, the Qinhuangdao City (Hebei Province) was characterized by a
large amount of industrial NOx emissions, and the Shandong Peninsula had a large number
of motor vehicles. Thus, one could anticipate that more emissions of precursors could
emerge in these areas, and O3 concentrations would inevitably increase. Nevertheless, O3
concentrations remained at a moderately low level. As these cities are close to the ocean
and experience good atmospheric diffusion conditions, clean ocean air masses moderately
exert a dilution effect on local pollution sources.

3.2.3. Seasonal Variation of O3 Spatial Distribution

The O3 concentrations in the NCP significantly changed during all seasons from 2016
to 2020. Furthermore, the seasonal-scale spatial distribution of O3 is shown in Figure 7.
In spring, the cities in the northern part of the NCP (such as Beijing and Tianjin) were
characterized by the lowest O3 concentrations, with the lowest value of 111.43 μg/m3. O3
concentrations in the southern Anhui Province were also low. The high O3 concentrations
areas were mainly concentrated in the southwest part of the Shandong Province, junction
cities between the west of Shandong Province and the southeast of Hebei Province, with
a maximum of 134.83 μg/m3. In summer, O3 concentrations in the study area were high,
with widely distributed high-concentration areas. The high-value areas of O3 were mainly
clustered in the Beijing–Tianjin–Hebei urban agglomeration, western Shandong Province,
and northern Henan Province, with a maximum of 169.90 μg/m3. O3 concentrations in the
Shandong Peninsula, Anhui, and Jiangsu provinces to the south of the NCP were relatively
low, with the lowest value of 97.55 μg/m3. In autumn, O3 concentrations distribution
exhibited the low concentrations pattern in the north and the high concentrations in the
south. O3 concentrations in the Beijing–Tianjin–Hebei urban agglomeration were the lowest,
with the lowest value of 64.13 μg/m3, while in southern Shandong Province and Anhui
Province, they were higher, with a maximum of 116.90 μg/m3. In winter, O3 concentrations
in the study area were lower than those in other seasons. Moreover, O3 concentration
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generally exhibited a trend of low concentrations in the north and high concentrations in
the south. From a regional perspective, O3 concentrations in eastern coastal cities were the
highest, with a maximum of 75.63 μg/m3, while O3 concentrations in the Beijing–Tianjin–
Hebei urban agglomeration were low, with the lowest value of 44.78 μg/m3. Overall,
although the regional distribution range of high O3 concentrations exhibited a certain
degree of seasonal variability, the central and western parts of Shandong Province were
always characterized by high concentrations. This pattern is attributed to the developed
industrial structure of the heavy industry in Shandong Province.

Figure 7. Seasonal spatial distribution map of O3 in the NCP from 2016 to 2020: (a) Spatial distribution
of O3 in spring, (b) Spatial distribution of O3 in summer, (c) Spatial distribution of O3 in autumn,
(d) Spatial distribution of O3 in winter.

If we consider only the impact of precursor emissions, the spatial distribution of O3
in different seasons reveals the same trend. However, due to the differences in the spatial
distribution of O3 in the four seasons, meteorological conditions must be considered to
analyze their impact on the regional differences in O3. The variations in O3 concentrations
and meteorological conditions are shown in Figure 8. As shown, the annual variation trends
in O3 concentrations, average temperature, and average air pressure in the NCP were nearly
the same from 2016 to 2020. To study the relationship between meteorological conditions
and O3, the daily O3 concentrations and excessive rate were statistically analyzed under
different meteorological conditions using 2020 as a typical study year. As shown in Figure 9,
when the temperature was greater than 30 ◦C, O3 concentrations were the highest, and the
excessive rate reached 32%; when the temperature was less than 0 ◦C, O3 concentrations
were 54.47 μg/m3, and the excessive rate was 0%. Particularly, the higher the temperature,
the greater the O3 concentration and the excessive rate. When the air pressure was in
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the range of 1000–1013.25 hPa, O3 concentrations were high, with a maximum value of
116.52 μg/m3, and the excessive rate reached 15%. When the air pressure was greater than
1020 hPa and less than 990 hPa, the O3 concentrations were lower, and the excessive rate
was 0% at this time. In general, the O3 concentrations and excessive rate were rather higher
under low air pressure meteorological conditions (Pa < 1013.25 hpa standard atmospheric
pressure). This trend was driven by the following phenomenon: When the near-ground air
pressure is low, O3 is horizontally transported from the surroundings to the low-pressure
area. The O3 and its precursors converge in the low-pressure area, increasing the O3
concentration. At the high pressure near the ground, O3 diffuses into the surroundings.
Moreover, the lower the air pressure, the higher the O3 concentration [40] and vice versa.
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Figure 8. Variation in O3 concentrations and meteorological conditions in the NCP from 2016 to 2020.

<0 >30
0

100

200

300
(a)

3)
/(

ug
/m

3 )

TEM

0

10

20

30

40
 excessive rate

ex
ce

ss
iv

e 
ra

te
(%

)

<990
>1120

0

100

200

300

3)
/(

ug
/m

3 )

0

5

10

15

20(b)

Pa hpa

  excessive rate

ex
ce

ss
iv

e 
ra

te
(%

)

Figure 9. (a) O3 concentrations and excessive rate under different temperature conditions, (b) O3

concentrations and excessive rate under different air pressure conditions.

To this end, we analyzed the meteorological conditions in the study area to elucidate
the drivers behind the regional differences in O3 concentrations in different seasons. We
found that, in spring, O3 concentrations were low in large areas, particularly in the northern,
southern, and eastern coastal cities of the NCP. However, O3 concentrations were high in
the central and western cities of the Shandong Province. At this time, there was only a
minor difference in the average temperature and other meteorological conditions between
the provinces in the study area. The regional difference was driven by abundant heavy
industrial cities in central and southwest Shandong and due to large energy consumption.
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This, in turn, enhanced the emission of pollutants. At the same time, the central area of
Shandong is a mountainous and hilly area, where the complex terrain is conducive to
the accumulation of pollutants. Therefore, being affected by the industrial structure and
topography of this region, O3 pollution has been more severe compared to other cities [41].

We found that, in summer, the concentration of O3 in the Beijing–Tianjin–Hebei urban
agglomeration and its surrounding areas was high. On the one hand, as the core economic
zone of China, the Beijing–Tianjin–Hebei urban agglomeration stands out with a large
population density, rapid industrial development, high economic development [42,43],
strong urban heat island effect, and higher temperature compared with other regions. Note
that high temperatures are conducive to the generation of O3. On the other hand, some
previous studies [44,45] argued that given the complex and regional characteristics of the
Beijing–Tianjin–Hebei region, the regional transport of pollutants is prevented. In summer,
the O3 concentrations in the Beijing–Tianjin–Hebei region and cities such as Jinan, Zibo,
and Liaocheng in western Shandong Province are relatively high. At the same time, the
southeast wind prevails in the northern cities, and the high O3 concentrations areas are
more likely to spread to the northwest, which may lead to the formation of a high O3
concentrations cluster northwest of the NCP.

In autumn, given the difference in latitude, cities in the southern part of the study
area experienced strong solar radiation and high temperatures, which provided favorable
conditions for the generation of O3. The concentrations of O3 were generally high in the
south and low in the north. In winter, the northern part of the study area was closer to
the high-pressure center in Asia, and the weather conditions were stable. O3 generation is
affected by the latitude and heat; the temperature and O3 generation rate in the northern
part were lower than those in the southern region, and the O3 concentrations reached their
lowest in a year. However, similar spatial distribution characteristics (low in the north and
high in the south) were still evident. Geographically, the coastal areas of the Shandong
Peninsula and the Yancheng City of the Jiangsu Province were characterized by the highest
O3 concentrations, possibly caused by external transport and ship-driven pollution [46].

4. Discussion

Previous studies have mostly discussed the spatial and temporal distribution charac-
teristics of O3 in major urban groups in China, but there are fewer studies on long-term
O3 monitoring and regional causal analysis in the NCP. Therefore, we used the ground
monitoring station data to make spatial-temporal distribution maps of O3, combined with
the statistical data of each administrative unit, and discussed the influencing factors of O3
pollution in a comprehensive manner. This study can provide a reference for O3 prevention
and control in the NCP.

The annual variation in O3 showed that, compared with the previous two years, O3
concentrations moderately decreased by 2020, but O3 pollution was still severe compared
with that in 2016. We argue that this pattern is related to high emission intensity of
anthropogenic sources. The NCP is rich in mineral resources and coal, but the proportion
of energy consumption is unbalanced. Due to this, the industrial structure is unreasonably
unsustainable, being characterized by high energy consumption and highly polluting
industries, such as metallurgy and building materials, which are common in the region.
Moreover, heavily polluting enterprises are highly concentrated in the border areas of
the Hebei, Shandong, and Henan provinces. Industrial production inevitably triggers the
emission of pollutants, except in Beijing, where the industrial structure, similar to other
cities, is low [30]. Figure 10 shows the number of civilian vehicles from 2016 to 2020. It can
be seen that the number of civilian vehicles in seven provinces in the study area annually
increased from 2016 to 2020. Compared to 2016, the number of civilian vehicles increased by
9.47% in Beijing, 20.36% in Tianjin, 40.24% in Hebei, 58.59% in Henan, 47.22% in Shandong,
64.20% in Anhui, and 42.73% in Jiangsu. In 2020, the number of vehicles in Shandong
Province reached 25.524 million. Moreover, there is a large freight volume in the study area,
and the transportation structure is mainly represented by highways. The O3 precursors

77



Atmosphere 2022, 13, 715

such as CO and NOx, produced by a large number of heavy diesel vehicles and other motor
vehicles, exacerbate O3 pollution. The data of China’s anthropogenic emission inventory in
2020 [47] indicates that the anthropogenic source emissions of VOCs and NOx in Shandong
Province were the largest, while the Jiangsu and Hebei Provinces were also characterized
by large emissions. The increase in precursor emissions facilitates the secondary conversion
to generate O3. Therefore, anthropogenic emissions are one of the main factors affecting
regional air quality.
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Figure 10. Changes in Civil Vehicle Ownership from 2016 to 2020.

In addition to precursor-related factors, meteorological factors can also affect O3 con-
centrations through a series of reaction processes. Adverse meteorological conditions and
high-intensity precursor emissions are often the preconditions for O3 pollution. Generally,
O3 pollution events occur under high-temperature conditions, strong solar radiation, low
pressure, low relative humidity, and weak winds [15,16]. Figure 11 shows the change in
mean annual average temperature (MAAT) in China from 2011 to 2020, showing that the an-
nual average temperature in China has increased significantly in the past decade, with the
highest temperature in the past decade being recorded in 2015, rising by 0.94 ◦C compared
to the average temperature from 1981 to 2010 (9.55 ◦C). The frequency of extreme weather
in China has recently intensified and is currently higher than usual. Moreover, extreme
weather conditions such as high temperatures and heavy precipitation have also intensified
in China. According to the “Blue book on climate change in China 2021”, released by the
Climate Change Center of the China Meteorological Administration, the warming rate in
China has been higher than the global trend during the same period, and the climate warm-
ing continues. Climate warming bolsters atmospheric stability, weakening the regional
atmospheric convection and diffusion. In turn, the change in air quality caused by climate
change is also one of the drivers behind the increase in near-ground O3 concentrations.

The external transmission somewhat affects the urban atmosphere. For instance,
Jia et al. [48] utilized Ozone Source Apportionment Technology (OSAT) technology to
analyze O3 pollution in the summer of 2015. The simulation of the O3 sources in Beijing and
its surrounding areas indicated that Beijing was mainly affected by external transportation
in the Hebei Province, followed by the Shandong Province and the Henan Province, while
Tianjin was mainly affected by the Hebei and Shandong Provinces. Liu et al. [49] studied
the transport pathways of atmospheric pollutants in Henan Province in 2017 using the
WRF/CAMQ model. Their results showed that O3 concentrations in Henan Province were
influenced by a combination of regional transport and natural sources, with the border
between Henan Province and neighboring provinces being more significantly influenced
by regional transport. Furthermore, Xing et al. [50] used the extended response surface
modeling (ERSMv2.0) technique to quantify the contribution of multi-regional sources to
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PM2.5 and O3 in the Beijing–Tianjin–Hebei region. The results showed that PM2.5 was more
influenced by local than regional transport in most regions, while O3 showed the opposite
trend, being more heavily influenced by regional transport. Through relevant articles,
we know that regional transport fundamentally affects O3 pollution. The central areas in
the NCP have serious O3 pollution, thereby exacerbating the pressure on the ambient air
quality of the transmitted cities. Thus, joint prevention and control measures are essential
for mitigating O3 pollution in the NCP.
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Figure 11. National mean annual average temperature changes over the years.

In general, O3 pollution is the result of the combined influence of natural conditions
and human factors. As the natural conditions are fundamentally unaffected by human
being, the anthropogenic sources of pollutants should be primarily addressed. The key
to controlling O3 pollution is to reduce the emissions of precursors. Cities in the central
part of the NCP are seriously polluted by O3; we should manage the core cities with heavy
industrial structures in the region, timely adjust the energy structure, promote clean energy,
and adopt a long-term control strategy for NOx and VOCs. At the same time, the NCP
region needs to strengthen regional cooperation to form joint prevention and control of
air management mechanisms to effectively solve the problem of O3 transmission across
regions. Moreover, as individuals, we should privilege green travel, which is an effective
way to alleviate O3 pollution. However, due to the unavailability of detailed O3 precursor
emission data for recent years, there are some methodological shortcomings in the analysis
of O3 causation correlation, and the correlation between precursors and O3 should be
discussed in detail in future studies.

5. Conclusions

This study investigated the characteristics, spatio-temporal distribution, and drivers of
O3 pollution in the NCP from 2016 to 2020, providing an effective management reference for
O3 pollution control policies. It was proven that O3 pollution in the NCP was severe from
2016 to 2018, but after 2018, O3 concentrations gradually decreased. The seasonal variation
of O3 concentrations was found to be regular. The O3 concentrations were higher in spring
and summer (117.89–154.20 μg/m3) and lower in autumn and winter (53.81–92.95 μg/m3).
The spatial analysis revealed that O3 exhibited distinct spatial patterns from 2016 to 2020.
On an interannual scale, the overall concentrations of O3 exhibited a spatial distribution
trend of low concentrations in the north and south and high concentrations in the central
area. This pattern was attributed to the characteristics of the regional industrial structure
and the pollutants discharged by motor vehicles. Fundamentally, large-scale industrial
production and frequent traffic flow trigger strong precursor emissions. In addition, the
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greater the number of precursors, the worse the O3 pollution. The analysis showed that
the spatial distribution of O3 exhibited certain differences being affected by precursor
emissions and meteorological conditions in different seasons. Of note, high temperature
and low pressure can increase O3 concentrations, and high emissions of precursors also
contribute to O3 pollution. This calls for further decreasing the emissions of precursors to
alleviate O3 pollution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13050715/s1, Table S1: Names and abbreviations of cities
in the study area.
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Abstract: Due to rapid urbanization and socio-economic development, fine particulate matter (PM2.5)
pollution has drawn very wide concern, especially in the Beijing–Tianjin–Hebei region, as well as in
its surrounding areas. Different socio-economic developments shape the unique characteristics of
each city, which may contribute to the spatial heterogeneity of pollution levels. Based on ground
fine particulate matter (PM2.5) monitoring data and socioeconomic panel data from 2015 to 2019,
the Beijing–Tianjin–Hebei region, and its surrounding provinces, were selected as a case study
area to explore the spatio-temporal heterogeneity of PM2.5 pollution, and the driving effect of
socioeconomic factors on local air pollution. The spatio-temporal heterogeneity analysis showed that
PM2.5 concentration in the study area expressed a downward trend from 2015 to 2019. Specifically, the
concentration in Beijing–Tianjin–Hebei and Henan Province had decreased, but in Shanxi Province
and Shandong Province, the concentration showed an inverted U-shaped and U-shaped variation
trend, respectively. From the perspective of spatial distribution, PM2.5 concentrations in the study
area had an obvious spatial positive correlation, with agglomeration characteristics of “high–high”
and “low–low”. The high-value area was mainly distributed in the junction area of Henan, Shandong,
and Hebei Provinces, which had been gradually moving to the southwest. The low values were
mainly concentrated in the northern parts of Shanxi and Hebei Provinces, and the eastern part
of Shandong Province. The results of the spatial lag model showed that Total Population (POP),
Proportion of Urban Population (UP), Output of Second Industry (SI), and Roads Density (RD) had
positive driving effects on PM2.5 concentration, which were opposite of the Gross Domestic Product
(GDP). In addition, the spatial spillover effect of the PM2.5 concentrations in surrounding areas
has a positive driving effect on local pollution levels. Although the PM2.5 levels in the study area
have been decreasing, air pollution is still a serious problem. In the future, studies on the spatial
and temporal heterogeneity of PM2.5 caused by unbalanced social development will help to better
understand the interaction between urban development and environmental stress. These findings
can contribute to the development of effective policies to mitigate and reduce PM2.5 pollutions from
a socio-economic perspective.

Keywords: PM2.5; spatio-temporal heterogeneity; socio-economic driving factors

1. Introduction

With the advancement of industrialization and urbanization, many cities around
the world are experiencing severe air pollution, especially particulate matter pollution.
On a global scale, China, India, and South Asia have the most severe particulate matter
pollution in the world [1]. In China, since 2011, Beijing–Tianjin–Hebei [2], the Yangtze
River Delta [3], and other regions have experienced frequent smog, and air pollution has
caused widespread concern. High concentrations of PM2.5 can, not only accelerate the
formation of haze but also significantly affect people’s health [4]. It has been proved that
long-term exposure to high PM levels can easily cause a variety of diseases [5] and increase
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the risk of death [6]. In 2017, the State Ministry of Environmental Protection issued the
“Beijing–Tianjin–Hebei and Surrounding Area Air Pollution Prevention and Control Work
Plan in 2017”, which first proposed the concept of “2 + 26 cities” and implemented a large
number of pollution control measures in these cities to alleviate air pollution in North
China. Therefore, strengthening scientific understanding of the regulations of regional air
particulate pollution will help to formulate urbanization policies and ensure that targeted
air pollution control measures are properly implemented.

At present, research on PM2.5 pollutions mainly focuses on temporal and spatial
distribution rules [7], influencing factor analyses [8], source analyses [9], and health risk
assessments [10] along with other aspects. Among them, influencing factors mainly include
meteorological factors and socio-economic factors. Meteorological factors affect PM2.5
concentration by changing its diffusion and chemical reaction conditions. Chen et al. [11]
summarized the methods to quantify the impact of meteorological factors on PM2.5 and
comprehensively reviewed their impact mechanisms. Xu et al. [12] conducted a study on
the temporal and spatial distributions of the influence of meteorological conditions on
PM2.5 concentration in China from 2000 to 2017, which showed an overall downward trend
in PM2.5 concentration, and the influence of meteorology varied greatly between different
provinces. The socio-economic factors that directly or indirectly affect PM2.5 concentration
in the process of urbanization and economic development, include the national economy,
industrial structure, population density, transportation, and other factors [13]. These factors
mainly represent the impact of human activities on PM2.5. The average urban PM2.5 level
is mainly affected by anthropogenic emissions of local air pollutants and the surrounding
ecological level. Cheng et al. [14] used a dynamic spatial panel model to analyze the impact
of foreign direct investment (FDI) on China’s PM2.5 pollutions, and the results showed that
FDI significantly aggravated China’s urban PM2.5 pollutions. The study of Yan et al. [15]
expressed that there was a heterogeneous relationship between PM2.5 concentration and
economic growth, urbanization, industrialization, and FDI and that population density
had the greatest positive impact on PM2.5 pollution. Zhang et al. [16] noted that PM2.5
pollution was positively correlated with urbanization and road density, and negatively
correlated with the proportion of tertiary industries.

Although many studies have been conducted on the temporal and spatial distributions
of PM2.5 and its influencing factors, the study areas of most studies mainly concentrate
on the level of countries, urban agglomerations, and cities, while comparisons between
regions are relatively rare. In addition, with rapid economic development, the North
China region has been experiencing severe PM2.5 pollution. Shanxi Province is located
in the central region and has a decreasing economic development. Therefore, this study
selects Beijing City, Tianjin City, Hebei Province, Henan Province, and Shanxi Province
as the study areas. There are significant distinctions of PM2.5 and economic development
levels between the different cities, which provides advantages for studying the impact
of socio-economic factors and spatial spillover effects on the PM2.5 level. The aims of
this study are: (1) explore the temporal and spatial distribution characteristics of PM2.5
levels; (2) compare the spatial heterogeneity of PM2.5 distribution characteristics in different
regions, and (3) determine the influence of socio-economic factors and spatial spillover
effects on PM2.5 levels.

2. Materials and Methods

2.1. Study Area

This study selects Beijing City, Tianjin City, Hebei Province, Henan Province, and
Shanxi Province as the study areas, which contains 56 cities in four provinces and two
municipalities, as shown in Figure 1. Among them, Hebei Province, Shandong Province,
Shanxi Province, and Henan Province have 11, 16, 11, and 18 prefecture-level cities, re-
spectively. The names and abbreviations of all cities are shown in Table S1. The study
area is located between 31◦23′ N–42◦40′ N and 110◦14′ E–122◦42.3′ E in China, with the
Loess Plateau in the west and the North China Plain in the east. With its rapid economic
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development and rapid consumption of energy, the air quality in North China is not better
and haze pollution incidents occur frequently; this area is considered one of the most pol-
luted areas of China. In addition, the study area includes, not only the eastern regions with
their rapid economic development, such as the Beijing–Tianjin–Hebei urban agglomeration
and Shandong Province but also the central regions with slower economic development
speeds, such as Shanxi Province. The socio-economic development of the study area is
very unbalanced, which provides favorable conditions for analyzing the influence of socio-
economic factors on PM2.5 concentration. Therefore, this paper selects four provinces and
two municipalities as the study areas to explore the temporal and spatial heterogeneity of
PM2.5 and the influence of socioeconomic factors on PM2.5 concentrations in 2015–2019.

Figure 1. Study area.

2.2. Data Sources and Validity

This study collected hourly PM2.5 concentration data from 347 automatic air quality
monitoring stations in the study area, from 1 January 2015, to 31 December 2019. This set of
data was obtained from the Urban Air Quality Distribution platform of the National Envi-
ronmental Monitoring Center (http://www.moc.cma.gov.cn, accessed on 9 October 2021).
Based on the hourly PM2.5 data, the arithmetic mean method was used to calculate the an-
nual PM2.5 concentration in each city, from 2015 to 2019. To improve the validity of the data,
we processed the missing values according to the provisions of the Ambient Air Quality
Standard (GB3095−2012). When calculating the daily average concentrations, we required
that the number of hourly average concentrations or the sampling time should be more
than 20, otherwise the daily average concentration was considered invalid. In calculating
the average monthly concentrations, we required at least 27 (February: 25) daily average
concentration values, otherwise, the monthly mean concentration was considered invalid.
At least 324 daily average concentrations were required to calculate the annual average
concentration, otherwise, the annual average concentration was considered invalid.

The potential impact of socioeconomic indicators on PM2.5 pollution has been widely
discussed. Based on previous studies and the availability of socioeconomic data, we
selected seven indicators (Table 1): Population (POP), Gross Domestic Product (GDP),
Green Ratio of Built-up Area (GR), Output of Second Industry (SI), Proportion of Urban
Population (UP), Roads Density (RD), and Proportion of Built-up Area (BA). Among them,
POP, GDP, and GR, respectively, represent population size, economic development level,
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and urban greening; SI and RD express industrial structure and traffic factors, respectively;
UP and BA represent population urbanization and spatial urbanization. The annual
statistical data of POP, GDP, SI, and RD were acquired from the Social and Economic
Development Bulletin and Statistical Yearbook of each city in the study area, while those of
GR and BA were obtained from the China Urban Statistical Yearbook. The time span of all
socioeconomic indicators was consistent with that of PM2.5 data in this study. Figure S4
provides detailed statistical information on these socioeconomic factors, for each city.

Table 1. Socioeconomic indicators and the abbreviations and units.

Category Variable Abbreviation Units

Independent variable PM2.5 concentration PM2.5 μg/m3

Dependent variable Total Population POP 104 persons
Gross Domestic Product GDP 104 CNY

Green Ratio of Built-up Area GR %
Output of Second Industry SI 104 CNY

Proportion of Urban Population UP %
Roads Density RD km/km2

Proportion of Built-up Area BA %

2.3. Statistical Methods

2.3.1. Moran’s I Test

Air pollution usually has obvious spatial distribution characteristics with regional
aggregation. Many researchers usually use Moran’s I to test the spatial correlation of
variables. In this study, we used the Global Moran’s I to test the overall spatial effect of
PM2.5 concentrations in 58 cities, from 2015 to 2019. The Global Moran’s I model can be
explained as follows [17]:

Global Moran′s Ii =
n ∑

n
i=1 ∑

n
j=1 wij(yi − y)

(
yj − y

)
S0 ∑

n
i=1(yi − y)2 (1)

Z =
1 − E(I)√

Var(I)
(2)

E[I] = −1/(n − 1) (3)

V[I] = E
[

I2
]
− E[I]2 (4)

where yi is the PM2.5 concentration of city i, yj is the PM2.5 concentration of city j, and y is
the average PM2.5 concentration of the study area. wij is the spatial weight matrix; if two
cities share a common boundary, the weight is 1, otherwise, it is 0; S0 = ∑

n
i=1 ∑

n
j=1 wij is

the aggregation of all spatial weights; n = 56 is the number of cities. Z score and p values
used to judge the Moran’s I significance level; when the |Z| > 1.96 or p < 0.05, the result
is considered significant at the 95% confidence level; when the |Z| > 2.58 or p < 0.01,
the result is considered significant at the 99% confidence level. In this paper, the Global
Moran’s I was calculated using ArcGIS software.

2.3.2. Hot Spot Analysis

Hot Spot Analysis is often used to identify potential spatial agglomeration characteris-
tics of PM2.5 pollution, and PM2.5 levels are divided into cold spots, insignificant points,
and hot spots. The Getis-Ord Gi* of ArcGIS was used to calculate the Gi* of each city in the
study area. The principle formulae are as follows [18]:

G∗
i =

∑
n
j=1 wijxj − x ∑

n
j=1 wij

S

√[
n ∑

n
j=1 w2

ij−
(

∑
n
j=1 wij

)2
]

n−1

(5)
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S =

√
∑

n
j=1 x2

j

n
− (x)2 (6)

where xj is the annual PM2.5 concentration of city j; ωij is the spatial weight between city i
and city j, and n = 56 represents the number of cities in the study area.

2.3.3. Spatial Lag Model

Socioeconomic variables, such as GDP, population size, and traffic, greatly affect local
PM2.5 concentrations. In this study, the Spatial Lag Model (SLM) was used to determine
the influence of different socio-economic factors on PM2.5 concentration, which could be
explained by Formula (7):

Y = ρWY + Xβ + ε, ε ∼ N
[
0, σ2 I

]
(7)

where Y indicates the PM2.5 concentration; X expresses the independent variables, in-
cluding all introduced socioeconomic factors; ρ is the spatial effect coefficient, and its
value ranges from 0 to 1. The spatial matrix is represented by W, which indicates whether
two spatial elements have a common boundary; β represents the regression coefficient of
explanatory variables; and ε is the error term.

3. Results and Discussion

3.1. Temporal Variation Characteristics of PM2.5

3.1.1. Temporal Variation Trend of PM2.5 Concentration

The variation trend of PM2.5 concentration in the study area was determined by
calculating the Probability Density Functions (PDFs) and annual average concentrations of
PM2.5 in the study area, from 2015 to 2019. As shown in Figure 2, the PM2.5 concentration
in the study area expressed a downward trend from 2015 to 2019, which decreased by
27.17%, from 73.23 μg/m3 in 2015 to 53.34 μg/m3 in 2019. Although the annual PM2.5
concentration decreased, it still exceeded the Grade II standard of PM2.5 (35 μg/m3) in the
Ambient Air Quality Standard (GB3095-2012) in 2019, which indicated that PM2.5 pollution
in the study area was still severe. The frequency distribution of PM2.5 can be found in the
PDF graph. From 2015 to 2019, the probability density curve moved to the left as a whole,
indicating that PM2.5 concentration had decreased in all concentration intervals. The curves
of 2015 and 2016 are similar, while those of 2017, 2018, and 2019 are similar. Compared
with 2016, the occurrence probability of high concentration decreased significantly in 2017,
resulting in a significant increase in probability in the low concentration intervals, and then
remained stable. This sudden change may be related to the stricter air pollution control
measures that were implemented in 2017.

Figure 2. Probability density function (PDFs) and annual concentration of PM2.5 from 2015 to 2019.
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The mitigation trend was more significant in the context of concentration levels.
In 2015, the average annual concentration of PM2.5 in all cities ranged from 34.6 to
106.42 μg/m3, but was 26.52–72.39 μg/m3 in 2019. We can find that there was a large
difference between different cities, with the maximum concentration being about three
times that of the minimum. During the period of 2015–2019, the maximum concentration
occurred in BD in 2015 and the minimum concentration occurred in WH in 2018. In ad-
dition, we also determined the statistics on the percentage of exceeding standard days in
each city, from 2015 to 2019, as shown in Figure S1. In 2015, the average percentage of
exceeding standard days in the study area was 37.45%, but it dropped to 15.66% in 2019.
This apparent mitigation of PM2.5 pollution did not just start in 2015, it had been going on
for a long time. Some studies on the long-term variation trends of PM2.5 concentrations
have shown that it had been increasing since 2000 until reaching a peak in 2008, and then it
fluctuated continuously and reached another peak in 2014 before decreasing since then [19].
It fluctuated after 2008 as the harm of PM2.5 pollution was widely known after the Beijing
Olympic Games and China gradually entered the stage of economic restructuring [20].
China’s government began to implement strict pollution control measures and regarded
PM2.5 as a routine monitoring pollutant after issuing the Action Plan for Air Pollution
Prevention and Control in 2013, which may be why PM2.5 concentration continued to
decrease after 2014 [21]. As a large number of emission reduction measures have already
been implemented, the reduction in PM2.5 will gradually reduce in the future. Therefore,
the speed of pollution mitigation may be slowed down, and the spatial difference between
cities would become narrower. From this aspect, Jiang et al. [22] reported that there was a
spatial convergence trend for PM2.5 concentrations in the Beijing–Tianjin–Hebei region.

3.1.2. The Spatial Heterogeneity of Temporal Variations

Although PM2.5 concentrations in the study area have been decreasing on the whole,
they express different temporal regulations in various areas. As shown in Figure S2, Beijing,
Tianjin, and most cities in Hebei and Henan Provinces decreased from 2015 to 2019, while
a few cities showed different patterns. The average concentrations in Hebei Province and
Henan Province also had the same patterns as most of the cities under their jurisdictions.
However, the patterns of cities in Shanxi Province and Shandong Province were quite
different from the others. To be more specific, PM2.5 concentrations in Shanxi Province first
went up but then decreased, and reached their highest level in 2017, presenting an inverted
U-shaped trend. In Shandong Province, it first went down, and then it went up, reaching
the lowest level in 2018 and showing a U-shaped trend. The patterns of most cities in the
two provinces were consistent with their corresponding provinces. This heterogeneity
may be related to differences in economic development, environmental protection policies,
geographical differences, and other factors between the different provinces. The regions
with the highest PM2.5 concentration in 2015 were Beijing and Henan Provinces, and Henan
Province exhibited the highest PM2.5 concentration for the period of 2016–2019. After five
years of decline, Beijing ranked last among the four provinces and two municipalities in 2019.

Specific to the urban level, the discrepancies in the reduction rates among different
regions were more obvious, as shown in Figure S3. Specifically, BJ, BD, LF, DZ, and LC
exhibited the highest reduction rate if more than 40%. Those of TY, YQ, JC, YC, and
LFF were slightly less than 10%. The former was mainly concentrated in the Beijing–
Tianjin–Hebei region, while the latter was under the jurisdiction of Shanxi Province. To
further explore the differences in temporal variations, we plotted the PDFs of PM2.5 in each
province or municipality from 2015 to 2019, as shown in Figure 3. To facilitate comparison,
we divided the study area into the Beijing–Tianjin–Hebei region and its surrounding
regions (Shandong, Hebei, Shanxi Province). In 2015, the PDFs of each province varied
greatly. Shanxi Province had the highest peak value, while Beijing had the lowest. Although
the concentration ranges of the two peak areas were similar, the occurrence probability of high
PM2.5 concentration in Beijing was high, indicating that Beijing was prone to PM2.5 pollution
events. On the whole, the peaks in the Beijing–Tianjin–Hebei region were lower, while those
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in the surrounding region were higher, indicating that PM2.5 pollution in the Beijing–Tianjin–
Hebei region was more serious than in its surrounding areas. From the temporal point of view,
the curve variation of the Beijing–Tianjin–Hebei region is very significant, especially in terms
of BJ. The Shandong, Henan, and Shanxi regions also showed a trend of pollution alleviation.
It is worth noting that the PDFs curve of Henan Province was always at the bottom, indicating
that it had higher PM2.5 pollution. After five years of improvement, the PDFs curves of the six
regions showed a tendency to gradually coincide. Until 2019, the curves were quite similar,
showing that the spatial differences of PM2.5 concentration were narrowing, which is similar
to the research results of Jiang, He, and Zhou [22].

3.2. Spatial Variation Trend of PM2.5

To determine the spatial distribution characteristics of PM2.5 concentrations in the
study areas, we calculated the Global Moran’s I during 2015–2019. As shown in Table 2,
with p-values < 0.01 and Z-score > 2.58, the Global Moran’s I was acceptable. From 2015
to 2019, the PM2.5 concentrations in the study areas showed a significant positive spatial
correlation, which indicated that the diffusion of PM2.5 concentrations between cities
was not random, and rather showed similar spatial connections and tended to aggregate.
This spatial correlation has been gradually increasing since 2016. To better exhibit the
agglomeration characteristics of the study area, we drew a Moran scatter diagram, as
shown in Figure 4. Most cities are concentrated in the first and third quadrants, and only a
few cities appear in the second and fourth quadrants which indicate that PM2.5 pollution
in the study areas presented obvious “high–high” and “low–low” agglomeration. This
spatial characteristic is caused by the unbalanced economic development in the earlier
period. With the sustainable development of the economy and the transformation of urban
planning and layout, it would change.

Table 2. Global Moran’s I from 2015 to 2019.

Year I p-Value Z-Score

2015 0.372501 0.000001 4.855292
2016 0.344208 0.000006 4.532812
2017 0.363731 0.000002 4.796205
2018 0.389324 0.000000 5.123085
2019 0.414598 0.000000 5.429379

To clearly determine the high and low concentration areas of PM2.5 pollution, we
drew a Getis-Ord Gi* statistical graph for the study area during 2015–2019, as shown in
Figure 5. On the whole, the cold spots in the study area were mainly distributed in the
north of Shanxi and Hebei Provinces, and the eastern coastal areas of Shandong Province
and the hot spots were mainly concentrated in the junction area of Hebei, Shandong, and
Henan Provinces. In terms of temporal change, the cold spots gradually shifted from
the northwest to the north of the study area, while those in the eastern coastal region of
Shandong Province were composed of YT, QD, and WH with no change. Additionally, the
hot spot moved to the southwest gradually from 2015 to 2019. This moving of the PM2.5
pollution center does not mean that the air quality in hot spots city were getting worse. In
fact, almost all cities had been experiencing PM2.5 pollution alleviation at different levels.
The PM2.5 concentration in some cities, such as SJZ, JN, and DZ, decreased sharply from
hot spots to insignificant spots; some cities, such as JY, LYY, and PDS, declined slowly
from insignificant spots to hot spots. This conversion of hot and cold spots is essentially
determined by the transformation of the local industrial structure and the implementation
of environmental protection policies. In fact, the upgrading and relocation of heavily
polluting enterprises in the Beijing–Hebei–Tianjin region may also be one of the reasons for
the moving of the pollution centroid. XT, HD, LC, AY, KF, PY, HB, XX, and other cities had
always been hot spot cities during 2015–2019, indicating that the pollution in these cities
was relatively serious and that control measures still needed to be taken for reducing the
PM2.5 pollution risk level.
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Figure 3. Probability density functions of each province during 2015–2019.
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Figure 4. Moran scatter diagram from 2015 to 2019. (a) 2015; (b) 2016; (c) 2017; (d) 2018; (e) 2019.

Figure 5. Cold–hot spot diagram of PM2.5 concentration from 2015 to 2019.
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3.3. Analysis of Socioeconomic Influence Factors

Different socioeconomic indicators reflect different human activities, which could
affect the spatial and temporal heterogeneity of PM2.5 concentrations to various degrees.
In this study, we used a spatial lag model (SLM) to determine the impact of various
socioeconomic factors on PM2.5 concentrations. To ensure the data conformed to the
normal distribution, a logarithmic transformation was performed on the socioeconomic
data and PM2.5 concentrations before using SLM. Table 3 shows the quantified results of
the SLM model from 2015 to 2019.

Table 3. Results of spatial lag model.

2015 2016 2017 2018 2019

Variable Coefficient Probability Coefficient Probability Coefficient Probability Coefficient Probability Coefficient Probability

ρ 0.560 0.000 ** 0.583 0.000 ** 0.739 0.000 ** 0.724 0.000 ** 0.574 0.000 **
GDP −0.405 0.005 ** −0.328 0.088 −0.489 0.001 ** −0.364 0.012* −0.415 0.002 **
POP 0.222 0.001 ** 0.195 0.047 * 0.289 0.000 ** 0.244 0.003 ** 0.243 0.002 **
UP 0.085 0.010 * 0.225 0.317 0.422 0.039 * 0.351 0.091 0.339 0.080
SI 0.375 0.007 ** 0.238 0.110 0.323 0.005 ** 0.202 0.062 0.248 0.018 *

RD 0.337 0.000 ** 0.271 0.000 ** 0.163 0.011 * 0.146 0.020 * 0.218 0.001 **
BA −0.036 0.199 −0.020 0.480 −0.029 0.193 −0.005 0.831 0.015 0.533
GR 0.217 0.332 −0.112 0.560 −0.132 0.631 −0.166 0.582 −0.163 0.595

**: Significant at 0.01 levels; *: significant at 0.05 levels.

The spatial lag model introduced the spatial effect coefficient ρ to characterize the
influence of PM2.5 levels from the surrounding areas on the local area. From 2015 to 2019,
there was a positive relationship between PM2.5 concentration in local and surrounding
regions, indicating that local PM2.5 levels were significantly influenced by surrounding
areas. This is consistent with the “high–high” and “low–low” agglomeration characteristics
of PM2.5 concentrations in the study area. Local PM2.5 pollution was not only related to
local pollutant emissions but was also affected by pollution transport from other regions.
Dong et al. [23] studied the pollution transmission contribution in the Beijing–Tianjin–
Hebei region and the results showed 32.5% to 68.4% contribution of PM2.5 transmission
in 2017. Local emission sources remain important contributors to the Beijing–Tianjin–Hebei
region but the interactions between cities are also strong.

GDP represents the local economic development level. Except for 2016, GDP showed
a significant negative correlation with the PM2.5 level, indicating that economic develop-
ment had a certain inhibitory effect on PM2.5 pollution in the study area. As an economy
grows, local investment in air pollution control will also increase. In addition, a relatively
developed economy is conducive to effective integration and utilization of resources, affect-
ing the local industrial structure and urban layout. Dong et al. [24] found that economic
development and industrial upgrading were the main driving forces for haze pollution im-
provement in China’s regions, while the transportation industry and construction industry
were the two major sources of PM2.5 pollution. This is consistent with our findings, but
other studies have shown different results. Yan, Kong, Jiang, Huang, and Ye [13] observed
that the impacts of economic development on PM2.5 pollution varied with the degree of
development. Economic development can alleviate PM2.5 pollution in developed areas,
while it can promote PM2.5 pollution in underdeveloped areas. As noted by the theory
of the Environmental Kuznets Curve (EKC), a later stage of urbanization is ultimately
conducive to alleviating the pollution caused by the early stage of urbanization, and there
is a threshold of an inflection point in the middle. Wang et al. [25] explained this in detail
and obtained similar results to us.

Over 2015–2019, POP and PM2.5 levels showed a positive correlation, passing the
significance test, indicating that population growth contributed to the formation of urban
PM2.5 pollution. The increase in the population size resulted in growing demands for
employment, housing, transportation, and energy consumption; thus, promoting the
emission of pollutants. Han et al. [26] analyzed the relationship between population
variations and PM2.5 levels, and the results showed that there was a positive trend between
population and PM2.5 in most cities in China and that the contribution rate of megacities
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was 5.40 ± 4.80 μg/m3 per million people. However, there was also a negative trend
between population size and PM2.5 in some regions [13], because megacities with dense
populations help to integrate resources and improve the utilization efficiency of urban
infrastructure and natural resources, thus reducing PM2.5 pollution.

UP refers to the proportion of the urban population in the total population, which is
usually used to represent the level of urbanization. The results of Table 3 indicate that UP
had a positive impact on PM2.5 pollution in 2015 and 2017, but did not pass the significance
test in other years. The growth or aggregation of an urban population usually leads to
an increase in automobiles, housing and energy consumption, industrial production, and
construction activities, which would have an impact on the increase in PM2.5 concentrations.
Relevant studies [27] showed that the relationship between the proportion of the urban
population and ecological environment pressures in the Beijing–Tianjin–Hebei region also
conformed to the EKC theory, and it could effectively alleviate ecological environment
pressure until it reached 80%, which was the turning point in EKC for most cities. By 2019,
the proportion of the urban population in BJ and TJ exceeded 80%, while others were
within the scope of 40–60%, below the threshold, indicating that we still have a long way
to go in the urbanization process.

SI is the value-added of Secondary Industry and is used to represent the industrial
structure. There was a significant positive correlation between SI and PM2.5 concentra-
tions in 2015, 2017, and 2019. According to the statistical results of the output of the
secondary industry, as shown in Figure S4, it had been decreasing or first increasing and
then decreasing in AY, BJ, BD, LC, JNN, LF, PY, SJZ, TJ, and TA during 2015–2019, while it
increased in other cities. These cities were often accompanied by severe PM2.5 pollution,
which indicated that these cities may have already carried out the elimination of backward
production capacity or the transfer of secondary industry to alleviate local PM2.5 pollution.
The national development strategy has significantly increased the proportion of tertiary
industries in the Beijing–Tianjin–Hebei region through the relocation and replacement of
traditional secondary industries, which is consistent with our results. The results of Hao
and Liu [28] are similar to ours, and they believe that PM2.5 concentrations in Chinese cities
are also strongly influenced by secondary industry. In 2019, the average ratio of secondary
industry to GDP in the study area was 41.97 percent. In addition, energy-intensive indus-
tries characterized by high emissions have a large-scale base, and the effect of industrial
transformation and upgrading is not obvious in the short term. Therefore, to effectively
reduce the level of urban PM2.5, it is necessary to accelerate the transformation of economic
structures and reduce the dependence on secondary industries, especially heavy industries.

RD, road length per unit area, is often used to represent the impact of traffic factors
on PM2.5. During the study period, there was a significant positive relationship between
PM2.5 concentration and RD. According to the statistical results, as shown in Figure S4, the
road length of most cities in the study area kept increasing in 2015–2019, except for BJ and
TJ. A dense urban road traffic network promotes the increase in vehicle ownership, and
pollutants from vehicle exhaust, such as NOx, are important sources of PM2.5 [29,30]. In
addition, the increase in roads also enhances road dust, which is also a source of PM2.5 [31].
In this regard, traffic will continue to have an impact on continuing PM2.5 levels. There
are also related studies [24] that use other indicators to characterize the influence of traffic
factors and obtain similar results. Ding et al. [32] used per capita vehicle ownership to
characterize traffic impacts, which determined that this factor had a driving effect on PM2.5
pollution and that it fluctuated during the study period.

In this study, BA and GR did not pass the significance test and were not statistically
significant, so the results were not credible. BA is the ratio of the built-up area to the
area of the municipal district. Due to the jurisdiction of the county, BA cannot completely
represent the overall situation of cities in the research region. The GR of all cities was about
40% with slight distinctions. This may be why the results were not statistically significant.
In addition, some studies used related indicators to explore the influence on PM2.5. For
example, Wang, Yao, Xu, Sun, and Li [25] found an inverted U-shaped relationship between
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built-up area and PM2.5 levels but lacked in-depth discussions. Qin et al. [33] simulated
the impact of urban greening on atmospheric particulate matter, and the results showed
that reasonable tree cover could reduce PM by 30%. In addition, there are still many
deficiencies in this study. First, in addition to socio-economic factors, PM2.5 is also affected
by topography, meteorology, pollution emissions, and other factors, which are not involved
in this study. Secondly, the social and economic data used in this study are from various
statistical yearbooks and bulletins, which may have certain deviations and bring certain
uncertainties. In future studies, more factors should be considered to ensure the accuracy
of the results.

4. Conclusions

This study used PDFs to analyze the temporal variation trends and spatial distribution
differences of PM2.5 concentrations in the Beijing–Tianjin–Hebei region and its surrounding
provinces from 2015 to 2019. Then, the spatial distribution characteristics of PM2.5 concen-
trations were analyzed using Moran’s I and Getis-Ord-Gi*. Finally, SLM was adopted to
quantify the driving effect of socioeconomic factors on PM2.5 levels. The main results were
as follows:

(1) From 2015 to 2019, PM2.5 in the study area showed an overall downward trend.
The Beijing–Tianjin–Hebei region and Henan Province decreased for the period of 2015 to
2019; Shanxi and Shandong Provinces expressed a variation trend of an inverted U-shape
and U-shape, respectively. In a word, air quality in the study area had been improving
from 2015 to 2019.

(2) From the perspective of spatial distributions, PM2.5 concentrations in the study
area indicated an obvious positive spatial correlation with “high–high” and “low–low”
agglomeration characteristics. The high-value area of PM2.5 was mainly concentrated in the
junction of Henan, Shandong, and Hebei Provinces, which had a characteristic of moving
to the southwest. The low values were mainly distributed in the northern part of Shanxi
and Hebei Provinces, and the eastern part of Shandong Province.

(3) Socio-economic factor analysis showed that POP, UP, SI, and RD had a positive
effect on PM2.5 concentration, while GDP had a negative driving effect. In addition, PM2.5
was also affected by PM2.5 pollution levels in surrounding areas.

Although PM2.5 levels in the study area decreased, PM2.5 pollution was still a seri-
ous problem until 2019. The significance of this study is to highlight the spatio-temporal
heterogeneity of PM2.5 concentration distributions and the driving role of socioeconomic
factors on PM2.5 pollution in the Beijing–Tianjin–Hebei region and its surrounding areas.
Identifying the differences in PM2.5 concentration caused by socioeconomic development
is helpful to better understand the interaction between urbanization and ecological envi-
ronmental problems.
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Abstract: As a kind of air pollution, haze has complex temporal and spatial characteristics. From
the perspective of time, haze has different causes and levels of pollution in different seasons. From
the perspective of space, the concentration of haze in adjacent areas will affect each other, showing
some correlation. In this paper, we construct a multi-convolution haze-level prediction model for
predicting haze levels in different areas of Beijing, which uses the remote sensing satellite image of
the Beijing divided into nine regions as input and the haze pollution level as output. We categorize
the predictions into four seasons in chronological order and use frequency histograms to analyze
haze levels in different regions in different seasons. The results show that the haze pollution in the
southern regions is significantly different from that in the northern regions. In addition, the haze
tends to be clustered in adjacent areas. We use Global Moran’s I to analyze the predictions and
find that haze is related to the geographical location in summer and autumn. We also use Local
Moran’s I, Moran scatter plot, and Local Indicators of Spatial Association (LISA) to study the spatial
characteristics of haze in adjacent areas. The results show, for the spatial distribution of haze in
Beijing, that the southern regions present a high-high agglomeration, while the northern regions
exhibit a ‘low-low agglomeration. The temporal evolution of haze on the seasonal scale, according to
the chronological order of winter, spring, and summer to autumn, shows that the haze gradually
becomes agglomerated. The main finding is that the haze pollution in southern Beijing is significantly
different from that of northern regions, and haze tends to be clustered in adjacent areas.

Keywords: convolution neural network; Moran’s I; LISA aggregation graph; haze; spatial
autocorrelation

1. Introduction

In recent years, haze has attracted the media’s attention, and that of the government
and population of various countries. It has triggered a wide-ranging discussion on how to
coordinate economic development and environmental protection. However, this started
a public panic about air pollution and how this affected the physical health of people.
Moreover, haze predicts human damage from air pollution [1,2]. For these reasons, haze
has aroused the concern of researchers. Therefore, a large amount of experimental data and
theoretical reasoning are focused on the cause of haze [3–8], the scope of pollution [9–16],
the hazards [2,11,17–22], spatial and temporal distribution, and prevention measures.

With the establishment of many ground detection stations, the detection data of PM2.5
and PM10, which are the primary pollutants of haze, gradually increase, which facilitates
the study of its spatial and temporal characteristics [8,14,15,20,22–25]. Researchers have
performed analyses of the spatial and temporal evolution of haze in different areas based on
satellite images [4,14,26–28]. Gehrig et al. [29] studied the long-term observations of PM2.5
and PM10 in seven regions of Switzerland and obtained the range of PM2.5 concentrations
in different regions. Although there were different haze concentrations in different regions,
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the correlation between daily PM2.5 and PM10 concentrations was very high in all regions.
In terms of time characteristics, the haze pollution in the Swiss region in winter is the
most severe of the four seasons, and the haze pollution in the spring is the lightest. Zhang
et al. [30] analyzed the PM2.5 concentration data of 190 cities in China. They found that
the significant seasonal variation of PM2.5 occurred in winter and the lowest in summer
on the time scale. In terms of the geographical distribution, the PM2.5 concentrations in
the northern region are generally higher than in the south. Zhao et al. [27] collected PM2.5
and PM10 concentrations from 30 ground detection stations in Beijing and analyzed haze
concentrations’ temporal and spatial distribution in winter and spring. The results showed
that the concentration of haze in the northern mountains area is lower than that in the
south of Beijing, and the haze pollution in urban and rural areas is quite different. The time
characteristics of haze showed that there is serious pollution in winter and slight pollution
in spring, the highest concentration of PM2.5 and PM10 appears in January, and the lowest
concentration appears in April. Zhao et al. [31] compared the time characteristics of urban
and rural areas in Beijing.

The concentration prediction of PM2.5 and PM10 as the primary pollutants of haze
is also one of the most concerning areas, and researchers have proposed many different
prediction models. In the early days of haze prediction, Fuller et al. [32] used empirical
models to predict the daily average concentrations of PM2.5 and PM10 in some regions of
the U.K., but the scalability was poor due to the model being based on observations in local
areas. Dong et al. [33] proposed a hidden Markov-based prediction model to predict PM2.5
concentration. After training, the hidden Markov model can finally predict the PM2.5
concentration value in the next 24 h. Lee et al. [34] combined the MODIS aerosol optical
depth (AOD) over England with ground monitoring data to predict haze concentrations
in specific areas. As neural networks began to show solid complex-fitting capabilities,
researchers began to apply different neural networks to predict haze. Ordieres et al. [35]
compared the performance of three neural network structures—multilayer perceptron,
radial basis function neural network, and squared multilayer perceptron—with classic
predictive models in daily average PM2.5 concentration predictions. The neural networks
are significantly better than the classic approaches. Marzano et al. [36] established a
recurrent neural network to predict climate phenomena with input from remote sensing
satellite imagery.

Unlike previous prediction models, which mainly predict PM2.5/PM10 concentration
in a single area [37], this paper proposed a multi-convolution haze-level prediction model
to simultaneously predict PM2.5 concentration levels in multiple adjacent areas. This paper
used remote sensing satellite images from Beijing as the model’s input. The images are
cut into nine blocks of the same size and applied in various data processing methods,
including radiation correction, geometric correction, area extraction and synthesis, RGB
image synthesis, and image cutting. This paper then uses the daily PM2.5 level of nine
blocks as output.

In addition to predicting the haze levels in different blocks in Beijing, we also analyzed
haze’s temporal and spatial characteristics in different areas. Previous researchers have
focused on the temporal and spatial characteristics of haze in one area while ignoring the
haze correlation between areas bordering each other. Therefore, this paper divided the
predicted results into four seasons in chronological order and used frequency histograms
to analyze the haze levels in different regions. Furthermore, this paper used the Global
Moran’s I to obtain the correlation between haze in different seasons and geographic
locations. It used the Local Moran’s I, Moran scatter plot, and Local Indicators of Spatial
Association (LISA) to study the spatial characteristics of haze in adjacent regions.

2. Data Processing and Calibration

2.1. Remote Sensing Image Processing

In the haze spatial evolution, the haze in the immediate vicinity will be highly cor-
related to the appropriate length of time. In order to analyze the temporal and spatial
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evolution characteristics of haze, the input of the model needs to involve different regions.
Therefore, we chose Beijing as the research object according to the administrative division.
Beijing is the capital of China and has severe haze pollution [28]. There are 36 air pollutant
monitoring stations relatively evenly distributed in different parts of Beijing, which provide
us with historical haze concentration data for different regions [1]. Based on the available
data from the ground stations, the time span is chosen as 2013 to 2015.

In this paper, we collect two types of dataset:

(1) Real-time PM2.5 concentration was released by ground monitoring stations in Beijing
in 2013 and 2014. The data in 2014 are converted into haze levels according to the
correspondence table of haze concentration and haze level, which formed a training
set of multi-convolution combined haze-level prediction models. The data in 2015 is
also converted to haze levels to test model accuracy.

(2) MOD02_1km data for the Beijing area in 2013 and 2014. The MOD02_1km data is a
remote sensing satellite image containing latitude and longitude information in the
Beijing area and is the model input.

We preprocess the remote sensing satellite images in Beijing to improve the model’s
classification prediction accuracy and data consistency. We use ENVI 5.0 software (L3Harris
Geospatial, Boulder, CO, USA) to process satellite images: radiation correction, geometric
correction, area extraction and synthesis, RGB image synthesis, and image cutting.

(1) Radiation correction. We use ENVI 5.0 to automate the radiation correction of
MOD02_1km data.

(2) Geometric correction. We use the MODIS data processing tool, Georeference MODIS
in the ENVI software, to geometrically correct the data of the emissivity channel. In
the calibration, we select the Beijing coordinate system in World Geodetic System 1984
(WGS-84) standard to geometrically correct the emissivity file and establish Ground
Control Points (GCPS) as the standard for other channels to maintain consistent
geometric correction results. Then we use GCPS generated by the emissivity to correct
the reflectance file. After reading the GCPS, the Triangulation correction method
and the Bilinear resampling method are selected so that the correction result of the
reflectance can match the emissivity.

(3) Area extraction and synthesis. According to the administrative area of Beijing:
39.4◦ N–41.1◦ N; 115.4◦ E–117.4◦ E, we cut the administrative regional geographic
graphic files in ENVI software to obtain satellite images of the Beijing area. Next,
we use the same method to cut the emissivity file and reflectivity file of the satellite
image, then place the file of the emissivity channel on the top, and the reflectivity
channel file on the bottom. Finally, we synthesize the image to obtain the full channel
satellite image with the same administrative scope and uniform size.

(4) RGB image synthesis. The processed satellite image contains multiple channels,
where channels 1–7 monitor the edge of the land and cloud. The wavelength and
spatial resolution of each channel are shown in Table 1. We want to convert satellite
images into three-channel RGB images by combining multiple suitable channels. The
wavelength range of red light is between 622 and 780; green light is between 492
and 577; blue light is between 455 and 470. Comparing the visible light and satellite
channel information, we synthesize the satellite’s channel 1, channel 4, and channel 3,
and the synthesized results are shown in Figure 1a,b.

(5) Image cutting: We cut the satellite image into nine equally sized blocks, as shown
in Figure 1c. Every block of the image contains an actual region of Beijing. Thus,
different blocks are adjacent from spatial relationships, which helps us study the
haze’s spatial evolution.

After the synthesized RGB satellite image Figure 1b is cut, Figure 1c contains nine
blocks of the same size, and we sort them from left to right and from top to bottom in
Block 1 to Block 9. The administrative divisions contained in different blocks are shown in
Table 2.
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Figure 1. (a) is the satellite image with full channel information, and (b) is the synthesized RGB image. (c) is cut into nine
equally sized blocks based on (b).

Table 1. Spatial resolution and wavelength interval of each channel in MOD021KM.

Channel Wavelength Interval (nm) Spatial Resolution (m)

1 620–670 250
2 841–876 250
3 459–479 500
4 545–565 500
5 1230–1250 500
6 1628–1652 500
7 2105–2155 500

Table 2. Correspondence between block and administrative divisions.

Block Administrative Divisions

1 Yanqing
2 Huairou
3 Miyun
4 Changping + Haidian (Metropolitan Area)
5 Shunyi + Chaoyang (Metropolitan Area)
6 Pinggu
7 Mentougou + Fangshan
8 Metropolitan Area + Daxing
9 Tongzhou

2.2. Haze Level Transformation

The haze-level prediction model outputs haze levels in different regions. Therefore,
we divide the collected PM2.5 concentration in Beijing into 10 levels. Level 1: 0–35 μg/m3,
air quality is good, basically no pollution; level 2: 36–70 μg/m3, acceptable; level 3:
71–105 μg/m3, mild pollution; level 4: 106–140 μg/m3, moderate pollution; level 5–7:
141–245 μg/m3, severe pollution; level 8–10: 245–500 μg/m3, severe pollution. We use the
one-hot vector to label the training set, as in (1).

yi = [p, c1, c2, . . . cn] (1)

The p-bit of the first element in the vector indicates whether there is a cloud layer effect
and whether haze characteristics can be extracted. If p = 1, it means that haze characteristics
are undetectable. In this case, the parameter optimization is to ignore the subsequent
elements so that the adjustment of the parameters will not be affected in training; if p = 0, it
means that the haze characteristics can be detected. When n represents the number of haze
level, the subsequent cn represent the corresponding haze level. If the number of c4 is 1, it
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indicates the corresponding haze level of the input data is 4. i indicates the serial number
of the region where the PM2.5 concentration is located, and i ranges from 1 to 9. Hence, the
ground truth corresponding to each satellite image is as shown in (2).

y =
[

p1 c1
1 . . . c1

10 . . . p9 c9
1 . . . c9

10

]
(2)

3. Method

3.1. Joint Structure of Multi-Convolution Neural Networks

In order to identify haze grades for finer spatial scales and study the temporal and
spatial evolution of haze in different regions of Beijing, we use a multi-convolution network
structure to segment the haze data and then classify it. The multi-convolution neural
network structure includes an input layer, block layer, convolution layer, pooling layer,
local full connection layer, and classification layer [37], as shown in Figure 2. In this
network, we use unified input and unified output.

Locally    
C

onnection 
Layer   

Input Layer

 B
lock Layer

C
lassification

C
onvolution 

Layer

 P
ooling Layer 

Figure 2. The structure of the multi-convolution neural network.

The input layer accepts the processed satellite images in the Section 2 as inputs to
obtain more spatio-temporal data.

The block layer is a sliding window, whose size is 60 × 60 × 3. The sliding step is 60,
so the original 180 × 180 × 3 images can be divided into 9 blocks from the upper to the
lower, from left to right, and then input into the different convolution neural networks.

Nine convolution layers acquire image features of nine different regions. Because
different regions have different background information, such as geographical environment,
the separated convolution layer can distinguish the fine-grained differences of different
regions and provide the haze levels of different regions.

The pooling layer can help reduce the size of the model and increase the speed of the
operation. First, we set padding with 0 and choose the maximum pooling function. Max
pooling uses the maximum value of the region to replace all the elements in the region.

The locally full connection layer prevents cross-contamination of the different layer
outputs at the fully connected layer, preserving the characteristics of each region. Each
locally full connection corresponds to a soft-max classification layer. The classification layer
consists of 99 nodes corresponding to nine regions. The marking and representation of
data is the same as in Equation (2).
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3.2. Spatial Autocorrelation Analysis of Haze Concentration

Global spatial autocorrelation analysis can reflect the relationship between haze con-
centration and spatial distribution. Suppose a piece of data is related to geographic location.
In that case, the distribution of the data in geographic space is also correlated, and the
degree of correlation is inversely proportional to the region’s distance. Its distribution
methods are clustering, random distribution, and regular distribution. Through the spatial
autocorrelation analysis of haze, this phenomenon can be better understood. Its essence is
to analyze haze distribution in different geographic spaces and the correlation between
different regions. In this section, the specific forms of using the matrix notation method to
mark the data of the nine blocks are from top to bottom, and from left to right are Block 1
to Block 9.

3.2.1. Global Moran’s I

We use the Global Moran’s I to study the overall spatial characteristics of haze, indi-
cating whether the haze is related to space, as in (3).

I =
n ∑

n
i=1 ∑

n
j=1 wij(pi − p)

(
pj − p

)
∑

n
i=1 ∑

n
j=1 wij·∑

n
i=1 (pi − p)2 (3)

This paper cuts the satellite image into nine sub-regions of the same size, so n = 9
in the Equation. pi, pj denote the average levels for Block i and Block j in one of the
seasons. p denotes the average haze level for all blocks in a given season. wij represents the
weight between Block i and Block j. Since the image is equally divided, the areas on the
diagonal are not considered to be adjacent. Then its spatial adjacency graph is as shown
in Figure 3 below:

Figure 3. Spatial adjacency diagram.

From the adjacency relationship in the above figure, we can obtain its spatial adjacency
matrix, the weight matrix in this section. We set each side to be 1, and the weight between
two blocks is 1, as in Equation (4), and the weight matrix is as shown in Equation (5).

wij =

{
1 if Block i is adjacent to Block j
0 other

(4)

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 0
1 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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In this section, the essential reason for using the Moran’s I is to analyze and indirectly
reflect the correlation between the two spatially adjacent areas of the haze concentra-
tion level. In order to facilitate the analysis and use of the Moran’s I, we use (6)–(8) to
simplify (3).

S0 = ∑
n

i=1 ∑
n

j=1 wij (6)

zi = (pi − p) (7)

zT = [z1, z2, . . . , zn] (8)

The simplified global Moran’s I is given by (9).

I =
n

S0

∑
n
i=1 ∑

n
j=1 wijzizj

∑
n
i=1 z2

i

=
n

S0

zTWz

zTz
(9)

The range of the global Moran’s I is between [−1, 1]. If I > 0, the haze has a positive
correlation with the space and, the closer the value is to 1, the stronger the correlation,
and there is a strong positive correlation between haze and space. Conversely, if I < 0, the
haze is negatively correlated with space, and the closer the value is to −1, the stronger the
negative correlation.

The analysis methods of spatial autocorrelation generally consist of the following
three types: 1. Local Indicators of Spatial Association (LISA); 2. G statistics; 3. Moran
scatter plot; the first is the method of local spatial analysis, which will be used in the
following experiment. In the global analysis, the Moran scatter diagram is adopted as
the analysis method, and its four quadrants respectively represent the spatial relationship
between the four blocks and their neighboring blocks, and the corresponding relationships
are as follows:

As shown in Figure 4, the Moran scatter plot consists of four quadrants representing
four different spatial association types. The relationship of the first quadrant is high–high,
indicating that the haze concentration level of the area and the surrounding area are both
high, and the spatial difference is slight. The spatial relationship is a positive correlation.
The relationship of the second quadrant is low–high, indicating that the haze level of the
area and the surrounding area differs significantly. The level of the area is low, and the
haze level around it is high. The spatial relationship is now negatively correlated. The
relationship of the third quadrant is low–low, indicating the haze concentration in this
area is low, and the spatial relationship is positive. The relationship between the fourth
quadrant is high–low, indicating that the haze level in the area is high. However, the haze
concentration level in the surrounding area is low. The spatial relationship is negatively
correlated. Quadrant 1 and quadrant 3 reveal positive local spatial autocorrelation, and
quadrant 2 and quadrant 4 reveal negative local spatial autocorrelation.

Figure 4. Moran scatter image limit relationship.
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3.2.2. Local Moran’s I

Like the global Moran’s I, the local Moran’s I focuses on a specific block to describe
the similarity between Block i and its adjacent areas, as shown in (10).

Ii =
n(pi − p)∑

n
j=1 wi,j

(
pj − p

)
∑

n
i=1 (pi − p)2 =

nzi ∑
n
j=1 wi,jzj

zTz
(10)

The standardized statistics for local Moran’s I monitoring are specified in the following form:

Z(Ii) =
Ii − E(Ii)√

Var(Ii)
(11)

This formula can be used to study the spatial heterogeneity of each region, and can also
study and analyze the relative spatial relationship and its changes, where E(Ii) represents
the mathematical expectation of the Local Moran’s I of the i-th Block under the condition of
no spatial autocorrelation, and its formula is expressed as:

E(I) = −
1

n − 1
(12)

√
Var(Ii) represents the standard deviation of the Local Moran’s I in the region. Since

the LISA method is relatively intuitive, in the local analysis the Local Moran’s I of LISA is
used for spatial analysis.

By comparing the sign of Z(Ii) and the value of the local correlation coefficient Ii, the
spatial units whose local correlation index reaches a certain threshold can be divided into
four types of spatial autocorrelation relationships, as shown in the following Table 3.

Table 3. Corresponding values of time–space relationship.

Ii Z(Ii) < 0 Z(Ii) > 0

Positive low-high high-high
negative low-low high-low

Among these, the local Moran’s I, whose significance level reaches a certain threshold,
indicates a positive correlation in the spatial relationship. If it is significantly negative,
it indicates a negative correlation between the two research areas in the space–time rela-
tionship. Combined with the standardized measurement Z, the time–space relationship
can be analyzed. The high–high type indicates that the haze density level of area i and its
neighboring blocks are relatively high. This area is a point where haze occurs frequently.
The low–low type indicates that the haze concentration levels of the research block i and
the surrounding adjacent blocks are relatively low. It indicates an area with lighter haze
pollution. The other two types, low–high and high–low respectively, indicate that the
high-pollution area surrounds the polluted area, and the high-pollution area is surrounded
by the low-pollution area, showing a negative correlation. Compared with the spatial
analysis obtained by general actual monitoring sites, the research in this section has the
advantage that the research areas are distributed in equal blocks in time and space, and the
distances are equal. Therefore, the accuracy of the weight matrix is higher.

4. Results

4.1. Analysis of Output Multi-Convolutional Neural Network

We divide the haze prediction results of Beijing in 2014 into nine regions. Further, to
visually observe the spatial distribution of haze and the temporal evolution characteris-
tics at the seasonal scale, we divide the results into four seasons and plot the frequency
histograms of the haze level. We analyze the overall frequency of haze, some areas with
obvious haze characteristics in different seasons and the similarity between different re-
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gions. The frequency histograms of haze levels in winter, spring, summer, and autumn are
respectively shown in Figure 5a–d.

Figure 5. The frequency histograms of haze levels in (a) winter. (b) spring. (c) summer. (d) autumn.

Then the results are analyzed in three aspects:
(1) Frequency of overall haze; (2) Analysis of the highest and lowest grade areas;

(3) Similarity between blocks.
Figure 5a shows that:

1. The concentration of haze in winter is generally high, especially in Block 7, Block 8, and
Block 9. Block 7 is average in different levels and has the most severe haze pollution.

2. There is a high similarity among Block 3, Block 4 and Block 5, and they have the
lowest average of haze levels.

3. There is a haze with super-high concentration levels in the middle and southern
regions, and these areas have more daily pollution such as that from vehicle emission
and urban construction due to high population density.

The frequency histograms of haze levels in spring show:

1. Overall haze levels in spring are low. Block 1 has the lowest haze level, mainly
concentrated between level 1and level 2. The concentration in the blocks adjacent to
Block 1 is low, and the trend of increasing concentration follows the increasing speed
of distance.

2. The most extensive average haze level among the nine blocks occurs in Block 7, whose
haze levels are concentrated at levels 3 and 4. Block 7 also has severe haze and has
low similarity to the surrounding area.
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3. Block 1 and Block 4 have high similarities. Likewise, block 2 is similar to Block 3, and
there is a high similarity between Block 5 and Block 8 and Block 9.

Figure 5c shows:

1. Summer is the season with the weakest pollution in a year. In haze distribution, the
pollution in the central region is more severe than in the upper region and weaker
than in the lower region. The lower region has the most polluted air and the pollution
decreases towards the upper region.

2. All the haze levels in summer are under level 5. The Block with the lowest average con-
centration is still Block 1. Block 7 and Block 9 have the highest average concentration.

3. Blocks 4, 7, 8, and 9 exhibit a high correlation, and Blocks 1, 2, and 3 show a high similarity.

Analyzing the frequency histograms in autumn, we can draw the following conclusions:

1. The concentration of haze in autumn is generally high with decreasing low levels and
increasing severe haze pollution.

2. Blocks 1, 2, and 4 have mainly low levels, while other blocks have higher haze levels,
such as level 8 or level 9.

3. Block 1 and Block 4 have high similarity, Block 2 and Block 3 have high similarity,
Block 5 is similar to Block 6, and the three blocks in the south have high similarity.

From the degree of haze pollution at a seasonal scale, Beijing’s pollution intensity is in
the order: autumn > winter > spring > summer.

If the generation of data is related to the geographical location, the spatial distribution
of the data is also location-dependent, and the correlation is positive to the distance. There
are three distribution forms: clustering, random distribution, and rule distribution. Haze
is a kind of data related to location. We conducted a spatial autocorrelation analysis of
the prediction results to analyze the distribution of haze in different geographies and the
correlation between different regions. We used Global Moran’s I and Local Moran’s I to
analyze the global and local spatial characteristics of haze, respectively.

4.2. Results of Spatial Autocorrelation Experiment

In this experiment, Moran scatter plot and the LISA plot were used to analyze and
study the spatial relationship of haze in different seasons. Then, the total spatial auto-
correlation during the period was analyzed. The global Moran’s I result are shown in
Table 4:

Table 4. Global Moran Index Table.

Season Winter Spring Summer Autumn

global Moran’s I 0.071 0.052 0.375 0.349

The Moran’s I of the haze of Beijing in winter, spring, summer, and autumn is 0.071,
0.052, 0.375, and 0.349. It shows that the haze concentration in the four seasons is positively
correlated with the geographical area. This relationship is the strongest in summer and
autumn, indicating that the spatial correlation in these two seasons is more prominent.
Moran’s I in winter and spring is very close to zero, indicating that the haze randomly
occurs in nine blocks in these two seasons, while in summer and autumn, the haze has the
characteristics of regional accumulation.

4.2.1. Moran Scatter Plot Results and Analysis

The point in the Moran scatter plot represents an area, and the slope of a linearly fitted
curve is equal to the global Moran’s I. According to the global Moran’s I results, there
is a high correlation between haze and spatial position in summer and autumn, and the
correlation in spring and winter is low. Moran scatter plots for summer, autumn, winter,
and spring are shown in Figure 6a–d.
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Figure 6. The Moran scatter plot in and respectively. (a) summer, (b)autumn, (c) winter, and (d) spring.

Figure 6a shows that four blocks are in the first quadrant, one block is in the second
quadrant, and four blocks are in the third quadrant, and there are generally positive
correlation characteristics. Blocks 5, 7, 8, and 9 are in the first quadrant, exhibiting the
characteristics of high–high, which means that the haze levels in these four blocks are
high, and there is a high positive correlation. Block 4 is in the second quadrant and
has a characteristic of low–high. Blocks 1, 2, 3, and 6 are located in the third quadrant,
exhibiting a low–low characteristic, and the haze levels of the four blocks are low. In
general, the overall characteristics of haze in summer are aggregation type, including high
concentration aggregation and low concentration aggregation.

Figure 6b shows two blocks in the first quadrant, two blocks in the second quadrant,
three blocks in the third quadrant, and two blocks in the fourth quadrant, which generally
show a positive correlation. Blocks 8 and 9 located in the first quadrant exhibit high–high
characteristics. Block 4 and Block 6 are in the second quadrant, exhibiting the characteristics
of low–high. Blocks 1, 2, and 3 are in the third quadrant, exhibiting low–low characteristics.
Finally, Blocks 5 and 7 are in the fourth quadrant exhibiting a ‘high–low’ characteristic.
In general, the haze aggregation in autumn is worse than in summer, but there are fewer
isolated points, and the overall appearance is aggregated.

The global Moran’s I is small in spring and winter, and the correlation between haze
and geographic location is generally weak. There is no block with ‘high–high’ charac-
teristics in the spring, and the other three characteristics are evenly distributed. The
coefficient of positive correlation of the overall haze is also low, and the distribution
is discrete. There is no high–high characteristic in winter, but there are more low–low
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blocks, and the correlation is better than in spring. The remaining low-concentration
areas surround two high-concentration areas, and the overall distribution shows low
concentration aggregation.

4.2.2. Results and Analysis of LISA Cluster Map

We also use the LISA to visualize the haze aggregation characteristics of the nine
blocks. The autoregressive analysis of the local space of nine blocks, combined with the
block information table in Table 1, explains the specific spatial location and the saliency
of agglomeration. The saliency is the Z value used in the theoretical introduction. In the
experiment of this section, the Geoda tool is used for LISA analysis. We use red for H-H,
blue for L-L, pink for H-L, and purple for L-H. The LISA maps of winter, spring, summer,
and autumn are shown in Figure 7a–d.

Figure 7. LISA map of the nine regions in (a) winter. (b) spring. (c) summer. (d) autumn.
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From the LISA map of Figure 7a, the low agglomeration area is in northern Beijing in
winter, and the high agglomeration area is in the south of Beijing. The low agglomeration
area is larger than the high agglomeration area. Thus, the central area of Beijing is the L-H
type, where the haze concentration in the winter is far lower than the haze concentration of
the surrounding area.

Compared with the winter, the concentration in Block 8 becomes the ‘L-H’ type,
and the ‘Fangshan’ in Block 7 becomes the ‘H-L’ type. As a result, the haze pollution in
the middle part of the high-concentration area in spring is degraded, so that the ‘H-H’
agglomeration area disappears in the spring, and the ‘L-L’ low-concentration area is the
same as the winter consisting of the four areas of the northern area.

As shown in Figure 7c, the agglomeration characteristics in summer are apparent, and
the northern blocks are still low-concentration areas. However, the haze concentration in
southern Beijing begins to rise, forming an H-H agglomeration area.

Figure 7d shows that the central area of Beijing has become a high-aggregation pattern,
which further expands into the south. In contrast, the haze concentration in the north has
been in the ‘L-L’ agglomeration type.

The LISA maps for the above four seasons all pass the 5% significance level test, and
spatial correlation types of regions in different seasons are shown in Table 5.

Table 5. Spatial correlation types of regions in different seasons.

Seasons H-H H-L L-L L-H

Winter Fangshan, Daxing Mentougou, Tongzhou
Yanqing, Huairou,
Miyun, Changping

Metropolitan Area

Spring -
Mentougou,

Fangshan, Tongzhou
Yanqing, Huairou,
Miyun, Changping

Daxing

Summer
Mentougou, Fangshan,

Daxing, Tongzhou
- Yanqing, Huairou, Miyun -

Autumn
Mentougou, Fangshan,

Daxing, Tongzhou,
Metropolitan Area

-
Yanqing, Huairou,
Miyun, Changping

-

The results in Table 5 are arranged in chronological order from top to bottom. Thus,
we can analyze the temporal evolution of haze at the seasonal scale.

(1) The Yanqing, Huairou, and Miyun in the north of Beijing are stable low-concentration
areas. As a result, the overall pollution level is low, and the seasonal impact is
small. Changping is also relatively stable and only becomes a non-aggregation zone
in summer.

(2) Fangshan in winter is the ‘H-H’ agglomeration area, which became the ‘H-L’ ag-
glomeration area in the spring, indicating the concentration of haze in the vicinity of
Fangshan has decreased in the spring.

(3) Mentougou and Tongzhou have high haze concentrations in summer and autumn,
affecting the haze level of the surrounding areas, forming a high concentration area
in southern Beijing and the Fangshan and Daxing.

(4) The areas belonging to ‘H-L’ and ‘L-H’ are easily affected by the haze around them
and become high or low accumulation areas in summer and autumn, improving
spatial autocorrelation.

5. Discussion

In this paper, we propose a multi-convolution haze-prediction model to predict the
daily haze pollution level in different areas of Beijing. We divide the predictions into nine
regions and four seasons to study the fine-grained haze pollution and time characteristics.
We use the haze level frequency histograms to present the results. From the degree of haze
pollution at the seasonal scale, the intensity of haze pollution in Beijing is in the order:
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autumn > winter > spring > summer. From the distribution of the pollution, the overall
pollution in northern Beijing is weak, and the seasonal changes are also small. On the other
hand, the haze pollution in the southern regions is intense and shows an aggregation trend.

Moreover, we use the global Moran’s I to measure the correlation between haze and
geographical location. The results show that, in general, haze in summer and autumn has
regional aggregation characteristics, while in winter and spring the haze distribution is
relatively random.

Since the global Moran’s I can only reflect the overall correlation between the haze
and the geographical location, we use the local Moran’s I, the Moran scatter plot and the
Local Indicators of Spatial Association (LISA) to study the spatial characteristics of haze in
the vicinity. The results show that there are obvious agglomeration areas in summer and
autumn, while the aggregation effects in spring and winter were relatively weak. Thus, the
spatial distribution of haze in Beijing is as follows: the southern region presents a high-high
agglomeration, while the northern region exhibits a low-low agglomeration. The temporal
evolution of haze on the seasonal scale is according to the chronological order of winter,
spring, and summer to autumn, the haze gradually becoming agglomerated.

6. Conclusions

Inspired by the idea of YOLO and other object detection convolutional neural net-
works, this paper cuts the remote sensing image, analyzes the haze concentration in
different areas qualitatively and quantitatively, and derives the spatial laws of different
seasons to predict and analyze the haze in a finer time dimension. This paper first proposes
the structure of the multi-convolution joint neural network, classifies the spatio-temporal
data of haze in the Beijing area by block level, and carries out the frequency statistical
analysis method on the output results of the multi-convolution joint neural network. First,
the frequency of occurrence of haze levels was displayed and analyzed accordingly. Then,
to analyze the results more finely, the Moran’s I of spatial autocorrelation analysis was used
in subsequent research to analyze the spatial relationship between each block. Then, to
analyze the haze’s temporal and spatial evolution more intuitively, the spatial variation of
the haze is analyzed in the LISA cluster map on the time unit of the seasonal scale. Finally, it
is concluded that the temporal and spatial distribution of haze in the Beijing area is high in
the south and low in the north. Moreover, its temporal and spatial evolution characteristics
on a seasonal scale are that, according to the time changes from winter, spring, summer
to autumn, the relationship of the haze concentration between each sub-region gradually
changes from a discrete state to a concentrated state.
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Abstract: In recent years, air pollution has become a serious threat, causing adverse health effects
and millions of premature deaths in China. This study examines the spatial-temporal characteristics
of ambient air quality in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and
Qinghai (QH)) of northwest China (NWC) from January 2015 to December 2018. For this purpose,
surface-level aerosol pollutants, including particulate matter (PMx, x = 2.5 and 10) and gaseous
pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3))
were obtained from China National Environmental Monitoring Center (CNEMC). The results showed
that fine particulate matter (PM2.5), coarse particulate matter (PM10), SO2, NO2, and CO decreased
by 28.2%, 32.7%, 41.9%, 6.2%, and 27.3%, respectively, while O3 increased by 3.96% in NWC during
2018 as compared with 2015. The particulate matter (PM2.5 and PM10) levels exceeded the Chinese
Ambient Air Quality Standards (CAAQS) Grade II standards as well as the WHO recommended Air
Quality Guidelines, while SO2 and NO2 complied with the CAAQS Grade II standards in NWC. In
addition, the average air quality index (AQI), calculated from ground-based data, improved by 21.3%,
the proportion of air quality Class I (0–50) improved by 114.1%, and the number of pollution days
decreased by 61.8% in NWC. All the pollutants’ (except ozone) AQI and PM2.5/PM10 ratios showed
the highest pollution levels in winter and lowest in summer. AQI was strongly positively correlated
with PM2.5, PM10, SO2, NO2, and CO, while negatively correlated with O3. PM10 was the primary
pollutant, followed by O3, PM2.5, NO2, CO, and SO2, with different spatial and temporal variations.
The proportion of days with PM2.5, PM10, SO2, and CO as the primary pollutants decreased but
increased for NO2 and O3. This study provides useful information and a valuable reference for future
research on air quality in northwest China.

Keywords: northwest China; AQI; primary pollutant; CNEMC; Pearson correlation

1. Introduction

Unprecedented economic activity, urbanization, industrialization, and motorization
have deteriorated the ambient air quality in China [1–6]. China is the manufacturing hub of
the world, with the majority of the industries in northwest China (NWC). Several studies
have reported higher pollution levels in NWC due to increased industry, coal consump-
tion, distinct topography, and adverse meteorology [2,5,7–11]. Increased pollution levels
have attracted the attention of the general public, the scientific community, and relevant
authorities because of their detrimental health effects [4,12–16]. To combat increasing
pollution levels, China has made significant efforts, e.g., establishing Chinese ambient air
quality standards (CAAQS) for six criteria pollutants [17], implementing the Atmospheric
Pollution Prevention and Control Action Plan 2013 (APPCAP) [18], technical regulation
on ambient air quality index (HJ 633–2012) [19], nationwide air quality monitoring, online
data-sharing networks, etc. [20,21]. These measures have helped to reduce pollution to
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some extent; e.g., from Ref. [22], a 12.3% reduction in fine particulate matter (PM2.5) was
observed in China between 2013 and 2015, while other authors [23] observed a one-third
reduction in PM2.5 from 2013 to 2017 due to APPCAP in China. In Ref. [24], it was observed
that the annual average concentration (PM2.5), coarse particulate matter (PM10), sulfur
dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) decreased by 27.9%,
23.8%, 51.2%, 10.6%, and 25.3%, respectively, in China from 2015 to 2019. Even after strict
environmental regulations, the air pollution in some areas of NWC is beyond certain limits
and causes serious health effects [25–28].

Most of the spatio-temporal studies in China focused on central China, north China,
considered few parameters, fewer cities, mostly provincial capitals, and lacked detailed
assessment, with few exceptions. Multiple studies, e.g., [3,29], observed higher PM2.5 pollu-
tion in northern China, western China, northwestern China, etc. due to increased industrial
emissions, coal combustion, stagnant meteorology, etc. Similarly, other researchers [30,31]
carried out a more detailed assessment, covered six criteria pollutants in provincial capitals,
and observed higher pollution levels in the north and northwestern region. In Ref. [1],
they analyzed the criteria pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in 336 cities of
China, while other researchers [31] analyzed the criteria pollutants in 367 cities of China
and observed higher pollution in industrialized areas of north China. Further, Ref. [2]
thoroughly assessed the air pollution in NWC by analyzing the criteria pollutants in six
cities of Gansu province in NWC and observed higher pollution in Lanzhou, the provincial
capital, with increased energy consumption and industrial activity and facing serious
health concerns [25].

PM2.5 is more dangerous than PM10 and is ranked as the first leading risk factor
for disease in China, causing more than 1.1 million premature deaths, with the highest
share being stroke, ischemic heart disease (IHD), lung cancer, lower respiratory infections,
chronic obstructive pulmonary disease (COPD), etc. [32–34]. Other criteria pollutants,
e.g., PM10, CO, O3, SO2, and NO2, cause multiple health disorders, e.g., headaches,
dizziness, nausea, respiratory disorders, inflammatory reactions, reduced lung function,
hampered neurological function, etc. [35–37]. Apart from jeopardizing human health,
air pollution is also responsible for visibility reduction, economic losses, and climate
change [13]. PM2.5 and O3 can cause gross domestic production (GDP) losses of 2.09% in
health expenditure [38].

In view of such circumstances, we examined the spatial and temporal distribution
of PM2.5, PM10, SO2, NO2, CO, and O3 in 53 cities located in five provinces of NWC for a
period of four years (2015 to 2018). Besides the criteria pollutants, we also examined the
PM2.5/PM10 ratio, Air Quality Index (AQI), AQI class distributions, major pollutant on a
representative day, number of pollution days, and correlations among different pollutants to
explicate the pollution status, spatial, and temporal distribution of air quality in NWC over
time. This study provides useful information and a valuable reference for future research
on air quality in NWC and is of considerable significance to environmental protection and
human health.

2. Materials and Methods

2.1. Site Selection

In this study, we examined the ambient air quality in the northern and western
parts of China, known as northwest China (NWC), from January 2015 to December 2018
to understand the spatio-temporal variation across NWC better. NWC is a mixture of
agricultural areas, deserts, mountains, etc. with significant coal reserves, industrial activity,
covering an area of 3.1 million sq. km area (32.4% of China), having a population of
more than 96.65 million, and experiencing degraded air quality. NWC consists of five
provinces, namely Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)
(Supplementary Material Figure S1). Table 1 gives detailed information about 5 provinces
and 53 cities.
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Table 1. Description of cities under observation in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu
(GS), Ningxia (NX), and Qinghai (QH)) of northwest China (NWC).

Province City
Population

(million)

Area
(km2)

Monitoring
Stations

Attainment
(%)

2015 2016 2017 2018

Shaanxi
(SX)

Ankang 2.63 23,536 3 20.27 17.49 13.70 8.49
Baoji 3.717 18,712 8 23.56 36.61 33.42 21.64

Hanzhong 3.84 27,246 4 20.82 25.68 27.12 14.25
Shanglou 2.34 19,587 2 15.34 15.85 7.67 3.29

Tongchuan 0.83 3882 4 24.93 44.54 31.51 21.37
Weinan 5.52 13,134 4 27.40 54.10 54.52 33.42

Xian 12 10,097 13 30.14 47.54 50.14 36.16
Xianyang 5.096 10,213 4 27.12 53.55 55.89 24.93
Yannan 2.198 37,000 4 22.47 21.04 13.97 3.29
Yulin 3.38 43,578 4 19.73 19.67 22.74 9.32

Xinjiang
(XJ)

Aksu 2.37 127,144.91 2 52.60 72.68 23.56 18.63
Altay 0.526 117,699.01 2 0.27 0.00 0.00 0.00

Bortala 0.443 24,934.33 2 9.32 9.56 10.68 6.30
Crete 0.525 72,468.08 1 49.32 50.27 21.64 16.99

Changji 1.428 73,139.75 3 18.63 26.78 29.32 24.66
Hami 0.572 142,094.88 2 16.99 12.57 5.48 1.37
Hotan 2.014 249,146.59 2 75.07 73.77 19.18 12.05

Ili 2.482 56,381.53 3 14.79 16.94 23.56 20.55
Karamy 0.39 8654.08 5 8.49 9.02 11.78 8.22

Korla 1.278 470,954.25 3 31.51 44.26 34.79 8.77
Kashgar 3.979 137,578.51 3 71.51 77.32 40.82 30.96
Shihezi 0.635 456.84 2 21.92 25.41 37.53 25.75
Tacheng 1.219 94,698.18 1 0.00 0.27 0.27 0.27
Turpan 0.622 67,562.91 2 36.16 55.19 32.33 21.64
Urumqi 3.11 13,787.90 7 33.97 31.69 33.15 23.56
Wujiaqu 0.09 742 1 23.84 33.33 32.60 25.75

Gansu (GS)

Dingxi 3.031 19,609 2 16.71 12.84 8.22 3.29
Gannan 0.689 40,898 1 18.36 15.03 8.77 2.74

Jiayuguan 0.231 2935 2 18.08 17.76 4.38 1.92
Jinchang 0.228 8896 3 20.55 20.77 7.67 2.74
Jiuquan 1.096 191,342 2 26.58 35.52 31.78 21.10
Lanzhou 3.61 13,300 5 21.64 15.30 15.89 4.66

Linxia 0.25 88.6 2 7.12 7.10 6.03 2.47
Longnan 2.567 27,000 2 18.08 10.66 3.56 0.27
Pinglian 2.068 11,196 2 21.64 14.75 6.03 2.74

Qingyang 2.21 27,119 3 15.07 12.30 7.95 1.92
Silver City 1.708 21,200 2 24.38 17.49 7.95 3.29
Tianshui 3.262 14,300 3 15.34 16.12 7.40 6.03
Wuwei 1.815 33,000 2 17.53 15.85 6.85 1.92

Zhangye 1.2 42,000 2 23.29 14.48 5.48 0.27

Ningxia
(NX)

Guyuan 1.45 14,413 3 12.88 13.11 4.38 1.10
Shizuishan 0.73 5208.13 4 38.08 33.33 24.38 9.86
Yinchuan 2.293 8874.61 3 25.75 23.50 13.70 4.93
Wuzhong 1.3 16,758 6 26.03 29.23 30.68 9.59
Zhongwei 1.041 16,986 3 24.66 21.04 16.16 2.74

Qinghai
(QH)

Guoluo/Golog 0.181 76,312 1 8.22 4.10 5.48 1.92
Haibei 0.273 39,354 1 19.73 15.57 2.47 0.82

Haidong 1.396 12,810 1 27.67 21.86 12.60 7.40
Hainan 0.441 45,895 1 16.99 9.29 4.11 1.37
Haixi 0.515 325,785 1 14.79 6.83 2.19 0.00

Huanggnan 0.256 17,921 1 33.97 30.33 27.40 21.64
Xinning 2.208 7372 4 18.90 25.68 13.15 4.66

Yushu/Gyegu 0.12 13,462 1 5.48 1.91 1.10 0.27
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2.2. Data Collection

To meet the objectives of the study, we analyzed the ambient air quality in 53 cities
located in five provinces (SN, XJ, GS, NX, and QH) of NWC (Table 1) for a period of
four years (2015–2018). The hourly concentration of PM2.5, PM10, SO2, NO2, CO, and
O3 was collected from China National Environmental Monitoring Center (CNEMC). The
online data-sharing platform covers 367 cities of China, and dispatch/publish information
according to the Technical Guideline on Environmental Monitoring Quality Management
(HJ 630-2011) [39].

2.3. Air Quality Index (AQI)

The air quality index (AQI) includes 24-h average measurement of PM2.5, PM10, NO2,
SO2, CO, and 8-h average concertation of O3 and reflects the overall air quality [8,28,40].
Individual air quality index (IAQI) for six criteria pollutants is determined by using
Equation (1), and the overall AQI is calculated based on the highest IAQI by using Equation (2)
according to the instruction given in technical regulation on ambient air quality index (on
trial) (HJ-633-2012) [19].

IAQIp =
Ihigh − Ilow

Chigh − Clow
×
(
Cp − Clow

)
+ Ilow (1)

IAQIp = individual sub air quality index of the pollutant p
Cp = concentration of the pollutant p
Chigh = concentration breakpoint that is ≥ Cp

Clow = concentration breakpoint that is ≤ Cp

Ihigh = index breakpoint corresponding to Chigh

Ilow = index breakpoint corresponding to Clow

AQI = max(I1, I2 . . . . . . . . . . . . . . . . . . , In) (2)

In Equation (2), “n” indicates the number of criteria pollutants. When AQI is higher
than 50, the highest IAQI is considered as a major pollutant for that given day [23,28,41–44].
Air Quality Index (AQI) has the following six categories:

Class I: 0–50 (Green), Good
Class II: 51–100 (Yellow), Moderate
Class III: 101–150 (Orange), Unhealthy for Sensitive Groups
Class IV: 151–200 (Red), Unhealthy
Class V: 201–300 (Purple), Very unhealthy
Class VI: 300–500 (Maroon), Hazardous

2.4. Quality Assurance and Quality Control (QA&AR)

Quality assurance and control procedures for ambient air quality data were strictly in
accordance with Chinese Ambient Air Quality Standards (CAAQS) (GB-3095-2012) [17].
The daily average value was calculated when we have valid data for more than 16 h of that
day (except for ozone, minimum 6-h value for 8-h ozone value); the monthly average was
calculated only when we have 27 daily mean values; an annual value was calculated only
when we have 324 daily mean values. Besides this, manual inspection was carried out to
remove abnormal values, e.g., PM2.5 values higher than PM10 values.

2.5. Inverse Distance Weighted (IDW) Spatial Interpolation

Many spatial interpolation methods, such as kriging (universal or ordinary) and
inverse distance weighted (IDW) spatial interpolation, have been used in different stud-
ies [45,46]. IDW geospatial interpolation is a type of deterministic method for multivariate
interpolation with a known scattered set of points. IDW assigns values to unknown points
according to the weighted average of the values of the known points and is more suitable
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for regional interpolation [47]. In this study, we used IDW spatial interpolation technique
to interpolate spatial distribution of PM2.5, PM10, SO2, NO2, CO, O3, AQI, and PM2.5/PM10
ratio in NWC. Equation (3) describes the interpolation analysis.

Zp =
∑

n
i = 1 zi

dip

∑
n
i = 1 1

dip

(3)

where Zp refers to the value of unknown point, Zi is the value observed at the point of I; I
represents the nearest neighborhood of interpolated point produced; p is the weighting
absolute value, and p is equal to inverse distance weight, respectively.

2.6. Statistical Analysis

In this study, we used Statistical Package for Social Sciences (SPSS) for Windows (IBM
SPSS Statistics, Version 25) to find the Pearson’s correlation coefficient for criteria pollutants
on an annual and seasonal basis [48], and used RStudio for graphical representation [49].
The high (low) value of the Pearson’s correlation represents the same (different) variations
in one criteria pollutant with respect to another pollutant. The effect of a certain variable
was considered statistically significant for P (0.01, and 0.05) (two-tailed). Annual mean
values, mean absolute deviation (MAD), mean square error (MSE), root mean square error
(RMSE), mean absolute percentage error (MAPE), and mean percentage error (MPE) of six
criteria pollutants between 2015 and 2018 were calculated by Microsoft Excel 2016.

3. Results

3.1. Spatial and Temporal Variation of Six Criteria Pollutants

During the study period (2015–2018), the average concentration of PM2.5, PM10, SO2,
NO2, and CO decreased by 28.2% (14.2%, 25.8%, 31.1%, 34.4%, 47.1%) (Figure 1a), 32.7%
(18.5%, 32.5%, 31.8%, 32.7%, 46.3%) (Figure 1b), 41.9% (30.6%, 43.8%, 46.8%, 48.7%, 32.3%)
(Figure 1c), 6.2% (+3.59%, 4.44%, 18.8%, +3.72%, 8.45%) (Figure 1d), and 27.3% (32.7%, 21%,
38.4%, 17.2%, 16%) (Figure 1e), respectively, in NWC (SN, XJ, GS, NX, QH). In contrast
to the other pollutants, the ozone levels increased by 3.69% (5.4%, 6.04%, 1.32%, 19.3%,
5.66%) in NWC (SN, XJ, GS, NX, QH) between 2015 and 2018 (Figure 1f). The annual
average concentration of PM2.5 and PM10 failed to comply with CAAQS Grade II standards
(35 μg/m3 and 70 μg/m3, annual mean) and exceeded them by 25% and 31.9%, respectively,
and exceeded them by 3.37 and 3.61 times, respectively, for the WHO air quality guidelines
(10 μg/m3 and 20 μg/m3, annual mean) in NWC. PM2.5 and PM10 failed to comply with
CAAQS Grade II standards in SN, XJ, GS, NX, and NWC (Figure 1a,b), while SO2 and
NO2 complied with CAAQS Grade II standards (60 μg/m3 and 40 μg/m3, annual mean) in
SN, XJ, GS, NX, QH, and NWC (Figure 1c,d). CO and O3 do not have annual standards
under CAAQS; CO decreased in SN, XJ, GS, NX, QH, and NWC, while O3 decreased in
GS and QH during 2018 as compared with 2015 (Figure 1e,f). During the study period,
the highest concentration of PM2.5, PM10, SO2, NO2, CO, and O3 occurred in SN, XJ, NX,
SN, SN, and QH, respectively. Figure 2 explains the spatial distribution of the criteria
pollutants in 53 cities of NWC during 2015 to 2018, obtained by the inverse distance
weighted (IDW) interpolation technique. The obtained results from spatial interpolation
were quite similar to the actual values. In the case of spatial distribution, 92.5%, 96.2%,
92.5%, 64.5%, 88.7%, and 11.3% of the cities of NWC experienced a reduction in PM2.5
(Figure 2a–d), PM10 (Figure 2e–h), SO2 (Figure 2i–l), NO2 (Figure 2m–p), CO (Figure 2q–t),
and O3 (Figure 2u–x), respectively, during 2018 as compared 2015. Similarly, 66%, 72.5%,
and 13.2% of the cities failed to meet the CAAQS Grade II for PM2.5, PM10, and NO2
(35 μg/m3, 70 μg/m3, 40 μg/m3, annual mean), respectively (Table S1). Most of the cities
that were not complying with the CAAQS are cities with a larger population and increased
industrial activities.
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Figure 1. Annual variation of PM2.5 (a), PM10 (b), SO2 (c), NO2 (d), CO (e), O3 (f), PM2.5/PM10 (g),
and AQI (h) in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai
(QH)) of northwest China (NWC) and NWC as a whole between 2015 and 2018. Descriptions are as
follows: light blue bar (2015), orange bar (2016), grey bar (2017), yellow bar (2018), blue bar (four-year
average (FYA)), parrot line with dots (CAAQS Grade II standards, annual mean), and dark blue
with dots (WHO standards). The abbreviations are as follows: PM2.5 (fine particulate matter), PM10

(coarse particulate matter), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), CO (carbon monoxide), O3

(ozone), PM2.5/PM10 (ratio of PM2.5 with PM10), and AQI (air quality index).
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Figure 2. The spatial distribution of PM2.5 (a–d), PM10 (e–h), SO2 (i–l), NO2 (m–p), CO (q–t),
and O3 (u–x) between 2015 and 2018 in northwest China (NWC). Color represents the different
pollution levels, e.g., green (good), yellow (moderate), orange (unhealthy for the sensitive group),
red (unhealthy for all), purple (very unhealthy), and maroon (hazardous). The abbreviations are as
follows: PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2 (sulfur dioxide), NO2

(nitrogen dioxide), CO (carbon monoxide), and O3 (ozone).

119



Atmosphere 2022, 13, 375

3.2. Seasonal Variation of Six Criteria Pollutants

In terms of seasonality, all the pollutants (PM2.5, PM10, SO2, NO2, and CO) observed
the highest concentration in winter and the lowest occurred in summer except O3 (vice
versa) between 2015 and 2018 (Figure 3). PM2.5 exceeded CAAQS Grade II (75 μg/m3,
daily mean) in SN, and XJ during winter (Figure 3a), while PM10, SO2, NO2, CO, and
O3 complied with CAAQS Grade II (150 μg/m3, 150 μg/m3, 80 μg/m3, 4 mg/m3, and
160 μg/m3, daily mean) in SN, XJ, GS, NX, QH, and NWC during spring, summer, autumn,
and winter (Figure 3b–f). The average concentration of PM2.5, PM10, SO2, NO2, and CO
decreased in all seasons, e.g., spring, summer, autumn, and winter, while the average
concentration of O3 increased in all seasons between 2015 and 2018. Figure S2 explains the
spatial distribution of the criteria pollutants in 53 cities of NWC during different seasons.
PM2.5 exceeded CAAQS Grade II standards (daily mean) in 1.89%, 5.56%, and 32.1% of
the cities during spring, summer, and winter, respectively (Figure S2a). Similarly, PM10
exceeded the daily standard in 5.66%, 7.55%, 1.89%, and 26.4% of the cities in spring,
summer, autumn, and winter, respectively (Figure S2b), while, SO2, NO2, CO, and O3
complied with CAAQS Grade II standards (daily mean) in all the cities of NWC during all
seasons (Figure S2c–f).

Figure 4 illustrates the monthly variation in the criteria pollutants, PM2.5/PM10 ratio,
and AQI in NWC between 2015 and 2018. PM2.5, PM10, NO2, SO2, and CO explicated
“U” shaped curves, with the highest concentration in winter (October to January) due
to increased coal combustion for civil heating and stagnant meteorological conditions,
e.g., lower wind speed, low temperature, etc., while the lowest concentration occurred in
summer (June to August) due to seasonal rains and favorable atmospheric conditions that
help in pollution dispersion. In the case of PM10, higher pollution levels also occurred in
spring (March to May) due to haze events. In contrast to other pollutants, the O3 levels
were higher in June to August (summer) and lower in winter.

3.3. PM2.5/PM10 Ratio

The PM2.5/PM10 ratio normally reflects the composition and quality of air, e.g., a higher
PM2.5/PM10 ratio indicates the increased proportion of PM2.5 and a lower PM2.5/PM10
ratio indicates a higher concentration of PM10 in the atmosphere. The annual average
PM2.5/PM10 ratio in NWC during 2015 to 2018 was 0.480 ± 0.08, 0.478 ± 0.07, 0.483 ± 0.08,
and 0.478 ± 0.07, respectively, and experienced a reduction of 0.43% over time (Figure 1g).
The highest PM2.5/PM10 ratio occurred in SN followed by QH, GS, XJ, and NX. In terms of
seasonality, the highest PM2.5/PM10 ratio occurred in winter, followed by autumn, spring,
and summer, and experienced an average change of −2.77%, −4.98%, 1.82%, and 5.31%,
respectively (Figure 3g). In the case of monthly variation, a “U” shaped curve was observed
with the highest value in winter and the lowest value in the summer Figure 4g. Figure 5
illustrates the annual (a–d) and seasonal (spring (e–h), summer (i–l), autumn (m–p), and
winter (q–t)) spatial distribution of PM2.5/PM10 ratio in NWC during 2015 to 2018. In 2018,
49.1% of the cities of NWC experienced an increase in the PM2.5/PM10 ratio as compared
with 2015. Similarly, 49.1%, 62.3%, 35.9%, and 39.6% of the cities of NWC experienced
increased PM2.5/PM10 ratio in spring, summer, autumn, and winter, respectively, in 2018
against 2015. From 2015 to 2018, approximately 1.89%, 1.89%, 3.74%, and 26.4% of the cities
experienced PM2.5/PM10 ratio higher than 0.60 in spring, summer, autumn, and winter,
respectively, in NWC.
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Figure 3. Seasonal variation of PM2.5 (a), PM10 (b), SO2 (c), NO2 (d), CO (e), O3 (f), PM2.5/PM10

ratio (g), and AQI (h) in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and
Qinghai (QH)) of northwest China (NWC) and NWC as a whole between 2015 and 2018. Descriptions
are as follows: light blue bar (spring), orange bar (summer), grey bar (autumn), yellow bar (winter),
and blue line with dots (CAAQS Grade II standards, daily mean). The abbreviations are as follows:
PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2 (sulfur dioxide), NO2 (nitrogen
dioxide), CO (carbon monoxide), O3 (ozone), PM2.5/PM10 (ratio of PM2.5 with PM10), and AQI (air
quality index).
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Figure 4. The monthly average concentration of PM2.5 (a), PM10 (b), SO2 (c), NO2 (d), CO (e), O3 (f),
PM2.5/PM10 (g), and AQI (h) in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia
(NX), and Qinghai (QH)) of northwest China (NWC) between 2015 and 2018. Descriptions are as
follows: light blue line with dots (SN), orange line with dots (XJ), grey line with dots (GS), yellow
line with dots (NX), blue line with dots (QH), and parrot line with dots (NWC). The abbreviations
are as follows: PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2 (sulfur dioxide),
NO2 (nitrogen dioxide), CO (carbon monoxide), and O3 (ozone).
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Figure 5. Annual (a–d) and seasonal (spring (e–h), summer (i–l), autumn (m–p), and winter
(q–t)) spatial distribution of PM2.5/PM10 in 53 cities of northwest China (NWC) between 2015
and 2018. Color represents the different pollution levels, e.g., green (good), yellow (moderate),
orange (unhealthy for a sensitive group), red (unhealthy for all), purple (very unhealthy), and
maroon (hazardous).
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3.4. Air Quality Index (AQI)

Air quality index (AQI) is a color-coded scale that simplifies different pollutants
concentrations into a single numerical value that reflects overall air quality, health effects,
sensitive groups, and required precautionary measures. During the study period (2015–
2018), the annual average AQI in NWC was 88.1 ± 24.1, 93.5 ± 36.3, and 82 ± 18.7,
69.2 ± 14.8, respectively, and improved by 21.3% (Figure 1h). The highest AQI occurred in
XJ, followed by SN, NX, GS, and QH. The AQI improved in all the cities except a few cities
in SN (Weinan, Xian), and XJ (Changji, Ili, Shihezi, Tacheng, Wujiaqu). In 2018, the average
AQI was under the threshold value of 100 in all the cities except Shihezi and Wujiaqu in
Xinjiang (Figure 6d).

In the case of seasonal variation, the highest AQI occurred in winter, followed by
spring, summer, and autumn, respectively, and improved by 17.5%, 30.8%, 18.7%, 17.4%,
respectively, in NWC during 2018 as compared with 2015. The seasonal variation was
consistent throughout NWC, e.g., highest AQI in winter and lowest in autumn, except XJ
(Figure 3h). Figure 6 illustrates the seasonal (spring (e–h), summer (i–l), autumn (m–p),
and winter (q–t)) spatial distribution of AQI in NWC between 2015 and 2018. In different
seasons, e.g., spring, summer, autumn, and winter, the number of cities exceeding the AQI
threshold value of 100 decreased from 24.5% to 0% (Figure 6e–h), 7.55% to 0% (Figure 6i–l),
7.55% to 0% (Figure 6m–p), and 50.9% to 22.6% (Figure 6q–t), respectively, in NWC. In the
case of the monthly variation, a “U” shaped curve was observed with the highest value in
winter and the lowest value in summer Figure 4h.

3.5. Proportion of Six Air Quality Index (AQI) Classes

Figure 7 explains the annual (a–d) and seasonal (spring (e–h), summer (i–l), autumn
(m–p), and winter (q–t)) proportion of AQI classes in NWC during 2015 to 2018. During
the study period, the average proportion of Class I, Class II, Class III, Class IV, Class V,
and Class VI accounted for 17.2%, 63.1%, 13.1%, 3.01%, 2.14%, and 1.03% of the days,
respectively. In NWC, the proportion of Class I, Class II, Class III, Class IV, Class V, and
Class VI experienced an average change of 114.1%, −1.08%, −55.2%, −29.5%, −69.2%, and
−58.3%, respectively, in 2018, with respect to 2015. The combined proportion of Class I
and II increased by 18.5%, with the highest increase in spring (28.73%), followed by winter
(27.2%), autumn (11.2%), and summer (10.9%), indicating significant improvement in air
quality over the time span.

3.6. The Major Pollutants/Primary Pollutants

During the study period, PM10 was a major pollutant, accounting for more than 32.9%
of the days, followed by O3 (25.9%), PM2.5 (16.4%), NO2 (3.52%), CO (1.43%), and SO2
(1.01%) in NWC (Figure 8). In 2018, the number of days with PM10, PM2.5, SO2, and CO
as major pollutants decreased by 35%, 38%, 52%, and 90%, respectively, and increased by
46% and 11% for O3 and NO2, respectively. PM10 was a major pollutant in autumn (41.3%),
spring (39.1%), and a second major pollutant in winter (34.3%), while PM2.5 was a major
pollutant in winter (42.1%), and O3 was a major pollutant (59.7%) in summer. The number
of days with O3 as a major pollutant was higher in the hotter months March–September),
and, for PM2.5, it was higher in the colder months (November–February). During the study
period, the number of days with PM10 as a major pollutant decreased by 47.2%, 76.3%,
and 19.7% in spring, summer, and autumn, respectively, and increased by 4.58% in winter
2018 as compared with 2015. Similarly, the number of days with PM2.5 as a major pollutant
decreased by 62.3%, 90.8%, 42.9%, and 24.6% in spring, summer, autumn, and winter,
respectively. The number of days with SO2 as a major pollutant decreased in all the seasons
except summer, NO2 decreased in summer and winter, CO decreased in spring, summer,
autumn, and winter, while O3 increased in all the seasons, e.g., in spring, summer, autumn,
and winter 2018 as compared with 2015.
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Figure 6. Annual (a–d) and seasonal (spring (e–h), summer (i–l), autumn (m–p), and winter (q–t))
spatial distribution of AQI between 2015 and 2018 in 53 cities of northwest China (NWC). Color
represents the different classes of air quality index, e.g., green (0–50, good), yellow (51–100, moderate),
orange (101–150, unhealthy for the sensitive group), red (151–200, unhealthy for all), purple (201–300,
very unhealthy), and maroon (300+, hazardous).
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Figure 7. The annual (1st row) and seasonal (spring (2nd row), summer (3rd row), autumn (4th row),
and winter (5th row)) distribution of AQ class, e.g., Class I (0–50, good, green), Class II (51–100,
moderate, yellow), Class III (101–150, unhealthy for a sensitive group, orange), Class IV (151–200,
unhealthy for all, red), Class V (001-300, very unhealthy, purple), and Class VI (300+, hazardous,
maroon) in northwest China (NWC) between 2015 and 2018.
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Figure 8. The annual (a) and seasonal (spring (b), summer (c), autumn (d), winter (e)) percentage
of days with different primary pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in five provinces
(Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)) of northwest China
(NWC) between 2015 and 2018. Descriptions are as follows: light blue bar (Shaanxi), orange bar
(Xinjiang), grey bar (Gansu), yellow bar (Ningxia), blue bar (Qinghai), and parrot bar (NWC). The
abbreviations are as follows: PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2

(sulfur dioxide), NO2 (nitrogen dioxide), CO (carbon monoxide), and O3 (ozone).
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3.7. Pollution Days/Non-Attainment Days

Any day with one or more pollutants exceeding CAAQS (Grade II) standards is
considered as a non-attainment/pollution day. In NWC, the proportion of non-attainment
days were 23.3%, 23.9%, 16.2%, and 8.9% during 2015 to 2018, respectively. The proportion
of non-attainment days decreased by 61.77% (24%, 47.1%, 79.1%, 77.9%, and 73.9%) in
NWC (SN, XJ, GS, NX, and QH) during 2015 to 2018 (Table 1). The highest reduction in the
proportion of non-attainment days occurred in spring (79.6%), summer (63.1%), autumn
(60.4%), and winter (37.6%), respectively.

3.8. Statistical Analysis

The result of Pearson’s correlation (Table S2) indicated that AQI was strongly positively
correlated (R > 0.5) with PM2.5, PM10, SO2, NO2, and CO on an annual basis and strongly
anti-correlated (R > −0.5) with O3 in the NWC (Figure S3a). The seasonal variation in the
correlation between AQI and different pollutants was evident (Figure S3b–e). In spring,
AQI was strongly correlated (R > −0.5) with PM2.5, PM10, SO2, and CO, moderately
correlated (R > −0.3) with NO2, while strongly anti-correlated (R > −0.5) with O3 (Figure
S3b). In summer, AQI was strongly correlated (R > 0.5) with PM2.5 PM10, and O3, weakly
correlated (R > 0.2) with SO2, weakly anti-correlated (R > −0.1) with CO, and strongly
anti-correlated (R > −0.5) with NO2 (Figure S3c). In autumn, AQI was strongly correlated
(R > 0.5) with PM2.5, PM10, SO2, NO2, and CO), while strongly anti-correlated (R > −0.5)
with O3 (Figure S3d). In winter, AQI was strongly correlated (R > 0.5) with PM2.5, PM10,
SO2, and CO, moderately correlated (R > 0.3) with NO2, and moderately anti-correlated
(R > −0.3) with O3 (Figure S3e). Throughout the study period, all the pollutants were
positively correlated with each other except O3 (Table S2).

4. Discussion

During the study period, the average concentrations of PM2.5, PM10, SO2, NO2, CO,
and O3, decreased in 92.5%, 96.2%, 92.5%, 64.5%, 88.7%, and 11.3% of the 53 cities in
NWC. Based on the results above, we concluded that strict environmental regulations have
significantly improved the air quality in NWC between 2015 and 2018 [3,20–23]. PM2.5
mainly originates from industrial activities, coal consumption, power generation, biomass
burning, automobile exhausts, construction activities, road dust, etc. [28–30,50–52]. From
2015 to 2018, the average concentration of PM2.5 decreased in all the cities except a few
cities (Changji, Ili, Shihezi, Wujiaqu) in the northern part of XJ. Higher pollution in XJ,
SN, and GS, PM2.5 hotspots [53,54], is because of increased coal-based industry, vehicular
emission, civil heating, construction activities, natural sources (dust storms), and adverse
meteorology [55–60]. PM10 mainly originates from natural sources, e.g., sand storms, haze
events, etc., as well as from anthropogenic sources, e.g., developmental activities, industrial
emissions, traffic emissions, road dust, etc. [15,26–28]. The highest pollution levels occurred
in XJ, followed by SN, NX, GS, and QH. Elevated pollution levels in southern Xinjiang
(Kashgar) indicate the influences of emissions from natural sources, e.g., Taklimakan deserts,
dust storms, haze events, etc. [61–64]. Similarly, higher particulate pollution in Shaanxi
(FWP region) is associated with increased anthropogenic emissions, e.g., industrial activities,
construction activities, etc. [55]. All the cities of NWC experienced a reduction in PM10
except Shihezi and Wujiaqu in northern XJ, indicating the influence of both manmade and
natural emission sources. This decrease is associated with strict environmental regulations,
e.g., Chinese Ambient Air Quality Standards (CAAQS) (GB 3095–2012) [17], Atmospheric
Pollution Prevention and Control Action Plan (APPCAP, 2013) [18], technical regulation on
ambient air quality index (HJ 633–2012) [19], the establishment of nationwide air quality
monitoring stations, etc. [3,20–23].

In the case of gaseous pollutants, the average concentration of SO2, NO2, and CO
decreased by 41.9%, 6.19%, and 27.3%, respectively, in NWC. Industrial emissions, coal
burning, fossil fuel burning, power generation, traffic exhausts, etc. are major sources of
SO2, NO2, and CO [65–69]. The concentration of SO2 decreased in all the cities except
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Ili, Hami (XJ), Jiuquan (GS), and Yushu (QH), indicating the influence of increased coal
combustion, vehicular exhaust, and industrial emission [27,28,57,70]. In the case of NO2,
the average concentration decreased in 71.7% of the cities of NWC between 2015 and 2018.
The highest pollution level occurred in the provincial capitals, e.g., Xi’an (SN), Urumqi (XJ),
Lanzhou (GS), etc., and major cities (Ili, Hami, Jiuquan, Yushu, etc.), indicating increased
fossil fuel combustion, e.g., automobile exhaust, industrial emission, etc. [34,63,65–69].
Similarly, the highest concentration of CO occurred in SN, followed by XJ, QH, GS, and NX.
Higher CO indicates incomplete combustion of fossil fuels, biomass burning, industrial
emission, and causes multiple health disorders, e.g., hypoxia, major heart and neural
disorders [28,67,68]. In contrast to other pollutants, O3 increased by 3.69% in NWC during
the study period. All the cities experienced an increase in O3 concentration except Ankang,
Shanglou, Longnan, Haibei, Hainan, and Haixi. This increase in O3 is associated with a
decrease in PM2.5 and other pollutants, which slows down the sink of hydroperoxy radicals
and helps in the accumulation of ozone [55].

In terms of seasonality, PM2.5, PM10, SO2, NO2, and CO experienced the same
seasonal variation, e.g., highest in winter and lowest in summer. Higher pollution
in winter is associated with increased coal combustion, civil heating, power genera-
tion, fossil fuel burning, industrial activity, vehicular exhausts, and adverse/stagnant
meteorology [13–15,26–30,50–52,71–75]. In the case of PM10, higher pollution levels also
occurred from March to May (spring) due to haze events [76,77]. In contrast to other pollu-
tants, the concentration of O3 was highest in summer and lowest in winter [14,28,30,78].
Ozone is a secondary pollutant, formed due to a photochemical reaction between VOCs
and NOx [43,44,79]. The concentration of ozone in the summer was approximately twice
that in winter due to lower NOx levels in winter as NOx levels decrease the O3 depletion
and enhance the accumulation of O3 [80]. Similarly, higher temperatures, e.g., in summer,
favor the accumulation of ozone [81–83].

