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Abstract: This document is intended to be a presentation of the Special Issue “Advanced
Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution
Systems”. The final aim of this Special Issue is to propose a suitable framework supporting
insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and
practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system
design, optimization of network performance assessment, monitoring and diagnosis of pressure pipe
systems, optimal water quality management, and modelling and forecasting water demand. Overall,
these articles explore new research avenues on urban hydraulics and hydroinformatics, showing to
be of great value for both Academia and those water utility stakeholders.

Keywords: water distribution design; water network performance; pressure pipe system;
water quality; water demand

1. Introduction

One of the most complex structures that an intelligent city has to manage is its water distribution
system (WDS), which must provide water to citizens in adequate quantity and quality. This complexity
is twofold. On the one hand, it is well known that the classical hydraulic models that describe
the phenomena that take place in a WDS are of a complex nature, given the characteristics of the
equations that describe these phenomena and their eminently distributed nature. On the other hand,
the galloping recent need to handle large amounts of data obtained from the monitoring of systems
has brought classical complexity to new paradigms that need new ways of addressing the problems of
Urban Hydraulics. In this regard, special attention should be given to the achievement of an adequate
digital connection related to the availability of data in real time, which allows effective solutions for
demand prediction and other water utilities operations.

In essence, WDSs must be adequately designed (in the case of new systems) and adequately
rehabilitated (extensions, renovation, restoration, etc., in later stages) so that they supply the user
at all times and places under given satisfactory conditions. WDSs must be adequately monitored in
order to obtain quality data in real time that allows an efficient control of the system. In addition,
suitable (optimal) operation for the quality service to be provided continuously, without interruption,
is essential. Finally, intelligent management that is capable of reconciling conflicting objectives such as

Water 2018, 10, 440 1 www.mdpi.com/journal/water
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economic benefit and social satisfaction, among others, must be an inescapable condition for ruling
a WDS.

To achieve these objectives, efficient techniques are necessary to overcome the complexity of the
associated problems. For example, in the tasks of design and rehabilitation, optimization algorithms
are needed that are capable of manipulating nonlinearity, the coexistence of variables of different types,
the discrete nature of some processes, etc.; these requirements impose the need to transcend classical
optimization and to use modern techniques of evolutionary optimization. The real-time monitoring
of the quality of the service will be greatly benefited by efficient time series processing techniques
and several other forms of intelligent data manipulation. The operation of a system can be defined
in terms of certain operators and variables of Boolean type, which must be optimally defined and
integrated into the models and data structures in an appropriate manner; again, efficient techniques of
optimization and fusion of methodologies that are able to work with data in real time will be necessary.
Finally, the management of WDSs is currently carried out through a wide range of elements, such as
demand prediction, network sectorization, leak detection, system maintenance through appropriate
policies, control of transients, evaluation of user satisfaction, etc. Moreover, some of the elements that
intervene in decision-making are quantifiable, while others must be classified as intangible; therefore,
it is crucial to have adequate techniques for handling the information to be manipulated, which will
frequently be affected by uncertainty and subjectivity.

In the water supply industry, as in other fields, any improvement that can occur in the treatment
and handling of big data will produce considerable and obvious benefits. For example, through
the installation of advanced measurement infrastructure (AMI) and the more efficient treatment of
the data obtained, it will be possible to reduce more effectively the unaccounted-for water in the
short term. More generally, in the long term, a more efficient operation that is expected from such
improvements will contribute to the excellence of the urban water cycle, one of the objectives of
an intelligent city. The idea is to promote the implementation of the smart city concept from the
perspective of water supply.

2. Overview of This Special Issue

This issue contains 18 papers which focus on some of the mentioned problems of water
distribution system management. The key points are: (i) design of water system [1–4]; (ii) optimization
of network performance assessment [5–8]; (iii) monitoring and diagnosis of pressure pipe system [9–11];
(iv) optimal water quality management [12–14]; and (v) modelling and forecasting of water
demand [15–18].

2.1. Design of Water System

Four papers of this issue examine the first key point that is design of water system. Firstly,
Mala-Jetmarova et al. present a systematic literature review of optimization of WDS design since the
end of the 1980s [1]. The review classifies the examined papers by the following issues: the type of
design problems (i.e., static or dynamic), the application area (i.e., new or existing systems, with the
optional inclusions of system operations), the optimization model (i.e., objective functions, constraints,
and decision variables), and the analysed networks. It pinpoints trends and limits and suggests further
research directions. Specifically, it reveals that there is not a consensus about the best WDS design
optimization model, and consequently, researchers would force themselves to compare and validate
different methods on real case studies.

Secondly, different multiobjective evolutionary algorithms (MOEAs) are compared in [2] on four
well-known benchmark networks (i.e., two loop, Hanoi, Fossolo, and Balerma irrigation networks),
by taking into account two objective functions: cost minimization and resiliency index maximization.
A new hybrid algorithm that combines differential evolution and harmony search algorithm has
been proposed for WDS design and compared with five MOEAs (i.e., NSGA2, AMALGAM, Borg,
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“ε-MOEA”, and “ε-NSGA2”): the comparison shows that the new approach outperforms the
previous MOEAs.

Thirdly, in [3] a new approach has been developed: to reduce the search space it bounds the
pipe diameter values by analysing two opposite extreme flow distribution scenarios (i.e., uniform and
maximum flow distribution) and applying velocity constraints. This model has been coupled to a
genetic algorithm (GA) to improve its performance. The approach is applied to two benchmark
networks (i.e., again two-loop network and Hanoi networks) by taking into account the cost
minimization as objective function. By means of the new approach, the search space is reduced
to less than 3% of the total search space for both the analysed networks. The results are compared to
the classical GA: the comparison shows that the new approach is much faster and more accurate.

Finally, Zheng et al. describe experimental tests aimed at the optimal design of circular drop
manholes in urban drainage networks [4]. Particularly, free, pressurized, and constrained outflow
conditions have been tested for different manhole heights. Tests show that the local head loss coefficient
of the manhole strictly depends on the outflow conditions. As a concluding remark, some empirical
equations have been proposed to evaluate this coefficient.

2.2. Optimization of Network Performance Assessment

Four papers refer to the second key point that is optimization of network performance assessment.
First, Sadatiyan and Miller [5] introduce a multiobjective version of the Pollution Emission Pump
Station Optimization tool (PEPSO). It can be used to find a pump schedule of a WDS to reduce both
the electricity cost and pollution emissions, by measuring the Undesirability Index in a nondominated
sorting genetic algorithm. Tests carried out on the WDS of Monroe City (MI, USA) and Richmond (UK)
show that PEPSO can optimize and provide useful information in a very limited amount of time.

Second, the main aim of the paper by Zischg et al. [6] is to assist decision makers in testing various
planning options and design strategies during long-term city transitions. The procedure consists of the
automatic creation, simulation, and analysis of different WDS scenarios. The pressure head, water age,
and pressure surplus have been taken into account. Moreover, if data are not available, the approach
uses alternative systems with strong similarity to WDSs. The proposed methodology is applied to the
Swedish town Kiruna, in which it allows understanding the lack of the sole design at the final-stage
WDS for most of the future scenarios and planning options.

Third, a procedure has been developed by Ilaya-Ayza et al. [7] to define district metered areas
(DMAs) in WDSs with intermittent supply. The chosen objective function is the water supply
equity. The approach uses soft computing tools from graph theory and cluster analysis and both the
company expert opinions and adequate supply times for each DMA have been taken into account.
The considered case study is the water supply network of Oruro (Bolivia), for which the proposed
sectorization allows a clear improvement of the resilience index of the entire network.

Fourth, di Nardo et al. [8] propose the application of graph spectral theory (GST) for the optimal
network sectorization. The approach is applied to two case studies (i.e., the well-known C-Town
network and a real small WDS of Parete, Italy), and GST allows ranking WDS nodes and selecting
the most important nodes for monitoring water quality, flow, or pressure, and for defining the DMAs.
The main advantage of such an approach is that this is based only on topological and geometric
information and no hydraulic data—often not available—are required.

2.3. Monitoring and Diagnosis of Pressure Pipe System

Three papers are part of the third key point that is monitoring and diagnosis of pressure pipe
systems. First, Duan [9] investigates analytically and numerically the impact of nonuniformities of pipe
diameter on transient wave behavior. Specifically, it demonstrates the dependence of wave scattering
on the relationship between the incident wave frequency and nonuniform pipe diameter frequency,
and nine numerical tests have been carried out by varying the pipe diameter nonuniformities (i.e.,
regular or random) and this relationship. As a result, the wave scattering has a nonnegligible effect
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on wave reflections and attenuation, and, consequently, it has to be taken into account in transient
modelling—along with both the unsteady friction and viscoelasticity—and in the application of
Transient Test-Based Techniques (TTBTs) for the diagnosis of pressure pipe systems.

Second, Lin [10] presents a hybrid heuristic optimization approach called leak detection ordinal
symbiotic organism search (LDOSOS) for locating and sizing leaks in a WDS. This approach combines
the ordinal optimization algorithm (OOA) and the symbiotic organism search (SOS) in an inverse
transient analysis (ITA). Moreover, the problem of generation of pressure waves is discussed and SOS
is used to determine the optimal transient generation point. The procedure is tested on two numerical
case studies: a two-loop network with a constant head supply reservoir and two very closed leaks,
and a more complex network with a supply node with a constant inflow rate, a larger range of pipe
diameters and lengths, and two distant leaks. Tests show that the LDOSOS has the ability to detect
leak number, location, and size, by speeding up the ITA convergence and improving the reliability of
the results.

Third, in Meniconi et al. [11] TTBTs are used to detect system defects and characteristics by
monitoring the pressure waves at key points. The transmission main of the city of Trento (I) was
analysed and transient tests were executed by pump shutdown. By means of the comparison
of the numerical model and the acquired pressure signal, the relevance of the topology, pipe
material characteristics, transient energy dissipation, and defects has been explored. Specifically,
two malfunctioning valves have been detected and a preliminary criterion for the skeletonization of
the transmission mains has been proposed.

2.4. Optimal Management of Water Quality

Three papers of this issue analyse the optimal management of water quality. Specifically, in
Meyers et al. [12] a long-term continuous study of discolouration mobilisation is presented along with
a methodology to determine the approximate amount and origin of hydraulically mobilised turbidity
in trunk mains. The methodology is validated on three UK trunk main networks, observed over a
period of about three years. The results show that the mobilisation of discolouration material is mainly
determined by hydraulic forces, and consequently can be modelled and predicted, and its origin can
be approximately determined.

Furthermore, in de Melo et al. [13], the factors that influence the water quality of the Jucazinho
reservoir in northeastern Brazil have been pointed out by a data base of nine years of water quality
reservoir monitoring and a multivariate statistical technique (i.e., the Principal Component Analysis,
PCA). The study points out the connection between water quality parameters and the rainfall that
has an annual or seasonal pattern. Precisely, two principal components of the water quality of this
reservoir have been selected by PCA. The first, ranging from an annual basis, explains the increase in
the concentration of dissolved solids and the cyanobacteria proliferation as a function of the drought
period, during which the turbidity and the levels of total phosphorus decrease. The second, ranging
from a monthly basis, indicates the connection between the process of photosynthesis performed by
cyanobacteria with the percentage of the volume of the dam.

Finally, Reynoso-Meza et al. [14] have incorporated two decision-making methodologies (i.e.,
Technique for Order of Preference by Similarity to Ideal Solution—TOPSIS, and Preference Ranking
Organisation Method for Enrichment of Evaluations—PROMETHEE) in a Multiobjective Evolutionary
Algorithm (MOEA). The analysed multiobjective problems are two typical water quality problems:
the dissolved oxygen problem for the activated sludge wastewater treatment process and the water
quality of a river polluted by a cannery industry (Pierce-Hall Cannery) and the effluent from three
treatment plants. The case studies have validated the reliability of such approaches for the degree of
flexibility to capture designers’ preferences.
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2.5. Modelling and Forecasting of Water Demand

Four papers of this issue examine the last key point, modelling and forecasting of water demand.
Firstly, Letting et al. [15] present a water demand calibration approach. The approach is aimed
at estimating the water demand multiplier at each node of a water distribution system model by
minimizing the error between observed and simulated nodal head and pipe flow rates. An optimization
approach based on Particle Swarm algorithm is used. Application to a simple case study (Epanet
example Net1) and a medium-sized real network highlights that the approach can provide an
accurate water demand multiplier estimation by using data observed in a limited number of properly
placed sensors.

Secondly, Pastor-Jabaloyes at al. [16] present an automatic tool for smart metered water demand
time series disaggregation into single-use events. The tool is based on a filter automatically calibrated
by using NSGA-II algorithm, and on a cropping algorithm. Furthermore, a semiautomatic classification
is subsequently performed in order to categorize the obtained single-use events into different water
end uses in a household such as shower, toilet, etc. The tool is applied to water demand time series
collected from 20 households featuring very different characteristics in terms of geographical location,
number of inhabitants, and average daily consumptions.

Thirdly, Anele et al. [17] provide an overview of some methods for short-term water demand
forecast pointing out their pro and cons. The methods considered are univariate time series, time
series regression, artificial neural network, and hybrid methods (i.e., a combination of two or more
of the previous methods). The methods are applied to a case study highlighting that univariate time
series, time series regression, and hybrid models may be accurate and appropriate for short-term
water demand forecast. However, these methods are not applicable in more general decision problem
frameworks. Indeed, these methods cannot be used to understand and analyse the overall level of
uncertainty in future demand forecasts and thus much more attention needs to be given to probabilistic
forecasting methods for short-term water demand forecast.

Finally, and strictly related to the previous considerations, a Markov-chain-based approach for
probabilistic short-term water demand forecasting is presented by Gagliardi et al. [18]. In particular,
two models based on homogeneous and nonhomogeneous Markov chains are proposed. The models
are capable of providing both a deterministic forecast of the future values of water demand, and
a characterization of the stochastic behaviour of the forecasted values. The models are applied to
water demand time series of three district metered areas in the UK, and the deterministic forecast
compared with those provided by neural network-based and naïve forecasting models, highlighting
that the homogeneous Markov chain model provides both an accurate deterministic forecast and
useful information regarding the probability distribution of the forecast itself.

3. Conclusions

In addition to the complexity inherent to WDS management, there often is a need for online
actions to accomplish decision-making processes in real time. Another challenge that water companies
should face nowadays is handling the huge amount of data generated by supervisory control and data
acquisition (SCADA) systems, smart water meters, and other cyber–physical systems. This Special
Issue on “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and
Distribution Systems” presents a number of powerful techniques able to cope with such a complexity
associated with: the nature of the hydraulic models, real-time requirements, and large scale databases.
Bio-inspired and evolutionary algorithms play an important role in dealing with these issues. This is
the reason why various contributions presented herein are based on these techniques. Overall, the
Special Issue encompasses a collection of proposals that can be classified as follows:

• optimization, both classical and evolutionary;
• definition of structures and tools for big data;
• neural networks, support vector machines, and other Machine Learning techniques;
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• graph theory and methods for complex networks;
• efficient treatment of time series;
• agent-based systems;
• multi-attribute decision-making techniques;
• transient test-based techniques for the diagnosis of pressure pipe systems; and
• other mathematical and computational tools and techniques

These techniques have been developed within the field of the so-called Hydroinformatics in
Urban Hydraulics, that is, with application to problems such as:

• smart water networks (intelligent measurement, intelligent analysis of measurement data, . . . );
• online analysis of WDSs (prediction of online demand, estimation of states, . . . );
• water quality aspects (water quality characterization, prediction of discolouration, . . . );
• reduction of unaccounted-for water and optimization of operation (sectorization, leak detection,

operation indicators, water balance, and benchmarking, . . . );
• optimal operation (of pumping stations, scheduling, transient control, . . . );
• efficient utilization of real-time monitoring signals through smart treatment of online raw data

using suitable learning approaches

Contributions to this Special Issue, exploring those new research avenues on urban hydraulics
and hydroinformatics, are expected to be of great value for both Academia and all water utility
stakeholders. On top of this, important social benefits are expected from a number of research
objectives that ultimately aim to guarantee a regular supply of clean water at the pressure and quality
required at the network consumption points.
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Abstract: Optimisation of water distribution system design is a well-established research field, which
has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of
a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published
over the past three decades, which are relevant to the design of new water distribution systems, and
the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of
design timing, parameter uncertainty, water quality, and operational considerations. It identifies
trends and limits in the field, and provides future research directions. Exclusively, this review paper
also contains comprehensive information from over one hundred and twenty publications in a
tabular form, including optimisation model formulations, solution methodologies used, and other
important details.
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1. Introduction

Water distribution systems (WDSs) are one of the major infrastructure assets of the society, with
new systems being continually developed reflecting the population growth, and existing systems being
upgraded and extended due to raising water demands. Designing economically effective WDSs is a
complex task, which involves solving a large number of simultaneous nonlinear network equations,
and at the same time, optimising sizes, locations, and operational statuses of network components such
as pipes, pumps, tanks and valves [1]. This task becomes even more complex when the optimisation
problem involves a larger number of requirements for the designed system to comply with (e.g.,
water quality), includes additional objectives beside a least-cost economic measure (e.g., potential fire
damage) and incorporates more real-life aspects (e.g., uncertainty, staging of construction).

The early research related to the design optimisation of WDSs can be dated from the 1890s to
1950s. It was based on the principle of economic velocity [2–4], which was gradually reviewed and
replaced by establishing the minimum (annual) costs of the system (i.e., least-cost design) [5–7]. Due to
lack of computational technology in that period, those previous studies involved manual calculations
combined with graphical methods, often resulting in practical charts to derive economic pipe diameters.
The development of the optimisation of WDS design, therefore, had been an incremental process over
time and may have appeared to be “only too true that the design of the transmission and distribution
system receives [at that period] little attention in spite of the great sums of money invested in such
installations” [8].

A successive period from the 1960s to 1980s displays a more rapid progression, which was
initiated by the introduction of digital computers to network analysis in 1957 [9]. The introduction of
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computers was subsequently followed by the development of iterative methods [10,11] and simulation
packages [12,13] to solve simultaneous nonlinear network equations, and eventuated in the application
of mathematical deterministic methods to solve WDS design optimisation problems. These methods,
including linear programming (LP) [14], nonlinear programming (NLP) [15,16], and others [17],
typically minimised the design or capital (and operational) costs of the system, which were combined
into one economic measure.

Another significant advancement in the optimisation of WDSs represented an introduction of
stochastic methods using principles of biological evolution [18] and natural genetics [19]. Nonetheless,
it was not until the 1990s when these methods became more popular [20] due to their ability to solve
complex, real-world problems for which deterministic methods incured difficulty or failed to tackle
them at all [21,22], and to also control multiple objectives. The popularity of metaheuristics has resulted
in a dramatic increase in the application [21,23] to optimal design of WDSs, with “the several hundred
research papers written on the subject” by 2001 [24]. Optimisation of WDS design has also progressed
from a cost-driven single-objective framework to multi-objective models, when various objectives that
continually gain importance (e.g., environmental objectives, community objectives reflecting the level
of service provided to customers) can be evaluated on more equal basis [25]. Some of the most recent
developments include the use of an engineered (as opposed to a random) initial population to improve
the algorithm convergence [26], application of online artificial neural networks (ANNs) to replace
network simulations [27], analysis of the algorithm search behaviour [28] in relation to the WDS design
problem features [29], and reduction of the search space [30] to increase computational efficiency.

2. Aim, Scope and Structure of the Paper

This paper aims to provide a comprehensive and systematic review of publications since the
end of the 1980s to nowadays, which are relevant to the optimisation of WDS design, strengthening
(i.e., pipe paralleling), expansion and rehabilitation. The purpose of the review is to enable one’s
speedy familiarisation with the scope of the field, insight in the overwhelming amount of publications
available and realisation of the future research directions. This paper contributes to and goes beyond
the existing review literature for the optimisation of WDS design and rehabilitation [20,21,31–39] by not
only identifying trends and limitations in the field, but also by providing comprehensive information
from over one hundred and twenty publications in a tabular form, including optimisation model
formulations, solution methodologies used, and other important details.

The paper consists of two parts: (i) the main review and (ii) an appendix in a tabular form
(further referred to as the table), each having a different structure and purpose. The main review is
structured according to publications’ design problems and general classification. The design problems
cover application areas, such as new system design, existing system strengthening, expansion and
rehabilitation, and time, uncertainty and performance considerations. The general classification
captures all the main aspects of a design optimisation problem answering the questions: what is
optimised (Section 4.1), how is the problem defined (Section 4.2), how is the problem solved (Section 4.3)
and what is the application (Section 4.4)? The purpose of the main review is to provide the current
status, analysis and synthesis of the current literature, and to suggest future research directions.

A significant portion of this review paper is represented by the table, which refers to over
one hundred and twenty publications in a chronological order. Each paper is classified according
to an optimisation model (i.e., objective functions, constraints, decision variables), water quality
parameter(s), network analysis, optimisation method and test network(s) used. Obtained results
as well as other relevant information are also included. The purpose of the table is to provide a
representative list of publications on the topic detailing comprehensive information, so that it could be
used as a primary reference point to identify one’s papers of interest in a timely manner. Hence, it
presents a unique and integral contribution of this review.

The structure of the paper is as follows:
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• The main review: Design problems (Section 3), General classification of reviewed publications
(Section 4), Future research (Section 5), Summary and conclusion (Section 6), List of terms
(Section 7), List of abbreviations.

• The table: Appendix A.

3. Design Problems

Two types of a design problem have been identified based on the field progression as follows:
(i) a traditional design (i.e., theoretical or static design) of a WDS with a single construction phase
for an entire expected life cycle of the system usually considering fixed loading conditions reflecting
maximum (and other) future demands (Section 3.1); (ii) an advanced design (i.e., real-life or dynamic
design) of a WDS capturing the system modifications and growth (due to the development of the
populated area) over multiple construction phases, including future uncertainties (e.g., in demands,
pipe deterioration) and other performance considerations (Section 3.2).

3.1. Application Areas

3.1.1. New Systems: Design

Critical infrastructure, including water, energy and transport systems, is essential in ensuring
the survival and wellbeing of populations worldwide. Since the ancient Greek civilisations, WDSs
have been an important part of making human settlements sustainable, thus optimising these systems
to meet various requirements has over time gained interest of researchers and practitioners alike.
Generally, optimisation of WDS design involves determining sizes, locations and operational statuses
of network components such as pipes, pumps, tanks and valves, while keeping the system design or
capital (and operational) costs at their minimum. The problem scope is primarily dependent on a type
of a WDS under consideration, which is either a branched or looped and gravity or pumped system.

A network topology, branched or looped, represents a fundamental distinction in the problem
complexity at the network analysis stage due to a way of determining flows in pipes. In branched
networks there is a unique flow distribution calculated directly using nodal demands, while in
looped systems flows can undertake multiple and alternative paths from a source to a customer [40].
This possible variability results in iterative methods being required to solve pipe flows in looped
networks, such as that described in [41].

Regarding gravity WDSs, a basic optimisation model minimises the design cost of the network
subject to the nodal pressure requirements, with pipe sizes or diameters being the only decision
variables [42–48]. Popular test networks used to solve such a problem are the two-loop network [14],
Hanoi network [49] and Balerma irrigation network [50]. As far as pumped WDSs are concerned,
the optimisation problem becomes more complex than in the case of gravity WDSs, because of the
presence of pumps and tanks (see Section 3.1.3), which require selecting not only their sizes and
locations [14,26,51,52], but also their operational statuses [14,29,53,54], as well as often running an
extended period simulation (EPS) for multiple loading conditions. Unlike for gravity WDSs, there
does not seem to be any test network that is frequently used by multiple authors for pumped WDSs.

Regarding test networks, nevertheless, study [26] comments that they are limited, in general,
to simple transmission networks, so-called benchmark systems, excluding local distribution lines.
This exclusion is mainly due to a dramatic increase in the problem dimension, thus computational time,
if local pipes were included. A problem of excluding smaller distribution pipes from the optimisation
is in oversizing the transmission mains, as local distribution networks provide alternative pathways
and display significant capacity to carry when the transmission lines are out of service [26]. The lack of
large and complex test networks has recently been addressed by a number of researchers [55–57] who
developed methodologies for generating synthetic networks of varying sizes and complexity levels.
Furthermore, several real-world networks have been used for the design competitions by international
research teams working in the area of WDS design, including those that are described by [58,59].
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The problem complexity further increases by considering multiple simultaneous objectives.
Initially, single-objective optimisation models were used to formulate WDS design problems, in which
all objectives are combined into one economic (i.e., least-cost) measure (see, for example, [14,51,60–62]).
A multi-objective optimisation approach was possibly first applied in the late 1990s (Figure 1),
maximising the network benefit on one hand and minimising the system cost (of network rehabilitation)
on the other hand [63]. In studies of newly designed WDSs, in addition to the economic
measure, the other objectives considered were the pressure deficit [30,62,64–67] or excess [68,69] at
network nodes, the penalty cost for violating the pressure constraint [70], greenhouse gas (GHG)
emissions [71–76] or emission cost [77], water discolouration risk [68] and water quality [78].
A multi-objective optimisation approach is considered “very appealing for engineers as it provides a
tool to investigate interesting trade-offs”, for example, a marginal pressure deficit can be outweighed
by a considerable cost reduction [67].

Figure 1. Papers (from Appendix A Table A1) by year and optimisation approach.

The single-objective approach benefits from being able to identify one best solution, which is
then easy to analyse and implement. Multi-objective methods, on the other hand, result in a set of
tradeoff (Pareto, non-dominated) solutions, which requires an additional step to select only one or
a limited number of the promising solutions. Choosing such a reduced number of solutions from a
potentially large (or even infinite) non-dominated set is likely to be difficult for any decision maker.
This task makes the multi-objective approach less desirable as there is often a requirement to make
a clear decision to be implemented. The research question resulting from this challenge is how to
select the best solution(s) from the Pareto set, which may involve providing the decision makers with a
practical and representative subset of the non-dominated set that is sufficiently small to be tractable [22].
For example, study [79] introduced game-theoretic bargaining models to take into account conflicting
requirements and managed to reduce the solution sets to a reasonable size. Further investigation of the
methodologies for identifying a handful of useful solutions, such as those where a small improvement
in one objective would lead to a large deterioration in at least one other objective, is thus warranted.
In addition to game-theoretic models, the approaches that are based on identifying ‘knees’ of the Pareto
front or expected marginal utility, maximum convex bulge/distance from hyperplane, hypervolume
contribution and local curvature [80] are all promising methods that require a thorough analysis on
WDS problems.
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3.1.2. Existing Systems

As a consequence of the development/growth and population density increase within urban
areas, existing WDSs require to be upgraded to satisfy raising water demands. These upgrades
involve system strengthening (i.e., pipe paralleling), rehabilitation (e.g., pipe cleaning and relining)
and expansion. Even though these processes often take place within one WDS thus some of the
research articles fall under all system strengthening, rehabilitation and expansion, they are divided
into separate subsections in order to provide a systematic overview.

Strengthening

System strengthening represents a reinforcement of an existing WDS to meet future demands,
through lying duplicated pipes in parallel to the existing water mains. It is also sometimes referred
to as parallel network expansion [42] or pipe paralleling. The main objective and decision variables
are, similar to the design of new WDSs, the minimisation of the design (or capital) cost and pipe
diameters of duplicated pipes, respectively. Publically available test networks involving purely
system strengthening include the New York City tunnels [81] and EXNET [82]. In addition, there are
test networks considering system strengthening together with other design strategies (e.g., system
expansion, rehabilitation), which include the 14-pipe network with two supply sources [20,83] and
Anytown network [84]. Of those publically available test networks, the most frequently applied is the
New York City tunnels, which was often the only network used to test the proposed methodology.
These studies used genetic algorithm (GA) [85,86], combined with ANNs [87], fast messy GA
(fmGA) [88] and non-dominated sorting genetic algorithm II (NSGA-II) [89] as a solution algorithm.

The complexity of an optimisation problem involving exclusively system strengthening as a design
strategy can be substantially increased by incorporating water quality considerations. Such applications
include, apart from pipe sizes as decision variables, also water quality decision variables that can be in a
form of disinfectant (i.e., chlorine) dosage rates [27,87]. In order to reduce computational effort of those
problems, ANNs were implemented to replace network simulations to a large extent. Further increase
in the complexity presents the use of a multi-objective approach, with additional objectives being
system robustness [89] (uncertainty and system robustness are contained in Section 3.2.3), the pressure
deficit at network nodes [62,65], and the number of demand nodes with pressure deficit [65,90].
In those studies, a conflicting relationship was identified between the economic (i.e., least-cost)
objective and pressure deficit/the number of nodes with pressure deficit. Based on such information,
the decision maker is able to “quantitatively evaluate the cost of pressure constraints attenuation
which implies a reduction in the system service to its consumers.” Optimisation methods used in those
studies were NSGA-II [65,89,90], strength Pareto evolutionary algorithm 2 (SPEA2) [65] and cross
entropy (CE) [62].

Rehabilitation

Due to aging water infrastructure, which causes a decreased level of service in terms of water
quantity as well as quality for customers, increased operation costs and leakage, pipe breaks and
other issues, existing WDSs require rehabilitation in a timely manner. Large investments are and
will be needed in the future to rehabilitate ever deteriorating pipe networks [91] reaching the end of
their lifecycle. Network rehabilitation consists of the replacement of pipes with the same or larger
diameter, cleaning, or cleaning and lining of existing pipes; with the main objective to minimise the
pipe rehabilitation cost. Within an optimisation model, pipe replacement options can be represented
by binary [17] or integer [92] decision variables to identify the pipes selected for replacement, and
continuous [17] or integer [92] diameters, respectively, of the replaced pipes. Pipe rehabilitation
options are often binary decision variables (i.e., 1 = cleaning/lining, 0 = no action) [17,93]. If a pipe
is not scheduled for rehabilitation, it is expected to be subject of break repair over a longer planning
horizon. Hence, study [17] added the expected pipe repair costs to the rehabilitation cost of the
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network. Because a network rehabilitation strategy also has a direct impact on pump operating costs
and GHG emissions due to pumping (i.e., they are reduced with an increased quantity of rehabilitated
pipes) [94], pump energy costs have been added to the total least-cost objective [17,95].

Some studies consider only a single economic objective to formulate a network rehabilitation
problem [17], while other investigations apply a multi-objective optimisation framework in order to
incorporate measures affecting the level of service provided to customers (i.e., ‘community objectives’).
Accordingly, additional objectives considered, beside the economic measure, include the network
benefit [63], pressure violations at network nodes [68,95], velocity violations in pipes [95] causing
potential sedimentation problems and subsequent water discolouration, water quality (i.e., disinfectant)
deficiencies at network nodes [92], and potential fire damage expressed as lack of available fire
flows [92]. To generate multi-objective optimal solutions, those studies use mainly metaheuristics or
hyperheuristics, such as structured messy GA (SMGA) [63], NSGA-II [95], non-dominated sorting
evolution strategy (NSES) [92], and evolution strategy (ES)/SPEA2 in a hyperheuristic framework
with evolved mutation operators [68]. The resulting Pareto fronts can then serve decision makers in
selecting a rehabilitation strategy that balances community objectives with a capital expenditure.

Note that publications included in this section belong to the category of static design, which
involves a single network rehabilitation intervention for a near planning period, designed based on
the current network status. Publications, which are concerned with staged rehabilitation interventions
involving their timing over an extended planning horizon, are reviewed in Section 3.2.1.

Expansion

An expansion of a WDS means developing or expanding the existing system beyond its
current boundary, with the main objective to minimise the total design (or capital) and operation
cost. System expansion can be thought of as the following two interdependent design problems:
(i) developing a new network that is connected to the existing one, and simultaneously (ii)
strengthening, rehabilitating and upgrading the existing system in order to convey increased water
demands. Hence, system expansion is the most complex WDS design problem as it can ultimately
contain all aspects of designing new as well as existing systems. A typical example of the optimal
network expansion is the Anytown network problem [84]. Essentially, the objective is to determine
least-cost design and operation, using locations and sizes of new pipes (including duplicated pipes),
pumps and tanks, as well as pipe rehabilitation options (i.e., cleaning and lining) as decision variables.
Such extensive problems are often solved by combining a power of optimisation algorithms with
“manual calculations and a good deal of engineering judgement” [84].

Although some studies solved the Anytown network problem as initially formulated [84], for
example, study [83] by enumeration and [96] using GA, others included new aspects to the (original
or modified) problem. Those aspects represent, for example, water quality [97] inclusive of the
construction and operation costs of treatment facilities [53], new tank sizing approach (further
discussed in Section 3.1.3) [93,98], and additional objectives, such as the network benefit incorporating
multiple system performance criteria [93,99] or the hydraulic failure, fire flow deficit, leakage and water
age with visual analytics used to explore the tradeoffs between numerous objectives [97]. These studies
used SMGA [99], GA [53,93], and ε-NSGA-II [97] to solve the problem. Study [93] combined GA with
fuzzy reasoning, where system performance criteria are individually assessed by fuzzy membership
functions and combined using fuzzy aggregation operators.

An example of large system expansion represents the battle of the water networks II (BWN-II)
optimisation problem, which involves the addition of new and parallel pipes, storage, operational
controls for pumps and valves, and sizing of backup power supply, and includes the capital
and operational costs, water quality, reliability and environmental considerations as performance
measures [58]. This problem was solved by multiple authors within the Water Distribution Systems
Analysis (WDSA) conference series [58]. Another example of large and real-world system expansion
is presented in [100]. Apart from the decision variables for the BWN-II, it also includes selections
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of pipe routes, expansions of water treatment plants (WTPs) and configurations of pressure zones.
The common approach that is applied to solve both of those optimisation problems was the use of
engineering judgement, which led to a reduction in the number and type of decision variables. In the
case of the study of [100], some eliminated variables were included in separate optimisation problems.
Study [58] demonstrates that “different combinations of engineering experience, computational power
and problem formulation can give similar results”.

Despite the advances in optimisation methods developed for new system design, rehabilitation
and/or expansion of WDS, most notably over the last three decades, the large, complex systems
still represent a significant challenge to solve using a fully automated optimisation procedure.
There are several reasons for that, including: (i) complexity resulting from a mixed-discrete, nonlinear
optimisation problem with often conflicting and difficult to assess objectives and performance
measures; (ii) the large network sizes normally encountered in practice, which translates into large
search spaces where a global optimum is almost impossible to find; (iii) the so called No-Free-Lunch
theorem [101], which says that not all of the optimisers are well suited to solving all problems,
in other words, slow convergence of general population-based optimisation methodologies that
do not utilise some form of traditional engineering experience/heuristics; and (iv) the lack of
computational efficiency of network simulators required by modern population-based optimisation
methods. A number of approaches have been developed to deal with these challenges, mainly aimed
at increasing the computational efficiency of the optimisation process. Those improvements often
include the division of a design problem into multiple phases [58] that can be solved separately,
the involvement of engineering expertise and manual interventions [59] to reduce the search space, or
the use of surrogate and meta-modelling to speed up the simulation process [27]. The work that is still
needed in the WDS design optimisation area is to understand the link between the performance of an
algorithm (and its operators) and certain topological features of a WDS (e.g., existence of pumps/tanks,
loops), as indicated in [29].

3.1.3. Problem Elements

Pipes

Unlike other network elements (e.g., pumps, tanks, valves), pipes are always included in the
optimisation of WDS design, as the basic model is to determine such pipe sizes (or diameters)
for which the design cost of the network is minimal, subject to the nodal pressure requirement.
Even though pipe decision variables are incorporated in every optimisation model, they do not
seem to have been unified. Assuming a given layout of the pipe network, there are two types of a
decision variable, pipe sizes/diameters, and pipe segment lengths of a constant (known) diameter.
Pipe sizes/diameters are discrete by nature of the problem, because they are to be selected from a
set of commercially available sizes, however both discrete and continuous values are used mainly
depending on the optimisation method. Discrete sizes are used mostly for stochastic algorithms (i.e.,
metaheuristics) [42,70,85,88,102–109], whereas continuous sizes for deterministic methods [16,110,111].
In regards to continuous sizes, the final solution can be modified by splitting a link into two pipes of
closest upper- and lower-sized commercially available discrete diameter [16].

WDS design optimisation problems, which use pipe sizes/diameters as decision variables, can be
referred to as a single-pipe design [112,113], while problems with pipe segment lengths of a constant
(known) diameter as a split-pipe design [112,113]. Pipe segment lengths of a constant (known) diameter
are predominantly used in conjunction with deterministic algorithms [14,114,115] or hybrid methods
(i.e., combined deterministic and stochastic methods) [113,116,117]. Single-pipe design with discrete
decision variables can provide, compared to split-pipe design and continuous diameters solutions,
high quality [102], or good quality results without unnecessary restrictions imposed by split-pipe
design [42]. Even if only pipe diameters are optimised, the design of WDS is a complex problem that
requires a careful selection of decision variables as to minimise the search space. The choice between
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direct representation of discrete pipe diameters and split-pipe solutions has largely been resolved in
favour of the former, but further improvements in decision variable coding might be possible.

In cases of an unspecified network layout (e.g., when designing a new or extending an existing
WDS), additional decision variables are required in order to determine or select pipe routes [52,100].
These variables can be formulated, for example, as binary selecting a link which should be included
into the pipe route [52]. Pipe routes can also be considered when strengthening an existing WDS, as
“parallel pipes do not necessarily have to be laid in the same street”, they “may be laid in a parallel
street or right-of-way that may not have existed at previous construction times” [118]. Another possible
type of a pipe decision variable are pipe closures/openings to adjust a pressure zone boundary within
a WDS [100].

Pumps

There are two main aspects of including pumps into the optimisation of WDS design. First,
the pump design or capital cost and second, the pump operating cost due to electricity consumption.
Typically, electricity consumption is one of the largest marginal costs for water utilities, with the price
of electricity rising globally making it a dominant cost in managing WDSs. Therefore, “the presence
of pumps requires that both the design and the operation of the network should be considered in
the optimisation” [99]. Accordingly, the minimisation of the pump design or capital cost as well
as the pump operating cost to achieve minimal amount of electricity consumed by pumps ought
to be included in an optimisation model. Pump operating cost is usually calculated on annual
basis using the typical daily demand patterns (i.e., EPS), but a longer period can be considered
depending on the planning horizon of a case study, for example, 20 years [17,119], 100 years [72,76,77].
Because this cost occurs at different times in the future, its present value is required to be included in
the objective function. This conversion of future economic effects into the current time is undertaken
via a present value analysis (PVA), described in detail in [71,72,77], using zero, constant or time varying
discount rates.

In the model, pumps are controlled by three types of a decision variable. Firstly, a pump location,
which are used when designing a new or extending and upgrading an existing WDS. Possible options
to consider are, for example, to predetermine a limited number of potential pump locations [93,120], to
evaluate network nodes as potential pump locations (yes/no) via binary variables [52] or to upgrade the
current pump stations where new pumps are to be installed in parallel to existing ones [99]. Secondly, a
pump size, which can be included as a pump capacity [14,121], pump type [75,76], pumping power [17],
pump head/height [52,122], pump operation curve/head-flow [93] or pump size in a combination
with the number of pumps [26]. Thirdly, a pump schedule, which describes when the pump is on
and off during a scheduling period (e.g., 24 h). It can be specified by a pumping power [53,54] or
pump head [123] at each time step, the number of pumps in operation during 24 h [97], binary pump
statuses [29], continuous options representing on/off times with a limit imposed on the number of
pump switches [76], discrete options representing the time at which a pump is turned on/off using a
predefined time step (e.g., 30 min) [75]. All of these decisions impact on the size of the search space and
eventually on the computational efficiency of the optimisation algorithm used. A comparative study
of various approaches would be useful to help determine what their advantages and disadvantages
are and which one to use for a particular situation.

In terms of the model objectives, the pump design or capital and/or operating costs were
mostly incorporated together with the costs of other network elements (e.g., pipes, tanks, valves)
into one economic function (see, for example, [17,26,51,60,93,95,96,119]). Although a few studies,
which considered the design and operating costs as part of separate objectives (e.g., [124]), reported
on their conflicting tradeoff, this relationship was not confirmed for a higher-dimensional space
when required to balance numerous objectives [97]. Additionally, the pump maintenance cost (see,
for example, [61,62,121]) as well as the pump replacement and refurbishment cost [71,72,77] were
accounted for. More recently, GHG emission cost or GHG emissions due to the electricity that is
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consumed by pumps [71–77] were introduced as an environmental objective. Similar to the pump
operating cost, a PVA can be used for the pump maintenance, replacement and refurbishment costs,
as well as GHG emissions/cost. Even though there is a significant tradeoff between economic and
environmental objectives (i.e., GHG emissions decrease with the increasing costs and vice versa), GHG
emissions can be considerably reduced by a reasonable increase in the costs [71,72]. Additional results
indicate that the price of carbon has no effect on the tradeoff [77], whereas the discount rates do [72],
the use of variable speed pumps (VSPs) (rather than fixed speed pumps (FSPs)) leads to significant
savings in both total costs and GHG emissions [74].

The mixed-integer nature of pumps as decision variables and their often significant impact in
terms of hydraulic behaviour of the entire system, makes them a difficult element to include and
control its impact during an optimisation run. Furthermore, the increased complexity of modelling
VSPs and their incorporation into the optimisation problem pose another difficulty that has to be
tackled by modern optimisation algorithms. Finally, the formulation of various objectives, including
maintenance requirements (i.e., often surrogated by the number of times a pump is switched on
during the optimisation period), represents another challenge for including pumps into overall WDS
design studies.

Tanks

In spite of having a valuable role in WDSs contributing to their reliability and efficiency [125],
storage tanks (further in the text referred simply to as tanks) are not often included in WDS design
optimisation problems. Several types of a decision variable have been used in the literature to control
tanks in the model, and a few objectives (or objective functions) have been developed to mainly evaluate
tank performance. However, the use of those variables as well as objectives seems to vary across
studies with no general framework on how to model tanks available. As far as decision variables are
concerned, they include tank locations [71,72,96–99,120], tank volumes [16,53,93,96,98,99], minimum
(and maximum) operational levels [93,96,98,99], tank heads [78], tank elevations [14], ratio between
diameter and height [98], ratio between emergency volume and total volume [98]. Study [99] compared
two approaches to model tanks in terms of operational levels, first of which calculates tank levels
analytically during the network analysis, and second of which includes tank levels as independent
variables. Although they yielded similar results, the former approach obtained more robust solutions.

In regard to objectives, the most frequently used account for the tank design or capital cost,
which is normally part of the total system costs (i.e., pipes, pumps, etc.) [16,53,76,93,96–99,120].
Furthermore, additional objectives have been introduced evaluating, along with others, the tank
performance. These objectives are the network benefit, including storage capacity difference [99],
safety and operational volume capacities, and the filling capacity of the tank [93], and system hydraulic
failure including tank failure index [97]. A positive relationship was identified between the total cost
of the system and network benefit [93,99], whereas a negative relationship exists between the cost and
failure index [97]. The effect of changing the tank balancing volume, so called tank reserve size (TRS),
on the minimisation of system cost and GHG emissions was also investigated [76]. It was identified
that a larger TRS could assist in reducing GHG emissions with no additional cost by modifying
pumping schedules.

In addition to pumps, the presence or absence of a tank can also play a significant role in changing
hydraulic behaviour of a WDS. This presents a large challenge for any optimisation approach as it
creates a discontinuity (i.e., a large change in behaviour with or without a tank at a particular location),
which has to be properly managed by the algorithm. Additionally, the setup of the tank (i.e., the link to
the system, overflow valve operation, consideration of upper/lower level limits) within a simulation
model can also play a significant role in the efficiency of the optimisation run.
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Valves

The inclusion of valves in WDS design optimisation problems appears to be rather sporadic
and descriptions related to their implementation are often very brief with not many details provided.
Studies [14,26] accounted for valves in the overall costs of the system, based on optimal valve locations.
The optimisation of a real-life scale WDS incorporating not only transmission pipelines, but also local
distribution pipelines, concluded that optimal valve locations are to be affected by the presence of local
lines which “provide alternative pathways when the main lines are out of service” [26]. As shutdown
of valves used to isolate a portion of the WDS during an emergency (e.g., pipe break or a water
quality incident) creates a change in hydraulic behaviour, the valve numbers and locations play part in
the overall system design, particularly when the reliability or resilience of the system is considered.
For example, study [126] presented a methodology for optimal system design accounting for valve
shutdowns. Another application of valves is using their settings to influence the pressure distribution
in the network (via pressure reducing valves (PRVs)) [16], or to determine timing of flows and flow
rate values (either via flow control valves (FCVs) or PRVs) [127].

Valves were also used to incorporate a simpler model of VSPs into the multi-objective optimisation
of WDS design including total economic cost of the system (i.e., design and operation) and GHG
emissions [74]. In such an application, a pump power estimation method uses a FCV combined with
an upstream reservoir to represent a pump in the system, with the aim to maintain the flows via the
FCV into the downstream tanks as close as possible to the required flows. Hence, the determination
of the most appropriate FCV setting for calculating pump power is formulated as a single-objective
minimisation problem that is subject to multiple flow constraints, which is implemented within a
multi-objective GA (MOGA) framework [74].

A combined design of the isolating valve system and the pipe network presents a considerable
challenge to optimisation methods. Not only that the number of decisions increases exponentially
with the addition of valves, but also the consequences of various valve system designs can only
be evaluated by investigating a large number of (probabilistic) scenarios making the whole process
computationally inefficient. Furthermore, the location and status of isolating valves can form decision
variables also when a WDS is to be divided into manageable subsystems. This is the case with the
so-called district metering areas (DMAs), which have been first implemented in the UK primarily
for leakage management purposes [128]. Due to the fact that the DMA optimal design is normally
performed after a system has been constructed, this problem was deemed beyond the scope of this
review paper.

3.2. Time, Uncertainty and Performance Considerations

3.2.1. Staged Design

A staged design represents an optimisation of a WDS over a long planning horizon divided
into several construction phases, without considering future uncertainties (e.g., in demands, pipe
deterioration). In other words, it is a deterministic dynamic design either over several prefixed time
intervals or with timing decisions (i.e., year of action execution). The planning horizon can spread
across a number of years to an expected life cycle of the system.

Initial work in the staged design is related to the development of multiquality water resources
systems using a single-objective approach, which minimised the costs of water allocation, facilities
expansion, water transportation, and losses caused by insufficient supply [129]. It was formulated as
a LP optimisation problem, into which nonlinear water quality equations were incorporated using
a successive linear approximation iterative scheme. An advantage of using a staged design was
demonstrated by realising linkages between certain management processes and variables, and a
particular planning period (prefixed time interval).

Concerning WDSs, the staged design is often applied to rehabilitate an existing system
as this problem inherently involves the timing of ongoing works over an extended planning
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horizon. Both single- and multi-objective optimisation models were proposed to solve such
problems. Single-objective models included beside the network rehabilitation [130], also network
strengthening [131] and expansion [124,132] combined into one least-cost objective, while
multi-objective models incorporated the network benefit [131] or the system operating costs [124,132] as
additional objectives. Optimisation methods used were GA [130], SMGA [131] and NSGA-II [124,132].
As opposed to the study of [129], these models do not define prefixed time intervals, but include timing
decision variables to schedule works, also referred to as event-based coding [124,132]. This coding
dramatically reduces the search space, thus the computing and memory requirements, because it
eliminates unnecessary zero values of a traditional coding based on a time-interval (e.g., yearly)
basis [124]. A further search space reduction can be achieved by so called limited pipe representation
introduced by [130], which involves placing an upper bound on the number of pipes considered
for rehabilitation. These reductions in the search space and computing requirements are especially
important for large size WDSs.

Moreover, the staged design was applied to extend and strengthen existing wastewater, recycled
and drinking water systems applying an integrated optimisation scheme within a single-objective
framework using GA [127], and to plan a new WDS considering two objectives, the construction
costs and network reliability, using NSGA-II [118]. Both of these studies used prefixed time
intervals to schedule the construction. In addition, study [118] analysed the effect of the scheduled
construction on the network design using a set of scenarios reflecting different lengths of planning
horizons (25–100 years), time intervals (25–100 years) and the number of construction phases (1–4).
Both studies [118,127] confirmed that for long planning horizons, the staged design is cost effective.
The system upgrades guarantee a predefined reliability and there is always opportunity to modify
or redesign subsequent upgrades at the later stage, based on new up-to-date predictions of potential
future development [118].

By introducing staged design to WDSs, it is obvious that the search space increases almost
exponentially to accommodate decisions at various times in the planning horizon. This is one of the
key challenges for deterministic staged design, as computational efficiency of optimisation algorithms
plays even more significant role than with static design. Another difficulty for achieving the optimised
staged design is that even if an optimal solution can be found for each of the intermediate time steps, the
algorithm has to ensure that contiguity among the staged decision is maintained, i.e., that the decisions
selected in the previous stages are retained in the subsequent ones. An approach by [133] presents
one way of obtaining that contiguity of decisions, starting from the solution at one extreme of the
Pareto front. However, this issue is still an under-researched area, which requires more investigation.
All of the above challenges apply even when the future is assumed to be perfectly known, which is
unfortunately not the case.

3.2.2. Flexible Design

A flexible design represents one of the most recent developments in the design optimisation
of WDSs. Similar to a staged design, a flexible design represents an optimisation of a WDS over a
long planning horizon divided into several construction phases, but with the consideration of future
uncertainties (e.g., in demands, pipe deterioration, urban expansion scenarios). Specifically, it is a
probabilistic dynamic design over several prefixed time intervals and with the planning horizon
ranging from a number of years to an expected life cycle of the system. Such a design allows for flexible
and adaptive planning, which is favoured by water organisations that are often encouraged to include
risk and uncertainty in their long term plans.

Uncertainties included in the flexible design are related to future demands [122,134–136] and
future network expansions [137]. They are implemented using either a probabilistic demand
assessment [135] or scenario-based approach via demand/expansion scenarios [122,134,136,137].
A decision tree has been introduced to combine the uncertain demands and intervention measures
into optional decision paths [135]. Analogously, studies [122,137] have proposed the use of real options
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(ROs) approach, which is also based on decision trees that reflect future uncertainties. In ROs approach,
a decision tree is formed by independent decision paths with assigned probabilities to each of the
scenarios. This approach enables flexibility to be incorporated into the decision making process and to
subsequently change the investment plan based on new circumstances [122].

The majority of the above studies apply multi-objective optimisation approach, including, besides
an economic (least-cost) objective, the system resilience [135], reliability [136] or total pressure
violations [137] as another objective. Stochastic optimisation algorithms, such as NSGA-II [135,136],
simulated annealing (SA), and multi-objective SA [122,137] have been employed to solve flexible
design problems, except for [134] who applied integer LP (ILP) combined with preprocessing methods
to reduce the dimensionality of the problem. These preprocessing methods included separating
the (branched) network into subnetworks, reducing the number of decision variables (e.g., velocity
constraints were used to eliminate unsuitable pipe diameters) and solving each subnetwork separately.
As a consequence, the quality of the solution was improved and the proposed methodology [134] can
be applied to large size WDSs.

While comparing to a traditional deterministic design, the results indicate that a flexible design
has a higher initial cost (i.e., in the first construction phases) [122,136], which enables the system to
adapt to various future conditions. However, it outperforms a traditional design in terms of the total
cost over the entire planning horizon [122,135].

The application of flexible optimisation methodologies in WDS design that consider long-term
uncertainty and management options, is yet to be explored to a larger extent in the literature. One of
the key reasons is that it is not clear how various types of uncertainties, i.e., stochastic vs. deep
uncertainty or aleatoric vs. epistemic uncertainty, are best represented in the optimisation process.
The other possible reason is that the flexible design incurs additional computational costs that affects
the overall computational efficiency of the optimisation algorithm. However, as the planning and
design exercises are done sporadically, the additional computational burden and costs are often
justified. Future uncertainties that might have an impact on WDS design, including climate change,
population movements and economic development, make flexible design probably the most promising
area of research over the next few decades.

3.2.3. Resilient, Reliable and Robust Design

System resilience, reliability and robustness present performance characteristics of a WDS in
relation to current and most importantly future uncertain conditions. Although there is no universally
agreed definition of any of these measures, the resilience can be defined in broadest terms as the ability
of a WDS to adapt to or recover from a significant disturbance, which can be internal (e.g., pipe failure)
or external (e.g., natural disaster) (adapted from [138]). Similarly, the reliability can be defined as the
ability of a WDS to provide expected service, and can be expressed as the probability that the system
will be in service over a specific period of time (adapted from [139]). The robustness represents the
ability of a WDS to maintain its functionality under all circumstances (adapted from [138]), or over
everyday fluctuations that have the potential to cause low to moderate (i.e., not catastrophic) loss of
performance [89].

A robust design problem of a WDS is primarily concerned with uncertainties in model parameters.
These uncertainties are related mainly to future demands [89,110,121,123,140,141], but can also
consider pipe roughnesses [89,110,140,141], minimum nodal pressure requirements [110], network
expansions [137] and others [142]. Study [89] states that “neglecting uncertainty in the design process
may lead to serious underdesign of water distribution networks”.

Several approaches have been proposed in the literature to formulate a robust design problem
for WDSs. Firstly, a redundant design approach which adds redundancy to the system to account
for the uncertain parameters by assuming that those parameters are larger than expected [140].
Secondly, an integration approach where uncertainties are incorporated into the model formulation
via either objective function [89] or constraints [140] sometimes referred to as a chance-constrained
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model [110]. Both of those approaches assume a probabilistic distribution of uncertain parameters and
convert an original stochastic optimisation problem into a deterministic one. Thirdly, a two-phase
optimisation approach that initially solves an optimisation problem with deterministic parameters
(i.e., no uncertainties), and subsequently uses those obtained solutions as an initial population
for a stochastic problem where future demands and pipe roughnesses are considered uncertain
variables following a probability density function [141]. Fourthly, a scenario-based approach where
the uncertainty is implemented via a set of scenarios, each assigned a probability [121]. Lastly and
most recently, a robust counterpart (RC) approach which is non-probabilistic and incorporates the
uncertainty through an ellipsoidal uncertainty set constructed according to the user-defined protection
level [123].

Despite a number of approaches to incorporate robustness into the design of WDSs, the measure
has been defined fairly well and consistently in the literature, and consequently it has been used in
optimisation studies. This may be due to the advances in robust optimisation in other fields and/or
due to the focus on non-catastrophic loss of performance that is associated with robust operation.
However, the other two measures, reliability and most notably resilience, have not been defined
consistently in the WDS literature or have been considered seriously only fairly recently. Therefore,
this section focuses on robust design of WDSs, with resilience and reliability being outside of the
scope of this review paper. This also indicates that future research efforts could be directed toward a
consistent and agreed definition of reliability and resilience, with optimisation methods being capable
of solving WDS design considering them as objectives/performance measures.

Robust design optimisation problems are mainly solved using stochastic methods, such as
GA [140], NSGA-II [89,121], optimised multi-objective GA (OPTIMOGA) [141], PSO [142] and CE [123],
except for [110], who solves it as a NLP problem.

3.2.4. Design for Water Quality

In the literature, water quality is incorporated into the WDS design optimisation problems in
various ways concerning both an optimisation model and water quality measure used. In terms
of optimisation models, single-objective as well as multi-objective exist which include water
quality considerations. In the former, water quality related expenditures, such as the cost of
disinfection [27,120], cost of water treatment [53] or cost of losses incurred by insufficient quality [129],
are combined with the system design/capital (and operation) costs into one objective. Alternatively,
water quality is included as a constraint to a single-objective model in a form of minimum (and
maximum) disinfectant concentrations at the network nodes [87,143]. In the latter, water quality
presents a sole objective, which is either water quality benefit (being maximised) [63,131], water
quality deficiencies (being minimised) [92,97,144] or water quality reliability (being maximised) [78].
Regardless of an optimisation model used, study [120] highlighted an importance of incorporating
water quality considerations with system design and operation in one optimisation framework,
which enables promoting water quality in the design stage, rather than leaving potential water quality
issues to be resolved during the system’s operational phase. Indeed, study [78] reports a significant
tradeoff between water quality objective based on disinfectant residual and the system capital costs (i.e.,
the best quality solutions correspond to higher costs and vice versa), and demonstrates the sensitivity
of the obtained solutions to a disinfectant dosage rate. Interestingly, there was not tradeoff found
between water quality objective based on water age and the cost.

Regarding the water quality measure, it is dependent on the system specifics, its requirements,
and also the optimisation model advancements progressively implementing water quality objectives
useful to system operators. Basic water quality parameters that are used in optimisation models
of drinking WDSs are chlorine [27,87,120,143] and chloramine [120], modelled as non-conservative
applying first order decay kinetics, adjusted by a higher decay rate in parts of the system when
needed [120]. In contrast, conservative water quality parameters are typically important for regional
multiquality WDSs. These parameters are either specified within an optimisation model, such as
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salinity [129] or unspecified being modelled in conjunction with the operation of treatment facilities [53].
In multi-objective optimisation models, both specific parameters and surrogate measures are used to
quantify water quality objectives. Water quality benefit is expressed as a function of the length
of renewed and/or lined old pipes, as aged pipes are considered to cause the development of
microorganisms and water discolouration [63,131]. Water quality deficiencies can be represented
by a performance function on disinfectant residual reflecting governmental regulations [92], water
age [97], or the risk of water discolouration due to the potential material after daily conditioning shear
stress [144]. Water quality reliability is based on disinfectant residual [145] and/or water age [78].

Optimisation methods used to solve WDS design problems including water quality considerations
were LP [129], GA [53,87,100,120,143] and differential evolution (DE) [27] for single-objective
models, and SMGA [63,131], NSES [92], ε-NSGA-II [97], NSGA-II and SPEA2 integrated with a
heuristic Markov-chain hyper-heuristic (MCHH) [144] and ant colony optimisation (ACO) [78] for
multi-objective models. These algorithms were mainly linked with a network simulator EPANET
to solve network equations. Because these EPANET simulations, in particular water quality
analyses, are very computationally demanding, they were replaced by ANNs [27,87,143] to reduce
computational effort.

Unsurprisingly, introduction of water quality considerations increases the complexity of the quest
for the optimal design considerably. This increased complexity is caused not only by the more complex
simulations required to predict the temporal and spatial distribution of a variety of constituents
within a distribution system, but also by the requirement to run shorter time step water quality
computations [22]. Furthermore, computational efficiency is affected by the ability to model multiple
constituents throughout the WDS via the EPANET Multi-Species Extension, EPANET-MSX [146].

4. General Classification of Reviewed Publications

Based on the selected literature analysis, the following are the four main criteria for the
classification of design optimisation for WDSs: application area (Section 4.1), optimisation model
(Section 4.2), solution methodology (Section 4.3) and test network (Section 4.4).

4.1. Application Area

As outlined in Section 3, there are four application areas: design of new systems (Section 3.1.1),
strengthening, expansion and rehabilitation of existing systems (Section 3.1.2). Numerous publications
do not deal only with those design optimisation problems, but also with the operational optimisation
(see, for example, [14,26,53,71,120,135]), which is an equally important area if the total cost (i.e.,
including capital and operation expenditure) is considered. Hence, the system operation has been
added to the following analysis. It represents papers optimising (mainly) the pump operation together
with the system design, strengthening, expansion and/or rehabilitation. Figure 2 displays distribution
of the application areas across the papers analysed and listed in Appendix A Table A1 as follows:

• Design of new systems is an application area with the highest representation (41%). Interestingly,
an almost identical percentage (43%) totals applications for existing systems (i.e., strengthening,
expansion and rehabilitation).

• An application area with the second highest representation (25%) is strengthening of
existing systems.

• Expansion and rehabilitation of existing systems are both represented evenly by 9% of
applications each.

• Optimisation of the system operation is represented by 16% of applications.
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Figure 2. Application areas (of papers from Appendix A Table A1).

It is not surprising that design (and mostly using pipe diameters as decision variables) dominates
the literature, which occurs mostly due to historical reasons. Namely, the sizing of pipes was addressed
first in the literature, even before WDS simulation was possible. Other design variants, such as
strengthening, expansion and rehabilitation, followed on, but use the same or quite similar performance
measures and optimisation tools. The introduction of other network elements, such as pumps,
tanks and valves, as well as various performance criteria, including water quality and operational
considerations, appeared much later in the literature. Lately, more emphasis was put on robustness,
reliability and resilience assessment of WDS design and operation, which seems to be the trend for
the future.

4.2. Optimisation Model

An optimisation model is mathematically defined by three key components: objectives, constraints
and decision variables. Figure 3 shows how many of these components are included in the optimisation
models (of papers analysed in Appendix A Table A1), which indicates the degree of complexity
of the formulation. Note that not all of the reviewed papers include mathematical formulations
of an optimisation model used. Therefore, our assessment is limited to our interpretation of the
provided information in the publications, where explicit formulation was partially presented or
missing altogether.

• The number of objectives included in optimisation models ranges from one to six. The majority of
models (69%) are single-objective, determining the least-cost design. The second largest proportion
(27%) represents two-objective optimisation models. Multi-objective models including more than
two objectives (i.e., 3–6 objectives) are very sparse as they represent only 4% of all formulations.

• The number of constraints incorporated in optimisation models ranges from zero to ten. Hydraulic
constraints (such as conservation of mass of flow, conservation of energy and conservation of
mass of constituent) are normally included as implicit constraints and are forced to be satisfied by
a WDS modelling tool, such as EPANET, and thus are not included in these statistics. There are 5%
of models with no constraints, which are mainly multi-objective optimisation models where the
pressure requirement is defined as an objective rather than a constraint. Almost half models (48%)
include only one constraint (mostly the minimum pressure requirement). A quarter of models
(25%) incorporate two constraints. The proportion of optimisation models with exactly three or
more (i.e., 4–10) constraints is 13% and 9%, respectively.

• The number of types of a decision (i.e., control) variable included in optimisation models ranges
from one to 13. The majority of optimisation models (60%) uses one type of a decision variable,
being a pipe diameter/size or pipe segment length of a constant (known) diameter. The use of
more than one type of a decision variable is considerably less frequent and is represented by 16%,
11% and 13%, respectively, for two, three and more (i.e., 4–13) types of a decision variable.
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Figure 3. Optimisation models (of papers from Appendix A Table A1) by: (a) number of objectives, (b)
number of constraints, (c) number of types of a decision variable, in an optimisation model.

Inspecting Figure 3, the question arises as to how many optimisation models there are, which
include only one objective, one constraint and one type of a decision variable? There are, in total,
129 optimisation models formulated and solved in 124 papers listed in Appendix A Table A1.
From those optimisation models, 30% (i.e., 39 models) consist of one objective (mostly design costs),
one constraint (mostly the minimum pressure at nodes) and one type of a decision variable (mostly
pipe diameters).

As indicated, the prevailing use of single-objective optimisation is probably caused by the
preference to arrive at a single solution, which can be implemented by decision makers. On the
other hand, the preference for one constraint seems surprising as the number of constraints of the
problem depends on the complexity of the system and the number of criteria expressed as constraints
rather than objectives. Finally, the number and types of decision variables appearing in the literature is
a function of historical developments in the field and the increasing trend is expected in the future.
Research questions still remain as how to best formulate the optimisation model for a particular case,
and what effect the model formulation has on obtained solution(s) [22,23].

4.2.1. General Optimisation Model

A general multi-objective optimisation model for optimal design of a WDS can be formulated as:

Minimise/maximise ( f1(x), f2(x), . . . , fn(x)) (1)

subject to:
ai(x) = 0, i ∈ I = {1, . . . , m}, m ≥ 0 (2)

bj(x) ≤ 0, j ∈ J = {1, . . . , n}, n ≥ 0 (3)

ck(x) ≤ 0, k ∈ K = {1, . . . , p}, p ≥ 0 (4)

where Equation (1) represents objective functions to be minimised (e.g., system capital costs) or
maximised (e.g., system reliability), Equations (2)–(4) present three types of a constraint, with x
representing decision variables.

Objectives

Objectives of a general optimisation model of WDS design are listed in Table 1. They can be
divided into four distinct groups according to their type. The first group represents economic objectives
such as capital and rehabilitation costs, and expected operation and maintenance costs of the system.
The second group are community objectives, which report on the level of service provided to WDS
customers, and which, if inadequate, could eventuate in water supply related issues for those customers.
Those objectives include, for example, a benefit function (using various performance criteria), water
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quality deficiencies, pressure deficit at demand nodes, hydraulic failure of the system and potential fire
damages. The third group presents performance objectives, reflecting the operation of a WDS, specifically
system robustness, reliability and resilience. These objectives, although ultimately indicating the
level of service for WDS customers, have separate classification, due to their primary purpose to
report on the performance in relation to a WDS rather than to customers. The fourth group represents
environmental objectives, namely GHG emissions, consisting of capital emissions due to manufacturing
and installation of network components applicable at the WDS construction phase, and operating
emissions due to electricity consumption occurring during the WDS life cycle.

Table 1. Objectives of a general optimisation model.

Objective Type Objectives Reference (An Example)

Economic

Capital costs of the system, including purchase,
installation and construction of network
components (pipes, pumps, tanks, treatment
plants, valves, etc.)

[53,74,121]

Rehabilitation costs of the system, including
pipe/pump replacement, pipe cleaning/lining,
pipe break repair

[17,124] (pipes), [77] (pumps)

Expected operation costs of the system, including
pump stations, treatment plants and
disinfectant dosage

[53] (pump stations and treatment plants),
[27] (disinfectant dosage)

Expected maintenance costs of the system [121]

Community

Benefit/benefit of the solution (i.e., rehabilitation,
expansion and strengthening) using various
performance criteria by authors

[131] (welfare index to place greater
importance on early improvements), [99]
(quantity shortfalls as criteria), [93] (e.g.,
safety volumes and operational capacities
as criteria)

Water quality (e.g., disinfectant, sedimentation,
discolouration) deficiencies or water age at
customer demand nodes, water discolouration
risk, velocity violations (causing
sedimentation/discolouration)

[92,120] (water quality deficiencies), [97]
(water age), [144] (water discolouration),
[95] (velocity violations)

Pressure deficit at customer demand nodes
(maximum individual or total), or the number of
demand nodes with the pressure deficit

[65] (maximum individual deficit), [66,68]
(total deficit), [90] (the number of
demand nodes)

Hydraulic failure of the system expressed by the
failure index [97]

Potential fire damages using either expected
conditional fire damages or fire flow deficit

[142] (expected conditional fire damages),
[92] (fire flow deficit)

Performance

System robustness using either a redundant design
approach, integration approach (via objective
function or constraints), two-phase optimisation
approach, scenario-based approach or
RC approach

[140] (redundant design), [89] (integration
via objective function), [110,140]
(integration via constraints), [141]
(two-phase optimisation), [121]
(scenario-based), [123] (RC)

System reliability [118]

System resilience [135]

Environmental

GHG emissions or emission costs consisting of
capital emissions (due to manufacturing and
installation of network components) and
operating emissions (due to
electricity consumption)

[77] (capital and operating GHG emission
costs), [73,75] (capital and operating GHG
emissions), [132] (operating GHG
emission cost)

Constraints

Constraints of a general optimisation model of WDS design are described in Table 2 and divided
into three groups as follows. Hydraulic constraints are given by physical laws governing the fluid flow
in a pipe network. These constraints are incorporated in an optimisation model either explicitly often
in conjunction with deterministic [147] and hybrid optimisation techniques [116,117], or implicitly by a
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WDS modelling tool (e.g., EPANET) [26] and/or ANNs [27,87] normally in combination with stochastic
optimisation algorithms. System constraints arise from limitations and operational requirements of a
WDS, and include tank water level bounds, pressure/water quality requirements at demand nodes,
etc. The ways to manage these constraints include an integration of EPANET (e.g., tank water levels),
the augmented Lagrangian penalty method [17], a penalty function [26], a penalty function with a
self-adaptive penalty multiplier [45,88], or a (modified) constraint tournament selection [148–150].
Constraints on decision variables, such as pipe diameters being limited to commercially available sizes
and others, are handled explicitly by an optimisation algorithm.

Table 2. Constraints of a general optimisation model.

Constraints Reference (An Example)

Hydraulic constraints given by physical laws of fluid flow in a
pipe network: (i) conservation of mass of flow, (ii) conservation
of energy, (iii) conservation of mass of constituent

[41]

System constraints given by limitations and operational
requirements of a WDS, for example, minimum/maximum
pressure at (demand) nodes and flow velocity in pipes, water
deficit/surplus at storage tanks at the end of the simulation
period, maximum water withdrawals from sources

[54] (limits on nodal pressure, storage tank deficit and
water withdrawals from sources), [127] (limits on
pipe velocity)

Constraints on decision variables x, for example, limits on pipe
diameters, pipe segment lengths (so called split-pipe design),
pump station capacities

[92] (limits on pipe diameters), [117] (limits on pipe
segments), [121] (limits on pump stations)

Decision Variables

Decision variables of a general optimisation model of WDS design are listed in Table 3. They are
grouped according to an element or aspect that drives the optimisation (i.e., pipes, pumps, tanks,
valves, nodes, water quality and timing). In general, a pipe diameter/size is often the main (or the
only) decision variable used in design optimisation of WDSs. Accordingly, a total of 60% optimisation
models (of papers listed in Appendix A Table A1) use only one type of a decision variable (see
Figure 3c), which is either a pipe diameter/size or the pipe segment length of a constant (known)
diameter. As the complexity of an optimisation model increases, so does the number of types of a
decision variable. An example of such an optimisation model could be an expansion and rehabilitation
of an existing WDS with pumps, tanks and a treatment plant to meet future demands and water
quality requirements.

Table 3. Decision variables of a general optimisation model.

Decision Variables Reference (An Example)

Pipes: pipe diameters/sizes, pipe duplications, pipe
rehabilitation options (pipe replacement, pipe cleaning/lining),
pipe break repair, pipe segment lengths (so called split-pipe
design), future pipe roughnesses, pipe routes, pipe
closures/openings (to adjust a pressure zone boundary)

[75] (diameters), [132] (duplications, replacement,
lining and break repair), [117] (segments), [141]
(roughnesses), [52] (routes), [100] (routes and
closures/openings)

Pumps: pump locations, pump sizes (pump capacities, pump
types, pumping power, pump head/height or head-flow), the
number of pumps, pump schedules (pumping power or pump
head at each time step, the number of pumps in operation
during 24 h, binary statuses at time steps, on/off times)

[52,99] (locations), [14] (locations and capacities), [75]
(types), [17] (power), [52,122] (head/height), [93]
(head-flow), [26] (sizes and the number of pumps),
[53,123] (power or head at each time step), [97] (the
number of pumps in operation), [29] (binary statuses),
[75] (on/off times)

Tanks: tank locations, tank sizes/volumes, minimum
operational level, ratio between diameter and height, ratio
between emergency volume and total volume, tank heads

[98] (locations, sizes/volumes, minimum operational
level, ratios), [78] (heads)

Valves: valve locations, valve settings (headlosses or flows) [14] (locations), [16] (headlosses via a roughness
coefficient), [127] (headlosses and flows)
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Table 3. Cont.

Decision Variables Reference (An Example)

Nodes: flowrates from sources, future nodal demands,
threshold demands, hydraulic heads at junctions [127] (flowrates), [135,141] (demands), [147] (heads)

Water quality: disinfectant dosage rates (at the sources, at the
treatment plants, in the tanks), treatment removal ratios,
treatment plant capacities

[143] (dosage at the sources), [27] (dosage at the
treatment plants), [78] (dosage in the tanks), [53]
(removal ratios), [121] (capacities)

Timing: year of action (e.g., network expansion, rehabilitation,
pipe replacements) execution

[131] (network expansion and rehabilitation), [130]
(pipe replacements)

Tables 1–3 provide a generic set of components used for formulating an optimisation problem
involving initial design with subsequent operational management of a WDS. Particular circumstances
being considered in different case studies may warrant only a portion of those components to be used.