The PM2.5/PM10 ratio reflects air quality, pollution sources, and origin, e.g., a higher
PM2.5/PM10 ratio indicates the increased proportion of PM2.5, mainly emitted from an-
thropogenic activities, and a lower ratio indicates an increased proportion of PM10, mainly
from natural activities [28,61–64]. During the study period (2015–2018), the PM2.5/PM10
ratio slightly decreased by 0.43% and in 50.9% of the cities of NWC. This decrease is associ-
ated with a reduction in PM2.5 over time. In general, the PM2.5/PM10 ratio was higher in
winter (low temperature) as compared with summer (high temperature) due to increased
anthropogenic activities that release a significant amount of PM2.5 and stable atmospheric
conditions that help the accumulation of pollution [26–29,53,54,84].

During the study period (2015–2018), the AQI improved by 21.3%, and 86.8% of the
cities of NWC experienced AQI improvement. This improvement is associated with a
reduction in the criteria pollutants over time. AQI crossed the threshold value of 100 in
10 cities, out of which seven cities are in Xinjiang (Kashgar, Hotan, Aksu, Wujiaqu, Crete,
Urumqi, Turpan) and three cities are in Shaanxi (Xiangyang, Xi’an, Weinan) (Table S1). The
higher AQI values in Xinjiang and Shaanxi are associated with the increased coal-based
industry, civil heating, and vehicular exhaust [3,14,30,51,52,56,69,85]. In the case of seasonal
variations, the highest AQI occurred in winter due to increased anthropogenic emissions
and stable atmospheric conditions [15,58,84]. In NWC, the proportion of AQI “Class I”
improved by 114.1%, while the proportion of Class II, Class III, Class IV, Class V, and Class
VI decreased by 1.08%, 55.2%, 29.5%, 69.2%, and 58.3%, respectively, during 2015 to 2018.
The proportion of AQI “Class I” improved from 12.9% in 2015 to 27.6% in 2018. Similarly,
the proportion of AQI “Class I” improved in all the provinces, e.g., SN, XJ, GS, NX, and
QH, in all the seasons, and improved by 2.53 times, 2.33 times, 1.63 times, and 2.79 times
in spring, summer, autumn, and winter in 2018 as compared with 2015, which indicates
improvement in air quality [28,57].

During the study period (2015–2018), the proportion of days with PM10, PM2.5, SO2,
and CO as a major pollutant decreased by 35%, 38%, 52%, and 90%, respectively, due to strict
environmental legislation [20–23]. PM2.5 was a major pollutant in winter (42%), indicating
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anthropogenic emissions, e.g., coal burning, civil heat, industrial emissions, and vehicular
emissions [28,56–58]. Similarly, O3 was a major pollutant (44.7%) in summer due to lower
NOx levels as lower NOx levels prevent ozone depletion and the higher temperature in
summer favors ozone generation and accumulation [78,80,82,83,86–88], while PM10 was
a major pollutant in autumn (41.3%), spring (39.1%), and the second major pollutant in
winter (34.3%). The number of days with PM10 as a major pollutant was higher in southern
Xinjiang due to emissions from natural sources, e.g., the Taklimakan desert, sand storms [61–
64,89]. Any day with one or more pollutants exceeding CAAQS (Grade II) is considered
as a non-attainment/pollution day [2,30]. During the study period, the proportion of non-
attainment days decreased by 61.8% in NWC. Similarly, the proportion of non-attainment
days decreased in all the provinces, e.g., SN, XJ, GS, NX, and QH, and experienced a
reduction of 79.6%, 63.1%, 60.4%, and 37.6% in spring, summer, autumn, and winter,
respectively, which clearly indicates that the ambient air quality improved significantly.

Rapid economic development, industrialization, haze events, dust storms, and adverse
meteorological conditions play a crucial role in air quality deterioration [2,4–10]. The
Chinese government is working proactively to combat the pollution levels by revising
and implementing strict environmental regulations [3,20,21]. According to this study, the
concentration of PM2.5, PM10, SO2, NO2, and CO, AQI, the proportion of AQI “Class I”,
and pollution days decreased significantly in NWC between 2015 and 2018.

5. Conclusions

In this study, we examined the spatial and temporal variation of ambient air quality in
northwest China (NWC) for a period of four years (2015–2018). During the study period,
the average concentration of PM2.5, PM10, SO2, NO2, CO, and O3 decreased in 92.5%, 96.2%,
92.5%, 64.5%, 88.7%, and 11.3% of the cities in NWC. The annual average concentration of
particulate matter (PM2.5 and PM10) exceeded the CAAQS Grade II standards and WHO
recommended air quality guidelines in NWC, while the annual average concentration
of SO2 and NO2 complied with the CAAQS Grade II standards in NWC. In the case of
seasonality, the highest pollution level occurred in winter except for ozone, with varying
degrees of spatial distribution. The AQI, the proportion of AQI Class I, and the number
of pollution days improved by 21.3%, 114.1%, and 61.8%, respectively, in NWC. The
AQI improved in all the seasons, with the maximum improvement in spring followed
by summer, winter, and autumn. In NWC, PM10 was a major pollutant for most of the
days, followed by O3, PM2.5, NO2, CO, and SO2 with different spatial and temporal
variations. A strong correlation occurred between AQI and all the pollutants except
O3. Stricter regulations, e.g., a three-year action plan to win the blue sky defense war,
sector-specific guidelines, and strict enforcement of environmental legislation, are the
keys to pollution-free and breathable air. This paper comprehensively discussed the
spatio-temporal characteristics of the ambient air quality in NWC and calls for future
detailed assessment focusing on source apportionment, health risk assessment, the impact
of meteorology, dispersion modeling, and impact of the chemical processes that influence
the air quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos13030375/s1, Figure S1: The locations of 53 cities in five provinces (Shaanxi (SN),
Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)) northwest China (NWC). Color represents
the different classes of air quality index, e.g., green (0–50, good), yellow (51–100, moderate), orange
(101–150, unhealthy for a sensitive group), red (151–200, unhealthy for all), purple (201–300, very
unhealthy), and maroon (300+, hazardous); Figure S2: The seasonal (spring (light blue line), summer
(orange line), autumn (grey line), and winter (yellow line)) spatial distribution of PM2.5 (a), PM10
(b), SO2 (c), NO2 (d), CO (e), and O3 (f) in 53 cities of northwest China between 2015 and 2018.
Descriptions are as follows: light blue line with dots (spring), orange line with dots (summer), grey
line with dots (autumn), yellow line with dots (winter), and the blue line (CAAQS, daily mean). The
abbreviations are as follows: PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2.
(sulfur dioxide), NO2 (nitrogen dioxide), CO (carbon monoxide), and O3 (ozone); Figure S3: Annual
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(a) and seasonal (spring (b), summer (c), autumn (d), winter (e)) relationship between air quality
index (AQI) and criteria pollutants (PM2.5, PM10, SO2, NO2, CO, and O3). The abbreviations are as
follows: AQI (air quality index), PM2.5 (fine particulate matter), PM10 (coarse particulate matter), SO2
(sulfur dioxide), NO2 (nitrogen dioxide), CO (carbon monoxide), and O3 (ozone); Table S1: Lists of
cities, their rankings in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and
Qinghai (QH)) of northwest China (NWC) between 2015 and 2018; Table S2: Pearson correlation
between AQI and six criteria pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in northwest China
(NWC) between 2015 and 2018. The abbreviations are as follows: AQI (air quality index), PM2.5 (fine
particulate matter), PM10 (coarse particulate matter), SO2 (sulfur dioxide), NO2 (nitrogen dioxide),
CO (carbon monoxide), and O3 (ozone).
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Abstract: Sichuan Basin is an area with some of the most serious PM2.5 pollution, and it is also
a key area for joint prevention and control of air pollution in China. Therefore, it is necessary to
clarify the temporal and spatial distribution characteristics of PM2.5 concentration in Sichuan Basin
(SCB) and study the influence of meteorological conditions. In this study, the spatial disparity of
PM2.5 concentration in SCB and its variation trend from 1 December 2015 to 30 November 2019 were
analyzed. The results showed that the spatial disparity of SCB was decreasing and distinct variation
trends of PM2.5 concentration were observed in different areas. The PM2.5 concentrations declined
rapidly in the western and southern basin (most severely polluted areas), decreased at a slower rate
in the central and eastern basin, but unexpectedly increased slightly in the northern and northeastern
basin. From the perspective of relative spatial anomalies (RAs), the decreasing (increasing) trend of
RAs of PM2.5 concentrations in the western and southern (northern and northeastern) parts of SCB
were also prominent. The reduction in spatial disparity and the regionally extraordinary increasing
trend could be partly explained by the variations in synoptic circulations. Specifically, the reasons
for the decrease in wintertime spatial disparity and the increase in RAs in the northern basin were
the reduction in synoptic pattern Type 2 (weak high-pressure system and uniform pressure fields)
and Type 3 (high-pressure system to the north) and the growth of Type 6 (weak low-pressure system
with high-pressure system to the north). In spring, the reasons were the reduction in Type 1 (weak
low-pressure system) and Type 5 (weak low-pressure system to the southwest) and the growth of
Type 2. The reduction in Type 2 and the growth in Type 4 (weak high-pressure system to the east)
could explain the variation in PM2.5 distribution in autumn. This study showed the importance of
implementing more precise and effective emission control measures, especially in relatively cleaner
areas, in which the impacts of meteorological conditions might cause fluctuation (even rebounding)
in the PM2.5 concentration.

Keywords: PM2.5; Sichuan Basin; spatial distribution; spatial disparity; synoptic patterns; meteorological
conditions

1. Introduction

Haze pollution has occurred frequently in the past few decades due to the rapidly
developing economy and accelerating urbanization in China. As the major cause of haze,
PM2.5 (particles with aerodynamic equivalent diameter less than 2.5 μm) was one of the
most concerned air pollutants because of its harm to human health and impact on global cli-
mate [1–3]. For example, it was found that long-term exposure to high PM2.5 concentration
could lead to cardiovascular diseases, respiratory diseases and even premature deaths [4,5].
PM2.5 could change the climate on both global and local scales through directly scattering
incident solar radiation or indirectly influencing clouds and precipitation [6–8]. This made
the collocation between PM2.5, population and ecosystem of considerable interest. There-
fore, the temporal and spatial characteristics of PM2.5 concentration and its causes were the
most discussed topics in previous studies.
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Excessive anthropogenic pollutant emissions and adverse meteorological conditions
were the determinant factors causing frequent and severe PM2.5 pollution events [9–12].
A series of controlling measures were implemented aiming to reduce the anthropogenic
emissions of air pollutants, which led to a significant decrease in PM2.5 concentration across
China [13,14]. However, the impact of meteorological conditions on PM2.5 concentration
was complicated. Generally, wind is one of the most important meteorological factors. High
wind speeds facilitate the diffusion of pollutants and the transport of pollutants is related
to both the direction and speed of prevailing wind [15,16]. The vertical diffusion capability,
characterized by temperature inversion or planetary boundary layer height (PBLH), limits
the space for pollutant mixing and, hence, affects the accumulation process [17–20]. Rela-
tive humidity (RH) is also important for the secondary formation and hygroscopic growth
of atmospheric particles [21,22]. On the synoptic scale, the relevant meteorological parame-
ters are affected by atmospheric circulation. Therefore, the classification of atmospheric
circulation is of great significance to examine the relationship between meteorology and air
pollution [23–25].

Sichuan Basin (SCB), located in Southwest China and surrounded by plateaus to the
west and south and high mountains to the north and east, is one of the most polluted
areas in China [12,26]. The complex topography led to special meteorological conditions
with extremely calm winds and stagnation in the basin area [27]. The average occurrence
frequency of air stagnation in winter, from 2013 to 2016, exceeded 76% in SCB [28]. The RH
in SCB was high, which was conducive to the hygroscopic growth of particles [29,30].
The circulation in SCB was also important, as previously revealed, as southerly warm flows
favored the PM2.5 pollution and northerly cold flows were conducive to the dissipation
of PM2.5 [17,30]. Moreover, the complicated topography modulated the distribution of
PM2.5 from both the horizontal and vertical perspective. Ning et al. found that there was a
nonlinear relationship between urban PM concentration and altitude in SCB [11]. Shu et al.
found that there was a higher PM2.5 layer at a height of 1.5~3 km in the basin, and the
PM2.5 concentration between this layer and the ground was relatively low [31].

Although many studies on the distribution characteristics of PM2.5 concentration
and their relationship with meteorological conditions were conducted in SCB [28,30,32],
few focused on the trend of spatial distribution of PM2.5 concentration. In this study, we
examined the variations in PM2.5 distribution from 2016 to 2019 and found extraordinary
trends in the northeastern basin. The possible meteorological causes of these regional
characteristics were explored from the perspective of synoptic classification. The results
could provide potential reference for joint prevention and control measures of PM2.5
pollution in SCB.

2. Materials and Methods

2.1. Study Area

This study covered the 18 prefecture-level cities in SCB, which were Chengdu (CD),
Chongqing (CQ), Deyang (DY), Mianyang (MY), Meishan (MS), Leshan (LS), Ya’an (YA),
Yibin (YB), Zigong (ZG), Luzhou (LZ), Neijiang (NJ), Ziyang (ZY), Suining (SN), Guangyuan
(GY), Bazhong (BZ), Nanchong (NC), Dazhou (DZ) and Guang’an (GA). As shown in
Figure 1, these cities were in the basin area confined by Tibetan Plateau to the west,
Yunnan-Guizhou Plateau to the south, Wuling Mountain to the east and Daba Mountain
to the North. The average altitude in the basin is about 400 m above sea level, while
the altitudes of the plateaus and mountains are above 4000 m and 2000 m, respectively.
The huge height drop creates lee-side calm area in the basin. Besides, the topography in the
basin is also complicated, which could be divided into Chengdu Plain in the west, Hilly
Area in the central basin and Ridge Valley area in the east by Longquan Mountain and
Huaying Mountain.
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Figure 1. The location (left panel) and topography (right panel) of the Sichuan Basin. In the left
panel, the blue square presents the region where the synoptic classification was conducted and the
red polylines presents the location of SCB.

2.2. PM2.5 Concentration Data and Spatial Characterization Method

The hourly PM2.5 concentration data of the state-controlled air-quality-monitoring
sites in SCB from December 2015 to November 2019 were obtained from China National
Environmental Monitoring Centre (https://air.cnemc.cn:18007/ (accessed on 1 December
2019)). The concentrations of all the sites in the same city were averaged to represent the
urban PM2.5 concentration in this city. The annual PM2.5 concentration of a certain city
was calculated by averaging the hourly data from January to November of the current
year and December of the previous year. Correspondingly, winter was defined as January
and February in the current year and December in the previous year in this study. Spring,
summer and autumn were defined as March to May, June to August and September to
November, respectively.

Two metrics were used to analyze the characteristics of spatial distribution of PM2.5
concentration in SCB. The first one was the coefficient of variation (CV) used to quantify
the spatial disparity of PM2.5 concentration between 18 cities [12]. The CV was defined
as CV = σ/Cm, in which σ and Cm were the standard deviation and the average of PM2.5
concentrations in 18 cities, respectively. During a certain period, the CV represented how
uniformly the PM2.5 concentration distributed in the cities of SCB. Smaller CV indicated
more obvious regional characteristics of PM2.5 pollution. The CV can characterize the
variations in PM2.5 homogeneity but cannot reveal how these variations evolved. Hence,
the relative spatial anomalies (RA) of average PM2.5 concentration for each city were used.
RA for a certain city was calculated by RA = (Ci−Cm)/Cm, in which Ci and Cm were
average PM2.5 concentration in this city and all cities, respectively. Therefore, larger RA
meant relatively higher PM2.5 concentration in the relevant city compared to other cities.
The inter-annual variation in CVs could provide the change in PM2.5 spatial disparity and
the RAs could better show the spatial distribution of PM2.5 varying trend.

2.3. ERA5 Reanalysis Data and Objective Synoptic Classification

ERA5 dataset contains the fifth-generation atmospheric reanalysis data released by
the European Center for Medium-Range Weather Forecasting (ECMWF). These data were
obtained based on the 4D-Var data assimilation and model prediction of CY41R2 in the
Integrated Forecasting System (IFS). Compared with its previous generation, namely ERA-
interim, the horizontal and vertical resolutions of ERA5 were significantly improved,
and the performance of ERA5 was better in the evaluation of tropospheric temperature,
wind and humidity. Since the first release, ERA5 was widely used in research fields of
atmospheric sciences, environmental issues [33–36], etc. ERA5 data at both upper-level
isobaric surfaces and several single levels from December 1st 2015 to November 30th
2019 were collected. The data at 850 hPa, including potential height, relative humidity,
temperature, vertical velocity and horizontal wind speed and direction, were used in this
study. Besides, data at single levels, including surface pressure, 2 m temperature, 10 m
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horizontal wind speed and direction at ground level and PBLH, were used too. The data in
full horizontal resolution (0.25◦ × 0.25◦) and temporal resolution (1 h) were used.

The synoptic classification was conducted to explore the possible meteorological
causes of the variation in PM2.5 spatial distribution. Synoptic classification could be carried
out by subjective and objective methods, among which the subjective methods were mainly
based on artificially defined a priori criteria and had great uncertainties [37]. On the
contrary, objective methods were based on the maximization of similarity and variance;
hence, these methods were appropriate for processing mass data without relying on a priori
experiences [38]. The Cost733class package, a software jointly developed by Earth System
Science and Environmental Management (ESSEM) and European Cooperation in Science
and Technology (COST), focused on creating and evaluating weather and circulation-
type classifications utilizing various different methods, including PCT (t-mode principal
component analysis using oblique rotation), PTT (t-mode principal component analysis
using orthogonal rotation), SOM (self-organizing maps) [39,40], etc. In this study, the PTT
method was used to classify the synoptic patterns in SCB and its surrounding areas.
The input data were the daily average geopotential heights at 850 hPa isobaric surface from
ERA5 reanalysis data of ECMWF with a spatial resolution of 0.25◦ × 0.25◦. The region
implementing the synoptic classification was the area in 95◦ E~120◦ E and 20◦ N~40◦ N
(Figure 1).

3. Results and Discussion

3.1. Variations in PM2.5 Spatial Disparity

The CVs of annual and seasonal PM2.5 concentrations are shown in Figure 2. The an-
nual CVs showed a general decreasing trend from 2016 to 2019, except for slightly rebound-
ing in 2017. This indicated that the differences in annual PM2.5 concentrations between
18 cities in SCB were narrowing. Similar variation trends were observed in other regions
in China, such as North China Plain [41] and Northeastern China [42]. From the seasonal
perspective, the CVs were the largest in summer among the four seasons, followed by
spring and winter. This was partly due to the low average concentrations in summer
(Table 1). The CVs in spring and summer decreased gradually from 2016 to 2019. The CV
was 0.16 in the winter of 2016, but increased to 0.21 in 2017 and then gradually decreased to
0.13 in 2019. The spatial disparity varied more obviously in autumn than in other seasons.
In the autumn of 2016 and 2017, the CVs were 0.25 and 0.26, respectively, and decreased to
around 0.16 in 2018 and 2019. The smallest CV in 2018 was 38% lower than the largest value
in 2017. In general, the spatial disparity of PM2.5 concentration in SCB decreased from 2016
to 2019, whether in terms of annual or seasonal average PM2.5 concentrations. In addition,
it is worth noting that the CVs of the wintertime average PM2.5 concentration were close
to those of annual averages. This revealed that the variation in PM2.5 distribution was
dominated by wintertime PM2.5 distribution in SCB.

Table 1. The annual and seasonal averages and standard deviations of PM2.5 concentrations (μg/m3)
in SCB from 2016 to 2019.

Year Annual Winter Spring Summer Autumn

2016 51 ± 10 74 ± 12 51 ± 11 31 ± 8 48 ± 11
2017 46 ± 10 85 ± 18 41 ± 9 27 ± 6 35 ± 9
2018 46 ± 8 76 ± 14 42 ± 8 24 ± 5 37 ± 6
2019 41 ± 6 69 ± 9 41 ± 7 24 ± 4 32 ± 5

To explore the in-depth details about the variations in PM2.5 spatial disparity in SCB,
the PM2.5 concentrations of 18 cities in SCB at annual and seasonal scales from 2016 to
2019 are shown in Figure 3. From the perspective of annual average PM2.5 concentrations,
a rapid PM2.5 concentration decrease of 23 μg/m3, 15 μg/m3, 18 μg/m3 and 20 μg/m3

from 2016 to 2019 was observed in ZG, CD, LZ and MS, the most polluted cities in SCB.
The PM2.5 concentrations of moderately polluted cities decreased more slowly. For example,
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the concentrations of CQ fell by 12 μg/m3 during these four years. However, the PM2.5
concentrations in GY and BZ, representing relatively lightly polluted cities, showed an
increasing trend of 4 μg/m3 and 1 μg/m3, respectively. Hence, the decrease in PM2.5
concentrations in severely polluted cities and the maintaining (even increasing) of concen-
trations in moderately and lightly polluted cities together made the spatial disparity of
PM2.5 concentration gradually decrease in SCB.

Figure 2. The CVs of annual and seasonal average concentrations of PM2.5 in SCB from 2016 to 2019.

The inter-annual variations in wintertime PM2.5 concentrations presented a similar
trend to the annual concentrations from 2017 to 2019, except before 2017. The PM2.5 con-
centrations in most cities increased from 2016 to 2017 and severely polluted cities showed a
larger increase. The rising amount was 18 μg/m3, 29 μg/m3 and 19 μg/m3 in ZG, CD and
MS, respectively. In the representative cities of moderately polluted cities, CQ, and lightly
polluted cities, GY increased by 7 μg/m3 and decreased by 3 μg/m3, respectively. As a
result, the range of concentrations in 18 cities became wider and wintertime CV increased
significantly in 2017. From then to 2019, PM2.5 concentrations in ZG, CD and MS decreased
significantly, by 40 μg/m3, 39 μg/m3 and 39 μg/m3, respectively. The concentration in CQ
decreased only by 12 μg/m3 and the concentrations in GY and BZ rose by 5 μg/m3 and 2
μg/m3, respectively.

The inter-annual variations in PM2.5 concentrations in spring and summer were consis-
tent with the annual trend. In autumn, the concentrations decreased in all cities at a similar
rate from 2016 to 2017. However, much more obvious increasing trends were observed in
moderately and lightly polluted cities from 2017 to 2018. The autumntime PM2.5 concen-
trations in BZ, GA, and GY increased by more than 10 μg/m3. Even the concentrations in
CQ increased slightly as well. The reductions in autumntime concentrations in severely
polluted cities, such as ZG, LZ and MS, were smaller than those in other seasons. This led
to a significant reduction in spatial disparity in autumn of 2018 in SCB. From 2018 to 2019,
the autumntime concentrations in most cities decreased at similar rates, hence, the spatial
disparity remained stable, as shown in Figure 2.
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Figure 3. Inter-annual variations in (a) annual, (b) wintertime, (c) springtime, (d) summertime and
(e) autumntime average PM2.5 concentrations of 18 cities in SCB from 2016 to 2019.

3.2. Variations in PM2.5 Spatial Distribution

The spatial distribution of RAs in annual average concentrations can be found in
Figure 4. In 2016, the PM2.5 concentrations of most cities in the western (CD, MS and LS)
and south parts (ZG, YB and LZ) of SCB were highest, inferred from the distribution of
positive RAs in these areas. The RAs of cities in the northeast part of SCB were slightly
positive (DZ and NC) or negative (GY, BZ, GA), revealing relatively lower concentrations
in this area. In 2017, in total, 10 cities held positive RAs, among which 9 cities were located
in the western and southern parts of SCB, except DZ in the northeast part, including CD,
DY, MY, MS, YA, LS, ZG, YB and LZ. Moreover, the RAs of these cities were higher than
those in 2016, resulting in larger spatial disparity in annual average concentrations in
2017, as shown in Figure 2. In 2018 and 2019, cities with positive RAs were distributed
in the south (ZG, YB and LS), the northwest (CD, DY and MY) and the northeast (DZ
and NC) parts of SCB. Another feature was that the RA in MS (LZ) decreased (increased)
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significantly from 2018 to 2019. The variations in RA distribution further suggested that
spatial disparity of annual average PM2.5 concentrations was declining in SCB because
the maximum RA decreased from 2016 to 2019 and the variations in RAs showed obvious
regional characteristics, decreasing in the western and southern basin and increasing in the
northern basin.

Figure 4. The distribution of RAs in annual and seasonal average PM2.5 concentrations from 2016 to
2019 in SCB.

Generally, the variation features of RAs in seasonal average PM2.5 concentrations
were coincident with those of the annual averages. In winter, the RAs in the western and
southern parts of SCB were much higher than those in other parts and kept decreasing
from 2016 to 2019. The lowest RAs were found in the northern part of SCB, such as GY and
BZ and the RAs in this area increased significantly from 2016 to 2019, especially in 2019.
In spring and autumn, the RAs in GY and BZ increased more significantly than in winter,
while the RAs in the western and southern parts of SCB were decreasing. In summer,
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the RA in CQ was higher than that in other seasons, and the RAs in the northern part of
SCB maintained the values in other seasons.

In summary, the spatial disparity of PM2.5 concentrations of 18 cities in SCB narrowed
and the variations in concentrations showed prominent regional characteristics, namely
decreasing in the western and southern basin, maintaining in the central and eastern basin,
and slightly increasing in the northern basin. These regional characteristics suggested
that the meteorological conditions might be important causes, especially the increase in
concentrations in the northern basin, despite strict emission control measures. Therefore,
in the next section, the synoptic patterns were identified and their impacts on the distri-
bution of atmospheric diffusion conditions were analyzed, aiming to explain the regional
maintaining or increasing trends of PM2.5 concentration in the northeastern basin.

3.3. Synoptic Patterns and Their Impacts on PM2.5 Spatial Distribution

3.3.1. Identified Synoptic Patterns

By implementing the PTT classification method, the synoptic patterns in SCB and the
surrounding area were classified into nine types in total, according to the daily average
geopotential heights at 850 hPa, from 1 December 2015 to 30 November 2019. Among these
patterns, the last three types occurred in less than 10 days and the first six types occurred
in more than 98.8% of the days accumulatively. Hence, only the first six patterns were
analyzed in this study, and their occurring days are shown in Table 2.

Table 2. The occurring days of 6 synoptic patterns in four seasons from 2016 to 2019.

Type Season 2016 2017 2018 2019 Type Season 2016 2017 2018 2019

Type 1

Winter 22 33 21 28

Type 2

Winter 17 16 22 9
Spring 40 35 36 26 Spring 17 23 28 28

Summer 30 38 29 22 Summer 18 15 9 16
Autumn 17 18 18 19 Autumn 14 19 24 11

Type 3

Winter 42 31 38 20

Type 4

Winter 0 0 0 1
Spring 9 17 5 16 Spring 5 1 5 4

Summer 1 2 0 0 Summer 27 16 41 26
Autumn 15 18 21 17 Autumn 37 25 18 36

Type 5

Winter 5 1 4 6

Type 6

Winter 5 9 5 26
Spring 18 16 15 15 Spring 3 0 3 2

Summer 14 18 12 23 Summer 0 0 0 0
Autumn 7 7 7 4 Autumn 1 1 2 2

The first synoptic pattern occurred in 432 days, out of 1443 days in total, which was
much more than other types. The occurring days of Types 2–6 were 286, 252, 242, 172 and
59 days, respectively. Seasonally, Type 1 and Type 2 almost evenly occurred throughout
the four seasons. The occurrence frequencies of Type 3 were highest in winter, followed
by autumn and spring, but only occurred on 3 days in summer. On the contrary, the
occurrence frequencies of Type 4 were relatively higher in summer and autumn, and close
to zero in winter and autumn. Type 5 occurred more frequently in spring and summer than
the other two seasons, while Type 6 almost occurred only in winter. Therefore, we mainly
discussed Type 1, Type 2, Type 3 and Type 6 in winter, Type 1, Type 2, Type 3 and Type 5 in
spring, Type 1, Type 2, Type 4 and Type 5 in summer, and Type 1, Type 2, Type 3 and Type
4 in autumn.

The spatial distribution characteristics of 850 hPa potential heights for six synoptic
patterns are shown in Figure 5. In Type 1, the SCB was controlled by a weak low-pressure
system, noted as weak low-pressure type. When Type 2 occurred, the SCB was under the
control of a weak high-pressure system and uniform pressure fields (weak high-uniform-
pressure type). In Type 3, there was a strong high-pressure center to the north of SCB, noted
as northern high-pressure type. Type 4 could be summarized as eastern weak high-pressure
type for the existence of a weak high-pressure center to the east of SCB. Similarly, Type
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5 could be named as southwestern weak low-pressure type for the existence of a weak
low-pressure center to the southwest. Type 6 was also characterized with the control of
a weak low-pressure system, just as Type 1, but collocating a high-pressure system to the
north of SCB, noted as weak low-pressure with northern high-pressure type.

Figure 5. The distribution of geopotential heights at 850 hPa (white isolines) and the horizontal wind
fields at 850 hPa (colored shadings and black vectors) for the six synoptic patterns in SCB.

Figure 5 presents the wind fields at 850 hPa for the six synoptic patterns in SCB. In
Type 1, the regions to the east of SCB prevailed southerly winds. Air masses originated in
southern China, such as Guangxi and Guangdong provinces, and entered the SCB through
the southeastern edge of the basin (the south part of CQ). This air flows towards the north
through the central and eastern basin, and turns west in the western basin. Affected by
the topography, the wind speeds in the western basin were relatively low. In Type 2,
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the uniform pressure fields led to extremely calm winds in the basin. The northeast part
of the basin was controlled by the westerly or northwesterly air flows. Type 3 presented
prevailing strong northerly winds in the areas to the east of SCB. These strong northerly
winds entered SCB through the high mountains in the north and caused a relatively strong
wind zone in the northern basin and western basin. The cyclonic circulation converged
in the southeastern basin and led to a calm wind zone there. In Type 4, easterly winds
invaded SCB through the eastern part of the basin area and turned south in the western
part of the basin. This circulation pattern made the wind velocity in the southern part of
the basin extremely low. In Type 5, although southerly winds prevailed in the area to the
southeast of SCB, the air masses from the south could not cross over the mountains in the
southeastern edge of the basin. Hence, the basin was mainly affected by the northerly air
flows and created similar circulations as Type 3. The circulation features in Type 6 were
similar to those in Type 5 but the wind speeds were relatively lower.

3.3.2. The Impacts of Synoptic Patterns on PM2.5 Spatial Distribution

Figure 6 shows the average PM2.5 concentrations and their CVs in SCB for six synoptic
patterns. The PM2.5 concentrations of different synoptic patterns were almost the same in
summer, around 26 μg/m3. In other three seasons, the concentrations of Type 1 and Type 2
were relatively higher than those of Type 3. In winter, PM2.5 concentrations exceeded
80 μg/m3 in Type 1 and Type 2 and only 64 μg/m3 in Type 3. The PM2.5 concentrations of
Type 1, Type 2 and Type 3 were 50μg/m3, 43μg/m3 and 36μg/m3 in spring, and 44 μg/m3,
45 μg/m3 and 33 μg/m3 in autumn, respectively. In addition, the concentration of Type 6
also exceeded 80 μg/m3 in winter and the concentrations of Type 5 in spring and Type 4 in
autumn were relatively low, about 38 μg/m3 and 32 μg/m3, respectively. Therefore, Type 1,
Type 2 and Type 6 were more conducive to the formation of PM2.5 pollution, and the air
quality was relatively better in Type 3, Type 4 and Type 5. From the perspective of the
spatial disparity, the largest CVs were 0.18 (in Type 2), 0.20 (in Type 5), 0.21 (in Type 4) and
0.22 (in Type 1) in winter, spring, summer and autumn, respectively. This indicated that the
CVs were not related to concentrations.

Figure 6. Seasonal average PM2.5 concentrations and their CVs for six synoptic patterns in SCB.
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The spatial distribution of RAs in four seasons for different synoptic patterns is shown
in Figure 7. In winter, the distribution of RAs for Type 1, Type 3 and Type 6 was consistent to
the average feature, as shown in Figure 4. However, in Type 2, the RAs in the northwestern
basin (CD, DY and MY) were higher than those in the southern basin and the RA in GY
showed a relatively low value compared with the other types. The ranges in wintertime
RAs were relatively large in Type 2 and small in Type 6. In spring, Type 1 and Type 5
presented more prominent regional characteristics, with higher (lower) RAs in the western
and southern (northern) basin. Comparatively, Type 2 and Type 3 showed relatively higher
RAs in the northern basin and lower RAs in the western and southern basin. The largest
and smallest variation ranges of RAs occurred in Type 5 and Type 2, respectively. In
summer, Type 1 showed a similar RA distribution to Type 1 in spring. Type 2 presented
a distinct distribution feature with lower RAs in the southern basin and higher RAs in
the eastern and northeastern basin. The RA was only 0.08 in ZG and actually negative
in YB and LS. The highest RAs were distributed in CQ, DZ and NC. Type 4 and Type 5
showed similar RA distribution characteristics but with higher (lower) RAs in the southern
(northern) basin compared with Type 2. In autumn, the RA distribution feature of Type 1
was similar to that of Type 5 in spring, and the distribution features of Type 3 and Type 4
were similar to that of Type 5 in summer. Type 2 showed a different distribution. The RA
of ZG was the largest, exceeding 0.40, but the RAs of other southern cities were lower than
0.10. RAs in the western basin were larger than the remaining regions, but the difference
was small compared with other types in autumn.

Figure 7. The distribution of RAs of seasonal average PM2.5 concentrations for different synoptic
patterns in SCB.

3.3.3. The Mechanisms of the Impacts of Synoptic Patterns on PM2.5 Spatial Distribution

PBLH and horizontal wind were key meteorological factors to measure the vertical
and horizontal diffusion ability of air pollutants [43]. Hence, the PBLH and 10 m wind
fields over SCB in four seasons were extracted from ERA5 reanalysis data and these
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fields for different synoptic patterns are presented in Figures 8–11. In winter (Figure 8),
the main meteorological feature was the relatively high PBLH area covering the central
basin, including the eastern parts of MY, DY, CD and MS, the western parts of ZY and
SN, and the southern part of GY. The covering regions and PBLH values, collocating
with horizontal wind fields and emissions, determined the distribution of PM2.5. Type 3
presented the highest PBLH and strongest winds, and correspondingly, the average PM2.5
concentration was the lowest. In Type 2, the low PBLH and calm winds were conducive
to the accumulation of pollutants. Hence, the distribution of emissions was the dominant
factor influencing PM2.5 distribution, which made the RAs vary in relatively larger ranges
in Type 2. In Type 1 and Type 6, the regions with massive emissions, such as the western
and southern basin, were controlled by the high-PBLH area and relatively strong winds.
This made the diffusion condition in higher emission areas better than other areas. As a
result, the spatial disparity of PM2.5 concentrations in Type 1 and Type 6 was lower.

In spring, the PBLH in the basin was significantly higher than those in winter. Hence,
the wind-induced transportation of air pollutants might be the main factor determining
PM2.5 distribution. In Type 5 and Type 3, northerly winds invaded the basin from GY, BZ
and DZ, blew straight southwards and converged in the southern and southeastern basin.
This flow field could transport air pollutants to the south and aggravate the pollution in
the southern basin. Meanwhile, the downwind regions confronted low-PBLH conditions.
Consequently, these factors led to the relatively high RAs in the southern basin. In Type
2, the wind speeds were the lowest and pollutant transport was limited. Additionally,
the relatively high PBLH in the western and southern basin promoted the diffusion of
pollutants in massive emission areas. Therefore, the difference in PM2.5 concentrations in
SCB was relatively low. The winds in Type 1 blew from east to west and turned south near
the western edge of the basin, which caused higher RAs in the western and southern basin.

Figure 8. The PBLH and 10 m wind fields of different synoptic patterns in winter.

In summer, the wind fields were also the dominant factors influencing PM2.5 distri-
bution because of the relatively uniformly distributed PBLH. Similar wind fields were
observed in Type 1 compared to those of Type 1 in spring, and resulted in higher RAs in the
western and southern basin. The weak southerly winds prevailed in Type 2, with relatively
larger velocities in the northeastern basin (CD, DY and MY) and the low PBLH controlled
the eastern and southern basin. These made the higher RAs distribute in the northeastern
basin (CD, DY, MY) and eastern basin (DZ and CQ). Type 4 and Type 5 presented similar
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cyclonic circulation in SCB, which led to calm winds in the southern and eastern basin and
resulted in higher RAs in these regions. Furthermore, the air masses from north entered
SCB through western pathways and the northerly winds in the western basin were stronger
in Type 5. Hence, the RAs in the western basin were lower in Type 5 than those in Type 4.

Figure 9. The PBLH and 10 m wind fields of different synoptic patterns in spring.

Figure 10. The PBLH and 10 m wind fields of different synoptic patterns in summer.

The wind fields were the dominant factors in autumn due to the relatively low and
uniformly distributed PBLH. In Type 1, easterly winds invaded SCB from the northeast
basin corner and caused prevailing northwesterly winds in the basin. The transport of air
pollutants caused the relatively higher RAs in the western and southern basin. Extreme
stagnation conditions occurred in Type 2 and made the high RAs distribute in massive
emission areas. Type 3 and Type 4 presented similar northerly invasion air flows and
caused cyclonic circulation, converging in the eastern basin. The pollutant transport and
calm-wind-induced stagnation led the higher RAs in the southern basin and eastern basin,
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respectively. The relatively stronger winds in Type 4 more thoroughly transported the
pollutants to the downwind areas, so lower RAs were observed in LS and YB compared
with those in Type 3.

Figure 11. The PBLH and 10 m wind fields of different synoptic patterns in autumn.

3.3.4. The Synoptic Causes of PM2.5 Distribution Variations

From previous analysis, we could conclude that the spatial disparity of PM2.5 concen-
tration was gradually decreasing in SCB and presented prominent regional characteristics
of declining in the western and southern basin, maintaining in other regions and even
increasing in the northern and northeastern basin. In this section, possible synoptic causes
of this phenomenon are analyzed. Because the PM2.5 concentrations in summer were
relatively low (Figure 6) and the occurrence frequencies of identified summertime synoptic
patterns varied slightly, except in Type 1, as shown in Table 2, the synoptic causes in
summer were not analyzed.

In winter, the two synoptic patterns with the two largest CVs, Type 2 and Type 3,
occurred in declining frequencies. As shown in Table 2, the occurrence days of Type 2 and
Type 3 decreased from 17 days and 42 days to 9 days and 20 days, respectively, during
2016–2019. On the contrary, the synoptic patterns with the smallest CV (Type 6) occurred
more frequently, from 5 days to 26 days. Along with the metric of CV, the average PM2.5
concentration in the northern basin (GY, BZ, NC and DZ) was largest in Type 6, reaching
79 μg/m3, and smallest in Type 3, only 58 μg/m3. Therefore, the growth in Type 6 and the
reduction in Type 3 and Type 2 could be the reasons for the decrease in spatial disparity in
SCB and the increase in RAs in the northern basin in winter.

In spring, the synoptic patterns with higher CVs, Type 5 and Type 1, were increasing
and the synoptic patterns with lower CVs, Type 3 and Type 2, were decreasing. Type 1
occurred in 40 days in 2016 and 26 days in 2019. The occurrence days slightly declined from
18 days to 15 days, while Type 2 and Type 3 grew from 17 days and 9 days to 28 days and
16 days, respectively. Specifically, the RAs in the northern basin (NC, DZ and BZ) for Type 2
and Type 3 were relatively larger than those for Type 1 and Type 5. Hence, the reduction in
Type 1 and Type 5 and the growth in Type 2 and Type 3 could reduce the spatial disparity
of PM2.5 in SCB, and explain the increasing RAs in the northern basin in spring.

In autumn, the occurrence frequencies of all synoptic patterns in 2019 remained almost
the same as those in 2016. This was consistent with the fact that the distribution in RAs
varied slightly, as shown in Figure 4. In detail, the difference in RAs between the western
and northern basin began narrowing from 2017. Correspondingly, Type 2, in which the
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RAs in the northwestern basin (CD, DY and MY) were higher than other cities, occurred in
more days, and Type 3 and Type 4, in which RAs in the northwestern basin were lower,
occurred in fewer days.

4. Conclusions

In this study, the spatial disparity of PM2.5 concentrations in SCB and its variation
characteristics were explored, and the possible synoptic causes of these variations were
analyzed. It was found that the spatial disparity of PM2.5 concentrations in SCB narrowed
from 2016 to 2019. This tendency towards conformity of PM2.5 distribution was the result
of a decreasing trend in cities with high concentrations, maintaining trend in cities with
moderate concentrations and increasing trend in cities with low concentrations. Spatially,
the main feature was that PM2.5 pollution was improved in the western and southern basin
and deteriorated in the northern basin, especially in GY and BZ.

The regional characteristics of PM2.5 distribution variations could be partly interpreted
by the occurrence frequencies of typical synoptic patterns, including weak low-pressure
type (Type 1), weak high-pressure system and uniform pressure fields (Type 2), northern
high-pressure type (Type 3), eastern weak high-pressure type (Type 4), southwest weak low-
pressure type (Type 5), and weak low-pressure with northern high-pressure type (Type 6).
Type 1, Type 2 and Type 6 were related to more polluted weather and Type 2, Type 3 and
Type 5 were linked to cleaner days. The synoptic patterns influenced the PM2.5 distribution
by modulating the diffusion conditions through PBLH and wind fields. The reduction in
Type 2 and Type 3 (Type 1 and Type 5) and the growth of Type 6 (Type 2) led to a decrease in
spatial disparity in winter (spring). Moreover, diffusion conditions (PBLH and wind) were
the most important meteorological conditions affecting PM2.5 concentration and spatial
distribution in SCB.

It was worth noting that the emission control measures were key factors that led to an
improvement in air quality, although the impacts of synoptic patterns were manifested in
this study. Specifically, the fact that PM2.5 concentration declined at a faster rate in more
polluted cities might be the result of easier and more effective emission reduction in these
areas. However, the regional maintaining, even rebounding, of PM2.5 concentration in the
northern and northeastern basin could not be easily explained by emission variation alone,
because a continuous reduction in emissions was expected, considering the implemented
policies. Hence, the results of this study provide rational interpretation to this extraordinary
trend on one hand. On the other hand, the fluctuation in PM2.5 concentration caused
by synoptic circulation implied that the emissions in these areas might be close to the
atmospheric capacity already. Implementing more precise and effective emission control
measures is urgent to continuously improve the air quality.
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Abstract: This study systematically investigated the pollution characteristics of atmospheric O3

and PM2.5, regional transport, and their health risks in three provincial capitals in northeast China
during 2016–2020. The results show that O3 concentrations showed a trend of high summer and low
winter, while PM2.5 concentrations showed a trend of high winter and low summer during these five
years. The results of the correlation analysis indicate that external sources contribute more O3, while
PM2.5 is more from local sources. The backward trajectory clustering analysis results showed that
Changchun had the highest share of northwest trajectory with a five-year average value of 67.89%,
and the city with the highest percentage of southwest trajectory was Shenyang with a five-year
average value of 23.95%. The backward trajectory clustering analysis results showed that the share of
the northwest trajectory decreased and the share of the southwest trajectory increased for all three
cities in 2020 compared to 2016. The results of the potential source contribution function (PSCF)
and concentration weighting trajectory (CWT) analysis showed that the main potential source areas
and high concentration contribution areas for PM2.5 in the northeast were concentrated in Mongolia,
Inner Mongolia, Shandong Province, and the northeast, and for O3 were mainly located in Shandong,
Anhui, and Jiangsu Provinces, and the Yellow Sea and Bohai Sea. The non-carcinogenic risk of PM2.5

in Harbin was high with a HQ of 2.04, while the other cities were at acceptable levels (HQ < 0.69) and
the non-carcinogenic risk of O3 was acceptable in all three cities (HQ < 0.22). However, PM2.5 had a
high carcinogenic risk (4 × 10−4 < CR < 0.44) and further treatment is needed to reduce the risk.

Keywords: PM2.5; ozone; cluster analysis; health risk

1. Introduction

With the rapid economic growth and urbanization in China and the world, there is
a growing concern in the international community and in China about the relationship
between air pollution and public health [1]. Long-term exposure to PM2.5 and O3 can
lead to cardiovascular disease [2], ophthalmic disease [3], and premature birth [4]. The
combination of chronic and acute exposures leads to a high global and regional burden of
mortality and morbidity [5–7]. The research by Edlund et al. [8] showed that air pollution
is the biggest environmental contributor to disease, with a disproportionate impact on
low and middle income countries. Furthermore, high levels of PM2.5 in the outdoor
environment can also be exposure to indoors, affecting the health of people who are
exposed to indoor rest and work for long periods of time [9]. Thus, both PM2.5 and O3
have attracted widespread public and scientific attention.

To improve air quality in China, in 2013, the Chinese State Council issued the Air Pol-
lution Prevention and Control Action Plan (APPCAP) to reduce the number of PM2.5 and
associated haze days. Through the implementation of the APPCAP measures, PM2.5 con-
centrations have decreased significantly across the country since 2013. The improvement
in air quality was reported by Yue et al. [10] and was mainly associated with strengthening
industrial emission standards, upgrading industrial boilers, phasing out obsolete indus-
trial capacity, and promoting cleaner fuels in the residential sector. A decrease in NOx
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and SO2 accompanied the reduction in PM2.5. However, O3 concentrations showed an
increasing trend. Fan et al. [11] found that the daily average maximum concentration of O3
(MDA8-O3) in summer increased from 91.6 μg/m3 in 2015 to 103.1 μg/m3 in 2018, with
an annual growth rate of 4.4 μg/m3. The annual average PM2.5 concentrations in 2017 in
key city groups such as Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta
compared to 2013 decreased by 39.6%, 34.3%, and 27.7%, respectively, but the 90% quantile
of the maximum ozone 8-h sliding average (MDA8-O3) instead increased by 19.1%, 10.4%,
and 5.8%, respectively, compared to 2013 [12–15]. The increase in ozone has triggered a
discussion among scholars about the synergistic management of O3 and PM2.5, and it is
necessary and correct to study O3 and PM2.5 under the same perspective. In this study, for
the 2016–2020 O3 and PM2.5 pollution phenomena in three provincial capitals in northeast
China, we used time series, meteorological factor analysis, and correlation analysis to
characterize the pollutants’ pollution characteristics. Various methods based on backward
trajectories including trajectory clustering, potential source contribution functions (PSCF),
and concentration weight trajectories (CWT) were used to analyze the regional transport
trends of pollutants. Health risks were assessed using methods recommended by the
United States Environmental Protection Agency (USEPA).

2. Materials and Methods

2.1. Study Area and Data Selection

Northeast China spans the middle temperate and cold temperate zones from south to
north, and has a temperate monsoon climate with four distinct seasons, warm and rainy
in summer and cold and dry in winter. From the southeast to the northwest, the annual
precipitation drops from 1000 mm to less than 300 mm, transitioning from the humid and
semi-humid zones to the semi-arid zone.

Considering the meteorological conditions and the current urban development sit-
uation in northeast China, three typical large cities in northeast China were selected as
the subjects of this study. A total of 27 automatic air quality monitoring stations in the
above three cities were selected for this study, as shown in Figure 1, and the hourly PM2.5
and O3 concentration data for 2016–2020 were obtained from the China Environmental
Quality Monitoring Platform, with 10 stations selected in Harbin, nine in Changchun, and
eight in Shenyang (https://www.aqistudy.cn/historydata/) (accessed on 25 June 2021)
The meteorological data were obtained from city stations in each city and are available on
the China Meteorological Data Network (http://data.cma.cn/) (accessed on 16 June 2021).

2.2. Backward Trajectory Clustering Analysis

This study used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajec-
tory) model developed by the National Oceanic Atmospheric Center (NOAA) and the
Australian Bureau of Meteorology (BOM) (http://ready.arl.noaa.gov/HYSPLIT.php) (ac-
cessed on 21 June 2021) simulates the 72 h backward trajectory at 500 m height in the
central city of three provincial capitals to analyze the atmospheric pollutant transport and
dispersion trajectory, and other scholars have also conducted similar studies using this
model in different areas [16–18].

To facilitate the analysis of pollutant migration paths, we used the stepwise cluster
analysis (SCA) algorithm to cluster the backward trajectories with some optimization [19,20].
The clustering analysis process is shown by Equations (1)–(3):

D =

√
∑

t
j=0 d2

j (1)

SPVAR =∑
X
i=1 ∑

t
j=0 D2

ij (2)

TSV =∑ SPVAR (3)
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Figure 1. Geographical location and site distribution in the study area.

In the above equation, i is the number of trajectories; j is the number of passing points;
t is the movement time of airflow; dj is the distance between the jth point of two trajectories;
X is the number of trajectories in the cluster; D is the distance between trajectories, so Dij
indicates the distance from the jth passing point in the ith trajectory to the corresponding
point on the average trajectory; SPVAR is the spatial variation of each group of trajectories;
and TSV is the total spatial variation. The stepwise cluster analysis method can group the
adjacent points into one category in a large number of statistical samples, and then select
the trajectories with higher similarity for classification. The more classifications, the closer
the situation is to the real situation, and the smaller the error of the results.

Cluster analysis was performed on 8760 or 8784 trajectories for each year throughout
the study period to identify the transport pathways of pollutants in different periods. In
this study, the clustering was set to result in eight trajectories.

2.3. Potential Source Contribution Function (PSCF) and Concentration Weighting Trajectory
(CWT) Analysis

2.3.1. PSCF Analysis

In this study, PSCF analysis was used to locate the pollution sources. The weighting
factor Wij used in this study reduced the uncertainty of the PSCF results, called WPSCF,
and analyzed the potential source contribution areas of PM2.5 and O3 in the capital cities of
northeast China for the years 2016–2020 overall and for single years 2016 and 2020 [21]. In
order to calculate the PSCF, the area through which the trajectory passes should first be
gridded, and the grid resolution was set to 0.5 × 0.5 in this study [22,23].

For the PSCF analysis of trajectories, we combined the pollution of PM2.5 and O3
in northeast China to mark trajectories with O3 concentrations more significant than the
75th percentile and PM2.5 concentrations greater than 75 μg/m3 as exceedance trajectories,
where the PM2.5 limit value was the limit value of the secondary standard of the National
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Ambient Air Quality Standard (NAAQS) set by the Ministry of Ecology and Environment
of China. A weighting factor Wij was introduced. Its value will depend on the relationship
between the sum of the transmission time of all trajectories in a particular grid and the
average residence time of each grid. In this study, Wij is expressed by Equation (4):

Wij =

⎧⎪⎪⎨
⎪⎪⎩

1.0 nij > 90
0.8 30 < nij ≤ 90
0.45 20 < nij ≤ 30
0.10 0 < nij ≤ 20

(4)

2.3.2. CWT Analysis

The CWT method can quantify the concentration contribution level of external trans-
port by taking the average value of the concentration of samples corresponding to all
trajectories passing through a single grid during the study period [24]. The CWT anal-
ysis method can obtain the difference in the pollution level of contaminated trajectories
by calculating the weighted degree. In the CWT analysis method, each grid point is as-
signed a degree of weight. By introducing the same numerical correction from Wij in the
PSCF method, the weighted average concentration value (WCWT value) can be used to
distinguish the source intensity of potential sources [25,26].

A higher WCWT value in the grid indicates that the air mass passing through the grid
results in a high receiving point concentration, and the area corresponding to this grid
can be considered as a potential area of high concentration contribution to the external
transport of pollutants from the receiving area.

2.4. Health Risk Assessment

In this study, health risks associated with O3 and PM2.5 via the inhalation route were
calculated according to the recommended methods of the U.S. EPA and previously reported
studies [27,28]. Exposure concentrations (EC) of O3 and PM2.5 were calculated according
to Equation (5).

EC = (CA × EF × ET × ED)/AT (5)

In this expression, CA is the concentration of O3 and PM2.5; ET is the exposure
time (3 h/day); EF is the exposure frequency (300 d/year); ED is the exposure dura-
tion (25 years); and AT is the average time (non-carcinogenic risk: ED × 365 d/year ×
24 h/day, carcinogenic risk: 70 years × 365 d/year × 24 h/day). The hazard quotient
(HQ) method was used to estimate the non-carcinogenic risk. The carcinogenic risk CR
was calculated from the Inhalation Unit Risk (IUR). The HQ and CRs are expressed by
Equations (6) and (7).

HQ = EC/REL (6)

CR = EC × IUR (7)

In the above equation, REL is the reference exposure level. According to the NAAQS,
the second upper limit standards for O3 and PM2.5 were 160 μg/m3 and 75 μg/m3, re-
spectively. The IUR value per μg/m3 of PM2.5 was 0.008 [29]. The non-carcinogenic and
carcinogenic risks of PM2.5 were calculated. In contrast, due to the lack of available data on
exposure parameters, only non-carcinogenic risks were determined for O3 exposure. An
HQ value less than 1 indicates no significant risk. A CR value less than 1 × 10−6 indicates
a negligible cancer risk, a CR value between 1 × 10−6 and 1 × 10−4 indicates a potential
cancer risk, and a CR value greater than 1 × 10−4 indicates a high potential cancer risk.

3. Results and Discussion

3.1. Pollution Characteristics of Major Cities in the Three Eastern Provinces

3.1.1. Annual Variation of PM2.5 and O3 Concentrations

As shown in Figure 2, the five–year time series of O3 and PM2.5 shows that, in general,
PM2.5 shows a high concentration in winter and a low concentration in summer in these five
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years, which is basically consistent with the results of other studies [30], mainly because
there is a heating period in northeast China, which generally reaches about five months,
so it shows a trend of high PM2.5 in roughly late October–early April [31,32]. The overall
trend of PM2.5 is high. For O3, concentrations are higher in the late spring, throughout the
summer, and early autumn in the three major cities in the northeast than in the winter, that
is, they are higher in May–September, mainly because of the high temperature in summer
and low temperature in winter, and O3 has a certain sensitivity to temperature [33]. It is also
noteworthy that in winter, all three cities experience pollution events with different degrees
of high concentrations, with Harbin having the highest frequency, with varying degrees of
high PM2.5 concentration days (>300 μg/m3) in each of the years 2016–2020, Changchun in
2020, and Shenyang without, with Harbin reaching a maximum daily average concentration
of 487.8 μg/m3, while Changchun reached a maximum of 508.4 μg/m3, which was the
highest value among the three cities, and Shenyang was 266.9 μg/m3.

Figure 2. Five-year time series of PM2.5 and O3 concentrations in the capital cities of northeast China ((a) Changchun;
(b) Shenyang; (c) Harbin. Red and blue lines are O3 and PM2.5 concentrations, respectively).

3.1.2. Relationship between Meteorological Factors and PM2.5 and O3

The distribution of PM2.5 and O3 in 2016–2020 in the three provincial capitals in
each wind direction is shown in Figure 3. The dominant wind direction in Changchun
and Harbin is southwest followed by northwest, and the dominant wind direction in
Shenyang is southward followed by northeast. The results show that one of the influential
factors causing pollution in the northeast region may be the transfer of pollutants from
other surrounding areas to the downwind region due to atmospheric flow, while higher
wind speeds on clean days may also serve to disperse pollutants, which may also reduce
pollutant concentrations in the northeast region [20].
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Figure 3. Distribution of PM2.5 and O3 concentrations in Changchun, Shenyang, and Harbin in each
wind direction.

As shown in Figure 4, the correlations between PM2.5 and O3 and other meteorological
factors were most significant in the studied cities. PM2.5 was positively correlated with
atmospheric pressure and relative humidity and negatively correlated with temperature
and wind speed in all cities. The highest correlation coefficients of PM2.5 with atmospheric
pressure and temperature were in Harbin, −0.36 and 0.28, respectively, and the highest
correlation coefficients with relative humidity and wind speed were in Shenyang, 0.1 and
−0.17, respectively. It is worth noting that PM2.5 was not significantly correlated with
wind direction, but O3 was negatively correlated with wind direction; this result indicates
that in the large cities in the northeast region, PM2.5 from regional transmission PM2.5
concentrations do not account for a high proportion, mostly from local sources, while O3 is
influenced by regional transport, which leads to an increase in local O3 concentrations.

Figure 4. Correlation between PM2.5 and O3 and each meteorological factor in the capital cities of
northeast China (p < 0.05).
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O3 is positively correlated with temperature and wind speed in each city and nega-
tively correlated with atmospheric pressure and relative humidity. The highest correlation
coefficients with temperature and atmospheric pressure were in Shenyang with 0.61 and
−0.49, respectively; relative humidity and wind direction in Harbin with −0.47 and −0.046,
respectively; and wind speed in Changchun with 0.46. Notably, the correlation results
of O3 and PM2.5 with each meteorological factor were the opposite, especially with wind
direction and wind speed. This indicates that external sources contribute more O3, while
PM2.5 is more from local sources.

3.2. Backward Trajectory-Based PSCF and CWT Analysis

3.2.1. Backward Trajectory Clustering Analysis

As shown in Figure 5, Changchun, Harbin, and Shenyang are all dominated by the
northwest direction trajectory, followed by the southwest direction, and the trajectory with
the longest transmission distance also tends to appear in the northwest direction. For
Changchun, the proportion of northwest trajectories was 77.43% in 2016, while it decreased
to 64.33% in 2020, while the proportion of southwest trajectories increased from 14.32% in
2016 to 27.94% in 2020. For Harbin, the northwest trajectory accounted for 64.34% in 2016,
while it decreased to 56.41% in 2020, and the southwest trajectory increased from 19.73% in
2016 to 23.11% in 2020. For Shenyang, the percentage of northwest trajectory was 65.91%
in 2016, while it dropped to 60.33% in 2020, and the percentage of southwest trajectory
increased from 22.79% in 2016 to 26.09% in 2020.

Figure 5. Backward trajectory clustering results for the northeast provincial capitals, 2016 and 2020
(trajectory simulation time interval was 1 h, simulation time was 72 h).

Overall, the city with the most northwest-oriented trajectory was Changchun, which
is located in the central part of the northeast region, with the Changbai Mountains in the
west, so the air masses transmitted from Russia and Japan in the east are small, while too
many mountains do not block Harbin and Shenyang, so the air masses transmitted in the
east share part of the percentage. The city with the most southwestern trajectories was
Shenyang, which is due to the different altitudes of the three cities. Shenyang, which has
the lowest latitude, was most strongly influenced by the southward Bohai anticyclone, so
the total percentage of trajectories was the highest, while Harbin, which has the highest
latitude, was the least influenced by the Bohai anticyclone, so the percentage of trajectories
was the lowest. It can also be found that compared with 2016, the trajectory share of the
southwest direction in all three cities increased in 2020, while the trajectory share of the
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northwest direction decreased, which was related to the annual meteorological conditions
in the year.

3.2.2. PSCF Analysis

As shown in Figure 6, the potential source areas for PM2.5 in Harbin were mainly in
Mongolia, Inner Mongolia, and Hebei in 2016, with the addition of Henan in 2020, and the
potential source areas in Changchun were mainly in Mongolia, Shandong, and Jiangsu in
2016, with Shandong and eastern Russia in 2020. The potential source areas of PM2.5 in
Shenyang were mainly located in Mongolia, Inner Mongolia, and Shanxi as well as the
border between Heilongjiang and Jilin and the East China Sea, which will be reduced to
Mongolia, Jilin Province and Heilongjiang Province in 2020. The above results show that
the northwestern countries and provinces are the main contributors to the external sources
of PM2.5 in these three large cities. The reason is that the dust aerosols from Mongolia,
Russia, and Inner Mongolia and the anthropogenic particulate emissions from the passing
areas arrive in northeastern China along with the northwestern winds, thus contributing to
a certain PM2.5 concentration, indicating that the long-distance transmission of particulate
matter is noteworthy.

Figure 6. Potential source areas of PM2.5 and O3 in the capital cities of northeast China.

The potential source areas of O3 in Harbin in 2016 were mainly distributed in Shan-
dong Province, Jiangsu Province, and the Yellow Sea and Bohai Sea, and remain unchanged
in 2020. The potential source areas of O3 in Changchun in 2016 were mainly distributed in
the same way as Harbin in 2016, and some areas in Anhui Province were added in 2020.
The potential source areas of O3 in Shenyang in 2016 were mainly distributed in Anhui,
Jiangsu, and the Yellow Sea and Bohai Sea, and remain unchanged in 2020. The distribution
of potential source areas for O3 in Shenyang in 2016 was mainly in Anhui, Jiangsu, and
the Yellow Sea and Bohai Sea, and remained the same in 2020. In summary, the potential
source areas of O3 in these three cities were generally concentrated in Shandong, Anhui,
Jiangsu, and the Yellow Sea and Bohai Sea, among which the WPSCF values were generally
higher in the Yangtze River Delta region, which emits NOx and VOC plus photochemical
pollution due to the developed shipbuilding industry, petrochemical industry, and industry,
which play an obvious role in promoting the generation of O3 and will further influence
the atmospheric oxidation through regional transmission. This affects the atmospheric
oxidation in the northeast, resulting in high WPSCF values in these areas. The O3 generated
from the refraction of sunlight by marine droplets in the Yellow Sea and Bohai Sea reaches
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the northeast region through regional transport, which is also the reason for the high
WPSCF values in the Yellow Sea and Bohai Sea region.

3.2.3. CWT Analysis

The CWT distribution characteristics of PM2.5 and O3 in the capital cities of northeast
China in 2016–2020 are shown in Figure 7. For PM2.5, in the results for Harbin, the high
contributing regions are mainly concentrated in Mongolia, Russia, and Inner Mongolia in
2016 and 2020. In Changchun’s results, the high contributing regions were concentrated
in Heilongjiang, Inner Mongolia, Shandong, and Hebei Provinces in 2016, and changed
to Russia, Mongolia, Jilin, and Shandong Provinces in 2020. For Shenyang, the high
contributing regions were concentrated in Russia, Mongolia, Inner Mongolia, Shanxi,
Hebei, and northeast China in 2016 and reduced to Shanxi and Hebei in 2020. For O3, in the
results for Harbin, the high contributing regions in 2016 were mainly in Shandong, Jiangsu,
and the Yellow and Bohai Seas, with the addition of Liaoning in 2020. For Changchun, the
high contributing regions were mainly located in Hebei, Shandong, and the Yellow and
Bohai Seas in 2016, with the addition of Jiangsu and Liaoning in 2020. In the results for
Shenyang, the high contributing areas were mainly located in Shandong, Jiangsu, Anhui,
and the Yellow Sea and Bohai Sea in 2016, and remain unchanged in 2020.

Figure 7. Results of CWT analysis of PM2.5 and O3 in the capital cities of northeast China.

In summary, it can be concluded that the PM2.5 concentrations contributed by neigh-
boring cities are essentially the contribution of local emissions in northeast China, while
long-range transport also contributes a high PM2.5 concentration. Compared with O3,
the concentration contribution of PM2.5 through regional transport comes more from the
northwest, which is consistent with the cluster analysis results. In contrast, O3 is more
influenced by air masses transmitted from the south, which also confirms that O3 pollution
south of northeastern China is serious and even affects the air quality in the north, as
pointed out by other studies [34].

3.3. Health Risk Assessment

The characteristics of potential non-carcinogenic risk hazard quotient (HQ) and car-
cinogenic risk (CR) for O3 and PM2.5 in Harbin, Shenyang, and Changchun are shown
in Figure 8 and Tables 1–3. At all sites, the HQ values of PM2.5 and O3 and the sum of
both were below the acceptable limit of 1.0 most of the time, indicating an acceptable
risk. However, at most stations in Harbin, the maximum value of HQ for PM2.5 was more
significant than 1, reaching a maximum of 2.044, indicating some non-carcinogenic risk
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on a few heavy pollution days. However, the CR values of PM2.5 were all greater than
1.0 × 10−4, which had a high carcinogenic risk. In other countries, the same results were
obtained by Othman et al. [26] in Selangor, Peninsular Malaysia, and in China, similar
results were obtained by Wang et al. [25] in Yancheng, Jiangsu, China.

Figure 8. Distribution of hazard quotient (HQ) values of PM2.5 and O3 with carcinogenic risk
(CR) values of PM2.5 at each monitoring station (S1–S27 are the numbers of automatic air quality
monitoring stations).

Table 1. Non-carcinogenic risks, estimated as HQ, and the carcinogenic risks, estimated as CR, from
exposure to O3 and PM2.5 in Shenyang.

Pollutants S1 S2 S3 S4 S5 S6 S7 S8

Non-carcinogenic risks

O3

Min 0.0011 0.0023 0.0027 0.0006 0.0018 0.0013 0.0018 0.0037
Max 0.1388 0.1391 0.1511 0.1493 0.1304 0.1392 0.1391 0.1535

Median 0.0340 0.0322 0.0354 0.0322 0.0342 0.0321 0.0308 0.0384
Mean 0.0365 0.0364 0.0386 0.0370 0.0384 0.0358 0.0358 0.0427

PM2.5

Min 0.0051 0.0056 0.0046 0.0043 0.0027 0.0026 0.0068 0.0041
Max 0.4353 0.4114 0.3349 0.3148 0.3755 0.4594 0.4357 0.3101

Median 0.0513 0.0521 0.0462 0.0472 0.0515 0.0478 0.0515 0.0504
Mean 0.0675 0.0659 0.0591 0.0614 0.0645 0.0629 0.0644 0.0621

Carcinogenic risks

PM2.5

Min 0.0011 0.0012 0.0010 0.0009 0.0006 0.0006 0.0015 0.0009
Max 0.0933 0.0882 0.0718 0.0675 0.0805 0.0984 0.0934 0.0665

Median 0.0110 0.0112 0.0099 0.0101 0.0110 0.0102 0.0110 0.0108
Mean 0.0145 0.0141 0.0127 0.0132 0.0138 0.0135 0.0138 0.0133
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Table 2. Non-carcinogenic risks, estimated as HQ, and the carcinogenic risks, estimated as CR, from
exposure to O3 and PM2.5 in Changchun.

Pollutants S9 S10 S11 S12 S13 S14 S15 S16 S17

Non-carcinogenic risks

O3

Min 0.0013 0.0044 0.0026 0.0010 0.0019 0.0013 0.0026 0.0046 0.0021
Max 0.1164 0.1156 0.1054 0.1277 0.1193 0.1312 0.1200 0.1235 0.1311

Median 0.0306 0.0317 0.0259 0.0334 0.0316 0.0411 0.0322 0.0350 0.0344
Mean 0.0337 0.0348 0.0286 0.0365 0.0344 0.0429 0.0354 0.0378 0.0380

PM2.5

Min 0.0048 0.0043 0.0040 0.0021 0.0038 0.0030 0.0024 0.0032 0.0028
Max 0.6070 0.4541 0.4771 0.5710 0.5801 0.6858 0.6086 0.5257 0.4754

Median 0.0450 0.0436 0.0440 0.0416 0.0390 0.0320 0.0416 0.0415 0.0412
Mean 0.0596 0.0586 0.0605 0.0573 0.0533 0.0446 0.0590 0.0577 0.0575

Carcinogenic risks

PM2.5

Min 0.0010 0.0009 0.0009 0.0004 0.0008 0.0007 0.0005 0.0007 0.0006
Max 0.1301 0.0973 0.1022 0.1224 0.1243 0.1470 0.1304 0.1126 0.1019

Median 0.0096 0.0094 0.0094 0.0089 0.0084 0.0068 0.0089 0.0089 0.0088
Mean 0.0128 0.0126 0.0130 0.0123 0.0114 0.0096 0.0126 0.0124 0.0123

Table 3. Non-carcinogenic risks, estimated as HQ, and the carcinogenic risks, estimated as CR, from
exposure to O3 and PM2.5 in Harbin.

Pollutants S18 S19 S20 S21 S22 S23 S24 S25 S26 S27

Non-carcinogenic risks

O3

Min 0.0019 0.0013 0.0028 0.0021 0.0019 0.0024 0.0026 0.0039 0.0039 0.0019
Max 0.1092 0.1209 0.1320 0.1059 0.1294 0.2202 0.1131 0.1223 0.1285 0.1170
Median 0.0319 0.0354 0.0343 0.0264 0.0289 0.0288 0.0293 0.0372 0.0326 0.0296
Mean 0.0335 0.0380 0.0365 0.0296 0.0314 0.0319 0.0318 0.0387 0.0361 0.0318

PM2.5

Min 0.0037 0.0018 0.0039 0.0037 0.0050 0.0020 0.0052 0.0041 0.0021 0.0040
Max 0.9925 1.4299 1.4414 1.1773 2.0438 1.2372 0.8054 1.2463 1.5295 0.9394
Median 0.0332 0.0394 0.0429 0.0363 0.0410 0.0446 0.0418 0.0413 0.0400 0.0448
Mean 0.0569 0.0639 0.0687 0.0573 0.0672 0.0678 0.0633 0.0662 0.0670 0.0739

Carcinogenic risks

PM2.5

Min 0.0008 0.0004 0.0008 0.0008 0.0011 0.0004 0.0011 0.0009 0.0005 0.0009
Max 0.2127 0.3064 0.3089 0.2523 0.4380 0.2651 0.1726 0.2671 0.3278 0.2013
Median 0.0071 0.0085 0.0092 0.0078 0.0088 0.0096 0.0090 0.0088 0.0086 0.0096
Mean 0.0122 0.0137 0.0147 0.0123 0.0144 0.0145 0.0136 0.0142 0.0144 0.0158

In Shenyang, the site with the highest HQ mean for O3 was S8, reaching 0.0427; the
site with the highest HQ mean for PM2.5 was S1, reaching 0.0675; the site with the highest
CR mean for PM2.5 was S1, reaching 0.0145. In Changchun, the site with the highest HQ
mean for O3 was S14, reaching 0.0429, and the site with the highest HQ mean for PM2.5. In
Harbin, the highest HQ mean for O3 was S25, reaching 0.0387, the highest HQ mean for
PM2.5 was S27, reaching 0.0739, and the highest CR mean for PM2.5 was S27 at 0.0158.

In summary, among the three cities, the highest non-carcinogenic risk for O3 was
Changchun and the lowest was Harbin. The highest non-carcinogenic risk for PM2.5 was
Harbin and the lowest was Changchun, and the results for the carcinogenic risk for PM2.5
were the same as those for the non-carcinogenic risk, and the carcinogenic risk for PM2.5
was high in all three eastern provinces, with the highest Harbin urgently needing to control
the pollution of PM2.5, while for O3, even though the HQ values of all three cities were
exceeded, Changchun, which had the highest HQ, needed to be prevented.

4. Conclusions

Despite the implementation of boiler renovation projects and straw burning bans
in China as well as policies and laws that have effectively reduced the concentrations of
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various air pollutants, there is still a gap in the cleanliness of the atmosphere in the north-
east compared to other developed regions and developed countries. In 2016–2020, three
provincial capitals in northeast China also experienced more severe pollution (>300 μg/m3)
due to high PM2.5 concentrations caused by coal-fired heating in winter, with Harbin expe-
riencing the highest frequency of severe pollution. The correlation between meteorological
factors and PM2.5 and O3 corroborates that the external sources of O3 contribute more and
the local sources contribute more of PM2.5.

The cluster analysis results show that the highest proportion of northwest-oriented
trajectories was in Changchun and the lowest was in Shenyang, influenced by the sur-
rounding topography. The city with the highest percentage of southwest trajectories was
Shenyang and the lowest was Harbin, which is influenced by the Bohai Sea anticyclone
and its latitude. The results of the PSCF analysis showed that the main potential source
areas of PM2.5 in northeast China were concentrated in Mongolia and Inner Mongolia, and
the main potential source areas of O3 were concentrated in Shandong, Jiangsu, Anhui,
and the Yellow Sea and Bohai Sea. The results of the CWT analysis showed that the high
concentration of PM2.5 in the northeast China contribution areas were mainly concentrated
in Russia, Mongolia, Inner Mongolia, Hebei, and northeast China, and the high concen-
tration contribution areas of O3 were mainly concentrated in Shandong Province, Jiangsu
Province, and the Yellow Sea and Bohai Sea.

The results of the health risk evaluation showed that the mean HQ values of O3 and
PM2.5 in all cities were below the limit values, which indicated that the non-carcinogenic
risk of both air pollutants was at an acceptable level. However, the carcinogenic risk
of exposure to PM2.5 was relatively high, especially in Harbin, where the highest CR
value reached 0.438, indicating that PM2.5 pollution in the northeast still needs further
in-depth treatment. Implementing a more stringent regional control of PM2.5 pollution in
the northeast and other regions to obtain better air quality is required to implement stricter
regional control of pollutants. This study can also provide some basis for future studies
of atmospheric pollution characteristics, and in the future, coupled analysis can also be
performed using computer techniques based on time decomposition [35], neural-based
ensembles [36], nonlinear combinations method [37], and phase adjustment [38] to obtain
more accurate, diverse, and informative conclusions.
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Abstract: We investigated the seasonal and diurnal characteristics of volatile organic compound
(VOC) concentrations in Shenyang, China, using the whole-year hourly data of 52 types of VOC at
three sites over the year 2019. The photochemical reactivities of VOCs were also studied by analyzing
the influence of VOCs on ozone and secondary organic aerosol (SOA) formation potential and the
hydroxyl radical consumption rate. It is shown that the order of VOC concentrations from high
to low is alkanes, alkynes, alkenes, and aromatic hydrocarbons. For various types of VOCs, the
maximum appeared in the morning and at night, whereas the minimum appeared in the afternoon.
The contributions of VOCs to ozone formation potential are highest for aromatic hydrocarbons with
a value of 78%, followed by alkenes and alkanes, among which toluene and isoprene contributed
the most. The contributions of VOCs to SOA formation potential are also highest for aromatic
hydrocarbons with a value of 94%, followed by alkanes and alkenes, among which the contributions
of toluene and benzene add up to over 70%. Being the most active type of VOCs in atmospheric
chemical reactions, aromatic hydrocarbons are the dominant contributor to the formation of both
ozone and SOA, and therefore being able to control of the use of a large number of solvents and
vehicle exhaust emissions would be an effective way to regulate the formation of ozone and SOA
in Shenyang.

Keywords: VOCs; photochemical reactivities; ozone; SOA

1. Introduction

The significant role of volatile organic compounds (VOCs) in the process of atmospheric
photochemical reactions was first recognized by Haagen-Smit [1]. Since then, the formation
of photochemical pollutants such as ozone (O3) and secondary organic aerosols (SOAs) by
VOCs and NOx via solar radiation has been widely recognized [2–4]. Studying the impact of
VOCs and their atmospheric chemical reactions on the formation of atmospheric secondary
pollutants is of great significance, and is essential for the sake of not only controlling air
pollution, but for revealing the mechanism of atmospheric photochemical reactions.

Factors determining the influence of VOCs on ozone formation in the atmosphere in-
clude the levels of hydroxyl radical and NOx, the proportions of various reaction processes
and the efficiencies of NO transforming into NO2 during these processes, as well as the
reaction rates of various VOCs and hydroxyl radicals. The complexity of VOC components
results in an uncertain relationship between them and ozone formation. In the early 1990s,
the United States Environmental Protection Agency produced a set of standard methods
for the analysis of environmental atmospheric VOCs through research, with the intention
of not only reducing NOx, but also of controlling the active VOC components in order to
effectively solve the problem of ozone pollution [5,6]. Compared with foreign countries,
the study of VOC–NOx–ozone in China started late, and the concentration limit and mea-
surement specification of VOCs in the atmosphere have not been clearly defined until now
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(Ambient Air Quality Standard (GB3095-2012) [7]). Furthermore, the research is mainly fo-
cused on the three major polluted areas in China, namely, the Beijing-Tianjin-Hebei region,
Pearl River Delta, and Yangtze River Delta, where VOCs play very different roles in the
process of ozone formation [8–16]. At present, studies of the VOC–NOx–ozone relationship
and the interactions of VOCs in atmospheric chemical reactions are still urgently needed.

In the formation of urban haze pollution in China, the secondary generated aerosol
components account for 51%–77%, of which organic aerosol is the most significant com-
ponent [17,18]. Observations from 37 sites around the world show that SOA accounts for
more than 90% in remote areas and more than 60% in urban areas, despite a relatively high
proportion of primary aerosol [16]. In recent years, a set of aerosol formation coefficients
(fractional aerosol coefficients, or FACs) were proposed by Grosjean and Seinfeld [19]
based on a large number of smoke chamber experimental data and atmospheric chem-
ical kinetics data. Several studies conducted by scholars inside and outside China on
SOA formation potential, combining VOCs’ observation data and FACs, have consistently
shown that aromatic hydrocarbons contribute the most to SOA formation potential [19–22].
Wang et al. [23] studied the SOA formation potential of all aromatic hydrocarbons and
isoprene in Shenzhen using the FAC method, and found that toluene contributed the most
to SOA formation. In addition, the reactions between VOCs and hydroxyl radicals are
the main chemical processes for the transformation of organic compounds, in which the
consumption rate of hydroxyl radical is used to evaluate the chemical activity of various
VOC species [24].

As the largest city in northeast China, Shenyang’s atmospheric environmental prob-
lems have hardly been solved in the recent two decades. Despite strong governance, the
urbanization trend, leading to a current population of over 9.1 million and an urban area
that has rapidly grown to 3500 km2 (within the total area of Shenyang of 13,000 km2),
makes air pollution a continuing and significant problem in this metropolis. Since 2007,
most of the original heavy industry enterprises in downtown Shenyang have been relo-
cated to a new economic development zone approximately 20 km away to the west of the
urban center; thus, it is not industrial emissions but traffic emissions that directly affect the
ambient air quality over the Shenyang urban area with a total of 2.65 million automobiles,
which increase at the rate of 800 per day. Although a number of studies have analyzed the
mechanism of pollution formation in Shenyang and its ambient areas [25], few of them
have focused on VOCs. In this study, using the whole-year hourly data of 52 types of
VOC at each of the three sites over the year 2019, photochemical reactivities of VOCs were
revealed, and the prior VOC species were further selected to provide theoretical support
for local pollution management.

2. Materials and Methods

2.1. Data Sources

Hourly VOCs and ozone concentration observation data throughout 2019 were from
the Shenyang ecological environment monitoring center of Liaoning Province. VOCs’
monitoring is based on a GC5000 online gas chromatograph produced by the AMA Instru-
ment Company (Ulm, Germany). The instrument consists of two subsystems (a GC5000
VOC analyzer and a GC5000 BTX analyzer), a calibration module (a DIM200 VOC calibra-
tion instrument) and other auxiliary equipment. A type 49i ozone analyzer produced by
Thermo Fisher China Co., Ltd. (Shanghai, China) was used for ozone monitoring. The
monitoring data of wind direction and speed used to analyze the distribution of wind roses
in Shenyang are from the Shenyang National Basic Meteorological Station (NBMS).
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The three VOC environmental monitoring sites in Shenyang are Huagongyuan (HGY),
Danan Street (DNS), and Tianzhushan Road (TZSR), and the 11 state-controlled ambient
air quality monitoring sites are Dongling Road (DLR), Hunnan East Road (HNR), Jingshen
Street (JSS), Dongling Street (LDS), Senlin Road (SLR), Shenliao West Road (SLXR), Taiyuan
Street (TYS), Wenhua Road (WHR), Xiaoheyan (XHY), Xinxiu Street (XXS), and Yunong
Road (YNR). The locations of each air quality monitoring site and Shenyang NBMS are
shown in Figure 1. The characteristics and levels of ozone, NOx, and PM2.5 are listed
in Table 1. HGY, DNS, LDS, TYS, WHR, XHY, and NBMS are urban sites; TZSR, DLR,
HNR, XXS, YNR, SLXR, and JSS are suburban sites; and SLR is a rural site due to its
remote location. The land-use at the suburban sites is a mixture of city and cropland,
whereas the rural site, SLR, is primarily covered by forest and a reservoir. HGY is located
in an economic-technical development zone with many enterprises, including chemical,
electrical, and pharmaceutical factories, etc., which leads to a large number of industrial
source emissions, while the transport of freight vehicles also emits vehicle exhaust. In
addition, HNR and XXS are accessible via a highway around the city area of Shenyang.

Figure 1. Map of Liaoning Province and locations of the ambient air quality monitoring sites in
Shenyang.

Regarding the key pollutants, the ozone level at the suburban sites is higher than that
at the urban sites in general, among which the maximum appears at YNR, a downwind
suburban site located in the direction of the prevailing wind from Shenyang. Spatial
variation in Shenyang has been reported based on the observations from 2013 to 2015 as
well [25]. However, the levels in NOx and PM2.5 are significantly higher at urban sites
than at suburban sites, with a peak level in NOx appearing at HGY and high levels at the
other two VOC environmental monitoring sites. Compared to pollutant levels in Beijing in
2016 [26], PM2.5 in Shenyang during 2019 was relatively close, whereas NOx in Shenyang
was around 10 ppbv higher, meaning that the current high-level of NOx in Shenyang still
cannot be negligible.
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2.2. Data Analysis Methods

In 2019, 27 types of alkanes, 14 types of aromatic hydrocarbons, 10 types of alkenes
and one type of alkyne were detected at the three VOCs environmental monitoring sites
in Shenyang, with a total of 52 VOC species. The original concentration unit of each
VOC species was μg/m3. First, according to the method of Liu et al. [25], the VOC
concentrations were converted into volume mixture ratios (with the units of ppbv) at a
standard temperature and pressure. Then, the diurnal and seasonal variation characteristics
of VOC concentrations in Shenyang were analyzed using the mean hourly concentrations
of the three monitoring sites.

2.2.1. Aerosol Formation

Based on the smokebox experiment of Grosjean and Seinfeld [19], this study used
FAC, the fraction of VOC converted into aerosol, called aerosol yield, whereby the change
in the amount of SOA formed is divided by the change of emissions of individual VOCs
in order to estimate the SOA formation potential of atmospheric VOCs. According to
Grosjean’s hypothesis, the formation of SOA only takes place during the day (from 8 a.m.
to 5 p.m. Beijing time), and VOCs only react with hydroxyl radicals to form SOA. The FAC
and FVOCr (the fraction of VOC consumed by gas-phase chemical reactions with the unit
of %) used in the formula are obtained by the smokebox experiment [27]. According to
Grosjean [27], the estimations of FVOCr for each VOC were completed for a number of
scenarios that specify the concentrations of the electrophiles, e.g., ozone, hydroxyl radicals,
and NO3, as well as the airmass transportation time. The daytime scenario selected here
was relevant to southern Californian smog episodes, which was set at O3 = 100 ppbv, OH
= 1.0 × 106 molecules cm−3, and NO3 = 0, with a chemical reaction time of 6 h. For this
scenario, Grosjean calculated for each alkene the fraction that was consumed by its reaction
with ozone and by its reaction with hydroxyl radicals, respectively (these calculations
were not necessary for alkanes, aromatics, and saturated oxygenates, which reacted only
with hydroxyl radicals). He also assumed that aerosol production from alkene was via
their reaction with ozone. The assumption was supported by results from a number of
experimental studies on cyclic alkene, which was shown to produce aerosol by reaction
with ozone and little or no aerosol by reaction with hydroxyl radicals [19,28].

Components that can form an SOA can be defined as:

FACi = SOAp/VOCs0 (1)

In the formula, FACi is the FAC of the ith VOC as a dimensionless quantity. SOAp
is the formation potential of SOA with the unit of ppbv. VOCs0 should have been the
initial emission amount quantified in mass, moles, or flux units for a given region or for
a unit area. However, due to the limited technology, it was almost impossible to obtain
flux data for so many VOC components until now. Therefore, here, an "approximate initial
concentration" of VOCs0 is used to represent the levels of emission source with the unit of
ppbv. The FACs are used to calculate the SOA formation potential:

SOAp = VOCs0 × FAC (2)

Considering that the VOCs measured at the receptor point (VOCst) are usually the
concentrations after oxidation, the relationship between VOCst and the initial concentration
of VOCs0 can be expressed by the following formula:

VOCst = VOCs0 × (1 − FVOCr/100) (3)

2.2.2. Ozone Formation

The types of VOC in the atmosphere are very complex, with the resulting amount of
ozone generated from the reaction dependent on the levels, rates of oxidation, oxidation
mechanism, and concentrations of NOx. The MIR method considers the impacts of different
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reaction mechanisms and VOC/NOx ratios on ozone formation. Incremental reactivity
(IR) is the change in ozone divided by the change in the emissions of individual VOCs. It
is a quantity term used to calculate the OFP (ozone formation potential) of an individual
VOC compound, and MIR explains the maximum reactivity condition of individual VOC
species in a high NOx environment, in which ozone formation is most sensitive to VOCs.
The calculation formula of OFPi is as follows:

OFPi = VOCs0 × MIRi (4)

In the formula, OFPi is the OFP of the ith VOC with the unit of ppbv. MIRi is the
maximum incremental reactivity of the ith VOC in ozone as a dimensionless quantity.
Similarly, the relationship between VOCst and VOCs0 can refer to formula (3), which
converts measured concentrations into the approximate initial concentrations [29].

2.2.3. Hydroxyl Radical Consumption Rate

Hydroxyl radical is the most significant oxidant in the troposphere. The photooxida-
tion reactions of various VOCs often start with their reaction with hydroxyl radicals, during
which new hydroxyl radicals are constantly formed in O2 and NOx, with light degradation
leading to chain reactions. All VOC species are compared on the same standard to evaluate
the reactivity of hydroxyl radical. The hydroxyl radical consumption rate is often used
to measure the ability of VOCs to participate in atmospheric autooxidation reactions to
form peroxanoxy radicals, which can also be used to estimate the impact of a specific VOC
species on the ozone formation rate in a polluted atmosphere [29]. Its calculation formula
is as follows:

LOH
i = Ci × KOH

i (5)

In the formula, LOH
i is the hydroxyl radical consumption rate of the ith VOC with

the unit of s–1. Ci is the observed concentration of the ith VOCs with the unit of ppbv.
KOH

i is the hydroxyl radical consumption rate constant corresponding to the ith VOC at
the temperature of 298 K [30]. However, it should be pointed out that their reaction with
hydroxyl radical is not the only way VOCs can react in the atmosphere, since many VOCs
are also consumed to a significant extent by reaction with ozone or (at night) with NO3,
and some also with photolyze.

3. Concentration Characteristics of VOCs

3.1. Seasonal Variations

In Shenyang, the total concentration of the 52 types of VOCs (TVOC) from high to
low appears in winter, autumn, spring, and summer, whereas the concentration of ozone
from high to low appears in summer, spring, autumn, and winter. The TVOC reaches a
maximum in January, with a value of a little more than 33 ppbv, and reaches a minimum
in June. The concentration of ozone reaches a maximum in May and July, with a value of
near 50 ppbv in July, and a minimum in December (Figure 2). For various types of VOCs,
the concentrations of alkanes, alkenes, and alkynes generally appear highest in winter
and lowest in summer, but the concentrations of aromatic hydrocarbons were highest in
autumn and lowest in summer. Alkanes appear with the highest concentration, followed
by alkynes, alkenes, and aromatic hydrocarbons (Figure 3). In general, seasonal variations
of VOC concentrations are mainly influenced by three factors, namely, the variations of
VOC source strength, the various degrees of photochemical reaction due to the seasonal
levels of hydroxyl radical and the variations of the atmospheric mixing state. The higher
values of TVOC and its components in autumn and winter over Shenyang are mainly
due to the large amount of emission of primary pollutants from heating in autumn and
winter, which directly or indirectly influences the source strength of VOCs. In addition,
the atmospheric photochemical reaction is hardly active enough to remove VOCs due to
the lower temperatures in autumn and winter. Moreover, the relatively stable atmospheric
and temperature inversion at night are not conducive to the diffusion and dilution of

172



Atmosphere 2021, 12, 1240

pollutants [31]. The fact that aromatic hydrocarbons appear higher in autumn than in
winter was also found in the study of Baoji, Shanxi, with the process here related to
the combustion emissions of petrochemical, pharmaceutical, pesticide, paint, and other
industries and fossil fuels [32].

Figure 2. Monthly variation of concentrations for total VOCs and ozone in Shenyang.

Figure 3. Monthly variation of concentrations for various types of VOCs in Shenyang.

The highest concentration component is acetylene, with a mean annual concentration
of a little more than 5 ppbv. Ethane has the highest concentration among alkanes, with a
mean annual concentration of just less than 5 ppbv. Ethylene has the highest concentration
among alkenes, with a mean annual concentration of somewhat below 3 ppbv. Benzene has
the highest concentration among aromatic hydrocarbons, with a mean annual concentration
of around 1 ppbv. Compared with the northern suburbs of Nanjing, the concentrations of
ethane, ethylene, and benzene are all lower, but the concentration of acetylene is slightly
higher in Shenyang [8], which is significantly related to the emissions from traffic sources
and industrial sources in both places. During 2019 in Shenyang, industrial emissions of
NOx and VOCs are 31,603.05 tons and 6475.59 tons, respectively, whereas town emissions
of NOx and VOCs are 3916.15 tons and 1172.63 tons, respectively [33].

For the three VOC environmental monitoring sites in Shenyang, the annual mean
VOC concentrations from high to low appear at HGY, DNS, and TZSR, whereas the annual
mean ozone concentration from high to low appears at DNS, TZSR (with the same level as
DNS), and HGY. The concentration of each VOC component is the highest in HGY, which
is located in an industrial area, whereas the concentration of ozone is lower than those at
DNS and TZSR, which are located to its east and northeast (Figure 4). The reason is that
the dominant wind direction in Shenyang is southwesterly on average throughout the year,
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while the wind speed is over 3 m/s, which is faster than those of other directions (Figure 5).
Driven by the dominant wind, ozone formed locally and VOCs at the site located in the
upwind direction (e.g., HGY) are transported to the east and northeast, with the further
formation of ozone due to photochemical reaction during this process [25]. Elevated ozone
then appears in the downwind direction (e.g., at DNS and TZSR sites).

Figure 4. Concentrations for various types of VOCs and ozone at each site in Shenyang.

Figure 5. Wind frequency (%) and wind speed (m/s) roses in Shenyang.

3.2. Diurnal Variation

Diurnal variations in each type of VOC show rather similar bimodal patterns, with
the peaks mainly appearing in the morning and evening. Alkanes and alkenes reach their
maximum at 7:00 (Beijing time, the same below), whereas alkyne and aromatic hydrocarbons
reach their maximum at 22:00 and 21:00, respectively, which is basically consistent with
the peak hours of traffic. The concentration of each type of VOC reaches a minimum in
the afternoon (13:00–14:00) (Figure 6). In the morning rush hours, human activities, such
as traffic and industry, become frequent, rapidly increasing the concentration of VOCs to
reach the first peak. Then, with the gradual significance of solar radiation and turbulence,
VOC levels keep decreasing until they reach a minimum in the afternoon. At night, the
suspension of photochemical reactions due to solar radiation decreases, along with the
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accumulated contribution of the evening traffic peak, results in the second peak of VOCs.
The concentration of each type of VOC is higher at night and lower in the daytime, which is
significantly related to the lack of photochemical reaction consumption at night, and the
lower atmospheric boundary layer height hardly being conducive to pollutant diffusion.

Figure 6. Diurnal variations of concentrations for various types of VOCs in Shenyang.

4. Photochemical Reactivities of VOCs

4.1. SOA Formation Potential in VOCs

Figure 7 shows the chemical reactivities of various types of VOCs. Contributions
to the formation potential of SOA from large to small are aromatic hydrocarbons (94%),
alkanes (4%), and alkenes (2%). Despite the lower level of aromatic hydrocarbons compared
with other types of VOCs, they play an absolutely dominant role in the contribution to
the formation of SOA, which is demonstrated in the results of the northern suburbs of
Nanjing [8,22], which show a similar percentage, indicating that the formation of SOA
is significantly influenced by aromatic hydrocarbons. The dominant contributions of
aromatic hydrocarbons to the formation potential of SOA appear in various seasons, with
the percentage from high to low in autumn, spring, winter, and summer (Table 2).

Figure 7. Photochemical reactivities for various types of VOCs in Shenyang.
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Table 2. Seasonal variations of the contribution of VOCs to ozone and SOA formation potential and
hydroxyl radical consumption rate.

Season
Photochemical

Reactivities
VOC

(ppbv)
Alkanes

(%)

Aromatic
Hydrocarbons

(%)

Alkenes
(%)

Spring OFP 5.09 7 79 14
LOH 82.68 15 12 73

SOAp 7.46 3 95 2
Summer OFP 4.99 6 61 33

LOH 64.42 18 13 69
SOAp 5.40 4 89 7

Autumn OFP 6.46 7 86 7
LOH 114.67 15 14 71

SOAp 10.40 3 96 1
Winter OFP 6.84 8 82 10

LOH 136.13 13 11 76
SOAp 8.79 4 94 2

The total formation potential of SOA in each VOC component is around 8.04 ppbv,
while the 10 VOC components with the highest contributions in 2019 were toluene (39.21%),
benzene (31.07%), o-xylene (5.93%), ethylbenzene (5.52%), isoprene (2.33%), 1,3,5-trimethyl-
benzene (2.12%), m-ethyltoluene (2.09%), methylcyclohexane (1.80%), p-diethylbenzene
(1.51%), and 1,2,3-trimethylbenzene (1.47%) (Table 3). Similar to the results in the northern
suburbs of Nanjing [8], the contribution percentages of toluene appear the highest in
Shenyang as well, where the percentage is higher than that in the northern suburbs of
Nanjing (27.28%). The contribution of benzene is next, and, along with the contribution of
toluene, the total percentage add up to over 70%. Benzene and toluene, including other
benzene series which contribute significantly to the formation of SOA, are both key raw
materials of the organic chemical industry that can be used as solvents [34]. Furthermore,
they are among the important products of flow sources [35]. Therefore, VOC components
that contribute more to SOA formation in Shenyang come significantly from solvents and
vehicle emissions, meaning that control of the use of a large number of solvents and vehicle
emissions is an effective method to suppress SOA formation.

Table 3. 10 VOC components with the highest contributions to SOA formation potential.

Units/ppbv.
Mean Level

(ppbv)
FAC
(%)

FVOCr
(%)

SOAp
(ppbv)

SOAp (%)

toluene 0.55 5.40 12.00 3.15 39.21
benzene 1.12 2.00 10.00 2.50 31.07
o-xylene 0.07 5.00 26.00 0.48 5.93

ethylbenzene 0.07 5.40 15.00 0.44 5.52
isoprene 0.09 2.00 0.00 0.19 2.33

1,3,5-trimethylbenzene 0.02 2.90 74.00 0.17 2.12
m-ethyltoluene 0.02 6.30 31.00 0.17 2.09

methylcyclohexane 0.04 2.70 20.00 0.14 1.80
p-diethylbenzene 0.01 6.30 47.00 0.12 1.51

1,2,3-trimethylbenzene 0.02 3.60 51.00 0.12 1.47

4.2. Ozone Formation Potential in VOCs

Contributions to the formation potential of ozone from large to small are aromatic hy-
drocarbons (78%), alkene (15%), and alkane (7%). Contributions of aromatic hydrocarbons
to the potential of ozone formation are much more significant than those of the three other
types of VOCs (Figure 7), meaning that it is the most active type of VOC in atmospheric
chemical reactions, in accord with the results from an examination of the urban area of
Guangzhou [15]. The main discrepancy between the two regions is that the percentage
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of alkenes contributing to ozone formation in Shenyang appears two times higher than
that in Guangzhou (38%). Thus, it is shown that aromatic hydrocarbons are the dominant
contributor to the formation of ozone and SOA, rather than alkanes, although alkanes are
the chief VOC component in the atmospheric environment of Shenyang. The contributions
of aromatic hydrocarbons to the potential of ozone formation appear the most significant
throughout the year, with the percentages from high to low in autumn, winter, spring, and
summer (Table 2). In contrast, the results of the northern suburbs of Nanjing [8] show that
alkenes contribute the most to ozone formation, which is probably due to the different
estimation method.

As is shown in Table 4, the total formation potential of ozone in each VOC compo-
nent is about 5.74 ppbv, and the 10 VOC components with the highest contributions in
2019 were toluene (29.64%), isoprene (14.83%), o-xylene (10.79%), 1,3,5-trimethylbenzene
(10.36%), benzene (9.13%), 1,2,4-trimethylbenzene (8.32%), 1,2,3-trimethylbenzene (5.09%),
ethylbenzene (3.87%), methylcyclopentane (2.06%), and methylcyclohexane (1.68%). In
accordance with the observations in Guanzhou [15,36], toluene contributes the most to
ozone formation, while the contribution of isoprene is not ignorable. In general, isoprene
originates not only from biological emissions throughout the year at times other than
in winter [37], but also from anthropogenic emissions, especially traffic emissions [38],
meaning that control of the use of a large number of solvents and vehicle emissions is also
an effective way to control ozone pollution in Shenyang. Moreover, exploring solutions to
control isoprene emission from broad-leaved forests and shrubs [37] might also be factors
worth considering.

Table 4. 10 VOC components with the highest contributions to ozone formation potential.

Units/ppbv.
Mean Level

(ppbv)
MIR

FVOCr
(%)

OFP (ppbv) OFP (%)

toluene 0.55 2.70 12.00 1.70 29.64
isoprene 0.09 9.10 0.00 0.85 14.83
o-xylene 0.07 6.50 26.00 0.62 10.79

1,3,5-trimethylbenzene 0.02 10.10 74.00 0.59 10.36
benzene 1.12 0.42 10.00 0.52 9.13

1,2,4-trimethylbenzene 0.02 8.80 58.00 0.48 8.32
1,2,3-trimethylbenzene 0.02 8.90 51.00 0.29 5.09

ethylbenzene 0.07 2.70 15.00 0.22 3.87
methylcyclopentane 0.04 2.80 10.00 0.12 2.06
methylcyclohexane 0.04 1.80 20.00 0.10 1.68

4.3. Influence of VOCs on the Consumption Rate of Hydroxyl Radicals

Contributions to the consumption rate of hydroxyl radicals from large to small are
alkenes (73%), alkanes (15%), and aromatic hydrocarbons (12%). Here, the contribution of
alkenes is far more significant (Figure 7). The contribution of alkenes to the consumption
rate of hydroxyl radicals in Shenyang, which is a bit higher than that in Guangzhou
(64%) [15], appears dominant throughout the year with the percentages from high to low
in winter, spring, autumn, and summer (Table 2).

As is shown in Table 5, the total consumption rate of VOCs on the consumption rate
of hydroxyl radicals is around 99.49 ppbv, and the 10 VOC components with the high-
est contributions are ethylene (24.64%), propylene (16.16%), 1-hexene (9.93%), 1-butene
(5.17%), trans-2-butene (4.98%), cis-2-butene (3.62%), propane (3.47%), toluene (3.32%),
cis-2-pentene (3.16%), and styrene (3.15%). It is significantly different from the results in
Guangzhou, where the contribution of trans-2-pentene appears the largest with a percent-
age of 19.14% [15].
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Table 5. 10 VOC components with the highest contributions to the consumption rate of hydroxyl radical.

Units/ppbv.
Mean Level

(ppbv)
KOH LOH (ppbv) LOH (%)

ethylene 2.88 8.52 24.51 24.64
propylene 0.61 26.30 16.07 16.16
1-hexene 0.27 37.00 9.88 9.93
1-butene 0.16 31.40 5.14 5.17

trans-2-butene 0.08 64.00 4.95 4.98
cis-2-butene 0.06 56.40 3.60 3.62

propane 3.17 1.09 3.46 3.47
toluene 0.55 5.96 3.31 3.32

trans-2-pentene 0.05 65.00 3.14 3.16
styrene 0.05 58.00 3.13 3.15

5. Conclusions

In Shenyang, the concentrations of TVOCs from high to low appear in winter, autumn,
spring, and summer. For various types of VOCs, the concentrations of alkanes, alkenes,
and alkynes appear generally the highest in winter and the lowest in summer, whereas the
concentrations of aromatic hydrocarbons appear the highest in autumn and the lowest in
summer. Alkanes appear with the highest concentration, followed by alkynes, alkenes, and
aromatic hydrocarbons. Diurnal variations in each type of VOC experience peaks mainly
in the morning and evening, among which alkanes and alkenes reach the maximum at 7:00,
whereas alkyne and aromatic hydrocarbons reach a maximum in traffic peak hours of 22:00
and 21:00, respectively. The concentration of each type of VOC reaches a minimum in the
afternoon (13:00–14:00).

As they are the most active type of VOC in atmospheric chemical reactions, aromatic
hydrocarbons are the dominant contributor to the formation of both ozone and SOA. Con-
tributions to the formation potential of SOA from large to small are aromatic hydrocarbons
(94%), alkanes, and alkenes, which is similar with the results of the northern suburbs of
Nanjing. The dominant contributions of aromatic hydrocarbons to the formation potential
of SOA appear in various seasons, with the percentage from high to low in autumn, spring,
winter, and summer. The 10 VOC components with the highest contributions are toluene,
benzene, o-xylene, ethylbenzene, isoprene, 1,3,5-trimethylbenzene, m-ethyltoluene, methyl-
cyclohexane, p-diethylbenzene, and 1,2,3-trimethylbenzene, while the contributions of
toluene and benzene add up to over 70%, meaning that control of the use of a large number
of solvents and vehicle emissions would be an effective method to suppress SOA formation
in the Shenyang area.

Contributions to the formation potential of ozone from large to small are aromatic
hydrocarbons (78%), alkene, and alkane. The contribution of aromatic hydrocarbons to the
potential of ozone formation is much more significant than that of the three other types of
VOCs, in accordance with the results of the urban area of Guangzhou. The discrepancy is
that the contribution percentage of alkenes to ozone formation in Shenyang appears twice
as high. The contributions of aromatic hydrocarbons to the potential of ozone formation
appear the most significant throughout the year, with the percentages from high to low in
autumn, winter, spring, and summer. In contrast, most likely due to the different estimation
method, the results of the northern suburbs of Nanjing show that alkenes contribute the
most to ozone formation. The 10 VOC components with the highest contributions are
toluene, isoprene, o-xylene, 1,3,5-trimethylbenzene, benzene, 1,2,4-trimethylbenzene, 1,2,3
-trimethylbenzene, ethylbenzene, methylcyclopentane, and methylcyclohexane. Similar
to SOA, control of the use of a large number of solvents and vehicle emissions would be
an effective way to control ozone pollution in Shenyang. Moreover, exploring solutions
to control isoprene emission from broad-leaved forests and shrubs also might be factors
worth considering.

Contributions to the consumption rate of hydroxyl radicals from large to small are
alkenes (73%), alkanes, and aromatic hydrocarbons, while the contribution of alkenes is
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far more significant, and is a bit higher than that in Guangzhou. The 10 VOC components
with the highest contributions are ethylene, propylene, 1-hexene, 1-butene, trans-2-butene,
cis-2-butene, propane, toluene, cis-2-pentene, and styrene.
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Abstract: Particulate matter contributes much to the haze pollution in China. Meteorological condi-
tions and environmental management significantly influenced the accumulation, deposition, trans-
portation, diffusion, and emission intensity of particulate matter. In this study, temporal and spatial
variations of PM10 and PM2.5—and the responses to meteorological factors and environmental
regulation intensity—were explored in Xi’an, China. The concentrations of PM10 were higher than
those of PM2.5, especially in spring and winter. The mean annual concentrations of PM10 and PM2.5
markedly decreased from 2013 to 2017, but the decreasing trend has plateaued since 2015. The
concentrations of PM10 and PM2.5 exhibited seasonal differences, with winter being the highest and
summer the lowest. Air quality monitoring stations did not reveal significant spatial variability in
PM10 and PM2.5 concentrations. The concentrations of PM10 and PM2.5 were significantly influ-
enced by precipitation, relative humidity, and atmospheric temperature. The impact of wind speed
was prominent in autumn and winter, while in spring and summer the impact of wind direction was
obvious. Additionally, the emission intensity of SO2, smoke and dust could be effectively decreased
with the increasing environmental regulation intensity, but not the concentrations of particulate
matter. This study could provide a scientific framework for atmospheric pollution management.

Keywords: particulate matter; emission intensity; meteorological conditions; environmental manage-
ment; Xi’an

1. Introduction

With rapid urbanization and industrialization, air quality has been deteriorating in
many cities in China, resulting in major environmental problems [1–3]. Particulate matter,
such as PM2.5 (particles with diameter less than 2.5 μm) and PM10 (particles with diameter
less than 10 μm), are regarded as the dominant pollutants influencing air quality [4]. PM2.5
components are complex, predominantly generated by human activities and natural re-
lease, and the former is more harmful. PM2.5 are mainly chemically formed, or condensed
from hot vapor (i.e., diesel exhaust) and coagulated into fine particles. PM10, mainly
derived from natural processes and imperfect combustion, and commonly affected by the
suspension and transport of sand and soil particles [5,6]. Given the negative effects of par-
ticulate matter on human health, governments have implemented strict pollutant reduction
measures, which were deemed as an effective way for air quality improvement [7]. The
concentrations of particulate matter across timescales can provide insight into the myriad
causes of observed variations in air pollution [8]. Data at the annual scale can reflect the
effects of mitigation strategies implemented by the government [9]. Seasonal variations of
air quality are conducive to parsing the contribution of meteorological conditions, and the
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intensity of emissions [10,11]. Studies have shown that particulate matter exerts a serious
impact on the air quality in spring and winter [12]. In addition, the spatial heterogeneity
of air quality can reveal the effectiveness of environmental regulation practices [13,14].
Though local emissions contribute to the air pollution, the meteorological conditions are
also at play, affecting the accumulation, deposition, transportation, and diffusion of air
pollutants [2,15]. The meteorological factors showed a non-linear relationship with the
concentrations of particulate matter [16]. Therefore, the temporal and spatial character-
istics captured by air quality and the relationship with meteorological conditions and
environmental management also deserve further investigation.

Unregulated local emissions elevate the concentrations of particulate matter, especially
in developing regions [17]. For example, in China, the large-scale emission sources of PM10
and PM2.5 include coal combustion, traffic engine exhausts, biomass burning, industrial
activities, fugitive dust from construction activities and sandstorms [18,19]. Particulate
matter as the primary pollutant (i.e., the concentration is higher than other atmospheric
pollutants) with a higher proportion [12], its improvement plays a key role in improving air
quality, especially in cities of the semi-arid and arid regions in western and northwestern
China, where fugitive dust is the major component of aerosol particles.

Xi’an, the capital city of Shaanxi province, with an area of 10,108 km2 and a popu-
lation of 13.0 million, is the most urbanized region in northwestern China. Due to the
topography, meteorological conditions, and tremendous amount of atmospheric pollutants
emissions derived from urbanization and industrialization, Xi’an has been plagued by
severe air pollution over the last decade [6,20]. PM10 and PM2.5 contribute more than
90% of all air pollutants, which are regarded as the dominant controller of air quality
in this region [12,21]. In recent years, atmosphere environment protection policies have
been vigorously implemented in Xi’an, but few studies have assessed the effectiveness
of environmental management in improving atmospheric pollution. The atmospheric
pollution in Xi’an exhibits seasonal dependence. Bare surface and strong wind in spring,
and biomass burning and coal combustion from intensive heating demand in winter—
accompanied with meteorological factors closely related to atmospheric pollution—all
promote an abundance of particulate matter and visibility impairment [1,6,22]. Evaluation
and improvement of air quality in the context of changes in energy consumption and rapid
urbanization is conducive to the future development and sustainability of other megacities
in northwest China.

In this study, PM10 and PM2.5 from 13 air monitoring stations in Xi’an from 2013 to
2017 were analyzed. We aimed to: (1) characterize the temporal and spatial variations of
PM10 and PM2.5 in Xi’an; (2) analyze the relationships between particulate matter and
meteorological conditions; and (3) explore the response of the concentration and emission
intensity of atmospheric pollutants to the environmental management. This study aims to
provide a scientific framework for atmospheric pollution management.

2. Materials and Methods

2.1. Study Area

Xi’an, the capital of Shaanxi Province, is a megacity in western China, located at the
central part of the Guanzhong Plain, with the Loess Plateau to the north, and the Qingling
Mountains to the south. Xi’an is situated in a sub-humid and warm temperate region
under the influence of the East Asian monsoon with hot and humid summers, and cold
winters. During the warm period (May–October), winds blow in from southern China;
during the cold period (November–April), winds from the desert regions of north-western
and western China are dominant. Over the period of 2001–2017, the average annual
temperature was 13.6 ◦C, and the annual precipitation was 558.2 mm (http://data.cma.cn/,
accseed on 1 March 2020).
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2.2. Particulate Matter Datasets

The atmospheric environment monitoring network in Xi’an is composed of 13 national
air quality real-time monitoring stations: the Voltage Switchgear Factory (VS), the Xingqing
Community (XQ), Textile City (TC), Xiaozhai (XZ), People’s Stadium (PS), High-tech
District (HT), the Economic Development District (ED), Chang’an District (CA), Yanliang
District (YL), Lintong District (LT), Caotan (CT), Qujiang (QJ), and Guangyun Lake (GY)
(Figure 1). The daily mean concentrations of particulate matter (PM10 and PM2.5) at each
station, from 1 January 2013 to 31 December 2017, were used in the analysis. These data are
publicly available at the Xi’an Ecology and Environment Bureau (http://xaepb.xa.gov.cn/,
accessed on 9 July 2021).

Figure 1. Distribution of air monitoring stations and atmosphere monitoring station.

According to the emissions standards of air pollutants from the Ambient Air Quality
Standard (GB 3095-2012) [23]. Grade 1 concentration limits (24 h average) of PM10 and
PM2.5 are 50 μg/m3 and 35 μg/m3, which are the maximum concentrations healthy for
humans. Grade 3 concentration limits of PM10 and PM2.5 are 150 μg/m3 and 75 μg/m3,
which are unhealthy for humans.

2.3. Meteorological Datasets

The meteorological datasets for Xi’an covers 5 years from 2013 to 2017, obtained from
the National Meteorological Information Centre (http://data.cma.cn/, accessed on 8 June
2019). Six meteorological indices were selected to study the influence of meteorological
conditions on atmospheric pollutants, including mean daily total precipitation, atmospheric
pressure, relative humidity, atmospheric temperature, wind speed, and wind direction.
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2.4. Environmental Management

Environmental management in this study refers to the calculated emission intensity,
environmental regulation intensity. The emission intensity is targeted at Xi’an, based on the
ratio of the SO2, soot, and dust emissions to GDP. The environmental regulation intensity
is targeted at Shaanxi province, based on the emissions and environmental investment.

The environmental regulation intensity is measured by environmental governance
investment per unit of atmospheric pollutant emissions. The calculation formula is

ERI = Inv./Pollu. (1)

where ERI represents the strength of environmental regulations; Inv. represents the invest-
ment in atmospheric environmental improvement; Pollu. represents the concentrations of
atmospheric pollutants.

Environmental management datasets were obtained from the Statistical Yearbook
(http://www.stats.gov.cn/, accessed on 6 May 2020), including the emission intensity
(t/104 RMB) and the environmental regulation investment (108 RMB) in Xi’an, Shaanxi
province.

2.5. Statistical Analysis

The Kolmogorov–Smirnov test was used to confirm that the datasets followed a
normal distribution, and the analysis method was dependent on the results of the K-S
test. Spearman correlation analysis was carried out between the concentrations of PM10
and PM2.5. Spearman correlation coefficients were also calculated for the relationships
between atmospheric pollutants and the meteorological factors, environmental regulation
intensity. One-way ANOVA and t-pair test were conducted to analyze differences at
different monitoring sites and time scales (annual, seasonal, and monthly). All data
analyses and figure drawings were performed in SPSS 20.0 and MATLAB R2019a.

3. Results

3.1. Temporal Variations in the Concentrations of PM10 and PM2.5

The mean annual, seasonal, and monthly concentrations of PM10 were all higher
than those of PM2.5 (Figure 2). Intra-annual variations in the concentrations of PM10 and
PM2.5 exhibited similar characteristics during 2013–2017. From 2013 to 2017, the mean
annual concentration of PM10 in Xi’an declined from 186.3 μg/m3 to 131.7 μg/m3, with
the lowest value in 2015 (128.0 μg/m3). The highest inter-annual decline rate was 19.2%,
which occurred during 2013–2014. There was no significant difference (p > 0.05) between
the mean annual concentrations of PM10 in 2015, 2016, and 2017 (Figure 2A). Similarly,
the mean annual concentration of PM2.5 in Xi’an declined from 107.4 μg/m3 in 2013 to
73.7 μg/m3 in 2017, and the lowest value occurred in 2015 (58.1 μg/m3). The highest
inter-annual decline rate was 27.9%, which occurred during 2013–2014. The differences
between 2015, 2016, and 2017 were also nonsignificant (p > 0.05) (Figure 2B).

The maximum seasonal concentrations of PM10 (218.5 μg/m3) and PM2.5 (137.2 μg/m3)
were recorded in winter, and the minimum (86.7 and 40.0 μg/m3) in summer. The seasonal
concentrations of PM10 in spring were higher than those in autumn, while the concen-
trations of PM2.5 in spring were lower than those in autumn, and the differences were
all nonsignificant (p > 0.05) (Figure 2C,D). The maximum monthly concentrations of both
PM10 (239.2 μg/m3) and PM2.5 (151.9 μg/m3) occurred in January. The monthly concen-
trations of PM10 and PM2.5 decreased from January to June, with the lowest concentrations
recorded in June (85.0 and 38.5 μg/m3). Concentrations then increased from June to De-
cember. The maximum inter-monthly decrease rate of PM10 and PM2.5 occurred during
March–April (26.7% and 30.6%), while the maximum inter-monthly increase rates of PM10
and PM2.5 occurred during November–December (36.3% and 52.1%).
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Figure 2. Annual, seasonal, and monthly variations in the concentrations of PM10 and PM2.5. (A): interannual variation of
PM10; (B): interannual variation of PM2.5; (C): intraannual variation of PM10; (D): intraannual variation of PM2.5.

3.2. The Concentrations of PM10 and PM2.5 at Different Air Monitoring Stations in Xi’an

As a whole, the concentrations of PM10 and PM2.5 exhibited positive correlations
(p < 0.05) during the days that exceeded the Grade 3 concentration limits (24 h average);
and negative correlations (p < 0.05) during the days with Grade 1 concentration limits (24 h
average) or lower (Table 1 and Figure 3).

Table 1. Spearman correlation coefficients between concentrations of PM10 and PM2.5 and the days that PM10 > 150 μg/m3,
PM10 < 50 μg/m3, PM2.5 > 75 μg/m3, PM2.5 < 35 μg/m3.

Time Period PM10 > 150 PM10 < 50 PM2.5 > 75 PM2.5 < 35

Spring 0.868 ** (n = 182) −0.637 * (n = 54) 0.913 ** (n = 127) −0.866 ** (n = 84)
Summer 0.861 ** (n = 21) −0.900 ** (n = 171) 0.794 ** (n = 25) −0.984 ** (n = 213)
Autumn 0.894 ** (n = 149) −0.676 * (n = 101) 0.930 ** (n = 154) −0.851 ** (n = 89)
Winter 0.663 * (n = 278) -0.552 (n = 17) 0.740 ** (n = 288) −0.450 (n = 27)
Annual 0.934 ** (n = 630) −0.731 ** (n = 343) 0.951 ** (n = 594) −0.846 ** (n = 413)

* indicates a significance level of 0.05, ** indicates a significance level of 0.01.

The concentrations of PM10 and PM2.5 from all 13 of the air monitoring stations were
involved to analyze the spatial differences in Xi’an. The concentrations of PM10, as well
as PM2.5, among the 13 air monitoring stations were nonsignificant (p > 0.05), exhibiting
similar characteristics of annual and seasonal concentrations (Figure 3).
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Figure 3. Annual and seasonal concentrations of PM10 and PM2.5 and the days that the concentrations lower than Grade 1
and higher than Grade 3 at different monitoring stations in Xi’an.

The concentrations of PM10 and PM2.5 among monitoring stations varied across
temporal scales (Table 2). Annually, PM10 concentrations in Caotan (CT, 156.4 μg/m3)
and High-Tech District (HT, 156.4 μg/m3) exceeded the Grade 3 concentration limit (>150
μg/m3); while PM2.5 concentrations in Voltage Switchgear Factory (VS, 80.2 μg/m3) (TC,
76.0 μg/m3), People’s Stadium (PS, 80.6 μg/m3), High-Tech District (HT, 76.4 μg/m3),
Economic development District (ED, 79.2 μg/m3), and Caotan (CT, 76.9 μg/m3) exceeded
the Grade 3 concentration limit (>75 μg/m3). Seasonally, in spring, PM10 concentrations
in Voltage Switchgear Factory (VS, 157.1 μg/m3), Xiaozhai (XZ, 152.5 μg/m3), People’s
Stadium (PS, 161.2 μg/m3), High-Tech District (HT, 157.3 μg/m3), Economic development
District (ED, 156.4 μg/m3), and Caotan (CT, 158.3 μg/m3) exceeded the Grade 3 concentra-
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tion limit; for PM2.5 concentrations, no station exceeded the Grade 3 concentration limit. In
summer and autumn, neither the PM10 nor the PM2.5 exceeded the Grade 3 concentration
limit. Whereas in winter, both PM10 and PM2.5 exceeded the Grade 3 concentration limit,
with no monitoring station reaching the Grade 1 concentration limit for PM10 (<50 μg/m3).
However, Xingqing Community (XQ, 34.5 μg/m3) and Chang’an District (CA, 35.0 μg/m3)
meet the Grade 1 PM2.5 concentration limit (<35 μg/m3) in summer. The maximum PM10
concentration difference between seasons was identified in Xiaozhai (XZ, 142.1 μg/m3), the
minimum in Textile City (TC, 106.0 μg/m3). The maximum PM2.5 concentration difference
was found in People’s Stadium (PS, 100.4 μg/m3), the minimum in Yanliang District (YL,
84.5 μg/m3).

Table 2. The concentrations of PM10 and PM2.5 among monitoring stations in Xi’an annually and seasonally.

Types Stations
Annual

(n = 1080)
Spring

(n = 460)
Summer
(n = 458)

Autumn
(n = 450)

Winter
(n = 432)

Max-Min

PM10

VS 145.0 157.1 85.1 127.4 214.5 129.4
XQ 137.6 137.7 78.0 127.5 211.4 133.4
TC 136.7 147.3 88.6 120.0 194.6 106.0
XZ 146.3 152.5 81.4 131.4 223.5 142.1
PS 148.4 161.2 92.5 119.8 223.9 131.4
HT 153.0 157.3 90.8 138.8 228.8 138.0
ED 145.8 156.4 92.6 127.1 210.4 117.8
CA 134.0 145.4 84.2 115.5 193.8 109.6
YL 141.5 142.3 80.5 135.6 211.6 131.1
LT 132.8 139.5 79.5 119.2 195.9 116.4
CT 156.4 158.3 102.6 146.6 220.8 118.2
QJ 141.2 145.8 83.0 127.7 212.1 129.1
GY 135.9 133.0 83.9 126.3 203.0 119.1

PM2.5

VS 80.2 70.8 42.8 72.1 138.7 95.9
XQ 71.9 59.3 34.5 65.6 131.6 97.1
TC 76.0 62.7 40.6 73.9 130.5 89.9
XZ 71.5 60.3 36.0 63.4 129.3 93.3
PS 80.6 71.8 42.5 68.1 142.9 100.4
HT 76.4 64.8 38.8 69.1 135.7 96.9
ED 79.2 68.3 46.4 70.6 134.6 88.2
CA 68.1 55.9 35.0 59.2 125.3 90.3
YL 73.7 60.2 43.2 66.4 127.7 84.5
LT 71.4 56.1 39.0 64.8 128.5 89.5
CT 79.6 67.1 41.8 74.2 136.9 95.1
QJ 72.9 59.8 36.1 68.1 130.9 94.8
GY 74.9 60.3 41.7 71.2 128.8 87.1

Notes: Max-Min was the maximum difference between the seasons. Units: μg/m3.

Overall, the concentrations of PM10 and PM2.5 were highest in People’s Stadium (PS)
and Caotan (CT), and lowest in the Xingqing Community (XQ), the Chang’an District (CA),
the Lintong District (LT), and Guangyun Lake (GY).

3.3. Relationships between the Concentrations of Particulate Matter and Meteorological Factors

Spearman correlation coefficients between PM10 (and PM2.5) and meteorological
factors varied across seasons, indicating that the dominant meteorological factors and their
influence on PM10 and PM2.5 vary over time (Tables 3 and 4).
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Table 3. Spearman correlations and multivariate progressive linear regression between PM10 and meteorological factors in
Xi’an.

Temporal Scales Precipitation
Atmospheric

Pressure
Relative

Humidity
Atmospheric
Temperature

Wind
Speed

Wind
Direction

Spring (n = 460) −0.332 ** −0.040 −0.394 ** −0.134 ** −0.015 −0.142 **
Summer (n = 458) −0.307 ** −0.149 ** −0.281 ** 0.238 ** 0.004 −0.171 **
Autumn (n = 450) −0.480 ** 0.008 −0.350 ** −0.168 ** −0.291 ** −0.036
Winter (n = 432) −0.154 ** −0.343 ** 0.388 ** 0.108 * −0.381 ** −0.256 **

Annual (n = 1080) −0.358 ** 0.335 ** −0.191 ** −0.478 ** −0.243 ** −0.100 **

* indicates a significance level of 0.05; ** indicates a significance level of 0.01.

Table 4. Spearman correlations and multivariate progressive linear regression between PM2.5 and meteorological factors in
Xi’an.

Temporal Scales Precipitation
Atmospheric

Pressure
Relative

Humidity
Atmospheric
Temperature

Wind
Speed

Wind
Direction

Spring (n = 460) −0.191 ** 0.016 −0.111 * −0.254 ** −0.079 −0.296 **
Summer (n = 458) −0.200 ** −0.096 * −0.038 0.161 ** 0.035 −0.265 **
Autumn (n = 450) −0.372 ** 0.011 −0.220 ** −0.153 ** −0.309 ** −0.085
Winter (n = 432) −0.057 −0.334 ** 0.521 ** 0.067 −0.460 ** −0.294 **

Annual (n = 1080) −0.260 ** 0.368 ** −0.0031 −0.506 ** −0.294 ** −0.178 **

* indicates a significance level of 0.05; ** indicates a significance level of 0.01.

Precipitation was negatively correlated with PM10 and PM2.5 (p < 0.01), except for
PM2.5 in winter (p > 0.05). Atmospheric pressure was negatively correlated with PM10 and
PM2.5 in summer and winter (p < 0.05), and positively correlated with the annual PM10 and
PM2.5 (p < 0.05). Relative humidity showed a negative correlation (p < 0.05) with the annual
and seasonal concentrations of PM10, except in winter. This same correlation with relative
humidity was also exhibited for PM2.5 in spring and autumn, though a positive correlation
was found with PM10 and PM2.5 in winter. Atmospheric temperature exhibited a negative
correlation with PM10 and PM2.5 in spring and autumn, and a positive correlation in
summer and winter. Wind speed only exhibited a negative correlation (p < 0.05) with PM10
and PM2.5 in autumn and winter. Finally, wind direction exhibited a negative correlation
(p < 0.05) with PM10 and PM2.5 in all seasons except for autumn.

3.4. Response of Atmospheric Pollutants to the Environmental Management

Figure 4 displayed the emission intensity of SO2, smoke, and dust, and environmental
regulation intensity in 2013–2017 in Xi’an. With the growth of economy, the emission inten-
sity of SO2, smoke and dust exhibited declining trends during 2013–2017, especially SO2.
In 2015–2016, the emission intensity of these atmospheric pollutants sharply declined from
9.49 to 1.20 t/108 RMB. However, the environmental regulation intensity (ERI) exhibited
increasing trends during 2013–2017. In 2015–2016, ERI dramatically increased from 3.27 to
9.98.

ERI was significantly and negatively correlated with the emission intensity of SO2,
smoke and dust (p < 0.05), but not significantly correlated with the concentration of PM10
and PM2.5 (p > 0.05).
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Figure 4. Environmental regulation intensity and the emission intensity of SO2, smoke, and dust.

4. Discussion

4.1. Temporal and Spatial Variations of PM10 and PM2.5

The mean annual concentrations of PM10 and PM2.5 decreased significantly from 2013
to 2017, while concentrations during 2015–2017 did not exhibit any significant variations.
Studies have shown that improvements in air quality in megacities are significant in the
early stages of governance and then stalled. The improvement of environmental quality
rarely accompanies urbanization and industrialization [21]. The inter-annual variation
may be attributed to human activities, including auto emissions and steel productions.
Additionally, the demand for housing intensified by the expansion of urban land could
increase construction dust emissions. The observed variations in the concentrations of
PM2.5 and PM10 may thus be a result of specific weather conditions, combined with
changes in land use and the increased development of urban infrastructure [2,24].

Regarding the seasonal variations in PM10 and PM2.5, both the highest concentrations
occurred in winter and the lowest in summer, the second-highest in spring and autumn.
This phenomenon might be attributable to frequent sandstorms originating in northwestern
China with bare land cover and strong wind, which produced anomalously high concen-
trations of mineral dust, resulting in a prominent rise of particulate matter in spring [6]. In
autumn, straw burning after agricultural harvests results in the rise in particulate matter
concentrations. In addition, meteorological factors also play an important role in these
processes. Cloudy weather and low wind speed could contribute to the elevated partic-
ulate matter concentrations [25]. Many cities seek to alter meteorological conditions to
some extent by changing the urban landscape [26]. Wind and turbulence within the urban
canopy can play an important role in local measurements of meteorological conditions.
This is especially true if pollutants are frequently capped by a statically stable atmospheric
layer [2,14]. Such stable conditions may contribute to the lack of spatial variations observed
in the downtown area. Our results showed nonsignificant difference for the concentrations
of PM10 and PM2.5 among the 13 stations. Zhang et al. [27] analyzed the particulate
matter at six sites in Xi’an, and also found nonsignificant spatial variations. However,
the concentrations of particulate matter were lower in the stations that locate near places
with higher tree coverage rates and large water bodies. Meanwhile, the concentrations
were higher in the stations surrounded by high energy consumption and bare land. Based
on these observations, we believe that the spatial homogeneity of the air quality is also
affected by human activities (i.e., pollutant emissions and land use).
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4.2. Effects of Meteorological Conditions and Environmental Management on
Atmospheric Pollution

Affecting the formation, diffusion, dilution, transformation, transportation, and ac-
cumulation of airborne pollutants, meteorological conditions are crucial for establishing
air quality levels [11,12]. In this study, the meteorological factors significantly influenced
the seasonal variations of particulate matter concentrations. This is partly because of the
stable interaction between particulate matter and meteorological factors. Precipitation, for
example, can remove particulate matter in the atmosphere and reducing the concentra-
tions across seasons [27,28]. However, there are also some unstable interactions. Within
a certain range, the wind can dilute the concentrations of particulate matter, otherwise
the effect could be the opposite. In spring, for instance, strong winds from the north-
west can easily bring sandstorms from Loess Plateau and increase the concentrations of
particulate matter. The increased relative humidity caused by precipitation can reduce
the concentrations of particulate matter, whereas high relative humidity can accumulate
water-soluble ions, such as NH4

+, NO3
−, and SO4

2−, which are major aerosol components
during haze episodes [29,30]. In addition, there may be a combination of other factors,
such as vegetation cover, which can adsorb the particulate matter. Vegetation cover is
regulated by phenology, such as atmospheric temperature [14]. This may result in the
different relationships between particulate matter and atmospheric temperature across
seasons.

The environmental management could determine the pollution intensity and the types
of pollutants. In this study, we found that the environmental regulation intensity could
significantly alleviate the emissions of SO2, smoke and dust, neither the particulate matter
(Table 5). Compared with SO2, smoke and dust, the composition, chemical process, and the
influence factors of particulate matter are more complicated [30,31]. It may be ineffective
by simply increasing the environmental regulation intensity in a short period. Therefore,
further exploration and verification are needed in terms of environmental management.

Table 5. Correlation coefficients between the environmental regulation intensity and the concentra-
tion and emission of atmospheric pollutants.

PM10 PM2.5 SO2 Emission
Smoke and

Dust Emission

ERI −0.52 −0.30 −0.92 * 0.95 *
*: p < 0.05.

Considering the difficulty of artificial control of meteorological conditions, more
attention has been paid to the environmental management, which has been confirmed
as the effective way to the improvement of atmospheric pollution. A one-size-fits-all
management model may also have side effects on the development of socio-economics in a
developing region. To reduce atmospheric pollution, effective environmental management
should factor in the seasonal meteorological conditions. For instance, increasing relative
humidity is an effective measure to reduce airborne pollution in spring and autumn. In
winter, it is quite clear that improving ventilation and reducing relative humidity may
ameliorate some of the effects of atmospheric pollution [25,32]. It is necessary to implement
the intensity of targeted atmospheric governance under specific meteorological conditions
to achieve the sustainability of socio-economic development and environmental protection.

4.3. Further Work

Our results suggest that the worsening of air quality in Xi’an is mainly caused by the
combination of human activities and natural sources. Many regulators believe that local
air quality can be improved by efforts to reduce anthropogenic emissions, and controlling
trans-boundary pollutants from the Gobi desert through increasing vegetation cover. It is
necessary to investigate the effects of different types of human activities on air quality in the
urban environment, and this will form the basis of our future work. Air monitoring stations
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that cover different environments are also needed. Further research should involve more
monitoring systems by factoring in local land use, while involving both the downtown and
suburban areas.

5. Conclusions

In this study, we explored the temporal and spatial trends of the concentrations of
PM10 and PM2.5 in Xi’an, China, and the response to the meteorological factors and
environmental regulation intensity. The concentrations of PM10 were higher than those of
PM2.5, especially in spring and winter. The annual, seasonal, and monthly variations of
PM10 and PM2.5 were striking. In terms of seasonal variations, the air quality is best in
summer, and worst in winter. The spatial characteristics of air quality did not reveal any
significant spatial differences due to the air monitoring stations being concentrated in the
downtown area.

Among the meteorological factors, precipitation, relative humidity, and atmospheric
temperature had impacts on atmospheric pollution. Conversely, wind speed affected
concentration only in autumn and winter, and wind direction affected them only in spring
and summer. In addition, the effects of environmental regulation intensity were prominent
(i.e., environmental governance investment per unit of air pollutant emissions).
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Abstract: The rapid economic development in East Asia has led to serious air pollution problems in
the near-surface layer. Studies have shown that there is an interaction between air pollution and the
East Asian upper-level jet, which is an important weather system controlling the climate in East Asia.
Therefore, it is of great significance to study the relationship between the surface layer air pollutants
and the upper-level jet stream in East Asia. Based on the daily wind and vertical velocity data
provided by the National Centers for Environmental Prediction/National Center for Atmospheric
Research as well as the surface pollutant and meteorological variable data provided by the Science
Data Bank, we use statistical analysis methods to study the relationship between the East Asian
upper-level jet and the high-concentration area of near-surface air pollutants in summer. Meanwhile,
the mechanisms of the interaction are preliminarily discussed. The results show that the North China
Plain and the Tarim Basin are the high-value areas of the particulate matter (PM) in summer during
2013–2018, and the ozone (O3) concentration in the near-surface atmospheric layer in the North
China Plain is also high. The average concentrations of the PM2.5, PM10 and O3 in the North China
Plain are 45.09, 70.28 and 131.27 μg·m−3, respectively, and the days with the concentration exceeding
the standard reach 401, 461 and 488, respectively. During this period, there is an increasing trend
in the O3 concentration and a decreasing trend in the PM concentration. The average ratio of the
PM2.5 to PM10 is approximately 0.65 with a decreasing trend. The air pollutant concentration in this
region has a significant relationship with the location of the East Asian upper-level jet. The low wind
speed at the surface level under the control of the upper-level jet is the main reason for the high
pollutant concentration besides the pollutant emission. They relate to each other through the surface
humidity and the meridional and zonal wind. Meanwhile, the concentrations of the PM2.5 and PM10

are high in the near-surface layer in the Tarim Basin, and the average concentrations are 45.19 and
49.08 μg·m−3, respectively. The days with the concentration exceeding the standard are 265 and 193,
respectively. The interannual variation in the PM concentration shows an increasing trend first and
then a decreasing trend. The average ratio of PM2.5 to PM10 in this region reaches approximately 0.9.
The ratio reaches the highest in 2013 and 2014 and then decreases to and maintains at approximately
0.85. The concentration of air pollutants in the basin has a significant relationship with the intensity
of the upper-level jet in East Asia. The weakening of the upper-level jet will lead to a decrease in
the surface humidity in the northern part of the basin, an increase in the surface temperature in the
western part of the basin and a decrease in the surface zonal wind in the eastern part of the basin,
which will result in a higher PM concentration.

Keywords: East Asian upper-level jet; atmospheric particulate matter; ozone; surface meteorological
variables; statistical analysis

1. Introduction

Since the industrial revolution, the increase in human activities has exacerbated
climate change in the earth system. At present, observation results have proved that global
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climate change has become an unequivocal fact, such as the continuous rise of the global
temperature, glacier melting and frequent extreme weather events, which are serious
threats to human survival and development [1]. Therefore, the in-depth understanding of
climate change is the current hotspot of scientific research, which will provide scientific
support for climatic policymaking.

Some studies have pointed out that there is an interaction between climate change
and air pollution [2]. Among the influencing factors of climate change, the role of aerosol
is the most uncertain [1]. The main component of air pollutants is the atmospheric aerosol.
The atmospheric aerosol refers to the particulate matter (PM) suspended in the atmosphere.
Aerosol particles can be solid or liquid and can also exist in the mixing form of solid and
liquid. In general, the diameters of the atmospheric aerosol particles are several nanometers
to tens of microns. The sources of aerosol particles in the atmosphere are different, and
different aerosols have different physical, chemical and optical properties, resulting in more
complex climatic effects of aerosols. The climatic effects of aerosols can be divided into
direct climatic effects, indirect effects and semi-direct effects. Although the three effects
are different in their interaction mechanisms, they all essentially lead to the change in the
earth climate system by affecting the radiation budget balance of the earth-atmosphere
system [3–7]. At the same time, variations in the climate system will cause the variation
in relevant meteorological factors, which will have an impact on the distribution of air
pollutants [8,9].

The East Asian upper-level jet is a narrow wind belt with a high wind speed above
500 hPa in the East Asia region [10]. Many observational data show that the strongest
subtropical westerly wind speed generally exists at 200 hPa [10,11], and the East Asian
jet is generally defined as the 200 hPa maximum zonal wind speed zone. The East Asian
upper-level jet has significant seasonal variation, and its location and intensity will change
accordingly. The jet stream, with its strong shears, plays an important role in forming
upper level convergence and divergence. Therefore, it causes variations of the weight of
all the air in a column from the ground to the limit of the atmosphere. In other words,
The upper level jet stream makes the surface pressure change, which could result in
variations in the air flow field at the ground [12]. At present, a large number of studies
have shown that the East Asian upper-level jet controls the atmospheric circulation in
East Asia and has an extremely important impact on the weather and climate in East
Asia [13–15]. Secondary circulations will be generated around the East Asian upper-level
jet, leading to the coupling of upper-level and low-level weather systems accompanied
by the exchange of the matter, momentum and energy between the upper level and the
ground. Therefore, the East Asian upper-level jet, as important weather and climate system
in East Asia, may have a certain interaction with the surface pollutants. Studies have
shown that surface pollutants have effects on the upper-level jet stream. Song et al. [16] and
Chen et al. [17] pointed out that the increase in summer aerosols will cause the southward
movement of the upper-level jet stream, which is mainly due to the change in the upper-
level temperature gradient caused by the aerosol forcing. Liu et al. [18] pointed out that,
in winter, to the north of 30◦ N, the mid-latitude cooling caused by aerosols leads to the
enhancement of the subtropical jet stream and the weakening of the temperate jet stream,
which further makes the upper-level jet stream move southward. In other studies, it has
been found that the upper-level jet stream can affect the distribution of surface pollutants.
Ordóñez et al. [19] found that the location of the North Atlantic jet stream has a greater
impact on the concentration distribution of the surface PM10 than on its intensity. Barnes
and Fiore [20] have shown that the location of the jet stream in eastern North America
in summer is closely related to the surface ozone concentration. Kerr et al. [21] used
a model to analyze the position of the upper-level jet stream affecting the transport of
the ozone by affecting the surface meridional wind. However, current research mainly
focusses on the one-way effect between the upper-level jet stream and surface pollutants
and rarely focusses on the interaction between them. In addition, the East Asia region
has a wide zonal range, and the distributions of the terrain, coastline and land use are
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relatively complex. The region is mainly controlled by the monsoon system, and the
seasonal change in the climate is distinctive. In particular, the role of the summer monsoon
system is relatively significant. Meanwhile, the population in East Asia accounts for one
third of the world’s population. On the one hand, the climate change in East Asia has a
significant impact on the production and lives of the local people. On the other hand, the
climate in East Asia is also strongly affected by human factors related to the rapid economic
development of Asian countries. Therefore, the East Asian upper-level jet is one of the
main members of the monsoon system that controls the weather and climate in East Asia,
and the surface pollutant is an important factor affecting weather and climate changes.
It is of great practical significance to study the interaction between them in summer and
explore the mechanism.

2. Materials and Methods

2.1. Data

The National Centers for Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) daily reanalysis data of the zonal wind and vertical velocity from
1989 to 2018 are used with the horizontal resolution of 2.5◦ × 2.5◦ (the number of grid
points is 144 × 73) and the vertical resolution of 17 layers.

The surface pollutant data and the surface meteorological variables including the
relative humidity, temperature, surface meridional wind and surface zonal wind data are
derived from the second version of the high-resolution air pollution reanalysis dataset
in China in the Science Data Bank during 2013–2018. The dataset mainly contains two
parts. The first part is the surface concentration reanalysis data of six conventional air
pollutants (PM2.5, PM10, SO2, NO2, CO and O3) in China from 2013 to 2018. These data
are obtained by assimilating the surface observation data provided by the China National
Environmental Monitoring Center by using the ensemble Kalman filter and the Nested
Air Quality Prediction Modeling System. The second part is the Weather Research and
Forecasting model simulation data of surface meteorological variables including the wind
speed, temperature, air pressure and relative humidity during the same period. The spatio-
temporal resolution of the dataset is high with the temporal resolution of 1 h and the
spatial resolution of 15 km. By using cross-validation, independent data verification and
comparing with similar data at home and abroad, it was found that the dataset is highly
accurate [22]. In this study, four surface pollutants of the NO2, PM10, PM2.5 and O3 are
selected as the main research objects, and the O3 data are processed into the format of the
maximum concentration in 8 h per day.

2.2. Methods

All methods used in this paper were coded and computed in the programming
language Python.

2.2.1. Empirical Orthogonal Function Decomposition

The empirical orthogonal function (EOF) is applied to the meteorological variable that
changes with time, and the meteorological variable is decomposed into two parts, namely,
the function of time and the function of space.

Assuming that the sample size is n and the meteorological variable X contains p
spatial points (variables), the anomaly value of any spatial point i at any time point j can
be regarded as the linear combination of p spatial functions v ik and p time functions y ki

(k = 1, 2, 3 . . . . . . and p). The decomposition is expressed as a matrix form of X = VY.
The space vector V is a matrix of n row and n column, which are orthogonal to each other:
VT × V = I (I is a unit matrix)
The time vectors Y is an n-row and m-column matrix, and Y are also orthogonal:
Y × YT = Λ (Λ is a diagonal matrix)
Defining the matrix A as A = X × XT, and then we have:
A = V × Λ × VT
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V is also the eigenvector of A, Λ’s principal diagonal is the eigenvalue of A and the
rest are all 0. Y can be obtained as Y = VT × X.

This method is used to study the spatio-temporal characteristics of 200 hPa zonal
wind. More information about EOF can be found in [23].

2.2.2. Singular Value Decomposition

The singular value decomposition (SVD) method is performed on the covariance
matrix of two variables. The anomalies fields of the variables and the normalized variables
are commonly used. The decomposition result reveals the spatial correlation of two variable
fields within a certain time range to a great extent. The heterogeneous correlation diagrams
of the left and right fields explain the correlation between the two variables, and the SVD
results are tested by using the Monte-Carlo method to avoid false correlation. The detailed
descriptions and application of SVD is given in [24].This approach is used to test the
relationships between upper level jet stream (200 hPa zonal wind) and surface pollutants
(PMs and O3) over East Asia.

2.2.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistic that measures the linear correlation
between two variables. It is usually represented by r, and its value ranges between −1 and
1. The calculation formula of the correlation coefficient between variables x1, x2, x3...xn and
variables y1, y2, y3...yn is as follows:

r =
∑

n
i=1(xi − x)(yi − y)√

∑
n
i=1(xi − x)∑

n
i=1(yi − y)

(1)

The correlation coefficient in this study is tested by using the Monte Carlo method.
That is, the two variables are considered to obey the normal distribution. The H0 hypothesis
is when the correlation coefficient is r, the two variables are not correlated. Given the confi-
dence level α, the corresponding critical value can be determined according to the degree
of freedom so that the probability distribution function conforms to P (|r| > r1-α) = α. If
|r| > r1-α, the hypothesis H0 is rejected, and the correlation between the two variables is
significant. Otherwise, the two variables are not correlated. The specific approaches are
as follows.

First, a pair of arrays that conform to the normal distribution with sample sizes of n are
randomly generated, and the Pearson correlation coefficient between them is calculated.

Second, the first step is repeated 15,000 times, and the obtained correlation coefficients
are sorted in descending order. The 5000th correlation coefficient (1-α) is found and marked
as r1-α.

Third, the actual correlation coefficient |r| and the r1-α are compared. If |r| > r1-α,
the two variables are correlated. Otherwise, they are not correlated.

We used this method to analyze the relationships between jet stream (200 hPa zonal
wind) and surface meteorological elements (humidity, temperature, meridional wind and
zonal wind), as well as the relationships between surface pollutants (PMs and O3) and
surface meteorological variables (humidity, temperature, meridional wind and zonal wind).
The Monte Carlo method is also used to test whether the correlation is significant [25].

2.3. Relevant Definitions of the East Asian Upper-Level Jet

In this study, the area with the westerly wind speed greater than 30 m·s−1 at 200 hPa
in East Asia (70–140◦ W, 15–55◦ N) is defined as the East Asian upper-level jet. The position
of the East Asian upper-level jet is defined as the latitude of the maximum westerly wind
speed at 200 hPa in East Asia. The intensity of the East Asian upper-level jet is defined as
the average wind speed on the jet stream axis. Figure 1 shows the average climate state of
the 200 hPa jet stream axis in summer from 1989 to 2018. The position of the 200 hPa jet
stream in summer is around 40◦ N with relatively large interannual fluctuations.
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Figure 1. The average climate state of the jet stream axis at 200 hPa in summer from 1989 to 2018
(scatter points and error bars indicate the average position and the variabilities of the jet stream
axis, respectively).

3. Results

3.1. Characteristics of the East Asian Upper-Level Jet and Surface Pollutants in Summer

3.1.1. Spatio-Temporal Characteristics of the East Asian Upper-Level Jet in Summer

The monthly average data of 200 hPa zonal wind in summer over East Asia from
2009 to 2018 are selected, and the spatio-temporal decomposition is carried out based on
the data. The covariance contribution rates of the first two modes of the EOF (hereafter
referred to as EOF1 and EOF2, respectively) decomposition results (Figure 2) are 57.54%
and 8.78%, respectively. The spatial distribution of the EOF1 shows that the dividing line
of the 200 hPa zonal wind is around 40◦ N, which is the average position of the upper-level
jet stream in summer. The variations in the north and the south are opposite, which shows
that the EOF1 represents the position variation in the upper-level jet stream. In the time
series corresponding to the EOF1, the time coefficients are all negative in June during
2009–2018, while the time coefficients are both positive in July and August in the same
years. This indicates that the position of the jet stream in June in this decade is to the south
of that in July and August in the same years. The spatial distribution of the EOF2 of the
200 hPa upper-level zonal wind shows that there is a minimum area centered around 40◦

N, which is the average position of the upper-level jet stream in summer. Therefore, the
EOF2 represents the intensity variation in the upper-level jet stream.

Figure 2. Spatial distributions (a,c) and the time coefficients (b,d) of the EOF1 and EOF2 of the
200 hPa zonal wind in summer from 2009 to 2018.
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3.1.2. Distribution Characteristics of Surface Pollutants in East Asia in Summer

The average concentrations of the NO2, PM10, O3 (the maximum concentration in
8 h) and PM2.5 in summer from 2013 to 2018 are shown in Figure 3. Combined with the
first-level concentration indices of pollutants in the Ambient Air Quality Standards (GB
3095–2012), it can be seen that the overall NO2 concentration in summer in China is within
the normal standard range. There is relatively serious PM pollution in the Tarim Basin
(37–42 ◦ N, 75–90 ◦ E) and most parts of northern China. The O3 concentration is relatively
high in northern China and most areas of Qinghai-Tibet. The O3 pollution in the North
China Plain (35–40◦ N, 113–123◦ E) is the most serious. Therefore, the PM10 and PM2.5 in
the Tarim Basin and the PM10, O3, and PM2.5 in the North China Plain are taken as the
research objects of summer pollutants in this study.

Figure 3. Season mean concentrations of air pollutants (a) NO2, (b) PM10, (c) O3 (8 h maximum
concentration) and (d) PM2.5 in China in summer during 2013–2018 (unit: μg·m−3, the slashed area
indicates that the pollutant concentration in the area has exceeded the first-level concentration index
of the Ambient Air Quality Standards in China).

In summer during 2013–2018, the average concentrations of the PM2.5 and PM10 in the
Tarim Basin are 45.19 and 49.08 μg·m−3 (Table 1), respectively. The interannual variations
of the PM concentration increased year by year before 2015 and decreased after 2015.
The PM concentration reached the maximum in 2015, and many discrete values in 2018
indicate that severe PM pollution events occurred frequently in that year (Figure 4a,b).
In Figure 5a, the days with the PM2.5 exceeding the standard are more than those of
the PM10 in summer in the Tarim Basin with a total of 265 and 193 days during 2013
to 2018, respectively. The ratio of PM2.5 to PM10 in this area is high with an average of
approximately 0.9 (Figure 7). The ratio of the PM2.5 to PM10 reaches a high value in 2013
and 2014 with the maximum reaching 1, but the ratio declines in subsequent years and
maintains at around 0.85 (Figure 6a).

Table 1. Average concentration of pollutants in the Tarim Basin and the North China Plain from 2013
to 2018 (unit: μg·m−3).

Area\Pollution Kind PM2.5 PM10 O3

TB 45.19 49.08 -
NCP 45.09 70.28 131.27
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Figure 4. Interannual variation in the average pollutant concentrations in the Tarim Basin (a,b) and the North China
Plain (c–e) (unit: μg·m−3, orange lines represent the median, green triangles represent the average value, and hollow dots
represent the discrete value).

Figure 5. Days with pollutant concentrations exceeding the national first-level environmental standard in the Tarim Basin
(a) and the North China Plain (b) in summer from 2013 to 2018.

Figure 6. Interannual variation in the ratio of the PM2.5 to PM10 concentration in the Tarim Basin (a) and the North China
Plain (b) in summer from 2013 to 2018 (orange lines represent the median, green triangles represent the mean value and
black dots represent the discrete point).
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The average concentrations of the three pollutants of the PM2.5, PM10 and O3 in the
North China Plain in the summer during 2013–2018 are 45.09, 70.28 and 131.27 μg·m−3

(Table 1), respectively. The days with concentrations exceeding the standard reach 401, 461
and 488, respectively, and the days with the PM10 exceeding the standard are more than
those of the PM2.5 (Figure 5b). Figure 4c–e show that the PM concentrations in the North
China Plain show decreasing trends, while the O3 concentration shows an increasing trend.
The average ratio of the PM2.5 to PM10 in this area is approximately 0.65, and the ratio
shows a decreasing trend (Figures 6 and 7).

Figure 7. Spatial distribution of the ratio of the PM2.5 to PM10 in summer from 2013 to 2018.

3.2. Relationship between the East Asian Upper-Level Jet and Surface Pollutants in Summer

3.2.1. Preliminary Analysis of the Relationship between the East Asian Upper-Level Jet
and Surface Pollutants in Summer

According to the analysis results in Section 3.1.1, it can be concluded that there is
an intraseasonal northward shift of the jet stream position in summer during 2013–2018.
Therefore, the impact of the East Asian upper-level jet on pollutants in each month in
summer is discussed separately. The temporal average of the monthly 200 hPa zonal wind
and the pollutant concentration, including the PM10, O3, and PM2.5, in the summer during
2013–2018 are calculated. Figure 8 shows that the average position of the upper-level jet
stream in June is around 40◦ N, and the average central wind speed is higher than 39 m·s−1.
The average positions of the upper-level jet stream in July and August are around 45◦ N.
The average wind speeds of the jet stream centers in July and August are approximately 31
and 35 m·s−1, respectively. The above results show that the upper-level jet stream has an
obvious northward jump in summer, which is consistent with the EOF analysis result. The
intensity of the upper-level jet stream in summer is the strongest in June and the weakest
in July.

In addition, the pollutants in the North China Plain in June locate near the left side
of the entrance region of the upper-level jet stream (Figure 8a,d). Combined with the
atmospheric meridional vertical circulation in June (Figure 9a), it can be seen that the North
China Plain, locating near 32–40◦ N, is dominated by the descending motion in the left side
of the entrance region of the upper-level jet stream between 850 and 300 hPa, while there is
a weak ascending motion below 850 hPa, the average vertical velocity in North China Plain
in June from Table 2 can also prove this. It indicates that the atmospheric stratification
over the North China Plain is relatively stable in June, which is conducive to the pollutant
accumulation. The 1000 hPa surface wind during the same period (Figure 8g) shows that
the pollutants from southern China are transported to the North China Plain due to the
large-scale southerly wind. The low wind speed in the North China Plain is not conducive
to the pollutant diffusion in the region. Therefore, the pollutant concentrations are high in
the North China Plain in June including PM10, O3 and PM2.5.
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Figure 8. Variations of the 200 hPa westerly jet stream (unit: m·s−1, a–f, contours), distributions of the monthly mean
surface air pollutants (unit: μg·m−3, including PM10, O3 and PM2.5) and 1000 hPa wind fields (unit: m·s−1, g–i, vectors) in
June, July and August from 2013 to 2018. The PM10, O3, PM2.5 are plotted in shaded in a–c, d–f, g–i, respectively.

Figure 9. The height-latitude profile of the meridional-averaged zonal wind (unit: m·s−1, contours)
and vertical movement (unit: pa·s−1, shades: red indicates ascending motion, blue indicates descend-
ing motion) in different areas in July and August. (a,c,e) represent the situation in the North China
Plain, and (b,d,f) represent the situation in the Tarim Basin.
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Table 2. The average value of the meteorological elements and pollutant concentrations in the North
China Plain (NCP) and Tarim Basin (TB) in June, July and August.

Jun Jul Aug

NCP

surface wind speed (m·s−1) 2.48 2.61 1.36
200 hPa zonal wind speed (m·s−1) 31.77 17.39 18.60

vertical velocity(pa·s−1) * 0.009 −0.022 −0.003
PM2.5 (μg·m−3) 48.09 44.09 39.60
PM10 (μg·m−3) 75.37 67.21 62.15

O3 (μg·m−3) 141.70 126.13 123.50

TB

surface wind speed (m·s−1) 1.41 1.76 1.99
200 hPa zonal wind speed (m·s−1) 30.29 26.71 29.03

vertical velocity(pa·s−1) * −0.037 −0.056 −0.061
PM2.5(μg·m−3) 35.56 44.51 43.43
PM10(μg·m−3) 39.32 48.21 47.41

* The vertical velocity is the average value of the vertical velocity below the 200 hPa level.

Combined with Table 2, in July and August, the North China Plain is located near
the right side of the exit region of the upper-level jet stream over the Sea of Japan. It is
dominated by the ascending motion caused by the upper-level jet stream, which makes
pollutants, including PM10, O3 and PM2.5, diffuse in the vertical direction to a certain
extent in the North China Plain, and the surface concentration is lower than that in June.
However, the surface wind speed in the North China Plain is relatively low, and the
horizontal diffusion of pollutants is relatively hard. Therefore, the pollution in the North
China Plain in July and August is still serious.

The Tarim Basin has a special topography. Except for the Hexi Corridor to the east,
the north, west and south sides are all surrounded by high mountains with an average
altitude of more than 5000 m [26,27]. Throughout the summer, the Tarim Basin locates at
the right of the entrance region of the upper-level jet stream dominated by the ascending
motion caused by the upper-level jet stream (Table 2). However, Figure 9b–e indicate that
the ascending motion above 700 hPa is very weak, and the air vertical movement is not
enough to carry the surface PM10 and PM2.5 away from the basin. Meanwhile, the Tarim
Basin is dominated by the easterly wind, and the surface wind speed is relatively low in
summer. The horizontal diffusion of pollutants is hindered by the surrounding mountains
(Figure 8g–i). Therefore, the pollutant concentrations including PM2.5 and PM10 are high
in summer in the Tarim Basin.

The above analyses show that there is a connection between the summer jet stream
and surface pollutants.

3.2.2. Relationship between the Surface Pollutants and the Position and Intensity of the
East Asian Upper-Level Jet in Summer

The SVD method is used to further analyze the relationship between the East Asian
upper-level jet and surface pollutants in summer. The sum of the cumulative covariance
contribution of the first two modes of the SVD (hereafter referred to as SVD1 and SVD2,
respectively) of the surface O3 concentration and the 200 hPa zonal wind in summer is
88.46%. The sum of the square of the explained total covariance of the SVD1 is 81.35%, and
the correlation coefficient of the time series of the left and right fields is 0.96, showing the
synchronized variation in the two fields. In Figure 10e,f, when the time coefficients of the
left and right fields are both positive, there are positive anomalies of the O3 concentration
in the North China Plain in the left field. The dividing line in the right field is about
40◦N, which is the average position of the East Asian upper-level jet axis in summer,
and the north and south regions of the 200 hPa zonal wind show positive anomalies and
negative anomalies, respectively. That is, the position of the upper-level jet stream is more
southward when the surface O3 concentration is higher in the North China Plain, and vice
versa. Moreover, the spatial distribution of the right field heterogeneous correlation of this
mode is similar to that of the EOF1 of the 200 hPa zonal wind. Therefore, the SVD1 of the
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surface O3 concentration and 200 hPa zonal wind represents the relationship between the
surface O3 and the position of the East Asian upper-level jet.

Figure 10. The (a,c,e) left and (b,d,f) right heterogeneous correlation diagrams of the SVD1 of the
surface pollutants including the PM10, O3 and PM2.5 (the left field) and the 200 hPa zonal wind field
(the right field) in summer from 2013 to 2018. The slashes indicate that the results passed the 95%
Monte Carlo correlation test.

For the SVD2 of the O3 concentration and 200 hPa zonal wind in summer, the sum
of the square of the explained total covariance is 7.31%, and the correlation coefficient
of the time series of the left and right fields is 0.94, showing the synchronized variation
relationship. The spatial distribution of the left field heterogeneous correlation is similar to
that of the EOF2 of the 200 hPa zonal wind. Therefore, the left and right fields heterogeneous
correlation of the SVD2 represents the relationship between the surface O3 and the intensity
of the East Asian upper-level jet. However, their relationship is not significant in the North
China Plain (Figure 11e,f).

Therefore, there may be a certain relationship between the surface O3 concentration in
the North China Plain in summer and the position of the East Asian upper-level jet, but the
relationship with the intensity of the upper-level jet stream is not significant.

Since the SVD results of the 200 hPa zonal wind and the surface PM10 and PM2.5
concentrations are similar in summer, the relationship of the 200 hPa zonal wind with the
PM10 and that with the PM2.5 are discussed together. For the SVD1 and SVD2 of the 200 hPa
zonal wind and the PM10 and PM2.5, the sums of the cumulative covariance contribution
are 86.39% and 85.06%, respectively. The sum of squares of the explained total covariance
of the SVD1 are 71.13% and 71.76%, respectively. The correlation coefficients of the time
series of the left and right fields are 0.96 and 0.84, respectively, showing the synchronized
variation relationship. The slashes in Figure 10a–d show that, when the anomalies of the
PM10 and PM2.5 concentrations in the North China Plain in the left field are negative, the
dividing line of the 200 hPa zonal wind in the right field is about 40◦N, which is the average
position of the East Asian upper-level jet axis in summer, and the north and south regions
show negative anomalies and positive anomalies, respectively. That is, the position of the
East Asian upper-level jet is more northward when the concentrations of the PM10 and
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PM2.5 are low in the North China Plain, and vice versa. Moreover, the spatial distribution
of the left-field heterogeneous correlation of this mode is similar to that of the EOF1 of the
200 hPa zonal wind. Therefore, the surface PM10 and PM2.5 concentrations are associated
with the position of the East Asian upper-level jet.

Figure 11. The (a,c,e) left and (b,d,f) right heterogeneous correlation diagrams of the SVD2 of the
surface pollutants including the PM10, O3 and PM2.5 (the left field) and the 200 hPa zonal wind field
(the right field) in summer from 2013 to 2018. The slashes indicate that the results passed the 95%
Monte Carlo correlation test.

For the SVD2 of the 200 hPa zonal wind and the PM10 and PM2.5 surface concentration
in summer, the sum of squares of the explained total covariance are 15.26% and 13.30%,
respectively. The correlation coefficients of the time series of the left and right fields are
0.91 and 0.83, respectively, presenting the synchronized variation relationship. The slashes
in Figure 11a–d show that when the anomalies of the PM10 and PM2.5 concentrations in the
Tarim Basin in China are negative, there is a negative anomalous region of the 200 hPa zonal
wind centered around 40◦ N, which corresponds to the average position of the East Asian
upper-level jet in summer. That is, the intensity of the East Asian jet stream is low (high)
when the PM10 and PM2.5 concentrations are high (low) in the Tarim Basin. The spatial
distribution of the right field heterogeneous correlation of this mode is similar to that of
the EOF2 of the 200 hPa zonal wind. Therefore, the left and right fields heterogeneous
correlation of the SVD2 represents the relationship between the surface concentrations of
the PM10 and PM2.5 and the intensity of the East Asian upper-level jet.

By comparing the significance of the heterogeneous correlation diagrams of the first
and second modes, we found that the anomalous PM10 and PM2.5 concentrations in summer
over the North China Plain may have a certain relationship with the position variation in
the East Asian upper-level jet, but the relationship with the intensity anomaly of the upper-
level jet stream is not significant. The anomalous surface PM10 and PM2.5 concentrations
in the Tarim Basin may have a certain relationship with the intensity anomaly of the East
Asian upper-level jet, but the relationship with the position variation in the upper-level jet
stream is not significant.
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In summary, there is a certain relationship between the movement of the East Asian
upper-level jet in summer and the variations of the three pollutants’ concentrations, in-
cluding PM10, PM2.5 and O3, in the North China Plain. When the position of the East
Asian upper-level jet is more northward, the concentrations of the PM10, PM2.5 and O3 in
North China Plain are significantly lower, and vice versa. There is a connection between
the intensity variation in the East Asian upper-level jet in summer and the concentration
variations of the PM10 and PM2.5 in the Tarim Basin. When the intensity of the East Asian
upper-level jet is relatively high, the concentrations of the PM10 and PM2.5 in the Tarim
basin are both low, and vice versa.

3.3. Preliminary Analyses of the Interaction Mechanism between the Summer Jet Stream
and Pollutants

The East Asian upper-level jet has a three-dimensional structure, and a series of sec-
ondary circulations are generated around the upper-level jet stream, which are associated
with surface pollutants. The idea of using statistical methods to study the interaction
between them is to find out the medium existing in the interaction between them. That is,
to find out the surface meteorological variable that connects to the upper-level jet stream
and then interacts with surface pollutants. Due to the exchange of the energy, matter and
momentum between the upper-level jet stream and the surface, the surface meteorological
variables, such as the humidity, temperature, zonal wind and meridional wind, are selected
in the study. The correlation analysis method is used to explore the relationships between
the upper-level jet stream and the surface meteorological variables including the humidity,
temperature, surface zonal wind and surface meridional wind as well as the relationships
between the surface meteorological variables and the surface pollutants.

3.3.1. Relationship between the Summer Jet Stream and Surface Meteorological Variables

According to the analyses in Section 3.1.1, it can be concluded that the EOF1 of the
200 hPa zonal wind in the summer from 2013 to 2018 represents the position variation
in the summer jet stream. The correlation analysis between the time series of the EOF1
and the surface meteorological variables in the corresponding period can be regarded
as the correlation analysis between the position of the upper-level jet stream and the
surface meteorological variables in summer. Figure 12 shows that, in the North China
Plain, the position of the East Asian upper-level jet in summer has significant positive
correlations with the surface humidity and temperature and negative correlations with the
surface meridional and zonal wind. In the Tarim Basin, the position variation in the East
Asian upper-level jet in summer is significantly positively correlated with the humidity
and temperature and negatively correlated with the surface zonal wind. However, the
position variation in the East Asian upper-level jet is positively correlated with the surface
meridional wind in a small region in the western part of the Tarim Basin, and there is a
negative correlation between them in the eastern part of the Tarim Basin.

Combined with the spatio-temporal distribution of the first mode of the 200 hPa
zonal wind, it can be said that when the position of the East Asian upper-level jet is
more northward, the surface humidity and temperature in North China Plain are higher,
and the surface meridional wind and zonal wind are weaker. The surface humidity and
temperature in the Tarim Basin are higher, and the surface zonal wind is weaker. The
surface meridional wind in the west part of the Tarim Basin is stronger, and weaker in the
east part, and vice versa.

The EOF2 of the 200 hPa zonal wind in summer from 2013 to 2018 represents the
intensity variation in the summer jet stream. The correlation analyses between the time
series of the EOF2 and the surface meteorological variables in the corresponding period
represent the relationship between the intensity of summer upper-level jet stream and the
surface meteorological variables. In Figure 13, the intensity of the East Asian jet stream is
proportional to the surface temperature in the North China Plain, while it is insignificantly
related to the surface humidity, meridional wind and zonal wind. In the Tarim Basin, the
intensity of the East Asian upper-level jet has a significantly negative correlation with the
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surface humidity in the northern region, a significantly positive correlation with the surface
temperature in the whole area and a significantly negative correlation with the surface
zonal wind in the eastern region, but its relationship with the surface meridional wind
is insignificant.

Figure 12. The correlation coefficients between the time series of the EOF1 of the 200 hPa zonal wind
and surface meteorological variables of the (a) humidity, (b) temperature, (c) surface zonal wind
and (d) surface meridional wind in summer during 2013–2018. The slashes indicate that the results
passed the 95% Monte Carlo correlation test.

Figure 13. The correlation coefficients between the time series of the EOF2 of the 200 hPa zonal wind
and surface meteorological variables of the (a) humidity, (b) temperature, (c) surface zonal wind
and (d) surface meridional wind in summer during 2013–2018. The slashes indicate that the results
passed the 95% Monte Carlo correlation test.

According to the spatio-temporal distribution of the second mode of the 200 hPa
zonal wind, when the intensity of the East Asian upper-level jet is weaker, the surface
temperature in the North China Plain is higher, the surface humidity in the northern Tarim
Basin is lower, the surface temperature in the region is higher and the surface zonal wind
in the eastern part of the basin is weaker, and vice versa.
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3.3.2. Relationship between Pollutants and Surface Meteorological Variables in Summer

The correlation coefficients of the surface pollutants including PM10, O3 and PM2.5
with the daily average data of surface meteorological variables in summer from 2013 to 2018
are shown in Figure 14. The PM10, O3, and PM2.5 in the North China Plain are negatively
correlated with the surface humidity and are significantly positively correlated with the
surface temperature, zonal wind and meridional wind. However, the significant regions
of the correlations between different pollutants and meteorological variables are different.
The PM2.5 has a significantly negative correlation with the humidity only in the southern
part of the North China Plain. The PMs maintain significant positive correlations with the
surface temperature only in the northern and southeastern parts of the North China Plain.
In addition, these three pollutants are significantly negatively correlated with the surface
zonal wind in different areas in the east parts of the North China Plain. That is, when the
pollutant concentrations in the North China Plain are higher (lower), the surface humidity
in the certain region is lower (higher) correspondingly, the temperature is higher (lower),
and the zonal wind and the meridional wind are stronger (weaker).

Figure 14. Correlation coefficients between surface pollutants and corresponding surface meteorological variables in
summer from 2013 to 2018. (a) PM10 and humidity, (d) PM10 and temperature, (g) PM10 and zonal wind and (j) PM10

and meridional wind. (b) O3 and humidity, (e) O3 and temperature, (h) O3 and zonal wind and (k) O3 and meridional
wind. (c) PM2.5 and humidity, (f) PM2.5 and temperature, (i) PM2.5 and zonal wind and (l) PM2.5 and meridional wind. The
slashes indicate that the results passed the 95% Monte Carlo correlation test.
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Both the PM10 and PM2.5 in the Tarim Basin have good heterocorrelations with the
surface humidity and zonal wind, and the PMs are significantly positively correlated with
the surface temperature only in the west part of the Tarim Basin and have significant
negative correlations with the surface meridional wind in the south part of the Tarim Basin.
That is, when the concentrations of the PM10 and PM2.5 in the Tarim Basin are higher
(lower), the surface humidity in the region is lower (higher) and the zonal wind is weaker
(stronger). The surface temperature in the west part of the region increases (decreases) and
the surface meridional wind in the south part of the region weakens (strengthens).

The summer months of 2013–2018 could be divided into the southerly jet month and
the northerly jet month, as well as the stronger and weaker jet months according to the time
series of the first and second modes of the 200 hPa zonal wind in summer of 2013–2018.
In the light of the four classification results, the pollutant concentrations in different jet
months in both the North China Plain and Tarim Basin are calculated as shown in Table 3.
It can be seen from Table 3 that the concentrations of PM2.5, PM10 and O3 in the North
China Plain can reach 48.09, 75.37, and 141.70 μg·m−3, respectively, when the East Asian jet
shifts southward. These loadings are much higher than their seasonal means in summer of
2013–2018. The average concentration of PM2.5, PM10 and O3 in the North China Plain can
reach 41.54, 64.5 and 125.01μg·m−3, respectively, when the East Asian jet shifts northward,
which is lower than their seasonal means in summer of 2013–2018.

Table 3. The average concentration of the air pollutants in North China Plain (NCP) and the Tarim
Basin (TB) in different East Asian jet periods in summer from 2013–2018. (units:μg·m−3).

PM2.5 PM10 O3

NCP
Southward 48.09 75.37 141.70
Northward 41.54 64.5 125.01

Average 43.92 68.25 130.44

TB
strong 36.30 38.88 -
weak 53.24 59.04 -

Average 41.17 44.98 -

The concentrations of PM2.5 PM10 in the Tarim Basin can reach 36.30 and 38.88 μg·m−3,
respectively, when the intensity of the East Asian jet is relatively stronger. These loadings
are lower than their seasonal means in summer of 2013–2018. The concentrations of PM2.5
and PM10 in the Tarim Basin can reach 53.24 and 59.04 μg·m−3, respectively, when the
intensity of the East Asian jet is weaker, which are higher than their seasonal means in
summer of 2013–2018.

Combined with the analyses in Section 3.2.2, it can be concluded that the position of
the upper-level jet stream in summer may be related to the PM10, O3 and PM2.5 due to the
effects of the surface humidity and the meridional and zonal wind in the corresponding
region of North China Plain. When the position of the upper-level jet stream in summer
is more northward, the surface humidity is higher, and the meridional and zonal wind
is stronger. At this time, the concentrations of three pollutants in North China are all
lower, and vice versa. The intensity of the East Asian upper-level jet in summer may have
correlations with the PM10 and PM2.5 due to the interaction with the surface humidity in
the northern part of the Tarim Basin, the surface temperature in the western part, and the
surface zonal wind in the eastern part. When the intensity of the East Asian upper-level jet
is weaker, the humidity in the northern part of the region is lower, the temperature in the
western part is higher, and the zonal wind in the eastern part is weaker. At this time, the
concentrations of surface PMs are higher, and vice versa.

4. Conclusions and Discussion

Based on the NCEP/NCAR daily wind and vertical velocity data, as well as the
surface pollutants and meteorological variables data derived from the Science Data Bank,
statistical analysis methods were used to study the relationships between the East Asian
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upper-level jet and the high concentration areas of near-surface air pollutants in summer in
this study, and the interaction mechanisms between them are preliminarily discussed. The
conclusions are as follows.

(1) In summer, the average position of the East Asian upper-level jet axis is around 40◦ N.
The EOF1 of the 200 hPa zonal wind in East Asia represents the position variation in
the East Asian upper-level jet in summer. The corresponding time coefficient diagrams
show that the position of the East Asian upper-level jet has a northward jump in
summer. The EOF2 reflects the intensity variation in the East Asian upper-level jet
in summer.

(2) In the summer, pollutants concentrate in the North China Plain and Tarim Basin.
The PM2.5, PM10 and O3 are the main pollutants in the North China Plain with the
average concentrations of 45.09, 70.28 and 131.27 μg·m−3, respectively. The days with
concentrations exceeding the standard are 401, 461 and 488, respectively. The O3
concentration has an increasing trend during this period, while the PM concentration
has a decreasing trend. The average ratio of the PM2.5 to PM10 is approximately 0.65,
and the ratio shows a descending trend. The main pollutants in the Tarim Basin are the
PM2.5 and PM10 with average concentrations of 45.19 and 49.08 μg·m−3, respectively.
The days with concentrations exceeding the standard are 265 and 193, respectively.
The interannual variation in PM concentration shows an increasing trend at first and
then a decreasing trend. The average ratio of PM2.5 to PM10 in this region is about 0.9.
The ratio reaches the highest in 2013 and 2014 and then decreases to and maintains at
about 0.85. In June, the North China Plain locates on the left side of the upper-level jet
stream entrance region, which is dominated by descending motions. The surface wind
speed is relatively low, which is not conducive to the pollutant diffusion, resulting
in high concentrations of pollutants, including the PM10, O3 and PM2.5. In July and
August, the North China Plain locates near the right side of the upper-level jet stream
exit region, and there are mainly ascending motions in the vertical direction, which
lead to the lower concentrations of pollutants including the PM10, O3 and PM2.5 in
July and August than those in June. However, the surface wind speed is low, and the
pollutants are not effectively diffused, so the concentrations of the PM10, O3 and PM2.5
are still higher. Throughout the summer, the Tarim Basin locates on the right side
of the upper-level jet stream entrance region. There are mainly ascending motions
in the vertical direction caused by the upper-level jet stream, and there is mainly
easterly wind in the horizontal direction. However, due to the special terrain of the
Tarim Basin, the diffusion process of the PM10 and PM2.5 in horizontal and vertical
directions is blocked, resulting in higher concentrations of the PM10 and PM2.5 in
this region.

(3) The analysis results on the relationship between upper-level jet stream and air pollu-
tants in East Asia indicate that the position of the upper-level jet stream in summer
may be related to the PM10, O3 and PM2.5 due to the effects of the surface humidity
and the meridional and zonal wind in the corresponding region of the North China
Plain. When the position of the upper-level jet stream is more northward in summer,
the surface humidity is higher and the meridional and zonal wind is weaker. At this
time, the concentrations of the three pollutants in North China are all lower, and vice
versa. Meanwhile, the intensity of the East Asian upper-level jet may have correla-
tions with the PM10 and PM2.5 due to the interaction with the surface humidity in the
northern part of the Tarim Basin, the surface temperature in the western part, and the
zonal wind in the eastern part. When the intensity of the East Asian upper-level jet is
weaker, the humidity in the northern part of the region is lower, the temperature in
the western part is lower, the surface zonal wind in the eastern part is weaker and the
PM concentration in the Tarim Basin is higher, and vice versa.

Chen et al. [17] used CESM and indicated that the regional anthropogenic aerosol
caused the 200 hPa jet stream to weaken and shift southward over East Asia in summer.
which is in agreement with our results, despite the different kind of aerosol. Wang et al. [28]
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found that the sand-dust weather often occurred in Taklimakan Desert in spring and sum-
mer. The dust particle also had an influence on the summer atmospheric boundary layer
structure in Taklimakan Desert. This result can imply that the upper level jet stream has a
connection with surface pollutants in Tarim Basin to some extent. Results here also show
some connections between the jet and surface air pollutants in summer. Kerr et al. [21] used
the global model to study the influence of the upper-level jet stream position on the surface
zonal wind and meridional wind in the mid-latitude region of the northern hemisphere
in summer. Their results showed that the influence of the upper-level jet stream position
on the surface zonal wind mainly occurred over the sea, while its impact on the surface
meridional wind occurred over both the sea and the land. Their finding is slightly different
from the conclusion of this paper. The possible reason might be that the range of the study
area is different. Further investigations are needed based on the regional numerical models
to identify the difference.

In this study, the interactions between meteorological variables and pollutants in the
vicinity of pollutant regions are not considered when analyzing the relationships between
the concentrations of near-surface air pollutants and meteorological variables. In addition,
the research conclusions are all obtained based on statistical methods. The rules revealed
in the conclusions and the complex interaction mechanisms between the East Asian upper-
level jet and surface pollutants require further verification and exploration based on the
numerical models.
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Abstract: A “rain-only” method is proposed to find out the precipitation effect on particle aerosol
removal from the atmosphere, and this method is not only unique and novel but also very simple
and can be easily adapted to predict aerosol particle scavenging over any region across the world
irrespective of the topographical, orographical, and climatic features. By using this simple method,
the influences of the rain intensity and particle mass concentration on the aerosol scavenging efficiency
are discussed. The results show that a higher concentration, a higher rain intensity, and a larger
particle size lead to a higher scavenging efficiency and a higher scavenging rate. The greater the rain
intensity, the higher the scavenging efficiency. The scavenging efficiency of PM10 by precipitation
is better than that of PM2.5. When the rain intensity is 10 mm h−1, the scavenging efficiency of
PM2.5 reaches 5.1 μg m−3 h−1, and the scavenging efficiency of PM10 reaches 15.8 μg m−3 h−1. The
scavenging rate increases faster when accumulative precipitation is below 15 mm. The scavenging
rate has obvious monthly variation, and the scavenging rate of coastal areas is less than that of
inland Jiangsu. The growth of the particle mass concentration after precipitation is divided into two
stages: the rapid growth stage after precipitation ends, and the slow growth stage about 24 h after
precipitation ends.

Keywords: air pollution; China; particulate matter; precipitation scavenging; scavenging efficiency;
scavenging rate

1. Introduction

In our previous article, we discussed the adverse meteorological variables (such as
precipitation, wind speed and direction, humidity, inversion, and mixing layer height) that
affect air pollution and the surface synoptic situation patterns related to air pollution in
eastern China, where the threshold values of meteorological elements are summarized [1].
From the previous article, we found that wind speed, RHs, inversion intensity (ITI), height
difference in the temperature inversion (ITK), the lower height of temperature inversion
(LHTI), and mixed layer height (MLH) in terms of a 25–75% high-probability range were,
respectively, within 0.5–3.6 m s−1, 55–92%, 0.7–4.0 ◦C 100 m−1, 42–576 m, 3–570 m, and
200–1200 m. The probability of RPHPDs without rain was above 92% with the daily
and hourly precipitation of all RPHPDs below 2.1 mm and 0.8 mm [1]. In this article,
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we will discuss the precipitation scavenging effect conducive to air pollution removal.
Scavenging of atmospheric aerosols by precipitation is a major removal mechanism for
airborne particles [2]. Atmospheric aerosol wet scavenging directly affects the air quality
by controlling the aerosol mass concentrations, and temporal and spatial distributions [3,4].
The scavenging of atmospheric aerosols also has a large impact on the chemical composition
of rainwater [5,6]. Thus, the understanding and quantification of aerosol scavenging
processes are very important for air quality and its improvements.

The wet process can be described by a wet scavenging coefficient [7–10]. The wet
scavenging of atmospheric pollutants includes in-cloud scavenging processes [11–13] and
below-cloud scavenging processes [14–27]. Below-cloud atmospheric particles are removed
by raindrops via Brownian diffusion, interception, and impaction [28]. Bae et al. [16] noted
that the collection efficiency, terminal velocity of raindrops, raindrop size distribution,
and particle size distribution are important factors affecting below-cloud scavenging. In
the later period of rainstorms, high concentrations of aerosols improved the precipitation
efficiency significantly, resulting in more centralized clusters of intense precipitation [29].

Tai et al. [30] reported that precipitation is strongly negatively correlated with all
PM2.5 components. The collection efficiency diameter is a function of both terminal velocity
and collection mechanisms. When considering Brownian diffusion and interception, the
most penetrating particle sizes increase as the drop diameter increases, which shows that
the most penetrating particle sizes depend on the collection efficiency mechanism, vertical
velocity, and collector diameter [28]. Chate et al. [20] found that the predicted rainwater
concentration for a relative humidity (RH) of 50% is about two times larger than that for
an RH of 95% in the case of hygroscopic particles. Using field observations and modeling,
McLachlan and Sellström [31] found that the differences between ground-level and in-cloud
temperatures should be considered when calculating the scavenging ratio.

The air pollution in the eastern part of China is quite serious and has become a
serious environmental problem [32]; therefore, natural clearance (dry deposition and wet
deposition) is very important, and especially precipitation scavenging is most important.
Therefore, the understanding and quantification of aerosol scavenging processes are of
extreme importance due to their impact on the physical and chemical characteristics of
aerosols as well as precipitations [3].

In most parts of China, raindrop and aerosol particle spectra are not widely observed.
However, atmospheric aerosol mass concentrations are widely observed. These common
observation data of aerosol mass concentrations are helpful for us to analyze the clearance
effect of precipitation on aerosols. In addition, scavenging schemes used by various aerosol
transport models follow the theoretical estimation of scavenging and have become a high
source of uncertainty for such models [33]. Therefore, it has become necessary to study
precipitation scavenging in a more simple and quantitative way with a higher number
of samples to analyze the dataset with high statistical significance. This would, in turn,
reduce the uncertainties associated with the various chemical transport models used to
study precipitation scavenging.

Thus, the present study is an attempt (1) to establish a “rain-only” method on particle
aerosol removal from the atmosphere which is not only unique and novel but also very
simple, (2) to investigate how aerosol scavenging depends on the precipitation intensity,
precipitation duration, particle mass concentrations, and precipitation volumes, (3) to
determine the threshold values of the precipitation intensity and duration below and above
which aerosol scavenging behaves differently, and (4) to establish whether air pollution can
be quantitatively predicted if one holds only the information of the precipitation intensity,
precipitation duration, particle mass concentrations, and precipitation volumes for a given
pollution level. Such a simple methodology can be easily adapted to predict aerosol particle
scavenging over any region across the world irrespective of the topographical, orographical,
and climatic features.

We examine aerosol scavenging by precipitation in eastern China. The remainder of
this paper is organized as follows: The study area, observations, and analysis methods used
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are described in Section 2. We analyze precipitation scavenging on aerosols in Section 3.
The conclusions are given in Section 4.

2. Study Area and Methodology

2.1. Study Area

Jiangsu Province is located at the Yangtze River in eastern China. The region has a
long coastline of 954 km. We also chose 17 environmental monitoring stations close to
these 17 weather stations. The distribution of meteorological stations and state-controlled
environmental protection stations (SCEPSs) in Jiangsu is shown in Figure 1.

Figure 1. Geographical location of Jiangsu Province, the distribution of environmental monitoring stations, and their nearest
weather stations in the study area.

2.2. Observations

The observation period was from 2013 to 2017, including hourly precipitation, wind
speed, wind direction, and PM10 and PM2.5 particulate concentrations. The PM10 and
PM2.5 particle monitors used were BAM1020 particle monitors (Met One Instruments INC,
Grants Pass, OR, USA) produced by the American company METONE (https://metone.
com/products/bam-1020/, accessed on 10 June 2021). The BAM-1020, on an hourly
basis, automatically measures and records airborne particulate concentration levels (in
micrograms per cubic meter) using the industry-proven principle of beta ray attenuation,
which can obtain the PM10 and PM2.5 mass concentrations in the environment in real time.

2.3. Analysis Methodology

Precipitation event: A precipitation process starts in the first hour when precipitation
reaches at least 0.1 mm. If precipitation in an hour was zero after the beginning of the
precipitation process, that hour was recorded as an interrupted hour, and the end of the
process appeared when three consecutive precipitation interruptions occurred. The hour
before the interrupted hour was recorded as the last hour of the precipitation process. As a
result, we obtained 27,219 precipitation processes in total.

The effects of concentration and precipitation on the removal rate were analyzed by
classifying precipitation processes (0–1 mm, 1–5 mm, 5–10 mm, 10–20 mm, 20–30 mm,
30–50 mm, >50 mm).

Scavenging efficiency (SE): SE is the particle mass concentration change in unit time
(t). In an hour with a particle mass concentration CONbe f ore before the rain starts and with
a particle mass concentration CONa f ter after the rain stops, the SE is expressed as

SE =
(

CONa f ter − CONbe f ore

)
/t
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Scavenging rate (SR): SR is the percentage change of particle mass concentration
changes. For a precipitation process with a particle mass concentration CONbe f ore before
the rain starts and a particle mass concentration CONa f ter after the rain stops, we defined
SR as

SR =
CONbe f ore − CONa f ter

CONbe f ore
× 100% (1)

In some cases, the rain did not remove the particles, but the concentration continued
to increase. Therefore, we made a rule that if the SR is positive, it is a positive scavenging
process, and if the SR is negative, it is a negative scavenging process (which means the
precipitation had a very limited scavenge).

3. Results and Discussion

3.1. Relationship between Precipitation, Particle Mass Concentration, and SE

First, we investigated potential size effects on the scavenging efficiencies. The figure
shows the relationship between the RI and SE. In the distribution of the precipitation
intensity, most precipitation intensities are lower than 5 mm/h. A precipitation intensity
above 5 mm/h takes a relatively low proportion in the samples. Therefore, for the segment
with rainfall less than 1 mm, a 0.2 mm interval is adopted, while for the segment with
rainfall greater than 1 mm, a 2 mm interval is adopted. From Figure 2, we can see that
when the rain intensity (RI) is less than 0.4 mm h−1, the SE of PM2.5 is almost zero, but the
SE of PM10 can reach ~2 μg m−3 h−1. The concentration of PM2.5 often rises during weak
precipitation (RI lower than 0.5 mm h−1); when the RI is 7 mm h−1, the SEs of PM2.5 and
PM10 are 2.7 and 6.3 μg m−3 h−1, respectively. The SE is positively correlated with the RI:
the greater the RI, the higher the SE. When the RI is 10 mm h−1, the SE of PM2.5 reaches
5.1 μg m−3 h−1, and the SE of PM10 reaches 15.8 μg m−3 h−1.
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Figure 2. Relationship between precipitation intensity and scavenging efficiency (SE) (the dashed
lines are the fitted curves, the green area is the interquartile span of PM10, the red area is the
interquartile span of PM2.5, and the gray area is the overlapping region).

By using functions to fit the rainfall intensity and scavenging efficiency, where SEpm2.5
and SEpm10 are the SEs of precipitation on PM2.5 and PM10, respectively, RI is precipitation,
and t is the precipitation duration, we relate the RI and SE as follows:

SEpm2.5 = 0.275 × exp

(
RI

6.468 × t

)
− 0.068 (2)

SEpm10 = 0.218 × exp

(
RI

5.019 × t

)
+ 1.653 (3)
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The changes in PM2.5 and PM10 caused by precipitation under a stable RI (the precipi-
tation intensity remains unchanged) are as follows:

CONpm2.5 =

[
0.275 × exp

(
RI

6.468 × t

)
− 0.068

]
× t (4)

CONpm10 =

[
0.218 × exp

(
RI

5.019 × t

)
+ 1.653

]
× t (5)

The derivatives of Equations (3) and (4), respectively, are

CON′
pm2.5 = 0.275 × exp

(
RI

6.468 × t

)
×

(
1 −

RI

6.468 × t

)
− 0.068 (6)

CON′
pm10 = 0.218 × exp

(
RI

5.019 × t

)
×

(
1 −

RI

5.019 × t

)
+ 1.653 (7)

Therefore, when CON′
pm2.5 or CON′

pm10 is equal to zero, changes in CONpm2.5 and
CONpm10 caused by precipitation reach the maximum values; the corresponding RI reaches
5.8 mm/h and 10.1 mm h−1, respectively.

Based on the analysis of the 27,219 precipitation processes from 2013 to 2017 in Jiangsu
Province, we find that the effect of precipitation is greater on coarse particles than on
smaller particles.

Figure 3 shows the effect of the particle mass concentration on the SE under different
RIs when precipitation processes are classified according to the RI. Higher particle mass
concentrations under the same RI and heavy rain under the same particle mass concen-
tration all have a higher SE. The precipitation SE on PM10 is higher than that of PM2.5 for
the same RI and the same particle mass concentration. The SE is an increasing function of
both the RI and the initial concentration. Precipitation has a limited effect on particulate
matter and even has no effective clearance when the particle mass concentration is below
the thresholds (PM2.5 below 40 μg m−3 and PM10 below 60 μg m−3). The precipitation
SE on the particle is significantly enhanced with the increase in the particle mass concen-
tration. The precipitation SE with an intensity below 0.5 mm h−1 can reach more than
15 μg m−3 h−1 when the concentration of PM2.5 or PM10 is above 140 μg m−3. This also
explains why sometimes the particle mass concentration rises after strong precipitation
and why sometimes the particle mass concentration decreases after weak precipitation.
This is because the SE is not only determined by accumulative precipitation or the RI but
also by the two combined. Strong precipitation with a low particle mass concentration
may result in a negative clearance effect, and a high particle mass concentration with
weak precipitation may lead to a positive SE. This result is similar to the numerical model
simulation results, in that the same amount of precipitation may lead to different removal
efficiencies of atmospheric aerosols [2]. Jose Nicolás et al. [34] and Yoo et al. [35] also found
a higher atmospheric removal efficiency for coarse particles than for fine particles.

3.2. Relationship between SR, Precipitation, and Particle Mass Concentration

The scavenging ratio SR indicates precipitation effects on the particle mass concentra-
tion. Figure 4 shows that the SR is positively correlated with accumulative precipitation.
The data corresponding to the position of 5 mm on the X-axis are the SRs of the precip-
itation process between 0 and 5 mm; similarly, the position of 10 mm is the average SR
of the precipitation process with precipitation of 5–10 mm in Figure 4. From the figure,
we can see that it increases faster when accumulative precipitation is below 15 mm and
more slowly when accumulative precipitation is above 15 mm. The SR of PM10 is higher
than the SR of PM2.5 under the same accumulative precipitation, and when accumulative
precipitation is above 50 mm, the precipitation SRs of PM2.5 and PM10 are about 50% and
60%, respectively.
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Figure 3. Effects of different rain intensities (RIs) and particle mass concentrations on scavenging efficiency (SE).
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Figure 4. Relationship between precipitation and scavenging rate (SR) about the particle mass concentrations ((a), PM10;
(b), PM2.5). (The solid line is the arithmetic mean of the SR, and the shaded area is the 25% and 75% percentile values of all
the individual cases).

The precipitation effect on the removal of particles is not only related to precipitation
but also related to the particle mass concentration before precipitation starts. Figure 5
shows the effect of the particle mass concentration on the SR under different precipitation
volumes. We can see that the SR and particle mass concentration before the rain are
positively correlated, the arithmetic mean SR of precipitation at any level is above zero
while the PM2.5 concentration is higher than 50 μg m−3, and the average SR of precipitation
at almost any level is less than zero while the PM2.5 concentration is lower than 20 μg m−3

(which means precipitation had a very limited scavenge). In addition, the SR increases faster
with the increase in the particle mass concentration when the particle mass concentration
is below 50 μg m−3, and it increases more slowly when the particle mass concentration is
higher than 50 μg m−3.

Assuming that the SRs of PM2.5 and PM10 are, respectively, SRpm2.5 and SRpm10, the
particulate matter concentration before precipitation is C, and the process of rainfall is P,
the quadric surface fitting is performed on the segmentation statistical results in Figure 5
(not for all samples, but for the classification analysis of samples as shown in Figure 5), and
the results are as follows:

SRpm2.5 = −66.6 + 1.4323P + 1.4241C − 0.0148P2 − 0.0053C2 + 0.0032P × C (8)

SRpm10 = −85.04 + 1.2770P + 1.8157C − 0.0126P2 − 0.0070C2 + 0.0024P × C (9)
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Figure 5. Effect of particle concentration on SR under different precipitation volumes. Rain ranges:
0–1, 1–5, 5–10, 10–20, 20–30, 30–50, >50 mm.

The Adj. R-Square of the two equations is 0.87 and 0.90, respectively, which means
that the deviation between the fitting data and the statistical data is small, and the fitting
effect is good.

3.3. Region Difference of SR

In this section, it is discussed whether there are any differences between different
regions for the precipitation, RI, particle mass concentration, and SR in Jiangsu. Figure 6
shows the relationship among precipitation, particle mass concentration, and SR in Jiangsu.
The average concentration of PM2.5 in the 10 inland cities was 51.0 μg m−3, and the average
concentration of PM10 was 80.5 μg m−3, higher than the average concentration of PM2.5 in
the coastal areas, which was 40.4 μg m−3, and the average concentration of PM10, which
was 63.0 μg m−3. The SR of coastal areas is less than the SR of inland Jiangsu, which
is consistent with the distribution of the particle mass concentration because the inland
concentration is higher than the coastal concentration. However, precipitation is also an
important factor. The increase in the RI and mean precipitation accumulation was beneficial
to the increase in the SR. The SR in coastal areas is relatively low because the concentration
of particulate matter is lower than that in inland areas. The higher the precipitation, the
higher the SR and SE. Therefore, the precipitation distribution center in south Jiangsu
shows the SR is higher in southwest Jiangsu.
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Table 1. Relationships between precipitation, RI, particle mass concentration, and SR in Jiangsu from
2013 to 2017 (data are consistent with Figure 6).

SR
RI Precipitation

Concentration

PM2.5 PM10 PM2.5 PM10

Xuzhou 0.10 0.24 1.16 9.42 54.07 101.08
Changzhou 0.18 0.24 1.31 12.68 47.26 79.98
Zhenjiang 0.20 0.25 1.08 10.45 50.45 79.44

Lianyungang 0.16 0.25 1.3 10.46 39.44 65.65
Nantong 0.13 0.26 1.15 12.03 46.67 70.29

Wuxi 0.14 0.28 1.21 11.54 53.84 77.17
Suzhou 0.13 0.28 1.24 11.95 45.58 69.41

Yancheng 0.15 0.28 1.01 9.64 35.02 53.11
Suqian 0.17 0.28 1.19 10.15 50.63 76.88
Huaian 0.16 0.28 1.19 9.76 49.29 74.35
Taizhou 0.20 0.29 1.04 11.16 53.56 84.3

Yangzhou 0.27 0.31 1.13 11.19 52.08 79.87
Nanjing 0.22 0.32 1.07 10.13 53.63 82.83

Scavenging rate of PM
2.5

Scavenging rate of PM
10

Precipitation intensity

Precipitation

Concentration of PM
2.5

Concentration of PM
10

Figure 6. Relationships between precipitation, RI, particle mass concentration, and SR in Jiangsu
from 2013 to 2017 (the data in Table 1). (The average PM concentration is based on the mean hourly
particulate concentration of all stations in each city over a five-year period. The average values of
precipitation and the precipitation rate are the average values of all precipitation processes in the
region in 5 years. Three colors in the map: red, the southern inland area; blue, coastal areas; and
orange, the northern inland area.)

In this section, it is discussed why the SR of PM2.5 in the northern coastal area of
Jiangsu is higher than that in the southern coastal area though the PM2.5 concentration and
average precipitation in the northern coastal area are less than those in the southern coastal
area. This is due to the influence of the RI, which is larger in the northern coastal area. The
SR of PM10 is less affected by the RI compared with the SR of PM2.5. Therefore, the SR of
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PM10 in southeast Jiangsu is higher than that in the northeast region in spite of the larger RI
in the northeast. Therefore, the SR of PM2.5 is more affected by the RI. Precipitation with a
low RI has almost no SE on PM2.5. Therefore, continuous drizzle can cause a large amount
of precipitation over a long time period but cannot effectively reduce the concentration
of PM2.5. Since low-RI precipitation has some SE on PM10, more precipitation (meaning
high-RI precipitation or continuous drizzle) can reduce the PM10 concentration effectively.

3.4. Change in Particle Mass Concentration after Rain

The concentration of particulate matter in the atmosphere depends on the balance
between emissions and atmosphere self-cleaning. When the emission source is not changed
and the weather system is stable, the particle mass concentration should be around the
equilibrium state. In the absence of external transport, the PM concentration in the atmo-
sphere depends on environmental emissions and dry or wet deposition. In a relatively
short period of time, it can be considered that environmental emissions before and after
precipitation do not change much; therefore, the impact of precipitation on the particle
concentration can be analyzed. When the effects of dry deposition and environmental emis-
sions cancel out, the concentration of particulate matter stabilizes, which is the equilibrium
state. Then, how does the particle mass concentration approach the equilibrium state after
a precipitation process?

The change in the particle mass concentration within 168 h after precipitation ends
was analyzed using 6882 processes. The results are shown in Figure 7. The average particle
mass concentration is low at the end of precipitation, being about 50 μg m−3 for PM2.5 and
70 μg m−3 for PM10. The particle mass concentration increases gradually after the end of
precipitation. The average concentrations of PM2.5 and PM10 168 h after precipitation are
more than 65 and 115 μg m−3, respectively. The growth of the particle mass concentration
after precipitation was divided into two stages: 0–24 h after the end of precipitation is the
rapid growth stage, and 24 h after the end of precipitation is the slow growth stage. The
concentrations of PM2.5 and PM10 increase at 0.46 and 1.35 μg m−3 per hour during the
rapid growth phase, while they increase at 0.07 and 0.51 μg m−3, respectively, in the slow
growth stage.
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Figure 7. Changes in particle concentrations and wind speeds with time after precipitation ends.

In this section, the reason for the growth rate of the particle mass concentration within
24 h after precipitation being greater than that after 24 h is discussed.

The factors that influence air pollution include internal factors (emission sources)
and external factors (such as precipitation, wind speed and direction, humidity, inversion,
and mixing layer height [36]) and were discussed in the previous article [1], showing that
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the threshold value is one of the criteria of pollution intensity. Analysis of the average
wind speed within 168 h after the rain starts shows that the wind speed within 24 h
after precipitation is greater than that after 24 h; the high wind is not conducive to the
increase in the particle mass concentration. Meanwhile, emission sources are usually
stable and can be considered as constant during the precipitation process. For a period of
time after the end of precipitation, if the emission source is regarded as constant, the PM
concentration change depends on the dry deposition and environmental emissions. When
the concentration of particulate matter is high, the dry deposition effect is strong, exceeding
the environmental emission, and the PM concentration decreases with time. When the PM
concentration is low, the dry deposition effect is lower than that of environmental emissions,
and the PM concentration increases with time. When the effects of dry deposition and
environmental emissions cancel out, the concentration of particulate matter stabilizes,
which is the equilibrium state. When the actual particle concentration is lower than the
equilibrium concentration, dry deposition caused by the effect of the particle concentration
decreases below the environmental emissions, which could lead to an increase in the particle
concentration effect, where the PM concentration will increase to approach the equilibrium
concentration. When there is a greater difference between the actual concentration and the
equilibrium concentration, dry deposition caused by the effect of the PM concentration
decreases below the environmental emissions, which could lead to an increase in the
particle concentration effect, causing a greater particle concentration change over time.
When the particle mass concentration approaches the equilibrium state, the closer it is to
the equilibrium point, the more slowly it moves toward the equilibrium point. The particle
mass concentration is far from the equilibrium point at the end of precipitation; therefore,
the growth rate is relatively large. In the case of no rain within 168 h after the previous
precipitation process, the weather is often sunny, and the particle mass concentration
approaches the equilibrium state; therefore, the particle growth rate is slowed down
significantly. Here, we choose the cases where there were more than 10 consecutive days
without precipitation after the studied precipitation process. Additionally, we analyze
particle concentration changes after the precipitation, in order to determine the above
equilibrium concentration. According to the results of the 10-day or longer continuous
observation, the arithmetic average concentrations of PM2.5 and PM10 are finally stabilized
at about 80 and 120 μg m−3, which can be considered as the equilibrium points for PM2.5
and PM10.

4. Conclusions

Particle air pollution scavenging was jointly affected by the wind diffusion effect and
precipitation scavenging effect. Precipitation is the most important factor in the balance of
air pollution in ecosystems.

Deducing the threshold values of precipitation scavenging that were conducive to the
pollution accumulation was very necessary to achieve better control of air pollution. This
study provides a simple and quantitative way to establish a “rain-only” method on particle
aerosol removal from the atmosphere. Such a simple methodology can be easily adapted
to predict aerosol particle scavenging over any region across the world irrespective of the
topographical, orographical, and climatic features. The threshold values of the precipitation
intensity and duration below and above which aerosol scavenging behaves differently
were developed.

A higher concentration, larger RI, and larger particle size lead to a higher SE. The
greater the RI, the higher the SE, meaning the precipitation SE on PM10 is better than that
on PM2.5. RI = 8.0 mm h−1 has the best SE on PM2.5, and RI = 11.3 mm h−1 has the best SE
on PM10 when the total precipitation is fixed. The SR increases faster when accumulative
precipitation is below 15 mm and more slowly when accumulative precipitation is above
15 mm. When accumulative precipitation is above 50 mm, the precipitation SRs of PM2.5
and PM10 are about 50% and 60%, respectively. The SR of coastal areas is less than that of
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inland Jiangsu. In the future, if the regional PM2.5 concentrations continue to decrease, the
threshold values would remain applicable.

The growth of the particle mass concentration after precipitation was divided into
two stages: the slow growth stage about 24 h after the end of precipitation, and the rapid
growth stage 24 h after the end of precipitation. The concentrations of PM2.5 and PM10
increase at 0.46 and 1.35 μg m−3 per hour, respectively, during the rapid growth phase,
while they increase at 0.07 and 0.51 μg m−3, respectively, in the slow growth stage.

The methods in this study just studied the “rain-only” effect on particle aerosol
removal from the atmosphere, and the influence of wind was not discussed. The present
long-term and large datasets are able to quantitatively predict aerosol scavenging at any
part if only the rain rate and duration are available.
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Abstract: Air pollution has not received much attention until recent years when people started to
understand its dreadful impacts on human health. According to air pollution and the meteorological
monitoring data from 1 January 2016 to 31 December 2017 in Ningxia, we analyzed the impact of
ground surface temperature, air temperature, relative humidity and the power of wind on air pollu-
tant concentrations. Meanwhile, we analyze the relationships between air pollutant concentrations
and meteorological variables by using the mathematical model of decision tree regressor (DTR),
feedforward artificial neural network with back-propagation algorithm (FFANN-BP) and random
forest regressor (RFR) according to air-monitoring station data. For all pollutants, the RFR increases
R2 of FFANN-BP and DTR by up to 0.53 and 0.42 respectively, reduces root mean square error (RMSE)
by up to 68.7 and 41.2, and MAE by up to 25.2 and 17. The empirical results show that the proposed
RFR displays the best forecasting performance and could provide local authorities with reliable and
precise predictions of air pollutant concentrations. The RFR effectively establishes the relationships
between the influential factors and air pollutant concentrations, and well suppresses the overfitting
problem and improves the accuracy of prediction. Besides, the limitation of machine learning for
single site prediction is also overcame.

Keywords: air pollution; random forest; feedforward artificial neural network with back-propagation;
decision tree; Ningxia

1. Introduction

With industrialization and urbanization, air pollution in most countries is worsening
over the years. Many areas including the north China and south of the Yangtze River have
suffered severe and continuous haze weather. High level of air pollutant concentrations
plays an important role not only in degrading the environment but also in causing respira-
tory diseases [1–6]. In order to enable the government to put forward reasonable measures
in mitigating air pollution, it is very necessary to accurately predict the concentrations of
air pollutants in real time or near real time.

Generally forecasting techniques can be divided into deterministic and stochastic
approaches. The deterministic model is suitable for a wide range of trend forecasting,
and the stochastic model is suitable for single site prediction. The deterministic air quality
models based on numerical models mainly include Chem models, Community Multiscale
Air Quality (CMAQ) [7] and Nested Air Quality Prediction Model System (NAQPMS) [8]
etc. It mainly uses all kinds of meteorological data and emission source data to estimate
the diffusion of air pollutants through the physical and chemical processes. It has a solid
theoretical foundation and a relatively transparent model. However, the accuracy of the
deterministic model is highly influenced by the boundary condition of the model and
the initial conditions. Furthermore, historical data are not be used in the model. At the
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same time, the computations of the model are complex and the requirement of computing
resources is higher. So it is difficult to fully understand and quantify [9–11].

The stochastic methods mine the relationships between air pollutant concentrations
and the influential factors, including the meteorological variables and human activities
based on machine learning methods, and then predict air pollutant concentrations in the
future [12–14]. Statistical methods are considered more reliable tools to predict air pollutant
concentrations than deterministic approaches [15–20], including principle components
analysis (PCA), kriging, inverse distance weighting [21,22], land-use regression (LUR)
and artificial neural network (ANNs), etc. [23–26]. Regression methods can learn the
intrinsic relationships between the influential factors and air pollutant concentrations [27].
Harishkumar [28] proposed to use geographical weighted regression (GWR) method to
study the relationships between air pollutant concentration and the influential factors,
and achieved good results. LUR is technically simple, easy to fit in calculation and high
spatial resolution. Since its emergence in 1997, it has been applied to the predictions
of air pollutant concentrations. However, the regression methods do not consider the
spatial correlation in the air pollution data and overestimate the importance of covariates.
At the same time, because the error does not meet the assumption of independent and
identically distributed, the prediction ability of the regression method is low in the space-
time domain. The performances of ANNs are generally higher than air quality numerical
models CMAQ and NAQPMS. ANNs have the advantages of less sample data, simple
modeling, convenient operation, small relative error [17,20]. However, there are generally
some disadvantages in ANNs, such as poor generalization ability, over fitting, easy to fall
into local optimization.

Geostatistics is based on the principle that the closer the observation value in the
space-time domain is more similar than the farther the observation value [29]. There is
no the assumption of sample independence in Geostatistics and obeys the constraint of
normal distribution to obtain a good fit to the data. However, it results in spatiotemporal
heterogeneity after adding time dimension, which makes spatiotemporal data visualization
and analysis quite challenging. In addition, spatiotemporal data usually contain a long
time series of air pollution [18]. It is necessary to impose strong assumptions on the
process [21,22].

In this paper, RFRs have been employed in this work in order to predict air pollutant
concentrations. RFRs have the characteristics of adaptive training and tuning and effectively
establish the relationships between the meteorological variables and air pollutant concen-
trations, and well suppress the overfitting problem and improves the accuracy of prediction.
Besides the limitation of machine learning for single site prediction is also overcame.

The remainder of our paper is organized as follows: In the next section we present
the study area and the data collected. In Section 3 the basic concepts of FFANN-BP,
DTR and RFR are presented, and how the validity indices can be used to identify and
compare the predicted results. The critical analysis is followed by predicting air pollutant
concentrations based on data from 2016–2017. Finally, we conclude our work at the end
part after discussing the results of our experiments.

2. Area Description

Study Area

Ningxia is located in the inland area of northwest China, bounded between the
latitudes of 35◦14′ N–39◦14′ N and the longitudes of 104◦17′ E–109◦39′ E, adjacent to
Shaanxi in the east, Inner Mongolia in the west and Gansu in the north, with a total area of
66,400 square kilometers, and a permanent population of 6.8179 million. The topography
of Ningxia gradually inclines from southwest to northeast. It is divided into three parts:
the irrigation area of the Yellow River in the north, the arid zone in the middle and the
mountain area in the south. Located within the Yellow River system, Ningxia has a
temperate continental arid and semi-arid climate with a high terrain in the south and a
low terrain in the north. The southern Liupan Mountains are wet and rainy with low
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temperature and short frost-free period. The northern part has abundant sunshine, strong
evaporation, large temperature difference between day and night, and the annual sunshine
reaching 3000 h.

Ningxia which is located in the western margin of China’s monsoon area is affected
by southeast monsoon in summer, low precipitation, with July being the hottest month,
the average temperature is 24 ◦C. In winter, it is greatly affected by northwest monsoon,
with a large fluctuation in temperature, with an average temperature of −9 ◦C lowest
temperature. The annual precipitation in the whole region ranges from 150 mm to 600 mm.
The average annual water surface evaporation in Ningxia is 1250 mm, ranging from 800 to
1600 mm. Furthermore, the prevailing north wind lowers the humidity level [30].

In Ningxia, the extremely hot and dry climatic conditions in the area play an important
role in the resuspension of fine particle, both the sand storm and the domestic fuel are the
sources of air pollution. According to the Ningxia annual reports on air quality, the O3
and particulate matter (PM) are the most important air pollutants in the city [31]. There
are 15 air monitoring stations of the China National Environmental Protection Agency and
12 meteorological stations in Ningxia.

3. Methods

3.1. Data Preprocessing

The data with concentrations less than 0 μg/m3 and more than 1000 μg/m3 are
eliminated. If one item of meteorological data is missing or abnormal, all data of that
day will be eliminated. Outliers are data points that are far from other data points. They
are problematic for many statistical analyses because they can cause tests to either miss
significant findings or distort real results and are defined as values that deviate from the
mean by more than 3 times the standard deviation. Outliers strongly influence the output
of a machine learning model. In this paper, the mean value of the data is used to replace
the abnormal and missing values.

In our experiment, the concentrations and the raw meteorological data were scaled to
a fixed range from 0 to 1 by using the min-max normalization method. We standardize the
data by using scikit-learn with the StandardScaler class. The normalization formula is as
follows [32]:

yi =
xi − min1≤j≤nxj

max1≤j≤nxj − min1≤j≤nxj
, i = 1, 2, . . . , n. (1)

where yi is the normalized data, xi is the data before normalization, n is the number
of observations.

3.2. FFANN-BP

It is well known in FFANN-BP the weighted sum of inputs and bias term are passed
to the activation level through the transfer function to produce the output. The network
is trained in an iterative process. The number of hidden layers is chosen to be only one
to reduce the network complexity, and increase the computational efficiency. Figure 1
shows the architecture of the FFANN-BP [33]. The inputs are fed into the input layer
and propagate through the activation function, different layers may perform different
transformations on their inputs. Then The mean squared error between the outputs and
actual target values is backpropagated from the output layer to the input layer. The error is
minimized by the adaptation of their connected weights in a supervised way. The most
important problem is to decide the number of layers and neurons in the hidden layers.

Without loss of generality, let there be n neurons in the input layer, p neurons in the hidden
layer, and q neurons in the output layer. The k-th input vector is x(k) = (x1(k), x2(k), . . . , xn(k)).
The k-th input vector of the hidden layer is hik = (hi1(k), hi2(k), . . . , hip(k)), the k-th output
vector of hidden layer is ho(k) = (ho1(k), ho2(k), . . . , hop(k)). The k-th input vector of
the output layer is yi(k) = (yi1(k), yi2(k), . . . , yiq(k)), the k-th output vector of the out-
put layer is yo(k) = (yo1(k), yo2(k), . . . , yoq(k)). The desired output vector is do(k) =
d1(k), d2(k), . . . , dq(k). The weights between the i-th neuron in the input layer and h-th neu-
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ron in the hidden layer are wih. The weights between h-th neuron in the hidden layer and
o-th neuron in the output layer are who, where i = 1, 2, . . . , n, h = 1, 2, . . . , p, o = 1, 2, . . . , q.
The biases of the hidden layer and the output layer are bh and bo respectively. The number
of samples is m, and f is the activation function. The commonly used activation function
is the sigmoid function:

f (xi) =
1

1 + e−xi
(2)

Each connection weight is assigned a random number in the interval (−1, 1). E, ε, M are
the error function, the calculation accuracy value, and the maximum learning times respectively.

Figure 1. The architecture of the FFANN-BP.

The k-th input sample x(k) = (x1(k), x2(k), . . . , xn(k)) is randomly selected, and the
corresponding expected output are do(k) = (d1(k), d2(k), . . . , dq(k)) and calculate the input
and output of each neuron in the hidden layer.

hih(k) =
n

∑
i=1

wihxi(k)− bh, h = 1, 2, . . . , p (3)

hoh(k) = f (hih(k)), h = 1, 2, . . . , p (4)

yio(k) =
p

∑
i=1

whohoh(k)− bo, o = 1, 2, . . . , q (5)

yoo(k) = f (yio(k)), o = 1, 2, . . . , q (6)

Then the total error is computed,

E =
1

2m

m

∑
k=1

q

∑
o=1

(do(k)− yo(k))
2 (7)

The partial derivatives of the error function to each neuron in the output layer are
calculated by using the expected output and the actual output of the network δo(k), then
the partial derivative of the error function to each neuron in the hidden layer is calculated
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by using the connection weights from the hidden layer to the output layer, δo(k) the output
of the output layer and δh(k) the output of the hidden layer [33].

∂E

∂who
=

∂E

∂yio

∂yio
∂who

= −hoh(k)(do(k)− yoo(k)) f ′(yio(k)) = −hohδo(k) (8)

Δwho(k) = −μ
∂E

∂who
= μδo(k)hoh(k) (9)

wN+1
ho = wN

ho + ηδo(k)hoh(k) (10)

Δwih(k) = −μ
∂E

∂wih
= −μ

∂E

∂hih(k)

∂hih(k)

∂wih
= δh(k)xi(k) (11)

wN+1
ih = wN

ih + ηδh(k)xi(k) (12)

The algorithm terminates when the error reaches the preset accuracy or the number
of learning is greater than the prespecified set maximum number of times. Otherwise, we
select the next learning sample and the corresponding expected output and return to enter
the next round of learning.

3.3. DTR

A decision tree corresponds to a partition of the feature space and the output value on
the partition unit which is constructed by recursive segmentation, and the feature with the
highest information gain is split first. The training process consists of feature selection, tree
generation and pruning. All values of the feature are traversed and the space is divided
until the value of the feature minimizes the loss function, and a partition point is obtained.

The optimal segmentation is used as the node of the decision tree. When generating
leaf nodes, the most important thing is to pay attention to whether it is necessary to stop the
growth of the tree. The process continues iteratively until we reach a prespecified stopping
criterion such as a maximum depth, which only allows a certain number of splits from the
root node to the terminal nodes. It breaks down a dataset into smaller and smaller subsets
while at the same time an associated decision tree is incrementally developed. The final
result is a tree with decision nodes and leaf nodes. The topmost decision node in a tree
corresponds to the best predictor called the root node.

A primary advantage of DTR is that it is easy to follow and understand. It does not
require any transformation of the features according to nonlinear data. In order to reduce
storage requirement, the size of a decision tree is controlled by setting parameters such as
maximum depth and minimum number of leaf nodes. At each segmentation, the features
are always randomly arranged. Its output value is the average of all leaf node samples.
Therefore, even if the same training data set is used, the optimal segmentation may be
different. DTRs tend to overfit very easily.

3.4. Random Forest Regression

RFR is one of the most popular algorithms for regression problems because of its
simplicity and high accuracy. It is an ensemble technique that combines multiple decision
trees with a voting mechanism. Due to randomness it has a better generalization perfor-
mance than DTR. This helps to decrease the model’s variance. It is usually trained by
using the bagging method which combines predictions from multiple machine learning
algorithms together to make predictions more accurate than an individual model. They are
less sensitive to outliers in the dataset and do not require much parameter tuning. The only
parameter in RFRs is typically needed to experiment with is the number of trees in the
ensemble. The predictions are calculated as the average prediction over all decision trees.
The key lies in the fact that there is a low correlation between the individual models.

RFR is regressor, which adopts a voting mechanism to obtain prediction results based
on decision tree. RFRs establish multi-decision trees by dividing the training samples.
According to the bootstrap sampling method, part of the data is randomly extracted from
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the data set as the training sample, and the remaining data is used as the validation sample
of each decision tree. When regressing unknown samples, the prediction of each decision
tree is output first, and then all the prediction results are synthesized by using the simple
voting method to obtain the final prediction.

The most apparent benefit of RFR is its default ability in correcting the overfitting
problems of decision trees to their training data sets. By using the bagging method and
random feature selection the overfitting problem, which often leads to inaccurate outcomes,
is almost completely resolved.

3.5. Statistical Indexes

The performances of DTR, FFANN-BP and RFR are evaluated by using four commonly
used statistics indices, which are the coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE)
between the predicted and observed air pollutant concentrations. The indices are defined
as [34].

R2 =

n

∑
i=1

(pi − ō)2

n

∑
i=1

(oi − ō)2
(13)

RMSE =

√
1
n

n

∑
i=1

(oi − pi)
2, (14)

MAE =
1
n

n

∑
i=1

|oi − pi|, (15)

MAPE =
1
n

n

∑
i=1

|
oi − pi

oi
|, (16)

where oi, pi, ō, p̄ and n are the observed, predicted and the mean of observed and predicted
concentrations and the number of observations, respectively. The coefficient of determina-
tion indicates the closeness between the overall trend of the predicted value of the model
and the observed value. The mean absolute error and root mean square error reflect the
deviation of the observed value from the predicted value. The higher the value of R2,
the better the model performance. Correspondingly, the lower the value of the RMSE, MAE
and MAPE, the better the model acquired.

4. Results and Discussion

4.1. Data Used

We obtained the air pollutant concentrations from Ministry of Ecology and Environ-
ment of the People’s Republic of China. Meteorological variables are obtained from China
meteorological administration. The concentrations of carbon monoxide (CO), nitrogen
dioxide (NO2), ozone (O3), particulate matter (PM) and sulfur dioxide (SO2) are monitored.
The data basis consists daily values corresponding to the 2-year period between January
2016 and December 2017.

Furthermore, the air monitoring stations do not monitor the level of meteorological
variables. Thus, we select the nearest meteorological stations to represent the levels of the
meteorological variables in the air monitoring stations. However, the distances of some air
monitoring stations and meteorological stations are too far. Consequently, only three air
monitoring stations, Ma Lian Kou, Sha Po Tou and Ma Yuan are selected for this research.
Figure 2 and Table 1 showed the geographical regions of Ningxia and the locations of air
monitoring stations.
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Figure 2. The locations of air monitoring and meteorological stations, where the purple and blue
solid point represent the air monitoring stations and meteorological stations in Ningxia, respectively.

Table 1. Coordinates of the air monitoring stations in Ning Xia.

Air Stations Coordinates

1 Ma Lian Kou 105.95, 38.60
2 Sha Po Tou 105.02, 37.45
3 Ma Yuan 106.23, 36.14

Ma Lian Kou is located at the foot of Helan mountain in Yinchuan city and belongs
to the northern Yellow river diversion irrigation area. Sha Po Tou is located in the central
arid zone, near the Tengger Desert and on the Bank of the Yellow River. Ma Yuan is located
in Guyuan city and belongs to the southern mountainous area. A descriptive statistics of
these parameters in three monitoring stations for the studied period is presented in Table 2,
including minimum, mean, median and maximum levels of the 12 input parameters and the
concentrations of air pollutants during 2016–2017. Figures 3–5 show the diurnal variations
of air pollutant concentrations in three selected monitoring stations.
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Table 2. Basic descriptive statistics of the observed concentrations. Minimum, maximum, mean and
standard deviation of six output parameters during 2016–2017 used in this study, all in μg/m3.

Air
Pollutants

Station Mean Median Range SD

Ma Lian Kou 0.88 0.70 0.67∼40.8 2.1
CO Sha Po Tou 0.62 0.52 0.01∼41.0 1.7

Ma Yuan 0.91 0.74 0.01∼45.0 1.90

Ma Lian Kou 13.8 12.2 1.63∼53.6 7.3
NO2 Sha Po Tou 16.6 14.5 1.8∼57.0 10.7

Ma Yuan 21.4 20.3 4.4∼60.0 9.3

Ma Lian Kou 95.6 90.1 13.4∼213 36.2
O3 Sha Po Tou 79.1 75.5 11.0∼189 38.8

Ma Yuan 57.9 54.8 13.8∼137.4 26.8

Ma Lian Kou 33.2 27.1 6.1∼195.2 22.4
PM10 Sha Po Tou 35.1 28.0 2.1∼192.8 27.0

Ma Yuan 34.3 29.0 2.3∼224.5 22.8

Ma Lian Kou 75.4 62.6 3∼696 53.1
PM2.5 Sha Po Tou 100.8 71.7 5.2∼1313.3 112.2

Ma Yuan 86.5 71.9 5.4∼874.2 76.3

Ma Lian Kou 31.2 20.3 2.0∼182.0 27.0
SO2 Sha Po Tou 15.2 11.0 1.73∼91.6 12.1

Ma Yuan 10.1 9.0 2.1∼62.8 5.3
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Figure 3. The variations of the concentrations for CO and NO2 at Ma Lian Kou, Sha Po Tou and Ma
Yuan in 2016.
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Figure 4. The variations of the concentrations for O3 and SO2 at Ma Lian Kou, Sha Po Tou and Ma
Yuan in 2016.
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Figure 5. The variations of the concentrations for PM2.5 and PM10 at Ma Lian Kou, Sha Po Tou and
Ma Yuan in 2016.

In Ma Lian Kou, the concentrations of CO fluctuated enormously, with maxima of
38.24 μg/m3 in January 2016, and 4.59 μg/m3 in August 2016, respectively. These maxima
correspond to the winter months. Concentration minima of CO took place during the sum-
mer months. Its values were 0.0722 μg/m3 and 0.1053 μg/m3 in April and August 2016.

Similarly, the concentrations of NO2 fluctuated significantly with several maxima of
54 and 51 μg/m3 in December 2016, respectively. These maxima correspond to the days of
highest energy consumption in homes due to heating and a greater density of cars on the
roads during the winter season. Likewise, the minima in the concentrations corresponded
to the spring months.

The concentrations of O3 also fluctuated considerably, with maxima of 213 μg/m3 in
June 2016, and 208 μg/m3 in May 2016, respectively. These maxima corresponded to the
summer months. Concentration minima of O3 took place in September 2016, its values
were 13.375 μg/m3 and 20.3 μg/m3 in September. This trend is general throughout the
studied years, since the formation of O3 is associated with photochemical reactions, which
requires the presence of strong sunlight as a catalyst.

In a similar way, the concentrations of PM2.5 went up and down slightly but remained
quite stable at around 70 μg/m3 with two spikes at 307 μg/m3 in May 2016 and March
2016, and a minimum of 6.9 μg/m3 in August 2016 and 11.4 μg/m3 in September 2016.

Similarly, the concentrations of PM10 went up and down slightly but remained quite
stable at around 33 μg/m3 with two spikes at 195 μg/m3 in May 2016 and September
2016, and a minimum of 6.1 μg/m3 in August 2016. SO2 went up and down slightly but
remained quite stable at around 32 μg/m3 with two spikes at 182 μg/m3 and 143 μg/m3 in
January 2016.

It is shown that the trends of air pollutant concentrations at the three monitoring
stations are generally different, and the concentrations of air pollutants in Ma Yuan are
the lowest. Therefore, the differences of air pollutant concentrations are closely related to
geographical locations.

The meteorological variables such as ground surface minimum temperature, maxi-
mum and mean temperature, minimum relative humidity and maximum relative humidity,
air minimum temperature, maximum and mean temperature, minimum, mean, maximum
wind speed, sunshine duration supplied by the China meteorological data service cen-
ter, their units were ◦C, m/s, and hour, respectively. The meteorological variables were
recorded on a daily basis. Table 3 show that the minimum of air temperature (Tmin) ranged
from −15 in January to 27 ◦C in July, while the maximum of air temperatures (Tmax) varied
from −10 ◦C in January to 41 ◦C in July. The average sun shine of duration (ssd) was 6.7 h
with the minimum and maximum values of 0h and 14 h appearing in November and June,
respectively at Ma Lian Kou station.
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Table 3. Basic descriptive statistics of the measured meteorological variables at the three stations.

Meteorological Station Mean Median Range SD

Variables

Ma Lian Kou 14.2 15.9 −13.4∼40.2 14.7
Mean GST

(◦C)
Sha Po Tou 13.7 15.5 −12.9∼39.1 13.1
Ma Yuan 10.8 10.8 −14.6∼34.5 11.2

Ma Lian Kou 48.9 48.0 14.0∼94 15.40
Max RHU (%) Sha Po Tou 52.6 52 19∼91 14.7

Ma Yuan 53.6 53 12∼93 17.3

Ma Lian Kou 10.9 12.6 −15.4∼30.3 11.4
Mean TEM

(◦C)
Sha Po Tou 10.6 12.7 −17.4∼29.8 11.0
Ma Yuan 8.4 8.8 −18.1∼27.5 9.8

Ma Lian Kou 40.4 37 17∼116 15.1
Mean WIN

(m/s)
Sha Po Tou 57.1 56 17∼150 20.9
Ma Yuan 55.0 52.5 25∼119 15.2

Ma Lian Kou 7.9 8.3 0∼13.6 3.6
SSD (hr) Sha Po Tou 8.4 8.8 0∼13.9 3.5

Ma Yuan 6.9 7.9 0∼13.7 3.9
GST, RHU, TEM, WIN, SSD represent ground surface temperature, relative humidity, air temperature, wind
speed and sunshine of duration respectively.

4.2. Selection of the Influential Factors

The selection of input parameters is generally based on the prior knowledge of the for-
mation of the air pollutants and the correlation analysis. Through the descriptive analysis
of the air pollutant concentrations and the meteorological variables, we can select the most
important input parameters and understand which are the dominant factors for the forma-
tion and diffusion of air pollutants. Generally, the levels of air pollutant concentrations are
associated with emission sources, the formation of secondary pollutants and wind speed,
air temperature and ground surface temperature, etc. It is well known that air pollutants
and weather conditions are associated with each other in a complex relationship. With
the increase of air temperature, the stronger the atmospheric convection activity, the more
unstable the air stratification, which is conducive to the diffusion and dilution of pollutants.
The air pollutant concentrations were closely related to the change of meteorological factors.
Furthermore, relative humidity shows significant negative effect on the concentrations
of O3, PM2.5 and SO2, because precipitation will wash out the atmospheric particles. It
can be seen from Table 4 that there is a strong negative correlation between wind speed
and air pollutant concentration, significant negative effect demonstrates the fact that low
concentrations are linked with high wind speed in Ningxia. It is shown in Figure 4a that the
concentration of O3 was higher in hot summer due to the high radiation and temperature,
and lower in winter. The ground surface temperatures have the strongest correlations with
the air pollutant concentrations, which is due to the enhancement of ultraviolet radiation,
the increase of temperature, the enhancement of the decomposition of oxygen molecules,
and the increase of the photochemical reaction rate of O3 formation, resulting in the in-
crease of air pollutant concentrations. The obtained results show that there are strong
relationships between ground surface temperatures have and the concentrations of the
majority of pollutants in the region of Ningxia. Moreover, air pollutant concentrations have
a close relationship with the concentrations at previous time. There is a high possibility
of mutual conversion between PM2.5 and other pollutants, especially PM10. PM2.5 and
PM10 are negatively correlated with air temperature. Furthermore, the concentrations of
NO2 may have a notable influence on the concentrations of O3. High levels of particulate
matter in Ningxia are mostly caused by sand storms and construction activities near the
monitoring stations. High temperature can result in enhanced re-suspension of road dust.
Meteorological variables are used for the prediction of air pollutant concentrations.
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We only consider variables with a coefficient of correlation greater than 0.30 as input
dataset [35]. According to the correlation coefficient matrix shown in Table 4, there is a
negative relationship between the concentrations of NO2 and air temperature and wind
speed, respectively. Hence the combinations of other air pollutant concentrations, the air
pollutant concentrations one day in advance and meteorological variables for each air
pollutant concentration are chosen as the input dataset. And we obtained the selected
meteorological variables for every pollutant in Table 5.

Table 4. The Pearson correlation coefficients between the meteorological variables and air pollutant
concentrations in 2016.

CO NO2 O3 PM10 PM2.5 SO2

COa 0.05 0.13 *** −0.14 *** 0.15 *** 0.07 0.16 ***
NOa

2 0.08 ** 0.66 *** −0.40 *** 0.52 *** 0.27 *** 0.56 ***
Oa

3 −0.15 *** −0.42 *** 0.87 *** −0.28 *** −0.18 *** −0.49 ***
PMa

10 0.05 0.42 *** −0.32 *** 0.57 *** 0.44 *** 0.39 ***
PMa

2.5 0.04 0.19 *** −0.24 *** 0.42 *** 0.56 *** 0.22 ***
SOa

2 0.12 *** 0.57 *** −0.46 *** 0.45 *** 0.28 *** 0.69 ***
GSTa −0.17 *** −0.53 *** 0.75 *** −0.38 *** −0.28 *** −0.64 ***
RHUa 0.04 0.25 *** −0.20 *** 0.20 *** −0.09 −0.04
SSDa −0.07 −0.31 *** 0.46 *** −0.30 *** −0.20 *** −0.22 ***
TEMa −0.17 *** −0.52 *** 0.73 *** −0.36 *** −0.26 *** −0.64 ***
WINa −0.31 −0.33 *** 0.08 −0.13 *** 0.07 −0.20 ***

*** and ** indicate that the Pearson correlation coefficient test is significant at the level of 1% and 5%, respectively.
xa represents the variable x one day in advance.

Table 5. The selected influential variables for every pollutant, where xa represent the air pollutant
concentration the day in advance.

Air Pollutants Influential Factors

CO WINa

NO2 NOa
2, Oa

3, PMa
10, SOa

2, GSTa, TEMa

O3 NOa
2, Oa

3, SOa
2, GSTa, SSDa, TEMa

PM10 NOa
2, PMa

10, PMa
2.5, SOa

2, GSTa, TEMa

PM2.5 PMa
10, PMa

2.5
SO2 NOa

2, Oa
3, PMa

10, SOa
2, GSTa, TEMa

4.3. Experimental Results and Interpretations

For the purposes of comparisons, FFANN-BP, DTR and RFR models are trained in
order to predict air pollutant concentrations in the three monitoring stations of Ningxia
at a local scale. In this study, DTR, FFANN-BP and RFR were used to evaluate the ability
of two-layer random forest model to estimate air pollutant concentrations. The data from
1 January 2016 to 30 June 2017 is used for model training, and the remaining is used for
model prediction. It is trained on DTR, FFANN-BP and RFR, and the parameters are fine
tuned according to the experimental results. The flowchart of our method is shown in
Figure 6.

The initial values of the parameters are set according to the algorithmic characteristics
and parameter-adjustment experience of different models, and the grid search provided
by scikit learn is used for super parameter optimization. In this paper, the base model of
random forest is DTR, and the alternative values of the number of DTRs are set as 10, 20,
30, 40 and 50. Other super parameters such as the maximum number of samples and the
minimum number of segmented samples of the leaf nodes use the default minimum value.
The final number of DTRs is 20. The stopping criterion is met if there is no improvement in
the R2 after ten iterations, in combination with a maximum number of iterations equal to
500. The optimal parameters of FFANN-BP are that the least mean square error as 0.001,
max training time as 1000, and learning rate as 0.15. The size of the network and learning
parameters greatly affect prediction performance. The best network structure trained is
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5 input nodes and 12 hidden nodes. The output layer has only one neuron, corresponding
to the air pollutant concentrations. It has been demonstrated that the BFGS algorithm is the
most efficient method to solve the optimization of the object function because of its speed
and robustness. Due to space constraints, this paper only shows the experimental results of
Ma Lian Kou air monitoring station.

Figure 6. The flowchart of our method.

To verify the performances of the DTR, FFANN-BP and RFR used in this study, Table 6
shows the RMSE, R2, MAE and MAPE between the measured and predicted values of air
pollutant concentrations of the above three models at Ma Lian Kou, Sha Po Tou and Ma
Yuan air monitoring stations. The R2 of the three machine learning models is between 0.44
and 0.99, it is shown that the values of these statistical parameters for the three models
are all within the recommended range. The RMSE of each model is between 0.25 and
126.7, and the RMSE of the RFR model is the lowest. Compared with the MAE, the RFR
model has the lowest MAE of 6.93, followed by the FFANN-BP model of 7.74, and the
DTR model has the highest MAE of 10.6. For MAPE, the RFR model is also the lowest
among the three models of 17.56. It can be found that RFR shows good experimental results.
The time series plots are also shown in Figure 7 to depict the relationships between the
observed and predicted data. These results indicate the important goodness of fit of the
RFR to the observed data. Following the same methodology, fitting were also made for
the other air pollutants as dependent variables using DTR, FFANN-BP and RFR with the
results as follows. It is shown that RFR is the best model for predicting the concentration of
air pollutant concentrations in the three air monitoring stations at a local scale, since the
correlation coefficient of RFR equal to 0.99.

The time series plot of the ground measured air pollutant concentrations and the
predictions by DTR, FFANN-BP and RFR are shown in Figures 7–9. It can be observed
that there is a higher agreement between the observed and predicted data. It is also shown
that the predicted concentrations of RFR are closer to the observed data than those of the
DTR and FFANN-BP, meaning that the RFR improves the predicted performance of air
pollutant concentrations. We also employ the histograms to provide further insight into

236



Atmosphere 2022, 13, 960

the relationship of the predictors with air pollutant concentrations in Figures 10–12. RFR
for air pollutant concentrations is very good since the histogram of RMSE is very steep
and it is also considerable for the other pollutants in Figures 10–12. At the same time,
according to the construction time of the models, RMSE, MAE, MAPE are analyzed to
evaluate the model. The prediction accuracy and model construction efficiency of different
machine learning models are compared and analyzed. Appropriate variables are selected
for the prediction of air pollutant concentrations. In terms of prediction accuracy, the RFR
model has the best prediction ability, followed by the FFANN-BP model, and the DTR
model. RFRs have stable accuracy and good prediction capability. The results show that
RFR not only increases the performance of the prediction of air pollutant concentrations
in Ningxia, but also discriminates the influential factors and reduces the dimension of the
data, therefore reduces the time complexity of the algorithm.

Table 6. The predicted performance of the DTR, FFANN-BP and RFR model for the concentrations of
six air pollutants at Ma Lian Kou, Sha Po Tou and Ma Yuan in 2016.

Air Statistical Ma Lian Kou Sha Po Tou Ma Yuan

Pollutants Index R2 RMSE MAE MAPE R2 RMSE MAE MAPE R2 RMSE MAE MAPE

DTR 0.70 0.25 0.21 0.31 0.61 0.47 0.33 0.38 0.46 0.63 0.51 0.66
CO FFANN-BP 0.71 0.24 0.18 0.31 0.70 0.23 0.16 0.19 0.61 0.32 0.24 0.33

RFR 0.90 0.15 0.12 0.20 0.91 0.14 0.10 0.11 0.62 0.45 0.20 0.21

DTR 0.66 6.2 5.4 0.47 0.51 8.0 6.7 0.28 0.47 7.8 6.4 0.25
NO2 FFANN-BP 0.72 4.5 3.4 0.29 0.76 5.3 4.2 0.17 0.75 5.3 4.4 0.17

RFR 0.95 1.8 1.4 0.12 0.83 4.3 3.4 0.14 0.87 4.0 3.2 0.13

DTR 0.54 23.9 16.1 0.17 0.70 16.3 13.4 0.24 0.52 20.2 16.5 0.37
O3 FFANN-BP 0.67 20.3 12.2 0.12 0.86 12.1 9.1 0.16 0.89 9.7 7.8 0.16

RFR 0.89 12.2 8.6 0.09 0.95 7.3 5.6 0.11 0.94 8.4 6.8 0.15

DTR 0.73 21.2 16.3 0.25 0.72 99.1 42.3 0.32 0.67 45.4 23.0 0.23
PM2.5 FFANN-BP 0.81 18.1 13.9 0.21 0.44 126.7 50.5 0.35 0.76 43.0 22.6 0.23

RFR 0.96 9.2 6.1 0.09 0.97 57.9 25.3 0.26 0.92 30.4 13.2 0.18

DTR 0.82 8.6 6.5 0.22 0.79 17.8 12.4 0.32 0.88 8.6 6.3 0.20
PM10 FFANN-BP 0.64 13.7 9.4 0.30 0.90 12.8 8.8 0.26 0.81 10.6 6.9 0.21

RFR 0.98 3.5 2.4 0.09 0.94 12.2 7.7 0.23 0.97 4.9 3.9 0.14

DTR 0.81 15.5 10.4 0.42 0.51 23.8 16.3 0.55 0.86 4.2 2.9 0.27
SO2 FFANN-BP 0.76 16.3 11.7 0.55 0.83 14.5 9.6 0.34 0.61 8.8 4.5 0.38

RFR 0.99 4.5 3.4 0.18 0.92 11.0 5.8 0.17 0.98 1.8 1.3 0.15
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Figure 7. The observed concentrations and the predicted concentrations of DTR, FFANN-BP and
RFR for CO and NO2 at Ma Lian Kou, where the red line and the black, green and lightcyan lines
represent the observations, and the predictions of DTR, FFANN-BP and RFR, respectively.
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Figure 8. The observed concentrations and the predicted concentrations of DTR, FFANN-BP and RFR
for O3 and SO2 at Ma Lian Kou, where the red line and the black, green and lightcyan lines represent
the observations, and the predictions of DTR, FFANN-BP and RFR, respectively.
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Figure 9. The observed concentrations and the predicted concentrations of DTR, FFANN-BP and
RFR for PM2.5 and PM10 at Ma Lian Kou, where the red line and the black, green and lightcyan lines
represent the observations, and the predictions of DTR, FFANN-BP and RFR, respectively.
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Figure 10. The error histogram of the prediction for CO and NO2 at Ma Lian Kou.
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Figure 11. The error histogram of the prediction for O3 and SO2 at Ma Lian Kou.
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Figure 12. The error histogram of the prediction for PM2.5 and PM10 at Ma Lian Kou.