4.3. Solution Methodology

An enormous effort has been dedicated to the application and development of optimisation
methods to solve WDS design optimisation problems since the 1970s. Initially, deterministic
methods namely LP [14,114,129], NLP [16,110] and mixed-integer NLP (MINLP) [17,115] were
used. In the mid 1990s, after the first popular applications of a GA [20,151], there was a swing
towards stochastic methods and they dominate the field since (see Figure 4). A great range of
those methods has been applied to optimise design of WDSs to date, inclusive of (but not limited
to) a GA [42,45,50,85,86,152–154], fmGA [88], non-crossover dither creeping mutation-based GA
(CMBGA) [149], adaptive locally constrained GA (ALCO-GA) [155], SA [60], shuffled frog leaping
algorithm (SFLA) [103], ACO [104,156], shuffled complex evolution (SCE) [157], harmony search
(HS) [105,158,159], particle swarm HS (PSHS) [160], parameter setting free HS (PSF HS) [161], combined
cuckoo-HS algorithm (CSHS) [162], particle swarm optimisation (PSO) [106,153,154], improved PSO
(IPSO) [163], accelerated momentum PSO (AMPSO) [164], integer discrete PSO (IDPSO) [165], newly
developed swarm-based optimisation (DSO) algorithm [150], scatter search (SS) [166], CE [61,62],
immune algorithm (IA) [167], heuristic-based algorithm (HBA) [168], memetic algorithm (MA) [107],
genetic heritage evolution by stochastic transmission (GHEST) [169], honey bee mating optimisation
(HBMO) [170], DE [46,153,154,171], combined PSO and DE method (PSO-DE) [172], self-adaptive DE
method (SADE) [173], NSGA-II [70], ES [68], NSES [92], cost gradient-based heuristic method [119],
improved mine blast algorithm (IMBA) [174], discrete state transition algorithm (STA) [175],
evolutionary algorithm (EA) [109], and convergence-trajectory controlled ACO (ACOCTC) [176].
The vast majority of those studies solely solve a basic single-objective least-cost design problem
(i.e., pipe cost minimisation constrained by the nodal pressure requirement) and use a small number
of available benchmark networks (e.g., Hanoi network [49], New York City tunnels [81], two-loop
network [14]) to test the proposed optimisation method. The usual result obtained was a better or
comparable optimal solution reached more efficiently than by algorithms previously used in the
literature, without providing an explanation as to why the selected algorithm performed better for a
particular test network. It seems, therefore, that research have been trapped, to some extent, in applying
new metaheuristic optimisation methods to relatively simple (from an engineering perspective) design
problems, without understanding the underlying principles behind algorithm performance. Moreover,
study [177] stresses that there has been “little focus on understanding why certain algorithm variants
perform better for certain case studies than others”.
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Figure 4. Optimisation methods (of papers from Appendix A Table A1) by year.

Over the past decade, an increase in the use of deterministic and hybrid methods (i.e., a combined
deterministic and stochastic method) can be observed from Figure 4. These methods, which are
computationally more efficient when comparing to stochastic methods, thus more suitable for
large real-world applications, include ILP [51,134], MINLP [147], a combined GA and LP method
(GA-LP/GALP) [113,117], combined GA and ILP method (GA-ILP) [178], combined binary LP and DE
method (BLP-DE) [179], combined NLP and DE method (NLP-DE) [111], hybrid discrete dynamically
dimensioned search (HD-DDS) [180], decomposition-based heuristic [52], optimal power use surface
(OPUS) method paired with metaheuristic algorithms [47], and modified central force optimisation
algorithm (CFOnet) [181]. However, WDS simulations may still be computationally prohibitive even
with more efficient deterministic or hybrid optimisation methods, especially as the fidelity of the
model and the number of decision variables increase [22].

The choice of the solution methodology depends on the type of problem being considered,
the level of expertise of the analyst and the familiarity with the particular method/tool. Nonetheless,
there is often no clear justification provided as to why a particular methodology has been selected
over another and/or why an alternative methodology has not been tested. Quite often, this choice
is based on the analyst’s preference, level of familiarity, and software availability, rather than on a
comparison of the tests performed using two or more solution methodologies. This practice makes it
difficult to progress towards the development of meaningful guidelines for the application of different
optimisation methods [177]. An interesting research question for further studies would be how to
characterise and select the best optimisation method for a particular WDS design problem.

However, that being stated, several attempts have been made to compare or evaluate algorithm
performance for both single- and multi-objective WDS design problems, but with an absence of a
universally adopted method to date. A methodology for comparing the performance of various
single-objective algorithms involves assessing the best solution obtained (which is straightforward
contrary to multi-objective optimisation), the convergence speed, and the spread and consistency of
the solutions using a number of random starting seeds and evaluations [153,154]. A methodology
has also been developed to evaluate the performance of a particular algorithm by assessing the
effectiveness of its parameters (such as crossover and mutation) applying their different values [182].
In multi-objective optimisation, in general, performance metrics were proposed and are commonly
used to compare performance of various algorithms in terms of the quality of the Pareto fronts
obtained (see, for example, [183–185]). A comparison of solutions is substantially more complex
than in single-objective optimisation as there is no single performance metric both compatible and
complete [186]. Possibly for that reason, some WDS design studies have limited their analysis to a
visual comparison of solutions only (i.e., two-objective Pareto fronts), which was criticised by [187].
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Most recent research, progressively, evaluates the performance and search behaviour of multi-objective
algorithms in relation to their parameters and/or WDS features [28] (more such studies are listed in
Section 4.3.2).

4.3.1. Computational Efficiency

Numerous advancements have been reported in the literature to improve the computational
efficiency of both optimisation algorithms and network simulators. These developments
include methods for search space reduction [45,63,88,95,99,120,131,188,189], parallel programming
techniques [109], hybridisation of the evolutionary search with machine learning techniques to
limit the number of function evaluations [67], surrogate models (metamodels) to replace network
simulations [27,43,67,87,143], approximation of the objective function by shortening the EPS [119],
and enhanced methods for speedy network simulations for large size WDSs [190].

Various techniques for search space reduction have been proposed, which can be broadly
classified as algorithm-based and network-based methods. The algorithm-based techniques include
the method for more efficient encoding of decision variables [63,99,131], a self-adaptive boundary
search strategy for selection of the penalty factor within the optimisation algorithm to guide the
search towards constraint boundaries [88], and the application of an artificial inducement mutation
(AIM) to acceleratingly direct the search to the feasible region [95]. The network-based techniques
analyse either the network as a whole or individual pipes. The former include a network stratification
into upper, middle and lower diameter sets using engineering judgment [188], and the critical path
method [45,191]. The latter involve the elimination of certain pipes from the optimisation based on
their preliminary capacity assessment [120], application of a pipe index vector (PIV), a measure of
the relative importance of pipes regarding their hydraulic performance in the network, which assists
in exclusion of impractical and infeasible regions from the search space [189], and introduction of
upper/lower bounds on pipe diameters based on the initial analysis [30].

In terms of replacing time consuming network simulations with faster means, three types of
a surrogate model have been applied to the design optimisation of WDSs to date. These models
include a linear transfer function (LTF) [43], Kriging [67] and ANNs [27,87,143], which are used more
frequently than two previous ones. The purpose of a surrogate model is to approximate network
simulations (hydraulics and/or water quality), hence reduce the calls of the simulation model during
the optimisation. Kriging uses solutions visited during the search to model the search landscape [192].
ANNs can be divided into two groups, offline ANNs, which are trained only once at the beginning
of the optimisation, and recently proposed online ANNs, which are “retrained periodically during
the optimisation in order to improve their approximation to the appropriate portion of the search
space” [27]. ANN metamodels are often used in conjunction with water quality simulations [27,87,143].

All of those methods have shown promise on a limited number of test cases or a specific case
study. It would be interesting to conduct a thorough comparison of all of those on a selection of
benchmark cases of various sizes and complexity.

4.3.2. Recent Developments

More recently, a number of advancements, such as improving and understanding the algorithm
performance and others, have been proposed in the literature indicating potential directions for future
research. Some of those developments are a consequence of an appeal of [23,177] “to counteract
potential repetition and stagnation in this field” to continually produce too many papers using “an
ever increasing number of EA variants” and “theoretical or very simplistic case studies”.

Firstly, to improve the algorithm performance regarding the solution quality, an engineered initial
population has been suggested [26,30,44,66,108]. Traditionally, a random (or naïve) initial population
of solutions (expressed as pipe sizes) is used as a starting point for algorithms. An engineered initial
population, in contrast, is created by taking into account the rules and hydraulics principles of water
flow in a pipe network, or by performing pre-optimisation runs under various parameter scenarios
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(e.g., [30]). Another way to achieve better algorithm convergence, particularly for design problems
incorporating water quality, is to run the algorithm with hydraulic analysis only for several first
generations, and subsequently add water quality analysis [120]. Furthermore, a postoptimisation
technique can be used to refine the solutions that are found by an optimisation algorithm to
get closer to the global optimum [193]. Secondly, a range of strategies have been introduced
to eliminate the tedious and time demanding process of calibrating algorithm parameters (i.e.,
selecting the best performing combination of parameter values) for a particular test problem.
These strategies involve the use of a statistical analysis [158], evolved heuristics (i.e., hyper-heuristic
approach) [68,144,194], and convergence trajectories [176]. Thirdly, several studies focused on
analysing algorithm performance [195] and search behaviour [28,48,196] in relation to the WDS
design problem features [29]. Lastly, methodological improvements using existing methods have been
proposed rather than applying/developing new algorithms, with the aim to improve computational
efficiency. Those improvements represent multiple-phase optimisation concepts [30], which can be
combined with graph decomposition [46,69] or clustering [90] techniques.

4.4. Test Network

An enormous diversity exists among test networks used in optimisation of WDS design.
These networks vary in size, complexity, and the types of network components that they contain
(i.e., nodes, pipes, pumps, tanks, reservoirs/sources and/or valves). The simplest networks are
small gravity WDSs with one source, a few nodes and pipes (see, for example, [14,60]), or simplified
pumped WDSs including only one source, one pump, one pipe and one tank (see, for example, [71]).
An example of a large network represents EXNET [82], which is a realistic WDS comprising two
sources, control valves and almost 2500 pipes. Figure 5 categorises test networks that are used (in the
papers listed in Appendix A Table A1) by network size. In order to be consistent with the previous
review [22], network size is expressed by the number of nodes within a network. Networks, for which
the number of nodes cannot be identified from the reviewed paper or the references provided, are
excluded from the analysis. Figure 5 reveals that nearly a half of the networks (49%) is limited in
size to 20 nodes and the majority of the test networks (84%) contains up to 100 nodes. This finding is
analogous to operational optimisation of WDSs, where networks with up to 100 nodes represent 80%
of applications [22].

Figure 5 illustrates that in the large body of literature, various WDS design formulations
and optimisation methods have usually been tested using small, computationally cheap networks.
This prevalent usage of small networks is in contrast to the requirement to optimise design of
real-world systems that contain hundreds of thousand elements (including pumping stations, tanks
and valves) causing a single EPS simulation to take minutes or even hours to execute even on powerful
desktop computers. Consequently, large networks are not often considered by optimal design studies.
This situation can be remedied by using latest developments in methods capable of generating realistic
WDS networks by [55–57], who have each developed their own automatic network generation software.

Figure 5. Test networks (of papers from Appendix A Table A1) by network size.
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Real-world WDS design optimisation problems normally involve large size, complex-topology
networks, comprising a number of elements of various types. Such a problem is often solved by
combining a sophisticated simulation model (to potentially analyse both hydraulics and water
quality) with a non-trivial optimisation method. The approach ought to satisfy the requirements
of a water utility and other stakeholders for objectives, constraints, decision variables, as well
as model assumptions. Although studies exist that report on successful solutions to such
problems [100,127,197–199], they are limited possibly due to the complexity associated with
mathematically formulating objectives and constraints and/or finding the best solution. Study [200]
even speculates that the real-world considerations need to be explicitly quantified, “if it is possible to
do so at all”, otherwise the water industry will apply engineering judgment instead of any optimisation
method to design WDSs.

Similar to network size, the frequency of use of test networks varies considerably, as some
networks have been used only once, while others have been used repeatedly and by multiple authors.
In particular, the prevalence of some networks attributes to their use as benchmark problems to test
optimisation algorithms. These benchmark networks, all of which have been used (in the papers
listed in Appendix A Table A1) 10 or more times, are listed in Table 4 in order of their usage count.
They are, except for the Anytown network, gravity-fed WDSs with the common objective to determine
the most economical pipe design. The popularity of those benchmark networks contributed to high
percentages of the first two categories in Figure 5, because the majority of them are limited in size to 20
and 100 nodes, respectively.

Table 4. Frequently used test networks.

Test Network
Name

No. of Nodes Network Description
Optimisation
Problem

Network Modified
Versions

Network
Usage Count *

Hanoi network
++

[49]
32

Network organised in
three loops supplied by
gravity from a single
source

New system design
(pipes)

Double Hanoi
network, triple Hanoi
network (both [113])

55

New York City
tunnels ++

[81]
20

Tunnel system supplied
by gravity from a single
source, constituting the
primary WDS of the
New York city

Existing system
strengthening (i.e.,
pipe paralleling) to
meet projected
demands

Double New York City
tunnels [201] 42

Two-loop
network ++

[14]
7

Small network with two
loops supplied by
gravity from a single
source

New system design
(pipes)

Adapted to system
strengthening and
expansion over a
planning horizon [118]

40

Balerma
irrigation
network ++

[50]

447

Large looped network
supplied by gravity from
four sources, adapted
from the existing
irrigation network in
Balerma, Spain

New system design
(pipes) N/A 20

Anytown
network
[84]

19

Hypothetical looped
system supplied by three
parallel pumps from a
single source

Existing system
strengthening,
expansion and
rehabilitation (pipes,
pumps, tanks) to meet
projected demands

** With additional
source and tank [53],
with additional tank
[119] proposed by [83]

15

5. Future Research

Future research challenges for the optimisation of WDS design are illustrated in Figure 6 and
divided into the following four groups: (i) model inputs, (ii) algorithm and solution methodology,
(iii) search space and computational efficiency, and (iv) solution postprocessing. As far as model inputs
are concerned, there is a requirement to explore how to best represent various types of uncertainties,
i.e., stochastic vs. deep uncertainty or aleatoric vs. epistemic uncertainty, in the optimisation process.
Additional future uncertainties, for example, climate change, population movements and economic
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development, might affect planning for optimal WDSs, and make flexible design one of the promising
research areas over the next few decades. Another research challenge in regards to model inputs is to
compare various approaches to pump decision variables, including VSPs and their coding, in order
to determine their advantages, disadvantages and suitability for a particular case. Furthermore and
overall, a research question remains how to best formulate the optimisation model for a particular
case [22,23].

 

Figure 6. Future research challenges.

Concerning algorithm and solution methodology, a vast research area represents a progression
towards better understanding of algorithm performance and its search behaviour. These aspects need
to be further linked to the WDS design problem features including system topology (e.g., existence of
pumps/tanks, loops) and initial population used. A related challenge is to eliminate a time consuming
process of calibrating algorithm parameters to achieve a satisfactory performance, hence there is a
question how to select the best performing combination of parameter values. Moreover, it is important
to develop understanding related to the suitability of various optimisation methods for particular
design problems and the incorporation of engineering judgement in the search. In relation to staged
design, methods for ensuring contiguity among decisions, i.e., that the decisions selected in the
previous stages are retained in the subsequent ones, are required.

Recently, there has been an observed increased interest in aspects of the search space and
computational efficiency. Indeed, the reduction of the search space and an increase in the computational
efficiency are significant particularly for real-world WDS optimisation problems as well as dynamic
(i.e., staged and flexible) design, so they are expected to remain important and promising research
areas into the future. The research community would benefit from a thorough comparison of existing
methods for search space reduction and computational efficiency increase, which could use a selection
of benchmark cases of various sizes and complexity. In addition to currently available methods for
search space reduction, it might be possible to further improve decision variable coding.

Regarding solution postprocessing, an open question is how sensitive the obtained solution(s) is to
the optimisation model used [22,23]. When multi-objective optimisation approach is used, a remaining
challenge is to select a practical and representative subset of the non-dominated solutions, which
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could be useful for the decision makers. Accordingly, there is a need for methods to identify a handful
of effective solutions, such as those where a small improvement in one objective leads to a large
deterioration in at least one other objective. The existing approaches, including maximum convex
bulge/distance from hyperplane, hypervolume contribution, and local curvature [80] are all promising
and require a thorough analysis on WDS design problems.

6. Summary and Conclusion

A systematic literature review of optimisation of water distribution system (WDS) design since
the end of the 1980s to nowadays has been presented. The publications included in this review are
relevant to the design of new WDSs, strengthening, expansion and rehabilitation of existing WDSs, and
also consider design timing, parameter uncertainty, water quality and operational aspects. The value
of this review paper is that it brings together a large number of publications for design optimisation
of WDSs, just under three hundred in total, which have been published over the past three decades.
Therefore, it may enable researchers to identify one’s articles of interest in a timely manner. The review
analyses the current status, identifies trends and limits in the field, describes a general optimisation
model, suggests future research directions. Exclusively, this review paper also contains comprehensive
information for over one hundred and twenty publications in a tabular form, including optimisation
model formulations (i.e., objectives, constraints, decision variables), solution methodologies used and
other important details.

This review has identified the following main limits in the field and future research directions.
It was demonstrated that there is still no agreement among researchers and practitioners on how to
best formulate a WDS design optimisation model, how to include all relevant objectives and constraints,
and whether and how to take into account various sources of uncertainty, while still allowing for an
efficient search for the best solution to be achieved. Although a plethora of generic and problem-specific
optimisation methods have been developed and applied over the years, there is no consensus on
what optimisation method is best for a particular design problem, whether a single or multiple-phase
optimisation concept is to be used, and how engineering judgement can best be incorporated in the
search. Therefore, a concerted effort by the research community is required to develop methods
for objective comparison and validation of various optimisation algorithms and concepts on large,
real-world problems. In addition, an analysis of available methods for reducing the search space,
increasing computational efficiency, as well as selecting effective Pareto non-dominated solutions
representing a practical subset for decision makers, is needed using WDS design problems of various
sizes and complexity. In spite of the overwhelming amount of literature that has been published over
the past three decades, design optimisation of WDSs faces considerable research challenges in the
years to come.

7. List of Terms

• Deterministic dynamic design = staged design over a long planning horizon divided into several
construction phases, without considering future uncertainties.

• Deterministic static design = traditional design with a single construction phase for an entire
expected life cycle of the system, without considering future uncertainties.

• Dynamic design = staged (i.e., real-life) design capturing the system modifications/growth over a
long planning horizon divided into several construction phases (adopted from [118]).

• Hydraulic constraints = constraints arising from physical laws of fluid flow in a pipe network,
such as conservation of mass of flow, conservation of energy, conservation of mass of constituent.

• Optimisation approach = single-objective approach or multi-objective approach.
• Optimisation method = method, either deterministic or stochastic, used to solve an

optimisation problem.
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• Optimisation model = mathematical formulation of an optimisation problem inclusive of objective
functions, constraints and decision variables.

• Probabilistic dynamic design = flexible design over a long planning horizon divided into several
construction phases, with considering future uncertainties.

• Probabilistic static design = traditional design with a single construction phase for an entire
expected life cycle of the system, with considering future uncertainties.

• Simulation model = mathematical model or software used to solve hydraulics and water quality
network equations.

• Single pipe design = design which uses pipe sizes/diameters as decision variables (either discrete
or continuous).

• Solution = result of optimisation, either from feasible or infeasible domain, so we refer to a ‘feasible
solution’ or ‘infeasible solution’, respectively. In mathematical terms though an ‘infeasible solution’
is not classified as a solution.

• Split-pipe design = design which uses pipe segment lengths of a constant (known) diameter as
decision variables.

• Static design = traditional (i.e., theoretical) design with a single construction phase for an entire
expected life cycle of the system (adopted from [118]).

• System constraints = constraints arising from the limitations of a WDS or its operational
requirements, such as water level limits at storage tanks, limits for nodal pressures or constituent
concentrations, tank volume deficit etc.
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Abbreviations

ACO ant colony optimisation
ACOCTC convergence-trajectory controlled ant colony optimisation
ACS ant colony system
AEF average emissions factor
AIM artificial inducement mutation
ALCO-GA adaptive locally constrained genetic algorithm
AMPSO accelerated momentum particle swarm optimisation
ANN artificial neural network
AS ant system
ASelite elitist ant system
ASrank elitist rank ant system
BB branch and bound
BB-BC big bang-big crunch
BLIP binary linear integer programming
BLP-DE combined binary linear programming and differential evolution
BWN-II battle of the water networks II (optimisation problem)
CA cellular automaton
CAMOGA cellular automaton and genetic approach to multi-objective optimisation
CANDA cellular automaton for network design algorithm
CC chance constraints
CDGA crossover dither creeping mutation genetic algorithm
CE cross entropy
CFO central force optimisation
CGA crossover-based genetic algorithm with creeping mutation
CMBGA non-crossover dither creeping mutation-based genetic algorithm
CR crossover probability (parameter)
CS cuckoo search
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CSHS combined cuckoo-harmony search
CTM cohesive transport model
D design
dDE dither differential evolution
DDSM demand-driven simulation method
DE differential evolution
DMA district metering area
DPM discoloration propensity model
DSO newly developed swarm-based optimisation algorithm
EA evolutionary algorithm
EA-WDND evolutionary algorithm for solving water distribution network design
EEA embodied energy analysis
EEF estimated (24-h) emissions factor (curve)
EF emissions factor
EPANETpdd pressure-driven demand extension of EPANET
EPS extended period simulation
ES evolution strategy
F mutation weighting factor (parameter)
FCV flow control valve
fmGA fast messy genetic algorithm
FSP fixed speed pump
GA genetic algorithm
GA-ILP combined genetic algorithm and integer linear programming
GA-LP/GALP combined genetic algorithm and linear programming
GANEO genetic algorithm network optimisation (program)
GENOME genetic algorithm pipe network optimisation model
GHEST genetic heritage evolution by stochastic transmission
GHG greenhouse gas (emissions)
GOF gradient of the objective function
GP genetic programming
GRG2 generalised reduced gradient (solver)
GUI graphical user interface
HBA heuristic-based algorithm
HBMO honey bee mating optimisation
HD-DDS hybrid discrete dynamically dimensioned search
HDSM head-driven simulation method
HMCR harmony memory considering rate (parameter)
HMS harmony memory size (parameter)
HS harmony search
IA immune algorithm
IDPSO integer discrete particle swarm optimisation
ILP integer linear programming
IMBA improved mine blast algorithm
IPSO improved particle swarm optimisation
KLSM Kang and Lansey’s sampling method [26]
LCA life cycle analysis
LHS Latin hypercube sampling
LINDO linear interactive discrete optimiser
LM Lagrange’s method
LP linear programming
LTF linear transfer function
MA memetic algorithm
MBA mine blast algorithm
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MBLP mixed binary linear problem
MCHH Markov-chain hyper-heuristic
MdDE modified dither differential evolution
MENOME metaheuristic pipe network optimisation model
mIA modified immune algorithm
MILP mixed integer linear programming
MINLP mixed integer nonlinear programming
MMAS max-min ant system
MO multi-objective
MODE multi-objective differential evolution
MOEA multi-objective evolutionary algorithm
MOGA multi-objective genetic algorithm
MSATS mixed simulated annealing and tabu search
NBGA non-crossover genetic algorithm with traditional bitwise mutation
NFF needed fire flow
NLP nonlinear programming
NLP-DE combined nonlinear programming and differential evolution
NSES non-dominated sorting evolution strategy
NSGA-II non-dominated sorting genetic algorithm II
OP operation
OPTIMOGA optimised multi-objective genetic algorithm
OPUS optimal power use surface
PAR pitch adjustment rate (parameter)
PESA-II Pareto envelope-based selection algorithm II
PHSM prescreened heuristic sampling method
PIV pipe index vector
PRV pressure reducing valve
PSF HS parameter setting free harmony search
PSHS particle swarm harmony search
PSO particle swarm optimisation
PSO-DE combined particle swarm optimisation and differential evolution
PVA present value analysis
RC robust counterpart (approach)
ROs real options (approach)
RS random sampling
RST random search technique
SA simulated annealing
SADE self-adaptive differential evolution
SAMODE self-adaptive multi-objective differential evolution
SCA shuffled complex algorithm
SCE shuffled complex evolution
SDE standard differential evolution
SE search enforcement
SFLA shuffled frog leaping algorithm
SGA crossover-based genetic algorithm with bitwise mutation
SMGA structured messy genetic algorithm

SMODE
standard multi-objective differential evolution (i.e., optimising the whole network
directly without decomposition into subnetworks)

SMORO scenario-based multi-objective robust optimisation
SO single-objective
SPEA2 strength Pareto evolutionary algorithm 2
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SS scatter search
SSSA scatter search using simulated annealing as a local searcher
STA state transition algorithm
TC time cycle
TRS tank reserve size
TS tabu search
VSP variable speed pump
WCEN water distribution cost-emission nexus
WDS water distribution system
WDSA water distribution systems analysis (conference)
WPP water purification plant
WSMGA water system multi-objective genetic algorithm
WTP water treatment plant

Appendix A
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Abstract: We developed a hybrid algorithm for multi-objective design of water distribution networks
(WDNs) in the present study. The proposed algorithm combines the global search schemes of
differential evolution (DE) with the local search capabilities of harmony search (HS) to enhance the
search proficiency of evolutionary algorithms. This method was compared with other multi-objective
evolutionary algorithms (MOEAs) including NSGA2, SPEA2, MOEA/D and extended versions
of DE and HS combined with non-dominance criteria using several metrics. We tested the
compared algorithms on four benchmark WDN design problems with two objective functions, (i) the
minimization of cost and (ii) the maximization of resiliency as reliability measure. The results showed
that the proposed hybrid method provided better optimal solutions and outperformed the other
algorithms. It also exhibited significant improvement over previous MOEAs. The hybrid algorithm
generated new optimal solutions for a case study that dominated the best-known Pareto-optimal
solutions in the literature.

Keywords: MOEA; DE; HS; water distribution system; NSGA2; SPEA2; NSHSDE

1. Introduction

The field of water and environmental engineering has attracted interest in the last decade for
the development and utilization of various evolutionary algorithms (EAs). These algorithms have
emphasized their potential as a solution to various water-engineering problems. The popularity of
EAs is likely due to their ability to solve nonlinear, nonconvex, continuous and discrete problems
that classic optimization techniques have failed to solve [1]. We recognize the capability of EAs as the
applications of environmental and water-resource engineering problems have become complicated in
the sense that they are characterized by large decision spaces. Design of water distribution networks
(WDNs) with least investment cost satisfying the pressure requirement and reliability is an example
of large scale problems in the field of water resources engineering which needs to be dealt with
in optimization models such as EAs. In this problem, because of the large number of network
pipes, there are a huge number of designs or alternatives in front of engineers, which cannot be
evaluated with only simulation models. The network design problem becomes more complicated
when there are also other facilities such as pumps, gates, tanks, etc. Due to the large size of the search
space and nature of the problem at hand, categorized as a Non-deterministic Polynomial-time hard
(NP-hard) problem, EAs are the search algorithms that are best suited to finding optimal design.
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Besides, in this problem, cost is not the only criterion which should be considered in the network
design. Considering other criteria such as network reliability and resiliency in both quantitative
and qualitative aspects requires the development of multi criteria decision making approaches in
WDN design problems. Development of multi-objective evolutionary algorithms (MOEAs) that can
efficiently search solution spaces and provide an appropriate approximation of the actual trade-off
among considered criteria is thus important. For this reason, Keedwell and Khu [2] emphasized the
capability of MOEAs for the design of WDNs. In the work of Montalvo et al. [3], Pareto optimal
solutions which represent a compromise among different criteria were obtained. In this direction, the
minimized cost and node pressure deficits were used as the main design factors in the multi-objective
swarm optimization (MOSO) algorithm [3]. In designing WDNs, we mostly focused on minimizing
cost and maximizing reliability as the essential design criteria.

Todini (2000) introduced a “resilience” index which expresses the hydraulic reliability based on
the surplus head of each node. WDNs in general are designed by loop systems to enhance hydraulic
reliability of the networks [4]. The first hydraulic resilience index was improved by Prasad and Park
(2004) to consider system-redundancy concept in the loop systems [5]. They utilized the nondominated
sorting genetic algorithm 2 (NSGA2) in multi-objective design of WDNs with minimized total cost
and maximized system resilience. As the cost and system resilience were used as the objective
functions in WDN design, some researchers compared the performance of optimization algorithms.
Farmani et al. [6,7] compared NSGA2 and Strength Pareto evolutionary algorithm 2 (SPEA2) for the
design of WDNs and concluded that SPEA2 has better performance than NSGA2.

Research work on multi-objective optimization design of WDNs has shifted from simple
evolutionary algorithms to advanced methods with strong local and global search capabilities.
For instance, some studies developed cross entropy MOEA methods and compared their performances
with NSGA2 [8]. Zheng et al. [9] developed the graph decomposition approach to solve the design
problem of WDN in the multi-objective optimization framework. This approach was applied for
the optimization of each sub-network and it achieved the Pareto optimal solutions for each one.
Pareto optimal solutions obtained from separate optimization were integrated to obtain the whole
Pareto optimal solutions of the WDN design problem. Matos et al. [10] introduced an evolutionary
strategy to obtain efficient and useful decision-making in engineering problems. The characteristics
of this method are crossover and mutation operators that are specific to WDN optimization tasks.
Bi et al. [11] developed high-quality initial populations with MOEAs for optimal design of WDNs with
least cost and maximum system resilience. They proposed the Multi-Objective Pre-screened Heuristic
Sampling Method (MOPHSM) that assigns pipe diameter, depending on the distance between the
source and demand nodes.

In addition to improving their own algorithm performance to increase the efficiency of the search
ability, many studies have developed methodologies with hybridization of different algorithms [12–18].
However, these methods have been rarely used in multi-objective optimization of WDN design.
Keedwell and Khu [2] proposed CAMOGA that is a hybrid multi-objective optimization algorithm
combined with cellular automaton and the genetic algorithm for WDN design in order to obtain
better designs compared to NSGA2. Vrugt and Robinson [19] also developed a hybrid algorithm,
called A Multi-Algorithm Genetically Adaptive Multi-objective (AMALGAM). The AMALGAM is
a hybrid of four algorithms (Adaptive Metropolis Search (AMS), NSGA2, PSO and DE). Verification of
the performance of AMALGAM comprised of the exploration of solutions for some mathematical
benchmark multi-objective problems. The results showed the proposed algorithm has better
performance for solving complex problems with respect to a few other MOEAs. Raad et al. [20]
compared various hybrid optimization algorithms (AMALGAM, NSGA2, NSGA2-JG) for optimal
design of WDNs. AMALGAM showed the best results. Zheng et al. [9] developed SAMODE
which is a hybrid of Non-Linear Programming (NLP) and Multi-Objective Differential Evolution.
SAMODE outperformed NSGA2 on three benchmark WDN case studies. Wang et al. [21] investigated
and reported the best-known Pareto optimal solutions for the well-known WDN problems. The study
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compared five MOEAs (i.e., NSGA2, AMALGAM, Borg, ε-MOEA and ε-NSGA2) and the results
showed that NSGA2 was outstanding as it generally produced the best solutions to all the problems.

The aim of this research is improving the search capabilities of the harmony search (HS) and
differential evolution (DE) to attain better performances of optimization models for design of WDNs.
Therefore, this research paper contributes towards the development of a new hybrid algorithm with
HS and DE algorithms in a multi-objective framework to solve the WDN design problem. The hybrid
approach uses DE for a global search, followed by a hybridization of DE and HS for enhancing local
search capabilities, to find the approximate true Pareto fronts. The efficiency and the reliability of the
hybrid algorithm were compared with those of NSGA2, SPEA2, MOEA/D and two other MOEAs,
based on HS and DE. The differences were instances of the integration of non-dominance criteria and
evolutionary search operators of HS and DE developed in this study. There are some reasons for using
these MOEAs in our study which are enumerated below:

(1) DE and HS show high efficiency in solving numerous single-objective test problems, especially
the least-cost design problems involving WDNs. Moreover, since the proposed algorithm
is constituted of DE and HS operators, it is advantageous to include source algorithms in
the comparison.

(2) New versions of DE and HS algorithms for multi-criteria problems [22,23] have shown better
performances than other well-known algorithms, such as SPEA2 [21,24] and MOPSO [25].

(3) NSGA2 and SPEA2 are widely used in representative MOEAs in water resource and
environmental engineering. More importantly, NSGA2 was reported to be the superior method
relative to several contenders.

(4) MOEA/D is a new approach for solving multi-objective optimization problems (Zhang and Li, [26]),
which has a specific characteristic based on the decomposition scheme to separate the original
problem into several sub-problems that can be solved collaboratively and simultaneously.

The proposed hybrid algorithm is applied to four well-known benchmark WDN design problems,
and four performance metrics (i.e., generational distance (GD), diversity (D), hypervolume (HV) and
coverage set (CS)) are measured to evaluate the performance of the proposed method and implemented
MOEAs. The best algorithm is identified based on the results obtained.

2. Methods

The non-dominance criterion is used in MOEAs to sort individuals considering objective
function values. Usually MOEAs (i.e., PAES, microGA, NPGA, MOPSO, SPEA2 and NSGA2) use the
non-dominated sorting approach to generate Pareto fronts. In this study, the concept of non-dominance
is combined with HS and DE to explore the ability of these algorithms in solving the optimal design of
WDN in a multi-objective framework. The evolutionary algorithm was developed and implemented
as illustrated in the subsections that follow.

2.1. Proposed Algorithm, Non-Dominated Sorting Harmony Search Differential Evolution (NSHSDE)

DE generally has strong global search capability. It is expected that if this method is combined
with a local search optimizer, the performance of the evolutionary search improves. According to
a study by Yazdi et al. [27], the harmony search performs very well in finding optimal solutions located
in certain parts of the search space, but cannot generate adequately diverse Pareto-optimal solutions,
thus degrading the overall performance of the search algorithm. To exploit the local search advantages
of HS and the exploratory strength of DE, we propose a hybrid HS-DE method here. The hybrid
algorithm borrows the mutation operator from the DE algorithm to generate a new solution and
uses the pitch adjustment approach of HS to modify the new solution, called “new harmony” in HS
terminology. This solution is then used to update the harmony memory, which is a repository of good
solutions. The hybrid method also uses the same non-dominance and crowding distance criteria as

101



Water 2017, 9, 587

NSGA2 to generate the Pareto-optimal curve. The main steps of the hybrid algorithm, called NSHSDE
are summarized as follows:

Step 1: The initial population of the harmony memory (HM) with a predefined size, called
harmony memory size (HMS), is randomly generated and stored in the harmony memory (HM).

Step 2: Some new harmonies (as many as allowed by the repository size, RS) are generated and
stored in the repository. It is recommended that RS be equal to HMS.

To generate a new harmony consisting of n decision variables: Ri = (ri,1, ri,2, . . . , ri,n), the
following process is carried out:

(I). A mutation vector Vi = {vi,1, vi,1, . . . , vi,n} is computed according to the equation:

Vi = HC1 + F × (HC2 − HC3) (1)

where HC1, HC2 and HC3 are three members randomly selected from HM and F is a scaling factor in
(0,1], preferably within the range 0.3–0.7.

(II). A pitch adjustment is used to enhance the diversity of the perturbed harmony vector and is
considered as new harmony:

ri,j =

{
vi,j + Δ ; if (randj ≤ PAR)
vi,j ; if (randj > PAR)

(2)

where PAR is the pitch adjusting rate, j is the variable index in the decision variable vector, 0 ≤ PAR ≤ 1,
and Δ is a small change computed by Δ = Fw × N(0, 1). Fw is the fret width (or band width) parameter
with a value considered as a small percentage of the range of decision variable j, and N(0,1) is a normal
random number with mean 0 and variance 1. ri,j is the decision variable j of the new harmony, Ri.

Step 3: A temporary harmony memory is created by mixing the harmonies in HM and
the repository.

Step 4: The temporary harmony memory is sorted according to non-domination. In this process,
harmonies are allocated to several fronts F1, F2, . . . , Fl according to their non-domination sort order,
where l is the index of the last front. Harmonies in front 1 dominate the harmonies in higher fronts;
similarly, harmonies in front 2 dominate the harmonies in fronts 3, 4, . . . , l, but are dominated by those
in front 1, and so on.

Step 5: The harmonies in each front F1, F2, . . . , Fl are sorted according to the crowding
distance [27].

In order to attain a better diversity in HM, among the harmonies in each front, those with
fewer neighbors should have higher chance of selection in generating new harmonies. To achieve
this, a greater crowding distance is allocated to the solutions with a smaller number of neighbors.
Crowding distance is defined as [27]:

dist f
i =

M

∑
m=1

o f i+1, f
m − o f i−1, f

m

o f max, f
m − o f min, f

m
∀ f = 1, . . . , Fl (3)

where dist f
i is the crowding distance of harmony i in front of f ; o f max, f

m and o f min, f
m are the maximum

and minimum value of mth objective function in front f, respectively; o f i+1, f
m and o f i−1, f

m are respectively
the value of mth objective function of the upper and lower harmonies (sorted ascending) relative to
harmony i in front f and Fl is the number of non-dominated fronts in the current iteration.

Step 6: The HMS is updated by initially selecting the non-dominated solutions, starting with the
first ranked non-dominated front (F1) and proceeding with the subsequently ranked non-dominated
fronts (F2, F3, . . . , Fl) until the size exceeds the full capacity. It is necessary to reject some of the
lower-ranked non-dominated solutions to reduce the total number of the non-dominated solutions to
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render it equal to the HMS. This is done by using the crowding distance comparison operator; using
this procedure, the elements in the HM are updated.

Step 7: Steps 2 through 6 are repeated until the termination criterion (e.g., a maximum number of
iterations) is satisfied.

It is worth mentioning that in this study, the value of Fw was adaptively changed during the
search, as recommended by Mahdavi, Fesanghary and Damangir [28] to improve the efficiency of the
local search as:

Fw(G) = Fwmax × e(c×G) (4)

where G is the generation count, and constant c for each generation is given by

c =
ln( Fwmin

Fwmax
)

MaxIt
(5)

Fwmin and Fwmax are the minimum and maximum values of “fret width” respectively, and MaxIt
is the number of iterations (generations).

2.2. Algorithms Implemented for Comparison

2.2.1. Non-Dominated Sorting Genetic Algorithm 2 (NSGA2)

NSGA2 is a fast and elitist multi-objective genetic algorithm that has been used successfully in
many engineering optimization problems and has attained significant popularity in many disciplines.
It is arguably the most popular MOEA developed so far. It uses genetic algorithm operators and two
population-sorting criteria, non-dominance and crowding distance [29].

2.2.2. Non-Dominated Sorting Harmony Search (NSHS) Algorithm

Harmony search [13] is another popular EA that has garnered considerable attention in various
engineering disciplines in the last decade. Several applications of this algorithm have been reported in
the water engineering literature and a few multi-objective schemes have recently been developed [27,30]
combining HS operators with non-domination sorting (NS) and crowding distance criteria to generate
Pareto-optimal solutions in multi-objective problems. This algorithm called NSHS was compared with
the NSGA2 and MOPSO algorithms based on several benchmark problems and a sewer pipe network
application and the results showed that the NSHS algorithm outperformed the other two.

In this study, the effectiveness of the NSHS algorithm for WDN design problems is tested and
compared against other MOEAs.

2.2.3. Non-Dominated Sorting Differential Evolution (NSDE) Algorithm

Differential Evolution, which is an improved version of the GA [31] solves global optimization
problems. This algorithm has the same operators as the GA, but its performance relies more on
an effective mutation operator than crossover [17]. The application of DE in single-objective designs of
WDN has been reported in several studies [17,32,33]. More recently, Zheng et al. [9] developed a DE
for multi-objective WDN problems by hybridizing it with NLP to estimate the Pareto front in three
WDN case studies.

In this study, DE is extended to solve multi-objective problems by employing non-dominance
and crowding distance criteria, as used in NSGA2, within the DE framework. The performance of the
NSDE algorithm is then compared with that of other MOEAs using various design cases.

2.2.4. Improving the Strength Pareto Evolutionary Algorithm (SPEA2)

Zitzler et al. [24] developed SPEA2. This algorithm is an improved strength Pareto evolutionary
algorithm (SPEA) which is maintained as an external population algorithm and updated in each
generation by new non-dominated solutions. In comparison with the initial version, SPEA2 adopts
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a fine-grained fitness assignment strategy that incorporates density information by taking into account
the dominance of a number of individuals. It also adopts a nearest neighbor density estimation
technique. Finally, the clustering method is replaced by an archive truncation method that guarantees
the preservation of boundary solutions. This algorithm is known as a state-of-the-art MOEA used to
assess the performance of algorithms.

2.2.5. Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

In addition to the aforementioned MOEAs, we implemented MOEA/D algorithm [26] to solve
WDN design problems. This algorithm was rarely used for WDN design [34]. In comparison to the
MOEAs, MOEA/D is a different solving approach in which a multiobjective optimization problem is
decomposed into a number of scalar optimization sub-problems that are simultaneously optimized.
At each instance of generation, the population is composed of the best solution found thus far for each
sub-problem. The neighborhood relations among these sub-problems are defined based on distances
between their aggregation coefficient vectors. Each sub-problem (i.e., scalar aggregation function) is
optimized in MOEA/D by using information only from its neighboring sub-problems. It was also
reported that MOEA/D recorded lower computational complexity at each instance of generation
than NSGA2 and yielded better performance on some benchmark optimization tests and real-world
optimization problems [26,34]. We use the MOEA/D framework with the Tchebycheff approach [26] to
decompose multi-objective optimization problems. More information about decomposition approaches
and the MOEA/D method can be found in the work of Zhang and Li [26].

2.3. Performance Measures

The performance of the implemented algorithms is evaluated by four performance metrics or
indices (i.e., generational distance (GD), diversity (D), hypervolume (HV) and coverage set (CS)) which
are briefly explained below.

2.3.1. Generational Distance (GD)

This performance metric was introduced by Van Veldhuizen and Lamont [35] and is used to
measure the distance between elements of the set of non-dominated vectors at any given time and
those of the global Pareto-optimal set. It is defined as

GD =

(
n
∑

i=1
di

p
)

n

1
p

(6)

where n is the number of vectors in the set of non-dominated solutions and di is the distance (measured
in objective space) between each of these and the nearest member of the global Pareto-optimal
set. The parameter P stands for the Pth norm of the distance which is assumed equal 2–i.e.
Euclidean distance, in this research. An ideal value of GD = 0 indicates that all elements generated are in
the global Pareto-optimal set. Thus, any other value indicates how “far” the generated elements are from
the global Pareto front. The lower GD, the algorithm’s performance better in terms of convergence.

2.3.2. Diversity (D)

This metric assesses the extent of the Pareto front curve and shows the range of diversity of the
solutions obtained. It is defined as:

D =
n

∏
j=1

δj; δj = max( f j)− min( f j) (7)

where j is the index of jth objective function, fj is the vector of jth objective function values of the
Pareto front solutions and n is the number of objective functions. The higher the value of D metric,
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the better the diversity of MOEA. There is no specific lower and upper bound for this metric and its
value is problem-dependent.

2.3.3. Hypervolume (HV)

This metric was proposed by Van Veldhuizen [35] for calculating the volume covered between
the Pareto fronts and a reference point. This evaluates the performance of convergence and diversity.
The reference point represents the worst objective function values. This index is calculated as:

HV = volume(∪n
i=1vi) (8)

where vi is the hyper-volume constructed by solution i and the reference point in the objective function
space. It should be emphasized that in this study the normalized version of HV called the ratio of HV,
of the approximation set to the true Pareto-optimal front (HVR), was used to reduce the bias arising
out of the magnitudes of different objective functions and to evaluate the quality of solutions found by
each MOEA. HVR varies between zero and one with the ideal value of one.

2.3.4. Coverage Set (CS)

This index was proposed by Zitzler et al. [36] to compare the Pareto fronts through two different
simulations. This metric demonstrates both the convergence and diversity abilities of the algorithm.
Considering two Pareto optimal solution sets X′, X′′ and each set of non-domination points in X′ ∪ X′′,
denoted by X, CS index can be calculated between [0,1] as:

CS(X′, X′′) = |{α′′ ∈ X′′; ∃α′ ∈ X′ : α′ ≥ α′′}|
|X|

If all points in X′ dominate, or are equal to, all points in X′′, by the definition given above, CS = 1.
A value of 0 for the index implies the opposition. Ordinarily, both CS(X′, X′′) and CS(X′′, X′) need to
be considered, as the set intersections are not necessarily empty. The CS metric is used to compare two
Pareto sets in relative terms, without the need for the global Pareto solutions.

2.4. Multi-Objective Design of WDNs

2.4.1. Mathematical Formulation

“Network cost” and “reliability” are two major objectives that have been frequently used in the
multi-objective design of water distribution systems. The same criteria are taken as the objective
functions in this study, with “network resilience” indicator as the reliability measure proposed by
Prasad and Park [5]. The first objective function involves economic considerations and the latter
provides a measure to assess both surplus head and reliable loops in networks of varying size.
The optimization problem can then be formulated as:

Min C =
np

∑
i=1

(Ui × Li) (10)

Max In =
∑nn

j=1 CjQj

(
Hj − Hreq

j

)
(∑nr

k=1 Qk Hk + ∑
npu
i=1

Pi
γ )− ∑nn

j=1 Qj H
req
j

(11)

Cj =
∑

npj
i=1 Di

npj × max{Di} (12)

where C = total cost (monetary units), np = number of pipes, Ui = unit cost of pipe i of diameter Di,
Li = length of pipe i, In = network resilience, nn = number of demand nodes, Cj, Qj, Hj, and Hreq

j are
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uniformity, demand, actual head and minimum required head respectively, of node j; nr = number
of reservoirs, Qk and Hk are discharge and actual head respectively, of reservoir k, npu = number of
pumps, Pi = power of pump i, γ = specific weight of water, npj = number of pipes connected to node j,
and Di = diameter of pipe i connected to demand node j. The constraints of the optimization problem
are as follows:

(1) Mass conservation constraint

For each junction node, the mass conservation law should be satisfied which can be written as:

∑ Qin−∑ Qout = Qe (13)

where Qin and Qout are in-flow and out-flow of the node, respectively, and Qe is the external flow rate
or demand at the node.

(2) Energy conservation constraint

For each loop in the network, the conservation of energy can be written as follows:

∑
k∈Loopl

Δhk = 0 ∀l ∈ Nl (14)

where Δhk is the head loss in pipe k and Nl is the total number of loops in the system. The head
loss in each pipe is the difference in head between connected nodes, and is a function of discharge,
pipe diameter, and roughness coefficient of the pipe. Head loss is usually calculated using empirical
equations, such as the Darcy-Weisbach or the Hazen-Williams equation.

(3) Minimum and maximum pressure constraints

The minimum and maximum pressure constraints on each node in the network are given by
the following:

Hl
j ≤ Hj ≤ Hu

j ∀j = 1, 2, . . . , nn (15)

where Hj is the pressure head at node j, Hl
j is the minimum required pressure head at node j, Hu

j is the
maximum allowed pressure head at node j, and nn is the number of demand nodes in the network.

(4) Pipe size availability constraint

The diameter of each pipe must belong to a commercial size set, A:

Di ∈ {A} ∀i = 1, 2, . . . , np (16)

where Di is the diameter of pipe i, {A} denotes the set of commercially available pipe diameters, and np
is the number of pipes.

(5) Minimum and maximum velocity constraints

The minimum and maximum velocity constraints on each pipe in the network are given by
the following:

vl
i ≤ vi ≤ vu

i ∀i = 1, 2, . . . , np (17)

where vi Is velocity in pipe i, vl
i and vu

i are the minimum and maximum allowed velocity in pipe
i, respectively.

To solve the optimization problem, the constrained model is converted into an unconstrained one
by adding the number of constraint violations to the objective function as penalty. The constraints for
the conservation of mass and energy are automatically satisfied using EPANET2.0 hydraulic solver [37].
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The minimum and maximum pressure and velocity constraints, however, need to be included in the
penalty functions:

Cp1 =

⎧⎪⎨
⎪⎩

0 ; if Hl
j ≤ Hj ≤ Hu

j ∀j = 1, . . . , nn

P ×
[

∑
j

(
Hl

j − Hj

)
+ ∑

j

(
Hj − Hu

j

) ]
; otherwise

(18)

Cp2 =

⎧⎨
⎩

0 ; if vl
i ≤ vi ≤ vu

i ∀i = 1, . . . , np

P ×
[

∑
i

(
vl

i − vi

)
+ ∑

i

(
vi − vu

i
) ]

; otherwise
(19)

Cp = Cp1 + Cp2 (20)

where P is a penalty multiplier, which was set to 106 in this study. Cp1 is the summation of the penalties
of all nodes with pressure violation, Cp2 is the summation of the penalties of all pipes with velocity
violation and Cp is the total penalty. Therefore, the total cost of the network is the sum of network cost
C and penalty cost Cp in nodes and pipes with pressure and velocity violation, respectively.

2.4.2. Experimental Tests on WDNs

The validation of the hybrid algorithm to solve WDN design problems requires application of the
algorithm to benchmark problems of different sizes which were selected from the literature including
the two-loop network (small-sized problem), the Hanoi network (medium-sized), the Fossolo network
(intermediate-sized) and the Balerma network (large-sized problem). These four benchmark networks
are briefly described below.

1. Two-loop network (TLN)

The two-loop network (TLN) consists of eight pipes, six demand nodes, and a reservoir. The reservoir
had a constant head fixed at 210 m [21]. As it is a hypothetical network, all pipes had the same length
(1000 m) and a Hazen-Williams coefficient of 130. Pressure was set to at least 30.0 m at all demand nodes.
Table 1 shows the commercially available diameters and the corresponding unit costs (1 in. = 0.0254 m)
and Figure 1 depicts the layout of the TLN.

Figure 1. Layout of two-loop network, TLN [21].
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Table 1. Diameter options and associated unit costs of two-loop network (TLN).

Diameter (in.) Unit Cost ($/m) Diameter (in.) Unit Cost ($/m)

1 2 12 50
2 5 14 60
3 8 16 90
4 11 18 130
6 16 20 170
8 23 22 300
10 32 24 550

2 Hanoi network (HAN)

The Hanoi network (HAN) consisted of 34 pipes organized into three loops, 31 demand nodes,
and a reservoir with a fixed head of 100 m [21]. The Hazen-Williams roughness coefficient for all pipes
was 130. The minimum head above the ground elevation of each node was 30 m. There were six
commercially available pipe sizes, ranging from 12 in. to 40 in. (1 in. = 0.0254 m). Table 2 shows the
diameter options and associated unit costs and Figure 2 depicts the layout of the network.

Figure 2. Layout of Hanoi network (HAN) [20].

Table 2. Diameter options and associated unit costs of Hanoi network (HAN).

Diameter (in.) Unit Cost ($/m) Diameter (in.) Unit Cost ($/m) Diameter (in.) Unit Cost ($/m)

12 45.73 20 98.39 30 180.75
16 70.40 24 129.33 40 278.28

3 Fossolo network (FOS)

The Fossolo network (FOS) consisted of 58 pipes, 36 demand nodes, and a reservoir with a fixed
head of 121.00 m [21]. The material for all pipes was polyethylene. Due to the characteristics of
polyethylene, a relatively high Hazen-Williams coefficient of 150 was applied to all pipes. The minimum
pressure head of the demand nodes was maintained at 40 m, whereas the maximum pressure head at
each node was as specified in Table 3. Moreover, the flow velocity in each pipe was enforced at less
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than or equal to 1 m/s. Table 4 shows the commercially available diameters and the corresponding unit
costs. Figure 3 depicts the layout of the FOS.

Figure 3. Layout of Fossolo network (FOS) [21].

Table 3. Maximum pressure head requirement of each node of Fossolo network (FOS).

NI Pmax (m) NI Pmax (m) NI Pmax (m) NI Pmax (m) NI Pmax (m) NI Pmax (m)

1 55.85 7 53.1 13 59.1 19 58.1 25 56.6 31 56.6
2 56.6 8 54.5 14 58.4 20 58.17 26 57.6 32 56.8
3 57.65 9 55.0 15 57.5 21 58.2 27 57.1 33 56.4
4 58.5 10 56.83 16 56.7 22 57.1 28 55.35 34 56.3
5 59.76 11 57.3 17 55.5 23 56.8 29 56.5 35 55.57
6 55.60 12 58.36 18 56.9 24 53.5 30 56.9 36 55.1

Note: pp. NI = node index, which is a consecutive number starting from 1 and continuing to the total number of
nodes in the network; Pmax = maximum pressure head requirement.

Table 4. Diameter options and associated unit costs of Fossolo network (FOS).

Diameter
(mm)

Unit Cost
(€/m)

Diameter
(mm)

Unit Cost
(€/m)

Diameter
(mm)

Unit Cost
(€/m)

Diameter
(mm)

Unit Cost
(€/m)

16 0.38 61.4 4.44 147.20 24.78 290.6 99.58
20.4 0.56 73.6 6.45 163.6 30.55 327.4 126.48
26 0.88 90 9.59 184.00 38.71 368.2 160.29

32.6 1.35 102.2 11.98 204.6 47.63 409.2 197.71
40.8 2.02 114.6 14.93 229.2 59.7
51.4 3.21 130.80 19.61 257.8 75.61

4 Balerma Irrigation Network (BIN)

The Balerma irrigation network (BIN) consisted of 454 polyvinyl chloride (PVC) pipes, 443 demand
nodes, and four reservoirs with fixed heads at 112 m, 117 m, 122 m, and 127 m [21]. The Darcy–Weisbach
roughness coefficient of pipes was set at 0.0025 mm for all pipes. The minimum pressure head above
ground elevation was 20 m for all the demand nodes. Each pipe was allowed to select a diameter from
10 discrete values. Table 5 shows the commercially available diameters and the corresponding unit costs.
Figure 4 depicts the layout of the BIN.
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Figure 4. Layout of Balerma network (BIN) [21].

Table 5. Diameter options and associated unit costs of Balerma network (BIN).

Diameter (mm) Unit Cost (€/m) Diameter (mm) Unit Cost (€/m)

113 7.22 226.2 28.6
126.6 9.10 285 45.39
144.6 11.92 361.8 76.32
162.8 14.84 452.2 124.64
180.8 18.38 581.8 215.85

3. Results and Discussions

This section presents the results of the computational experiments performed using the selected
MOEAs on the four benchmark water distribution networks introduced in the previous section.

The MOEAs were linked to the EPANET 2.0 hydraulic solver to estimate WDN resilience and
assess necessary hydraulic constraints while evaluating different network designs. Shown in Table 6
are the sizes of the search spaces, the number of decision variables, and population size as well as
the computational budget in terms of the number of function evaluations (NFE) and pipe diameter
options for each of the four benchmark networks. The parameters of the NSGA2 were set according to
widely recommended settings in the literature; for the other algorithms, parameter values were chosen
based both on values used in the literature and the results of several trial runs. The final parameters
used are presented in Table 7. Each MOEA was independently run 30 times to solve each problem.
The results of a typical run (not average) of each algorithm are shown in Figures 5 and 6. As can be
seen, the hybrid algorithms namely, NSHSDE and NSDE, generally provided better Pareto fronts than
the four other algorithms for all studied networks. The best-known Pareto fronts of the problems
reported by Wang et al. [21] are also shown in the two figures; they were obtained by aggregating the
Pareto-optimal solutions of different MOEAs after several executions with different population sizes
and very high orders of magnitudes of NFEs.

In order to compare the algorithms more precisely, the performance metrics described in the
preceding section were used. Table 8 shows the average values of the metrics obtained by 30 iterations
of each of the algorithms for each benchmark network problem. In this table, the second and third
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metrics were normalized using those of the best-known Pareto fronts in the literature. The first metric,
GD shows the quality of solutions in terms of non-domination strength. It can be seen that the MOEAs
exhibited different behaviors according to this metric. The NSHS outperformed all others for all
networks except for the TLN problem, based on the GD metric. The hybrid method also yielded good
values in terms of the GD metric for two small-sized problems. However, for larger networks, its GD
values were poor, but as explained below, this does not mean the hybrid method is inferior.

The NSDE was inferior to the proposed hybrid method in all four experimental networks in terms
of GD values, and MOEA/D represented the worst results for the TLN, HAN, and FOS networks
while its GD values for the largest network, i.e., the BIN problem, recorded very close to the best value.
Two other algorithms, i.e., NSGA2 and SPEA2, represented the median results for the GD metric.
Although the GD is an indicator of convergence, it is not a good representative of convergence strength.
For example, as shown in Figure 6b, the hybrid method represented high-quality solutions in the
same range as found by NSHS. It also yielded other non-dominated solutions not found by NSHS,
which were more distant from the best-known Pareto front solutions. As a result, they generated
a larger GD value for the hybrid method than the NSHS, whereas the quality of its solutions was
better than those of NSHS in terms of convergence. Therefore, we see that the GD metric is not an
appropriate criterion for measurement of the convergence strength of MOEAs.

Figure 5. Pareto front (PF) of benchmark problems, (a) Two-loop network (TLN) problem; (b) Hanoi
network (HAN) problem.
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Table 6. Computational budgets and sizes of search space for benchmark design problems.

Problem NFE a Population Size DV b PD c Search Space Size

Two-loop Network 20,000 40 8 14 1.48 × 109

Hanoi Network 50,000 60 34 6 2.87 × 1026

Fossolo Network 200,000 100 58 22 7.25 × 1077

Balerma Irrigation Network 1,000,000 400 454 10 1.0 × 10454

Note: a NFE = number of function evaluations, b DV = number of decision variables, c PD = number of pipe
diameter options.

According to the second metric—diversity (D)—the hybrid method and NSDE generated wider
Pareto fronts and produced more diverse solutions than the other MOEAs, whereas NSHS had the
smallest D values, showing that its performance was not global and unable to preserve diversity in
the optimal solutions found. This can also be observed in the graphical results presented in Figures 5
and 6, where the solutions of the NSDE and NSHSDE algorithms are well spread on both sides of the
objective function spaces, while those of the NSHS algorithm (and the other MOEAs) are concentrated
in a particular part of the best-known Pareto fronts. The superior diversity of solutions observed in
the NSDE and NSHSDE algorithms can be attributed to the efficient mutation operator in the DE for
generating new solutions.

It is noteworthy that D metric is also not a perfect comparison measure since it does not consider
the non-dominance. The spread Pareto front of an MOEA with long tails may dominated by the
small-spread Pareto front of another MOEA and thus, the former would be the inferior, although has
a greater D metric. This is the case for NSDE and NSHSDE algorithms and we should see what two
other metrics say.

Table 7. Parameters used in multi-objective evolutionary algorithms (MOEAs).

Algorithm Parameter Value

NSGA2

Mutation rate 1/(no. variables)
Crossover prob. 0.9
Tournament size 2

Mutation step size 0.1 × Variable range

SPEA2

Mutation rate 1/(no. variables)
Crossover prob. 0.9
Tournament size 2

Mutation step size 0.1 × Variable range

NSHS
HMCR 0.98

PAR 0.4
Fw (0.05–0.005) × Variable range

NSDE
F (scaling factor) 0.5
Crossover prob. 0.7

NSHSDE
F (scaling factor) 0.5

PAR 0.4
Fw (0.05–0.005) × Variable range

MOEA/D

Mutation prob. 0.3
Mutation rate. 0.1

T (number of neighbors) 0.2 × Pop size

Z * (Goal point)
The ideal values for objective
functions, zero for the cost and
one for the resiliency index

Overall, a comparison between the GD and D values of the hybrid method with those of
NSHS and NSDE showed that the proposed hybrid algorithm successfully exploited the mutation
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operator of differential evolution and the local search capability of harmony search to generate better
quality solutions (in terms of convergence) than NSDE and better diversity than NSHS across all
experimental networks.

Figure 6. Pareto front (PF) of benchmark problems, (a) Fossolo network (FOS) problem; (b) Balerma
network (BIN) problem.

As shown in the last column of Table 8, NSDE and NSHSDE outperformed the other methods
based on the third metric, wherein their HV values were of higher order compared to those achieved
from the other MOEAs for all benchmark networks. Although HV measures both convergence and
diversity in MOEAs, these values are considered to be more influenced by diversity (see Table 8);
thus, this metric alone could not provide consistent and unbiased evaluation. Another important
observation was that, in the case of the third network problem (FOS), NSDE found some undiscovered
solutions and NSHSDE found some new optimal solutions that dominated a portion of the best-known
Pareto front (PF) in the literature. This was accomplished in both algorithms by incurring lower
computational burden (smaller number of function evaluations) than that for the best-known PF.
Comparing the coverage set (CS) metric of the best known PF and the two algorithms, NSHSDE
and NSDE respectively found on an average 12% and 36% new optimal solutions in each round of
execution that were not found in the best PF reported in the literature. NSDE presented more new
optimal solutions; however, the analysis of the results showed that most of them are located in small
clustered locations at right tail of the Pareto front and other solutions in its Pareto front are dominated
by both the best known PF and NSHSDE members. In other words, new optimal solutions in NSDE
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are in fact undiscovered solutions which come from the strength of diversity in DE, not the strength
of convergence. That is to say, they are non-dominated solutions with respect to the best known PF,
but they do not dominate solutions of the best known PF. On the other hand, new solutions found by
NSHSDE (12% in average) dominate the solutions of the best known PF. This means they are obtained
by the strength of convergence in NSHSDE.

These results confirmed the superiority of the proposed hybrid algorithm and the improvement
in its search capability. It also showed that the reported Pareto front for this network was not global.
In order to complete our analysis, a pairwise comparison among the MOEAs was carried out based on
the CS metric for all four experimental networks. The results are demonstrated in Table 9. CS shows
what percentage of the non-dominated solutions are found by each of MOEAs, in a pairwise comparison.
The pairwise comparison (diagonal values in the table) shows that NSHSDE outperformed all other
MOEAs for all four WDN design problems. The performance of the other algorithms varied for different
benchmark network problems; but in general, the NSDE algorithm was second best, and SPEA2
exhibited weak performance compared to the other methods. Since the CS metric is based on the
non-dominance strength, unlike the three preceding metrics, CS is an unbiased and perfect convergence
measure. By observing the CS values of MOEA/D, it is evident that this algorithm underperformed in
the first three networks, but delivered the second best performance in the last network (BIN problem).
It is likely that the MOEA/D yields good performance for large-sized problems. Moreover, based on
the CS values, NSHS recorded relatively better performance than NSGA2.

Table 8. Comparison of multi-objective algorithms using the average values of generational distance
(GD), relative diversity (D), and hypervolume (HV) metrics.

Problem Algorithm GD D HVR

TLN

NSHSDE 193.96 0.79 1.00
NSDE 1317.76 0.50 0.62

NSGA2 3690.13 0.43 0.49
NSHS 3362.55 0.19 0.26
SPEA2 3136.40 0.51 0.72

MOEA/D 4007.28 0.41 0.49

HAN

NSHSDE 1992.61 0.80 0.98
NSDE 2420.65 0.66 0.96

NSGA2 1987.79 0.22 0.30
NSHS 1670.78 0.17 0.24
SPEA2 1866.20 0.12 0.18

MOEA/D 5130.38 0.81 0.86

FOS

NSHSDE 2253.75 0.5 0.96
NSDE 10529.41 0.67 0.98

NSGA2 213.13 0.02 0.03
NSHS 103.00 0.00 0.01
SPEA2 310.30 0.00 0.00

MOEA/D 36463.37 0.33 0.37

BIN

NSHSDE 7032.75 0.32 0.36
NSDE 28295.29 0.48 0.69

NSGA2 2144.96 0.06 0.06
NSHS 1697.33 0.03 0.03
SPEA2 1762.07 0.01 0.01

MOEA/D 1729.88 0.09 0.08

A close-up view of Pareto fronts generated by these algorithms on the FOS and BIN network
problems is given in Figure 7. As shown, the solutions found by NSHS dominated the main part of the
NSGA2 solutions. Compared with NSGA2, the harmony search had better local search capability with
regard to the quality of solutions. This was also observed in the work of Yazdi et al. [29] for the sewer
pipe network application. This algorithm, however, could not find the tails of the Pareto front, as it
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suffered from an inability to preserve the diversity of the population during the evolutionary search
steps. Hybridizing HS with DE, which has a strong global search feature, provides considerably better
performance than the MOEAs considered, as shown in Figures 5 and 6 and in Tables 8 and 9.

Figure 7. A close-up view of Pareto fronts (PFs) generated by Non-Dominated Sorting Harmony Search
(NSHS) and nondominated sorting genetic algorithm 2 (NSGA2), (a) FOS problem; (b) BIN problem.

Table 9. Comparison of multi-objective algorithms using the coverage set (CS) metric.

Problem Algorithm NSHSDE NSDE NSGA2 NSHS SPEA2 MOEA/D

TLN

NSHSDE - 0.87 0.85 0.92 0.82 0.94
NSDE 0.84 - 0.84 0.93 0.85 0.95

NSGA2 0.74 0.76 - 0.89 0.78 0.86
NSHS 0.31 0.32 0.35 - 0.32 0.37
SPEA2 0.66 0.67 0.7 0.83 - 0.85

MOEA/D 0.58 0.61 0.62 0.87 0.63 -

HAN

NSHSDE - 0.6 0.72 0.53 0.99 0.95
NSDE 0.54 - 0.71 0.51 0.99 0.93

NSGA2 0.28 0.29 - 0.34 0.92 0.78
NSHS 0.47 0.49 0.66 - 0.92 0.85
SPEA2 0.01 0.01 0.08 0.08 - 0.48

MOEA/D 0.06 0.07 0.22 0.15 0.52 -

FOS

NSHSDE - 0.82 0.93 0.75 1 1
NSDE 0.21 - 0.98 0.55 0.83 1

NSGA2 0.07 0.02 - 0.17 0.44 0.71
NSHS 0.25 0.45 0.83 - 0.17 0.67
SPEA2 0 0.17 0.566 0.83 - 0.92

MOEA/D 0 0 0.29 0.33 0.08 -

BIN

NSHSDE - 0.59 1 0.64 1 0.53
NSDE 0.41 - 1 0.62 0.55 0.38

NSGA2 0 0 - 0.48 0.4 0
NSHS 0.36 0.38 0.52 - 1 0.46
SPEA2 0 0.45 0.59 0 - 0

MOEA/D 0.48 0.61 1 0.54 1 -

4. Conclusions

In this research article, a hybrid multi-objective algorithm was proposed by integrating the
concepts of HS and DE in a unified framework. The proposed algorithm was compared with
well-known methods—NSGA2, SPEA2, MOEA/D—and two other extended versions of harmony
search and differential evolution, on multi-objective problems. A quantitative comparison was made
(by plotting the Pareto fronts) in terms of the generational distance (GD), diversity (D), hyper-cube
volume (HV), and coverage set (CS) metrics. Results demonstrated that GD due to ignoring the
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cardinality (the number of solutions) of the Pareto front and D metric due to ignoring non-dominance
criterion are not suitable comparative measures. While two other metrics measure both convergence
and diversity, HV may have biased results because of the scaling effects of different objective functions
and being more influenced by diversity. CS, which is directly calculated based on the non-dominance
strength, was found to be the best comparative measure. According to HV metric, NSHSDE had the
top rank in the first three considered WDN design problems and the second rank in the fourth case.
Therefore, it delivered a better overall performance based on HV values. Additionally, evaluation of the
NSHSDE Pareto fronts for four WDN design problems showed that the hybrid method is the superior
MOEA in terms of CS metric. These results confirm the credibility of the proposed hybrid algorithm.

Of the algorithms considered, the hybrid algorithm provided on average 12% of new optimal
solutions for the FOS network problem, dominating the best-known Pareto front in the literature that
had been obtained by aggregating the results of several widely used algorithms. This gain, achieved
by using a considerably smaller number of function evaluations, is due to the successful exploitation of
the global search capability of differential evolution and the local search capability of harmony search
operators. Although some limited parameter tuning was done in this work, we believe that if more
computational effort is put on parameter settings, even better performance can be achieved by the
hybrid method. The results also show that NSDE yielded the second best performance and SPEA2 was
generally inferior to all other methods compared. Similarly, MOEA/D showed weak performance on
small- and medium-sized problems, but exhibited the second best results on the large-sized Balerma
network problem. The median-scoring algorithms were NSHS and NSGA2, where the former provided
better local convergence but the latter provided better diversity.

In summary, the overall results of this study show that the proposed hybrid algorithm can be
successfully used to solve multi-objective design problems of WDN with better efficiency. More complex
networks are being studied to confirm the credibility of the proposed approach and will be reported in
the future.
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Abstract: This work presents a new approach to increase the efficiency of the heuristics methods
applied to the optimal design of water distribution systems. The approach is based on reducing the
search space by bounding the diameters that can be used for every network pipe. To reduce the search
space, two opposite extreme flow distribution scenarios are analyzed and velocity restrictions to the
pipe flow are then applied. The first scenario produces the most uniform flow distribution in the
network. The opposite scenario is represented by the network with the maximum flow accumulation.
Both extreme flow distributions are calculated by solving a quadratic programming problem, which
is a very robust and efficient procedure. This approach has been coupled to a Genetic Algorithm
(GA). The GA has an integer coding scheme and variable number of alleles depending on the number
of diameters comprised within the velocity restrictions. The methodology has been applied to several
benchmark networks and its performance has been compared to a classic GA formulation with a
non-bounded search space. It considerably reduced the search space and provided a much faster
and more accurate convergence than the GA formulation. This approach can also be coupled to
other metaheuristics.

Keywords: water distribution networks; optimization; heuristics; search space reduction; Genetic
Algorithm; hybrid method

1. Introduction

The optimal design of looped water distribution networks (WDN) can be regarded as a
type of complex combinatorial problem known as NP-hard (Non-deterministic Polynomial-time
hard), as it is a nonlinear, constrained, non-smooth, non-convex, and, hence, multi-modal
problem [1,2]. Although mathematical programming methods such as linear and nonlinear
programming techniques [3,4] have been applied to solve this problem, metaheuristics methods
have been preferred due to their ability to cope with global optimization problems. Genetic Algorithms
(GA) and other Evolutionary Algorithms [2], Simulated Annealing (SA) [5], Shuffle Frog Leaping
Algorithm [6], Iterated Local Search [7] and Particle Swarm Optimization [8] are among the most
extended metaheuristic approaches applied to water distribution networks design. Genetic algorithms
have been extensively applied to solve the problem of designing the optimal water distribution
network ([2,9]). GAs are based on the rules of evolution and natural selection. Multi-objective heuristic
approaches have also been formulated not only to minimize the network cost but to take into
consideration other conflicting objectives as well, such as the reliability of the system [10–14].
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Although heuristics approaches can handle global optimization problems, they do not guarantee
to find the optimal solution [15]. In addition to the lack of accuracy of the solution provided,
another shortcoming of these procedures is the time they take to converge. In recent years, a great deal
of research work has been carried out to improve their performance; however, in spite of these efforts,
heuristics methods are still relatively inefficient and time-consuming when dealing with very large
water distribution networks. This inefficiency is due to the wide search space that these algorithms
must explore. Since the search space is very large, general purpose heuristic algorithms waste a
considerably long time evaluating unfeasible solutions. Consequently, the probability of finding the
optimal solution decreases and the convergence speed increases as the size of the search space increases.
Strategies for reducing the search space are thus greatly needed.

The aim of this paper is to present a new approach to increase the efficiency of the heuristics
methods applied to the optimal design of water distribution networks. The proposed approach is
based on bounding the search space by analyzing two opposite extreme flow distribution scenarios
and then applying velocity restrictions to the flow in the network’s links. The proposed methodology
has been applied to minimize the cost of a well-known benchmark network. The performance of the
approach presented in this paper has been compared to a classic GA formulation with a non-bounded
search space.

2. Materials and Methods

2.1. Bounding Strategy

Flow distribution can be calculated in branched networks by applying flow conservation equations
in the nodes of the network. From a practical standpoint, a common procedure for this type of network
is to impose velocity restrictions on the flow in the pipes. Velocity limits of piping systems can
vary depending on the material and diameter and other considerations. High velocities may cause
pipe erosion, loud noise, and excessive head losses. Low velocities, on the contrary, may produce
sedimentation and oversizing of the system. When velocity restrictions are applied, the range of
possible diameters that can be selected for a specific pipe is considerably reduced, thus simplifying
the complexity of the network design. However, unlike the case of branched networks, the flow
distribution in looped networks is not known a priori, and, as a consequence, this procedure cannot
be used.

The methodology proposed in this work is based on reducing the search space by bounding the
range of possible diameters that can be selected for a specific network link. The procedure consists of
generating two opposite extreme flow distribution scenarios that satisfy the nodal flow conservation
equations and nodal demands. The first scenario produces the most uniform flow distribution in the
network while satisfying nodal demands and flow conservation constraints. The resulting design
would provide a network with high entropy and resilience. The opposite scenario features the highest
flow accumulation within certain main pipes. This scenario provides a flow distribution fairly similar
to the one obtained for a spanning tree of the network.

The methodology proposed in this work to calculate both extreme flow distributions is to solve a
quadratic programming problem (QPP) for each of them. A quadratic programming problem involves
minimizing or maximizing a quadratic function subject to linear constraints. Quadratic programming
is a particular type of nonlinear programming. Although general nonlinear algorithms can be applied
to solve this type of problem, there are others that are more robust, specific and efficient [16].

The objective function of the proposed QPP for the most uniform flow distribution is to minimize
the sum of the square link flows of the network. These link flows have to satisfy the flow conservation
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equations in the nodes of the network. This set of restrictions is linear. The problem is formulated in
Equation (1):

Min.
n
∑

i=1
Qi

2

Subject to :
A·Q = q

Q ≥ 0

(1)

where: n is the number of links in the network, Qi is the flow of the link i, A is an (m × n) array, and m
is the number of nodes, and q is a vector of nodal demands.

The entry aij of array A is 1 if the flow of link j goes into node i, −1 if it leaves the node, and 0 if
link j is not connected to node i.

One drawback of this procedure is that the direction of the flows has to be previously defined
in order to perform the calculation. For complex networks, the number of possible flow direction
combinations can be very high and finding the right one is a cumbersome procedure. To overcome
this limitation, we have duplicated the number of links by adding a fictitious pipe for each link of the
network in such a way that two pipes with opposed flows are considered for each link of the network.
Using this procedure, the number of variables is 2n and array A is a (m × 2n) array. The solution of the
minimization QPP problem provides the right flow directions and values that minimize the sum of
network flows. The so called Maximum Dispersion (MD) flow distribution is obtained in this way.

The second scenario, with a maximum flow accumulation, also termed a Maximum Concentration
scenario (MC), is obtained by maximizing the objective function and solving the equivalent QPP
maximization problem.

The solution of these two problems provides two vectors flows (QMC and QMD), which bounds
the range of possible flows within each network link. By imposing velocity restrictions, a pair of
vectors defining the range of possible diameters between the minimum (Dm,i) and the maximum (DM,i)
for each link i can be calculated in the following way:

Dm,i =

√
4·Min (QMD,i , QMC,i)

π·UM

DM,i =

√
4·Max (QMD,i , QMC,i)

π·Um

. (2)

2.2. Bounded Genetic Algorithm Formulation

The bounding approach developed herein can be coupled to different types of metaheuristics
methods. In this work, a GA has been used to test the performance of the proposed methodology.
GAs are stochastic search procedures based on the evolutionary mechanisms of natural selection
and genetics [17]. GAs mimic the highly effective optimization model that has naturally evolved for
dealing with large, highly complex systems.

The GA is based on the GENOME model developed by Reca and Martínez [2]. However, some
modifications in the code described below have been made to implement the proposed strategy. A new
software program called B-GENOME (B-GA) has been developed to implement this new approach.
The program has been developed using the VBA (Visual Basic for Applications) programming language
in the Excel© (Microsoft, Redmond, Washington, DC, USA) spreadsheet environment.

GENOME used an integer-coding scheme. Each solution (individual) was coded by a vector of n
discrete variables (diameter sizes assigned to each link of the network). The variable was coded by an
integer value ranging from one (first possible diameter for that particular link) to nd,i (last possible
diameter). This methodology has many advantages since there are no limitations on the number of
possible diameter sizes that can be assigned to a specific pipe. In the classic formulation of GENOME,
the number of possible diameter sizes was equal for each link and this value was equal to the total
number of diameters in the pipe database. The same coding scheme has been adopted in B-GENOME,
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although some modifications have been made to allow for a variable number of possible diameters
for each link. The new B-GENOME algorithm used in this work has an integer coding scheme and
a variable number of alleles. The number of alleles depends on the number of possible diameters
comprised within the velocity restrictions of each link.

In order to test and compare the new approach to the classic GA formulation, the initial population
has been obtained randomly. This initial population evolves from one generation to another by
undergoing an iterative reproductive cycle. This cycle comprises three subsequent operators: selection,
crossover and mutation. For the selection operator to be applied the fitness of each individual is
evaluated as the sum of the cost of the pipes making up the network plus a penalty function applied to
take into account nodal pressure deficits (see Equation (3)):

F(D) =
n

∑
i=1

ci·Li + p·
N

∑
j=1

(
max

(
hrj − hj

)
, 0
)

(3)

where: ci is the pipe cost (€ m−1), which is a function of the diameter Di, Li is the length of the link i,
p is a penalty multiplier, N is the number of nodes in the network, hrj is the required pressure head in
the node j and hj is the actual pressure head computed by the hydraulic solver EPANET for the node j.

The value of the penalty multiplier may affect the accuracy of the solution, so it should be properly
calibrated. To cope with this problem, some researchers recommend different constraint-handling
techniques, such as the use of variable values or self-adaptive penalty functions [18]. However,
in this work, for the sake of simplicity, and in order to compare both approaches under the same
conditions, a constant penalty multiplier has been applied. A high value has been assigned to this
penalty multiplier (109 €/m) to avoid finding solutions that violate the pressure restrictions. In order
to compute the pressure deficits, the nodal pressures for each individual in the population have been
computed by using a network solver. The hydraulic solver EPANET has been used for this purpose [19].
The EPANET engine is used when needed by calling on the EPANET toolkit from the VBA software
code developed in this work. B-GENOME implements all the different options to perform the three
basic operations that were available in GENOME [2].

2.3. Structure of B-GENOME

In addition to the GA module, B-GENOME implements a module to solve the QPPs. This module
makes use of the EXCEL optimization add-on SOLVER (frontline systems). Both data input and results
output modules complete the structure of the B-GENOME software model. The input module reads
both the network information and the available pipe diameters database. The network information
is imported from an EPANET input file (*.inp file). The pipe database is stored in a table within
an Excel sheet. The output module writes the final solution found by the model (optimal vector of
pipe diameters and cost of the network) and the best fitness function value for every generation in
a spreadsheet.

The flowchart of the B-GENOME model is depicted in Figure 1.
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Figure 1. Flowchart of the proposed model.

2.4. Testing of the B-GENOME Model

The proposed methodology has been applied to 2 well-known benchmark networks in order
to compare the performance of the classic GA formulation with the new bounded GA. The selected
networks are the Alperovits and Shamir [3] network (A&S, also known as a two-loop network) and the
Hanoi water distribution network. Both have been extensively used to test different water distribution
design optimization algorithms, but they feature different size characteristics. While the first is a small
network with seven nodes and eight pipes arranged in two loops, the latter can be considered as
medium-sized, with 32 nodes and 34 pipes and 3 loops.

The A&S network layout is shown in Figure 2. The system is fed by gravity from a reservoir of
210 m fixed head. The pipes are all 1000 m long. The minimum pressure limitation is 30 m above
ground level for each node. There are 14 commercial diameters to be selected. The nodal head and
demands, the cost per meter for each pipe size and other data are reported by Alperovits and Shamir
and other works [3].

Figure 2. Layout of the Alperovits and Shamir network [3].
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The Hanoi water distribution network (see Figure 3) features 32 nodes and 34 pipes organized
in 3 loops. No pumping facilities are considered since only a single fixed head source at elevation of
100 m is available. The minimum head requirement at all nodes is fixed at 30 m. In this case, there is a
set of 6 commercially available diameters. The cost function is nonlinear. The pipe head losses were
calculated using the Hazen–Williams equation with a Hazen–Williams roughness coefficient, C = 130.

Figure 3. Layout of the Hanoi network.

To evaluate the effect of the search space reduction on the convergence speed and accuracy of the
solution, both algorithms (GENOME and B-GENOME) have been applied to solve the WDN design
problem of both the two-loop and Hanoi networks. To be consistent and enable comparison, the same
input data and parameters and analysis options have been chosen.

The pipe head losses were calculated using the Hazen–Williams equation with a Hazen–Williams
roughness coefficient, C = 130. The values of the other parameters of the Hazen–Williams equation
were set to the defaults of the EPANET 2.0 network analysis software (USEPA, Cincinnati, OH, USA).
The population size was limited to 100 individuals in the case of A&S and 200 for Hanoi. The number
of generations was 200 and 300, respectively. The remaining input parameters and options for the GA
algorithm are summarized in Table 1.

Table 1. Input parameters for the Genetic Algorithm.

Parameter A&S Hanoi

Population (np) 100 200
Generations (ng) 200 300

Crossover prob. (pcross) 0.9 0.9
Mutation prob. (Pmut) 0.05 0.05

Prob. of gene crossing (rcross) 0.5 0.5
Reproduction plan steady-state-delete-worst plan steady-state-delete-worst plan
Crossover operator uniform crossover uniform crossover

The steady-state-delete-worst plan inserts individuals as they are bred whenever its fitness exceeds
that of the least fit member of the parent population. The least fit member of the parent population
is removed and replaced by the offspring. The crossover operator implies that a pair of parent
chromosomes exchanges information in order to produce a pair of offspring chromosomes that inherit
their characteristics. The probability of crossing two chromosomes is defined by the input parameter
pcross. In the uniform crossover, the parents’ chromosomes exchange their genetic information gene to
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gene. The probability of exchanging genes is defined by the gene crossing rate (rcross). Ten simulations
were performed both for the new bounded algorithm and the classic GA algorithm.

3. Results

The first step in the calculation procedure is to solve the QPPs stated in Equation (1). The results of
these problems provide both vectors of flows for each link of the network. Both flow values represent
the limits to the flow in each link of the network and thus reduce the search space. The results provided
are given for both the A&S (Table 2) and the Hanoi networks (Table 3). Table 2 (A&S) and Table 3
(Hanoi) show the flow range, the minimum and maximum diameters, and the number of possible
diameters compatible with the velocity restrictions provided by the QPP problems.

Table 2. Flow range, maximum and minimum diameters and number of possible diameters for each
link obtained from the Quadratic Programming Problems QPPs for the Alperovits and Shamir network.

Link QMD (L/h) QMC (L/h) Dm (mm) DM (mm) N◦D

1 311.1 311.1 356 610 6
2 117.0 27.8 102 559 10
3 166.3 255.6 254 559 8
4 40.0 75.0 102 457 8
5 93.0 147.2 152 610 10
6 1.3 55.6 25.4 406 10
7 89.3 0.0 25.4 508 12
8 54.3 0.0 25.4 406 10

Table 3. Flow range, maximum and minimum diameters and number of possible diameters for each
link obtained from the QPPs for the Hanoi network.

Link QMD (L/h) QMC (L/h) Dm (mm) DM (mm) N◦D

1 19,940 19,940 1016 1016 1
2 19,050 19,050 1016 1016 1
3 5326 6810 1016 1016 1
4 5196 6680 1016 1016 1
5 4471 5955 1016 1016 1
6 3466 4950 762 1016 2
7 2116 3600 609.6 1016 3
8 1566 3050 508 1016 4
9 1041 2525 406.4 1016 4
10 2000 2000 609.6 1016 3
11 1500 1500 508 1016 4
12 940 940 406.4 1016 5
13 1484 0 304.8 1016 6
14 2099 615 304.8 1016 6
15 2379 895 304.8 1016 5
16 2968 1205 508 1016 4
17 3833 2070 609.6 1016 3
18 5178 3415 762 1016 2
19 5238 3475 762 1016 2
20 7637 7915 1016 1016 1
21 1415 1415 508 1016 4
22 485 485 304.8 1016 6
23 4947 5225 1016 1016 1
24 2890 3065 609.6 1016 3
25 2070 2245 609.6 1016 3
26 992 1270 406.4 1016 5
27 92 370 304.8 762 5
28 278 0 304.8 762 5
29 1011 1115 406.4 1016 5
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Table 3. Cont.

Link QMD (L/h) QMC (L/h) Dm (mm) DM (mm) N◦D

30 721 825 406.4 1016 5
31 361 465 304.8 1016 6
32 1 105 304.8 1016 6
33 104 0 304.8 1016 6
34 909 805 304.8 1016 6

With the aim of evaluating the accuracy of the solution and the convergence speed of the new
bounded algorithm and the classic GA algorithm, ten runs were performed for each algorithm with the
same input parameters, data, and analysis options. Results of these simulations are shown in Figure 4
for the A&S network and in Figure 5 for the Hanoi network.

 

Figure 4. Evolution of the best fitness value for B-GENOME and GENOME algorithms (Alperovits and
Shamir Network).

 
Figure 5. Evolution of the best fitness value for B-GENOME and GENOME algorithms
(Hanoi Network).
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Not only did the B-GA algorithm outperform the GA in convergence speed, but it also performed
better when it came to the accuracy of the solution. The solutions provided by both algorithms are
given in Table 4 (A$S) and Table 5 (Hanoi).

Table 4. Solutions found by both algorithms for the Alperovits and Shamir network.

Algorithm Min Cost ($) Max Cost ($) Avrg. Cost ($) Std. Dev. ($) C. Var (%)

B-GA 419,000 447,000 424,000 9099 2.15
GA 420,000 448,000 430,900 11,344 2.63

Table 5. Solutions found by both algorithms for the Hanoi network.

Algorithm Min Cost ($) Max Cost ($) Avrg. Cost ($) Std. Dev. ($) C. Var (%)

B-GA 6,182,006 6,242,051 6,219,390 19,831 0.32
GA 6,208,937 6,373,131 6,296,366 57,791 0.92

4. Discussion

A significant reduction of the search space was achieved with the proposed methodology.
Regarding the Alperovits and Shamir network, as its pipe database is composed of 14 different
diameter values and the network has eight links, the total search space in the unbounded problem
is equal to 148 = 1.48 × 109 possible network designs. The search space for the bounded problem
is reduced to 4.61 × 107, which means that the search space becomes approximately 3% of the total
search space of the problem (see Table 2). In the case of the Hanoi network, the reduction is even
higher. There are six possible diameters in the database and the number of links is equal to 34.
The resulting number of alternative designs is 2.87 × 1026, whereas the size of the search space in
the bounded problem is 4.35 × 1016 (see Table 3). The reduction of the search space is expected to be
higher for a larger number of links and the number of pipe diameters in a given problem. The velocity
limits also play an important role as the search space reduction increases as the velocity limits range
becomes narrower.

Another advantage of the search space reduction approach presented herein is that it is able
to detect branched links in the network by comparing the flow value for these links in both flow
distributions and checking if it is the same. For instance, this is the case of link 1 in the A&S network
(Table 2) and links 1, 2, 10, 11, 12, 21 and 22 in the Hanoi network (Table 3). Since the flow is established
in these branched links, the range of possible diameters compatible with the flow velocity restrictions
is considerably reduced and so the complexity of the problem. In addition, a special treatment
applying other optimization methods best suited for branched networks can be performed in these
branched sub-networks.

Regarding the speed of convergence, both algorithms performed well, although the new proposed
algorithm B-GA outperformed the GA for both networks. It is worth highlighting that convergence
was reached rather quickly in both cases. There were no substantial differences in the convergence
speed for the A&S network (both algorithms converged approximately after the 20th generation).
Convergence was found later for the Hanoi network due to the larger size of the problem, and,
in this case, B-GA clearly converged faster than GA (130th for the B-GA and 293th in the case of
GA). In the A&S network, only 2000 function evaluations were needed to converge (100 individuals
and 20 generations). In the case of the Hanoi network, 26,000 evaluations were needed in the B-GA
algorithm and 58,600 in the GA algorithm. This entails a very small fraction of the total search space
(see Figures 4 and 5).

The proposed B-GA algorithm not only considerably reduced the search space, but also provided
a much faster and more accurate convergence than the classic GA formulation In the case of the A&S
network, the best solution found by the B-GA algorithm was 419,000, which is the global optimum as
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reported in previous works. This minimum cost was obtained in three out of the 10 runs performed.
A quasi-optimal solution (420,000) was found in another five out of 10 iterations. The average cost
in the 10 simulations was close to the optimum (424,000). The GA performed slightly worse; this
algorithm did not reach the minimum cost in any simulation, although the solution found came
very close (420,000). The average cost was also higher (430,900) than the one obtained by B-GA
(see Tables 4 and 5).

Both algorithms found solutions relatively close to the global optimum. For the Hanoi network,
the best solution found by the B-GA algorithm was 6,182,006. The average cost in the 10 simulations
was close to the optimum (6,219,390). Again, the GA clearly performed worse. The minimum solution
found was 6,208,937 (0.44% higher). The average cost was also higher (6,296,366) than the one obtained
by B-GA (1.24%). The solution found by the proposed B-GA is comparable to the optimal solution
found in the literature. The lowest cost solution reported is 6,056,000 [5,20]. However, these results were
not obtained using the EPANET 2.0 network solver and the coefficients of the Hazen–Williams head loss
equation were slightly different. The best solution found when using the EPANET 2.0 network solver
was that reported by Lansey and Eusuff [6] (6,073,000) using the Shuffled Frog Leaping Algorithm
(SFLA). This solution is slightly better than the one found in this work with B-GA. Nevertheless,
it should be noted that, in our study, the number of evaluations was low because the aim was not to
achieve the minimum cost but to test and compare the algorithm with a classic GA algorithm under
the same conditions.

As a consequence, the proposed B-GA algorithm considerably reduced the search space and
provided a much faster and more accurate convergence than the classic GA formulation. It is expected
that, for more complex networks (networks with a higher number of links or higher number of pipe
diameters), the advantages provided by the new B-GA approach could be even greater.

Another major advantage of the proposed search space reduction is that it can be coupled to other
metaheuristics. The performance of this strategy when applied to other types of metaheuristics is an
issue still to be investigated.

5. Conclusions

The following conclusions can be drawn from this research work:

• A new approach based on bounding and reducing the total search space in a water distribution
network design problem has been developed. This new approach reduces the search space by
analyzing two opposite extreme flow distribution scenarios and then applying velocity restrictions
to the pipes.

• This new approach has been coupled to a GA in order to improve its performance.
• The proposed B-GA algorithm considerably reduced the search space and provided a much

faster and more accurate convergence than the classic GA formulation for a small and a medium
benchmark network. It is expected that, for more complex networks, the advantages provided by
the new B-GA approach could be even greater.

• This new approach could also be implemented in other types of heuristic methods.
The improvements on the performance of these heuristics provided by the new approach are still
to be investigated.
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Abstract: Circular drop manholes have been an important device for energy dissipation and
reduction of flow velocities in urban drainage networks. The energy dissipation in a drop manhole
depends on the manhole flow patterns, the outflow regimes in the exit pipe and the downstream
operation conditions, and is closely related to the hydraulic and geometric parameters of the
manhole. In the present work, the energy dissipation of a drop manhole with three drop heights
was experimentally investigated under free outflow conditions and constrained outflow conditions.
The results demonstrate that the local head loss coefficient is solely related to the dimensionless drop
parameter for free surface outflow without a downstream backwater effect, whereas it depends on
the dimensionless submerge parameter for constrained outflow. Moreover, it is concluded that the
energy dissipation is largely promoted when outlet choking occurs.

Keywords: drop manhole; energy dissipation; free outflow conditions; constrained outflow
conditions; outlet choking

1. Introduction

Drop manholes are hydraulic features that are widely implemented in urban drainage networks for
steep catchments. The energy dissipation of plunge flow in drop manholes is one of the major concerns
for urban system drainage designers. As pointed out by Christodoulou [1] and Granata et al. [2],
adequate energy dissipation in drop manholes should be achieved in order to avoid excessive flow
velocities—and, thus, erosion—in the exit pipe. However, this cannot be always attained, because of the
wide range of discharges experienced in sewer systems during a flood event [3].

The energy dissipation of a drop manhole is related to many factors, which can be grouped into
four categories: (a) the approach flow conditions associated with the filling ratio of the upstream pipe
and the approach flow Froude number; (b) the outlet flow conditions, such as free outflow conditions,
including free surface flow and pressurized flow (in the condition of outlet choking), and constrained
outflow conditions, in which backwater effects downstream of the exit pipe are imposed on the outlet
flow; (c) manhole configurations and dimensions, such as inlet or outlet entrance configurations,
baffles in the manhole, drop height, and manhole diameter, etc.; and (d) air supply conditions.
In the hydraulic studies of circular drop manholes [1,2,4–7] and rectangular drop manholes [3,8–10],
the energy dissipation was investigated under free surface outflow conditions for different approach
flow conditions or manhole configurations. In some other studies, the interest has been focused on
the effects of ventilation absence on the sub-atmospheric pressure and pool depth, which can strongly
influence the interaction between water and airflow and the dissipation energy in drop manholes [11].
However, the energy dissipation of a circular drop manhole has not yet been investigated under

Water 2017, 9, 752 130 www.mdpi.com/journal/water



Water 2017, 9, 752

constrained outflow conditions or outlet choking, although the drop manhole has to operate under
surcharged conditions in many instances, i.e., severe rain events.

This work aims to investigate the energy dissipation of the flow inside the circular drop manhole
and its relation to the outflow conditions. Results of laboratory experiments are presented and analyzed
for three manhole models of different drop heights.

2. Experimental Set-Up and Experiments

The experimental arrangement is schematically shown in Figure 1. The experimental facility
consisted of a head tank, plexiglass circular manhole models and a downstream pool. The plunge flow
was created by the flow from the upstream horizontal inlet pipe with an internal diameter Din = 200 mm.
The inflow pipe was connected to the manhole with a straight inlet entrance, and the flow to this pipe
was provided from a head tank. A manhole model with an internal diameter of DM = 0.54 m with drop
heights of s = 0.93, 1.50 and 2.40 m was used in the tests performed. The lower part of the vertical
dropshaft was connected to a horizontal outlet pipe with an internal diameter Dout = 200 mm. The shaft
pool height P was 35 mm. The flow from the outflow pipe was drained into a downstream pool that was
connected to the laboratory sump. The pool was considered to be a pressurized system downstream
from the manhole, which allowed for analyzing a wide range of back pressures from the exit pipe, taking
into account the various work conditions.

Figure 1. Sketch of experimental setup.

A pump was used to supply water from the main laboratory sump, and the discharges were
measured with an ultrasonic flowmeter. Flow depths were recorded with piezometers in the upstream
and downstream pipes, while the time-average pool depth hp was measured by using a set of
piezometers connected to the manhole bottom. The approach flow depth ho was measured 1.2 m from
the manhole inlet, where the flow has a horizontal surface and the pressure distribution is almost
hydrostatic. The downstream flow depth hd was recorded 2 m from the manhole outlet, where the
flow is gradually varied and the air entrained by the manhole almost detrained. The air demand tests
were performed by connecting the inlet pipe to the head tank with a same diameter elbow and sealing
the manhole with a plexiglass cover on the manhole top, thus the air was supplied only through a
50 mm diameter pipe fitted to the cover. The airflow into the manhole was calculated by measuring
the mean airflow velocity with a thermal anemometer.

Overall, seven series of experiments were run to investigate the energy dissipation in circular
drop manholes under different outflow conditions (see Table 1). The first three series were run under
free surface outflow conditions without backwater effects from the downstream pool. In series four,
experiments were performed to investigate the outlet choking, i.e., the sudden transition from free
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surface to pressurized flow in the exit pipe. Series 5–7 were run under constrained outflow conditions,
in which back pressures from the downstream pool were imposed on the outlet flow.

Table 1. List of experiments.

Series s (m) Inflow Condition Outflow Condition

1 0.93 Free surface Free surface
2 1.50 Free surface Free surface
3 2.40 Free surface Free surface
4 0.93 Pressurized (full pipe) Free surface, Pressurized
5 0.93 Free surface Constrained (backwater effect)
6 1.50 Free surface Constrained (backwater effect)
7 2.40 Free surface Constrained (backwater effect)

3. Results and Discussion

3.1. Flow Patterns

For a manhole under free outflow conditions, the energy dissipation is strongly related to the flow
patterns describing the drop manhole flow and the outflow regimes in the exit pipe. Chanson [8–10]
defined three basic flow regimes of the drop manhole flow for rectangular drop manholes, namely,
flow Regimes R1, R2, and R3, based on the free falling nappe impact location. Regime R1 usually
occurs at low flow rates with the falling jet directly impacting into the manhole pool. For Regime
R2, the falling nappe impacts the manhole outlet zone. With increasing discharges, this flow regime
transforms into Regime R3, with the falling jet impacting on the manhole inner sidewall. For Regime
R3, a water veil spreads down the manhole wall beyond impingement, forming a water curtain at the
manhole outlet. For larger discharges, a roller tends to form at the top of the impact region, as observed
by Rajaratnam et al. [4]. At high flow rates, outlet choking occurs when the free surface flow in the exit
pipe transits to pressurized flow [12].

The classification of drop manhole flow regimes was extended by de Marinis et al. [13] and
Granata et al. [2,6], taking into account additional effects present for circular drop manholes. According
to their investigations, three subregimes for Regime R2 and two subregimes for Regime R3 were
proposed, as indicated in Figures 2 and 3, respectively. Regime R2a occurs if the jet impacts the zone
between the manhole bottom and the manhole outlet. This flow regime transforms to Regime R2b, with
the entire falling jet impacting the outlet pipe invert. Regime R2c can be observed if the jet partially
impacts on the outlet pipe obvert. Compared with Regime R3a, the flow jet for Regime R3b impacts the
manhole sidewall at a higher Froude number, leading to the formation of a radially spreading water
jet. Based on the experimental observations of this study, different shapes of the free falling nappe
before impingement were observed (see Table 2). For a manhole with large drop height at low flow
rates, the side edges of the nappe intersect and form a ‘central ridge’, while for smaller drop height or
high flow rates, the nappe usually exhibits with a shape of horseshoe. These were consistent with the
earlier observations of Chanson [9].

Figure 2. Regime R2 with subregimes.
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(a) (b)

Figure 3. Regime R3 for s = 1.5 m with Regimes (a) R3a; and (b) R3b.

Table 2. Shape of free flow jet before impingement.

s (m)
Shape of Flow Jet for Different Regimes

R1 R2 R3

0.93 Central ridge, Horseshoe Horseshoe Horseshoe
1.50 Central ridge Horseshoe Horseshoe
2.40 Central ridge Central ridge Central ridge, Horseshoe

For a manhole under constrained outflow conditions, the energy dissipation also depends on
the downstream operation conditions, i.e., water depths in the downstream pool. At low flow rates,
no obvious hydraulic jump forms in the exit pipe in the variation range of water depths in the downstream
pool. For large discharges, with the increase of water depth in the downstream pool a hydraulic jump
starts in the exit pipe and then moves toward the outlet entrance until it becomes a critical hydraulic
jump at the outlet entrance, and behaves as a submerged jump near the out entrance at last.

3.2. Energy Dissipation

3.2.1. Definition

For a manhole under free outflow conditions, the energy dissipation in regime R1 was caused
by the direct impact of the free falling nappe on the bottom of the shaft, inducing zones of large
velocity gradients and increase of flow turbulence. A poor energy dissipation of the drop manhole
may occur if the falling jet collided with the invert of downstream sewer (Regime R2). In this regime,
most of the flowrate was conveyed to downstream pipe directly, causing undesirable downstream
conditions. In regime R3, the energy dissipation occurred when the falling jet impinged on the inner
side of the manhole, leading to the formation of a splash jet directed upwards, and a downward
spreading jet. This energy dissipation was promoted by the frictional resistance of the spreading flow
due to the roughness of the manhole wall, and by the mixing of the spreading jet with the water in the
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manhole pool. The energy dissipation can vary within large limits when the free surface flow in the
exit pipe transits to pressurized flow. For a manhole under constrained outflow conditions, the energy
dissipation also depends on the water depth in the downstream pool. Figure 4 shows two definition
sketches of drop manholes under free surface and pressurized outflow conditions. The relative energy
loss is defined as

η =
Ho − Hd

Ho
(1)

where the approach flow energy head is Ho = s + ho + Vo
2/2g, and the outflow energy head is

Hd = hd + Vd
2/2g for free surface conditions, while Hd = pd/ρg + Vd

2/2g for pressurized conditions.

(a) (b)

Figure 4. Definition sketch for (a) free surface outflow; and (b) pressurized outflow.

3.2.2. Free Outflow Conditions

(1) Free surface outflow

Plots of η versus the dimensionless flow rate Q* for free surface outflow are presented in Figure 5
under different drop heights s, in which Q* is defined by the equation

Q∗ = Qw√
gD5

in

(2)

where Qw = the volumetric flow rate and g = acceleration due to gravity.

Figure 5. Variation of η with Q* for free surface outflow.

It can be seen from this figure that the largest energy losses are observed in Regime R1 for
each of the drop heights s. Values of η drop rapidly with an increase in Q*, and pass through their
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minimum values at different Regimes, i.e., at Regime R2 for s = 0.93 m and s = 1.50 m, and at Regime
R3 for s = 2.40 m. This may be attributed to the effect of the shape of the free-falling nappe before
impingement; the nappe has a horseshoe shape for s = 0.93 m and s = 1.50 m, while the side edges
of the nappe intersect for s = 2.40 m. Subsequently, values of η increase first, and then decrease for
different s at high flow rates.

The local head loss in a drop manhole is generally estimated regardless of flow regimes by

ΔH = K
Vo

2

2g
(3)

where K is the local head loss coefficient. Dissipative studies of circular drop manholes have convinced
us that the local head loss coefficient was based solely on the drop parameter D = (gs)0.5/Vo [1,6].

Granata et al. [6] found that the local head loss coefficient of a drop manhole under free surface
outflow conditions, Kf, depends on the drop parameter D in the range 0 < D < 8 as

Kf = 0.25 + 2D2 (4)

It is shown in Figure 6 that the present test date agrees well with Equation (4), extending the
range of agreement up to D = 21.6.

Figure 6. Kf versus D for entire present test range.

(2) Pressurized outflow

Figure 7 shows that the energy dissipation for drop manhole increases notably when the free
surface flow in the exit pipe shifts to pressurized flow, indicating a large dissipation effect in choking
flow. This may be explained by the strong mixing mechanism between the entrained air and the
water flow in the outlet pipe, which can be illustrated by the remarkable increase in dimensionless
air demand Qa/Qw in Figure 8. The dimensionless pool height hp/Dout is plotted as a function of
Q* in Figure 9. Once the flow in the exit pipe chokes, an abrupt drop in manhole pool height and
large unsteady fluctuations in pool water surface illustrated by large standard deviations occur. These
results indicate that the outlet choking is advantageous in promoting energy dissipation and reducing
manhole pool height, which has to be smaller than the drop height to avoid undesired backwater
effects to the approaching flow.
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Figure 7. Variation of η with Q* for s = 0.93 m.

Figure 8. Variation of Qa/Qw with Q* for s = 0.93 m.

Figure 9. Variation of hp/Dout with Q* for s = 0.93 m.

3.2.3. Constrained Outflow Conditions

For a drop manhole under constrained outflow conditions, the energy dissipation is difficult to
estimate when the hydraulic jump passes the measuring location because of the uncertainly in the
calculation of the residual energy in the exit pipe, given the unstable water depth and pressure. Hence,
for a given large flow rate, the minimum water depth in the downstream pool is set to the value at
which a critical hydraulic jump or submerged hydraulic jump occurs. The head loss coefficient of a
drop manhole under constrained outflow conditions due to backwater effects from the downstream
pool, Kc, can be calculated using Equation (3).

For a given drop height s and specified approach flow condition, if Hd is proportional to the
manhole pool height hp, that is

Hd = αhp (5)
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where α is a dimensionless parameter, then Kc can be described by

Kc =
2gHo

Vo2 − α
2gDout

Vo2
hp

Dout
(6)

Equation (6) is evaluated with experimental results for different manhole drop heights s in
Figure 10. It is apparent that a definite linear relationship exists between Kc and the dimensionless
pool height hp/Dout for each drop height s and drop parameter D, indicating that α is approximately
constant if the manhole configuration and approach flow condition remain unchanged.

(a)

(b)

(c)

Figure 10. Variation of Kc with hp/Dout for (a) s = 0.93 m, (b) s = 1.50 m and (c) s = 2.40 m.

Equation (6) could be written in a different form:

C =
2gHo

Vo2 − Kc = α
2ghp

Vo2 (7)
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where C is a dimensionless parameter. If α is a constant for different s and D, then C will be a linear
function of 2ghp/Vo

2. In Figure 11, experimental results for constrained outflow conditions are shown
plotted with C against 2ghp/Vo

2 for a number of discharges and three manhole drop heights. It is
interesting that a definite linear relation appears to exist between these two parameters, indicating
that α is approximately constant. This can be seen in Figure 12, where α is plotted against 2ghp/Vo

2,
especially for 2ghp/Vo

2 greater than 25. Using the data of Figure 11, the best fitting is

C =
2ghp

Vo2 − 0.36 (8)

(a) (b)

Figure 11. Rating curve between C and hp/(Vo
2/2g) for (a) entire present test range; (b) test data for

0 < hp/(Vo
2/2g) < 50.

Figure 12. Variation of α with hp/(Vo
2/2g).

Hence, Equation (7) reduces to

Kc =
2g
(
s + ho − hp

)
Vo2 + 1.36 (9)

Combination of Equations (4) and (9) generates

Kc = Kf +

[
1.11 − 2g

(
hp − ho

)
Vo2

]
(10)

The head loss coefficient Kc can be considered as the sum of that for free surface outflow conditions
(Kf) and that due to the back pressure from the exit pipe (terms in brackets), which is related to
the approach flow conditions and pool height. Similar to D, a dimensionless submerge parameter,
D′ = [g(s + ho − hp)]0.5/Vo, can be defined for constrained outflow conditions, in which the term
in parentheses is the difference in elevation between the water surfaces of the approach flow and
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the manhole pool. Thus, the head loss coefficient for constrained outflow conditions can be solely
characterized by the submerge parameter D′, for 2.0 < D′ < 16.8 resulting in

Kc = 2D′2 + 1.36 (11)

4. Conclusions

Drop manholes are effective energy dissipaters widely employed in urban drainage networks. In the
present study, the hydraulic performance of circular drop manholes was investigated experimentally with
respect to their energy dissipation in three models of different drop heights. It is concluded that the local
head loss coefficient is solely dependent on the dimensionless drop parameter (gs)0.5/Vo for free surface
outflow without a downstream backwater effect, while it can be solely characterized by the dimensionless
submerge parameter, defined as [g(s + ho − hp)]0.5/Vo, for constrained outflow due to the downstream
backwater effect. Based on experimental results, empirical equations for different outflow conditions are
proposed for practical applications. Furthermore, the mixing between airflow and water flow is largely
intensified when outlet choking occurs, resulting in abrupt increases in air demand and energy dissipation.
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Abstract: Using metaheuristic optimization methods has enabled researchers to reduce the electricity
consumption cost of small water distribution systems (WDSs). However, dealing with complicated
WDSs and reducing their environmental footprint remains a challenge. In this study a multi-objective
version of Pollution Emission Pump Station Optimization tool (PEPSO) is introduced that can reduce
the electricity cost and pollution emissions (associated with the energy consumption) of pumps
of WDSs. PEPSO includes a user-friendly graphical interface and a customized version of the
non-dominated sorting genetic algorithm. A measure that is called “Undesirability Index” (UI) is
defined to assist the search for a promising optimization path. The UI also ensures that the final
results are desirable and practical. The various features of PEPSO are tested under six scenarios
for optimizing the WDS of Monroe City, MI, and Richmond, UK. The test results indicate that in a
reasonable amount of time, PEPSO can optimize and provide practical results for both WDSs.

Keywords: optimization; water distribution network; pump schedule; genetic algorithm; energy;
pollution emissions

1. Introduction

In the modern world, many systems are designed based on scientific analysis and engineering
techniques, but it does not mean that these systems are developed and operated in an optimal way.
In recent decades, due to improvement in the computational power of machines and development
of new optimization techniques, engineers have focused more on using computer models and
deterministic or meta heuristic optimization techniques to optimize the design and operation of
systems. There are many optimization efforts related to water systems including piping design
optimization, pump operation optimization, sensor placement improvement, model calibration,
leakage detection and reduction, system reliability, etc. [1].

About 4% of electricity usage in the US is attributed to the supply, conveyance, and treatment
of water and wastewater at the cost of approximately 4 billion US dollars per year. Moreover, due to
increasing urban and industrial water demands and a decrease in access to high-quality water resources,
it is predicted that the energy consumption of this sector will increase more than 50% by 2050 [2].
According to the US Department of Energy, approximately 75% of the operating costs of municipal
water supply, treatment and distribution facilities is attributed to electricity demand [3]. As noted
by several researchers, optimizing pump operation has a considerable effect on the water industries,
which can offer a reduction of up to 10% in the annual expenditure of energy and other related
costs [4,5]. Using hydraulic models to investigate the potential of energy usage and associated
pollution emission reduction in water systems has been studied by different researchers. For instance,
Perez-Sanchez and his colleagues, by using EPANET model of an irrigation system, showed that
theoretically 188.23 MWh/year energy-equivalent to 137.4 ton CO2/year-can be recovered from the
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system [6,7]. León-Celi, C et al. also used EPANET toolkit and two optimization algorithms to find the
optimum flowrate distribution in water systems with multiple pump stations and minimize energy
usage and potential leakage [8].

Time-of-use tariff and change in sources of energy in time may increase or decrease the electricity
cost or pollution emissions (associated with the generation of energy) of the system, even if the total
energy consumption of the system does not change. Elevated storage tanks in the system provide
flexibility for operators to shift energy usage of the system. Shifting energy consumption may allow
the operator to take advantage of cheaper energy and less polluting generator sources.

Uncertainties in demand of the system and complexity of the possible combination of pump
status that can potentially answer operational requirements of the WDS, increase the tendency of
operators to maintain water pressure in the system higher than the minimum required pressure.
This increases energy usage, water leakage and consequently water and energy waste. Therefore,
developing an optimization tool that can automatically react to changes in various inputs and generate
a near optimum pump schedule may decrease electricity cost and the environmental footprint of
the system.

2. Literature Review

About four decades ago, when researchers started to work on optimization of WDSs, most of
them focused on construction cost (reducing the cost of piping) and operation cost (minimizing the cost
of energy usage and the power demand of the pump station). However, after a while, other objectives
such as increasing reliability and water quality or decreasing environmental footprint were included
in the optimization process. In the last decade, the attention toward the environmental effect of energy
usage and sustainability of WDSs increased due to increase in public and scientific awareness of climate
change and the effect of pollutant emissions from power generation [9]. At first, most researchers
considered the WDS optimization problem as a single objective problem. However, some researchers
adopt multi-objective methods for optimization of the operation of the WDS [10].

One of the main objectives of the pump operation optimization is reducing the operation cost
of pumps. The real electricity tariffs, in many cases, include a peak power demand charge ($/kW)
in addition to the energy consumption charge ($/kWh). So, it is evident that a useful optimization
tool should be able to use complicated electricity tariffs including both energy consumption and peak
power demand costs. There are different examples in previous research of energy consumption charge
and peak power demand charge being used. Wang et al. used a time-of-use electricity tariff in their
optimization study [10]. Baran et al. also used a time-dependent electricity tariff that was defined
based on on-peak and off-peak hours [11]. Shamir and Salomon used a more complicated electricity
tariff. They used the real and complex electricity tariff of Haifa city, Israel, which includes three time
periods, representing high, medium, and low energy costs. The tariff was different for the weekend
and holidays and the various seasons of the year [12]. Working multiple pumps at the same time may
cause an increase in required power. This may increase the total electricity cost of the system. There are
some examples of researchers taking the power demand charge into account. For instance, Fracasso
and Barnes included the amount of peak power demand (kW) as an objective of the optimization
process [13].

In addition to the electricity cost, pollutant emissions associated with the electricity consumption
is another objective that needs to be optimized to have a sustainable WDS. Wu et al. included the
effect of variable emission rates and electricity tariffs in their WDS design optimization study [14].
Stokes et al. also suggested a framework for the modeling and optimization of Greenhouse Gases
(GHG) emissions associated with energy usage and pump operation [15]. In most of these efforts,
the emission rate of energy usage was considered as a constant value and was linearly related to the
amount of consumed energy. However, most of the time, the source of electrical energy is a mix of
various types of power generators. As this combination of generators may change in time, the emitted
amount of pollutants per unit of consumed energy may change. Researchers at Wayne State University
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developed the LEEM methodology to calculate the amount of pollutant emissions associated with
energy generation at different points in space and time. LEEM is an acronym for Locational Emissions
Estimation Methodology and provides real-time and predicted marginal emission factors (kg/MWh)
based on location and time of energy consumption [16].

Besides the two above-mentioned objectives, some constraints help to direct the algorithm to
solutions that satisfy operational requirements of the WDS. For instance, frequent pump starts can
increase the maintenance costs of the system [17]. Some researchers placed some limits on the
maximum number of pump starts. Similarly, water pressures at junctions or water flow rate in pipes
can be bounded. Constraints can be handled explicitly or can be converted to objectives and handled
implicitly during the optimization process. One of the common methods of converting a constraint to
an objective is using penalty formula. By this approach, violation from a constraint can be converted
to a penalty value and reducing the penalty can be considered as an objective. Zecchin et al. used the
pressure penalty to add a pressure constraint to the objective function of the ant colony (AC) algorithm
that they used for WDS design optimization [18]. Lopez-Ibanez investigated the effect of constraint
on the maximum number of pump starts. He found that a lower limit of the maximum number of
pump starts that does not hinder the search for an optimum solution is related to characteristics of the
network [19].

In addition to the maximum number of pump starts, other constraints such as minimum and
maximum allowed water level in tanks, maximum and minimum allowed pressure at different points
of the water network and maximum and minimum allowed velocity of water in different pipes can
be considered during optimization. The effect of all of these constraints can be translated to penalty
values. Reducing total penalties of a pump operation schedule can be formulated as an objective of
optimization. So, reducing electricity usage cost, pollution emissions (associated with electricity usage)
and penalties can be considered as three objectives of a pump operation optimization problem.

A multi-objective optimization problem can be solved with multi-objective methods or can be
converted to a single objective problem and solved with a single objective optimization algorithm.
For instance, Wu and Behandish calculated the amount of the objective function by the total weighted
cost of energy and amount of three penalties [20]. Abiodun and Ismail completed a bi-objective
optimization that aimed to reduce the electricity cost and maintenance problems [5]. In other studies,
researchers used the multi-objective optimization method to solve a multi-objective problem directly
and find the Pareto frontier of solutions. For instance, Fu and Kapelan used a multi-objective
optimization method for finding the best WDS design based on pipe cost and system robustness [21].
Pollutant Emission Pump Station Optimization (PEPSO) is a platform developed by the water research
team at Wayne State University for optimizing the pump schedule of the WDS [16]. The initial version
of PEPSO used weighting factors to calculate a single combined objective from electricity usage,
pollutant emissions and penalties [22]. However, the newer version of this tool is equipped with a
multi-objective optimization algorithm to optimize each objective independent of others and find the
Pareto frontiers of solutions.

Converting the multi-objective problem to a single objective problem increases the simplicity of
the optimization algorithm. Also, the optimum result is a single solution that can be used directly.
On the other hand, by using multi-objective methods, finding optimum solutions with respect to one
objective does not have any effect on the process of finding the optimum value of other objectives. Also,
there is not any need for normalizing and weighting operations. Defining a meaningful method to
combine different objectives such as the cost of electricity usage and weight of pollution emissions and
coming up with a single objective is a challenging process. Additionally, the multi-objective approach
creates a range optimal solutions as a Pareto frontier that provides some flexibilities for users to select
the preferred solution based on their requirements. Finally, a multi-objective algorithm can search the
solution space of a multi-objective optimization problem with more freedom. This cannot be achieved
with a single objective algorithm and when the effect of one objective on the combined objective is
much more considerable than the effect of other objectives.

142



Water 2017, 9, 640

In the last two decades, many researchers have shifted the focus of WDS optimization from
traditional and deterministic techniques, based on linear and nonlinear programming, to the
implementation of methods that were generally based on heuristics derived from nature [18,23].
In recent years, Evolutionary Computation has proven to be a powerful tool to solve optimal
pump-scheduling problems [11]. The great advantage of metaheuristic algorithms over deterministic
methods is that they can be used for almost all types of optimization problems without considering
the linearity or convexity of the problem. However, while using metaheuristic algorithms, constraints
related to the hydraulic behavior of the solution must be checked separately or should be converted to
an objective [24].

Genetic Algorithm (GA) is one of the most used algorithms in the optimization field and especially
in water-related problems [25,26]. At first, Simpson et al. suggested using GA in the mid-90s for WDS
optimization [27]. Lopez-Ibanez investigated various representations of pump schedule in his thesis
and suggested that time-controlled trigger-based representation can lead to a better result and ensure
maximum limit of switches per pump in comparison with level-controlled trigger representation.
However, his result also showed that time-controlled trigger-based representation did not have
considerable advantages on the common binary representation [19]. In this study, we used a customized
version of the multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA II) with the binary
representation of solutions to develop that WDS or water transmission lines. These networks have a
handful of pipes, junctions, pumps and occasionally one or two optimization tool.

One of the most famous free and publicly available software for modeling the WDS is EPANET2
that is published by the US EPA [7]. Lopez-Ibanez reviewed about 20 articles from 1995 to 2004 and
reported that most of the researchers used complete hydraulic simulation to evaluate the effect of
decision variables on the status of the hydraulic network [19]. We also used EPANET 2.00.12 as the
hydraulic solver of the optimizer tool [7].

Most of the previous studies focused on a small-scale elevated tanks [5,10,28]. A small portion of
real systems are similar to small test networks of these researches, but most of the time we face large
networks with a couple of hundred pipes, junctions, and a considerable number of pumps, valves,
tanks, etc. There are a few studies that tried to optimize a real and large-size WDS [4,29,30]. Most of
the systems that were used in WDS optimization studies do not have variable speed pumps. The WDS
of Monroe City, MI, previously used for comparing three pump operation optimization tools, has both
fixed and variable speed pumps [31]. The WDS of Richmond, UK, is also used in several types of
research. This model is publicly available for the researcher and is suggested to be used for operation
optimization studies of WDSs [32]. In this study, we used both Monroe and Richmond WDS models to
test the developed optimization tool.

3. Tool Development and Methodology

3.1. Transition from the First Version of PEPSO to the Second Version

The optimization tool that is introduced in this article is the second version of PEPSO [33].
The first version of PEPSO was the only tool in this field which was able to optimize the pump
schedule of a WDS to reduce pollution emissions of the system based on location and time of
energy consumption.

The first version of PEPSO was compared with other optimization methods, including the Markov
Decision Process (MDP) and Darwin Scheduler (DS) [31]. This comparison showed that PEPSO was
as good as other tools on the market and its unique emission optimization capability made it an
exceptional tool. However, using a single objective optimization technique limited the capability of this
tool for searching a wide area of the solution space. Besides, the first version of PEPSO did not have
enough options to control the water level in tanks of the WDS effectively. It could use a time-of-use
electricity tariff for the whole system, but it was not able to use separate tariffs for different electricity
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meters and calculate peak power demand cost. Also, this tool could not effectively control the number
of pump starts during an operation cycle.

Despite all unique features of the first version of PEPSO, all of the limitations mentioned above
prevent its use for optimizing the pump schedule of the WDS outside of the research environment.
The second version of PEPSO that is introduced in this article was developed to alleviate all of these
shortages. Also, some fundamental changes in the optimization algorithm of PEPSO increased the
efficiency of the optimization process, resulting in the generation of a more practical solution in
a shorter period.

3.2. Introducing the New PEPSO

PEPSO is a free and publicly available modular optimization program with a graphical interface
that uses a customized NSGA II algorithm for optimization. Different qualities and characteristics,
including clarity, familiarity, responsiveness, efficiency, consistency, aesthetics and forgiveness were
integrated into the graphical user interface of PEPSO. Users can define a detailed electricity tariff
for each pump including time-of-use energy consumption charge ($/kWh) and power demand
charge ($/kW). They can also select a desired pollution level or a combination of pollution levels
for optimization. PEPSO can connect to the LEEM server or use offline data to get the location and
time-dependent emission factors (kg/MWh) that are required for pollution emission optimization.
Various types of hard and soft constraints can be imposed on pumps, tanks, junctions and pipes of
the WDS. In PEPSO, a wide range of optimization options including five different stopping criteria,
exploration and exploitation rates, initial conditions, etc., can be defined. Users can also select any
combination of three objectives (electricity cost, pollutant emissions, total penalty) for optimization.
Finally, this tool provides a broad range of reports in the format of text (tabular data) and/or 2D
and 3D graphics (charts and plots). All of these features can be accessed through the Graphical User
Interface (GUI) or can be defined and edited directly on the PEPSO project file by using a simple text
editor [33].

It was mentioned that PEPSO uses a binary coding scheme for storing pump schedules. It means
that the pump schedule is stored as a table, each row of which shows the operational status of a pump
and each column corresponds to a time block (usually a one-hour block). For fixed speed pumps (FSP),
each cell of the pump schedule table can store the value of 0 or 1 which refer to the OFF or ON status of
the pump. For variable speed pumps (VSP), the value of the cell can be 0 (OFF) or a number between
the minimum relative rotational speed and 1.

The new PEPSO introduces the Undesirability Index (UI) to improve the crossover and mutation
operations of GA. The UI is a measure which shows the relative level of the undesirability of the
operational status of a pump at a time block. So, pump operation with a high UI are good candidates
for modification, and changing them may help to get closer to the optimum pump schedule and
get more practical solutions. The UI of a pump schedule is stored in a table similar to the pump
operation schedule table. PEPSO solves the hydraulic model of the WDS based on a proposed pump
schedule. Then, for each cell of the UI table, PEPSO checks if the pump operation status causes excess
or deficit pressure at junctions or water level in tanks. It also checks if the pump operation status
caused “negative pressure warning”, “pump cannot deliver head or flow warning” and “system
disconnected warning”. All of this information will be used to calculate the UI of a pump at a time
block. For instance, if at a time block, the program sees that there is some excess pressure at junctions
and a high level of water in tanks, it shows that energy in the system is probably more than the
minimum required level. Therefore, some pumps that are ON during that time block can be turned
OFF. Here, PEPSO increases the UI of the ON pumps at that time block, during which the mutation
process helps to identify suitable mutation candidates (pumps that can be turned OFF) and generate a
better pump schedule. So, instead of randomly changing the pump operation status at each iteration,
PEPSO uses the UI values and finds a promising part of the pump operation schedule that can be
changed to create a better pump schedule in a more efficient way. The process of calculating the UI is
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shown by a flowchart in Figure 1. Up and down arrows in the algorithm show operations that change
the UI value of a pump at a time step in a way that increases or decreases the probability of turning on
the pump, respectively (or increase/decrease the rotational speed in the case of variable speed pump).
More details about calculating the UI and its usage during crossover, mutation and the elitism process
is beyond the scope of this article and can be found in Sadatiyan’s thesis [34].

Figure 1. Undesirability Index (UI) calculation algorithm of Pollutant Emission Pump Station
Optimization (PEPSO) [34].
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To produce a new generation during the optimization process, at first a user-defined portion
of the population is selected as parents for crossover and mutation steps. PEPSO uses the roulette
wheel sampling method [35] for this purpose, and the probability of choosing a pumping schedule
for crossover, mutation and elitism steps is proportional to its non-dominated rank. The customized
crossover operator of PEPSO acts on a whole time block of the selected pump schedule instead of
an individual pump status at a time block (a single gene). After choosing a pump schedule as the
primary parent, Time Step Undesirability Indexes (TSUIs) of the parent will be calculated. The TSUI
of a time step is the total absolute values of the UI of all pumps at the time step. A time block with a
high TSUI indicates that the combined effect of the operational status of all pumps at the time block
is not desirable. It indicates that the time block is a suitable candidate to be changed and create a
better pump schedule. Therefore, the operational status of all pumps at the selected time block will be
replaced with the operational status of all pumps from the same time block of another solution with a
lower TSUI.

After the crossover step, a user-defined portion of the population is selected for mutation. During
mutation, a user-defined portion of the pump status at different time blocks (genes) is selected to
be changed. For constant speed pumps, the status of the selected gene is modified from ON to OFF
and vice versa. For variable speed pumps, the UI is used to determine if it is better to increase the
relative rotation speed of the pump or decrease it to make the UI value closer to zero. The probability
of selecting a cell or a time block of a pump schedule in mutation or crossover steps is proportional to
their TSUI and UI respectively. Before using the roulette wheel method, PEPSO adjusts the selection
probability values of all pump schedules. The amount of water level deficit in tanks at the end of the
operation cycle and the number of times that the proposed schedule causes negative pressure warning
in the system are used to reduce the probability of selecting a pump schedule. This adjustment reduces
the probability of selecting a pump schedule which is not practically acceptable for mutation, crossover
and elitism steps [35].

All generated children are added to the previous generation. The combined population is ranked
and sorted. By using the roulette wheel sampling method, the required number of pump schedules is
selected to create the next generation.

PEPSO uses a wide variety of stopping criteria to determine when to stop the optimization process
and report the final result. The optimization process can be stopped based on (1) the maximum time of
optimization, (2) the maximum number of iterations, (3) the maximum number of solution evaluations,
(4) the maximum number of stagnant iterations, and (5) reaching a goal for each optimization objective.
The stagnant term relates to the change in the value of the objectives of the solution. If during an
iteration, the value of objectives of the best solution does not change more than a defined minimum
amount, the iteration will be considered as a stagnant iteration.

It was explained that PEPSO is a multi-objective optimizer, so the final result of the optimization
process is a Pareto frontier of non-dominated solutions (pump schedules) [36]. However, in practice,
we can use just one schedule for operating pumps. Here, PEPSO is equipped with an algorithm which
helps users to select the final pump schedule among the solutions of the Pareto frontier. PEPSO, at first,
solves the hydraulic model of the WDS by using all pump schedules in the Pareto frontier. If a pump
schedule causes negative pressure warning, then that pump schedule will be filtered out. Similarly,
if the water level in tanks or the pressure at junctions of the WDS goes beyond the hard constraints,
that pump schedule will be filtered out. The remaining pump schedules are non-dominated solutions
which are feasible and practical. So, by using weighting factors that are defined by users, the final
solution will be selected. It should be noted that the weighting factors are not used during the
optimization process and are just used as an indicator of user preference for selecting the desired
solution among the solutions of the final Pareto frontier.
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4. Experimental Demonstration

Multiple optimization scenarios were considered for two networks to evaluate the performance
of the developed optimizer tool. These test cases, scenarios, and the result are explained in the
following sections.

Design of Experiment

The EPANET hydraulic model of two WDSs is used for the optimization test. The first case is
the detailed model of the Monroe WDS in Michigan and the second case is the skeletonized model of
the Richmond WDS, UK [37,38]. The information summary of both models is presented in Table 1.
The WDS of Monroe has more components, and its hydraulic simulation is more computationally
intensive than the Richmond WDS. In this research, a Lenovo ThinkPad W520 workstation was used
for conducting the tests [39]. The CPU time of a 24 h hydraulic simulation of the Monroe WDS
with this computer is 14.95 milliseconds. This time for the skeletonized version of the Richmond
network is 5.54 milliseconds. In addition to the complexity of the hydraulic model, the Monroe WDS
has six more pumps than the Richmond WDS. This considerably increases the number of possible
pump combinations and size of solution space of the Monroe WDS. The water storage capacity of the
Monroe WDS is considerably lower than the storage capacity of the Richmond WDS. So, the Richmond
WDS has more flexibility regarding shifting energy consumption of the system by storing water in
elevated tanks.

Table 1. Summary of the detailed model of Monroe and Skeletonized model of Richmond water
distribution systems (WDSs).

Item Monroe Richmond Skeletonized

No. of Fixed Speed Pumps 11 7
No. of Variable Speed Pumps 2 0

No. of Pump Stations 2 6
No. of Tanks 3 6

No. of Water Sources 1 2
No. of Pipes 1945 44

No. of Junctions 1531 41
Total Length of Pipes (km) 450 22.69

Pipe Size Range (mm) 50–910 76–300
Total Demand (m3/day) 36,500 3921

Storage volume (m3) 3974 2598
Storage to Daily Demand Ratio 11/100 66/100
Range of Power of Pumps (kW) 36–220 3–60

Max. Static Water Head (m) 60 199
Demand Pattern Duration (hr) 24 24
Demand Pattern Time Step (hr) 1 1

Min and Max. Demand Multiplier 0.67–1.19 0.39–1.53

Constraint on the water level in tanks and pressure at junctions of both the Monroe and Richmond
WDS are defined in Tables 2 and 3. Some strategic junctions are selected in both networks, and the
upper and lower bound of their desired water pressure ranges are shown in Table 2. In addition,
minimum and maximum allowed pressure of 0 and 200 m are respectively defined as hard constraints
and allowed pressure limits for all junctions. Similarly, for all tanks of both WDSs, the upper and lower
bound of the desirable range of water level are presented in Table 3. These limits are soft constraints
and violating them increases the total penalty associated with the pump schedule. For calculating
penalties, at first, the amount of violation from the upper and lower limits is calculated and then the
calculated violation is raised to the power of 1.5. Penalty calculation formulae that are implemented in
the PEPSO algorithm are listed below.
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PP = ∑I
i=1 ∑J

j=1

{ (
pij − pjmax

)x, pij > pjmax(
pjmin − pij

)x, pij < pjmin
, (1)

PT = ∑I
i=1 ∑K

k=1

{
(hik − hkmax)

x, hik > hkmax
(hkmin − hik)

x, hik < hkmin
, (2)

Total Penalty = PP + PT , (3)

where

PP : Penalty associated with water pressure violation at junctions
PT : Penalty associated with water level violation at tanks
i : Time step index starts from the 1st time block and goes to the Ith time block
j : Junction index starts from the 1st junction and goes to the Jth junction
k : Tank index starts from the 1st tank and goes to the Kth tank
x : A power defined to increase the penalty by increasing the amount of violation. x = 1.5 is used.
pij : Water pressure of junction j at time block i
pjmax : Maximum allowed water pressure of junction j
pjmin : Minimum allowed water pressure of junction j
hik : Water level of tank k at time block i
hkmax : Maximum allowed water level of tank k
hkmin : Minimum allowed water level of tank k

Table 2. Water pressure constraints for strategic junctions of Monroe and Richmond WDS models.

Test Case Strategic Junction ID Min. Water Pressure (psi) Max. Water Pressure (psi)

Monroe

J-6 42 52
J-27 32 46

J-131 28 42
J-514 42 56

Richmond

42 20 140
1302 0 100
10 0 100
312 0 100
325 0 100
701 0 100
745 20 100
249 20 100
753 20 100
637 20 140

Table 3. Water level constraints for tanks of Monroe and Richmond WDS models.

Test Case Tank ID Min. Water Level (m) Max. Water Level (m)

Monroe
T-2 1.56 8.12
T-3 1.41 7.28
T-5 1.78 8.66

Richmond

A 0.30 1.70
B 0.50 2.86
C 0.32 1.79
D 0.55 3.10
E 0.44 2.29
F 0.33 1.86

148



Water 2017, 9, 640

The energy consumption charge component of an electricity tariff of the Monroe WDS is time
dependent and has two off-peak and on-peak rates. The on-peak period starts from 11:00 and finishes
by 19:00 and its energy charge is 0.04408 ($/kWh). The Energy charge of other Off-peak hours is
0.04108 ($/kWh). Daily peak power demand charge of this system is 0.48 ($/kW). The Richmond WDS
has six electricity tariffs for six pump stations (see Table 4). These are also time-of-use tariffs and just
have the energy charge component (not peak power demand charge). The on-peak hours start from
07:00 and ends by 24:00 for all tariffs.

Table 4. Electricity tariffs of the Richmond WDS.

Pump Station On-Peak Rate ($/kWh) Off-Peak Rate ($/kWh)

A 0.0679 0.0241
B 0.0754 0.0241
C 0.1234 0.0246
D 0.0987 0.0246
E 0.1122 0.0246
F 0.1194 0.0244

Emission factors (kg/MWh) that are needed for the calculating pollution emissions of each
solution are obtained from the LEEM server. Table 5 shows emission factor of CO2 that was employed
in all optimization tests of this study [40]. Based on the hydraulic models, duration of an optimization
run is 24 h with one-hour time step. The same set of values for parameters of optimization algorithm
was used for all tests that are listed in Table 6. The crossover and mutation percentage define the
portion of the population which should be selected for crossover and mutation steps respectively.
The Crossover and mutation rate shows the portion of selected solution which should be modified
during crossover and mutation steps.

Table 5. Emission factors of CO2 obtained from the Locational Emission Estimation Methodology
(LEEM) server.

Time CO2 Emission Factor (kg/MWh) Time CO2 Emission Factor (kg/MWh)

00:00 767.771 12:00 662.793
01:00 738.324 13:00 630.703
02:00 702.904 14:00 630.531
03:00 702.904 15:00 628.591
04:00 702.904 16:00 628.882
05:00 767.771 17:00 666.549
06:00 781.469 18:00 693.607
07:00 808.212 19:00 665.274
08:00 764.333 20:00 730.766
09:00 719.768 21:00 790.628
10:00 719.768 22:00 808.212
11:00 695.334 23:00 780.477

Table 6. The optimization parameters used for all tests.

Parameter Value

Max. No. of Solution Evaluations 16,600
Population Size 100

Percentage of Elite Solution 20%
Crossover Percentage 50%

Crossover Rate 50%
Mutation Percentage 5%

Mutation Rate 10%
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Six optimization scenarios were defined to test different aspects of the optimization process. In the
base scenario (S0), WDSs were optimized based on the electricity cost and total penalties (penalties of
water level in tanks and pressure at junctions). The result of an optimization run may change based on
the initial population and stochastic characteristics of the optimization operators. So, each scenario
was repeated five times and the average results of five repeated tests of each scenario and its standard
error of means (SEM) are reported. In the first scenario (S1), WDSs were optimized to reduce all three
objectives (electricity cost, CO2 emissions, and total penalty). The next scenario (S2) is defined to
evaluate the effect of optimizing based on the electricity cost and CO2 emissions, so it is just optimized
based on penalties. This scenario is similar to the base scenario, but it uses the total penalty as the only
optimization objective.

The third scenario (S3) was defined to test the effect of using the UI in the optimization
process. So, this scenario (S3) is similar to the base scenario without calculating and using the
UI. The fourth scenario (S4) is defined to investigate the effect of water level constraints on the final
results. This scenario does not have any water level constraint in the tanks. Finally, the fifth scenario
(S5) is defined to see the effect of time-of-use electricity. This scenario is like the base scenario but uses
a fixed rate electricity charge ($/kWh) for the whole period of operation and does not include the peak
power demand charge ($/kW).

5. Results and Discussion

In total, 60 optimization runs have been done on two WDS models. The required time for
completing an optimization run of the Monroe WDS is 02:14:44 ± 00:03:43. This time, for the
skeletonized version of the Richmond WDS model, is 00:35:38 ± 00:01:36. PEPSO reports the electricity
cost of the final solution. However, before comparing the electricity cost of different solutions,
we should consider that the final volume of stored water in the system might not be equal in all
solutions. Although the final level of water was in the acceptable range from a system operation point
of view, filling or draining an elevated tank can be regarded as storing energy into or draining energy
from the system. Therefore, the net energy consumption of the system is calculated considering the
change in volume of stored water. Similarly, the net electricity cost and net CO2 emissions of each
solution is calculated before comparing the results. It is assumed that a long-run deficit or surplus
water volume at the end of each day will be balanced by the change of operation in different hours of
upcoming days. Therefore, the average electricity charge ($/kWh) and CO2 emission factor (kg/MWh)
were used to take into account the effect of this deficit or surplus water volume and calculate the net
electricity cost and net CO2 emissions.

Net electricity cost ($) (left), net CO2 emissions (kg) (middle) and total penalty (right) of all five
scenarios of the Monroe WDS (top) and the Richmond skeletonized WDS (bottom) tests are displayed
in bar charts in Figure 2. Each column shows the average result of five repeated tests and the error bar
on top of it displays the SEM value. Except for columns that show high total penalty values, the SEMs
of all the other results are relatively small. This shows the consistency in the outcome of PEPSO runs.
Since penalty values are related to the amount of violation raised to the power of 1.5, it is expected to
see that the moderate change in violation value results in a more severe change in penalty values.

Comparing results of scenarios S0, S1 and S2 showed, in both WDSs, optimizing based on three
objectives (S1) is the most effective strategy for reducing objectives and obtaining a practical result.
Theoretically, we expect to see the lowest amount of electricity cost in the result of the S0 scenario,
but the result showed that in the majority of tests, both the electricity cost and CO2 emissions of the
S1 scenario are less than S0. On average, the electricity cost and CO2 emissions of S1 scenarios are
12.9% and 11.7% in Richmond tests and 1.7% and 1.7% in Monroe tests less than S0 results respectively.
Since, in most cases, reducing energy usage decreases both the electricity cost and pollution emissions,
optimizing based on all three objectives (S1) helps PEPSO to better explore the solution space. So,
despite our theoretical expectation to see the minimum electricity cost in the result of the S0 scenario,
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in practice, the S1 scenario is more efficient at finding low energy consumption solutions in a limited
amount of time.
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Figure 2. Electricity cost (left), CO2 emissions (middle) and total penalty (right) results of five scenarios
of Monroe WDS (top) and Richmond skeletonized WDS (bottom) tests.

As expected, optimizing just based on total penalty (S2) results in less penalty with respect to
the outcome of both S0 and S1 scenarios. The total penalty of the S1 scenario of the Richmond test
was considerably higher than the S0 and S2 scenarios. Investigating the detailed results, in this case,
showed that there are two solution groups that can be selected as the optimum solution. In the first
group, pumps are using more energy and pressure at junctions and water levels in tanks are slightly
below the upper boundary of the desirable range. So, total penalties of this solution group are low.
The second solution group has considerably less energy consumption and correspondingly less CO2

emissions. However, in these solutions, pressure at a couple of junctions and water level at some
tanks are below the desired level which increases the total penalty of these solutions. Although the
violations in these cases are not beyond the acceptable range, from the optimizer perspective, these
are dominated solutions when there is only one objective (total penalty). So, PEPSO does not choose
the final solution from the second group. However, in the S1 scenario, when all three objectives are
considered, a solution from the second group, which has some penalties but has a considerably lower
electricity cost and CO2 emissions, is reported as the optimum solution.

Comparing results of the S0 scenario with those of the S3 scenario showed that, when the UI is
used in the optimization run of the Monroe WDS, on average, the net electricity cost is reduced by
8.5%. Although, at first sight, it seems that using the UI reduced the effectivity of the optimization
algorithm, a closer look at the results revealed that the result of the S0 scenario is more practical than
the S3 scenario. During the whole operation period, the stored volume of water in tanks in the S3
scenario is, on average, 5.6% lower than S0. The final volume of stored water in tanks for the S3
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scenario is 10.9% lower than the final volume of stored water in the S0 scenario. Also, solutions of the
S0 scenario, on average, have less than two warnings about pumps that cannot deliver head, but S3
results, on average, have about four and one warnings for pumps that cannot deliver head and flow
respectively. Figure 3 displays the water level pattern in tanks of typical results of S0 (top left) and S3
(top right) scenarios. It can be seen that the solution of S3 tends to drain tanks more than that of S0.
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Figure 3. Typical water level pattern in tanks of S0 (top left), S3 (top right) and S4 (bottom) scenarios of
the Monroe WDS.

The hydraulic model of the skeletonized version of the Richmond WDS was simpler than the
Monroe WDS. So, in this case, optimizing with or without the undesirability calculation did not
considerably change the results. Results of both S0 and S3 scenarios are close with respect to total
penalty, electricity cost and the number of warnings. It seems that the undesirability calculation
helped a little bit to find solutions with slightly lower CO2 emissions (2.2%). However, it should
be considered that calculating undesirability is an additional computation load on the optimization
process. On average, calculating and using the UI in the optimization process of the Monroe WDS
increased the required time for the optimization run by 8.9%. Based on these results, we can say
that calculating the UI increased the required time for 16,600 solution evaluations in an optimization
run. However, the final result was more practical and of higher quality. Obtaining a final solution
with the same level of quality without using the UI needs more iterations and solution evaluations
that increase the length of the optimization process. We expected that using the UI, by quantifying
positive and negative effects of pump statuses on hydraulic responses of the water network, adds
some intelligence to the process of producing the next generation and makes possible more purposeful
crossover, mutation and elitism steps. Although calculating the UI increases the computational load
of each iteration, we expected to see that within the same number of iterations, using the UI can
provide better results. The outcome of these tests showed promising results regarding the use of
the UI. However, this area still needs further research. More studies on complicated networks with
vast solution space can help to show and quantify the level of effectiveness of the UI. It is possible
that, in the case of a complex system with multiple pumps and vast solution space, traditional blind
crossover, mutation and elitism steps (without using UI) cannot find an acceptable solution within a
reasonable number of iterations. Results of the S4 scenario showed that giving PEPSO the possibility
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to operate pumps without tank level constraints, on average, reduces the electricity cost and CO2

emissions of the system by 24.0% and 27.2%.
Despite the fact that removing water level constraints reduces the electricity cost and CO2

emissions, it considerably increased the water level violation of tanks and water pressure violation
at strategic junctions. In the S4 scenario, the pressure of junctions has some fluctuations that caused
considerable low and high-pressure penalties. The water level penalty of tanks of the S4 scenario is four
times more than for the S0 scenario. Comparing patterns of the water level in tanks (see Figure 3) and
water pressure at junctions (see Figure 4) of the S4 and S0 scenarios can clearly show these differences.
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Figure 4. Typical water pressure pattern at junctions of S0 (left) and S4 (right) scenarios of the
Monroe WDS.

On average, constraining the water levels of tanks during the operation cycle led to a reduction
of more than 32% in the final volume of stored water. Monroe test results indicate that water level
constraint effectively helps to keep the final tank level balanced and prevents tanks from draining
during the whole operation period. Similarly, optimizing the pump operation of the Richmond WDS
without water level constraints for tanks (S4), on average, reduces the net electricity cost and CO2

emissions by 4.8% and 1.2% respectively. However, this increases the total penalty by 35.1%.
Results of the test on the Monroe WDS showed that having a flat rate electricity tariff, on average,

can lead to a 9.7% increase in peak power demand (kW) while the total consumed energy (kWh) is
almost unchanged. Although the total energy consumption in both S0 and S5 scenarios is almost
unchanged, 2.1% of the total energy consumption in the S5 scenario shifted from off-peak hours to
on-peak hours. These results confirm that the power demand charge and time-of-use electricity tariffs
will force PEPSO to find an optimized solution with more energy consumption during off-peak times
and with a reduced peak power demand.