RFR uses the average reduction of node impurity to describe the importance of the
variables. The greater the reduction of node impurity by a factor, the more important the
factor becomes. The importance of variables in the decision tree model is measured in the
form of weight. The greater the weight of a factor, the stronger the influence of the factor
in affecting the concentration of air pollutants. In this research, the importance of each
factor on the prediction of air pollutant concentration is further analyzed. Figures 13–15
and Table 7 show the analysis of the most important features of DTR and RFR for six air
pollutant at Ma Lian Kou. The characteristic variables considered include meteorological
factors, air pollutant concentrations of the previous day.

For CO, it can be seen that the concentrations of NO2 rank first and contribute the most.
For NO2, it can be seen that PM10 concentrations rank first and contribute the most. For O3,
it can be seen that ground surface temperature ranks first and contributes the most. For SO2,
it can be seen that NO2 concentration ranks first and contributes the most. For PM2.5, it
can be seen that PM10 concentration ranks first and contributes the most. For PM10, it can
be seen that PM2.5 concentration ranks first and contributes the most. As shown in Table 5,
the weight importance of temperature, relative humidity and air pressure are 14 and 25 in
turn, indicating that ground surface temperature and relative humidity have the greatest
impact on the concentration of air pollutants predicted by DTR, followed by air pressure
and precipitation, and wind speed has the least impact. Figures 13–15 and Table 7 shows the
importance analysis of various influencing factors when we use decision tree and random
forest algorithm to predict the concentration of various air pollutants in 2016. As shown
in Figures 13–15 and Table 7, for CO, NO2 is the most important factors in both methods.
For NO2, PM10 is the most important factor. For ozone, the ground surface temperature is
the most important factor. PM2.5 and PM10 are the most important influencing factors for
each other. NO2 is the most important factor in the prediction of SO2.

(a) (b)

Figure 13. The importance of predictor variables of RFR for (a) CO and (b) NO2 at Ma Lian Kou.
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(a) (b)

Figure 14. The importance of predictor variables of RFR for (a) O3 and (b) SO2 at Ma Lian Kou.

(a) (b)

Figure 15. The importance of predictor variables of RFR for (a) PM2.5 and (b) PM10 at Ma Lian Kou.

Table 7. The importances of influential factor at Ma Lian Kou in 2016.

Pollutants Index
Mean
GST

Mean
RHU

SSD NO2 O3 PM2.5 PM10

CO DTR 0.01 0.0 0.0 0.99
RFR 0.16 0.1 0.12 0.63

NO2 DTR 0.19 0.12 0.07 0.08 0.55
RFR 0.19 0.08 0.06 0.09 0.58

O3 DTR 0.61 0.14 0.07 0.09 0.1
RFR 0.64 0.14 0.07 0.08 0.08

PM2.5 DTR 0.03 0.04 0.03 0.33 0.01 0.57
RFR 0.03 0.1 0.03 0.24 0.02 0.58

PM10 DTR 0.02 0.02 0.02 0.16 0.05 0.73
RFR 0.03 0.04 0.03 0.19 0.02 0.69

SO2 DTR 0.17 0.06 0.05 0.66 0.04 0.03
RFR 0.16 0.05 0.03 0.69 0.04 0.03

Mean GST, Mean RHU and SSD represent the average ground surface temperature, average relative humidity
and sun shine duration, respectively.

Table 8 shows the running time of the three algorithms on the concentrations of six
pollutants in Ma Lian Kou in 2016. It can be seen from the Table 8 that the running time of
DTR is the shortest due to its simple structure, FFANN-BP model takes the longest time
to build, followed by RFR model. The running time of RFR is much lower than that of
FFANN-BP. This is enough to reflect that RFR has low time complexity.

Due to the randomness of the three methods, the accuracy of the three methods cannot
be evaluated by one experimental result. Therefore, this paper runs 1000 Monte Carlo
experiments and takes the average of the running results to evaluate the accuracy of the
three methods. The results in Table 9 show that the accuracy and prediction stability of
RFR are better than the other two methods.
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Table 8. The runtime of the three algorithm at Ma Lian Kou in 2016, all in (s).

FFANN-BP DTR RFR

CO 0.058 0.002 0.032
NO2 0.242 0.002 0.034
O3 0.303 0.002 0.034

PM2.5 0.349 0.002 0.04
PM10 0.206 0.002 0.038
SO2 0.364 0.002 0.038

Table 9. The mean, variance and the confidence interval of the predicted concentrations for six air
pollutants based on 1000 Monte Carlo experiments at Ma Lian Kou in 2016.

Mean Variance CIl CIu

CO 0.65 0.14 0.42 0.85
NO2 4.4 0.73 3.1 6.8
O3 85.8 11.7 60.7 100.9

PM2.5 33.9 8.5 28.8 34.1
PM10 135.9 22.8 91.8 156.9
SO2 1.9 0.8 1.2 6.6

The performances achieved highlight that for the extreme concentrations of air pol-
lutants, the performance of the DTR is not significant. The reason is that the construction
project of this period is particularly high in Ningxia. However, RFR still acceptedly per-
forms even with the sudden occurrence of such event. For the particulate matter, we find the
decrease in performance of DTR and FFANN-BP, making the variance of the concentrations
of the particulate matter larger. However, RFR is still more adaptable than FFANN-BP and
DTR. It shows that the DTR model has poor prediction ability in using the meteorological
elements to predict air pollutant concentrations, and it is recommended to use the RFR
model to predict air pollutant concentrations.

5. Conclusions

In this study, Ningxia Province, where air pollution has been increasing in recent
years, is selected as the research area. It is shown that the concentrations of CO, PM10
and PM2.5 were higher in the cold and dry winter than those in summer because of the
combustion of fossil fuels for heating purposes. The aim of this study was to propose a
modelling procedure that would yield satisfactory results for the prediction of ambient air
pollutant concentrations. In this work DT, FFANN-BP and RFR models were proposed for
predicting the air pollutant concentrations in Ningxia, China. The levels of air pollutant
concentrations were observed in three air monitoring stations, the capital of Ningxia and
the rural areas of Ningxia.

The collected data for air pollutant concentrations and meteorological variables were
used for the development of DTR, FFANN-BP and RFR. Data was prepared by calculating
the average of the air pollutant concentrations for each day of the study period. Compared
with DTR and FFANN-BP, it is evident that RFR is superior to the other methods. Further-
more, the proposed method has been successfully applied to the analysis of the importance
of the predictors. We conducted an uncertainty analysis based on Monte Carlo experiments.
The proposed method has worked well in predicting the air pollutant concentrations and
can be effectively utilized for the analysis of the importance of the predictors. It reveals
that there is a close relationship between air pollutant concentrations and meteorological
variables. Hence, the developed model is capable of generating better forecasting perfor-
mance for air pollutant concentrations. Because of the generality of the algorithm, it can be
applied to other area and databases.

It can be incorporated into the control and management for a cleaner air and a better
environment in many cities. Furthermore, we will consider other ways of using the spatial
and meteorological conceptions. Our future research work will focus on the improvement
and optimization of machine learning models. Multimodal analysis can effectively decom-
pose the time periodic change trend and noise of air pollutant concentration. Therefore,
the introduction of multimodal analysis into random forest regression model can effec-
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tively improve the prediction accuracy and the prediction of air pollutant concentration in
extreme pollution weather, which will be a problem to be solved in the future.
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Abstract: As an air pollution phenomenon, haze has become one of the focuses of social discussion.
Research into the causes and concentration prediction of haze is significant, forming the basis of
haze prevention. The inversion of Aerosol Optical Depth (AOD) based on remote sensing satellite
imagery can provide a reference for the concentration of major pollutants in a haze, such as PM2.5
concentration and PM10 concentration. This paper used satellite imagery to study haze problems
and chose PM2.5, one of the primary haze pollutants, as the research object. First, we used conven-
tional methods to perform the inversion of AOD on remote sensing images, verifying the correlation
between AOD and PM2.5. Subsequently, to simplify the parameter complexity of the traditional
inversion method, we proposed using the convolutional neural network instead of the traditional
inversion method and constructing a haze level prediction model. Compared with traditional aerosol
depth inversion, we found that convolutional neural networks can provide a higher correlation
between PM2.5 concentration and satellite imagery through a more simplified satellite image pro-
cessing process. Thus, it offers the possibility of researching and managing haze problems based on
neural networks.

Keywords: CNN; MODIS; PM2.5; haze forecast; aerosol optical depth; air pollution

1. Introduction

The main component of haze is fine particulate matter (PM2.5), an organic compound
of toxic substances such as heavy metals and carcinogens. It is the most harmful air
pollution to the human body because it can directly enter the lungs [1–3]. In recent years,
more and more people have paid close attention to its environmental damage and influence
on the human body in large urban areas [4–6].

With the increased attention on haze, the harm it does to the human body is gradually
being revealed. Therefore, the research on haze becomes deeper and more diverse [7–11].
Predominant questions involve the causes of haze, pollution composition, time distribution,
regional distribution, and management programs. The research methods also span multiple
disciplines such as chemical analysis, biological testing, economic development, and haze
data mining.

Because of the improved human aerospace technology and remote sensing satellite
technology in recent years, the cost of remote sensing satellite imagery has been reduced.
It is more macroscopic than the traditional ground station monitoring data. The satellite
images provide the information of the temporal and spatial changes of haze comprehen-
sively and quickly [12–18]; therefore, researchers utilize remote sensing images in the
monitoring and analysis of haze. Researchers often use remote sensing satellite images
for the inversion of Aerosol Optical Depth (AOD) and further analyze meteorological
features based on the correlation between aerosol depth and atmospheric pollutant con-
centrations. McGowan et al. [19] proposed a PM10 dust concentration of a 500 m vertical
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profile measured during a regional dust event in western Queensland, Australia, based on
MODIS Terra satellite data and a spatiotemporal analysis. Guo et al. [20] used a correlation
analysis between the PM2.5 concentration ground haze monitoring stations in China during
2007 and 2008 and the AOD obtained from the satellite remote sensing image. They also
discussed the feasibility of satellite remote sensing technology for estimating the haze
concentration on the ground. Nordio et al. [21] used MODIS data to study the correlation
between aerosol and PM10 concentration in Lombardy, Italy, and successfully used aerosol
data to predict the haze concentration. Seo et al. [22] compared the aerosol depth based on
ground monitoring stations and MODIS satellite images to PM10 concentrations in Seoul,
Korea. It was concluded that MODIS images are more relevant than ground monitoring
stations, especially in winter.

Another emerging approach to haze research is machine learning. Machine learning
methods, especially the rapid development of neural networks, have shown researchers
great potential to fit complex functions. Therefore, some studies have used haze detection
data to train neural networks to predict haze concentrations. For example, Pérez et al. [23]
used the neural network structure to predict and analyze the average concentration of
haze in the San Diego area in the next few hours. Grivas et al. [24] optimized the structure
and parameters of the neural network based on the previous Pérez study to predict the
concentration of PM10. With the continuous optimization of the network, many scholars
have used neural networks to predict and analyze the haze in time series [25–28].

Comparing the two haze analysis methods, estimating the concentration of haze
pollutants, such as PM2.5 and PM10, using the inversion of AOD on remote sensing satellite
images has a broader research background and relative higher precision. However, the
data preprocessing for obtaining AOD from satellite images is very complicated and often
requires steps such as radiation correction, geometric correction, and processing angle data
for satellite images. By contrast, neural networks have powerful feature capture capabilities
and flexible adjustment capabilities using these learned features. These characteristics allow
neural networks to use simplified data processing compared with traditional inversion
methods. Moreover, the neural network excels in complex function fitting, making it easy
to fit uncertain function expressions or expressions with complex parameters. In the study
of haze, PM2.5 concentration prediction is a complex function fitting problem, since the
concentration of other major pollutants such as PM2.5 depends on many complicated
meteorological and human factors.

This paper aims to simplify complex data processing in traditional AOD inversion
methods by using the feature capture ability and complex function fitting ability of neural
networks by training a haze-level classification network. We directly use remote sensing
satellite images as input and use convolutional neural networks as training models to
classify the level of haze concentration. This paper compares the results from two methods,
one using a traditional AOD inversion method, and the other the proposed neural networks
inversion method. Experiments show that the proposed network can reduce the manual
inversion work, and also achieves good results in fitting the non-linear relationship between
the data and the haze concentration level.

2. Research Area and Dataset

2.1. Research Area

The air pollutant monitoring stations in the Beijing area mainly detect the concentration
of various air pollutant gases (such as carbon monoxide, sulfur dioxide, and ozone) and
PM1 and PM2.5. These monitoring stations are distributed in various districts of Beijing, as
shown in Figure 1. The data and monitoring records collected by the monitoring points
will be published in real-time for easy access and research.
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Figure 1. Distribution map of monitoring stations in Beijing.

There are also some objective reasons for selecting the Beijing area for study. The
Beijing area is one of the more effective observation points of NASA’s meteorological
satellites, and it is also the network point of the ground aerosol automatic observation
network (AREONET). Therefore, different data can be used for comparison. Moreover,
Beijing is the capital of China, with a relatively high population density and frequent haze.
Therefore, the significance and feasibility of the research are high.

2.2. Dataset

Satellite remote sensing data has solid spatial coverage. In remote sensing science,
researchers invert images to obtain AOD and haze concentrations.

This paper hopes to simplify the data processing and replace the traditional AOD
inversion method using the fitting ability of convolutional neural networks, and construct
an end-to-end haze level prediction network. Considering the experimental needs, we
collect several highly relevant experimental data:

(1) MOD02-1 km data for the Beijing area in 2013 and 2014. The MOD02-1 km is a
satellite remote sensing image product of MODIS. The latitude and longitude are
calibrated based on the original data. Subsequently, we will preprocess it and use the
preprocessed data as training and testing data for the traditional inversion method of
AOD and the haze level prediction network.

(2) Real-time haze concentration data covering the entire Beijing area in 2013. We will
preprocess the dataset to obtain the haze level and use this to mark the satellite
imagery of the 2013 Beijing area to build a complete training set.

(3) Real-time haze concentration data covering the entire Beijing area in 2014. The
data include real-time PM2.5 concentrations and PM10 concentrations per hour for
each day in 2014, and Air Quality Index (AQI) information. The data come from
36 automatic monitoring stations for atmospheric pollutants covering the entire main
area of Beijing. The data will verify the correlation between haze concentration and
AOD.

(4) AREONET ground monitoring aerosol data are used to verify the accuracy of aerosol
inversion. This observatory will also provide three levels of data: Level 1.0 (un-
screened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0 (quality-
assured). Among them, the observation accuracy of the AOD of L2 data is the highest.

(5) Remote sensing image products from AQUA and TERRA satellites equipped with
MODIS. The MODIS product models are: MOD02-1 km (MYD-021 km) and MOD04-3
k (MYD04-3 k), secondary satellite products, and processed aerosol products. MOD02-
1 km belongs to the L1b product, the original data after the latitude and longitude
calibration, while MOD04-3 km is the processed second-level product containing
multiple aerosol products.
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3. Comparison with Traditional Method

In order to determine the type of data that can provide information regarding the haze
concentration and the type of input data of the convolutional neural network, it is necessary
to study the data used in the traditional inversion method. Then, from the data processing
process used in the traditional method, the data type and processing method required by
the convolutional neural network are analyzed and obtained. This section presents the
traditional method selected to set up the convolutional neural network in order to obtain
the required information. The method will also be used to examine the performance of the
proposed neural network method.

The data processing process in the traditional method is as follows:

(1) Radiation correction: We used ENVI5.0 to read data from MOD02-1 km, and the
software automatically radiated and corrected the data.

(2) Geometric correction: We used the MODIS data processing tool, Georeference MODIS
in the ENVI software, to geometrically correct the data of the emissivity channel.
In the calibration, we selected the Beijing coordinate system in the World Geodetic
System 1984 (WGS-84) standard to geometrically correct the emissivity file and es-
tablish Ground Control Points (GCPs) as the standard for other channels to maintain
consistent geometric correction results. We used GCPs generated by the emissivity
to correct the reflectance file. After reading the GCPs, the triangulation correction
method and the bilinear resampling method were selected so that the correction result
of the reflectance can match the emissivity.

(3) Interest area extraction and synthesis: We selected the administrative regional geo-
graphic graphic document (shapefile) in the Global Administrator Areas Database
(GADM). According to the administrative area of Beijing: 39.4 N~41.1 N; 115.4~117.4 E,
we tailored the emissivity and reflectivity file, which kept the consistency of the ad-
ministrative scope and the size of the processed data. After the region of interest was
synthesized, the emissivity channel files were placed at the top, and the reflectivity
channel files were placed at the bottom. The result of the image processing is shown
in Figure 2.

Figure 2. Corrected remote sensing images. Here, (a,b) are two remote sensing images with different
haze levels on different dates. The corrected results show that the size and range of the images are
the same.

(4) The processing of angle data: First, we used the ground control point file to correct
the angle dataset geometrically and used the shape-file cutting angle data of the
Beijing area, and then synthesized the angle data according to the order of the solar
zenith angle, the solar azimuth angle, the satellite zenith angle, and the satellite
azimuth angle. Finally, the time sequence stored the processed data for subsequent
inversion processing.
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(5) AOD inversion: The inversion method was the lookup table method (LUT): the lookup
table file is a general-purpose file. Its content is a table of the relationship between
radiation reflection, emissivity, angle data, and AOD. This paper used the aerosol
inversion tool in ENVI to read the data results processed in steps (3) and (4). Then, it
combined the relationship between the corresponding emissivity, reflectivity, angle,
and AOD in the lookup table file to perform the aerosol inversion.

Through the operation of the above five parts, the inversion of the AOD was realized.
We can learn from previous researchers that there is a functional mapping between

the optical depth of aerosol and the sun’s radiation. Holben et al. [29] proposed a radiation
transfer formula that combines AOD with radiation. The relationship between them is
described as Equation (1).

R(xa, μs, μv, φ) = R0(xa, μs, μv, φ) +
Fd(xa, μs)T(xa, μv)ρ

1 + s(xa)ρ
(1)

R(xa, μs, μv, φ) in the above formula denotes a comprehensive signal of all reflected
signals received by satellite, where xa denotes AOD. μs and μv denote the solar zenith
angle and satellite zenith angle when the satellite passes through the region of inter-
est, respectively. φ denotes the corresponding sun azimuth angle and satellite azimuth.
R0(xa, μs, μv, φ) denotes the reflected solar radiation by the atmosphere. Fd(xa, μs) denotes
the solar radiation that is not reflected and injected into the atmosphere, and T(xa, μv)
denotes the satellite emission signal that passes through the atmosphere. ρ is the reflectivity
of the ground to solar radiation. s(xa) denotes the reflectivity of the atmosphere to the
sun’s radiation.

4. CNN Haze Classification Method

The convolutional neural network used in this research adopts an end-to-end idea.
Therefore, the final training process is to fit this mapping relationship using a haze satellite
remote sensing image as input, and the haze concentration level as output. The specific
algorithm flow is shown in Figure 3.

Figure 3. Convolutional neural network (CNN) haze classification flow chart.
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4.1. CNN Data Processing

When the traditional method retrieves the AOD and haze concentrations from remote
sensing images, the information of these angles needs to be extracted, cut, and synthesized,
and this process is relatively cumbersome. After evaluating the zenith and azimuth angles,
we decided not to consider their changes since these angles are relatively fixed when the
satellite passes through the same area in the same season. Therefore, when preprocessing
the remote sensing data, the CNN method only needs to extract, cut, and synthesize
the reflectivity and emissivity. After the data are processed as above, they are stored
chronologically by season. Then, the convolution neural network is used to fit their non-
linear relationship, and finally, the haze level is classified through the classification layer.

According to the channel information, the channels for monitoring the edge and char-
acteristics of the land and cloud are 1–7 channels. The wavelength and spatial resolution
of each channel are shown in Table 1. We want to convert the satellite image into a three-
channel RGB image to the convolutional neural network. Combining the wavelength range
of visible light, as shown in Table 2, the three channels that best fit the three bands of RGB
are channel 1, channel 4, and channel 3, so we combine the data of these three channels to
get a true-color image. The synthesized image is shown in Figure 4. The correspondence
AQI and PM 2.5 concentration of each haze level is shown in Table 3.

Table 1. Spatial resolution and internal wavelength of each channel in MOD02-1 km.

Channel Internal Wavelength (nm) Spatial Resolution (m)

1 620–670 250
2 841–876 250
3 459–479 500
4 545–565 500
5 1230–1250 500
6 1628–1652 500
7 2105–2155 500

Table 2. Internal visible light wavelength.

RGB Internal Wavelength (nm)

Red 622–780
Green 492–577
Blue 455–470

Figure 4. (a) is the satellite image with full channel information, and (b) is the synthesized RGB image.
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Table 3. Correspondence table among haze level, air quality index, and PM2.5 concentration.

Haze Level AQI Daily Average PM2.5 Concentration

1 0~50 0~35
2 51~100 36~75
3 101~150 76~115
4 151~200 116~150
5 201~300 151~250
6 301~500 251~500

4.2. CNN Structure

The general structure of the CNN network proposed in this article is shown in Figure 5.

Figure 5. Structure of convolutional neural network (CNN).

Input layer: If the input data are RGB true-color images, the input data format is:
nh × nw × 3; if they are grayscale image data, the input data format is: nh × nw × 1. More-
over, the input data of the input layer should be normalized, and the size of the image and
the number of data channels should be consistent.

Convolution layer: The convolution operation is expressed as C, where f represents
the length and width of the convolution kernel. The length and width are the same, and
the number of channels is the same as the number of input channels. m represents the
number of convolution kernels. Then, the process of convolution operation is shown in
Equation (2):

yl
i,j =

m−1

∑
r=0

f−1

∑
s=0

f−1

∑
t=0

W
(r,l)
s,t xl−1

i+s,j+t + bl (2)

The first-level summation formula means that all convolution kernels are traversed
once. The second- and third-layer summation formulas indicate that a convolution kernel
with a size of f × f is used to perform a convolution operation on the input, where W is
the weight and b is the bias. Where i, j represent the position of the image in the output
layer as shown in Equation (3):

i = 1, 2...(nh − f )
j = 1, 2, ...(nw − f )

(3)

Activation function: Use Sigmoid activation function, as shown in Equation (4):

Sigmoid(x) =
1

1 + e−x
(4)

Pooling layer: This is an essential step in a convolutional neural network, also called a
down-sampling layer, and the size is generally a square window with the same length and
width. The pooling process is shown in Equation (5):
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yl
i,j = max

0≤s,t≤ f

[
ReLU(

m−1

∑
r=0

f−1

∑
s=0

f−1

∑
t=0

W
(r,l)
s,t xl−1

i+s,j+t + bl)

]
(5)

After the input data are translated and transformed, the output will not change, im-
proving the convolutional network’s robustness to extract features. This kind of translation
invariance is a very practical property.

Fully connected layer: In the studied model, there are six categories according to
the level of haze, and the corresponding labels are: (0 0 0 0 0 0 1), (0 0 0 0 0 1 0), ...,
(0 1 0 0 0 0 0). Among them, data that are disturbed by information such as clouds and
cannot be identified are marked with p position 1, that is, (1 0 0 0 0 0 0).

SoftMax classification layer: The classification process is to judge the probability that
this vector belongs to each category, and the one with the highest probability is the result
of the classification, as shown in Equation (6):

hθ

(
xl−1

i

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

p(yi = 1
∣∣∣xl−1

i ; θ)

p(yi = 2
∣∣∣xl−1

i ; θ)

...

p(yi = n
∣∣∣xl−1

i ; θ)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

1

∑
n
j=1 e

θT
j xi

⎡
⎢⎢⎢⎢⎣

eθT
1 x1

eθT
2 x2
...

eθT
n xn

⎤
⎥⎥⎥⎥⎦ (6)

where p(yi = n
∣∣∣xl−1

i ; θ) represents the probability estimation of the classification function
to the data being the nth category, and θ represents the model’s parameters. The rightmost
formula of the equation represents the normalized form of the probability so that the sum
of all the probabilities is 1.

4.3. CNN Parameter Adjustment

We used the stochastic gradient descent method as the parameter adjustment opti-
mization method. Although the convolutional neural network used in this article does not
have many layers, its structure belongs to deep learning. Let θ be a parameter in the neural
network, the negative conditional log-likelihood of the training data can be expressed by
Equation (7):

J(θ) =
1
m

m

∑
i=1

L
(

xi, yi, θ
)

(7)

where L represents the loss function corresponding to the i − th input, then for these cost
functions that you want to add, the gradient descent method needs to be calculated using
Equation (8):

∇θ Jθ =
1
m

m

∑
i=1

∇θ L
(

xi, yi, θ
)

(8)

The calculation time complexity of this optimization process is O(m), where m is the
amount of data in the training set. As training increases, this complexity will increase.
The core of the stochastic gradient descent method is to perform a small-scale sample
approximate estimation. A small batch of training (minibatch) was performed in each
step, and the sample size at this time was m′, and m′ << m, and then pass. The results
obtained in this part were used to estimate the results of the entire sample so that the
amount of calculation will be significantly reduced. The gradient estimation, Equation (9),
is as follows:

g =
1

m′
∇θ

m′

∑
i=1

L
(

xi, yi, θ
)

(9)

252



Atmosphere 2022, 13, 522

Use the mini-batch described above to train and estimate the entire sample using the
following gradient estimation algorithm as Equation (10):

θ − αg → θ (10)

The small-batch gradient descent method solves the shortcomings of the gradient
descent method’s time complexity and unreliability of the gradient descent method in the
parameter optimization process. Finally, we optimized the parameters of the classification
layer and used the evaluation function as Equation (11):

J(θ) = −
1
m
[

m

∑
i=1

n

∑
j=1

1{yi = j} log(
e

θT
j xi

∑
n
k=1 eθT

k xi

)] (11)

The optimization process is the process of minimizing the evaluation function so that
the parameter θ will reach the optimal value.

5. Experiment and Result

5.1. Correlation Analysis between Traditional Method Inversion Results and Haze Concentration

This experiment used traditional methods to analyze the correlation between the
inversion data of MOD02-1 km in Beijing in 2014 and the PM2.5 concentration of ground
monitoring stations in Beijing. The result is shown in Figure 6, where (a–d) represents the
results of the four seasons.

Figure 6. Linear regression between Aerosol Optical Depth (AOD) and PM2.5 (a) The inversion in
spring; (b) The inversion in summer; (c) The inversion in fall; (d) The inversion in winter.

From the results, the highest correlation coefficient is in the spring inversion, which
reaches a high level of 0.86, followed by winter and autumn, and the worst in summer. All
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of the correlation coefficients are above 0.5, indicating a strong correlation between AOD
and PM2.5 concentration, considering their non-linear relationship and complex dynamics.

We also performed a linear fit to the inversion results of AOD in the whole year
of 2014, as shown in Figure 7. The y-intercept a0 is 45.85, the slope a1 is 50.79, and
the correlation coefficient R is 0.59. Compared with the results of the four seasons, the
correlation coefficient of the linear fit for the whole year is 30% lower than that of the
spring. We think this is because the four seasons have different factors, such as different
climatic characteristics, industrial activities, and gas emissions caused by heating demand,
which contribute to the correlation between AOD and PM2.5 concentration. Therefore, we
conclude that studying the correlation performance of AOD and PM2.5 according to the
season division can provide a more accurate basis for analysis.

Figure 7. Overall linear regression between AOD and PM2.5 in 2014.

Figure 7 shows that we can train the processed data through the neural network
method to approximate the coupling relationship between the mapping relation and the
linear relation to achieve the inversion classification method.

5.2. Comparison of CNN Analysis Results

We extracted the image after two 7 × 7 convolution layers to analyze whether the
model can extract the haze characteristics [30–32], as shown in Figure 8.

Figure 8. Convolution feature extraction diagram (a) Convolution diagram during severe haze;
(b) Convolution diagram with a lower haze level.

254



Atmosphere 2022, 13, 522

Figure 8a is a convolution result diagram when the haze is severe in spring, and the
bright block is in the upper left corner of the image. We find a cloud layer in the area
comparing it with the original image, which indicates that the cloud layer appears bright
in the convolution result. The remaining areas with severe haze are darker, where the
difference between emissivity and reflectance is more significant. Figure 8b is a convolution
result graph containing minimum cloud information and a lower haze concentration level.
The brighter feature in Figure 8 is the area where the AOD is low. The difference between
the emissivity and the reflectance is slight. We found that the haze level prediction model
can effectively distinguish the image characteristics of different haze concentrations by
comparing the results. We labeled the cloud information of the image when marking the
dataset, avoiding the mistakes where the cloud was identified as haze.

We used the MOD02-1 km data of the Beijing area in 2013 and 2014 as the training
set and test set of the haze level prediction model. We extracted satellite images from the
MOD02-1 km data so that the training and test sets contained 730 satellite images. We
marked the haze level on the training set.

To verify whether the model can effectively establish the correlation between satellite
image and PM2.5 concentration and to compare it with the traditional inversion method,
we conducted the same linear regression between the output of the haze level prediction
model and the PM2.5 daily average concentration. The results are shown in Figure 9.

Figure 9. Linear regression between haze level using CNN and PM2.5 (a) Linear regression for
CNN and PM2.5 in Spring; (b) Linear regression in Summer; (c) Linear regression in Fall; (d) Linear
regression in Winter.

In Figure 9a, the y-intercept a0 is −13.88. The slope a1 is 34.74. The correlation
coefficient R is 0.90. In Figure 9b, the y-intercept a0 is 25.07. The slope a1 is 17.11, and the
correlation coefficient R is 0.65. In Figure 9c, the y-intercept a0 is −20.74. The slope a1 is
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40.61. The correlation coefficient R is 0.93. In Figure 9d, the y-intercept a0 is 9.03, and the
slope a1 is 40.67, the correlation coefficient R is 0.65.

A comparison with the traditional inversion method is shown in Table 4.

Table 4. The correlation coefficient between traditional inversion and level prediction.

Season R (Lookup Table) R (CNN Model)

Spring 0.86 0.90
Summer 0.57 0.64

Fall 0.67 0.93
Winter 0.68 0.65

From Table 4, the correlation coefficient of the haze level prediction model based on
the convolutional neural network is superior to the traditional inversion method in spring,
summer, and fall. In particular, the summer and fall results are improved by 12% and
39%, respectively, which indicates that the haze level prediction model can provide a better
PM2.5 concentration prediction than the traditional inversion method. Furthermore, all
correlation coefficients in the haze prediction model are above 0.6, indicating a strong
correlation between haze level and PM2.5 concentration.

6. Discussion

This study first studied the traditional haze inversion method. After studying the
relationship between AOD and haze concentration, we found a non-linear mapping rela-
tionship between the two. Therefore, we propose a CNN-based haze classification model
to take advantage of CNN’s non-linear relationship fitting. Through the experimental
comparison between the traditional method and our proposed model, the correlation coeffi-
cient of the haze classification model based on the convolutional neural network in spring,
summer and fall are better than the traditional inversion method. In particular, the results
in summer and fall increased by 12% and 39%, respectively, which indicates that the CNN
haze classification model can provide better classification results than traditional inversion
methods. In addition, all correlation coefficients in the haze classification model are above
0.6, indicating a strong correlation between the haze level and the PM2.5 concentration.

In general, whether it is a traditional inversion method or a CNN-based method,
summer has the lowest correlation coefficient, followed by winter. The reason may be
that the fog concentration of summer aerosol is higher than that of haze. In winter, there
are many days of heavy haze and uneven distribution of time and space, resulting in
a low recognition rate of the CNN. On the other hand, the increase in fall is due to the
smaller haze level, which is most concentrated in the top four levels, and there is less severe
haze weather.

The result shows consistency with other studies [3,5,20]. The winter is the most
polluted season in this area of China. The pattern may contribute to the high correlation
coefficient in the winter. The result from the CNN shows a better performance in spring,
summer, and fall. The feature capture characteristics of the CNN and its ability to fit with
complex functions could benefit haze classification and prediction [31,32]. Since the CNN
model could improve the inversion results when the haze is less severe, other machine
learning methods could be used on a broader range of areas and haze scenarios. After
considering the limitations of both the proposed method and the comparison traditional
method, the result of both the proposed method and the comparing result is limited.
However, the results still show the potential of combining neural networks with time-
consuming tasks in atmospheric studies.

7. Conclusions

This research is based on experimental research on convolutional neural networks’
classification and prediction of haze levels. We found that a convolutional neural network
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uses images to identify haze concentrations, which can sufficiently fit the non-linear re-
lationship between input and output. It proves the feasibility of a convolutional neural
network to classify and invert haze. At the same time, the use of trained convolutional
neural networks can reduce manual inversion work to a certain extent. Our proposed
CNN-based haze level classification model greatly simplifies data processing compared
to traditional inversion methods. By comparing the correlation coefficients of traditional
inversion methods and CNN-based methods, we prove that the haze prediction network
can provide better PM2.5 concentration classification than traditional inversion methods. It
also proves that the original remote sensing satellite images can provide rich features for
analyzing haze problems.

Since this study still contains many limitations, including the limited data and only
covering a limited range of the haze problem, this method is only the starting point for
further combining machine learning methods with atmospheric problems. Moreover, the
recognition rate reached more than 80%. However, due to insufficient data, the accuracy of
the recognition result is not high, but it is also feasible. Among them, the accuracy rate and
the F1 value of levels 1–4 are higher. However, the values of these three items of grades
5 and 6 all decreased, and the reason is because the concentration span of the latter two
grades is larger.

Since the proposed method aims to replace and replicate the traditional process using
CNN, the proposed method shares the same limitations as the traditional method. The
estimate heavily depends on the satellite image, which contains many other elements that
could be falsely claimed as haze. The traditional method uses various calibration processes
with satellite parameters including azimuth, zenith, emissivity, and reflectivity to reduce
these false results. Some of these calibration processes are removed to fit the network struc-
ture and simplify the network process when constructing a neural network to replace the
labor-intensive traditional method. Although the proposed method has fewer calibrations
and processes than the traditional method, the results are still compatible and even better
than those in several situations. This result is likely caused by the nature of neural networks
that have an outstanding performance in fitting complex natural processes. This study and
previous studies have shown that neural networks have a great capacity and performance
in simulating haze progress and in the prediction of haze states [23–26,28,31,32]. Of course,
due to all of the simplification processes, this study took some time to construct the network,
and the original limitations of the traditional method still remain in the network, there will
be many misfits and false claims of haze phenomena. In order to demonstrate the great
potential of the neural network on the haze problem, we believe that the following aspects
can be further studied to improve the accuracy of haze prediction.

Future studies could further improve the model’s ability to interpret images. In
order to avoid the influence of clouds on the model’s ability to identify polluted areas
and pollutant concentrations, this paper manually annotated cloud information on all
satellite images. This paper also removed some steps in traditional image processing
to reduce complexity and time, which would cause errors in the outcome. In future
research, the model’s ability to process images can be improved to replace manual marking,
which keeps the accuracy and quality. In addition, convolutional neural networks have
good recognition performance for images, but they lack the ability to process time-series
information. Therefore, to obtain the haze characteristics in the time series, utilizing more
network models would benefit future studies.
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Abstract: Air pollution with fluidity can influence a large area for a long time and can be harm-
ful to the ecological environment and human health. Haze, one form of air pollution, has been a
critical problem since the industrial revolution. Though the actual cause of haze could be various
and complicated, in this paper, we have found out that many gases’ distributions and wind power
or temperature are related to PM2.5/10’s concentration. Thus, based on the correlation between
PM2.5/PM10 and other gaseous pollutants and the timing continuity of PM2.5/PM10, we propose a
multilayer long short-term memory haze prediction model. This model utilizes the concentration of
O3, CO, NO2, SO2, and PM2.5/PM10 in the last 24 h as inputs to predict PM2.5/PM10 concentra-
tions in the future. Besides pre-processing the data, the primary approach to boost the prediction
performance is adding layers above a single-layer long short-term memory model. Moreover, it is
proved that by doing so, we could let the network make predictions more accurately and efficiently.
Furthermore, by comparison, in general, we have obtained a more accurate prediction.

Keywords: haze prediction; multilayer long short-term memory; PM2.5; PM10

1. Introduction

The air pollution incidents caused by haze have often occurred in metropolises such
as Los Angeles and London. Respiratory diseases caused by haze have killed ten thousand
people and caused widespread public panic [1,2]. In China, social industrialization and
urbanization have brought economic development, while the awareness and measures for
environmental protection have lagged [2–5].

Sichuan Basin is an area of severe haze pollution in the western part of China. In the
74 major cities monitored, the average annual concentration of PM2.5 ranged from 26 to
160 μg/m3, the average concentration was 72 μg/m3, the proportion of qualified cities was
4.1%, and the average annual concentration of PM10 ranged from 47 to 305 μg/m3, the
average concentration was 118 μg/m3, and the proportion of qualified cities was 14.9%. In
the following years, haze pollution has been alleviated, but the overall pollution situation
is still not optimistic.

The prevention and prediction of haze have become the focus of the public and
researchers. The haze research mainly focuses on two aspects: the cause of haze and
the prediction of haze. Hinton et al. [6] studied photochemical haze in Los Angeles.
They concluded that primary pollutants emitted by motor vehicles and chemical plants
and secondary chemical pollutants caused by photochemistry are the primary pollutants.
Gupta [7,8] compared the PM10 concentration between the residential and industrial areas
in Kolkata, India, and found that soot and motor vehicle emissions had the most significant
impact on haze pollution in the area. Minguillón et al. [9] used a positive definite matrix to
analyze the main components and formation factors of PM2.5 in Switzerland. Ho et al. [10]
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collected and tested the chemical composition of PM2.5 in the suburbs of Hong Kong,
evaluated the relatively enriched factors in the crustal elements, and used multivariate
correlation techniques to determine the source of PM2.5 and its impact.

In terms of haze prediction, researchers have used many different methods to predict
haze pollution in different regions. Haze prediction methods include multivariate statistical
methods [11–14], chemical transformation models [15–17], and prediction methods based
on remote sensing satellite imagery [3,18–21].

RNN (recurrent neural network) and LSTM (long short-term memory) [22–27] have
been gradually applied to haze prediction. Qin et al. [28] proposed the new concentration
prediction scheme of urban PM 2.5 based on CNN (convolutional neural network) and
LSTM. Tsai et al. [29] used RNN and LSTM networks to predict air pollution in Taiwan.
Li et al. [16] developed a hybrid called the CNN-LSTM model, which is used to predict
the concentration of PM2.5 in Beijing in the next 24 h. Bai et al. [30] proposed an E-LSTM
neural network, which constructs multiple LSTM models in different modes for integrated
learning with an hourly PM 2.5 concentration forecast. Our time series model did show a
better result [26,31–33].

In this paper, we applied neural network methods to predict the concentration of
haze pollutants, including PM2.5 and PM10. First, we argued that the concentration of
PM2.5/PM10 is related to other gaseous pollutants, such as O3, CO, NO2, SO2, and the
concentration of PM2.5/PM10 has time series continuity, which means that the curve of
concentration is smooth. Furthermore, the concentration at different times is correlated
within a certain time window. Based on the two assumptions, we collected real-time PM2.5,
PM10, O3, CO, NO2, and SO2 concentrations published by six ground monitoring stations
in Chengdu from 1 June 2014 to 30 June 2017, and meteorological data, such as wind power
and temperature. Then, we analyzed the correlation between the collected data and PM2.5,
constructed different datasets for predicting PM2.5 and PM10, respectively, and constructed
a haze prediction model based on LSTM. The LSTM-based haze prediction model uses
the O3, CO, NO2, SO2 concentrations, and PM2.5/PM10 concentrations in the last 24 h as
inputs to predict future PM2.5/PM10 concentrations. We also focused on adjusting the
haze prediction model’s hidden layers to explore the model’s best performance.

2. Approach

The long short-term memory [34] neural network (LSTM) is a new deep machine
learning network built on RNN. In order to avoid the vanishing gradient issue and the
gradient explosion problem, a long-term delay process is added to the network. Thus, the
state unit can keep the error stream, which successfully solves the defects that exist in the
RNN and has been widely used in many fields.

RNN has only one hidden layer state, so short-term input is compassionate when
dealing with time series, while long-term input is relatively slow. Therefore, LSTM adds a
cell state based on the RNN network for long-term state preservation. An unrolled LSTM
is shown in Figure 1. It represents the input of the LSTM network at t-time, the output, and
the LSTM network’s cell state of the LSTM network at T-1 time. These three data are the
input, output, and cell state of the LSTM network at t-time, and X, h, and c are vectors.

Figure 1. Expanded view of LSTM.
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The LSTM implements the preservation, update, and input of long-term state c through
the internal forget gate, input, and output gate, as shown in Figure 2. The forget gate and
output gate control the cell state of the LSTM. They respectively determine the preserved
information of the cell state and the preserved information of the input at the moment of t.
The output gate controls the parts of the cell state that we want to include in the output.

Figure 2. The internal structure of LSTM.

Gates are the full connection layers, and the expression of the gate is as shown in
Formula (1), where the input and output are all represented by vectors. The output is the
real number vector with a range of [0, 1]. Thus, in Formula (1), W denotes the gate’s weight
matrix, and b represents the error vector. σ is the sigmoid function, whose output ranges
from 0 to 1 and determines whether the input can pass through the gate.

g(x) = σ(Wx + b) (1)

The forget gate is shown in Formula (2). It allows the LSTM to forget the memories
based on the current input selectively. The input of the forget gates is the input of the
current time and the output of the hidden layer node at the previous time. Weight matrix W
and error b are used to adjust the input. The sigmoid function is used to filter out outdated
information that is useless for the current output.

ft = σ
(

Wf · [ht−1, xt] + b f

)
(2)

The calculation of the input gate is shown in (3). The input gate controls input infor-
mation. Wi represents the weight matrix of the output gate, and bi represents the bias of
the input gate.

it = σ(Wi · [ht−1, xt] + bi) (3)

The input state unit c′t at the current time t is calculated through the output of the
network at the time t − 1 and the input at the time t, as shown in (4).

c′t = tanh(Wc[ht−1, xt] + bc) (4)

Therefore, the cell state at the current time ct can be obtained by the Formula (5),
where the symbol ◦ denotes the elementwise multiplication.

ct = ft ◦ ct−1 + it ◦ c′t (5)

The output gate can be expressed as (6). Output gate controls the influence of long-
term information on the current output. The output of the long-term memory neural
network is determined according to the output gate and cell state, as shown in (7).

ot = σ(Wo[ht−1, xt] + bo) (6)

ht = ot ◦ tanh(ct) (7)
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3. Dataset

In order to predict PM2.5 and PM10 concentrations, we collected two types of data: gas
concentration data and meteorological data [7]. First, we collected the real-time concentra-
tion data of PM2.5, PM10, O3, CO, NO2, and SO2 released by six ground monitoring stations
in the Chengdu urban area from 1 June 2014 to 30 June 2017. The data update frequency is
once an hour. PM2.5, PM10, O3, and SO2 units: μg/m3 and CO, NO2 units: mg/m3. We
used the average concentration simultaneously in six ground monitoring stations as gas
concentration data in Chengdu. Moreover, we have collected the temperature, humidity,
and wind data released by the China Weather Network (WEATHER) as meteorological
data (http://www.cnemc.cn/ (accessed on 16 October 2019)).

The six monitoring stations selected in the study cover the whole urban area of
Chengdu and can completely monitor the changes of air quality in Chengdu. The geo-
graphical location of the ground monitoring stations in Chengdu is shown in Figure 3.

Figure 3. The geographical location of the ground monitoring stations in Chengdu.

3.1. Correlation Analysis

Since autumn and winter are higher frequency seasons of haze than spring and
summer, it can be assumed that haze has different causes in different seasons. When
studying the correlation between haze and meteorological conditions, we selected pollutant
concentrations such as PM2.5, PM10, O3, CO, NO2, and SO2 and the meteorological data
such as temperature, humidity, and wind power in two different time ranges (from 0:00
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on 4 July 2016 to 23:00 on 10 July 2016, and from 0:00 on 24 December 2016 to 23:00 on
30 December 2016). The correlation analysis tool in MATLAB was used to complete the
correlation analysis between meteorological factors and PM2.5. The results are shown
in Table 1.

Table 1. Correlation coefficient value of PM2.5 and meteorological factors.

Correlation
Coefficient

Highest
Temperature

Lowest
Temperature

Humidity Wind Power O3 CO NO2 PM10 SO2

winter 0.29 −0.01 −0.25 −0.35 −0.13 0.49 0.54 0.79 0.48
summer 0.38 −0.05 −0.22 −0.38 −0.56 0.67 0.38 0.95 0.39

The correlation coefficient table shows that in winter, the pollutant most related to
PM2.5 is PM10, followed by NO2, CO, SO2. O3, wind power, and temperature have a
low correlation. However, in summer, the correlation between meteorological factors and
PM2.5 is different. The correlation ranking is PM10 � CO � O3 � SO2 � NO2. If the
| correlation coefficient | < 0.4, it has a low correlation; if 0.4 ≤ | correlation coefficient |
< 0.7, it has a significant linear correlation; if 0.7 ≤ | correlation coefficient | 1, it is
highly correlated. In general, PM2.5 in Chengdu has a low correlation with temperature,
humidity, and wind power, a significant correlation with CO, SO2, NO2, and O3, and a
high correlation with PM10.

Because PM2.5 and PM10 are both essential factors affecting haze, this paper uses
PM2.5 and PM10 concentration to represent haze pollution, which is also the research object
of our LSTM-based haze prediction model. According to the correlation analysis results,
PM2.5 has a low correlation with temperature, humidity, and wind power in the short term.
It is considered that the weather parameters are stable in the short term. Therefore, we
selected CO, SO2, NO2, O3, historical PM10, and historical PM2.5 as inputs to train the haze
prediction model and achieve the goal of predicting the concentration of PM2.5/PM10.

3.2. Data Completion

The collected PM2.5, PM10, O3, CO, NO2, and SO2 concentration data totaled 26,120.
This paper calculates the mean of the previous and next state’s concentration data. It com-
pletes the time series of missing data, as shown in Formula (8). The final data set contains
PM2.5, PM10, O3, CO NO2, and SO2 concentration adequate data in 27,380 moments.

Xt =
1
2
(Xt−1 + Xt+1) (8)

In (8), Xt represents the missing concentration data at the current time, Xt−1 represents
the concentration data at the previous moment, and Xt represents the concentration data
at the next time point. Furthermore, it is for sure that this could add additional noise to
the dataset since we are just filling missing points with roughly generated data. We do not
need to complete most of the dataset because the final dataset is only 3% greater than the
vanilla one, which is tolerable for machine learning tasks.

3.3. Standardized Processing

In the neural network, large-value data tends to increase the proportion of influence
on the model and makes the model lose the characteristic properties of the data with low
value. Therefore, to avoid errors caused by different numerical ranges, we convert all
historical concentration data to −1~1 (9).

X′ =
X − X

Xmax − Xmin
(9)

X′ denotes the concentration data after the standardized processing, X represents the
original concentration data, X denotes the mean of the concentration data, Xmax denotes
the maximum value, and Xmin represents the minimum value.
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In this paper, we base on the assumption that the PM2.5 or PM10 concentration at
the next moment is related to its short-term historical data and the O3, CO, NO2, and
SO2 concentration values at the same moment. Therefore, we reconstructed the dataset
and used the PM2.5 concentration in the past 24 h. The current PM10, O3, CO, NO2, and
SO2 concentration values were training data, and the corresponding ground truth was the
current PM2.5 concentration. Similarly, we also constructed a dataset for predicting the
concentration of PM10. Again, the PM10 concentration in the past 24 h and the PM2.5, O3,
CO, NO2, and SO2 concentration values at the current time were used as training data. The
ground truth was the current time PM10 concentration. Finally, we divided the reorganized
dataset into the training set, verification set, and test set according to 80%, 10%, and 10%.

4. Experiment and Result

4.1. Evaluation

This research is a simulation experiment of realizing the prediction model based on
Python-TensorFlow framework.

In order to reflect the prediction accuracy of the haze prediction model at different
levels, we used numerical evaluation and hierarchical evaluation. We used the root-mean-
square error (RMSE) [35] as a numerical evaluation method to reflect the overall accuracy
of the model’s haze prediction values, as shown in (10).

RMSE =

√
1
m

m

∑
i

(Ti − Pi)
2 (10)

In (10), i refers to the number of a test sample, m refers to the total number of predicted
simples, Ti represents the actual concentration of the test sample, the ground-truth, with
the unit: μg/m3, and Pi represents the predicted concentration value with the unit: μg/m3.

We divided the PM2.5 and PM10 concentrations into six grades based on the Air
Quality Index (AQI) to assess the model’s error in macroscopic pollution levels, as shown
in Table 2. If the prediction result and the result are at the same level, the prediction result
is judged to be excellent; if the prediction result and the result are adjacent, the prediction
result is determined to be acceptable; if the prediction result is different from the result by
two levels or more, the predicted result is unacceptable.

Table 2. PM2.5 and PM10 levels.

Level 1 2 3 4 5 6

Level range (μg/m3) 0–35 36–75 76–115 116–150 151–250 >250

4.2. Result

In this paper, by changing the dataset, we used the LSTM-based haze prediction model
to predict the concentration of PM2.5 and PM10, respectively. The number of input layer
nodes was 29, and the number of output layer nodes was 1. While predicting the PM2.5
concentration, the inputs were the PM10, O3, CO, NO2, and SO2 at the n hour and the
PM2.5 concentration in the last 24 h. The output was the PM2.5 concentration at n hour.
While predicting the PM10 concentration, the inputs were the PM2.5, O3, CO, NO2, and
SO2 at the n time, and the PM10 concentration in the last 24 h. The output was the PM10
concentration at the n hour.

The initialization parameters were as follows: the weight gradient learning rate was
set to 0.01, the visible layer node bias was initialized to 0.05, the hidden layer node bias
was initialized to 0.1, the target error was set to 0.005, and the iteration number was 5000.

We have also conducted several experiments to study the effect of different hidden
layers on prediction accuracy. In order to more directly reflect the prediction result of
PM2.5/PM10 and calculate the accuracy of the experiment, we selected the prediction
data and actual data of 360 consecutive moments to demonstrate. We performed five
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experiments on each model with different hidden layer numbers and selected the best
result. The prediction results of PM2.5 concentration in different hidden layers based on
the LSTM-based haze prediction model are shown in Table 3.

Table 3. PM2.5 prediction results with different hidden layers.

Hidden
Layers

Neuron
Distribution

PM2.5 RMSE
μg/m3 Excellent Acceptable Unacceptable

1 10 10.95 80.83% 18.89% 0.28%
2 10 9 9.72 81.67% 18.33% 0.00%
3 10 9 8 8.81 84.44% 15.56% 0.00%
4 10 9 8 7 8.41 83.89% 16.11% 0.00%
5 10 9 8 7 6 8.18 85.28% 14.72% 0.00%
6 10 9 8 7 6 5 8.31 84.72% 15.28% 0.00%
7 10 9 8 7 6 5 4 8.11 86.39% 13.61% 0.00%
8 10 9 8 7 6 5 4 3 8.23 85.56% 14.44% 0.00%

The PM2.5 prediction results show that even if the LSTM has only one hidden layer,
the RMSE of the prediction result is only 10.95, which is a lower error level. Thus, the
prediction level of PM2.5 is generally consistent with the actual situation, which indicates
the high correlation between the input data and the concentration of PM2.5.

In fixing the number of hidden layer nodes, the prediction accuracy is related to the
number of hidden layers. Therefore, the increase in the number of hidden layers generally
improves the prediction accuracy of PM2.5, both at RMSE and level evaluation. However,
the accuracy of the prediction result brought by the increase of the hidden layer also has
a bottleneck. For example, when the hidden layer is 7, the mean square error is 8.11, the
excellent is 86.39%, the acceptable is 13.61%, and the unacceptable is 0%. Figure 4 shows
the PM2.5 prediction results of hidden layer 5 and hidden layer 7, respectively.

Figure 4. Prediction results of PM2.5 in different hidden layers of the LSTM model: (a) five hidden layers; (b) seven
hidden layers.

We used the same method to predict the concentration of PM10. The predicted PM10
concentrations in different hidden layers based on the LSTM-based haze prediction model
are shown in Table 4.

Increasing the number of the hidden layer can improve the prediction accuracy of
PM10 to a certain extent, reducing the RMSE of the prediction result and improving the
acceptability of the level prediction. For example, the haze prediction model with 7 hidden
layers has the best result, where the root-mean-square error is 15.41, the excellent is 81.67%,
the acceptable is 18.33%, and the unacceptable is 0%. Figure 5 shows the PM10 prediction
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results of hidden layer 5 and hidden layer 7, respectively. However, the root-mean-square
error value is also very close when the hidden layers are 5, 6, and 8. This shows that the
improvement of hidden layers above five can hardly increase the accuracy of the predicted
concentration of PM10, which is the limitation imposed by the LSTM model.

Table 4. PM10 prediction results with different hidden layers.

Hidden
Layers

Neuron
Distribution

PM10 RMSE
μg/m3 Excellent Acceptable Unacceptable

1 10 18.95 73.89% 25.28% 0.83%
2 10 9 17.02 78.61% 21.11% 0.28%
3 10 9 8 16.66 79.72% 20.00% 0.28%
4 10 9 8 7 16.05 80.56% 19.17% 0.28%
5 10 9 8 7 6 15.40 81.11% 18.89% 0.00%
6 10 9 8 7 6 5 15.48 81.11% 18.89% 0.00%
7 10 9 8 7 6 5 4 15.41 81.67% 18.33% 0.00%
8 10 9 8 7 6 5 4 3 15.40 81.39% 18.61% 0.00%

Figure 5. Prediction results of PM10 in different hidden layers of the LSTM model: (a) five hidden layers; (b) seven
hidden layers.

Compared with Table 3, the RMSE of PM10 is always more significant than the RMSE
of PM2.5. The haze prediction model also produces a more significant deviation in the
PM10 level prediction. The excellent and acceptable levels are both reduced by about 5%
compared to the PM2.5 level prediction. Analyzing the result accuracy of PM2.5 and PM10,
we argue that the model fits well with the correlation between O3, CO, NO2, SO2, and haze
pollutants and achieves accurate predictions both on haze concentration and level.

5. Discussion

This paper shows that LSTM with multiple layers stacked could dramatically increase
the prediction’s accuracy. Moreover, it is correlated to the general rule of deep learning
models: a deep structure could better cope with complicated multi-dimension datasets
than models with limited depth.

Furthermore, using correlation analysis could let us decide which part of the whole
dataset should be included, which prevents us from just pouring all data into the network
to waste time and damage the accuracy.

Compared with the CNN+LSTM model in [28], the multilayer LSTM model proposed
in this paper can achieve more accurate results. The reason may be that the six monitoring
stations selected in this article are all from Chengdu, with even distance intervals. The
climate data except for the main pollutants are similar. Therefore, the mutual influence
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between the data is small, leading to more accurate results. Compared with [29], its paper
mentions that in the past 3, 8, 24, and 72 h forecast results, 72 h is the best forecast accuracy.
We used the data of the past 24 h to predict PM2.5, and the result is better than its 72 h
forecast accuracy. Compared with [16], the original text uses the previous week’s data
(7 days) as the input of the data model. This paper uses the data 24 h ago as the input,
which reduces the amount of calculation. Compared with [30], our multilayer LSTM shows
more accurate and less biased results. We found that our model made more accurate
predictions for such prediction tasks.

To keep increasing the model’s accuracy and improve its ability to generalize, we are
considering the following methods.

1. We could feed the network with more data from areas adjacent to the target area
whose haze concentration is what we want to predict. Haze is always a meteorological
phenomenon, which indicates that the appearance of haze should be related to what is
happening around the target area. For instance, if there is a signal of a powerful wind
around the target area yet such signal is not included in our data, we could make a
massive error because a powerful wind is likely to take pollutants away. Therefore,
including data from adjacent areas could better fit the reality.

2. A combination of different genres of deep learning models could be potentially helpful
to increase accuracy. For example, we could consider that using a convolutional neural
network to analyze a satellite photo could be helpful to give our sequential model a
complete overall view of what is going to happen.

3. Deep learning models always show their abilities when there are so many dimensions
of the input. Thus, it is reasonable to add more parameters to the model to generate a
prediction. In conclusion, adding extra dimensions should be considered as a way to
improve accuracy.

4. Since the GRU cell is generally a suitable replacement for the LSTM cell, since its
complexity is lower yet the outcome remains much the same or even better, it is
reasonable and worthy to use GRU to make predictions instead of LSTM. However,
accuracy-wise speaking, LSTM is sufficient.

5. Network Architecture Search (NAS), for instance, a Bayesian theory-based searching
method [36], could help optimize our settings about the hyperparameters so that
accuracy could be improved even further.

Since our experiment shows that gas concentration data work when using them
as materials to make haze concentration predictions, we are considering the potential
of utilizing neural networks to make predictions because neural networks could learn
some patterns of meteorological phenomena. However, even if we know much about the
mechanics behind many meteorological phenomena, we can hardly predict what will take
place a few more days later because there are too many noises and uncertain interferences.
We can achieve better accuracy through neural networks because our simulation methods
are limited when generating long-term predictions.

Since the volume of meteorological data could be tremendous, it makes sense to use
deep learning structures to learn the hidden patterns. Therefore, in future work, besides
achieving better performance when using current data to predict the target quantity, there
is also a need to develop models for predicting the future since simulation does have
its limitations.

6. Conclusions

This paper proposes a multilayer LSTM haze prediction model to predict the PM2.5/PM10
concentration in Chengdu, utilizing O3, CO, NO2, SO2, and PM2.5/PM10 in the last 24 h
as inputs. Analyzing the result accuracy of PM2.5 and PM10, we argued that the model
fits well with the correlation between O3, CO, NO2, SO2, and haze pollutants and achieves
accurate predictions both on haze concentration and level. At the same time, the prediction
results show that, within a certain range, the greater the number of hidden layers, the
higher the prediction accuracy. When a specific value is reached, the accuracy is roughly
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equivalent. Under the same network, the prediction accuracy of PM2.5 is significantly
higher than that of PM10. Besides pre-processing the data, the primary approach to boost
the prediction performance is adding layers above a single-layer LSTM model. Moreover,
it is proved that by doing so, we could let the network make predictions more accurately
and efficiently.
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Abstract: The study aims to examine the major atmospheric air pollutants such as NO2, CO, O3,
PM2.5, PM10, and SO2 to assess the overall air quality using air quality zonal modeling of 15 major
cities of China before and after the COVID-19 pandemic period. The spatio-temporal changes in NO2

and other atmospheric pollutants exhibited enormous reduction due to the imposition of a nationwide
lockdown. The present study used a 10-day as well as 60-day tropospheric column time-average map
of NO2 with spatial resolution 0.25 × 0.25◦ obtained from the Global Modeling and Assimilation
Office, NASA. The air quality zonal model was employed to assess the total NO2 load and its change
during the pandemic period for each specific region. Ground surface monitoring data for CO, NO2,
O3, PM10, PM2.5, and SO2 including Air Quality Index (AQI) were collected from the Ministry of
Environmental Protection of China (MEPC). The results from both datasets demonstrated that NO2

has drastically dropped in all the major cities across China. The concentration of CO, PM10, PM2.5,
and SO2 demonstrated a decreasing trend whereas the concentration of O3 increased substantially
in all cities after the lockdown effect as observed from real-time monitoring data. Because of the
complete shutdown of all industrial activities and vehicular movements, the atmosphere experienced
a lower concentration of major pollutants that improves the overall air quality. The regulation of
anthropogenic activities due to the COVID-19 pandemic has not only contained the spread of the virus
but also facilitated the improvement of the overall air quality. Guangzhou (43%), Harbin (42%), Jinan
(33%), and Chengdu (32%) have experienced maximum air quality improving rates, whereas Anshan
(7%), Lanzhou (17%), and Xian (25%) exhibited less improved AQI among 15 cities of China during
the study period. The government needs to establish an environmental policy framework involving
central, provincial, and local governments with stringent laws for environmental protection.

Keywords: COVID-19; air pollution; lockdown; air quality zonal modeling; China

1. Introduction

Air pollution and its quality in cities are the major concerns worldwide and China is
no exception. Air pollution has been a serious environmental issue in China since exten-
sive industrial production and other anthropogenic activities exponentially increased the
concentration of major atmospheric pollutants that damaged the environmental quality
and harmfully impacted human health [1–5]. The World Health Organization (WHO)
reiterates that environmental and health risk factors from outdoor air pollution are sub-
stantial. In 2016, 91% of the world population was living in places where the WHO air
quality guidelines levels were not met [6]. New estimates in 2018 revealed that 9 out of
10 people breathe air containing high levels of pollutants [7]. Over the last four decades,
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rapid economic development, industrialization, and urbanization across China has caused
serious air pollution problems [8–10]. China’s National Western Development Strategies
(the ‘Go West’ movement) by the Chinese government in 1999 also contributed to the
spatial expansion of industrialization and urbanization [11]. This has resulted in the GDP
reaching around RMB 8270 billion, to which industrial production contributes 34% as
the most significant contributing factor (http://www.stats.gov.cn/tjsj/ndsj/, accessed on
18 April 2020). Furthermore, due to rapid industrialization and urbanization air pollution
has become the fourth primary health risk factor for all deaths in China after heart attack,
dietary risk, and smoking [12]. The recent COVID-19 pandemic at the global and regional
level has substantially affected the spatial and temporal characteristics of significant air
pollutants, such as NO2, CO, O3, PM10, PM2.5, and SO2 across China [13–15]. In this context,
the present study aims to assess the overall air quality from ground-based monitoring
and remotely sensed datasets using air quality zonal modeling in 15 major cities of China
before and after pandemic lockdown periods. Here, we estimated the changes in pollutant
concentration and the spatio-temporal variation characteristics for 60 days before and after
the shutting down of the nation. Section 2 discusses data and methods where we mentioned
data sources, how we analyzed the data, and what techniques we used. Next are the results
in Section 3 where we analyzed the spatio-temporal distribution of NO2 before and after
the pandemic; total NO2 load over the area using air quality zonal modeling, and trends of
air pollutants in China before and after the pandemic. Section 4 presents the discussion
where we critically evaluate the results and link our study with other relevant studies with
reasons and evidence.

NO2 is primarily released by anthropogenic emissions, which contain the industrial
burning of fossil fuels such as coal, oil, natural gas, vehicle exhaust, biomass burning,
and electricity generation [16–18]. Pollutants such as carbon monoxide (CO) and sulphur
dioxide (SO2) are mainly released from industrial plants and heating processes due to
anthropogenic activities [19]. SO2 is regarded as one of the major air pollutants in cities
because of its negative effects on human health and the ecosystem [20]. Particulate Matter
(PM10, PM2.5) is a common proxy indicator for air pollution and it affects more people
than any other pollutant. The major components of PM are sulfate, nitrates, ammonia,
sodium chloride, black carbon, mineral dust, and water [6]. Tropospheric O3 is produced by
emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs)
in the presence of sunlight [21]. The distribution of O3 varies with space and time and is
lower in urban polluted areas than elsewhere because it disappears when it reacts with
other pollutants [22,23]. Among NOx elements, NO2 is the most important precursor and
quencher of O3 through NOx titration particularly during wintertime [24]. The daytime
relationship between NO2 and O3 concentration in Northern China demonstrates significant
ozone titration. However, this titration effect has been considerably attenuated with
increasing PM2.5, which further reduces the incoming solar radiation, during the lockdown
period [25]. It is not only harmful to human health but also poses adverse impacts on plants
and ecosystems [1,3,26,27].

Various studies have been carried out to investigate the spatial and temporal distri-
bution patterns of NO2, CO, O3. PM10, PM2.5, and SO2 at national, regional, and local
levels [2,28–42] along with their driving forces in the recent past [27,43–46]. Numerous
studies have shown a strong correlation between level of exposure to atmospheric pol-
lutants and human health [2,4,5]; increased mortality [47–49]; sleeping disorders among
elderly [50]; body weight and obesity [51]. To mitigate air pollution, the Chinese govern-
ment has imposed stringent air quality standards [52] and strengthened emission controls
of major atmospheric pollutants [53–57].

The understanding of the spatial distribution of air pollution in China has been recently
improved by the application of advanced assessment tools, such as satellite remote sensing.
The satellite-retrieved products have many advantages, including global coverage, high
spatial-temporal resolution, and historical datasets [41,42,47]. Amid the coronavirus pan-
demic in China, NASA and European Space Agency (ESA) pollution monitoring satellites
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have detected significant decreases in nitrogen dioxide (NO2) over mainland China [13–15].
There is evidence that the change is at least partly related to the economic slowdown
following the outbreak of the COVID-19 virus. According to NASA scientists, the reduction
in NO2 pollution was first apparent near Wuhan, but eventually broke out across the coun-
try [58]. In line with the previous studies of holiday effects on pollution [59–62], the main
purpose of this work is to quantify spatial and temporal changes in primary pollutants
such as NO2, CO, O3, PM10, PM2.5, and SO2 over China’s mainland due to shutdown of
anthropogenic activities.

2. Data and Methods

2.1. Study Region

This study focuses on COVID-19′s footprint on air quality in 15 cities of China’s
mainland namely Guangzhou, Xiamen, Xian, Wuhan, Beijing, Nanjing, Xinjiang, Lanzhou,
Anshan, Shanghai, Jinan, Harbin, Chongqing, Zhengzhou, and Chengdu from where
145 random grid samples were taken for micro-level assessment with the help of air quality
zonal modeling (Figures 3 and 6).

2.2. Data Source

The time-average map of NO2 for consecutive 10- and 60-day average tropospheric
columns (molecules/cm2) and time series daily area-average of NO2 tropospheric columns
(30% cloud screened) with spatial resolution 0.25 × 0.25◦ from 24 November 2019 to
22 March 2020 were collected from Giovanni interface [63–65], Global Modeling and
Assimilation Office, NASA. The hourly and daily average concentrations of CO, O3, NO2,
PM10, PM2.5, SO2, and AQI data for 50 consecutive days before and 50 days after lockdown
were collected from ground monitoring stations provided by the Ministry of Environmental
Protection of China (MEPC), China Ministry of Ecology and Environment (https://aqicn.
org/map/china/cn/, accessed on 20 March 2020) for the same study period.

2.3. OMI Data Retrieval

Nitrogen dioxide (NO2) is a very important atmospheric gas in both the troposphere
where it is a precursor to ozone production and in the stratosphere where it plays the main
role in ozone chemistry (https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary,
accessed on 25 March 2020). NO2 in the troposphere is produced in various combustion pro-
cesses and lightning, which is an indicator of poor air quality [66]. NO2 product (OMNO2d)
is a daily global Level-3 gridded data with a spatial resolution of 0.25 × 0.25◦ [67,68] which
contains time-average tropospheric column (30% cloud screened) and area-average total
column [31]. We further retrieved the dataset from optional tools (use smoothing, equidis-
tant cylindrical projection system) with linear scaling and a maximum of 65 palettes were
used for this study. In this process, we ignored negative values especially for the 10-day
average of the NO2 total column map [31,69].

2.4. Data Analysis Method

As mentioned before, OMI data have been used for detecting the total column of
NO2 levels in the atmosphere [31,70]. Previous studies [31,70–72] have also used time-
average OMI tropospheric total column maps and area-average OMI tropospheric total
column datasets for assessing the air quality, especially for macro scale. We selected
China’s mainland for this study and assessed the total column of NO2 before and after the
outbreak of COVID-19. This study divided China’s mainland into 145 grids (dimension
255 × 255 km2) for the micro-level study. While in the process, the work extracted the exact
value of NO2 tropospheric total column of each grid for 15 cities using spatial attribute tools
in ArcMap and then we divided 145 grids into 5 equal categories based on the maximum
and minimum range. In the last stage, we calculated the total area of each category and
compared the extracted datasets with before and after 60- and 10-day area-average columns
of NO2 in total and in percentage.
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We calculated the daily mean concentration of CO, O3, NO2, PM10, PM2.5, SO2, and
AQI from ground monitoring datasets provided by MEPC. We also calculated the 50 days
before and after average concentration of each pollutant in 14 major cities of China obtained
from real-time datasets. This study conducted a compound bar graph and trend line
analysis for monitoring the change in air quality before and after the lockdown of 14 cities
of China, in terms of total and percentage.

Air Quality Zonal Modeling

We conducted air quality zonal modeling for predicting zonal change in air quality.
In general, the air quality zonal modeling represents the overall pollution concentration
in any specific region based on several pollutant particles obtained from remotely sensed
raster datasets [73]. In other words, the air quality zonal model is a compilation of total air
pollution load in a particular zone accumulated by various air pollution particles which is
represented through individual grids over a specific time period. This spatial and temporal
model were created through different phases using various statistical analyses of GES-DISC
time-averaged map and area-averaged time-series datasets obtained from MODIS- Terra,
MERRA-2, OMI, and AIRS.

For this study, we conducted various sets of statistical analyses for interpreting re-
motely sensed data. In the first phase, we divided China’s mainland into 145 grids, each
grid representing 65,025 km2. After that, we extracted each pollutant’s average concen-
tration from an individual grid using the raster calculator in ArcMap. The Moving Mean
(MM) of 10 days total column of NO2 of 15 cities was interpreted using equation 1. A
specific grid value was ranked using exploratory analysis of ranking given by Alvo and
Philip [74] (Equation (2)). The average concentration of each air pollutant particle of
145 grids was categorized based on the maximum and minimum range of datasets which
is computed in the second phase (Equation (3)). After that, we compiled total pollution
concentration in a specific grid using composite indexing and principal component analysis
(PCA); subsequently, we conducted Spearman’s model for factor analysis for assessing
the maximum and minimum reduction [75] in specific air pollutants which is compiled in
the third phase (Equations (2) and (3)). The 60-day average total air pollution load was
calculated using Equation (4); here, we excluded zero factors of different raster datasets.
The sum of the 60-day average concentration of different air pollutants and their percentage
change was calculated using Equation (5). Zonal indexing of specific grids was formulated
for extracting the exact concentration of air pollution (Equation (6)) and in the last phase,
we calculated area/grid-wise total air pollution load (Equations (7) and (8)) through spatial
analysis tools in GIS using air quality zonal modeling.

mm=
∑ 10

n
× 6 (1)

where mm = moving mean, ∑ 10 = sum of 10 days average, n = number, and 6 = number of
raster data.

m =
dx

∑
j=1

(
njvj

)
× i

n
(2)

where m = mean rank, dx = dimension, i = th entry equals, vj, j = 1 represents all possible
rankings of the dx, nj = frequency of ranking, vj(i) = rank score, and n = number of raster
data sets.

x = [n1 F1 + n2 F2+] . . . [+nmm Fm + sm Fm] (3)

where x = variation in maximum and minimum range of air pollutants with zero mean,
n1, n2 = loading factors of specified air pollutants and nmm = moving mean,
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F1, F2 = common factors and Fm = moving mean of the common factor with zero mean, and
sm = specific factor of the individual mean.

μp =

[
∑(x1 + x2 + x3 + x4 + x5 + x6)

6

]
∪ [na] (4)

where μp = 60 days average of pollution load, x = sum of 10 days average of pollution load,
6 = number of datasets, and ∪ [na] = excluding factor of zero (data not available).

p =
(∑ 60a − ∑ 60b)

∑ 60b
× 100 (5)

where p = change in percentage, ∑ 60 = sum of 60 days average concentration, a = during
lockdown, and b = before.

a =

√
∑ wi(xi − x)2

∑ wi
(6)

where a = area of individual cells, w = weights, i = an index over all the data points being
averaged, and xi = individual pollutant variables.

t = ∑ taop − [na] (7)

where t = total pollution counts in individual grids, taop = total air pollution load,
[na]= excluding ‘data not available’ girds.

a = n × dx (8)

where a = total area of each category, n = number of countable grids, and dx = dimension of
different variables/ grids (255 × 255 km2).

3. Results

3.1. Spatio-Temporal Distribution of NO2 before and after the Pandemic

The spatial distribution of 10-day time-average maps of NO2 tropospheric columns
before and after the COVID-19 pandemic exhibited that the cities experienced a low con-
centration of NO2 and improved quality of air. Among these, the period 2 February to
11 February observed the lowest level of NO2 in all 15 major cities (Figure 1).

The post-lockdown maps portray that NO2 concentration has increased from 22 February
to 12 March and then again started decreasing from 13 March to 22 March. The 10-day
average NO2 tropospheric column (Figure 2) reveals that the level of NO2 has tremendously
reduced in major cities such as Guangzhou, Beijing, Anshan, Zhengzhou, and Chengdu
after the pandemic. The air quality has started improving from the 2nd week of January
just after the lockdown throughout the country.

Similarly, the 60-day time-average map (Figure 3) of NO2 tropospheric column also
displayed that the lowest range of NO2 concentration was 2e+14 and the maximum con-
centration was 3.5e+16 before imposition of lockdown whereas the lowest range of NO2
concentration came down to 1.4e+15 and the maximum to 1.8e+16 after the lockdown.

277



Atmosphere 2022, 13, 961

Figure 1. Spatial distribution of 10-day time-average map of NO2 tropospheric column of China
before (24 November 2019 to 22 January 2020) and after the pandemic (23 January to 22 March 2020).
Source: OMI, Global Modeling and Assimilation Office, NASA, 2020.

Figure 2. Temporal variation (10 days average) in NO2 tropospheric column of 15 major cities of
China before and after the pandemic. Sources: Calculated by author, 2020.

The absolute concentration of NO2 tropospheric column (Figure 4) also revealed
that all 15 major cities of China experienced lower emissions of NO2 just after lockdown.
The maximum concentration of NO2 tropospheric column was 2.8e+16 before lockdown
(24 November–22 January) and the minimum concentration was 1e+16 after lockdown
(23 January–22 March) (Figure 4a). While we look at the proportion of NO2 concentration
reduction, Guangzhou received only 37% of NO2 in the atmosphere after the pandemic.
Similarly, the air quality of other cities also improved because of low emissions of NO2
after lockdown. The graph (Figure 4b) revealed that Wuhan received only 35% of NO2

278



Atmosphere 2022, 13, 961

concentration; whereas, Chengdu received 39%, Beijing 41%, Nanjing 48%, Xiamen 50%,
Chongqing 53%, and Harbin 57% after the pandemic outbreak (23 January–22 March).
On the other hand, the minimum reduction in NO2 concentration was found in cities of
Anshan (67%), Lanzhou (67%), Jinan (66%), Xinjiang (65%) where NO2 concentration was
comparatively low even before the pandemic in these same regions (Figure 4b).

Figure 3. Time-average map of NO2 tropospheric column (molecules/cm2) of 15 major cities of China
before and after the pandemic. Source: OMI, Global Modeling and Assimilation Office, NASA, 2020.

Figure 4. NO2 tropospheric column of 15 major cities of China before and after the pandemic.
(a) Absolute concentration and (b) decline in percentage. Source: Calculated by author, 2020.

The time-series of NO2 tropospheric column graph (30% cloud screened) displays that
the total mass column of NO2 in China was highest during the first two weeks of December
2019 and remained as high as 4.3e+15 till the second week of January. After that, the NO2
mass column suddenly dropped till March 22 (Figure 5).

3.2. Total NO2 Load over the Area Using air Quality Zonal Modeling

A total 60-day average NO2 tropospheric column was demonstrated through the air
quality zonal modeling (Figure 6). Here, the whole country was divided into 145 grids
(255 × 255 km2) where the spatial distribution of NO2 (Figure 6a) was displayed for the
micro-level understanding of the air quality changes in different regions of the country. The
area was also calculated under each grid category. The NO2 concentration ranges between
(1.7e+15–3.2e+15) had 131 grids and the area was 5.5 million sq.km before the lockdown
but the grids have increased to 191 and the area has also increased to 80 million sq.km.
Conversely, the areas under the high NO2 concentration category (5.5e+15–9.8e+15) have
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significantly decreased from 1.1 to 0.2 million sq.km. Moreover, there was a significant
decrease in NO2 concentration in the areas that come under a very high concentration
category where the NO2 tropospheric column ranges between 1.6e+16 and 2.6e+16; 13 grids
were accounting for 0.55 million km2 before the lockdown but none of the areas were under
this very high category after lockdown (Figure 6a).

Figure 5. Time series, area-average of NO2 tropospheric column (30% cloud screened) daily 0.25 deg.
[OMI OMNO2d v003] 1/cm2 over 24 November 2019–22 March 2020, shape China. Source: OMI,
Global Modeling and Assimilation Office, NASA, 2020.

Figure 6. (a) Time average map and zonal distribution of the NO2 tropospheric column, (b) declining
rate (in total and percentage) of NO2, (c) trend analysis of the total NO2 tropospheric column of
145 random sites of China’s mainland before and after pandemic. Source: OMI, Global Modeling and
Assimilation Office, NASA.
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The total column of NO2 decline rate in percentage was grouped into three categories,
i.e., less than 50%, 51–70%, and more than 70%. The maximum decline rate (more than
70%) of the NO2 total column was measured in Guangzhou, Wuhan, and Chengdu city
of China before and after the pandemic COVID-19 event (Figure 6b). Figure 6c reveals
the trend of the total NO2 tropospheric column of 145 random sites before and after the
pandemic where it is clearly visible that almost all the sample sites have experienced a low
concentration of NO2 in the atmosphere.

In the graphs (Figure 7), steepness of the histogram revealed the degree of reduction in
the NO2 concentration. Guangzhou city showed high steepness of NO2 reduction after the
pandemic. The maximum (almost 60%) declining rate of NO2 was observed in Guangzhou,
Wuhan, Chengdu, and Beijing; whereas the minimum (almost 40%) declining rate of
NO2 total column in the atmosphere was found in Jinan, Shanghai, Anshan, Zhengzhou,
Xinjiang, and Lanzhou.

Figure 7. Absolute trend line indicates 60-day average of NO2 tropospheric column (molecules/cm2),
whereas the bar graph represents 10-day average concentration (X-axis) of NO2 in 15 major cities
of China before (yellow) and after (purple) the COVID-19 lockdown period. Source: OMI, Global
Modeling and Assimilation Office, NASA, 2020.

281



Atmosphere 2022, 13, 961

3.3. Trends of Air Pollutants in China before and after the Pandemic

The overall air quality change in 50 days (Table 1) reveals that Harbin recorded the
highest reduction (43%) in air pollutants followed by Guangzhou (42%), Wuhan (36%),
Jinan (33%), Chengdu (32%), Nanjing (31%), Shanghai (30%), Zhengzhou (29%), Xian (25%),
Xiamen (23%), Chongqing (23%), Lanzhou (17%), and Anshan (4%). The most interesting
fact in this analysis is that when all the cities were experiencing improved air quality,
Beijing recorded deteriorating air quality; it recorded a 34% increase in air pollutants
during the 50-day study period after lockdown. In this context, it is important to look
into the individual pollutants in detail for an insight into understanding their roles in
determining air quality.

Table 1. Temporal change in air pollutants of 14 cities of China before (4 December 2019 to 22 January
2020) lockdown and after lockdown (23 January to 12 March 2020). The 100-day daily average
concentration in total and change in percentage. Total 6 pollutants NO2, O3, PM10, PM2.5, SO2

(μg/m3), CO (mg/m3) including AQI (change in percentage).

City Jinan Guangzhou Shanghai Nanjing Xiamen Beijing Zhengzhou Wuhan Harbin Chongqing Chengdu Xian Lanzhou Anshan

CO
Before 1.46 0.98 0.83 0.97 0.61 0.86 1.28 1.09 1.22 1.02 0.98 1.33 1.87 1.60
After 0.92 0.73 0.65 0.69 0.44 0.86 0.89 0.91 0.85 0.79 0.67 0.95 1.12 1.37

Change −37 −25 −21 −29 −27 0 −31 −17 −30 −22 −31 −28 −40 −14

NO2

Before 56.57 60.86 57.60 53.73 25.75 45.17 54.83 52.73 56.73 46.05 48.70 61.48 65.80 43.11
After 27.02 27.68 27.68 25.91 13.01 26.31 25.83 19.54 28.89 24.51 21.94 32.29 40.40 30.42

Change −52 −55 −52 −52 −49 −42 −53 −63 −49 −47 −55 −47 −39 −29

O3

Before 25.74 43.01 39.73 30.62 64.35 25.44 25.95 23.69 32.37 14.45 23.85 17.08 34.74 33.95
After 64.18 48.69 71.77 68.07 75.40 49.59 66.24 58.47 70.48 35.36 52.35 51.20 62.74 53.45

Change 149 13 81 122 17 95 155 147 118 145 120 200 81 57

PM10

Before 141.31 74.48 49.40 80.86 43.07 57.45 121.43 86.54 141.98 83.93 102.22 148.41 107.27 100.39
After 89.01 33.03 34.84 50.75 30.66 59.60 89.67 47.61 77.55 58.11 65.05 107.01 88.11 94.80

Change −37 −56 −29 −37 −29 4 −26 −45 −45 −31 −36 −28 −18 −6

PM2.5

Before 98.66 38.18 53.15 56.17 30.95 44.69 106.48 63.58 129.74 59.86 75.56 116.60 61.27 69.40
After 62.39 21.92 35.13 36.18 21.22 63.89 72.21 39.08 68.51 44.44 47.27 81.10 40.58 68.14

Change −37 −43 −34 −36 −31 43 −32 −39 −47 −26 −37 −30 −34 −2

SO2

Before 21.52 8.64 7.80 7.80 5.31 4.87 10.24 9.46 36.40 8.96 8.22 14.16 29.77 21.01
After 13.27 5.49 5.66 5.38 4.40 4.53 8.37 7.50 27.25 6.70 6.92 10.51 18.23 18.89

Change −38 −36 −27 −31 −17 −7 −18 −21 −25 −25 −16 −26 −39 −10

AQI
Before 131.38 164.22 73.80 79.16 48.00 65.71 141.37 88.17 61.70 82.16 102.16 153.66 88.42 96.03
After 88.44 92.98 51.59 54.42 36.95 88.12 101.06 56.58 35.91 63.37 68.98 114.82 73.79 92.22

Change −33 −43 −30 −31 −23 34 −29 −36 −42 −23 −32 −25 −17 −4

Source: Arranged by author, Ministry of Environmental Protection of China (MEPC), China Ministry of Ecology
and Environment, 2020.

During the 50 days of study after lockdown, the concentration of carbon monoxide
(mg/m3) reduced by 40% in Lanzhou, 37% in Jinan, 31% in Zhengzhou and Chengdu,
30% in Harbin, 29% in Nanjing, 28% in Xian, 27% in Xiamen, and 25% in Guangzhou
(Figure 8b). The temporal changes in NO2 (Figure 8c) reveal that the more than 50%
concentration of NO2 has reduced in Wuhan (63%), Chengdu and Guangzhou (55%),
Zhengzhou (53%), Jinan, Nanjing and Shanghai (52%) while, other cities received below
50% NO2 concentration (ranging between 20% and 49%).

On the other hand, the results displayed a drastic rise in ozone in the atmosphere in
almost all cities after the lockdown. The detailed analysis of O3 (Figure 8d) explained that
Xian experienced a 200% rise in O3. Moreover, most of cities experienced more than 100%
escalation of O3, for instance, Zhengzhou (155%), Jinan (149%), Wuhan (147%), Chongqing
(145%), Nanjing (122%), Chengdu (120%), and Harbin (118%). Interestingly Beijing, the city
where the overall quality of air has declined, also experienced a high rise in O3 (95%). In
addition, the concentration of ozone has also increased in Shanghai (81), Lanzhou (81%),
and Anshan (57%). Cities such as Xiamen and Guangzhou experienced only 17% and 13%
increases in O3, respectively.
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Figure 8. Temporal change in air quality of China before and after lockdown. Total 100-day daily
average data, 4 December 2019 to 22 January 2020 (before lockdown) and 23 January to 12 March 2020
(after lockdown). (a) Air Quality Index; (b) CO; (c) NO2; (d) O3; (e) PM10; (f) PM2.5; (g) SO2. Source:
Ministry of Environmental Protection of China (MEPC), China Ministry of Ecology and Environment,
2020 and OMI, Global Modeling and Assimilation Office, NASA.

The temporal change in PM10 (μg/m3) (Figure 8e) reveals its sudden decrease in all
cities except Beijing after the lockdown (Table 1). The maximum decrease in PM10 concen-
tration was observed in Guangzhou (56%) followed by Wuhan and Harbin (45%). The other
cities that observed a substantial decrease in PM10 are Nanjing and Jinan (37%), Chengdu
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(36%), Shanghai and Xiamen (29%), Xian (28%), and Zhengzhou (26%). Conversely, PM10
concentration increased by 4% in Beijing after the lockdown. Like PM10, the concentration
of PM2.5 also considerably decreased after the pandemic lockdown (Figure 8f). The cities
which observed low concentrations of PM2.5 are Harbin (47%), Guangzhou (43%), Wuhan
(39%), Jinan and Chengdu (37%), Nanjing (36%), Shanghai and Lanzhou (34%), Zhengzhou
(32%), Xiamen (31%), and Xian (30%). Simultaneously, Beijing experienced a very high
concentration of PM2.5 (43%) after the lockdown.

Along with other pollutants, the temporal change in SO2 concentration (Figure 8g)
displays a substantial decrease in all cities after the lockdown. The cities that experi-
enced a high proportion decrease in SO2 concentration are Lanzhou (39%), Jinan (38%),
Guangzhou (36%), Nanjing (31%), Shanghai (27%), Xian (26%), and Chongqing and
Harbin (25%) (Table 1).

The daily average concentration of air pollutants for 100 days (50 days before lockdown
and 50 days after lockdown) of 14 cities (Figure 9) reveals that the air quality has remarkably
improved in Guangzhou where 43% of pollutants have declined during this study period.
The concentration of PM10 and NO2 has reduced by 56% and 55%, respectively. Similarly,
in Shanghai, the overall pollutants in the atmosphere have decreased by 30% (Table 1). In
Nanjing, the overall air quality (AQI) has improved by 31%. Moreover, the air quality of
Xiamen has improved by 23% and the concentration of NO2 and PM2.5 has declined by 49%
and 31%, respectively. In Jinan, the overall air quality has improved by 33% and the NO2
concentration has decreased by 52%. However, the concentration of O3 has amplified by
149%. In Zhengzhou, the concentration of NO2 has reduced by 53% and the concentration
of O3 has grown by 155%. In Wuhan, the major pandemic affected area, the concentration of
NO2 has reduced by 63% and PM10 by 45% whereas the concentration of O3 has increased
by 147%. The air quality has also improved in Harbin where the concentration of NO2 has
reduced by 49% and the concentration of O3 has increased by 118%. In Chongqing, the
concentration of NO2 has reduced by 47% and the concentration of O3 has improved by
145%. Similarly, in Chengdu, there has been a 55% reduction in NO2 concentration and
a 120% increase in O3 concentration in the atmosphere. In Xian, there is a 47% change in
NO2 and a 200% increase in O3 in the atmosphere. In Anshan, the concentration of NO2
has reduced by 29% whereas the concentration of O3 has increased by 57%.
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Figure 9. Cont.
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Figure 9. The daily average concentration of air pollutants in 14 cities of China. The 100 days
(50 days before lockdown and 50 days after lockdown. NO2, O3, PM10, PM2.5, SO2 (μg/m3), and CO
(mg/m3): primary vertical (left) and AQI shown in secondary vertical (right). Source: Ministry of
Environmental Protection of China (MEPC), China Ministry of Ecology and Environment, 2020.

4. Discussion

The coronavirus first outbreak started in December 2019 and human-to-human trans-
mission was confirmed on 20 January 2020 [14]. Wuhan city was locked from other regions
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of the country to stop the spread of the SARS-CoV virus since 23 January 2020. After a few
days, the administrative authorities of Guangzhou and Beijing declared the lockdown. The
highest level of public health emergency was announced within a week in a few adminis-
trative units [13,15]. The anthropogenic emissions from industrial and manufacturing units
were closed after the spreading of coronavirus which caused improvement in overall air
quality in China [14].

The present study found that there was a substantial decrease in NO2 concentration
and consequently improvement in air quality. It is noteworthy that NO2 concentration
has tremendously decreased in the cities of Guangzhou, Wuhan, and Chengdu. These
cities come under the same category, where NO2 tropospheric column (molecules/cm2)
ranges between 1.6e+16 and 3e+16 before the pandemic but after the shutdown none of these
cities reported high emissions of NO2. NASA and European Space Agency (ESA) pollution
monitoring satellites have also detected a substantial decrease in NO2 over China due to a
complete shutdown. The concentration of nitrogen dioxide was reduced as the sources of
this pollutant such as motor vehicles, power plants, and industrial facilities were closed
for two months [58]. In addition, the lockdown has coincided with the Lunar New Year
celebration which also facilitated to decrease the concentration of NO2 in all major cities in
China’s mainland. Some of the preceding studies have also established that many cities
such as Guangzhou, Beijing, Chengdu, Shenzhen, Nanjing, Shanghai, Chongqing, etc.,
have experienced low concentrations of NO2 and particulate matter in the atmosphere due
to regulatory effects in China [76–79].

The study found a substantial decline in CO in all cities except Beijing where it
remained static. The maximum declining rate of CO was observed in Lanzhou (40%), Jinan
(37%), and Zhengzhou (31%) whereas the minimum declining rate of CO was measured in
Anshan (14%), Wuhan (17%), and Shanghai (21%) because of the complete halt of vehicles,
wood-burning, and industry. Similar to this line, several studies established that vehicles,
wood-burning, and industry are the main sources of CO [80–84]. The reduction in CO in
60 days is a significant indicator for air quality because of its 1–2-month life span in the
atmosphere, thereby improved quality of air [85,86].

The particulate pollutants such as PM2.5 and PM10 have also decreased substantially
during the lockdown period as the sources of these pollutants were restricted. Several
previous studies have documented that the primary sources of PM2.5 and PM10 are automo-
bile emissions, incomplete combustion, wind-blown soil and dust, construction dust, and
biomass burning [82,87,88]. The result displays that the maximum declining rate of PM10
and PM2.5 was measured in Guangzhou (56% and 43%), Wuhan (45% and 39%), Jinan (37%
and 38%), and Nanjing (37% and 36%). Similarly, some other studies have also found that
Beijing, Lanzhou, Tianjin, Nanning, and Chongqing reported lower concentrations of these
particulate matters during the regulation effect on certain occasions [89–91]. On the other
hand, the concentration of SO2 has also declined in all cities due to strict regulation and the
closing of heavy industrial factories such as iron, steel, and cement industries [92–95]. The
major sources of SO2 are coal combustion of biomass in coal-fired power plants and indus-
try sector [9,96–98] that were completely locked during the pandemic. Some other studies
have exhibited that SO2, combined with volatile organic compounds (VOCs), enhances the
formation of new particles, particularly sulphate which is one of the main components of
PM2.5 [99–102].

Consistent with previous studies, this study [103–105] also found that due to the
decrease in all air pollutants including CO, NO2, PM2.5, PM10, and SO2 the total concentra-
tion of O3 has increased in all 15 cities in China during the study period. The maximum
increasing rate of O3 was found in Xian (200%), Zhengzhou (155%), Jinan (149%), and
Chongqing (145%) whereas the minimum increasing trend was found in Guangzhou (13%),
Xiamen (17%), and Anshan (57%). Several reasons have been proposed to explain this
complex relation: (a) inverse relation between O3 and its precursors NO2, PM2.5, PM10,
and SO2 lower emission of these pollutants results in faster ozone production in nitrogen
oxide (NOx) concentrated areas [106–109]; (b) low concentration of NOx also causes less
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destruction of ozone [88,110]; (c) decreased level of atmospheric pollutants leads to more
clear sunshine that also accentuates more ozone production [108,111]. In addition, a pause
of vehicles also resulted in a reduction in CO and NOx including NO and NO2 facilitating
an increase in the level of ozone in the atmosphere [81,112–114]. The production of ozone
under the influence of anthropogenic activities in the troposphere and involving catalysis
by NO2 and NO should be significant [22]. Its precursor compounds NOx and VOC have
a wide variety of sources and can exhibit a non-linear effect on ozone production, while
its accumulation is strongly influenced by meteorological parameters [115]. Although
reductions in atmospheric ozone allow more solar radiation to reach ground level, resulting
in higher surface temperatures, a decrease in the downward longwave radiation emitted
by CO2, O3, and H20 from a cooler lower stratosphere with less ozone would result in a
decrease in surface temperatures [22].

One of the major outcomes of reduced atmospheric pollutants is a substantial im-
provement in overall air quality except for Beijing. Since most of the industrial production,
vehicle movements, and other anthropogenic activities in the cities were closed, the reduced
level of NO2, CO, PM2.5, PM10, and SO2 improved the air quality in these cities. Similar
to this, several previous studies have found that air quality is positively related to the
low concentration of atmospheric pollutants [116–118]. Conversely, Beijing has reported
a decline in the overall air quality during the study period despite the closure of man-
ufacturing units. The reason may be the increasing level of PM2.5 and PM10 during the
same period. The concentration of PM2.5 has increased manyfold in Beijing because the
city experienced a number of severe haze events during the lockdown period. Some of
the previous studies [25,31,79] mentioned that complex relationships among changes in
relative humidity, near-surface wind speed and direction, planetary boundary layer height,
and precipitation have influenced the increasing concentration of PM2.5 in Beijing. Clima-
tologically, Beijing has dry air during the wintertime, but a larger than normal amount of
moisture accumulated near the surface during the lockdown period. This has facilitated
multiphase reactions for aerosol formation and growth [25]. Moreover, wind conditions
also facilitate to formation of haze in Beijing as the mean wind speed declined. In addition,
the wind direction changed to southerly which usually carries polluted air from Hebei
Province’s industrial regions. Moreover, the planetary boundary layer height in northern
China also declined during the lockdown and this lower height facilitated stagnant air and
subsequently resulted in increasing PM2.5 in Beijing. Further, during the lockdown period,
precipitation mainly occurred in southern China and the Northern part did not receive
enough rain to wash out the haze that formed over the region [40].

5. Conclusions

The assessment of major atmospheric pollutants during lockdown due to the COVID-19
pandemic has markedly influenced the air quality in China. The cities such as Guangzhou,
Wuhan, and Chengdu that have shown a very high concentration of NO2 tropospheric
column (molecules/cm2) before the pandemic and have experienced a sudden decline after
the lockdown. The air quality zonal model has also displayed about 390,150 km2 areas that
were under the high level of air pollutants have come under low concentration areas. In
addition, the spatio-temporal evaluation of the NO2 and other main pollutants in the major
15 cities of China exhibited a remarkable reduction which in turn, facilitated to improve
the overall air quality except in Beijing where the air quality has been degraded due to the
overwhelming concentration of PM2.5 and PM10.

The overall air quality of eastern coastal and industrial cities such as Jinan, Zhengzhou,
Wuhan, Guangzhou, Chengdu, and Xian have recorded low concentrations of air pollutants
and such reduction in atmospheric pollutants has improved the air quality. The overall air
quality change in 50 days reveals that Harbin has recorded the highest reduction (43%) in
air pollutants followed by Guangzhou (42%), Wuhan (36%), Jinan (33%), Chengdu (32%),
Nanjing (31%), Shanghai (30%), Zhengzhou (29%), Xian (25%), Xiamen (23%), Chongqing
(23%), Lanzhou (17%), and Anshan (4%). Since most of the industrial productions, vehicle
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movements, and other anthropogenic activities in the cities were restricted, the study
revealed that the levels of NO2, CO, PM2.5, PM10, and SO2 have remarkably reduced. It is
noteworthy that the reduction in atmospheric pollutants and consequently improved air
quality would have a positive impact on the environment and human health. To address
the emission of atmospheric pollutants, particularly NO2, CO, PM2.5, PM10, and SO2,
the government needs to establish an environmental policy framework involving central,
provincial, and local governments with stringent laws for environmental protection. The
restriction and regulation of all anthropogenic sources of pollutants due to the COVID-
19 outbreak was an example of such stringent enforcement of the law to protect human
health. Similarly, to protect the environment from atmospheric pollutants strong political
commitment, technological development, and policy enforcement are essential to make
policies, such as 11th and 12th five-year plans of China, successful towards improving and
protecting the environment and human health.
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Abstract: Research on the enhanced control and emission-reduction measures to improve air quality
during major events could provide data theory and scientific support for air-quality improvement dur-
ing non-activities. Based on the air-quality data published by the China Environmental Monitoring
Station and the meteorological elements and weather conditions released by the China Meteoro-
logical Administration, this paper explored the characteristics of air-quality evolution in Beijing
from 5 August to 18 September 2015 and the weather situation during the Military Parade. The
results showed that: (1) Emission-reduction measures implemented for air quality by Beijing and its
surrounding area were induced, and we explored the contribution of these measures to pollutants or
AQI in the locality. (2) During the 2015 Military Parade, Beijing was in the front or lower part of the
high-pressure system. Due to the strong effect of North or Northeast winds, the weather situation
was conducive to the diffusion of pollutants. When before or after the implementation, once the
atmospheric diffusion was poor, the pollutants would accumulate gradually. Thus, it can be seen that
the weather situation had a great impact on air quality. (3) During the implementation, PM2.5, PM10,
NO2 and other pollutants decreased significantly, of which the concentration of PM10 decreased the
most, from 109 μg·m−3 down to 34 μg·m−3, and the concentration of PM2.5 decreased by 72.73%.
According to the changes between before and during the implementation or during and after the
implementation, the concentration of PM10 and PM2.5 increased when the implementation of the
emission-reduction measures had been finished, indicating that the enhanced control measures made
a great contribution to the emission reduction in particles. (4) In addition, the annual average of
AQI in the three years is 87.49, and the average value of a normal year was the average value of
2013 and 2014. The average value of the normal year during the military parade is 64.63, which was
70.40% lower than the average value of AQI during the military parade. The goal of reaching the
secondary standard of GB-3095-2012 was achieved, and there was still a long way to go from the
primary standard. In a few words, in order to achieve the goal of better air quality throughout the
year, all parties still needed to coordinate control and make joint efforts.

Keywords: military parade; air quality; emission control and reduction measures; weather situation;
Olympic Sports Center

1. Introduction

In recent years, a series of temporary emission-reduction measures have been adopted
to ensure air quality during some large-scale events at home and abroad, such as the 2002
Busan Asian Games, the 2008 Beijing Olympic Games, the 2010 Guangzhou Asian Games,
and the 2014 APEC Meeting in Beijing. Many scholars have studied air quality from the
aspect of air quality protection measures. For example, Li L et al. [1] used the WRF-CMAQ

295



Atmosphere 2022, 13, 1019

model to simulate the concentration of PM2.5 under the condition of no control measures
and temporary industrial control measures or carried out the evaluation of effect of control
measures on air-quality improvement during the Nanjing Youth Olympic Games based
on actual observation data. Wang et al. [2] found that during the APEC meeting in 2014,
the overall air quality of Shijiazhuang city was better than that of the same period in
2013, and the mass concentration of all air pollutants except for O3 decreased significantly.
Lee et al. [3] conducted a study on PM10, CO, NO2, and SO2 of 13 air sub-stations during
the traffic restriction period of the 2002 Busan Asian Games in South Korea and found that
the concentrations of these pollutants all decreased significantly. Beig et al. [4] used the
WRF-Chem model to evaluate and found that if effective emission-reduction measures
were not taken during the event, the air quality improvement effect would be limited.
Liu et al. [5] found in their study that the contribution of early progressive emission
reduction to SO2, NO2, VOC, and other pollutants was greater than that of temporary
emission-reduction measures. Li et al. [6] analyzed the improvement in air quality in Beijing
during APEC and found that compared with the same period in 2013, the concentration of
PM2.5 significantly decreased during APEC in 2014, and the air quality was dominated by
fine weather, indicating that enhanced emission-reduction measures had a significant effect
on the improvement in air quality in Beijing.

Studies showed that different weather situations, different seasons, and different
pollution sources have different impacts on pollutant concentrations [7–12]. Therefore,
a lot of research has been conducted on weather conditions during major events. For
example, Li et al. [13] analyzed the variable characteristics of air quality and pollution
meteorological conditions in Guangzhou during the Guangzhou Asian Games and pointed
out that the air quality during the Asian Games could be guaranteed under the influence of
strong emission-reduction measures implemented by the government and good weather
conditions. Yu et al. [14] analyzed the weather conditions during the Asian Youth Games
and found that due to the influence of afternoon thundershowers and typhoons, the weather
conditions during the Asian Youth Games were good for the diffusion of pollutants, and
the air quality was significantly better than that of the same period in 2011 and 2012.
Chen et al. [15] studied the impact of meteorological conditions on air quality during the
Shanghai World Expo. Although the joint prevention and control measures of air quality
during the Shanghai World Expo made pollution emissions lower than in normal years,
the transport and diffusion of atmospheric circulation still led to three pollution events
during the Shanghai World Expo when the meteorological conditions were unfavorable.
The results indicated that meteorological conditions are one of the main factors affecting
the air quality during the Shanghai World Expo. In addition, some scholars studied the
formation mechanism of pollution under different control measures [16–28].

In honor of the 70th-anniversary victory of the Chinese People’s War of Resistance
against Japanese Aggression and the World Anti-Fascist, a grand ceremony was held on
3 September 2015 in China. So as to protect Beijing’s air quality during the Military Parade,
six provinces around Beijing jointly implemented a series of control measures and regional
joint prevention, including odd–even license plate restrictions, industrial production and
suspension. During this period, Beijing’s air quality reached grade one (excellent) weather
for 15 consecutive days, and on September 3rd, there were blue skies and white clouds,
widely known as “Military Parade blue”. At present, scholars have evaluated the effect of
emission reduction during the Military Parade [29,30].

Different from previous studies, this study conducted a comparative study on the air
quality of Beijing before, during, and after the implementation of the enhanced control
measures for the 2015 military parade, as well as during the same period in 2013 and
2014. In addition, a comparative analysis of the improvement effect of air quality between
the 2014 APEC and the 2015 Military Parade was also carried out. Meanwhile, emission
enhanced control and reduction measures with regard to Beijing or its surrounding area
during the 2015 Military Parade were induced. To explore and analyze the contribution of
emission-reduction measures and weather conditions to the improvement of air quality in
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Beijing, this study can provide data theory for air-quality research before, during, and after
the implementation of emission-reduction measures during major activities and scientific
support for the implementation of air quality assurance measures during non-activities.
The actual mechanism and single-factor research had not been applied in this study, so
further study is needed.

Based on the air-quality data of the Beijing Olympic Sports Center released by the
China Environmental Monitoring Station, this study compared the changes in Beijing’s air
quality before, during, and after the implementation of the Military Parade, as well as the
same three years in 2013, 2014, and 2015. The discussion of the effect of emission-reduction
measures or the influence of weather conditions on Beijing’s air quality has important
scientific significance and practical value, and at the same time, it could provide scientific
and technical support for improving Beijing’s air quality.

2. Materials and Methods

2.1. Data

(1) Air-quality data were collected from the data of various pollutants released by the
China Environmental Monitoring Station of the Ministry of Environmental Protec-
tion (https://air.cnemc.cn:18007/, accessed on 10 May 2022), including the hourly
concentration value, daily concentration value, and Air Quality Index (AQI) or
various pollutants.

(2) AQI standards and technical regulations in China: air quality standards in China come
from the ambient air quality standards (GB 3095-2012) and the technical regulations
for ambient air quality index (AQI) (Trial) (HJ 633-2012) (hereinafter referred to as the
regulations) issued by the Ministry of Environmental Protection.

(3) The weather situation field three times a day was taken from the weather situation of
the Central Meteorological Observatory, including the analysis of the surface situation,
the high altitude 850 hPa and 500 hPa situation maps, and the wind direction and
speed data observed by the national hourly ground automatic stations.

(4) For the sake of comparing the impact of the enhanced control and emission-reduction
measures on air quality, the monitoring station of the Olympic Sports Center was
selected as the research object, and the point of time that was picked was 15 days
before, during, and after the implementation of the enhanced control and emission-
reduction measures, respectively (from 5 August to 18 September, a total of 45 days).
Figure 1 shows the location diagram of the research site. The Olympic Sports Center
was the emptiest area near the North Fourth Ring Road. The monitoring site was
laid in the willows on the south side of the vacant lot. It was about 150 m away from
the Olympic Sports Center to the south, 380 m away from the Ding Road to the east,
540 m away from the main road of the North Fourth Ring Road, and 730 m away from
Bei Chen Road to the west. There was a large area of open greenbelt in the south of
the Olympic Sports Center.

(5) Emission-reduction measures from the government sites of Beijing and its surrounding
area during the 2015 Military Parade.
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Figure 1. Location of monitoring sites of the Beijing Olympic Sports Center. Notes: The Chinese
characters in the left picture is the meaning of Chinese Geographic Names, which also represents
its geographical location. The green circle (a), yellow circle (b), blue circle (c), orange circle (d) in
the left picture is the meaning of Urban environmental assessment point, Urban cleanliness control
point, Area background transfer point, Traffic pollution monitoring point, respectively. And which
the number of this points are 23, 1, 6, 5, respectively.

2.2. Methods

The research method adopted in this study was time series analysis in statistics. Firstly,
the enhanced control measures such as traffic restriction and emission reduction adopted in
Beijing and its surrounding areas during the Military Parade were summarized and sorted
out. Secondly, the air quality before, during, and after the implementation of the enhanced
control measures was analyzed. At the same time, the air quality in 2013 and the air quality
in 2014 were compared.

Taking into account the calculation of ambient air quality in China, the 1-h concen-
tration air quality sub-index (IAQI) classification concentration limit of particulate matter
(PM2.5 and PM10) is based on the 24-h concentration AQI classification concentration limit.
The study consulted AQI standards and technical regulations from Data (2), and an AQI
greater than 150 (corresponding to the daily average concentration limit of PM2.5 greater
than 115 μg·m−3) is defined as a pollution event, i.e., an event with continuous occurrence
of moderate pollution or more is defined as a pollution event. At the same time, it is
stipulated that a pollution event is composed of two parts: the pollution accumulation
process and the pollution disappearance process. The pollution accumulation process
refers to the process in which pollutants rise from the trough (minimum value) to the peak
(maximum value). One pollution disappearance process refers to the process in which
the pollution drops from the peak value to another valley value. Generally speaking, the
accumulation time of the pollution accumulation process will be longer than that of the
pollution disappearance process.

Supplemented by sky photos from 08:00 to 08:30 every morning as a reference, it could
visually compare the evolution of air quality around the Beijing Olympic Sports Center. The
photos were taken from the top floor of the Chinese Academy of Environmental Sciences
to the Southwest (the tree of life sightseeing tower). Although the photos were static and
instantaneous, they also reflected the actual situation of air quality in Beijing to some extent.

In short, in order to simplify the structure of the article, the implementation of en-
hanced control and emission-reduction measure was abbreviated as IECERM. The time of
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IECERM (during the Military Parade) was from 20 August to 3 September. Among them,
15 days from 5 August to 19 August were chosen as before IECERM (before the Military
Parade), and 15 days from 4 September to 18 September were selected as after IECERM
(after the Military Parade).

3. Results

For the purpose of ensuring air quality during the Military Parade on 3 September, six
provinces and cities around Beijing with Beijing had jointly implemented temporary en-
hanced control and emission-reduction measures. Among them, motor vehicles, industrial
enterprises, coal burning, and dust as the main control objects. The measures would be
sustained from midnight on 20 August to 24:00 on 4 September.

3.1. Review of the Implementation of Enhance Control and Emission-Reduction Measures during
the Military Parade

In Beijing, including industrial enterprises, coal-fired boilers or construction, and other
aspects of enhanced emission-reduction measures were taken. With regard to the industrial
source, measures should be taken to suspend or limit the production of workshops and pro-
cesses that emitted air pollutants in petrochemical, building materials, industrial painting,
printing, furniture, and other industries. For the aerial dust source, there were two ways to
go. On the one hand, earthwork, road milling, structural demolition, construction waste
and residue transportation, painting, and other construction operations were stopped. On
the other hand, construction waste and heavy vehicles such as muck trucks and gravel
trucks were banned from driving on the road. In terms of the moving source, in addition
to public transport, ambulance, fire, sanitation, law enforcement, “green channel”, and
other urban operation support vehicles or pure electric buses, odd–even motor vehicles
in all regions were implemented; 30% of motor vehicles of the party and government
organs at all levels, municipal social organizations, public institutions, and state-owned
enterprises would be suspended from driving on account of odd–even license plates, and
80% of official vehicles would be suspended from driving. Moreover, construction waste
and muck carriers, concrete tankers, sand and stone carriers, hazardous chemical carriers,
and other vehicles were prohibited from driving on Beijing municipal roads all day long,
and freight vehicles, low-speed trucks, and tractors were prohibited from driving on roads
within the Sixth Ring Road from 06:00 to 24:00 h every day.

In terms of road transportation, measures such as odd–even license plate restrictions
and suspension of official vehicles were taken. In the administrative area of Beijing, from
20 August to 4 September, motor vehicles with license plates issued by Beijing and motor
vehicles from other provinces, regions, and cities entering Beijing were driven in single and
double numbers for one day and two days from 03:00 to 24:00 day by day. In addition, 80%
of the day’s motor vehicles affiliated with party and government organs at all levels, social
organizations, public institutions, and state-owned enterprises of Beijing stopped driving.
Motor vehicles in other provinces were prohibited from driving on roads within Beijing’s
Fifth Ring Road (including the Fifth Ring Road) from 07:00 to 09:00 and 17:00 to 20:00 every
day. Table 1 lists the specific restrictions.

In addition, from midnight on 28 August to 24:00 on 4 September, six provinces
surrounding Beijing, including Tianjin, Hebei, Shanxi, Inner Mongolia Autonomous Region,
Shandong, and Henan provinces, implemented temporary enhanced emission-reduction
measures in the union to ensure air quality during the Military Parade. Specific measures
were as follows.

In Tianjin, there were 285 steel, cooking, cement, glass, and other elevated pollution
sources suspended, and 421 enterprises in chemical, printing, industrial painting, furniture,
automobile manufacturing, automobile repair, and other industries that produced volatile
organic compounds had taken measures to stop production, repairment, and limit produc-
tion. In order to ensure a discharge standard, all pollutants should be reduced by at least
30 percent as a result of the discharge. To minimize elevated pollution sources and pol-
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lutants from key industrial enterprises, all construction work on buildings, roads, and
demolition sites; open burning and barbecuing; and fireworks and firecrackers were pro-
hibited in urban and rural areas in Shandong. In Henan, 13 electric power, 48 carbon,
25 cement, and 297 refractory enterprises in Zhengzhou were investigated and rectified;
14 of its 29 coal-fired units were shut down in Pingdingshan; Jiaozuo imposed total coal con-
sumption controls on 28 key coal-consuming enterprises, while Xinxiang and Sanmenxia
also adopted corresponding measures. In total, 8587 heavy polluters were investigated, of
which 128 enterprises were ordered to stop construction, 304 enterprises to stop production,
and 112 enterprises to shut down in Shanxi. According to the climate characteristics of the
summer–autumn transition period, pollutant emissions, or pollutant diffusion of the air
quality of Beijing, Hebei province could be divided into key control areas—Shijiazhuang,
Tangshan, Langfang, Baoding, Hengshui, Xingtai, Handan city, Dingzhou, Xinji, Qianan,
Zhuozhou or Ningjin, Jing County, and Wei County—while the others are general con-
trol areas. Measures such as reducing production load, burning high-quality coal with
low-sulfur, and implementing emission performance management should be taken to
reduce pollutant discharge by more than 30% from elevated pollution sources in the area.
During the event, the Inner Mongolia Autonomous Region strengthened the monitoring of
motor vehicle exhaust emissions, set up 12 security checkpoints in Beijing, strengthened the
inspection of vehicles entering Beijing, and required that vehicles do not meet the emission
level of national III or above of the driving restriction requirements in time, and the traffic
control department of public security denied all vehicles that do not meet the formalities
entrance to Beijing. Hohhot, Baotou, Chifeng, the Xilin Gol League, and Ulanqab, which
were close to Beijing, were also listed as key control areas. In these areas, carrying earth or
muck and vehicles carrying dangerous goods were prohibited, and vehicles with yellow
labels, low-speed trucks, and agricultural vehicles were restricted at different times.

Table 1. Arrangement of single and double limit line time for Beijing motor vehicles.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

None traffic
restriction
1 August

None traffic
restriction

2nd

5 and 0 traffic
restriction

3rd

1 and 8 traffic
restriction

4th

2 and 7 traffic
restriction

5th

3 and 6 traffic
restriction

6th

4 and 0 traffic
restriction

7th

None traffic
restriction

8th
None traffic
restriction

9th

5 and 0 traffic
restriction

10th

1 and 8 traffic
restriction

11th

2 and 7 traffic
restriction

12th

3 and 6 traffic
restriction

13th

4 and 0 traffic
restriction

14th

None traffic
restriction

15th
None traffic
restriction

16th

5 and 0 traffic
restriction

17th

1 and 8 traffic
restriction

18th

2 and 7 traffic
restriction

19th

Double number
trave
20th

Single number
travel
21st

Double number
travel
22nd

Single number
travel
23rd

Double number
travel
24th

Single number
travel
25th

Double number
travel
26th

Single number
travel
27th

Double number
travel
28th

Single number
travel
29th

Double number
travel
30th

Single number
travel
31st

Single number
travel

Sep.1st

Double number
travel
2nd

Single number
travel

3rd
Holiday

4 and 0 traffic
restriction

4th
Holiday

None traffic
restriction

5th
Holiday

None traffic
restriction

6th
Working

5 and 0 traffic
restriction

7th

1 and 8 traffic
restriction

8th

2 and 7 traffic
restriction

9th

3 and 6 traffic
restriction

10th

4 and 0 traffic
restriction

11th

None traffic
restriction

12th

After the safeguard measures for air quality in seven provinces and cities were im-
plemented in a union, emission-reduction measures such as vehicle restrictions, enter-
prise suspension, production restriction, and construction site suspension were put in
place, which helped Beijing’s air quality remain excellent quickly. From 20 August to
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3 September, compared to the air quality with no measures, the concentration of PM2.5 at
11 state-controlled air-quality-monitoring stations in Beijing dropped by an average of about
41 percent. If no safeguard measures were taken, the concentration of PM2.5 would increase
by about 70 percent. The air quality of Tianjin, Hebei, Shanxi, Shandong, Henan, Inner
Mongolia, and other neighboring provinces improved significantly, and the average con-
centration of PM2.5 in 70 cities at prefecture-level and above dropped by about 40 percent.
In addition to the excellent performance of PM2.5, other pollutants also showed a significant
decline under the enhanced emission-reduction measures of the city and surrounding
provinces. The average concentration of SO2, NO2, and PM10 was 3.2 μg·m−3, 22.7 μg·m−3,
and 25.3 μg·m−3, year-on-year declined by 46.7%, 52.1%, and 69.2%, respectively. They
both reached the lowest levels in the history of monitoring; during the Military Parade
on the morning of 3 September, the average concentration of PM2.5 in Beijing was only
8 μg·m−3.

The proportion of pollutant emission reduction and PM2.5 concentration improvement
achieved by the air quality safeguard measures was slightly higher than that achieved
by the 2014 APEC air quality safeguard measures. Compared with the same period in
2014, the total emission reduction ratio of SO2, NO2, PM10, PM2.5, and volatile organic
compounds in Beijing reached 36.5%, 49.9%, 50.3%, 49.0%, and 32.4%, respectively.

3.2. Air Quality and Weather Background during the Military Military Parade

3.2.1. Hourly Concentration of PM2.5

For evaluating the improvement effect of enhanced control and emission-reduction
measures on air quality in Beijing, Figure 2 showed the hourly concentration of PM2.5 at
Beijing Olympic Sports Center monitoring sites combined with photos of the sky from
8:00 a.m. to 08:30 a.m from 5 August to 19 September in 2015. By comparing the sky photos
before, during, and after the traffic restriction, it could be seen that a blue sky appeared
for 7 days during the traffic restriction and only appeared for 5 days before and after the
traffic restriction. Before the restrictions, there were three pollution processes, the longest
of which was four days. During the three pollution accumulation processes, the hourly
concentration of PM2.5 exceeded 100 μg·m−3, and the maximum concentration of PM2.5
reached 153 μg·m−3 during the pollution accumulation process. There were no pollution
processes during the traffic restriction. The maximum concentration of PM2.5 reached
58 μg·m−3 in the pollution accumulation process, and the concentration of PM2.5 remained
below 100 μg·m−3, indicating that fine weather was dominant during the period of traffic
restriction, but there were only 7 days with blue skies, which may be related to the weather
situation at that time. After the traffic restriction, there was a pollution process. Compared
with the traffic restriction, the pollution accumulation time and pollution degree increased,
especially from 14 September to 18 September. The pollution accumulation time was most
serious for 5 days, and the concentration of PM2.5 reached a maximum of 252 μg·m−3 during
the pollution process. As can be seen from the maximum concentration of PM2.5 in the
pollution accumulation process, the air quality during the traffic restriction was better than
that before or after the traffic restriction. In addition, the average concentration of PM2.5
for 15 days before, during, and after the traffic restriction was 66, 18, and 52, respectively.
The concentration of PM2.5 during the traffic restriction period was significantly lower than
the concentration at other times, which showed that the enhanced control and emission-
reduction measures significantly improved Beijing’s air quality.
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Figure 2. Hourly concentration of PM2.5 in Monitoring sites of Beijing Olympic Sports Center. Notes:
The yellow line represents the trends of hourly concentration of PM2.5 when before, during, and after
the restriction (from 5 August to 19 September). The y-axis is the concentration of PM2.5, among the
unit is μg·m−3. The x-axis is the date when from 5 August to 19 September. The picture shows the
daily weather conditions at 07:00 of the monitoring site from 5 August to 19 September.

3.2.2. Weather Background during the Military Parade

In view of the fine weather during the military parade, the weather background during
the military parade period from 1 September to 4 September was analyzed by combining
the weather chart three times a day and the one-hour wind field once a day. On this account,
the influence of the weather situation on air quality in Beijing was investigated, for details,
refered to Figures 3–6.

Figure 3. Maps of the weather and AQI situation at 07:00 on 1 September in 2015. Notes:
(a,c,d) shows the map of the surface, 500 hPa height, 850 hPa height, respectively. (b) shows the
automatic ground observation of 1 h wind field at 07:00 on 1 September in 2015.
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Figure 4. Maps of the weather and AQI situation at 07:00 on 2 September in 2015. Notes:
(a,c,d) shows the map of the surface, 500 hPa height, 850 hPa height, respectively. (b) shows the
automatic ground observation of 1 h wind field at 07:00 on 2 September in 2015.

Figure 5. Maps of the weather and AQI situation at 07:00 on 3 September in 2015. Notes:
(a,c,d) shows the map of the surface, 500 hPa height, 850 hPa height, respectively. (b) shows the
automatic ground observation of 1 h wind field at 07:00 on 3 September in 2015.
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Figure 6. Maps of the weather and AQI situation at 08:00 on 4 September in 2015. Notes:
(a,c,d) shows the map of the surface, 500 hPa height, 850 hPa height, respectively. (b) shows the
automatic ground observation of 1 h wind field at 08:00 on 4 September in 2015.

At 07:00 on 1 September in 2015, the ground situation chart which can be seen from
Figure 3a showed that Beijing was in the lower part of the cold high pressure, which was
influenced by the northeast airflow. At altitude, (d) resembled to (c), and Beijing was
located on the north side of the North China vortex, which was influenced by the northwest
airflow. After that, the vortex continued to move eastward, and the wind speed reached
force 3–4 m·s−1 (b), which was beneficial to the spread of pollutants. The main pollutant
on that day was O3, with a concentration of 53 μg·m−3, while the concentrations of other
pollutants, such as PM2.5, PM10, NO2, and SO2, were 10, 15, 23, and 2 μg·m−3, respectively,
and the AQI was 21, which indicated the air quality was excellent.

At 07:00 on 2 September in 2015, Figure 4 provided the ground situation map (a),
500 hPa height map (b), 850 hPa height map (c) and automatic ground observation of
1 h wind field, respectively. Among of them, (a) showed that the North China Vortex
continues to move eastward, the west was controlled by Hetao high pressure, the east
was controlled by low pressure, and all were influenced by northwest airflow. (c) showed
that the eastern part of mainland China was mainly influenced by the northwest airflow
behind the cold trough, Beijing was located behind the trough, and the wind speed was
2–4 m·s−1 according to (b). (d) showed that Beijing was in the front of the high-pressure
trough and the rear of the low-pressure trough. Under the influence of the northwest
airflow, the particulate matter that accumulated in the air could be removed, and the air
quality in the whole of North China was improved. The main pollutant was O3, and other
pollutants were lower. Finally, the AQI was 25. These all indicated the air quality was
excellent, which also laid the foundation for the subsequent “Military Parade blue”.

Figure 5 gived the ground situation map (a), 500 hPa height map (b), 850 hPa height
map (c) and automatic ground observation of 1 h wind field at 07:00 on 3 September in
2015, respectively. (a) showed that the western part of Mainland China was controlled by
Hetao high pressure, while the eastern part was controlled by low pressure. Beijing was
in the front of the high center, affected by the northerly airflow, and the wind speed was
maintained at force 1–2 m·s−1 based on (b). The (d) showed that Beijing was in the front of
the high-pressure trough and the back of the low-pressure trough, affected by the northerly
airflow. (c) showed that North China was behind the cold trough, and “Military Parade
blue” appeared in Beijing. Similar to the previous two days, O3 was still the main pollutant,
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and the concentration increased to 81 μg·m−3. Additionally, the concentration of PM10
increased slightly. The AQI was 36, and the air quality was still excellent, which may be
related to the season at that time in Beijing.

Figure 6a showed that the western part of Northern China was controlled by Mongo-
lian low pressure and the eastern part was by high pressure. As could be seen from (c), the
entirety of mainland China lied behind the cold trough, mainly by the west airflow and a
weak warm advection eastward. Due to the influence of southwest airflow, the water vapor
in Beijing was increasing. In addition, on account of the existence of an inversion layer, the
pollution diffusion condition became worse, and the pollutants’ concentration increased
slightly. Among them, the concentration of PM10 increased from 31 μg·m−3 to 33 μg·m−3,
which was the main pollutant on that day. NO2 and PM2.5 increased to 33 μg·m−3 and
53 μg·m−3, respectively. AQI also increased from 36 to 73, while only O3 decreased slightly
compared with yesterday. These all indicated that the weather situation had a great impact
on air quality [16].

It could be seen from the above analysis that due to the influence of the strong cold
high-pressure system during the Military Parade, Beijing was in the front or lower part
of the high-pressure system. Additionally, the weather situation was conducive to the
diffusion of pollutants under the influence of north or northeast winds.

3.3. Comparative Analysis of Beijing’s Air Quality before, during, and after the IECERM for the
Military Parade

Table 2 and Figure 7 show the changes in various pollutants in the monitoring station
of the Olympic Sports Center and the comparison of various pollutants before, during,
and after the traffic restriction in 2013, 2014, and 2015, respectively. It can be seen that
during the IECERM of the 2015 Military Parade, the concentration of PM2.5, PM10, and NO2,
significantly decreased, among which the concentration of PM10 decreased the most, from
109 μg·m−3 to 34 μg·m−3, and the concentration of PM2.5 decreased by 72.73%. Combined
with the changes before and after the implementation, it could be seen that the concentration
of PM10 and PM2.5 increased after the implementation of the emission-reduction measures,
indicating that enhanced control and emission-reduction measures greatly contribute to
the emission reduction in particulate matter. The concentration of NO2 decreased by
40.82% according to the comparison of during and before the implementation; however, the
concentration increased by 51.67% compared to after implementation. For PM2.5 and PM10,
after the implementation changed to greater than before the implementation, which may be
related to a large amount pollutants’ exhaust after the implementation. The concentration
of O3 had been decreasing at any implementation moment, which may be related to the
current season in Beijing. In addition, the concentration of SO2 changed little before, during,
and after the implementation of the measures and remained at a low concentration level.
Compared with the concentration of various pollutants in the same period of 2013 and
2014, it was found that the concentration of various pollutants in the early period of 2015
had not changed a lot, among which PM2.5 and PM10 increased, while NO2 decreased
slightly. During and after the implementation of measures, except for O3, PM2.5, PM10, and
NO2 concentrations were lower than those in 2013 and 2014, indicating that IECREM had
improved Beijing’s air quality to some extent.

Table 2. Changes in pollutants in the Olympic Sports Center monitoring station.

Various Pollutants
Concentration

(μg·m−3)

Before the
Implementation

During the
Implementation

After the
Implementation

Changes of before and
during Implementation

(%)

Changes in during and
after Implementation

(%)

PM2.5 66 18 52 72.73 65.38
PM10 109 34 80 68.81 57.5
NO2 49 29 60 40.82 51.67
SO2 6 2 5 66.67 60
O3 113 79 72 30.09 −9.72
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Figure 7. The change trend of pollutants over the same period when before, during, and after the
IECERM from 2013 to 2015. Notes: The unit on the y-axis is μg·m−3.

3.4. Evolution Analysis of Air Quality during the Same Period of Military Parade from 2013 to 2015

Figure 8 shows the evolution chart of the daily mean PM2.5 concentration in the
monitoring station of the Beijing Olympic Sports Center from 2013 to 2015. It could be
seen that the number of days with an average daily concentration below 150 μg·m−3 in
2015 was less than that in 2014 and 2013. Although the average daily concentration had
exceeded the standard in 2015 and even exceeded 500 μg·m−3 in several days, most of
the days were decreasing, indicating that the air quality in Beijing was improving year
by year. The average daily concentration during the implementation of enhanced control
and emission-reduction measures during APEC in 2014 and the 2015 Military Parade was
compared with the same period in 2013, and it was found that although the average daily
concentration during the 2014 APEC and 2015 Military Parade was below 100 μg·m−3,
most of the average daily concentrations during the military parade were below 50 μg·m−3,
which is significantly lower than the average daily concentration during the APEC military
parade, indicating that the emission reduction effect during the military parade was better,
which may be related to the weather situation at that time. In the same period as the
parade in 2014 and 2013 or the same period as APEC in 2013 and 2015, the average daily
concentration of the parade was more than 100 μg·m−3, especially in the same period as
APEC in 2013 and 2015. The average daily concentration on some days was more than
300 μg·m−3. It showed that enhanced control and emission-reduction measures greatly
contributed to the reduction in PM2.5. In addition, after entering autumn and winter in
2015, the PM2.5 concentration reached its peak, and the average daily concentration even
reached 500 μg·m−3 on some days, indicating that Beijing’s air pollution sources were
complex [6], and air quality assurance measures still need to be enhanced.

As can be seen from Table 3, the effective samples from 2013 to 2015 were 344, 362,
and 360 days, respectively, and the three-year mean valid sample was 355 days, accounting
for 97.3% in the whole year. The annual average of AQI in 2013, 2014, and the three-year
period was 88.2, 90.53, and 87.49, respectively, which were all higher than 83.75 in 2015.
The average AQI in 2015 during the Military Parade with the IECERM was only 19.27, far
less than the average of the other two years and the three-year period. In addition, the
enhanced control and emission-reduction measures were implemented during APEC in
2014; however, the annual average AQI in 2014 was higher than the annual average in 2013
and the three-year period, which may be related to the worse weather situation in 2014.
The annual average AQI in the three-year period was 87.49. For the purpose of achieving
the goal of GB-3095-2012 s-level standard and first-level standard, the annual average of
AQI should be reduced by 60.00% and 82.46%, respectively. The average of the normal
year is the average of 2013 and 2014. The average of the normal year during the Military
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Parade was 64.63, which was reduced by 70.40% compared with the average AQI during
the Military Parade. It had achieved the goal of GB-3095-2012 level-2 standard, which was
still some distance from the level-1 standard. All these indicated that the enhanced control
and emission-reduction measures had made a certain contribution to the improvement
of Beijing’s air quality, but to achieve the goal of better annual air quality, all parties still
needed to coordinate control and joint efforts.

Figure 8. Daily mean value of PM2.5 in monitoring sites of the Olympic Center from 2013 to 2015.
Notes: The unit on the y-axis is μg·m−3. The vertical green line and red line show the comparison
over the same period when the 2015 Military Parade and 2014 APEC for three years from 2013 to
2015, respectively. The transverse red line shows the concentration of PM2.5 is 115 μg·m−3.

Table 3. Changes in AQI over the same period from 2013 to 2015 during the Military Parade.

Data Effective Sample AQI Annual Average
AQI Average

during the Military Parade

2013 344 88.20 58.20
2014 362 90.53 71.06
2015 360 83.75 19.27

Three-year average 355 87.49 49.51

To compare the changes in the Air Quality Index for the same period of three years
during the Military Parade in Beijing, Tables 4 and 5 provide the days with their pollu-
tion level and the average value of AQI for the three years before, during, and after the
IECERM, respectively, i.e., before the IECERM (5 August to 19 August), during the IECERM
(20 August to 3 September), and after the IECERM (4 September to 18 September). It could
be seen that the number of good days during the Military Parade in 2015 was 35 days
(Table 4), accounting for 77.78% of the effective days, higher than 66.67% and 68.89% in
2013 and 2014, respectively. The number of days with mild and moderate pollution was
nine days, less than fourteen and thirteen days in 2013 and 2014, respectively. There was
one day of heavy pollution in 2013 and 2014 and none in 2015. According to the average
value of AQI, except for mild pollution (AQI between 76 and 115), the average value of
AQI in other intervals in 2015 was lower than the average value of AQI in 2013 and 2014.
In addition, Table 5 showed the days’ pollution levels and the average AQI for the same
period in three years during the IECERM. It was found the days in 2015 were all fine which
have implemented the measures, with twelve days of excellent and three days of good.
In 2013 and 2014, the number of fine days without measures was 11 and 8, accounting
for 73.33% and 53.33%, respectively. The results suggested that the IECERM contributes
significantly to the improvement of air quality in Beijing [30].
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Table 4. Changes in AQI over the same period from 2013 to 2015 before, during, and after the IECERM.

Before, during, and
after IECERM

AQI

2013 2014 2015

Effective
Sample

Average
Effective
Sample

Average
Effective
Sample

Average

<35 11 21.19 12 23.50 23 16.20
36–75 19 56.43 19 55.79 12 48.65
76–115 9 91.88 9 91.65 6 95.78
116–150 5 128.60 4 134.86 3 124.74
151–250 1 163.73 1 157.38

Table 5. Changes in AQI over the same period from 2013 to 2015 during the IECERM.

During IECERM
AQI

2013 2014 2015

Effective
Sample

Average
Effective
Sample

Average
Effective
Sample

Average

<35 4 21.54 5 21.52 12 14.78
36–75 7 53.56 3 60.60 3 37.20
76–115 3 96.64 4 94.42
116–150 1 121.92 3 132.96
151–250

4. Conclusions

(1) Seven provinces and cities implemented the emission-reduction measures for air
quality in a union. Emission-reduction measures, such as vehicle restrictions, enterprise
suspension, production restriction, and construction site suspension, were put in place. As
a result, the concentration of PM2.5 at 11 state-controlled air quality monitoring stations in
Beijing dropped by an average of about 41 percent. Besides the average concentration of
SO2, NO2 and PM10 reached the lowest levels in the history of monitoring, which made
Beijing’s air quality excellent in a short time. It suggested that the enhanced emission-
reduction measures had made a significant contribution to the improvement of local air
quality in Beijing.

(2) During the 2015 Military Parade, Beijing was in the front or lower part of the
high-pressure system. Due to the strong effect of north or northeast winds, the weather
situation was conducive to the diffusion of pollutants. Before the implementation, Beijing
was affected by the southwest airflow, and the adverse atmospheric diffusion conditions
had caused the accumulation of pollutants in Beijing. After the implementation, owing to
the adverse temperature layer, the pollution diffusion conditions were poor, and the pol-
lutant concentration rose slightly, in which PM10 was increased from 31 μg·m−3 increased to
33 μg·m−3 compared with yesterday, NO2 and PM2.5 increased to 33 μg·m−3 and
53 μg·m−3, respectively. O3 decreased, and AQI increased from 36 to 73. The air quality
changed from excellent to good. Thus, it can be seen that the weather situation had a great
impact on air quality.

(3) During the implementation, PM2.5, PM10, NO2, and other pollutants decreased
significantly, of which the concentration of PM10 decreased the most, from 109 μg·m−3

down to 34 μg·m−3, and the concentration of PM2.5 decreased by 72.73%. According
to the changes before and during the implementation and after the implementation, the
concentration of PM10 and PM2.5 increased after the implementation of the emission-
reduction measures, indicating that the enhanced control measures have made a great
contribution to the emission reduction in particles.

(4) The number of good days before, during, and after the Military Parade in 2015
was 35, accounting for 77.78% of the effective days, higher than 66.67% and 68.89% in
2013 and 2014. The number of days with mild pollution was 9, less than 14 and 13 days
in 2013 and 2014, respectively. There was one day of heavy pollution in 2013 and 2014,
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respectively. In 2015, there were no pollution days. In addition, the annual average of AQI
in the three years is 87.49. In order to achieve the objectives of class II standard and class I
standard in the GB-3095-2012 ambient air quality standard, the annual average AQI needed
to be reduced by 60.00% and 82.46%, respectively. The average value of the normal year
was the average value of 2013 and 2014. The average value of the normal year during the
military parade is 64.63, which was 70.40% lower than the average value of AQI during
the military parade. The goal of reaching the secondary standard of GB-3095-2012 was
achieved, and there is still a long way to go from the primary standard. In a few words,
the enhanced control and emission-reduction measures had made a certain contribution
to the improvement of air quality in Beijing. However, in order to achieve the goal of
better air quality throughout the year, all parties still need to coordinate control and make
joint efforts.
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Abstract: Air pollution caused by coal burning not only increases the cost of environmental pollution
but also harms human health. It is urgent for China to change the practice of coal-fired central
heating. Therefore, the effectiveness and sustainability of the Coal to Gas and Electricity policy have
become the focus of all sectors of society. In this paper, eight cities in the Beijing–Tianjin–Hebei region
were taken as the experimental groups and the other eleven cities as the control groups. Based on
the PSM-DID model and the time-varying DID model, a quasi-natural experimental analysis was
conducted to evaluate the effect of the policy of coal to gas and electricity to improve air quality
in the Beijing–Tianjin–Hebei region from 2015 to 2020 and to test the sustainability of the policy.
Three research conclusions are shown below: First, during the implementation of the policy, especially
in 2019, the AQI index decreased significantly. Although there was a rebound thereafter, it was still
lower than before. This shows that the Coal to Gas and Electricity policy has indeed improved the
air quality in Beijing, Tianjin, and Hebei during its implementation. Second, the policy had a great
impact on SO2 and PM10 but was relatively weak on PM2.5 and CO. Therefore, there is an urgent need
to formulate scientific and accurate policies to control different air pollutants. Third, the time-varying
DID model was used to identify the dynamic sustainability effect of the Coal to Gas and Electricity
policy. The results showed that the policy had a strong impact in the initial stage, but its effect was
greatly reduced at the end of the implementation or near the end, when it was far less obvious than
in the initial stage of the policy. Therefore, in formulating relevant measures to reduce air pollution, it
is necessary to fully consider the sustainability of the policy.

Keywords: coal-to-gas/electricity; air quality; PSM-DID model; Beijing–Tianjin–Hebei

1. Introduction

As the largest developing country in the world, China is facing great pressure from the
international community to reduce emissions [1]. Coal, as a high-carbon energy source, has
been burned in China for thousands of years. The burning of coal for heating has led to a
significant increase in the TSP (Total Suspended Particle) level in northern China [2], and it
is also the main cause of frequent respiratory diseases and skin diseases for urban residents
in recent years [3]. Consequently, to improve air quality and show a pragmatic image to
the international community, China has formally put forward the “dual-carbon” strategic
goal of a “carbon peak in 2030 and carbon neutrality in 2060” [4–7]. Moving from coal to
gas and electricity is the main way to reduce coal use and improve air quality in winter [8].
In this way, the effectiveness of the Coal to Gas and Electricity policy, promoted by the state
through financial subsidies, especially to Beijing, Tianjin, and Hebei as important cities in
northern China, has become the focus of society.
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The prevention and control of air pollution have become China’s top priority [9],
and its governance policies and effects have triggered academic discussions. Research
shows burning coal accelerates air deterioration [10,11]. In particular, the emission of air
pollutants caused by coal-fired heating in winter is more harmful to air quality and human
health than industrial sources with the same emissions [12,13]. Against the background
of carbon peak and carbon neutralization, it is urgent to change the practice of coal-fired
central heating. Therefore, the state promotes the Coal to Gas and Electricity policy through
financial subsidies. At present, academic research on this issue is rare [14]. Li et al.
studied the changes in air quality, energy efficiency, and residents’ energy consumption
before and after the implementation of the Coal to Gas and Electricity policy, based on
the panel data of 41 cities in China from 2003 to 2015 [15]. Shi et al. studied the green
coordinated development effect of the policy of coal to gas and electricity in Beijing,
Tianjin, and Hebei [16]. Liu et al. analyzed the typical problems in the construction of the
coal to gas project in Beijing and put forward relevant policy suggestions [17]. Yu et al.
evaluated the green net benefit of the coal to gas project in Beijing, Tianjin, and Hebei,
and considered that the coal to gas policy could improve green comprehensive efficiency
by 0.3%–0.4% [18]. However, some scholars believe that the policies of coal to gas and
electricity and “clean coal substitution” increase residents’ heating costs [19]. Scholars
mainly discuss air pollution control, green development, and the cost subsidies of the Coal
to Gas and Electricity policy and rarely use more micro and refined data to analyze the air
pollution control effect of the policy. Further research shows that the frequency of severe
pollution weather in northern China coincides with the concentration of coal-fired heating
in winter [20,21]. China’s unique coal-fired heating measures in the north in winter have led
to more prominent air pollution problems in northern China than in the south [22]. The air
pollution problem of the Beijing–Tianjin–Hebei urban agglomeration in the northern region
is particularly serious [23]. Early research found that although Beijing, Tianjin, Hebei, and
the surrounding areas account for only 7.2% of the national land area, they consume 33% of
the national coal, and the pollutant emission intensity per unit area is about four times the
national average [24]. However, the research conclusions on the relationship between the
air control effect and pollutant emissions in Beijing, Tianjin, and Hebei are not completely
consistent. Some scholars found that environmental regulations can significantly reduce
PM2.5 and SO2 concentrations [25]. Based on ecological environmental monitoring and
meteorological observation data, Zhu Yuan-yuan et al. analyzed the characteristics of ozone
concentrations in the major cities in the Beijing–Tianjin–Hebei region from 2016 to 2020
and found that ozone concentrations in the region increased by 11.6%, showed an overall
trend of fluctuation during 2016 to 2019, and then decreased in 2020 [26]. In addition,
few studies can clearly point out the clear relationship between the air quality index and
specific pollutants in Beijing, Tianjin, and Hebei. Therefore, it is of great significance to
use weekly micro panel data to test the effectiveness of the Coal to Gas and Electricity
policy in the Beijing–Tianjin–Hebei region and to explore the specific impact of the policy
on specific pollutants.

From the urban perspective, a regional joint prevention and control strategy must be
adopted for air pollution control to avoid the “leakage effect” and “free-riding behavior”
of air pollution control [27]. However, because of the limitations of research data and
research methods, it is difficult to determine the dynamic and sustainable effects of air
pollution control policies in urban agglomerations [28]. In addition, only a few articles use
the policy evaluation method in econometrics [29], and the conclusions are inconsistent.
Duwencui et al., using the Single DID method, found that the coordinated control of haze
in Beijing, Tianjin, and Hebei had not improved the air quality in this area [30]. Wayi et al.
found that the joint action of “2 + 26” cities in Beijing, Tianjin, Hebei and surrounding
areas under the guidance of the action plan for comprehensive treatment of air pollution
in autumn and winter helped improve the air quality in the region [31]. The Coal to Gas
and Electricity policy in Beijing, Tianjin, Hebei, and surrounding areas has an obvious
process from pilot to promotion, and the time and intensity of joint prevention and control
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in different cities are not completely consistent [29]. Therefore, the estimation results
using a single DID model are likely to include errors, resulting in unsolvable endogeneity
problems [32]. Using the DID method, the most important premise is that the processing
group and control group must meet the common trend assumption, that is, if there were no
Coal to Gas and Electricity policy, there would be no systematic difference in the change in
the trend of air quality between Beijing, Tianjin and Hebei and other regions over time. But
in reality, this assumption of the DID method may not be satisfied. However, the PSM-DID
method proposed and developed by Heckman et al. could effectively solve this problem
and make the DID method meet the common trend hypothesis [33,34]. In addition, the
time-varying DID model can capture the dynamic changes of the policy to measure the
effect of the joint prevention and control policy of coal to gas and electricity in Beijing,
Tianjin, and Hebei more accurately. Therefore, it is not only necessary to expand the sample
number of the Beijing Tianjin Hebei urban agglomeration to improve the integrity of the
impact of the Coal to Gas and Electricity policy on air quality, but it is also necessary to
adopt the PSM-DID model and the time-varying DID model to evaluate the effectiveness
and dynamics of policy implementation.

The purpose of this study is to test the impact of the Coal to Gas and Electricity policy
on air quality in Beijing, Tianjin, and Hebei and find possible measures for improvement.
Therefore, based on the weekly air quality and meteorological data of nineteen cities in
Beijing, Tianjin, Hebei, and surrounding areas from 2015 to 2020, we used the PSM-DID
method to evaluate the effectiveness and dynamics of the Coal to Gas and Electricity
policy on air quality improvement. This article provides some important insights: First,
this study adopts the method of propensity score matching (PSM) for the first time, and
“wind speed” and “temperature” were finally obtained as characteristic variables from
6042 original atmospheric data of nine experimental groups and eleven control groups,
which overcomes the endogenous problem between explanatory variables. Second, taking
the implementation of coal to gas and electricity as a quasi-experiment, differences-in-
differences (DID) was used to identify the impact of the policy on air quality and PM2.5,
PM10, SO2, and CO. The results show that the Coal to Gas and Electricity policy has indeed
improved the air quality in Beijing, Tianjin, and Hebei during the implementation period.
The policy had a great impact on SO2 and PM10, while the effects on PM2.5 and CO were
relatively weak. Third, the time-varying DID model was used to identify the dynamic
sustainability effect of the Coal to Gas and Electricity policy. It proves that the policy has a
strong impact in the initial stage. However, at the end of the implementation or near the
end, the effect is greatly reduced, and it is far less obvious than at the beginning of the
policy. These results held true after several robustness tests. The above conclusions based
on the evaluation of the Coal to Gas and Electricity policy in Beijing, Tianjin, and Hebei
may provide relevant references and lessons for air governance in other countries.

The rest of the study presents the data and methodology (Section 2), empirical results
(Section 3), and robust tests (Section 4). Finally, we draw three conclusions (Section 5).

2. Data and Methodology

2.1. Data and Variables

The air quality index (AQI) and the concentration of individual pollutants are the
air quality indicators that are most widely consulted by the public and highly valued
by the national ecological and environmental department. Among them, the AQI is a
dimensionless comprehensive index, which is obtained by standardizing the concentration
index of each single pollutant, allowing it to be a comprehensive reflection of the daily
air quality of the city. The value range is 0–500, and according to the size of the AQI,
we divide urban air quality into six levels. The larger the value, the more serious the air
pollution [35–37]. In addition, the assessment method of the action plan for air pollution
prevention and control clearly points out that the annual average concentration decline
ratios of PM2.5 and PM10 are used as the assessment index [38]. As one of the important
indicators to measure whether SO2 and CO are polluted in the atmosphere. Therefore, this
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paper selects the daily data of the AQI, PM2.5, PM10, SO2, and CO in Beijing, Tianjin, Hebei
and surrounding areas from 2015 to 2020. According to the weighted average calculation,
the weekly data were obtained for regression analysis. Relevant data comes from China’s
air quality online monitoring and analysis platform (https://www.AQIstudy.cn, accessed
on 15 February 2022).

Research shows that weather conditions can have a significant impact on air qual-
ity [39,40]. Therefore, to ensure the accuracy of the study, the control variables selected
in this paper include daily average temperature, daily average humidity, and wind level.
The weekly data is calculated according to the weighted average of daily average data.
Relevant data comes from China’s air quality online monitoring and analysis platform
(https://www.AQIstudy.cn, accessed on 15 February 2022).

2.2. Methodology

The Propensity Score Matching (PSM) and Difference-in-Difference model (DID)
method are used to evaluate the effect of policy implementation. The PSM is particu-
larly suitable for studies using non-random data. Computing the average processing effect
of the treatment group samples through the common support hypothesis test and balance
hypothesis test can obtain basic unbiased estimates, thus obtaining a natural experiment
under the condition of using non-random data. The influence of selective bias and con-
founding factors in the performance evaluation process can be excluded as far as possible
by the PSM method, ensuring that the final estimated performance results are an unbiased
“net effect”. The PSM can solve the problem of sample selection bias, but cannot avoid
the endogenous problem caused by variable omission; The DID can solve the endogenous
problem through double difference, but cannot solve the problem of sample selection
deviation well. Based on this, this paper combines PSM and DID for robustness estimation.
At present, there are few articles using the policy evaluation method in econometrics [29];
moreover, even if a single DID model is used, the estimation results are likely to be biased,
resulting in endogenous problems that cannot be reasonably solved [32]. Using the DID
method, the most important premise is that the processing group and control group must
meet the common trend assumption; that is, if there is no Coal to Gas and Electricity policy,
there is no systematic difference in the changing trend of air quality between the Beijing–
Tianjin–Hebei region and other regions over time. But in reality, this assumption of the
DID method may not be satisfied. However, the PSM-DID method that has been proposed
and developed can effectively solve this problem [33,34]. In addition, the time-varying
DID model can capture the dynamic changes of the policy to measure the effect of the
joint prevention and control policy of coal to gas and electricity in Beijing, Tianjin, and
Hebei more accurately. Therefore, this study first takes group as the grouping variable,
speed and temp among the control variables as the characteristic variables, and AQI as the
output variable for PSM matching, which solves the problems of deviation and endogeneity
between variables. Second, to avoid the problem of multicollinearity, we selected eight
cities in the Tianjin Hebei region as the experimental group by using the atmospheric data
from 2015 to 2020, and chose another eleven cities with similar geographical locations,
similar air pollution, or similar population and economic levels as the control group, using
the DID model to identify the effectiveness of the Coal to Gas and Electricity policy in the
Beijing–Tianjin–Hebei region. Finally, the time-varying DID model is used to evaluate the
effectiveness and dynamics of policy implementation.

2.2.1. Model Construction

This paper first uses the DID model to evaluate the effect of the Coal to Gas and Elec-
tricity policy on air pollution control in the Beijing–Tianjin–Hebei region and surrounding
areas. The model is as follows:

Yct = β0 + β1Groupc × Policyt + δXct + εct (1)
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where Yct represents the air quality index and single pollutant concentration of city C on
date T, and Groupc indicates whether city C is in the experimental group or the control
group. If it is the experimental group, the value is 1; otherwise, the value is 0. The dummy
variable Policyt indicates whether the policy is executed. Policy implementation is 0 before
implementation and 1 after implementation. The variable Policyt indicates the change of
the air quality of the experimental group after the policy implementation, and the coefficient
β1 can be used to measure the effect of the air pollution prevention and control policy.
The control variable Xct indicates other factors affecting air quality, including weather
conditions (daily average temperature-temp, average daily humidity-humidity, and wind
level-speed). The random perturbation term is represented by εct.

Although there were reports of “the Coal to Gas and Electricity policy” from 2003 to
2016, the frequency was relatively low. On 5 December 2017, the National Development
and Reform Commission and other departments jointly issued the Plan for Clean Heating
in Winter in Northern China (2017–2021), proposing for the first time to build a complete
clean heating industry system in northern China within 3 to 5 years. According to the
evolution time of the policy of coal to gas and electricity and considering the applicability of
the model, we defined the period before the implementation of the policy as January 2015–
31 December 2017 and the period after the implementation of the policy as January 2018–
31 December 2020. The policy involved in this study is mainly concerned with heating.
The value is 0 before the policy is implemented and 1 after the policy is implemented. We
used weekly data, so the specific implementation date was 1 in the second week of 2018,
and 0 in the previous week.

Based on similar geographical location, air pollution, level of economic development,
and permanent population, the following choices were made. The experimental group
included eight cities in the Beijing–Tianjin–Hebei area: Beijing, Tianjin, Shijiazhuang, Tang-
shan, Langfang, Baoding, Qinhuangdao, and Zhangjiakou. The control group contained
eleven cities: Taiyuan, Yangquan, Changzhi, Jinan, Jining, Hohhot, Baotou, Zhengzhou,
Jincheng, Datong, Kaifeng. When the time interaction between a certain city in the exper-
imental group and the policy implementation was equal to 1, it meant that the city was
incorporated into the Coal to Gas and Electricity policy at that time point. Before that time
point, the interaction term was 0. The geographical location map is shown below (Figure 1).

Figure 1. The geographical location map.

2.2.2. Descriptive Statistics

The sample size shown in the following table is the sample size after PSM treatment,
and the original sample size is 6042, and the sample size after PSM treatment is 4063, which
will be mentioned in the subsequent PSM analysis. From the value range of variables, the
value range of each variable is within a reasonable range, and the outlier is not obvious.
See Table 1.

315



Atmosphere 2022, 13, 879

Table 1. Description of variables and data.

Variable Units Value Meaning N Mean Median SD Max Min

AQI - Air Quality Index 4063 99.8 91.7 41.3 500 0
PM2.5 ug/m3 fine particulate matter 4063 64.2 53.1 42.4 496 0
PM10 ug/m3 Inhalable particles 4063 114 101 60.5 740 0
CO mg/m3 carbon monoxide 4063 1.39 1.17 0.751 9.72 0.267
SO2 ug/m3 Sulfur dioxide 4063 25.7 17.9 25.8 328 2

temp ◦C Daily mean temperature 4063 12.2 13.1 10.9 32.1 −19.5
speed - Wind scale 4063 1.85 1.74 0.524 4.61 0.726

Humidity % Daily mean humidity 4063 55.9 55.9 15.6 99.5 15

3. Result

3.1. Basic Result Analysis

We take the AQI as an example to make the trend change map of environmental
indicators (Figure 2). In the long term, the control group has a slight downward trend, but
the trend is relatively limited. The experimental group was affected by the policy, so the
change range is large, especially in the second year affected by the policy; in 2019, the AQI
had a significant decline, reflecting the impact effect of the policy. Despite the subsequent
rebound, it was still lower than the 2018 level and also significantly lower than the control
sample level of that year.

Figure 2. The AQI time-trend.

If the time range is set from 2017–2019, one year before and after the policy occurred,
the results of Table 2 are as follows. There was a significant downward trend before the
policy, in which the average value of the experimental group was −1.659 and the average
value of the control group was 0.820. The range of decline in the experimental group was
significantly greater than that of the control group, reaching twice that of the control group,
reflecting the impact of the policy implementation.

For the specific impact of policy implementation on the four dependent variables,
we used an independent sample t-test method. The t-test tests whether the variable is
significant over all periods. The first was for the whole sample, including the experimental
and control groups. From the results of the t-test (Table 3), the p-value of the four indicators
was less than 0.05, and the sample with a group value of 1 after implementation was
less than the sample before implementation, which shows that the policy implementation
reduced the index value and had significant differences. Secondly, a further t-test was
performed for the samples from the experimental group (Table 4). For the experimental
group samples, the conclusion did not differ from the overall sample, and the samples
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after the implementation decreased significantly compared with the samples before the
implementation. Moreover, it was more obvious in the first two indicators, with PM2.5 de-
creasing by 11.37 and 14.9 in the experimental group. In the PM10 index, the overall sample
decreased by 36.44, and the experimental group sample decreased by 41.57. Therefore, the
impact of the policy is obvious and significant.

Table 2. The change values of different cities before and after the policies.

City Code Before After Dif

Beijing 107.587 93.402 −14.185
Tianjin 103.593 94.576 −9.017

Shijiazhuang 93.451 98.129 4.678
Tangshan 89.550 96.898 7.348
Langfang 110.230 99.662 −10.568
Baoding 100.368 97.475 −2.893

Qinghuangdao 102.485 107.996 5.511
Zhangjiakou 90.141 96.010 5.869

Taiyuan 101.916 103.289 1.373
Yangquan 116.549 102.741 −13.808
Changzhi 92.112 92.470 0.358

Jinan 103.276 108.419 5.143
Jining 112.995 96.981 −16.014

Huhhot 98.294 100.779 2.485
Baotou 85.334 90.744 5.410

Zhengzhou 107.607 117.145 9.538
Jincheng 106.470 102.405 −4.065
Datong 108.864 102.405 −4.306
Kaifeng 101.924 106.789 4.865

Table 3. T-test results for the whole sample.

Variables Post Mean ± sd T Sig

PM2.5
0 69.63 ± 47.47 8.70 0.00
1 58.26 ± 35.32

PM10
0 131.38 ± 68.46 20.45 0.00
1 94.94 ± 43.17

CO
0 1.48 ± 0.87 8.04 0.00
1 1.29 ± 0.58

SO2
0 35.52 ± 31.46 28.20 0.00
1 15.21 ± 9.91

Table 4. T test results of the experimental group.

Variables Post Mean ± sd T Sig

PM2.5
0 75.88 ± 52.72 8.09 0.00
1 60.98 ± 36.40

PM10
0 140.31 ± 76.33 16.23 0.00
1 98.74 ± 46.34

CO
0 1.55 ± 1.01 6.45 0.00
1 1.33 ± 0.63

SO2
0 29.23 ± 23.08 22.27 0.00
1 13.64 ± 8.53

3.2. PSM Model Results

The role of PSM is to reduce endogeneity problems and reduce the bias between
samples. Here we take group as the grouping variable, speed and temp among the control
variables as the characteristic variables, and AQI as the output variable for PSM processing
(Table 5).
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Table 5. Changes in the sample size before and after PSM.

Before Atter

Control 3498 1683
Treated 2544 2380

Total 6042 4063

One might ask, why is the humidity variable not included? The first reason is that the
two grouped samples were so close in humidity that the bias itself could be considered small.
The second reason was that, after our attempt to add the variable of humidity, we found
that the bias between samples did not shrink but increased, so joining became meaningless.
From the PSM results (Table 6), we used variables speed and temp as conditions for sample
matching, and after the last matching samples, the bias was reduced by 31.8% and 90.5%,
respectively, which was successful and effective from the purpose perspective.

Table 6. PSM model result.

Unmatched Mean Reduce (%) T-test

Variables Matched Treated Control Bias (%) |bias| T p > t

Speed U 1.7478 1.9316 −34.3 −13.19 0
M 1.7976 1.923 −23.4 31.8 −7.53 0

Temp U 12.438 11.696 6.7 2.59 0.01
M 12.127 12.197 −0.6 90.5 −0.2 0.84

3.3. DID Model Baseline Analysis

The analysis of the DID model was mainly carried out by observing the influence of
DID variables. To avoid multicollinearity problems, the grouping variable group and the
policy implementation variable post were not used here. We used four models constructed
with different dependent variables, and the fit effect of the model was at the normal level,
except for Model 2, in which the R2 was around 0.2 to 0.3. In terms of variable action, the
control variables we selected had obvious effects on the dependent variables, in which
the variable temp and the variable speed had stable negative effects—that is, the higher
temperature, the faster the speed, and the better the air quality. However, the action
mechanism of the variable humidity was relatively complex, with significant positive
effects on PM2.5 and CO, but with negative effects on PM10 and SO2. However, our core
variable DID had significant negative effects in all four models; that is, the implementation
of the policy improved the ambient air quality. Considering that the range of values of
different indicators varies, it is normal that the coefficient size varies greatly, and it is more
meaningful for us to compare the significance of the variables. From the significance level,
the policy affected SO2 and PM10 greatly, while the effects on PM2.5 and CO were relatively
weak. The results are shown in Table 7.

Table 7. DID model result.

Model 1 Model 2 Model 3 Model 4

Variables PM2.5 PM10 CO SO2

DiD
−5.269 *** −23.602 *** −0.071 *** −17.516 ***

(−4.03) (−11.94) (−3.22) (−22.45)

Temp −1.633 *** −1.691 *** −0.036 *** −0.984 ***
(−28.83) (−19.74) (−37.86) (−29.11)

Humidity 0.483 *** −0.003 0.012 *** −0.034
(11.39) (−0.05) (17.20) (−1.36)

Speed −16.369 *** −18.880 *** −0.165 *** −3.069 ***
(−13.51) (−10.30) (−8.06) (−4.24)
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Table 7. Cont.

Model 1 Model 2 Model 3 Model 4

Variables PM2.5 PM10 CO SO2

Constant
88.748 *** 176.039 *** 1.462 *** 50.181 ***

(23.39) (30.67) (22.77) (22.15)
Observations 4063 4063 4063 4063

R2 0.249 0.154 0.313 0.274
Adj-R2 0.248 0.153 0.312 0.273

F 336.2 184.7 462.5 382.0
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4. Robust Test

4.1. Parallel Trend Test

The hypothesis of parallel trends is that there was no significant difference between
the control and experimental groups before the policy occurred. After the policy implemen-
tation, there were significant differences between the experimental group and the control
group. We here constructed the dummy variables using the dates of the first three events
and tested them. Because the previous period is too close to the policy, the results of the
previous three and two periods prevailed, namely the before_3 and before_2 variables in
our results. From the results (Table 8), the before_3 variable had a nonsignificant negative
effect in all four models, while the direction of before_2 was positive and negative, but
overall, the effect was not significant, so the four dependent variables passed the parallel
trend test. From the trend of change (Figure 3), there was indeed a downward trend from
before_1 to after 2, which also proves the effectiveness of the policy.

Table 8. Parallel trend test results.

Model 1 Model 2 Model 3 Model 4

Variables PM2.5 PM10 CO SO2

Did
−4.298 *** −20.756 *** −0.076 *** −16.710 ***

(−2.89) (−9.91) (−2.88) (−19.33)

Before-3
−12.474 −24.011 −0.105 −6.370
(−1.02) (−1.39) (−0.48) (−0.89)

Before-2
−4.456 −1.074 0.161 7.242
(−0.43) (−0.07) (0.88) (1.21)

Before-1
34.451 *** 51.803 *** 0.692 *** 9.154

(3.24) (3.46) (3.68) (1.48)

Constant
65.277 *** 119.494 *** 1.404 *** 30.346 ***

(82.81) (107.57) (100.68) (66.16)
Observations 4063 4063 4063 4063

R2 0.005 0.027 0.006 0.086
Adj-R2 0.00408 0.0265 0.00487 0.0853

F 5.159 28.59 5.967 95.67
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.2. Placebo Test

The idea for the placebo test in this study was to advance the policy implementation
date by one year, until 1 January 2017, and to re-run the DID model (These four models
are the did models constructed with the four indicators of PM2.5, PM10, CO and SO2 as
the dependent variables.). Based on the results, the effect of DID was no longer significant
in the PM2.5 and CO models. However, PM10 still has a significant negative effect in SO2,
which is not much different from the original model (Table 9). This indicates that the
two measures of PM2.5 and CO passed the placebo test, while PM10 and SO2 failed the
placebo test, but does not mean that the policy has no effect on the latter two. In previous
analyses, namely in parallel trend tests and DID models, we concluded that policy does
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have a significant impact on environmental indicators. Combined with the analysis results
of the trend chart part, we can believe that the ambient air index itself has a downward
trend, which is not caused by a separate policy, but the result of a series of relevant policies
and institutional provisions. The policy of this study has a relatively more obvious effect
on PM2.5 and CO, while accelerating and promoting the effect on PM10 and SO2, that is,
accelerating the existing downward trend.

Figure 3. Coefficient trend change.

Table 9. Placebo test results.

Model 1 Model 2 Model 3 Model 4

Variables PM2.5 PM10 CO SO2

Did
−0.251 −11.256 *** 0.004 −15.704 ***
(−0.21) (−6.16) (0.17) (−21.98)

Temp −1.643 *** −1.720 *** −0.036 *** −0.994 ***
(−28.97) (−19.84) (−37.99) (−29.35)

Humidity 0.506 *** 0.061 0.013 *** −0.015
(11.94) (0.94) (17.71) (−0.59)

Speed −15.677 *** −18.880 *** −0.165 *** −3.069 ***
(−13.04) (−8.81) (−7.65) (−1.93)

Constant
84.953 *** 165.635 *** 1.406 *** 47.243 ***

(22.63) (28.86) (22.15) (21.07)
Observations 4063 4063 4063 4063

R2 0.246 0.132 0.311 0.270
Adj-R2 0.245 0.132 0.311 0.270

F 330.8 154.8 458.8 375.7
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Dynamic Effect of the Coal to Gas and Electricity Policy

For the test of dynamic effect, the main design ideas refer to Zhu et al. [29]. The biggest
difference is the different data dimensions. This study by Zhu et al. used daily data as the
analysis data, while our study used weekly data as the main data. Autumn and winter were
also used by Zhu et al. [29]. as the policy implementation cycle, specifically from the fortieth
week to the tenth week of the second year. That model is different from the DID model of
our subject. The Zhu et al. subject model belongs to the time-invariant DID model, while
our model belongs to the time-varying DID model, that is, DID in which the individual’s
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policy implementation status will change within a year. In terms of test methods, the DID
variable and dummy variable forms were also used. As shown in Table 10, the week1, and
week2 variables represent the first two weeks, and the week3 and week4 variables represent
the last two weeks.

Table 10. Dynamic test result.

Model 1 Model 2 Model 3 Model 4

Variables PM2.5 PM10 CO SO2

Did2
−0.045 −10.595 *** 0.013 −15.401 ***
(−0.04) (−5.77) (0.63) (−21.48)

Week1
−20.030 *** −24.934 *** −0.292 *** −6.260 **

(−3.97) (−3.23) (−3.41) (−2.07)

Week2
−8.819 *** −12.737 *** −0.184 *** −4.066 **

(−3.22) (−3.04) (−3.97) (−2.48)

Week3
9.737 * −5.190 −0.092 −7.291 **
(1.83) (−0.64) (−1.02) (−2.29)

Week4
1.185 −4.250 −0.058 −2.635 *
(0.46) (−1.08) (−1.32) (−1.71)

Temp −1.622 *** −1.718 *** −0.036 *** −1.001 ***
(−28.49) (−19.72) (−37.86) (−29.42)

Humidity 0.512 *** 0.069 0.013 *** −0.012
(12.11) (1.07) (17.91) (−0.47)

Speed −16.012 *** −16.641 *** −0.161 *** −1.507 **
(−13.34) (−9.06) (−7.95) (−2.10)

Constant
85.202 *** 166.478 *** 1.418 *** 47.614 ***

(22.73) (29.02) (22.36) (21.24)
Observations 4063 4063 4063 4063

R2 0.251 0.137 0.316 0.273
Adj-R2 0.250 0.135 0.315 0.272

F 170.2 80.30 234.5 190.7
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

From the results (Table 10), the DID variable still had a significant negative effect on
PM10 and SO2, while the effect of the other two indicators was not significant. As for the
dynamic effect we are concerned about, the dummy variables in the first two weeks all had
a significant negative effect, proving that the policy had a strong impact in the initial stage.
The effect in the last two weeks was very weak, and only in SO2 was there still a significant
negative effect. This shows that at the end of the implementation of the policy, or near the
end of the stage, its effect was greatly reduced, and it was far less obvious than in the initial
stage of the policy.

5. Conclusions

To reach the carbon peak and carbon neutrality targets, reducing carbon emissions
and reducing particulate matter concentration are important ways to improve atmospheric
quality. China has introduced a policy of coal to gas and electricity to combat frequent smog
and severe air pollution caused by coal-fired heating. Based on the panel data of nineteen
cities in The Beijing–Tianjin–Hebei region and surrounding areas from 2016 to 2020, the
PSM-DID model and the time-varying DID model were used to test the effectiveness and
dynamic sustainability of the policy of coal to gas and electricity on air pollution. The
empirical analysis results show that (1) the propensity score matching method (PSM) can
be used to match the influencing factors of air quality in nineteen cities in Beijing–Tianjin–
Hebei and surrounding areas and to overcome the endogenous problem among variables.
It provides new evidence to study the relationship between the policy of changing coal to
gas and electricity and the influencing factors of air pollution, and it enriches the research
methods of the existing literature on the influence of coal to gas and electricity. (2) On
the whole, the fitting effect of DID model is at a normal level; that is, the air pollution
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levels in the Beijing–Tianjin–Hebei urban agglomeration that participated in the Coal to
Gas and Electricity policy did decrease, indicating that the coal to gas power policy has
indeed achieved the expected effect. One possible reason is that the government plays a
leading role in air pollution; the coal to gas policy involves the coordinated development
of the Beijing–Tianjin–Hebei city, indicating that the choice of pilot cities is obviously
representative. (3) Regarding the significance level, the policy had a relatively large impact
on SO2 and PM10, while the effects on PM2.5 and CO were relatively weak. This result
shows the urgent need for more accurate improvement plans for various pollutants. The
weak reduction capacity of PM2.5 may be due to the fact that PM2.5 had shown a downward
trend before the implementation of the Coal to Gas and Electricity policy in the Beijing–
Tianjin–Hebei region; other air joint prevention and control policies had shown a more
powerful governance effect. The weak impact on carbon emissions suggests that other
precise solutions for carbon emissions are needed to achieve dual-carbon targets. (4) The
dynamic sustainability results of the policy of changing coal to gas and electricity show
that the virtual variables in the first two weeks have a significant negative effect, proving
that the policy has a strong impact in the initial stage. The effect of the last two weeks was
very modest, with a significant negative effect only in SO2. This shows that the effect of
the policy at the end stage or near the end stage of the implementation is greatly reduced
and is far less obvious than at the early stage of the policy. It shows that the one-size-fits all
policy does not have a good sustainable effect, which may be due to the smaller subsidy
intensity in the later stage, the increased cost for residents using gas and electricity, or the
inherent living habits resulting in the smaller policy intensity.

In the end, given the current situation in Beijing, Tianjin, and Hebei, we propose the
following recommendations to improve air quality: First, during the implementation of
the policy, the air quality in Beijing, Tianjin, and Hebei was improved, and specific action
arrangements have been planned for the future. However, there are different difficulties
and effects between regions, Hebei is regarded as a key area to undertake the transfer
industries of Beijing, which can hardly bear the impact of the coal ban on its economy,
so as to Tianjin, while the air pollution in Hebei and Tianjin will also infect Beijing. So,
establishing a regional joint prevention-and-control mechanism for air pollution; building
one picture of the responsibility of replacing coal with gas and electricity in Beijing, Tianjin,
and Hebei; promoting the upgrading of regional industrial structure; and balancing the
regional central budget are the most crucial missions that should be completed in the
following days. Second, although the Coal to Gas and Electricity policy has reduced the
AQI index, it only had a large impact on SO2 and PM10, and was relatively weak on PM2.5
and CO. Therefore, to increase investment in R&D, strategies for reducing individual
pollutants are urgently needed. The policy of coal to gas and electricity has had little impact
on carbon emissions. To achieve the dual-carbon target, we need to cooperate to achieve
a precise emission reduction strategy. Last but not least, we find air quality continues to
deteriorate after the end of the policy, which means that a policy that imposes uniformity
in all cases is not sustainable. In reality, the implementation of policy is often difficult to
accomplish in one stroke. Not only does the policy need to prevent the emergence of a gas
shortage under the law of objective economics and slowly promote the policy according
to the local economic situation and residents’ income and habits, but it also must enhance
service guarantees, strive for more subsidies and more alternative energy like biomass fuel,
wind energy, and solar energy for the local people. So, we will continue to pay attention to
that in our research.

Author Contributions: Conceptualization, J.Z. and L.G.; methodology, J.Z.; software, J.Z. and L.G.;
validation, Z.D.; formal analysis, J.Z. and Z.D.; investigation, J.Z.; resources, Z.D.; data curation,
Z.D.; writing—original draft preparation, J.Z.; writing—review and editing, J.Z., W.W. and L.G.;
visualization, W.W.; supervision, J.Z. and Y.T.; project administration, W.W.; funding acquisition,
W.W. All authors have read and agreed to the published version of the manuscript.

322



Atmosphere 2022, 13, 879

Funding: This research is funded by the Annual Project of Philosophy and Social Sciences of Henan
Province (Grant No.2021CJJ135); Science and Technology Innovation Project of Beijing Forestry
University (Grant No.2021SPS01); The Social Science Foundation Cultivation Program of Yanshan
University (Grant No.118/0370044).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used during the study are available from the corresponding
author by request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.D. The impact of economic growth, industrial structure and urbanization on carbon emission
intensity in China. Nat. Hazards 2014, 73, 579–595. [CrossRef]

2. Almond, D.; Chen, Y.; Greenstone, M.; Hongbin, L. Winter heating or clean air? Unintended impacts of China’s Huai river policy.
Am. Econ. Rev. 2009, 99, 184–190. [CrossRef]

3. Wang, Y.; Guo, Z.; Han, J. The relationship between urban heat island and air pollutants and them with influencing factors in the
Yangtze river delta, China. Ecol. Indic. 2021, 129, 107976. [CrossRef]

4. Yu, S.W.; Wei, Y.M.; Wang, K. Provincial allocation of carbon emission reduction targets in China: An approach based on improved
fuzzy cluster and Shapley value decomposition. Energy Policy 2014, 66, 630–644. [CrossRef]

5. Yu, S.W.; Wei, Y.M.; Fan, J.L.; Zhang, X.; Wang, K. Exploring the regional characteristics of inter-provincial co2 emissions in Shina:
An improved fuzzy clustering analysis based on particle swarm optimization—ScienceDirect. Appl. Energy 2012, 92, 552–562.
[CrossRef]

6. Wang, Q.; Zhao, M.; Li, R.; Su, M. Decomposition and decoupling analysis of carbon emissions from economic growth: A
comparative study of China and the United States. J. Clean. Prod. 2018, 197, 178e184. [CrossRef]

7. The Website of the Central People’s Government of the PRC. Available online: http://www.gov.cn/zhengce/2021-10/24
/content_5644.htm (accessed on 12 February 2021).

8. The Website of the Central People’s Government of the PRC. Available online: http://www.gov.cn/zhengce/2018-01/24
/content_5260167.htm (accessed on 12 February 2021).

9. Wang, M.; Wang, Y.; Feng, X.; Zhao, M.; Du, X.; Wang, Y.; Wu, L. The effects of intensive supervision mechanism on air quality
improvement in China. J. Air Waste Manag. Assoc. 2021, 71, 1102–1113. [CrossRef]

10. Streets, D.G.; Gupta, S.; Waldhoff, S.T.; Wang, M.Q.; Bo, Y. Black carbon emissions in China. Atmos. Environ. 2001, 35, 4281–4296.
[CrossRef]

11. Sun, Y.; Jiang, Q.; Wang, Z.; Fu, P.; Li, J.; Yang, T.; Yin, Y. Investigation of the sources and evolution processes of severe haze
pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 2014, 119, 4380–4398. [CrossRef]

12. Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy
from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [CrossRef]

13. Zhao, W.H.; Xu, Q.; Li, L.J.; Jiang, L.; Zhang, D.W.; Chen, T. Estimation of Air Pollutant Emissions from Coal Burning in the
Semi-Rural Areas of Beijing Plain. Res. Environ. Sci. 2015, 28, 869–876.

14. Xiong, Y.; Liao, W.J.; Wang, L. A Study on Air Pollution Governance Effect of the “Coal-to-Gas/Electricity” Policy. Collect. Essays

Financ. Econ. 2021, 270, 103–112.
15. Li, S.L.; Chen, M.M. A Study on the impact of “coal to gas” and “coal to electricity” policies on green development. Res. Financ.

Econ. Issues 2019, 428, 49–56.
16. Shi, D.; Li, S.L. The Effect of Green Cooperative Development in Beijing-Tianjin-Hebei Region—A Quasi-Natural Experiment

Based on the Policy of “Coal-to-Gas/Electricity”. Res. Econ. Manag. 2018, 39, 64–77.
17. Liu, H. “Coal to gas” project is feasible and prudent—Based on the investigation and analysis of “coal to gas” project in Beijing.

Macroeconomics 2015, 4, 9–13.
18. Yue, H.F.; Shi, C. Green Net Benefit Evaluation and Policy Optimization Measures of “Coal to Gas” Project. J. Hebei Univ. Econ.

Bus. 2019, 40, 86–91.
19. Xie, L.Y.; Chang, Y.X.; Lan, Y. The Effectiveness and Cost-Benefit Analysis of Clean Heating Program in Beijing. Chin. J. Environ.

Manag. 2019, 11, 87–93.
20. Zhang, J.F.; Smith, K.R. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and

interventions. Environ. Health Perspect. 2007, 115, 848–855. [CrossRef]
21. Chen, Y.; Shen, H.; Smith, K.R.; Guan, D.; Chen, Y.; Shen, G.; Tao, S. Estimating household air pollution exposures and health

impacts from space heating in rural China. Environ. Int. 2018, 119, 117–124. [CrossRef]
22. Pi, D.Q.; Chen, H.S.; Wei, W.; Wang, W.D.; Xiao, L.H.; Zhang, W.D.; Wu, J.D.; Li, J.J.; Yan, P.Z. The causes and sources of a

heavy-polluted event in Beijing-Tianjin-Hebei region. China Environ. Sci. 2019, 39, 1899–1908.

323



Atmosphere 2022, 13, 879

23. Song, Y.; Li, Z.; Yang, T.; Xia, Q. Does the expansion of the joint prevention and control area improve the air quality?—Evidence
from China’s Jing-Jin-Ji region and surrounding areas. Sci. Total Environ. 2019, 706, 136034. [CrossRef] [PubMed]

24. Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Winiwarter, W. Cost-effective control of air
quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [CrossRef]

25. Pan, T.; Xue, Y.F.; Zhong, L.H.; Zhou, Z.; Yan, J. The Methodology for Air Pollutants Emission Inventory from Residential Coal
Combustion and Its Application. Environ. Prot. 2016, 6, 20–24.

26. Zhu, Y.Y.; Liu, B.; Gui, H.L.; Wang, W. Characteristics of Ozone Pollution, Meteorological Impact, and Evaluation of Forecasting
Result Based on a Neural Network Model in Beijing-Tianjin-Hebei Region. Environ. Sci. 2022, 4, 1–15.

27. Lin, F.Q.; Wu, Z.R. Governance of Ecological Environment in Beijing, Tianjin and Hebei: From “fragmentation” to the Holistic. J.

Hebei Univ. Econ. Bus. 2017, 38, 96–103.
28. Wang, X.-C.; Klemes, J.J.; Dong, X.; Fan, W.; Xu, Z.; Wang, Y. Air pollution terrain nexus: A review considering energy generation

and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [CrossRef]
29. Zhu, Z.Z.; Liao, H. Evaluation on the Effects of Joint Prevention and Control of Air Pollution in Beijing-Tianjin-Hebei Region and

Its Surrounding Areas— An Empirical Study Based on Multi-period Difference-in-Difference Model. J. China Univ. Geosci. Soc.

Sci. Ed. 2022, 2, 142–156.
30. Du, W.C.; Xia, Y.M. Did the Measures of Haze Cooperative Governance in Beijing-Tianjin-Hebei Region Work: An Analysis Based

on the DID Model. Contemp. Econ. Manag. 2018, 40, 53–59.
31. Wang, Q.; Zheng, S.L. Impact of joint prevention and control action on atmospheric pollutant concentration in ‘2 + 26′ cities.

China Population. Resour. Environ. 2019, 29, 51–62.
32. Wang, S.; Huang, Q.; Liu, Q.; Sun, D. Can clean heating in winter in northern China reduce air pollution?—empirical analysis

based on the psm-did method. Energies 2022, 15, 1839. [CrossRef]
33. Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job

Training Program. Rev. Econ. Stud. 1997, 64, 605–654. [CrossRef]
34. Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching as an Econometric Evaluation Estimator. Rev. Econ. Stud. 1998, 65, 261–294.

[CrossRef]
35. Tong, Z.; Chen, Y.; Malkawi, A.; Liu, Z.; Freeman, R.B. Energy saving potential of natural ventilation in China: The impact of

ambient air pollution. Appl. Energy 2016, 179, 660–668. [CrossRef]
36. Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate Air Quality Index for an urban Mediterranean

agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [CrossRef] [PubMed]
37. Lian, X.; Huang, J.; Huang, R.-J.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of

Wuhan city. Sci. Total Environ. 2020, 742, 140556. [CrossRef]
38. The Website of the Central People’s Government of the PRC. Available online: https://www.gov.cn/zhengce/content/2014-05/

27/content_8830.htm (accessed on 12 February 2021).
39. Cao, J.; Wang, X.; Zhong, X.H. Did Driving Restrictions Improve Air Quality in Beijing? China Econ. Q. 2014, 13, 1091–1126.
40. Shi, Q.L.; Guo, F.; Chen, S.Y. “Political Blue Sky” in Fog and Haze Governance—Evidence from the Local Annual “Two Sessions”

in China. China Ind. Econ. 2016, 5, 40–56.

324



atmosphere

Article

New Urbanization, Energy-Intensive Industries
Agglomeration and Analysis of Nitrogen Oxides Emissions
Reduction Mechanisms

Yang Yu * and Tianchang Wang

Citation: Yu, Y.; Wang, T. New

Urbanization, Energy-Intensive

Industries Agglomeration and

Analysis of Nitrogen Oxides

Emissions Reduction Mechanisms.

Atmosphere 2021, 12, 1244. https://

doi.org/10.3390/atmos12101244

Academic Editors: Duanyang Liu,

Kai Qin and Honglei Wang

Received: 24 August 2021

Accepted: 18 September 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China;
2019200891@mail.buct.edu.cn
* Correspondence: yuyang@mail.buct.edu.cn

Abstract: With the deepening of urbanization and industrialization, as well as the exacerbation of
energy consumption, China is facing a severe situation in which nitrogen oxide (NOx) emissions
reduction is imperative. In this study, it is aimed to put forward countermeasures and suggestions to
reduce NOx emissions by analyzing the impact and mechanism of new urbanization, the agglomera-
tion of energy-intensive industries and mutual interactions on China’s NOx emissions. By analyzing
the data of 30 provinces in China from 2006 to 2017, this paper adopted the system generalized
method of moments (SYS-GMM) and intermediary effect model to introduce four variables, such as:
energy efficiency, human capital, industrial structure and energy structure, which were for empirical
analysis. From the results, it was shown that: (1) NOx emissions in China have an accumulated effect;
(2) new urbanization inhibits NOx emissions, whilst the agglomeration of energy-intensive industries
intensifies NOx emissions. New urbanization weakens the negative impact of the agglomeration
of energy-intensive industries on NOx emissions reduction and, (3) among the impacts of new
urbanization on NOx emissions, the energy efficiency and human capital reflect the intermediary
effect mechanism. At the same time, in the impact of the agglomeration of energy-intensive indus-
tries on NOx emissions, the industrial structure and energy structure show the mechanisms of the
intermediary effect and masking effect, respectively.

Keywords: air pollution; new urbanization; energy-intensive industries agglomeration; NOx emis-
sions; intermediary effect model; transmission mechanism

1. Introduction

In the “2030 Agenda for Sustainable Development” formulated by the United Nations,
17 sustainable development goals were put forward; among which, SGD11 and SGD13
describe the requirements for building sustainable cities and solving the problems of climate
changes, respectively. A key role has been played by new urbanization in promoting urban
and ecological sustainable development. In recent years, China’s urban air quality has
been continuously improved; despite this, there are still some atmospheric pollutants,
such as nitrogen oxides, ozone and other gases, that have been emitted at a high level.
The emissions reduction effect of these gases is not obvious and brings huge challenges
to the prevention and control of air pollution. Nitrogen oxides (NOx = NO + NO2) is
one of the most serious air pollutants, and its hazards are reflected in environmental
governance and human health. NOx not only directly affects the concentration of nitrogen
dioxides in the air but is also the main source of ozone pollutants. In the research on how
these gasses harm human health, scholars have discussed the adverse effects of NOx on
human life expectancy [1], asthma symptoms [2], mental health disorders complicating
pregnancy [3,4] and lung function [5] at birth. In 2018, NOx accounting for the highest
proportion of total industrial waste gas emissions, seriously hindering the improvement of
China’s new urbanization level and the construction of ecological civilization.
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In China, NOx emissions are mainly from transportation sources (using automobile
engines) and industrial sources (boiler combustion and cement and steel production). It
has been pointed out that 75.34% of the NOx emissions from industrial sources focus on
nonmetallic mineral products, electric power, thermal power production and supply and
ferrous metal smelting and rolling processing industries in energy-intensive industries (Bul-
letin of the second national survey of pollution sources [6]). It is necessary to reduce NOx
emissions from the source, which means that the structure of energy-intensive industries
should be upgraded. At present, the view that it is significant to adjust the industrial spatial
layout by means of industrial agglomeration give full attention to the technology spillover
effect and improve the environment has been recognized by most scholars [7–10]. During
the process of actively promoting new urban construction in China, the profound changes
are dramatic in the industrial layout. However, it remains to be explored whether the
geographical concentration of energy-intensive industries will reduce pollutant emissions.
Therefore, it has important guidelines for furthering the construction of new urbanization,
optimizing the industrial layout and reducing NOx emissions to clarify the impact and
mechanism of new urbanization and energy-intensive industry agglomerations on NOx
emissions in China.

It is an important guarantee for sustainable social development to make the develop-
ment of urbanization and the environment harmonious. The relationship between them
has been widely explored by scholars. It is concluded from the research on this topic cover-
ing: urbanization improving environmental pollution [11,12], urbanization intensifying
environmental pollution [13,14] and the nonlinear relationship between urbanization and
environmental pollution [15–17]. Based on a nonlinear relationship, in the early stages of
urbanization, with the level of urbanization increasing, pollution intensifies. After that,
when urbanization reaches a certain level, pollution will be improved. In some scholars’
opinions, they attribute the impact of urbanization on the environment to population
growth and industrial agglomeration, holding the opinion that population growth and
industrial agglomeration brought about by urbanization have a greater impact on the
environment. From the perspective of population factors, as early as 1978, Malthus pointed
out that a lack of technology and that population growth will reach the limit because of
resource shortage; at the same time, the impact of demographic factors on the environment
is also universal [18]. Since then, from the research, large number of scholars have also
believed the negative impact of population growth on the environment [19–22].

From the perspective of agglomeration, with the development of urbanization, in-
dustrial agglomeration is a form of enterprise agglomeration of organizations with close
geographical locations and industrial connections. Some scholars believe that industrial
agglomeration has a positive effect on the improvement of environmental pollution. First,
most industries gather in specific areas based on unique regional resource conditions,
thereby reducing transboundary pollution [23]. Second, industrial agglomeration will
attract a large amount of labor force. Meanwhile, specialized equipment can be applied
on a large scale, thus promoting the development of specialized investments and ser-
vices [24]. Third, industrial agglomeration will benefit mutual learning among enterprises
and promote the spillover of knowledge and technology [10,25]. In contrast, other scholars
believe that industrial agglomeration has exacerbated environmental pollution [26–28],
expanding the production scale and output [29,30] and causing crowding effects, as well
as environmental damage. Furthermore, other scholars have also verified the nonlinear
relationship between industrial agglomeration and environmental pollution [31–33].

NOx is a kind of air pollutant, and manmade NOx emissions mainly come from
energy consumption. Considering the seriousness of NOx emissions, large number of
scholars have confirmed energy-intensive industries such as iron and steel [34], thermal
power [35], cement [36,37] and petrochemicals [38] have bad influences on NOx emissions.
After subdividing these industrial sectors, scholars proposed that the emission factors of
power generation in the iron and steel industry should be reduced [39], and coal-fired
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power plants should implement ultra-low emissions policies [35], strengthen technology
research and development [40] and reduce NOx emissions.

By analyzing the literature, it was found as below: firstly, although scholars have
conducted deep research into the relationships between urbanization and environmental
pollution, industrial agglomeration and environmental pollution, their conclusions are not
confirmed. Secondly, the existing literature has covered few researches on the action path
of urbanization and industrial agglomeration on the environment, as well as the pollutants
rarely involving NOx. Thirdly, with the new urbanization being promoted, the industry
has been modified in the original spatial layout; however, few scholars have researched
and discussed the relationship between energy-intensive industries and nitrogen oxides
from the perspective of agglomeration.

Recently, scholars have paid more attention to evaluating the ecological efficiency [41–44]
during the period of measuring the level of urbanization. A new urbanization index system
will be constructed, including four dimensions such as population, social development,
ecological environment and land, integrating the new urbanization and agglomeration of
energy-intensive industries into a unified framework and analyzing their impact on China’s
NOx emissions by applying the systematic GMM method. In addition, this paper also
applied the intermediary effect model to explore the action path of new urbanization and
agglomeration of energy-intensive industries on NOx emissions. Finally, some suggestions
are put forward to reduce the NOx emissions, in order to provide countermeasures to deal
with the air pollution problems during development.

2. Methodology

2.1. Model Setting

2.1.1. Benchmark Regression Model

Liu et al. [28] investigated the relationship between industrial agglomeration and
environmental pollution by adding industrial agglomeration into the production function.
Zhu and Yan [45] extended the model on this basis and introduced urbanization into
the equation. Based on the theories and methods of Zhu and Yan [45], in this paper, a
regression equation was constructed, including new urbanization (nurb), the agglomeration
of energy-intensive industries (hagg) and NOx emissions (NE). Based on previous stud-
ies [46–50], this paper introduced five control variables, such as the industrial structure (is),
technological innovation (r&d), foreign direct investment (fdi), environmental regulation
(er) and economic development (pgdp). In order to avoid heteroscedasticity, all variables
were treated with a logarithm, and the benchmark regression model was set as below:

ln NEit = β + β1 ln nurbit + β2 ln haggit + β3 ln isit + β4 ln r&dit + β5 ln f diit
+β6 ln erit + β7 ln pgdpit + εit

(1)

In Equation (1) and the following equations, εit is the standard error term.
The new urbanization and agglomeration of energy-intensive industries interact with

each other. At the same time, considering a certain dynamic lag of NOx emissions, the
interaction term between the new urbanization and agglomeration of energy-intensive
industries and the first-order lag term of NOx emissions were introduced to build a dynamic
model as follows:

ln NEit = η + η0 ln NEi,t−1 + η1 ln nurbit + η2 ln haggit + η3c ln nurbit ∗ c ln haggit

+η4 ln isit + η5 ln r&dit + η6 ln f diit + η7 ln erit + η8 ln pgdpit + εit
(2)

Among them, thanks to the variable centralization, the multicollinearity problem
caused by the introduction of interaction terms can be avoided effectively. c ln nurbit and
c ln haggit are the variable representations after being intensively processed.

It makes the model having a dynamic interpretation ability to introduce the first-order
lag term of NOx emissions into the regression model, but it will result in endogenous
problems of the model. The different generalized methods of moments (DIF-GMM) can
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reduce the influence of endogeneity on the model estimation. However, the DIF-GMM
has serious problems, such as: weak instrumental variables and poor accuracy of the
coefficient estimation results. From this, scholars combined the horizontal equation and
the first-order difference equation, as well as proposed the system generalized method of
moments (SYS-GMM) [51,52]. Due to limited samples, the system GMM method ensures
the accuracy of the estimation. Therefore, Stata 16.0 [53] was used to analyze the model
based on the system generalized moment estimation method.

2.1.2. Intermediary Effect Model

To explore the transmission mechanism of new urbanization and energy-intensive
industry agglomeration to nitrogen oxides, this paper constructed an intermediary effect
model by referring to the method of a stepwise testing regression coefficient proposed by
Judd and Kenny [54] and Baron and Kenny [55]:

ln NEit = θ + θ0 ln NEi,t−1 + θ1 ln Xit + θ2 ln πit + εit (3)

ln Mit = ω + ω0 ln Mi,t−1 + ω1 ln Xit + ω2 ln πit + εit (4)

ln NEit = ρ + ρ0 ln NEi,t−1 + ρ1 ln Xit + ρ2 ln Mit + ρ3 ln πit + εit (5)

In the process of replacing X in the equation with nurb, M is regressed with energy
efficiency (ee) and human capital (hc), respectively. In the process of replacing X in the
equation with hagg, M is regressed with the industrial structure (is) and energy structure
(es), respectively.

Based on the intermediary effect model: (1) if the total effect coefficient θ1 is significant,
it should be the intermediary effect; otherwise, it is the masking effect. (2) If the coefficients
ω1 and ρ2 are significant, the indirect effect of ω1 × ρ2 is significant. (3) If the coefficient
ρ1 of the direct effect is significant, ω1 × ρ2 and ρ1 are the same sign, which reflects
the intermediary effect, and if ω1 × ρ2 and ρ1 are different signs, it reflects the masking
effect [56,57]. In addition, the mediating effect should satisfy that the coefficient ρ1 is less
than the coefficient θ1.

2.2. Index Construction

2.2.1. New Urbanization

Compared with the traditional urbanization measured only by the indicator of popula-
tion, as for the new urbanization, more attention should be attached to the quality of urban
development. From this, referring to the existing research [58–61], this paper constructed a
new comprehensive evaluation index system of the urbanization level from 13 indexes and
four aspects, including population, social development, ecological environment and land,
which are shown in Table 1.

Based on the variation degree of each index, the entropy method determines the index
weight, and the evaluation deviation of the human factors is avoided to a certain extent. In
this paper, the entropy method is applied to measure the weight for each index in the new
urbanization index system. The calculation formula of the weight is as follows:

Step 1: Calculate the proportion of index j:

yij =
Xij

∑
n
i=1 Xij

, i = 1, 2, . . . , n, j = 1, 2, . . . , m (6)

Step 2: Calculate the entropy of index j:

ej = −
1

ln n

n

∑
i=1

yij ln yij (7)
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Step 3: Calculate the weight of each indicator:

ωj =

(
1 − ej

)
∑

m
j=1
(
1 − ej

) (8)

Xij is the result of the standardization of the actual value of the jth index in the ith
province, Yij is the proportion of the actual value of the jth index in the ith province, ej

is the information entropy of the index and ωj is the entropy weight. Table 1 lists the
comprehensive evaluation index system of the new urbanization level.

Table 1. The comprehensive evaluation index system of the new urbanization levels.

Target Layer Dimension Index Polarity

Comprehensive
evaluation index

of new urbanization

Population urbanization
Proportion of urban population (%) +

Urban population density (people/km2) +
Dependency ratio of the elderly population (%) +

Social development
urbanization

Medical insurance (ten thousand) +
Proportion of fixed assets investment (%) +

Consumption proportion of urban and rural
residents (%)

-

Number of museums (unit) +

Ecological environment
urbanization

Pollution-free treatment rate of domestic waste (%) +
Per capita green space (m2/person) +
Urban green space area (hectares) +

Number of parks (unit) +

Land urbanization
Per capita urban road area (m2) +

Construction area (km2) +

2.2.2. Energy-Intensive Industries Agglomeration

This paper measures the degree of industrial agglomeration by the number of em-
ployees in six energy-intensive industries (chemical raw materials and chemical products
manufacturing industry, nonmetallic mineral manufacturing industry, ferrous metal smelt-
ing and rolling processing industry, nonferrous metal smelting and rolling processing
industry, petroleum processing coking and nuclear fuel processing industry, and power
and heat production and supply industry). The calculation formula is as follows:

haggij =

(
mij/mj

)
(Mi/M)

(9)

where mij is the employment of industry i in area j, mj is the employment of all the industries
in area j, Mi is the national employment of industry i and M is the employment number of
all the industries in the country.

2.3. Data Description

Considering the availability of the data, this paper selected the panel data of
30 provinces in China (excluding Tibet, Hong Kong, Macao and Taiwan) from 2006 to 2017
to verify the relationship between new urbanization, energy-intensive industries agglom-
eration and NOx emissions and the intermediary effect. The data comes from the China
Statistical Yearbook (2007–2018) [62] and China Environment Yearbook (2007–2018) [63,64].
The GDP data used in the variables were calculated at a constant price in 2006 and were
processed by using a logarithm. The representation and descriptive statistics of the related
variables are shown in Table 2.
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Table 2. Variable description statistics.

Variables Representations of Variable Mean Std. Dev. Min. Max.

lnNE Regional NOx emissions 3.8538 0.7655 1.3863 5.1936
lnnurb — 5.8389 0.4071 4.4776 6.7733
lnhagg — 0.0691 0.4509 −1.2463 1.6868
lnpgdp GDP per resident population 10.3004 0.6220 8.6570 11.9360

lner
Proportion of environmental protection expenditure in fiscal

expenditure in the year
−3.5628 0.3617 −4.7732 −2.6992

lnr&d
The proportion of regional research and experiment funds in

GDP
−4.7267 0.6613 −8.0286 −3.5696

lnfdi
The proportion of actual foreign direct investment in industrial

added value of the year
14.4673 1.5769 9.7361 16.9303

lnis The proportion of added value of secondary industry in GDP −0.6907 0.1903 −1.4451 −0.4897

lnee
The ratio of gross regional product to regional energy

consumption
−0.0643 0.4942 −1.3816 1.0164

lnhc
The proportion of the number of students in colleges and

universities in the total population of the region
4.092 0.8314 1.2809 5.3059

lnes The ratio of coal consumption to total energy consumption −0.4733 0.4439 −3.0136 0.4248

3. Results

3.1. Stationary Test and Multicollinearity Test of Variables

Before regression, it is required to test the stationarity of the data to avoid pseudo
regression. The unit root test is a common method to test the stationarity of data. For
example, Levin, Lin and Chu [65] derived the unit root test (LLC test) from Levin and
Lin [66], and it was proposed by IM, Pesaran and Shin [67] that the unit root test considers
panel heterogeneity (IPS test). The test results are shown in Table 3. In the LLC test, all the
variables deny the original hypothesis of the “existence of a unit root” at the level of 1%,
while, in the test of IPS, the variables such as lnNE, lnpgdp, lnr&d, lnis, lnee and lnhc were
unstable. After the first-order difference, all the variables rejected the original hypothesis
of the “existence of a unit root” at the level of 1%. At the same time, multicollinearity will
distort the regression estimation model. The value of the variance inflation factor (VIF) was
calculated to judge whether there was multicollinearity between the prediction variables
or not. It was found that the VIF values were less than 10. Therefore, from this, it could be
seen that there was no multicollinearity among the variables to ensure the effectiveness of
the following regression estimation results.

Table 3. Unit roots and multicollinearity test.

Variables
I (0) I (1)

VIF
LLC Test IPS Test IPS Test

lnNE −9.7787 *** −2.1377 −9.3706 *** —
lnnurb −28.3692 *** −4.7110 *** −12.5630 *** 1.51
lnhagg −9.1874 *** −1.5977 * −8.2932 *** 2.30
lnpgdp −5.4468 *** 1.7051 −4.3022 *** 3.67

lner −11.3619 *** −3.9842 *** −8.6963 *** 1.23
lnr&d −5.6201 *** 0.3098 −12.3932 *** 3.00
lnfdi −9.6044 *** −2.7313 *** −9.0860 *** 4.84
lnis −7.3855 *** 1.7466 −6.4407 *** 2.33
lnee −3.3887 *** 2.0213 −5.4591 *** 5.71
lnhc −5.6826 *** 1.0969 −7.6319 *** 4.65
lnes −9.1010 *** −1.8949 ** −5.4591 *** 2.34

Note: *, ** and *** indicate significance at the levels of 10%, 5% and 1%.

3.2. Regression of the Basic Model

Considering the robustness of the estimation results, this paper adopted the random
effects model, fixed effects model and SYS-GMM model for estimation. From the regression

330



Atmosphere 2021, 12, 1244

results in Columns 1–3, in Table 4, in addition to the estimated coefficient of lnfdi, the
influence coefficients of the dependent variables estimated by the random effects model,
fixed effects model and SYS-GMM model on NOx emissions were consistent; that is, the
robustness of the estimated results was verified. In the estimation of the SYS-GMM method,
based on the research of Arellano and Bond [51] and Arellano and Bover [68], the Sargan
test and Arellano bond test were applied to determine whether there was a second-order
autocorrelation between the effectiveness of the instrumental variables and the error term
or not. From the regression results in Table 4, it was shown that, in the Sargan test, the
original hypothesis of the effectiveness of the instrumental variables was accepted, and in
the statistics of AR (2) in Arellano bond test, the original assumption that the second-order
sequence of residual terms had no autocorrelation showed that the model setting was
effective.

Table 4. Baseline regression results.

Variables
Contains No Interaction Term Contain Interaction Items

RE FE SYS-GMM SYS-GMM

lnNEi,t-1
— — 0.4075 *** 0.4633 ***
— — (0.0176) (0.0242)

lnnurb
−0.1273 * −0.1750 ** −0.4766 *** −0.2929 ***
(0.0773) (0.0799) (0.0639) (0.0992)

lnhagg
0.1723 *** 0.2006 *** 0.1290 *** 0.0963 ***
(0.0631) (0.0634) (0.0157) (0.0167)

Clnnurb* clnhagg
— — — −0.2818***
— — — (0.0665)

lnis
2.5061 *** 2.8958 *** 2.1128 *** 1.6204 ***
(0.2845) (0.3243) (0.2156) (0.3252)

lnfdi
0.0361 −0.0040 0.1421 *** 0.1173 ***

(0.0321) (0.0340) (0.0255) (0.0199)

lner
−0.1881 *** −0.1486 ** −0.4251 *** −0.3833 ***

(0.0592) (0.0608) (0.0372) (0.0350)

lnpgdp
−0.3390 *** −0.3235 *** −0.6537 *** −0.5941***

(0.0719) (0.0768) (0.0377) (0.0638)

lnr&d
0.2245 *** 0.2060 *** 0.4274 *** 0.3560 ***
(0.0622) (0.0630) (0.0463) (0.0736)

cons 9.6767 *** 10.6965 *** 11.6863 *** 9.6132 ***
(0.9698) (1.0116) (0.7497) (0.9050)

AR (1)
— — −1.8979 −2.0145
— — (0.0577) (0.0440)

AR (2)
— — 1.0735 1.074
— — (0.2830) (0.2828)

sargan — — 28.2426 27.6578
— — (1.0000) (1.0000)

Note: *, ** and *** indicate significance at the levels of 10%, 5% and 1%, respectively; the values in parentheses for the variable and constant
items represent the standard errors.

The regression coefficients in all the independent variables wee significant at the 1%
level, and the first-order coefficient in the early stage of the NOx emissions was positive;
from this, it was indicated that China’s NOx emissions had a cumulative effect, which
means the increase of NOx emissions in the early stage will result in the increase of NOx
emissions during the current period.

New urbanization, environmental regulation and economic development will promote
to reduce NOx emissions. For every 1% increase in the level of new urbanization, the
nitrogen oxides emissions can be reduced by 0.4766%, as, for every 1% increase in the
environmental regulations, the NOx emissions will be reduced by 0.4251%. For every 1%
increase in economic development, nitrogen oxides emissions will be reduced by 0.6537%.

The agglomeration of energy-intensive industries, industrial structure, technological
innovation and foreign direct investment were positively correlated with the increase of
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NOx emissions. For every 1% increase in the agglomeration of energy-intensive industries,
NOx emissions will be increased by 0.1290%. The industrial structure is the biggest factor
affecting NOx emissions, with the elasticity coefficient reaching 2.1128. Therefore, it is
the key to realizing China’s NOx emissions reduction to optimize the industrial structure.
The elastic coefficient of technological innovation is 0.4274, which indicates that there is a
positive correlation between technological innovation and NOx emissions. From this result,
it is shown that China’s technological innovation has not yet played its role in reducing
emissions [69,70]. The coefficient of foreign direct investment is 0.1421, indicating that,
for every 1% increase in foreign direct investment, the NOx emissions will increase by
0.1421%.

Furthermore, new urbanization will attract similar industries to gather in specific
regions, and industrial agglomeration will drive population agglomeration, thereby pro-
moting the development of new urbanization. Therefore, there may be an interaction
between the new urbanization and agglomeration of energy-intensive industries. From
the regression results in Column 4 in Table 4, it is shown that the new urbanization and
agglomeration of energy-intensive industries mutually interact. After adding the interac-
tion terms of the new urbanization and agglomeration of energy-intensive industries, the
positive and negative affecting coefficients in each dependent variable on NOx emissions
have not been changed and are significant at the level of 1%, which, once again, verifies
the robustness of the regression results. The interaction coefficient between the new ur-
banization and agglomeration of energy-intensive industries is −0.2818, showing that the
promotion of NOx emissions by the agglomeration of high-energy-consuming industries
decreases as the level of new urbanization increases. With the improvement development
of new urbanization, the adverse impact of energy-intensive industries agglomeration on
NOx emissions reduction will be weakened gradually.

3.3. Mechanism Analysis

Based on the benchmark study in Table 4, it is found that China’s new urbanization
has a strong inhibitory effect on NOx emissions; however, energy-intensive industries
agglomeration has a strong promotion effect on NOx emissions. In this section, the trans-
mission mechanism of new urbanization and energy-intensive industries agglomeration
on NOx emissions is explored with the intermediary effect model.

During the period of exploring the transmission mechanism between new urbaniza-
tion and NOx emissions, it should be considered whether new urbanization can affect
NOx emissions with energy efficiency and human capital. It can be seen from Table 5 that,
when energy efficiency was taken as the intermediary variable into the model, the absolute
value of the estimated coefficient of the impact of new urbanization on NOx emissions
in Equation (5) was less than Equation (3), the impact of new urbanization on the energy
efficiency was positive and the impact of the energy efficiency on NOx was negative, which
was significant at the level of 1%. At the same time, it showed that energy efficiency is the
intermediary variable of new urbanization affecting NOx emissions. New urbanization
will benefit the improvement of energy efficiency, which not only reduces the level of unit
energy consumption but also produces additional economic benefits, leading to reduce
NOx emissions. Therefore, new urbanization reduces NOx emissions by improving the
energy efficiency. When human capital is introduced into the model as an intermediary
variable, the estimation coefficient of new urbanization on NOx emissions in Equation (5)
was less than Equation (3), the impact of new urbanization on human capital was positive
and the impact of human capital on NOx was negative. It is shown that human capital
is the intermediary variable of the new urbanization affecting NOx emissions. With the
improvement of new urbanization, better educational opportunities will be provided for
more people, in order to promote human capital. At the same time, as the human capital
level improves, it contributes to the enhancement of residents’ awareness of environmental
protection, playing a positive role in pollutant emissions reduction [71,72], which means
that the human capital in new urbanization will improve the reduction of NOx emissions.
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Table 5. Research results on the mechanism of NOx emissions by new urbanization.

Variables

The Mediating Variable of Energy Efficiency The Mediating Variable of Human Capital

lnNE lnee lnNE lnNE lnhc lnNE

(3) (4) (5) (3) (4) (5)

lnNEi,t-1
0.4238 *** — 0.4047 *** 0.4238 *** — 0.4259 ***
(0.0163) — (0.0232) (0.0163) — (0.0296)

lneei,t-1
— 0.8671 *** — — — —
— (0.0132) — — — —

lnhci,t-1
— — — — 0.9659 *** —
— — — — (0.0214) —

lnnurb
−0.4236 *** 0.0470 *** −0.2199 *** −0.4236 *** 0.0089 * −0.3304 ***

(0.0426) (0.0076) (0.0489) (0.0426) (0.0048) (0.0472)

lnee
— — −0.9432 *** — — —
— — (0.0785) — — —

lnhc
— — — — — −0.3117 ***
— — — — — (0.0957)

lnpgdp
−0.6330 *** 0.0361 * −0.2535 *** −0.6330 *** −0.0330 *** −0.6642 ***

(0.0351) (0.0201) (0.0791) (0.0351) (0.0078) (0.0574)

lner
−0.3980 *** 0.0248 *** −0.3486 *** −0.3980 *** 0.0225 *** −0.3433 ***

(0.0360) (0.0055) (0.0308) (0.0360) (0.0027) (0.0381)

lnr&d
0.4067 *** −0.0022 0.4190 *** 0.4067 *** −0.0513 *** 0.4051 ***
(0.0419) (0.0111) (0.0444) (0.0419) (0.0071) (0.0360)

lnfdi
0.1307 *** 0.0300 *** 0.2554 *** 0.1307 *** 0.0133 *** 0.2363 ***
(0.0231) (0.0043) (0.0277) (0.0231) (0.0021) (0.0368)

lnis
2.2238 *** 0.1023 1.7462 *** 2.2238 *** 0.1179 *** 2.5879 ***
(0.1920) (0.0645) (0.2563) (0.1920) (0.0287) (0.3300)

Cons
11.3629 *** −0.8930 *** 4.3882 *** 11.3629 *** 0.2036 ** 11.3177 ***

(0.5210) (0.2597) (1.1342) (0.5210) (0.0950) (0.9964)

AR (1)
−1.8648 −3.8826 −2.0264 −1.8648 −1.9778 −1.8819
(0.0622) (0.0001) (0.0427) (0.0622) (0.0479) (0.0599)

AR (2)
0.6226 1.4088 0.6659 0.6226 0.3007 0.5858

(0.5336) (0.1589) (0.5055) (0.5336) (0.7636) (0.5580)

sargan 28.9093 28.2143 28.7847 28.9093 24.1725 28.1055
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Note: *, ** and *** indicate significance at the levels of 10%, 5% and 1%, respectively; the values in parentheses for the variable and constant
items represent the standard errors.

In the process of exploring the transmission mechanism between the agglomeration of
energy-intensive industries and NOx emissions, it should be considered whether energy-
intensive industries agglomerations can affect NOx emissions with the industrial structure
and energy structure. It can be seen from Table 6 that, when the industrial structure is taken
as the intermediary variable into the model, the estimation coefficient of the agglomeration
of energy-intensive industries on NOx emissions was positive, and Equation (5) was less
than Equation (3). The impact of agglomeration of energy-intensive industries on the
industrial structure was positive, and the impact of the industrial structure on NOx was
positive, which were significant at the confidence level of 1%. At the same time, it also
showed that the industrial structure is an intermediary variable for the agglomeration of
energy-intensive industries agglomeration to affect NOx emissions. The agglomeration of
energy-intensive industries will intensify NOx emissions with the proportion of secondary
industry increasing. When the energy structure is taken as the intermediary variable
into the model, the estimated coefficient of agglomeration of energy-intensive industries
on NOx in Equation (5) is greater than that in Equation (3), and the coefficient signs of
the direct and indirect effects of agglomeration of energy-intensive industries on NOx
emissions are different. It seemed that the energy structure showed the masking effect. At
this time, agglomeration will benefit the upgrading of energy-saving technologies and the
transformation of energy-saving equipment and the large-scale use of new energy fuels,
so it greatly reduces the proportion of coal in the energy consumption, thus reducing the
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pollutant emissions [73]. The agglomeration of energy-intensive industries has a positive
impact on NOx emissions; however, the agglomeration of energy-intensive industries will
reduce this adverse impact by optimizing the energy structure.

Table 6. Research results on the mechanism of NOx emissions by energy-intensive industries agglomeration.

Variables

The Mediating Variable of
Industrial Structure

The Mediating Variable of
Energy Structure

lnNE lnis lnNE lnNE lnes lnNE

(3) (4) (5) (3) (4) (5)

lnNEi,t-1
0.6317 *** — 0.4075 *** 0.6317 *** — 0.5943 ***
(0.0166) — (0.0176) (0.0166) — (0.0193)

lnisi,t-1
— 0.8524 *** — — — —
— (0.0179) — — — —

lnesi,t-1
— — — — 1.1056 *** —
— — — — (0.0212) —

lnhagg
0.1830 *** 0.0067 *** 0.1290 *** 0.1830 *** −0.0488 *** 0.2073 ***
(0.0125) (0.0007) (0.0157) (0.0125) (0.0053) (0.0159)

lnis
— — 2.1128 *** — — —
— — (0.2156) — — —

lnes
— — — — — 0.2757 ***
— — — — — (0.0785)

lnnurb
−0.2588 *** −0.0135 *** −0.4766 *** −0.2588 *** 0.0172 −0.4228 ***

(0.0707) (0.0020) (0.0639) (0.0707) (0.0127) (0.0407)

lnpgdp
−0.4778 *** −0.0624 *** −0.6537 *** −0.4778 *** −0.0781 *** −0.5319 ***

(0.0363) (0.0047) (0.0377) (0.0363) (0.0083) (0.0430)

lnr&d
0.3947 *** 0.0198 *** 0.4274 *** 0.3947 *** 0.0107 * 0.4480 ***
(0.0396) (0.0056) (0.0463) (0.0396) (0.0065) (0.0369)

lnfdi
0.0635 *** −0.0135 *** 0.1421 *** 0.0635 *** 0.0252 *** 0.1360 ***
(0.0123) (0.0019) (0.0255) (0.0123) (0.0078) (0.0194)

lner
−0.3864 *** −0.0094 *** −0.4251 *** −0.3864 *** −0.0488 *** −0.4717 ***

(0.0303) (0.0024) (0.0372) (0.0303) (0.0087) (0.0368)

cons 7.4228 *** 1.0860 *** 11.6863 *** 7.4228 *** 0.2498 ** 8.0992 ***
(0.7617) (0.0580) (0.7497) (0.7617) (0.0998) (0.5764)

AR(1)
−2.044 −1.7381 −1.8979 −2.044 −3.5169 −1.9668
(0.0409) (0.0822) (0.0577) (0.0409) (0.0004) (0.0492)

AR(2)
1.2714 −1.5556 1.0735 1.2714 −0.9703 1.2362

(0.2036) (0.1198) (0.2830) (0.2036) (0.3319) (0.2164)

sargan 28.8792 26.8120 28.2426 28.8792 23.6664 29.3790
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Note: *, ** and *** indicate significance at the levels of 10%, 5% and 1%, respectively; the values in parentheses for the variable and constant
items represent the standard errors.

From the above, the impact mechanism of new urbanization and agglomeration of
energy-intensive industries on NOx through intermediary variables is tested. It is found
that the increase of the level of new urbanization not only directly promotes the reduction
of NOx but also reduces NOx pollution by improving the energy efficiency and human
capital. At present, the high proportion of China’s secondary industry is still the key
factor, leading to an increase in NOx emissions. Although the agglomeration of energy-
intensive industries can reduce NOx emissions through the reduction of coal consumption,
its masking effect is less than the direct effect of the agglomeration of energy-intensive
industries on NOx emissions. Therefore, the total effects of the agglomeration of energy-
intensive industries on NOx emissions still showed a positive correlation. In order to
grasp the inspection results comprehensively, all the inspection results are summarized in
Table 7.

334



Atmosphere 2021, 12, 1244

Table 7. Summary of the mechanism analysis.

Variables Object Type of Effect
Mediating (Masking)
Effect/The Total Effect

new urbanization
energy efficiency mediating effect 0.1047

human capital mediating effect 0.0065
energy-intensive industries

agglomeration
industrial structure mediating effect 0.0774

energy structure masking effect −0.0735

4. Conclusions and Policy Implications

From the provincial panel data from 2006 to 2017, this paper comprehensively mea-
sured and analyzed the impact of the new urbanization and agglomeration of energy-
intensive industries on NOx emissions in China; at the same time, the systematic GMM
method was applied to empirically analyze the impact of China’s new urbanization and
agglomeration of energy-intensive industries on NOx emissions; what was more, this paper
also used the intermediary effect model to explore its impact mechanism.

From above, the conclusions were as follows: (1) There was a negative correlation
between new urbanization and NOx emissions. For every 1% increase in the level of
new urbanization, the NOx emissions will be reduced by 0.4766%. There was a positive
correlation between the agglomeration of energy-intensive industries and NOx emissions.
For every 1% increase in the agglomeration of energy-intensive industries, NOx emissions
will be increased by 0.1290%. (2) The new urbanization and agglomeration of energy-
intensive industries have a mutual impact on NOx emissions. The agglomeration of
energy-intensive industries’ promotion of NOx emissions weakens with the increase in the
level of new urbanization. (3) From the research results of the transmission mechanism,
it showed that the energy efficiency and human capital reflected the intermediary effect
mechanism in the impact of new urbanization on NOx. New urbanization reduces the NOx
emissions by improving the energy efficiency and human capital. There are two different
mechanisms between the agglomeration of energy-intensive industries and NOx emissions
such as: the intermediary effect and masking effect. The industrial structure plays an
intermediary role in the agglomeration of energy-intensive industries and NOx emissions,
while the mechanism of the energy structure in the agglomeration of the energy-intensive
industries and NOx emissions is the masking effect.

From the above conclusions, this paper lists the following suggestions: firstly, the
emissions reduction effect of new urbanization shall be given attention to, high-level talent
agglomeration is supported and the resource factors shall be invested. At the same time,
there is no need in excessively pursuing the development speed of new urbanization, en-
suring the quality of development, narrowing the economic and social gaps among regions
and realizing urban sustainable development. Secondly, it is scientific and reasonable
to guide the agglomeration of energy-intensive industries and optimize the industrial
structure, as well as the energy structure. Thirdly, it is also significant to improve the level
of scientific and technological governance, as well as give full attention to the ability of
coordinated emission reduction.

With the energy transformation continuously promoted, carbon emission reduction,
carbon emission peak and carbon neutralization have become the focus of global attention.
Next, the research will focus on promoting the coordinated treatment of carbon dioxide
and air pollution.
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Abstract: In order to investigate the seasonal variation in chemical characteristics of VOCs in the
urban and suburban areas of southwest China, we used SUMMA canister sampling in Jinghong
city from October 2016 to June 2017. Forty-eight VOC species concentrations were analyzed using
atmospheric preconcentration gas chromatography–mass spectrometry (GC–MS), Then, regional
VOC pollution characteristics, ozone formation potentials (OFP), source identity, and health risk
assessments were studied. The results showed that the average concentration of total mass was
144.34 μg·m−3 in the urban area and 47.81 μg·m−3 in the suburban area. Alkanes accounted for the
highest proportion of VOC groups at 38.11%, followed by olefins (36.60%) and aromatic hydrocarbons
(25.28%). Propane and isoprene were the species with the highest mass concentrations in urban
and suburban sampling sites. The calculation of OFP showed that the contributions of olefins and
aromatic hydrocarbons were higher than those of alkanes. Through the ratio of specific species,
the VOCs were mainly affected by motor vehicle exhaust emissions, fuel volatilization, vegetation
emissions, and biomass combustion. Combined with the analysis of the backward trajectory model,
biomass burning activities in Myanmar influenced the concentration of VOCs in Jinghong. Health
risk assessments have shown that the noncarcinogenic risk and hazard index of atmospheric VOCs in
Jinghong were low (less than 1). However, the value of the benzene cancer risk to the human body
was higher than the safety threshold of 1 × 10−6, showing that benzene has carcinogenic risk. This
study provides effective support for local governments formulating air pollution control policies.

Keywords: volatile organic compounds; Jinghong city; ozone formation potentials; source identity;
health risk

1. Introduction

China’s energy consumption has increased rapidly, and urban air environment prob-
lems have become increasingly prominent in recent years. Tropospheric ozone (O3) has
become one of the main pollutants affecting air quality. Volatile organic compounds (VOCs)
have attracted widespread attention as important precursors of O3. VOCs refer to a class
of organic gas compounds that exist in the air, including alkanes, aromatic hydrocarbons,
olefins, halogenated hydrocarbons, and oxygenated hydrocarbons [1,2]. Extensive par-
ticipation in atmospheric photochemical reactions leads to the formation of ozone and
secondary organic aerosols (SOAs), which have a strong risk of carcinogenicity, which
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is harmful to ambient air quality and human health [3,4]. Health brings threats such as
respiratory damage, teratogenicity, and carcinogenicity [5,6].

Presently, various countries in the world have carried out VOCs-related research.
China’s research is mainly concentrated in the Beijing-Tianjin-Hebei and surrounding
areas [7–10], Yangtze River Delta [11–13], Pearl River Delta [14–16], and other economically
developed and densely populated areas of urban agglomerations, using offline or online
monitoring analysis instruments and analysis methods to conduct related research. For
example, Jay used proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)
to perform highly time-resolved measurements in Beijing to study the characteristics and
sources of volatile organic compounds (VOCs) [7]. Wei and Wang studied Handan, Hebei
Province, a typical industrialized city in China; they conducted online measurements
of VOCs and discussed their impact on PM2.5 in the atmosphere [8,9]. Gu analyzed
the multiscale chemical characterization and source apportionment of volatile organic
compounds (VOCs) in Tianjin, China, from 1 November 2018 to 15 March 2019 [10]. Wang
conducted online measurements of VOCs in Nanjing during the epidemic and evaluated
the impact of the COVID-19 lockdown on the mixing ratio and sources of VOCs [12]. Ma
investigated the pollution characteristics of VOCs products from eight synthetic resin
enterprises in Shanghai, China [13]. Wang conducted a field study on the specific VOC
(including OVOC) emissions of six construction machinery and five inland ships in the
Pearl River Delta (PRD) region [14].

Relatively less attention has been paid to the atmospheric environment in southwest
China, especially in the border cities affected by Southeast and South Asia. Jinghong city is
located in the south of Yunnan province, close to Myanmar, Laos, and other countries, with
the characteristics of a tropical climate and dense vegetation. It is restricted by the natural
geographical conditions of typical basin topography, less precipitation, high temperature,
and more inversion weather in winter and low winds. Village units and residential edges
have frequent straw and waste incineration, as well as downtown restaurants and barbecue
stalls with no pollution control facilities. Surrounding the city, rubber and wood processing
factories produce waste gases. Combined with this, vehicle use has risen in recent years; all
of the above release emissions of nitrogen oxides (NOx) and VOCs into the city and increase
the production of ozone. Ozone is a secondary photochemical pollutant and greenhouse
gas. It is formed by the reaction of NOx and VOCs, and other precursors under high-
intensity ultraviolet light. Favorable conditions for ozone generation are mainly found in
suburban areas, where NOx-rich air from windward urban agglomerations mix with VOCs
emitted by trees and at high altitudes due to enhanced UV radiation [17]. Phytotoxic ozone
has caused significant damage to terrestrial vegetation worldwide [18]. Dry deposition
on plant surfaces (cuticle, bark), soil and stagnant water, and deposition through stomata
into leaves leads to oxidative damage, which is the cause of carbon dioxide absorption in
photosynthesis and decreased forest productivity [19,20].

In this study, VOCs, an important precursor of ozone, were taken as the research
object, as well as VOC species concentration, ozone formation potentials, and health risks
and sources. These were studied to provide a scientific basis for VOCs and ozone pollution
control in this region.

2. Materials and Methods

2.1. VOCs Sampling

The atmospheric sampling sites of this study were the Municipal Environmental
Protection Bureau and the Olive Dam Water Quality Automatic Monitoring Station of
Jinghong. As shown in Figure 1, the Jinghong Municipal Environmental Protection Bureau
is located in the city’s urban center, where transportation is more frequent. The Olive Dam
Water Quality Automatic Monitoring Station is located in the suburb, with relatively little
human activity and transportation; it was taken as the suburban sampling control site. By
sampling the urban and suburban areas, we can understand the difference in VOC species
concentration in the suburban and urban areas of Jinghong City.
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Figure 1. Sampling sites of VOCs in Jinghong.

2.2. Sample Collection and Component Analysis

According to the “Measuring Tank Sampling of Ambient Air Volatile Organic Com-
pounds/Gas Chromatography-Mass Spectrometry (HJ759-2015)”, the air samples were
collected using a 3.2 L stainless-steel sampling tank produced by Entech Corporation of the
United States. The inner wall of the SUMMA canister was cut and silanized, a flow valve
controlled the sampling inlet flow, and a SUMMA canister sample was collected every 2 h.
Sampling occurred in October 2016 and March, April, May, and June 2017, with 5 consecu-
tive days of sampling at the beginning of each month. Meteorological conditions such as air
temperature, air pressure, and wind speed during the sampling period were monitored and
recorded online at a height of 3 m through the Vantage Pro2TM wireless weather station
(Davis Instruments, Hayward, CA, USA). The rainfall in Jinghong varies significantly from
month to month (abundant rainfall from June to October each year), so this paper defines
the samples collected in October 2016 and June 2017 as the rainy season samples, and the
samples collected in March, April, and May 2017 as the dry season samples.

This study analyzed 58 VOC species (alkanes, olefins, and aromatic hydrocarbons) by
atmospheric preconcentration gas-conjugated methods. The main instruments were the
atmospheric preconcentrator (Entech 7100, Entech Instruments, Simi Valley, CA, USA)-GC
(Agilent 6890N, Agilent Technologies, Roseville, CA, USA)-MS (Agilent 5973N, Agilent
Technologies, Roseville, CA, USA), and the column was the GS-GASPRO with a size of
60 m × 0.32 μm. The SUMMA canister was first connected to the autosampler, and 400 mL
of the sample was pumped into the preconcentrator. The sample was concentrated by
dewatering and using carbon dioxide interferences such as a 3-stage cold trap; then, the
sample was transferred to GC–MS for detection. The carrier gas was high-purity helium,
and the heating procedure was: initial temperature of 35 ◦C, held for 15 min, heated to
150 ◦C at 5 ◦C·min−1; held for 7 min; heated to 200 ◦C at 10 ◦C·min−1, maintained for
4 min. The inlet temperature was 140 ◦C, the carrier gas velocity was 1.0 mL·min−1, and
the solvent delay time was 5.6 min. Mass spectrometry conditions: interface temperature,
250 ◦C; ion source temperature, 230 ◦C; mass spectrometry detector ion source type, elec-
tron bombardment ionization (EI), operated by full scan (SCAN), with scanning range of
35~300 u. Five standard curves of different concentration gradients were established using
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a PAMS calibration gas mixture (Spectra Gases USA) with volume fractions of 0.25 × 10−9,
0.5 × 10−9, 1 × 10−9, 2 × 10−9, and 3 × 10−9.

2.3. Quality Assurance and Control

The SUMMA canister was cleaned 3 times with high-purity nitrogen with an automatic
de-tanker (Entech 3100) before each sampling and pumped to a vacuum state, so that the
pressure in the tank was less than 50 millitorr, and was ready for later. A cleaned SUMMA
canister was injected with high-purity nitrogen as a laboratory blank, and the laboratory
blank test was performed before the analysis of each batch of samples.

In the sample analysis process, 1 parallel sample was analyzed for every 10 samples
measured, and the relative deviation in the target in the parallel sample was ≤30%. The
correlation coefficients of the target compounds in the standard curve were >0.995. The
retention time of the internal target in the sample deviated from the retention time of the
internal standard in the continuous or recently drawn calibration curve of the day by no
more than 20 s. Every 24 h, we analyzed the middle concentration point of the standard
curve (1 × 10−9); the measurement result was ≤30% of the initial mass concentration value;
otherwise, the cause should be found or redrawn. The results showed no contamination
during sample handling and collection, as assured by the quality assurance and control
(QC/QA) procedures.

2.4. Analytical Methods

2.4.1. Ozone Formation Potentials (OFP)

Ozone formation potentials can be used to evaluate the potential of VOCs emissions
participating in the reaction to generate ozone, and they provided some guidance for the
formulation of VOCs control measures. In this study, the maximum incremental reactivity
method (MIR) was used to determine the contribution of active components and key species
in VOCs to O3 production [21,22], calculated as in Equation (1):

OFPi = VOCsi × MIRi (1)

where OFPi represents the amount of ozone generation potential of species i in μg·m−3;
VOCsi represents the mass concentration of species i in μg·m−3; and MIRi represents the
MIR coefficient of species i [23].

2.4.2. HYSPLIT Model

The HYSPLIT model(https://ready.arl.noaa.gov/HYSPLIT_traj.php, accessed on
1 July 2021) is a comprehensive model system developed by the National Oceanic and
Atmospheric Centre (NOAA) and the Australian Meteorological Agency (BOM). It can
be used to calculate and analyze processes such as airflow movement, sedimentation, air
pollutant transport, and diffusion trajectory [24]. At present, it has been widely used to
study the transmission routes and source analysis of air pollutants [25–28].

In this paper, TrajStat follow-up software [29] was used to analyze and study the
backward trajectory of air masses in Jinghong. As the 500 m height wind field accurately
reflects the average flow field characteristics of the boundary layer [27], the simulated
height was chosen as 500 m. Jinghong (100◦47′38” E, 22◦00′07” N) was the simulated
receiving point, 8:00 (Beijing time) every day was the pushback start time, and the 72 h
backward trajectory of the receiving point from July 2016 to June 2017 was calculated, to
reflect the characteristics of the airflow.

2.4.3. Health Risk Assessment

In order to study the potential harm of VOCs to human health in Jinghong City, it
is necessary to assess the health risk of VOCs. This study adopted a new health risk
assessment method (EPA-540-R-070-002) proposed by the U.S. EPA in 2009 for inhaled
route pollutants in specific places. The calculation formula is as follows:

EC =
CA × ET × EF × ED

AT
(2)
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HQ =
EC

(RFC × 1000)
(3)

R = EC × IUR (4)

HI = ∑ HQi (5)

where EC is the exposure concentration in units of μg·m−3; CA is the ambient concentration
of VOCs in μg·m−3; ET is the exposure time in h·d−1, with a value of 24; EF is the exposure
frequency in d·a−1, with a value of 365; ED is the exposure time in a, with a value of 70;
AT is the average time in h, with a value of 70 × 365 × 24; HQ is the noncarcinogenic risk
hazard quotient value; RfC is the reference concentration in μg·m−3; R is the lifetime risk
value of carcinogenicity, IUR is the inhalation risk in μg·m−3; and HI is the hazard index.
The RfC and IUR values are from the reference [30].

2.4.4. Data Sources

This study used daily averaged and hourly data on the concentrations of six atmo-
spheric pollutants (SO2, NO2, CO, O3, PM2.5, and PM10) at two environmental monitoring
stations in Jinghong from July 2016 to June 2017. Contaminant data were from the National
Environmental Monitoring Center of China (https://air.cnemc.cn:18007/, accessed on
1 July 2021). The data used in the backward trajectory model were 2016–2017 Global Data
Assimilation System (GDAS) data provided by the NCEP (National Center for Environ-
mental Prediction). Meteorological data were derived from the National Meteorological
Science Data Sharing Service Platform (http://data.cma.cn/, accessed on 1 July 2021).

3. Results and Discussions

3.1. Species Composition Characteristics of VOCs

During the sampling period, 58 VOC compounds (alkanes, olefins, and aromatic hy-
drocarbons) were detected in the atmosphere at the urban and suburban monitoring sites
in Jinghong, and a total of 48 VOC species were detected. As shown in Table 1, the total
concentration of VOCs was (144.34 ± 36.15) μg·m−3 at the urban sampling site, which was
much higher than at the suburban sampling site (48.21 ± 12.55 μg·m−3). Compared with
the suburban sampling site, the urban sampling site in Jinghong was closer to various an-
thropogenic emission sources, which are susceptible to factors such as the emission of VOC
sources of human activities. These emission sources have the characteristics of continuity,
concentration, and high concentration, which make the concentration of VOCs in urban
areas highly accumulated. As shown in Figure 2, in the dry season, the concentrations of
alkanes, olefins, aromatic hydrocarbons, and TVOCs in the urban areas of Jinghong were
(69.94 ± 9.25) μg·m−3, (37.53 ± 8.22) μg·m−3, (38.72 ± 17.32) μg·m−3, and 146.19 μg·m−3, re-
spectively, with those in the suburban areas were (7.40 ± 2.34) μg·m−3, (32.22 ± 7.99) μg·m−3,
(6.74 ± 3.43) μg·m−3, and TVOCs 47.15 μg·m−3, respectively. During the rainy season, the
concentrations of alkanes, olefins, aromatic hydrocarbons, and TVOCs in urban areas were
(62.93 ± 16.13) μg·m−3, (33.44 ± 8.22) μg·m−3, (46.13 ± 13.17) μg·m−3, and 142.5 μg·m−3,
respectively, and those in suburban areas were (6.21 ± 1.99) μg·m−3, (37.48 ± 6.69) μg·m−3,
(5.58 ± 2.65) μg·m−3, and 49.27 μg·m−3, respectively. The VOC groups at the urban sampling
site were mainly alkanes, while the VOC groups at the suburban sampling site were mainly
olefins. A nonparametric test (one-way analysis of variance, 95% confidence level) showed
there were no significant differences in VOCs concentration and species composition between
the dry season and rainy season (p > 0.05). The concentration of aromatic hydrocarbon groups
in the urban sampling site was higher than that in the dry season, which may be related to
the increase in benzene emissions due to the cooling of motor vehicle air conditioning and
cooling in the rainy season.

343



Atmosphere 2022, 13, 613

Table 1. Concentration levels of atmospheric VOCs in different cities.

City Period
Number of

VOCs Species
Concentration of
VOCs/(μg·m−3)

Alkanes/(%) Olefins/(%)
Aromatic

Hydrocarbons/(%)
Reference

urban of Jinghong
2016~2017 48

144.35 ± 36.15 46.03 24.58 29.39 This study
suburbs of Jinghong 48.21 ± 12.55 14.12 73.11 12.78

Kunming 2014 35 30.22 68.58 7.78 23.64 [31]
Guangzhou 2009 31 114.50 59.97 15.18 39.24 [32]

Beijing 2016 99 44.00 36.80 7.00 11.80 [33]
Chengdu 2012 59 108 ± 52.43 47.08 11.53 44.52 [34]

Monterrey
(Mexico) 2011 29 80.14 62.88 9.55 24.67 [35]

Nagoya (Japan) 2003~2004 48 62.28 50.08 9.28 40.64 [36]

Figure 2. Concentration of alkanes, olefins, and aromatics in urban and suburban areas of Jinghong.

The comparison of VOC species concentrations in different atmospheric environments
in Jinghong and other cities is shown in Table 1. The data sample collection equipment
used a Suma tank with a volume of 6 L, and about 28 effective samples were in Kunming.
The samples were collected with stainless-steel tubes, and about 12 effective samples were
collected in Chengdu. VOC observations adopted syntech spectra gc955 online monitoring
systems produced by synspec company in the Netherlands, and about 220 groups of
effective data were from Guangzhou. The VOC sampling was conducted at the superstation
for atmospheric environmental monitoring in Beijing Normal University, and the amount of
valid data was not mentioned in Beijing. Samples were collected using ENTECH (Malvern,
PA, USA) summa electro-polished stainless-steels container (6 L) following the United
States Environmental Protection Agency analytical method (US EPA, 1999), and about
56 effective samples were collected in Monterey; an automatic measurement system for
Non-methane Hydrocarbons (NMHCs) was constructed. The system was set-up at the
Hydrospheric Atmospheric Research Center (HyARC) building in Nagoya University, and
the amount of valid data was not mentioned in Nagoya (Japan). The sampling areas of
the above cities were urban areas. Table 1 shows that there was a significant difference
in the proportion of species between the urban and suburban area of Jinghong City. The
concentration in the urban area was about three times that in the suburbs. The highest
proportion of VOC species in the urban area was alkane, 46.03%, followed by olefin
and aromatic hydrocarbon species, accounting for 24.58% and 29.39%, respectively. Its
species composition was different from those of Kunming, Guangzhou, Beijing, Chengdu,
Monterrey, Nagoya, and other cities. The proportion of olefins in the suburbs of Jinghong
was highest (73.11%), followed by alkanes and aromatic hydrocarbons (14.12% and 12.78%,
respectively), which may be related to the dense vegetation in the suburbs monitored by
this study. During the whole observation period, the average concentration of VOCs in the
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urban area of Jinghong city reached (144.35 ± 36.15) μg·m−3, which was higher than those
in other comparison cities, showing a high concentration level.