The overall electricity cost in the Richmond system is related to the time-dependent energy
consumption charge. However, in the S5 requirement of the system. PEPSO uses a customized version
of the NSGA II to find the Pareto frontier and then select the best solution as the optimum pump
scenario, the flat rate electricity tariff, on average, reduced the total energy use (kWh) from the off-peak
hours by 3%and added half of that to the on-peak hours. By this change, the remaining 1.5% of energy
is saved. Previously, due to the use of a time-of-use electricity tariff, PEPSO needed to shift energy
usage to reduce the electricity cost of the system. This shift of energy usage caused a 1.5% energy loss
due to head losses while filling and draining tanks. It is interesting to see that the solution of the S0
scenario drained 21.6% of the stored volume of water in tanks of the Richmond WDS. While the S5
scenario just drained 12.0% of this volume.

6. Conclusions

The new version of PEPSO, which is introduced in this article, is a multi-objective optimization
tool. It can be used to find a pump schedule for the WDS to reduce the electricity cost and corresponding
pollution emissions while satisfying the required operational schedule. It uses EPANET toolkit for
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hydraulic stimulation. The Undesirability Index is a measure that enables PEPSO to find promising
ways of modifying the solution to get closer to the global optimum solution and create practical
solutions. Test results on the Monroe WDS and skeletonized version of the Richmond WDS model
showed that PEPSO could optimize the detailed model of the Monroe WDS effectively with 13 pumps
in about 2 h with a computer system that can be found in a typical WDS design or operation offices
(for more detail, see Section 5). The time required to optimize the skeletonized version of the Richmond
WDS model was about half an hour.

• Optimizing based on all three objectives (S1) reduces the CO2 emissions of the Monroe and
Richmond WDSs by 1.3–3.4%. Optimizing based on all three objectives at the same time is more
effective than optimizing based on only the electricity cost or total penalty.

• Optimizing based on just penalty (S2 scenario) reduced the total penalty on Monroe and Richmond
WDSs by 10 and 5.8% respectively.

• Calculating the Undesirability Index helped PEPSO to find more practical optimized solutions
with fewer EPANET warnings and less tank drainage. However, on average, the undesirability
calculation increased the required optimization time by 8.9%. The effect of the UI on finding
high-quality solutions for a complex system with vast solution space needs to be evaluated.

• In the S4 scenario, the Monroe WDS was optimized without tank level constraints. The water
level penalty of tanks of the S4 scenario is more than four times the water level penalties of the
base scenario (S0). Like the Monroe WDS, optimizing without tank level constraints reduced the
electricity cost and CO2 emissions of the Richmond WDS. However, it considerably increases the
water level penalty of tanks (35.1%). Removing water level constraints increases both water level
and water pressure penalties and led to impractical and unacceptable solutions.

• The time-of-use electricity tariff forces PEPSO to shift 1.7% of energy consumption from on-peak
hours to off-peak hours. Including the power demand charge in the electricity tariff also,
on average, reduces the peak power demand of the Monroe WDS by 9.7%. In the Richmond test,
using a flat rate energy consumption charge enables PEPSO to consume energy at the time of high
demand. This eliminated the need to store more water during off-peak hours which was causing
1.5% energy losses. In addition, by this method, PEPSO reduced tank drainage by about 10%.

• PEPSO used a multi-objective optimization algorithm to optimize three objectives independent of
each other and report the final Pareto frontier that can be used in system studies and research.
However, for practical use, one of the solutions among the Pareto frontier should be selected for
operation. This selection is made by considering user preference based on user-defined weighting
factors and also by removing impractical solution from the Pareto frontier (e.g., a solution with
zero energy usage but high penalties). Defining different weighting factors can change the selected
solution. Weighting factors are dependent on geographical, social, economic, etc., characteristics
of the water system, defined constraints and practical preferences of operators. This area needs to
be studied further to create a guideline that can help users to define weighting factors in such a
way that results in the selection of the most desirable solution from the Pareto frontier.

• In this study, the net electricity cost and net CO2 emissions are calculated to take into account the
effect of deficit or surplus water volume of tanks within the acceptable range. However, using
the average electricity charge ($/kWh) and CO2 emission factor (kg/MWh) might not match real
operation conditions. Therefore, we suggest running tests and simulations for a longer period
(e.g., a week instead of 24 h) or using better calculation methods to take into account the effect of
tank level changes at the end of simulation in a more accurate way.
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Abstract: This paper focuses on the performance of water distribution systems (WDSs) during
long-term city transitions. A transition describes the pathway from an initial to a final planning stage
including the structural and functional changes on the infrastructure over time. A methodology is
presented where consecutive WDSs under changing conditions are automatically created, simulated
and then analyzed at specific points in time during a transition process of several decades.
Consequential WDS analyses include (a) uncertain network structure, (b) temporal and spatial
demand variation and (c) network displacement. With the proposed approach, it is possible
to identify robust WDS structures and critical points in time for which sufficient hydraulic and
water quality requirements cannot be ensured to the customers. The approach is applied to a case
study, where a WDS transition of epic dimensions is currently taking place due to a city relocation.
The resulting necessity of its WDS transition is modelled with automatically created planning options
for consecutive years of the transition process. For the investigated case study, we tested a traditional
“doing-all-at-the-end” approach, where necessary pipe upgrades are performed at the last stages of
the transition process. Results show that the sole design of the desired final-stage WDS is insufficient.
Owing to the drastic network deconstruction and the stepwise “loss of capacity”, critical pipes must
be redesigned at earlier stages to maintain acceptable service levels for most of the investigated
future scenarios.

Keywords: hydraulic simulation; network structure uncertainty; performance assessment; scenario
analysis; water distribution benchmarking

1. Introduction

Most engineered water distribution systems (WDSs) in urban areas are facing multiple internal
and external development pressures during their lifespan, and have to be continuously adapted in
order to guarantee a sufficient high level of service at all times [1]. Therefore, future changes in
demographic, climatic and socioeconomic developments are going to be the key drivers for changing
the system’s structure and operation [2]. In this context, the term “transition” is used to describe
the pathway from an initial (current) to a final (planning) development stage in a WDS, including its
structural and functional changes over time [3]. The intermediate development stages (i.e., specific
points in time during the transition process), also including the initial and final development stage,
are hereinafter defined as transition stages.

Fast ongoing system transitions (e.g., urban development) and the contradicting long lifespan of
WDS components of several decades, stress existing infrastructure and require new approaches on
how WDSs are designed and operated [4]. State-of-the-art strategies address flexible infrastructure
design, where planners can react to future uncertainties [5]. Basupi and Kapelan [6] introduced
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a flexible design method under consideration of future demand uncertainties to provide cost-efficient
solutions to decision makers. Creaco et al. [7] defined the gradual and optimal WDS growth over time
as phasing of construction, where structural network expansions are investigated and optimized at
several time steps instead of considering only a single design phase, also taking into account demand
uncertainties [8]. As such, this strives for the optimal scheduling of pipe upgrade works. Beh et al. [9]
investigated the augmentation of WDSs from a water resource perspective, proving the benefits of
adaptive plans compared with those fixed at the initial planning stage. However, from a network
perspective these studies assume a certain development of future network structure and are mostly
limited to small test cases. Conversely, this study focuses on an exploratory modelling approach
under deep uncertainties in network structure and a case study problem of a larger scale (several
thousand pipes and junctions), without seeking for optimal and computational expensive solutions [10].
Furthermore, studies investigating the combined effects of network construction and deconstruction at
the same time are lacking and therefore further investigations are necessary.

The objective of this work is to assist decision makers in testing various planning options
(e.g., changing the future city layout) and design strategies (e.g., single-stage design). This paper
introduces a holistic modelling framework to assess system performances of WDSs during long-term
transitions. A methodology is presented to generate and assess water networks at specific points
in time by considering the uncertainty in the future development. The transition process describes
the disconnection and addition of pipes to the network, including the related shift in water demand.
The uncertainties are addressed with the automatic creation of planning options (stochastic future
network structures) and different development scenarios affecting the total water consumption.
Each examined point in time during the transition process (transition stage) is evaluated with
performance indicators to describe the hydraulic and water quality states of the system. They enable
the detection of weak points and critical transition stages [11]. This work includes hydraulic
assessments (pressure head), qualitative statements (water age) and a capacity index (pressure surplus).

The novelty of the proposed methodology is the automatic creation of planning options, which are
suitable if data for modelling are not available, limited or of poor quality. Frequently, data availability is
limited by legal restrictions but also existing data of a good quality might not be suitable for the desired
modelling aim. To overcome this problem, an approach using data of alternative systems (e.g., street
network data) with strong structural similarities to the WDSs, represents a good alternative to
complement or even compensate missing data and test developed models on a less case-study-specific
perspective [12–14]. Furthermore, newly planned networks can be developed by creating a variety
of WDSs with little effort, considering different structural aspects and development scenarios for
the purpose of identifying the most robust system, either for newly built WDS or existing WDS parts
in poor condition, requiring redesign [7,15].

In this paper, the proposed methodology is applied to the Swedish town Kiruna, where a major
transition of the city is taking place until the end of the century. Substantial parts of the town,
including its water infrastructure, have to be moved due to expanding underground mining activities.
Various planning options for the future WDS (network structure and loop degree) are tested for
different scenarios and one design strategy. The results prove the proposed method is capable of
identifying critical WDS stages during a transition process. The outcome can further support engineers
and planners to evaluate risks and opportunities for planning and scheduling cost-efficient pipe
upgrades. In this work, we tested a simple design strategy of a traditional “single-stage-design” and
a “doing-all-at-the-end” approach, where necessary pipe upgrades are performed at the final stages of
the transition process. For the investigated case study, we found that the sole design of the final-stage
WDS is insufficient for most of the future scenarios and planning options. Owing to the drastic network
deconstruction and the stepwise “loss of capacity”, critical pipes must be redesigned at earlier stages
for the scenarios of constant demand and demand increase (e.g., population growth). The methodology
can also be applied to investigate uncertain spatial city development and testing different expansion
or deconstruction scenarios for any city.
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2. Modelling Framework

The future development of water consumption is highly uncertain. It depends on multiple
factors, such as changes in population and consumption patterns, climate change, variations of land
use, tourism and economic trends [16]. All these global pressures can have a significant impact on
the performances of existing WDSs during their lifespan and can be investigated with a scenario
analysis [17]. Uncertainties in the network structure occur when planning new WDSs [7]. Also in
existing WDSs, the exact physical location of network parts (mostly secondary pipes) is sometimes
incomplete or even unknown [14]. Furthermore, the variation of future network structure is considered
when retrofitting existing systems (e.g., provision of alternative flow paths) to enhance the reliability
and robustness of the WDS. To tackle these challenges, uncertainties in the future network are
considered with stochastically generated WDS structures [18] (e.g., varying minimum spanning
tree and loop degree in the network) and referred to as possible planning options for the future.
In this context, the minimum spanning tree is an undirected graph (e.g., WDS network) with no loops,
connecting all demand nodes with the water source(s) and the sum of all edge weights (e.g., pipe
length) is minimal [19]. The loop degree is introduced by the cycle index (CI). It defines the length
ratio of alternative paths between two nodes (shortcuts) and the corresponding path obtained from
the minimum spanning tree (CI = 0 is a fully branched system, for CI > 0 loops are created) [14].

The following presents the development of a modelling tool to automatically evaluate network
performances during a WDS transition process. In Figure 1 the modelling framework is outlined in
four sequential tasks and described in detail in the following paragraphs.

Figure 1. Description of the modelling framework.

Task 1 describes the generation of networks according to the approach presented by Mair et al. [18].
The generation algorithms are implemented in C++ and distributed as open source. (Available online:
https://github.com/iut-ibk/DynaVIBe (accessed on 15 August 2017)) The software includes:
1) a spanning tree-based algorithm for network structure design, 2) algorithms for future demand
projection and 3) an automated pipe-sizing algorithm to create WDSs based on GIS data [20,21].
Previous studies showed the high colocation of street and water distribution networks [14], which offers
the opportunity to use that information for the WDS design. The required input data are the digital
elevation map (DEM) of the town, the positions and the supply ratio (%) of the water sources, the street
network, the nodal demands and – optional - the known pipe sections (see “set” pipe in Figure 2).
In case the WDS and/or the nodal demands are incomplete or even unknown, the missing information
represent variables in the stochastic WDS generation process. This principle applies for all unknown
WDS parts, regardless of existing and/or future WDS. For this reason, the WDS is designed for
the initial (existing) and the final (planning) stage. For example, in a WDS only the pipes with
a diameter greater than 200 mm are known. In that case, the missing pipe connections to demand
nodes can be stochastically generated on basis of the overlying street network, by assuming the WDS
network |P| being a subset (|P| ⊆ |S|) of the street network |S|. Resulting WDSs, using different
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a different level of detail in the input data, are shown in Figure 2 on the right. With this modelling
approach, a robust network structure can be identified for the future, not only for newly planned
WDSs, but also for the redesign of existing systems (e.g., closing loops for redundancy).

Figure 2. Concept of the stochastic generation of water distribution systems (WDSs). Following the idea
from Sitzenfrei et al [22].

When considering the dynamics of long-term WDS transitioning (e.g., network expansion,
demand shifting, network shrinking) with this methodology, a city’s master plan must be integrated.
For example, expanding future street network data derived from architect plans are used to generate
future WDSs. Figure 3 illustrates the initial (existing) stage i and final (planning) stage f of the WDS
during the transition process, which are generated and fulfil the boundaries of the master plan (future
street network, deconstruction and construction zones). Unknown pipe diameters are independently
designed at both stages, using a pipe-sizing algorithm based on the approach of Saldarriaga et al. [23].
With this algorithm, the pipe diameters are calculated based on a) the maximum hourly demand
Qh,max as design value and b) an assumed pressure surface inclination of 5 m/km. The pipe diameters
are then divided into discrete diameter classes. Let |Pi| = {p1, p2, . . . , pni}i be the set of all pipes
at initial stage i, where ni is the number of pipes at stage i. Conversely, |Pf| = {p1, p2, . . . , pnf}f is
the set of all pipes at final stage f, where nf is the number of pipes at stage f. Then the intersection of
the sets |Pi| ∩ |Pf| is built and the designed diameters compared. Pipes with a changing diameter
are added to the new pipe set |Pup| = {}, representing the necessary pipe upgrades. According to
Mair et al. [14] the generated WDS set is classified with the cycle index (CI), describing the degree of
loops (alternative flow paths) in the network. With this approach sufficiently working “engineering”
solutions, rather than optimal WDS are generated with adequate computational capacity. For the target
application to large case studies (with several thousand elements), the reduced computational effort is
a compelling argument.

Task 2 presents the creation of transition stage models to describe the detailed step-by-step
progress of construction and deconstruction phases on basis of the master plan. In doing so, specific
points in time between initial stage i and final stage f, i.e., intermediate stages, are investigated. Figure 4
shows an example of an intermediate stage j where some parts of the initial WDS are disconnected,
while other parts are added at the same time. Not only the pipe structure is changed, also a shifting of
the nodal demand from the disconnected to the new connected WDS parts occurs. The transition stage
models comprise the initial, intermediate and final stages of the WDS. The number of intermediate
stages is a model input parameter and depends on the temporal definition within the master plan (e.g.,
phased construction and deconstruction zones of new building blocks).
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Figure 3. Long-term network dynamics in the concept of network generation by integrating stages in
the design of the WDS.

Figure 4. Creation of intermediate stage WDSs on basis of the master plan and the initial and final stage.

The disconnection of pipes, along with a demand shifting, changes the flow pattern of the WDS
but does not necessarily cause performance reductions. Possible examples are: (1) the disconnection of
final branches or (2) the shifting of demand nodes towards the water source, which can even increase
the WDS performance (e.g., minimum pressure). The zonal disconnection of pipes from the main
WDS can cause an interruption (isolation) of certain areas from the water source. Such parts of
the network are identified and must be removed or reconnected to the main WDS to ensure a hydraulic
supply (Task 3). In the current work, the physical location and attributes of WDS components that
are unaffected from the deconstruction and the construction processes are maintained over time, i.e.,
the intermediate and final-stage WDS are dependent on their previous transition stages and originate
from the initial stage (network structure and pipe diameter). The scheduling of the determined pipe
upgrades (|Pup|) to achieve high performances at final stage is part of a design strategy. In this work,
we test a simple “doing-all-at-the-end” approach, where necessary pipe upgrades are performed at
the final stages of the transition process.

In Task 3, a model interface to a hydraulic solver is implemented where each transition stage
model (see Task 2) is simulated under different scenarios. In WDS modelling, it is state-of-the-art to
use extended period simulations to consider the diurnal demand patterns of several representative
days [24]. In this work, the hydraulic solver EPANET 2 [25] is used, where each transition stage model
(Task 2) is simulated under different scenarios. In a first simulation run, the system is solved for
one day with high water consumption to identify supply problems. Then, the simulation is repeated
for a period of low water usage (six consecutive days of low water consumption are simulated to
determine maximum water age and potential stagnation problems). The water age is calculated from
the residence time of the storage tank and the travel time in the network from the source node(s) to
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the demand nodes at low flow conditions. For this purpose, we used the water quality analysis tool of
EPANET 2 [25].

Task 4 describes the performance evaluation of the WDS. Helpful tools to assess hydraulic and
quality requirements of WDSs are global performance indicators (PIs). By definition, the PIs take values
in the interval from 0 (worst performance) to 1 (best performance), depending on predefined threshold
values and a performance criterion. Furthermore, statistical values complement the investigation.
First, the nodal performances PIk are determined for each node k before they are averaged and weighed
to one global representative value PI. For this study, we analyzed a minimum performance indicator
at peak demand and the mean pressure head at average demand under normal operation conditions
(e.g., no pipe breaks). The threshold values for PIs differ among case studies and design guidelines of
sufficient performance, and have a strong impact on the overall performance. Therefore, they must be
defined by the user [20]. The minimum pressure performance, including the selected threshold value
in accordance with the Austrian Standard ÖNORM B2538 [26], is defined as:

PIk
min. pressure =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, pk,min ≤ 0,

1, pk,min ≥ 30,
pk,min

30
, pk,min > 0 ∧ pk,min < 30,

(1)

where pk,min is the nodal pressure head in meters. Furthermore, the water quality of the WDS model is
described by the maximum water age, which is a driving factor related to microorganism growth [27].
The maximum nodal water age wk,max in hours is calculated based on flow velocities and pipe lengths
and assessed after a low demand period of 144 h and contains the initial water age from the storage
tank. In this work, the nodal water age performance is defined as:

PIk
max. water age =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, wk,max ≥ 120,

1, wk,max ≤ 24,

1 − wk,max − 24
120 − 24

, wk,max > 24 ∧ wk,max < 120.

(2)

Additionally, the respective nodal performance indicators PIk’s are averaged and weighed with
the nodal demand dk to consider the hydraulic importance of node k (e.g., number of supplied
customers) as follows:

PI =
∑Nn

k=1 dk ∗ PIk

dtot
. (3)

To quantify properties of robustness and fault tolerance in the system, a network capacity index Ir

is assessed [28,29]. The index is based on the power balance of the network and gives information
about how much pressure surplus is available at each network node, compared to a minimum required
head [30]. The pressure surplus can be seen as a “buffer capacity” that can be used under critical
operation conditions (e.g., pipe breaks), when the internal energy dissipation increases. The capacity
index is assessed at peak demand and defined as follows:

Ir = 1 − PD
PD,max

, (4)

where PD = ∑
Np
j=1 qjΔHj is the dissipated power, and PD,max = ∑Nr

s=1 qs Hs − ∑Nn
k=1 dk Hk describes

the maximum dissipated power to meet the minimum head constraints Hk at node i. For this case
study, the minimum required nodal head Hk is adopted with the nodal elevation plus an additional
pressure head of 15 metres at node k. Hs refers to the nodal head of supply source s and ΔHj is the head
loss along pipe j. The inflow from source s is described with qs, dk represents the nodal demand and qj
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is the flow in pipe j. Nr, Nn and Np state the number of supply sources, nodes, and pipes, respectively.
A more detailed description can be found in Di Nardo et al. [31].

3. Case Study Application and Numeric Results

The developed methodology is applied to the city transition of Kiruna, where significant structural
network changes are currently (and during the next decades) taking place, since the city has to make
way for an underground expanding ore mine. Kiruna, a small city with about 20,000 inhabitants,
is the northernmost city in Sweden and became one of the major centres of the mining industry
due to iron ore extraction. As can be seen from Figure 5a, in the southwestern area of the town,
the world’s largest underground iron ore mine is located and operated. Due to expanding excavations,
however, current parts of town and its water infrastructure are threatened by subsidence and
erosion. Nevertheless, mining activities will continue. Therefore, a master plan was developed by
decision makers (Kiruna municipality, mining company LKAB and architects White), which provides
a step-by-step resettlement of the inhabitants living in defined deformation zones (red lines in Figure 5b)
to a newly built city centre about 4 km eastward (see Figure 5b). The transition process is expected to
be completed by the end of this century [32].

Figure 5. (a) Current Kiruna with digital elevation map (DEM); (b) Current and future street networks
(planned) with the step-by-step expansion of deformation zones, according to the master plan.

In the city’s master plan, the structural changes of the city are very certain but no specific planning
options for the WDS transition are defined, and therefore this case study is well suited to present
the developed methodology. As a result, statements about the WDS efficiency and performance trends
during this long-term transition process from the initial stage in 2012 to the final stage in 2100 are
possible and many future WDS structures and scenarios are tested and investigated for strengths
and weaknesses.

To deal with the demand uncertainties, three simplified scenarios based on different future
developments of water consumption are examined as follows (see Figure 6a):

• The basic assumption for the scenario “Baseline” is that the total demand remains constant
within the transition period. It represents no change in population but a change of its location
(Qh,max,2100 = 128 L/s).

• The scenario “Growth” implies a linear increase of water usage of 30 percent until the end of
the century [33]. This represents a population or demand per capita growth (Qh,max,2100 = 166 L/s).

• The scenario “Stagnation” describes an economic decay, where migration of labour occurs due to
an assumed reduction of mining activities [33]. The water demand is taken to gradually decrease
by 30 percent until 2100 (Qh,max,2100 = 90 L/s).
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In the context of network structure uncertainty, 30 possible WDSs (planning options) with different
properties are automatically created by the variation of the cycle index (CI), which defines the degree of
alternative flow paths [14]. Two possible planning options with looped and branched WDS structure,
generated on basis of the street network, are illustrated in Figure 6b,c.

Figure 6. Future demand scenarios (a) and two possible planning options (WDS1 & WDS2) with
different network structure (b) and (c).

There are restrictions on the hydraulic modelling data of Kiruna’s actual WDS and, as such, are not
allowed to be published. Nevertheless, with the proposed method each stage of the WDS can and has
been approximated by a set of stochastic generated WDSs, based on freely available real street network
data (see Modelling framework: Task 1). This gives the opportunity to apply and test the approach
also to variety of initial WDS structures. However, more detailed and complementary information
(e.g., actual WDS) can easily be integrated, if available, and allowed in terms of legal aspects.

Task 1 describes the creation of the WDS model set. For this application the required input
data are the digital elevation map (DEM) of the town, the position of the current and future
water sources, and the real street networks for the initial (year 2012) and final stages (year 2100).
The future street network data is taken from architecture plans. Due to the data restrictions,
the population density and nodal demand distribution are assumed to be uniform over the area
of interest with 1,000 implemented demand points. Elevation differences in the investigation area
allow for the construction of a functioning gravity driven WDS and hence, no pumping is required
(see Figure 5a). The generated WDS includes the positions of the reservoir, tank and pressure reduction
valves (PRVs) and flow control valves (FCVs). The locations of the valves within the 30 stochastic WDS
structures are unchanged. The FCVs are positioned between reservoir and tank, while the locations
of the PRVs are chosen based on minimum and maximum pressure head requirements (30–100 m)
within each pressure zone. Regarding the size of the generated networks, they consist of approximately
100 km pipe length (~4000 pipes) at the initial stage and about 75 km (~2000 pipes) at the final stage.
This shows that the future network is planned to be denser as compared to the existing one at all
demand projections.

Figure 7 illustrates one of the thirty generated planning option of the WDS (different network
structure) at the initial stage (year 2012) and the final stage (year 2100). When comparing the initial
and final-stage WDS, not only a huge change in the pipe network can be observed, but also the
water tank of the initial stage is situated in the deformation zone 2100 and thus has to be relocated.
Additionally, two new main pipes from the new tank to the separated networks and a new position
of the PRV are necessary (see Figure 7b). According to the Austrian Standard ÖNORM B2538 [26],
additional loads for firefighting can be neglected in the design process due to the size of the supply
zone (population ≥ 20,000). The intersection of the pipe sets |Pi| ∩ |Pf| is about half the size of |Pi|,
which implies that 50% of pipes at the initial stage WDS keep their physical location in the final-stage
WDS. Therefrom approximately 10% of the pipe diameters have to be upgraded due to changing flow
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conditions and to maintain a connected network (e.g., new water source). This builds the pipe set
describing necessary upgrades (|Pup|).

Figure 7. One of thirty created planning options representing (a) the initial and (b) the final stage.

Task 2 describes the generation of the transition stage models. For this purpose, the master
plan defining the phased transition process of the town is used. The transition stages represent
the years 2012, 2013, 2018, 2023, 2033, 2050 and 2100. Figure 8 presents an example of the creation
of six transition stage models for one planning option. It can be seen that the town is step-by-step
moved by a simultaneous deconstruction of the initial WDS and construction of a new piping system.
The resettlement progress of people living in the deformation zones is modelled by transferring
the demand nodes to the new city centre, assuming the same uniform spatial distribution as for
the final design stage. The total demand is dependent on the investigated scenario.

Figure 8. Transition stage models for Kiruna at six stages from year 2012 to year 2100.

Based on the determined set of necessary pipe upgrades (|Pup|) from initial and final network
design (see Task 1), a simple “doing-all-at-the-end” approach is investigated: Pipe upgrades for
achieving the efficient final-stage WDS are performed at the stages in 2050 (pipe replacement rate on
average 2%) and the final stage 2100 (pipe replacement rate on average 8%). This means that until
stage 2050, the pipe diameters of the WDS remain unchanged, while all of the newly constructed pipes
are designed for the final stage. With this approach it can be determined, (a) whether the WDS can
tolerate the occurring changes or not, and (b) at which transition stage additional redesign (e.g., pipe
replacements) might be necessary for the 3 scenarios and the 30 planning options.
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The transition stage models are automatically generated for each of the 30 network structures
(planning options). Altogether, for the case study analysis 1260 WDSs are created and simulated,
containing 30 variations of network structure, each evaluated for 7 stages, under 2 hydraulic loads
(high and low daily demand) and 3 future demand scenarios (constant demand and demand
increase/decrease).

Tasks 3 and 4 present the hydraulic simulations and the performance evaluations of the WDSs.
The application of the developed approach is shown with the outcome of the performance analysis
during the WDS transition of Kiruna as a model. In Figure 9, we firstly show example contour
plots of the pressure distributions at peak demand for three different stages (2012, 2033 & 2100) and
two scenarios (Baseline & Growth).

Figure 9. Pressure distributions at peak demand for the Baseline scenario for the initial stage 2012 (a),
the final stage 2100 (b), the transition stage 2033 (c), and the Growth scenario for transition stage 2033 (d).

In Figure 10 the findings of three performance indicators (PIs of system capacity, minimum
pressure and water age) and one statistical value (mean pressure) are presented for all WDS stages.
Therein a bandwidth of performance developments for the 30 planning options (possible WDS
structures) is shown for the three scenarios. While the scenario “Baseline” is plotted in dashed lines,
the scenario “Growth” is represented by continuous lines. The scenario “Stagnation” is illustrated by
dot-dashed lines.

The three main findings of the WDS transition for the case-study application are discussed in
the following: First, the performance drops are highly correlated with the future water consumption.
The scenario of a linear increase in water consumption reveals lower network performances than
the assumption of decreasing water consumption, with the exception of water age where the opposite
behaviour is observed. Sufficient minimum pressure performances can only be guaranteed for scenario
“Stagnation” (demand reduction) and utilizing the pressure surplus (“buffer capacity”) of the WDS
(see drop of capacity index). However, problems with water age occur for this scenario. For scenario
“Baseline” and scenario “Growth”, the capacity of the (remaining) WDS parts is not high enough
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to cope with the structural (“loss of capacity”) and demographic (“increase demand”) changes after
stage 2023, while guaranteeing sufficient minimum pressure heads. The performance improvement at
the final stage is due to the pipe upgrades (10% percent pipe replacement, see Task 1).

Figure 10. Performance developments for three demand scenarios and WDS structure variations;
(a) System capacity, (b) Mean pressure head, (c) Minimum pressure performance and (d) Maximum
water age performance.

Second, influences of the 30 planning options with different network structure (degree of loops)
on the system performances are proven (light shading in Figure 10 indicates a low loop degree and
dark shading a high loop degree). Especially the performances of minimum pressure and system
capacity are favoured by a higher loop degree. The drops in system capacity, indicating a stronger
usage of additional pressure surplus, are lower for highly looped networks due to more alternative
flow paths. The WDS with the best performances is identified to be one of the highly looped planning
options. However, not every highly looped planning option revealed higher performances (e.g., see
crossing lines with different shading in Figure 10), but in terms of robustness and redundancy, a higher
degree of loops is advisable when facing structural and demand uncertainties.

Third, critical points are identified during the WDS transition. The first four stages of the transition
processes, reveal only slight changes in the WDS performances. Up to year 2023, the changing flow
patterns are compensated by the WDS. However, after year 2023, partially inefficient WDSs occur.
The performance drops at the stages 2033 and 2050 are related to a severe “loss of capacity” within
the remaining WDS. This outcome demonstrates that the sole “single-stage-design” of the final-stage
WDS (including the “doing-all-at-the-end” pipe upgrades) is insufficient. Owing to the network
deconstruction, pipes that are already disconnected at final stage f (|Pi|\|Pf|), must be redesigned at
the intermediate stages 2033 and 2050 to maintain acceptable service pressures.

4. Discussion

The aim of this work is to provide a performance assessment tool assisting decision makers
during long term network transitions processes of WDSs over time and to determine the sensitivity of
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different future uncertainties, like demographic changes, network structure uncertainties and shifting
network layout (e.g., WDS expansion). The proposed approach aims to tackle the entire complexity of
the stated problem with the implication, that for some specific details, assumptions and simplifications
are necessary. Once successfully setup, in future studies, analyzes focusing on detailed questions
(e.g., redesign and rehabilitation of the existing WDS) will be addressed.

Based on that approach different design strategies can be tested. This work provides a helpful
approach to identify critical stages (time points) and locations (weak points) during the WDS
transitioning. Weak points are pipes whose diameters become inappropriate due to the changing
flow patterns that originate from pipe disconnections, shifting demand nodes and total future water
consumptions. Indicators for inefficient pipe diameters are high flow velocities v and high unit head
losses h. Figure 11a presents the pipe velocities and unit head losses (both length-weighted) for
the case study application at stage 2033 and for scenario “Growth”. The network deconstruction
at that stage causes a “loss of capacity” and therefore increased velocities and unit head losses in
specific pipes. Exemplarily, a velocity threshold of 1.5 m/s is exceeded in about 5% of the pipes at
stage 2033. These identified weak points have to be addressed when redesigning the WDS. Problems
related to water age are marginal for the first two scenarios and occur mainly in parts of the new city
centre, where the design capacity of some pipes is not reached at all stages. However, by neglecting
the initial water age from the tank (e.g., due to operational measures), the mean water network travel
time is below 24 h for scenario “Baseline” and scenario “Growth” at all of the stages of the WDS
transition. In Figure 11b the maximum water age distribution at stage 2033 and scenario “Baseline”
after an extended period simulation is presented. It can be seen that the water age is below 48 h for most
junctions (including the initial tank water age of 19 h) and only minor parts of the new city centre show
values above 48 h. In the literature, average WDS retention times are between 12 and 24 h for cities of
a similar size [34]. However, a future demand reduction all over the city (see scenario “Stagnation”)
reduces the water age performance. In this case additional operational measures, like regular pipe
flushing, would be necessary.

Figure 11. (a) Threshold exceedances of unit head loss (top) and velocity (bottom) at peak load for
scenario “Growth”, (b) WDS with maximum water age for scenario “Baseline” at transition stage 2033.

The case study application showed that up to stage 2033 sufficient hydraulic and quality requirements
are guaranteed under all structural and demand uncertainties. Due to the “final-stage-design” also
the performances at the final stage are sufficient (with the exception of water age under total demand
decrease scenario). To improve the minimum pressure performance at the intermediate stages
2033 and 2050 (for constant demand and demand increase), other design strategies will be pursued in
further investigations: (1) anticipated pipe replacements, rather than “doing-all-at-the-end” upgrades
of the identified pipe upgrades |Pup|, and/or (2) network redesign of overloaded WDS components
that are already deconstructed at the final-stage WDS (|Pi|\|Pf|). Future work will also address
the integration of the real WDS in the network generation procedure.
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5. Conclusions

In this work, a novel modelling approach was presented to assess the performance of structural
and functional long-term WDS transitions, e.g., network displacement and population growth.
All these changing boundary conditions were applied to a set of automatically created planning
options with different network structure. The main advantages of the method are the automated
creation of hydraulic models at different points in time during the WDS transition (stages), the low
computational costs and the applicability of the method to a variety of WDSs, representing different
planning options. With the method different scenarios can be tested (e.g., network displacement and
population growth) and critical time points determined, where predefined performance criteria cannot
be guaranteed anymore.

The benefit of the methodology is the fast generation of WDS stages based on surrogate
information such as the street network and the city’s master plan. The methodology can handle
a different degree of information content; known information of the WDS (e.g., physical location
and attributes of pipes, demand distribution) can easily be considered as “fixed” parameters in
the WDS generation, while all unknown information is supplemented by stochastic approximations
(e.g., expanding WDS structure on basis of future street network and/or random demand distributions).
As a result, different planning options are put under stress and evaluated with performance indicators.

As a case study, the city of Kiruna is used where a city expansion and a step-by-step destruction
(causing the relocation of people) take place at the same time. The proposed approach was applied to
identify critical points in space and time, and to assist decision makers in such a city (and infrastructure)
transition. For the model application to the case study of Kiruna, several stresses were applied to
the WDS at different points in time on basis of the city’s master plan, including the simultaneous
network disconnection and new connection, shifting demand nodes and different future demand
developments. The performance drops after transition stage 2023, showed that the approach of
the “doing-all-at-the-end” pipe upgrades on the basis of the sufficiently working initial and final-stage
WDS (|Pi| ∩ |Pf|) was insufficient. The performance drops revealed that the pressure surplus
(quantified by the capacity index) of the remaining WDS after a major disconnection was not high
enough to cope with the occurring changes (“loss of capacity”). At the stages of year 2033 and 2050,
an improved design strategy with additional pipe redesign in the pipe set (|Pi|\|Pf|) must be
performed for the future scenarios of constant demand and demand increase (e.g., population growth).
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Abstract: Intermittent supply is a common way of delivering water in many developing countries.
Limitations on water and economic resources, in addition to poor management and population
growth, limit the possibilities of delivering water 24 h a day. Intermittent water supply networks
are usually designed and managed in an empirical manner, or using tools and criteria devised for
continuous supply systems, and this approach can produce supply inequity. In this paper, an approach
based on the hydraulic capacity concept, which uses soft computing tools of graph theory and cluster
analysis, is developed to define sectors, also called district metered areas (DMAs), to produce an
equitable water supply. Moreover, this approach helps determine the supply time for each sector,
which depends on each sector’s hydraulic characteristics. This process also includes the opinions of
water company experts, the individuals who are best acquainted with the intricacies of the network.

Keywords: intermittent water supply; cluster analysis; graph theory; DMA; equity

1. Introduction

In developing countries, water supply continuity is threatened by the reduction of available water
resources due to pollution, climate change, urban population growth, and management deficiencies
in water supply systems. In this context, intermittent water supply becomes an alternative, in which
water is delivered for a few hours a day.

There are several studies that analyze the various deficiencies of intermittent supply, since it causes
problems in the system infrastructure itself [1–5], produces health risks for users [6–14], and generates
supply inequity [15]. Nevertheless, water is currently delivered to millions of people around the world
under intermittent supply conditions.

Galaitsi et al. [16], based on the influence on the living conditions of users, classify intermittency
in water supply as predictable, irregular, or unreliable. Predictable intermittency is the only option
that has a defined supply schedule. In this paper, we deal with predictable supply.

Intermittent supply networks can either work in their entirety, or by sectors [17], also called
district-metered areas (DMAs). Sectors are useful in extensive intermittent supply networks,
since supply schedules can be more easily established [18]. In this situation, however, setting and
sizing the sectors does not always assure equitable supply, because sectors are designed with empirical
or continuous-supply based criteria.

A sector is a restrained water supply network area, whose hydraulic behavior can be permanently
or temporarily isolated [19]. A sector can be set by installing isolation valves in sector-connecting pipes.
In some cases, sectors can be permanently disconnected [20]. Technical management of extensive
supply networks is a complex task. Thus, network reduction into connected sectors becomes a very
useful strategy [21].
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Although installing flowmeters at the incoming pipes of each sector is common for leak
control [22], sectors without measurement can exist in intermittent supply networks, since their
main goal is to deliver water at differentiated schedules [18].

For DMA implementation in networks with continuous water supply, there is a general trend
to use optimization techniques to achieve an adequate service level [19,21,23–26]. Several authors
also suggest graph theory for the sectorization process [25,27,28]. Although sector importance in
intermittent water supply is acknowledged [3,29], there are no specific tools for designing sectors in
intermittent supply networks.

Upgrading the infrastructure to provide continuous water supply is an initial option for improving
intermittent supply systems [30]. This option is usually hard to achieve. Moreover, if transition
conditions are not feasible, it must be recognized that supply will always be intermittent.
Consequently, more proactive management tools that minimize the negative effects caused by this type
of supply are required [15,31,32]. This paradigm enables improving the living conditions of people
who dwell in intermittently supplied areas, and achieves predictable intermittent supply systems [16].

In both supply system improvement perspectives, network sectorization is a fundamental step.
Sectors are also important in transition processes to continuous supply [17], and crucial for intermittent
supply system management that aims to improve supply equity. Moreover, sectorization under
an intermittent-supply based perspective may be useful for vulnerable continuous supply systems.
In 2016, for instance, the continuous supply network of La Paz (Bolivia) had to become temporarily
intermittent due to insufficient water in its supply sources [33].

If an intermittent supply network is not sectorized, the peak flow demand during supply hours
is very high, since water demand occurs simultaneously for the entire network. Thus, high water
demand results in low service level conditions and may produce deficient pressure areas, which then
produces supply inequity. Network sectorization and supply schedule setting help reduce this high
peak demand.

In this paper, an approach based on the theoretical maximum flow concept, which uses soft
computing tools from graph theory and cluster analysis [34,35], is developed to define sectors to
produce equitable water supply. For node clustering, this process also includes water company expert
opinions, from the individuals who best know network details.

Unlike continuous supply systems, the DMA implementation process in intermittent supply
systems also includes criteria that assure supply equity, such as the restrained maximum pressure
difference. Moreover, this approach helps determine the supply time for each sector based on their
hydraulic characteristics.

2. Methodology

Sector implementation is based on three main goals: achieve supply equity; consider water
company expert opinion; and determine adequate supply times for the sector (since these supply times
are crucial for good management of intermittent supply networks). Sectors in intermittent supply
networks are usually designed using continuous supply criteria. Those criteria are not considered in
this paper.

2.1. Water Supply Equity

Equity in intermittent water supply aims to achieve a fair distribution of the limited amount of
water available during the few hours of supply [15].

Inequity in intermittent water supply is related to water wastage at the highest pressure nodes
and scarcity at the lowest pressure nodes. Accordingly, a network with supply equity is a system that
restrains these extreme situations. Therefore, pressure is important for achieving equity in supply,
and differences between maximum and minimum pressures must be small.
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Home storage, which is very common in intermittent supply networks, make users compete for
water supply, since their goal is to collect as much water as possible in a short period of time [36].
This competition also creates water supply inequity.

The essential difference between designing continuous and intermittent supply systems lies in
including, or not, equity as a design principle [15,37]. If supply equity is considered a design criterion,
water scarcity impact may be substantially reduced [38].

The main intervening factors in equitable supply are: pressure at the nodes; supply flows;
velocities; elevation differences; supplied area size [39]; network topology; supply source location [37];
and network capacity [30]. Moreover, Vairamoorthy et al. [31] include the following elements to
improve supply equity: supply duration; connection type; and connection location.

One of the most important components of intermittent supply systems is the distribution network
itself. If the network has deficiencies, it may impose inequitable supply conditions and thus cause water
wastage in high-pressure areas, as well as a lack of water in others [17]. Sector implementation may
correct these deficiencies and help achieve supply equity. An appropriate criterion to evaluate supply
equity is by controlling the pressure difference between the highest and the lowest pressure nodes.
In this paper, values between 3 and 5 m are adopted, as recommended by CPHEEO (Central Public
Health and Environmental Engineering Organization) [2].

2.2. Supply Time

Water supply time, or supply period, is an intrinsic characteristic of intermittent water supply
systems. Nevertheless, it is usually adopted without rigorous technical criteria and usually produces
supply inequity.

Inequity in water supply not only occurs in space but also time. Users in advantageous locations
in the network receive water almost immediately after supply starts. In contrast, users in less fortunate
locations must wait much longer [40].

Supply time definition, which is based on the hydraulic characteristics of network and sectors,
helps achieve better planning and management of intermittent water supply systems. We address this
question after describing our sectorization approach.

2.3. Theoretical Maximum Flow

The theoretical maximum flow, Qmaxt, or network capacity defines the maximum flow that a
network can supply with at least a minimum pressure, Pmin, at every node. The lowest pressure node
must have the predefined minimum pressure [30]. The theoretical maximum flow value is determined
through a demand-driven-analysis (DDA) hydraulic modeling of the network, in which nodes are
associated with a given average demand. For this determination, several working conditions are
evaluated and the peak factor is modified until the minimum pressure at the most unfavorable network
node is guaranteed.

For this purpose, a setting curve—a network-H-Q curve that guarantees the minimum pressure
at the lowest pressure node—is used. In a tank supplied network, for example, (see Figure 1),
the intersection between the setting curve and the source water level determines the theoretical
maximum flow. If due to minimum pressure reduction, the setting curve runs lower, then network
capacity is increased.
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Figure 1. Theoretical maximum flow for a tank fed network [30].

2.4. Sector Development

Our sectorization process, which is fully described in this subsection, is schematized in Figure 2.
This figure must be understood as a high-level pseudocode, with appropriate references to the
equations in this subsection, accompanied by conceptual descriptions for the various sub-processes
that integrate the entire process and which are described in detail below. These sub-processes are:

• Calculation of weights in pipes and nodes
• Calculation of criteria weights
• Critical node selection
• Shortest path between critical node and source
• Node clustering
• Hydraulic calculation and verification of water supply equity

For the stages that require hydraulic calculation we use EPANET 2.0 [41].
To better follow this subsection, Table 1 provides a list of the variables used.
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Table 1. List of used variables.

Variable Definition Unit

R Graph of whole network, used as hydraulic model -
V(R) Set of whole network nodes -
E(R) Set of whole network pipes -

IR Incidence relation of graph -
Qmaxt Theoretical maximum flow or network capacity L/s

n Node -
p Pipe -

PQmaxt
n Pressure at nodes at theoretical maximum flow working condition m

QQmaxt
p Flow at pipes at theoretical maximum flow working condition L/s

hQmaxt
p Head loss at pipes at theoretical maximum flow working condition m
wn Weight in node n m
wp Weight in pipe p m-1

z1 Weight for east coordinate criterion -
z2 Weight for north coordinate criterion -
z3 Weight for elevation criterion -
z4 Weight for service pressure criterion -

ncrit,i Critical node at the developing sector i -
i Developing sector -

Ci Subset of selected nodes or developing sector -
Vi Set of remaining nodes -
Ei Set of remaining pipes -
Si Subset of shortest path nodes -
Fi Subset of shortest path pipes -

d(μc,xj) Similarity distance -
m Number of criteria weight, m = 1 for east coordinate, m = 2 for north

coordinate, m = 3 for elevation, and m = 4 for service pressure
-

μcm Centroid depending on the m criteria -
xnm Normalized value for each n node, depending on the m criteria -
gn Node degree -

wgn Weight for node degree -
M Constant depending on the node degree importance -
nsel Selected node -
psel Selected pipe -
q Node of subset Ci -

xqm Normalized value for each q node, depending on the m criteria -
Bi Node subset used for hydraulic calculations -
Nc Total node number of a sector -
Hi Graph of developing sector i, used as hydraulic model -
u Working condition for developing sector -

Qu
maxt Theoretical maximum flow for working condition u L/s
ku Peak factor for working condition u -

Pmin Minimum pressure in subset Bi m
Pmax Maximum pressure in subset Bi m

j Node of subset Bi -
Qj Average demand for each j node in subset Bi L/s
ns Total node number of subset Bi -
ts Supply time h
Vs Total supplied water volume in continuous and intermittent supply m3

ΔP Pressure difference m
Peq Limit value of pressure difference that assures water supply equity m
tmin Minimum supply time, depending on the network capacity h
Qint Average flow in intermittent water supply L/s
Hs Water level in tank or supply source m
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Figure 2. Flowchart, including high-level pseudocode and conceptual description, for implementation
of sectors in intermittent water supply networks.
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2.4.1. Calculation of Weights in Pipes and Nodes

The network is represented by a graph R, which consists of a triplet, namely, the network node
set V(R), the set of network pipes E(R), and the incidence relation IR, which relates each element (edge)
in E(R) to a unique non-ordered pair of nodes (vertices) in V(R):

R = (V(R), E(R), IR). (1)

Based on this network, we can determine the initial theoretical maximum flow, Qmaxt, as described
above (see [30] for specific details). Pipes are subjected to their maximum to fulfill the minimum
pressure requirements. The calculated pressure, PQmaxt

n , at each node n; and the obtained flow,
QQmaxt

p , and head loss, hQmaxt
p for each pipe p, are used in weight calculation as follows.

Node weights, wn, are directly related to the pressure at each node n:

wn = PQmaxt
n . (2)

Under the same working condition, a pipe weight, wp, is determined by the inverse of the power
dissipation [42], a function of the water specific weight, γ, and the calculated flow and head loss on
pipe p, as in (3).

wp =
1

γ ·
∣∣∣QQmaxt

p

∣∣∣ · hQmaxt
p

. (3)

With the pipe weights, the network becomes an undirected weighted graph, in which it is possible
to recognize least-loss-energy pipes.

At this stage, using the graph of the entire network, we also calculate the degree of each node,
gn, which is later used to determine the degree weight, wgn, and the similarity distance (see below).

2.4.2. Calculation of Criteria Weights

In the process, for node selection and subsequent sector development, various node-related
criteria are considered, namely: east coordinate; north coordinate; elevation; pressure at theoretical
maximum flow working condition; and connection degree.

Criteria weights, zm, (m = 1 for east coordinate, m = 2 for north coordinate, m = 3 for elevation,
and m = 4 for service pressure) are derived from the opinion of the water company experts, since they
are fully acquainted with the network characteristics and performance. To derive those weights we
use pairwise comparison matrices and their Perron eigenvectors to transform opinions into weights
or priorities, as in the analytic hierarchy process (AHP) [43,44]. A different treatment is given to the
connection degree, as explained below.

2.4.3. Critical Node Selection

This is an iteration process starting after completing the initialization stages 2.4.1 and 2.4.2. In each
iteration step, first an individual (a node) for building the next cluster is identified. Some individuals
are then grouped around it, and clusters (sectors or DMAs) are thus defined iteratively.

To build the i-th sector, we first identify the critical network node, ncrit,i, in the set of remaining nodes,
Vi (initially, all the nodes of the entire network belong to this set). This critical node is selected to be the
least-supply-pressure node during the maximal theoretical flow working condition, according to (2):

ncrit,i = argmin{wn : ∀n ∈ Vi}. (4)

This node is also the seed element of cluster Ci under development. Thus, it is the first element in
cluster Ci, and must be included in this set: ncrit,i ε Ci.
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Moreover, to avoid further selecting the critical node from the next set, Vi+1, it must be removed
from the previous set, Vi:

Vi+1 = Vi − {ncrit,i}. (5)

2.4.4. Shortest Path between Critical Node and Source

With the dissipation energy weight, wp, of every pipe, the critical node as a start, and the supply
source as a destination, we determine the shortest path between both using the Dijkstra algorithm [45].
If there is more than one supply source, the shortest path must be determined for all sources. This step
is essential to identify sectors, since each sector will have its own starting shortest path. Due to pipe
weight characteristics, the shortest path will usually be made up of larger diameter pipes.

This path is used for hydraulic calculations as a sector entrance. A second node subset,
Si, which groups shortest path nodes, is also defined, as well as a pipe subset, Fi, which groups
the shortest path pipes.

2.4.5. Node Clustering

The critical node becomes the cluster initial centroid, μc, (see (17) below for an exemption) and
the next node is selected from subset Vi. This selection is determined by using the similarity distance,

d(μc, xn) = wgn ·
√√√√ 4

∑
m=1

zm · (μcm − xnm)
2, (6)

between centroid μcm and normalized value xnm for each node n, depending on the m criteria, and
on the cluster connection through an edge (pipe). Before stating the selection mechanism, we first
explain (6) further.

The weight wgn is described below. Note that normalization for each criterion is performed by
dividing each value by the sum of the criterion values.

Using east and north coordinates, we determine an equivalent value to the horizontal distance
between the centroid and every network node. Closer nodes to the centroid are more likely to be
grouped in the forming cluster. Normalization of these coordinates must refer to a common value to
avoid modifying scales of the reference plane axes. This common value may be the greatest value of
the east or north coordinates sum.

Node elevation and pressure criteria are particularly useful to achieve equity in sector supply.
In this way, clusters are integrated by nodes with similar pressure and elevation.

This selection process may leave isolated nodes that connect with a sector through a single pipe
and are unable to form a new sector. For this reason, similarity distance (6) is calculated using a weight,
wgn, which depends on the degree, gn, of node n in the network. Nodes with a low connection degree
are prioritized in the selection by means of

wgn = 1 +
gn

M
. (7)

M is a constant that depends on the importance of the node degree. Assuming low values
for M (1 to 10) implies giving more importance to the node connection degree in the network.
Low values are recommended for branched networks, in which branches are in an unfavorable
location (distant nodes or nodes with differing elevations or pressures). In the case of looped networks
with uniform characteristics, M may be greater (50 to 100), and a value wgn = 1 may be adopted.
Prioritizing low connection degree nodes may increase pressure differences between the highest and
lowest pressure nodes in the cluster. Consequently, smaller sectors are created.
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To select the next node to belong to the cluster, we consider the graph used in the hydraulic
calculation. The selected node, nsel, is the graph node minimizing (6), that is to say, the graph node
with the smallest similarity distance:

nsel = argmin{d(μc, xn) : ∀n ∈ Vi}. (8)

However, we also need to guarantee the existence of an edge between the previously selected
nodes, and the newly selected node (Figure 3). As a result, to select a node we need more than
one iteration.

Figure 3. Selection of the node with shortest similarity distance with the pipe to be clustered.

If a new selected node has many pipes connecting with the sector (Figure 4), then the water has
many options to flow and sector capacity is likely to increase.

Figure 4. Selected node with many connection pipes to open.

Conversely, if the selected node has few links with the new sector, reducing pressure loss by
changing the number of available circulation routes is less likely to succeed. Increasing or decreasing
the network capacity and achieving the desired equity depends on the elevation and pressure of
the selected node. If a node has a comparatively low elevation in the sector, it has a high pressure.
Thus, this node may become the highest pressure node, which reduces equity and defines the further
selection process. If a node has a higher elevation than the elevation node average, it may become a
new critical node due to its minimum pressure, whose effect tends to reduce sector capacity.
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By selecting the smaller diameter pipes first, the selected pipe, psel, from the set of current available
pipes, Ei, is the pipe with lowest weight wp:

psel = argmin
{

wp : ∀p ∈ Ei
}

. (9)

Every selected node, nsel, and pipe, psel, must be included in the developing cluster, Ci (nsel ε Ci)
and in the shortest path pipe subset, Fi, (psel ε Fi), respectively. Moreover, the subset of the critical path
nodes, Si, must also join the cluster node subset, Ci, to obtain node subset Bi, as in (10), which is the
base for the new graph, Hi, as specified in (11). This graph is used for hydraulic calculations.

Bi = Ci ∪ Si, (10)

Hi = (Bi(Hi), Fi(Hi), IR). (11)

To avoid picking more than once any nodes and pipes previously selected for other sectors,
each must be removed respectively from the new vertex set, Vi+1, and edge set, Ei+1, used in the
next iteration:

Vi+1 → Vi+1 − {nsel}, (12)

Ei+1 → Ei+1 − {psel}. (13)

Now it is time for hydraulic calculations with the current sector Bi.

2.4.6. Hydraulic Calculation and Verification of Water Supply Equity

At the beginning of the hydraulic calculations, only pipes in subset Fi are considered open,
while the remaining pipes are considered closed until a node that connects them to the developing
sector is selected. This situation may have a huge influence in the sector capacity calculation and,
consequently, in equity and supply times.

We now calculate the theoretical maximum flow, Qu
maxt, with the graph of the developing sector Hi

for a working condition u. We also determine the maximum, Pmax, and the minimum, Pmin, pressures for
the selected set of nodes, Bi. Thus, we are able to determine the peak factor, ku, and, using the average
demand, Qj, for any selected node j, j = 1, . . . , ns, we obtain for this working condition

Qu
maxt = ku ·

ns

∑
j=1

Qj. (14)

To determine the supply time, ts, we assume that the consumed water volume in continuous

supply equals that of intermittent supply, Vs =
ns
∑

j=1
Qj · 24 = Qh

maxt · ts. Furthermore, we consider that

the average flow is distributed 24 h a day, and the network capacity [30] is high enough to supply a
high flow, Qu

maxt, in a short supply time. Thus,

ts =
24
ku

. (15)

Usually, the greater the number of grouped nodes, the lower the peak factor ku value, so supply
periods tend to 24 h. If the number of nodes is low, the peak factor increases, and thus supply time is
shorter. In this case, having fewer supply hours is useful for avoiding supply schedule overlap.

The configuration and number of nodes in a hydraulic sector limits its theoretical maximum flow
and, thus, its peak factor as well. Consequently, there is an intrinsic relation between a sector size and
its supply time to guarantee an appropriate pressure.
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The process of cluster selection of nodes comes to an end when the pressure difference, ΔP, of the
hydraulic calculations surpasses a limit value, Peq, which assures water supply equity:

ΔP = Pmax − Pmin > Peq. (16)

If the pressure difference, ΔP, still guarantees equitable supply, perhaps new elements (nodes and
pipes) can be incorporated in the current sector. To this end, if there are still unassigned nodes (Vi is
not empty) a new centroid, μcm, is determined for each criterion m. We use the normalized values xqm

for each node q, which makes up the developing sector Bi, Nc being its total number of nodes:

μcm =
1

Nc

Nc

∑
q=1

xqm. (17)

If, on the other hand, Peq is effectively surpassed and there are still unassigned nodes (Vi is not
empty), we start the iteration process in Section 2.4.3 again, and use the next critical network node,
which is selected from all the excluded nodes (already grouped in previous clusters). From this new
critical node, a new sector is built. Each network sector is built this way until all the nodes are assigned
to a sector. This ends the sectorization process.

3. Case Study Description

The case-study network, shown in Figure 5 and summarized in Table 2, corresponds to a
subsystem of the water supply network of Oruro (Bolivia). This network is supplied for 4 h a day,
its demand flow during this period is 12.64 L/s, and its minimum pressure is 5.30 m. The minimum
water level at its source is 3737 masl (meters above sea level), and the network average elevation is
3718 masl.

To achieve an equitable supply and build large sectors, we adopt a minimum pressure of 10 m
and a pressure difference of 5 m, which is the maximum value recommended by CPHEEO.

Figure 5. Network model with intermittent water supply to sectorize.
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Table 2. Main network characteristics of the case study.

Description Value

Number of network nodes 56 nodes
Number of network pipes 61 pipes
Average demand flow in intermittent water supply 12.64 L/s
Current supply time 4 h
Minimum pressure 5.30 m
Maximum pressure 17.20 m

Preliminary Evaluation of Water Supply Equity

Before applying our process, we evaluate some modifications in the current network management
to try to achieve equitable supply. First, we determine the setting curve and network maximum
theoretical flow [30] that satisfies the minimum service pressure of 10 m (Figure 6). The theoretical
maximum flow or network capacity is 10.04 L/s, which does not fulfill the population demand in
intermittent supply (12.64 L/s). One way to satisfy this requirement is by reducing the minimum
service pressure to Pmin = 5.30 m, which rearranges the setting curve to a fulfillment of the demanded
flow (Figure 6).

Figure 6. Reduction of the minimum pressure to reach the demand flow in intermittent supply.

As a result, the minimum pressure (10 m) is not met. Moreover, the difference in pressure
ΔP = 11.99 m between the maximum pressure 17.29 m and the minimum pressure 5.30 m far exceeds
the desired pressure of 5 m. Thus, other solutions must be evaluated.

A second alternative is increasing the number of supply hours (18). In this way, we reduce the
average flow in intermittent supply (Qint = 12.64 L/s) to a value that equals the current network
capacity (Qmaxt = 10.04 L/s), using

tmin =
ts · Qint
Qmaxt

. (18)

If we modify the initial supply time, ts = 4 h, to a minimum supply time, tmin = 5.04 h,
the demand is satisfied by the network capacity, 10.04 L/s, and the pressure at each node is over 10 m.

184



Water 2017, 9, 851

Nevertheless, we must also evaluate pressure differences. We determined the pressure difference
ΔP = 7.88 m between the maximum pressure 17.88 m and the minimum pressure 10.00 m, which clearly
exceeds 5 m and thus equity is not guaranteed.

As a consequence, a sectorization alternative needs to be studied. In the next section, we apply
the process developed in this paper.

4. Results and Discussion

As shown, for the sectorization process, we use the following criteria: east coordinate;
north coordinate; elevation; pressure; and node degree (Table 3). All except the node degree, need to
be normalized (Table 4).

Table 3. Criteria for clustering process.

Node East Coordinate (m) North Coordinate (m) Elevation (m) Pressure (m) Degree

J-2 698,074.22 8,010,604.23 3719.00 17.87 4
J-3 697,855.66 8,010,454.61 3719.00 16.05 3
J-4 697,853.41 8,010,448.53 3718.98 16.06 3

...
...

...
...

...
...

J-57 697,801.55 8,010,310.70 3718.60 13.14 2
Sum - 448,583,649.73 208,217.36 808.56 -

Table 4. Normalized values.

Node xn1 xn2 xn3 xn4

J-2 0.00155617 0.01785755 0.01786114 0.02210271
J-3 0.00155569 0.01785721 0.01786115 0.01984983
J-4 0.00155568 0.01785720 0.01786103 0.01985699

...
...

...
...

...
J-57 0.00155557 0.01785689 0.01785921 0.01625678

Criteria weights are determined based on interviews with water company experts. In this case,
study, three company experts were interviewed. Thus, we set pairwise comparison matrices [44] that
influence every criterion (except for node degree, which, as explained above, receives a different
treatment). Perron eigenvectors represent the criteria weights that were defined by the company
experts. Table 5 shows the pairwise comparison matrix of expert 1 as well as its Perron eigenvector.
These values have a consistency ratio (CR) of 5.1%, which is suitable for the criteria [44]. The final
weights are obtained through the component geometric from the Perron eigenvectors for the experts
(Table 6), which also had acceptable CR values.

Table 5. Pairwise comparison matrix, expert 1.

Criterion East and North Coordinates Elevation Pressure Eigenvector

East and north coordinates 1 3 1/2 0.333
Elevation 1/3 1 1/3 0.140
Pressure 2 3 1 0.528

Table 6. Normalized weight of each criterion.

Criterion Expert 1 Expert 2 Expert 3 Geometric Mean Normalized Weight

East and north coordinates 0.333 0.333 0.200 0.281 z1 = z2 = 0.291
Elevation 0.140 0.333 0.200 0.210 z3 = 0.218
Pressure 0.528 0.333 0.600 0.473 z4 = 0.490

Total 1 1 1 0.964 1
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Due to the network characteristics, it is less likely that disconnected nodes are left during sector
building. Therefore, as discussed above, taking (7) into account, we assume a weight wg = 1 for
each node.

To start building the first sector, we identify node J-38 as the most critical node in the network.
Starting from this node, we determine the shortest path to its supply source (see Figure 11,
which compiles the final results), and thus we set the first sector. Later, we group nodes according to
their similarity distance. Every step is evaluated until each node has a pressure difference that assures
the desired equity (Figure 7).

Figure 7. Variation of the pressure difference as a function of the selected nodes.

The clustering process produces evident jumps in pressure differences (Figure 7), due to selection
of nodes that enable either raising the pressure, or reducing the minimum pressure. After surpassing
the pressure difference of 5 m, DMA implementation stops, and according to this condition, the first
26 nodes selected make up the first sector, without considering the first nodes of the identified shortest
path (see Figure 11).

The sudden increase in the developing sector capacity is caused by selecting nodes that have a
high degree of connection. This situation causes a reduction in supply time, because the greater the
capacity, the shorter the supply time (Figure 8).

Let us continue with the process. The network critical node has already been selected for the
first sector. Consequently, there is a new critical node among the unselected nodes. Since pressure
difference between this node and the supply source is large, an equitable supply is difficult to achieve.
Consequently, we consider reducing the head in the source, or creating more sectors. For better network
performance, in terms of supply equity, and to reduce leaks, it is better to reduce the head at the
supply source.

We now evaluate situations in which the head at supply source, Hs, is reduced. Moreover, we increase
the pressure difference value to analyze the sector configuration behavior at high pressures (Figure 9).
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Figure 8. Variation in water supply time as a function of the selected nodes.

Figure 9. Variation of the pressure difference as a function of the selected nodes and the head in the
water supply source.

If the head in the source is 3737 m or 3736 m, for which the pressure difference surpasses 5 m
(Figure 9), we would need to create more additional sectors. This becomes necessary because pressures
must be adjusted to the pressure difference between the pressure at the nodes near the supply source
and the lowest pressure node.

If the head in the source is reduced, we obtain pressure differences lower than 5 m starting
from values lower than 3735 m. The lower the head in the source, the lower the pressure difference
between the supply source and the critical node, with which we achieve a greater supply equity.
Nevertheless, pressure difference reduction means increasing supply service time.
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As for the first sector, sudden reductions in supply hours (Figure 10) are caused by increasing the
network capacity, which, in turn, is due to the selection of high connectivity degree nodes.

Figure 10. Variation of the water supply time as a function of the selected nodes and the head in the
water supply source.

It is not recommendable to reduce the current number of supply hours, because users may
complain. Thus, to have a 4 h supply, we define a pressure head of Hs = 3732 m (Figure 10). Under these
conditions, we create the second sector (Figure 11) and guarantee the desired equity.

The sectorization process produces two sectors with intermittent supply (Table 7). The pressure
difference is lower than 5 m, which assures equitable supply. We also determine the supply time based
on the hydraulic characteristics of each sector.

Table 7. Characteristics of the sectors after the sectorization process.

Sector Pmax (m) Pmin (m) ΔP (m) Qmaxt (L/s) Supply Time ts (h) Hs (mca) Clustering Nodes Ci

Sector 1 14.81 (J-30) 10.00 (J-57) 4.81 < 5 2.76 8.46 3737 26
Sector 2 13.54 (J-10) 10.00 (J-34) 3.54 < 5 6.18 4.41 3732 30

Sector delimitation is achieved by installing sectioning valves at pipes T-56, T-22, T-53, T-51, T-17,
T-39, T-43 and T-61. Pipe T-57 controls the incoming water flow to sector 1.

Due to the network characteristics, initial nodes of first shortest path, namely J-2, J-26, and J-49,
work in both sectors, and supply time is longer (12.87 h). This situation could be avoided, for example,
by installing a direct connection pipe between the source and sector 1.

Sector 1 includes the network critical node, which reduces its capacity and conditions the sector
to have a longer supply time. Conversely, sector 2 may have greater capacity because the critical node
does not belong to it, and the new critical node favors capacity increases.
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Figure 11. Development of sectors 1 and 2.

5. Conclusions

In this paper, we have considered a procedure to define sectors in a water distribution network
with intermittent supply. We develop sectors based on equity criteria, and using water company
expert opinions. Moreover, we determine the supply time using the sector hydraulic conditions.
The authors claim that these characteristics are innovative in methodologies of this kind. The developed
methodology uses soft computing elements of graph theory and clustering.

The sectorization process is a very useful technical management tool for those intermittent
supply systems that are unable to evolve to continuous supply, and for systems that could evolve to
continuous supply.

Sector construction based on equity criteria may also be useful for a future
intermittent-to-continuous-supply transition, because sectors help define areas for
pressure management.

A sectorized network by itself does not guarantee equitable and predictable intermittent water
supply. It is also necessary to manage the supply schedules for all sectors to avoid schedule overlaps
with consequent pressure reduction [17].

In our case study, due to the network characteristics, some shortest path nodes were selected
for more than one sector. This could be avoided, for example, by setting up a shortcut pipe between
source and sector. However, let us note that, although these nodes are supplied for a longer period of
time, they satisfy the pressure difference condition in their sector.
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In larger networks with more than one supply source, we need greater computing capacity and
suitable process supervision.

There are few tools for the management of intermittent supply networks. It is necessary to
develop more sectorization techniques for this type of network, in which sectors are intrinsic elements.
Future sectorization network research must aim at reducing the number of pipes with isolation valves,
developing efficient equity indicators, and evaluating the resilience of created sectors to assure constant
equity in supply.

Related to this last issue, despite the absence of explicit resilience reference values (such as for
the pressure difference as recommended by CPHEEO [2]) for studies including equity as a criterion,
we mention here that the resilience index [42] for the entire network is 0.894, which is, as expected,
clearly improved after sectorization. In effect, the new resilience values are 0.969 for the first sector
and 0.997 for the second. From our point of view, this improvement clearly backs our sectorization
proposal, which we consider to be promising.
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Abstract: Cities depend on multiple heterogeneous, interconnected infrastructures to provide safe
water to consumers. Given this complexity, efficient numerical techniques are needed to support
optimal control and management of a water distribution network (WDN). This paper introduces a
holistic analysis framework to support water utilities on the decision making process for an efficient
supply management. The proposal is based on graph spectral techniques that take advantage of
eigenvalues and eigenvectors properties of matrices that are associated with graphs. Instances of
these matrices are the adjacency matrix and the Laplacian, among others. The interest for this
application is to work on a graph that specifically represents a WDN. This is a complex network that
is made by nodes corresponding to water sources and consumption points and links corresponding
to pipes and valves. The aim is to face new challenges on urban water supply, ranging from
computing approximations for network performance assessment to setting device positioning for
efficient and automatic WDN division into district metered areas. It is consequently created a novel
tool-set of graph spectral techniques adapted to improve main water management tasks and to
simplify the identification of water losses through the definition of an optimal network partitioning.
Two WDNs are used to analyze the proposed methodology. Firstly, the well-known network of
C-Town is investigated for benchmarking of the proposed graph spectral framework. This allows
for comparing the obtained results with others coming from previously proposed approaches in
literature. The second case-study corresponds to an operational network. It shows the usefulness and
optimality of the proposal to effectively manage a WDN.

Keywords: water distribution system management; spectral analysis; complex networks

1. Introduction

Starting from 19th Century, Water Distribution Networks (WDN) were designed using a
traditional approach based on mathematical models to find their optimal system layout in terms
of water demand and pressure level satisfaction in each node. Nowadays, new challenges come from
network management of an old water system designed more than 50–70 years ago. For instance,
significant water losses in the WDN can usually be spotted, raising some cases up to 70% [1]. The issue
often leads to having nodal pressures that are lower than a minimum service level. On top of this,
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there is a bigger problem regarding WDNs delay in terms of management and innovations when
compared to other network public services (electricity, transport, gas, etc.). This fact is noticeable
nowadays when there still is a bias on a lack of development of urban water issues with respect to
smart cities research [2,3]. It is necessary to propose new paradigms, creating a novel framework
analysis in research and development for urban water management.

The complexity of WDN management depends on different peculiar aspects, such as network
connectivity or asset location (e.g., pipes, pumps, valves). In addition, any WDN performance shows
a strong dependency on the complex network geometry produced by traditional design criteria, i.e.,
placing looped pipes under every street. These complex geometries and topologies require innovative
approaches for the analysis and management of a WDN with a densely layout of up to tens of
thousands of nodes and hundreds of looped paths that can be considered as complex networks [4].
Recently, there have flourished algorithms and mathematical tools in graph and complex network
theory to better analyse the behaviour and evolution of complex systems [5–7]. All of these tools are
focused on how “structure affects function” [5] as key aspect for their development. Among the most
important methodologies handling complex networks are the Graph Spectral Techniques (GSTs) [8].
GSTs analyze network topologies by exploiting the properties of some graph matrices, providing
useful information about the global and local performance and evolution of network systems.

A number of GSTs have been applied to WDNs over the last years. These shown to be useful
to define an optimal clustering layout through spectral clustering [9–11]. GSTs also supported
approaching preliminary assessments of the global network robustness through graph matrices
eigenvalues [12–14], providing surrogate robustness metrics. However, these studies only use some
GSTs properties and do not provide an overall framework regarding the opportunities offered by the
study of network eigenvalues and eigenvectors.

This paper proposes a GST tool-set based on two graph matrices and their relative spectra for
supporting several applications on WDNs management. The aim is to present a complete outline
on the capabilities provided by graph spectral techniques applied to WDNs and assemble them into
a unique framework. The paper highlights how GST metrics and their algorithms aid to face some
crucial tasks of WDN management by just using topological and geometric information. In literature
exist several approaches enhancing graph theoretic approaches for WDN management with hydraulic
information. There are addressed this way the problem of network failures quantified both with
respect to physical connectivity and water supply service level [15–18], resilience analysis [19], ranking
pipes [20], and vulnerability analysis [21]. However, there are a series of advantages of focusing the
analysis only on the network topology. The GST tool-set provides a solution in the frequent case of not
having available hydraulic information, fosters real-time response for WDN management, makes it
easier to deal with large-scale WDNs, provides an initial solution to further applications (e.g., specific
algorithms for sensor location), presents a surrogate solution for WDN management in all of the
cases, even for disruption scenarios (such as single or multiple component removal), and can be easily
extended to contain hydraulic information by weighting the graph, but using similar methodologies to
those proposed in this paper.

This paper approaches several issues. Firstly, it is done a robustness analysis by computing the
strength of the network connectivity using a number of spectral metrics. This is of high interest to
assess the impact of any network perturbation (single or multiple component removal) resulting from
random network failures or targeted attacks [22]. The paper also undertakes through GSTs a water
network clustering to define the optimal dimension and shape of a District Meter Area (DMA) [23,24].
In addition, there are also tackled both the problem of an optimal sensor placement [25–27] and the
identification of the most sensitive nodes to malicious attacks [28,29]. Besides providing a unique
GST framework for urban water management, this work also presents novelty elements such as the
application of spectral tools for several WDN tasks: approaching connectivity and continuity analysis,
finding an optimal number of clusters for the water network partitioning, and selecting the most
“influential” nodes for locating quality sensors and metering stations. The GST framework is especially
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useful for aiding the decision making process for real-time WDN management and in the frequent
case of not having available hydraulic information.