Figure 3 shows the distribution of VOC species concentrations in the dry and rainy
seasons of the urban and suburban sampling site in Jinghong during the sampling period.
As shown in Figure 2, the propane concentrations at the urban sampling site were highest
during the entire sampling period. Higher alkane concentrations included propane, n-
butane, isobutane, and isoamylene; alkene concentrations included isoprene and propylene
species. Higher aromatic hydrocarbon concentrations were mainly toluene, which was
much higher than the concentration of suburban points, reflecting the more significant
impact of urban motor vehicle exhaust on the concentration of atmospheric VOCs. The
concentration of isoprene in the suburban monitoring points was more prominent, which is
closely related to suburban monitoring sites moving away from anthropogenic sources and
closer to natural sources such as dense forests. This was followed by propane, probably
related to petrochemical emissions. The concentrations of other species were low. The
spectral characteristics of VOCs at the two sampling sites in Jinghong urban and suburban
areas had a large difference, indicating that there were certain differences in the sources of
VOCs between the two sampling sites in the city and suburb.

Figure 3. The level profiles of VOCs concentrations in Jinghong.

3.2. Ozone Formation Potentials (OFP) of VOCs

Table 2 lists the OFP values of VOCs species at urban and suburban sampling sites
in Jinghong. The OFP of total VOCs in the atmosphere in the urban area of Jinghong was
588.07 μg·m−3 and 535.38 μg·m−3 in the dry season and 535.38 μg·m−3, respectively, which
was much higher than that of the suburb, indicating that the ozone generation capacity in the
urban area of Jinghong was much higher than that in the suburban area. In the dry season,
urban alkanes, olefins, and aromatic hydrocarbons accounted for 11.49%, 57.73%, and 30.78%
of the OFP, respectively, and correspondingly accounted for 1.82%, 89.70%, and 8.48% of the
OFP in the suburb. During the rainy season, alkanes, olefins, and aromatic hydrocarbons
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accounted for 10.10%, 56.91%, and 32.99% of the OFP in the urban atmosphere, respectively,
compared with 1.14%, 92.41%, and 6.45% in the suburb during the same period. Olefins are
the key species of ozone formation potential in Jinghong, and the OFP ranking has always
been manifested as: olefins > aromatic hydrocarbons > alkanes. The contribution of olefins to
ozone generation in the suburban atmosphere is higher than that in urban areas, indicating
that the suburban ozone generation is mainly affected by olefins.

Table 2. Potential Ozone Formation of VOCs in Jinghong.

Species MIR Value
Ozone Formation Potential (μg·m−3)

DU DS RU RS

Propane 0.48 12.75 2.21 14.18 1.92
Isobutane 1.21 8.99 0.11 7.47 0.14
N-Butane 1.02 10.64 0.22 14.03 0.06

Isopentane 1.38 9.17 1.31 6.45 0.11
Pentane 1.04 2.60 0.30 0.94 0.04

Cyclopentane 1.38 0.77 0.05 0.32 0.05
2,2-Dimethylbutane 0.82 0.10 0.01 0.3 0.02

3-Methylpentane 1.50 6.75 0.51 1.91 0.02
Methylcyclopentane 2.80 5.26 0.49 3.16 0.04

Hexane 0.98 0.94 0.11 1.27 0.54
Cyclohexane 1.28 0.72 0.09 0.58 0.20

2,4-Dimethylpentane 1.50 1.86 0.02 0.21 0.04
2,3-Dimethylpentane 1.31 2.40 0.20 0.71 0.22
Methylcyclohexane 2.80 1.48 0.10 0.38 0.20

Heptane 0.81 0.55 0.06 0.03 0.11
2,2,4-Trimethylpentane 0.93 0.71 0.05 0.4 0.07
2,3,4-Trimethylpentane 1.60 0.16 0.00 0.96 0.11

2-Methylheptane 0.96 0.63 0.04 0.34 0.06
n-Octane 0.60 0.74 0.04 0.22 0.11
Nonane 0.54 - - - 0.02

n-Decane 0.46 - - - 0.05
n-Undecane 0.42 0.31 0.03 0.22 0.05
n-Dodecane 0.38 - - - 0.02
Total alkanes 67.55 5.95 54.08 4.20

propylene 9.40 157.26 27.68 108.47 1.78
1-Butene 8.90 13.62 - 0.48 0.88

Trans-2-Butene 10.00 9.50 - 4 0.13
Cis-2-Butene 10.00 20.60 7.84 16.57 4.77

1-Pentene 6.20 8.68 0.00 0.89 0.16
Trans-2-Pentene 8.80 4.95 0.34 4.05 0.05
Cis-2-Pentene 8.80 7.88 0.00 5.78 0.59

1-Hexene 4.40 4.62 1.13 3.92 0.46
Isoprene 9.10 112.39 256.62 160.52 332.15

Total olefins 339.50 293.60 304.67 340.97
Benzene 0.42 0.52 0.82 0.98 0.49
Toluene 2.70 44.70 2.56 70.68 1.36

Ethylbenzene 2.70 4.24 0.72 8.74 1.55
Styrene 1.95 7.48 4.36 22.25 3.97

m-p-Xylene 7.40 7.45 0.87 4.6 1.20
o-Xylene 6.50 17.01 1.48 7.09 1.16
Cumene 2.20 0.90 0.09 1.56 2.85

Propylene 2.10 0.49 0.08 0.55 0.34
m-Ethyltoluene 7.20 0.61 0.04 0.55 0.20
4-Ethyltoluene 7.20 28.10 3.88 13.37 1.08
2-Ethyltoluene 7.20 4.86 0.67 4.15 1.08

1,3,5-Trimethylbenzene 10.10 2.99 0.39 1.8 0.67
1,2,4-Trimethylbenzene 8.87 42.20 4.50 25.86 3.83
1,2,3-Trimethylbenzene 8.90 14.63 1.76 10.38 0.96

m-Diethylbenzene 6.45 3.34 - 4.09 2.09
p-Diethylbenzene 6.45 1.51 5.51 - 0.98

Total aromatic hydrocarbons 181.01 27.75 176.64 23.81
Total VOCs 588.07 327.30 535.38 368.98

DU: Dry season—Urban; DS: Dry season—Suburb; RU: Rainy season—Urban; RS: Rainy season—Suburb.

From the analysis of specific VOCs compounds, in the dry season, the top 12 substances
with the highest OFP in the atmosphere of Jinghong were propylene, isoprene, toluene,
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1,2,4-trimethylbenzene, p-ethyltoluene, cis-2-butene, o-xylene, 1,2,3-trimethylbenzene,
1-butene, propane, n-butane, and trans-2-butene, and their mass concentration accounts
for 67.86% of total volatile organic compounds (TVOCs). The top 12 substances in the
suburban area regarding OFPs were isoprene, propylene, cis-2-butene, p-diethylbenzene,
1,2,4-trimethylbenzene, styrene, p-ethyltoluene, toluene, propane, 1,2,3-trimethylbenzene,
o-xylene, and isopentane, which accounted for 88.75% of the TVOCs by mass. The ozone
generation accounted for 97.28% of the total OFPs. In the rainy season, the top 12 substances
of OFPs in the urban air were isoprene, propylene, toluene, 1,2,4-trimethylbenzene, styrene,
cis-2-butene, propane, n-butane, p-ethyltoluene, 1,2,3-trimethylbenzene, ethylbenzene,
and isobutane, which accounted for 83.34% of TVOCs by mass and 88.26% of total OFP
by ozone generation. The top 12 substances of OFPs in the suburb were isoprene, cis-2-
butene, styrene, 1,2,4-trimethylbenzene, isopropylbenzene, m-diethylbenzene, propane,
propylene, ethylbenzene, toluene, p- and m-xylene, and o-xylene, which accounted for
90.69% of the TVOCs by mass and 97.20% of the total OFPs by ozone potential. Overall,
isoprene accounted for the highest percentage of OFP in Jinghong, indicating that natural
vegetation emission sources in Jinghong contributed prominently to ozone, followed by
toluene, propylene, m-p-xylene, and other motor vehicle exhaust emissions that contributed
significantly to ozone generation.

3.3. Source Analysis of VOCs

3.3.1. Ratio of Specific Species

The ratio of toluene to benzene is commonly used to determine the sources of traffic
emissions, fuel combustion, and industrial and solvent use in the current regional atmo-
spheric environment [37–40]. Isopentane and n-pentane have similar chemical reactions
with free radicals, and their ratios can also be used to indicate different sources [38,41,42].
The ratio of m/p-xylene to ethylbenzene is often used to evaluate the degree of aging of gas
clusters [42–44], and the length of photochemical age. Ethylbenzene is less reactive than
m/p-xylene and the ratio decreases in atmospheric chemical reactions where m/p-xylene
is consumed faster—the smaller the ratio, the higher the degree of aging of the gas cluster.
Moreover, BTEX pollution may be affected by regional transmission [45]. Table 3 shows the
degree of air mass aging for m- and p-xylene and ethylbenzene for the ranges of benzene
to toluene and isopentane to n-pentane ratios, respectively, corresponding to the pollution
sources. Benzene to toluene, isopentane to n-pentane, and m-p-xylene to ethylbenzene
ratios were selected for the study; additionally, the emission share of isoprene was consid-
ered to study the emissions from natural sources, where a larger ratio indicates that the air
mass is fresher, and a smaller ratio indicates that the air mass is aging.

Table 3. Ratio data of benzene to toluene and isopentane to n-pentane.

Characteristic Species Ratio Value Source Reference

Benzene/Toluene

0.00–0.20 solvent usage

[39]
0.50–0.60 vehicle emissions
1.05–2.20 coal emissions

2.50 biomass burning

Isopentane/n-pentane

0.56–0.80 coal emissions

[41]
1.50–3.00 liquid gasoline
1.84–4.60 fuel volatilization

2.93 motor vehicle exhaust

Jinghong is located at the southern tail end of the longitudinal valley of the Hengduan
Mountains, which has a tropical and subtropical humid monsoon climate with high precip-
itation and dense vegetation covering a wide area. As shown in Table 4, the concentration
of isoprene in the suburban area (59.80% in the dry season and 74.10% in the rainy season)
was higher than that in the urban area (8.45% in the dry season and 12.38% in the rainy
season), indicating that the release of large amounts of VOCs from dense vegetation in
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the suburb had an important impact on VOCs in the ambient air, and isoprene emission
from vegetation exponentially increased with sunlight and temperature on rainy days.
The benzene/toluene ratios of 2.42 and 2.70 in the dry and rainy seasons in the suburban
area, respectively, showed that fresh emissions or exhaust emissions and biomass burning
were the primary source. The ratios of 0.09 and 0.10 in the dry and rainy seasons in the
urban area, respectively, which were less than 0.2, showed that solvent use was the primary
source. From the ratios of isopentane/n-pentane, it shows that the ratios of 3.24 and 2.10
for the dry and rainy seasons in suburban areas, respectively, were mainly influenced by
gasoline fuel volatilization, and the ratios of 2.66 and 5.19 for the dry and rainy seasons
in urban areas, respectively, were mainly influenced by motor vehicle exhaust and fuel
volatilization. The ratio of M-p-xylene/Ethylbenzene was small in the urban and suburban
areas in the rainy season, which means that the air mass was relatively aging. In addition
to local emissions, some of the benzene series pollution came from regional transmission.
In the dry season, the ratio between urban and suburban areas was bigger, which means
that the air mass was relatively fresh, and the pollution was mainly transmitted locally.

Table 4. Species ratio in dry and rainy seasons in urban and suburban areas of Jinghong.

Area Benzene/Toluene
Isopentane/
n-Pentane

Isoprene/TVOCs
M-p-

Xylene/Ethylbenzene

DU 0.09 2.66 8.45% 2.44
RU 0.10 5.19 12.38% 0.73
DS 2.42 3.24 59.80% 1.67
RS 2.70 2.10 74.10% 1.07

DU: Dry season—Urban; DS: Dry season—Suburb; RU: Rainy season—Urban; RS: Rainy season—Suburb; TVOCs:
Total Volatile Organic Compounds.

3.3.2. The Long-Range Transport

As shown in Figure 4, the incoming air masses during the year of the sampling period
were resolved using the HYSPLIT model to track the trajectories of air masses arriving in
the region in the past 72 h. The air masses from the Southwest were the most abundant
in the region. Almost all air masses originated from Southeast Asian countries, with the
most air masses coming from Myanmar, accounting for the most southwestern air mass
transport (Cluster 1 air masses, 48.09%) and the lowest transport altitude (pressure above
870 hPa).

The trajectory air masses in different directions may contain different levels of pollu-
tants. The backward trajectory clustering and pollutant concentration information were
combined to analyze the influence of each trajectory air mass on pollutants in the study area.
The results are shown in Table 5. The pollutant concentrations in different trajectory air
masses varied widely, with the largest values of pollutants being SO2, NO2, CO, O3, PM2.5,
and PM10 in cluster 2 and the second largest values in cluster 5, mainly from the central
region of Myanmar, becoming the most important transport path affecting the atmospheric
pollutant concentrations in Jinghong. The airflow near Thailand and Laos (clusters 1 and 4)
had the lowest ozone concentration values, compared to the other airflow (from Myanmar)
trajectories, which had higher ozone concentration values, probably related to the more
frequent biomass burning activities in Myanmar. It can be speculated that the outbound
transport of VOCs may be mainly influenced by the transport from Myanmar.

3.4. Health Risk Assessment of VOCs

Benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene are the important VOCs
species in the atmosphere of Jinghong, and the proportion of aromatic hydrocarbons was
~58.70%. Table 6 compares the noncarcinogenic and carcinogenic risks of BTEX (benzene,
toluene, ethylbenzene, m/p-xylene, o-xylene) mass concentration in Jinghong with other
cities. The results show that the noncarcinogenic risk values of benzene > m/p-xylene >
o-xylene > ethylbenzene > toluene in both the dry and rainy season of suburban sampling
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sites, and benzene > m/p-xylene > o-xylene > toluene > ethylbenzene in both the dry and
rainy season of urban sampling sites, ranging from 1.01 × 10−4 to 7.75 × 10−2, were within
the safe range (HQ < 1) as determined by the US EPA. The lifetime carcinogenic risk value
of benzene ranged from 9.02 × 10−6 to 1.82 × 10−5, which is higher than the safety range
(R < 1.00 × 10−6) as determined by the US EPA. These results indicate the existence of
carcinogenic risk and the possibility of inducing lymphatic system immune diseases and
leukemia in humans exposed to the environment for an extended time, which should be
taken more seriously.

Figure 4. Trajectory clustering from July 2016 to June 2017.

Table 5. Statistical results of various trajectory pollutant concentrations from July 2016 to June 2017
in Jinghong.

Trajectory
Frequency of

Occurrence/ (%)
SO2/

(μg·m−3)
NO2/

(μg·m−3)
CO/

(mg·m−3)
O3/

(μg·m−3)
PM2.5/

(μg·m−3)
PM10/

(μg·m−3)

1 48.09 6.83 13.85 0.70 36.21 20.01 39.45
2 34.65 8.90 20.08 0.81 50.84 34.65 61.78
3 1.18 6.56 14.38 0.72 40.85 22.06 42.71
4 13.79 6.38 13.48 0.73 29.85 19.14 37.27
5 2.29 7.89 20.82 0.78 49.65 34.45 57.64

The changing trend of the noncarcinogenic risk quotient in Jinghong shows that
benzene and toluene had higher noncarcinogenic risk quotient values, which was the same
as those of Guangzhou [32] and Beijing [46]. However, it was shown that benzene and
xylene had higher noncarcinogenic risk quotients in Chengdu [34] and Xiamen [47], while
xylene had higher quotients in Lanzhou [48], and benzene had a higher quotient in Port
Moody (Canada), Burnaby South (Canada) [49], and Tabriz (Iran) [50]. In this study, HI
values were higher in urban areas than in suburban areas, and lower in Jinghong than in
other cities. The lifetime carcinogenic risk of benzene was low compared to other cities,
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except for the dry season suburban area and rainy season urban area, which were higher
than that of the residential sampling site in Xiamen (1.23 × 10−5). Overall, it was shown
that the health risk level in Jinghong was lower than its urban counterparts, However, it
should be noted that the carcinogenic risk value of benzene in this region has exceeded the
safety threshold. Therefore, it is necessary to increase the control of benzene emissions to
reduce its carcinogenic risk.

Table 6. Comparison of noncarcinogenic and carcinogenic risks of BTEX in Jinghong with other cities.

Sampling Site R (Benzene)
HQ

HI Reference
Benzene Toluene Ethylbenzene m/p-Xylene O-Xylene

dry season in
suburb of
Jinghong

1.52 × 10−5 6.48 × 10−2 1.90 × 10−4 2.68 × 10−4 4.48 × 10−3 2.00 × 10−3 7.18 × 10−2

This work

dry season in
urban of
Jinghong

9.62 × 10−6 4.11 × 10−2 3.31 × 10−3 1.57 × 10−3 3.82 × 10−2 2.30 × 10−2 1.07 × 10−1

rainy season in
suburb of
Jinghong

9.02 × 10−6 3.85 × 10−2 1.01 × 10−4 5.74 × 10−4 6.16 × 10−3 1.57 × 10−3 4.70 × 10−2

rainy season in
urban of
Jinghong

1.82 × 10−5 7.75 × 10−2 5.24 × 10−3 3.24 × 10−3 2.36 × 10−2 9.57 × 10−3 1.91 × 10−1

Guangzhou 5.34 × 10−5 2.28 × 10−1 3.95 × 10−1 4.26 × 10−3 3.06 × 10−2 2.42 × 10−2 2.91 × 10−1 [32]

urban area of
Chengdu 6.77 × 10−5 2.89 × 10−1 2.36 × 10−3 3.34 × 10−3 1.18 × 10−1 3.38 × 10−2 4.47 × 10−1

[34]
traffic area of

Chengdu 6.98 × 10−5 2.98 × 10−1 3.09 × 10−03 3.19 × 10−3 9.08 × 10−2 3.38 × 10−2 4.29 × 10−1

Beijing 4.19 × 10−5 1.57 × 10−1 2.39 × 10−1 3.29 × 10−3 8.06 × 10−3 3.53 × 10−3 1.96 × 10−1 [46]

residential area
of Xiamen 1.23 × 10−5 5.25 × 10−2 9.73 × 10−4 2.37 × 10−3 1.63 × 10−2 1.13 × 10−2 8.34 × 10−2

[47]
industrial area of

Xiamen 3.08 × 10−5 1.32 × 10−1 4.29 × 10−3 7.98 × 10−3 5.57 × 10−2 4.36 × 10−2 2.43 × 10−1

lanzhou 8.09 × 10−6 3.46 × 10−2 1.27 × 10−4 4.07 × 10−4 6.18 × 10−3 2.76 × 10−3 4.42 × 10−2 [48]

Port Moody
(Canada) - 2.02 × 10−1 9.17 × 10−3 2.62 × 10−4 - - 2.02 × 10−1

[49]
Burnaby South

(Canada) - 1.51 × 10−1 6.29 × 10−3 1.32 × 10−4 - - 1.51 × 10−1

Tabriz (Iran) - 1.07 × 10−1 1.29 × 10−3 - - - 2.21 × 10−1 [50]

“-” means that there are no such data in the references.

4. Conclusions

In this study, VOCs samples were collected in Jinghong and analyzed for their mass
concentration, ozone formation potential, source identity, and health risk assessments in
dry and rainy seasons. During the sampling period, a total of 48 VOC species were detected
at the urban and suburban monitoring sites. In the dry season, the TVOCs concentration
was 146.19 μg/m3 in the urban area and 47.15 μg/m3 in the suburban areas. In the rainy
season, the TVOCs concentration was 142.5 μg/m3 in the urban area and 49.27 μg/m3 in
the suburban area. TVOCs in urban areas were much higher than those in suburbs, which
was related to human activities. The concentration of VOCs in the dry season at the urban
sampling site was higher than in the rainy season, while at the suburban sampling sites,
the concentration in the rainy season was higher than that in the dry season. These results
may be related to the emission of more olefins in the rainy season when the vegetation is
dense and grows vigorously.

The species with high concentrations of atmospheric VOCs in Jinghong were propane,
toluene, propylene, and isoprene, and their OFPs were olefins > aromatic hydrocarbons > alkanes.
The species with the highest OFP was isoprene, indicating that the surrounding dense vegetation
contributes significantly to the generation of O3. The ratio of specific species was used to analyze
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the primary sources of VOCs in the atmosphere of the main urban area of Jinghong: plant
sources, motor vehicle exhaust, and oil and gas volatilization; combined with the study of air
mass trajectories, the transmission of biomass combustion sources in the Myanmar region may
influence VOCs in the study area. The health risk of VOCs in the main urban area of Jinghong
was generally lower than those of other cities, and the noncarcinogenic risk was within the safety
threshold. However, benzene’s lifetime carcinogenic risk value in the atmosphere exceeded the
safety range (R < 1.00 × 10−6), and there was a particular carcinogenic risk. The control of local
VOC sources should be strengthened appropriately to reduce benzene emissions.

In this paper, chemical composition and source characteristics of VOCs in a plateau
border city were first studied, and the main sources of VOCs in Jinghong were resolved.
The results can provide scientific data to support VOCs pollution control in local and
similar cities. In addition, due to high vegetation coverage, forest and vehicle exhaust
emissions were prone to produce phytotoxic ozone, which reduced forest productivity
and damaged terrestrial vegetation. Therefore, the local government needs to take cor-
responding measures. Biomass burning activities in Myanmar had an impact on VOCs
concentration changes in Jinghong, and cross-border pollution issues also need attention,
which has a certain guiding significance for our government to carry out international
cooperation projects in Southeast Asia.
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Abstract: In this study, the concentrations and chemical components of size-fractionated particulate
matter (PM) in Nanjing at the ground (Gulou, 20 m) and above the urban canopy (Zifeng, 380 m) were
sampled and analyzed from 16 November to 12 December in 2016. Higher concentrations of PM10,
PM10-2.1, and PM2.1 (108.3 ± 23.4 μg m−3, 47.3 ± 10.6 μg m−3, and 61.0 ± 18.8 μg m−3) were measured
at Gulou than those (88.1 ± 21.1 μg m−3, 31.4 ± 6.7 μg m−3, and 56.7 ± 18.6 μg m−3) at Zifeng.
The most abundant chemical components for size-fractionated PM were SO4

2−, NO3
−, organic

carbon (OC), NH4
+, elemental carbon (EC), and crustal elements such as Al, Ca, Fe, and Mg, varying

significantly on different particulate sizes. The concentrations of OC and EC were 7.46–19.60 μg m−3

and 3.44–5.96 μg m−3 at Gulou and were 8.34–18.62 μg m−3 and 2.86–4.11 μg m−3 at Zifeng, showing
an equal importance in both fine and coarse particles. Nitrate, sulfate, and ammonium were more
concentrated in PM2.1, contributing 11.30–13.76 μg m−3, 8.91–9.40 μg m−3, and 5.78–6.81 μg m−3,
which was more than in PM10-2.1, which contributed 2.73–5.06 μg m−3, 2.16–3.81 μg m−3, and
0.85–0.87 μg m−3. In contrast, the crustal elements were larger in coarse particles and at the ground
level, accounting for 18.6% and 15.3% of the total PM at Gulou and Zifeng. Source apportionment
using the chemical mass balance (CMB) model EPA showed that the dominant three sources were
secondary nitrate (18.2–24.9%), secondary sulfate (14.5–20.4%), and secondary organic aerosols (15.5–
19.6%) for PM10, PM2.1, and PM1.1 at both Gulou and Zifeng during the entire sampling period.
However, for PM10-2.1, the largest three contributors were secondary organic aerosols (18.3%), the
coal-fired power plant (15.6%), and fugitive dust (14.4%), indicating dusts including construction
dust, fugitive dust, and soil dust would contribute more at the ground. The results also showed that
the concentrations of PM10, PM2.1, and PM1.1 were lower than the work carried out in the winter of
2010 at the same sampling site by 41.4%, 26.3%, and 24.8%, confirming the improvement of the air
quality and the efficient control of PM pollutants.

Keywords: size-fractionated PM; chemical characteristics; source apportionment; ground level (20 m);
urban canopy (380 m)

1. Introduction

Nowadays, atmospheric particulate matter (PM) are receiving a lot of attention in
atmospheric and environmental studies due to their complex and important impact on
various problems, including human health [1,2], radiation balance and climate change [3–5],
visibility degradation [6,7], and air pollution [8–10]. In recent decades, with increased
economic and industrial development, PM have become the primary air pollutant in urban
areas, and PM pollution, especially PM2.5 pollution (atmospheric particulate matter with
an aerodynamic diameter less than 2.5 μm), has been found to be a severely impairing
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issue in China. So, considerable attention from governments and scientific communities
has been drawn [11–15] and lots of studies have been focused on the mass concentrations
and chemical properties of particles [16,17]. The chemical compositions of atmospheric PM
consist of numerous numbers of species (metals, ions, and carbonaceous matter) and come
from complex sources, including anthropogenic and natural sources [18]. Meanwhile, the
formation processes involve complicated multiphase formation pathways that are not well
understood yet [19,20]. So, it is significant to understand the formation and contribution to
PM mass in urban areas.

Many previous efforts have been conducted to evaluate the size distributions and
chemical compositions at ground level (0~20 m), which is significantly influenced by
local emission sources such as fugitive dust, construction dust, and vehicle exhaust. In
comparison, an observation of size-fractionated particulate matter (PM) on a height of
300–400 m would be meaningful to understand the influences from a large scale of the
sources, transportation, formation, and removal mechanisms to particulate matter [21–23].
Nanjing is a megacity located in the most developed region of the Yangtze River Delta in
China with a huge population and a large urban center. It is a perfect target to carry out the
ground level and high-height level observations. Characteristics and source contributions
of atmospheric particles were discussed by previous studies in Nanjing [24,25], but the
chemical compositions and sources of PM in different sizes at ground level and high-height
level have not yet been conducted. As the nocturnal planetary boundary height during the
winter is often about 300 m, we chose Zifeng Tower (380 m) in Nanjing to be the observation
site of atmospheric particulate matter in the lower boundary layer [26].

Compared to developed countries, the emission sources of atmospheric particles in
developing countries are much more complex. An explicit knowledge of the source con-
tributions and probable source locations is the first step for understanding and planning
management strategies of particulate matter [27]. The receptor model is used for quantita-
tive analysis of PM source contributions, as there is no limitation on pollution discharge,
weather conditions, or terrain factors. Based on chemical analysis, the receptor models that
could be chosen are either the chemical mass balance (CMB) method or a multivariate factor
analysis model such as the positive matrix factorization (PMF) method. Both methods have
been widely applied to evaluate the particles’ source contributions [28–31]. Source profiles
are necessary in the former method but useless in the latter method. However, there is
no limitation in the number of samples in the former method, but a minimum number of
samples should be prescribed in the latter method. The source profiles in Nanjing were
obtained in a previous work [18], and due to the limitation of sample numbers, the CMB
model was used in this study. Additionally, backward trajectory clustering analysis could
be used to trace the source locations of emissions [32]. Moreover, backward trajectory
clustering analysis combined with the results of receptor models have been proved to be a
beneficial tool for identifying the major source locations [33–35].

In this study, a synchronous and parallel observation was carried out at the ground
level and the 380 m platform on Zifeng Tower in Nanjing from November to December in
2016. The mass concentrations of size-fractionated PM were obtained, and the chemical
compositions including elements, water-soluble ions, and carbonaceous matter (elemental
carbon (EC) and organic carbon (OC)) were analyzed. The size distribution of chemical
components and variations between the ground level and the 380 m platform were inves-
tigated. The CMB model was applied to apportion the emission source contributions of
PM in different sizes. The characteristics of source contributions at ground level and above
the urban canopy (380 m) were evaluated. Combined with backward trajectory clustering
analysis, the potential transport pathways were traced at the two heights. Finally, based
on the results above, we explored reasonable control measures that may be helpful for
policymakers.
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2. Materials and Methods

2.1. Study Area and Sample Collection

Nanjing (118◦22”and 119◦14” E, 31◦14” and 32◦37” N) is the capital of Jiangsu province,
the second largest city in the Yangtze River Delta. With rapid development in recent
decades, vehicle exhaust, coal-fired power generation, and industrial activities have become
the main anthropogenic sources of PM in Nanjing. The Gulou District is the urban center
of Nanjing with huge population and heavy traffic. So, we chose the Gulou campus of
Nanjing University and Zifeng Tower in this district to be the sampling sites. One of the
sampling sites, Zifeng Tower, is a 450-meter skyscraper completed in 2010 in Nanjing,
China. It is the tallest building in Jiangsu province, and the 10th tallest building in the
world (as of August 2016). The observation instruments were located on the top platform
at 380 m. Another set of observation instruments was located on the roof of a 20 m high
building in Gulou campus, Nanjing University. The two observation points are close with
a distance of less than 700 m. The locations of sampling sites are shown in Figure 1. The
two sampling sites are represented as Gulou and Zifeng in the following text.

Figure 1. The locations of sampling sites.

The sampling campaign was carried out from 16 November to 12 December in 2016
at 20 m and 380 m height, except 28 November due to power failure at Gulou. During
the experiment, size-fractionated ambient particulate matter (PM) were collected with an
eight-stage Sierra-Andersen cascade impactor (Andersen Instruments, Inc., Atlanta, GA,
USA), which can classify nine intervals in the following order: <0.43 μm, 0.43–0.65 μm,
0.65–1.1 μm, 1.1–2.1 μm, 2.1–3.3 μm, 3.3–4.7 μm, 4.7–5.8 μm, 5.8–9.0 μm, and 9.0–10 μm
(aerodynamic diameter) [25,36]. Two parallel samplers with flow rate of 28.3 L min−1 were
placed at each height in order to obtain chemical compositions of particles with Teflon-
membrane filters and quartz fiber filters (Diameter 81 mm). Forty-seven hours of sampling
was performed every two days from 9 am to 8 am and on the third day to obtain adequate
materials at high level.

2.2. Chemical Analysis

Elements (e.g., Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, Sn, Sr, Ti, V,
and Zn), ions (e.g., F−, CH3COO−, HCOO−, Cl−, NO3

−, SO4
2−, C2O4

2−, Na+, NH4
+, K+,

(CH3)2NH2
+, Ca2+, Mg2+), and carbonaceous materials (organic carbon (OC) and elemental

carbon (EC)) were analyzed for each sample.
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2.2.1. Analysis of Elements

Elements obtained from Teflon filters were analyzed by an inductively coupled plasma
mass spectrometer (ICP-MS, Agilent Technologies, Inc., Model 7500a, Santa Clara, CA,
USA). Calibration with reference material (Environmental Calibration Standard, Part 5183-
4688, Agilent Technologies) demonstrated good linearity and sensitivity for the instrument.
The relative standard deviation for each measurement (repeated twice) was within 3%. The
method detection limits (MDLs) were determined by adding 3 standard deviations of the
blank readings to the average blank values [26].

2.2.2. Analysis of Water-Soluble Ions

Water-soluble ions obtained from half of the quartz fiber filters were analyzed by an ion
chromatography (IC, DIONEX Corporation, Model ICS-90, Sunnyvale, CA, USA). The IC
was periodically checked with standard reference materials. The relative standard deviation
for each measurement (repeated twice) was within 3%. The method detection limit (MDL)
was provided by the ion chromatography manufacturer. Determination of inorganic cations
and ammonium in environmental waters was performed by ion chromatography with
a high-capacity cation-exchange column. The MDLs of cations were 22, 20, 5, 48, 6, and
48 ng/mL for Na+, NH4

+, K+, Mg2
+, Ca2

+, and (CH3)2 NH2
+, respectively. The MDLs

of anions were 2, 4, 11, 9, 66, 7, and 15 ng/mL for F−, Cl−, NO3
−, SO4

2−, CH3COO−,
HCOO−, and C2O4

2−, respectively.

2.2.3. Analysis of Carbonaceous Materials

Carbonaceous materials (OC and EC) obtained from another half of the quartz fiber
filters were analyzed by a thermal/optical carbon analyzer (DRI, Model 2001, Desert Re-
search Institute, Reno, NV, USA) with the thermal/optical reflectance (TOR) method [37,38].
A circle piece of 0.53 cm2 was cut off from the filters and was sent into the thermal optical
carbon analyzer. A blank sample was analyzed for blank subtraction. Quality control
and quality assurance procedures were routinely applied for all the elemental, ion, and
carbonaceous analyses.

2.3. CMB Model

The chemical mass balance (CMB) receptor model was used in this study to apportion
the source contributions to the size-fractionated PM at different heights. The EPA CMB 8.2
version (US EPA, 2004) with the effective variance weighted least-squares fitting method
was applied. CMB is a widely used method for source apportionment of particulate
matter. It consists of a solution to a set of linear equations that expresses each receptor
chemical concentration as a linear sum of products of source profile abundances and
source contributions. Source samples were collected and analyzed, and then profiles
were determined for local representative emissions [18,26]. The chemical abundances are
normalized to values between 0% and 100%.

Cit = ∑
N

i=1 FinSnt + Eit (1)

In Equation (1), Cit represents the ambient concentration of the i-th chemical species
measured at time t. It is equal to the sum of the contributions from N sources, in theory. Fin

is the fractional abundance (source profile) of the i-th species in the n-th source type. Snt

is the mass contribution of n-th source at time t. Eit represents the difference between the
measured and estimated ambient concentration [25].

2.4. Cluster Analysis of Back Trajectories

The three-dimensional (latitude, longitude, and altitude) cluster analysis of back
trajectories shows us the dominant transport pathways of air mass, which could reflect the
potential influence of sources from a large scale during the sampling campaign. Trajectories
were generated with version 4.9 of the NOAA Air Resources Laboratory’s Hybrid Single-
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Particle Lagrangian Integrated Trajectory (HYSPLIT) model [39]. Archived meteorological
data from the National Centers for Environmental Prediction (NCEP)/National Center for
Atmospheric Research (NCAR) reanalysis project data set with 6 h intervals and a spatial
resolution of 2.5 × 2.5◦ in longitude and latitude were used as input data to calculate 36 h
trajectories starting at 20 m and 380 m, separately. During the observation periods, back
trajectories were computed every three hours for each sampling day (00 h, 03 h, 06 h, 09 h,
12 h, 15 h, 18 h, and 21 h in UTC). Then, all the trajectories were clustered with HYSPLIT
clustering algorithm. The clustering of back trajectories is based on the total spatial variance
(TSV) method [40], which minimizes the inter-cluster differences among trajectories.

Hourly weather data such as temperature (T), relative humidity (RH), wind speed
(WS), and wind direction (WD) were obtained from an automatic weather station on the
roof of a 20 m high building in Gulou campus, Nanjing University.

3. Results and Discussion

3.1. Size-Fractionated PM Mass Characteristics

During the sampling period, the average PM10 concentration was 108.3 ± 23.4 μg m−3

and 88.1 ± 21.1 μg m−3 at Gulou and Zifeng, respectively. The mean mass concentration of
the PM10 concentration at ground level was 22.9% higher than that at high height (380 m),
and the PM10 concentration at Gulou was higher at every sampling day than at Zifeng. The
average PM2.1 concentration was 56.7 ± 18.6 μg m−3 with the range from 34.6 μg m−3 to
89.7 μg m−3 at Zifeng. The average PM2.1 concentration was 61.0 ± 18.8 μg m−3, ranging
from 32.4 μg m−3 to 87.5 μg m−3 at Gulou, which was 7.6% higher than that measured
at Zifeng. At specific sampling days, the mass concentrations of PM2.1 were higher at
high height (380 m). In contrast, the averaged mass concentration of PM1.1 at Zifeng was
44.8 ± 15.8 μg m−3, which was 9.5% higher than 40.9 ± 13.0 μg m−3 at Gulou.

The more active secondary formation processes of aerosols at the higher level or the
long-distance transportation from other regions may have caused these results, which
will be explored and discussed in the following text. The coarse particles showed the
same feature as PM10 at different heights. The summary statistics of measured PM10,
PM10-2.1, PM2.1, and PM1.1 are presented in Table 1. The mass concentrations of PM10,
PM2.1, and PM1.1 in this study were 41.4%, 26.3%, and 24.8% lower than those in previous
study at Gulou, Nanjing during winter 2010 [24]. Meanwhile, compared with the similar
research in a megacity of North China from December 2013 to January 2014 [41], the mass
concentrations of PM10 and PM2.1 in Tianjin were 107.5% and 73.6% higher than those in
this study. Overall, the air quality in Nanjing is better for these years, and a decrease trend
of size-fractionated PM mass concentrations with increasing height was shown, except
for PM1.1.

Table 1. Statistics of measured PM10, PM10-2.1, PM2.1, and PM1.1 at Gulou and Zifeng (μg m-3).

Site Type Mean SD a Max Min

Gulou

PM10 108.3 23.4 145.6 62.7
PM10-2.1 47.3 10.6 66.1 36.1

PM2.1 61.0 18.8 87.5 32.5
PM1.1 40.9 13.0 72.7 25.3

Zifeng

PM10 88.1 21.1 124.1 56.5
PM10-2.1 31.4 6.7 41.9 21.8

PM2.1 56.7 18.6 89.7 34.6
PM1.1 44.8 15.8 79.4 27.1

a Standard deviation.

Figure 2 shows the time series of observed size-fractionated PM mass concentrations at
Gulou and Zifeng, which indicates that the time-scale variation trend was consistent at two
heights. The correlation coefficient of PM10, PM10-2.1, and PM2.1 between Gulou and Zifeng
was 0.79, 0.86, and 0.73, respectively. Further, in order to study the variations of particulate
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concentrations and chemical compositions, the coefficient of divergence (CD) [42,43] could
be used as follows:

Figure 2. Time series of size-fractionated mass concentrations at Gulou (20 m) and Zifeng (380 m).

CDgz =

√√√√∑
N
n=1

(
Cng−Cnz

Cng+Cnz

)2

N
(2)

where g and z represent the two sampling sites, and N is the total number of sampling days.
Cng or Cnz means mass concentrations at different sites in the nth day. The value of CD
shows the similarity of the mass concentrations of particulate matter at the two sites. The
lower value represents the stronger similarity. When the value of CD is zero, it means the
mass concentrations at the two sites are the same. [44]. In actual analysis, a CD value above
0.3 indicates a difference between each height, whereas a CD value less than 0.3 could be
a sign of similarity between two heights [45]. To the mass concentrations, the values of
CD for different particle sizes are shown in Table 2. All the CD values for PM10, PM10-2.1,
PM2.1, and PM1.1 between Gulou and Zifeng are less than 0.3, which indicates that the mass
concentrations of particles are similar at each height. The CD value of the PM10-2.1 mass
concentration is relatively higher than those of PM2.1 and PM1.1, which suggests that the
coarse particulate matter presents a larger variation between 20 m and 380 m. This might
imply that local and primary sources contributed more to coarse particles at the ground
than high height.

Table 2. Coefficient of divergence (CD) of mass concentrations and main chemical compositions for
size-fractionated PM between Gulou (20 m) and Zifeng (380 m).

Species PM10 PM10-2.1 PM2.1 PM1.1

PM mass 0.139 0.220 0.097 0.096
Al 0.251 0.326 0.151 0.190
Ca 0.235 0.304 0.161 0.185
Fe 0.286 0.355 0.161 0.213
K 0.188 0.242 0.170 0.233

Mg 0.243 0.314 0.180 0.229
Cl 0.201 0.221 0.192 0.175
Na 0.172 0.185 0.290 0.324

NO3
- 0.196 0.321 0.173 0.169

SO4
2- 0.121 0.282 0.087 0.124

NH4
+ 0.195 0.405 0.130 0.117

OC 0.089 0.125 0.096 0.093
EC 0.245 0.424 0.212 0.210

CH3COO- 0.490 0.487 0.529 0.598
HCOO- 0.206 0.230 0.126 0.165
C2O42- 0.278 0.117 0.425 0.464

(CH3)2NH2+ 0.449 0.607 0.466 0.489
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The sampling was conducted during November to December 2016, the most polluted
time of the year. In this study, there is no 2.5 μm cut point, so 2.1 μm is defined as the
threshold of fine particles, and the clear day standard for PM2.5, which is less than 75 μg
m−3 (Technical Regulation on Ambient Air Quality Index (HJ633-2012)), would be used
for PM2.1 here. During the whole sampling period, there were four samples exceeding
75 μg m−3 at the ground (26–27 November, 6–7 December, 10–11 December, and 12–13
December), and at Zifeng (380 m) there were two samples exceeding 75 μg m−3 (26–27
November and 6–7 December). According to previous work, the beginning, process,
and dispersion of particulate pollution could be influenced or driven by meteorological
conditions [46–48]. The weather data observed at Gulou (20 m) were discussed with the
concentration level. The hourly series of meteorological conditions including temperature
(T), relative humidity (RH), wind speed (WS), and wind direction (WD) were shown in
Figure 3. Under the weather condition of low wind speed, the PM concentrations would
increase. The concentrations of PM2.1 at Gulou were higher than 75 μg m−3 in 26–27
November, 6–7 December, 10–11 December, and 12–13 December when the daily maximum
wind speeds were 2.9 m/s, 2.8 m/s, 3.8 m/s, and 3.9 m/s, respectively. However, the
lowest concentration of PM2.1 was 32.5μg m−3 in 4–5 December, with a much higher daily
maximum wind speed (7 m/s). Additionally, the sampling day with low RH showed
cleaner than the sampling day with high RH. The concentrations of PM2.1 at Gulou in 26–27
November and 12–13 December with higher daily average RH (69.6% and 79.1%) were
much larger than that in 4–5 December with lower daily average RH (60.0%).

Figure 3. Time series of hourly (a) temperature and relative humidity and (b) wind speed and wind
direction.

The average mass concentrations of size-fractionated PM manifested different features
at different heights. The mass size distributions of PM with standard deviation at Gulou
and Zifeng are shown in Figure 4. The distribution patterns of PM mass concentrations
from 9.0–10 μm to 1.1–2.1 μm at two sites were similar, which showed an increasing trend
with finer particulate size and the minimum concentration at 4.7–5.8 μm. However, the
distribution patterns of particles smaller than the size bin of 1.1–2.1 μm were different. A
bimodal distribution pattern could be found at Gulou with higher concentrations in the
size bin of 1.1–2.1 μm and 0.43–0.65 μm. Otherwise, a unimodal distribution pattern could
be found at Zifeng with a highest concentration in size bin of 0.43–0.65 μm. Particles in
different sizes showed generally larger concentrations at Gulou than those at Zifeng, except
in size bins of 0.65–1.1 μm and 0.43–0.65 μm, which caused the concentrations of PM1.1
to be larger at 380 m than at the ground. The average ratios of PM2.1/PM10 at Gulou and
Zifeng were 0.56 and 0.64, indicating that more fine particulate matter were contained in
PM10 at high height. The average ratios of PM1.1/PM2.1 at Gulou and Zifeng were 0.67 and
0.79, indicating in wintertime that the fine particulate matter at the top of the boundary
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layer were finer than those at the ground level. The ratios of PM2.1/PM10 and PM1.1/PM2.1
for each sampling day at Gulou and Zifeng are shown in Figure 4.

Figure 4. (a) The average mass size distributions of PM with standard deviation at Gulou (20 m) and
Zifeng (30 m). (b) The ratios of PM2.1/PM10 and PM1.1/PM2.1 at Gulou and Zifeng.

3.2. Characteristics of Chemical Compositions

The size-fractionated PM are mainly composed of crustal elements, water-soluble ions,
and carbonaceous matter. The average mass concentrations of the chemical components
at each sampling height in PM10, PM10-2.1, PM2.1, and PM1.1 are shown in Table 3. The
characteristics of chemical compositions are discussed in three sections containing elements,
water-soluble ions, and carbonaceous matter.

3.2.1. Elements

Elements obtained from Teflon filters were analyzed by an inductively coupled plasma
mass spectrometer (ICP-MS, Agilent Technologies, Inc., Model 7500a, Santa Clara, CA,
USA). Calibration with reference material (Environmental Calibration Standard, Part 5183-
4688, Agilent Technologies, Santa Clara, CA, USA) demonstrated good linearity and sensi-
tivity for the instrument. The relative standard deviation for each measurement (repeated
twice) was within 3%. The method detection limits (MDLs) were determined by adding
three standard deviations of the blank readings to the average blank values [26]. The
elemental species are classified into three categories: crustal elements such as Al, Ca, Fe,
and Mg, heavy metal elements including As, Ba, Cr, Cu, Mn, Ni, Pb, Ti, and Zn, and trace
elements including the rest of the elemental species such as Cd, Co, P, Sn, Sr, and V. The
most important part of the elements was the crustal elements, which accounted for 85.3%,
79.9%, and 78.8 of all the elements at PM10, PM2.1, and PM1.1, respectively. The crustal
elements, heavy metal elements, and trace elements constituted relative fractions varied
at different particulate sizes, with higher mass percentages of PM10 and coarse particles
than that of fine particulate matter. The mass concentrations of most elements showed a
decreasing trend with increasing sampling height, especially in coarse particles, implying
that elements were mainly emitted from locally ground fugitive and construction dust.
The percentages of chemical compositions in PM10, PM10-2.1, PM2.1, and PM1.1 at different
sampling heights are shown in Figure 5. According to CD values of elements in Table 2,
the CD values for crustal elements such as Al, Ca, Fe, and Mg were generally less than 0.3
in PM10, PM2.1, and PM1.1 but more than 0.3 in PM10-2.1, indicating larger differences of
crustal elements between two heights in coarse particles.
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Figure 5. The percentages of chemical compositions in (a) PM10, (b) PM10-2.1, (c) PM2.1, and (d) PM1.1

at Gulou and Zifeng.
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3.2.2. Water-Soluble Ions

Water-soluble ions are indispensable components in PM, taking a percentage of about
40–50%, especially in fine particles, where there was the largest part of all the compositions.
The sulfate, nitrate, ammonium, and the rest of the water-soluble ions (RWSI) accounted
for varied from 8.1–15.6%, 10.7–23.0%, 1.8–11.4%, and 5.9–17.0%, respectively, in different
particulate sizes at Gulou, and varied from 6.9–15.7%, 8.7–20.0%, 2.8–10.3%, and 8.0–18.7%,
respectively, in different particulate sizes at Zifeng. Most of the water-soluble ions showed
the characteristics of larger mass concentrations in finer particles, except Na+, Ca2+, Mg2+,
and F-, which showed the characteristics of higher mass concentrations in coarse particulate
matter. As we know, sea salt was the major source of Na+ and F- in coarse particles [49,50].
Therefore, the abundant Na+ and F- in coarse particles were mainly from marine salt.
However, the sum mass concentrations of Na+ and F- in coarse particles only accounted
for about 2.56% of the PM10-2.1 mass at the ground level, indicating less contribution from
sea salt aerosols to the particulate matter. In total, 88.8% of Ca2+ and 76.2% of Mg2+ were
concentrated in PM10-2.1 at the ground, and the concentrations of Ca2+ and Mg2+ at Gulou
(20 m) were about 100.5% and 52.4% larger than those at Zifeng (380 m), indicating that
Ca2+ and Mg2+ were mainly from the sources of soil and construction dust [51,52] in coarse
particles and local ground areas.

To evaluate the equivalence between cations and anions, the cations and anions were
calculated based on the following equations, and the ratio of cations/anions (C/A) was
applied to estimate the neutralizing level for size-fractionated PM at two heights. The
average ratios of cations to anions at Gulou in nine particulate sizes (<0.43 μm, 0.43–0.65
μm, 0.65–1.1 μm, 1.1–2.1 μm, 2.1–3.3 μm, 3.3–4.7 μm, 4.7–5.8 μm, 5.8–9.0 μm, and 9.0–10
μm) were 0.99, 0.94, 0.93, 0.91, 0.98, 1.09, 1.35, 1.66, and 1.92, respectively. In addition, the
ratios of C/A at Zifeng in nine particulate sizes from fine to coarse were 1.00, 0.87, 0.91, 0.92,
1.02, 1.05, 0.91, 1.84, and 1.47. Similar neutralizing relationships were shown at different
height sites, which implied an acidic tendency of fine particles and an alkaline tendency of
coarse particles. The loss of CO3

2- and HCO3
-, which were not analyzed, is a reason for the

deficit of anions in the coarse particles.

Cation = Na+/23 + K+/39 + 2×Mg2+/24 + 2 × Ca2+/40 + NH4
+/18 + (CH3)2NH2+/46 (3)

Anion = Cl−/35.5 + F−/19 + NO3
−/62 + 2 × SO4

2−/96 + HCOO−/45 + CH3COO−/59 + 2 × C2O42−/88 (4)

In further analysis, the relative contribution of stationary sources such as industrial
and powered coal fire to the mobile source for size-fractionated PM was indicated by the
ratio of NO3

−/SO4
2− [53,54]. As listed in Table 4, the average mass ratios of NO3

−/SO4
2−

were compared at different height levels in different particulate sizes: 1.42, 1.33, 1.46, and
1.48 at Gulou (20 m) and 1.27, 1.27, 1.28, and 1.29 at Zifeng (380 m) in PM10, PM10-2.1, PM2.1,
and PM1.1, respectively. The calculated ratios of NO3

−/SO4
2− at Gulou were higher than

those at Zifeng, indicating that the mobile source played a relatively more important role to
PM at the ground level than at 380 m. The average ratios of NO3

-/SO4
2- at Gulou showed

a feature with a larger value of finer particles, suggesting that more contributions from
the mobile source were to fine particles than coarse particles, whereas the mean ratios
of NO3

−/SO4
2− at Zifeng were similar in PM10, PM10-2.1, PM2.1, and PM1.1, implying

that the sources of nitrate and sulfate at higher heights were relatively fixed at different
particulate sizes and would be dominantly driven by the secondary formation mechanisms.
In addition, higher ratio values of NO3

−/SO4
2− were also found during the pollutant days:

1.44, 1.34, 1.48, and 1.51 at Gulou (20 m) and 1.43, 1.15, 1.48, and 1.54 at Zifeng (380 m) in
PM10, PM10-2.1, PM2.1, and PM1.1, respectively, which indicated that the formation of nitrate
played an important role under pollutant conditions. Comparing with other studies, the
NO3

−/SO4
2− ratios were similar to the work (1.50–0.54) in Beijing at 260 m height before

and during the APEC [24] and were higher than those works (0.65–0.86) in Tianjin from
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10–220 m height [10,41,54,55], but they were lower than works in Southern California (5.0)
and in Denver (2.09) due to the lower usage of sulfur-containing coal in the USA than in
China [56–58].

3.2.3. Carbonaceous Components

Carbonaceous species are a very important part of particles. The mass concentrations
of size-fractionated OC, EC, and the ratios of OC/EC are shown in Tables 3 and 4 and
Figure 6. At ground level, the size distribution of OC was a trimodal mode with peaks
at 0.43–0.65 μm, 1.1–2.1 μm, and 4.7–5.8 μm. EC had a bimodal distribution that peaked
at <0.43 μm and 5.8–9.0 μm. At the 380 m level, the size distribution of OC was found
to be a bimodal mode peaking at 0.43–0.65 μm and 3.3–4.7 μm, while EC only showed
a single peak at 0.43–0.65 μm. It could be found that more carbonaceous components
were concentrated in fine particulate matter at higher heights. To PM10 and PM10-2.1,
the mass concentrations of OC and EC were larger at Gulou than Zifeng, indicating a
decreasing trend with increased height. Interestingly, in contrast to PM2.1 and PM1.1, the
mass concentrations of OC and EC were larger at Zifeng than Gulou, especially the organic
acids such as CH3COO−and C2O4

2−, which could reflect much more influences of the
formation mechanism of secondary organic aerosols at the higher level than at the ground.
The size-fractionated ratios of OC/EC showed similar trends at Gulou and Zifeng with
unimodal distribution. The peak of the OC/EC ratio at Gulou was 3.3–4.7 μm, while at
Zifeng the OC/EC ratio peaked at 4.7–5.8 μm. At both sites, the ratios were larger than
two, indicating the formation of secondary organic particles [59,60].

Figure 6. Carbonaceous species and ratios of OC/EC of size-fractionated PM at Gulou (20 m) and
Zifeng (380 m).

In addition, the correlation between OC and EC was calculated, which could be a
factor of common sources if the value was high. The correlation values (R2) showed an
increasing trend with the particulate size decreased at both sites: 0.80 (PM10) < 0.81 (PM2.1)
< 0.91 (PM1.1) at Gulou and 0.68 (PM10) < 0.76 (PM2.1) < 0.79 (PM1.1) at Zifeng. This result
suggested that there were common sources of OC and EC in fine particles, while the sources
were inconsistent in coarse particles. The OC of coarse PM might be contributed from the
hygroscopic growth of water-soluble OC during the transport or the emissions of industrial
sources in the regional areas [61]. The EC in the coarse particles could be formed by the
resuspension of soil dust and the friction loss of tires [61–63].
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Table 3. The average mass concentrations of main chemical compositions at each sampling height in
PM10, PM10-2.1, PM2.1, and PM1.1 (μg m−3).

Gulou (20 m) Zifeng (380 m)
PM10 PM10-2.1 PM2.1 PM1.1 PM10 PM10-2.1 PM2.1 PM1.1

Al 1.24 0.92 0.32 0.20 0.81 0.51 0.30 0.21
Ca 6.80 5.26 1.54 1.10 4.52 3.00 1.52 1.03
Cu 0.07 0.04 0.03 0.018 0.05 0.03 0.02 0.016
Fe 2.64 2.03 0.61 0.38 1.52 0.98 0.54 0.35
Mg 0.74 0.56 0.18 0.10 0.48 0.31 0.17 0.11
Pb 0.07 0.03 0.04 0.020 0.05 0.02 0.03 0.025
V 0.008 0.005 0.004 0.002 0.005 0.002 0.003 0.002

Zn 0.30 0.13 0.17 0.07 0.18 0.08 0.10 0.07
Na+ 1.25 0.88 0.37 0.27 1.12 0.64 0.49 0.34
K+ 0.94 0.31 0.63 0.46 0.99 0.30 0.69 0.34
Cl− 2.30 1.13 1.17 0.78 1.66 0.80 0.86 0.64

NO3
− 18.82 5.06 13.76 9.41 14.03 2.73 11.30 8.94

SO4
2− 13.21 3.81 9.40 6.37 11.07 2.16 8.91 6.94

NH4
+ 7.66 0.85 6.81 4.67 6.66 0.87 5.78 4.61

OC 19.60 9.84 9.77 7.46 18.62 8.28 10.35 8.34
EC 5.96 1.80 4.16 3.44 4.11 0.81 3.30 2.86

CH3COO− 0.61 0.34 0.27 0.18 2.41 1.12 1.29 1.02
HCOO− 0.61 0.43 0.18 0.13 0.42 0.23 0.19 0.15
C2O42− 0.25 0.15 0.10 0.07 0.43 0.18 0.25 0.20

(CH3)2NH2+ 0.12 0.06 0.06 0.04 0.09 0.05 0.04 0.03

Table 4. The average ratios of cations/anions, NO3−/SO4
2−, and OC/EC for size-fractionated PM.

PM Size
Cations/Anions NO3/SO4

2 OC/EC

GL a ZF a GL ZF GL ZF

<0.43 μm 0.99 1.00 1.44 0.92 1.78 3.24
0.43–0.65 μm 0.94 0.87 1.35 1.42 2.35 2.60
0.65–1.1 μm 0.93 0.91 1.68 1.34 2.66 3.12
1.1–2.1 μm 0.91 0.92 1.44 1.19 3.18 4.50
2.1–3.3 μm 0.98 1.02 1.32 1.39 6.07 11.53
3.3–4.7 μm 1.09 1.05 1.55 1.54 11.30 13.77
4.7–5.8 μm 1.35 0.91 1.15 0.86 6.69 13.87
5.8–9.0 μm 1.66 1.84 1.52 1.34 3.62 5.92
9.0–10 μm 1.92 1.47 1.06 1.04 3.57 6.77

PM10 1.08 1.01 1.42 1.27 3.29 4.53
PM10-2.1 1.36 1.27 1.33 1.27 5.46 10.28

PM2.1 0.94 0.91 1.46 1.28 2.35 3.13
PM1.1 0.95 0.91 1.48 1.29 2.17 2.92

a GL represents Gulou site (20 m), ZF represents Zifeng site (380 m).

3.3. Source Apportionment

The source contributions of size-fractionated PM were calculated with the CMB model,
which has been widely used in previous studies [64–66]. The source profiles including
soil dust, the coal-fired power plant, vehicle exhaust, steel smelting, construction dust,
secondary sulfate, secondary nitrate, and fugitive dust were used as model input for the
CMB model. These profiles were obtained by previous work in the Yangtze River Delta [18].
Twenty-two species (Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Pb, Zn, Ti, V, Cl−, NO3

−,
SO4

2−, NH4
+, K+, Na+, OC, and EC), as well as the mass concentrations of size-fractionated

PM, were used as ambient data for the CMB calculations. The source contribution estimates
(SCEs) of different particulate sizes at Gulou and Zifeng are summarized in Table 5 and are
also shown in Figure 7.
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Table 5. Source contribution estimates (SCEs) of PM10, PM10-2.1, PM2.1, and PM1.1 mass concentra-
tions with CMB model (μg m−3).

Gulou (20 m) Zifeng (380 m)
PM10 PM10-2.1 PM2.1 PM1.1 PM10 PM10-2.1 PM2.1 PM1.1

Construction 5.09 2.69 2.41 1.28 3.05 1.22 1.84 1.11
Coal-fired PP 13.84 7.39 6.45 4.09 11.65 4.24 7.41 5.81
Fugitive dust 11.11 6.81 4.30 2.39 6.22 3.66 2.56 1.60

Soil dust 2.77 1.93 0.84 0.55 1.83 0.95 0.88 0.71
Steel smelting 0.79 0.37 0.41 0.22 0.70 0.28 0.42 0.32

Vehicle exhaust 14.74 5.81 8.93 6.10 10.17 3.06 7.12 5.50
Nitrate 19.69 5.98 13.70 10.65 17.88 5.27 12.61 10.47
Sulfate 15.65 5.11 10.54 8.11 15.51 4.38 11.12 9.14
SOA 18.14 8.68 9.47 7.31 17.23 7.54 9.69 7.79

Others 6.51 2.54 3.96 2.12 3.82 0.76 3.06 2.32

Figure 7. Source contributions of (a) size-fractionated PM at Gulou (μg/m3), (b) size-fractionated
PM at Zifeng (μg/m3), and (c) PM10, PM10-2.1, PM2.1, and PM1.1 at both sites (100%).

The contributions of total emission sources to the size-fractionated PM accounted
for varied from 97.3% to 89.9% at Gulou and from 99.2% to 92.2% at Zifeng. The three
highest contributors of PM10 were found to keep consistent with nitrate, secondary organic
aerosols, and sulfate arranging in order of contribution concentrations. To coarse particles,
the three largest sources were secondary organic aerosols, the coal-fired power plant, and
fugitive dust at Gulou, whereas the three largest sources were secondary organic aerosols,
nitrate, and sulfate at Zifeng, indicating that the ground level would be more influenced
by local sources such as fugitive dust, but at higher heights the formations of secondary
inorganic and organic aerosols were more important. There was a similar contribution
pattern in PM2.1 and PM1.1 at both heights, and the three largest emissions were nitrate,
sulfate, and secondary organic aerosols. Interestingly, the fourth largest emission at Gulou
was vehicle exhaust in PM10, PM2.1, and PM1.1, whereas it was the coal-fired power plant
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at Zifeng in PM10, PM2.1, and PM1.1, also implying that the local source (vehicle exhaust)
influenced more at the ground level.

As shown in Figure 7, the contributions to coarse and fine particulate matter were
significantly different for specific sources. The construction dust (3.9–5.7% vs. 3.2–3.9%),
fugitive dust (11.7–14.4% vs. 4.5–7.1%), and soil dust (3.0–4.1% vs. 1.4–1.6%) in coarse
and fine particles showed larger contributions in the coarse size bin of PM, in which
was found a similar tendency with the concentrations of crustal elements described in
Section 3.2.1. The contributions of nitrate (12.7–16.8% vs. 22.2–22.5%) and sulfate (10.8–
14.0% vs. 17.3–19.6%) in PM10-2.1 and PM2.1 indicated an increasing trend as the particulate
size decreased. However, the source contributions of secondary organic aerosols were
18.3–24.1% of PM102.1 and 15.5–17.1% of PM2.1.

As shown in Table 5, the contribution estimates of each source for PM10 and PM10-2.1
were larger at Gulou (20 m) than Zifeng (380 m), depending more on the higher concen-
trations of PM10 and PM10-2.1 at Gulou than Zifeng. By contrast, the source contribution
estimates for fine particles such as PM2.1 and PM1.1 showed different features. Dusts,
such as construction dust, fugitive dust, and soil dust, contributed a larger amount and
proportion at Gulou than Zifeng since these dust sources were from ground and local areas.
Vehicle exhaust also contributed larger concentrations at Gulou than Zifeng, which could
reflect the influence of heavy traffic at the ground near the sampling site. However, the
contributions of sulfate and secondary organic aerosols become larger with higher height,
illustrating that the formation mechanisms of secondary aerosols played an important role
at the height above the urban canopy. Similarly, the coal-fired power plant and steel smelt-
ing also contributed larger concentrations at Zifeng than Gulou, which might be caused
not only by the industrial areas in the north of Nanjing but also by the transportation from
regional areas. Furthermore, 36 h back trajectories were calculated every three hours for
the sampling periods at 20 m and 380 m in this study. A total of 440 trajectories were used
for clustering analysis in order to identify common atmospheric transport patterns. All
trajectories were categorized into seven and six clusters at 20 m and 380 m, respectively. The
average trajectories were shown in Figure 8. It could be found that there were more local
sources (clusters two, three, and five in Figure 8a) at 20 m with lower wind speed, while
there was more long-distance transportation (clusters one, four, five, and six in Figure 8b)
from north of Nanjing with greater wind speed at 380 m.

Figure 8. Clustering analysis every three hours for the sampling periods at (a) 20 m and (b) 380 m.

368



Atmosphere 2022, 13, 883

4. Conclusions

The concentrations and chemical compositions of size-fractionated PM were sampled
and measured from 16 November to 12 December in 2016 at Gulou (20 m) and Zifeng
(380 m) in Nanjing, China. The characteristics of size-fractionated PM mass concentrations
at different heights were described and the chemical components including elements,
water-soluble ions, and carbonaceous species were analyzed and compared for different
particulate sizes and sites. Furthermore, the source apportionment was carried out with the
CMB model, and the characteristics of contribution estimates were discussed in this study.

The concentrations of PM10 and PM2.1 were 108.3 ± 23.4 μg m−3 and
61.0 ± 18.8 μg m−3 at Gulou and were 88.1 ± 21.1 μg m−3 and 56.7 ± 18.6 μg m−3 at
Zifeng, which indicated a decreasing trend as the height increased. In contrast, the concen-
trations of PM1.1 were 40.9 ± 13.0 μg m−3 and 44.8 ± 15.8 μg m−3 at Gulou and Zifeng,
indicating particles congregating in a finer particulate size bin at the higher level. The
PM pollutant days were relative to the weather conditions, especially when wind speed
was low.

All the species of size-fractionated PM detected in this study accounted for 82.7–87.9%
of the total PM mass concentrations at Gulou and accounted for 83.1–83.4% at Zifeng. The
crustal elements were concentrated more in coarse particles, accounting for 18.6% and
15.3% at Gulou and Zifeng. The water-soluble ions, especially nitrate (8.7–23.0%), sulfate
(6.9–15.6%), and ammonium (1.8–11.4%), were dominant components of size-fractionated
PM. The concentrations of nitrate, sulfate, and ammonium showed an increasing tendency
with decreasing particulate size. Organic carbon was another dominant component of
size-fractionated PM, accounting for 16.0–20.8% and 18.3–26.4%, respectively, at Gulou and
Zifeng, which indicated larger contributions at the higher level.

The source contribution estimates (SCEs) calculated by the CMB model showed that
the secondary inorganic and organic aerosols were the largest three contributors of PM10,
PM2.1, and PM1.1 at both sites, but the fourth largest sources at Gulou and Zifeng were
vehicle exhaust and the coal-fired power plant, respectively. To PM10-2.1, the largest three
contributors at Gulou were secondary organic aerosols, the coal-fired power plant, and
fugitive dust, which was different with Zifeng. Zifeng showed secondary organic aerosols,
nitrate, and sulfate as the largest sources of PM10-2.1. These results illustrated that dusts
including construction dust, fugitive dust, soil dust, and vehicle exhaust would contribute
more at the ground level. In recent years, concentrations were decreased by 41.4%, 26.3%,
and 24.8% of PM10, PM2.1, and PM1.1 in this study compared to the winter of 2010 at the
same sampling site. These results showed an encouraging improvement in the control of
particulate matter in Nanjing.
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Abstract: In order to control the spread of the COVID-19 pandemic, the prevention and control
measures of public health emergencies were initiated in all provinces of China in early 2020, which
had a certain impact on air quality. In this study, taking Jiangsu Province in China as an example,
the air pollution levels in different regions under different levels of pandemic prevention and
control (PPC) measures are evaluated. The implementation of the prevention and control policies of
COVID-19 pandemic directly affected the concentration of air pollutants. No matter what level of
PPC measures was implemented, the air quality index (AQI) and pollutant concentrations of NO2,
CO, PM10 and PM2.5 were all reduced by varied degrees. The higher the level of PPC measures, the
greater the reduction was in air pollutant concentrations. Specifically, NO2 was the most sensitive
to PPC policies. The concentrations of CO and atmospheric particulate matter (PM10 and PM2.5)
decreased most obviously under the first and second level of PPC. The response speed of air quality
to different levels of PPC measures varied greatly among different cities. Southern Jiangsu, which
has a higher level of economic development and is dominated by secondary and tertiary industries,
had a faster response speed and a stronger responsiveness. The results of this study reflect the
economic vitality of different cities in economically advanced regions (i.e., Jiangsu Province) in China.
Furthermore, the results can provide references for the formulation of PPC policies and help the
government make more scientific and reasonable strategies for air pollution prevention and control.

Keywords: COVID-19; pandemic prevention and control levels; air quality; PM2.5; O3

1. Introduction

In early 2020, a sudden outbreak of the coronavirus disease 2019 (COVID-19) occurred
in China. This virus is highly contagious, and has caused a high mortality rate in sensitive
groups. So far, the COVID-19 has not yet been completely controlled. In order to curb
the spread of COVID-19, the government has implemented a series of interventions since
the outbreak, including lockdowns, quarantine, travel restrictions, temporary closures
of businesses and public facilities, etc. These control and emergency measures have
greatly affected the human activities, economic development, social relations and natural
environment [1–4].

Compared with the temporary control during major events and meetings in recent years,
the control of COVID-19 pandemic is the strictest in history in both time and space. Therefore,
it is possible to systematically study the impact of strict control measures implemented by
the government on air quality. In recent years, some scholars have studied the impact of
temporary control measures on urban air quality during major events or conferences, such
as the 22nd Asia-Pacific Economic Cooperation Economic Leaders’ Meeting in Beijing [5],
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the 2013 Asian Youth Games [6] and 2014 Summer Youth Olympic Games in Nanjing [7],
and the 2016 G20 Hangzhou summit [8]. The variations of air quality during these events
demonstrate that the control measures are highly effective in alleviating air pollution.

The COVID-19 pandemic has had a significant impact on the environment, which
has been studied by scholars around the world. Several studies have shown that after the
measures taken by the Chinese government against the COVID-19 pandemic, air pollution
reduced significantly by 12.0–52.8% [1,9–15]. Similar situations appeared in other countries.
Air pollution in northeastern United States dropped by 30% after pandemic prevention
and control (PPC) measures were adopted [16]. The European Environment Agency found
that air pollution also decreased significantly after taking PPC measures in European
cities [17]. From 16–22 March 2020, NO2 concentration in Bergamo of Italy and Barcelona of
Spain respectively decreased by 47% and 55% compared with that during the same period
of 2019. During the PPC period of COVID-19, NO2 concentration dropped by 25.5% in
the United States [2], while NO2 and particulate matter (PM10 and PM2.5) concentrations
dropped by nearly 50% in four Indian metropolises [18]. However, due to the complexity
of PPC implementation, it has been found that in many countries, even in lockdown period
a few pollutants’ concentrations showed an increasing trend. The O3 concentration in
Singapore increased by 18% during the lockdown period [19]. During the lockdown, the
SO2 concentration in southern India increased slightly, and the O3 concentration increased
in the Indo Gangetic plain [20]. The concentration of O3 increased greatly in Hubei and the
Yangtze River Delta [21,22]. Since the start of the COVID-19 lockdown, the concentration
of PM2.5 in Beijing was higher than that in the same period in history [23]. And the decline
of the concentration of SO2 in Wuhan was weaker than that in history [21]. These studies
have confirmed that the change in air pollution is mainly related to the slower economic
growth and travel restrictions during the pandemic [1,10].

Social production and operations as well as travel restrictions are closely related to
the level of PPC measures released by the government. Although many studies have
confirmed that the government’s PPC measures have a significant impact on air quality,
however, there is still a lack of specific information on the relationship between different
PPC levels and air pollution. Furthermore, the impact of the PPC levels on air quality may
vary in different regions under different levels of PPC. In addition, the speed of economic
recovery after the slowdown of the pandemic reflects the economic vitality of a city. The
changes in air quality in different cities after the implementation of PPC measures also
reflect the differences in the economic vitality of different cities, which has rarely been
discussed in previous studies. In this study, the variation characteristics of air quality in
different response levels to PPC measures in Jiangsu Province is studied, and the impact
of PPC measures of different levels on air quality is evaluated, especially the response
speed of urban air quality to PPC measures in cities with different economic development
levels. By revealing the relationship between government decision-making behavior and air
pollution, this study can provide references for the formulation of government PPC policies
and can also help the government to develop more scientific and reasonable strategies for
air pollution prevention and control.

The remainder of this paper is organized as follows. Section 2 describes the data and
methods. Section 3 presents results and related discussions. Finally, the main conclusions
are given in Section 4.

2. Materials and Methods

2.1. Air Pollutants and Meteorological Elements

In this study, the air quality data are from the national air quality monitoring stations
of Jiangsu Environmental Monitoring Center that are located in 13 prefecture-level cities
of Jiangsu. The hourly mean of all national stations in each city is taken as the hourly
monitoring value of this city, and the arithmetic mean of hourly monitoring values of
13 cities is taken as the hourly monitoring value of Jiangsu. The data mainly include
hourly data of SO2, NO2, CO, O3, PM10 and PM2.5 pollutants. According to the Technical
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Regulation on Ambient Air Quality (HJ 633—2012), we calculated the individual air quality
index (IAQI) based on the arithmetic mean of each pollutant in the whole province each
day, and furthermore, the daily AQI of the province was calculated. The meteorological
data come from 71 national standard meteorological stations covering the whole Jiangsu
Province, including hourly temperature, wind speed, precipitation, relative humidity and
visibility from 2018 to 2020. The hourly means of the 71 stations were taken as the hourly
monitoring values of the province. The administrative division of the study area is shown
in Figure 1.

Figure 1. Administrative division of the study area.

2.2. Situations of Pandemic Prevention and Control

On 22 January 2020, the National Health Commission of the People’s Republic of
China confirmed a positive case of COVID-19 in Suzhou, which was the first case in Jiangsu
Province. In order to control the spread of COVID-19, Jiangsu activated the first-level
public health emergency response at 0000 CST (China Standard Time, the same below)
on 25 January 2020. The interventions included travel restrictions, restrictions on public
gatherings, and temporary closures of businesses and facilities. At 0000 CST on 25 February
2020, the response level was adjusted to the second level, which meant that all businesses
could reopen scientifically and reasonably. That is, it was suggested that production and
life could be recovered, while gathering and group activities were still restricted. As of
27 March 2020, there had been no newly confirmed local patients for 38 consecutive days.
Therefore, since 0000 CST on 28 March, the level of PPC measures was adjusted to the
third level, and the normal production and living of people gradually recovered, entering
the stage of regular PPC. The same emergency response was implemented to the whole
province at the same time by the Jiangsu provincial government, making it possible to
study the impact of PPC measures of different levels on air pollution in the whole province,
which is what this paper concerns.

2.3. Economic Development Data of Jiangsu Province

In this study, 13 prefecture-level cities in Jiangsu Province are taken as the research
units. Data from the Jiangsu Statistical Yearbook 2019 and 2020 (http://tj.jiangsu.gov.cn/col/
col80733/index.html, accessed on 1 March 2022) and the website of the National Bureau
of Statistics (http://www.stats.gov.cn/, accessed on 1 March 2022), and the statistical
bulletins of national economic and social developments of cities in Jiangsu (http://www.
tjcn.org/tjgb/10js/, accessed on 5 March 2022) are used in the study. The 13 prefecture-level
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cities in Jiangsu are divided into three parts: southern Jiangsu (including Nanjing, Wuxi,
Changzhou, Suzhou and Zhenjiang), central Jiangsu (Nantong, Yangzhou and Taizhou)
and northern Jiangsu (Xuzhou, Lianyungang, Huai’an, Yancheng and Suqian).

2.4. Method of Analysis and Validation

The data collected were divided into two groups. One is the data in 2020 representing
the pandemic period, and the other is data in 2018 and 2019 representing the historical
period. Each group was divided into four subgroups according to the PPC level, that is, no
PPC period, first-level PPC period, second-level PPC period and third-level PPC period.
No PPC period is 1–21 January 2020. In order to reduce the impact of the first reported
case on residents’ lifestyles, the data from 22–24 January were excluded. The end of the
statistical date for the third-level response was set to 30 April to ensure that the numbers of
days in periods under different response levels are similar, so as to avoid the interference
brought by the time length. Table 1 lists the time ranges for different response levels
(http://www.nanjing.gov.cn/zt/yqfk/zccs/202001/t20200127_1782811.html, accessed on
1 March 2022).

Table 1. Time ranges for response levels of pandemic prevention and control of COVID-19 in
Jiangsu Province.

Non L1 L2 L3

2020 1–21 January
25 January–24

February
25 February–27

March
28 March–30 April

2018–2019 Same period Same period Same period Same period
Total Days 21 31 32 34

The daily average AQI value of the whole province was used to calculate the grade
of daily air quality, and the grades I–VI correspond to the air quality of very good, good,
slightly polluted, moderately polluted, heavily polluted and severely polluted. The days
with air quality of grades I–II are good air days, and the days with air quality of grades
III–VI are polluted air days.

Based on the time-series analysis method, the air quality and concentrations of six
atmospheric pollutants in different PPC periods in 2020 were compared with those during
the same periods in 2018–2019 to explore the variations of air quality under different PPC
levels in Jiangsu. The rate of change (CR) in the period without PPC in 2020 over the
same period in previous two years was regarded as the natural change rate (NCR) in 2020.
During the periods in first-level (L1), second-level (L2) and third-level (L3) responses to
PPC, CR minus the NCR was regarded as the change rate under the PPC conditions (PCR).
The formulas of CR, NCR and PCR are as follows.

CR =
Xrec − Xhis

Xhis
× 100%,

NCR = CR, in the period without PPC,

PCR = CR − NCR, in the period with PPC,

where Xrec is the air quality or concentration of six atmospheric pollutants in 2020, and Xhis

is the air quality or concentration of six atmospheric pollutants during the same periods in
2018–2019. The PCR of the mean and extreme values were analyzed separately to study
the impact of the implementation of PPC policies on air quality. The analysis of mean
values used the daily mean values of AQI, pollutant concentrations and meteorological
elements, and the analysis of extreme value used the maximum daily mean values of AQI,
pollutant concentrations, the minimum daily mean value of visibility, and the maximum
daily mean values of other meteorological elements. In order to verify the significance of
the differences in air quality before and after the outbreak of COVID-19 pandemic and
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among different levels of PPC measures, we first used the F-test to test the variance of
samples in two different periods, and then carried out the Student’s t-test of equal variance
or heteroscedasticity according to the results of the F-test. If p < 0.05 in the two tailed t-test,
it was regarded as a significant difference. The variations of air quality in 13 prefecture-level
cities of Jiangsu under different PPC levels were compared, so as to explore the differences
in the response of urban air quality variations to the PPC levels under different economic
development levels.

3. Results

3.1. Differences in Air Quality in Different Scenarios

Figure 2 shows the number of days for each grade of air quality at the four PPC stages
from 2018 to 2020. It can be seen that on the no PPC stage (Figure 2a), the number of
days with air quality of grade I in 2020 increased over previous years, and the number of
days with air quality of grade V decreased. Overall, there were few changes in the past
3 years. In the first-level PPC period (Figure 2b), the number of days with air quality of
grades I and II in 2020 increased over the same period in the previous 2 years, and the
number of days with air quality of grade III were significantly reduced, and there was
no moderate or severe pollution. There were 9, 11 and 2 polluted days in 2018, 2019 and
2020, respectively, suggesting that the pollution time was significantly reduced. In the
second-level PPC period (Figure 2c), the number of days with air quality of grades I and
II in 2020 also increased over the previous 2 years, and there were no polluted days. In
the third-level PPC period (Figure 2d), there were still no polluted days in 2020, and the
number of good air days was the same as that in 2019. In general, the air quality in 2020
was significantly improved compared with the same period in previous years, which means
the implementation of PPC policies had a certain impact on air quality. It is worth noting
that whether the epidemic occurred or not, the number of polluted days was decreasing
from January to April. This is due to the obvious cooling of ground radiation at night in
winter, and the “temperature inversion layer” is easy to appear in the low altitude of the
atmosphere, resulting in the accumulation of pollutants and thus the poor air quality. With
the increase of temperature in spring, the atmospheric stability decreases and the diffusion
conditions become better, so the air quality is improved.

Statistics of atmospheric pollutant data in 13 cities show that except for SO2, the
levels of pollutants and air quality indexes are significantly different during the periods
before and after the implementation of PPC policies (p < 0.05, Table 2), indicating that
the social restrictions implemented in the PPC period had a direct impact on atmospheric
pollutants. As long as PPC measures are taken, the concentration of pollutants could
be affected regardless of the level of PPC. From the perspective of the PPC levels, the
concentrations of SO2, NO2 and CO were significantly different between the periods with
the first- and second-level PPC measures, and the concentrations of SO2, NO2, CO and
O3 were significantly different between the periods with the first- and third-level PPC
measures, while there was little difference in pollutant concentrations between the periods
with the second- and third-level PPC measures.

3.2. Impacts of COVID-19 on Air Quality

Compared with the same period in 2018 and 2019, the values of AQI, SO2, NO2, CO,
PM10 and PM2.5 in 1–21 January of 2020 decreased by 9.75%, 45.36%, 21.01%, 13.00%, 19.29%
and 9.33%, respectively (Table 3), which are the NCRs in air quality in 2020 as defined above.
This indicates that without the influence of PPC, the concentrations of air pollutants were
also gradually decreasing, which is consistent with the results in other parts of China. The
change in air quality is mainly attributed to the “Three-Year Action Plan for Cleaner Air”
to win the battle for a blue sky released by the State Council of China in 2018. This action
plan aims at significantly reducing the total emissions of major air pollutants and greenhouse
gases, further lowering the concentrations of fine particulate matter (PM2.5), significantly
reducing the number of heavily polluted days and thus improving the air quality.
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Figure 2. The number of days for each grade of air quality under different pandemic prevention and
control levels in Jiangsu Province ((a), Non; (b), L1; (c), L2; (d), L3).

Table 2. Significance levels for periods with different levels of PPC measures by Student’s t-test
(α = 0.05).

Scenes AQI SO2 NO2 CO O3 PM10 PM2.5

COVID-19 vs. Non 1.1 × 10−3 0.22 4.3 × 10−8 2.0 × 10−5 2.4 × 10−16 5.7 × 10−3 5.4 × 10−4

L1 vs. Non 2.1 × 10−3 8.9 × 10−4 5.2 × 10−12 2.0 × 10−4 2.03 × 10−11 2.3 × 10−3 2.3 × 10−3

L2 vs. Non 8.9 × 10−4 0.51 2.0 × 10−5 8.5 × 10−6 1.8 × 10−12 7.2 × 10−3 3.6 × 10−4

L3 vs. Non 9.5 × 10−4 0.59 1.8 × 10−3 7.1 × 10−6 8.4 × 10−17 0.017 2.5 × 10−4

L1 vs. L2 0.49 0.022 7.5 × 10−7 0.049 0.23 0.31 0.12
L1 vs. L3 0.57 5.3 × 10−4 8.4 × 10−10 0.03 2.6 × 10−8 0.08 0.064
L2 vs. L3 0.84 0.27 0.13 0.85 1.7 × 10−9 0.42 0.72
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Table 3. Variations of AQI, atmospheric pollutants and meteorological conditions during the pan-
demic period and the same period of previous years.

Air
Pollutions or

Weather
Conditions

Period
Historical

Mean
2020

Mean
Mean CR

Mean
PCR

Historical
Daily

Extreme
Values

2020
Daily

Extreme
Values

Daily
Extreme

CR

Daily
Extreme

PCR

AQI Non 115.64 104.36 −9.75% / 234.55 212.28 −9.49% /
Level 1 91.20 62.27 −31.72% −21.97% 218.67 109.57 −49.89% −40.40%
Level 2 81.27 58.74 −27.72% −17.97% 143.86 93.74 −34.84% −25.34%
Level 3 74.37 59.47 −20.04% −10.29% 143.72 85.37 −40.60% −31.11%

SO2 (μg/m3) Non 14.56 7.95 −45.36% / 30.72 11.43 −62.79% /
Level 1 11.93 6.55 −45.10% 0.26% 26.72 9.30 −65.19% −2.40%
Level 2 12.26 7.62 −37.81% 7.55% 22.12 12.78 −42.22% 20.57%
Level 3 12.13 8.21 −32.34% 13.02% 20.50 11.77 −42.59% 20.21%

NO2 (μg/m3) Non 52.05 41.11 −21.01% / 94.25 60.22 −36.11% /
Level 1 35.33 17.68 −49.96% −28.95% 86.46 33.20 −61.60% −25.49%
Level 2 43.05 28.91 −32.84% −11.82% 75.17 51.29 −31.77% 4.34%
Level 3 38.23 32.14 −15.93% 5.09% 60.93 53.54 −12.13% 23.98%

CO (mg/m3) Non 1.14 0.99 −13.00% / 1.80 1.61 −10.56% /
Level 1 0.95 0.71 −24.99% −12.00% 1.61 1.03 −36.02% −25.47%
Level 2 0.86 0.64 −25.30% −12.30% 1.28 0.91 −28.91% −18.35%
Level 3 0.74 0.63 −14.70% −1.70% 1.15 0.85 −26.09% −15.53%

O3 (μg/m3) Non 32.69 36.78 12.50% / 57.35 60.71 5.86% /
Level 1 53.66 64.82 20.80% 8.30% 74.03 86.16 16.39% 10.53%
Level 2 66.71 68.48 2.66% −9.84% 90.74 86.23 −4.97% −10.83%
Level 3 81.45 87.59 7.54% −4.96% 139.44 123.65 −11.32% −17.18%

PM10
(μg/m3)

Non 118.27 95.46 −19.29% / 250.50 188.75 −24.65% /

Level 1 94.30 57.24 −39.30% −20.01% 208.46 103.74 −50.24% −25.58%
Level 2 89.97 62.97 −30.01% −10.71% 154.41 99.38 −35.64% −10.99%
Level 3 91.10 67.22 −26.21% −6.92% 207.62 119.69 −42.35% −17.70%

PM2.5
(μg/m3)

Non 85.70 77.70 −9.33% / 184.55 162.28 −12.07% /

Level 1 66.10 44.72 −32.34% −23.01% 168.67 82.65 −51.00% −38.93%
Level 2 58.38 38.02 −34.88% −25.55% 110.09 69.99 −36.42% −24.36%
Level 3 48.77 36.91 −24.32% −14.99% 109.98 63.29 −42.45% −30.39%

Temperature
(◦C)

Non 2.83 4.56 61.06% / 8.80 10.61 20.58% /

Level 1 2.66 6.09 129.07% 68.01% 10.30 13.32 29.29% 8.71%
Level 2 10.14 11.28 11.28% −49.77% 18.10 19.87 9.76% −10.82%
Level 3 15.93 13.93 −12.57% −73.63% 24.70 24.37 −1.34% −21.92%

precipitation
(mm)

Non 1.92 2.67 39.42% / 37.90 15.19 −59.92% /

Level 1 2.11 1.48 −29.88% −69.30% 18.30 12.05 −34.13% 25.78%
Level 2 1.99 2.05 3.02% −36.40% 51.00 20.04 −60.72% −0.80%
Level 3 1.80 1.63 −9.66% −49.08% 24.10 23.47 −2.62% 57.29%

relative
humidity (%)

Non 78.10 82.76 5.97% / 98.00 95.61 −2.44% /

Level 1 74.03 74.96 1.26% −4.71% 98.00 97.20 −0.82% 1.62%
Level 2 72.28 70.16 −2.94% −8.91% 97.00 96.73 −0.28% 2.17%
Level 3 71.67 64.36 −10.20% −16.17% 98.00 91.15 −6.98% −4.54%

wind speed
(m/s)

Non 1.93 1.96 1.42% / 4.40 3.91 −11.24% /

Level 1 2.22 2.33 5.11% 3.69% 4.90 4.18 −14.75% −3.52%
Level 2 2.47 2.60 5.53% 4.11% 5.40 4.45 −17.53% −6.29%
Level 3 2.47 2.32 −6.35% −7.77% 5.90 4.35 −26.19% −14.95%

visibility (km) Non 6.16 5.60 −9.08% / 1.34 1.88 40.74% /
Level 1 8.56 10.64 24.25% 33.33% 2.30 3.53 53.10% 12.36%
Level 2 8.64 12.59 45.80% 54.88% 3.16 3.21 1.57% −39.17%
Level 3 10.13 15.06 48.60% 57.68% 4.49 7.93 76.36% 35.63%
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After the outbreak of COVID-19, the AQI and concentrations of NO2, CO, PM10
and PM2.5 decreased with a magnitude larger than those before the outbreak, displaying
the characteristics of varied degrees of declines under different levels of PPC measures.
Specifically, the AQI and pollutant concentrations decreased the most under the first- and
second-level PPC, and decreased slightly under the third-level PPC. The NCR of SO2
concentration in 2020 was −45.36%, which was significantly lower than the value in the
same period in historical years, indicating that the control effect of SO2 in Jiangsu Province
is obvious. But the decreasing trend of SO2 weakened after the outbreak of COVID-19, and
similar results have been obtained in other parts of China [21]. We speculate that on one
hand, it is related to the industrial production activities that have not been interrupted
during the epidemic period, such as increasing the emission of coal-fired pollution from
coal-fired power plants and coal-fired heating boilers. To some extent, epidemic control has
increased the demand for household electricity, heating and cooking. From the perspec-
tive of provincial distribution, cities with a high proportion of secondary industry have a
relatively high SO2 PCR, such as Changzhou, Zhenjiang and Taizhou (data omitted). On
the other hand, sulfur dioxide is easily soluble in water, and the reduction of precipitation
during the epidemic increased the content of sulfur dioxide in the atmosphere. The O3
concentration in 2020 increased. In particular, the O3 concentration increased by 20.8%
under the first-level PPC measures compared with that during the same period in previous
years. This result is similar to the results of studies focusing on the Chinese mainland, the
Guangdong–Hong Kong–Macao Greater Bay Area [9,24], Europe [25] and India [18]. This
phenomenon is mainly due to the particularity and complexity of ozone formation and de-
pletion mechanisms. Ozone is formed by photochemical reactions between nitrogen oxides
and volatile organic compounds emitted from natural sources and human activities [26].
Air pollution is also somewhat related to meteorological conditions [27,28]. Generally
speaking, high temperature, low relative humidity and high solar radiation are conducive
to the formation of ozone [29–31]. During the period with first-level PPC measures, the
daily average temperature in Jiangsu was 3.43 ◦C higher than that in the same period
of historical years, with an increase of 129.07%, while precipitation decreased by 29.88%.
Brighter weather and lower concentrations of particulate matters allow more sunlight to
pass through. Higher temperatures and stronger light, along with increased photochemical
activity, lead to higher ozone concentrations. Changes in visibility also reflect changes in
air quality to some extent [32]. During the periods in the first-, second- and third-level
responses to PPC, the average values of atmospheric visibility respectively increased by
24.25%, 45.80% and 48.60% compared with those in the same period of previous years, and
the daily minimum value of visibility also increased. This indicates that after the outbreak
of COVID-19, the concentrations of atmospheric particulate matters decreased and thus the
atmospheric transparency gradually increased.

3.3. Impact of Pandemic Prevention and Control on Air Quality

The reduction in air pollution is closely related to the PPC policy. During the period
with first-level PPC measures, the PCRs of AQI and the concentrations of six air pollutants
(SO2, NO2, CO, O3, PM10 and PM2.5) were −21.97%, 0.26%, −28.95%, −12.00%, 8.30%,
−20.01% and −23.01%, respectively. During the period with second-level PPC measures,
the PCRs were −17.97%, 7.55%, −11.82%, −12.30%, −9.84%, −10.71% and −25.55%,
respectively. During the period with third-level PPC measures, the PCRs were −10.29%,
13.02%, 5.09%, −1.70%, −4.96%, −6.92% and −14.99%, respectively (Table 3). It can be
seen that, except for SO2 and O3, the AQI and concentrations of other pollutants were
significantly reduced under the PPC measures. In turn, the improvement of air quality
could help reduce the spread of COVID-19 and play a positive role in PPC [33,34].

The first-level response was ordered by the State Council of the People’s Republic of
China, and the provincial government organized and coordinated the provincial emergency
response under the unified leadership and command. The second-level response was
deployed by the provincial government, and the third-level emergency plan in response
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was formulated by the municipal and county governments. Therefore, the control force and
restriction policies in different provinces may be different, resulting in different impacts of
emergency responses on air quality in different provinces. Some studies have shown that
due to travel restrictions during the pandemic, AQI and concentrations of NO2, CO, PM10
and PM2.5 in cities of northern China decreased by 7.80%, 24.7%, 4.58%, 13.7% and 5.93%,
respectively [1]. For cities in the Guangdong–Hong Kong–Macao Greater Bay Area, the
AQI and concentrations of the above four pollutants were reduced by 37.4%, 47.0%, 24.1%,
44.8% and 40.5% during the period with first-level PPC measures and by 24.4%, 25.5%,
23.2%, 25.6% and 32.5% during the period with second-level PPC measures, which were
27.1%, 12.1%, 9.86%, 24.1% and 31.0% during the period with third-level PPC measures [24].
Therefore, the air quality in Jiangsu was more likely to be affected by the PPC policies
compared with that in cities of northern China, but the sensitivity of air quality to restrictive
policies was slightly lower than that in the Pearl River Delta.

NO2 was the pollutant most sensitive to the PPC policies (Figure 3). The higher
the PPC level, the higher was the reduction of NO2. The PCRs of NO2 concentration
under the first-, second- and third-level responses decreased by 28.95%, 11.82% and 5.09%,
respectively. As the NO2 in the atmosphere is mainly from fossil fuel combustion, vehicle
exhaust and industrial production emissions, with the relaxation of PPC and the recovery
of normal production and living, the concentration of NO2 rose again.

The CO in the atmosphere is mainly from the incomplete combustion of fossil fuels
and biofuels [11]. During the period in response to PPC measures, CO emissions from
domestic boilers and power stations were significantly affected. The PCRs of CO concen-
trations in the first-, second- and third-level responses decreased by 12.00%, 12.30% and
1.70%, respectively. In the first- and second-level responses to PPC policies, CO was well-
controlled. After the implementation of the third-level PPC policy, industrial production
activities gradually recovered, and the CO concentration rebounded. For historical average
(2018–2019), the CO concentration showed a declining trend from February to April, while
there was no such obvious downward trend from February to April of 2020 due to the
implementation of the PPC policy (Figure 3).

In addition, the concentration of atmospheric particulate matters (PM10 and PM2.5) also
decreased significantly during the period in response to PPC measures. The main sources
of PM2.5 are the residues emitted from combustion in the process of daily power generation,
industrial production and vehicle exhaust emissions. PM10 comes from direct emissions
from pollution sources, such as coal-burning flue gas, construction and transportation dust,
smelting dust, building material dust and traffic powder. The PCRs of PM10 concentration
in the first-, second- and third-level responses were reduced by 20.01%, 10.71% and 6.92%,
respectively, while the reductions were 23.01%, 25.99% and 14.99% for PM2.5, respectively.
Thus, the concentrations of atmospheric particulate matters decreased most obviously
under the first- and second-level responses. With the recovery of production and living
activities, the concentrations of particulate matters gradually approached the average value
in the same period of previous years (Figure 3).
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Figure 3. Daily variations of pollutant concentrations under different PPC levels.The shadows of
dark grey, medium grey and light grey represent the L1, L2 and L3 period respectively.

3.4. Variations of Urban Air Quality in Response to Pandemic Protection and Control Measures
under Different Economic Development Levels

Table 4 and Figure 4 show the year-on-year variations of AQI in 13 cities of Jiangsu
under different levels of PPC measures. It can be seen that in 2018 and 2019, there were
significant differences in air quality among 13 cities. Among them, the air quality in
Xuzhou that has a large proportion of heavy industry was the worst. After the outbreak
of COVID-19, the gaps in air quality among 13 cities decreased. During the period with
no PPC measures, except for Nantong and Yangzhou, the AQI values in other cities all
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declined, which means that the air quality generally improved in 2020. During the period
with first-level PPC measures, the AQI values in all cities showed a larger magnitude of
decline. Among them, Wuxi, Nanjing and Suzhou have the largest magnitudes of 40.4%,
39.7% and 38.3%, respectively, while Suqian, Huai’an and Lianyungang have the smallest
magnitudes of 21.1%, 23.1% and 24.2%, respectively. During the period with second-level
PPC measures, the magnitude of the AQI decline in each city was smaller than that during
the period in first-level response. Among them, Yangzhou, Taizhou and Zhenjiang had
the largest magnitudes of 34.3%, 32.8% and 32.4%, respectively, while Huai’an, Suqian
and Lianyungang had the smallest magnitudes of 20.6%, 23.7% and 24.4%, respectively.
During the period with third-level PPC measures, the decline of the AQI in each city
was smaller than that during the period in second-level response. Specifically, Zhenjiang,
Xuzhou, Yangzhou and Taizhou had larger magnitudes of 27.8%, 26.2%, 24.2% and 23.7%,
respectively, while Lianyungang, Nantong, Huai’an and Suqian had smaller magnitudes of
11.9%, 14.0%, 15.2% and 17.8%, respectively.

The daily variations of AQI in Xuzhou, Suqian, Nanjing and Suzhou in 2020 are
presented in Figure 5. It can be seen that before the outbreak of COVID-19, the air quality
in southern Jiangsu (Nanjing and Suzhou) was relatively good, while the air quality
in northern Jiangsu (Xuzhou and Suqian) was poor. After the implementation of the
first-level PPC measures, the air quality improved significantly. After the resumption of
production, the pollutant concentrations rebounded, and the differences in the air quality
among different cities shrank. The cities in southern Jiangsu returned to the pre-pandemic
situation more quickly.

The GDP of 13 cities from 2019 to 2020 is shown in Table 5. The GDP of cities in
southern Jiangsu is relatively higher. For example, the GDPs of Suzhou and Nanjing in
2020 reached CNY 2017.05 billion and CNY 1481.795 billion, respectively, while the GDPs
of cities in northern Jiangsu were relatively lower. Suqian, the city with the lowest GDP in
the province, had a GDP of CNY 326.24 billion in 2020. From the perspective of industrial
structure (Figure 6), the proportion of primary industry in northern Jiangsu is higher than
the average level of the whole province, while the proportions of secondary and tertiary
industry are lower. The situation is the opposite in southern Jiangsu [35]. Under the epi-
demic prevention and control measures, the industrial and vehicle emissions were limited,
so the secondary industry represented by industry and the tertiary industry represented by
service industry were greatly affected. Therefore, the southern Jiangsu, dominated by the
secondary and tertiary industries, was more sensitive to the PPC measures.

Table 4. Variations of AQI in 13 prefecture-level cities of Jiangsu under different levels of pandemic
prevention and control measures, and those in the same period of historical years (the data are
consistent with Figure 4).

City
Non L1 L2 L3

2018–2019 2020 2018–2019 2020 2018–2019 2020 2018–2019 2020

Changzhou 113 108 92 59 87 62 83 64
Huaian 128 115 94 72 83 66 77 65

Lianyungang 121 105 89 68 73 55 69 61
Nanjing 117 91 88 53 77 57 74 58
Nantong 87 90 76 54 72 53 67 57
Suzhou 100 94 84 52 75 55 75 59
Suqian 140 129 103 81 89 68 77 63
Taizhou 107 99 89 61 83 56 76 58

Wuxi 100 89 84 50 74 55 73 59
Xuzhou 167 146 126 85 112 77 91 67

Yancheng 108 94 89 59 81 57 71 59
Yangzhou 110 110 90 57 89 59 82 62
Zhenjiang 121 103 93 62 89 60 81 59
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Figure 4. Variations of AQI in 13 prefecture-level cities of Jiangsu under different levels of pandemic
prevention and control measures, and those in the same period of historical years (the data are
consistent with Table 4). Three colors in the map: blue, northern Jiangsu region; orange, central
Jiangsu region; pink, southern Jiangsu region.
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Figure 5. Daily variations of AQI in Xuzhou, Suqian, Nanjing and Suzhou in 2020. The shadows of
dark grey, medium grey and light grey represent the L1, L2 and L3 period respectively.

Table 5. GDP rankings of 13 prefecture-level cities in Jiangsu Province (data from the National Bureau
of Statistics of China, http://www.stats.gov.cn/, accessed on 10 March 2022).

Ranking City 2020 GDP (Billion Yuan) 2019 GDP (Billion Yuan)

1 Suzhou 2017.05 1923.58
2 Nanjing 1481.795 1403.015
3 Wuxi 1237.048 1185.232
4 Nantong 1003.63 938.339
5 Changzhou 780.53 740.086
6 Xuzhou 731.977 715.135
7 Yangzhou 604.833 585.008
8 Yancheng 595.338 565.626
9 Taizhou 531.28 513.336
10 Zhenjiang 422.01 412.732
11 Huaian 402.537 387.121
12 Lianyungang 327.707 313.929
13 Suqian 326.24 309.923

Therefore, the response speed of urban air quality to the PPC level varied greatly
under different economic development levels and industrial structure. The southern
Jiangsu, which has a higher level of economic development and is dominated by secondary
and tertiary industries, had a faster response speed and a stronger responsiveness. The
pollutant concentration dropped rapidly during the period under first-level PPC, the
economic production recovered quickly and the economic vitality was high during the
periods under second- and third-level PPC. On the contrary, the northern Jiangsu, where
the level of economic development is relatively backward and the proportion of primary
industry is relatively high, had a slower response speed and a weaker responsiveness. The
pollutant concentrations decreased slowly during the period under first-level PPC. After
the relaxation of PPC measures, it takes a longer time for the economy to recover, and thus
the economic vitality will be relatively weaker.
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Figure 6. Industrial structure distribution map of 13 cities in Jiangsu Province. The data are from
the Jiangsu Statistical Yearbook 2020, http://tj.jiangsu.gov.cn/2020/nj20/nj2006.htm, accessed on
10 March 2022.

4. Conclusions

In early 2020, the outbreak of the COVID-19 pandemic occurred. In order to control the
spread of the pandemic, the Jiangsu provincial government took different levels of public
health emergency responses. This paper studies the variations of air quality in response to
different levels of PPC measures. In 2018, the Jiangsu provincial government issued the
“Implementation Plan of Jiangsu Province’s Three-Year Action Plan for Cleaner Air”. Since
then, the air quality has improved significantly. Therefore, this study focuses on analyzing
the air quality during 2018–2020. By analyzing the relationships of air pollution data with
PPC levels and meteorological conditions, the major conclusions are as follows.

The implementation of COVID-19 related PPC policies directly affected the concen-
trations of air pollutants. For AQI and pollutants of NO2, CO, PM10 and PM2.5, as long as
the countermeasures were taken, the AQI and pollutant concentrations were reduced by
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varied degrees regardless of the levels of PPC. However, there was no significant decrease
in SO2 and O3 concentration during the period in response to PPC measures.

The air pollution reduction was closely related to the levels of PPC. In general, the
higher the level of PPC measures, the greater was the reduction of air pollutant concentra-
tions. Compared with the cities in northern China, the air quality in Jiangsu was more likely
to be affected by restrictive policies, but the sensitivity of air quality to restrictive policies
was slightly lower than that in the Guangdong–Hong Kong–Macao Greater Bay Area. This
may be related to urban development and industrial structure in different regions.

NO2 was the pollutant most sensitive to PPC policies. The higher the level of PPC,
the greater was the reduction of NO2 concentration. The CO and atmospheric particulate
matter concentrations were most significantly reduced during the periods with first- and
second-level PPC measures. With the recovery of production and living order, the pollutant
concentrations gradually approached the average value in the same period of previous years.

There were great differences in the response speeds of urban air quality to the lev-
els of PPC among cities with different levels of economic development and industrial
structures. Southern Jiangsu, which has a higher level of economic development and is
dominated by secondary and tertiary industries, had a faster response speed and a stronger
responsiveness, indicating its high economic vitality.

Due to the complexity of air pollution change, in which many factors may play a key
role in this process, this paper still has some limitations, which need to be discovered in
further investigation.

Author Contributions: Conceptualization, W.A. and X.Y.; methodology, X.Y.; software, X.Y. and M.Z.;
validation, X.Y. and M.Z.; formal analysis, Y.S. and B.W.; investigation, X.Y. and D.L.; resources, W.A.
and X.L.; data curation, X.Y.; writing—original draft preparation, X.Y.; writing—review and editing,
D.L., X.Y. and W.A.; visualization, X.Y. and M.Z.; supervision, W.A. and X.L.; project administration,
W.A.; funding acquisition, W.A. and X.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the General Projects of Jiangsu Meteorological Bureau
(KM202204), the Youth Fund of Jiangsu Meteorological Bureau (KQ202005), the Innovation Fund
of the Public Meteorological Service Center of China Meteorological Administration (M2021010),
the Open Research Fund of China Meteorological Administration Key Laboratory of Transporta-
tion Meteorology (BJG202206) and the East China Regional Meteorological Science and Technology
Collaborative Innovation Fund Cooperation Project (QYHZ202109).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: We thank Jiangsu Environmental Monitoring Center for the provision of air
quality data. We are also very grateful to Shen Jinyou of Nanjing University of Science and Technology,
Zhang Zhiwei of Jiangsu Meteorological Society and Chen Hao of Jiangsu Meteorological Observatory
for their guidance and help to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020,
731, 139052. [CrossRef]

2. Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864.
[CrossRef]

3. Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission
control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [CrossRef] [PubMed]

4. Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad.

Sci. USA 2020, 117, 18984–18990. [CrossRef]

387



Atmosphere 2022, 13, 640

5. Wang, Z.S.; Li, Y.T.; Zhang, D.W.; Chen, T.; Sun, F.; Li, L.J.; Li, J.X.; Sun, N.D.; Chen, C.; Wang, B.Y. Analysis on air quality in
Beijing during the 2014 APEC conference. Acta Sci. Circumst. 2016, 36, 675–683.

6. Li, X.; Kong, S.; Yin, Y.; Li, L.; Yuan, L.; Li, Q.; Xiao, H.; Chen, K. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2. 5
around 2013 Asian Youth Games period in Nanjing. Atmos. Res. 2016, 174, 85–96. [CrossRef]

7. Huang, Q.; Wang, T.; Chen, P.; Huang, X.; Zhu, J.; Zhuang, B. Impacts of emission reduction and meteorological conditions on
air quality improvement during the 2014 Youth Olympic Games in Nanjing, China. Atmos. Chem. Phys. 2017, 17, 13457–13471.
[CrossRef]

8. Zhao, J.; Luo, L.; Zheng, Y.; Liu, H. Analysis on air quality characteristics and meteorological conditions in Hangzhou during the
G20 summit. Acta Sci. Circumst. 2017, 37, 3885–3893.

9. Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.-P. Influence of COVID-19 event on air quality and their association in Mainland China.
Aerosol Air Qual. Res. 2020, 20, 1541–1551. [CrossRef]

10. Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact assessment of COVID-19 on variations of SO2, NO2,
CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [CrossRef]

11. Wan, S.; Cui, K.; Wang, Y.F.; Wu, J.-L.; Huang, W.-S.; Xu, K.; Zhang, J. Impact of the COVID-19 event on trip intensity and air
quality in southern China. Aerosol Air Qual. Res. 2020, 20, 1727–1747. [CrossRef]

12. Xu, K.; Cui, K.; Young, L.H.; Wang, Y.-F.; Hsieh, Y.-K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of
COVID-19 event on the air quality near central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [CrossRef]

13. Zhang, J.; Cui, K.; Wang, Y.-F.; Wu, J.-L.; Huang, W.-S.; Wan, S.; Xu, K. Temporal variations in the air quality index and the impact
of the COVID-19 event on air quality in Western China. Aerosol Air Qual. Res. 2020, 20, 1552–1568. [CrossRef]

14. Zhang, L.; Yang, L.; Zhou, Q.; Zhang, X.; Xing, W.; Zhang, H.; Toriba, A.; Hayakawa, K.; Tang, N. Impact of the COVID-19
outbreak on the long-range transport of particulate PAHs in East Asia. Aerosol Air Qual. Res. 2020, 20, 2035–2046. [CrossRef]

15. Jiaxin, C.; Hui, H.; Feifei, W.; Mi, Z.; Ting, Z.; Shicheng, Y.; Ruoqiao, B.; Nan, C.; Ke, X.; Hao, H. Air quality characteristics in
Wuhan (China) during the 2020 COVID-19 pandemic. Environ. Res. 2021, 195, 110879. [CrossRef] [PubMed]

16. Blumberg, S. Data Shows 30 Percent Drop in Air Pollution over Northeast U.S. NASA. 2020. Available online: https://www.nasa.
gov/feature/goddard/2020/drop-in-air-pollution-over-northeast (accessed on 4 April 2020).

17. EEA. Air Pollution Goes Down as Europe Takes Hard Measures to Combat Coronavirus. 2020. Available online: https:
//www.eea.europa.eu/highlights/air-pollution-goes-down-as (accessed on 25 March 2020).

18. Bedi, J.S.; Dhaka, P.; Vijay, D.; Aulakh, R.S.; Gill, J.P.S. Assessment of air quality changes in the four metropolitan cities of India
during COVID-19 pandemic lockdown. Aerosol Air Qual. Res. 2020, 20, 2062–2070. [CrossRef]

19. Li, J.; Tartarini, F. Changes in air quality during the COVID-19 lockdown in Singapore and associations with human mobility
trends. Aerosol Air Qual. Res. 2020, 20, 1748–1758. [CrossRef]

20. Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during
COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [CrossRef] [PubMed]

21. Almond, D.; Du, X.; Zhang, S. Ambiguous Pollution Response to COVID-19 in China; National Bureau of Economic Research:
Cambridge, MA, USA, 2020. [CrossRef]

22. Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19
lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution
variation. Sci. Total Environ. 2020, 732, 139282. [CrossRef]

23. Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ.

2020, 743, 140879. [CrossRef]
24. Li, J.; Yang, H.; Zha, S.; Yu, N.; Liu, X.; Sun, R. Effects of COVID-19 emergency response levels on air quality in the Guangdong-

Hong Kong-Macao greater bay area, China. Aerosol Air Qual. Res. 2021, 21, 200416. [CrossRef]
25. Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodrigez, J.J.D.; Calatayud, V. Amplified ozone pollution

in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [CrossRef] [PubMed]
26. Pyrgou, A.; Hadjinicolaou, P.; Santamouris, M. Enhanced near-surface ozone under heatwave conditions in a Mediterranean

island. Sci. Rep. 2018, 8, 1–10. [CrossRef] [PubMed]
27. Wu, Z.; Liu, D.; Zhao, T.; Su, Y.; Zhou, B. Size Distributions of Water-Soluble Inorganic Ions in Atmospheric Aerosols during the

Meiyu Period in the Yangtze River Delta, China. Front. Environ. Sci. 2021, 515. [CrossRef]
28. Zhou, B.; Liu, D.; Yan, W. A Simple new method for calculating precipitation scavenging effect on particulate matter: Based on

five-year data in Eastern China. Atmosphere 2021, 12, 759. [CrossRef]
29. Lee, Y.C.; Shindell, D.T.; Faluvegi, G.; Wenig, M.; Lam, Y.F.; Ning, Z.; Hao, S.; Lai, C.S. Increase of ozone concentrations, its

temperature sensitivity and the precursor factor in South China. Tellus B Chem. Phys. Meteorol. 2014, 66, 23455. [CrossRef]
30. Li, K.; Jacob, D.J.; Liao, H.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl.

Acad. Sci. USA 2019, 116, 422–427. [CrossRef]
31. Tan, Z.; Hofzumahaus, A.; Lu, K.; Brown, S.S.; Holland, F.; Huey, L.G.; Kiendler-Scharr, A.; Li, X.; Liu, X.; Ma, N.; et al. No

evidence for a significant impact of heterogeneous chemistry on radical concentrations in the North China Plain in summer 2014.
Environ. Sci. Technol. 2020, 54, 5973–5979. [CrossRef]

32. Liu, D.; Yan, W.; Qian, J.; Liu, M.; Wang, Z.; Cheng, M.; Peng, H. A Movable Fog-Haze Boundary Layer Conceptual Model Over
Jianghuai Area, China. Front. Environ. Sci. 2021, 591. [CrossRef]

388



Atmosphere 2022, 13, 640

33. Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities
during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [CrossRef]

34. Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence
from China. Sci. Total Environ. 2020, 727, 138704. [CrossRef] [PubMed]

35. Lu, Y.; Li, X.; Ni, H.; Chen, X.; Xia, C.; Jiang, D.; Fan, H. Temporal-spatial evolution of the urban ecological footprint based on net
primary productivity: A case study of Xuzhou Central Area, China. Sustainability 2019, 11, 199. [CrossRef]

389





Citation: Wang, S.; Zhang, J.; Yao, L.

Effect of Combustion Boundary

Conditions and n-Butanol on

Surrogate Diesel Fuel HCCI

Combustion and Emission Based on

Two-Stroke Diesel Engine.

Atmosphere 2022, 13, 303.

https://doi.org/10.3390/

atmos13020303

Academic Editors: Duanyang Liu,

Kai Qin and Honglei Wang

Received: 11 January 2022

Accepted: 8 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Effect of Combustion Boundary Conditions and n-Butanol on
Surrogate Diesel Fuel HCCI Combustion and Emission Based
on Two-Stroke Diesel Engine

Shiye Wang 1, Jundong Zhang 1,* and Li Yao 2,*

1 Marine Engineering College, Dalian Maritime University, Dalian 116026, China; wangshiye@dlmu.edu.cn
2 Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: zhjundong@dlmu.edu.cn (J.Z.); yaoli@dicp.ac.cn (L.Y.)

Abstract: The combustion and emission characteristics of surrogate diesel fuel homogeneous charge
compression ignition (HCCI) with different combustion boundary conditions and n-butanol (NB)
mixing ratios are studied in this work. Engine data of a two-stroke low-speed direct-injection marine
diesel engine were selected for the reactor. HCCI combustion was achieved by compressing a
completely homogeneous mixture of fuel and air. The results show that NO emissions decrease
slightly with the increase of initial boundary pressure at a constant equivalence ratio and initial
temperature. In addition, the different initial boundary temperature has little effect on NO emission.
The results also indicate that the ignition delay time of the mixed fuel rises with the increase of
n-butanol mixing ratio. The emissions and reaction rate of NOx reduce significantly with the increase
of n-butanol percentage in surrogate diesel fuel and n-butanol mixing combustion at a constant
equivalence ratio and total mole fraction. Meanwhile, CO2 emissions also decrease significantly with
the increase of n-butanol mixing ratio.

Keywords: homogeneous charge compression ignition; surrogate diesel fuel; ignition delay;
n-butanol; NOx emission

1. Introduction

The development of society and the economy is inseparable from energy. The demand
for energy is increasing constantly in the current society, and the rapid consumption of
fossil fuels has caused people to face a serious energy crisis. Therefore, people develop and
explore new renewable and efficient fossil fuel alternative energy sources to deal with the
increasingly severe energy problem [1–3]. At the same time, the massive burning of fossil
fuels has also brought serious pollution problems. Large amounts of CO2 and thermal
NOx are produced when the engine burns fossil fuels. NO and NO2 are the two most
important harmful pollutants in thermal NOx produced by combustion [4–6]. In order to
alleviate the serious environmental damage caused by fossil fuels combustion, various
countries have formulated different measures to control the exhaust emissions of diesel
engines strictly. The European Parliament plans to limit greenhouse gas emissions to deal
with the serious problem of global warming and strive to achieve the goal of reducing more
than 80% in 2050 [7]. The British Parliament passed an amendment in 2019 to achieve a net
zero emission target by 2050. The French National Assembly had already incorporated a
net zero target into law in June 2019. Therefore, the development and utilization of new
renewable clean energy is receiving more and more attention.

N-heptane is often selected as a surrogate diesel fuel in previous simulations of diesel
engines [8–10]. However, the carbon chain of actual diesel fuel is longer than that of
n-heptane fuel, and the number of carbon atoms is about 10 to 25 [11]. The composi-
tion of diesel is complicated, and it is difficult to reproduce the combustion chemistry
characteristics of diesel under low-temperature combustion through a single component
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represented by n-heptane. N-dodecane is considered to be a closer alternative fuel to diesel
than n-heptane. Earlier, Luo et al. developed a simplified one-component diesel substitute
(pure n-dodecane) to simulate diesel engines [12]. However, the mechanism of n-dodecane
lacks alkylbenzene, which is an important component in diesel. It cannot reflect the real
combustion of diesel well. Then, Pei et al. developed a diesel substitution mechanism
(consisting of 77% n-dodecane and 23% m-xylene) on this basis and compared it with the
experimental data of shock tube. Research has found that the mixture of m-xylene and
n-dodecane can represent the combustion and emission characteristics of diesel fuel better
than pure n-dodecane [13].

Oxygenated fuel can reduce PM and soot emissions significantly in diesel engine
combustion [14–19]. At the same time, some oxygenated fuels are renewable. Oxygenated
fuel can be used as a single fuel or mixed with diesel in a certain proportion. Therefore,
oxyfuel is an ideal substitute for fossil energy. As a representative of the new generation of
oxygenated fuel, the development and application of n-butanol (C4H10O) have attracted
the extensive attention of scholars [20,21]. N-butanol has less corrosiveness and high
safety. As an oxygenated fuel, burning n-butanol can reduce soot emissions effectively. The
viscosity of n-butanol is lower than that of diesel, and it has better mutual solubility with
diesel. The mixed combustion of n-butanol and diesel can be realized on the diesel engine
with small changes to the engine [22–25]. In terms of environmental protection, n-butanol
can be produced by biological methods, which can solve the problem of large fossil fuel
consumption effectively. The renewability of n-butanol has high research value and wide
application prospects.

As a new type of combustion concept, HCCI combustion has low NOx emissions and
high combustion heat efficiency compared to traditional gasoline and diesel engines [26–28].
Analyzing the fuel combustion reaction rate through chemical reaction kinetics and control-
ling the ignition strategy of the engine are the most important contents in HCCI combus-
tion [29]. A single fuel or fuel mixture can be used to control the ignition of different types
of engines and the chemical reaction rates of the fuel in HCCI combustion process [30–32].
At present, a variety of fuels including biodiesel, n-butanol and n-heptane have been used
in HCCI engines for research [33–37].

Therefore, the purpose of the study is to apply the HCCI combustion method to a
marine diesel engine and reduce engine emissions of diesel. The method of reducing
engine emissions in diesel surrogate fuel (77% n-dodecane and 23% m-xylene mixture)
HCCI combustion by mixing with n-butanol in a two-stroke diesel engine is first proposed
in the research.

2. Kinetic Models and Methods

The IC engine module in the CHEMKIN-PRO software is used to simulate a low-
speed two-stroke diesel engine HCCI combustion. The selected model is the B&W 6S70MC
engine produced by MAN. This research combines the parameters of this engine model
with closed internal combustion on engine simulator and applies the HCCI combustion
method to a marine diesel engine to study the effects of n-butanol on diesel surrogate fuel
HCCI combustion and emission characteristics. The fuel is completely homogeneously
mixed with the air during the intake and compression strokes to form a lean, homogeneous
mixture. When the piston is compressed to the vicinity of the TDC, the combustion of the
mixed gas in the cylinder is realized by the self-ignition of the air-fuel mixture. Table 1
shows the main technical parameters of the diesel engine [38].
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Table 1. Test engine parameters and specifications.

Item Data

Engine speed 85 rpm
Effective power 13,364 kW

Mean effective pressure 15.27 bar
Stroke 3674 mm

Number of cylinders 6
Connecting rod length 3066 mm

Cylinder diameter 700 mm

The diesel surrogate fuel (77% n-dodecane and 23% m-xylene) reaction mechanism
model came from the Lawrence Livermore National Laboratory [13], which is defined as
DX in this study. The n-butanol combustion reaction mechanism came from the National
University of Ireland [39]. The NOx combustion reaction mechanism came from the C0-C1
NOx mechanism of the National University of Ireland [40]. These mechanisms were com-
bined through ANSYS Workbench to eliminate duplicate reactions and redundant species.
Then, a detailed mixed fuel combustion reaction kinetics mechanism was constructed to
study the HCCI combustion and emission characteristics of two-stroke diesel engines.
Table 2 shows the comparison of the properties of n-butanol, DX [41] and actual diesel [41].
The cetane number of DX is much higher than that of actual diesel, while the cetane number
of n-butanol is lower. Therefore, the cetane number of mixed fuel can be reduced to close
to the cetane number of actual diesel by mixing with n-butanol.

Table 2. Properties of fuels.

Property Diesel DX n-Butanol

C/H mass ratio 6.53 5.96 4.80
Lower heating value (MJ/kg) 42.98 43.33 35.10
Oxygen content (weight %) 0 0 21.6

Cetane number 46 70 12

The actual equivalence ratio of the low-speed two-stroke diesel engine is generally
0.45 to 0.5. In this study, the equivalence ratio is 0.5. Four different initial intake pressures of
0.8, 1.0, 1.2, and 1.4 atm are selected as the pressure boundary conditions of the two-stroke
diesel engine HCCI combustion. Four different initial intake temperatures of 380, 400, 420,
and 440 K are selected as the temperature boundary conditions for DX HCCI combustion.
At a certain total mole fraction, DX and n-butanol are mixed in different proportions,
and the mixing ratio of n-butanol increases gradually. Table 3 shows the mole fraction
and cetane number of mixed fuel and air. Argon is used as the filling gas and does not
participate in the actual reaction.

Table 3. Species composition ratio and cetane number of DX-NB mixtures.

Mole
Fraction of

DX

Mole
Fraction of

NB

Mole
Fraction of

O2

Mole
Fraction of

N2

Mole
Fraction of

Ar

Cetane
Number

1.0 0 33.32 125.35 0 70.0
0.9 0.1 31.19 117.33 10.15 64.2
0.8 0.2 29.06 109.32 20.29 58.4
0.7 0.3 26.92 101.27 30.48 52.6
0.6 0.4 24.79 93.26 40.62 46.8

3. Results and Discussion

This article first verifies the reliability of the skeleton mechanism by comparing the
ignition delay with the experiment. Then, the effects of different initial conditions and
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n-butanol blending ratio on two-stroke diesel engine DX HCCI combustion are researched
in the study.

3.1. Ignition Delay Verification of DX-NB-NOx Skeleton Mechanism

The ignition delay data come from the simulation results of fuel in CHEMKIN closed
internal combustion on engine simulator under different equivalence ratios. Figures 1–3
show the comparison of n-dodecane ignition delay time between the mixed fuel skeleton
mechanism and the experimental value [42]. It can be seen that the study selects three
different equivalence ratios (0.5, 1.0 and 1.5) for comparison at 8 atm and 15 atm respectively.
The simulation results are in good agreement with the experimental values in the high-
temperature stage, and there are some differences in the low-temperature stage. This is
because the experimental data of fuel ignition delay are obtained from the shock tube
experiment, while the simulated ignition delay results come from diesel engine combustion.
There are some differences in the working mode between two styles. Therefore, there is a
certain difference between the diesel engine combustion simulation results and the shock
tube experimental data. The overall trend of two modes is consistent, and the error is
within a reasonable range. So, the reliability of the combustion simulation of n-dodecane in
the newly constructed combustion reaction mechanism can be guaranteed.

Figure 1. (a) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 0.5,
8 atm; (b) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 0.5,
15 atm.

Figure 2. (a) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 1.0,
8 atm; (b) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 1.0,
15 atm.
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Figure 3. (a) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 1.5,
8 atm; (b) Comparison of simulated and experimental ignition delay time of n-dodecane at Φ = 1.5,
15 atm.

Figure 4 shows the comparison of n-butanol ignition delay time between the newly
constructed fuel mechanism and the experimental value [43]. It can be seen that the ignition
delay times of n-butanol at three different pressures of 1.5, 3, and 42 atm are compared
with the experimental values at the equivalent ratio of 1.0. The results show that the
ignition delay time of n-butanol in the newly constructed mechanism was consistent with
the experimental value, which ensured the reliability of the combustion simulation of
n-butanol in the newly constructed combustion reaction mechanism.

Figure 4. (a) Comparison of simulated and experimental ignition delay time of n-butanol at Φ = 1.0,
1.5 atm; (b) Comparison of simulated and experimental ignition delay time of n-butanol at Φ = 1.0,
3 atm; (c) Comparison of simulated and experimental ignition delay time of n-butanol at Φ = 1.0,
42 atm.

3.2. Effect of Initial Pressure on DX HCCI Combustion and NO Emissions

In order to keep the combustion pressure consistent with the actual two-stroke diesel
engine in the cylinder, at an equivalence ratio of 0.5 and an initial temperature of 400 K,
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four different pressures of 0.8, 1.0, 1.2, and 1.4 atm are selected as the initial pressure of the
two-stroke diesel engine HCCI combustion. Figure 5 shows the effect of different initial
pressures on the in-cylinder pressure in the DX HCCI combustion. It can be seen that the
peak combustion pressure increases with an increase of initial pressure. When the initial
pressure is 1.4 atm, the DX HCCI combustion pressure is consistent with the experimental
pressure [38]. The actual combustion pressure in the cylinder rises to the highest point
after the top dead center (TDC) compared with HCCI combustion. The reason is that
HCCI is an ideal combustion mode, multiple ignition points are distributed in the cylinder.
When the fuel reaches ignition conditions, all the fuel is combusted at the same time in
the cylinder, and the pressure rises to the highest point instantly in the cylinder. The fuel
combustion reaction needs some time to progress gradually in the actual diesel engine, the
fuel is completely burned after the TDC, and the cylinder pressure reaches the maximum.
Therefore, the study selects 1.4 atm as the initial combustion pressure of the two-stroke
engine without affecting the engine efficiency.

Figure 5. Comparison of different initial pressures and experimental pressure.

Figure 6 shows the effect of different initial combustion pressures on NO emissions.
NO increases very slightly with the increase of initial intake pressure at a 0 crank angle
degree. This is because the increase of pressure leads to an increase in the reaction rate of
NO formation at the TDC, which increases the production of NO. It can be seen that the
NO emission decreases slightly with the increase of initial pressure at a 50–119 crank angle
degree. The reason is that the increase in combustion pressure accelerates the disturbance of
the gas in the cylinder, speeds up the destruction of NO, and reduces the final production of
NO. Therefore, the increase of initial combustion pressure can help to reduce NO emissions.

Figure 6. Effect of initial combustion pressures on NO emissions.
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3.3. Effect of Initial Combustion Temperature on DX HCCI Combustion and NO Emissions

At a constant initial combustion pressure of 1.4 atm, equivalence ratio of 0.5. The
study selects 380, 400, 420, and 440 K as the initial combustion temperatures for DX HCCI
combustion. Figure 7 shows that when the initial temperatures are 400 K and 420 K, the
combustion peak pressures in the cylinder are close to the actual combustion pressure [38].
At the same time, the fuel ignition delay time at 420 K is shorter than that at 400 K, so DX
HCCI combustion can be synchronized with the actual combustion pressure curve earlier
at the initial temperature of 420 K.

Figure 7. Effect of initial combustion temperatures on in-cylinder pressure.

Figure 8 shows the effect of different initial combustion temperatures on NO emissions.
It can be seen that the NO emissions at the TDC increase significantly with an increase of
initial temperature, which is because the maximum in-cylinder combustion temperatures
rise with the increase of the initial temperature. The final emissions of NO at the exhaust
port increase slightly at different initial temperatures.

Figure 8. Effect of initial combustion temperatures on NO emissions.

Therefore, the DX HCCI combustion will not increase significantly at the initial com-
bustion temperature of 420 K. The simulated combustion pressure can maintain a good
consistency with the actual diesel engine combustion pressure in the cylinder.
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3.4. Effect of n-Butanol on DX HCCI Combustion and Emission Characteristics

3.4.1. Effect of n-Butanol Blending Ratio on the Ignition Delay Time

At a constant engine speed of 85 rpm, equivalence ratio of 0.5, the total mole fraction
of the mixed fuel is fixed. Figure 9a shows the effect of n-butanol blending ratio on the
ignition delay time of the high-temperature part. It can be seen that when the temperature
is higher than 1100 K, the ignition delay time of the mixed fuel rises with the increase
of n-butanol blending ratio. The same trend also appears in the low-temperature stage
(Figure 9b). The ignition delay time increases significantly with the increase of n-butanol
blending ratio when the temperature is lower than 830 K. This is because the cetane number
of n-butanol is lower than that of DX (Table 2). With the increase of n-butanol mixing ratio,
the cetane number of the mixed fuel decreases. As a result, the ignition delay time of the
mixed fuel becomes longer. The fuel and air have more time to mix fully and uniformly
before the combustion starts, which can improve the fuel combustion efficiency effectively.
The cetane number of DX is higher than that of diesel, and the cetane number of n-butanol
is lower than that of diesel (Table 2). Therefore, adding a certain proportion of n-butanol to
DX can make the cetane number of the mixed fuel closer to real diesel. It can be seen that
when the blending ratio of n-butanol is 40%, the cetane number of the mixed fuel is closest
to real diesel (Table 3).

Figure 9. (a) Effect of DX and n-butanol blending ratio on high-temperature ignition delay; (b) Effect
of DX and n-butanol blending ratio on low-temperature ignition delay.

3.4.2. Effect of n-Butanol Blending Ratio on Combustion Temperature and Pressure

Figure 10 shows that the combustion temperature decreases with an increase of n-
butanol percentage at a constant equivalence ratio of 0.5. This is because the lower heating
value of n-butanol is lower than that of DX, the total heating value of fuel reduces with the
increase of n-butanol percentage at the constant total mole fraction. The difference between
the heating value of DX and n-butanol is not very large, it will not cause a significant
decrease in the temperature of the main combustion process. However, the lower heating
value will shorten the combustion process time. When the fuel is completely burned, the
lower the heating value, the faster the combustion temperature decreases. The reduction of
combustion temperature helps to reduce the production of thermal NOx. Therefore, the
combustion temperature can be adjusted in an appropriate range by regulating the mixing
ratios of DX and n-butanol to decrease NOx emissions

398



Atmosphere 2022, 13, 303

Figure 10. Effect of DX and n-butanol mixing ratio on combustion temperature in cylinder.

Figure 11 shows the effect of n-butanol mixing ratio on in-cylinder combustion pres-
sure. It can be seen that the combustion pressure has not obvious change with the increase
of n-butanol mixing ratio in a two-stroke diesel engine. Therefore, adding n-butanol to DX
HCCI combustion will not cause a major change to the engine combustion pressure, which
ensures the working efficiency of the engine.

Figure 11. Effect of DX and n-butanol mixing ratio on combustion pressure in cylinder.

3.4.3. Effect of n-Butanol Blending Ratio on NOx Emissions

Figure 12a shows the effect of DX and n-butanol blending ratio on NO emissions.
It can be seen that NO emissions decrease significantly with the increase of n-butanol
mixing ratio. When the blending ratio of n-butanol increases from 0% to 40%, the final
NO emissions decreased by 21.9% (Figure 12b). Therefore, NO emissions can be reduced
effectively by adding the n-butanol mixing ratio.
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Figure 12. (a) Effect of DX and n-butanol blending ratio on NO emissions; (b) Effect of n-butanol
percentage on final NO emissions.

The same trend also appears in NO2 emissions (Figure 13a). It can be seen that the
final emission of NO2 shows a downward trend with the increase of n-butanol mixing ratio.
It can be clearly seen that with the blending ratio of n-butanol increases from 0% to 40%,
the final NO2 emissions decrease by 7.8% from Figure 13b. Therefore, NO2 emissions can
be reduced effectively by adding n-butanol in DX HCCI combustion.

Figure 13. (a) Effect of DX and n-butanol mixing ratio blending ratio on NO2 emissions; (b) Effect of
n-butanol percentage on final NO2 emissions.

NOx emissions show an obvious downward trend with the increase of n-butanol
blending ratio. The main reason is that the lower heating value of DX is higher than that of
n-butanol. The total heating value of fuel decreases with the increase of n-butanol blending
ratio, causing the combustion temperature in the cylinder to decrease, which leads to a
decrease in NOx emissions. At the same time, the increase of n-butanol blending ratio
leads to a lower cetane number of the mixed fuel and increases the ignition delay time. The
fuel has sufficient time for uniform mixing and shortens the combustion process. Since
long-time combustion is also an important factor that causes the increase of NOx emissions.
Therefore, the NOx emissions can be reduced by shortening the combustion process.

3.4.4. Effect of n-Butanol Blending Ratio on NOx Reaction Rate

Figure 14 shows the effect of n-butanol blending ratio on the chemical reaction rate of
NO produced at the maximum combustion temperature in the cylinder. The main reaction
paths of NO generation at the in-cylinder combustion peak temperature are indicated by
the following chemical equations:

HNO + N2 ↔ NO + NNH (1)

NO2 ↔ NO + O (2)

400



Atmosphere 2022, 13, 303

NO2 + OH ↔ NO + HO2 (3)

N2 + O ↔ NO + N (4)

Figure 14. Effect of n-butanol mixing ratio on NO formation rate.

It can be seen that the reaction rate of NO decreases significantly with the increase of
n-butanol mixing ratio. The maximum reduction of NO production rate can reach about
48.8%. The main reason is that the increase of n-butanol mixing ratio leads to a decrease
in the total heating value of the mixed fuel, which reduces the in-cylinder combustion
temperature. The lower combustion temperature suppresses the perturbation of the gas in
the cylinder. Therefore, the production rate and emissions of NO are reduced effectively.

Figure 15 shows the effect of n-butanol blending ratio on the chemical reaction rate of
NO2 produced at the maximum combustion temperature in the cylinder. The main reaction
paths of NO2 generation at the in-cylinder combustion peak temperature are indicated by
the following chemical equations:

HONO + OH ↔ NO2 + H2O (5)

NO + OH ↔ NO2 + H (6)

Figure 15. Effect of n-butanol mixing ratio on NO2 formation rate.

It’s the same as the decrease of NO reaction rate, the total heating value of the mixed
fuel decreases with the increase of n-butanol blending ratio, which reduces the combustion
temperature in the cylinder. The lower combustion temperature suppresses the perturba-
tion of the gas in the cylinder, the combustion reaction rate of NO2 decreases, which leads
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to a reduction in NO2 emissions. The NO2 generation rate can be reduced by about 46.4%
at most.

It can be seen that the combustion reaction rate and emissions of NOx reduces signifi-
cantly with the increase of n-butanol mixing ratio. When the blending ratio of n-butanol
reaches 40%, the production rate of NO and NO2 can be reduced by more than 40%. There-
fore, NOx emissions can be reduced effectively by increasing n-butanol mixing ratio in a
suitable range.

3.4.5. Effect of n-Butanol Blending Ratio on CO2 Emissions

Figure 16 shows the effect of DX and n-butanol mixing ratio on CO2 emissions at an
equivalence ratio of 0.5. It can be seen that the CO2 emissions decrease significantly with
the increase of n-butanol blending ratio. The reason for the decrease in CO2 production is
that the C/H ratio of n-butanol is lower than that of DX. The C/H ratio of the mixed fuel
decreases with the increase of n-butanol. Therefore, it can be known that CO2 emissions
in two-stroke diesel engine HCCI combustion reduce significantly with an increase of
n-butanol mixing ratio.

Figure 16. Effect of DX and n-butanol blending ratio on CO2 emissions.

Figure 17 shows the effect of n-butanol blending ratio on the C/H mass ratio and
the final CO2 emissions of the mixed fuel. It can be clearly seen that the C/H mass
ratio of the mixed fuel decreases significantly with the increase of n-butanol mixing ratio.
The decrease of the C/H mass ratio leads to the reduction of the final CO2 emissions.
The final CO2 emission decreases by about 23.9% when the blending ratio of n-butanol
reaches 40%. Therefore, C/H mass ratio and CO2 emissions of the two-stroke diesel engine
HCCI combustion can be reduced effectively by increasing the n-butanol mixing ratio in a
suitable range.
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Figure 17. Effect of n-butanol percentage on C-H mass ratio and final CO2 emissions.

4. Conclusions

A mixture of n-dodecane and m-xylene was used as an alternative fuel for diesel.
The complete combustion reaction mechanism of diesel (DX), n-butanol and NOx was
established for two-stroke diesel engine HCCI combustion. Through the sensitivity analysis,
ignition delay time, combustion temperature, in-cylinder pressure, NOx and CO2 emissions
were obtained for different n-butanol mixture ratios during the diesel alternative fuel DX
HCCI combustion. Through the analysis of reaction paths, the main formation path and
chemical reaction rate of NOx were observed accurately. The main findings from this
research are as follows:

The peak combustion pressure increased with an increase of initial intake pressure
from 0.8 to 1.4 atm on low-speed two-stroke diesel engines HCCI combustion. The combus-
tion pressure of the model used at 1.4 atm in the cylinder was consistent with the actual
combustion pressure. The final NO emissions decreased slightly with the increase of initial
intake pressure.

The ignition time advances with the increase of initial intake temperature from 380
to 440 K. The combustion pressure of the model used at initial temperature of 420 K was
consistent with the actual combustion pressure. The final NO emissions increased slightly
with the increase of initial intake temperature.

Different DX and n-butanol mixing ratios were used at a constant total mole fraction.
The ignition delay time increased with an increase of n-butanol ratio. The combustion
temperature decreased rapidly with the increase of the n-butanol blending ratio after the
TDC. The reaction rate and emissions of NOx reduced significantly with the increase of
n-butanol mixing ratio. When the blending ratio of n-butanol reaches 40%, the production
rate of NO and NO2 could be reduced by more than 40%. The NOx reaction rates decreased
rapidly with the increase of n-butanol mixing ratio at the TDC. At the same time, C/H
mass ratio and the CO2 emissions decreased significantly with the increase of n-butanol
percentage. Therefore, the combustion and emission of DX HCCI combustion can be
improved by increasing the n-butanol mixing ratio at the same engine load.
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Nomenclature

HCCI homogeneous charge compression ignition
DX n-dodecane and m-xylene
NB n-butanol
rpm revolutions per minute
Ar argon
TDC top dead center
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Abstract: Air quality is highly related to the health of a human being. Urban morphology has a
significant influence on air quality; however, the specific relationship between urban morphology
characteristics and air quality at the neighborhood scale has yet to be investigated, especially the
vegetation effect on PM2.5 concentration and diffusion. The relevant morphological parameters based
on the affected pathways of urban morphology on air quality were selected, and the sensitivity
degree and laws of the selected morphological parameters to PM2.5 were quantified by numerical
simulation, bivariate correlation analysis, and regression analysis. The results showed that Building
Density (BD), Block Envelope Degree (BED), Average Building Volume (ABV), Average Building
Floors (ABF), Standard Deviation of Building Height (SDH) and Greenbelt Coverage Rate (GCR)
were Sensitive Morphological Parameters (SMPs). A positive and cosine curve trend of BD and
BED with PM2.5 was observed. GCR was significant to dust retention along with vertical canopy
height. When ABV = 40,000 m3 and ABF = 20F, the lowest PM2.5 concentration was examined,
while increased SDH could promote airflow and enhance the capacity of PM2.5 diffusion. Finally,
morphology-optimization strategies were proposed at the neighborhood scale: (1) Decreasing the
BED along the street; (2) considering the species of vegetation with the appropriate height and
increasing the GCR; (3) increasing the ABF of neighborhoods appropriately while controlling the
ABV and distinguishing the internal SDH of neighborhoods. The study could apply the scientific
basis for the planning and design of healthy and livable cities.

Keywords: sensitive morphological parameters; PM2.5; CFD; neighborhoods; Beijing

1. Introduction

Rapid urbanization has resulted in air pollution issues that had a negative impact on
many sectors of human lives. According to the Beijing State of the Environment Bulletin
2020 [1], the number of days that met air quality standards in 2020 was 276 days, accounting
for 75.4%. Although the overall air quality has improved compared to the previous period,
the distribution of pollution still showed north–south differences, and the concentration
of pollutants such as PM2.5 and PM10 in ecological zones in the north and northwest is
significantly lower than that in the southern high-density built-up areas and high-density
population areas, which showed a “Low-Northwest while High-Southeast” situation. As
urban planning became a more essential component of the development of livable cities,
how to enhance air quality by optimizing urban morphology evolved into a focus of
investigation in relevant disciplines [2,3].

Based on the foregoing, studies on urban morphology and air quality were steadily es-
tablished [4]. Studies mainly involve two scales: regional-urban [5] and neighborhoods [6].
At the regional-urban scale, most scholars had focused on exploring the intrinsic effects
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of different urban morphological features on air quality. Research elements included
physical spatial characteristics such as city size and urban shape, [7] vegetation cover [8],
and non-physical characteristics such as population density and employment density [9].
In addition, studies have also been conducted to analyze the correlation between urban
morphology and air quality from a spatial and temporal perspective [10].

At the neighborhood scale, most studies had conducted comparative studies of neigh-
borhoods with different morphological characteristics for the correlation between urban
morphology and pollutants [11,12] with air pollutant monitoring data from urban observa-
tories. However, the specific relationship between urban morphological parameters and
PM2.5 concentration as well as diffusion has not been investigated clearly. In addition,
the generalization of urban morphological characteristics needed a systematic and com-
prehensive framework. Since the selection of vegetation and non-physical morphological
indicators is relatively weak in existing studies, they are unable to provide universal laws.

In recent years, the development of simulation techniques such as Computational
Fluid Dynamics (CFD) has provided the technical support to establish the correlation
between urban morphology and pollutant dispersion at the neighborhood scale with the
Fluent simulation software being the most widely utilized. Studies could be divided
into two categories. First, ideal-neighborhood simulation based on traditional settlement
patterns [13] was constructed (lineal type, point group type, etc.). Different building
combinations [14] or vegetation layouts [15] were explored individually, and the effect
of different morphological features on the dispersion of pollutants based on simulation
results was qualitative or quantitative analyzed. Secondly, a simulation based on actual
cases was constructed. Different urban design schemes for the same neighborhoods [16]
or comparisons of different neighborhoods [17] have been studied to promote the air
quality. In general, the correlation between urban morphology and air quality had been
gradually established; however, the quantitative guidance was limited. The simulation
studies of ideal neighborhoods were separated from the complicated morphology of the
building arrangement in the actual environment, and the simulation data were based on
empirical data. In addition, in terms of modeling, the impact of the integrated neigh-
borhood environment of buildings and vegetation on pollution dispersion has not been
considered in previous studies, while the simulation studies of actual cases were aimed at
promoting the air quality of specific public spaces and neighborhoods, which lacked the
general application.

The study, which focused on two typical residential neighborhoods with different
features in central Beijing, explored the quantitative rules of affection between urban mor-
phology and air quality. We devised an urban morphology and air quality mechanism for
selecting morphological parameters. Through the neighborhood-scale CFD simulation,
which includes the calibration of vegetation factors and multi-source data, the Sensitive
Morphological Parameters (SMPs) impacting air quality (PM2.5, for example) at the neigh-
borhood scale were filtrated before statistical models. Therefore, the quantitative rules of
the influence of SMPs on the “pollutant-wind environment” could be estimated.

2. Data and Methods

2.1. Study Area

Taking a traditional residential area in central Beijing as the study area, the study
selected a low-rise residential neighborhood (Neighborhood A) and a high-rise residen-
tial neighborhood (Neighborhood B) as the core study area based on the street network,
buildings’ layout, and its group form (Figure 1a). Neighborhood A, which was built in
the 1990s, is dominated by enclosed low-medium-rise residential buildings with schools
and underlying retail; Neighborhood B, which was built in the early twenty-first century,
is dominated by row-slab high-rise residential buildings with a few underlying retails.
The aforementioned two neighborhoods differ in terms of building periods, functional
placement, and spatial arrangement, which might illustrate the main features of Beijing’s
residential neighborhood morphology.
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Figure 1. The study area: (a) the study area; (b) core study area, A refer to Neighborhood A, B refer
to Neighborhood B.

2.2. Wind Environment and Pollutant Monitoring

The objective of the field monitoring is to count the concentration levels of pollutants
in the neighborhoods as well as the characteristics of the wind environment and to conduct
a preliminary analysis of the differences in pollutant concentrations and wind environment
between neighborhoods, which serves as a foundation for testing and validating simulation
results. The XL68 intelligent environmental monitoring equipment is chosen to monitor
PM2.5 concentration (resolution: 1 μg/m3, range: 0~1000 μg/m3) and wind speed (reso-
lution: 0.1 m/s, range: 0~60 m/s) of the neighborhoods at monitoring points P1 and P2
(z = 3 m, z = 2 m) (Figure 1b). Details of equipment are shown in Table S1.

2.3. “Pollutant-Wind Environment” Model Setting

Micro-scale CFD numerical simulations have been widely used in the simulation of
outdoor wind environments and pollutant dispersion [17]. ANSYS FLUENT 21.0 based
on the finite volume method was adopted for numerical simulations, and the governing
equation was the Reynolds-averaged Navier–Stokes equation. The standard K-ε turbulence
model was adopted to simulate the airflow [18]. Pollutants and air were considered as
continuous phases, and the pollutant concentrations were solved with the component
transport model [19,20].

2.3.1. Computational Domain and Grid Generation

The calculation domain was constructed according to the method specified by the
European Cooperation in the Field of Scientific and Technical Research (COST) [21], keeping
a minimum of 5H for vertical distances (H—the maximum building height) and 5H for
horizontal and horizontal distances (Figure 2). At the same time, an unstructured meshing
method based on a hexahedron was adopted to save computational costs. Three sets of
coarse–medium–fine meshes were divided, and grid irrelevance was tested. The final grid
was 2.4 × 108 for Neighborhood A and 2.6 × 108 for Neighborhood B.
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Figure 2. Computing domain construction of neighborhoods: (a) Neighborhood A; (b) Neighborhood B.

2.3.2. Boundary Condition

The incoming wind speed is exponentially distributed with height [22]. For the
simulation, the calculation domain entry was set as the velocity-inlet boundary condition
and adopted a user-defined function:

U =
U∗

κ
ln(

z + z0

z0
) (1)

U—horizontal wind speed at height z(m), m/s
U*—ground friction speed, m/s
κ—Von·Karman constant, κ = 0.42
z0—surface roughness, z0 = 0.25

PM2.5 was mainly emitted from traffic emissions and was relatively stable by default.
Pollutants were emitted vertically upwards at 0.5 m/s, and the source intensity was from
the nearest urban monitoring station on the simulation day. The zero static gauge pressure
outlet was used for the downstream boundary condition, and the standard wall functions
with roughness modification were used for the building surface and the bottom of the
computational domain. The roughness height was 0.0025–0.003 m, and the roughness con-
stant was 0.75. Symmetry boundary conditions were served to the side-face computational
domain and the upper-face computational domain [23]. Detailed boundary conditions are
shown in Figure 3.

Figure 3. Calculation of domain boundary condition settings.

The study treated the canopy section of the tree with a porous medium due to the
influence of trees on the surrounding flow field in reducing wind speed and increasing
flow disturbance. According to the relevant literature [24], the modeling of the influence of
tree canopy on the flow field was accomplished by adding source terms to the momentum
equation, the K equation and the ε equation, respectively. The porosity was 0.7, the inertial
resistance was 0.18, and the viscous resistance was 1.67. Meanwhile, pollutant sorption
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and deposition by trees were adjusted to a constant value, and the rate of deposition was
determined by wind speed and pollutant concentration [25]:

YPM2.5= v·d·LAD·t (2)

YPM2.5—Pollutant adsorption capacity per unit area (μg/m2)
v—Adsorption rate (m/s)
d—Pollutant concentration (μg/m3)
LAD—leaf area density; (m2/m3)
t—Adsorption time (s)

2.3.3. Solution Settings

The finite volume method was used to discretize the control equation, solved by
the SIMPLE algorithm, and the second-order upwind algorithm was adopted. In the
initial condition setting, the ground observation data of the Beijing meteorological station
on typical dates (Table 1) were used as the initial conditions for the simulation. PM2.5
monitoring concentrations close to those of national control stations were used as the basis
for selecting typical dates, and four typical dates with typical meteorological characteristics
during the monitoring period were selected to establish the CFD numerical model.

Table 1. Meteorological data of national control stations on simulation dates.

Date Wind Direction Wind Speed (m/s) PM2.5 (μg/m3) Temperature (◦C)

7.10 E 2.0 44 24.6
7.13 SE 1.7 55 28.6
10.14 N 1.8 9 9.2
10.26 NW 1.6 30 8.8

2.4. Selection and Extraction of Urban Morphological Parameters

2.4.1. Selection of Urban Morphological Parameters

Based on the research framework of urban morphology influencing air pollutant
transport (Figure 4) and the generalization of existing studies, a system of six categories of
urban morphological characteristics, including size, density, function, structure, shape and
immaterial morphological characteristics, were constructed.

Figure 4. Framework of interaction mechanism between urban morphology and air quality.

The six morphological characteristics stated above have been proved to have a direct
or indirect impact on air quality and the urban microclimate. In particular, urban size
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affects the urban microclimate, pollutant emissions, and dispersion transport, and pollutant
concentrations increase significantly as urban size increases [26]. The association between
land use and air pollutants is more obvious, and air pollution is severe in industrial sites
and commercial districts with greater emission sources [27]. In contrast, green spaces
and water bodies can improve the local microclimate [28] and reduce the concentration
of PM2.5 in the region [29]. Different density characteristics demonstrate a broad range of
heterogeneity in the routes of effect on air quality, such as the impact of building density
on the alteration of local wind fields, which influences pollution dispersion [30,31], and
the impact of road density on traffic pollutants [9]. Urban layout structure is a major
factor affecting the wind environment, and a large number of scholars have conducted
detailed studies on the elements of layout structure with wind environment and pollutant
levels [32,33]. Most of the studies on shape features have focused on investigating the
effects of different building shapes and combinations of building morphologies on the wind
environment and pollutant dispersion [34]. Furthermore, since physical urban morphology
is the spatial projection of non-physical urban morphology on land use [35], the adoption
of the immaterial morphological indicator is highly relevant to the overall morphology of
the neighborhoods.

Thus, ten morphological parameters were selected for investigation based on the prin-
ciples of neighborhood scale, potential impact on pollutant levels, ease of implementation
at the control and design stages, and the interaction mechanisms between the preceding
morphological features and air quality, as well as the research progress of relevant literature
(Table 2).

Table 2. Selection of characteristic morphological parameters of neighborhoods.

Morphological Characteristics Morphological Parameters Calculation Method

Size Characteristics
Total building area, TBA

TBA =∑
n
i=1 Si∗Fi

Si—Building single-story area
Fi— buildings Floors

Floor area ratio, FAR FAR = TBA/SA
SA—Neighborhoods area

Functional Characteristics Greenbelt coverage rate, GCR GCR = TGA/SA
TGA—Area of horizontal vegetation projection

Density Characteristics Building density, BD BD = BBA/SA
BBA—Building footprint

Structural Characteristics
Block envelope degree, BED

BED = TBP/TSP
TBP—Building envelope perimeter

TSP—Neighborhood perimeter

Space openness, SO SO = (1 − BD)/FAR

Shape Characteristics

Average building volume, ABV ABV =
∑

n
i =1 Vi

n
Vi—Building volume

Average building floors, ABF ABF = FAR/BD

The standard deviation of building height, SDH SDH =

√
∑

n
i=1 (h i − h)

2

n

h—Average building height

Immaterial Characteristics Population density, PD PD = TP/SA
TP—Neighborhoods population

2.4.2. Extraction of Urban Morphological Parameters

The subject area’s similarities and differences can be quantitatively investigated by the
division of calculating units. The neighborhoods were divided into 20 units according to
road boundaries, spatial structure divisions and the size of typical urban neighborhoods by
a 200 × 200 m grid (Figure 5). The Beijing Institute of Surveying and Mapping was used to
obtain the 3D environmental data of the neighborhoods, while the sociological data were
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obtained from the field survey. The selected morphological parameters were calculated
separately in ArcGIS 10.5.

Figure 5. Grid division of neighborhoods.

2.5. Selection of Indicators for the Evaluation of “Pollutants–Wind Environment”

The “wind speed ratio” [23] evaluation index refers to the ratio of the wind speed
at the actual selected location to the incoming wind speed on that day, which is often
used to reflect the degree of influence of different areas or buildings on the wind speed,
as a way to evaluate the condition of the wind environment in the region. “Pollutant
concentration ratio” means the ratio of the concentration of pollutants in different areas
to the concentration of incoming pollutants, which is used to quantify the relative level of
pollution in a local area.

VRw =
Vp

V∞
(3)

CRp =
Cp

C∞
(4)

In Equations (3) and (4), VRw is the wind speed ratio; Vp is the wind speed value at a
certain height in a region (m/s); CRp is the pollutant concentration ratio; Vp is the average
concentration of pollutants at a certain height in a region (μg/m3); V∞ is the average
concentration of incoming pollutants in a region (μg/m3).

2.6. Statistic Analysis Model

The Pearson bivariate correlation analysis was used to filtrate the Sensitive Morpho-
logical Parameters (SMPs) with a high correlation to PM2.5 and wind speed. To avoid
the effect of excessive differences in the morphology of different neighborhoods, a corre-
lation analysis was used between the GCR (A) in Neighborhood A and the GCR (B) in
Neighborhood B separately.
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The Curvilinear Regression was used to estimate the influence pattern of SMPs with
PM2.5 and wind speed. SMPs in 20 calculation units are used as independent variables, and
the simulation results of the CRp and VRw at 1.5 m height are used as dependent variables.

3. Results

3.1. Monitoring Results

Field monitoring is shown in Figure 6. Overall, trends in pollutant concentrations
within neighborhoods are influenced by overall urban background concentrations, and the
two neighborhoods are relatively close but again show part of the local variability.

Figure 6. Monitoring data: (a) PM2.5 monitoring data; (b) wind speed monitoring data.

3.2. Simulation Results and Error Analysis

In the correlation test (Figure 7), the two data sets showed a high correlation
(R2 = 0.82, 0.77). In the paired t-test (Table 3), the data significance (P) was greater than 0.05
for both groups at 95% confidence, which means that there was no significant difference
before and after the simulation.

As a result, the CFD numerical model developed can predict the neighborhoods’ PM2.5
concentration and wind environment more accurately. It can be used to predict a neighborhoods’
PM2.5 concentration and wind environment under different morphological parameters.

Figure 7. Correlation test before and after simulation of: (a) Neighborhood A; (b) Neighborhood B.

414



Atmosphere 2022, 13, 921

Table 3. P1 and P2 simulated data were paired with measured data for the sample test.

Comparing
Criteria

Paired Differences

t sig. (2-Tailed)
Means Std. Deviation Std. Error Mean

95% Confidence Interval
of the Difference

Lower Upper

Velocity 0.00875 0.026424 0.009342 −0.013341 0.030841 0.937 0.380
PM2.5 8.27500 13.066615 4.619746 −2.648964 19.198964 1.79 0.116

3.3. Sensitive Morphological Parameters Filtrating

Table 4 shows the results of the correlation analysis between morphological param-
eters and the CRp and VRw of different neighborhoods. Among the 10 morphological
parameters, BD, BED, ABV, ABF, SDH and GCR showed strong sensitivity (p < 0.05) to
CRp and VRw with correlation coefficients between 0.4 and 0.8. It is suggested that there
is a slight interaction between morphological parameters and pollutant concentrations
and wind speeds, and alterations in these morphological parameters can result in more
sensitive responses in PM2.5 concentrations and wind conditions, which are Sensitive Mor-
phological Parameters (SMPs). In contrast, the four parameters TBA, FAR, SO and PD
were less sensitive (p > 0.05) to the PM2.5 concentration ratio and wind speed ratio, with
correlation coefficients below 0.3. It is suggested that alterations in these morphological
features do not appear to produce more sensitive changes in PM2.5 concentration and wind
environment response.

Table 4. Correlation analysis of morphological parameters with PM2.5 and wind speed.

Analysis of
Variables

CRp VRw

R P R P

TBA −0.246 0.325 0.114 0.268
FAR −0.246 0.325 0.114 0.268
BD 0.443 0.025 −0.709 ** 0.000
SO 0.221 0.379 −0.217 0.388

BED 0.401 0.035 −0.636 ** 0.001
ABV −0.564 ** 0.005 0.505 * 0.012
ABF −0.628 ** 0.002 0.684 ** 0.000
SDH −0.612 ** 0.001 0.573 ** 0.004

GCR (A) −0.912 ** 0.001 −0.818 ** 0.007
GCR (B) −0.726 ** 0.001 −0.810 ** 0.003

PD 0.162 0.520 −0.128 0.296
** The correlation is significant at the 0.01 level (two-tailed). * The correlation is significant at the 0.05
level (two-tailed).

Furthermore, the correlation coefficient R suggests that each SMP demonstrates an
inverse trend of association between wind speed and PM2.5. Among them, BD, BED
and GCR show a positive correlation with PM2.5 and a significant negative correlation
with wind speed. ABV, ABF and SDH show part of negative correlation with PM2.5 and
a significant positive correlation with wind speed. Therefore, the SMPs influence the
transport and dispersion of air pollutants primarily via altering the wind environment
in the surrounding area: increased wind speed enhances the transport and dispersion
of air pollutants, resulting in reduced air pollutant concentrations. In general, the wind
environment is still the main factor influencing the dispersion of pollutants. In the case
of identical neighborhoods’ land uses, the different morphological parameters affect the
dispersion of pollutants mainly indirectly by influencing the wind environment.
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4. Discussion

4.1. Trend Analysis of the Influence of SMPs

Figure 8 shows the interaction curves of the six SMPs with PM2.5 and wind speed. It
also demonstrates that the effect of each SMP on PM2.5 concentration and wind speed has
an inverse connection within a particular interval, but the outcomes of other intervals on
PM2.5 concentration and wind speed are different.

Figure 8. Curve fitting of different morphological parameters with PM2.5 and wind speed: (a) BD;
(b) GCR; (c) BED; (d) ABF; (e) ABV; (f) SDH.
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According to Figure 8, wind speed is the most important element influencing PM2.5
dispersion, and high wind speeds promote pollution transport and dispersion. The spatial
morphological characteristics of distinct neighborhoods define their internal wind envi-
ronment under the same incoming wind speed conditions, which has an impact on the
transport dispersion and concentration distribution of air pollutants. Furthermore, the
different impact results are exhibited by the morphological parameters in different intervals.
It is claimed that there are parameter intervals for each morphological parameter that are
more positive (or less positive) to the transmission and dispersion of air contaminants.

4.1.1. BD and BED

The relationship between BD, BED and PM2.5 and wind speed all show a trend of sine
and cosine curves (Figure 8a,c). As BD or BED rises, PM2.5 shows a trend of decreasing,
while wind speeds show a decrease followed by an increase, then increasing and then
decreasing. In particular, PM2.5 is lowest when BD is around 10% and continues to rise
above 10%, reaching a maximum of PM2.5 at around 20%. PM2.5 is lowest at a BED
of around 3 and highest at 5. When BD = 20% or BED = 5, the corresponding wind
speed is at its minimum. The effect of BD and BED on the wind environment can be
further seen by comparing the local area wind speed vectors for Neighborhood A and
Neighborhood B (Figure 9): BD and BED of Neighborhood A with the relatively smooth
internal wind environment is higher than Neighborhood B. This is because when the BD
and BED are within a specific range, the transport of pollutants from outside is considerably
restricted. However, when the BD and BED rise to a certain level, the neighborhood’s wind
environment tends to stabilize, which is not conducive to the migration and dispersion of
atmospheric pollutants and creates a cumulative effect. Therefore, keeping the building
density and block envelope degree of neighborhoods within a reasonable range can assist
in enhancing air quality.

Figure 9. Vector diagram of local wind speed in: (a) Neighborhood A; (b) Neighborhood B.

4.1.2. GCR

As the GCR increases, PM2.5 concentration and wind speed all showed a decreasing
trend (Figure 8b). This is because wind speed is reduced and dust is suppressed by
vegetation in the vertical zone beneath the canopy, with a progressive decrease in the
zone above the canopy. As an example, Figure 10 illustrates the local vegetation XZ plane
wind speed and PM2.5 distribution in Neighborhood A, which suggests that the influence
of vegetation on pollutant concentrations and wind speed is related to the height of the
vegetation and its dust retention effect is most noticeable in the vertical zone beneath the
canopy, with a progressive decrease in the zone above the canopy.
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Figure 10. XZ plane in the local area of Neighborhood A of: (a) velocity vector; (b) PM2.5

concentration distribution.

4.1.3. ABF, ABV and SDH

ABF, ABV and SDH demonstrated varying degrees of positive and negative correla-
tions with PM2.5 and wind speed, respectively. When ABV = 40,000 m3 and ABF = 20F, the
lowest PM2.5 concentration was observed. The rise in ABF indirectly increases the building
separation and enhances the air circulation within and outside the neighborhoods. When
ABF exceeds 20, wind speed is further increased, but the static wind zone is formed on
the leeward side of the building, which hinders the diffusion of pollutants (Figure 8d). As
the ABV increases, PM2.5 concentration shows a tendency to decrease and then increase
(Figure 8e). This is because, within a certain volume range, increasing ABV helps to increase
the open space and reduces the weakening effect on wind speed due to a large number of
buildings. However, excessive ABV might increase the static wind area in the neighborhood
and limit the effect of wind on pollution transmission.

The results reveal that the difference in height between buildings on the windward
and leeward sides of the neighborhoods affects wind speed in the direction of incoming
airflow differently (Figure 8f). Taking the example of four street valleys in the typical YZ
plane of two neighborhoods (Figure 11), rising valley 1 and valley 4 are more effective in
diffusing PM2.5 in vertical space than falling valley 2 and valley 3. Therefore, reasonable
SDH regulation promotes airflow rising, establishing a pleasant neighborhood wind envi-
ronment, and boosting pollutant dispersion in vertical space. Moreover, angular flow zones
are created with building heights up to a certain level, which enhances the dispersion of
pollutants to the leeward side.
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Figure 11. PM2.5 diffusion distribution of typical Y-Z section in: (a) Neighborhood A; (b) Neighbor-
hood B.

4.2. Morphology-Optimization Strategies for Pollutant Dispersion at Neighborhood-Scale

Based on the findings of the preceding investigation, strategies for optimizing neigh-
borhood morphology based on air quality improvements were proposed. First, the rela-
tionship between BD, BED and PM2.5 show a trend of sine and cosine curves. Therefore,
BD should be reasonably controlled in the neighborhoods, and the BED of residential
buildings along the street should be reduced while increasing the commercial buildings
along the street (Figure 12a). Second, in terms of functional morphological characteristics,
GCR showed a reduced influence on wind speed and PM2.5 below the canopy, and the
reducing effect decreases as the vertical height above the canopy increases. Therefore, it
is critical to plant a diverse variety of vegetation species of varying heights (Figure 12b).
Furthermore, it is important to increase the GCR while ensuring the functional integrity of
the neighborhoods. Third, in terms of the shape morphological characteristics, ABF and
ABV showed a trend of increasing and then decreasing with PM2.5 values. Therefore, when
the intensity of development is identified, specific buildings’ heights should be increased,
and the individual building’s masses and number of total buildings in the neighborhood
should be limited (Figure 12c). Additionally, the difference of building heights should be
reasonably delineated (Figure 12d), according to the SDH curve fitting, to promote the
climbing of incoming winds.

Figure 12. Morphology-optimization strategies for pollutant dispersion: (a) BED solution; (b) GCR
solution; (c) ABV solution; (d) SDH solution.
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5. Conclusions

This study aims to investigate the mechanisms underlying the correlation between
urban form and atmospheric pollutants (PM2.5, for example), and two types of typical
residential neighborhoods in Beijing were selected as the study area. Morphological
parameters were selected according to the research pathway of urban morphology affecting
air quality, and a sensitivity analysis of morphological parameters with PM2.5 and wind
speed was carried out through field monitoring and CFD numerical simulation.

In the sensitivity filtrating, six morphological parameters, such as BD, BED, etc.,
showed high sensitivity to PM2.5 concentrations and wind speed within the neighborhood,
which are called the Sensitive Morphological Parameters (SMPs). The different correlations
of SMPs between PM2.5 and wind speed were observed. This demonstrates the existence
of a tripartite relationship between morphological characteristics, wind environment, and
pollutant dispersion.

The SMPs showed different influent rules on the PM2.5 diffusion. It revealed a positive
and cosine curve trend of BD and BED with PM2.5. PM2.5 is lowest when BD is around
10% and BED around 3 and continues to rise when BD is above 10%, reaching a maxi-
mum of PM2.5 when BD is at around 20% and BED is at 5. GCR was significant to dust
retention along with vertical canopy height, with a most noticeable effect in the vertical
zone beneath the canopy and a progressive decrease in the zone above the canopy. When
ABV = 40,000 m3 and ABF = 20F, the lowest PM2.5 concentration was observed. Increased
SDH could promote airflow and enhance the capacity of PM2.5 diffusion.

To optimize the circumstances of pollutant dispersion, three residential planning
strategies were proposed. First, the BED of residential buildings along the street should
be minimized while commercial buildings along the street should be expanded, and BD
should be reasonably managed. Second, vegetation species of appropriate height should
be considered, and GCR should be increased. Third, building height should be increased
appropriately, as should a proper division of building height disparities in neighborhoods.
Furthermore, acceptable control of individual building mass and the total number of
buildings in the neighborhood should be considered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13060921/s1, Table S1: The Details of XL68 Equipment.
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Abstract: Air pollution, especially PM2.5 pollution, still seriously endangers the health of urban
residents in China. The built environment is an important factor affecting PM2.5; however, the
key factors remain unclear. Based on 37 neighborhoods located in five Chinese megacities, three
relative indicators (the range, duration, and rate of change in PM2.5 concentration) at four pollution
levels were calculated as dependent variables to exclude the background levels of PM2.5 in different
cities. Nineteen built environment factors extracted from green space and gray space and three
meteorological factors were used as independent variables. Principal component analysis was
adopted to reveal the relationship between built environment factors, meteorological factors, and
PM2.5. Accordingly, 24 models were built using 32 training neighborhood samples. The results
showed that the adj_R2 of most models was between 0.6 and 0.8, and the highest adj_R2 was 0.813.
Four principal factors were the most important factors that significantly affected the growth and
reduction of PM2.5, reflecting the differences in green and gray spaces, building height and its
differences, relative humidity, openness, and other characteristics of the neighborhood. Furthermore,
the relative error was used to test the error of the predicted values of five verification neighborhood
samples, finding that these models had a high fitting degree and can better predict the growth and
reduction of PM2.5 based on these built environment factors.

Keywords: PM2.5; principal component analysis; green space; gray space; neighborhood

1. Introduction

Air pollution, especially PM2.5 pollution, still seriously endangers the health of urban
residents in China. According to the 2020 World Air Quality Report published by IQAir,
China is 14th in the rankings for poor air quality among the 106 countries that have been
given air quality monitoring stations by the WHO. In particular, the middle and lower
reaches of the Yangtze River are among of the most polluted areas in China, where a large
number of residents live. Serious PM2.5 pollution has resulted in respiratory issues, asthma,
and even death [1]. To maintain the basic requirement of respiratory health, it is urgent to
improve air quality.

Spatial-temporal variations in PM2.5 and the impact factors on PM2.5 have attracted
much attention in recent years; among these studies, PM2.5 levels were mainly affected
by socioeconomic environments [2], climatic conditions [3], and urban physical envi-
ronments [4]. Human activities, such as traffic emissions, industrial activities, and coal
consumption, cause severe PM2.5 pollution [5,6]. At the same time, the loss of natural land
and increase in artificial ground cover exacerbate the problem [7]. In addition, the change
in urban land cover and its spatial pattern leads to environmental problems, especially
urban heat island effects that always contribute to gathering atmospheric pollutants or
forming secondary pollutants, thereby strengthening PM2.5 pollution [8]. Investigating the
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temporal variations in PM2.5 and its mitigation approach is essential to improve the human
settlement environment.

The built environment, usually measured by factors from various perspectives includ-
ing land cover type, land use, urban form at the urban scale and public space, layout of
buildings and roads at the neighborhood scale [9], is one of the important factors affecting
PM2.5; however, the key factors remain unclear. Obvious differences in PM2.5 levels are
found across urban land cover patterns [10]. In addition, urban landscape patterns or struc-
tures, including the composition and configuration of built environments, have aroused
interest by using a series of relevant metrics to investigate their effects on PM2.5 [11–14],
although the influence of individual metrics may differ among studies. Moreover, urban
morphology has attracted increasing attention because of its strong impacts on PM2.5. At
the city scale, the spatial format of urban built-up areas, such as the size, compactness, frag-
mentation, and complexity of the morphology of urban areas, influences the city’s average
PM2.5 level [15–17]. At the local scale, the PM2.5 concentration varies from neighborhood
to neighborhood [18]. The difference in street canyon characteristics, building layout, and
spatial form is one of the important factors that significantly influence PM2.5 levels [19–21].
Local climate zones (LCZs), a concept aimed at classifying local built environment features,
have been widely used in urban climate studies [22–24]. Ten built-up LCZs and seven
land cover LCZs can be provided for measuring different built environments and natural
environments, respectively. Indicators, such as the sky view factor, aspect ratio, imper-
vious surface fraction, pervious surface fraction, and height of roughness elements, are
frequently used for determining these LCZs [25–27]. However, they are rarely involved
in the PM2.5 field. Neighborhood-level PM2.5 pollution should be a main concern because
it is closely related to people’s daily lives. In a high-density neighborhood environment,
densely constructed buildings block air ventilation and consequently impede pollutant dis-
persion [28]. Particular attention should be given to the mitigation of PM2.5 by optimizing
the neighborhood-level built environment, which constitutes the basic fabric in a city.

Previous studies have explored the relationship between the urban built environ-
ment and PM2.5 from different aspects, yet there are still shortcomings. First, the lack of
systematic investigation of the built environment may result in the unclear key factors
that significantly influence PM2.5. Second, most studies focus on individual cities instead
of regions, which may limit the applicability of the research findings. Considering the
complexity of the built environment in a neighborhood, traditional stepwise regression
analysis has some limitations, including the potential collinearity among multiple vari-
ables and the possibility of removal of some predictive variables significantly related to
dependent variables [29]. Principal component analysis (PCA) has been adopted to con-
vert complex variables into new variables that contain most of the original information
and are independent of each other, thereby reducing the predictors’ collinearity in PM2.5
simulation [30].

For this, this study explored key built environment factors influencing PM2.5 in com-
mon neighborhoods that are abundant in cities. We focused on 37 neighborhoods located in
five megacities in the middle and lower reaches of the Yangtze River to better understand
the influence mechanism of the built environment on PM2.5 pollution. Principal component
analysis (PCA) was conducted before regression analysis to increase its performance. All
principal component variables were retained for regression analysis to establish the optimal
influencing factors. Therefore, key factors can be obtained.

2. Materials and Methods

2.1. Study Area and Neighborhoods

Five megacities (Wuhan, Hefei, Nanjing, Shanghai, and Hangzhou) in the middle and
lower reaches of the Yangtze River were selected as the study area (Figure 1); they have
the same climate conditions. Due to the extreme high-density construction, these cities
experience more serious PM2.5 pollution than other cities in this region [31]. The similar
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features of the five cities provide sufficient comparability for this study, including urban
form, landform, population, and PM2.5 pollution characteristics.

Figure 1. Location of five megacities and distribution of monitoring stations [32].

On average, each city has 10 national PM2.5 monitoring stations that present a relatively
uniform distribution throughout the constructed areas. A neighborhood was then defined
as a square domain with an area of 1 km2 (1 km × 1 km) centered at a monitoring station
because 1 km is a common size for a neighborhood division in China and was frequently
used in previous studies [32,33]. In addition, the air environment within this size plays an
important role in people’s quality of daily life [34]. In consideration of the unique locations
of 13 neighborhoods and subsequent special land use, such as close to pollution sources
(construction sites) and natural land (urban parks or scenic regions), 37 neighborhoods
were selected for analysis in this study. Detailed information on the 37 cities is shown in
Table S1.

2.2. PM2.5 Data Source and Processing

Our previous studies examined the influences of neighborhood green space and urban
morphology on PM2.5 separately, providing evidence for the effects of urban green space
coverage and morphological patterns and gray space forms on PM2.5 [18,32,35]. As a series
of studies, hourly PM2.5 concentrations from 2016 to 2017 were collected from monitor-
ing stations to ensure the consistency of PM2.5 data. These data in different cities were
monitored with the same standard. Because of the different locations of 37 neighborhoods,
the uncontrolled factors (such as weather conditions, PM2.5 background concentration of
five cities) were kept at similar levels to remove the external impact factors as much as
possible and to greatly minimize evident differences, thereby performing an intercompari-
son. Consistent with our previous studies [32,35], three relative indicators, the range (Cin
and Cde), duration (Δtin and Δtde), and rate (Cin’ and Cde’), of the increase and decrease in
PM2.5 concentration were calculated. To investigate pollution-level differences in the effect
of the neighborhood-level built environment on PM2.5, four pollution levels, including
slight (PM2.5 level ranging from 75 μg/m3 to 114 μg/m3), moderate (PM2.5 level ranging
from 115 μg/m3 to 150 μg/m3), heavy (PM2.5 level greater than 150 μg/m3), and overall
pollution, were analyzed based on Chinese ambient air quality standards. The average
of slight, moderate, and heavy pollution levels of observations was defined as the overall
pollution level. The process of PM2.5 data is shown in Figure 2. Consequently, PM2.5 data
of eight, three, and two days in 2016, and eight, two, and one day in 2017 were used for
slight, moderate, and heavy pollution, respectively (Table S2).
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Figure 2. The process of PM2.5 data.

2.3. Built Environment Variables and Meteorological Factors

Built environment factors, including green space and gray space, were included in
this study, as well as three important meteorological factors: atmospheric temperature (Ta),
relative humidity (RH), and wind velocity (V). A total of 22 variables were selected for
analysis based on the quantity and spatial pattern of green and gray spaces (Table 1). De-
tailed information on the 22 variables is shown in Tables S3–S5. The determination of these
variables also took into account their potential impacts on PM2.5 and the representativeness
of built environment characteristics in neighborhoods.

Table 1. Indicators for model building.

Dimension
Independent Variables

Dependent Variables
Green Space Gray Space Meteorological Factors

Quantity TCR (x1), GCR (x2) HSCR (x10)

Ta (x20), RH (x21), V (x22) Cin (y1), Δtin (y2), Cin’ (y3),
Cde (y4), Δtde (y5), Cde’ (y6)Spatial Pattern

Core (x3), Islet (x4),
Perforation (x5), Edge (x6),

Loop (x7), Bridge (x8),
Branch (x9)

BD_1 (x11), BD_2 (x12),
BD_3 (x13), FAR (x14), H
(x15), Hσ (x16), BEI (x17),

SVF (x18), RD (x19)

The measurements and computations of built environment factors were based on a
GIS vector dataset generated with a high-precision digital map (Google Earth, 2017) of each
city, which ensured high accuracy of the calculation. On the one hand, the neighborhood
green space cover ratio (GCR) and tree cover ratio (TCR) were two variables measuring
the quantity of green space in the neighborhoods. The spatial pattern of green space was
measured by morphological spatial pattern analysis (MSPA), which can provide seven
types of green space patterns, including the core, islet, perforation, edge, loop, bridge, and
branch [32].

On the other hand, the neighborhood hard space cover ratio (HSCR) was used as
the quantity variable for gray space. Spatial pattern variables of the gray space were
selected with a consideration of the density, vertical morphology, and spatial layout of
gray spaces in neighborhoods. First, building density was considered one of the most
important density variables, which was further classified into three categories, including
building densities of one to three floors (BD_1), four to nine floors (BD_2), and more than
nine floors (BD_3) [35]. In addition, as one of the major pollutant sources in neighborhoods,
roads are a special kind of gray space, which may reflect the degree of traffic emissions.
Road density (RD) was calculated as in many previous studies [36,37]. Second, the floor
area ratio (FAR), mean building height (H), and standard deviation of building height
(Hσ) were adopted to measure the vertical morphology of gray space in neighborhoods.
FAR reflects the development intensity of the neighborhood. The larger the FAR is, the
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greater the development intensity and the higher the height of buildings. A neighborhood
with a higher building height usually has a lower wind velocity near the ground, which
results in better ventilation conditions [38]. Hσ represents the variation of building height.
The higher the Hσ, the dispersion of the building height is greater. Third, the building
evenness index (BEI) and sky view factor (SVF) were chosen to represent the layout of
buildings in the neighborhood. BEI is a reflection of the difference in buildings’ flat form.
A neighborhood with a higher BEI value implies a more uneven flat form of buildings. SVF
is an important index reflecting built environment geometry [39]. A lower value of SVF
indicates a more closed neighborhood space. The 3D building models were adopted for the
calculation of SVF based on ArcGIS software according to the method of Gal’ et al. [40].

2.4. Analytical Methods

2.4.1. PCA Analysis

PCA was performed before establishing a regression model to involve all built en-
vironment factors and meteorological factors in the models as much as possible. The
method can also remove the collinearity of independent variables to a certain extent. The
principle of PCA is to convert a large number of factors into new principal factors through
certain calculation methods and retain most of the information contained in the initial
factors [41]. The principal factors are independent of each other and have no correlation,
thereby eliminating the collinearity between factors when performing regression analysis.
The relationship between the principal factors and the initial factors is as follows:

Pi =
n

∑
i=1

lnixi (1)

lni = Ani/
√

λi (2)

where Pi is the i-th principal factor, n is the number of principal factors, equal to 22, lni

refers to a principal component loading of xi, and λi denotes an eigenvalue of the i-th
principal factor.

Before PCA, it is necessary to carry out standardization due to the various dimensions
of each factor in green space, gray space, and meteorology. The Kaiser–Meyer–Olkin
(KMO) test and Bartlett sphere test were performed for 22 factors. PCA can be carried
out only when the KMO value is greater than 0.5 and the Bartlett sphere test is significant
(p-value < 0.01). PCA was then carried out using standardized factors. According to the
number of independent variables, a total of 22 principal factors can be obtained. The
variance and eigenvalue of the principal factor reflect their contribution to the initial factor.
The greater the value, the greater the contribution and the information containing the
initial factor.

2.4.2. Regression Models and Evaluation

As Zhai et al. [29] suggested, there may be some problems that the contributions of
the predictors truly driving PM2.5 variations were unclear when using anterior principal
components as explanatory variables without explicit rules and standards. To better under-
stand the relationship between the built environment and PM2.5 and establish regression
models, this study carried out stepwise regression analysis involving all principal factors,
which can have a screening process for the principal factors and obtain the principal fac-
tors that have a significant impact on the dependent variables [29]. The verification of
regression models was in accordance with the common methods used in relevant research
fields in which the neighborhood samples were divided into test samples and verification
samples [35]. The selection of two types of samples should not only consider that there are
enough test samples to establish the regression model but also take a certain number of
verification samples for validation. Therefore, one neighborhood sample in each city was
randomly selected for validation, including WH4, HF5, NJ3, SH4, and HZ4. The remaining
32 neighborhood samples were test samples for the construction of the regression model.
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The accuracy of the regression model was measured by comparing the difference
between predicted values and actual values of the dependent variable. The relative error
(RE) was used to evaluate the accuracy of the predicted values of the PM2.5 indicators of
the five validation samples.

REi =
|yi

′ − yi|

yi
× 100% (3)

where REi is the relative error of the i-th validation sample and yi
′ and yi are the predicted

value and actual value of a PM2.5 indicator of the i-th validation sample, respectively.

3. Results and Discussion

3.1. Results of PCA

3.1.1. Overall Characteristics of PCA

PCA had pollution level differences due to the difference in meteorological factors
included at the different pollution levels. At the overall pollution level, the KMO value of
22 standardized factors was 0.630, and the significance of the Bartlett spherical test was
0.000, which met the requirements of PCA. As shown in Figure 3a, with the increase in the
number of principal factors, the eigenvalues and variance showed a downwards trend. The
eigenvalue of principal factors reflects their contribution. The eigenvalues of the first six
main factors were greater than 1, and the cumulative contribution of these six principal
factors was 85.7%, which can explain most of the information of the initial factors. When
the number of principal factors reached 12, it could basically contain 98% of the information
of the initial factors. The contribution of the first principal factor (P1) to the total variance
was 35.2%. There was little difference between the loadings of P1, most of which were
between 0.2 and 0.3. P1 was negatively correlated with the green space factor and positively
correlated with the gray space factor. Therefore, P1 reflects the great difference between
the green space and the gray space of the neighborhood. The contribution of P2 to the
total variance was 18.7%. The higher loading of P2 was higher than 0.3, which was mainly
positively correlated with TCR (x1) and the Edge (x6), reflecting the large-scale green space
of the neighborhood. The contribution of P3 to the total variance was 11.2%. The higher
loading of P3 was more than 0.4, which was significantly positively correlated with H (x15)
and Hσ (x16), reflecting the higher building height in the neighborhood and their greater
height differences. P4 contributed 9.2% to the total variance. Relative humidity (x21) and
wind speed (x22) were two principal factors for P4, representing meteorological factors. P5
and P6 contributed 6.4% and 5% to the total variance, respectively, and GCR (x2) and Loop
(x7) were principal factors.

The variance and eigenvalue showed similar trends at different pollution levels,
which were similar to those of the overall pollution (Figure 3b). The KMO values of
22 standardized factors were 0.621, 0.615, and 0.612 for slight, moderate, and heavy
pollution, respectively, and the significance of the Bartlett spherical test was 0.000. The
eigenvalues of the first six principal factors were greater than 1, and the cumulative
contributions of these six main factors were 85.3%, 86.0%, and 83.9%. When the number of
principal factors reached 12, they could contain 98% of the information of the initial factors.
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Figure 3. Variance and eigenvalue of principal factors at: (a) Overall pollution level; (b) Slight,
moderate, and heavy pollution level.

3.1.2. Principal Factors Composition

The principal factor (Pi) is composed of 22 initial factors (xi) with a certain proportion
coefficient (principal component loading l). The absolute value of the loading represents
the contribution of the initial factor to a Pi, and the positive and negative values represent
the influence mode of the initial factor on a Pi. Therefore, the principal component of a Pi is
reflected by the initial factor with relatively high loadings. There were certain differences
in the higher loading between different principal factors. Taking P1 as an example, the
relationship between it and the initial factor at the overall pollution level is as follows:

P1 = −0.209x1 − 0.18x2 − 0.293x3 + 0.216x4 − 0.248x5 − 0.053x6 − 0.131x7 + 0.116x8 + 0.176x9 + 0.285x10 +
0.012x11 + 0.235x12 + 0.238x13 + 0.315x14 + 0.111x15 + 0.083x16 + 0.125x17 − 0.325x18 + 0.252x19 − 0.281x20 −

0.195x21 + 0.23x22

(4)

where x1, x2, x3, . . . , x22 are the standardization values of the initial factor.
Pi reflects the relationship between each principal factor and its main initial factors.

The composition characteristics of each Pi can be sorted and summarized according to the
corresponding loading. At the overall pollution level, the loading of 22 principal factors
was between −1 and 1. The maximum absolute value was 0.685 and the minimum value
was 0.0004. The loading of each principal factor at different pollution levels was basically
consistent with this, indicating that the composition characteristics of each principal factor
were similar.

3.2. Construction and Verification of Models

Based on 22 principal factors, 24 regression models of six PM2.5 relative indicators
were carried out for four pollution levels, which included principal factors that significantly
influenced PM2.5. Regression models of six PM2.5 relative indicators at the overall pollution
level passed the test of significance (Table 2). However, the principal factors included in the
six models were different, indicating the complex impacts of different principal factors on
the range, duration, and rate of PM2.5 increase or decrease. The number of principal factors
included in the regression model was 3~11. The more principal factors were included in
the regression model, the adj_R2 value was relatively higher. In these models, P3, P4, P13,
and P17 were the four principal factors that appeared more frequently, indicating their
significant effects on the increase/decrease in PM2.5. Overall, these principal factors can
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explain approximately 60.6~81.3% of the PM2.5 reduction indicators but only approximately
23.2~67.9% of the PM2.5 increase indicators.

Table 2. Regression model of principal factors at the overall pollution level.

Dependent
Variable

Principal Factors Constant p-Value F-Value Adj_R2

Cin P3(0.058,0.429) ***, P4(0.060,0.361) **, P20(−0.521,−0.340) ** 1.424 *** 0.002 6.492 0.347

Δtin

P1(−0.037,−0.182) *, P3(0.142,0.391) ***, P4(0.089,0.199) *,
P5(−0.146,−0.283) **, P7(−0.118,−0.189) *, P13(−0.367,−0.251) **,

P15(0.353,0.191) *, P16(−0.586,−0.284) **, P17(0.654,0.246) **,
P18 (−0.729, −0.227) **, P22 (3.749, 0.295) **

7.725 *** 0.000 6.962 0.679

Cin’ P11(−0.021,−0.416) **, P16(0.027,0.298) *, P18(0.041,0.286) * 0.199 *** 0.015 4.128 0.232

Cde
P4(−0.010,−0.354) ***, P5(0.017,0.532) ***, P12(0.020,0.287) **,

P16(0.045,0.346) ***, P21(−0.118,−0.256) ** 0.539 *** 0.000 10.520 0.606

Δtde

P1(−0.053,−0.269) ***, P2(−0.069,−0.253) ***, P3(0.079,0.222) **,
P4(0.200,0.457) ***, P5(−0.154,−0.302) ***, P10(0.150,0.153) *,
P13(0.430,0.299) ***, P15(0.713,0.393) ***, P17(0.788,0.301) ***,

P18(0.449,0.142) *, P20(−0.692,−0.172) **

6.508 *** 0.000 13.228 0.813

Cde’
P3(−0.002,−0.265) ***, P4(−0.003,−0.374) ***, P5(0.004,0.415) ***,

P10(−0.004,−0.194) **, P13(−0.010,−0.327) ***, P15(−0.012,−0.326) ***,
P16(0.008,0.176) *, P17(−0.021,−0.385) ***, P18(−0.017,−0.251) ***

0.100 *** 0.000 12.783 0.774

Note: ***, **, and * indicate that the factors passed the test of significance at 1%, 5%, and 10%, respectively, and the
numbers in brackets indicate the regression coefficient and standardization coefficient, respectively.

PM2.5 indicator regression models at different pollution levels also passed the test of
significance (Table S6). First, although there were great differences in the principal factors
included in the different models, some principal factors had a high frequency and great
impacts on PM2.5. However, these principal factors varied based on pollution levels. For
example, P3, P1, and P16 were important principal factors affecting the relative indicators of
PM2.5 at slight, moderate, and heavy pollution levels, respectively. Second, the explanation
degree of these principal factors for different PM2.5 indicators showed a similar trend at
different pollution levels. The explanation degree of Cin was higher than that of Cin’, and
Δtin was generally between them. The explanation degree of Cde was lower than that
of Cde’, and Δtde was often in between. Nonetheless, the explanations of these principal
factors for PM2.5 increase and decrease indicators were different. At the slight pollution
level, these principal factors explained relatively more (approximately 52~81%) of the
PM2.5 decrease indicators and less (approximately 16~49%) of the PM2.5 increase indicators.
At the moderate pollution level, the principal factors had a higher explanation for PM2.5
increase indicators (approximately 70~84%), while the explanation for PM2.5 decrease
indicators was lower (approximately 60~62%). At the heavy pollution level, the difference
in the explanation of PM2.5 increase and decrease indicators by principal factors narrowed,
focusing on 60~75%.

The prediction accuracy of the verification neighborhood samples was calculated for
validation. Figure 4 shows the comparison between the predicted value and the actual
value of PM2.5 indicators. Generally, the predicted value and actual value of each PM2.5
indicator were similar. There were individual samples with great differences between the
predicted value and the actual value, which were mainly at heavy pollution, followed
by moderate pollution. Furthermore, the accuracy of different PM2.5 indicators of five
verification samples was compared through the RE value via Equation (3). At the overall
pollution level, the RE of the six PM2.5 indicators of each verification sample was mostly
less than 10%. The prediction error of different verification samples had great randomness.
The maximum prediction error was Cin (33.3%) of sample HZ4, and the minimum was Δtde
in WH4, whose RE was 0.3%. At different pollution levels, the trend of prediction error of
verification samples increased with the increase in pollution level, and the prediction error
of each verification sample varied greatly.
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Figure 4. Validation for regression models of six PM2.5 indicators at the different pollution levels.
(a) Cin; (b) Δtin; (c) Cin’; (d) Cde; (e) Δtde; (f) Cde’.

The prediction error was relatively low at the overall pollution level because more
days of data (24 days) were used for testing. With the increase in pollution level, the
number of days used for verification was less, which is vulnerable to accidental or sudden
factors outside the built environment, resulting in an increase in prediction error. Based on
these models, although the short-term prediction error is unstable, it can still achieve high
prediction accuracy for the long-term PM2.5 change trend of the block. Therefore, it has
high application value.

Data with fewer days used in the analysis usually lead to a lower R2 and a greater
RE. In this study, due to the limited number of heavy pollution days, only 3 days of
data were used for analysis at this pollution level. However, 4-day PM2.5 data and 3-day
data monitored by instruments were used to analyze the effects of urban lake wetlands,
neighboring urban greenery, and plant communities on PM2.5, respectively [42,43]. There
may be some accidental factors influencing the results by limited data, but it is enough
for analysis.

3.3. The Influence of Built Environment on PM2.5

Because the included principal factors varied from model to model (Table 2 and
Table S6), the most important factors influencing PM2.5 were obtained by counting the
times of principal factors that significantly influenced PM2.5 in 24 models of four pollution
levels. As Figure 5 shows, the darker the color, the greater the frequency of a principal
factor. First, Cin, Δtin, and Cin’ were synthesized as the increase change of PM2.5. The
decrease change of PM2.5 included Cde, Δtde, and Cde’. The principal factors that had the
most significant impact on the increase change of PM2.5 were P1 and P3, which occurred
seven times, followed by P4, P6, P16, and P17, which occurred six times. P7, P12, and P18
occurred five times. The most significant principal factor affecting the decrease change
of PM2.5 was P5, which occurred 10 times, followed by P3 and P4, which occurred eight
times. The frequency of P1, P12, P13, P15, and P16 was six times. Overall, P1, P3, P4, and
P16 were important factors that significantly affected the growth and reduction of PM2.5
at the same time. These principal factors reflect the differences in green and gray space,
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building height and its differences, relative humidity, openness, and other characteristics
of the neighborhood. In addition, these principal factors with high frequency were the
factors that contributed the most to the corresponding dependent variable in the model.
This further indicated their important role in PM2.5.

Figure 5. Frequency of principal factors that significantly influence PM2.5.

Second, each PM2.5 indicator was analyzed separately to find the differences in their
principal factors. For Cin, P4 and P6 had the most contributions, indicating that meteorologi-
cal factors and the green corridor connecting green space internally would greatly influence
PM2.5 increase change. P1 contributed the most to Δtin. However, there were no obvious
principal factors for Cin’ compared with Cin and Δtin. As for Cde, P5 and P16 had the most
contribution to it. Moreover, P5 showed a more important role in Δtde than Cde. Therefore,
attention should be given to green space coverage and openness of neighborhood for PM2.5
reduction. P4 was the most important principal factor for Cde’.

To strengthen the application of the regression model based on the built environment
of the neighborhood and provide a reference for the optimization strategy of the built envi-
ronment, we selected several neighborhoods from five cities with strong and weak PM2.5
reduction effects. A neighborhood with strong PM2.5 reduction effects is characterized by a
high value of Cde and Cde’ or a low value of Δtde. Their effects on the increase and decrease
of PM2.5 were analyzed through the analysis of the scale and spatial form of green and gray
spaces in the neighborhood.

Neighborhoods with strong PM2.5 reduction capacity included WH6, HF5, NJ4, SH7,
and HZ7 (Figure 6a). On the one hand, WH6 and NJ4 have large-scale green spaces, which
play a great role in promoting the adsorption and reduction of PM2.5 [44]. Meanwhile,
the lower building density contributes to the diffusion of PM2.5 in the neighborhood and
promotes the decrease in PM2.5 [45]. HZ7 has a stable regulatory effect on PM2.5. It
can both inhibit the increase in PM2.5 and promote the decrease in PM2.5. Although the
building density of HF5 and SH7 is higher than that of other neighborhoods, the almost
determinant building layout and height arrangement of HF5 are conducive to the formation
of a ventilation corridor. The large building height difference and building shape uniformity
index of SH7 promote the decline of PM2.5.
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Figure 6. Neighborhoods with (a) strong and (b) weak PM2.5 reduction capacity.

Neighborhoods with weak PM2.5 reduction capacity included WH2, HF7, NJ1, SH3,
and HZ3 (Figure 6b). Among these neighborhoods, WH2, NJ1, and HZ3 have a common
feature of low-rise and high-density, which is not conducive to ventilation in the neigh-
borhood. The building density of SH3 is high, and there are some high-rise buildings.
However, the scale of green space in these neighborhoods is generally small, which reduces
the active adsorption of PM2.5 by green space. HF7 is a high-rise, low-density neighbor-
hood. Too many high-rise buildings aggravate the pollution of PM2.5 in the neighborhood
and are difficult to evacuate.

4. Conclusions

This paper constructed a prediction model of PM2.5 increase and decrease dynamic
changes in neighborhoods based on 22 factors of green space, gray space, and meteoro-
logical factors, revealing the comprehensive impact mechanism of neighborhood-level
built environments on PM2.5 and laying a foundation for proposing specific optimization
strategies. The adj_R2 of these models was concentrated in 0.6~0.8, with the highest value
of 0.836, indicating that it can better fit the existing indicators. P1, P3, P4, and P16 were the
most important factors that significantly affected the increase and decrease in PM2.5 at the
same time, which reflected the characteristics of the green–gray space difference, building
height and its difference, relative humidity, and openness, respectively. Among the many
indicators of green space, green space coverage was significantly conducive to PM2.5 re-
duction. The green corridor connecting green space internally would greatly influence the
change of PM2.5 increase. For gray space, the openness of the neighborhood was important
to PM2.5 reduction. In addition, relative humidity and wind speed contributed more to the
change of both the decrease and increase of PM2.5 than temperature.

There are some issues that need to be further explored. This study used PM2.5 mon-
itoring data for analysis, lacking exploration of PM2.5 sources. Further study requires
discussion on the emissions in the urban zones because of the different pollution sources in
the five cities [46]. Data from more days, especially heavy pollution levels, can be included
for more accurate research.
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.3390/atmos13010115/s1, Table S1: Detailed information for 37 neighborhoods, Table S2: The date
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indicators, Table S4: Statistical of gray space indicators, Table S5: Statistical of meteorological factors,
Table S6: Regression models of principal factors at different pollution levels.
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Abstract: To evaluate the impact of PM2.5 air pollution on atherogenic processes in modernizing
Southern versus Northern China, we studied 1323 asymptomatic Chinese in Southern and North-
ern China in 1996–2007. PM2.5 exposure and metabolic syndrome (MS) were noted. Brachial
flow-mediated dilation (endothelial function FMD) and carotid intima-media thickness (IMT) were
measured by ultrasound. Although age and gender were similar, PM2.5 was higher in Northern
China than in Southern China. The Northern Chinese were characterized by lower lipids, folate
and vitamin B12, but higher age, blood pressures, MS and homocysteine (HC) (p = 0.0015). Brachial
FMD was significantly lower and carotid IMT was significantly greater (0.68 ± 0.13) in Northern
Chinese, compared with FMD and IMT (0.57 ± 0.13, p < 0.0001) in Southern Chinese. On multivariate
regression, for the overall cohort, carotid IMT was significantly related to PM2.5, independent of
location and traditional risk factors (Model R2 = 0.352, F = 27.1, p < 0.0001), while FMD was inversely
related to gender, age, and northern location, but not to PM2.5. In Southern Chinese, brachial FMD
was inversely correlated to PM2.5, independent of age, whereas carotid IMT was significantly related
to PM2.5, independent of age and gender. In Northern Chinese, brachial FMD was inversely related
to gender only, but not to PM2.5, while carotid IMT was related to traditional risk factors. Despite a
higher PM2.5 pollution in Northern China, PM2.5 pollution was more significantly associated with
atherogenic surrogates in Southern compared to Northern Chinese. This has potential implications
for atherosclerosis prevention.

Keywords: atherogenesis; flow-mediated dilation; carotid intima-media thickness; air-pollution
(PM2.5); modernizing China

1. Introduction

Atherosclerotic diseases (stroke and heart attack CVS) are currently the most important
global health hazard, including for mainland China, which is now in a rapid phase of mod-
ernization [1,2]. Traditional atherosclerosis risk factors, including smoking, hypertension,
diabetes mellitus, hyperlipidemia, obesity and physical inactivity, have been implicated [3].
Recently the detrimental association of air pollution (AP) with CVS in modernized society
has been realized. In particular, small particulate matter less than 2.5 μm in diameter
(PM2.5) has been associated with cardiovascular morbidity and mortality [4–6]. Of the
7 million premature deaths each year linked to air pollution (PM2.5), 34% were related to
ischemic heart disease, 26% to respiratory disease and 20% were due to stroke [7].

The pathobiology of PM2.5-related atherosclerotic disease may involve direct effects
of PM2.5 on cardiovascular system and/ or indirect effects of PM2.5 mediated by oxidative
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stress and vascular inflammation [8,9]. In other words, PM2.5 can act as a trigger in
susceptible persons, or it can contribute to long-term atherogenic processes. On this
issue, we and others have previously documented the negative impact of long-term PM2.5
exposure on atherosclerosis surrogates (brachial endothelial dysfunction FMD and carotid
intima-media thickening IMT), which are closely linked to cardiovascular and stroke
outcome [10–12].

In the past three decades, China has been undertaking a process of rapid economic
development and modernization [13]. This started from the Southern seashore region and
the greater Pearl Delta Bay area, and later moved to the Northern parts of the country, with
different PM2.5 pollution exposure. The present study aimed to evaluate the impact of
PM2.5 pollution on atherogenic process in Southern compared with Northern China.

2. Subjects and Methods

A total of 1323 asymptomatic Chinese adults (mean age 47.1 ± 11.7 years and
47.5% male) in Southern China (Hong Kong, Macau, Pan Yu, n = 395) and Northern
China (Yu County in Shanxi and Three Gorges Territories of Yangtze River, n = 928) were
studied in 1996–2007, as part of the international collaborative Chinese Atherosclerosis
in the Aged and Young Project (CATHAY Study). The study protocol and some related
findings have been reported previously [14–18].

All recruited subjects were apparently healthy. They were not known to have hyper-
tension, diabetes mellitus or metabolic syndrome, had no major vascular, hepatic or renal
disease, and were not taking any regular medications, including vitamin supplementation.
Nearly all subjects (>95%) were local born residents and the other migrated to the county
for over 10 years. After fasting for 14 h and signing written informed consent, their car-
diovascular risk profiles, including smoking, body mass index (BMI), waist circumference,
waist hip ratio (WHR), systolic and diastolic blood pressure (SBP, DBP) were measured. On
recruitment, blood was taken once for fasting lipid profile (total, high and low lipoprotein
cholesterol, TC, HDL-C, LDL-C and triglycerides TG), creatinine, vitamin B12, folate, and
fasting total homocysteine (HC). Fasting glucose was measured by haemstix and HC was
evaluated on stored frozen sample by enzymatic immune assay (Abbott IMX analyses,
Abbott Peak, IL, USA). Blood was assayed in batches at the The Hospital Central Corde de
Januarie, Macau, and The Prince of Wales Hospital, Hong Kong, currently accredited by
the USA laboratory centres. MTHFR genotypes were evaluated by PCR technique at the Li
Hysan research laboratory of the Chinese University of Hong Kong. Metabolic Syndrome
(MS) was diagnosed according to International Diabetes Federation (IDF) criteria [19,20].

Our research study and informed consent form were reviewed and approved by
our institutional research ethics committee of The Chinese University of Hong Kong
(CREC 2000-108). This study complied with the 1995 and 2003 Helsinki Declaration for
human studies.

2.1. PM2.5 Air Pollution Exposure

The yearly mean PM2.5 concentration over China was assessed by using the satellite
remote sensing technology. Firstly, spectral data from the two moderate resolution imaging
spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites were used to
build aerosol optical depth (AOD) data at a resolution of 0.01◦ × 0.01◦, over China [21].
Secondly, an observational data-driven algorithm, which took the ground-observed vis-
ibility and relative humidity data as inputs, was developed to derive the yearly mean
ground-level PM2.5 concentration from the AOD [22]. Evaluation of the long-term satellite-
derived PM2.5 concentration against the ground observations demonstrated a correlation
coefficient of >0.9 and a mean absolute percentage error within ±20% [23]. The mean
concentration of PM2.5 over a single year was registered, corresponding to the study year
of each subject.
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2.2. Arterial Ultrasound Studies

Atherosclerotic surrogate markers, flow-mediated dilation (FMD) of brachial artery,
and carotid intima-media thickness (IMT), were studied once on recruitment using high
resolution ultrasound as reported previously [24,25]. Briefly, forearm tourniquet cuff place-
ment was applied to induce reactive hyperemia on deflation, and percentage of dilation
in vessel diameter (from baseline) was computed, as indicator of endothelium-dependent
dilation, in comparison with dilation after sublingual glyceryltrinitrate (endothelium-
independent dilation GTN). Similarly carotid IMT was measured by using a standard
scanning protocol for both carotid arteries as described by Salonen and Salonen, Bots
and Touboul et al. [26–28]. Images of the far wall of the distal 10 mm of the common
carotid artery were used. All scans were evaluated off-line by a verified automatic edge-
detecting software device. The intra-observer variability for mean IMT was 0.03 ± 0.01 mm
(coefficient of variation 1%, R = 0.99).

2.3. Statistical Analyses

The group mean values, standard deviation and 95% confidence intervals (CI) when
appropriate were computed. Standard testing of normality of distribution was used for the
assessment of normal distribution. Possible intergroup differences were identified with
independent samples Students’ test and a one-way ANCOVA model. The primary study
endpoints were carotid IMT and brachial FMD, whereas other outcome variables were
compared after Bonferroni adjustment for multiple comparisons. On the assumption of
mean carotid IMT being 0.61±0.14 mm and brachial FMD being 8% ± 1% in the subjects,
we estimated that enrolment of 350 subjects in Southern China and 600 subjects in Northern
China would result in adequate power (80%) to detect a 18% difference in carotid IMT and
an 8% difference in brachial FMD, between the two location groups at 2p < 0.05 significance
level [29]. Linear multivariate regressions were performed to assess the major determinants
of IMT and FMD, including age, gender, smoking status, BMI, metabolic syndrome, LDL-
C, PM2.5, southern and northern locations. The variables with significant standardized
beta coefficients (beta value with 2p < 0.05) as an indicator of the contribution to the
model, were identified, and insignificant variables (2p > 0.05) were removed subsequently.
Group differences with an error probability of 5% (2p < 0.05) were considered statistically
significant. Analyses were performed with SPSS version 25.

3. Results

The demographic and clinical characteristics of the southern/ northern groups were
tabulated (Table 1). While their gender, mean age, BMI and fasting glucose were simi-
lar, smoking status, SBP, DBP, metabolic syndrome and homocysteine were significantly
lower, but their LDL-C, vitamin B12 and folate were significantly higher in Southern
Chinese compared with the Northern Chinese (p < 0.0015). PM2.5 exposure in Southern
China (44.0 ± 6.8 μg/m3) (Figure 1A,B) was significantly lower than in Northern China
(71.1 ± 15.8 μg/m3), p < 0.0015. (Figure 2A,B).
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Figure 1. (A) Far view of residential estates and Mount Ma On along the Shing Moon River of Shatin, Hong Kong on
clear day with PM2.5 concentration of 14 μg/m3, and (B) on foggy polluted day with PM2.5 concentration of 45 μg/m3

(Woo et al. [18]).

Figure 2. (A) Sky view of Chongqing Garden on clear day with PM2.5 concentration of 45 μg/m3, and (B) Chongqing
residence estate near riverside on a foggy day with PM2.5 concentration of 79 μg/m3 (Courtesy of Prof. YH Yin).

Table 1. Demographic Characteristics of Southern–Northern China.

Southern China
(n = 395)

Northern China
(n = 928)

p-Value
(Bonferroni Adjusted)

Male Gender (%) 48 47 0.719 (>0.99)
Age (yr) 46.8 ± 12.8 47.4 ± 9.5 0.340 (>0.99)

Smoking Status (%) 15 35 <0.0001 (0.0015)
BMI 23.0 ± 4.0 23.4 ± 3.4 <0.203 (>0.99)

SBP (mmHg) 119.0 ± 15.7 123.7 ± 17.6 <0.0001 (0.0015)
DBP (mmHg) 75.9 ± 9.3 80.2 ± 11.0 <0.0001 (0.0015)

PM2.5 (μg/m3) 44.0 ± 6.8 71.1 ± 15.8 <0.0001 (0.0015)
Creatinine (μmol/L) 81.7 ± 16.1 63.2 ± 16.7 <0.0001 (0.0015)
Glucose (mmol/L) 5.6 ± 1.2 5.4 ± 6.0 0.004 (0.06)

LDL-C 3.4 ± 1.0 2.56 ± 0.82 <0.0001 (0.0015)
Metabolic Syndrome (%) 15.0 24.5 <0.0001 (0.0015)

B12 (pmol/L) 411.7 ± 249.4 156.5 ± 90.6 <0.0001 (0.0015)
Folate (nmol/L) 31.1 ± 15.6 13.1 ± 5.6 <0.0001 (0.0015)

Homocysteine (umol/L) 9.6 ± 4.5 25.0 ± 21.0 <0.0001

B12: Vitamin B12. BMI: Body Mass Index. DBP: Diastolic Blood Pressure. LDL-C: Low Density Lipoprotein Cholesterol. PM2.5: Particulate
Matter <2.5 um in Diameter.
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3.1. Vascular Parameters

Brachial FMD and carotid IMT were normally distributed. Brachial FMD was signifi-
cantly lower (7.5 ± 18, 95% CI 7.3–7.7%, p < 0.001), but carotid IMT was significantly greater
(0.68 ± 0.13, 95% CI 0.67–0.69 mm, p < 0.0001) in Northern Chinese, compared with their
Southern counterparts (8.1 ± 3.0, 95% CI 7.8–8.5% and 0.57 ± 0.13, 95% CI 0.56–0.58 mm,
respectively) (Table 2). The GTN responses of the two groups were similar.

Table 2. Vascular Parameters in Northern–Southern China Locations.

Location

Southern Northern p-Value

Hyperemia (%) 655 ± 289 715 ± 217 0.006
(95% CI) (623–686) (687–743)
GTN (%) 18.1 ± 4.8 18.2 ± 3.0 0.912
(95% CI) (17.6–18.7) (17.8–18.6)
FMD (%) 8.1 ± 3.0 7.5 ± 1.8 † 0.001
(95% CI) (7.8–8.5) (7.3–7.7)

Carotid IMT (mm) 0.57 ± 0.13 0.68 ± 0.13 †† 0.0001
(95% CI) (0.56–0.58) (0.67–0.69)

Compared with Southern China † p < 0.0001; †† p = 0.01. FMD: Flow-mediated Dilation. GTN: Glyceryltrinitrate
Dilation. IMT: Intima-media Thickness.

3.2. Determinants of Risk Factors for Impaired Brachial FMD

On multivariate regression analyses, in Southern Chinese, brachial FMD was inversely
related to PM2.5 (beta = −0.274, p = 0.001), age (beta= −0.238, p < 0.005), but not to
gender, smoking status, BMI, MS, homocysteine, LDL-C or MTHFR. (Model R2 = 0.202,
F = 4.026, p < 0.0001) (Table 3). In Northern Chinese, brachial FMD was related to gender
(beta = −0.329, p = 0.009), but not to other traditional risk factors (Model R2 = 0.211,
F = 3.802, p < 0.0001). In the overall 1323 Chinese cohort, lower brachial FMD was related
to older age, male gender and northern location, but not to PM2.5 (Model R2 = 0.190,
F = 7.802, p < 0.0001).

Table 3. Determinants of Risk Factors for Brachial FMD *.

Southern Chinese * Northern Chinese ** Overall Cohort ***
Risk Factors Beta Value p-Value Beta Value p-Value Beta-Value p-Value

Age (yr) −0.238 0.005 −0.163 0.062 −0.210 <0.0001
Gender −0.174 0.050 −0.329 0.009 −0.163 0.013

Smoking status −0.154 0.077 0.029 0.802 −0.118 0.075
BMI −0.036 0.674 −0.040 0.415 0.005 0.938
MS −0.067 0.436 −0.032 0.741 −0.051 0.403

Homocysteine 0.076 0.374 −0.196 0.066 −0.025 0.725
LDL-C −0.058 0.473 −0.057 0.502 −0.090 0.206

MTHFR −0.097 0.201 0.158 0.114 −0.014 0.822
PM2.5 −0.274 0.001 0.011 0.892 −0.022 0.862

Location - - - - −0.325 0.005

* Model R2 = 0.202; F-value = 4.026; p < 0.0001. ** Model R2 = 0.211; F-value = 3.802; p < 0.0001. *** Model R2 = 0.190; F-value = 7.802;
p < 0.0001. BMI: Body Mass Index. FMD: Flow-mediated Dilation. LDL-C: Low Density Lipoprotein Cholesterol. MTHFR: Methylenete-
trahydrofolate Reductase Gene Polymorphisms. PM2.5: Particulate Matters < 2.5 um in Diameter.

On multivariate regression analyses, carotid IMT in Southern Chinese was significantly
related to PM2.5 (beta = 0.334, p < 0.0001), independent of age (beta = 0.393, p < 0.0001)
and gender (beta = 0.146, p = 0.043) (Model R2 = 0.451, F = 13.3, p < 0.0001) (Table 4). In
Northern Chinese, carotid IMT was related to age (beta = 0.385, p < 0.0001), smoking status
(beta = 0.157, p = 0.01), MS (beta = 0.110, p = 0.039), homocysteine (beta = 0.137, p = 0.014)
and LDL-C (beta = 0.145, p = 0.0003), but not to PM2.5 (beta = 0.033, p = 0.471). For the
overall cohort, carotid IMT was related to PM2.5 (beta = 0.368, p < 0.0001), independent
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of other atherosclerotic risk factors including age, male gender, BMI, MS, HC, LDL-C and
northern location (beta = 0.206, p = 0.002) (Model R2 = 0.362, F = 27.1, p < 0.0001). No PM2.5
and age (beta = 0.305, p = 0.125), or PM2.5 and location (beta = 0.093, p = 0.056) interactions
were identified.

Table 4. Determinants of Risk Factors for Carotid IMT.

Southern Chinese * Northern Chinese ** Overall Cohort ***
Risk Factors Beta Value p-Value Beta Value p-Value Beta-Value p-Value

Age (yr) 0.393 <0.0001 0.385 <0.0001 0.396 <0.0001
Gender 0.146 0.043 0.058 0.357 0.127 0.006

Smoking status 0.061 0.388 0.157 0.010 0.091 0.053
BMI 0.074 0.299 0.088 0.103 0.121 0.005
MS 0.119 0.095 0.110 0.039 0.099 0.019

Homocysteine 0.048 0.501 0.137 0.014 0.121 0.010
LDL-C 0.084 0.204 0.145 0.003 0.136 0.004

MTHFR 0.046 0.463 −0.065 0.223 −0.026 0.554
PM2.5 0.334 <0.0001 0.033 0.471 0.368 <0.0001

Location - - - - −0.206 0.002

* Model R2 = 0.451; F-value = 13.3; p < 0.0001. ** Model R2 = 0.335; F-value = 7.67; p < 0.0001. *** Model R2 = 0.362; F-value = 27.1; p < 0.0001.
BMI: Body Mass Index. IMT: Intima-media thickness. LDL-C: Low Density Lipoprotein Cholesterol. MS: Metabolic Syndrome. MTHFR:
Methylenetetrahydrofolate Reductase Gene Polymorphisms. PM2.5: Particulate Matters < 2.5 um in Diameter.

4. Discussion

The present report further confirms the detrimental impact of PM2.5 air pollution on
atherogenic processes in modernizing China, independent of traditional atherosclerotic
risk factors [12,18,30]. Specifically, Northern Chinese were more prone to higher carotid
IMT and worse arterial endothelial dysfunction, compared with Southern Chinese. This
may be attributed to more smoking, higher SBP, DBP, homocysteine, PM2.5 exposure and
metabolic syndrome rates, and lower (unfavorable) vitamin B12 and folate levels. Metabolic
syndrome includes the impact of several atherosclerotic risk factors i.e., blood pressure,
waist circumference, HDL and LDL-cholesterol and fasting glucose. We and others have
documented its detrimental impact on atherogenesis, independent of PM2.5 [18,31].

Multivariate regression of the overall cohort suggested that PM2.5 exposure and
location were important determinants of carotid IMT, independent of homocysteine and
other traditional vascular risk factors. Higher homocysteine presumably could be related
to unique Northern dietary pattern of low folate and vitamin B12 intakes, the formal
documentation of which is awaited with interest. On this issue, we have previously
confirmed the beneficial effects of vitamin B12 and folate supplementations on atherogenic
process (FMD and IMT) in 207 Northern Chinese adult subjects with subnormal nutritional
status [32].

Greater carotid IMT is an important prognostic atherosclerosis surrogate related to
later risk of stroke and cardiovascular diseases [33]. We have previously shown that
increased carotid IMT is a marker of subclinical atherosclerosis in westernized as compared
with rural Southern Chinese [15]. To contextualize the magnitude of the IMT difference
(19.3%, 0.11 mm), a 0.16 mm increase in carotid IMT has been associated with 41% increase
in stroke and 43% increase in acute myocardial infarction over a follow up period of
2–7 years [33]. The 19.3% difference in carotid IMT in the present study was far greater
than the kind of difference between diabetic and non-diabetic Chinese adults [17].

4.1. Limitations

We acknowledge some limitations in our present study. Firstly, we have not explored
inflammatory markers, such as fibrinogen, C-reactive protein or cytokine family, in the
Northern compared with Southern Chinese. This will be valuable for confirming the
hypothesis of generalized vascular inflammation in AP-induced atherogenic process. Sec-
ondly, the concentration and LDL-C happened (by chance) to be lower, but hyperemia
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(by ultrasound) to be higher in Northern Chinese. These, however, have not contributed
to the worse FMD and IMT results, since these two factors would have been associated
with better rather than worse FMD and IMT levels in the Northern Chinese. Thirdly, we
have identified FMD, an early atherosclerotic surrogate, is lower in Northern Chinese
on univariate analyses, but its relationship with PM2.5 concentration is borderline only
on multivariate analyses. FMD in more labile and dynamic compared with carotid IMT
measurement, subjected to daily fluctuation of PM2.5 concentration. This was measured
once only during the study period. Perhaps more FMD measurements for individual
subject over the study period may illuminate the real impact of PM2.5 on FMD. Fourthly,
realtime long term PM2.5 measurement is more informative and better than yearly mean
PM2.5 estimation for studying its relationship with more labile FMD measurement. This,
however, has logistic and economic implications which may not be readily resolved.

4.2. General Remarks

We propose carotid IMT and brachial FMD as two surrogate targets for measuring
the success of possible prevention of PM2.5-related atherogenesis in Chinese. While the
nationwide adoption of PM2.5-reduction policies will be welcomed in both Northern and
Southern Chinese, our present study would suggest the possible importance of micronu-
trient (folate and vitamin B12) deficiencies in some areas of Northern China, apart from
control of vascular risk factor [31]. In addition, strategies on a more personal approach
may be advisable particularly in southern China, including face-mask and filtering devices
for indoor air pollution [34–37], as well as exploration of potential medical therapies to
reduce the impact of atherosclerosis.

5. Conclusions

PM2.5 air pollution in China, in particular in Southern Chinese, is related to athero-
genic surrogates, independent of traditional risk factors, with potential implications in
both dietary and air pollution reduction strategies for atherosclerosis prevention.
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Abstract: In order to investigate the seasonal variations in the chemical characteristics of PM2.5 at the
plateau slope of a mountain city in southwest China, 178 PM2.5 filters (89 quartz and 89 Teflon samples
for PM2.5) were collected to sample the urban air of Wenshan in spring and autumn 2016 at three sites.
The mass concentrations, water-soluble inorganic ions, organic and inorganic carbon concentrations,
and inorganic elements constituting PM2.5 were determined, principal component analysis was used
to identify potential sources of PM2.5, and the backward trajectory model was used to calculate the
contribution of the long-distance transmission of air particles to the Wenshan area. The average
concentration of PM2.5 in spring and autumn was 44.85 ± 10.99 μg/m3. Secondary inorganic aerosols
contributed 21.82% and 16.50% of the total PM2.5 in spring and autumn, respectively. The daily mean
value of OC/EC indicated that the measured SOC content was generated by the photochemical
processes active during the sampling days. However, elements from anthropogenic sources (Ti,
Si, Ca, Fe, Al, K, Mg, Na, Sb, Zn, P, Pb, Mn, As and Cu) accounted for 99.38% and 99.24% of
the total inorganic elements in spring and autumn, respectively. Finally, source apportionment
showed that SIA, dust, industry, biomass burning, motor vehicle emissions and copper smelting
emissions constituted the major components in Wenshan. This study is the first to investigate the
chemical characterizations and sources of PM2.5 in Wenshan, and it provides effective support for
local governments formulating air pollution control policies.

Keywords: PM2.5; PCA; backward trajectories; chemical composition; source

1. Introduction

In recent decades, with rapid economic development, industrialization and urban-
ization in China, the number of motor vehicles and the total energy consumption have
increased, and atmospheric particulate matter (PM) has become one of the most significant
air contaminants [1–3]. PM, particularly PM2.5 (aerodynamic diameter ≤2.5 mm), can exist
in the atmosphere for a long time, which is conducive to its long-distance transport through
the atmosphere and deposition towards remote areas. During long-range transport, PM2.5
carries abundant anthropogenic pollutants and has a serious impact on the global and re-
gional climate, the visibility and composition of the atmosphere, the global biogeochemical
cycle and the activation of cloud condensation nuclei (CCN) [4–6].

PM2.5 has been widely studied in recent years in China due to its potential impacts
on air quality and human health. Water-soluble inorganic ions (WSIIs), organic carbon
(OC) particles, inorganic carbon (EC) particles, and inorganic elements (IEs), as the main
chemical components of PM2.5, have been extensively studied in China [7–9]. WSIIs are
dominated by secondary inorganic aerosols (SIAs), including NH4

+, NO3
−, and SO4

2−.
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OC is composed of thousands of organic compounds and contains many toxic substances.
Heavy metals are an important part of the inorganic elements comprising PM2.5, such as
Fe, Zn, Cu and Pb [10–12].

Whether worldwide or only in China, it is essential to reduce PM2.5 concentra-
tions to control their sources. The key point in formulating policies for the govern-
ment to control PM2.5 pollution is the result of source apportionment and reliable source
quantification [13,14]. In fact, PM2.5 is usually sourced by the emission of pollutants, and
its classification is very complex, including its anthropogenic and natural sources and gas
and particle phases [15,16]. In addition, PM2.5 forms secondary pollutants from primary
emissions through photochemical reactions after being released from pollution sources,
making it difficult to quantify its impacts [17–19]. The contribution levels of different
sources in the air can be quantitatively estimated by using the receptor model. Generally,
researchers have identified the possible sources of PM2.5 as traffic and industrial, coal
combustion, biomass burning and secondary inorganic aerosol sources [20,21].

In recent years, most studies have generally focused on the Jing-Jin-Ji region and its
coastal areas with severely degraded atmospheric environments in China [22–24]. Only a
few researchers have investigated PM2.5 pollution in Yunnan Province, which is a remote
southwestern region. More research has been conducted in areas such as Kunming and
Yuxi [25–27]. Despite the economic backwardness of the remote southwestern mountains,
there are still cases of PM2.5 exceeding the standard every year [28–30]. Therefore, we
should pay more attention to these areas to improve their air quality.

Wenshan, a developing industrialized city in southwest China, has a high degree of
air pollution, mainly resulting from the presence of PM2.5 in the atmosphere. Furthermore,
Wenshan is located in the basin valley on the plateau, and the urban area is surrounded by
high mountains, which aggravate particulate pollution. Wenshan is chosen as the study
area to conduct PM2.5 sampling during the spring and autumn seasons at three monitoring
sites. The concentrations of PM2.5, WSIIs, OC, EC and IEs are analyzed and discussed in the
current study. Principal component analysis (PCA) is used for PM2.5 source apportionment
to analyze the pollution sources. Potential major contributors were identified on the basis
of PCA and local environmental background information. The details of the pollution
characteristics and the results of PM2.5 source apportionment in this study can provide
the local government with reasonable and effective measures to slow down atmospheric
pollution with PM2.5.

2. Methods

2.1. Sampling Site and Sample Collection

Wenshan is a developing industrialized city with half a million inhabitants in an urban
area of 75 km2. With a longitude of 103◦43′–104◦27′ E and a latitude of 23◦06′–23◦44′ N,
Wenshan lies in southwest China (Figure 1), which is the transition zone of the Yunnan-
Guizhou Plateau and Vietnam Basin.

Wenshan lies in a small basin valley on the plateau and is surrounded by mountains
on three sides. The terrain inclines from northwest to southeast, and the mountain range
runs almost from north to south. Therefore, a corridor topography consisting of high points
on both sides and low points in the middle is formed. The relative altitude difference
is 1751.2 m, with the highest altitude of 2991.2 m in Bozhu Mountain and the lowest of
1240 m in the urban area. Wenshan is dominated by a subtropical monsoon climate, which
is characterized by a long spring and autumn, no bitter cold in winter, no brutal heat in
summer and delightful weather in all seasons. Airflow near the ground can only enter
the urban area from the southeast. The cold air in Siberia from the north is obstructed by
mountains, and the monsoon of the Beibu Gulf and the Bay of Bengal traveling from the
southeast flows right into the urban area, which forms comfortable temperatures, low wind
speeds and high ultraviolet (UV) light conditions throughout the year. Strong ultraviolet
light is conducive to the formation of photochemical atmospheric effects, and the conditions
of low pressure and low oxygen can lead to the incomplete combustion of fuel and can
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increase the resulting pollution emissions. The conditions of low wind speed (<3 m/s)
and the large diurnal temperature variation readily form an inversion layer, hindering the
diffusion of pollutants.

Figure 1. Location of the sampling site in Wenshan, China.

Measurement campaigns of PM2.5 sampling at three sites at the Convenience Service
Center of Wenshan (CSCW), Water Authority of Wenshan (WAW) and Environmental
Monitoring Station of Wenshan (EMSW) in Wenshan city (Figure 1), were carried out in two
periods in 2016, i.e., 19 April to 3 May and 12 October to 26 October. Daily measurements
of 22 ± 1 h with an intelligent mid-volume atmospheric particulate sampler (TH-150F,
Tianhong, China) were conducted at a 100 L/min sample flow. Teflon filters (China, 90 mm)
were used to analyze IEs, and quartz filters (PALL Inc., USA, 90 mm) were used to analyze
OC particles, EC components and WSIIs. A total of 178 PM2.5 samples and 12 blank samples
were collected. After sampling, the filters were individually placed into plastic boxes and
put into a freezer at −20◦C until transport and subsequent analysis.

2.2. Chemical Analysis and Quality Control

2.2.1. WSII Analysis

The anion (i.e., F−, Cl−, SO4
2− and NO3

−) and cation (i.e., K+, Ca2+, Mg2+ and NH4
+)

concentrations were measured by ion chromatography (DX-600, Dionex, USA). This system
was outfitted with a separation column (Dionex AS-14A for anions and CS-12A for cations)
and a guard column (Dionex AG14A for anions and CG12A for cations). A gradient weak
base eluent (3.5 mmol/L Na2CO3; 1 mmol/L NaHCO3) was used for anion detection,
while a weak acid eluent (18 mmol/L methanesulfonic acid) was used for cation detection.
The measurement error of each ion in a standard solution is within 10%, and the average
relative standard deviations of anions and cations are 3.0% and 4.0%, respectively. For
quality assurance, two blank spaces were detected in each batch of samples, and the test
was carried out at 10%. At least six standard solution concentrations needed to be mixed
for each ion component.

2.2.2. Elements Analysis

Li, Be, P, Cr, Mn, Bi, Co, Ni, Cu, Sr, Mo, Cs, Cd, Tl, Pb, Th, Sc, V, As, Rb, Y, Zr, Sn, Sb,
La, Ce, U, Sm and W were analyzed by inductively coupled plasma-mass spectrometry
(ICP-MS). Mg, Ca, K, Fe, Al, Ba, Zn, Na and Si were analyzed by inductively coupled
plasma-atomic emission spectrometry (ICP-AES).
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2.2.3. OC and EC Analysis

The concentrations of OC and EC were analyzed by DRI Model 2001 OC/EC Analyser,
which was developed by the American Desert Institute (DRI). The main testing principle
of this method is as follows: the sample is heated and converted into CO2 under different
temperature gradients and gas environments. CO2 is reduced to CH4 by catalyzing MnO2
and is detected by using a flame ion detector (FID). Then, using a 633 nm helium/neon
laser to detect the anti-light intensity of filter paper to detect the production of organic
pyrolysis carbon (OPC), eight different carbon components (OC1, OC2, OC3, OC4, OPC,
EC1, EC2, and EC2) were obtained. IMPROVE (Interagency Monitoring of Protected Visual
Environments) defines OC as OC1+OC2+OC3+OC4+OCPyro and EC as EC1+EC2+EC3-
OCPyro. The detection limits were 0.82 (OC), 0.19 (EC) and 0.93 (TC) μg/cm2, and the
measuring range was 0.2~750 μg/cm2.

2.2.4. Principal Component Analysis (PCA) Modeling

PCA is an important multivariate statistical tool that can reduce the dimensionality of
large datasets and extract the number of principal components needed to explain all the
variance of such datasets, which is much less than the original number of variables [31,32].
PCA extracts new variables by the correlation between all variables, which contain most
of the information about the data, called principal components. Each variable has the
same significance, and each topic has the same weight. The first component extracted
explains the maximum amount of data variance. The maximum amount of remaining data
variance will be further explained by successive components [33–35]. This process sets up
the orthogonal distribution of components to each other, and the result of the regression
adjustment of factors is simple and stable, regardless of how large a dataset is and how
many variables are included in the study [36].

2.2.5. HYSPLIT4 Model

The HYSPLIT4 model is a professional model jointly developed by the National
Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) and
the Australian Bureau of Meteorology (BOM) in the past 20 years to calculate and analyze
the transport and diffusion trajectories of atmospheric pollutants. The model has a rela-
tively complete transport, diffusion and sedimentation model that can handle multiple
meteorological element input fields, multiple physical processes, and different types of
pollutant emission sources. It is widely used in the study of the transmission and diffu-
sion of multiple pollutants in various regions. In this study, the independent version of
the backward trajectory model was used, the auxiliary software package was used (GUI;
Ghostscript; ImageMagick), and the meteorological data were obtained through NCEP
(National Centers for Environmental Prediction) and GDAS (Global Data Assimilation
System).

2.2.6. Quality Control

The quartz filters were baked at 450 ◦C for 5 h in a muffle furnace before sampling
to identify the possible presence of organics. All filters were placed in a clean room
(temperature of 25 ◦C ± 5; relative humidity of 50 ± 5%) for 48 h and weighed by a
high-precision electronic balance (EX125ZH) with an accuracy of 10 mg before and after
sampling. Each filter was weighed twice, with the difference between the two results not
exceeding 0.2 mg for quartz filters and 0.02 mg for Teflon filters, to guarantee the precision
of the weighting results. All filters were stored in a freezer at −20 ◦C before analysis to
prevent the loss of volatile components.

In the sample analysis process, the instrument was calibrated with standard gas
before and after the sample analysis. Then, one sample was randomly selected from every
10 samples for parallel analysis, and the standard sample was measured twice a week.
The recovery rate of the standard sample was 98%~102%. Finally, the system blank of the
instrument and the blank of the laboratory system were measured every week. The results
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showed no contamination during sample handling and collection, as assured by the quality
assurance and control (QC/QA) procedures.

3. Results and Analyses

3.1. Concentration Characteristics of PM2.5

During the two sampling campaigns, the mass concentrations (from Telfon filters)
of PM2.5 ranged from 29.11 μg/m3 to 62.03 μg/m3 in spring and from 24.46 μg/m3 to
60.08 μg/m3 in autumn (Figure 2). The overall concentration of PM2.5 is higher in spring
than that in autumn. The concentration on individual days in autumn is higher than that
in spring, which may be related to changes in meteorological conditions. The daily concen-
tration levels of PM2.5 were all within Chinese National Ambient Air Quality Standards II
(75 μg/m3). In addition, the total average concentration of PM2.5 in spring and autumn
(44.85 ± 10.99 μg/m3) was higher than Standard II (35.00 μg/m3) (GB3095-2012), and was
3.0 times higher than the annual standard concentration in the USA (15 μg/m3). These
values are lower than those of developed cities in the plains of China, such as Beijing,
Tianjing and Shanghai [37,38]. Furthermore, the concentration of PM2.5 in Wenshan was
lower than that in some plateau cities, such as Guiyang and Kunming [39]. In our previous
research, we found that the dust emission volume of Wenshan was 1164 t, accounting for
52.9% of the total emissions. PM2.5 pollution may be associated with city construction, and
the floor space of buildings under construction was 5.48 × 106 m2 during 2016 in Wenshan.
The mean concentrations of PM2.5 decreased from spring (48.00 ± 11.01 μg/m3) to autumn
(41.64 ± 10.10 μg/m3). There were 10 and 5 days in spring and autumn, respectively, that
exceeded the total average concentration, which means that were 62.5% of the days in
spring exceeded the total average concentration, and it was twice that in autumn. This sea-
sonal mean concentration variation is attributed to the primary influence of meteorological
characteristics and source emissions.

Figure 2. The daily mass concentration of PM2.5 during sampling.

3.2. Chemical Composition Characteristic of PM2.5

3.2.1. WSIIs Levels

The concentrations of WSIIs were 11.75 ± 3.25 and 12.50 ± 3.40 μg/m3 in spring
and autumn, respectively. In PM2.5, the concentrations of K+, NH4

+, Ca2+, Mg2+, Cl−,
F−, NO3

− and SO4
2− were 0.67, 2.54, 1.28, 0.07, 0.24, 0.16, 1.25 and 5.53 μg/m3 in spring

and 0.59, 3.17, 0.78, 0.07, 0.38, 0.22, 0.77 and 6.53 μg/m3 in autumn, respectively. The
annual concentration of WSIIs was 12.15 μg/m3 and occupied 26.91% of the total PM2.5.
This result indicated that WSIIs were one of the main components of PM2.5. The mass
concentrations of sulfate occupied 49.67% of the total WSIIs, followed by NH4

+ (23.50%),
Ca2+ (8.60%), NO3

− (8.37%), K+ (5.21%), Cl− (2.52%), F− (1.56%), and Mg2+ (0.57%). The
dominant compounds were secondary inorganic aerosols (SIAs, including NO3

−, SO4
2−
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and NH4
+), with concentrations accounting for more than 80% of the total WSII mass of

PM2.5. The concentrations of WSIIs in Wenshan are shown in Table 1 and compared to
other typical cities, such as Kunming [30] and Guiyang [40] on the plateau and Beijing [41]
and Nanjing [42] on the plain. Compared to other Chinese studies, most of the ionic species
identified in research are found to be on the lower side. Compared with Kunming and
Guiyang, the concentration of SO4

2− was lowest, which is consistent with the lagged
industrial development of Wenshan. These results show that the WSII concentrations at
Wenshan were impacted more by local pollution sources (e.g., biomass burning, agricultural
dust, construction dust, etc.) [43].

Table 1. Mean concentrations of WSIIs sampled in Wenshan in 2016 compared with data from other
sites (μg/m3).

Ion Wenshan Kunming [30] Guiyang [40] Beijing [41] Nanjing [42]

K+ 0.63 ± 0.24 0.77 0.41 1.90 1.2
Ca2+ 1.04 ± 0.5 2.83 1.77 3.92 0.7
Mg2+ 0.07 ± 0.02 0.30 0.20 0.76 0.2
NH4

+ 2.81 ± 1.16 0.52 4.29 12.47 4.5
Cl− 0.31 ± 0.19 0.72 1.30 6.76 1.9
F− 0.19 ± 0.07 0.54 0.03 - 0.2

SO4
2− 5.98 ± 2.07 9.72 17.43 21.60 5.1

NO3
− 1.00 ± 0.40 0.51 1.34 20.552 9.1

SIAs were the dominant ions in the PM2.5 component in both autumn and spring.
The spring and autumn concentrations of SIAs follow the order SO4

2− > NH4
+ > NO3

−

(Figure 3). One of the reasons is that industrial production leads to the incomplete com-
bustion of fossil fuels, which increases the emission of the gaseous precursor SO2 [44,45].
Moreover, the geographical structure of urban areas is not favorable to pollutant diffusion
in the atmosphere. Another reason is the high conversion rate of SO2 to PM2.5, which may
be due to the relatively high humidity in autumn [46,47]. In addition, NH4

+ was the most
dominant cation in PM2.5 in the two seasons, and the emission of NH4

+ originated from the
nitrogen fertilizers used in agriculture [48,49]. The observed NO3

− levels were related to
the synthetic action of various influencing factors, i.e., precursor NOX emissions, complex
photochemical and heterogeneous reactions and gas-aerosol equilibrium [50,51].

Figure 3. Seasonal variations in SIAs and their ratios in PM2.5 in Wenshan.

To discuss the relative importance of mobile and stationary sources of SO2 and NOX,
the mass concentration ratio of NO3

−/SO4
2− was used as an indicator [52]. The seasonal

variation in NO3
−/SO4

2− in PM2.5 ranged from 0.16 to 0.32 and from 0.09 to 0.18 in spring
and autumn, respectively, with an annual mean of 0.18 ± 0.07, which was lower than
the values measured in Shanghai (0.43) [53], Qingdao (0.35) [54] and Taiwan (0.20) [55].
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Therefore, with the increasing number of motor vehicles, the contribution of mobile sources
is more important than before.