Last but not least, another two important aspects supporting the use of graph spectral techniques
are the following: (a) dealing with easy to implement metrics that can be efficiently solved by standard
linear algebra methods; and (b) providing mathematical elegance to the proposed procedures, as they
are supported by mathematical theorems. The outline of the paper is the following. First, it provides a
brief survey of the principal graph spectral techniques, independently of the application field in which
they are used. The main graph matrices and some important eigenvalues and their eigenvectors are
defined and explained. In order to better show the meaning and efficiency of spectral tools, a simple
Example Network is analyzed. Finally, the GST tool-set is tested on two case studies, a real small-size
and an artificial medium-size water system. The conclusions section includes a comparison and
analysis of the results.

2. Spectral Graph Theory

Spectral graph theory is a mathematical approach combining both linear algebra and graph
theory [30] in order to exploit eigenvalue and eigenvector properties. This way, the main benefit of
spectral graph theory is its simplicity, as any system can be successfully analyzed just through the
spectrum of its associated graph matrix, M. Spectral graph parameters contain a lot of information
on both local and global graph structure. The computational complexity to compute eigenvalues and
eigenvectors of graph matrices is O(n3), where n is the number of vertices/nodes (it is usual to name
the elements of a graph as vertices and edges and the elements of a network as nodes and links; we
make this distinction throughout the paper.) in the associated graph/network. From the 1990s, graph
spectra have been used for several important applications in many fields [31]; such as expanders
and combinatorial optimization, complex networks and the internet topology, data mining, computer
vision and pattern recognition, internet search, load balancing and multiprocessor interconnection
networks, anti-virus protection, knowledge spread, statistical databases and social networks, quantum
computing, bioinformatics, coding theory, control theory, and computer sciences.

2.1. Graph Matrices

The Adjacency matrix, A, and the Laplacian matrix, L, are widely used in graph analysis. Another
matrices such as the Modularity matrix, the Similarity matrix, and the sign-less Laplacian are omitted
from the current GST tool-set. Using them will make a wider GST mathematical framework but require
a further investigation that falls out of the scope of this proposal. The following items synthetically
describe a number of graph matrices that are related to A and L, whose properties are introduced and
developed in this paper.

• Adjacency Matrix A: let G = (V, E) be an undirected graph with n-vertices set V and m-edges
set E. A common way to represent a graph is to define its Adjacency matrix A, whose elements
aij = aji = 1 if nodes i and j are directly connected and aij = aji = 0 otherwise. The degree of node i
of A is defined as ki = ∑n

j=1 aij;

• Weighted Adjacency Matrix W: it is possible to express the weighted Adjacency matrix W, in case
to be available information about the connection strength between vertices of the graph G. Edge
weights are expressed in terms of proximity and/or similarity between vertices. Thus, all of the
weights are non-negative. That is, wij = wji ≥ 0 if i and j are connected, wij = wji = 0 otherwise.
The degree of a node i of W is defined as ki = ∑n

j=1 wij;

• Un-normalized Laplacian Matrix L: one of the main utilities of spectral graph theory is the
Laplacian matrix [32] and both its un-normalized and normalized version [8]. Let Dk = diag(ki)
be the diagonal matrix of the vertex connectivity degrees, the Laplacian matrix is defined as the
difference between Dk and the Adjacency matrix A (or the weighted Adjacency matrix W if it is
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considered a weighted graph). The un-normalized Laplacian matrix is defined by L = Dk − A
(L = Dk − W);

• Random Walk Normalized Laplacian Matrix Lrw: it is closely related to a random walk
representation. Its definition comes from the Laplacian matrix L being multiplied by the inverse
of the diagonal matrix of the vertex connectivity degrees, Dk. Then, Lrw = Dk

−1L [33].

It is worth to highlight that the above described Laplacian matrices are positive semi-definite
and have n non-negative real-valued eigenvalues 0 = λ1 ≤ . . .≤ λn. These properties are of main
importance in the graph spectral theory.

2.2. Network Eigenvalues

This section provides a quick survey of some graph eigenvalues properties. It is not exhaustive.
However, there are enounced the most important properties for further mathematical reference.
These are about eigenvalues that are used in the paper regarding WDN applications.

• The Largest eigenvalue (Spectral radius or Index) λ1: it refers to the Adjacency graph matrix
A and it plays an important role in modelling a moving substance propagation in a network.
It takes into account not only immediate neighbours of vertices, but also the neighbours of the
neighbours [34]. Spectral radius concept is often introduced by using the example of how a virus
spread in a network. The smaller the Spectral radius the larger the robustness of a network against
the spread of any virus in it. In this regard, the epidemic threshold is proportional to the Inverse
of Spectral radius 1/λ1 [35]. This fact can be explained as the number of walks in a connected
graph is proportional to λ1. The greater the number of walks of a network, the more intensive is
the spread of the moving substance in it. The other way round, the higher the Spectral radius,
the better is the communication into a network.

• The Spectral gap Δλ: it represents the difference between the first and second eigenvalue of an
Adjacency matrix, A. It is a measure of network connectivity strength. In particular, it quantifies
the robustness of network connections and the presence of bottlenecks, articulation points,
or bridges. This is of significant importance, as the removal of a bridge splits the network
in two or more parts. The larger the Spectral gap the more robust is the network [36].

• The Multiplicity of zero eigenvalue m0: the multiplicity of the eigenvalue 0 of L is equal to
the number of connected components A1, . . . , Ak in the graph; thus, the matrix L has as many
eigenvalues 0 as connected components [37].

• The Eigengap λk+1 − λk: it is a spectral utility specifically designed for network clustering.
A suitable number of clusters k may be chosen such that all eigenvalues λ1, . . . , λk of Laplacian
matrix L are very small, but λk+1 is relatively large [38]. The more significant the difference for
a-priori proposing the number of clusters the better is the further clustering configuration.

• The Second smallest eigenvalue (Algebraic connectivity) λ2: it refers to the Laplacian matrix.
λ2 plays a special role in many graph theories related problems [39]. It quantifies the strength of
network connections and its robustness to link failures. The larger the Algebraic connectivity is
the more difficult to cut a graph into independent components. It is also related to the min-cut
problem of a data set for spectral clustering [37].

A simple Example Network with n = 18 nodes and a varying number of links m (from 27 to 30)
is illustrated in the Figure 1 by its different possible layouts. Example Network will be useful as an
instance for spectral metrics computation. This will also show the possible applications for water
distribution network management. The first Example Network layout, A), is composed by two
separated network subregions. Layout B) comes from adding a single link to A) to obtain a connected
network. An additional link is added to B) to obtain C). Table 1 and Figures 2 and 3 show the spectral
metrics computed on the previous described network layouts (Figure 1).
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Figure 1. Four layouts of the Example Network with the same number of nodes and a different number
of links. A) two separated subregions; B) a single edge links the two subregions; C) two edges link the
two subregions; D) three edges link the two subregions.

Table 1 reports how the Spectral radius, the Spectral gap, and the Algebraic connectivity increase
with the number of links between the subregions. The same result is also shown in Figure 1, where it is
clear that the general connectivity and robustness increase from A) to D). Algebraic connectivity and
Spectral gap start from zero for the separated layout A). Both measures significantly increase in the
other layouts, A) to D). This show how these two metrics may be used as a measure of the network
connectivity strength [40].

The measures for Spectral radius (Table 1) start from values greater than zero for layout A).
Then, these values decrease as the number of connections increase. In this regard, Spectral radius can
be used as a parameter to quantify the communication rate or the connectivity level of the network. It is
also noticed how Spectral radius hardly varies for the four analyzed Example Network layouts. This
result is explained as the measure ranges from the average node degree kmean and the maximum node
degree of the network kmax [41] that in Example Network ranges between kmean = 2.67 to kmax = 4.00
(for layout A) and kmean = 3.00 to kmax = 4.00 (for layout D).

Table 1. Spectral metrics for the four cases of the example network.

Metric Layout A Layout B Layout C Layout D

Inverse of Spectral radius 1/λ1 0.354 0.332 0.320 0.311
Spectral gap Δλ 0.000 0.275 0.422 0.555

Eigengap λk+1 − λk 1.000 0.875 0.806 0.732
Multiplicity of zero m0 2 1 1 1

Algebraic connectivity λ2 0.000 0.125 0.194 0.268

Figure 2 shows the top five eigenvalues λ1, . . . , λ5 of the Laplacian matrix for the four layout
configurations of Example Network. It is noticeable that some eigenvalues are equal for all of the
layouts. The first eigenvalue λ1 is always equal to zero because the graph Laplacian matrix is positive
semi-definite [37].
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Figure 2. Algebraic connectivity, Inverse Spectral radius and Spectral radius for the layout A, B, C, and
D of Example Network.

In layout A) the Multiplicity of zero, m0, is equal to 2. Consequently, also the second eigenvalue
λ2 (the Algebraic connectivity) is equal to zero (Table 1). This means that there are two separated
subregions in the network, as the number of multiplicity of zero, m0, is equal to the number of
the disconnected subregions. In all four layouts, the maximum eigengap occurs between the third
eigenvalue λ3 and the second eigenvalue λ2. This indicates that, from a topological point of view,
the optimal number of clusters to split the network is two. These results match with those naturally
expected by the Example Network construction and also by its visualization. It also important to
highlight that the value of the eigengap decreases as the number of links between the two A) regions
increases. This suggests that the eigengap criterion works better when the clusters in the network can
be well defined (not overlapping).

Figure 3. First five eigenvalues for the cases A, B, C, and D of the Example Network.
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2.3. Network Eigenvectors

Graph eigenvectors contain a lot of information about the graph structure. The above described
matrices are based on eigenvalue spectra and have been proposed into several applications [34,42,43].
It is worth highlighting that graph eigenvectors are not graph invariants since they depend on the
labelling of graphs [30]. This characteristic can become into an advantage at some cases. This is
shown in the following subsection where there are introduced the principal eigenvector, the Fiedler
eigenvector, and problems that are related to simultaneous usage of several eigenvectors.

• Principal eigenvector: it corresponds to the largest A-eigenvalue, v1, of a connected graph. It gives
the possibility to rank graph vertices by its coordinates with respect to the number of paths
passing through them to connect two nodes in the network [44]. The number of paths can be
seen as the “importance” (also called the centrality) of node i. In this regard, the eigenvector
centrality attributes a score to each node equals to the corresponding coordinate of the principal
eigenvector. Groups of highly interconnected nodes are more “important” for the communication
in comparison to equally high connected nodes do not form groups, that is, whose neighbours
are less connected than them (according to the social principle that “I am influential if I have
influential friends”). An important Principal eigenvector application is on Web search engines as
Google’s PageRank algorithm [45];

• The Fiedler eigenvector: it corresponds to the second smallest Laplacian (or normalized Laplacian)
eigenvalue of a connected graph. Fiedler [39] first demonstrated that the eigenvector v2 associated
to the second smallest eigenvalue λ2 provides an approximate solution to the graph bi-partitioning
problem. This is approached according to the signs of the components of v2. A subgraph is
encompassed by nodes with positive components in the Fiedler eigenvector. The other subgraph
contains nodes that are related to negative Fiedler eigenvector components. The v2 values closer
to 0 correspond to “better” splits. In this regard, if a number of clusters k ≥ 2 is needed, then
it is useful to resort to the Recursive spectral bisection [46,47]. According to this, the Fiedler
eigenvector is used to bi-divide the vertices of the graph by the sign of its coordinates and the
process is iterated then for each defined sub-part until reach the targeted number k of clusters.

• Other Eigenvector: an alternative to obtain a good graph partitioning for k ≥ 2 clusters is
related to the first k smallest eigenvector of the Laplacian matrix (or normalized Laplacian).
The approach is based on solving the relaxed versions of the RCut problem (NCut problem) to
define the so-called spectral clustering (normalized spectral clustering). It has been demonstrated
in literature [33] that the normalized spectral clustering, based on the Random Walk Normalized
Laplacian Matrix Lrw, shows a superior performance to other spectra alternatives to find a
clustering configuration. The solution is simultaneously characterized by both a minimum
number of cuts and a well-balanced clusters size. According to [33], the minimization of the NCut
problem is equal to the minimization of the Rayleigh quotient.

min(NCut(x)) = min
yT(Dk − A)y

yTDy
(1)

The expression of Equation (1) is minimized by the smallest eigenvalue of the (D − A) matrix that
is in correspondence to its smallest eigenvector. In this regard, the minimization of the NCut problem
is related to the solution of the generalized eigenvalues system.

(Dk − A)y = λDky. (2)

According to the expression of L = Dk − A, and pre-multiplying by D−1
k , the problem is reduced

to the classical eigenvalues system.
Lrwy = λy. (3)
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Finally, the spectral clustering consists of the following steps:

1. definition of Adjacency matrix A (or weighted Adjacency matrix W);
2. computation of the Laplacian L;
3. computation of the first k eigenvectors of normalized Laplacian Lrw matrix;
4. definition of the matrix Unxk containing the first k eigenvectors as columns; and,
5. clustering the nodes of the network into clusters C1, . . . , Ck using the k-means algorithm applied

to the rows of the Unxk matrix.

It is important to clarify that the boundary links, Nec, are those for which each of the connected
nodes belong to different clusters Ck. An important aspect according of the spectral algorithm is to
change the representation of the nodes from Euclidean space to points in the Unxk matrix. This new data
space enhances important cluster-properties and the final configuration has an easier detection [37].
Successful applications for the water distribution networks can be found in [11,14].

Figures 4 and 5 show the outcome from applying eigenvector techniques to Example Network.
Regarding the Principal eigenvector, the eigenvector centrality v1,i is evaluated for layout D). Table 2
shows that the two most important nodes are the node 6 and the node 13 (marked in Table 2), as those
nodes correspond the maximum value of the eigenvector. The connectivity degree for these nodes
is ki = 4, and they are connected to other nodes with a connectivity degree ki = 4 (that is node 5 and
node 13 are connected to node 6; node 14 and node 6 are connected to node 13). So, the two most
important nodes, identified with the eigenvector centrality, are those nodes that have highly connected
adjacent neighbour. These nodes 6 and 13 can consequently be considered “central” nodes for the
communication of the network (from a topological point of view). Similar results are obtained also for
the other Example Network layouts.

 
Figure 4. Two most important nodes, computed by the eigenvector centrality, for the layout D of
Example Network.

Regarding the Fiedler eigenvector, the coordinates of v2 for the four layouts of Example Network
are shown in Figure 5. The Fiedler eigenvector has a number of components (coordinates) equal to the
number of nodes. It is clear that the coordinates have positive and negative values for the four layouts.
In particular, it is possible to define two well separated groups. The first ranges from node 1 to node 9
(negative values), while the second is made by node 10 up to node 18 (positive values). By splitting the
nodes of the network according to their coordinates for v2, it is possible to define a bisection of them.
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Figure 5. Fiedler eigenvector coordinates for the layout A, B, C, and D.

Table 2. Eigenvector centrality for all the nodes in Example Network, layout D.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

v1,i 0.12 0.21 0.26 0.16 0.30 0.37 0.12 0.21 0.26 0.26 0.21 0.12 0.37 0.30 0.16 0.26 0.21 0.12

Analysing layout A (two separated groups), it is straightforward to see how the two groups
of coordinates are well defined, having a constant value for each group. In the other layouts, the
difference between two groups is less clear, as the number of connected links increases. However,
the bisection of the nodes of the network can still be defined for these networks because the sign
is preserved. In all of the layouts, the two clusters are defined having the same number of nodes
(Figure 5).

Regarding to the clustering problem via the NCut minimization problem, the optimal clustering
layout for Example Network proposes to take two clusters (k = 2), in compliance with the eigengap
property (Figure 3). The Fiedler bipartition, according to the second eigenvector of the Laplacian
matrix, provides the same clustering configuration than NCut algorithm. This is an expected result,
as only the second eigenvector is considered in the definition of the matrix Unxk for k = 2.

3. Case Study

All of the metrics and algorithms based on the Graph Spectral Techniques described above can
be considered as an operational GST tool-set that is able to solve key management issues of water
distribution networks. GSTs are tested on the real small-size water system of Parete (a town with 10,800
inhabitants located in a densely populated area near Caserta, Italy) and on the synthetic medium-size
water system of C-Town [48]. The main characteristics of both WDNs are reported in Table 3.

Table 3. Main characteristics of water distribution network of C-Town and Parete. The symbol in
brackets “-” indicates that the parameter is dimensionless.

Network n (-) m (-) nr (-) LTOT (km)

C-Town 396 444 1 56.7
Parete 184 282 2 34.7
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The Eigenvalues significance, explained in the previous section, is described for the two case
studies. The Adjacency and the Laplacian matrices of these two networks are defined and the principal
eigenvalues computed. It is important to note that the graphs are considered unweighted to better
show the efficiency of the proposed management framework. This is based only on the topological
knowledge of WDNs, as it is frequent to do not have available any hydraulic information about the
network. Then, a novel GST tool-set is proposed that provides global and local network information
key to develop operational algorithms and procedures to face complex tasks in WDNs management.
It is however possible to attribute some weights to the network by taking into account the “strength” of
the link between nodes [7]. In the WDNs case, the weights could represent background knowledge on
geometric and hydraulic characteristics of the pipes (diameter, length, conductivity, flow, and velocity,
among others).

Table 4 shows the network eigenvalues for the two case studies. The multiplicity of the
0-eigenvalue from the Adjacency matrix is, for both of the case studies, equal to m0 = 1. This means that
in both WDNs, there is only one connected component. It is interesting to note that also for complex
network models (made by thousands of components) it is still easy to check if any anomaly observed
in the water supply is caused by the decomposition of the original network in several subregions (as it
is the case of unexpected pipe disruptions or valve malfunctions).

Table 4. Principal Eigenvalues of the Adjacency and Laplacian matrices of water distribution network
of C-Town and Parete.

Network m0 Δλ λ2 1/λ1 λk+1 − λk

C-Town 1 0.0303 0.0006 0.358 5
Parete 1 0.0685 0.0212 0.303 4

GSTs also provide support to compute a surrogate index for the topological WDNs robustness
regarding the following two features: (a) The presence of “bottlenecks” or articulation points. These are
subregions that are connected to others through a single link. Removing any node or link at the
bottleneck causes network disconnection. Bottlenecks are computed through the value of the Spectral
gap Δλ, as calculated on the Adjacency matrix; (b) The network “strength” to get split into subregions,
computed through the value of the Algebraic connectivity λ2 calculated on the Laplacian matrix.
The values of the Spectral gap and the Algebraic connectivity aid and simplify the assessment of
robustness of a WDN, as it was preliminary proposed by [12–14]. In the current case studies, it is clear
that the corresponding values of the two spectral measures are small and near to zero, Δλ = 0.0685 and
λ2 = 0.0212 for Parete, while Δλ = 0.0303 and λ2 = 0.0006 for C-Town. These small values are justified
by the fact that WDNs are sparser than other networks as Internet or social networks. This is due to
both geographical embedding and economic constraints [7,11].

The larger Spectral gap for Parete than for C-Town suggests that Parete has a smaller number
of bottlenecks. When considering the Algebraic connectivity, Parete shows greater tolerance to the
efforts to be split into isolated parts with respect to C-Town. Comparing the two case studies, Parete
evidently is more robust against node and link failure than C-Town (as we can expect from comparing
a real utility network design as it has Parete to a synthetic WDN). The smaller value of the Spectral
radius inverse shows that Parete have a more efficient layout than C-Town in terms of communication
and degree connectivity. In this regard, the inverse of the Spectral radius can be used as a global
measure of the reachability of network elements and the paths multiplicity. These first results obtained
with spectral metrics support a preliminary visual analysis of the two WDNs, through which it is
possible to observe a more cohesive shape (and so a more robust structure) for Parete than C-Town.
These GSTs measures aid hydraulic experts to quantify several intuitive aspects of WDNs performance.
In addition, GSTs make it possible to approach a structure analysis of large networks for which just a
visual analysis does not provide enough information.
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The three Eigenvectors techniques explained in the previous section are tested on Parete and
C-Town WDNS. These are the Fiedler eigenvector, Ncut methods based on the other eigenvectors and
the principal eigenvector. Through the Fielder Eigenvector and Ncut methods, it is possible to face the
important and arduous task associated with permanent water network partitioning (WNP) [23]. WNP
consists into define optimal discrete network areas, District Meter Area (DMA), aimed to improve the
water network management (i.e., water budget, pressure management, or water losses localization).
This should be done avoiding to negatively affect the hydraulic performance of the system that could be
significantly deteriorated by shutting-off some pipes [23,49]. Choosing a suitable number of subregions
and their respective layouts by a clustering algorithm is essential to design a WDN partition into
DMAs. The definition of the number of clusters attempts to take into account some peculiarities of
the system (i.e., water demand, pressure distribution, or elevation), which often are not available for
the entire water network. A clustering method based on GSTs only considers network topological
characteristics and is able to capture inherent cluster-properties of the system.

While the second smallest eigenvalue (Algebraic connectivity) is interpreted as a measure of the
strength to split the network in sub-graphs, the eigengap λk+1 − λk could be interpreted as a measure
of the surplus of the strength needed to split the network from k + 1 to k clusters. Once defining the
maximum eigengap λk+1 − λk, it is clear that, from a topological point of view, it is better to split the
network at most up to k clusters, since a greater surplus of strength is needed to split the network in
k + 1 and more clusters. For this reason, the maximum eigengap can be used to define the optimal
number of clusters from a topological and connectivity point of view. Figure 6 shows the first ten
eigenvalues of the Laplacian matrix for the graph of C-Town and Parete. It is clear that the first largest
eigengap for C-Town, occurs between the sixth and the fifth eigenvalue (λ6 − λ5 = 0.002), while for
Parete occurs between the fifth and the fourth eigenvalue (λ5 − λ4 = 0.042). This metric suggests that,
an optimal number of clusters on which subdivided the water distribution networks of C-Town and
Parete is, respectively, k = 5 and k = 4.

(a) (b)

Figure 6. First 10 eigenvalues for the two case studies: (a) C-Town network; and, (b) Parete network.

Once it is defined a suitable number of clusters for a WDN, it is necessary to set the optimal layout
at each sub-region in which the WDN is subdivided (clustering phase) to approach a complete water
network partitioning [23]. The clustering phase focuses on identify clusters shape, aiming both to
balance the number of the nodes and to minimize the number of boundary pipes between clusters.
Approaching an appropriate network clustering is essential. This constitutes the starting point for the
subsequent division phase that consists on choosing the boundary pipes in which to insert gate valves
and flow meters, as it is widely described in [50].

Spectral clustering offers a valid and powerful tool to exploit the properties of the Laplacian
matrix spectrum. Figure 7 reports the Fiedler eigenvectors, v2, for C-Town and Parete WDNs. It is clear,
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as it was shown on Example Network, that the coordinates of the second eigenvector, v2, easily define
an optimal bipartition layout for the network. These divide the network nodes according to the signs
(positive or negative) for the corresponding value of the Fiedler eigenvector. It is worth highlighting
that this procedure ensures the continuity of each defined cluster, as each node of a cluster is linked at
least to another node of the same cluster.

(a) (b)

Figure 7. Fiedler eigenvector v2 coordinates for the two case studies: (a) C-Town network; and,
(b) Parete network.

In case of the optimal number of clusters (defined by the maximum value of the eigengap) is higher
than two, then the first clustering configuration obtained as outcome of the Fiedler eigenvector v2, can
be used as input for a recursive bisection process. That is, for each cluster, the Fiedler eigenvector v2

can be computed for the next clustering up to reach the targeted number of clusters. This network
bisection can also represent a starting layout for other recursive algorithms that require an initial
random choice of the clustering layout. Another GST based powerful tool for the optimal clustering
layout of a water distribution network, is the Ncut spectral clustering [33], already explained in the
Eigenvector techniques section, based on the use of other eigenvectors further than v2.

Figure 8 shows the optimal clustering layout through Ncut spectral clustering. The results are
given for a number of k = 4 clusters for Parete and k = 5 clusters for C-Town, according to the optimal
number of clusters defined through the eigengap for both of the case studies. It is worth to point out
that the clusters are well balanced in terms of number of nodes (a standard deviation dst = 2.7% for
Parete and dst = 8.1% for C-Town). The number of boundary pipes is small with respect to the total
number of pipes (about Nec = 16 for Parete and Nec = 4 for C-Town, corresponding to 5.7% and 1%,
respectively).

GSTs propose a solution for ranking WDN nodes and then select the most important points.
The WDNs of Parete and C-Town are ranked according to the score attributed by the corresponding
coordinates to the first eigenvector, v1, of the Adjacency matrix. Ranking WDN nodes is useful for
locating optimal nodes in which locate devices (i.e., chlorine stations, pressure regulation valves,
quality sensors, flow meters, etc.). The identification of the most important nodes can also contribute
as initial guess for further development of specific device location algorithms. The applications range,
for instance, from detecting accidental or intentional contamination to control pipe flows and node
pressures. These challenging tasks can be approached through GSTs, even when no other information
is available rather than the network topology. As it is explained in the previous section, the eigenvector
centrality can spot the most “influential” nodes, according to the number of neighbours of the adjacent
nodes. The idea behind the network centrality concept is to identify which points are traversed by
the greatest number of connections. Central nodes are thus considered as essential nodes for network
connectivity and have influence over large network areas. Figure 8 points out also the most important
nodes based on the eigenvector centrality criterion. The results show the highest centrality node
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per each DMA of the C-Town and Parete partitioned WDNs. After WDNs clustering, the process is
focus on every single Adjacency matrix related to water distribution sub-networks. The eigenvector
centrality provides most the important nodes per cluster or DMA, from a topological and connectivity
point of view.

(a) (b) 

Figure 8. Optimal clustering layout for the two case studies with different colors for each clusters and
highlighting the most important nodes of each cluster according to the eigenvector centrality of the
partitioned networks: (a) C-Town network (k = 5); and (b) Parete network (k = 4).

4. Conclusions

This paper proposes a survey of the possibilities offered by graph spectral techniques. There is
provided a complete tool-set of several metrics and algorithms, borrowed from graph spectral
techniques (GSTs), and applied to water network operations and management. The tool-set is based
on topological and geometric information of the water network layout. No hydraulic data (such as
diameter, roughness, pressure, etc.) is required. This made the proposal particularly attractive, as it is
a common situation that often face water utilities. Another advantage of the proposal lies on the huge
GST tool-set applicability to any water distribution network. It also is straightforward its adaptation
to deal with near real-time challenges, as avoiding any hydraulic simulation that often stall having a
suitable speed on having network performance results.

The application of the proposed GST tool-set has shown to provide useful metrics for continuity
check, testing if there is any unconnected part of the water network. GSTs also made it possible
to approach topological robustness analysis, aiding to develop water system design or to network
resilience assessments. Another challenges in water management have been also addressed, such as
partitioning the water distribution network into district metered areas through a spectral clustering
process. Ranking nodes importance in a water distribution network is useful for approaching valve or
sensor location. The most “influential” or important nodes have also been obtained thanks to the GST
tool-set framework.

Further work will lead to investigate new opportunities coming from GSTs for water distribution
management. These will be towards using meaningful weights on pipes and nodes. The aim will be
to add partial or complete hydraulics knowledge to the purely topological based solutions provided
by GSTs.
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Abstract: This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an
inhomogeneous cross-sectional area along pipelines) on transient wave behavior and propagation in
water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical
solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering
regular and random variations of cross-sectional area, respectively. The analytical analysis is based
on the one-dimensional (1D) transient wave equation for pipe flow. Both derived results show
that transient waves can be attenuated and scattered significantly along the longitudinal direction
of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained
analytical results are then validated by extensive 1D numerical simulations under different incident
wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical
solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems.
Finally, the practical implications and influence of wave scattering effects on transient flow analysis
and transient-based leak detection in urban water supply systems are discussed in the paper.

Keywords: water supply pipeline; transient wave; non-uniformities; wave scattering; transient
modelling; leak detection

1. Introduction

Wave scattering has been commonly studied in shallow water fields where the water waves
propagate through the channel bottom with randomly varying bars, as depicted in Figure 1 [1].
Experimental results for such cases together with some theoretical considerations are investigated
and discussed in [2,3]. The results in these studies showed that, with the existence of random
non-uniformities (inhomogeneities) of channel bottom elevation, eventually the amplitude of the
generated wave decreases along the longitudinal direction and it tends to zero if the longitudinal
distance is large enough.

Similar random non-uniformities can be found in pipelines (closed conduits) such as random
variations in the pipe cross-sectional area (pipe diameter), with respect to length, developing with age
(refer to Figure 2). In practical systems, many factors can attribute to the random non-uniformities
of pipe cross-sectional area, for example, bio-film build up, corrosion, and deposition in water
supply pipes, drainage pipes, crude oil pipes, and arterial systems. In particular, in water pipelines,
non-uniformities of pipe diameter may be induced by various different factors as shown in Figure 3,
including corrosion, sediment, junctions and complex connections.

Water 2017, 9, 789 209 www.mdpi.com/journal/water
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Figure 1. Bottom bar profile in Chesapeake Bay (adapted from [1]).

Figure 2. Cross-sectional views of aged water pipelines (adapted from [4]).

Figure 3. Different factors attributed to non-uniformities of pipe diameter (pictures adapted from
online public sources on google websites).
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From the perspective of steady flow in water piping systems, pipe diameter non-uniformities may
cause additional energy losses and, thus, require more pumping capacity. On the other hand, from the
perspective of unsteady flow, random variations in pipe diameters can result in random reflections
and damping of waterhammer waves. So far, the phenomenon of wave scattering in water piping
systems and its implications for the structural integrity and robustness of such systems are still not
well understood. Recent numerical and experimental studies [4,5] have demonstrated the significant
influence of irregular pipe diameters (e.g., roughness and blockage) on the transient wave propagation
behaviors, and also on the transient-based defect detection methods (e.g., leakage and blockage).
Moreover, their results also indicate that wave scattering by pipe diameter non-uniformities is more
important and influential than the corresponding friction effect induced by roughness/irregularities
to the wave damping and reflection in both the time and frequency domains. Therefore, an in-depth
understanding of such wave scattering effects due to pipe diameter non-uniformities is necessary and
critical to transient modelling, analysis and application in water supply pipe systems.

In fact, the wave scattering phenomenon and its relevant influence has been widely studied
in many different application fields in the literature such as condensed matter, electromagnetism,
seismology and fluid mechanics. For example, a classic paper [6] showed that random impurities have
an important consequence on the propagation of electrons in a dirty crystal: the diffusive motion of
electrons is terminated and all electrons become localized (this phenomenon is known as Anderson
localization). Anderson’s idea was used later in the analysis of the propagation of surface waves over
a random seabed. Experimental results from previous studies [1,2] demonstrated the localization
of water waves over the rough bottom. The analogy between water wave dynamics and Anderson
localization is pointed out in [3]. Furthermore, the behavior and propagation of slowly modulated
waves in random media has been studied in [7]. However, so far there is no such systematic analysis
and theoretical investigation of the transient wave scattering phenomenon in urban water supply
pipelines, although it is widely observed from laboratory experiments and field tests in this research
area [4,5,8].

To investigate the potential wave-scattering phenomenon induced by random pipe diameter
non-uniformities (i.e., pipe cross-sectional area) and to understand its impact on the transient wave
propagation in water piping systems, in the present paper the method of multi-scale perturbation from
the literature is firstly applied to one-dimensional (1D) waterhammer equations, which describe the
flow dynamics in a pipe under the additional assumption that the pipe cross-sectional area (diameter)
varies in a random manner along the longitudinal coordinate. Two cases—regular and random pipe
non-uniformities—are considered for the analytical derivations. The obtained analytical results are
then compared and validated by numerical simulations, which are achieved by the step-discretization
approximation for different pipe non-uniformities. Thereafter, further discussion of the practical
implications of the results and findings in this study to transient system modelling and pipe leak
detection is performed in the paper. Finally, relevant conclusions are drawn at the end of this study.

2. Problem Statement and Study Framework

In realistic water supply pipelines, the non-uniformities of pipe diameters could be formed
by various different reasons, as shown in Figure 3, resulting in relatively random geometries and
distributions of such non-uniformities, as sketched in Figure 4a. In many theoretical studies (e.g., [4,5]),
these random non-uniformities are usually treated approximately as different regular shapes or their
combinations, in order to conduct mathematical operations and numerical computations. For example,
Figure 4b with a relatively smooth variation (e.g., sinusoidal shape) and Figure 4c with relatively
sharp variation (e.g., step shape) are two commonly used approximations. From the perspective of
mathematics, the complicated random situation in Figure 4a could be a superposition of different
numbers of simplified cases in Figure 4b,c. Therefore, it is a good start to investigate and understand
the simplified cases, which can provide insights and a basis to explore and explain more complicated
situations, such as the random case in Figure 4a.
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Figure 4. Sketch of different types of pipe diameter non-uniformities (side-sectional profile): (a) realistic
and random situation; (b) regular approximation by sinusoidal variation; (c) regular approximation by
step variation.

To this end, in this study, the regular case of pipe diameter non-uniformities in Figure 4b is used
for preliminary analytical analysis for transient wave propagation in pipelines, while the random case
in Figure 4a is applied for further analytical derivations so as to obtain the complete characteristics
of transient flows in realistic pipelines. Thereafter, the other regular case in Figure 4c is adopted
as a discrete approximation of a random case in order to achieve numerical simulations for the
validation of the derived analytical results in this study. The detailed settings for such numerical
simulations are provided later in the part covering numerical applications. The obtained analytical and
numerical results are finally discussed for an in-depth understanding of the transient wave behavior
and propagation in non-uniform pipelines in urban water supply systems.

3. Models and Methods

For clarity, the main models and analysis methods used in this study for investigating transient
wave scattering effect in water supply pipelines are summarized as follows.

3.1. One-Dimentional (1D) Transient Model

The continuity and momentum equations of the 1D waterhammer model for compressible pipe
flow with pipe diameter non-uniformities (i.e., varying pipe cross-sectional area) by neglecting the
friction and visco-elastic effects are considered herein [4,9],

∂(ρA)

∂t
+

∂(ρQ)

∂x
= 0, (1)

∂(ρQ)

∂t
+ A

∂P
∂x

+ τwπD = 0, (2)

where ρ is fluid density; A = A(x) is pipe cross-sectional area; D = D(x) is pipe diameter; Q = Q(x, t) is
pipe discharge; P = P(x, t) is pressure; τw is wall shear stress; x is spatial coordinate; and t is temporal
coordinate. In the numerical simulations, the wall shear stress is modelled by the Darcy–Weisbach
formula, where only the steady state friction is included. The method of characteristics (MOC) is used
for the 1D numerical simulations in this study, and the details for implementing this numerical scheme
into above transient model can refer to the classic textbooks and references in this field [9,10]. While in
the analytical analysis, the friction effect (wall shear stress term in the equation) is excluded due to the
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mathematical complexity and difficulty of analytical derivation, and so as to highlight the effect of
wave scattering during transient flow process.

For analytical derivation, the continuity and momentum Equations (1) and (2) can be further
lumped into wave equation form through following transformation,

∂2P
∂t2 = −ρa2

A
∂2Q
∂x∂t

, (3)

ρ
∂2Q
∂x∂t

= − ∂

∂x

(
A

∂P
∂x

)
. (4)

where a is acoustic wave speed. After the mathematical elimination operation, the result becomes,

A
∂2P
∂t2 = a2 ∂

∂x

(
A

∂P
∂x

)
, (5)

with the pipe cross-sectional area A(x) varying with x. Furthermore, Equation (5) can also be rewritten as,

∂2P
∂t2 = a2 ∂

∂x

(
A

∂P
∂x

)
︸ ︷︷ ︸

(a)

+ (1 − A)
∂2P
∂t2︸ ︷︷ ︸

(b)

, (6)

where part (a) in Equation (6) has a similar form solved in previous studies for shallow surface wave
problems [7], while the other part (b) of Equation (6) is an additional term originated from the case of
pressurized wave propagation in water supply pipelines that is focused and dealt with in this study.
Similarly, the multi-scale perturbation method from previous studies is further adapted and applied to
solve this transient wave equation for pressurized water pipelines [7,11], which is elaborated in the
following section.

3.2. Multi-Scale Perturbation Method

The method of multi-scale perturbation used in this study follows the previous studies [7,11],
with three sets of coordinate scales in both spatial and time introduced as follows:

spatial domain: x, x1 = εx, x2 = ε2x, (7)

time domain: t, t1 = εt, t2 = ε2t, (8)

where the three scales (x, x1, x2 and t, t1, t2) correspond to wave oscillations, initial wave modulation,
and the modulation by randomness when waves propagate along the pipeline, respectively;
ε characterizes the ratio of different scales and ε << 1. The derivatives with respect to x and t are
transformed in accordance with the chain rule as [11],

x = x; x1 = εx; x2 = ε2x; t = t; t1 = εt; t2 = ε2t;

∂

∂x
→ ∂

∂x
+ ε

∂

∂x1
+ ε2 ∂

∂x2
+ · · · ;

∂

∂t
→ ∂

∂t
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · . (9)

As a result, the solution is represented in the form of a perturbation series such as,

P = P0(x, x1, x2, t, t1, t2) + εP1(x, x1, x2, t, t1, t2) + ε2P2(x, x1, x2, t, t1, t2) + · · · , (10)

where P0, P1 and P2 correspond to the above three scales of wave propagation and modification,
respectively. It is important to note that high order terms (>2) with regard to ε from Equations (9) and
(10) are neglected in the following analytical analysis under the assumption of a relatively small extent
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of non-uniformities of pipe diameters or cross-sectional areas. This assumption will be validated and
discussed through numerical applications later in this study.

4. Analytical Results and Analysis

By applying the multi-scale perturbation method in Equation (9) to the transient wave equation
in Equation (6), the analytical results of wave scattering with regard to the pressure wave envelopment
and evolution can be obtained for both the regular case in Figure 4b and the random case in Figure 4a
of pipe diameter variations. For clarity and due to the page space limit, only the key steps and results
are presented as follows, while the detailed derivations are neglected in this paper.

4.1. Results of Regular Non-Uniformities

For the analysis of the regular case of pipe diameter non-uniformities, it is assumed that the
disordered pipe section has a regular variation magnitude of a pipe cross-section area as shown
in Figure 4b, which is defined by the relatively disordered cross-sectional area (i.e., δA = ΔA/A0)
following a periodic co-sinusoidal variation along the pipeline, as follows:

A(x) = A0(1 + εδA cos(λbx)) = 1 + εδA cos(λbx), (11)

where A0 is the mean value of the pipe cross-sectional area, assuming A0 = 1.0 m2 in this study for
simplification; and λb is the periodic length of pipe diameter disorders.

Based on the multi-scale wave perturbation technique, the wave scattering results in the regularly
disordered pipeline can be obtained as three following cases:

1. Subcritical detuning: 0 < Ω < Ω0,⎧⎨
⎩ T(x1) =

ΩsinhK(L−x1)+iaK cosh K(L−x1)
Ωsinh(KL)+iaK cosh(KL)

R(x1) =
Ω0sinhK(L−x1)

Ωsinh(KL)+iaK cosh(KL)

, (12)

where T and R are transmission and reflection coefficients respectively; Ω0 and Ω represent the
incident wave frequency and pipe disorder variation frequency, respectively, and Ω0 = δAω/2,
Ω = aλb; x1 is the distance along the disordered section in the pipeline; i is the imaginary unit,
and i2 = −1; L is the total length of disordered section along the pipeline; and K is the detuning

(group) wave number and, K =

√∣∣∣Ω2
0 − Ω2

∣∣∣/a.

2. Supercritical detuning: Ω > Ω0,⎧⎨
⎩ T(x1) =

Ω sin K(L−x1)+iaP cos K(L−x1)
Ω sin(KL)+iaK cos(KL)

R(x1) =
Ω0 sin K(L−x1)

Ω sin(KL)+iaK cos(KL)

. (13)

3. Bragg resonance: Ω = Ω0, {
T(x1) =

cosh Ω0(L−x1)/a
cosh Ω0L/a

R(x1) = −i sinhΩ0(L−x1)/a
cosh Ω0L/a

. (14)

Particularly, the Bragg resonance of the regularly disordered pipe in Equation (14) indicates
that all waves are reflected completely by the disordered section along the pipeline. The analytical
reflection coefficient (R) along the disorder distance (X = x1) can be obtained according to Equation
(14) and shown in Figure 5. The results of Figure 5 show clearly that, under a fixed disorder
magnitude, the reflection coefficient (R) is decreasing along the pipeline, which indicates that the
wave perturbation energy is decayed gradually by the disorder section. As expected, the reflection
coefficient (R) at a fixed location of the pipe disorder section increases with the disorder magnitude
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(δA) due to more wave energy reflecting back at the initial disorder section in the larger disorder
magnitude (δA) case. For example, the reflection coefficient at the starting location of the disorder
section (i.e., X/L0 = 0) could attain 0.9 when the disorder magnitude is about 10% of the mean value
(i.e., ε ~ 0.1). Under this situation, there would be very little wave energy (perturbations) remaining at
the end of pipe disorder section (since the total energy in the entire pipeline is conserved), resulting
in a relatively high decrease-gradient of the reflection coefficient curve for larger δA case as shown
in Figure 5. More numerical validations to corroborate the analytical result are conducted later in
this study.

Figure 5. Analytical results of the reflection coefficient for the regular non-uniformities case.

4.2. Results of Random Non-Uniformities

For the case of random pipe diameter non-uniformities, as shown in Figure 4a, it is assumed that
the pipe cross-sectional area follows the random variation function as,

A(x) = A0(1 + εζ(x)) = (1 + εζ(x)), (15)

where ζ(x) is a function that represents the random variation characteristics of the pipe cross-sectional
area and is assumed to be of zero mean and be of standard deviation of σ(x); other symbols are as
defined above.

After applying the multi-scale perturbation analysis, the solution of the pressure wave
envelopment to Equation (6) has the following form [4],

B = B0e−λx = B0e−λat, (16)

where B = B(x) = the amplitude of the wave envelope with distance or with the equivalent time t = x/a
with a = wave speed along the pipe disorder section; B0 = amplitude of the incident wave; λ = λr − iλi
is complex wave number, with λr and λi = wave damping factor and wave phase change (frequency
shift) factor, respectively, and

λr =
αk2σ2

α2 + 4k2 , λi = − kα2σ2

2(α2 + 4k2)
. (17)

where k = incident wave number and k = ω/a, with ω = wave frequency; α = spatial correlation
coefficient of the blockage and α ~ 1/λb with λb = correlation length which describes the spatial
variability of pipe diameter non-uniformities.

The result of Equation (17) indicates that the wave amplitude exponentially decreases with
longitudinal distance (x). In other words, the wave is localized by the random non-uniformities of the
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pipe diameter or cross-sectional area along the pipeline. The localization distance can be defined and
used for characterizing the wave scattering by the random diameter non-uniformities as

Lloc =
1

ε2λr
=

α2 + 4k2

ε2σ2αk2 , (18)

which represents the spatial distance for the wave amplitude decreased by an exponential factor of e−1

as shown in Figure 6. This parameter (Lloc) is used later in this study for the evaluation of the wave
scattering effect due to different pipe diameter non-uniformities.

Figure 6. Wave localization by random pipe diameter non-uniformities.

Particularly, for a specified water supply pipeline under investigation, the correlation length of
random pipe diameter non-uniformities (i.e., Lcor ~ 1/α) is usually determinate (but maybe known or
unknown for the analyst), and therefore, a dimensionless parameter (termed as wave scattering factor)
can be further defined for better characterizing the wave scattering effect in that system as,

ϕ = αLloc = α
1

ε2λr
=

α2 + 4k2

ε2σ2k2 =
1

σ2
A

(
4 +

(α

k

)2
)

. (19)

Specifically, a smaller ϕ value (shorter localized distance) means a relatively more significant
wave scattering effect, and vice versa. Based on this result, the typical dependence relationship of the
wave scattering factor on the properties of incident waves and pipe diameter non-uniformities can
be shown in Figure 7. It is clearly shown in Figure 7 that when the incident wave length is around
twice as long as the correlation length of the random pipe diameter non-uniformities (i.e., k/α = 1/2),
the wave scattering effect would attain to maximum (i.e., minimum localized distance), and thus the
incident wave can be strongly attenuated (scattered) along the pipe disorder section.

 

Figure 7. Dependence relationship of wave scattering factor on the incident waves and pipe
diameter non-uniformities.
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It is necessary to point out that the obtained results of Equation (14) for the regular pipe disorder
case and Equation (19) for the random pipe disorder case are obtained under the assumptions of
linearization with relatively small extent of non-uniformities and no-reflection boundary conditions
in the water pipeline system. The validity and accuracy of these results and assumptions are to be
validated by the numerical simulations conducted later in this study.

5. Numerical Validation

5.1. Settings of Numerical Tests

To validate the derived analytical results presented above and evaluate the importance of the
wave-scattering effect on transient wave propagation, the hypothetic pipeline system shown in
Figure 8a is used for a numerical simulation, which consists of three pipe sections: upstream uniform
pipe section, middle disordered pipe section (for testing), and downstream uniform pipe section.
The length of each section is 2000 m, and the no-reflection boundary condition from the two ends of
the whole pipeline is imposed for the numerical simulation. For simplicity, all pipes are assumed to
have a constant steady-state friction factor and wave speed (e.g., f = 0.01 and a = 1000 m/s). The step
approximation illustrated in Figure 4c is applied for the numerical simulation for both regular and
random non-uniformities, which can be shown in Figure 8b.

 

Figure 8. Schematic of numerical pipeline system: (a) three-section pipeline; (b) middle disorder
section for testing.

A total of nine test cases, listed in Table 1, were conducted for numerical analysis, with cases
1~3 applied for a regular pipe disorder situation and cases 4~9 for a random pipe disorder situation.
Moreover, for each test, three different relationships between the incident wave length (λw = 1/k)
and the characteristic/correction length (distance) of pipe diameter non-uniformities (λb = 1/α) were
considered for the evaluation. It is assumed that both types of non-uniformities (represented by pipe
cross-sectional area) have a zero mean relative to the original nominal value. Note that λb represents
the periodic length of disordered diameters for the regular disorder case, while it represents the
correlation length of disordered diameters in the pipeline for the random disordered cases (i.e., 1/α).

Table 1. Settings for the numerical test cases.

Type Case No. λw/2λb A0 (m2) δA Distribution Function Correlation Function

Regular
1 >1

1.0 σA/A0 = 0.20
Degenerate

(deterministic)
0 for ζ �= 0
1 for ζ = 02 =1

3 <1

Random

4 >1
1.0 σA/A0 = 0.23 Uniform e−α|ζ|5 =1

6 <1

7 >1
1.0 σA/A0 = 0.23 Upper triangular e−α|ζ|8 =1

9 <1
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Initially, the pipeline system was considered to be under a steady state. Note that for comparison,
the results for the completely uniform pipeline without non-uniformities (termed as the “intact” case
hereafter) were also obtained for each test case. For transient generation, the incident wave at the upstream
entrance of the pipeline was assumed to be a sinusoidal perturbation of pressure head signal as:

H(t) = H0

[
1 + R f sin(ωt)

]
, (20)

where H = instant pressure head; H0 = initial steady pressure head level; Rf = amplitude factor of
incident wave and Rf = 0.2 in this study; and ω = incident wave frequency.

For test cases of the random pipe diameter non-uniformities, two kinds of probability distributions
were considered for the randomness of the non-uniformities: one followed uniform distribution (for
cases 4~6) and the other was upper triangular distribution (for cases 7~9). It was assumed that the
random variables of pipe diameter disorder were correlated with an exponential function along the
pipeline in the spatial domain. Other numerical settings for different cases are listed in Table 1.

5.2. Validation for Regular Case

In the regular disordered tests, the total disordered distance was assumed to be 2000 m (L0) and
there were a total of 20 uniformly spaced reaches with each 100 m (λb = 200 m). A continuously
sinusoidal incident wave defined by Equation (20) was used in this study and the incident wave
frequency was adjusted to achieve the three cases: λw/2λb > 1, λw/2λb = 1 and λw/2λb < 1.
The envelope of the maximum and minimum pressure head profiles along the disordered pipe
section was extracted from the numerical results and plotted in Figure 9a–c.

Figure 9. Cont.
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Figure 9. Results of the pressure wave envelope for regular disorder cases: (a) λw/2λb = 1 and δA = 0.05;
(b) λw/2λb = 1 and δA = 0.10; and (c) λw/2λb = 1 and δA = 0.20.

The results comparison in Figure 9 indicates that the attenuation of the pressure wave along
the pipeline due to the wave-scattering effect behaves much more significantly for case two, with
λw/2λb = 1 in Figure 9b, than other two cases, (λw/2λb > 1 in Figure 9a and λw/2λb < 1 in Figure 9c,
which is consistent with the analytical results of Equations (12)–(14) and Figure 7. Meanwhile, for the
cases of λw/2λb > 1 and λw/2λb < 1, the pressure wave envelopes were larger than that of the intact
case because of the superposition of the scattered waves. To further validate the analytical solution, the
reflection coefficients (R) of perfect resonance for case no. two were calculated and plotted in Figure 10.
As shown in Figure 10, obvious discrepancies were observed between the analytical and numerical
results, which were actually increasing with the disorder magnitude (δA). This result implies that
the linearized analytical solution can provide good estimations for the wave scattering effect of a
relatively small pipe disorder situation, which is due to the linearization assumption imposed by the
analytical analysis.

Figure 10. Cont.
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Figure 10. Comparisons of the numerical and analytical results of the reflection coefficients for the case
of λw/2λb = 1: (a) δA = 0.05; (b) δA = 0.10; and (c) δA = 0.20.

5.3. Validation for the Random Case

In the numerical tests involving randomly disordered pipes, the disordered diameters were
assumed to be spatially correlated along the pipeline. For simulations, it was assumed that the
continuously-correlated random diameters could be discretized into many small reaches, with each
reach 1 m representing one spatial random point of the original continuous disordered section. In this
study, the generation of samples of randomly correlated diameters was based on the “NORTA” (normal
to anything) theorem, which was developed by Ghosh [12]. Thereafter, a Monte-Carlo simulation
(MCS) with 500 samples was conducted and the statistical results were retrieved for the analysis [13].

With the MCS-based numerical simulations, the pressure wave profiles were obtained and shown
in Figures 11–13 for the cases of λw/2λb > 1, λw/2λb < 1 and λw/2λb = 1, respectively. It is clear from
these results that the pressure wave amplitude decays exponentially with distance along the pipe with
random diameter non-uniformities. Moreover, the results for both uniform and triangular distributions
of random non-uniformities indicate that the wave scattering effect behaves most significantly when
λw/2λb = 1 (see Figure 12), which is similar to the results of the regular disorder cases analyzed above.
The results also imply that the different probability distributions (uniform or triangular) for random
non-uniformities along the pipeline have little impact on the wave-scattering effect, as long as the
other parameters remain the same, e.g., mean, standard deviation and correlation.
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For validation, the analytical and numerical results of dimensionless localization length (ϕ) in
Equation (19) for different cases and their relative errors were calculated and are listed in Table 2.
The results show that the maximum relative error is less than 5%, which implies good prediction by the
linear analytical solutions of Equation (19) for wave scattering in random pipe disorder cases. On this
point, the analytical results of Equation (19) have been validated for describing the qualitative influence
and importance trend of wave scattering induced by random diameter non-uniformities in the pipe.

Table 2. Analytical and numerical results of the wave scattering factor.

Case No.
Uniform Distribution Upper Triangular Distribution

4 5 6 7 8 9

Wave scattering
factor (ϕ)

Analytical 125.0 75.0 159.4 125.0 75.0 159.4
Numerical 127.5 74.5 157.0 125.8 76.3 152.5

Relative error (%) 2.0 0.7 1.5 0.7 1.7 4.5

Figure 11. Results of the random disorder case with λw/2λb > 1: (a) uniform distribution and
α = 0.6 m−1; (b) triangular distribution and α = 0.6 m−1.
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Figure 12. Results of the random disorder case with λw/2λb =1: (a) uniform distribution and
α = 0.2 m−1; (b) triangular distribution and α = 0.2 m−1.

Figure 13. Cont.
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Figure 13. Results of the random disorder case with λw/2λb < 1: (a) uniform distribution and
α = 0.05 m−1; (b) triangular distribution and α = 0.05 m−1.

6. Results Discussion and Implications

6.1. Energy Analysis of Transient Wave Scattering

It is clear in Equation (19) that the localization distance (by wave scattering factor ϕ) decreases with
an increase of the amplitude of pipe random non-uniformities (σA) because of more serious reflections
by these non-uniformities in the pipeline. To further explain and understand the wave scattering
effect, an energy analysis is performed based on the energy formulations in previous studies [14,15].
The results of case no. four in Table 2 are retrieved from the model and plotted in Figure 14. It is clearly
shown in Figure 14 that the total energy in the pipeline system with random variation in diameters is
always conserved, although each form of the energy (kinetic or internal) changes significantly with
time. In other words, as a result of the wave scattering effect, the total energy has been re-distributed
in the system due to the pipe diameter non-uniformities such that pressure wave envelopment is
scattered significantly along the pipeline as indicated in the analytical solutions.

 

Figure 14. Energy results of transient wave scattering along the pipeline.

6.2. Impacts on Transient Modelling and Analysis

The pressure wave envelopment attenuation in the present waterhammer models is usually
attributed to friction damping (and viscoelasticity damping if pipes are plastic) [9,15]. With the
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existence of wave scattering effects, especially in the aged pipeline system, the actual damping of
pressure waves might not be fully represented by only the friction (and pipe-wall viscoelasticity if
appropriate), while the wave scattering effect with energy re-distribution in the system may provide a
great contribution to the total attenuation. Therefore, it is necessary to inspect the relative importance
of wave scattering and friction and their roles in pressure wave envelopment attenuation, such that the
transient flow behaviors in these disordered pipes can be well understood and accurately simulated
by waterhammer models.

In this regard, the analytical results derived above in this study may provide useful guidance and
estimation of the influence of wave scattering. Specifically, the analytical results of Equation (19) in
this study indicates an increasing localization distance (ϕ) and thus a decreasing wave scattering effect
with an increase of the ratio of α/k. That is, when the incident wave length is shorter in comparison
with the correlation length of random diameter non-uniformities (i.e., α << k), the wave scattering
effect becomes more significant and the waves are localized more seriously in the pipeline. As a result,
high frequency waves propagating in the randomly disordered pipeline can be greatly scattered such
that most of the waves are reflected back upstream (i.e., the incident part) and hardly transmitted
downstream (i.e., the outgoing part), if only the pipeline is long enough.

In practical transient (waterhammer) systems, however, the incident waves are usually “fast and
sharp” signals, for example caused by a sudden closure or opening of valves, the starting or stopping
of pumps, etc., where the operation time duration is rather short. From this perspective, in pipe
systems with potential random diameter non-uniformities and under transient conditions, the wave
scattering induced wave envelopment attenuation is generally dominant in comparison with friction
damping. In this regard, many typical examples have been shown in previous studies [4,5,8], where
significant discrepancies were commonly observed between the real data (from both laboratory and
field tests) and the numerical model results (e.g., MOC-based simulation with steady and/or unsteady
friction components).

Another important implication for transient system analysis is that the random non-uniformities
can cause an increase in the pressure head (also energy) in certain regions of the pipeline system since
most of the waves are reflected or trapped by the disordered section of the pipeline. This is clearly
worrisome for aged pipes since such a pressure increase was likely not accounted for when pipes were
designed for the water supply system. Therefore, the wave behavior in aged pipelines might become
very complicated due to the potential wave scattering effect, such that the design schemes of system
strength from their initial new states may become overestimated or underestimated for some sections
of the pipe system.

6.3. Impacts on Transient-Based Leak Detection

Transient-based defect detection techniques are being developed by various researchers [16–26].
The idea is to intentionally inject a wave, typically a pressure variation by, for example, changing a
valve setting, and then measure the subsequent pressure response of the system. The key is to find the
signature of the defect in the measured signal and use it to identify the nature, location and size of
the defect.

A previous study by the author [27] has demonstrated that the current transient-based pipe defect
detection methods are mainly dependent on wave damping and reflections and that the “fast and
sharp” input wave signals are preferable to these methods. Clearly, such approaches could become
intractable in the presence of random non-uniformities in the pipeline system. The non-uniformities in
pipes may be due to pipe diameter, material and thickness as well as fluid properties such the case
of pumped sewerage. Consequently, these pipe defect detection methods are particularly difficult
to be applied in the aged pipes and/or sewage drainage systems where potential non-uniformities
commonly exist. For illustration, two test cases (T1 and T2) listed in Table 3 are examined in which the
disordered pipe diameter shown in Figure 8 is present. Four types of leak detection methods—transient
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reflection method (TRM), transient damping method (TDM), system response function method (SRFM),
and inverse transient method (ITM)—were used in this investigation [27].

Table 3. Results of leak detection under the presence of wave scattering in the pipeline.

Case
Real Leak Information,

xL* & AL*

Predicted Leak Information, xp* & Ap* Max. Error, |xL* −
xp*| & |AL* − Ap*|TRM TDM SRFM ITM

T1 No Leak 0.50 & 0.01 0.50 & 0.038 0.25 & 0.024 0.46 & 0.031 — & —

T2 0.1 & 0.002 0.49 & 0.012 0.44 & 0.042 0.17 & 0.019 0.34 & 0.035 39% & 40%

In Table 3, leak location and size (xL
* & AL

*) were normalized by the total pipe length and average
pipe cross-sectional area, respectively. The relative errors of predicted dimensionless leak location by
using these four methods are also listed in the table. The results of case T1 show that the additional
pseudo leak is detected by all four methods, while actually there is no leak along the pipeline. In case
T2, the maximum predicted error using the four methods can reach 39% and 40% for the leak location
and size, respectively. This also indicates that the four leakage detection methods are invalid or
inaccurate when wave scattering induced reflections and “damping” exist.

Actually, many recent studies have evidenced the wave scattering phenomenon in water supply
distribution systems, where the water supply demand (and thus the pressure head) was observed
to pulse frequently and continuously, although transient oscillations were relatively small [28–33].
Consequently, these preliminary results and analysis indicated that the wave scattering effect could
have a great influence on both transient system analysis and transient-based utilization in urban
water pipeline systems. More attention needs to be paid to the impact of the wave scattering effect
on transient wave behavior and propagation (reflection and damping) so that present models and
techniques can be applied with confidence to practical pipeline systems.

7. Conclusions

The analytical expressions for transient wave evolution in water pipelines with different
non-uniformities were derived in this paper by using the multi-scale wave perturbation method,
which was validated and examined through extensive 1D numerical simulations. The analytical and
numerical results showed the fact that pressure waves are attenuated significantly by both the regular
and random pipe diameter non-uniformities along the longitudinal direction, which has been widely
observed in the numerical and experimental results in the literature. Meanwhile, the derived results
imply that the importance and influence of the wave scattering effect in the pipeline is dependent
on the relationship between the incident wave frequency and non-uniform pipe diameter variation
frequency. Particularly, the wave scattering induced wave localization length becomes smaller and
thus the attenuation of wave envelope is more significant when the ratio of incident wave length and
the correlation length of the non-uniformities becomes smaller. As a result, for the specific pipeline
system with the existence of pipe diameter non-uniformities, the wave scattering effect becomes critical
for the high frequency incident waves, which is, however, common in water hammer flows.

The preliminary results and findings of this study are useful and implicative to both transient
theory (transient modelling and analysis) and practice (transient utilization). Firstly, the wave
behavior in the aged pipelines might become very complicated due to the unavoidable wave
scattering effect such that the design schemes of the system strength from their initial new states
may become invalid/inaccurate (overestimated or underestimated) for the regional or global pipe
system. Secondly, the complicated wave reflections and amplitude attenuation induced by the wave
scattering effect may result in inaccurate predictions or even the invalidity of current transient-based
pipe defect detection methods. Finally, but not least importantly, the transient (waterhammer) flow
theories, such as friction and viscoelasticity models, which are usually validated and calibrated through
the measured data of pressure wave attenuation and reflections from practical systems, may be wrongly
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represented and explained if the potential wave scattering effect has not been considered or not been
well included in the analysis.

It is important to note that the assumption of a relative small extent of pipe diameter
non-uniformities has been used in the analytical analysis of this study, where high-order (>2) terms
were ignored in the derivation process. With this assumption, clear discrepancies, especially for the
regular case of pipe non-uniformities, were observed between the analytical and numerical results
obtained in this study. From this perspective, more future work is required to further validate and
verify the accuracy and applicability of the derived analytical results in this paper.
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Abstract: A new transient-based hybrid heuristic approach is developed to optimize a transient
generation process and to detect leaks in pipe networks. The approach couples the ordinal
optimization approach (OOA) and the symbiotic organism search (SOS) to solve the optimization
problem by means of iterations. A pipe network analysis model (PNSOS) is first used to determine
steady-state head distribution and pipe flow rates. The best transient generation point and its relevant
valve operation parameters are optimized by maximizing the objective function of transient energy.
The transient event is created at the chosen point, and the method of characteristics (MOC) is used to
analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial
organisms with leak information. The SOS is employed to determine the leaks by minimizing the
sum of differences between simulated and computed head at the observation points. Two synthetic
leaking scenarios, a simple pipe network and a water distribution network (WDN), are chosen to test
the performance of leak detection ordinal symbiotic organism search (LDOSOS). Leak information
can be accurately identified by the proposed approach for both of the scenarios. The presented
technique makes a remarkable contribution to the success of leak detection in the pipe networks.

Keywords: leak detection; pipe network; inverse transient analysis (ITA); water distribution networks
(WDNs); ordinal optimization approach (OOA); symbiotic organism search (SOS)

1. Introduction

The issue of potable water shortages has become more and more critical in many parts of the
world. Water loss is considered as a serious problem in both developed and developing countries [1],
and is attracting more and more public concern. Non-revenue water or unaccounted for water is
estimated at between 20 to 40% for most countries investigated [2,3]. The inverse transient analysis
(IWA) method separates water losses in distribution systems into real and apparent losses. Real
losses (leakage) from pipelines or pipe networks may not only cause large economic loss, but can
also affect environmental hygiene [4,5]. Leaks may create serious water quality problems, resulting
in equipment failure, problematic operations management, errors in pipeline design, and significant
costs [4,6–10]. Among the various reasons for water losses, leaks in water distribution networks
(WDNs) are considered to be one of the major problems to be solved.

Basically, the leak detection and location techniques can be generally divided into two main
categories, steady-state based and transient based. Many steady-state based methods, such as
Acoustic Emissions [11,12] and vibration monitoring [13–16], were developed for leak detection
in the pressurized pipeline. These steady-state vibro-acoustic based methods have been proven to
be quite effective in previous studies. The most important advantage is that the steady-state based
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methods can provide the high precision results without altering the operating conditions of the system.
However, these methods were generally developed based on the specialized hardware, which lead to
high costs [17]. On the other hand, transient-based methods (e.g., pressure wave propagation) have
been widely used to detect leaks in WDN. A transient event can be generated by a simple operation,
such as valve closure and opening [18]. In the transient condition, the leak location, leak orifice size,
and frictional losses will affect the head changes in the pipe network when compared with those of the
system in steady-state. The major advantage of transient-based methods is that information about such
leaks can be efficiently and cost-effectively obtained, because transient waves travel along fluid-filled
pipes at high speed [4,5,19]. A large amount of data can be collected by a simple operation in a very
short period of time. However, the transient operation may cause some undesired damage or failure
in the system if the operation is not properly handled.

Many previous studies have focused on the development of numerical simulations with
optimization algorithms for leak detection in a WDN. Moreover, heuristic optimization approaches
have also been widely discussed in the community of water supply engineers. Several earlier
researchers have used heuristic algorithms with a synthetic WDN to test their ability to detect leaks.
Examples are genetic algorithm (GA) [20], hybrid genetic algorithm (HGA) [21], particle swarm
optimization (PSO) [22], sequential quadratic programming (SQP) [23], central force optimization
(CFO) [24], and simulating annealing (SA) [25]. Vítkovský et al. [20] demonstrated the ability of
the GA in lieu of the Levenberg-Marquardt (LM) method used in [26] to identify leaking nodes and
pipe friction factors in the same WDN. Kapelan et al. [21] combined the GA and LM method as a
hybrid inverse transient model (HGA) to exploit the advantages of combining two methods. The
HGA is more stable than LM model, and it is more accurate and faster than the GA model. Jung
and Karney [22] showed that both GA and PSO are capable of solving the ITA problem. It was
found that PSO is more suitable than GA not only in convergence but also in accuracy. Haghighi and
Ramos [24] exploited an ITA-based optimal algorithm, termed CFO, as an inverse problem solver
for leak detection in a reference leaking pipe network. CFO exhibited good accuracy for identifying
the friction factor and leak location. Recently, Huang et al. [25] presented an ITA-type optimization
approach, called LDSA, based on the combination of the transient flow simulation and SA to detect
leaks in a laboratory pipeline and a synthetic pipe network. The SA was used to solve the inverse
problem with a least-squares criterion objective function.

On the other hand, some studies applied their leak detection techniques to a laboratory pipe
system or real WDNs. Ferrante et al. [27] coupled the wavelet analysis with a Lagrangian model to
identify the leaks in a laboratory branched pipe system in the Water Engineering Laboratory at the
University of Perugia. Their approach memorized the amplitude of each wave and the moment at
which it passed the leak, and then identified the leak. Nazif et al. [28] introduced a heuristic method
combined the artificial neural network (ANN) model and GA to find the optimal hourly water level
variation in a water distribution storage tank for different seasons. Ferrante et al. [29] investigated
the relationship between leak geometry and detectability within steady-state and transient based
techniques. They used the experimental tests to demonstrate the effect of higher system pressure
for leak detectability in steady-state and transient conditions. Casillas et al. [30] introduced a sensor
placement approach based on either GA or PSO to detect leaks in WDNs in Hanoi and in Limassol.
The results showed that PSO obtains results faster than GA, and it is very effective for smaller WDN or
with fewer sensors. However, the GA provided better placement solutions with higher efficiency for
larger networks or more sensors. Meniconi et al. [31] used a Lagrangian model simulating pressure
wave propagation to evaluate the pipe pressure wave speed and to locate the possible anomalies
by coupling GA and wavelet analysis, respectively. Their approach was further executed in a part
of the WDN of Milan for providing the diagnosis of the pipe system. Lee et al. [32] integrated the
advantage of the methods of cumulative sum and wavelet transform to effectively detect the sudden
pressure changes of WDN. The pressure data obtained from the real burst accident were used to
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verify their burst detection and location algorithm. Moreover, many other studies were devoted to the
development of optimization approaches for leak detection in real cases [19,33,34].

This paper focuses on solving the leak detection problem, as well as the number of leaks, their
location, the value of CdA (discharge coefficient multiplies area opening of the orifice) in the pipe
network, with optimum transient perturbations. A hybrid heuristic approach, called leak detection
ordinal symbiotic organism search (LDOSOS), is developed based on the ordinal optimization
algorithm (OOA) and symbiotic organism search (SOS) for automatically determining leak information
in a leaking pipe network. In order to examine the performance of the proposed approach, two
synthetic leaking scenarios with different pipe network configurations are considered. The ability of
convergence compared with different optimization algorithms pertaining to the detection results is
addressed in first scenario. Furthermore, the use of the optimum transient generation is demonstrated
in the second scenario.

2. Methodology

This section deals with the mathematical background of forward flow simulation models, and
includes steady-state and transient flow simulations in the pipeline network. The procedure of transient
generation point selection is introduced in this section. Brief descriptions of OOA and SOS, and the
combination of a forward flow model with OOA and SOS for the leak detection are also described.

2.1. Flow Simulation Model

Yeh and Lin [35] developed a numerical approach, termed PNSA, for estimating the steady-state
nodal head and flow rate for any given pipe network. This approach uses the SOS in lieu of the SA in
PNSA to solve an optimal water head distribution and the nodal flow rates in a network. The flowchart
of PNSOS is shown in Figure 1.

Figure 1. Flowchart of pipe network analysis model (PNSOS).

The Hazen-Williams equation is used to express the relationship between the flow rate and head
loss for each pipe [36,37]. The loss coefficient (Kij) in the Hazen-Williams equation for a pipe is defined
as [38]:
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Kij =
10.66667 · Lij

C1.851852
ij · D4.870370

ij
(1)

where ij is the variable defined from node i to node j, Lij is the length (m) of the pipe, Cij is the
Hazen-Williams friction coefficient depending on the pipe material [36], and Dij is the pipe diameter
(m). Based on Equation (1), the flow rate Qij in each pipe can be expressed as

Qij = (
ΔHij

Kij
)

0.54

(2)

where ΔHij is the frictional head loss in a pipe. The equation of mass conservation at node i can be
written as

MCi =
nn

∑
j=1

Qij + QIi (3)

where nn is the number of total neighbor nodes to node i and QIi is the demand or the source at node i.
The flow rate is positive for flowing out of node i and negative for flowing into node i, while QIi is
positive for inflow and negative for outflow. Therefore, the objective function used in the PNSOS is
defined as

Minimize
nd

∑
i
(MCi)

2 (4)

where nd is the total number of nodes needed to estimate the nodal heads and flows in a
network system.

2.2. Hydraulic Transient Model

Since the steady-state water head and flow rate for each node in the network has been estimated,
the hydraulic transient can then be evaluated from the following momentum equation and continuity
equation [25,38]:

momentum : gA
∂H
∂x

+
∂Q
∂t

+
f

2DA
Q|Q| = 0 (5)

continuity :
∂H
∂t

+
a2

gA
∂Q
∂x

= 0 (6)

where g is gravity acceleration, A is pipe cross-sectional area, H is hydraulic head, x is distance along the
pipe, Q is volume rate of flow, t is time, D is diameter of pipe, a is the wave speed, and f is the friction
factor, which can be described by steady, quasi-steady, or unsteady state conditions. Many approaches
have been presented for unsteady friction modeling, such as weighting function-based model [39,40]
and the instantaneous acceleration-based model [41,42]. Since this work is not experimentally oriented,
the friction factor is considered to be steady. Moreover, the elastic behavior is assumed for pipe
material and then the effects of viscoelasticity are not considered. The method of characteristics (MOC)
is a common technique for solving hydraulic transient equations [43]. Equations (5) and (6) are then
transferred to the following two sets of ordinary differential equations along the characteristic lines
(dx/dt = ±a):

C+ :

{
dH
dt + a

gA
dQ
dt + f a

2gDA2 Q|Q| = 0
dx
dt = +a

(7)

C− :

{
− dH

dt + a
gA

dQ
dt + f a

2gDA2 Q|Q| = 0
dx
dt = −a

(8)

where dx is the distance differential and dt is the time differential. With appropriate initial and
boundary conditions, the finite difference method is applied to approximate Equations (7) and (8), and
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simultaneously calculate the transient head and flow rate in the grid points in the network. Boundary
conditions often consist of known pressures and flow rates at the pipe network, which are generally
reservoirs, connections, valves, pumps, and leakages. The leaks in the networks may be represented
by orifices and expressed as [44]:

QL = Cd A
√

2gΔH (9)

where QL is the volumetric flow rate of the leak, CdA is the discharge coefficient times the effective
area of orifice, and ΔH is the head loss caused by the orifice.