Ion balance calculations are frequently used to investigate the acid base balance of ions
in PM2.5. The correlation of CE and AE and the variation in CE/AE in the two seasons were
calculated. According to the electroneutrality of solutions, AE must be equal to CE [56].
The correlation coefficient between CE and AE for spring (R2 = 0.92) was higher than that
for autumn (R2 = 0.85), showing that cations and anions maintained better equilibrium
during neutralization in spring. The average CE/AE ratios for autumn (1.72) were higher
than those for spring (1.54), which indicates the basic nature of aerosols in which PM2.5 is
alkaline in the two seasons in Wenshan [57,58].

3.2.2. IEs Levels

The concentrations of IEs in PM2.5 in the two seasons are shown in Figure 4. The
concentrations of IEs in PM2.5 were 4.82 μg/m3 and 4.10 μg/m3 in spring and autumn,
respectively. Fifteen main elements, Ti, Si, Ca, Fe, Al, K, Mg, Na, Sb, Zn, P, Pb, Mn, As and
Cu, account for 99.38% and 99.24% of the total inorganic elements in spring and autumn,
respectively. These fifteen elements play a key role in the estimation of emission sources
and are associated with human activity (such as industrial processes, residential activities,
and traffic patterns).

Figure 4. Mean concentrations of inorganic elements in PM2.5 sampled at Wenshan.

In the PM2.5 samples, the relatively high concentrations of elements are in the order of
Ti>Si>Ca>Al>Fe>K>Mg>Na>Sb>Zn>P>Pb>Mn>As>Cu (spring) and Ti>Si>Ca>Fe>Al>K>
Mn>Mg>Na>Zn>Sb>Pb>P>As>Cu (autumn). The fifteen main IE concentrations ac-
counted for 14.88% of the total PM2.5 in spring and 14.89% in autumn. The concentrations
of the identified elements of soil dust (Ti, Si, Al, Ca, Mg) were 5.24 μg/m3 in spring and
4.29 μg/m3 in autumn, which showed that surface dust was the main source of PM2.5. The
concentrations of the industrial discharge elements (As, Zn, and Mn) were 0.10 μg/m3

in spring and 0.38 μg/m3 in autumn. The concentration of Pb was 0.03 μg/m3 in spring
and 0.06 μg/m3 in autumn, and it may be due to motor vehicle exhaust emissions. The
concentrations of K accounted for 1.35% of PM2.5 in spring and 0.99% in autumn, which
may be due to biomass burning [59–61].

3.2.3. OC and EC Levels

The mean concentrations of OC were 12.03 ± 2.24 μg/m3 and 9.32 ± 2.13 μg/m3 in
spring and autumn, respectively (Figure 5). The mean EC concentrations were
3.66 ± 0.47 μg/m3 and 2.88 ± 0.61 μg/m3 in spring and autumn, respectively. Wenshan is
located in the basin valley on the plateau, with wind speeds that are too low to be conducive
to pollutant spreading during the two seasons. During the two sampling campaigns, the
daily mean value of OC/EC was 2.64–4.17 in spring and 2.74–3.65 in autumn, all of which
exceeded 2.0, which indicated that Wenshan experienced secondary organic carbon (SOC)
pollution in both seasons. Moreover, OC and EC in Wenshan had a better correlation in
autumn (R = 0.86) than in spring (R = 0.69), which showed that the measured OC and
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EC were derived from similar sources during autumn and from complex sources during
spring. The possible reason is that the spring is affected by the long-distance transmission
of biomass combustion sources in Southeast Asia due to climatic conditions.

Figure 5. Concentrations of OC and EC, the value of OC/EC and the relevance of OC and EC in PM2.5 during the sampling
period. (a) Concentrations of OC and EC in spring. (b) Concentrations of OC and EC in autumn. (c) The value of OC/EC
and the relevance of OC and EC in PM2.5 during the spring sampling period. (d) The value of OC/EC and the relevance of
OC and EC in PM2.5 during the autumn sampling period.

Since there is no simple and direct calculation method for SOC, this study estimates the
content of SOC considering the lowest value of the OC/EC ratio in the two seasons [62–64].
The principle of this method is the use of the lowest value of OC/EC rather that of the
OC/EC of the primary pollutant in every season. SOC=TOC, EC×(OC/EC)min, and TOC
and EC are the concentrations of OC and EC in PM2.5, respectively [65,66]. The average
values of SOC in PM2.5 are 2.36 ± 1.00 μg/m3 and 1.41 ± 0.46 μg/m3 in spring and autumn,
respectively. The values of SOC/OC in the two seasons are 19.65% and 15.14% in spring
and autumn, respectively. The radiation and temperature in autumn were higher than those
in spring, which represented more favorable photochemical conditions for the formation
of SOC in autumn. However, there was more rain in autumn in Wenshan, which could
limit the formation of SOC. The order of OC, SOC and SOC/EC was the same pattern as
spring > autumn, which meant that the impact of radiation and temperature was less than
that of rainfall, and rainfall was the main influencing factor and had a greater impact on
SOC [67,68].

3.3. Source Apportionment of PM2.5

3.3.1. Principal Component Analysis (PCA)

The sample quantity is crucial for good PCA. The PCA of the study was performed
considering the chemical constituents of 90 PM2.5 samples. The outliers (those beyond 2SD)
were removed, and the dataset was normalized prior to the operation [69]. When the value
of KMO is close to 1, it indicates that there is a strong correlation between these variables
(KMO indicates the amount of variance shared among the items designed to measure a
latent variable when compared to that shared with the error), and these variables are more
suitable for PCA [70]. In this study, the SPSS software package (IBM, version 24.0) was
used to conduct PCA research on substances in PM2.5 to obtain the emission characteristics
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of its pollution sources. For this study, the species of Li, Na, K, Mn, Cu, Zn, As, Pb, Al,
Mg, Ca, Fe, Ba, Si, Ti, NH4

+, NO3
−, SO4

2−, OC and EC had strong correlations in the two
seasons, and the PCA results are listed in Table 2.

Table 2. Matrix of loading factors of PCA in spring and autumn.

Spring Autumn

Element F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5

Li 0.52 0.86
Na 0.80 0.52
K 0.56 0.83

Mn 0.93 0.94
Cu 0.77 0.76
Zn 0.71 0.88
Pb 0.94 0.96
Al 0.62 0.68
Mg 0.91 0.79
Ca 0.64 0.55 0.56
Ba 0.95
Fe 0.56 0.55 0.82
Si 0.93 0.78
Ti 0.62 0.76

NH4
+ 0.90 0.90

NO3
− 0.87 0.92

SO4
2− 0.90 0.83

OC 0.82 0.74
EC 0.70 0.65

Eigenvalue 3.40 3.09 2.69 2.19 2.06 1.82 5.59 3.56 2.34 1.77 1.69
Variance

contribution %
18.15 16.28 14.15 11.55 10.83 9.58 29.40 18.73 12.33 9.30 8.91

From Table 2, we know that PCA resolved six components explaining 80.5% of the
variance in spring.

Factor 1: The first factor contributes 18.15% to the total factor contributions and is
characterized by a high concentration of SIAs, which indicates that Wenshan was greatly
affected by secondary inorganic aerosol pollution in spring. SIAs are mainly generated by
the photochemical reactions of precursor gases (SO2, NH3, and NOx), which are emitted
from specific identified sources of human activity (coal combustion, vehicle exhaust emis-
sion, and biomass burning). Therefore, the strict control of precursor gases is conducive to
reducing PM2.5 levels.

Factor 2: The second factor contributed 16.28% of the total PM2.5, and mostly origi-
nated from natural sources, such as the lifting of dust or mechanical abrasion processes,
which was identified by high concentrations of Al, Fe, Si and Ti, indicating the leading
contribution of dust [71]. Si and Ti are the key tracers of soil dust caused by winds. The
extra Ba is emitted from brake linings and tire tread wear. These results can be explained as
a consequence of dust persisting in the atmosphere longer because of calm and low-speed
winds.

Factor 3: The third factor resolved 14.15%, and represents the factor contribution from
industrial emissions. The elements are related to the industrial metal smelting process and
represent anthropogenic emissions from various industries near the sampling site [72].

Factor 4: This source provided 11.55% of PM2.5. OC and EC are considered to be
tracers of motor vehicle emissions, and EC is an indicator of primary emissions of OC [73].
The presence of K also deserved our attention, directly indicating emissions from biomass
burning.

Factor 5: Cu and Na were apportioned to this factor, which suggests that the effect of
this factor was manifold, such as copper smelting and sea salt [74]. The contribution of this
factor towards PM2.5 was 10.83%, as revealed by PCA. In addition, Na might travel long
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distances from the Indian Ocean, and Cu could have come from the nearby industrial area
in Honghe Prefecture.

Factor 6: This factor is construction cement dust, which is represented by high con-
centrations of Ca and Mg [75]. This finding indicates that construction and demolition
activities were prevalent in the urban areas in Wenshan during the sampling period, with-
out effective measures for dust control. More precise and effective policies are needed for
the local government to improve PM2.5 pollution.

In addition, PCA resolved five components explaining 78.7% of the variance in au-
tumn. Different from spring, Factor 1 represent biomass burning and industry sources,
contributing 29.40% of PM2.5. Factor 2 includes secondary inorganic aerosols and motor
vehicle exhaust emissions, which resolved 18.73% of the factor contribution. Factor 3 repre-
sents metal smelting, with remarkable representative Al, Fe and Mg features, which can be
attributed to the smelting production activities around the site. Factor 4 and Factor 5 are
soil dust and construction dust, which resolved 9.30% and 8.91% of the factor contributions,
respectively.

3.3.2. The Long-Range Transport

To better understand the transport of airborne particles from distant sources, the 72 h
backward trajectories starting at a height of 100 m at the sampling site were calculated
using the Hybrid Single Particle Lagrangian Integrated Trajectory 4.0 (HYSPLIT4) model
with a 12 h period (meteorological data from the Global Data Assimilation System (GDAS)).
The back trajectories were classified into three clusters using TrajStat in this study.

In spring, the trajectories were grouped into three clusters (Figure 6). Cluster 1 (blue
line), from the southwestern direction, was associated with slower and lower air mass
trajectories and accounted for 57%. The other two trajectory clusters (green line and red
line) came from the north and southwestern directions, accounting for 24% and 19%,
respectively. Cluster 1 came from central Myanmar and passed through during spring
sampling in northern Vietnam and the Honghe Prefecture in Yunnan Province, China,
which explains the effect of Factor 3. At the same time, Cluster 2 (green line) came from the
industrial region in Chongqing, which explained the source of biomass burning in Factor 1
and the industrial impact in Factor 3. Figure 6b shows that wind mainly originated from the
south during the sampling period, which prevented the diffusion and great accumulation
of NOX and SO2. Then, they formed secondary pollution through photochemical reaction
transformation, which conforms to the SIA pollution in Factor 1. The higher wind speeds
were also consistent with the contribution of Factor 2.

In autumn, the trajectories were grouped into three clusters from the southeastern
direction (Figure 7). Cluster 1 (red line) came from Guangxi Province and passed through
the industrial region in Baise, which explains the presence of industrial elements in Factor
1. The other two trajectory clusters (blue line and green line) accounted for 33% and 8%,
respectively. Figure 7b also shows that the wind mainly originated from the south during
the sampling period and resulted in the impossibility of the diffusion and dilution of
pollutants, which was also the reason for the SIA pollution in Factor 2.
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Figure 6. (a) Mean 72 h backward trajectories of each trajectory cluster during spring and the percentage of allocation to
each cluster. (b) Wind roses of Wenshan during spring sampling.

Figure 7. (a) The mean 72 h backward trajectories of each trajectory cluster during autumn and the percentage of allocation
to each cluster. (b) Wind roses of Wenshan during autumn sampling.

4. Conclusions

In this study, PM2.5 samples were collected in Wenshan, and their mass concentra-
tion, chemical composition and source apportionment characteristics were analyzed in
spring and autumn. The mean concentrations of PM2.5 were 48.00 ± 11.01 μg/m3 and
41.64 ± 10.10 μg/m3 in spring (sampled on 19 April–3 May) and autumn (sampled on
12 October–26 October). The annual mean concentration of PM2.5 at the three sites was
44.85 ± 10.99 μg/m3, which was lower than that in Standard II (75.00 μg/m3) and higher
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than that in Standard II (35.00 μg/m3). This means that the air quality in Wenshan is better
than that in most cities in China.

WSIIs and OC were the main components of PM2.5, accounting for 26.91% and 23.80%
of PM2.5, respectively. SIAs were the major contributors to WSIIs, due to the incomplete
combustion of fossil fuels and the slathering of nitrogen fertilizers in agriculture. Wenshan
was greatly affected by secondary inorganic aerosol pollution in the two seasons, which
contributed 21.82% and 16.50% to the total factor contributions in spring and autumn,
respectively. The ratio of NO3

−/SO4
2− implied that the contribution of mobile sources

was not significantly different from that of other developed areas. The daily mean value
of OC/EC was 2.64–4.17 in spring and 2.74–3.65 in autumn, which indicates that the
SOC was generated by the photochemical process during the sampling days in Wenshan.
Moreover, the OC and EC concentrations in Wenshan had a better correlation in autumn
(R = 0.86) than in spring (R = 0.69), which shows that OC and EC were derived from similar
sources during autumn and from complex sources during spring. However, elements
from anthropogenic sources (Ti, Si, Ca, Fe, Al, K, Mg, Na, Sb, Zn, P, Pb, Mn, As and Cu)
accounted for 99.38% and 99.24% of the total inorganic element concentration in spring
and autumn, respectively.

Source apportionment showed that SIAs (18.15%), the lifting of dust or mechanical
abrasion processes (16.28%), industrial sources (14.15%), motor vehicle emissions (11.55%),
copper smelting and sea salt pathways (10.83%), and construction cement dust emissions
(9.58%) were the main pollution sources in PM2.5 in spring. Furthermore, source apportion-
ment showed that biomass burning and industry (29.40%), SIAs and motor vehicle exhaust
(18.73%), metal smelting (12.33%), soil dust (9.30%) and construction dust (8.91%) emissions
were the main pollution sources of PM2.5 in autumn. Different source contributions were
found in spring and autumn. According to the research results, the pollution prevention
and control suggestions are as follows: (1) Exert related effective management for artificial
sources, such as industry and construction sites, to accelerate industrial transformation
and upgrading. (2) Adopt emission control measures, such as motor vehicle restrictions
and the promotion of new energy transportation methods.

The results of cluster analysis indicate that the long-range transport of air pollutants
has a profound effect on local air quality in Wenshan. Wenshan is mainly affected by
long-distance atmospheric transmission from the southwest and the northeast in spring
and autumn, respectively.

In this paper, chemical composition and source characteristics of PM2.5 in a plateau
slope city were first studied, and the main sources of PM2.5 in Wenshan City are resolved.
The results can provide scientific data to support PM2.5 pollution control in local and
similar cities.
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Nomenclature

PM2.5
Particulate matter with aerodynamic equivalent diameter less than or
equal to 2.5 microns in ambient air

NOx Refers to the sum of NO and NO2
CCN cloud condensation nuclei
WSIIs Water-soluble inorganic ions
OC organic carbon
EC inorganic carbon
IEs inorganic elements
PCA Principal component analysis
UV Ultraviolet
CSCW Convenience Service Center of Wenshan
WAW Water Authority of Wenshan
EMSW Environmental Monitoring Station of Wenshan
ICP-AES inductively coupled plasma-atomic emission spectrometry
DRI Desert Institute
FID Flame ion detector
OPC Organic pyrolysis carbon
IMPROVE Interagency Monitoring of Protected Visual Environments
SIAs Secondary inorganic aerosols (including NO3

−, SO4
2− and NH4

+)
CE/AE Cation/Anion concentration ratio
NCEP National Centers for Environmental Prediction
GDAS Global Data Assimilation System
QC/QA Quality control and Quality assurance
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Abstract: Sichuan Basin is one of the most densely populated areas in China and the world. Human
activities have great impact on the air quality. In order to understand the characteristics of overall
air pollutants in Sichuan Basin in recent years, we analyzed the concentrations of six air pollutants
monitored in 22 cities during the period from January 2015 to December 2020. During the study
period, the annual average concentrations of CO, NO2, SO2, PM2.5 and PM10 all showed a clear
downward trend, while the ozone concentration was slowly increasing. The spatial patterns of
CO and SO2 were similar. High-concentration areas were mainly located in the western plateau of
Sichuan Basin, while the concentrations of NO2 and particulate matter were more prominent in the
urban agglomerations inside the basin. During the study period, changes of the monthly average
concentrations for pollutants (except for O3) conformed to the U-shaped pattern, with the highest in
winter and the lowest in summer. In the southern cities of the basin, secondary sources had a higher
contribution to the generation of fine particulate matter, while in large cities inside the basin, such as
Chengdu and Chongqing, air pollution had a strong correlation with automobile exhaust emissions.
The heavy pollution incidents observed in the winter of 2017 were mainly caused by the surrounding
plateau terrain with typical stagnant weather conditions. This finding was also supported by the
backward trajectory analysis, which showed that the air masses arrived in Chengdu were mainly
from the western plateau area of the basin. The results of this study will provide a basis for the
government to take measures to improve the air quality in Sichuan Basin.

Keywords: air pollution; spatio-temporal variations; Sichuan Basin; back-trajectory

1. Introduction

In the past 20 years, China has experienced severe air pollution due to rapid eco-
nomic development and increasing urbanization [1]. Studies showed that exposure to
ambient air pollution has been associated with increased risks of mortality and morbidity
worldwide [2,3]. According the Global Burden of Disease (GBD) project, air pollution was
responsible for 1.6 million deaths in China and 4.2 million deaths worldwide in 2015 [4].
The continuous and serious air pollution has caused an immense burden for China’s medi-
cal and economic [5]. In order to cope with serious air quality problems, China has taken a
series of measures in recent years [6,7].

In 2005 and 2011, China implemented the installation of desulphurization and selective
catalytic reduction (SCR) systems for coal-fired power plants [8]. At the same time, the
strategies of upgrading vehicle fuel and prohibiting polluting old vehicles were introduced
at the city level [9]. The Ministry of Environmental Protection of China issued the revised
“Ambient Air Quality Standards” (CAAQS, GB3095-2012) in February 2012, adding PM2.5
and O3 to CAAQS for the first time [10]. In 10 September 2013, the Chinese government
promulgated the Air Pollution Prevention and Control Action Plan. The plan aimed to
reduce the number of severely polluted days drastically and improve the national air
quality significantly through long-term efforts [11]. Despite these efforts, there were still
many cities that have not yet reached the current CAAQS [12]. According to the “2020
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Reports on the State of Environment of China”, there were still 135 cities whose ambient
air quality exceeded the standard, accounting for 40.1% of the total number of cities. In
the days exceeding the standard, the proportions of PM2.5, O3, and PM10 as the primary
pollutants were 51%, 37.1%, and 11.7%, respectively.

Previous studies showed that Beijing-Tianjin-Hebei area (BTH), Yangtze River Delta
(YRD), Pearl River Delta (PRD) and Sichuan Basin were the four main regions with severe
air pollution in China [13,14]. In Beijing, YRD and PRD, some scholars have carried out a lot
of research to understand the basic characteristics, chemical mechanisms, main components
and transmission sources of air pollution [15–19]. Since 2000, the air quality in Sichuan
Basin has further deteriorated due to increased anthropogenic emissions. However, only
a few studies have focused on Sichuan Basin [20,21]. And in the past, related studies
on Sichuan Basin were mainly concentrated in the two megacities of Chongqing and
Chengdu, and there were few studies on the overall air quality for the whole of large-scale
valley terrain [22,23]. The characteristics and source of air pollution for Sichuan Basin
in recent years are still unclear [24]. In this study, we analyzed air quality data collected
from Sichuan Basin for six years (January 2015 to December 2020) to fill this gap. The
main goal is to investigate (1) the temporal and spatial characteristics of the overall air
pollution in Sichuan Basin, (2) the industry contribution reflected by the ratio of different
pollutants, and (3) a regional-scale air pollution episode that influenced multiple cities in
the region. The knowledge gained in this study provides a scientific basis for formulating
future emission control policies aimed at reducing severe PM2.5 pollution in this unique
watershed

2. Materials and Methods

2.1. Air Quality Monitoring Sites

The air quality was monitored at 127 stations spread over 22 cities across Sichuan Basin,
covering an area of over 260,000 square kilometers. Located in the central and southern
part of the Asian continent, with a total population of more than 100 million, Sichuan Basin
is one of the most densely populated areas in China and the world. Completely surrounded
by high mountains and plateaus, it is a vast subtropical low hills and plains. The west is
surrounded by the high-altitude Qinghai-Tibet Plateau, the south is the Yunnan-Guizhou
Plateau, the east is Wushan, and the north is Dabashan. Due to low wind speed and high
relative humidity, it was one of the four traditional areas with acidic rain and frequent haze
events [25]. Figure 1 showed the locations of the 22 cities that collected the air quality data
used in this study.

Considering the completeness of the data, this study collected the socio-economic data
of each city in Sichuan Basin during 2018 (source: http://tjj.cq.gov.cn/zwgk_233/tjnj/2019
/zk/indexce.htm (accessed on 15 September 2021)). Table 1 listed the city’s abbreviations,
number of vehicles, population, and GDP (Gross Domestic Product). In 2018, Chongqing’s
total population was 31.01 million, the total number of vehicles was 6.31 million, and the
GDP was 20363 billion yuan, ranking first among the cities. As another megacity in Sichuan
Basin, Chengdu has a total population of 16.33 million, a total of 4.87 million vehicles, and
a GDP of 1.5342 billion yuan, second only to Chongqing.
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Figure 1. The map of Sichuan Basin and the locations of 22 city stations.

Table 1. Urban areas, population, number of vehicles, and GDP of each city in the Sichuan Basin in 2018.

City Population GDP Primary Industry Secondary Industry Tertiary Industry Vehicle Numbers

(10,000 Persons) (Billion Yuan) (Billion Yuan) (Billion Yuan) (Billion Yuan) (10,000 Units)

Chengdu (CD) 1633 15,342.77 522.59 6516.19 8303.99 487.7169
Mianyang (MY) 485.7 2303.82 301.27 929.4 1073.15 49.9193

Deyang (DY) 354.5 2213.87 243.31 1071.13 899.43 40.5155
Leshan (LeS) 326.7 1615.09 165.92 721.78 727.39 39.2793
Meishan (MS) 298.4 1256.02 186.5 554.46 515.06 37.9811

Yaan (YA) 154 646.1 85.83 303 257.27 11.1461
Ziyang (ZY) 251.2 1066.53 166.79 507.61 392.13 31.0002
Zigong (ZG) 292 1406.71 151.55 653.71 601.45 66.1452

Yibin (YB) 455.6 2026.37 248.57 1006.73 771.07 51.8162
Luzhou (LZ) 432.4 1694.97 190.58 882.97 621.42 18.2872
Neijiang (NJ) 369.9 1411.75 219.31 610.8 581.64 25.1536

Chongqing (CQ) 3101.79 20,363.19 1378.27 8328.79 10,656.13 631.7233
Guang‘an (GA) 324.1 1250.24 173.52 575.23 501.49 35.733
Nanchong (NC) 644 2006.03 381.87 824.05 800.11 17.9184

Suining (SN) 320.2 1221.39 165.64 565.22 490.53 25.2796
Guangyuan (GY) 266.7 801.85 118.1 358.56 325.19 24.403

Dazhou (DZ) 572 1690.17 326.24 603.91 760.02 18.0632
Bazhong (BZ) 332.2 645.88 98.27 316.39 231.22 9.0715

Aba (AB) 94.4 306.67 49.55 139.53 117.59 24.2416
Ganzi (GZ) 119.6 291.2 65.47 121.78 103.95 23.3053

Liangshan (LS) 490.8 1533.19 307.61 613.13 612.45 35.1002
Panzhihua (PZH) 123.6 1173.52 39.74 731.13 402.65 25.5248

2.2. Air Quality Data

The concentrations of six pollutants, SO2, NO2, CO, O3, PM2.5 and PM10, were mon-
itored hourly over 22 cities across Sichuan Basin from January 2015 to December 2020.
The data were made available by the China National Environmental Monitoring Center
(http://www.cnemc.cn/ (accessed on 15 September 2021)).

The instruments for air quality monitoring were deployed according to the China En-
vironmental Protection Standard HJ 664-2013. The equipment came from Shenzhen Aosen
Purification Technology Co., Ltd., China. The gaseous pollutant and PM concentrations
were measured following the Specifications and Test Procedures for Ambient Air Quality
Continuous Automated Monitoring System HJ 654-2013 for SO2, NO2, O3 and CO, and HJ
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653-2013 for PM2.5 and PM10, as stipulated in the National Environmental Protection Stan-
dards of the People’s Republic of China. The air quality monitoring stations were located
at least 50 m away from any notable stationary pollution sources, and the inlets for the
instruments were placed at least 1 m higher than the roof of the building or wall [26]. Data
quality assurance and quality control (QA/QC) were conducted following the technical
guidelines on environmental monitoring quality management (HJ 630-2011) established
in the National Environmental Protection Standards of the People’s Republic of China.
The validity of the data was checked following the national ambient air quality standards
specified in the National Standards of the People’s Republic of China (GB 3095-2012), as
used in earlier studies [27,28]. The daily, monthly, and annual means of the data were
calculated from the hourly concentrations (with ~80% of the available data to be considered
as valid for calculating the mean).

2.3. Back-Trajectory Analysis

Backward trajectory analysis essentially follows a parcel of air backward in hourly
time steps for a specified length of time [29]. The HYbrid-Single Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model developed by the National Oceanic and Atmospheric
Administration (NOAA) was used to identify the potential source area of air pollution in a
specific city and capture the vertical movement of the air masses from the sources to the
receptor inside planetary boundary layer [30].

The HYSPLIT model was used to investigate the movement of air masses during a
heavy particulate pollution observed in winter 2017. In order to understand the impact of
the regional transmission process, three-dimensional 48 h backward trajectories arriving at
500 m above ground level (AGL) of the receptor sites were also calculated using 1◦ × 1◦

Global Data Assimilation System (GDAS) data from National Centers for Environmental
Prediction (NCEP). Based on the Euclidean distance between the motion trajectories,
the Ward layering method was used to assign the motion trajectories to different clusters
according to their moving speed and direction. The hour with the highest PM concentration
of coarse particles in Chengdu was selected as the start time of the trajectory, and the
backward trajectory at a height of 500 m from 3 January to 6 January 2017 was calculated.
The main transportation routes that caused severe air pollution in the winter of 2017 were
identified by combining the trajectory with the corresponding average concentration of
pollutants [31].

3. Results

3.1. Spatio-Temporal Characteristics of the Air Quality

The annual average concentrations of the pollutants in Sichuan Basin were deter-
mined by averaging the effective data from all stations. Their values are shown in Fig-
ure 2. The annual mean concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 in the
entire basin area ranged from 0.67–0.90 mg/m3, 24.33–30.4 μg/m3, 8.41–17.76 μg/m3,
80.08–91.4 μg/m3, 31.2–46.56 μg/m3 and 47.87–75.19 μg/m3, respectively. During the
same period, in Chengdu and Chongqing, two megacities of Sichuan Basin, the annual
average concentrations of the six pollutants ranged from 0.69–1.08 (0.79–1.1) mg/m3,
33.75–49.46 (37.18–45.5) μg/m3, 6.56–15.75 (7.49–16.17) μg/m3, 87.86–101.56 (68.98–81.54)
μg/m3, 39.23–61.85 (32.27–54.42) μg/m3, 61.27–103.83 (51.85–84.12) μg/m3, respectively.

The annual average SO2 concentration was the lowest in Bazhong, with a value of
4.71 μg/m3, and the highest in Panzhihua, with a value of 33.69 μg/m3. The lowest
NO2 concentration of 9.21 μg/m3 was observed in Aba Prefecture, and the highest in
Chengdu, reached 43.73 μg/m3. The highest annual average CO concentration observed
at 1.49 mg/m3 in Panzhihua, and the lowest of 0.48 mg/m3 was observed in Ganzi. The
lowest annual average concentration of O3 was observed in Ya’an during 2015, which
was 53.2 μg/m3. The highest annual average concentration of O3 was observed in Zigong
during 2018, with a value of 105.19 μg/m3. The annual average concentration of PM2.5 and
PM10 in Aba Prefecture was the lowest, 15.12 μg/m3 and 26.38 μg/m3, respectively. The
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highest values of 84.94 μg/m3 and 109.6 μg/m3 was observed in Zigong, both of which
appeared in 2015.

Figure 2. The annual average concentrations of pollutants in Sichuan Basin. The filled circle represents the mean concen-
tration whereas the error bar denotes the range of the annual concentration. The data used in each city comes from every
station during 2015–2020.

As shown in Figure 3, the concentrations of five pollutants other than O3 all showed a
downward trend from 2015 to 2020 in Sichuan Basin. The concentration of NO2 was the
highest in 2017, at 30.4 μg/m3, and the lowest in 2020, at 24.33 μg/m3, with an average
annual decline rate of 2.72%. The highest concentrations of CO, SO2, PM2.5 and PM10 all
appeared in 2015 with the value of 0.9 mg/m3, 17.76 μg/m3, 46.56 μg/m3 and 75.19 μg/m3,
respectively. The lowest concentrations all appeared in 2020 with the value of 0.67 mg/m3,
8.41 μg/m3, 31.2 μg/m3, 47.87 μg/m3, and the average annual decline rates were 5.14%,
10.52%, 6.59%, and 7.27%, respectively.

At present, the environmental concentration of most air pollutants in China is de-
clining, but the concentration of secondary pollutants such as O3 is increasing at both
provincial and capital city levels [32,33]. Previous studies showed that the rising rate of O3
in China’s 2 + 26 urban areas was almost 14 times that of the global O3 [34]. The lowest
ozone concentration of 80.08 μg/m3 in Sichuan Basin was observed in 2015, and reached
the highest in 2018, with the value of 91.4 μg/m3. It declined slightly in the following
two years, but still showed an upward trend during the overall study period. The annual
growth rate was about 0.76%.
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Figure 3. Annual average concentration trend of the six pollutants.

Ozone is not directly emitted by pollution sources in the environment [35]. It is
a secondary pollutant generated by chemical reactions of nitrogen oxides and volatile
organic compounds under strong ultraviolet light irradiation [36]. Although China has
adopted strict control measures in recent years, which has made PM, NO2, SO2 and other
atmospheric pollutants show a clear downward trend, the ozone concentration is still slowly
increasing [37]. The main reason for this phenomenon is that emissions of NOx and VOCs
(main precursors of O3) remain high in China [38]. And the meteorological conditions of
high temperature and low rainfall are conducive to the generation of O3 in recent years [39].
At the same time, the global O3 background value has been continuously increasing, which
also makes a certain promoting effect on China’s ozone concentration [40].

3.2. Seasonal Variations of Pollutants

Figure 4 shows the seasonal variations of the six pollutants in each city. For almost all
pollutants (except O3), the highest concentrations were observed in winter and the lowest
in summer. It is speculated that the continuous adverse weather conditions in winter
include smaller wind speed and rainfall, lower temperature and atmospheric boundary
height, which are not conducive to the diffusion of pollutants. And compared with other
seasons, the consumption of coal and biomass fuel for heating in winter is higher [41,42].
On the contrary, in summer, the wind speed and planetary boundary layer is higher, the
rainfall is abundant, the rain removal effect is obvious, and the pollutant concentration is
lower [43,44].

Since NO2 is the main man-made pollutant emitted from vehicles and transportation
facilities and fuel combustion, these activities are more frequent in the two megacities of
Chengdu and Chongqing than in other places [45]. In 2018, the total number of motor
vehicles in Chengdu and Chongqing accounted for 28.2% and 36.5% of the entire basin
area respectively. Therefore, the highest NO2 concentration was observed in these two
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cities. The average concentration of NO2 in winter was between 111.87 μg/m3 (Chengdu)
and 50.93 μg/m3 (Aba Prefecture). Similar characteristics were observed for CO, namely
the highest and lowest concentrations were observed in winter and summer, respectively.
The opposite trend of ozone occurred. The highest concentration happened in spring and
summer, and the lowest concentration occurred in winter. This is related to the formation
mechanism of ozone. Many studies showed that under sufficient light, volatile organic
compounds (VOCs) and nitrogen oxides (NOx) underwent a photochemical reaction to
generate O3 and at the same time produced secondary pollutants in the atmosphere [46–48].
High temperature, strong ultraviolet and high photochemical reaction rate were common
phenomena in Sichuan Basin during spring and summer. The weaker solar radiation in
winter inhibited the photochemical reaction, which was not conducive to the production of
O3. Therefore, the O3 concentration in the Sichuan Basin had the highest trend in spring
and summer.

Figure 4. Seasonal variation in concentrations of air pollutants in Sichuan Basin. The vertical error bars represent the
standard deviation values. Spring (March to March), Summer (June to August), Autumn (September to November), Winter
(December to February of the following year).

Regions with high SO2 concentrations were mainly located in the plateau areas of the
western Sichuan Basin, such as Panzhihua, Liangshan, Ganzi and other cities. Far more
than the cities such as Chengdu and Mianyang in the basin, the winter SO2 concentration
of Panzhihua was 38.7 μg/m3, about 3 times of the average SO2 concentration in whole
Sichuan Basin (12.8 μg/m3). On the one hand, the SO2 of cities in the basin such as
Chengdu was mainly derived from industrial emissions. In these areas, the government
took strict desulfurization measures, which greatly reduced the concentration of SO2. On
the other hand, coal combustion for household heating due to low temperature in high
altitude regions, led to more SO2 emissions, and the implementation of desulfurization
measures in these areas were not yet fully completed.

Different with northern China, due to the warm temperature in Sichuan Basin (about
10 ◦C on average), there was no widespread coal or wood burning for household heating
in winter; therefore, atmospheric processes and meteorological conditions played an
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important role in the seasonal changes of particulate matter effect [49]. Almost all regions
had the highest concentration of particulate matter in winter, about 1.8–2.5 times that of the
other three seasons. The concentration was similar in spring and autumn, and the lowest
concentration occurred in summer.

3.3. Analysis of City’s Pollutant Ratio

The average PM2.5/PM10 ratio of all cities in Sichuan Basin was 0.61, and the monthly
ratio was between 0.43 and 0.69, appeared in April and January respectively. The average
ratio in Chengdu and Chongqing was 0.60 and 0.63, respectively. In 2017, a study reported
the average ratio of 0.58 for 31 provincial capital cities, and Zhang (2015) reported an
average ratio of 0.56 for 190 cities in China [7,50]. However, in Beijing (0.80), Shanghai
(0.70) and Guangzhou (0.72), the ratio was much higher than that observed in this study [51].
These findings indicated that, compared to developed cities in China, the air quality in
Sichuan Basin was more affected by coarse particles. Figure 5 showed the monthly average
ratios of different cities in Sichuan Basin during the study period. The lowest average ratio
was found to be 0.43 (in Guangyuan), while the highest average ratio (0.69) was observed
in Zigong and Luzhou.

Figure 5. The monthly average PM2.5/PM10 ratio of each city.

In winter, all cities had the highest PM2.5/PM10 ratio, while in spring and summer,
the ratio decreased rapidly. This was due to the high emissions of coarse particulate
matter from sand and soil during the spring when it is very dry, windy, and dusty in
Sichuan Basin [52]. Dust emitted from desert areas in Xinjiang (such as Taklimakan) may be
transported towards the Qinghai-Tibet Plateau in the northwest of Sichuan Basin, thereby
affecting the atmosphere and ecosystems of the basin area.

SO2 can be used to normalize PM2.5 to exclude the effects of coal combustion and
meteorological conditions. It can be seen from Figure 6 that during the study period,
among the cities in Sichuan Basin, the city with the highest PM2.5/SO2 was Bazhong (6.39),
followed by Deyang (5.19) and Nanchong (5.18), which reflected the contribution of non-
industrial source to PM2.5. The average ratio in Sichuan Basin is 3.45, which was close to
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the national average (2.92) in the previous study [53]. It is worth noting that in Panzhihua,
Aba, Liangshan and other areas, the value of PM2.5/SO2 has always remained at a low
level throughout the year, which may be because the industry in Sichuan Basin is mainly
concentrated in the western region, and industrial sources contribute more to fine particles.

Figure 6. The monthly average PM2.5/SO2 ratio of each city.

PM2.5/SO2 also exhibited a U-shaped mode in most cities, which reflected that non-
industrial sources such as power and residential contributed more to PM2.5 in winter.
Multi-resolution Emission Inventory for China (MEIC) was often used to estimate emis-
sions from various sectors in China [54]. In order to determine the relationship between this
dynamic change and the emission trends of key sectors involved in the air pollution process,
we collected PM2.5 emission information from key sectors in the 2017 MEIC in-ventory of
Sichuan Basin (Figure A1). Among them, non-industrial source emissions showed a similar
U-shaped trend, which was consistent with the previous conclusions.

CO is an indicator of the primary combustion source. The secondary formation of
fine particles in the basin can be studied by calculating the ratio of PM2.5 to CO [55]. From
2015 to 2020, the value of PM2.5/CO was higher in the southern areas such as Luzhou
and Zigong, and the lowest in the western plateau areas such as Panzhihua (Figure 7).
This indicated that the secondary sources in the southern cities of the basin had a higher
contribution to the generation of fine particles.

Previous research reported that the sulfur dioxide emissions were much lower than the
emissions of nitrogen oxides for motor vehicles in China, and the ratio of [SO2]/[NO2] in
motor vehicles was usually between 0.0084 and 0.042. Both NOx and SO2 were emitted from
stationary sources, but the emissions of SO2 was relatively more. The ratio of [SO2]/[NO2]
in fixed sources was usually between 1.25 and 5 [56]. Therefore, the SO2/NO2 ratio
was often used as an indicator of air pollution caused by stationary sources and mobile
sources [57]. Figure 8 showed the monthly average ratio of SO2/NO2 in each city. In study
area, Liangshan and Panzhihua had the highest SO2/NO2 ratios, indicating that the air
pollution in these western plateau cities mainly came from local industrial sources and coal
combustion. Bazhong was the lowest (0.21), followed by Chengdu (0.24) and Chongqing
(0.26). These results confirmed that there was a strong correlation between air pollution
and automobile exhaust emissions in Chengdu and Chongqing.
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Figure 7. The monthly average PM2.5/CO ratio of each city.

Figure 8. The monthly average SO2/NO2 ratio of each city.

From 2015 to 2020, the ratio of PM2.5/SO2 in Sichuan Basin had shown a continuous
upward trend, and the ratio of SO2/NOx had shown a continuous downward trend
(Figure A2). It showed that the contribution of industrial sources to fine particulate matter
con-tinued to decline. This was related to the pollutant emission reduction measures that
the government had introduced. PM2.5/CO also showed a downward trend, reflecting
the de-cline in the contribution of secondary sources to fine particulate matter, which was
related to the decrease in the concentration of SO2 and NOx in the regional atmosphere. In
2015, the executive meeting of the State Council of China decided to implement ultra-low
emis-sion and energy-saving retrofits for coal-fired power plants before 2020. Sichuan
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Province had successively formulated the implementation rules for the Air Pollution
Prevention and Control Action Plan from 2014 to 2017, and proposed a series of measures
to improve the atmosphere environmental quality, including the elimination of coal-fired
boilers be-low 10 tons per hour and the prohibition of new coal-fired boilers below 20 tons
per hour. At the same time, we also noticed that during the study period, the ratio of
PM2.5/PM10 showed an overall upward trend. This reflected the effectiveness of current
dust removal measures to a certain extent, because the existing dust removal measures had
far greater removal effects on coarse particles than fine particles.

3.4. Characterization of an Air Pollution Episode in Winter 2017

During this research period, the particulate pollution incident that caused a wide
range of impacts was identified in the winter of 2017. Figure 9 showed the hourly average
PM10 concentration of four cities affected by air pollution incidents (3–6 January 2017),
during which the hourly average PM10 concentration of all cities exceeded 120 μg/m3. The
average daily concentrations from 3–6 January in Chengdu, Deyang, Ya’an and Meishan
were 366 μg/m3, 245 μg/m3, 232 μg/m3 and 225 μg/m3, respectively. The average daily
PM10 concentration in these cities was about 10–18 times higher than the WHO guidelines.
During the period of heavy pollution, the average ratio of PM2.5/PM10 increased over
Chengdu, Deyang, Ya’an and Meishan to 0.65, 0.68, 0.69 and 0.74, respectively. The ratio
of the four cities is greater than 0.65, much higher than the annual average value of 2017
(0.59), indicating the dominance of fine particulate matter during the event.

Figure 9. Air transport clustering trajectory in Chengdu during heavy pollution period, and the color
of red and orange represent two different trajectories. The right picture shows the hourly average
PM10 concentration of the four cities during the event. The shaded part represents the arrival time of
the peak concentration.

After clustering the downloaded backward trajectories, it was found that they mainly
originated over the plateau area of the southwestern part in the basin. The air mass
reached Ya’an first from the southwest. The concentration of particulate matter in Ya’an
reached a peak with the value of 316 μg/m3 at 20 o’clock on 4 January, and then the
air mass continued to move northeastward. When the air mass moved to Chengdu, the
concentration of particulate matter increased. Moreover, the highest concentration was
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observed in the Chengdu area, and the highest concentration may occurred over Chengdu
and Deyang. Chengdu and Meishan peaked at around 15:00 on 5 January, with PM10
concentrations of 478 μg/m3 and 288 μg/m3, respectively. Deyang reached the maximum
concentration of 324 μg/m3 during the pollution period at around 20 o’clock on 5 January.

It is worth noting that the backward trajectory changed the direction in DY and MY
before arriving in CD. The further enrichment of particulate matter concentration from
DY to MY and CD may be affected by climatic conditions. The adverse meteorological
conditions in heavy pollution days, including high pressure, weak wind (0.7 m/s in
average) and low temperature (10.5 ◦C in average), make the pollution track not easy to
spread and can only flow inside the basin.

Southwest region is the industrial concentration area of Sichuan Basin, with devel-
oped secondary industry. In these cities of Southwest region, PZH is one of the four major
iron ore areas in China. In 2018, the economic proportion of the secondary industry in
PZH was 62.3%, the highest among all cities in Sichuan Basin. Previous studies have
shown that there is a strong positive correlation between the secondary industry and PM2.5
concentration [58]. Dense industrial sources in southwest region and adverse meteorolog-
ical conditions may be the main causes of heavy pollution events in the selected cities.

3.5. Comparison of Air Quality with Standards and Guidelines

In this section, we compared the mean concentration of the pollutants with the avail-
able national and WHO guidelines to determine the impacts of current air quality on
human health in Sichuan Basin. China revised the National Ambient Air Quality Standard
in February 2012. The WHO standards were more stringent than China. Table 2 com-
pared the annual average concentrations of the four pollutants in the basin with different
standards, such as the United States Environmental Protection Agency (USEPA), Euro-
pean Union (EU), Australia and Indian standards. The situation regarding pollutants in
Sichuan Basin was severe. The WHO guideline for PM2.5(PM10) was exceeded by a factor
of approximately 4 (3.8), indicating that the health of the residents will be affected. And
the concentrations of PM2.5 and PM10 are approximately 2 and 1.8 times higher than the
national Grade-I standards, respectively.

Table 2. Comparison of the annual average concentration of the four pollutants with the available standards.

Species
China

WHO USEPA EU Australia India Sichuan Basin (This Study)
Grade-I Grade-II

PM2.5 15 35 10 15 25 8 40 39.75
PM10 40 70 20 - 40 25 60 75.19
SO2 20 60 - - - 20 * 50 17.76
NO2 40 40 40 53 * 40 30 * 40 28.17

Values are in μg m−3, * Values in ppb (parts per billion).

In Figure 10, the annual average concentration was compared with WHO standards
and national Grade-I and II standards. During the study period, the average annual SO2
concentration of all cities in Sichuan Basin reached the national Grade-II standard. All cities
except Panzhihua reached the national Grade-I standard in 2020. The high concentration of
SO2 in Panzhihua may be due to the burning of coal and biomass and the work of power
plants. Moreover, the annual average concentration in Panzhihua declined rapidly since
2018, and it was only slightly higher than the national Grade-I standard in 2020.

During the study period, the annual NO2 concentration in almost all cities was
lower than the WHO and national Grade-I standard. As the two megacities in the basin,
Chengdu and Chongqing have the largest anthropogenic activities and emissions, so their
annual average concentration of NO2 was the highest. In 2015–2018, the annual average
level was 1.04–1.23 times higher than the WHO guidelines. However, in 2019–2020, its
concentration dropped rapidly, mainly due to the strict implementation of the government’s
environmental protection policy.
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Figure 10. Annual mean concentrations of the pollutants at each site and comparison with the WHO guideline values
(yellow shading) and National Grade-I (black shading) and Grade-II (dark gray shading) standards for air quality.

In 2020, the concentration of fine particulate matter in almost all cities in the basin
exceeded the WHO regulations. Among these 22 cities, only the average PM2.5 concen-
tration of Ganzi was within the WHO standard in 2020. The PM2.5 concentration in Aba
Prefecture in the past two years was only 0.37 μg/m3 higher than the national Grade-I
standard. In Chengdu, Deyang, Zigong and other cities, although the concentration of
particulate matter has been declining in recent years, it was still higher than the national
Grade-II standard, about 3.5–3.9 times higher than the WHO standard. Compared with
PM2.5, the situation of PM10 is slightly better. In 2020, the PM10 concentration of all cities
reached the national Grade-II standard. Both Aba and Liangshan reached the national
Grade-I standard, and only Ganzi reached the WHO standard in 2019–2020.

4. Conclusions

This study used air quality monitoring data to present the overall air quality status
of 22 cities in Sichuan Basin from January 2015 to December 2020. The annual average
concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 in the entire basin were 0.79 mg/m3,
28.17 μg/m3, 13.08 μg/m3, 84.76 μg/m3, 39.75 μg/m3 and 63.56 μg/m3, respectively.
Except for O3, the annual average concentration of the other five pollutants showed a
clear downward trend. CO, NO2, SO2, PM2.5 and PM10 decreased by 25.7%, 13.6%, 52.6%,
32.9%, and 36.3% respectively during the study period. And O3 was slowly increasing at
an average annual rate of 0.6 μg/m3. The spatial patterns of CO and SO2 were similar.
High-concentration areas were mainly located in the western plateau of Sichuan Basin,
while the concentrations of NO2 and particulate matter were more prominent in the urban
agglomerations inside the basin.

The annual average value of PM2.5/SO2 has been maintained at a low level in Panzhi-
hua (0.9), Liangshan (1.2) and other regions for many years, indicating that industrial
sources in the western Sichuan Basin have made a greater contribution to fine particulate
matter. Non-industrial sources such as electricity and housing contribute more to fine
particulate matter in winter. PM2.5/CO is higher in the southern Sichuan Basin, such
as Luzhou (0.077) and Zigong (0.075), indicating that secondary sources have a greater
impact on the generation of fine particles. The low SO2/NO2 values in megacities such as
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Chengdu (0.24) and Chongqing (0.26) indicate that there is a strong correlation between air
pollution and automobile exhaust emissions.

During the heavy pollution incident in the winter of 2017, the average daily con-
centrations from 3–6 January in Chengdu, Deyang, Ya’an and Meishan were 366 μg/m3,
245 μg/m3, 232 μg/m3 and 225 μg/m3, respectively, which were mainly caused by the
surrounding plateau terrain under typical stagnant weather conditions. This finding is
also supported by backward trajectory analysis, indicating that the air masses arriving
in Chengdu are mainly from the plateau area in the western part of the basin. During
the study period, the annual average concentration of PM2.5 (PM10) exceeded the WHO
guidelines by as much as 4 (3) times. This shows that PM is still the main air pollutant
of concern in the region. Therefore, reducing PM should become an integral part of the
strategy, policy and action plan of the air pollution management plan. This paper conducts
an in-depth study on the temporal and spatial distribution characteristics of six standard
air pollutants in the Sichuan Basin, hoping to provide a strong scientific basis for effective
air pollution control planning in this area and similar urban agglomerations.
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Appendix A

Figure A1. PM2.5 emissions of various departments in Sichuan Basin based on 2017 MEIC inventory statistics. The
transportation department corresponds to the left axis, and the other departments correspond to the right axis.
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Figure A2. Annual change in the proportion of pollutants.
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30. Urlea, A.D.; Barbu, N.; Andrei, S.; Ştefan, S. Simulation of Vesuvius volcanic ash hazards within Romanian airspace using the
Hybrid Single-Particle Lagrangian Integrated Trajectory Volcanic Ash numerical model. Meteorol. Appl. 2021, 28. [CrossRef]

31. Meng, F.; Wang, J.; Li, T.; Fang, C. Pollution Characteristics, Transport Pathways, and Potential Source Regions of PM2.5 and
PM10 in Changchun City in 2018. Int. J. Environ. Res. Public Health 2020, 17, 6585. [CrossRef] [PubMed]

32. Yao, Y.; He, C.; Li, S.; Ma, W.; Li, S.; Yu, Q.; Mi, N.; Yu, J.; Wang, W.; Yin, L.; et al. Properties of particulate matter and gaseous
pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution. Sci. Total Environ. 2019,
660, 384–394. [CrossRef] [PubMed]

33. Li, B.; Shi, X.F.; Liu, Y.P.; Lu, L.; Wang, G.L.; Thapa, S.; Sun, X.Z.; Fu, D.L.; Wang, K.; Qi, H. Long-term characteristics of criteria air
pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: Spatiotemporal variations, source analysis, and
meteorological effects. Environ. Pollut. 2020, 267, 115441. [CrossRef] [PubMed]

34. Fan, Y.; Ding, X.; Hang, J.; Ge, J. Characteristics of urban air pollution in different regions of China between 2015 and 2019. Build.

Environ. 2020, 180, 107048. [CrossRef]
35. Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and recent trends in the chemistry of continental surface ozone. Chem. Rev.

2015, 115, 3898–3918. [CrossRef]
36. Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al.

Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos.

Chem. Phys. 2015, 15, 8889–8973. [CrossRef]
37. Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations,

meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [CrossRef]
38. Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Lu, S.; Lu, K.; Wang, M.; Chen, L.; Chang, C.C.; Liu, S.C. Variations of ground-level O3

and its precursors in Beijing in summertime between 2005 and 2011. Atmos. Chem. Phys. 2014, 14, 6089–6101. [CrossRef]
39. Liu, Z.; Wang, Y.; Gu, D.; Zhao, C.; Huey, L.G.; Stickel, R.; Liao, J.; Shao, M.; Zhu, T.; Zeng, L.; et al. Summertime photochemistry

during CAREBeijing-2007: ROx budgets and O3 formation. Atmos. Chem. Phys. 2012, 12, 7737–7752. [CrossRef]

478



Atmosphere 2021, 12, 1504

40. Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashov, N.V.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque,
J.F.; et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthr. 2014, 2, 000029.
[CrossRef]

41. Xu, Z.; Huang, X.; Nie, W.; Chi, X.; Xu, Z.; Zheng, L.; Sun, P.; Ding, A. Influence of synoptic condition and holiday effects on
VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ. 2017, 168, 112–124. [CrossRef]

42. Chen, J.; Shen, H.; Li, T.; Peng, X.; Cheng, H.; Ma, A.C. Temporal and Spatial Features of the Correlation between PM2.5 and O3
Concentrations in China. Int. J. Environ. Res. Public Health 2019, 16, 4824. [CrossRef]

43. Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of
meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020,
139, 105558. [CrossRef]

44. Yu, H.; Yang, W.; Wang, X.; Yin, B.; Zhang, X.; Wang, J.; Gu, C.; Ming, J.; Geng, C.; Bai, Z. A seriously sand storm mixed
air-polluted area in the margin of Tarim Basin: Temporal-spatial distribution and potential sources. Sci. Total Environ. 2019, 676,
436–446. [CrossRef]

45. Casquero-Vera, J.A.; Lyamani, H.; Titos, G.; Borras, E.; Olmo, F.J.; Alados-Arboledas, L. Impact of primary NO2 emissions at
different urban sites exceeding the European NO2 standard limit. Sci. Total Environ. 2019, 646, 1117–1125. [CrossRef]

46. Guo, H.; Chen, K.; Wang, P.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Simulation of summer ozone and its sensitivity to emission
changes in China. Atmos. Pollut. Res. 2019, 10, 1543–1552. [CrossRef]

47. Su, Y.; Lu, C.; Lin, X.; Zhong, L.; Gao, Y.; Lei, Y. Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in
the Northern Coastal Comprehensive Economic Zone, China. Sustainability 2020, 12, 536. [CrossRef]

48. Duan, Z.; Yang, Y.; Wang, L.; Liu, C.; Fan, S.; Chen, C.; Tong, Y.; Lin, X.; Gao, Z. Temporal characteristics of carbon dioxide and
ozone over a rural-cropland area in the Yangtze River Delta of eastern China. Sci. Total Environ. 2021, 757, 143750. [CrossRef]

49. Jia, B.; Wang, Y.; Wang, C.; Zhang, Q.; Gao, M.; Yung, K.K.L. Sensitivity of PM2.5 to NOx emissions and meteorology in North
China based on observations. Sci. Total Environ. 2021, 766, 142275. [CrossRef]

50. Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [CrossRef]
51. Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in

China during 2013–2014. Environ. Int. 2014, 73, 413–422. [CrossRef]
52. Wang, J.; Xie, X.; Fang, C. Temporal and Spatial Distribution Characteristics of Atmospheric Particulate Matter (PM10 and PM2.5)

in Changchun and Analysis of Its Influencing Factors. Atmosphere 2019, 10, 651. [CrossRef]
53. Jing, B.; Wu, L.; Mao, H.; Gong, S.; He, J.; Zou, C.; Song, G.; Li, X.; Wu, Z. Development of a vehicle emission inventory with

high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing—Part 1: Development and
evaluation of vehicle emission inventory. Atmos. Chem. Phys. 2016, 16, 3161–3170. [CrossRef]

54. Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission
inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [CrossRef]

55. Hu, J.; Wang, P.; Ying, Q.; Zhang, H.; Chen, J.; Ge, X.; Li, X.; Jiang, J.; Wang, S.; Zhang, J.; et al. Modeling biogenic and
anthropogenic secondary organic aerosol in China. Atmos. Chem. Phys. 2017, 17, 77–92. [CrossRef]

56. Fiedler, V.; Nau, R.; Ludmann, S.; Arnold, F.; Schlager, H.; Stohl, A. East Asian SO2 pollution plume over Europe—Part 1:
Airborne trace gas measurements and source identification by particle dispersion model simulations. Atmos. Chem. Phys. 2009, 9,
4717–4728. [CrossRef]

57. Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan
city. Sci. Total Environ. 2020, 742, 140556. [CrossRef]

58. Wang, Y.; Yao, L.; Xu, Y.; Sun, S.; Li, T. Potential heterogeneity in the relationship between urbanization and air pollution, from
the perspective of urban agglomeration. J. Clean. Prod. 2021, 298. [CrossRef]

479





Citation: Tang, M.; Cheng, S.; Guo,

W.; Ma, W.; Hu, F. Effects of Carbon

Emission Trading on Companies’

Market Value: Evidence from Listed

Companies in China. Atmosphere

2022, 13, 240. https://doi.org/

10.3390/atmos13020240

Academic Editors: Duanyang Liu,

Kai Qin, Honglei Wang and

Célia Alves

Received: 23 December 2021

Accepted: 28 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Effects of Carbon Emission Trading on Companies’ Market
Value: Evidence from Listed Companies in China

Maogang Tang 1, Silu Cheng 1,*, Wenqing Guo 1, Weibiao Ma 1,* and Fengxia Hu 2

1 School of Business, East China University of Science and Technology, Shanghai 200237, China;
tangmaogang@ecust.edu.cn (M.T.); 19002842@mail.ecust.edu.cn (W.G.)

2 School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance,
Shanghai 201209, China; hufengxia@lixin.edu.cn

* Correspondence: 19002805@mail.ecust.edu.cn (S.C.); weibiaoma@mail.ecust.edu.cn (W.M.)

Abstract: Emissions trading schemes (ETSs) are effective measures that facilitate economic growth
and carbon mitigation, especially for developing countries such as China. These schemes can further
affect the cash flow, production, and investment decisions of regulated companies. However, few
empirical studies have explored how ETSs promote companies’ market value. We systematically
evaluate the influence of the carbon emission trading (CET) policy on companies’ market value and
explore the influential mechanism. We use the data of listed companies from the Chinese stock “A”
markets and employ the difference-in-difference method to account for the unobserved cause of the
CET policy regarding companies’ market value. Robust benchmark regression results reveal that the
CET policy promotes companies’ market value significantly. The mechanism analysis reveals that
the CET policy can improve the market value of listed companies by influencing the carbon price,
innovative activities, and carbon disclosure. The results of the heterogeneity analysis show that the
CET policy’s impact on companies’ market value is heterogeneous in terms of marketization degree,
industry, firm ownership, and different regions. We suggest that the carbon pricing mechanism,
degree of market perfection, carbon disclosure policy, and carbon finance should be optimized to
improve the efficiency of ETSs.

Keywords: carbon emission trading schemes; carbon price; China; difference-in-difference;
market value

1. Introduction

As a market-oriented environmental regulation policy, the carbon emission trading
(CET) policy internalizes the cost of carbon emission reduction of enterprises, which will
be transmitted to the securities market and may affect the market value of enterprises.
Based on the outcomes of some previous studies, a CET policy will lead to a reduction in
an enterprise’s market value [1–3]. Implementing a CET policy increases the production
and operation costs of enterprises, which would crowd out their investment expenditure.
This cost information is exposed to the capital market via corporate financial reports.
This results in a reduction in the market value of enterprises. For example, Liu et al.
(2021) showed that the implementation of carbon emission trading reduced the value
of the current capital market. However, other studies have shown that the CET policy
will enhance an enterprise’s market value [4]. As carbon emission permits are freely
allocated, the sale of the remaining permits could be accounted for by higher cash flows
due to free permits, which would increase the market value of enterprises [5,6]. According
to the price signals of carbon emission permits, some enterprises will adapt to the new
direction of industrial development policy, increase investment in innovative activities,
and conform to environmental legitimacy to improve their sustainable development ability,
thereby enhancing their market value. In addition, certain companies with better carbon
emission abatement performance and comparative advantages in terms of abatement cost
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will provide detailed information disclosures to attract the attention of investors, thereby
exerting a positive impact on the corporation’s market value. As the effect of emission
trading schemes (ETSs) on a company’s market value is difficult to determine accurately, it
is necessary to evaluate this effect thoroughly at the micro-level, especially for developing
countries such as China.

After implementing a CET policy, a carbon emission permits market is established,
wherein the equilibrium of supply and demand determines the price of carbon emission
permits. The carbon emission permit price provides companies with a signal to choose
between investing in emissions reduction or purchasing emission allowances on the carbon
trading market. Accordingly, companies will invest in abatement until the marginal cost
equals the CET permit price [7,8]. On the one hand, CET prices may affect enterprises’
investment behaviors and expectations of investors, and these influences would be reflected
in the stock market [9]. On the other hand, many companies involved in carbon emission
trading can shift the carbon emission permit price to their product prices, thus influencing
the return rate of their stock prices [10]. Accordingly, there is a strong link between the
stock market and the carbon emission trading market [11]. Based on this price signal and
its productivity, a company will decide whether to purchase carbon emission rights to
meet the government’s emission reduction requirements or reduce emissions per unit of
output through innovation. First, companies with low productivity can only purchase
carbon emission rights to meet the government’s emission reduction requirements, which
will bring compliance costs to the company and reduce its profits [12]. Carbon emission
trading restricts the carbon emissions of these companies and increases the costs of emis-
sion reduction, compliance, and technology updates, thereby reducing the company’s
market value [13,14]. Second, companies with higher productivity can carry out innovative
activities that meet the government’s emission reduction requirements, and enhance prod-
uct competitiveness and profits, thereby increasing the company’s market value [12,13].
Therefore, there are many mechanisms by which EST affects the market value of companies,
and it has a heterogeneous impact on companies with different productivities, which needs
to be deeply explored.

As the world’s largest carbon emitter, China actively seeks to promote carbon emission
reduction through a carbon ETS. Since the European Union introduced the ETS in 2005, this
policy has been widely adopted in the US, New Zealand, Australia, Japan, South Korea,
and China [15,16]. The development and history of the international and Chinese CET
markets are shown in Table 1. At the end of 2011, the Chinese National Development
and Reform Commission (NDRC) issued a notice and authorized seven administrative
areas at different levels of economic growth and industrial structure to pilot and build
projects incorporating carbon emission trading [17]. The pilots cover all four province-level
municipalities (Beijing, Shanghai, Tianjin, and Chongqing), two provinces (Guangdong
and Hubei), and one special economic zone (Shenzhen) [18]. The preparation and launch
of the seven ETS pilots were set to take place within three years (2011–2014) [19]. The
seven ETS pilot projects were independently designed and operated, featuring a wide
heterogeneity in economic and energy conditions in terms of population, income, the share
of manufacturing, and energy consumption [18,20]. Thus, China’s CET pilot initiatives
offer an excellent opportunity for policy evaluation to investigate the impact of ETS on
companies’ market value.

Previous studies have extensively investigated the relationship between CET policies
and the market value of enterprises. Many studies have investigated the impact of CET
policy on enterprises’ market value from the perspective of cost and innovation effects, but
they obtained contradicting results. Studies from the perspective of the cost effect showed
that the impact of CET policy on enterprises’ market value is negative. On the contrary,
studies from the perspective of innovation effects showed that the impact of CET policy on
enterprises’ market value is positive [5,10,21]. Furthermore, many studies have explored
this effect from the perspective of the transmission effect of the carbon emission permit
price. Flora and Vargiolu (2020) confirmed that the carbon price stability mechanism in
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the European Union (EU) ETS significantly affects the timing of investment decisions and
helps reduce investment related to carbon emissions [18]. Brouwers et al. (2016) found
that following the EU’s carbon verification, the capital market had a significantly negative
response to companies whose carbon emissions exceeded their quotas [22]. Some studies
showed that EU allowances price changes and stock returns of the most important European
electricity corporations are positively related [1,2]. In addition, many other studies have
examined the relationship between the carbon price and the stock returns of the electricity
market. Ji et al. (2017) believed that there is strong information interdependence between
carbon price returns and electricity stock returns, evidenced by a high total connected
index [23]. Veith et al. (2009) measured the economic consequences of ETS using investors’
expectations regarding the regulatory impact of firm value. They showed that returns on
the common stock of the power generation industry are positively correlated with rising
prices for emission rights [2]. However, little is known about the internal mechanism
by which the ETS influences companies’ market value. To address this research gap, we
explore the influence mechanism of ETS on companies’ market value by taking the CET
pilot policy as a natural experiment.

Table 1. The development of history of international and China’s CET market.

Time Actions or Regulations

1 January 2005
The European Union Emission Trading Scheme (EU ETS) introduced EU allowances, which is the

first phase of the EU ETS (2005–2007).

February 2007
Seven U.S. states and four Canadian provinces have joined together to create a regional greenhouse

gas emissions trading system.
1 January 2008 The second phase of the EU ETS (2008–2012) started.

September 2008 The New Zealand ETS was enacted.
April 2010 Japan’s Kyoto Cap-and-trade system was officially launched.
1 July 2010 The Australian government announced the introduction of its Carbon Pollution Reduction Scheme.

November 2011
The Chinese NDRC issued a notice on carrying out pilot emissions trading, approved seven

provinces and cities to carry out pilot programs.
December 2011 The Chinese State Council issued the 12th Five-Year Work Plan on Controlling GHGs.

June 2012
The Chinese NDRC issued the Interim Procedures for the Management of Voluntary Greenhouse Gas

Emissions Trading. The voluntary emissions trading mechanism was established, and China
Certification Emission Reduction (CCER) trading was put forward.

18 June 2013 The first Chinese ETS pilot was launched in Shenzhen.

August 2013
The Chinese State Council issued the Opinions on Speeding up the Development of Energy

Conservation and Environmental Protection Industries. The pilot emission trading schemes was
regarded as a means to promote market-oriented mechanism.

26 November 2013 The second Chinese ETS pilot was launched in Shanghai
28 November 2013 Chinese Beijing ETS was launched
19 December 2013 Chinese Guangdong ETS was launched
26 December 2013 Chinese Tianjin ETS was launched

4 April 2014 Chinese Hubei ETS was launched
19 June 2014 Chinese Chongqing ETS was launched

1 January 2015 South Korea launched a carbon trading scheme

19 December 2017
The Chinese NDRC issued the National Carbon Emission Trading Market Construction Scheme to

control greenhouse gas emissions.

16 July 2021
China’s national CET market launched online trading, making the power generation industry the

first to be included in the national carbon market.

This study aims to investigate the effect of the CET policy on companies’ market value
and explore the influential mechanism. Exploring this influence effect and mechanism is
conducive to realizing the synergistic effect of economic growth and carbon mitigation
for policymakers in China and potentially other developing countries. Our study’s con-
tributions are the following: (1) we systematically evaluate the CET policy’s influence
on companies’ market value and explore the influential mechanism; (2) we employ the
difference-in-difference (DID) method to account for unobserved trends in the CET pol-
icy’s effect on companies’ market value across pilot and non-pilot regions. In addition,
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we select the study sample from listed companies on China’s Shanghai and Shenzhen
stock exchanges.

The remainder of this paper is organized as follows: the Section 2 provides a theoretical
foundation. The Section 3 presents the empirical model and data. The Section 4 describes
the benchmark results and a robustness check. The Section 5 presents the mechanism
analysis. The Section 6 presents the heterogeneity analysis. Finally, the conclusions and
policy recommendations are derived from the empirical outcomes.

2. Theoretical Foundation

2.1. Carbon Price

CET permits are traded as commodities in the exchange market to form an equilibrium
carbon price. The carbon price signals emission reduction costs for enterprises [24]. The
carbon price and its changes have a major impact on enterprises’ investment decision-
making [25].

First—the effect of the carbon price on a company’s market value because the trading
scheme puts compliance costs on the companies subject to it [2,26]. Carbon prices can
influence companies’ cash flows, as they can incorporate their carbon emission reduction
costs in their sale offers [27]. If companies can pass on any additional costs arising from the
trading scheme to their customers, then carbon prices have almost no effect on companies’
cash flows [28]. The CET scheme will likely lead to additional costs for regulated companies
when they cannot completely pass on the costs to their customers. Such circumstances will
affect the companies’ cash flows and their cost structure and production decision-making
behaviors [3]. Companies need to arrange some part of their cash flows to purchase the
CET permits, or to invest in emissions abatement equipment and measures, reducing their
output [29]. Accordingly, capital market participants expect decreasing profits of regulated
firms due to a rising carbon price for CET permits [1,2].

Second, the CET policy may provide appropriate carbon price signals to industrial
operators who can select a strategy of capital investments in clean technology rather than
operational practices, such as installing abatement equipment to minimize the sum of
abatement costs and permit expenses [24]. When a company’s productivity and compet-
itiveness are relatively high, a rising carbon price in emission permits could encourage
the company to invest in clean technology to meet emissions abatement requirements
by the government [30]. This further results in an increase in the company’s investors’
expectations of future profits, leading to a higher market value for the company.

Finally, price fluctuations may affect investors’ expectations, thereby affecting compa-
nies’ market value. A variation in carbon prices is reflected in companies’ output prices as
well as in their costs [31]. Carbon price fluctuations can alter the preferred input combina-
tion that companies use in their production processes, thereby affecting their profitability
and market value. In addition, according to some studies, a price floor for CET permits
reduces uncertainty over companies’ future profitability and influences the long-term price
signal distribution, while a minimum carbon price creates incentives to invest in new
low-carbon technologies [32,33]. Some studies have suggested that the effect of carbon
price variations on companies’ market value could be asymmetric [34,35].

2.2. Innovative Activities

The CET policy is an environmental instrument that gives individual firms flexibility
how they achieve compliance [36]. This policy is expected to generate dynamic incentives
to increase companies’ innovative activities, mainly in terms of research, development,
and demonstration (RD&D) and the adoption and diffusion of abatement technologies
or low-carbon technologies [37,38]. Some companies with high abatement costs would
purchase permits or conduct innovative activities to meet regulatory requirements. When
regulated companies are not able to pass on the additional costs arising from the CET
policy to their customers, while at the same time the imposed regulatory costs could
even be overcompensated by the buyers, companies could be incentivized to undertake
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innovative activities [2,39]. In this setting, companies are inclined to increase investment in
emission reduction technologies and low-carbon technologies to achieve emission reduction
targets [40]. This increases companies’ fixed assets and technology levels, and enhances the
value of their products, thereby promoting an increase in their market value [41].

Furthermore, improving companies’ emission reduction performance will improve
their image and help adjust the expectations of investors and other stakeholders, which
will further increase the value of their products and the return in the stock market. Con-
sequently, we can draw a research hypothesis that the CET policy could incentivize some
companies to carry out innovative emissions abatement, clean, or low-carbon technolo-
gies, thereby enhancing their market value [42]. However, it is worth noting that the
innovation effect of the CET policy also depends on market participants, networks, in-
stitutions, cumulative learning processes between users and producers, and companies’
technology levels [36,40]. Accordingly, the government should improve the degree of mar-
ketization by improving laws and regulations related to the CET policy and formulating
relevant implementation rules to reduce the impact of institutional uncertainty and institu-
tional transaction costs [43]. Concurrently, the government can subsidize the innovation
activities of companies, particularly costly innovation, which requires promotion from
the government.

2.3. Carbon Disclosure

Carbon disclosure is a tool that describes companies’ carbon-related activities and
information to stakeholders. There are generally two types of theories regarding the
impact of carbon disclosure on the market value of companies: legitimacy theory and
voluntary disclosure theory. According to the legitimacy theory, the cost of environmental
information collection, management, and disclosure may outweigh the benefits. To meet
various stakeholders’ requirements, companies with inferior carbon performance would
make soft and unverifiable qualitative disclosure about their performance to maintain
legitimacy [44,45]. When the legitimacy of a company is threatened, stakeholders may
perceive the company as unsustainable.

Furthermore, information about process inefficiency and environmental initiatives ac-
cessible to competitors may weaken firm competition and financial performance, while mis-
leading information or errors in reports can also increase litigation costs significantly [46,47].
Conversely, the voluntary disclosure theory posits that carbon disclosure is positively asso-
ciated with market value [48]. Under the CET scheme, mandatory carbon reporting [regard-
ing corporate social responsibility (CSR)] helps companies communicate their carbon emis-
sions information and increase information transparency [10]. The improved transparency
of high-quality disclosure reduces the information gap to stakeholders, thereby resulting in
financial consequences through lower risk [49]. Consequently, carbon disclosure can help
stakeholders, such as shareholders and creditors, to make better investment decisions.

Finally, carbon disclosure can also help stakeholders, such as regulatory agencies,
institutional investors, and the public, to better monitor and regulate a company’s carbon
emissions [42,50]. A company’s high-quality carbon disclosure often leads to high carbon
performance, thus affecting its market value. Therefore, we can hypothesize that the
relationship between the CET policy and companies’ market value by enhancing carbon
disclosure seems to be mixed and inconsistent.

3. Data, Variables, and the Empirical Model

3.1. Data Source

The research sample is obtained from the Chinese Stock “A” markets (Shanghai Stock
Exchange and Shenzhen Stock Exchange). The sample period ranges from 2000 to 2019.
Data to measure companies’ market value (denoted by “MV”) and control variables are
obtained from the WIND system and the China Stock Market & Accounting Research
(CSMAR) system. We consider 2013 the start date of China’s CET policy, as Liu et al. (2015)
did [51]. We take Beijing, Shanghai, Tianjin, Chongqing, Hubei Province, Guangdong
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Province, and Shenzhen as trading pilots. The carbon price data are obtained by initially
crawling the daily transaction price data of the carbon market from the exchange websites
of each pilot region and then taking the annual average value. The patent and green
patent data of listed companies used to measure their innovative activities come from
the Chinese Research Data Service (CNRDS) platform, containing multiple sub-databases.
The ones used in this study are the China Innovation Research Database (CIRD) and the
Green Patent Research Database (GPRD). We derive the patent data of the listed companies
from the CIRD. The green patent data of listed companies conform to the GPRD. We use
the evaluation data of listed companies’ social responsibility reports by Hexun index to
represent companies’ carbon disclosure [52]. Finally, we eliminate the sample data of listed
companies in the financial industry, as their businesses do not involve substantial carbon
emissions [42,53]. Listed companies marked with ST, *ST, or PT are deleted from the sample.
Additionally, we exclude the sample data of listed companies whose asset-liability ratio
is greater than one and eliminate incomplete or omitted sample data, such as company
registration location [47]. Ultimately, the final sample consists of 3283 firms.

3.2. Variables

This study uses a series of financial variables, such as financial leverage, return, and
profitability, as control variables, owing to their potential impact on companies’ market
value. Simultaneously, characteristic variables of individual companies, such as age, size,
and management shareholding ratio, are used to control their impact on companies’ market
value. Variables and data descriptions are shown in Table 2.

(1) SIZE. Large-scale companies have greater resource allocation capabilities and are
more capable of conducting innovative activities, enhancing their market value [14].

(2) BM. The book-to-market ratio is calculated by the total assets divided by the market
value, denoted by BM [54].

(3) ROE. The firm’s equity return is measured by the net profit divided by total assets,
denoted by ROE [55].

(4) DAR. Financial leverage is a symbol of financial risk in firms and affects the decision-
making of important stakeholders [56]. Accordingly, companies with high financial
leverage face greater financial pressures and higher risks, and they are prone to losing
investment opportunities, which could reduce their market value. Financial leverage
is measured by liabilities divided by total assets and is denoted by DAR in our study.

(5) fix. Fixed assets are the core assets of companies that can resist market risks; thus,
their proportion in total assets affects companies’ market value. In this study, we
control for the ratio of fixed assets, which is measured by companies’ fixed assets to
their total assets and is denoted as “fix”.

(6) ROA. Return on assets (ROA) reflects the profitability of companies’ total assets. ROA
identifies how a company’s market value is influenced by improving its operational
efficiency [57]. We measure ROA using net income before preferred dividends divided
by total assets.

(7) MSR. Corporate governance factors affect a company’s merger and acquisition (M&A)
decisions. The proportion of management holdings positively correlates with the
probability of M&A. A company with a higher management shareholding ratio has a
stronger motivation for external mergers, affecting the company’s investment and mar-
ket value [58,59]. It is measured by the number of shares owned by the management
divided by the total number of shares (denoted as “MSR”).

(8) lnage. Older companies have greater motivation and capacity to participate in more
carbon emissions abatement activities as they have adequate resources at a relatively
lower cost [12,14,60]. Hence, we use the natural logarithm of company age to measure
enterprise maturity, denoted by lnage.

(9) cash and subsidy. Finally, we control companies’ operating cash flow (cash) and
subsidies obtained from the government (subsidy).
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Table 2. Variables and data descriptions.

Variables Definition
Variable
Notation

Unit Description or Calculation Method

Explained
variable

Companies’ market value MV
million
yuan

Data were obtained from the database of listed companies.

Explanatory
variable

The pilot of the CET
policy

did none
If the city in which company i is located has already launched
the pilot CET policy in year t, we define didirt as 1; otherwise,

we define it as 0.

Control
variable

Companies’ scale SIZE yuan
It is measured by the following formula: SIZE = ln (total

assets/10,000/invest-index2000 + 1), where invest-index2000
is the price index of fixed asset investment (last year = 100).

The book-to-market ratio BM none It is calculated by the total assets divided by the market value.
The return on a firm’s

equity
ROE none It is measured by the net profit divided by total assets.

Financial leverage DAR none It is measured by liabilities divided by total assets.
The ratio of companies’

fixed assets
fix none

It is measured by the ratio of companies’ fixed assets to their
total assets.

Return on assets ROA none
It is measured by using net income before preferred dividends

divided by total assets.
Management’s

shareholding ratio
MSR none

It is measured by the number of shares owned by the
management divided by the total number of shares.

Companies’ age lnage year It is measured by the natural logarithm of company age.
Companies’ operating

cash flow
cash none Data were obtained from the database of listed companies.

Companies’ subsidies
obtained from the

government
subsidy yuan Data were obtained from the database of listed companies.

3.3. Descriptive Statistics

Figure 1 shows the market value of listed companies for the pilot and non-pilot ETS
regions. As shown in Figure 1, the market value of listed companies between pilot and
non-pilot regions has been presented since 2011, while the trend is parallel before 2011.
Although the pilot of the CET policy was only completed in 2013–2014, the Chinese NDRC
proposed this policy officially at the end of 2011. Companies in the pilot regions would have
behaved rationally and adopted forward-looking decision-making processes to reduce their
emissions costs or taking innovative activities such as investing in abatement technologies [61].
Accordingly, the companies’ market value difference between the pilot and non-pilot regions
shows no significant change after 2013. Nevertheless, these results demonstrate that the
parallel trend hypothesis of the DID model can be roughly confirmed graphically.

Figure 1. The market value of listed companies for pilot and non-pilot regions of ETS.
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Table 3 presents the descriptive statistics of the dependent variable (MV) and control
variables for the treatment and control groups. The results indicate that the average market
value of companies in the treatment group is significantly higher than that in the control
group. However, the differences in control variables, such as SIZE, BM, ROE, DAR, fix, ROA,
MSR, lnage, cash, and subsidy, between the treatment and control group are not significant.

Table 3. Summary descriptive statistics of the main variables.

Variables Mean
Standard
Deviation

Min Max N

Panel A: The sample of treatment group
MV 24,100 111,000 190 2,990,000 13,200
SIZE 12.5058 1.3636 10.0515 16.3809 13,500
BM 0.6359 0.2357 0.1376 1.1170 13,200

ROE 0.0736 0.1303 −0.7657 0.3796 13,500
DAR 0.4286 0.2056 0.0525 0.8822 13,500

fix 0.2036 0.1699 0.0025 0.7188 13,500
ROA 0.0416 0.0539 −0.1980 0.1947 13,500
MSR 0.1265 0.2054 0.0000 0.6860 13,100
lnage 2.6879 0.4739 1.0986 3.4965 13,500
cash 0.0463 0.0737 −0.1630 0.2552 13,500

subsidy 17,300 140,000 0 1,400,000 13,500
Panel B: The sample of control group

MV 10,900 26,400 243 1,530,000 21,000
SIZE 12.2870 1.1724 10.0515 16.3809 21,600
BM 0.6512 0.2326 0.1376 1.1170 21,000

ROE 0.0651 0.1427 −0.7657 0.3796 21,600
DAR 0.4372 0.2015 0.0525 0.8822 21,600

fix 0.2573 0.1666 0.0025 0.7188 21,600
ROA 0.0393 0.0558 −0.1980 0.1947 21,600
MSR 0.1047 0.1848 0.0000 0.6860 21,000
lnage 2.5909 0.4834 1.0986 3.4965 21,600
cash 0.0503 0.0712 −0.1630 0.2552 21,600

subsidy 17,500 142,000 0 1,400,000 21,600

3.4. Empirical Model

An effective method to explore the net effect of a policy using the DID model is by
comparing treatment and control groups before and after implementing the policy. In
this study, the following DID model is constructed to analyze the heterogeneous effect of
the market value of listed companies in pilot regions (i.e., treatment group) and non-pilot
regions (i.e., control group) before and after the implementation of the CET policy:

Ln(MV)it = β0 + β1treati × timet + β2 × Xit + μi + γt + εit (1)

where i, r, and t denote the listed companies, city, and time, respectively. Ln(MV)it is the
natural logarithm of market value of the company i at period t. treati is equal to 1 if a
company is located in one of the seven pilot provinces and cities; otherwise, it is 0. timet

equals one for every year after 2013; otherwise, it equals 0. Xit represents all the control
variables, including SIZE, BM, ROE, DAR, fix, ROA, MSR, lnage, cash, and subsidy. β0
is the constant term and β1 is the core explanatory variable that indicates the net causal
impact of the CET policy on companies’ market value. β2 represents the coefficients of all
control variables. μi denotes the fixed effects of listed companies, γt is the time fixed effect,
and εit is the standard error term.

4. Empirical Results

4.1. Benchmark Regression Results

Table 4 shows the benchmark regression results of the effect of the pilot CET policy
on companies’ market value according to the empirical model shown in Equation (1).
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Column (1) shows the estimation results without controlling for any variable and by con-
trolling for the fixed effects of the firm, while column (2) displays the outcomes without
controlling for any variables, while the fixed effects of the firm and year are controlled.
Column (3) presents the results with all control variables, and the fixed effects of firm and
year are controlled. Column (4) outlines the results by controlling for the fixed effects of
firm and industry. Column (5) displays the results by controlling for the fixed effects of the
firm, year, and industry [14]. The coefficient of the core explanatory variable is significantly
positive after adding control variables and fixing various effects, indicating that the result
is relatively robust.

The benchmark regression results show that the market value of listed companies
in the pilot regions is significantly higher than that of listed companies in the non-pilot
regions. The market-oriented trading mechanism provides the price signals of carbon
emissions permits to encourage companies to increase their investment in innovative
activities and conform to the carbon emissions abatement requirements, thereby improving
companies’ market value. Additionally, the free allocation of carbon emissions permits
could be accounted for by higher cash flows, which would also increase the market value of
companies. These findings are in accordance with those of previous studies, such as those
of Oberndorfer (2009), Veith et al. (2009), Oestreich and Tsiakas (2015), and Bui et al. (2019),
who stated that the ETS scheme is positively related to companies’ market value [1,2,5,6].

Table 4. The regression results of the effect of the pilot CET policy on companies’ market value.

Variables (1) (2) (3) (4) (5)

Ln (MV) Ln (MV) Ln (MV) Ln (MV) Ln (MV)

did 1.263 *** 0.067 ** 0.016 ** 0.046 *** 0.017 **
(0.023) (0.031) (0.008) (0.008) (0.008)

SIZE 0.984 *** 0.988 *** 0.983 ***
(0.006) (0.005) (0.006)

BM −1.832 *** −1.767 *** −1.832 ***
(0.012) (0.010) (0.013)

ROE 0.026 −0.010 0.023
(0.020) (0.021) (0.020)

DAR 0.048 *** 0.021 0.051 ***
(0.015) (0.015) (0.015)

fix 0.034 ** −0.021 0.032 **
(0.014) (0.016) (0.014)

ROA 0.054 0.152 ** 0.061
(0.068) (0.072) (0.068)

MSR −0.016 −0.001 −0.013
(0.015) (0.017) (0.015)

lnage 0.000 0.326 *** 0.009
(0.018) (0.007) (0.018)

cash 0.006 0.019 0.007
(0.017) (0.018) (0.017)

subsidy 0.000 0.000 0.000
(0.000) (0.000) (0.000)

_cons 22.147 *** 22.400 *** 11.366 *** 10.432 *** 11.355 ***
(0.005) (0.007) (0.077) (0.050) (0.075)

R2 0.649 0.867 0.990 0.989 0.990
Observations 34,097 34,097 32,980 32,980 32,980

Firm FE Yes Yes Yes Yes Yes
Year FE No Yes Yes No Yes
Ind FE No No No Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. ** and *** indicate statistical
significance at the 5% and 1% levels, respectively.
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4.2. Robustness Test

4.2.1. Parallel Trend Test and Dynamic Effect

To ensure the effectiveness of the DID model, it is essential to prove that the common
trend assumption is satisfied between the treatment and control groups. To test whether the
parallel hypothesis was satisfied, we replace the dummy variable in Equation (1) with one
corresponding to several years before and after implementing the CET policy [12,61,62].
The regression model is estimated as follows:

Ln(MV)it = β0 +
6

∑
k=−13

βk(treati × timet)
k + β2 × Xit + μi + δr + γt + εit (2)

where (treati × timet)
k is 1 when in the k-th year before the implementation of the pilot

CET policy (k < 0) or in the k-th year after the implementation of the pilot CET policy
(k > 0) for treatment groups, and 0 otherwise. Since the number of periods before 2013
is very large in our sample, the effects of the 9 to 13 years before 2013 are combined in a
single group. If the coefficients of didk

irt are insignificant before 2013 and significant after
2013, then the parallel trend hypothesis is satisfied. Figure 2 shows the test results of the
parallel trend hypothesis and the dynamic trend of the pilot CET policy and companies’
market value. The results indicate no significant difference between the treatment and
control groups before the policy is implemented, while it implies a significant increase in
companies’ market value after implementing the pilot CET policy. The results confirm the
parallel trend hypothesis.

Figure 2. The test of parallel trend hypothesis and the dynamic trend of the pilot CET policy and
companies’ market value.

4.2.2. Placebo Test

We further perform a placebo test to exclude the effect of the pilot CET policy on
a firm’s market value from the interference of other non-observable omitted variables.
This involved random selection of certain regions as virtual “pilot regions” to enable the
comparison of the differences of the effects between the real treatment group and the
randomly generated group [61]. More specifically, if there are n firms in 2013 located
in the area where the pilot CET policy is launched, keeping the time of the pilot CET
policy constant, we randomly select n sample firms from the entire sample of firms as the
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treatment group to conduct a counterfactual test. We repeat 500 estimates based on the
benchmark regression results in column (3) of Table 4. Figure 3 illustrates the probability
density distribution of the regression coefficients for the placebo test. Based on random
samples, the estimated coefficients are distributed centrally around 0, while the benchmark
regression result (0.016) falls almost outside the possible range estimated from the virtual
pilot regions shown in Figure 3. Hence, the results indicate that the pilot CET policy has no
policy effect when randomly set up. Therefore, the placebo test reveals that the benchmark
regression results of the DID method are reliable.

Figure 3. Results of the distribution of the DID estimator for the placebo test.

4.2.3. Other Robustness Tests

Next, we conduct a series of robustness tests to enhance the reliability of the
benchmark results.

(1) Time-lag analysis of companies’ market value. To prevent the lag effect of the CET
policy, we further examine the effect of the CET policy on companies’ market value
with a lag of one year [14]. As is shown in column (1) of Table 5, the results indicate
that the coefficient of “did” is also significant, implying that the CET policy has a
significant lagging effect on promoting companies’ market value.

(2) Policy shocks under changes at the pilot time point. After the CET mechanism is
implemented, a certain process and cycle will be required to affect the companies’
market value [14]. Hence, we move the treatment year to 2014 (the variable did is
changed to did1) to conduct a robustness check. We find the regression results to be
similar to our benchmark results, as reported in column (3) of Table 4, indicating
robust benchmark results.

(3) Changes in the sample period. As the sample period before implementing the pilot
policy is too long, we restrict the sample period from 2009 to 2019 and perform a DID
regression for robustness checks [14]. Column (3) of Table 5 displays the regression
outcomes, suggesting that the estimated conclusions are still robust.
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Table 5. Regression results of the other robustness check.

Variables (1) (2) (3)

L. Ln (MV) Ln (MV) Ln (MV)

did 0.020 * 0.036 ***
(0.011) (0.007)

SIZE 0.850 *** 0.984 *** 0.966 ***
(0.008) (0.006) (0.007)

BM −1.078 *** −1.832 *** −1.857 ***
(0.019) (0.012) (0.013)

ROE −0.151 *** 0.025 0.023
(0.035) (0.020) (0.026)

DAR −0.159 *** 0.047 *** 0.059 ***
(0.023) (0.015) (0.016)

fix 0.165 *** 0.034 ** 0.039 **
(0.027) (0.014) (0.018)

ROA −0.557 *** 0.056 0.097
(0.109) (0.068) (0.080)

MSR −0.273 *** −0.015 −0.004
(0.035) (0.015) (0.016)

lnage 0.107 *** 0.001 0.032
(0.026) (0.018) (0.039)

cash 0.210 *** 0.007 0.021
(0.033) (0.017) (0.020)

subsidy 0.000 0.000 0.000
(0.000) (0.000) (0.000)

did1 0.021 ***
(0.008)

_cons 12.262 *** 11.363 *** 11.581 ***
(0.114) (0.077) (0.123)

R2 0.958 0.990 0.990
Observations 28,962 32,980 24,420

Firm FE Yes Yes Yes
Year FE Yes Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Column (1) shows the regression results for time-lag
analysis of companies’ market value. Column (2) shows the regression results by moving the treatment year to
2014. Column (3) shows the regression results by restricting the sample period from 2009 to 2019.

5. Mechanism Analysis

5.1. Carbon Price

Implementing the CET policy has created a carbon trading market in which a carbon
price is formed when the supply and demand of permits are balanced. As a signal of the
carbon emission reduction cost, the carbon price may positively or negatively impact the
market value of companies. Therefore, we empirically analyze the mechanism by which
the CET policy affects companies’ market value from the perspective of carbon prices. The
empirical model used in the mechanism analysis is as follows:

m_priceit = β0 + β1treati × timet + β2 × Xit + μi + γt + εit (3)

Ln(MV)it = β0 + β1treati × timet + β2 × Xit + δ × m_priceit + μi + γt + εit (4)

where m_price is obtained by aggregating daily carbon prices to yearly averages for
pilot regions, and the data are collected from China Carbon Information Technology
Research Institute.

The regression results of the mediation mechanism analysis are presented in Table 6.
The regression results in columns (1) and (2) of Table 6 indicate that the carbon price
has a negative mediation effect in the CET policy process, affecting the market value of
listed companies. This is mainly because the CET policy will likely lead to additional
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compliance costs for regulated companies. To achieve carbon mitigation targets, regulated
companies must arrange some part of their cash flows to purchase the CET permits or
invest in emission abatement equipment and measures, reducing companies’ output. This
does not only affect companies’ cash flows but also their cost structure and decision-making
behaviors of production and R&D investment. A rising carbon price for CET permits lowers
investors’ expectations of profits, which results in a decrease in companies’ market value.
These results are consistent with those of previous studies, such as those of Oberndorfer
(2009), Veith et al. (2009), Keppler and Cruciani (2010), Mo et al. (2012), and Chan et al.
(2013), who found that carbon price variations are negatively correlated with companies’
stock market value, returns, or revenue [1,2,35,63,64].

Table 6. Regression results of mediation mechanism analysis based on carbon price.

Variables (1) (2) (3) (4)

m_price Ln (MV) Ln (MV) Ln (MV)

did 20.262 *** 0.030 *** −0.000 0.031 ***
(0.784) (0.009) (0.016) (0.010)

SIZE 0.175 0.984 *** 0.982 *** 0.984 ***
(0.224) (0.006) (0.011) (0.006)

BM 1.215 ** −1.831 *** −1.709 *** −1.854 ***
(0.606) (0.012) (0.023) (0.014)

ROE −0.713 0.025 −0.013 0.041 *
(0.731) (0.020) (0.029) (0.025)

DAR −2.246 *** 0.046 *** 0.056 0.035 **
(0.789) (0.015) (0.038) (0.016)

fix −0.206 0.033 ** 0.032 0.029
(0.827) (0.014) (0.021) (0.018)

ROA −0.217 0.054 0.169 0.018
(2.493) (0.068) (0.123) (0.079)

MSR 2.872 ** −0.014 0.020 −0.020
(1.357) (0.015) (0.025) (0.017)

lnage 6.727 *** 0.005 −0.005 0.007
(0.957) (0.018) (0.032) (0.021)

cash −1.126 0.005 −0.041 0.021
(0.796) (0.017) (0.031) (0.020)

subsidy −0.000 0.000 −0.000 0.000
(0.000) (0.000) (0.000) (0.000)

m_price −0.001 *** 0.001 −0.001 ***
(0.000) (0.001) (0.000)

_cons −20.026 *** 11.352 *** 11.309 *** 11.376 ***
(3.360) (0.077) (0.177) (0.086)

R2 0.778 0.990 0.995 0.989
Observations 32,980 32,980 6012 26,938

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Columns (1) and (2) show the results of the mediation
mechanism analysis based on the carbon price. Column (3) shows the regression results for the high-carbon
industries. Column (4) shows the regression results for the low-carbon industries.

Companies in regulated high-carbon industries are more affected by CET policies
than those in low-carbon industries. To this end, we compare the impact of the CET policy
on the market value of companies in high-carbon and low-carbon industries. We regard
the eight industries, including the petrochemical sector (C25), chemical industry (C26),
construction materials (C30), steel (C31), non-ferrous metals (C32), papermaking (C22),
electricity (D44, D45), and aviation (G56) as high-carbon industries; the rest are regarded as
low-carbon industries according to Chen et al. (2021) [14]. Columns (3) and (4) of Table 6
show the regression results for the high-carbon and low-carbon industries, respectively.
It can be observed that the coefficient of “did” for high-carbon industries is negative
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and insignificant, while that for low-carbon industries is significantly positive. This is
because companies in high-carbon industries face stronger carbon constraints and bear
more compliance costs under the CET policy, compared with the low-carbon industries.
Accordingly, the CET policy has a negative impact on the market value of companies in
high-carbon industries, while it has a positive effect on the market value of companies in
low-carbon industries. These results are in accordance with those of previous studies, such
as those of Veith et al. (2009), da Silva et al. (2016), and Wen et al. (2020), which revealed
that the effect of carbon price change on the stock market returns in the power industry
was asymmetric [2,9,27].

5.2. Innovative Activities

Implementing the CET policy has brought flexible arrangements to achieve carbon
emission reductions for relevant listed companies. Companies can maintain their carbon
emissions within the designated limits by installing abatement equipment or purchasing
carbon permits. However, the cost of such emission reduction will increase with the increase
in the carbon price and the reduction of carbon permits, which will reduce companies’
profits [65,66]. In this regard, if the cost of investing in cleaner technology is relatively
low for some competitive companies, these will choose to invest in innovative activities to
minimize carbon emission reduction costs [67]. Implementing the CET policy is conducive
to incentivizing companies to increase their innovative activities in cleaner technologies or
low-carbon technologies, thereby enhancing companies’ market value. Thus, we should
investigate the influential mechanism by which innovation affects the CET policy’s effect
on companies’ market value. The empirical model used in the mechanism analysis is as
follows:

innovationit = β0 + β1treati × timet + β2 × Xit + μi + γt + εit (5)

Ln(MV)it = β0 + β1treati × timet + β2 × Xit + innovationit + μi + γt + εit (6)

where the mediation variable innovation represents the number of green patent applications
(denoted as innovation1) and green patents granted (denoted as innovation2). It is used to
measure the innovative activities of companies.

The regression results are shown in Table 7. The results indicate that ETS has sig-
nificantly promoted green innovation, and the improvement of green innovation can
significantly increase companies’ market value. The CET policy could enhance the market
value of listed companies by promoting green innovation. These results are in line with
those of previous studies, such as those of Weber and Neuhoff (2010), Brauneis et al. (2013),
and Gersbach and Riekhof (2021), who found that the carbon price signal creates incentives
to invest in cleaner, low-carbon, or green technologies under the CET policy, thus enhancing
companies’ stock market value or returns [30,32,43].

Table 7. Regression results of mediation mechanism analysis based on technological innovation.

Variables (1) (2) (3) (4)

Innovation1 Ln (MV) Innovation2 Ln (MV)

did 0.182 *** 0.042 *** 0.200 *** 0.043 ***
(0.056) (0.012) (0.057) (0.013)

SIZE 0.148 *** 0.967 *** 0.102 *** 0.962 ***
(0.038) (0.009) (0.038) (0.011)

BM 0.185 *** −1.759 *** 0.238 *** −1.764 ***
(0.069) (0.020) (0.069) (0.022)

ROE 0.191 −0.015 0.161 0.021
(0.140) (0.030) (0.143) (0.031)

DAR −0.006 0.037 −0.014 0.021
(0.126) (0.024) (0.126) (0.027)
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Table 7. Cont.

Variables (1) (2) (3) (4)

Innovation1 Ln (MV) Innovation2 Ln (MV)

fix 0.262 * 0.031 0.137 0.026
(0.143) (0.029) (0.151) (0.030)

ROA −0.295 0.175 ** −0.317 0.029
(0.393) (0.086) (0.385) (0.092)

MSR 0.358 ** 0.018 0.364 *** −0.010
(0.144) (0.024) (0.134) (0.024)

lnage 0.043 0.108 * 0.248 0.114
(0.182) (0.063) (0.207) (0.071)

cash −0.046 0.032 0.014 0.005
(0.138) (0.030) (0.131) (0.031)

subsidy 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

innovation1 0.011 ***
(0.004)

innovation2 0.019 ***
(0.006)

_cons −1.829 *** 11.297 *** −1.882 *** 11.369 ***
(0.640) (0.163) (0.652) (0.204)

R2 0.668 0.994 0.693 0.994
Observations 10,583 10,583 9367 9367

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Columns (1) and (2) show the results of the mediation
mechanism analysis based on green patent applications (innovation1). Columns (3) and (4) show the results of the
mediation mechanism analysis based on green patents granted (innovation2).

5.3. Carbon Disclosure

In recent years, listed companies have been obliged to disclose carbon information
related to their production and operation processes and their products to satisfy the con-
cerns of relevant stakeholders, such as shareholders, consumers, and regulatory authori-
ties [68,69]. According to the legitimacy and voluntary disclosure theories, the relationship
between carbon disclosure and companies’ market value presents two conflicting results.
Specifically, we should empirically identify how carbon disclosure affects companies’ mar-
ket value for Chinese CET policies. The empirical model of mechanism model is as follows:

disclosureit = β0 + β1treati × timet + β2 × Xit + μi + γt + εit (7)

Ln(MV)it = β0 + β1treati × timet + β2 × Xit + disclosureit + μi + γt + εit (8)

where disclosure represents the degree of companies’ carbon disclosure. We used the eval-
uation data of listed companies’ social responsibility reports by Hexun index to represent
the degree of companies’ carbon disclosure.

The regression results are shown in Table 8. The results indicate that carbon disclo-
sure plays a negative role in the mechanism by which the CET policy affects companies’
market value. According to the legitimacy theory, there is an invisible contract between
companies and society, which makes listed companies increase carbon disclosure to meet
investors’ expectations, thereby maintaining legitimacy. However, the cost of environmen-
tal information collection and disclosure is likely to be greater than the benefits obtained by
enterprises, especially when enterprises increase costs and improve carbon performance
to meet relevant stakeholders’ needs. Obviously, a large increase in enterprise costs will
reduce companies’ market value. These results are consistent with those of previous studies,
such as those of Aragon-Correa et al. (2016) and Liu and Zhang (2017), who stated that
carbon disclosure enhances cost legitimation and reduces companies’ market value [44,45].
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Columns (3) and (4) of Table 8 show the regression results after dividing the sample into
high-carbon and low-carbon industries. The results indicate that carbon disclosure has a
significantly negative correlation with companies’ market value for low-carbon industries,
while the reduction effect in the market value of high-carbon industries is insignificant.

Table 8. Regression results of mediation mechanism analysis based on carbon disclosure.

Variables (1) (2) (3) (4)

Disclosco Ln (MV) Ln (MV) Ln (MV)

did −0.610 0.035 ***
(0.538) (0.006)

SIZE 4.565 *** 0.969 *** 0.969 *** 0.966 ***
(0.325) (0.007) (0.016) (0.008)

BM −3.890 *** −1.856 *** −1.733 *** −1.881 ***
(0.850) (0.013) (0.024) (0.014)

ROE 13.037 *** 0.038 * 0.014 0.050 *
(1.561) (0.023) (0.044) (0.027)

DAR −4.582 *** 0.056 *** 0.079 * 0.057 ***
(1.109) (0.017) (0.044) (0.019)

fix −2.765 * 0.035 * 0.049 0.022
(1.427) (0.020) (0.034) (0.025)

ROA 60.686 *** 0.063 0.092 0.056
(4.316) (0.074) (0.136) (0.087)

MSR −5.583 *** −0.005 0.015 −0.018
(1.356) (0.016) (0.027) (0.018)

lnage −2.674 0.018 −0.020 0.013
(2.440) (0.036) (0.053) (0.041)

cash 1.376 0.032 −0.036 0.047 **
(1.430) (0.021) (0.032) (0.024)

subsidy −0.000 0.000 −0.000 0.000
(0.000) (0.000) (0.000) (0.000)

disclosco −0.000 *** −0.000 −0.000 ***
(0.000) (0.000) (0.000)

_cons −22.327 *** 11.598 *** 11.621 *** 11.680 ***
(7.177) (0.117) (0.224) (0.134)

R2 0.619 0.990 0.995 0.989
Observations 23,172 23,172 3862 19,269

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Columns (1) and (2) show the results of the mediation
mechanism analysis based on carbon disclosure. Column (3) shows the regression results for the high-carbon
industries. Column (4) shows the regression results for the low-carbon industries.

6. Heterogeneity Analysis

6.1. The Impact of Firm Ownership

It is generally believed that non-state-owned firms are more flexible in their production,
operation, and investment decisions than state-owned firms [70]. Therefore, non-state-
owned firms are likely to enhance their market value by implementing a CET policy [14,71].
To this end, we conduct a heterogeneity analysis of the impact of firm ownership on the
relationship between CET policy and companies’ market value. The regression results are
listed in Table 9. The results show that the implementation of the CET policy has a positive
and significant impact on the market value of non-state-owned enterprises, while it has an
insignificant positive impact on the market value of state-owned enterprises. This is because
companies face greater pressure on emission reduction costs, incentivizing them to invest
in more advanced cleaner technologies or low-carbon technologies. Non-state-owned
companies that are encouraged to invest in clean technologies often convey information to
investors that they are more productive and competitive, increasing investors’ expectations
of the company’s future profits, leading to an increase in their market value. By contrast,
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state-owned enterprises enjoy more government subsidies, financial support, and more
free carbon permits, making them lose their motivation to innovate. Thus, the effect of the
CET policy on the market value of state-owned enterprises is insignificant.

Table 9. Heterogeneous analysis of the impact of firm ownership.

Variables (1) (2)

Ln (MV) Ln (MV)

did 0.018 0.018 **
(0.012) (0.009)

SIZE 0.993 *** 0.981 ***
(0.008) (0.008)

BM −1.729 *** −1.929 ***
(0.021) (0.015)

DAR 0.034 * 0.037 *
(0.020) (0.020)

fix 0.031 ** 0.020
(0.016) (0.025)

MSR −0.196 −0.025
(0.123) (0.016)

lnage 0.021 −0.022
(0.026) (0.023)

cash 0.015 0.043 *
(0.027) (0.025)

subsidy −0.000 0.000
(0.000) (0.000)

_cons 11.105 *** 11.560 ***
(0.099) (0.117)

R2 0.993 0.987
Observations 15,148 17,464

Firm FE Yes Yes
Year FE Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Column (1) shows the regression results for SOCs.
Column (2) shows the regression results for non-state-owned firms.

6.2. Heterogeneity Analysis of Different Regions

Chinese provinces are categorized into three regions according to their locations and
economic development: eastern, central, and western. The eastern region includes the
provinces of Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guang-
dong, and Hainan. The central region encompasses the provinces of Jilin, Heilongjiang,
Shanxi, Henan, Anhui, Hubei, Jiangxi, and Hunan. The western region includes the re-
maining provinces. Therefore, we conduct a heterogeneity analysis of different regions
by dividing the entire sample into eastern, central, and western regions according to the
companies’ locations. The results are presented in Table 10. The results indicate that the
implementation of the CET policy has the most significant effect on enhancing the market
value of companies in the eastern and central regions of China, while this effect is not
significant in the western region of China. This may be because the economic development,
technological level, and marketization degree of the eastern and central regions are higher
than those of the western region. Thus, companies in the eastern and central regions are
more inclined to conduct innovative activities to achieve carbon emission reduction targets
than those in the western region, enhancing their market value. Conversely, companies
in the western region are more dependent on natural resources and produce more carbon
emissions, thus the impact of the CET policy on companies’ market value is negative.
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Table 10. Heterogeneous analysis of the different regions.

Variables (1) (2) (3)

Ln (MV) Ln (MV) Ln (MV)

did 0.026 *** 0.057 *** 0.004
(0.009) (0.019) (0.022)

SIZE 0.991 *** 0.965 *** 0.981 ***
(0.007) (0.013) (0.011)

BM −1.831 *** −1.814 *** −1.842 ***
(0.016) (0.024) (0.026)

ROE 0.058 ** −0.030 0.024
(0.029) (0.029) (0.040)

DAR 0.035 ** 0.027 0.081 **
(0.017) (0.035) (0.041)

fix 0.021 0.006 0.049
(0.016) (0.035) (0.033)

ROA −0.049 0.207 * 0.062
(0.091) (0.111) (0.151)

MSR −0.013 −0.092 ** −0.011
(0.017) (0.044) (0.054)

lnage 0.002 0.017 −0.078 ***
(0.026) (0.029) (0.029)

cash 0.034 −0.051 −0.073 *
(0.021) (0.038) (0.044)

subsidy 0.000 0.000 −0.000
(0.000) (0.000) (0.000)

_cons 11.274 *** 11.584 *** 11.599 ***
(0.100) (0.170) (0.172)

R2 0.990 0.989 0.992
Observations 22,672 5240 5057

Firm FE Yes Yes Yes
Year FE Yes Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Column (1) shows the regression results for the eastern
region. Column (2) shows the regression results for the central region. Column (3) shows the regression results for
the western region.

6.3. The Impact of Different Industries

Companies in the manufacturing industries are mainly regulated by the CET policy,
which makes it necessary to invest a large number of funds to purchase carbon permits or
install emissions abatement equipment. This could squeeze out companies’ original pro-
duction investments, reducing their market value. Accordingly, we identify the impact of
the CET policy on the market value of companies in manufacturing and non-manufacturing
industries by using the difference-in-difference-in-difference (DDD) model. We multiply did
by industry to obtain the dummy variable ddd of the DDD model for the manufacturing and
non-manufacturing industries. The dummy variable industry is 1 if the company belongs to
high-carbon industries (including the eight industries, C25, C26, C30, C31, C32, C22, D44,
D45, and G56), and 0 otherwise. The regression results are listed in Table 11. The results
indicate that the estimated coefficients of both the manufacturing and non-manufacturing
companies are significantly negative, and the suppression effect of the manufacturing
companies is greater than that of the non-manufacturing companies; the CET policy has
a significantly negative impact on companies’ market value for high-carbon industries.
China’s ETS pilot policy mainly involves manufacturing and supply industries, including
transportation. Manufacturing companies face greater carbon constraints, and the imple-
mentation of the CET policy brings about a great cost effect for them, thereby reducing
their market value even more.
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Table 11. Heterogeneous analysis of the different industries.

Variables
(1) (2)

Ln (MV) Ln (MV)

ddd −0.041 *** −0.038 ***
(0.006) (0.010)

SIZE 0.992 *** 0.994 ***
(0.001) (0.001)

BM −1.806 *** −1.825 ***
(0.006) (0.009)

ROE 0.000 0.001
(0.000) (0.001)

DAR 0.004 0.035 ***
(0.006) (0.008)

fix 0.061 *** 0.052 ***
(0.007) (0.008)

ROA 0.131 *** 0.096 ***
(0.014) (0.021)

MSR −0.109 *** −0.133 ***
(0.006) (0.010)

lnage 0.012 *** 0.009 **
(0.003) (0.004)

cash −0.031 ** 0.002
(0.013) (0.018)

subsidy 0.000 0.000
(0.000) (0.000)

_cons 11.244 *** 11.228 ***
(0.015) (0.019)

R2 0.982 0.987
Observations 21,265 11,812

Firm FE Yes Yes
Year FE Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. **, *** indicate statistical significance
at the 5% and 1% levels, respectively. Column (1) shows the regression results for manufacturing companies.
Column (2) shows the regression results for non-manufacturing companies.

6.4. Heterogeneity Analysis of the Marketization Degree

The enhancement of companies’ market value by the market-oriented mechanism is
affected by the perfection of the market system. When market transaction costs, market
power, and information asymmetry exist, the role of market-oriented mechanisms is weak-
ened [72]. Accordingly, we evaluate the heterogeneity analysis of the marketization degree
using the DDD model. We use data from the “Marketization Index for China’s Provinces of
Gang Fan for 2000–2017” to measure the degree of marketization in a certain region [73].
We divide the sample into two groups depending on whether the marketization index score
in the region where the company is located is higher or lower than the median of all regions,
then conduct a heterogeneity analysis. The regression results are listed in Table 12. These
results indicate that the CET policy significantly affects companies’ market value when the
marketization degree is high. Conversely, the CET policy has a negative and insignificant
impact on companies’ market value when the marketization degree is low. These findings
are in line with those of Jaraitė–Kažukauskė and Kazukauskas (2015), Hu et al. (2020),
and Ren et al. (2020) [74–76]. Companies in a region with a high degree of marketization
demonstrate increased flexibility in response to market changes and the ability to profit
from the carbon emission trading market. When the market system is not perfect, it affects
the price of carbon emissions trading and the company’s costs, benefits, and expectations.
Hence, the degree of marketization influences companies’ investment decisions on carbon
emission reduction and innovative activities, and in turn, their market value.
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Table 12. Heterogeneous analysis of marketization degree.

Variables
(1) (2)

Ln (MV) Ln (MV)

did 0.031 ** −0.005
(0.015) (0.013)

SIZE 1.006 *** 0.982 ***
(0.013) (0.009)

BM −1.807 *** −1.816 ***
(0.029) (0.020)

ROE 0.069 0.025
(0.052) (0.029)

DAR 0.022 0.010
(0.031) (0.025)

fix 0.032 0.020
(0.037) (0.025)

ROA −0.068 −0.020
(0.150) (0.118)

MSR −0.007 −0.009
(0.028) (0.053)

lnage −0.038 −0.048 *
(0.058) (0.027)

cash 0.061 −0.034
(0.042) (0.029)

subsidy −0.000 0.000
(0.000) (0.000)

_cons 11.234 *** 11.469 ***
(0.199) (0.152)

R2 0.991 0.992
Observations 8044 7983

Firm FE Yes Yes
Year FE Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Column (1) shows the regression results for companies
with a high degree of marketization. Column (2) shows the regression results for companies with a low degree of
marketization.

6.5. Heterogeneity Analysis of Financial Constraints

Under the carbon emission reduction pressure, companies have had to install carbon
abatement equipment or upgrade their production progress by investing in low-carbon
technologies, which undoubtedly aggravates their financial constraints [77]. Companies
suffering from tight financial constraints cannot obtain sufficient financial resources to
respond flexibly to the requirements of the CET policy. At the same time, this also affects
the carbon emission reduction, production, and innovative activities of companies, thereby
affecting their market value. We use the size-age (SA) index to measure the financing
constraints of companies and divide the sample into two groups according to whether
the SA index is higher than or lower than the median value for heterogeneity analysis.
Companies with an SA index greater than the median value face loose financial constraints,
while those with an SA index less than the median value face tight financial constraints. The
SA index is calculated according to the formula: SA = 0.043 × size × size − 0.737 × size
− 0.04 × age, where size is the logarithm of companies’ total assets [74]. The regression
results are listed in Table 13. The results indicate that the CET policy has a significantly
positive impact on the market value of companies with an SA index greater than the median.
Conversely, the CET policy has no significant effect on the market value of companies with
an SA index less than the median. Companies with loose financial constraints have more
flexibility and better financial resources, they can optimize their decisions and strategies to
enhance their market value in the CET market.
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Table 13. Heterogeneous analysis of financial constraints.

Variables (1) (2)

Ln (MV) Ln (MV)

did 0.038 *** 0.007
(0.011) (0.012)

SIZE 1.010 *** 0.951 ***
(0.010) (0.011)

BM −1.609 *** −2.019 ***
(0.017) (0.018)

ROE 0.009 0.008
(0.029) (0.024)

DAR 0.055 *** 0.043 *
(0.018) (0.024)

fix 0.008 0.016
(0.014) (0.023)

ROA 0.145 0.086
(0.089) (0.083)

MSR 0.071 *** −0.042 *
(0.020) (0.022)

lnage 0.044 −0.003
(0.041) (0.020)

cash 0.035 −0.012
(0.022) (0.024)

subsidy −0.000 0.000
(0.000) (0.000)

_cons 10.773 *** 11.826 ***
(0.121) (0.149)

R2 0.992 0.967
Observations 16,437 16,278

Firm FE Yes Yes
Year FE Yes Yes

Note: Standard errors are in parentheses, and they are clustered at firm level. *, *** indicate statistical significance
at the 10% and 1% levels, respectively. Column (1) shows the regression results for companies with loose financial
constraints (companies with an SA index greater than the median). Column (2) shows the regression results for
companies with tight financial constraints (companies with an SA index less than the median).

7. Discussions, Conclusions, and Policy Recommendations

Using China’s CET policy as a quasi-natural experiment, we innovatively explore
the effect of this policy on companies’ market value. We investigate how the ETS scheme
promotes companies’ market value from the carbon price, technological innovation, and
carbon disclosure angle. Additionally, we conduct a heterogeneity analysis of the marketi-
zation degree, industries, firm ownership, and different regions. We use the data of listed
companies from the Chinese stock “A” markets and match the data with patent and green
patent data from the CNRDS platform. We employ the DID method to account for the
unobserved cause of the CET policy regarding companies’ market value. Understanding
this mechanism is important for advancing the performance of the carbon markets in China
and potentially those in other developing countries that consider emission trading in their
policy mix. The results of our study will help policymakers take full account of matching
and coordinating existing laws, rules, and various policy instruments to create synergies.
In addition, the findings of this study may be important for investors to optimize their
decision-making and enhance their market value under the ETS mechanism.

Through theoretical and empirical analysis, we drew a series of conclusions:

1. The benchmark regression results reveal that the CET policy promoted companies’
market value significantly. A series of robustness tests (e.g., parallel trend, dynamic
effects, and placebo tests) show robust outcomes.

2. The mechanism analysis of carbon price indicate that the CET policy could improve
the market value of listed companies by influencing carbon price signals, and that
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carbon prices have a greater impact on the market value of companies in high-carbon
industries. The mechanism analysis of technological innovation reveals that the
CET policy has promoted green innovation considerably, and the improvement of
green innovation can significantly increase companies’ market value. The mechanism
analysis of carbon disclosure shows that carbon disclosure plays a negative role in
the mechanism by which the CET policy affects companies’ market value, and that
the reduction effect in the market value of high-carbon industries is less than that of
low-carbon industries.

3. The heterogeneity analysis of the marketization degree demonstrates that the CET
policy significantly affects companies’ market value when the market system is perfect.

4. The CET policy’s impact on companies’ market value is heterogeneous in industry,
firm ownership, and different regions.

Our findings have important implications for regulators, policymakers, investors,
and managers.

First, China’s CET market’s carbon pricing mechanism needs to be further improved
to form a reasonable and effective carbon price. For the carbon market, a reasonable carbon
price mechanism is of great significance to give full play to the role of the carbon market
in energy saving and emission reduction. It is useful to set up a mechanism wherein the
carbon prices are determined by the market and regulated by government. It is necessary
to form a reasonable carbon price to reflect the scarcity of carbon permits and form effective
incentives for companies. A carbon price that is too low cannot form a compelling incentive
for companies, while a carbon price that is too high will increase the cost of companies.

Second, the government should improve the degree of market perfection and reduce
market transaction costs. Perfecting the market rules of ETSs, including the carbon dis-
charge permit system and monitoring system, is critical for improving their efficiency. It is
also necessary for the government to set up and improve ETSs implementing policy and
system development. The government should improve the information quality of carbon
trading, which in turn will provide accurate supply and demand information and lower
the costs of collecting information.

Third, regulators may consider the adverse impact of carbon disclosure on stake-
holders and devise a carbon disclosure policy to encourage companies to disclose car-
bon emissions voluntarily. The government should strengthen and optimize the cor-
porate social responsibility disclosure systems or utilize external institutions, such as
media and public attention, to magnify the potential value losses of companies’ socially
irresponsible behaviors.

Fourth, the government should further improve policies and regulations that encour-
age investors and companies to participate in cleaner and low-carbon innovative activities.
The government is committed to establishing an incentive mechanism and strengthening
the support of innovative capital, market systems, talents, and other elements to promote
sustainable economic development effectively.

Finally, we propose that the Chinese government further improve carbon trading
regulations and incorporate carbon finance into the carbon trading policy system. The role
of tools such as carbon forwards and carbon futures should be further used to assist the
carbon market in generating timely, true, and effective carbon price signals.
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