2.3. Excitation Procedure for Transient Generation

For leak detection in pipe networks using ITA, the problem of the generation of pressure waves is
a very important issue of transient test-based techniques. The worst transient fluctuations are usually
required because the severity of transient fluctuations is related to the efficacy of applying ITA. The
possibility of the use on hydraulic transient for leak detection have been experimentally validated in
laboratory conditions by using the Portable Pressure Wave Maker (PPWM) device [45,46], and further
applied in field tests [47–49]. Generally, valve operation is a common way to create a change in the
outflow discharge for obtaining transient fluctuations [18]. Vítkovský et al. [19] suggested that a valve,
as a transient generator, should be closed very quickly with a small discharge magnitude. Thus, the
optimal transient generation location and operation parameters for generating the optimal transient
perturbations should be determined while using ITA. Valve operation is also termed excitation, as
shown in Figure 2. Note that Figure 2 are modified from [7]. The two major valve operation parameters
are the duration of change y and the amount of change z for controlling the intensity of transient
fluctuations. On the other hand, another parameter is the side curves of the excitation, which are
usually non-linear and depend on valve type and its operation. The side curve is considered to be
linear for convenience in numerical verification. Haghighi and Shamloo [50] noted that the intensity
index, E, is the accumulative energy of transient heads evaluated from function of parameters y and z
for each candidate point (i.e., node in pipe network). To obtain the optimum transient perturbations
in the pipe network, the intensity index E should be maximized while using each candidate node
as a transient generation point with corresponding operation parameters. The objective function for
determining the optimal parameters y and z for each candidate node with maximum accumulative
energy is described as [50]:

Maximize : E(y, z) =
nt

∑
ts=1

nd

∑
i=1

∣∣∣∣Hits − Hi0

Hr

∣∣∣∣× nt

∏
ts=1

nd

∏
i=1

Peits (10)

Peits =

⎧⎪⎨
⎪⎩

Hits
Hmin

Hmin > Hits

1 Hmin ≤ Hits ≤ Hmax
Hmax
Hits

Hmax < H
(11)

where E is the overall energy of heads, y is the duration of outflow change, z is the consumption of
the change, Hi0 is the initial steady head, Hits is the piezometric head at node i at time step ts, nt is
number of transient modelling time steps, Hr is the reservoir head, Peits is the penalty factor to impose
pressure constraints, Hmax and Hmin are, respectively, the maximum and the minimum permissible
heads in system.
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Figure 2. Transient excitation at operation point.

2.4. Ordinal Optimization Approach

The key idea behind an OOA is to rank the values of the objective function in ascending order.
In reality, an OOA is much easier than the process of searching for a global optimal solution [51].
Two major procedures are used in an OOA: ordinal comparison and goal softening procedures. The
first procedure looks for the relative relationship between each solution in order to find better solutions;
the second is to determine a reliable and satisfactory solutions instead of directly evaluating the
optimal solution in a complex optimization model. Thus, the optimum solution could be obtained
from a feasible solution space. The searching process in the procedure would be reduced. To obtain the
top optimum proportion solutions, Lau and Ho [52] noted that the top 5% of solutions can be treated
as a reliable criterion with a very high probability (≥0.95) of obtaining satisfactory solutions.

2.5. Symbiotic Organism Search (SOS)

Cheng and Prayogo [53] developed a new meta-heuristic algorithm, termed the symbiotic
organism search (SOS) algorithm, which was inspired by actual biological interactions. The biological
interaction between two organisms or species in a symbiotic system can be generally categorized into
three types: mutualism, commensalism, and parasitism. Mutualism denotes that the relationship is
beneficial each organism. Commensalism is the relationship in which one organism benefits from the
other without affecting it, while parasitism represents a non-mutual relationship in which one species
benefits at the expense of the other. The characteristics of SOS are similar to other population-based
meta-heuristic algorithms, such as GA and PSO. SOS shares the same following four features: (1) the
control parameters, such as the initial population size and the maximum number of iterations should
be appropriately settled; (2) the population of organisms which contains candidate solutions are
used to determine the global optimal solution in the search space during the searching process;
(3) the candidate solutions are used to guide the searching process; and (4) a selection mechanism
to retain better good solutions and to abandon poor solutions. Furthermore, the SOS algorithm is
a parameter-free technique, and only the control parameters, such as initial population size and
maximum number of iteration are required. Algorithm-specific parameters for other competing
algorithms might increase computational time and produce local optimal solutions. Hence, SOS has
been successfully applied to various types of problem such as the construction management [54], work
shift [55], and optimal reservoir operation [56].

Figure 3 shows the flowchart of an SOS algorithm. SOS starts with an initial population named
the ecosystem. A group of organisms is randomly generated in the feasible solution domain and then
added into the initial ecosystem. Each organism is considered as a candidate solution (CAS) for the
corresponding problem with a certain objective function value (OFV). The search procedure begins
when the initial ecosystem is set up. In the searching procedure, each organism will get to benefit or
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be harmed from continuously interacting with another organism in three different types/forms of
symbiosis explained above.

Figure 3. Flowchart of symbiotic organism search (SOS).
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2.5.1. Mutualism State

In mutualism, organism Xi and Xj are randomly selected from an ecosystem for interaction. Both
organisms interact to mutual benefit in order to increase chances of survival in the ecosystem. Hence,
the new candidate solutions for Xi and Xj are modified based on the mutualistic mechanism between
Xi and Xj, and is illustrated as:

Xinew = Xi + RDM × (Xbest − MV × BF1) (12)

Xjnew = Xj + RDM × (Xbest − MV × BF2) (13)

where RDM is a vector of random numbers range from 0 to 1, Xbest is the current best organism with
the best OFV in the ecosystem, MV is the mutual vector defined as MV = (Xi + Xj)/2, and BF1, and BF2

are the benefit factors randomly as either 1 or 2.

2.5.2. Commensalism State

Similar to mutualism, the organism Xj is randomly chosen from the ecosystem to interact with
another random organism Xi. Xi gains benefit from Xj, but Xj is not affected by this relationship. The
new Xi can be modified as:

Xinew = Xi + RDC × (Xbest − Xj) (14)

where RDC is the vector of random numbers range from −1 to 1.

2.5.3. Parasitism State

In parasitism, a parasitical organism XP is generated by cloning and mutating it from Xi in random
dimensions, using a random number with a range between given lower and upper bounds. A parasite
XP tries to replace the random host organism Xj. Both XP and Xj are then evaluated for their fitness
(OFVs). If the parasite has a better OFV, the host organism will be immediately replaced by the parasite.
If the OFV of Xj is better, then Xj will survive and kill the parasite XP.

2.6. Development of LDOSOS

Abhulimen et al. [57] recorded that pressure measurements are more sensitive than volume
measurements for leak detection. Hence the objective function of ITA is defined in terms of pressure
head as:

Minimize
m

∑
j=1

n

∑
i=1

(
Hoij − Hsij

)2 (15)

where m is the total number of observation points in the network, n is the number of observations made
at an observation point, and Hoij and Hsij are ith observed, and simulated heads at the observation
point j, respectively. The LDOSOS can automatically determine the leak information based on the
minimization of Equation (15). The procedures of LDOSOS are summarized in Figure 4. The LDOSOS
can be used to determine the optimal leak location, leak size, and the number of leaking pipes
simultaneously. The procedure for detecting the leaks using LDOSOS is given below:

1. Import the network configurations.
2. Use SOS to determine the optimal transient generating point with its corresponding operating

parameters (i.e., y: duration of outflow change, z: amount of nodal consumption variation) by
maximizing Equation (10). The optimum solution is obtained when the OFV of Equation (10)
does not change within four iterations.

3. For the pipe sifting procedure in OOA, successively generate a temporary leak which is located
at the middle of each pipe; the location and CdA of the orifices are treated as temporary solutions.

4. Since the temporary leak solutions are available, PNSOS is then used to calculate the steady-state
nodal heads and flow rates in the network.
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5. Generate a hydraulic transient event at the optimal generation point and apply Equations (7) and
(8) to simulate the head distribution in the network.

6. Apply Equation (15) to calculate the temporary OFV for the temporary solution of each pipe.
7. Arrange all of the pipes according to the values of temporary OFVs. A quarter of pipes

with smaller OFVs are chosen as candidate pipes (CAPs). Only the CAPs will be used in
the further steps.

8. Randomly generate 200 CASs with the information of a leaking pipe, leak location and CdAs of
the orifices, and calculate their OFVs. The top 5% CASs would then be selected for the next step.

9. Consider the best 5% CASs as the initial organisms for the ecosystem.
10. Execute a searching process using SOS. In general, mutualism and commensalism states are used

to guide the organisms toward the current best organism, and the parasitism state is applied to
avoid the organism becoming stuck in a local optimal solution.

11. Check whether the optimization process satisfies the stopping criterion or not. If so, the LDOSOS
is then terminated; otherwise, the searching process goes on and back to the tenth step.

Note that the first stopping criterion is defined as the absolute value of the difference between the
two successive optimal OFVs of Xbest which are all less than 10−4 within four iterations. The second
criterion is that the iteration reaches 10,000 times.

Figure 4. Flowchart of leak detection ordinal symbiotic organism search (LDOSOS).

3. Results and Discussion

3.1. Pipe Networks Setting

To test the applicability of LDOSOS in leak detection, two scenarios with different synthetic pipe
network systems adopted from the literature are used. These two pipe networks are designed based
on the concept of district metering areas (DMA), in which inflow and outflow are monitored. User
demands and leaks are assumed as constants and can be separated through continuous observation of
mass conservation of flow measurements.
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The first scenario (S1) is the one presented in [25], with a layout referred to as pipe network A, as
shown in Figure 5. The configuration of this network consists of eight pipes, six nodes, two potential
leaks, and one downstream valve, and the characters “N”, “P”, and “L” represent the node, pipe, and
leak, respectively. The pipe diameter varies from 250 to 500 mm, while the pipe length varies from
1000 to 1250 m. Nodal consumptions are considered as 0 for all nodes. N1 is considered as a reservoir
with 120 m constant-head, and downstream of P8 is a valve with a discharge flow rate of 5 cubic m per
min (m3/min). Two potential leaks, denoted as L1 and L2, are both in P6 and are at 300 and 310 m
from N5, respectively, with the same CdA = 0.00025 m2 and same QL = 0.5 m3/min. The downstream
valve is the only outflow of pipe network A. Hence, the optimum operation point is located at the
valve. In order to compare the proposed approach with the work of [25], the operation parameters y
and z are fixed to 1 s and −5 m3/min, respectively, for the simulation of a sudden closure of the valve.
The characteristics of the nodes and pipes of the pipe network A are listed in Table 1.

In order to solve the leak detection problems in a real WDN, scenario 2 (S2), with a synthetic pipe
network B presented in [35] is considered in this study. The pipe properties are listed in Table 2. Figure 6
shows the configuration of the network which consists of 11 pipes, nine nodes, seven continually
outflow points, and two potential leaks. The pipe length ranges from 400 m to 1250 m, and the diameter
ranges 200 to 405 mm. The N1 is the water supply node with a constant inflow rate of 25 m3/min and
constant head of 120 m. Seven outflow nodes N2, N3, N4, N5, N6, N8, and N9 continuously discharge
5, 2.5, 2.2, 2.2, 2.5, 5 and 5 m3/min, respectively. The leak L1 is in P11 and 300 m away from N3, while
the leak L2 is at the middle of P7 and 250 m away from N6. The CdA and QL of L1 are 0.00025 m2 and
0.5 m3/min and CdA and QL of L2 are 0.0001 m2 and 0.1 m3/min. In pipe network B, N2, N8, and N9
are available as candidate transient generation points with larger discharges. The optimal operation
point (i.e., N2, N8 and N9) and the optimal parameters, y and z, must be determined.

Figure 5. Configuration of synthetic pipe network A.
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Table 1. The characteristics of the synthetic pipe network A.

Pipe Node
Diameter (mm) Length (m)

Number From To

P1 N1 N2 305.0 1000.0
P2 N2 N3 305.0 1000.0
P3 N3 N4 250.0 1100.0
P4 N1 N4 405.0 1250.0
P5 N4 N5 355.0 1000.0
P6 N5 N6 305.0 1100.0
P7 N3 N6 305.0 1250.0
P8 N6 Valve 500.0 1000.0

Table 2. The characteristics of the synthetic pipe network B.

Pipe Node
Diameter (mm) Length (m)

Number From To

P1 N1 N2 305.0 1000.0
P2 N2 N3 305.0 1000.0
P3 N3 N4 250.0 1100.0
P4 N1 N4 405.0 1250.0
P5 N4 N5 200.0 500.0
P6 N5 N6 400.0 400.0
P7 N7 N6 200.0 500.0
P8 N4 N7 355.0 400.0
P9 N7 N8 355.0 600.0

P10 N8 N9 305.0 1100.0
P11 N3 N9 305.0 1250.0

Figure 6. Configuration of synthetic pipe network B.

In both of the scenarios, all of the pipes are old cast-iron pipes and the Hazen-Williams friction
coefficient is chosen as 100 [18]. The wave speed a in pipe is thus assumed to be 1000 m/s [18]. The
total simulation time is 30 s. The time interval (dt) is chosen as 0.005 s for Sections 3.2 and 3.3 On the
other hand, dt is chosen as 0.005 and 0.05 s for various cases for Section 3.4. In the following sections,
the application of LDOSOS to the leak detection in the simple pipe network and WDN is assessed.
Moreover, the error analysis is also addressed. The simulations for the leak detection are performed on
a personal computer with Intel 3.3 G E3-1230v2 CPU and 32 GB RAM.
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3.2. Applicability of LDOSOS to Leak Detection

In this section, the proposed method is used to demonstrate the convergence and efficiency of leak
detection in S1. The results are then compared with leak detection symbiotic organism search (LDSOS)
and LDSA approaches. LDSOS is a simplified optimization approach similar to LDOSOS, but without
the elimination procedure OOA. All of the pipes are treated as candidate pipes in LDSOS. Furthermore,
10 initial solutions are randomly generated from a feasible solution domain as the initial organisms for
the ecosystem of LDSOS. On the other hand, LDSA is a heuristic technique based on SA for solving
leak detection problems in pipe network A. In the leak detection process, LDSA randomly generated a
trial solution in the network then adopted the least squares method with the minimal OFV to find the
possible leak information, including the location and the value of CdA. However, the searching space
in SA may be enormous and required a large computing time to find the optimal solution. By contrast,
OOA is adopted in the LDOSOS to sift through the searching space. Based on the search procedure, P6
and P7 in pipe network A are first sifted and ranked as the CAPs; the top 5% CASs from CAPs with
different leak information are sifted by calculating all CASs’ OFV (Equation (15)). More specifically,
the top 10 best CASs (200 × 0.05 = 10) are sifted as the initial organisms for LDOSOS.

Figure 7 shows the predicted heads versus time at the valve, based on the intact network and the
network with two leaks. The predicted head distributions by LDSA, LDSOS, and LDOSOS display
very similar transient patterns; however, their efficiencies are quite different in obtaining optimal
results. Table 3 gives the results of leak detection for S1 from LDSA, LDSOS, and LDOSOS. The results
show that LDOSOS is capable to detect leaks that are close to each other. The LSDA takes 372 min and
9815 iterations, while LDSOS required 120 min and 3481 iterations to obtain the results. The efficiency
of LDSOS is better than LDSA. Moreover, LDOSOS takes 50 min and 1469 iterations to complete the
detection process and to obtain the optimal locations and CdAs. The convergence and efficiency of
LDOSOS is greatly enhanced as a result of the sifting procedure OOA. The computing efficiency of
LDOSOS is approximate 86 and 58% better than that of LDSA and LDSOS. The LDOSOS obtained the
optimum solution after about 1500 iterations which is significantly less than the other two approaches.
Obviously, the performance of LDOSOS is much more efficient than the other two algorithms.

 

Figure 7. The simulated head distributions at valve for leak detection using various approaches.
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Table 3. Actual leak information and predicted results from three approaches for S1.

Header

L1 L2
CPU Time

(min)
Iterations

Pipe No.
Location

(m)
CdA × 10−4

(m2)
Pipe No.

Location
(m)

CdA × 10−4

(m2)

Actual 6 300 2.5 6 310 2.5 - -
LDSA 6 300 2.5 6 310 2.5 372 9815

LDSOS 6 300 2.5 6 310 2.5 120 3481
LDOSOS 6 300 2.5 6 310 2.5 50 1469

3.3. Leak Determination in WDN with Optimal Transient Operation

The proposed approach is further used to demonstrate the performance of LDOSOS on leak
detection in the WDN. The nodes with several continuity nodal consumptions in the WDN system
are considered as the discharge outlet for supplying water to users. To obtain the optimal transient
fluctuations in the pipe network, a best generation point is first selected from the feasible locations (i.e.,
N2, N8, and N9). The initial outflow of the feasible locations is then changed to the triangular form, as
shown in Figure 2. The optimal operation parameters, y and z are optimized to generate the worst
transient fluctuations, while 1 < y < 10 s and −5 < z < 5 m3/min, with all of the nodal heads being
greater than 0 and less than 160 m. The maximum value of Equation (10) with the optimal parameters
for each candidate node is listed in Table 4. The overall maximum value reaches to 1978, while using
N8 as the transient generation point. The optimum operation duration time y is determined as 2.7
s, while the discharge change z is estimated as −2.58 m3/min. The maximum transient energy of
N8 is higher than that of N2 and N9. Thus, the N8 with its relevant parameters is the best point to
generate the transient fluctuations for S2. Furthermore, N8 and N9 are considered as the observation
and generation point in LDOSOS to compare the leak detection results using different operation points
with its relevant parameters. The transient pressures are sampled for 30 s after the excitation.

Table 4. Optimum operation parameters for candidate nodes.

Node y (s) z (m3/min) EMax

N2 7.2 −5.0 1239
N8 2.7 −2.58 1978
N9 3.6 −3.22 1843

Figure 8a,b, respectively, show the optimal temporal head distributions observed at N8 and N9
for pipe network B with two potential leaks. The optimal simulated temporal heads at N8 and N9
are precisely reconstructed as compared to the observations. Apparently, the oscillation of transient
fluctuation at N8 is heavier than that of N9. Table 5 shows the optimal solutions of the estimated
leak information predicted by using N8 or N9 as the transient generation point in LDOSOS. The
predicted results clearly demonstrates the ascendancy of the optimal location (N8) as the best transient
generation point. Although the leak sizes are quite different to each other, the leaks are successfully
detected by the proposed approach in the short time. It takes about 60 min and 1843 iterations to
obtain the optimal solution by using N8 to generate transient fluctuations. On the other hand, it took
about 64 min and 1967 iterations for using N9 as the generation point. The efficiency between two
generation points is not obvious. However, the predicted results of L2 yields about a 3.6% relative
error in leak area of L2 while using N9 as the generation point. The accuracy is better when using
the optimal generation point N8 with its relevant parameters, which indicates that LDOSOS could be
used for leak detection, even though the node continues to supply water to other purposed/use. The
results show that the accuracy of the proposed approach increased when using the optimal transient
generation point and the optimal operation parameters.
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Table 5. Estimated leak information for S2 using N8 or N9.

Header

N8 N9

L1 L2 L1 L2

Pipe
No.

Location
(m)

CdA ×
10−4 (m2)

Pipe
No.

Location
(m)

CdA ×
10−4 (m2)

Pipe
No.

Location
(m)

CdA ×
10−4 (m2)

Pipe
No.

Location
(m)

CdA ×
10−4 (m2)

Actual 11 300 2.5 7 250 1 11 300 2.5 7 250 1
LDOSOS 11 300 2.499 7 250 1 11 300 2.479 7 250 0.964

Note that the computation time are 60 min and 64 min for using N8 and N9, respectively.

 
Figure 8. Simulated head distributions observed at (a) N8 and (b) N9.

3.4. Measurement Error Analysis

To evaluate the accuracy of the results predicted by proposed approach, two error criteria,
standard error of the estimate (SEE) and mean error (ME), are used to assess the influence of
measurement error to LDOSOS for leak detection. SEE is the square root of the sum of squared
errors between the simulated and computed heads divided by the number of degrees of freedom,
which equals the number of observed data points minus the number of unknowns. On the other hand,
ME is the average of the sum of errors between the simulated and computed heads. More details on
the use of ME and SEE are provided in [58].

Two cases for each scenario are considered in Analysis: 1. 6001 simulated data with high frequency
of 0.005 s are used; 2. 601 data with low frequency of 0.05 s with measurement errors are applied.
The white noise with zero mean and 0.01 standard deviation are generated and added to those low
frequency data to represent the measurement errors. Note that N8 is chosen as the transient generation
point for the mentioned cases of S2. Table 6 shows the results of the error analysis for leak detection in
those two scenarios with two cases. The error analyses demonstrate slight differences among those
two cases in each scenario. The MEs in each Case 1 of those two scenarios are one order smaller
than those of Case 2. Furthermore, SEEs in each Case 2 are two orders larger than those of Case 1.
Such a result is consistent with the magnitude of noise added to the original simulated data. The
results of Case 2 of both scenarios demonstrate that the influence of measurement error is insignificant,
implying that LDOSOS can precisely predict the leak information even the observations contained
measurement errors.
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Table 6. The prediction errors of leak detection in two scenarios.

Prediction Errors

Scenario 1 ME (m) SEE (m)

Case 1 −1.76 × 10−6 4.11 × 10−4

Case 2 1.35 × 10−5 5.63 × 10−2

Scenario 2 ME (m) SEE (m)

Case 1 6.13 × 10−6 8.13 × 10−4

Case 2 7.41 × 10−5 6.58 × 10−2

4. Conclusions

This study presents a hybrid heuristic optimization approach, termed LDOSOS, to detect leaks in
pipe networks based on the combination of hydraulic transient flow simulations, OOA and SOS. Leaks
in the pipes are represented by orifices. The PNSOS is used to determine the head at each node and the
flow rate at each pipe before transient generation. To enhance the efficiency and accuracy of LDOSOS,
a procedure is used to estimate the optimal transient generation point and its operation parameters.
Moreover, the OOA is applied to sift the searching space. The top 25% CAPs with smaller OFVs are
sifted, and the top 5% CASs are selected as the initial organisms for the ecosystem in SOS algorithm.
After obtaining the OFVs of the initial organisms, LDOSOS identifies the leaks using three symbiotic
states to guide the organisms forward and move toward the variable best organism (Xbest) with the
smallest OFV.

A pipe network with two leaks in the same pipe is first used to verify the ability of the proposed
approach for leak detection. The temporal head distribution, leak locations, and CdAs are accurately
predicted and agreed well with those from the other two algorithms. When these three algorithms
are compared, LDOSOS had an approximately 86 and 58% better computing efficiency than LDSA
and LDSOS. Moreover, the LDOSOS only takes about 50 min and 1469 iterations to obtain the optimal
solution, implying that the searching space is largely reduced by the elimination procedure OOA, and
the solutions quickly converged to the optimal solution during iterations. The simulation results show
that LDOSOS not only greatly enhances the computation efficiency but also increases the convergence
ability. On the other word, LDOSOS significantly outperforms LDSA and LDSOS.

Using ITA for leak detection, the worst transient fluctuations with drastic changes are theoretically
essential for good performance of ITA. The optimal transient energy estimation is used in the proposed
approach to obtain the optimal transient generation point and its relevant parameters. On the basis
of DMA, a WDN is used in this study consisting of 11 pipes, nine nodes, with several continuously
outflows, and two potential leaks in two different pipes. The SOS is first used to optimize the operation
parameter of three feasible transient generation points. N8 and N9 are then selected to compare the
performance of LDOSOS using different transient generation points. The leak information is accurately
predicted by LDOSOS with fairly high efficiency by using the best generation point N8 and relevant
parameters. The detected results adopting the suboptimal generation point N9 yield a relative error of
about 3.6% for the predicted leak area of L2. The results show that the optimal generation point and
operation parameters provide more reliable results than other candidate generation points.

In summary, it has been demonstrated from the simulations that LDOSOS has the ability to detect
the number of leaking pipe, location of the leak, and their size in a synthetic simple pipe network and
a synthetic WDN. The proposed approach speeds up the ITA convergence and improves the reliability
of the results. Moreover, the head at measurement point can be precisely computed by LDOSOS even
the observations contained measurement errors. However, real drink water systems usually have more
complicated pipe and system properties. Pipe characteristics in real situations will also be different if
different pipe materials are used. We expect that we will be able improve the capability of LDOSOS to
apply to real situations and provide a sound method to detect leaks in pipes in future work.
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Abstract: In the last decades several reliable technologies have been proposed for fault detection
in water distribution networks (DNs), whereas there are some limitations for transmission mains
(TMs). For TM inspection, the most common fault detection technologies are of inline types—with
sensors inserted into the pipelines—and then more expensive with respect to those used in DNs.
An alternative to in-line sensors is given by transient test-based techniques (TTBTs), where pressure
waves are injected in pipes “to explore” them. On the basis of the results of some tests, this paper
analyses the relevance of the system configuration, energy dissipation phenomena, and pipe material
characteristics in the transient behavior of a real TM. With this aim, a numerical model has been
progressively refined not only in terms of the governing equations but also by including a more and
more realistic representation of the system layout and taking into account the actual functioning
conditions. As a result, the unexpected role of the minor branches—i.e., pipes with a length smaller
than the 1% of the length of the main pipe—is pointed out and a preliminary criterion for the system
skeletonization is offered. Moreover, the importance of both unsteady friction and viscoelasticity is
evaluated as well as the remarkable effects of small defects is highlighted.

Keywords: transient simulation; fault detection; transmission main; branches; transient
test-based techniques

1. Introduction

Because of the many differences, it is common ground that fault detection in transmission
mains (TMs) is a completely different matter with respect to distribution networks (DNs). On one
side, as an example, the accessibility is in favor of DNs. In fact, TMs have less appurtenances and
are buried more deeply and in less accessible locations with respect to DNs. This implies the need
of using in TMs inspection technologies of an inline type, more expensive than the traditional fixed
probes and devices installed in DNs [1]. On the other side, the topology is in favor of TMs. In fact,
if transient test-based techniques (TTBTs) were used in DNs, the numerous branches and users
would absorb the pressure waves injected in the system before they can interact with the anomalies.
This said, two points are very well established: (i) fault detection is a straightforward matter nor
for TMs nor for DNs, and (ii) TMs and DNs require different techniques to achieve positive results.
Two examples—but several ones could be given—to confirm the validity of these arguments. The first
concerns TTBTs: adequate results have been obtained in the leak survey of the Milan (Italy) DN
by transient tests only when some parts of the system were deliberately disconnected and then the
topology of the system was simplified significantly [2] (it is remarkable to note that the pioneering paper
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by Liggett and Chen [3], where the Inverse Transient Analysis (ITA) was proposed, concerns looped
pipe systems). The second relates the vibroacustic measurements which are very reliable when short
pipes (i.e., with a length of few dozens of meters as those connecting the users with the main pipe in
DNs) are checked [4,5] but which cannot be used for long pipes because of the large signal attenuation.

A review of the existing methods for fault detection in pipe systems is beyond the aims of this
paper where the attention is focused on TMs and, specifically, on the use of TTBTs in these systems.
In this context, a possible procedure to follow is outlined in Figure 1 where the most important phases
are pointed out. The procedure may be initiated by a failure alarm (phase #0) which in many cases
derives simply from leakage clearly visible on a road or an abrupt pressure decrease, pointed out by
the monitoring system. The successive phase #1 (“System survey”) requires collecting information
about the topology, pipe characteristics, boundary conditions, and appurtenances, if they are not
already available. As it will be discussed later on, it should be emphasized that the more accurate the
data from the pipe survey the faster the field test campaign and the more reliable the TTBT results.

Figure 1. Transient test-based techniques (TTBTs) for fault detection in Transmission Mains (TMs):
main phases of the procedure with highlighted the interactions between them.
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Based on the findings of the pipe survey, phase #2 (“Numerical model implementation”)
can start. Intentionally the word “models” has been chosen to stress that within the procedure
several types of models can be used not only with regard to the followed approach—e.g., in the
time or frequency domain—but also with respect to their complexity (e.g., Lagrangian models vs.
Method of Characteristics models). It is worthy of noting that within the procedure the role of
the numerical models is not limited to the analysis of the experimental data (phase #5) but it is
also of a crucial importance to design properly and safely the field transients (phase #3). In fact,
the preliminary numerical simulations may give an idea of the pressure extreme values achieved
during the tests—which is very important for the managers of the pipe system—as well as they are a
valuable tool to indicate the measurement sections, to be checked during the successive phase.

Within phase #3 (“Design of transient tests”), the most appropriate technique for generating
effective pressure waves is identified. It is important to note that this is a very important point
within TTBTs, since in most cases transients generated by closing the installed valves or by pump
shutdown are too slow to point out clearly the existing anomalies. In fact, particularly in TMs,
valves are often too large to be operated by hand quickly and when they are motorized the prescribed
closure speed is set as small as it does not generate unsafe overpressures. In the case of the pump
shutdown, the time the pump takes to stop depends on its inertia which, of course, cannot be changed.
As a consequence, there is a need for reliable techniques to generate proper pressure waves (i.e., sharp
and compatible with the mechanical characteristics of the pipes). With this aim, the closure of a side
discharge valve [6,7], the use of the Portable Pressure Wave Maker (PPWM) device [8–10], and the
underwater explosion of a cavitating bubble [11,12] have been proposed in literature. Simultaneously,
according to the available appurtenances, the measurement sections must be chosen. As mentioned
above, TMs are often in less accessible locations but, beyond this, severe limits for the selection of
proper measurement sections may also derive from design characteristics. In this respect, Figure 2
reports two examples of TMs (very frequent indeed!) in which the branch, where a probe should be
installed, enters an inaccessible tunnel, and then no further measurements can be executed downstream.
With regard to the pressure probes, the choice must fall on those with a quite large frequency response
(typically of the order of few milliseconds)—to capture rapidly varying pressure signals—and a full
scale not much larger than the expected pressure extreme values (from phase #2)—to ensure the
best accuracy.

Figure 2. Typical TM branches where the inaccessibility is evident: the only appurtenance is just
upstream of an inaccessible tunnel.
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In the successive phase #4 (“Field tests”), preliminary measurements are executed with regard to
pre-transient conditions. This may allow understanding the behavior of the system and setting more
appropriate initial conditions in transient simulations. Afterwards the transient tests can be executed
by using the identified technique. In this respect, according to the functioning conditions and the
needs of the water company, it would be important to carry out the same test several times to check its
repeatability, as well as the stationarity of the system behavior.

Within phase #5 (“Experimental data analysis”), the acquired pressure signals are examined to
extract all the information (i.e., location, type and severity) about possible defects (e.g., leaks [13], partial
blockages [14,15], unwanted partially closed in-line valves [16,17], illegal branches [18], and pipe wall
deterioration [6]). A review of the existing techniques for the optimal analysis of the experimental data
is beyond the aims of this paper which is focused, as shown below, on the crucial role played by the
topology and functioning conditions of the system with respect to transient data analysis. Ambiguity
and uncertainties occurring within such a phase may suggest refining the system survey (phase #5A)
in order to detect possible components (e.g., very short branches, malfunctioning valves) neglected
during phase #1. Moreover, further tests can be executed possibly after having simplified the topology
of the system (e.g., by closing some branches) in order to improve the effectiveness of the transient
tests in terms of the propagation of the pressure waves (i.e., to limit their absorption by secondary
parts of the system). Such optional actions improve the performance of the pressure signal analysis
and allow detecting and pre-locating the defects (phase #6). It is worthy of pointing out the great
importance of the impact of phases #5 and #5A on the numerical models built within phase #2. In fact,
the analysis of the experimental data, the execution of further tests, and the availability of a larger
number of measurement sections may suggest improvements not only in the model parameters but
also in the governing equations.

In the successive phase #7, faults can be located more precisely by means of proper probes
(e.g., geo-phones for leak detection, and transients with high frequency waves [19,20]), after having
executed a detailed survey of the part of the system highlighted by the previous phase as a possible
fault location. Then the remediation actions and the check of the performance of the restored system
complete the procedure (phase #8).

This paper presents clear evidence—based on transient tests executed on a real TM—of the
unexpected relevance of some components and functioning conditions that, at a first glance, one could
be authorized to neglect. Specifically, the crucial role played by some short branches in the transient
behavior of the investigated pipe system is pointed out, as well it is confirmed the importance of
the malfunctioning [21] of some installed valves that, presumed as totally closed, actually allow
leakage, even if quite small. Moreover, the effect on transient pressure signals of the unsteady friction
(UF) and difference in pipe materials (elastic and polymeric) is discussed. The method used in this
paper for analyzing the experimental data from field tests is based on the use of a numerical model
simulating transients in a pipe system. According to the quality of the numerical results, the model
complexity is progressively increased by including more realistic representations of the topology as
well as more refined governing equations. However, the aim of this paper is not to simulate at the best
the experimental results by calibrating the model parameters. On the contrary, its very aim is to point
out the improvement in the efficiency of the numerical simulations that can be achieved by including
more and more appropriate representation of both the topology and the physical phenomena.

2. The Investigated Transmission Main and Transient Tests

Transient tests have been executed on the Trento steel TM, managed by Novareti SpA, connecting
the Spini well-field to the “10,000” reservoir; it supplies the city of Trento, in the northeast of Italy.
The original aim of these tests was to increase the number of the available experimental data concerning
transients in elastic pipes (e.g., [22–24]) with a large value of the initial Reynolds number, Re0 (= V0D/ν,
with V0 = pre-transient mean flow velocity, D = pipe internal diameter, and ν = kinematic viscosity).
Such a TM (hereafter referred to as the main pipe), buried at a depth of about 2 m in a porphyry
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sand, has a total length L = 1322 m, nominal diameter DN500, D = 506.6 mm, and wall thickness
equal to 4.19 mm; it was selected since it is classified as a single pipe. In fact, the few minor branches
are quite short and were certified by the system manager as inactive (i.e., connecting the main pipe
to a dead end or with a closed valve at about the inlet). The diameter of such minor branches, Db,
ranges between 80 mm and 506.6 mm, whereas their length, Lb, between 0.7 m and 6.8 m and then
between the 0.05 % and 0.5 % of L (Figure 3, and Table 1). All branches are in steel with the exception
of the E one, which is a high-density polyethylene (HDPE) pipe and consists of two reaches: the first
between nodes 12 and 13 (where there is a valve, certified as fully closed) with Lb,E′ = 3.0 m, and the
second between nodes 13 and 14 (where there is an inactive well) with Lb,E′′ =15.5 m. During the
tests, the initial supplied discharge has been measured at the well-field just upstream of the check
valve by means of an electromagnetic flow meter. The pressure signal, H, has been acquired at section
M (Figure 3), just downstream of the check valve, by means of a piezoresistive pressure transducer
with a full scale ( f s) of 10 bar, accuracy of 0.25% × f s, and response time of 0.5 ms; the level of the
end reservoir has been provided by the data system acquisition of Novareti SpA. Steady-state flow
measurements (Re0 ≈ 105) indicate that a fully rough pipe flow regime happens and provide an
estimate of the roughness height equal to 0.8 mm.

Figure 3. Trento TM layout (note that letters indicate the branches, whereas numbers indicate the
nodes of the system; in particular: 1-well-field; M-measurement section; 27-downstream end reservoir;
a different length scale has been used for the main pipe and minor branches).

Table 1. Characteristics and relevance of the branches.

Branch Initial Node—End Node Lb (m) Db (mm) Material (−) E f (−)

A 2–3 1.7 150 steel −0.71
B 4–5 3.1 506 steel

5–6 1.8 506 steel −0.45
5–7 2.7 200 steel

C 8–9 3.5 506 steel −0.64
D 10–11 0.7 80 steel −0.73
E’ 12–13 3 247 PEAD −0.47
F 15–16 1.1 100 steel −0.72
G 17–18 3 506 steel −0.67
H 19–20 3 200 steel −0.74
I 21–22 6.8 506 steel −0.66
J 23–24 1 150 steel −0.72
K 25–26 0.76 200 steel −0.72

Transients have been generated by pump shutdown at the well-field, by stopping abruptly the
electricity supply, and the repeatability of the tests has been checked (Figure 4). On the basis of the
experimental pressure signals, the value of the pressure wave speed, a (= 1030 m/s), has been obtained.
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In the below analysis, the pressure signal He,1 (hereafter referred to simply as He), with Re0 = 1.6 × 105,
has been considered as representative of all the executed transients (the subscript e indicates the
experimental values). It is worthy of noting that, as it will be discussed in the next section, at a first
glance the transient response of the examined TM is very different from the one expected if it behaved
actually as a single pipe (SP).
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Figure 4. Trento TM: transient tests generated by pump shutdown. Note that the behavior of the
pressure signals testifies the repeatability of tests.

3. Numerical Tests for Transient Simulation

Notwithstanding the above mentioned clear perception, in the first step of the pressure signal
analysis, the TM has been considered as a single pipe, and the classical water-hammer equations [25]
have been used (numerical test for the case of a single pipe, NTSP):

∂H
∂s

+
V
g

∂V
∂s

+
1
g

∂V
∂t

+ J = 0, (1)

being the momentum equation, with s = spatial co-ordinate, t = time (elapsed since the beginning
of the transient), g = acceleration due to gravity, and the friction term, J, assumed as equal to the
steady-state component, Js, given by the Darcy-Weisbach friction formula:

J = Js = λ
V2

2gD
, (2)

with λ = friction factor, and

∂H
∂t

+
a2

g
∂V
∂s

= 0, (3)

being the continuity equation. As a result, the pressure signal, Hn, of Figure 5 is obtained (the subscript
n indicates the numerical values), with a value of the Nash-Sutcliffe efficiency coefficient,
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Ef = 1 −
M

∑
i=1

(He,i − Hn,i)
2

(He,i − H̄e)2 , (4)

Ef equal to −0.67, with M = number of samples, and H̄e = experimental mean value. Such a
poor performance of the classical water hammer equations implies—as it was quite easy to
predict—the need of substantial improvements in the model. However, an in-depth analysis of the
experimental and numerical pressure signals indicates that a large part of the differences is due to the
presence in He of some further sharp pressure changes—both rises and decreases—other those caused
by the pump shutdown and the reflection at the check valve and the downstream reservoir. According
to literature [18], the shape of such further pressure changes suggests to explore firstly the role played
by the system configuration and specifically that of the minor branches neglected in the SP scheme.
Thereafter, the relevance of the unsteady energy dissipation mechanisms (i.e., unsteady friction, UF),
the viscoelastic effects (VE) in branch E, and possible small defects will be checked. In Table 2 the main
characteristics of the simulated systems and model assumptions and performance are reported.
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Figure 5. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the single pipe scheme (NTSP).

Table 2. Numerical tests: simulated systems, model assumptions, and performances.

Numerical Simulated Topology Model E f
Test (NT#) and Functioning Conditions Assumptions (−)

SP single pipe (i.e., no branches) Equations (1) and (2) −0.67
5b only branches B, C, E, G, and I inactive and valve 13 fully closed “ ” −0.07
UF as 5b UF included 0.30
VE as 5b VE included −0.07

UF + VE as 5b UF + VE included 0.30
MV13 as 5b but with a malfunctioning valve at node 13 “ ” 0.80

L14 as MV13 but with E branch with a small leak QL “ ” 0.83
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3.1. The Role of the Minor Branches

The large complexity of many pipe systems—particularly DNs—has always encouraged the
attempt to simplify them but preserving the behavior in steady-state conditions of the real system with
respect to a given feature of interest. Emblematic is the case of a branch with numerous users which
can be transformed in a pipe with a fictitious constant discharge with the two pipes—the real and
the simplified one—having in common only the total head loss (which is the retained feature indeed).
In literature, the procedure to simplify a pipe system by excluding the less important branches is
defined as skeletonization [26]. In transient conditions, of course, the point is completely different and
there is not a clear rule to decide which components of a pipe system must be regarded as crucial. As a
consequence, to analyze the relevance of the minor branches of the considered TM, numerical tests
have been executed by considering the branches one at a time. Then the obtained values of Ef (Table 1)
have been compared in Figure 6 with the one (=−0.67) pertaining the single pipe (SP). This plot and
data reported in Table 1 show that in principle the relevance of a given branch decreases with the
distance from the section where the pressure wave is injected into the system. This not only in terms of
the mere distance from the injection section, but also with respect to the number and characteristics
(e.g, diameter and pressure wave speed) of the branches with which the pressure wave interacts along
its path. This result is confirmed by the transient response (Figure 7) of the systems with only branch
C (NTbC) or branch G (NTbG), which have almost the same characteristics, but with branch G being
at a larger distance from the injection section; Figure 7 shows that the performance of NTbC is quite
better than NTbG (Ef = −0.64 and −0.67, respectively).

A scrupulous analysis of the effect of a given series of branches on the transient behavior of a
TM is beyond the scope of this paper. However, as a preliminary criterion to simplify the system,
the branches with a value of Ef smaller than the one of SP (i.e., branches A, D, F, H, J, and K) are
excluded. As a consequence, in the successive phases of the analysis of the experimental pressure
signal only branches B, C, E, G, and I will be retained (NT5b). In Figure 8 the numerical test with such
a simplified system is reported: a clear improvement of the performance of the model can be observed
(Ef = −0.07) with respect to the SP approach (Ef = −0.67). Such a significant increase of Ef (about
the 857% with respect to NTSP) clearly highlights the crucial importance of the branches even if their
length is very small with respect to the one of the main pipe.

Figure 6. Trento TM: transient tests generated by pump shutdown. Performance of the numerical
model by considering the branches one at a time.
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Figure 7. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with only branch C (NTbC), and only
branch G (NTbG).
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Figure 8. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with 5 branches (B, C, E, G and I)
selected by means of the value of Ef (NT5b).
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3.2. The Role of the Unsteady Friction and Viscoelasticity

To take into account the effect of the unsteadiness on the energy dissipation, in Equation (1) the
additional unsteady friction (UF) term, Ju, evaluated by means of an Instantaneous Acceleration Based
(IAB) model [27–30]:

Ju =
kUF

g

(
∂V
∂t

+ sign
(

V
∂V
∂s

)
a

∂V
∂s

)
, (5)

has been included (J = Js + Ju), with kUF = unsteady friction coefficient, and sign(V∂V/∂s) = (+1 for
V∂V/∂s ≥ 0 or −1 for V∂V/∂s < 0). In the used UF model, the coefficient kUF is the only parameter to
evaluate. In line with the aims of this paper, the same value of kUF (i.e., the one pertaining to the main
pipe) has been considered for all pipes. According to literature—which points out the importance of
the initial conditions and relative roughness [31]—the value kUF = 8 × 10−3 has been chosen.

As pressure traces of Figure 9 clearly show, the performance of the model including UF
(NTUF) improves significantly with the simulated damping of the pressure peaks quite closer to
the experimental one. As a consequence, the efficiency coefficient of NTUF (Table 2) is equal to 0.30,
with an increase of about the 528% with respect to NT5b.
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Figure 9. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with the 5 branches (B, C, E, G and I)
and the unsteady friction included in the model (NTUF).

To evaluate singly the role played by the mechanical characteristics of pipe material, for the E
branch (with Lb,E′ ) the modified continuity equation (see Appendix A):

∂H
∂t

+
a2

g
∂V
∂s

+
2a2

g
dεr

dt
= 0, (6)

has been considered instead of Equation (3), to simulate the viscoelastic (VE) effects,
with εr = retarded strain. In order to evaluate εr, the viscoelastic parameters of the Kelvin-Voigt
element, Tr (= retardation time) and Er (= dynamic modulus of elasticity) have been chosen according
to literature [32]. The resulting pressure signal (Figure 10) indicates clearly that, because of the
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very small percentage of polymeric pipes (= 0.22%) with respect to the elastic main pipe, the role of
viscoelasticity is negligible. As a consequence, the results of NTVE are virtually the same of NT5b
(Ef = −0.07) as well as the results of NTUF + VE (Figure 11) replicate the ones of NTUF (Ef = 0.30).
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Figure 10. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with the 5 branches (B, C, E, G and I)
and the viscoelasticity (for branch E, with Lb,E = Lb,E′ ) included in the model (NTVE).
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Figure 11. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with the 5 branches (B, C, E, G and I)
and both the unsteady friction and the viscoelasticity (for branch E, with Lb,E = Lb,E′ ) included in the
model (NTUF + VE).
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3.3. The Role of Small Defects

According to literature, from the point of view of transient simulation, the used model contains
the most important mechanisms. As a consequence, the not satisfactory values of Ef could be ascribed
to a not reliable conformity of the assumed layout to the reality. Then, according to phase #5A
(Figure 1), an integrative system survey has been executed which revealed the malfunctioning of
valves at nodes 13 and 14. This outcome allows hypothesizing different functioning conditions of
the E branch: (i) the length is 18.5 m, by assuming Lb,E = Lb,E′ + Lb,E′′ (NTMV13), because of the
malfunctioning of valve 13; (ii) a small discharge, QL, of about 2 L/s happens towards the unused well
located at node 14 (NTL14), because of the malfunctioning of valve at node 14 . Such a value of QL is
compatible with the difference between the discharge supplied at the well-field and the outflow at the
end reservoir. Both these scenarios (Figures 12 and 13) exhibit a clear improvement, with Ef being
equal to 0.80 (NTMV13) and 0.83 (NTL14), and then with an increase of about the 167%, and 177% with
respect to NTUF + VE, respectively. In fact, most of the discontinuities of the experimental pressure
signal are now captured reasonably well.
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Figure 12. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with the 5 branches B, C, E, G, and I,
the unsteady friction and the viscoelasticity (for branch E, with Lb,E = Lb,E′ + Lb,E′′ ) included in the
model, and a malfunctioning valve at node 13 (NTMV13).

Moreover, it is worthy of noting that the reasons of the improvement of Ef for NTMV13 are
two, both linked to the increase of Lb,E, due to the malfunctioning of the valve at node #13. In fact,
the larger Lb,E, the most significant the role of the branch itself, and the more valuable the effect of the
viscoelasticity (e.g., [33,34]).

Notwithstanding the valuable improvement in terms of Ef from NTSP to NTL14, a quite
remarkable difference between the experimental and numerical pressure signals still remains. Such a
partial failure of the numerical model can be ascribed to several reasons. First of all the deliberately
omitted parameter calibration must be mentioned. In fact, in the paper the values of the unsteady
friction coefficient and viscoelastic parameters of literature have been used, even if reliable criteria for
evaluating such quantities is still an open problem. Secondly, a possible inaccuracy in the description of
the system topology which, as shown in this paper, has a significant effect on the numerical simulations,
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even if quite small. Finally, possible undetected localized phenomena (e.g., water column separation)
might have caused further pressure waves.
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Figure 13. Trento TM: transient generated by pump shutdown at the well-field. Experimental pressure
signal, He, at section M vs. model simulation, Hn, for the system with the 5 branches B, C, E, G, and I,
the unsteady friction and the viscoelasticity (for branch E, with Lb,E = Lb,E′ + Lb,E′′ ) included in the
model, and a small leak, QL, at node 14 (NTL14).

4. Conclusions

Unsteady-state tests executed on the Trento TM by a pump shutdown have disclosed the
unexpected remarkable effect of the short minor branches—essentially inactive—on the transient
response of the investigated pipe system. In fact, the experimental pressure signal shows clear sharp
changes beyond those due to the pressure wave reflection at the upstream and downstream boundaries
(i.e., the check valve at the well-field and the downstream end reservoir). By means of the numerical
model, the relevance of the topology, pipe material characteristics, transient energy dissipation,
and defects has been explored. The performance of the numerical model has been evaluated on the
basis of the Nash Sutcliffe efficiency coefficient. A preliminary criterion for the skeletonization of the
TM has been proposed.

In Figure 14a, the progressively refinement of the model, with the relative values of the efficiency
(Figure 14b), is clarified, as a succession of more and more complex numerical model and topology.
From Figure 14b, it emerges the very crucial role played by secondary branches, particularly the five
most important. Specifically, the largest increase (�857%) in the numerical performance is achieved
when these branches are included in the system topology. As a consequence, a more in depth analysis
for the skeletonization of pipe systems with respect to the unsteady-state flow is an urgent need,
in order to use TTBT reliably for fault detection in complex pipe systems. A less important but still
significant improvement is obtained when the unsteady friction is taken into account (�528%). On the
contrary, the role of the viscoelasticity becomes relevant only when the length of the polymeric branch
is appreciable. Finally, an important contribution for the simulation of sharp pressure changes is given
by the inclusion of small defects (i.e., malfunctioning valves).
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Figure 14. Procedure within the numerical model implementation for evaluating the relevance of the
topology simulation (a) and model complexity in the transient response of the TM (b).
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Appendix A. Single Element Kelvin-Voigt (1 K-V) Models

With respect to elastic materials, when a circumferential stress, σ, is applied to a viscoelastic
material, the total strain, ε, is given by the sum of the instantaneous elastic, εel, and retarded component,
εr [35–42]:

ε = εel + εr. (A1)

Such a behavior can be simulated by means of a single element Kelvin-Voigt (1 K-V) model where
a viscous damper and an elastic spring, connected in parallel, are jointed to a simple elastic spring
in series. Within 1 K-V models, the following relationship links σ and εr:

σ = Erεr +
Er

Tr

dεr

dt
, (A2)

where Er = dynamic modulus of elasticity, and Tr = retardation time of the KV element. According to
the Hooke’s law, the elastic strain, εel, of the spring is given by:

εel =
σ

Eel
, (A3)

where the elastic Young’s modulus of elasticity, Eel, is linked to a [43] by:

a =

√√√√ k
ρ

1 + ψ kD
eEel

, (A4)

with k = bulk modulus of elasticity, and ψ = dimensionless parameter accounting for longitudinal
support situation [44,45].

The above difference between elastic and viscoelastic materials reflects in the continuity equation
and then the following term must be added in Equation (3):

2a2

g
dεr

dt
. (A5)
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Abstract: It has been shown that sufficiently high velocities can cause the mobilisation of
discolouration material in water distribution systems. However, how much typical hydraulic
conditions affect the mobilisation of discolouration material has yet to be thoroughly investigated.
In this paper, results are presented from real turbidity and flow observations collected from three
U.K. trunk main networks over a period of two years and 11 months. A methodology is presented
that determines whether discolouration material has been mobilised by hydraulic forces and the
origin of that material. The methodology found that the majority of turbidity observations over 1
Nephelometric Turbidity Units (NTU) could be linked to a preceding hydraulic force that exceeded
an upstream pipe’s hydraulically preconditioned state. The findings presented in this paper show the
potential in proactively managing the hydraulic profile to reduce discolouration risk and improve
customer service.

Keywords: water distribution systems; velocity; discolouration; modelling; turbidity; hydraulic
events; water quality; mains conditioning

1. Introduction

Historically, water supply systems and thus water companies have been primarily focused on the
sufficient delivery of safe drinking water to customers. In recent years, higher customer expectations
of water quality standards have been reflected by regulatory bodies through the implementation of
fines and penalties for a number of discolouration contacts [1]. Discoloured water has long been the
largest cause of water quality customer contacts in the U.K. water industry [2,3]. Even putting aside
the validity of public health concerns, discoloured water can still undermine consumer confidence and
negatively impact a water utility’s reputation.

Reducing discolouration risk is especially challenging due to the complex chemically, biologically
and hydraulically dependent nature of discolouration material accumulation and mobilisation not
being fully understood [4–6]. While the hydraulic mobilisation of iron and manganese deposits has
been long known to result in discoloured water, the presence of discoloured water can also be due to
other processes such as biofilm mobilisation or chemical interactions between pipe materials and water
acidity [7–11]. Discolouration has been shown to significantly vary even between different parts of the
same water distribution network and yet is still similarly experienced throughout different countries
regardless of widely-varying factors between their Water Distribution Systems (WDS) [12–14].

Water companies primarily deal with discolouration by cleaning, i.e., flushing WDS mains. Once
a sufficient number of discolouration complaints have been reported in the area, the company may
decide to reline (or replace) old mains believed to be the cause of significant discolouration [6,11],
particularly if this is going to help address additional issues (e.g., leakage). However, cleaning and
especially rehabilitating WDS mains is expensive and can still potentially only have limited effect
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if the discolouration material was mobilised from a different section of the network [15]. Thus,
determining where the significant causes of discolouration are in a WDS is important to efficiently
reduce discolouration risk.

Trunk mains have long been considered high discolouration risks due to their large potential
to act as a form of a reservoir for discolouration material. Trunk mains can passively send low
concentrations of material downstream to accumulate in distribution pipes and actively cause
widespread discolouration. However, only recently has research indicated that a significant number of
discolouration events in downstream distribution networks can actually be attributed to upstream
trunk mains [14,15].

Due to the potential consequences associated with trunk mains, research on trunk mains has been
primarily limited to areas where the benefits are clearly evident to water companies. In particular,
significant research has been carried out on developing methods to intermittently clean trunk mains
with minimal cost and required downtime [16–18].

The process of incrementally increasing the flow in a trunk main to remove discolouration material
from the trunk main, also known as flushing, has slowly gained more popularity due to its relatively
low capital cost and ease of implementation. Increases in the applied hydraulic force on the pipe walls
have been shown to mobilise discolouration material in pipes [19,20], and it is now sufficiently well
understood that the resulting turbidity response from the flushing can to various degrees be modelled
and predicted [16,21,22].

Unfortunately, a significant limitation of using many of these previous studies to investigate
typical discolouration events in water distribution networks is that the discolouration was manually
induced. As a result, atypical flow patterns are created for the express purpose of inducing
discolouration mobilisation, and changes in the configuration of the network are also sometimes
made to ensure that customers are not negatively impacted during the flushing event or works.
Equally as important however is that data are only gathered for a short time around a single flushing
event, usually on the scale of hours or days. Even when repeated flushes are carried out on the same
WDS, the time between flushes is not monitored.

Therefore, while it has been proven that discolouration mobilisation can be caused by hydraulic
forces, little and even conflicting evidence has been shown on the scale and frequency of hydraulically
mobilised discolouration events under usual WDS operating conditions. Gaffney and Boult [23]
showed no turbidity events in a District Metered Area (DMA) under two Formazin Nephelometric
Units could be attributed to a change in pressure. Cook et al. [15] showed a number of turbidity events
in DMAs could be associated with increased flows at inlet meters; however, the percentage of turbidity
events associated with increased flows significantly varied between the five analysed DMAs.

To the authors’ best knowledge, no long-term study with continuous turbidity and flow data on
trunk mains exists. Likewise, no studies could be found assessing whether discolouration in trunk
mains under typical operating conditions is primarily caused by hydraulic events.

This paper presents a long-term continuous study on discolouration mobilisation and a
methodology to determine the amount of turbidity that can be attributed to changes in the hydraulic
profile in trunk mains. This methodology additionally aims to identify the origin of turbidity in the
network to aid in targeted proactive cleaning strategies.

2. Methodology

The methodology presented here evaluates the percentage of turbidity observations that can be
linked to preceding hydraulic events in an upstream pipe and thus identifying where discolouration
material is more likely to be accumulating in the WDS. This in turn can enable targeted trunk main
rehabilitation and cleaning operations.

The methodology is formed from three principles: (a) a hydraulic force that mobilised the
discolouration material resulting in the high turbidity observation occurring just prior to the high
turbidity observation; (b) a stronger hydraulic force would result in more discolouration material being
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mobilised, provided that there is available material to mobilise [19,24,25]; (c) discolouration material is
constantly being regenerated/built up in all pipes [18,26]. Based on these three principles, a turbidity
observation is thought to be the result of a hydraulically-based mobilisation process if a hydraulic
force in an upstream pipe preceding the turbidity observation exceeds the recent prior hydraulic forces
experienced in that pipe.

The percentage of selected turbidity observations that can be linked to preceding hydraulic
events in an upstream pipe is given by the Hydraulically Mobilised Turbidity Percentage (HMTP)
shown below:

HMTP(ε, T, x, y) =
∑τ∈T

[
βε

y,τ > αε
x,τ

]
|T| × 100 (1)

where ε is the upstream pipe being assessed, T is the set of turbidity observations τ given in
Nephelometric Turbidity Units (NTU), x and y are periods of time, βε

y,τ is the recent peak velocity
(m/s) in pipe ε during a period of time of y duration preceding the turbidity observation τ and αε

x,τ is
the peak velocity (m/s) in pipe ε during a period of time of x length that precedes the period of time
for βε

y,τ .
From the perspective of a turbidity observation, the recent preceding peak velocity βε

y,τ of pipe ε is
only assumed to have caused that turbidity observation if it has exceeded the prior peak velocity αε

x,τ of
that pipe. This is because the prior velocities in that pipe should have mobilised all the discolouration
material that they could, and only a higher velocity should be able to mobilise significantly more
material. The prior peak velocity αε

x,τ will be called the preconditioned velocity threshold, and the
recent preceding peak velocity βε

y,τ will be called the peak mobilising velocity. Thus, the y parameter
determines how far back in time the HMTP should look for hydraulic mobilisation, and the x parameter
determines the minimum size of hydraulic events being considered.

An example of the methodology is shown in Figure 1 where velocity and turbidity observations
from a real trunk main system are displayed. For the sake of brevity, the methodology is visualised for
a single turbidity observation and for which the peak turbidity observation is chosen. The length of
time set for y is 24 h because it was sufficiently long enough for all potentially mobilised material from
the furthest upstream point to reach the downstream turbidity meter. The length of time set for x is
7 days and was chosen solely for the ease of visualizing this example.

The velocity profile 24 h preceding the turbidity observation (highlighted green) is where the peak
mobilising velocity is calculated. The 7 days prior (highlighted yellow) is where the preconditioned
velocity threshold is calculated. The peak mobilising velocity (i.e., βε

y,τ) of this upstream pipe is greater
than its preconditioned velocity threshold (i.e., αε

x,τ), and thus, the turbidity observation is determined
to have resulted from the hydraulic mobilisation of discolouration material in this pipe.

From the velocity and turbidity measurements shown in Figure 1, it can also be seen that the
velocity just before the start of Day 10 also exceeds the peak velocity indicated on Day 3. However,
no subsequent turbidity response is seen on Day 10 because that pipe is now reconditioned to the new
preconditioned velocity threshold at the end of Day 8 (i.e., all discolouration material that could have
been mobilised by this new velocity was already mobilised by the peak velocity at the end of Day 8).
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Figure 1. An example of the methodology showing that the turbidity observation could be linked to
the preceding upstream hydraulic mobilisation of discolouration material. The 24 h preceding the
turbidity observation are highlighted green, and the 7 prior days are highlighted yellow. The preceding
24-h peak velocity is shown to be the cause of the high turbidity observation as it exceeds the prior
7-day peak velocity. NTU: Nephelometric Turbidity Units.

2.1. Chi-Square Test for Independence

While the high turbidity observation examined in Figure 1 is determined to have been caused
by the hydraulic mobilisation of discolouration material, it is possible that the velocity profile and
preceding turbidity response were coincidental. Thus, the chi-square test for independence will be
used to determine the statistical significance of the results.

All turbidity observations will be divided into two turbidity sets of over 1 NTU observations and
under 1 NTU observation, and then, each set of turbidity observations will be examined separately.
HMTP>1NTU will show the percentage of turbidity observations above 1 NTU that are deemed to be
caused by hydraulic mobilisation, and likewise, HMTP<1NTU will show the percentage of turbidity
observations below 1 NTU that are deemed to be caused by hydraulic mobilisation. The turbidity
threshold of 1 NTU was chosen as it is a clear quantifiable response above background turbidity levels
and is the U.K. regulatory limit for water leaving water treatment works [27]. Therefore, a turbidity
observation over 1 NTU can be considered as part of a turbidity event, and turbidity observations
under 1 NTU can be considered as the absence of a turbidity event.

The proposed null hypothesis is that the turbidity level (i.e., over 1 NTU or under 1 NTU)
is independent of an upstream pipe’s preceding peak velocity that exceeds the preconditioned
velocity threshold. The proposed alternative hypothesis is that higher turbidity levels (i.e., over
1 NTU) are dependent on an upstream pipe’s preceding peak velocity that exceeds the preconditioned
velocity threshold. Thus, for a statistically-significant result where the null hypothesis can be rejected,
a HMTP>1NTU significantly greater than a corresponding HMTP<1NTU is expected to be seen.

The significance level chosen is 0.01, and the chi-square test statistic with 1 degree of freedom is
used to calculate the statistical significance.

2.2. Pipes and Pipes in Series

The methodology examines each pipe upstream of the turbidity meter, where a pipe is determined
here by stretches of piping where the velocity remains the same. This means an import and export
branch or change in diameter determines the boundaries of a pipe.
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While each pipe can be examined individually to estimate the amount of discolouration material
linked to that pipe, the preconditioned velocity threshold of multiple pipes can be simultaneously
exceeded and discolouration material mobilised from multiple pipe simultaneously. This would mean
that some turbidity observations are counted as originating from more than one pipe.

Thus, to accurately assess the total amount of turbidity observations that can be linked to hydraulic
mobilisation, all pipes upstream of the turbidity meter are also jointly assessed. This is done by
separately assessing if any pipe upstream of the turbidity meter experienced a velocity that exceeded
their preconditioning velocity threshold. The multiple pipes that are jointly assessed will be called
pipe sets.

3. Case Studies

3.1. Description of Sites

Flow and turbidity measurements were taken over two years and 11 months from three
hydraulically distinct parts of a real Water Resource Zone (WRZ) in the U.K., starting from 1 September
2013 until 1 August 2016. The three sites range from 6 km to 23 km in network length, 300 mm to
700 mm in pipe diameter size and are each primarily comprised of Ductile Iron (DI). While Site 1
has two turbidity meters, Sites 2 and 3 both have only a single turbidity meter. All turbidity meters
were placed at the downstream end of each site, just upstream of a flow meter so that each turbidity
measurement has an associated flow measurement. Except for a few insignificantly small water
consumptions taken directly off some trunk mains, every inlet and outlet of each site was hydraulically
metered by a flow meter.

Site 1 is a trunk main network with one import and six exports. Aside from a flow meter placed
directly after the upstream service reservoir, which is the sole inlet for the trunk main network, the
other six flow meters were each placed at an exporting branch. Site 1 can be broken down into six
pipes and denoted as A, B, C, D, E, F. Pipes A, B, C, D are located upstream of Turbidity Meter (TM) A,
and pipes A, B, E, F are located upstream of TM B.

Site 2 is a 6.5 km trunk main with one import and two exports. The flow velocity in this trunk
main is primarily determined by two pumps at the downstream end of the main. Site 2 can be broken
down into two pipes that are upstream of TM C and will be denoted as Pipes G and H.

Unlike Sites 1 and 2, Site 3 has two flow imports from two different water sources. Site 3 can be
broken down into three pipes that are upstream of TM D and will be denoted as I, J and K. As the
water from the further downstream import between Pipes J and K is less expensive, only a small flow
is typically seen across the almost 20 km length of Pipes I and J. However, when the downstream
reservoir is low on water, the upstream pumps engage to supply additional water. A schematic of Site
3 is shown in Figure 2.

Figure 2. Schematic of Site 3. DMA, District Metered Area.

A summary of each pipe upstream of each turbidity meter is shown in Table 1.
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Table 1. Pipe characteristics and the 99th velocity percentile over all observed data for each site.

Site Pipe Length Diameter Upstream of Turbidity Meter 99th Velocity Percentile

1

A 1.8 km 700 mm A, B 0.94 m/s
B 1.6 km 700 mm A, B 0.92 m/s
C 1.9 km 600 mm A 0.17 m/s
D 5.1 km 300 mm A 0.65 m/s
E 1.8 km 400 mm B 0.86 m/s
F 4.4 km 400 mm B 0.80 m/s

2
G 1.9 km 450 mm C 0.83 m/s
H 4.6 km 450 mm C 0.80 m/s

3
I 11 km 400 mm D 0.79 m/s
J 8.5 km 400 mm D 0.70 m/s
K 3.6 km 400 mm D 0.73 m/s

3.2. Flow and Turbidity Data

The flow and turbidity observations were logged at 15-min intervals with flow recorded as the
sum of water through the meter during that interval and turbidity observations recorded as the current
turbidity value at the interval. Flow was originally recorded in cubic meters per 15 min (m3/15 min)
and turbidity in NTU. A summary of the turbidity data for each turbidity meter is shown in Table 2.

Table 2. Summary of turbidity observations for each site.

Turbidity Meter (TM) Duration Monitored 99th Percentile (NTU) Observations >1 NTU

TM A (Site 1) 2 years, 11 months 0.41 265
TM B (Site 1) 2 years, 11 months 0.42 328
TM C (Site 2) 2 years, 11 months 0.36 290
TM D (Site 3) 2 years, 5 months 0.46 204

While all turbidity meters captured data over the same time period, TM D in Site 3 was offline
for a total of six months, from July 2014 to November 2014 and then from June 2016 to August 2016.
This is a considerable factor in why TM D has fewer turbidity observations over 1 NTU than the
other turbidity meters. As shown by the 99th percentiles in Table 2, the vast majority of turbidity
observations are significantly less than the 1 NTU threshold chosen in the methodology.

4. Results

4.1. Hydraulically Mobilised Turbidity Percentage

The results of the HMTP using an x of 1 day and y of 1 day applied to each turbidity meter and its
corresponding jointly assessed pipe set are shown in Table 3.

Table 3. Hydraulically Mobilised Turbidity Percentage (HMTP) carried out on each pipe in series
between the upstream sources and downstream service reservoirs to assess the amount of turbidity
observations that can be linked to hydraulic mobilisation. The x and y parameters of HMTP were set to
1 day.

Turbidity Meter Pipes in Set HMTP<1NTU HMTP>1NTU p-Value

TM A (Site 1) A, B, C, D 81% 100% p < 10−9

TM B (Site 1) A, B, E, F 77% 91% p ≈ 10−8

TM C (Site 2) G, H 53% 93% p < 10−9

TM D (Site 3) I, J, K 66% 84% p ≈ 10−6
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A length of 1 day was chosen for the y parameter because it was sufficiently long enough for
material mobilised from the furthest upstream points of each site to reach their respective downstream
turbidity meters. The x parameter was set to 1 day to show the maximum amount of turbidity in each
site that can be linked to preceding upstream hydraulic events.

The HMTP>1NTU results in Table 3 range from 84% to 100%, thus showing that the majority of
turbidity can be linked to preceding hydraulic events. However, because the requirements for the
methodology to determine if there were a hydraulic event preceding a turbidity observation are quite
low with only an x of 1 day (i.e., the peak velocity in the previous 24 h exceeds the prior 24-h peak
velocity), the HMTP<1NTU results in Table 3 are also substantially high. While the p-values show that
the null hypothesis can be rejected at a 0.01 level of significance, a significantly larger gap between
the HMTP<1NTU and HMTP>1NTU results would indicate greater confidence in the methodology
and results.

The effect of increasing the x parameter for HMTP<1NTU and HMTP>1NTU can be seen as plotted
in Figure 3a. Figure 3a shows that the HMTP<1NTU of each TM exponentially decays while the
HMTP>1NTU decreases at a substantially slower rate. An objective function calculating the trade-off
between the HMTP<1NTU and HMTP>1NTU is given by the formula shown below:

ϕ =
HMTP>1NTU + (1 − HMTP<1NTU )

2
(2)

Figure 3b shows ϕ plotted for each TM over increasing values of x. A higher ϕ indicates a better
trade-off between a low HMTP<1NTU and a high HMTP>1NTU.

(a) (b)

Figure 3. (a) The HMTP<1NTU and HMTP>1NTU are shown for each TM over increasing x parameters;
(b) the objective formula ϕ is shown for each TM over increasing x parameters.

From the results shown in Figure 3b, a 30-day length was chosen for x, and the corresponding
results for each jointly assessed pipe set followed by the results for each individual pipe that makes
up that pipe set are shown in Table 4. The percentage of turbidity observations under 1 NTU that the
methodology deemed to be hydraulically mobilised ranges from 3% to 5% for individual pipes and 4%
to 11% for the grouped pipe sets; while the percentage of turbidity observations over 1 NTU ranges
from 0% to 84% for individual pipes and 54% to 96% for the grouped pipe sets.
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Table 4. Hydraulically Mobilised Turbidity Percentage (HMTP) results with the x parameter set to
30 days and the y parameter set to 1 day.

Turbidity Meter Pipes HMTP<1NTU HMTP>1NTU p-Value

TM A (Site 1)

A, B, C, D 11% 96% p < 10−9

A 4% 26% p < 10−9

B 4% 33% p < 10−9

C 5% 84% p < 10−9

D 5% 81% p < 10−9

TM B (Site 1)

A, B, E, F 10% 76% p < 10−9

A 4% 75% p < 10−9

B 4% 75% p < 10−9

E 5% 1% p = 1
F 5% 0% p = 1

TM C (Site 2)
G, H 4% 76% p < 10−9

G 4% 76% p < 10−9

H 3% 76% p < 10−9

TM D (Site 3)

I, J, K 6% 54% p < 10−9

I 3% 41% p < 10−9

J 3% 39% p < 10−9

K 4% 52% p < 10−9

Note that the sum of HMTP>1NTU for individual pipes belonging to each turbidity meter exceeds
100%. This was expected because, as mentioned above, a turbidity observation can be linked to
multiple pipes if a hydraulic event occurs in both pipes simultaneously.

For the results of TM A, a high HMTP>1NTU of 84% is given for Pipe C. This is important to note
because as can be seen from Table 1, Pipe C had a low 99th velocity percentile of 0.17 m/s, which
indicates a high potential for material build up. The 12% difference between the HMTP>1NTU of 84%
for Pipe C and the HMTP>1NTU of 96% for the pipe set is assumed to come from Pipes A and B and not
Pipe D because Pipes C and D have very similar velocity profiles (when compared to Pipes A and B).

Comparing the TM A and TM B cases shows two very different sets of HMTP>1NTU results for
Pipes A and B, even though they are both located on the same site. This indicates that significant
discolouration material is being mobilised from Pipes A and B; and the material that travels towards
TM B reaches it, but a portion of the material that travels towards TM A ends up settling/attaching in
Pipe C and then remobilises at a later time.

4.2. Turbidity and Velocity Relationships

Figure 4 shows the peak velocity in the 24 h preceding a turbidity observation plotted against the
peak velocity in the 30 days prior to the 24 h preceding the turbidity observation for two pipes that
had the highest HMTP>1NTU for their respective turbidity meters as shown in Table 4. The size of each
data point in a plot is relative to the turbidity measurement where a higher turbidity value results in a
bigger data point. Because all turbidity observations from the same turbidity event should have the
same 24-h preceding peak velocity and prior 30-day peak velocity, each visible data point is actually
an individual turbidity event with the size of the data point representing the biggest single turbidity
observation seen during that turbidity event.

The dashed line, which is also the identity line, shows where the preconditioned velocity threshold
for data points along the y axis is. Hence, data points above the identity line are considered to have
exceeded their preconditioned velocity thresholds for that pipe because they have experienced a
velocity in the preceding 24 h that is higher than all velocities experienced in the prior 30 days.
Although data points below the identity line of a specific pipe cannot be linked to hydraulic
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mobilisation from that pipe, it does not mean that they cannot be linked to hydraulic mobilisation
from a different pipe upstream of the turbidity meter.

 
(a) (b)

Figure 4. For each turbidity observation, the 24-h preceding peak velocity was plotted against the peak
velocity of the 30 days prior to the 24 h preceding the turbidity observation. (a) Site 2, Turbidity Meter
C, Pipe H; (b) Site 3, Turbidity Meter D, Pipe K.

If a cleaning velocity (i.e., velocity at which all material is removed from pipe) existed in the
any pipes, a significant number of low and only low turbidity observations would be seen above the
identity line after a sufficiently high prior peak velocity (i.e., the x axis of Figure 4). However, this is
not observed in any pipes, and thus, no clear mobilisation limit is seen. Similarly, by looking at only
the peak velocities in pipes during the 24 h preceding the arrival of turbidity (i.e., y axis of Figure 4),
a clear minimum mobilising velocity was not seen in any pipes. Instead, it can be clearly seen that
turbidity observations under 1 NTU are ubiquitously present below the identity line, but not above.

Table 5 shows Spearman’s rank correlation coefficients for three different sets of velocity
calculations correlated with their associated turbidity sets. Spearman’s rank correlation coefficient
measures the dependence of two parameters as described as a monotonic function. Linearity between
the two parameters is not assumed in Spearman correlation, which is not the case for Pearson’s
correlation coefficient. A Spearman correlation coefficient of 1 or −1 indicates a perfect monotonic
relationship. For each correlation coefficient, an associated p-value is derived from a statistical t-test,
which indicates the probability of an uncorrelated system generating datasets that have a correlation
at least as extreme.

The first correlation is the 24h Peak Velocity which is the 24-h preceding peak velocities of each
turbidity observation, regardless of turbidity value, correlated with those turbidity observations.
The very weak to weak positive correlation across all pipes shows that higher preceding velocities
alone rarely indicate the appearance of higher turbidity concentrations downstream. However, these
correlations are predominantly driven by the many low bulk flow turbidity observations and tell
little about the correlation between peak velocities preceding a turbidity event and the amount of
turbidity mobilised in that event. Thus, the second correlation set shown in Table 5 is the 24-h Peak
Event Velocity where the 24-h preceding peak velocities of turbidity events are correlated with the
downstream turbidity observations of those turbidity events. Interestingly, there are a few negative
correlations, but because they are very weak correlations, not much can be inferred.
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Table 5. Spearman’s rank correlation coefficients and associated p-values for three sets of correlations:
(a) 24-h preceding peak velocities of each turbidity observation correlated with those turbidity
observations; (b) 24-h preceding peak velocities of each turbidity event correlated with the turbidity
observations of that event; (c) the difference between the 24-h preceding peak velocity and the 30-day
preconditioned threshold of each turbidity event correlated with the turbidity observations of that event.

Turbidity Meter Pipe (a) 24-h Peak Vel. p-Value (b) 24-h Peak Event Vel. p-Value (c) Exceeded Vel. Difference p-Value

TM A
(Site 1)

A 0.30 p < 10−40 −0.16 p ≈ 10−23 0.55 p < 10−40

B 0.28 p < 10−40 −0.13 p ≈ 10−15 0.38 p ≈ 10−21

C 0.29 p < 10−40 0.40 p < 10−40 0.13 p ≈ 10−08

D 0.29 p < 10−40 0.41 p < 10−40 0.16 p ≈ 10−10

TM B
(Site 1)

A 0.38 p < 10−40 0.22 p < 10−40 0.42 p < 10−40

B 0.38 p < 10−40 0.22 p < 10−40 0.48 p < 10−40

E 0.06 p < 10−40 −0.18 p ≈ 10−32 −0.30 p ≈ 10−14

F 0.02 p ≈ 10−10 −0.17 p ≈ 10−31 −0.26 p ≈ 10−08

TM C
(Site 2)

G 0.32 p < 10−40 0.40 p < 10−40 0.41 p < 10−40

H 0.30 p < 10−40 0.40 p < 10−40 0.41 p < 10−40

TM D
(Site 3)

I 0.13 p < 10−40 0.15 p ≈ 10−22 0.44 p < 10−40

J 0.27 p < 10−40 0.14 p ≈ 10−20 0.52 p < 10−40

K 0.31 p < 10−40 0.22 p < 10−40 0.24 p ≈ 10−20

The third correlation set is the Exceeded Velocity Difference where the difference between the 24-h
preceding peak velocity and the 30-day preconditioned velocity threshold (i.e., the identity lines
shown in Figure 4) of each turbidity event is correlated with the turbidity observations of those events.
While the largest correlation is only 0.55, the majority of correlations are moderately positive, which
is significantly stronger compared to the 24-h Peak Velocity and 24-h Peak Event Velocity correlations.
This shows that the exceeded velocity difference is a better indicator of the resulting turbidity event
size than a preceding increase in velocity alone.

5. Discussion

A sum total of 1087 turbidity observations of over 1 NTU were recorded from just under three
years’ worth of turbidity measurements at four turbidity meters. As each observation is taken at a
15-min interval, this is equivalent to using 54 turbidity events where the turbidity level of each event is
at least 1 NTU for over 5 h straight. When considering that turbidity is akin to a concentration and is
significantly diluted by the high flow rates typical of trunk mains, then even relatively low turbidity
observations in trunk mains should be of somewhat concern. This is because the discoloration material
that does not directly reach a customer’s tap can still resettle in a downstream network. Then, that
same discolouration material when remobilised in a smaller distribution pipe with a fraction of the
flow rate could result in a significantly higher turbidity reading.

Discolouration material clearly does build up in the trunk mains observed in this paper, this is
despite the relatively high velocity percentiles shown in Table 1 that vastly exceed the ‘self-cleaning’
velocity ranges (0.25 m/s–0.4 m/s) associated with smaller distribution pipes [3,28]. This agrees with
the findings of other authors conducted on large diameter pipes (i.e., over 200 mm), which find no
evidence for self-cleaning velocities or shear stresses [18,24,29].

The majority of p-values in Tables 3 and 4 show the null hypothesis being overwhelmingly rejected
at a 0.01 level of significance and thus conclude that higher turbidity levels (i.e., over 1 NTU) can
be explained by an upstream pipe’s preceding peak velocity exceeding its preconditioned velocity
threshold. These p-values here are particularly low due to the high number of turbidity observations
considered (i.e., over 100,000), thus making it very unlikely that these values would be seen in
uncorrelated results.

The only exceptions in results seen in Tables 4 and 5 are Pipes E and F for TM B, which are
distinctly different from all other results as, conversely, only a few high turbidity observations can be
linked to preceding hydraulic events in these pipes. This may be indicative of an underlying process
that is either preventing discolouration material from sufficiently accumulating in these pipes or the
methodology from accurately modelling them.
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Important to note is that the velocity peaks preceding turbidity observations are a relatively small
increase in comparison to the average daily peak velocity, typically being less than 110% of the average
daily peak velocity. This shows how sensitive discolouration material can be to mobilising velocities
and indicates why discolouration is so often attributed to scheduled works that alter velocities in WDS.

While Table 3 shows that a maximum amount of 84% to 100% of turbidity observations over
1 NTU in the trunk mains examined here can be linked to hydraulic mobilisation, this also conversely
shows that between 0% and 16% of turbidity observations cannot be linked to the hydraulically-driven
mobilisation process outlined in this paper. This leaves a few possibilities about the mobilisation of
the remaining turbidity: (a) some of the discolouration material was mobilised from further upstream
(i.e., reservoirs or treatment works); (b) a hydraulic process not accounting for such as a transient
event or flow reversal caused some mobilisation; (c) a non-hydraulic process caused some mobilisation
(e.g., biofilm detachment/sloughing that can sometimes occur without an increase in hydraulic force).

The methodology presented here does not make any assumptions about what the discolouration
material consists of (e.g., manganese, biofilms), what form the discolouration material takes inside
pipes (e.g., sediment, cohesive layers), nor does it assume a rate (e.g., linear, exponential) at which
discolouration material is mobilised. Additionally, because the mobilisation condition has been
reduced to a simple “greater than prior” condition, as long as the hydraulic force has a monotonic
relationship to the flow rate, it also does not matter what the hydraulic force is (e.g., velocity, shear
stress, laminar boundary layer size). This means, in theory, that the methodology could be applied to
almost any WDS regardless of the material composition, layout and range of flow rates of the WDS.

As flow meters are already ubiquitous in WDS, this methodology also shows the potential
information gain from installing even a single turbidity meter. As the accuracy of the methodology to
identify the primary sources of discolouration increases with more data, installing a turbidity meter at
a downstream service reservoir where regular maintenance is easily achievable is advised. If possible,
further turbidity meters should be installed at the downstream ends of different network branches.
This would enable the correlation of methodology results to further identify high discolouration risk
pipes, as was shown done for Site 1.

Regarding the frequency of flow and turbidity observations, while a 15 min sampling frequency
was deemed sufficient for the sites examined here, a higher frequency may be required for WDSs that
can experience sharp, but short-lived velocity spikes. This is because a significant, but short-lived
velocity spike that could cause discolouration may only present as a minor increase in the cumulative
flow over a 15 min period.

6. Conclusions

This paper presents a long-term continuous study of discolouration mobilisation and a
methodology to determine the approximate amount and origin of hydraulically mobilised turbidity in
trunk mains. The methodology is validated on three real sites in the U.K. The following conclusions
are made based on the case studies results obtained:

(a) The methodology shows that for the four turbidity meters used in this study, a maximum of 84%,
91%, 93% and 100% of turbidity observations over 1 NTU could be linked to preceding hydraulic
forces that exceeded an upstream pipe’s hydraulically preconditioned state. This shows that the
mobilisation of discolouration material is predominantly determined by hydraulic forces, which,
in turn, indicates significant potential for modelling and predicting discolouration events.

(b) The methodology showed that even without a calibrated hydraulic model, it is possible
to determine the approximate origin of discolouration material that had been hydraulically
mobilised within each site analysed. This can be used as an aid in the prioritisation of cleaning
trunk mains and targeted mains rehabilitation.

(c) The level of turbidity is shown to be significantly dependent on preceding upstream velocities
that exceed a pipe’s preconditioned state. Furthermore, discolouration material is shown to
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accumulate regardless of the velocity magnitude, thus indicating that controlling the shape of the
hydraulic profile is vital in effectively managing discolouration risk.
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Abstract: The Jucazinho reservoir was built in the State of Pernambuco, Northeastern Brazil, to water
supply in a great part of the population that live in the semi-arid of Pernambuco. This reservoir
controls the high part of Capibaribe river basin, area affected several actions that can compromise the
reservoir water quality such as disposal of domestic sewage, industrial wastewater and agriculture
with use of fertilizers. This study aimed to identify the factors that lead to water quality of the
Jucazinho reservoir using a database containing information of nine years of reservoir water quality
monitoring in line with a multivariate statistical technique known as Principal Component Analysis
(PCA). To use this technique, it was selected two components which determine the quality of
the reservoir water. The first principal component, ranging from an annual basis, explained the
relationship between the development of cyanobacteria, the concentration of dissolved solids and
electrical conductivity, comparing it with the variation in the dam volume, total phosphorus levels and
turbidity. The second principal component, ranging from a mensal basis, explained the photosynthetic
activity performed by cyanobacteria confronting with the variation in the dam volume. It observed
the relationship between water quality parameters with rainfall, featuring an annual and seasonal
pattern that can be used as reference to behaviour studies of this reservoir.

Keywords: water supply; principal component analysis; Jucazinho reservoir

1. Introduction

The Jucazinho reservoir, located in the Capibaribe River Basin in the state of Pernambuco, presents
deteriorated water quality as a result of nutrient insertion due to the use and occupation of the
contributing hydrographic basin. This reservoir is responsible for the water supply of approximately
800 thousand inhabitants in the Agreste region of Pernambuco [1].

The deterioration of water quality over the years and the consequent investments for the
improvement of treatment systems to make it drinkable preoccupy water resource managers and
technicians of COMPESA—the Sanitation Company of Pernambuco State—responsible for water
supply and sanitation services to the majority of the population of Pernambuco.
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Due to the Jucazinho reservoir’s economic and social importance for the region, the quality of its
water must be frequently monitored, noting its seasonal variation and investigating the possible causes
of the changes that occur. The reservoirs of the Brazilian semi-arid region present seasonal variations,
in which, generally, there is a greater concentration of nutrients impacting the trophic state, during the
periods of drought [2–5]. In the semi-arid region of Brazil, reservoir levels and their variations impact
the quality of the stored water, that is, in a period of little rainfall, there is a reduction in the level of
the reservoir, and there are thus consequent changes in water quality [3].

The excessive concentration of nutrients in many lakes and reservoirs is pointed out as
anthropogenic [6–9]. This subject has been extensively discussed by public authorities, considering
that low water quality implies a greater expenditure of time and financial resources to make the water
suitable [10]. In addition, there is a risk of a presence of toxins and their impacts on drinkable water
when the eutrophication process and high concentration of algae occurs [11].

Water quality is measured by parameters related to the physical, chemical, and biological
characteristics of the water [12]. Such parameters are obtained through the collection of water samples
from the reservoir for subsequent physical, chemical, and biological analyses.

A continuous collection of data that portray water quality, meteorological records, and conditions
of use and occupation of the soil in the basin leads to a set of information that are often not trivial
and that can be used to carry out analyses on water quality. For a large data set that involves many
variables, the solution for a better understanding of the relationships among variables is not simple,
so there is a need to apply a statistical technique of size reduction, that is, this technique replaces
the set of existing variables by another, smaller, set that is a combination of the original variables.
These applied statistical techniques shows the most important relationships among the variables and
provide results that allow for a temporal analysis of the behavior of the data in study area [13,14].
Factorial analysis (FA), cluster analysis, and principal component analysis (PCA) are some of the
statistical analyses applied to size reduction [15,16].

With the evolution of computers and software, there is a growing application of multivariate
statistics, leading to many studies with applications in the area of water resources. Several authors have
used techniques of multivariate statistical analysis to explain the variables that govern the water quality
of various sources, mainly for the verification of the spatial and temporal behavior of these variables,
since the amount of data involved in the study sometimes hinders the interpretation of results [17,18].

The present study had as an objective the verification of the behavior of water quality of the
Jucazinho reservoir during a period of extreme drought. For this, one of the above-mentioned
multivariate statistical techniques was used, the PCA.

2. Materials and Methods

This section presents information about the study area, where the water samples were collected
to determine the physical, chemical, and biological parameters. The method by which the data of
the water level of the dam was collected, the treatment of the data, and the statistical analysis is
also described.

2.1. Spring Studied and Its Area of Hydric Contribution

The Jucazinho reservoir (location shows in Figure 1) was built in 1998 by the National Department
of Works against Droughts (DNOCS), aiming, among other objectives, to ensure the water supply of
the region and increase flood control along the Capibaribe river downstream from the dam until Recife,
the capital of Pernambuco [19].

This reservoir has a flow contribution area greater than half of the drainage area of the Capibaribe
basin, responsible for the water supply of about 800 thousand inhabitants in the Agreste of Pernambuco.
It is located between the municipalities of Surubim and Cumaru and has an accumulation capacity of
327 million cubic meters. The flood control system is also integrated by three other reservoirs: Carpina,
Goitá, and Tapacurá. Together, the reservoirs protect 3 million people against floods [20].
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The part of the river basin controlled by the Jucazinho reservoir is fully situated within the
semi-arid region of Northeastern Brazil. While there were seasons with high rainfall during the first
decade of this century, this region suffered the worst drought of the last 60 years from 2011 to 2016.
This drought was characterized by irregular and low rainfall concentrated within a short period of
each year. This phenomenon, associated with high evaporation rates (2500–3000 mm per year), is
causing collapse in almost all reservoirs, including Jucazinho.

Figure 1. Location of the Capibaribe river basin and the area of water contribution of the Jucazinho reservoir.

Figure 2 shows the variation in the accumulated volume in Jucazinho (2005–2013). Since then,
the volume reduction trend continued until the collapse in 2016 [19].

Upstream of this reservoir, the Capibaribe river stretch is the destination of both domestic sewage
from urban areas of the cities Santa Cruz do Capibaribe and Toritama, and industrial effluent of jeans
laundries in the latter municipality [21].

 

Figure 2. The variation in accumulated volume in Jucazinho in the period from 2005 to 2011. Source: [8].
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2.2. Acquisition of Data

Currently, the Water and Climate Agency of Pernambuco (APAC) and the State Environment
Agency (CPRH) work in the fulfillment of the task of monitoring the water quality of state water
bodies, with a view to the same attribution to both agencies.

The systematic monitoring of the rivers and reservoirs has been performed more frequently
since 2005, when there was a resizing of the mesh of the sampling stations. Specifically for this year,
monitoring was performed monthly. Currently, most of the water bodies, where, basically, surface
water samples are collected, are monitored quarterly.

In this study, a series of data collected from January 2005 to August 2013, ceded by the
APAC/CPRH, was analyzed. The variables studied were temperature (T), electrical conductivity
(EC), hydrogen potential (pH), dissolved oxygen (DO), biochemical demand for oxygen (BDO), total
phosphorus (P), turbidity (TUR), total solids (TS), cyanobacteria (CB), and the volume of the dam %
(VD). These variables were selected because they are part of the main parameters monitored by CPRH.

It is worth mentioning that the series of data for the volume of the dam was obtained in the
historical database of DNOCS. Specifically for these data, filling omissions and gaps in the information
was necessary, which was carried out by linear interpolation, because the decrease of the level of the
reservoir presents linear behavior.

2.3. Statistical Analyses

The statistical analysis used aimed to reduce the size of 10 water quality parameters in some
components to facilitate interpretation of the original data. The multivariate statistical technique
of PCA was applied from the data available. The database consisted of 10 variables and 45 cases,
totalizing a record set of 450 data points. In matrix form, the original data were expressed by X = (xi,j),
where i = 1 . . . n samplings (450), and j = 1 . . . p variables (10). In the PCA technique, the first step is
to transform the array of original data into a correlation matrix [R] (p × p), for p equal to 10 water
quality parameters analyzed in this study.

The data were then subjected to a statistical standardization procedure, wherein the original
value is subtracted from the mean and divided by the standard deviation. The standardization is
a statistical procedure with the original data to facilitate the comparison between the variables of
different magnitudes, since all values of the mean and standard deviation after standardization present
0 and 1, respectively. These data were standardized in an electronic spreadsheet using Equation (1).
Yij, Xij, S(Xj), and Xj represent, respectively, the standardized value of the variable, the value of the
original variable, the standard deviation, and the mean of the record set.

Yij =
Xij − Xj

S(Xj)
a = 1. (1)

The overall consistency of the data was measured by the Kayser–Mayer–Olkim method
(KMO) [16]. The KMO method uses a criterion to identify whether a factorial analysis model that is
being used is properly adjusted to data, testing the overall consistency of the data. This procedure
checks whether the inverse correlation matrix is next to the diagonal matrix, consisting of comparing
the values of the coefficients of linear correlation observed with the values of the partial coefficients of
correlation. The number of components removed was defined, considering only components with an
eigenvalue exceeding 1 [14].

3. Results and Discussion

3.1. Descriptive Statistics of the Original Variables and Correlations between Variables

Table 1 presents the descriptive statistics of the variables originals (non-standard). For each
variable, the mean, standard deviation, variance, and coefficient of variation are presented.
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The coefficient of variation is a measure of dispersion useful for the comparison of different
distributions. The standard deviation is also a measure of dispersion, but it is relative to the mean.
As two distributions may have different means, the deviation of these two distributions are not
comparable. The solution is to use the coefficient of variation, which is equal to the standard deviation
divided by the mean [15].

Analyzing the variation coefficients of the variables presented in Table 1, it is verified that the
variable cyanobacteria (CB) presented a high degree of dispersion, with coefficient of variation equal
to 3.62, whereas the variables turbidity (TUR) and biochemical demand for oxygen (BDO) showed
values that were lower, yet still significant, 0.80 and 0.62 respectively. The other variables showed low
dispersion with coefficients of variation below 0.50.

Table 1. Descriptive statistical values of the variables.

Variable Mean Standard Deviation Variance Coefficient of Variation

CB (cell mL−1) 3.81 × 107 1.38 × 107 1.90 × 107 3.62
TUR (UNT) 5.45 4.36 19.01 0.80

BDO (mg L−1) 3.26 2.03 4.11 0.62
P (mg L−1) 0.25 0.09 0.01 0.38

DO (mg L−1) 6.85 2.05 4.21 0.30
TS (mg L−1) 1084.16 172.80 29,859.41 0.16

VD (%) 88.13 13.52 182.74 0.15
EC (dSm−1) 1.680 0.232 0.054 0.14

pH 8.37 0.62 0.38 0.07
T (◦C) 27.66 1.23 1.52 0.04

Table 2 shows the correlation matrix that was prepared to check the parameters of the greatest
correlation and help with the interpretation of data.

Higher values were observed for correlations between dissolved oxygen (DO) and hydrogen
potential (pH) (R = 0.700), indicating the elevation of pH and DO in function of algal photosynthetic
activity (production of oxygen), promoted by the contribution of nutrients [18,22], and between total
solids (TS) and electrical conductivity (EC) (R = 0.839), indicating that the greater part of total solids is
in a dissolved state.

Table 2. Correlation matrix of the variables.

T pH EC DO BDO P TUR TS CB VD

T 1.000
pH 0.362 1.000
EC −0.078 0.055 1.000
DO 0.383 0.700 −0.155 1.000

BDO 0.279 0.500 −0.262 0.427 1.000
P −0.038 0.081 −0.537 0.099 0.449 1.000

TUR 0.309 0.088 −0.510 0.156 0.099 0.395 1.000
TS −0.114 0.024 0.839 −0.082 −0.293 −0.455 −0.435 1.000
CB 0.000 −0.036 0.421 −0.141 −0.195 −0.375 −0.220 0.390 1.000
VD −0.137 −0.107 −0.537 0.009 −0.011 0.097 −0.061 −0.483 −0.105 1.000

Note: Temperature (T) in ◦C hydrogen potential (pH), electrical conductivity (EC) in dS m−1, dissolved oxygen
(DO) in mg·L−1, Biochemical Demand for Oxygen (BDO) in mg·L−1, total phosphorus (P) in mg·L−1, turbidity
(TUR) in UNT, total solids (TS) in mg·L−1, cyanobacteria (CB) in cel·mL−1, and volume of the dam (VD) in %.

There is a proportional relation between the content of salts dissolved and the electric conductivity
and that the content of salts can be estimated by measuring the conductivity of the water [4]. In water
sources in the state of Ceará, in Northeast Brazil, they observed a strong correlation of electrical
conductivity with sodium, magnesium, calcium, hardness and chloride, that is, dissolved solids [23].
Further strengthening the strong correlation between electrical conductivity and dissolved solids,
the authors of [24] found a correlation exceeding 0.9 for the electrical conductivity and the chlorates.
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The justification of this result consisted in the increase of chlorides as a function of the high rate of
evaporation during the dry season in the semi-arid region of Ceará-Brazil.

3.2. Principal Component Analysis

The application of the technique of PCA resulted in the extraction of several components, whose
first four explained approximately 77% of the total variance (Table 3). It was verified that the first
(PC1), second (PC2), third (PC3), and fourth (PC4) components explained, respectively, 34%, 22%, 11%,
and 10% of the total variance.

Table 3. Eigenvalues and explained variance of the variables.

Components Eigenvalues
Explained

Variance (%)
Accumulated
Eingenvalues

Accumulated Explained
Variance (%)

PC1 3.35 33.52 3.35 33.52
PC2 2.22 22.18 5.57 55.70
PC3 1.12 11.23 6.69 66.93
PC4 1.02 10.22 7.72 77.15
PC5 0.73 7.32 8.45 84.47
PC6 0.59 5.88 9.04 90.35
PC7 0.34 3.38 9.37 93.73
PC8 0.29 2.86 9.66 96.59
PC9 0.23 2.26 9.89 98.86
PC10 0.11 1.14 10.00 100.00

After that, only PC1 and PC2 were selected, because the two together add up to more than
55% of the variance studied, explaining the greater part of existing correlations in the data set.
According to [25], coefficients of correlation greater than 0.5 express a strong relationship between the
variables of water quality.

Table 4 shows the weights of the variables that most contributed to these principal components.
The parameters that most contributed positively to PC1 were phosphorus and turbidity, while the
parameters electrical conductivity, total solids, and cyanobacteria contributed negatively to it.

The parameters that most contributed positively to PC2 were pH and OD, while the parameter
associated with the volume of water accumulated contributed negatively to it.

Table 4. Weights of the variables for PC1 and PC2.

Components PC 1 PC 2

T 0.299 0.561
pH 0.306 0.81
EC −0.853 0.389
DO 0.432 0.696

BDO 0.576 0.464
P 0.688 −0.133

TUR 0.596 −0.012
TS −0.812 0.364
CB −0.548 0.155
VD 0.366 −0.472

With the graph of projections for the weights of the variables plotted on the PC1 × PC2 plane
(Figure 3), it is suggested that PC1 explains the increase in the concentration of dissolved solids
and cyanobacterial proliferation as a function of the drought period (absence of rainfall), and, as
a consequence of the lack of rainfall, turbidity and the levels of total phosphorus in the spring
were reduced.

Turbidity results from the presence of colloidal particles in suspension, divided organic matter,
plankton, and other microscopic organisms [26]. Turbidity can also be related to the inflow of
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effluents [27], and these are rich in phosphorus [6,28]. Thus, these two variables are associated with,
and contribute positively to, this component, while the total dissolved solids, electrical conductivity,
and cyanobacteria contribute negatively.

On the other hand, the authors of [24] stated that the total dissolved salts in the waters may be from
both natural sources (mineralization and marine aerosols) and anthropic sources (domestic sewage).
Some researchers studying water bodies of the state of Ceará made conclusions about the origin of
the salts in some of these streams. The authors of [23], studying the waters of the Acaraú river basin,
verified that the common origin of these minerals was the weathering of rocks and subsequent runoff
from drained areas. Studies in the Jaibaras River, also in Ceará, correlated the salts with domestic
sewage and spa waste [29]. Studies about the Trussu river basin, identified the washing of clothes and
domestic sewage as being the source of chloride and sodium [30].

The water contribution area of the Jucazinho reservoir have a predominance of soil types Planosol,
Solonetz, and Bruno but not Calcic or Regosol [20], which may be contributing to the salinization of
water [31]. It is important to emphasize that the salts used by laundries/dyers in Toritama for fixing
colors onto fabric confer a high salinity of the effluent. These wastes, when discarded without being
properly treated, may be another source of salts to the river and consequently to the reservoir [1].

PC2 indicates the intensification of the process of photosynthesis performed by cyanobacteria,
which can be justified by the contributions of the weights of pH, DO (positively), and the percentage
of the volume of the dam (negatively).

According to [32], the northeastern region of Brazil presents more propitious conditions for
cyanobacterial blooms, because the climate is always hot, reservoirs with low levels, caused by
recurrent periods of drought, and a lack of sanitation services, among other factors that favor the
excessive increase of biomass in these bodies. According to [33], the maximum rate of growth of the
cyanobacteria is present at temperatures above 25 ◦C and the range of optimal growth happens at a
pH level from 7.5 to 10, inhibited below 5. The authors of [34] affirm that the aquatic communities
can interfere with the values of pH, mainly through the metabolism of CO2. During the process of
photosynthesis, in which there is consumption of this gas by phytoplankton, an increase in the pH
values of the medium occurs. Thus, PC2 shows the relationship between photosynthetic activity and
the production of oxygen, when the accumulated volume remains at lower levels.

Reseachers performed a statistical evaluation in rivers in the state of Minas Gerais through PCA in
the period from 2007 to 2011 [35]. The results showed a positive correlation of density of cyanobacteria
with pH, chlorophylla, temperature, and nitrate, and an inverse relationship with turbidity, color, and
solids in suspension. The researcher highlights that high loads of nitrate and phosphorus, alkaline
pH values, high water temperatures, and prevalence of long periods of drought is the necessary
combination for the increase in densities of cyanobacteria.

In statistical study performed in the Teles Pires and Cristalino rivers in the Alto Tapajós basin,
located in the state of Mato Grosso, observed, both for the DO and for the pH, during the study period,
a negative correlation with the rainfall [36].

Figure 3 displays the graph of weights for the first two principal components. Geometrically, the
weights correspond to the cosines of the angles that the principal components make with the original
variables. The weights of the original variables in linear combination define each principal component.
The relation between the variables can be observed in the graph of the weights. Based on these
relations, it is possible initially to infer a physical interpretation for the principal components. Still in
the same figure, it is interesting to note the provision of variables along PC1, which shapes 33.52% of
the variance of the data matrix. The volume of the dam (VD) has the opposite sign of cyanobacteria
(CB), electrical conductivity (EC), and total solids (TS).

Figure 4 shows the score graph with the objective of analyzing the seasonal behavior of the data
series. It was possible to group together the years 2005, 2006, 2007, 2012, and 2013 (Group 1) with more
positive contributions to the explanation of PC1, while the years 2008, 2009, 2010, and 2011 (Group 2)
formed a group that contributed negatively to it.
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The scores of the PCA, presented in Figure 4, revealed differences resulting from the seasonal
influence and annual accumulated volume, which in turn is directly related to rainfall in the water
contribution area of the reservoir.

 

Figure 3. Weights of principal components plotted on the PC1 × PC2 plane.

Figure 4. Scores of components plotted on the PC1 × PC2 plane.

With the aid of the score graph (Figure 4), it is possible to verify the tendency of grouping for the
explanation of PC2. The graph shows that most of the white circles and triangles, which represent
the first semester of each year studied, are located above the zero value on the x-axis, so the data
for the first semester contributed positively to PC2. Adversely, the black triangles and circles, which
represent the second semester of each year studied, are located below the zero value on the x-axis, so it
is possible to conclude that the data of second semesters contributed negatively.
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In fact, the largest pluviometric indexes in the portion of the Capibaribe river basin controlled by
the Jucazinho dam occur in the months of February to June. The lowest values of the monthly average
rainfall occur in the period from August to January and are less than 40 mm [19].

The observed trend suggests that the intensification of the drought period associated with an
increase of the dissolved solids concentration exhibits behavior that changes annually, and is explained
by PC1. The intensification of the process of photosynthesis is performed by cyanobacteria, ranging
within six months, and is explained by PC2.

4. Conclusions

The Jucazinho reservoir located in the semi-arid region of Northeastern Brazil suffers from
recurrent water level reductions, which are aggravated for years when drought is severe. The studies
contemplated data of nine years, and, after the application of statistical techniques and subsequent
interpretation of the results. The main conclusions are summarized in the following points.

1. The employment of PCA promoted a reduction of 10 parameters of surface water quality in two
components, which together explain 55% of total variance, illuminating the main problems that
interfere in the temporal variation in water quality.

2. The results of PCA showed a tendency toward formation over years, and even over months,
of similar water quality parameters, conditioned by rainfall, indicating, in general, the temporal
variations of the parameters analyzed. The temporal pattern obtained by the analysis shows
that two factors are responsible for the variation in water quality during periods of drought, one
observed over many years and other observed every six months.

3. Wet years increase the inflow to the reservoir, so more domestic and industrial sewage is
contributed, which in turn increases the turbidity and the content of phosphorus in the spring.
On the other hand, years with little or no precipitation provide low inflow to the reservoir. In these
conditions, there is an increase in total solids (dissolved salts) and, consequently, in electrical
conductivity in view of the increase of the evaporation of the repressed water volume. An increase
photosynthetic activity can also be seen, as is evidenced by the increase in the oxygen content in
the water and in pH.

4. The research shows the importance of water quality monitoring, where adequate statistical
treatment can provide subsidies for better monitoring to preserve water quality for public water
supply. In extreme dry periods, the identification of annual and semi-annual variation behavior
can assist managers in making decisions regarding reservoir operation, monitoring the most
important parameters and actions that minimize the impact of this extreme drought.

5. The results of the study were relevant in the conduction of new methodologies for monitoring
and management of the reservoir, since the applied statistical treatment shed light on the most
recurrent problems of extreme drought, and these findings can be extended to other reservoirs
located in the semi-arid of Northeastern Brazil.
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Abstract: Dealing with real world engineering problems, often comes with facing multiple and conflicting
objectives and requirements. Water distributions systems (WDS) are not exempt from this: while cost and
hydraulic performance are usually conflicting objectives, several requirements related with environmental
issues in water sources might be in conflict as well. Commonly, optimisation statements are defined
in order to address the WDS design, management and/or control. Multi-objective optimisation can
handle such conflicting objectives, by means of a simultaneous optimisation of the design objectives,
in order to approximate the so-called Pareto front. In such algorithms it is possible to embed
preference handling mechanisms, with the aim of improving the pertinency of the approximation.
In this paper we propose two mechanisms to handle such preferences based on the TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking
Organisation METHod for Enrichment of Evaluations) methods. Performance evaluation on two
benchmarks validates the usefulness of such approaches according to the degree of flexibility to
capture designers’ preferences.

Keywords: water distribution systems; multi-objective optimisation; evolutionary multi-objective
optimisation

1. Introduction

Dealing with real world engineering problems often comes with facing multiple and conflicting
objectives and requirements. Water distributions systems (WDS) are not exempt from this: while cost
and hydraulic performance are usually conflicting objectives, several requirements related with
environmental issues in water sources might be in conflict as well. Commonly, optimisation statements
are defined in order to address the WDS design, management and/or control. Nevertheless, such problems
become difficult since, besides their multi-objective conflicting nature, the optimisation problem might
be non-linear (due to head-loss relationships for example) and/or discrete combinatorial (due to
standardisation of pipe parameters) [1,2].

Multi-objective optimisation [3] can handle such an issue, by means of a simultaneous optimisation
of the design objectives. At the end of this process, a potential set of solutions, the Pareto front,
is approximated. In this set of solutions, there is not a best solution, but a preferable solution.
This means that several solutions are calculated, with different trade-offs between conflicting objectives
and the engineer will select among them the most preferable for the problem at hand.
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Given that several solutions are calculated, the designer must perform a decision making stage.
In this stage, it is required to express somehow the preferences according to the trade-offs, in order to
select the most suitable (preferable) solution for the problem at hand. This might not be a trivial task,
since most of the times to interpret such trade-offs is not easy, given the multidimensional structure of
the problem. Therefore, visualisation techniques [4] and multi-criteria decision making methodologies
are valuable and helpful for designers.

It is possible to use different decision making methodologies, such as TOPSIS [5] (Technique for
Order of Preference by Similarity to Ideal Solution), Physical Programming [6], PROMETHEE [7]
(Preference Ranking Organisation METHod for Enrichment of Evaluations), among others. While it is
usual to apply such methodologies in the decision making step, it is also possible to embed them into
the optimisation process. For example, the Physical Programming method has been used before in order
to evolve the population of a multi-objective evolutionary algorithm (MOEA) towards the pertinent
region of the objective space [8,9]. With such approach, it is possible to use preference-information
actively in the optimisation, improving the usability of the approximated Pareto front, as well as
dealing with more than 3 design objectives effectively. In this paper some modifications are proposed,
incorporating the TOPSIS and the PROMETHEE mechanism for the same purpose in a MOEA.

The remainder of this paper is as follows: in Section 2 a review on multi-objective optimisation
techniques for WDS is presented, identifying the necessity of preference handling techniques.
In Section 3 the TOPSIS and PROMETHEE methods are incorporated into a MOEA for preference
handling and they are evaluated in Section 4 with two MOPs. Finally, conclusions of this work
are commented.

2. Review

A literature review on the optimisation of WDS is presented in [2], where the authors bring
together over two hundred journal publications from the past three decades. From those publications,
the authors create a table with substantial information from over one hundred of them, from which
seventeen papers focus on the use of a MOO approach. The first papers on MOO for WDS focused
solely on the optimisation of operation and maintenance costs. Next, the optimisation of water quality
became the main interest by some researchers. Nowadays, research on the subject focuses on finding
the trade-off between cost and water quality. A review of each paper is presented below, followed by
Table 1, which resumes the MOO design characteristics of each publication. Background and definitions
of the MOO process are presented in the Appendix for interested readers.

Table 1. Summary of MOOD procedures for WDS design concept. J(θ) refers to the number of
objectives; θ to the number of sets of decision variables and g(θ), h(θ) to the number of sets of
inequality and equality constraints respectively.

Reference
MOP MOO MCDM

J(θ) θ (g(θ), h(θ)) Algorithm Features Plot Insights

Savic et al. [10] 2 1 (2, 1) Hybrid GA Local search - -
Sotelo and
Baran [11] 4 1 (4, 0) SPEA -

Scatter
plot -

Kelner and
Leonard [12] 2 3 (2, 2) GAPS

Penalised
tournament

selection
scheme

Scatter
plot -
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Table 1. Cont.

Reference
MOP MOO MCDM

J(θ) θ (g(θ), h(θ)) Algorithm Features Plot Insights

Baran et al. [13] 4 1 (4, 0)

SPEA
NSGA

NSGA-II
CNSGA
NPGA
MOGA

Comparison
between

algorithms
- -

Lopez-Ibanez
et al. [14] 2 1 (3, 1) SPEA2

Comparison
between

initial
population
generation
methods

Scatter
Plot

Attainment
surfaces

Odan et al. [15] 2 1 (3, 1) AMALGAM Real-time
Scatter
Plot -

Stokes et al. [16] 2 1 (2, 0) NSGA-II -
Scatter

Plot

Minimum
objective

values

Prasad et al. [17] 2 2 (3, 0) NSGA-II -
Scatter

plot -

Kurek and
Brdys [18] 3 2 (5, 0) NSGA-II

Problem
specific

modification

Scatter
Plot -

Ewald et al. [19] 3 2 (4, 0)
Distributed

MOGA

Distributed
application
using grid
computing

Scatter
Plot -

Alfonso et al. [20] 3 1 (2, 1) NSGA-II -
Scatter

Plot -

Giustolisi
et al. [21] 2 1 (4, 1) OPTIMOGA - Table -

Kougias and
Theodossiou [22] 3 1 (4, 0) MO-HSA -

Scatter
Plot -

Kurek and
Ostfeld [23] 3 3 (3, 1) SPEA2 -

Scatter
Plot

Utopian
solution

mechanism

Kurek and
Ostfeld [24] 2 2 (3, 1) SPEA2 -

Scatter
Plot

Most
“balanced”

solution

Mala-Jetmarova
et al. [25] 2 1 (4, 0) NSGA-II -

Scatter
Plot -

Mala-Jetmarova
et al. [26] 3 1 (4, 0) NSGA-II -

Scatter
Plot -

A multi-objective hybrid approach of the Genetic Algorithm (GA) is introduced by [10] to find the
trade-off between the minimisation of: (a) energy; and (b) maintenance costs on a net with four pumps
and one reservoir. One set of binary decision variables is used for this problem, which indicates the
pump statuses for each hour on a twenty-four hours period. The recovery of the initial reservoir water
level at the end of the simulation period is used as the equality constraint, while the minimum and
maximum reservoir levels are set as inequality constraints.

289



Water 2017, 9, 996

A simplified system, composed of one source, five pumps and one elevated reservoir is the
object of study by [11], where strength Pareto evolutionary algorithm (SPEA), using one set of
binary decision variables for the pump statuses, finds the trade-off between the minimisation of the:
(a) pump operating costs; (b) number of pump switches; (c) difference between initial and final levels
in the reservoir; and (d) maximum daily power peak. The problem contains four inequality constraints:
(a) minimum reservoir water levels; (b) maximum reservoir water levels; (c) minimum pipeline
pressure; and (d) maximum pipeline pressure. At the end of the paper, a two-dimensional Pareto front
is presented.

A WDS from Belgium is optimised by [12] using a multi-objective genetic algorithm (MOGA) with
penalised tournament selection scheme, where two objectives are minimised: (a) the pump operating
costs; and (b) the number of pump switches. Three sets of decision variables are defined: (a) the binary
pump statuses; (b) the rotating speed of the pumps; and (c) the pressure loss coefficient for the control
valve. The problem is composed of two sets of equality constraints: (a) the initial reservoir water level
must be reached by the end of the optimisation; and (b) the consumer demands must be satisfied at
any period of time. In addition, two sets of inequality constraints must be met: (a) the maximum;
and (b) the minimum water levels for each reservoir. The authors plot a two-dimensional Pareto front,
but do not choose a preferred solution.

A comparison of six MOO algorithms is performed by [13] using the same WDS from [11].
The compared algorithms are: SPEA, non-dominated sorting algorithm (NSGA), NSGA-II,
controlled elitist non-dominated sorting genetic algorithm (CNSGA), niched Pareto genetic algorithm
(NPGA), and MOGA. The MOP is designed with four objectives, the minimisation of: (a) pump
operating costs; (b) number of pump switches; (c) difference between initial and final water levels in
the reservoir; and (d) maximum daily power peak. Only one set of decision variables is used, the binary
pump statuses, while four inequality constraints are used: (a) the minimum reservoir water levels;
(b) the maximum reservoir water levels; (c) the minimum pipeline pressure; and (d) the maximum
pipeline pressure. The algorithms are compared by six different metrics: (a) overall non-dominated
vector generation; (b) overall non-dominated vector generation ratio; (c) error ratio; (d) generational
distance; (e) maximum Pareto front error; and (f) spacing.

The simulation of a small WDS is optimised by [14] using the second version of SPEA, the SPEA2.
One set of decision variables, the binary pump status, is used to find the trade-off between two
objectives, the minimisation of: (a) pump operating costs; and (b) number of pump switches.
One equality constraint is used, the pressure at demand nodes, while three inequality constraints are
used: (a) maximum tank water levels; (b) minimum tank water levels; and (c) tank volume deficit at
the end of the simulation. The authors compare the Pareto fronts of four different methods for the
initial population generation, using scatter plots and the attainment surfaces as the metric.

A real-time pump scheduling framework is proposed by [15], where optimisation is performed
using a multialgorithm genetically adaptive method (AMALGAM). The framework is applied to a
WDS from Brazil, and the MOP is composed of two objectives: (a) the minimisation of pump operating
costs; and (b) maximisation of operational reliability. One set of decision variables, the binary pump
status, is considered. Three sets of inequality constraints are used: (a) the minimum pressure at any
network node; (b) the tank water levels at the end of the scheduling period; and (c) the maximum
number of pump switches. In addition, one equality constraint, where the occurrence of simulation
errors must be equal to zero, is considered. The authors present the resulting Pareto front on a
two-dimensional scatter plot.

Seven different scenarios are optimised by [16] using NSGA-II. Each scenario is composed
of different emission factors and time horizons. The MOP is composed of one set of decision
variables, the pump schedules, and two objectives, the minimisation of: (a) pump operating costs;
and (b) greenhouse gas emissions associated with the use of electricity from fossil fuel sources. Two sets
of inequality constraints are considered: (a) the minimum pressure at network nodes; and (b) minimum
total volume of water pumped into each district metered area. The authors present the Pareto fronts
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on two-dimensional scatter plots, and the solutions selected for analysis are based on minimum values
for both objectives.

The simulation of a real water utility network is subject to MOO by [17] using NSGA-II, where the
trade-off between two objectives: (a) the minimisation of the total disinfectant dose; and (b) the
maximisation of the volumetric percentage of water supplied with disinfectant residuals, is found.
Two decision variables are used in this optimisation: (a) the locations of booster disinfection stations;
and (b) the disinfection injections schedules. In addition, three inequality constraints are used:
(a) non-negative disinfectant doses; (b) lower bound on the value of the Objective (b); and (c) upper
bound on disinfectant concentrations at monitoring nodes. An analysis of the Pareto front is made by
the authors using scatter plots.

The Pareto front of a WDS is found by [18] using NSGA-II. The MOP is elaborated with three
objectives, the minimisation of: (a) the number of chlorine booster stations; (b) mean value of chlorine
concentrations; and (c) mean value of instances not meeting quality requirements. In addition,
two decision variables are used: (a) the presence of a booster stations at a network node; and (b) the
chlorine concentrations at booster stations and treatment plants. In total, five inequality constraints are
used in this problem: (a) the maximum number of booster stations; and (b) the minimum number of
booster stations; (c) the maximum shlorine concentration and (d) the minimum chlorine concentrations;
and (e) the minimum chlorine concentration at treatment plants. By the end of the paper, the authors
present a scatter plot of the Objectives (b) and (c), which are grouped by the values of Objective (a).

A WDS from Poland is optimised by [19] using a distributed MOGA, based on the island GA.
The problem is composed of the same objectives and decision variables presented by [18], but only
uses the first four inequality constraints. The resulting Pareto front is presented by a two-dimension
scatter plot of objectives (b) and (c) grouped by values of objective (a).

Two case studies are optimised by [20] using NSGA-II, one hypothetical and one simulation
of a WDS from Colombia. For both cases, the objectives are defined as the minimisation of: (a) the
number of polluted nodes; and (b) the number of the operational interventions needed. Only one set
of decision variables is used for this problem, the operational interventions on pumps, valves and
switches. In total, three sets of constraints are used on this publication, two inequality constraints,
where: (a) nodes pressures must be positive; and (b) technical operational capacity for interventions
must be met, and one equality constraint, where network connectivity must be ensured. The resulting
Pareto front is presented as a two-dimensional scatter plot.

The optimisation of a WDS is performed by [21] using the optimised MOGA (OPTIMOGA).
The MOP is composed of four inequality constraints: (a) the minimum pressure for sufficient pressure,
expressed by the number of times which it is not satisfied; (b) the tank volume deficit at the end of the
simulation; (c) the minimum tank levels, expressed as the times which it is not satisfied; and (d) the
maximum tank levels. It is also composed of one equality constraint, the global mass balance in each
tank (there is only one tank in the case study). One set of decision variables, the binary status of the
pumps and gates, is used to minimise two objective functions. The first objective is an aggregate
function of: (a) pump operating costs; and (b) water losses cost; and the second is the function of
Inequality Constraints (a), (b) and (c). The authors present a table with the resulting Pareto front of the
problem, and one solution is selected for being the only feasible solution.

Two multi-objective optimisation algorithms, based on the harmonic search algorithm (HSA),
are developed by [22] in order to solve a pump scheduling problem, the multi-objective HSA (MO-HSA)
and the polyphonic HSA (Poly-HSA). The MO-HSA is used to optimise an operational pumping field
from Paraguay, and the problem is composed by the minimisation of four objectives: (a) pump
operating costs; (b) quantity of pumped water; (c) electric energy peak consumption; and (d) number
of pump switches. The optimisation is executed two times, Once with Objectives (a), (b) and (c),
and again with Objectives (a), (b), and (d). The problem is also composed of one set of decision
variables, the binary pump status, and four sets of inequality constraints, used within a penalty
mechanism. Such constraints are: (a) the minimum water levels in storage tanks; and (b) the maximum
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water level in storage tanks; and the (c) the minimum volume deficit in the storage tanks at the end
of the scheduling period; and (d) the maximum volume deficit in the storage tanks at the end of
the scheduling period. The authors present, for both runs, a three-dimensional scatter plot with the
Pareto front.

Two optimisation problems, one related to chlorine concentrations, and another related to water
age, are solved by [23] using SPEA2. In total, four objectives are defined for the MOP, the minimisation
of: (a) pump operating costs; (b) disinfectant concentrations at monitoring nodes; (c) water age for
demand nodes; and (d) cost of tanks. The first optimisation model includes Objectives (a), (b) and
(c), while the second model includes Objectives (a), (c) and (d). Three sets of decision variables are
used for this problem: (a) the pump speeds; (b) the disinfectant concentrations at treatment plants;
and (c) tank diameters. One equality constraint, the pressure at nodes, and three inequality constraints:
(a) the minimum volume deficit at the end of the simulation; (b) the maximum volume surplus at
the end of the simulation; and (c) the minimum amount of stored water at any time, are used in both
optimisation models. The resulting Pareto fronts are presented on three-dimensional scatter plots,
and three solutions are selected for each Pareto, one “balanced” solution, which is the closest an
Utopian solution, and the other two are related to minimal values for Objectives (a) and (b).

The optimisation of two systems is performed in [24] using SPEA2 and the MOP defined in [23],
but only the first two objectives and decision variables are used. The authors present a two-dimensional
scatter plot for both examples, and a single “balanced” solution is selected on the MCDM stage, but no
metrics were specified.

A total of fourteen different scenarios are optimised by [25] using NSGA-II. All scenarios are
defined as a MOP with two objectives, the minimisation of: (a) pump operating costs; and (b) deviations
of the actual constituent concentrations from the required values. For such problems, one set of decision
variables, the binary pump status, are defined. Furthermore four sets of inequality constraints are
considered: (a) the minimum pressure at customer nodes; (b) the minimum water level in the storage
tanks; (c) the maximum water level in the storage tanks; and (d) the volume deficit in the storage tanks
at the end of the scheduling period. The resulting Pareto front for all scenarios are presented on a two
dimensional scatter plot and, for comparison with results from the literature, one “balanced” solution
is selected for analysis, but no metrics were specified.

Six different scenarios based on a network with ninety-four nodes are optimised by [26] using
NSGA-II. All scenarios are defined as a MOP with three objectives, the minimisation of: (a) pump
operating costs; (b) the turbidity deviations from the allowed values; and (c) deviations of the actual
constituent concentrations from the required values. Decision variables and constraints are defined
as in [25]. The resulting Pareto fronts for all scenarios are presented on a three-dimensional scatter
plot and three different two-dimensional scatter plots, for each two objectives combination, and two
solutions were selected from two different scenarios for comparison purposes. No specific metrics
were indicated for such selections.

In Table 1 a summary of such papers is shown. It is interesting to note that the vast majority of
papers are focusing on MOPs with two or three design objectives. A possible reason for this might be
the difficulties to perform a MCDM and to visualise the Pareto front approximation. For this reason,
the idea of stating more than three design objectives for WDS is exploited in this paper, using different
preference mechanisms to evolve towards the pertinent region of the Pareto front.

3. Proposal and Experiment Description

As it has been noticed before, tendencies regarding the number of design objectives for MOPs is to
state two or three. One of the circumstances leading to this might be that any MOP with more than three
design objectives is said to be a many-objectives MOP problem. In such an instance, mechanisms for
diversity and convergence are in conflict. Therefore, additional mechanisms are often required in
order to guarantee a suitable performance of the Pareto front approximation process. One of such
mechanisms is the inclusion of preferences [27].

292



Water 2017, 9, 996

As it has been commented in the introduction, a MOEA using Physical Programming as preference
handling mechanism, the sp-MODEII (Multi-Objective Differential Evolution with Spherical Pruning,
version II) (Toolbox available at https://www.mathworks.com/matlabcentral/fileexchange/47035)
has been proposed before [8,9]. The sp-MODEII is an evolutionary algorithm for multi-objective
optimisation. Its main characteristics are:

• It uses Differential Evolution (DE) algorithm [28–30] to produce its offspring at each generation.
It is used given its convergence properties and simplicity for MOO [31].

• It uses spherical pruning [32] in order to promote diversity in the approximated Pareto front.
Basically, the objective space is partitioned using spherical coordinates, and one solution is selected
in each spherical sector, avoiding overcrowding areas.

• It uses physical programming (PP) [6] for pertinency improvement and as a mechanism
for many-objectives optimisation. It states such preferences in aspiration levels in a matrix
M as depicted in Table 2. This PP index is used as an additional mechanism to prune
solutions, according to the preference index, in order to get a manageable size of the Pareto
front approximation.

Nevertheless, in spite of its usefulness, different mechanisms might substitute the Physical
Programming approach requiring less information from the designer. For this reason, we modify such
an algorithm with two additional mechanisms for pertinency improvement (Available at: https://www.
mathworks.com/matlabcentral/fileexchange/65145). The first of them the TOPSIS mechanism [5],
and the second the PROMETHEE II [7] method. That is, the original pruning mechanism using
Physical Programming is modified. While the TOPSIS mechanism just require as input the Pareto
front approximation, the PROMETHEE II method require information about (in) significant differences
for each design objective (See Table 3). The idea is to evaluate and compare different preference
information methods working actively in the MOO process. Among the TOPSIS, PROMETHEE II and
PP methods, the former requires the less information, while the latter the most. Comparison of input
required for each mechanism is depicted in Table 4.

Table 2. Preference matrix M. Five preference ranges have been defined: highly desirable (HD),
desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

J1(x) [-] . . . . . .
. . .

Jn(x) [-] . . . . . .

Table 3. Matrix with (in)significant differences. Significant (S) and Insignificant (I) differences for each
design objectives are defined.

I/S Differences Matrix

Objective I S

J1(x) [-] . .
. . .

Jn(x) [-] . .
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Table 4. Input required for each preference mechanism.

Method Input

TOPSIS Pareto front approximation.

PROMETHEE II Pareto front approximation.
Significant/Insignificant differences.

Physical Programming Solution from the Pareto front approximation.
Information about the desirability limits.

For visualisation, Level Diagrams (Toolbox available at https://www.mathworks.com/
matlabcentral/fileexchange/62224) are used [33–35], due to their capabilities to depict m-dimensional
information [4]. Its main characteristics are:

• It uses as many subplots as design objectives to depict trade-off information.
• Solutions are synchronised by the vertical axis, while the horizontal axis keeps their original units.

That is, no normalisation deforming the units scale is used.
• Trade-off relationships might be propagated to design variables by synchronising the same

vertical axis.

4. Test Cases

In order to evaluate the impact of substituting the original pruning mechanism in the sp-MODEII
algorithm, two MOPs with 5 and 6 design objectives are stated.

4.1. Case Study 1: Dissolved Oxygen Control in a Waste-Water Treatment Process

The first MOP is a dissolved oxygen control problem for an activated sludge waste-water treatment
process [36]. This case study is proposed in order to evaluate the MCDM tools at the end of the MOOD
procedure. The process is modelled as a continuous state-space model as:

dx
dt

= Ax + Bu (1)

y = Cx + Du (2)

where x is the state vector, u and y are the input and output vectors and A, B, C and D are the
state-space matrices with the following values:

A =

[
−100.03 115.00
167.77 −211.47

]
(3)

B =

[
0.87
−1.55

]
(4)

C =
[

7.55 0.32
]

(5)

D = 0 (6)

The control problem consists of tuning a proportional-integral (PI) controller in order to keep
the dissolved oxygen concentration within desired specifications, by manipulating the oxygen mass
transfer coefficient in the treatment process. A total of five design objectives are stated:

J1(x): Settling time (day) for a setpoint reference change (minimise).
J2(x): Settling time (day) for an input disturbance in the sludge process (minimise).
J3(x): Maximum deviation from setpoint (gCOD/m3) due to an input disturbance in the sludge

process (minimise).
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J4(x): Total variation of oxygen mass transfer coefficient (day−1) due to the setpoint reference change
and the input disturbance (minimise).

J5(x): Aeration energy cost (kWh/day) due to the setpoint reference change and the input
disturbance (minimise). Given a value of the control action for a given instant ui, the instant
aeration energy cost AEi is calculated as:

AEi = 0.4032u2
i + 7.8408ui (7)

A PI controller C(s) has 2 design variables: proportional gain kp = x1 and integral gain ki = x2.
The Laplace expression of a PI controller is as follows:

C(s) = kp + ki
1
s

(8)

Therefore, the MOP for the optimisation process is:

min
x

J(x) = [J1(x), J2(x), J3(x), J4(x), J5(x)] (9)

subject to

0.00 ≤ x1 ≤ 1000 (10)

0.00 ≤ x2 ≤ 10000 (11)

Results from optimisation process are depicted in Figure 1. Inflection point in design
objective J5(x) is used for further interpretability, in order to identify objective vectors with
J5(x) > 2.2 × 104 kWh/day and J5(x) ≤ 2.2 × 104 kWh/day. With such information is possible
to track tendencies across subplots. For example, the lower J5(x) the bigger J1(x), J2(x) and J3(x).
This means that a reduction on the aeration energy tends to worsen settling times and the load
deviation capacity. In addition, it means that aeration energy and total variation of control action
are correlated.

Figure 1. Cont.
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Figure 1. Pareto front approximation for MOP I.

Using preferences stated in Tables 5 and 6 and the TOPSIS method, three solutions have been
selected for further control tests. Their time responses are depicted in Figure 2 when facing a setpoint
change and a disturbance. As expected, none of such solutions is better than the others in an overall
sense: each one has a unique trade-off. This approach might be used by a decision maker, in order to
focus in a subset of approximated Pareto optimal solutions, to perform a final decision regarding the
controller to implement. Next, we will actively use such methodologies and we will compare Pareto
optimal solutions approximated in each case.

Table 5. Preference matrix m for MOP statement I. Five preference ranges have been defined:
highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

J1(x) (day) 0.03 0.04 0.05 0.06 0.07 0.08
J2(x) (day) 0.005 0.010 0.015 0.020 0.025 0.030

J3(x) (gCOD/m3day) 0.000 0.005 0.010 0.0150 0.020 0.025
J4(x) (day−1) 20.00 30.00 40.00 50.00 60.00 70.00

J5(x) (kWh/day) 1.00 2.00 3.00 4.00 5.00 6.00

Table 6. Matrix with (in) significant differences for MOP statement I. Significant (S) and Insignificant (I)
differences for each design objectives are defined.

I/S Differences Matrix

Objective I S

J1(x) (day) 0.01 0.03
J2(x) (day) 0.05 0.05

J3(x) (gCOD/m3day) 0.025 0.05
J4(x) (day−1) 5.0 10.00

J5(x) (kWh/day) 0.5 1.00
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Figure 2. Time response comparison among selected controllers for MOP I.

4.2. Case Study 2: Pollution Management in Water Distribution Systems

This case study is based on the hypothetical condensed example of the Bow River Valley,
as presented in [37], and it follows the preliminary results that were presented in [38]. It deals with the
pollution problem due to a cannery industry (Pierce-Hall Cannery), to two sources of municipal waste
(Bowville and Plymton), with a park in the middle (Robin State Park). Water quality in the river is
evaluated via dissolved oxygen concentration (DO). Quality of the effluent from the three treatment
plants is measured with the biochemical oxygen demanding material (BOD) which is separated into
carbonaceous and nitrogenous material (BODc and BODn respectively). The major aim of this example
is to evaluate structural differences in the approximated Pareto fronts when using different policies in
the pruning mechanism of the sp-MODEII.

The MOP under consideration has six design objectives:

J1(x): DO level at Bowville (mg/L) (maximise).
J2(x): DO level at Robin State Park (mg/L) (maximise).
J3(x): DO level at Plymton (mg/L) (maximise).
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J4(x): Return on equity (%) (maximise).
J5(x): Tax increment (Bowville) (minimise).
J6(x): Tax increment (Plymton) (minimise).

Additionally, the DO at the state line G1(x) (mg/L) is considered. Decision variables
x = [x1, x2, x3] are the treatment levels of water discharge at the Pierce-Hall cannery, at Bowville
and a Plymton, respectively. The constrained MOP for optimisation is as follows:

min
x

J(x) = [−J1(x),−J2(x),−J3(x),−J4(x), J5(x), J6(x)] (12)

subject to

G1(x) ≥ 3.5 (13)

0.3 ≤ x1 ≤ 1.0 (14)

0.3 ≤ x2 ≤ 1.0 (15)

0.3 ≤ x3 ≤ 1.0 (16)

where

J1(x) = 4.75 + 2.27(x1 − 0.3) (17)

J2(x) = 2.0 + 0.524(x1 − 0.3) + 2.79(x2 − 0.3) + 0.882(w1 − 0.3) + 2.65(w2 − 0.3) (18)

J3(x) = 5.1 + 0.177(x1 − 0.3) + 0.978(x2 − 0.3) + 0.216(w1 − 0.3) + 0.768(w2 − 0.3) (19)

J4(x) = 7.5 − 0.012

(
59

1.09 − x2
1
− 59

)
(20)

J5(x) = 0.0018

(
532

1.09 − x2
2
− 532

)
(21)

J6(x) = 0.0025

(
450

1.09 − x2
3
− 450

)
(22)

G1(x) = 1.0 + 0.0332(x1 − 0.3) + 0.0186(x2 − 0.3) + 3.34(x3 − 0.3) +

0.0204(w1 − 0.3) + 0.778(w2 − 0.3) + 2.62(w3 − 0.3) (23)

wi =
0.39

1.39 − x2
i

, i ∈ [1, 2, 3] (24)

In Tables 7 and 8 preferences stated are reported. Please note that congruence has been sought
between them. That is, insignificant differences coincide with the tolerable interval, whilst significant
differences coincide with the range from tolerability to highly desirability. This provides a guide in
order to link both methods.

Pareto front and set approximations are depicted in Figures 3 and 4, respectively. It is possible to
appreciate that solutions are clustering towards different regions in the Pareto front, according to the
information provided. TOPSIS solutions (black x) describe a cluster at the bottom of Level Diagrams;
this is expected, given that the TOPSIS method seeks for a similarity with the utopian solution, which is
also used to normalise the Pareto front approximation in Level Diagrams and calculate the selected
norm. The next cluster correspond to the PROMETHEE II pruning (blue ∗) and the one on the upper
region to Physical Programming (red +).
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Table 7. Matrix with (in)significant differences for MOP II statement. Significant (S) and Insignificant
(I) differences for each design objectives are defined.

I/S Differences Matrix

Objective I S

J1(x) (mg/L) 2.0 5.0
J2(x) (mg/L) 2.0 5.0
J3(x) (mg/L) 2.0 5.0

J4(x) ($) 1.0 3.0
J5(x) (%) 1.0 3.0
J6(x) (%) 1.0 3.0

G1(x) (mg/L) 0.5 1.5

Table 8. Preference matrix m for MOP II statement. Five preference ranges have been defined:
highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

−J1(x) (mg/L) −9 −8 −6 −4 −2 0.0
−J2(x) (mg/L) −9 −8 −6 −4 −2 0.0
−J3(x) (mg/L) −9 −8 −6 −4 −2 0.0

−J4(x) ($) −8 −7 −6 −5 −4 −3
J5(x) (%) 0 1 2 3 4 5
J6(x) (%) 0 1 2 3 4 5

−G1(x) (mg/L) −5 −4.5 −4 −3.5 −3.0 −2.5
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Figure 3. Pareto front approximation for MOP II with preference pruning: PP (red +); PROMETHEE II
(blue ∗) and TOPSIS (black x).
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Figure 4. Pareto set approximation for MOP II with preference pruning: PP (red +), PROMETHEE II
(blue ∗) and TOPSIS (black x).

Main difference between TOPSIS and PP, is regarding design objective J6(x): the preference matrix
states that a solution with J6(x) > 3 is undesirable; that is the reason because the pruning mechanism
tends to worsen the remainder design objectives, with the aim of improving J6(x). This does not mean
that the TOPSIS mechanism gives worst results; it is important to remember that such mechanisms
did not have any information about such undesirability. The same apply with the PROMETHEE II
mechanism: provided information about (in) significant differences was helpful to evolve towards a
desirable region in several design objectives, but fails in some of them.

In any case, the fact that, the bigger the norm, the more the information used by the pruning
mechanism, reveals the philosophy behind multi-objective optimisation: it might be not enough
to minimise a given norm, but to analyse/incorporate the trade-off analysis in a different way.
In conclusion, the most the information provided by the designer, the most the accurate the algorithm
to approximate a pertinent region in the objective space. Obviously this is in exchange of investing
more time in stating the preferences a priori.

5. Conclusions

In this paper, we incorporated two additional mechanisms to handle designers’ preferences in
multi-objective optimisation in the sp-MODEII algorithm. Such mechanisms are based on the TOPSIS
and PROMETHEE methods, usually employed for multi-criteria analysis and decision making.

A comparison to handle designers’ preferences on two benchmarks dealing with water
distribution systems was performed. On the one hand, it was shown that an analysis in such
m-dimensional spaces with more than three design objectives is possible via specialised visualisation
tool (Level Diagrams). On the other hand, the structural differences between different approaches to
approximate a pertinent region of the Pareto front was also analysed.
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In the latter case, the capacity to approximate a compact set focusing in the region of interest of
the decision maker is evaluated. It was shown that the main structural difference among approaches
(TOPSIS, PROMETHEE II, and Physical Programming) is the closeness of their clusters to an ideal
solution, defined by the Pareto front approximation itself.

Further work will focus on using additional mechanisms to handle such preferences actively in
the optimisation stage. Besides, merging two or more mechanisms might be an interesting idea to
explore, in order to exploit synergies between different approaches.
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MOO Multi-Objective Optimisation
PP Physical Programming
WDS Water Distribution System

Appendix A. Background

A multi-objective problem (MOP) with m objectives, can be stated as follows [3]:

min
x

J(x) = [J1(x), . . . , Jm(x)] (A1)

subject to:

K(x) ≤ 0 (A2)

L(x) = 0 (A3)

xi ≤ xi ≤ xi, i = [1, . . . , n] (A4)

where x = [x1, x2, . . . , xn] is defined as the decision vector with dim(x) = n; J(x) as the objective
vector and K(x), L(x) as the inequality and equality constraint vectors respectively; xi, xi are the lower
and the upper bounds in the decision space.

It has been noticed that there is not a single solution in MOPs, because there is not generally a
better solution in all the objectives. Therefore, a set of solutions, the Pareto set, is defined. Each solution
in the Pareto set defines an objective vector in the Pareto front (see Figure A1). All the solutions in the
Pareto front are a set of Pareto optimal and non-dominated solutions:

• Pareto optimality [3]: An objective vector J(x1) is Pareto optimal if there is not another objective
vector J(x2) such that Ji(x2) ≤ Ji(x1) for all i ∈ [1, 2, . . . , m] and Jj(x2) < Jj(x1) for at least one
j, j ∈ [1, 2, . . . , m].
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• Dominance: An objective vector J(x1) is dominated by another objective vector J(x2)

if Ji(x2) ≤ Ji(x1) for all i ∈ [1, 2, . . . , m] and Jj(x2) < Jj(x1) for at least one j, j ∈ [1, 2, . . . , m].
This is denoted as J(x2) � J(x1).

Figure A1. Pareto optimality and dominance concepts for a min-min problem. Dark solutions is the
subset of non-dominated solutions which approximates a Pareto front (right) and a Pareto set (left).
Remainder solutios are dominated solutions, because it is possible to find at least one solution with
better values in all design objectives (Source: [39]).

To successfully implement the multi-objective optimisation approach, three fundamental steps are
required: the MOP definition, the multi-objective optimisation (MOO) process and the multi-criteria
decision making (MCDM) stage. This integral and holistic process will be denoted hereafter as a
multi-objective optimisation design (MOOD) procedure [40]. In the MOP statement, design objectives
are defined, as well as decision variables (with their bounds) and constraints for feasibility or suitability;
in the MOO the major aim is to calculate a useful Pareto front approximation via an algorithm; in the
MCDM stage, an analysis of the approximated Pareto front and trade-offs is carried out according to a
set of preferences, in order to select the final solution to implement.

There are different methodologies for MCDM and visualisation approaches [4,41]. In the case of
the MOO process, special (or particular) circumstances might require additional mechanisms to deal
successfully with a given MOP [40,42]. Some of them are listed below:

• Constrained optimisation. Results from the optimisation problem are not always feasible in a
practical sense; therefore constraints must be incorporated in order to assure their feasibility.

• Many-objectives optimisation. If a MOP has more than 3 design objectives, it is considered
a many-objectives optimisation problem. It is important to consider such a sub-classification,
given that converge and diversity mechanisms might be in conflict.

• Computational expensive optimisation. Extensive or exhaustive simulations might be required in
order to compute one or more design objectives requires.

• Multi-modal optimisation. It might happen that two or more decision vector points to the same
objective vector.

For the MOO process, multi-objective evolutionary algorithms (MOEAs) have shown to be a
useful tool for a wide range of engineering problems [43].
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Abstract: Demand estimation in a water distribution network provides crucial data for monitoring
and controlling systems. Because of budgetary and physical constraints, there is a need to estimate
water demand from a limited number of sensor measurements. The demand estimation problem is
underdetermined because of the limited sensor data and the implicit relationships between nodal
demands and pressure heads. A simulation optimization technique using the water distribution
network hydraulic model and an evolutionary algorithm is a potential solution to the demand
estimation problem. This paper presents a detailed process simulation model for water demand
estimation using the particle swarm optimization (PSO) algorithm. Nodal water demands and pipe
flows are estimated when the number of estimated parameters is more than the number of measured
values. The water demand at each node is determined by using the PSO algorithm to identify a
corresponding demand multiplier. The demand multipliers are encoded with varying step sizes and
the optimization algorithm particles are also discretized in order to improve the computation time.
The sensitivity of the estimated water demand to uncertainty in demand multiplier discrete values
and uncertainty in measured parameters is investigated. The sensor placement locations are selected
using an analysis of the sensitivity of measured nodal heads and pipe flows to the change in the
water demand. The results show that nodal demands and pipe flows can be accurately determined
from a limited number of sensors.

Keywords: water demand estimation; demand multipliers; underdetermined model; uncertain
measurements; particle swarm optimization

1. Introduction

A water distribution system (WDS) performs the crucial role of supplying safe drinking water
to the public. The main goal in WDS operation and control is to meet the desired water demand
while ensuring the appropriate water quality and pressure is met in all the nodes. Water flow from
the sources to the demand nodes is a continuous event with time-varying flow rates determined by
water demand schedules. Nodal demands are state variables of interest in WDS operation because
they are the driving inputs that determine the nodal pressures and pipe flow rates measured in the
field. State estimation is the process of computing unknown network conditions from the knowledge
of available measurements and other known network parameters [1]. A water demand estimation
algorithm coupled with a WDS model forms a critical component for supervisory control and data
acquisition (SCADA) systems.

In water demand estimation, the nodal demands are the unknown state variables, while
pressure heads and pipe flows are determined from field measurements. Because of the complexity
of pipe connections in large water distribution networks and the associated cost, only a few

Water 2017, 9, 593 305 www.mdpi.com/journal/water



Water 2017, 9, 593

locations are selected for sensor placement. The accuracy of state estimation relies on the available
field measurements, which are constrained by the number of installed pressure and flow sensors.
The problem of sensor placement has been addressed in literature by considering budget constraints
and the quality of measured data [2], location impact metrics [3,4], and the time taken to detect
contamination events [5,6]. The number of sensor locations may also be reduced by clustering water
demand nodes into groups [7], grouping nodes according to water quality characteristics [8], and
using reduced network models [9]. A ranking technique is used to select nodes for locating pressure
sensors in [10]. Loop flows are estimated in [11] using known nodal demands in order to address the
problem of a low measurement redundancy. The installation of sensors in a WDS is also subject to site
accessibility and consent from the landowner. With the observed constraints in sensor placement, the
estimation of nodal demands and unmeasured pressure heads or pipe flows with data obtained from a
limited number of locations is a current research problem. Because of the large number of unknown
parameters compared to the available measurement data, the estimation problem is underdetermined.
The contribution of this work is the formulation of a simulation optimization technique that estimates
both nodal demands and unmeasured pressure heads when the number of measurements is less than
the number of parameters to be estimated. The objective function minimizes the absolute error of the
measured parameters using the particle swarm optimization (PSO) algorithm. The sensor placement
locations are selected using an analysis of the sensitivity of measured nodal heads and pipe flows to
the change in the water demand. The sensitivity of the estimated parameters to the number of sensors,
the uncertainty in demand multiplier discrete values, and measurement errors is also investigated.

The next section presents the literature review on WDS state estimation, and Section 3 presents
the formulation of the methodology for water demand estimation via simulation optimization.
The simulation results and discussion are presented in Section 4, and Section 5 concludes the study.

2. Literature Review

Knowledge of the status of a water distribution network is realized by means of state estimation
techniques that yield a set of variables that fully describe the status of the system. State estimation in
WDSs is expressed using a nonlinear measurement model [12]:

z = g(x) + ε (1)

where z ∈ �T is the vector of available measurements (pressure heads, flows, and demands), x ∈ �T

is the state vector formed by nodal heads and fixed-head node flows, and ε is a zero-mean random
vector that models the measurement errors. The measured flows and pressure heads, combined with
the hydraulic energy and mass conservation laws, provide the necessary system of equations used to
implement the state estimation model defined in Equation (1).

Loop flows are estimated using weighted least squares in [11,13,14] from known nodal demands.
Water demands are estimated using a Monte Carlo simulation with Kalman filtering in [15,16]. Genetic
algorithms are used to calibrate predicted water demand data in [17,18]. The underdetermined nodal
demand problem is solved in [19] using singular value decomposition (SVD) and in [20], by combining
SCADA data and demand estimates. Compared to classical methods such as the weighted least squares
and Langrangian multipliers, the SVD technique and evolutionary algorithms have the potential of
estimating nodal demands when the number of measurements is less than the number of parameters
to be estimated. In [11], known demand estimates are used in conjunction with measurements in order
to ensure that the estimation problem is not underdetermined.

In this study, a simulation optimization technique based on the discrete event simulation paradigm
was used to implement the PSO algorithm. The optimization algorithm was used to estimate nodal
demands and unmeasured nodal heads and pipe flows. EPANET software [21] was used to implement
and solve the WDS hydraulic model. The optimization algorithm was used for estimation while results
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from EPANET were used to simulate measured values one time step ahead. The results are compared
with recent related works.

3. Methodology

3.1. Objective Function

The water demand estimation problem, which estimates the variation in nodal demand using
information from measurements taken by pressure/flow sensors, is defined as a minimization of the
absolute error:

Min J =
NH

∑
i=1

|Hi,M − Hi,S|+
NQ

∑
j=1

∣∣Qj,M − Qj,S
∣∣ (2)

where Hi,M and Qj,M are the measured nodal head and pipe flow rate at node i and pipe j, respectively;
Hi,S and Qj,S are the simulated head and flow rate at node i and pipe j, respectively; and NH and
NQ are the number of head and flow sensors installed in the network. The constraints are the law
of conservation of mass at each node, the law of conservation of energy in each loop, and minimum
pressure head requirements. The water demands at each node are the decision variables of the
optimization problem.

3.2. Modeling of Water Demand Multipliers

The node demand data used in a water distribution network analysis is normally based on
estimates derived from monthly water meter readings. The nodal demand profiles are composed
of static distribution factors, which vary with the consumer type. The water distribution system is
classified into supply areas according to land use, such as residential, commercial, and industrial areas.
The general demand pattern for the different consumer types in a 24 h period is shown in Figure 1.
The demand pattern data is obtained from [22].

In order to solve the water demand estimation, the problem of how to set nodal demands used
as the driving inputs for generating measured parameters in Equation (2) has to be addressed first.
The nodal demand for node i at time step k is given by

Di,k = mi,k × D0,i (3)

where Di,k is the nodal demand, mi,k is the demand multiplier for node i, and D0,i is the base demand
for node i. The decision variables of the optimization problem are therefore conveniently represented
as the set of demand multipliers m = {m1,k, m2,k, . . . , mNT,k} at each time step k, where NT is the total
number of nodes in the water distribution network.

3.3. Process Simulation Model

The demand estimation problem is solved using the discrete event simulation optimization
scheme shown in Figure 2. A discrete event simulation scheme eliminates the need for an explicit
time loop. The estimation starts with the hydraulic simulator running with data from a defined
demand–user pattern in order to generate the measured values of pressure head (Hi,m) and pipe
flow (Qj,m). The measured values are obtained from the selected sensor locations. The optimization
algorithm uses randomly generated nodal demand multipliers to run the hydraulic simulator in
order to generate the simulated values of the pressure head (Hi,s) and pipe flow (Qj,s). At the end
of each iteration of the optimization algorithm, the simulated data is passed to the optimization
model. The objective Equation (2) function is used to evaluate the fitness of nodal demand multipliers.
The optimization algorithm calibrates the demand multipliers on the basis of the fitness obtained.
The hydraulic simulator runs in the steady-state mode.
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The PSO algorithm [23], the optimization model, and the simulation optimization scheme of
Figure 2 were implemented in C/C++. The EPANET software package source code in C and the
programming toolkit [24] were utilized. The constraints of the optimization problem were solved
by EPANET. The optimization algorithm was interfaced with EPANET using the interface module
developed in [25].

The simulation was carried out by defining discrete event times that defined the transition of states
in the system. An evolutionary algorithm such as PSO generates a population of potential solutions that
are used to run the system, and the fitness of each solution is evaluated using Equation (2). A discrete
event time T0 is chosen as the time each potential solution of the optimization algorithm takes to run
the system. The parameters of each potential solution are a set of demand multipliers that are updated
at the end of each iteration. The parameters of each potential solution are passed to the hydraulic
solver during the initialization phase in order to evaluate the fitness. Proper initialization ensures that
the fitness of each potential solution is evaluated with the same initial conditions. After a simulation
time equal to T1 = NT0, where is N is the population size, the fitness of each set of demand multipliers
is evaluated and the optimization algorithm re-calibrates the demand multipliers. The hydraulic
solver evaluates the reference values (measured values) for the optimization algorithm one time step
ahead, that is, at t = (k − 1)T1. In this paper, a discrete event time of T0 = 0.01 s was used. The nodal
water demands for each time step during the 24 h consumption period are estimated using demand
multipliers, which are used to compute the actual demand using Equation (3). The demand multipliers
are defined in the continuous range as shown in Figure 1. In order to increase the convergence speed
of the estimation process, the demand multiplier range is converted into the discrete range with step
increments. Step sizes of 0.01 and 0.05 were used and the results were compared. An integer coding
scheme was used, for which the PSO particles were used to search for the optimal index in the defined
range. Because the motion of the PSO particles during the search process is continuous, the position of
the particle was rounded to the nearest integer. The particle position corresponds to an array index
where the actual demand multiplier is stored.
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Figure 1. Demand curves for different user types in a period of 24 h.
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Figure 2. Methodology for estimation of water demand using an optimization algorithm.

3.4. Selection of Sensor Placement Locations

The sensor placement locations are selected on the basis of the sensitivity to the change in the
water demand. The sensitivity matrix [26] is expressed as

S =

⎡
⎢⎣

∂m1
∂ f1

· · · ∂m1
∂ fn

. · · · .
∂mn
∂ f1

· · · ∂mn
∂ fn

⎤
⎥⎦ (4)

where each element sij measures the effect of change in the nodal demand f j on the measurement mi at
a selected pipe link or node. The sensitivity matrix has been used to select sensor placement locations
for leakage detection in [27,28].

A simulated change in the water demand in all the nodes is used to generate a pipe flow sensitivity
matrix and a nodal head sensitivity matrix. A change in the nodal demand of 1.5 liters per second
(LPS) at the two nodes of each pipe link is considered at each step. The measurement locations are
ranked according to the variance of the measurements at each location. The best locations for placing
sensors are those that experience the highest variability in measurements as a result of change in the
nodal demand. This simple approach was used in this study to select the measurement locations in a
real network with a large number of pipes and nodes.

4. Simulation Results and Discussion

Simulation experiments were performed using three case studies. A small water network
consisting of 9 nodes, 12 pipes, 1 pump and 1 tank was used to perform the simulation experiments
in case studies I and II. The network is available in EPANET as example “Net1.net” [21]. The water
network was as is shown in Figure 3. Case study I considers the water demand estimation using
measurements from pressure sensors only, while Case study II considers measurements from both
pressure sensors and flow sensors. All the nodes in the Net1 network share the same hourly demand
multipliers, but each node has an independently defined base demand. Case study III considers a
medium-sized network that represents the operation of a real water distribution network. The case
studies utilized the optimization algorithm to estimate hourly nodal demands for each hour in a
24 h period.

309



Water 2017, 9, 593

(a) (b)

Figure 3. Water distribution network for case studies: (a) case study I, and (b) case study II.

4.1. Case Study I: Estimation of Nodal Demands with Measurements from Pressure Head Sensors

The sensor placement locations were identified using an exhaustive search. Tests were carried
out starting with an ideal case where pressure sensors were placed in all the nodes. The sensors were
then reduced sequentially while the performance was observed. Initial results showed that the water
consumption at node 2 could not be accurately estimated without placing a pressure sensor at node
2. Node 2 was the source node that supplied the entire network. Node 1 was not selected for sensor
placement as there was no water consumption at the node. One sensor was therefore permanently
placed at node 2, while the sensors at the other locations were sequentially removed. Good results
were obtained with only two sensors placed at nodes 2 and 8.

To assess the suitability of the identified locations, the nodal head sensitivity matrix of the network
was generated and the variance of each row was used to rank the nodes. The results of the nodal head
sensitivity ranking are shown in Figure 4. The pressure head at node 9 was the most sensitive, while
that of node 3 was the least sensitive. The results showed that further engineering judgement was
required in order to select the locations, as both nodes 8 and 9 were connected to the same pipe link.
Nodes 2 and 5 also shared a common pipe link. It was also observed that node 1 had zero demand.
Nodes 2 and 8 were therefore good locations to place pressure head sensors.
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Figure 4. Nodal head sensitivity for Net1 network.

The PSO initialization parameters for the case study are given in Table 1. The first simulation
experiment was carried out using step increments of 0.05 to encode the demand multipliers.
The demand multipliers lay in the range from 0 to 2.0. Because of the stochastic nature of the
optimization process, nodal demand estimates from 30 simulation runs were averaged and used for
comparison. The estimated nodal demands for nodes 2, 4, 6 and 9 using a demand multiplier step
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increment of 0.05 are shown Figure 5. A summary of the average estimated and actual values of the
water demands for the 24 h period is given in Table 2. The results in Table 3 were converted to gallons
per minute (GPM) for easy comparison. The results were compared with those reported in [17] using a
genetic algorithm (GA) model. The base demands for nodes 7, 8 and 9 in the GA model were different
to those in the model used in this paper. Estimation was carried out in [17] using three pressure sensors
placed at nodes 4, 6, and 8 and with a demand multiplier step increment of 0.02. The results in Table 2
show that the estimated demands for nodes 3, 6 and 7 were comparable, while the PSO model gave
improved results at all the other nodes. The results obtained in this paper show that placing a pressure
sensor at the source node contributes to an improvement in the estimated water demand. The results
obtained from 30 (independent optimization trial) runs in this study compare with those obtained
in 100 runs of the GA model [17]. There is therefore a need for further analyses of the sensitivity of
the estimation error on the number of optimization runs used to obtain the average demand. A large
number of optimization runs increases the computation time. A low computation time is necessary for
the near-real-time on-line monitoring and control of water distribution systems.

Table 1. Case study I & II: Initialization of particle swarm optimization (PSO) parameters.

Parameter Value

Population (P) 50
Number of iterations (N) 100
Inertia factor (wmax, wmin) 0.5, 0.05
Social rate (C1) 0.9
Cognitive rate (C2) 2.5

Table 2. Case I: Estimated nodal demands (liters per second—LPS).

Node Actual Estimated % Error

2 9.46 9.44 0.2
3 9.46 8.24 12.9
4 6.31 6.49 2.7
5 9.46 9.55 0.1
6 12.62 13.40 6.2
7 9.46 8.58 9.3
8 6.31 6.35 0.6
9 6.31 6.17 2.2

Table 3. Case I: Comparison of estimated nodal demands (gallons per minute—GPM) using particle
swarm optimization (PSO) and the genetic algorithm (GA).

Node Actual Estimated (PSO) Estimated (GA) % Error (PSO) % Error (GA)

2 150 149.60 118.67 0.2 20.9
3 150 130.59 131.45 12.9 12.4
4 100 102.85 93.15 2.7 6.9
5 150 151.35 164.15 0.1 9.43
6 200/(150) 212.36 140.58 6.2 6.3
7 150/(300) 135.97 (327.15) 9.3 9.1
8 100/(50) 100.63 (50.34) 0.6 0.7
9 100/(50) 97.78 (35.90) 2.2 28.2
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Figure 5. Case I: Demand estimation at nodes (a) 2, (b) 4, (c) 6, and (d) 9.

The second simulation experiment was carried out by adding noise to the nodal demands used
to generate the measured values. White Gaussian noise with a zero mean and variance of 0.1 was
added to the hourly nodal demand multipliers. The demand multipliers with noise scenario is shown
in Figure 6. The purpose of adding noise was to investigate the sensitivity of estimating the water
demand to uncertainty in the step increment of the demand multipliers. The results obtained using
step increments of 0.05 and 0.01 were compared. A resolution of 0.05 resulted in a single nodal demand
multiplier search space of 40, while that of 0.01 resulted in a search space of 200. The nodal demand
estimates from 30 simulation runs were averaged and used for comparison. The estimated nodal
demands for nodes 2, 4, 6, and 9 are shown in Figure 7. A summary of the estimated and actual values
of the water demands for the 24 h period is given in Table 4. The values are highly correlated with
R = 0.981 and R = 0.991 for Δ = 0.05 and Δ = 0.01, respectively. There was therefore no significant
difference in the water demand estimates determined using a step increment of 0.05 or 0.01 when the
discrete values of the demand multipliers had an uncertainty of ±0.1.

Table 4. Case I: Estimated nodal demands (liters per second—LPS).

Node Actual Estimated (Δ = 0.05) % Error Estimated (Δ = 0.01) % Error

2 9.39 9.33 0.3 9.37 0.2
3 9.39 8.58 8.6 8.75 6.8
4 6.26 6.39 2.1 6.43 2.7
5 9.39 9.75 3.8 9.57 1.9
6 12.53 12.87 2.7 13.10 4.5
7 9.39 8.65 7.9 8.57 8.7
8 6.26 6.22 0.6 6.30 0.6
9 6.26 6.17 1.4 6.15 1.7
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Figure 6. Nodal demand multipliers with added white noise.
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Figure 7. Case I: Estimation of water demands with demand multiplier resolutions of Δ = 0.05 and
Δ = 0.01 at nodes (a) 2, (b) 4, (c) 6, and (d) 9.

4.2. Case Study II: Estimation of Nodal Demands with Measurements from Flow Sensors and Pressure Sensors

The simulation experiments in this case study were carried out by placing a pressure sensor at
node 2 and flow sensors at pipes 7 and 11. Pipe 7 was selected as it supplied node 3, which had the
highest error margin, as shown in Table 4.

To assess the suitability of the identified locations, the pipe flow rate sensitivity matrix of the
network was generated, and the variance of each row was used to rank the pipe links. The results
of the pipe flow rate sensitivity ranking are as shown in Figure 8. The pipe flow rate at pipe 9 was
the most sensitive, while that of pipe 6 was the least sensitive. The results also show that further
engineering judgement was required in order to select the locations, as pipe links 2, 7 and 9 were
connected to node 3.
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Figure 8. Pipe flow rate sensitivity for Net1 network.

Gaussian white noise was used to add a measurement uncertainty equal to ±10% of the measured
value. A demand multiplier step increment of 0.05 was used in the simulations.

A summary of the averaged nodal demand estimates and pipe flow estimates are given in
Tables 5 and 6. The averaged estimated nodal pressure heads are shown in Figure 9. The pipe
flow rates were more sensitive to variation in nodal demands, compared to the pressure heads.
The estimated flows for pipes 2, 5, 6, and 7 are shown Figure 10 and the estimated flows for pipes 3, 8,
10, and 11 are shown Figure 11. It can be observed from the results in Table 6 and Figures 10 and 11
that the pipes with low flow rates, for example, pipes 3, 5 and 6, had the highest error margin during
estimation. The results show that these were the pipes with the highest sensitivity to changes in the
water demand. The 24 h average pipe flow rates of Table 6 show that pipe 5 had an estimated average
flow rate of 7.57 L/s with an error of 0.5%. However, the hourly flows in Figure 10b show that the
estimated flow rate of pipe 5 had a correlation of R = 0.567 with the actual values. The flow rate of pipe
6 had an average estimation error of 8.3% and a correlation of R = 0.721 between the hourly estimated
values and the actual values. It is therefore concluded that the correlation coefficient between actual
and estimated values is a better measure of the quality of estimation, especially in pipes with low
flow rates.

Table 5. Case II: Estimated nodal demands (liters per second—LPS) with uncertain measurements.

Node Actual Estimated % Error

2 9.39 9.59 2.1
3 9.39 9.42 0.3
4 6.26 5.77 7.9
5 9.39 8.78 6.5
6 12.53 13.08 4.4
7 9.39 9.75 3.8
8 6.26 6.50 3.7
9 6.26 5.99 4.4

Table 6. Case II: Estimated pipe flows (liters per second—LPS) with uncertain measurements.

Pipe Actual Estimated % Error

1 117.75 117.73 0.0
2 77.62 77.74 0.2
3 8.22 7.95 3.2
4 12.11 12.55 3.6
5 7.54 7.57 0.5
6 2.81 2.58 8.3
7 −48.44 −48.85 0.9
8 30.68 30.40 0.9
9 11.52 11.52 0.0
10 1.91 2.18 13.9
11 9.12 9.07 0.5
12 3.49 3.41 2.2

314



Water 2017, 9, 593

1 2 3 4 5 6 7 8 9

294

296

298

300

302

304

306

308

P
re

ss
u

re
 h

e
a
d

 (
m

)

Node number

 Actual

 Estimated

R=1

Figure 9. Case II: Estimated nodal pressure heads using uncertain measurements.
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Figure 10. Case II: Estimation of pipe flow rates in pipes (a) 2, (b) 5, (c) 6, and (d) 7 using uncertain
measurements.
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Figure 11. Case II: Estimation of pipe flow rates in pipes (a) 3, (b) 8, (c) 10, and (d) 11 using uncertain
measurements.

The nodal demands estimated in case II had a maximum error margin of 7.9% at node 4, while
those estimated in case I had a maximum error of 12.9% at node 3. The estimation error at node 3
reduced to 1.3% in case II. This could be attributed to the flow sensor placed at pipe 7 in case II. It is
therefore concluded that the utilization of both pressure and flow sensors improves the overall results
obtained during estimation.

4.3. Case Study III: Estimation of Water Demand in a Larger Water Network

The third case study considers a medium water network that consists of 40 pipes, 35 nodes,
1 pump station, and 1 water tank. The network is available in EPANET as example “Net2.net” [21].
The pump station was modeled as a node with a negative demand using the provided demand profile.
The network data modeled the operation of a real network. The water demand of each node was
independently defined and the water consumption represented a combination of different user types.
The network layout is shown in Figure 12.

In this case study, the PSO algorithm was initialized to run with a population of 100 and
500 iterations. A demand multiplier range of 0 to 4.0 was used with a step increment of 0.02. The upper
limit of the demand multiplier range was chosen by analyzing the nodal base demands and the
provided demand profile data.

The sensitivity matrix was utilized to select the locations for placing flow and pressure sensors.
The results of the nodal head and pipe flow rate sensitivity ranking are as shown in Figures 13 and 14,
respectively. The results show that the pressure of nodal heads nearer to the pump station was more
sensitive to the change in the water demand. The flow rates of pipe links were also generally more
sensitive to the change in the water demand, compared to the nodal heads. Considering a case in
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which three pressure sensors and six flow sensors were available for placement, nodes 3, 6 and 10 and
pipe links 13, 14, 15, 27, 28, and 30 were selected.

Figure 12. Case III: Water distribution network.
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Figure 13. Nodal head sensitivity for Net2 network.
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Figure 14. Pipe flow rate sensitivity for Net2 network.

The results for the estimated average water demand for a 24 h period are as shown in
Figures 15 and 16. The results show that the nodes with a water demand of less than 0.3 LPS, for
example, nodes 7, 32, 33 and 35, had estimation errors of more than 40%. The average of the estimation
error for the actual values was 15.0%, while the average estimation error of the absolute values was
22.4%. The estimation error of the actual values was lower because the negative and positive errors
offset each other. The average demand estimation error in [17] was 14.7% for the same network. The
largest demand estimation error in this study was 56.2% at node 32. The average demand of node 32
was 0.1 LPS. However, Figure 15 shows that the absolute estimation error at node 32 was not significant.
The results show that the nodes with low water demands had a high contribution to the overall water
demand estimation error.

The estimation process of 500 iteration runs for a real-time of 62 s on a 2.6 GHz computer
with 4 GB of memory. Further research is therefore required in order to reduce the estimation
errors and improve the computation time. The proposed process simulation model is suitable for
implementing and comparing the performance of evolutionary algorithms in water demand estimation.
The future work for this study entails embedding a sensor placement algorithm in the developed
process simulation model in order to assess the sensitivity of sensor placement locations on the water
demand estimation errors.
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Figure 15. Case III: Estimated nodal water demands and absolute error.
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Figure 16. Case III: Absolute error (%) in estimated nodal water demands.

5. Conclusions

As a result of budgetary and other physical constraints, there is a need to estimate water demands
in water distribution networks from a limited number of sensors. A detailed process simulation model
for water demand estimation using the PSO algorithm was formulated and implemented. Nodal water
demands and pipe flows were estimated when the number of estimated parameters was more than
the number of measured values. The water demand at each node was determined by using the PSO
algorithm to identify a corresponding nodal demand multiplier. The nodal demand multipliers were
encoded with varying step sizes. The sensor placement locations were selected using an analysis of the
sensitivity of measured nodal heads and pipe flows to the change in the water demand. The results
show that accurate results can be determined using sensor measurements from a limited number of
locations. The results also show that the estimated water demand is not sensitive to an uncertainty of
±0.1 in demand multiplier discrete values or a ±10% uncertainty in measured parameters. Further
research is required in order to address the problem of embedding a sensor placement algorithm in the
developed process simulation model in order to assess the sensitivity of sensor placement locations on
the water demand estimation errors.
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Abstract: Disaggregating residential water end use events through the available commercial tools
needs a great investment in time to manually process smart metering data. Therefore, it is extremely
difficult to achieve a homogenous and sufficiently large corpus of classified single-use events capable
of accurately describe residential water consumption. The main goal of the present paper is to
develop an automatic tool that facilitates the disaggregation of the individual water consumptions
events from the raw flow trace. The proposed disaggregation methodology is conducted through two
actions that are iteratively performed: first, the use of an advanced two-step filter, whose calibration
is automatically conducted by the Elitist Non-Dominated Sorting Genetic Algorithm NSGA-II;
and second, a cropping algorithm based on the filtered water consumption flow traces. As a secondary
goal, yet complementary to the main one, a semiautomatic massive classification process has been
developed, so that the resulting single-use events can be easily categorized in the different water
end uses in a household. This methodology was tested using water consumption data from two
different case studies. The characteristics of the households taken as reference and their occupants
were unequivocally dissimilar from each other. In addition, the monitoring equipment used to obtain
the consumption flow traces had completely different technical specifications. The results obtained
from the processing of the two studies show that the automatic disaggregation is both robust and
accurate, and produces significant time saving compared to the standard manual analysis.

Keywords: water end uses; water microcomponents; high frequency smart metering data; residential
water flow trace disaggregation; water flow trace filtering

1. Introduction

Since the Brundtland Report [1] was presented, sustainability in the use of water resources has
been a steady concern in designing water policies [2–4]. This is a problem with many different faces,
from the source (surface or ground water, desalination, reclamation, etc.) to the use (agriculture,
residential, industrial, environmental preservation, etc.). All of them are relevant, but bearing in
mind that most of the human population lives in cities, urban water management becomes an issue
of paramount importance. Therefore, accounting urban water consumption and knowing about
end-uses at each customer’s household is not only key because of the amount of water resource that is
used and/or can be saved, but also because of many other considerations. In this regard, there are
well-founded reasons for the research currently being conducted on residential end-uses, such as
reduction in treatment costs linked to water consumption; improvement and better effectiveness of
conservation measures in the urban environment; conservation of energy linked to water consumption;
design optimization of indoor piping systems; improved demand forecasting models; etc.

As an essential tool for enhancing urban water management, the new technologies being
implemented today in smart meters are making possible a significant leap forward in recording
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and characterizing domestic water consumption. Further than the traditional monthly volume read,
new meters may provide hourly consumption time patterns or a volume-flow pattern. They may also
send alarms when a leak, a forgotten open faucet or a continuous back flow is detected, and all that
information may be immediately sent through an AMR (automatic meter reading) system.

However, the above-mentioned capabilities are only the first tier when considering all the real
possibilities current smart meters may yield. Though feasible today, a second, more advanced tier is not
fully developed because of its notable complexity. It consists of high frequency monitoring—duration,
volume and flow rate—of domestic water consumption, so that every single use in a household (hh) is
accurately registered. Then, and after a detailed analysis, all consumption events can be categorized
into the different end uses present in the household [5].

As soon as this will be soundly achieved on a large scale, new improvements in efficient water
management strategies will be within reach. To name a few, from the consumer’s perspective,
water conservation measures could be tailored to each individual consumer [6], thus maximizing
the saving potential in each case, or the variable term in the tariff could be designed according to
consumer’s characteristics to guarantee the balance between equity and income [7]. Furthermore,
from the utility’s view, water demand prediction models could be reliably produced from a more
accurate bottom-up approach [8,9].

Nowadays, few commercial tools allow for this water end use analysis exercise—Trace
Wizard® [10], Identiflow® [11] and BuntBrainForEndUses® [12]. However, any of these tools involves
a great investment in time and human resources, as a significant part of the data processing work
requires human intervention. Furthermore, the results from the analysis are unavoidably affected by
arbitrary and constantly changing human criteria.

Alternatively, an automatic prototype based on machine learning algorithms was proposed
by Nguyen et al. [13–16] to disaggregate and classify water consumption events. Unfortunately,
the universal usability and compatibility of the tool is limited by the fact that the algorithms were
trained with data originated from a specific water meter/data logger combination. In addition, all data
were collected in the same geographical area from consumers sharing very similar water consumption
habits and water appliances. Furthermore, the set of data employed for the training of the proposed
machine learning tool has been obtained using Trace Wizard® software, which has limited capabilities
for disaggregating overlapped consumption events [13]. Following a similar approach, Piga et al. [17]
proposed an automated water and energy end use disaggregation, which has only been tested against
electric energy data. Also, several start-ups claim to have developed software to automatically classify
residential water consumption events into various uses [18–20]. Unfortunately, in this case there is not
official or public information available about the processing tools and algorithms used, and the real
performance achieved in the water end use classification for various types of households.

This paper presents a novel methodology to substitute manual water end use disaggregation and
to produce more accurate sets of classified single end use events that can be employed as training
sets for automatic recognition algorithms. Figure 1 depicts the general structure of the methodology,
comprising two main processes: disaggregation, which is fully automatic and the main objective of
this paper, and classification, which is semiautomatic at its current stage.

The proposed disaggregation process focuses on an advanced two-stage filtering based on the
algorithm described in Pastor et al. [21], which is calibrated using the Elitist Non-Dominated Sorting
Genetic Algorithm NSGA-II [22], and a new cropping algorithm having as input the filtered water
consumption flow traces.

The contribution of this methodology can be summarized in two main aspects. The first one is the
integration of a universal two-stage filtering algorithm that can be used to simplify, with a minimum
loss of information, the flow traces originated in most commercial metering and logging equipment
available in the market. The second one is the reduction of human intervention by automatically
disaggregating overlapped water consumption events (as the one used as an example in Figure 1) into
single-use events (examples in Appendix A), which are associated with individual uses of water through

322



Water 2018, 10, 46

different appliances. Both features facilitate and improve the processing of flow traces generated
during a long-term metering campaign.

Unprocessed
Water

Consumption
Event

End Use
categorization

Filtering

Cropping

0

200

400

600

800

1000

50 0 50 100 150 200 250 300 350 400 450 500

Fl
ow

(L
/h
)

Time (s)

0

200

400

600

800

1000

50 0 50 100 150 200 250 300 350 400 450 500

Fl
ow

(L
/h
)

Time (s)

0

200

400

600

800

1000

50 0 50 100 150 200 250 300 350 400 450 500

Fl
ow

(L
/h
)

Time (s)

Single Use
sub event 1

Single Use
sub event 2

Single Use
sub event 3 ...

DISAGGREGATION
(universal

fully automatic)

CLASSIFICATION
(semi automatic)

Processes Actions Graphic example

0

200

400

600

800

1000

50 0 50 100 150 200 250 300 350 400 450 500

Fl
ow

(L
/h
)

Time (s)

Faucet Shower Toilet

Figure 1. General structure of the proposed methodology.

The classification process corresponds to the use of unsupervised techniques to solve the
classification of single-use events into the various water end use categories. This step is complementary
to the disaggregation process and makes unnecessary the intervention of human analysts, except for
validating the results, to classify thousands of automatically obtained single-use events. The paper
presents a basic fully operational, yet semiautomatic, version to show the capabilities of these
techniques for massive classification of consumption events.

As a case study, data originated from two independent water end uses studies conducted in
distinct geographical areas were used to test the proposed filtering and disaggregation methodologies.
The characteristics of the households and their occupants were unequivocally dissimilar from each
other. Moreover, and in order to test the universal applicability of the methodology, the water
consumption flow traces analyzed were obtained from monitoring equipment having completely
different technical specifications.

BuntBrainForEndUses® was the commercial online software employed for the water end use
analysis. This software offers the possibility of exporting raw flow traces and importing them back
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after some manipulation has been carried out by the user. This feature is particularly useful for the
study conducted as the filters and disaggregating algorithms can be developed with a specialized
external analysis software, completely independent from BuntBrainForEndUses®, and then have the
results displayed and corrected in the online application. For the methodology presented, the filtering
and disaggregation algorithms were programed in R statistics [23].

2. Materials and Methods

The methodology proposed is divided into two processes (Figure 1). The first one, disaggregation,
works on the original, and generally overlapped, consumption events in an iterative way until all the
resulting subevents are either single-use (the most) or uncertain (a few) events (examples in Appendix A).
By means of this methodology, the resulting subevents are more homogenous than the ones obtained
by manual processing of flow traces through, for example, BuntBrainForEndUses®. This software
application follows the same analysis procedure and allows human analysts to graphically crop water
consumption flow traces into its various individual components.

The second process of the methodology, classification, assigns a specific water end use category
to each single-use event. In the case study developed, this classification is done by identifying
homogeneous subsets of events by means of a non-supervised learning technique and assigning
a water end use to each one of them. Whatever the classification technique used, its effectiveness is
increased by the fact that the subevents generated by the disaggregating algorithms consistently create
subevents using homogeneous and well-defined criteria.

2.1. Disaggregation Process

Figure 2 shows the flow chart of the proposed disaggregation process, which breaks down the
unprocessed events defined by the raw flow trace into simpler consumption events, and classifies the
resulting subevents as single-use or uncertain.

The reliability of the process strongly relies on the first analysis stage: filtering of the original flow
trace. The filter is controlled by 10 parameters [21], and their calibration is automatically solved per
consumption event by the Elitist Non-Dominated Sorting Genetic Algorithm NSGA-II [22] (R package
mco). There are three objective functions to be minimized in this calibration: (a) number of points
that describe the filtered flow trace; (b) total accumulated volume difference between raw and filtered
flow trace (Figure 3(a2,b2), Input and Output, respectively); (c) maximum on the curve of accumulated
volume difference. The first objective function (FO1) leads NSGA-II algorithm to solutions that simplify
the filtered flow trace, whereas the other two (FO2 and FO3) focus on improving its fitting quality
respect the original raw flow trace.

The next steps are followed to calculate the curve of accumulated volume difference: (1) given a
raw water flow trace, demonstrated as vector qr = (qr1, qr2, . . . qri . . . , qrm), and its corresponding
filtered water flow trace qf = (qf1, qf2, . . . , qfi, . . . , qfm), both expressed in litres per hour (L/h)
and recorded at time ti in seconds (s), two new synchronized time series are generated by linear
interpolation, qrs and qfs, for the set of unique ti that belong to qr and qf; (2) vector of time window
tw and vector of reference flow qref are defined as:{

twi = 0, i = 1
twi = ti − ti−1, 2 ≤ i < n

, (1)

{
qrefi = 0, i = 1

qrefi = max
(
qrsi−1, qrsi

)
, 2 ≤ i < n

; (2)
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(3) the curve of accumulated volume difference is defined for those components of twi greater than
0.001 s (all flow rate jumps that take place in the raw water flow trace have this duration, as it can be
seen in Figure 3(a1), Input) as follows:

if
((

qrefj > qth

)) ∣∣∣Vqr
[
t ≤ (tj + twj

)]− Vqf
[
t ≤ (tj + twj

)]∣∣∣
else

∣∣∣Vqr
[
t ≤ (tj + twj

)]− Vqf
[
t ≤ (tj + twj

)]∣∣∣/twi
, 2 ≤ j < m < n (3)

where Vqr and Vqf are the accumulated volume along the raw and the filtered water flow traces,
respectively, until t = tj + twj. On the other hand, qth is a user-defined threshold that has been
established to properly process the events with a continuous low-flow water leak. In these cases,
small differences in leakage flow rate between the raw and the filtered water flow traces can be
maintained over a long period of time, resulting in large accumulated volume differences that decrease
the representativeness of FO2 and FO3. To avoid this, the accumulated volume difference is divided by
twi when qrefj is less than the maximum level of leakage flow rate qth defined by the user. In the same
way, the curve of accumulated volume difference is defined for those components of twi greater than
0.001 s to reduce the appearance of noise when the flow rate is below qth.
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Figure 2. Flow chart of the disaggregation process and sorting of events as single-use or uncertain.
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Regarding NSGA-II parameters, processing time was the most constraining factor to select the
population size and the number of generations. The genetic algorithm achieves good results for
the most intricate cases—long duration events with a great degree of overlapping, which typically
come from households with leaks and high average daily consumption—with 24 individuals and
10 generations in a reasonable computing time. In relation to crossover and mutation probabilities,
the default values taken were 0.7 and 0.2, respectively.

The result of this calibration process is a Pareto Front, and the chosen solution is the one for which
the following expression is minimized:

FOselect.sol = w1 ∗ FO1

max(FO1−PF)
+ w2 ∗ FO2

max(FO2−PF)
+ w3 ∗ FO3

max(FO3−PF)
; (4)

where the maximum value reached in each objective function within the Pareto Front (max(FO1−PF),
max(FO2−PF) y max(FO3−PF)) was taken to standardize the corresponding term. A conservative
criterion for Filter-A, which prioritizes the simplification of the flow traces, establishes the weights for
each objective function (w1 = 0.8; w2 = 0.1; w3 = 0.1). This is necessary for subsequent disaggregation
processes, which can only be applied if certain requirements are satisfied based on a strong filtering
of the raw flow trace. Additionally, the calibration time can be limited by a user-defined threshold.
In case a solution is not found within the established time limits (only happening in less than 0.01% of
the sample events in the case studies below), the default values for the filter parameters will be used
(p1 = 150 (h*ms)/L; p2 = 0.16 L; p3 = 80 L/h; p4 = 40 degrees; p5 = 5%; p6 = 100 L/h; p7 = 10,000 ms;
p8 = 6000 ms, p9 = 5%, p10 = 10 degrees). These default values are the result of the authors’ experience
while developing and applying this process in several projects around the world. In any case, a future
sensitivity analysis is already planned to improve the filter performance and improve the speed of the
calibration procedure.
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Figure 3. Comparison of raw flow traces vs filtered. (a1,a2) after Filter-A and (b1,b2) after Filter-B.
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Once the consumption event defined by the raw flow trace has been filtered for the first time
(Filter-A in Figure 2) the event can be classified as simple, constituted by only four vertexes, or overlapped.
Simple events are analyzed by an additional filtering process (Filter-B in Figure 2). This process
prioritises how accurately the filtered flow trace matches the original one. In this case, the solution
selected from the Pareto Front should attain a value for the KGE index ([24]; R package hydroGOF)
higher than 0.8 with a maximum w1 weight. Figure 3 compares the resulting filtered flow traces after
going through the first and second filtering processes. Only if the final filtered flow trace (after Filter-B)
is formed by only four vertexes, the event is finally classified as a single-use event. Otherwise, it will be
classified as an uncertain event. The inclusion of a second filter significantly reduces the classification
errors of single-use events compared to a one-stage filter approach.

An additional step of the disaggregation process is the analysis of the minimum/baseline flow
(Qbase) in the filtered (Filter-A) events that have not been classified as simple events. The existence of a
base event is considered when more than one horizontal section of the event satisfies the following two
conditions: (i) the flow rate falls within a specified range {Qbase − tolerance, Qbase + tolerance}, where the
tolerance is defined by the user; (ii) the volume associated with the horizontal section of the event is
greater than a specified threshold. When these two conditions are met (Figure 4a), the events between
horizontal sections are cropped from the base event (Figure 4b). If only the second condition is not
satisfied (Figure 4a), the section is processed as a fictitious union, so that the events are separated and
the union removed (Figure 4b). Fictitious unions appear when processing the raw flow traces. They do
not actually correspond to any real water consumption (they are a distortion in the flow trace caused by
the data-acquisition equipment). The end or starting times of the previous and following subevents are
then recalculated to account for the volume removed from the fictitious union. Typically, this volume
corresponds to one or two pulses from the pulse emitter of the water meter. The resulting subevents
generated by these cropping operations are individually analyzed through the whole process again.
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Figure 4. (a) Example of an overlapped event. (b) Resulting events obtained after disaggregating
fictitious unions and conducting a baseline flow analysis.

Finally, if the event does not fall into any of the previous categories, a gradient analysis of the
filtered flow trace is carried out (Figure 2). Only in case that the event has three major slopes, being the
first one positive and other two negative or vice versa, it is considered that it is constituted by two
or more different events that are overlapped in time, which begin or end within the same time range
(Figure 5a). In this case, the events are cropped (Figure 5b), and the two new events are classified as
single-use events. On the contrary, if the number of major slopes in the event is greater than three, it is
directly categorized as an uncertain event. The key aspect of this separation process is to correctly identify
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the start or the end, depending on the case, of the second major slope on the raw flow trace (Figure 5a,
point 2) and the flow rate at the analogous instant in the filtered flow trace (Figure 5a, point 1).

It should be highlighted as an important contribution of the proposed methodology that all
previous separation processes are implemented on the raw flow trace. Thus, signal smoothing in
the filtered flow trace do not generate any loss of information in the resulting subevents obtained.
This particular feature can be clearly observed in Figure 5, where the separated consumption events
(Figure 5b) maintain the details of the original flow trace (Figure 5a). The presence of these details
can be used in a later stage to improve the effectiveness of the automatic classification tools that can
be developed.
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Figure 5. (a) Overlapped event in which the two subevents start at the same time. (b) Two resulting
single-use events after the cropping operation.

2.2. Classification Process

At the end of the disaggregation process, all the events have been classified into two categories:
single-use and uncertain events. As discussed below, the first group is the most numerous in any of
the households analyzed, typically ranging from 75% to 92% depending on the amount of water
consumption in the household. In addition, the amount of single-use events generated by the
methodology is higher if the uncertain events having less than 3 L in volume are assumed to be
single-use events (in this case the percentage of single-use events will range between 85% and 95%).
The cropping and classification of the uncertain event group, corresponding to intricate events with
high flow rate variability, will be the aim of future research. In this sense, it should be noted that
high flow rate variability is not always associated to water consumption overlapping from different
uses. Occasionally, the so-called uncertain events may be originated by pressure fluctuations, or the
user changing the opening of a faucet for convenience or to adjust water temperature. Cropping and
classification of uncertain events is not an easy task when accounting for the previous considerations
and the fact that the overlapping of two uses may not produce a consumption flow rate that is the sum
of the individual flow rates. The reason for this effect can be found in the pressure losses caused by the
plumbing. Depending on the sizing of the pipes, the consumption flow rate of a given use may be
significantly reduced by the appearance of additional water usages within the household.

The working hypothesis to categorizing single-use events is the following—those events with
similar physical characteristics correspond to the same end use. In accordance with this, an initial
clustering analysis is conducted by an unsupervised learning machine, Partition Around Mediods
(PAM; [25]; R package cluster). One advantage of this partition clustering technique relies on the fact
that it can work with different similarity measurements other than the Euclidean distance. In this
work, the Gower distance has been chosen as the similarity measure, since it scales all the variables
considered and allow for the definition of individual weights for the variables. On the other hand,
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the characteristics of the events taken into account as input data are the total volume and the average
flow rate. Event duration was rejected due to the considerable noise generated by long water uses,
which impeded clusters identification. This effect was observed in households with leakage, showing
long single-use events with low consumption flow rates. However, in these cases the duration of the
event is a variable used as a preliminary filter to allow the clustering analysis to solely focus on the
bulk of single-use events. Once the clustering analysis is finished (Figure 6), the application allows the
user to visualize random subsamples of events from each cluster and associate them with an end use
according to their physical characteristics.
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Figure 6. Result of Partition Around Mediods (PAM) algorithm with a number of clusters equal to 7
and similarity matrix based on Gower distance.

The subset of categorized single-use events and the subset of uncertain events are written in a flat
CSV file at the end of the process. This file can be read by BuntBrainForEndUses®, a web application
for manual processing and editing of water end uses. In this way, the user can correct misclassifications
and further edit the uncertain events that have not been properly analyzed by the algorithms.

3. Case Study

The water consumption data utilized for testing the methodology was sourced from two different
water end uses studies conducted in geographically distant regions. One of the main differences
between the studies is the type of monitoring equipment employed. In the first study (R1), the smart
meters installed for water consumption monitoring were ELSTER Y250 single-jet (maximum flow
rate of 5 m3/h) or ELSTER Y250M multi-jet (maximum flow rate of 7 m3/s) depending on the type
of residential household. These meters produce a pulse every 0.04 L or 0.06 L of water consumed,
respectively. Specially designed data loggers calculated and recorded the average consumption flow
rate at approximately 3-s intervals. This recording mode was chosen to optimize the file size while
preserving the quality of the flow trace. Files were periodically sent (twice per day) to the server via
GPRS/GSM. On the other hand, in the second study (R2) a piston type volumetric water meter was
used (Aquadis+, ITRON (WA, United States)), which generates a pulse every 0.1 L. The data logger
used, recorded the occurrence time of every pulse with a resolution of 0.02 s.

For this analysis, a selection of significant households of both studies was conducted according
to the average daily consumption and the presence or not of continuous leakage. The final selected
sample was composed by 20 households—10 from R1 and 10 from R2—for which two-week period
of monitoring data were selected. For the first study, the data corresponds to consumption made
during autumn 2015, while for the second study the data were collected during autumn 2016. In total
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19,858 sampled events were analyzed during the period considered. Figure 7 shows the general
characteristics of the selected households and events associated with them.

As shown in Figure 7, there is a considerable difference between the households and events
characteristics of these two studies. In the first study, the average daily consumption of the sample
was close to 1600 L/hh/day, while in the second it is less than 400 L/hh/day. The number of daily
events are also completely different: 110 events/hh/day vs. 35 events/hh/day. The dissimilarities
of the households considered in the analysis conducted in this paper emphasize the reliability of the
methodology, which can be used independently of the data sources, as long as the quality of the flow
traces allows for end use disaggregation.
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Figure 7. General characteristics of the analyzed households and the events associated with them.

4. Results and Discussion

The proposed methodology has been applied to 19,858 unprocessed water consumption events.
After applying the disaggregation process (filtering and cropping) to the flow signal, the total number
of events increased to 46,721, being the average number of cropping operations per day equal to 121
and 58 for the studies R1 and R2, respectively (Table 1). The average processing time consumed per
each one of these operations is 21.8 s, using an Intel Core i5-4440 processor. Per study, the average
cropping time is equal to 18.6 s for R1 and 28.3 s for R2. The calibration of the filtering algorithm
is the task requiring more processing time, which increases with the density per unit time of data
points in the raw flow trace. For this reason, it takes longer to carry out a cropping operation in the
case of an event belonging to the study R2, since in this study flow data were recorded with a lower
temporal resolution (0.02 s vs. approx. 3 s). Currently, the research team is working in optimizing the
calibration algorithms and reducing the required processing time. The strategies proposed for this
optimization are: (1) developing a methodology to calibrate the filter per household rather than per
event, without a considerable loss of filtering accuracy; (2) finding the filter parameters through an
algorithm that combines heuristic and guided search methods.
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Table 1. General statistics about performance of separation process.

R1 Study R2 Study Total

Total number of unprocessed events (10 households) 14,648 5210 19,858
Total number of resulting events (10 households) 32,792 13,929 46,721
Total number of resulting events per household 3279 1393 2336

Average time consumed per cropping operation (s) 18.6 28.3 21.8
Average number of cropping operation per household and day 121 58 90

Analyzing in detail the consumption events selected from study R1 (Figure 8), the result of
applying Filter-A to all 14,648 unprocessed events, was that 8768 events were classified as simple,
whereas the remaining 5880 were classified as overlapped. As to the simple events, most of them were,
as expected, single-use events (6394). The remaining 2374 simple events were not simple enough and
were classified as uncertain events. None of these uncertain events originated from simple events could
be cropped or further processed; however, most of them correspond to single-use events with unsteady
consumption flows (for example, a faucet that is adjusted to the desired flow rate).

Overlapped events correspond to events that could not be simplified as four-nodes events after
Filter-A. These events have a considerable degree of complexity due to the overlapping of water uses.
The algorithm proposed is capable of separating into single-use events most of these overlapped events
by accurately cropping the flow traces. The initially identified 5880 overlapped events were separated
into 24,024 subevents after the disaggregation process. Most of these new subevents were classified as
single-use events (17,908), and the rest (6116) as uncertain. In total, the analysis of the worst case scenario
of study R1 produced 24,302 single-use events (74.1%) and 8490 uncertain events (25.9%). From the
uncertain events, 4224 had a volume of less than 3 L. These, because of their low volume, could be also
be added to the single-use group.

UNPROCESSED
EVENTS

19,858
(R1 14,648/
R2 5210)

FILTER A

SINGLE USE
EVENTS
8967
(R1 6394/
R2 2573)

UNCERTAIN
EVENTS
2707
(R1 2374/
R2 333)

UNCERTAIN
EVENTS
6972
(R1 6116/
R2 856)

SINGLE USE
EVENTS
28,075
(R1 17,908/
R2 10,167)

FILTER B

SIMPLE
EVENTS
11,674
(R1 8768/
R2 2906)

CROPPING

OVERLAPPED
EVENTS
8184
(R1 5880/
R2 2304)

RESULTING
EVENTS FROM

OVERLAPPED
EVENTS
35,047
(R1 24,024/
R2 11,023)

SINGLE USE
EVENTS
37,042
(R1 24,302/
R2 12,740)

UNCERTAIN
EVENTS
9679
(R1 8490/
R2 1189)

79.3%
(R1 74.1%/
R2 91.5%)

20.7%
(R1 25.9%/
R2 8.5%)

Figure 8. Classification of events after filtering and cropping (disaggregation process).
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For study R2, showing simpler flow traces typical of water consumption profiles of a European
family, the results are even more positive. As shown in Figure 8, 91.5% of 13,929 resulting events were
considered to be single-use events and only 8.5% were catalogued as uncertain events. The difference
between studies is mainly due to the characteristics of the households: the flow traces belonging to the
sample R1 are notably more complex, obtained from households with high average daily consumption
and frequent overlapping of water uses.

Overall, the methodology generated a number of single-use events equal to 37,042 events (79.3%
of the 46,721 resulting events), of which 75.8% has been obtained through the proposed disaggregation
process. Consequently, human intervention to crop and generate single-use events has been significantly
minimized, with subsequently large human working time savings. In raw numbers, the total automatic
disaggregation process has taken less than 4 days (96 computing hours); whereas, according to the
authors’ experience, the same work would have required about 45 human-working days (360 h).

The distribution of the physical characteristics of the single-use and uncertain events for both
studies is presented in Figure 9. Some outliers, with a duration of more than 8 min, have been
removed to improve the readability of the basic statistics (median, first and third quartile). As expected,
the heterogeneity of the uncertain events is significantly larger than the one obtained for single-use
events. In addition, the average duration, volume and flow rate of uncertain events are greater than
those for single-use events. It should also be mentioned that some of the events considered here as
uncertain correspond to single uses, and their flow rate variability can be caused by adjusting the faucet
or variations in the input pressure.
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Figure 9. Distribution of the physical characteristics of the events classified as single-use and uncertain
per study.

After the disaggregation process, single-use events could be categorized by clustering analysis or
any other classification algorithm [15]. Similar methodologies have already been used in other fields,
like non-intrusive electric load data disaggregation [26–29]. As an example of the results that can be
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achieved by these techniques, Figure 10 shows the findings for one of the most complex households,
HH-06 of R1, showing an indoor leak and a high average daily consumption. The unsupervised
learning technique used, allows to identify different types of water consumption uses: Cluster 2 in
Figure 10 mostly includes events corresponding to toilets, while Cluster 6 is composed of washing
machine and shower events.
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Figure 10. Display of 20 randomly selected individuals from clusters 2 and 6 for household HH-06 that
belongs the R1 study.

Figure 11 shows the final results after assigning a water end use to each cluster for the household
under study. Given the same monitoring period, the outcome of proposed methodology is compared
with the one obtained manually. It can be observed that the physical characteristics of the events in
each end use category tend to be similar. Nevertheless, there is a significant deviation, especially
with respect to the mean flow rate and duration of the events: the average flow rate for each end
use tends to be higher in the presented approach, while the average duration is generally shorter as
more cropping operations are conducted through the automatic disaggregation process. In addition,
both parameters—volume and duration of single-use events—are less dispersed when the flow traces
are automatically cropped. This is directly related to the inherent defects of manual editing that can
be seen in Figure 12 (additional examples in Appendix B): the automatic algorithms recognize the
leakage event by means of a volume check (Figure 12b), whereas the analyst has subjectively decided
in this specific case to ignore it (Figure 12a) and add the volume to the toilet use. When a human
analyst processes the consumption data, the resulting average duration of faucets and toilets is larger
and the average flow rate smaller. Additionally, for the same reason, a greater number of leakage
events have been identified and separated from other consumption through the proposed methodology.
These findings demonstrate that automatic disaggregation tools can generate a standardized corpus of
processed data, which is more homogeneous and reliable because it is obtained as a result of cropping
operations based on solid and well established criteria. Therefore, the single-use events obtained
from the automatic disaggregation algorithms developed in this study are significantly more reliable,
in terms of duration, average flow rate and shape than those resulting from a manual processing and
cropping the water consumption flow traces. These results have direct implications in the probability
functions used to characterize water consumption events frequency, duration and intensity [30–34].
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Figure 11. The manual vs proposed methodology final results of complete disaggregation processing
for the household HH-06 of the R1 study.
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Figure 12. Manual vs automatic disaggregation (example from the household HH-06 of R1).

Obviously, more accurate classification techniques can be developed as processing experience
is gained and larger and more reliable data sets are available for training the algorithms. The work
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presented should be considered as an important first stage to produce sets of individual events that
are built consistent and accurately, which can be used to improve the training of automatic recognition
algorithms. Therefore, the main contribution of the proposed methodology is mainly related to the
quality of the single-use events obtained through an automatic separation technique that can be easily
used for developing faster and better performing classification algorithms.

5. Conclusions

The work presented intends to be a step forward to the main objective of understanding in detail
how water is consumed through end uses, and the reasons behind it. It proposes a new fully-automatic
disaggregation process for water consumption events that is based on a two-step filtering and event
cropping algorithm. An additional advantage achieved by the flexibility of the filter is that the whole
process can be universally applied to different type of customers and monitoring equipment.

The disaggregation process presented is divided into two main stages:

(a) The raw water consumption events are filtered and categorized as simple or overlapped
to facilitate subsequent operations. The filtering relies on an advanced algorithm that is
automatically calibrated for each water consumption event by means of NSGA-II genetic
algorithm. Simple events are then characterized as single-use, which correspond to actual
individual water uses, or uncertain events.

(b) On the other hand, overlapped events, originated by simultaneous water uses, are cropped and
separated into simpler single-use events. All cropping operations are implemented on the raw
flow trace, and potential distortions in the filtered signal do not generate any loss of information
in the resulting subevents. In other words, all the subevents created maintain the characteristics
of the original flow trace. This particular feature increases the amount of information available
for the classification algorithms that can be developed in the future, improving their effectiveness.

Finally, as a case study, an example of the way in which the events generated during the previous
stages can be easily categorized into various end uses by a semiautomatic algorithm is added to the
work presented. Single-use events are massively classified into various water end use categories by
means of clustering analysis.

Regarding the performance analysis of the first and second stages for the case study presented,
the following conclusions were raised: The original raw flow traces, of the 20 households belonging to
the studies R1 and R2, covering a monitoring period of 15 days per household, contain 19,858 events.
After the filtering and separation process, the number of subevents grew to 46,721, of which 79.3%
(37,042 events) are single uses. In other words, the number of water consumption events increased
by 130%, and 26,863 new events were created. Up to 75.8% of the single-use events that can be
classified, have been obtained through the disaggregation process defined in this work. Therefore,
the methodology proposed solves most of the cropping operations that need to be performed and
reduces significantly the human intervention required to disaggregate the overlapped consumption
events into single-use events, with significant time savings.

Finally, by comparing the manual and the automatically disaggregated events, it was observed
that the characteristics of the events originated from the algorithms proposed are more homogeneous
and consistent than the ones obtained by manual cropping. This result can be easily justified by
the fact that the automatic separation algorithms always apply the same criteria, while a human
analyst may change the cropping criteria while conducting the analysis. Furthermore, the inherent
subjectivity of manual separation introduces dispersion in the physical characteristics of the events
belonging to a specific water end use. More dispersion regarding the physical characteristics of the
consumption events associated to an end use, unavoidably lead to poorer performance of whatever
automatic classification technique that could be applied. This is why the single-use events obtained
by the methodology proposed constitute a more reliable corpus for training and developing end use
classifications algorithms.
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Definitions

Classification: Process by which every single-use event is assigned to one of the potential water end
uses in a household.

Cropping: Action by which one part of an overlapped event that has already been identified as a
single water use (and still remains attached to the overlapped event) is effectively removed from it to
become a new and independent single-use event.

Disaggregation: Process by which an overlapped event is effectively separated into all the single-use
events integrating such event. In this work, the disaggregation process consists in two actions (filtering
and cropping), and it is performed through a universal fully-automatic algorithm.

Fictitious union: When a water consumption starts, there is a significant time gap between the
previous pulse and the initial pulse recorded. Therefore, the flow rate associated to the first pulse
received (calculated as the ratio between the pulse volume and the time gap) is lower than the actual
consumption flow rate. With this calculation it is also assumed that during the complete time gap
between pulses, the consumption flow rate is constant and equal to the calculated value. Obviously,
this calculation does not represent how water was really consumed in the time interval between the
two pulses under analysis. Quite frequently, there will be part of the time (most) in which there is no
consumption and another part (less) in which there is a consumption at a relative high flow.

Event: Every single water consumption, whatever its volume or duration. An event begins when
the flow rate through the meter changes from zero to any positive value, and finishes when the flow
rate becomes to zero again.

Unprocessed event: Initial event in the raw flow trace, before any kind of signal processing has
been conducted.

Overlapped event: Complex event being the sum of more than one simultaneous single uses
of water.

Pulse: Each of the signals sent by the pulse-emitter (attached to or embedded in the water meter)
to the data-logger. Each signal corresponds to a fixed volume of water consumed. In the design stage
of the monitoring project there are two crucial decisions related to pulse emitters: (i) the consumption
volume associated to each pulse, which mostly depends on the water meter design, and (ii) the way
pulses are recorded by the logger. Typically, the data loggers may store the number of pulses (volume)
received at fixed intervals of time, or it may store the time at which each single pulse is received.
Fictitious unions appear when the time of occurrence of the pulses are recorded in the data logger.

Simple event: Processed event, obtained after Filter-A, constituted by four vertexes. Most simple
events will become single-use events at the end of the disaggregation process.

Single-use event: Final event obtained after the disaggregation process that corresponds to one
specific end use.

Uncertain event: Final event obtained after the disaggregation process that cannot be further
cropped into smaller single-use events nor classified as being a single use itself. Additional contextual
information is needed to be able to split the event into smaller ones or to categorize it as one
single-use event.
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Figure A2. Examples of Manual vs. Automatic Disaggregation from R1 study.
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Abstract: The stochastic nature of water consumption patterns during the day and week varies.
Therefore, to continually provide water to consumers with appropriate quality, quantity and
pressure, water utilities require accurate and appropriate short-term water demand (STWD) forecasts.
In view of this, an overview of forecasting methods for STWD prediction is presented. Based on
that, a comparative assessment of the performance of alternative forecasting models from the
different methods is studied. Times series models (i.e., autoregressive (AR), moving average (MA),
autoregressive-moving average (ARMA), and ARMA with exogenous variable (ARMAX)) introduced
by Box and Jenkins (1970), feed-forward back-propagation neural network (FFBP-NN), and hybrid
model (i.e., combined forecasts from ARMA and FFBP-NN) are compared with each other for a
common set of data. Akaike information criterion (AIC), originally proposed by Akaike (1974) is used
to estimate the quality of each short-term forecasting model. Furthermore, Nash–Sutcliffe (NS) model
efficiency coefficient proposed by Nash–Sutcliffe (1970), root mean square error (RMSE) and mean
absolute percentage error (MAPE) are the forecasting statistical terms used to assess the predictive
performance of the models. Lastly, as regards the selection of an accurate and appropriate STWD
forecasting model, this paper provides recommendations and future work based on the forecasts
generated by each of the predictive models considered.

Keywords: forecasting models; short-term; water demand simulation

1. Introduction

The most crucial factor in the planning, operation and management of water distribution systems
(WDS) is the satisfaction of consumer demand. The stochastic nature of water demand during the day
and week is influenced by several factors; namely, climatic and geographic conditions, commercial and
social conditions of people, population growth, industrialisation, technical innovation, cost of supply,
and condition of WDS [1–4]. Therefore, water utilities need accurate and appropriate short-term water
demand (STWD) forecasts in order to continually satisfy consumers with quality water in adequate
volumes, and at reasonable pressures [5–7]. STWD forecasting is an important component of the
successful operation, management, and optimisation of any existing WDS. As a result, the selection of
an accurate and appropriate STWD forecasting model is useful for [1,6,8–16]:

• explaining day-to-day demand variations
• minimising the operating cost of pumping stations
• pinpointing possible network failures (e.g., water leaks and pipe bursts)

Water 2017, 9, 887 342 www.mdpi.com/journal/water
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• helping utilities plan and manage water demands for near-term events
• optimizing daily operations of the infrastructure (e.g., pump scheduling, control of reservoirs

volume, pressure management, and water conservation program)

In the light of the above, the first objective of this paper is to present an overview of forecasting
methods for STWD prediction. Based on that, the second objective is to conduct a comparative
assessment of the performance of alternative forecasting models from the different methods. As regards
the selection of an accurate and appropriate model, the third objective of the paper is to present
recommendations and future work for the forecasts generated by the forecasting models considered.

2. Overview of STWD Forecasting Methods

In this section, the overview of univariate time series (UTS), time series regression (TSR), artificial
neural network (ANN), and hybrid methods for STWD prediction is presented (see also Table 1).

2.1. UTS Forecasting Methods

UTS methods forecast future water demand based on past observations and associated
error terms [17,18]. Exponential smoothing, autoregressive (AR), moving average (MA),
autoregressive-moving average (ARMA), autoregressive integrated moving average (ARIMA) and
seasonal ARIMA (SARIMA) are examples of UTS forecasting models. These models are useful for
short-term operational forecasts. However, they may not be the most accurate alternative when weather
changes are likely to occur in the underlying determinants of water demands [11,18]. Furthermore,
it is discussed in [11] that stochastic process models (i.e., AR, MA, ARMA, and ARIMA) are used since
exponential smoothing models sometimes cease to be adequate when time series data exhibit more
complex profiles. Based on that, to achieve the second objective of this paper, the model processes of
AR(p), MA(q), and ARMA(p, q) are respectively considered as given in Equations (1)–(3) [17,18].

Yt = μ +
p

∑
k=1

φkYt−k + εt (1)

Yt = μ + εt +
q

∑
k=1

θkεt−k (2)

Yt = μ +
p

∑
k=1

φkYt−k + εt +
q

∑
k=1

θkεt−k (3)

where p and q are the model orders, φ is the autoregressive parameter, θ is the moving average
parameter, μ is the mean value of the process, and εt is the forecast error at time t. Yt is the observed
value of demand at time t, k is the number of historical periods, Yt−k and εt−k are the observation at
time t−k.

2.2. Time Series Regression (TSR) Forecasting Methods

Unlike the UTS models, TSR forecasting models consider the effects of exogenous variables.
This is because they generate forecasts based on the relationship between water demand and its
determinants [19–21]. TSR models include multiple linear regression (MLR), multiple and nonlinear
regression (MNLR), ARMA with exogenous variable (ARMAX) and ARIMA with exogenous variable
(ARIMAX). Among others, the ARMAX(p, q, b) model is considered to achieve the second objective of
this paper. Equation (4) is useful in a case where the demand at time t is influenced by MA and AR
terms, in addition to exogenous variables and their autoregressive terms [11].

Yt = μ +
p

∑
k=1

φkYt−k + εt +
q

∑
k=1

θkεt−k +
b

∑
k=0

βkxt−k (4)
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where b is a single exogenous variable considered for the ARMAX model. Additionally, βk and xt−k
are respectively the coefficient and observed value of the kth independent variable.

2.3. Artificial Neural Network (ANN) Forecasting Methods

ANNs were introduced following Rosenblatt’s concept of perceptron [22], and their application
usually involves a comparative assessment of the performance with TSR models (e.g., feed-forward
back-propagation neural network (FFBP-NN), generalized regression neural networks (GRNNs),
radial basis neural networks (RBNNs), and MLR) [1,10,23–26], with UTS models (e.g., dynamic
artificial neural network (DAN2), ARIMA and FFBP-NN) [27] or with both UTS and TSR models
(e.g., simple linear regression (SLR), MLR, UTS models, and ANN models) [5,28,29]. Nonetheless, in
order to achieve the second objective of this paper, FFBP-NN (see Equation (5)) is considered [1].

Yt = α0 +
p

∑
j=1

αj f (
h

∑
i=1

βijYt−j + β0j) + εt (5)

where p is the number of hidden nodes, h is the number of input nodes, f is a sigmoid transfer function,
αj is the vector of the weights from hidden to the output nodes, βij are the weights from the input to
hidden nodes, and α0 and β0j are the weights of the arcs leaving from the bias terms.

2.4. Hybrid Forecasting Methods

Forecasting with hybrid models (i.e., combined forecasts from two or more predictive models) has
found wide application [6,11,24,30–34], since it leads to better forecasting performance. For instance,
Equation (6) is applied in a case where forecasts from different models are combined in order to obtain
a hybrid forecast. As regards achieving the second objective of this paper, the combined forecast is
obtained by using a UTS model (i.e., ARMA) and an ANN model (i.e., FFBP-NN).

Ŷt = β0 +
n

∑
i=1

βiŶi,t (6)

where Ŷi,t is the predicted value of the time series at time t using the ith model, β0 is the regression
intercept, βi coefficients are determined by optimisation or least squares regression to minimise the
mean square error (MSE) between the hybrid forecast Ŷi,t and the actual data [11].
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3. Presentation and Discussion of Results

In this paper, ARIMA-based models (i.e., AR, MA, ARMA, ARMAX) together with the widely
used non-parametric forecasting model, FFBP-NN, have been compared with each other and against
the hybrid model, a combination of two or more forecasting models (i.e., ARMA and FFBP-NN) for a
common set of data (see Figure 1). Figure 1a shows the average water consumption for the 24 h of each
day for a city in south-eastern Spain, obtained from all the available data provided in [1]. The predictive
models considered in this paper were used to forecast hourly water demands. In addition, an average
weekly data of 168 h was used, and based on that, the proportion of data used for the training and
testing were 60% and 40% respectively.

Figure 1a shows a similar behaviour during the early morning (e.g., all curves grow from 6:00 a.m.
until 10:00 a.m.). In addition, from 10:00 a.m. to 4:00 p.m., all the curves have decreasing and increasing
trend (except on weekends). According to [1], temperature is said to be the main factor that influences
multiple sources of water consumption (e.g., showers, water for garden, etc.). Hence, Figure 1b shows
the single exogenous variable considered for ARMAX model.

The results shown in Figures 2–5 are obtained by computing Equations (1)–(6) in MATLAB.
Figures 2–4 show the forecasts generated by AR and MA (see Figure 2), ARMA and ARMAX
(see Figure 3), as well as FFBP-NN and hybrid model (see Figure 4). Figure 5a–c show the comparative
assessment of the predictive performance of these models by using forecasting statistical terms such as
root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe (NS) [39].
This assessment was achieved by computing Equations (7)–(9). In addition, the estimate of the relative
quality of AR, MA, ARMA, ARMAX, and FFBP-NN is shown in Figure 5d, and it was obtained by
applying Akaike information criterion (AIC) [40], which is based on Equation (10). The forecasts
presented in this paper were generated using the best model order, which is determined by the AIC.

(a) (b)

Figure 1. (a) Daily water demand profile and (b) Single exogenous variable “relative temperature”.

Figures 2a,c, 3a,c, and 4a,c were obtained by using the training dataset, whereas the test dataset
was used to obtain Figures 2b,d, 3b,d, and 4b,d. Based on the application of AIC [40], Figure 2a,b
show that a model process of AR(p = 2) was used to generate the forecasts for the training and test
datasets. A model process of MA(q = 3) was also used to obtain the forecasts presented in Figure 2c,d.
The forecasts shown in Figure 3a,b were obtained based on a model process of ARMA(p = 1, q = 1).
The results of Figure 3c,d were obtained using a model process of ARMAX(p = 1, q = 1, b = 1).
A model order of three was used to obtain the results shown in Figure 4a,b. The configuration of the
neural network was achieved with a feed-forward neural network of one hidden layer (10 hidden
neurons) using a Levenberg–Marquardt optimisation-based backpropagation algorithm to train the
neural network weights. The training was stopped using validation data (15% of the training datasets).
This process was performed 10 times (i.e., 10 cross-validation) to select the feed-forward neural network
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with the best predictive accuracy to compensate for neural network training variations. The model
orders mentioned in this paper are the best, and were obtained using AIC. Lastly, the optimal weighting
of the hybrid forecast obtained using ARMA and FFBP-NN—as shown in Figure 4c,d—was achieved
by using linear least square optimisation.

(a) (b)

(c) (d)

Figure 2. Forecasts generated using (a,b) AR model and (c,d) MA model. The best model orders,
AR(p = 2) and MA(q = 3), were determined based on Akaike information criterion (AIC)
computation [40]. MAPE: mean absolute percentage error; NS: Nash–Sutcliffe; RMSE: root mean
square error.

The RMSE and MAPE were used to evaluate the forecasting accuracy of the predictive
models. In addition, NS was used to estimate the forecasting power of the models. The results
of Figures 2b,d, 3b,d, and 4b,d show that the hybrid model was the best forecasting model
for STWD prediction (i.e., RMSE = 0.82, MAPE = 3.56%, NS = 0.98) followed by ARMAX
(i.e., RMSE = 1.03, MAPE = 3.86%, NS = 0.95), ARMA (i.e., RMSE = 1.85, MAPE = 7.63%, NS = 0.91), MA
(i.e., RMSE = 2.59, MAPE = 11.42%, NS = 0.81), AR (i.e., RMSE = 2.67, MAPE = 11.59%, NS = 0.8),
and FFBP-NN (i.e., RMSE = 2.8, MAPE = 12.31%, NS = 0.78). In addition, the plots of RMSE, MAPE,
and NS versus model order variation are also presented in Figure 5a–c. Compared to AR, MA, ARMA,
and FFBP-NN, Figure 5d shows that the AIC value for ARMAX is the smallest. This implies that the
quality of the ARMAX model compared to others (i.e., AR, MA, ARMA, and FFBP-NN) is estimated to
be the best. The predictive accuracy of all models decreases as the model order increases. For instance,
FFBP-NN model had a remarkable decrease in accuracy compared to other models. Due to the
additional piece of information (i.e., relative temperature) as shown in Figure 1b, the results obtained
in Figures 3 and 5 show that ARMAX(1,1,1) provided a better forecast than ARMA(1,1). Generally,
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based on the forecasting statistical terms considered in this paper, the comparative assessment shows
that for STWD forecasting, the hybrid model (combined forecast from ARMA and FFBP-NN) was the
best model, followed by ARMAX, ARMA, MA, AR, and FFBP-NN.

(a) (b)

(c) (d)

Figure 3. Forecasts generated using (a,b) ARMA model and (c,d) ARMAX model. Using AIC, the best
model orders are ARMA(p = 1, q = 1) and ARMAX(p = 1, q = 1, b = 1).

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Forecasts generated using (a,b) FFBP-NN model and (c,d) Hybrid model. The hybrid forecast
was obtained by the combined forecast from ARMA and FFBP-NN.

(a) (b)

(c) (d)

Figure 5. Comparative assessments of the STWD forecasting models using (a) RMSE; (b) MAPE;
and (c) NS. (d) Estimated quality of AR, MA, ARMA, ARMAX, and FFBP-NN using AIC value.
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2
(9)

AIC = N log(
RSS

N
) + 2k (10)

where Yt is the real observation, Ŷt is the forecast value at time t, and μYt is the mean of real observation.
RSS is the estimated residual of fitted model, and k is the number of estimated parameters in the model.

4. Recommendations of STWD Forecasting Models and Future Work

As regards the selection of accurate and appropriate forecasting models for STWD prediction,
this section of the paper presents recommendations and future work based on the forecasts generated
by AR, MA, ARMA, ARMAX, FFBP-NN, and hybrid models.

Concerning UTS forecasting models (i.e., AR, MA, and ARMA), the results obtained in
Figures 2 and 3a,b show that ARMA is the best predictive model. It is useful for STWD operational
forecasts to minimise the operating cost of pumping stations [1,6,15,16,18]. However, as regards
influencing future water demand, a major criticism of UTS predictive models is their failure to account
for the effects of changing exogenous variables [11,18]. In reference to UTS models, TSR models
(i.e., ARMAX) is preferred since it offers a straightforward framework for quantifying the effects
of exogenous variables (e.g., weather data, demographics) [11,19,24–26]. Figure 3d shows that the
forecast generated by ARMAX is useful for better prediction of daily water demand and for setting
water rates.

It is discussed in the scientific literature that ANN models (i.e., FFBP-NN) are designed to detect
complex nonlinear relationships that may be harder to summarise. In addition, it is also discussed
that it is useful for a better prediction of peak daily water demand to inform optimal operating policy
as well as pumping and maintenance scheduling [1,5,24,26–29,35]. Nonetheless, it requires greater
computational resources than most STWD forecasting methods [11]. Compared with AR, MA, ARMA,
ARMAX, and hybrid model, the results obtained show that the forecasting performance of FFBP-NN
was the least [24,25]. However, by combining the forecasts generated by FFBP-NN and ARMA,
the result obtained in Figure 4d shows that the best forecasting performance was obtained. This shows
that if ARMAX and FFBP-NN are used to generate a hybrid forecast, a better forecast compared to the
combination of ARMA and FFBP-NN will be obtained. Hybrid forecasting is necessary for operational
purposes because it is useful for real-time near-optimal control of WDS [11,33–38].

This study shows that UTS models (i.e., ARMA), TSR models (i.e., ARMAX), and hybrid model
(combined forecast from two or more models such as ARMA and FFBP-NN) may be considered as the
accurate and appropriate models for STWD prediction. However, these models are not applicable in
more general decision problem frameworks, since they cannot be used to understand and analyse the
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overall level of uncertainty in future demand forecasts. Therefore, much more attention needs to be
given to probabilistic forecasting methods for STWD prediction, since such best single valued forecasts
obtained by hybrid model do not guarantee reliable and robust decisions, which can only be obtained
via Bayesian Decision approaches requiring the estimation of the full predictive density [11,15,41–47].
Furthermore, given that the main objective of WDS management is to guarantee short-term user’s
demand, alternative approaches to predicting a future expected value as described in this paper will be
analysed in the future. These approaches [15,42], based on the Bayesian maximisation of an “expected
utility function”, require forecasting the entire predictive density instead of the sole expected value,
and can guarantee more reliable and robust decisions.

5. Conclusions

The main objective of WDS management is to guarantee short-term user demand, which implies
making real-time rational decisions based on the best available information on future user demand.
Deterministic forecasts such as the ones described in this paper are insufficient to provide the predictive
probability distribution of future demand, conditional upon models’ forecasts, which can be regarded
as the maximum information to be used in any educated decision making process.

The selection of an accurate and appropriate STWD forecasting model is useful for the successive
assessment of such predictive probability distribution. As a result, this paper overviews the forecasting
methods and models for STWD prediction, assesses the the forecasting performances of AR, MA,
ARMA, ARMAX, FFBP-NN, and hybrid model from the different methods overviewed, and provides
recommendations and future work for the forecasts generated by these predictive models.

Furthermore, the forecasts generated by AR, MA, ARMA, ARMAX, FFBP-NN, and hybrid model
(i.e., combined forecast using ARMA and FFBP-NN) have been compared with each other for a
common set of data. AIC is used to estimate the quality of each model and forecasting statistical
terms; namely, RMSE, MAPE, and NS model efficiency coefficient are used to assess the predictive
performance of these models. The comparative assessment of the forecasting models show that
ARMA, ARMAX, and the hybrid model may be considered as the best conditioning candidates for the
assessment of the predictive probability distribution of future demands.

In a successive paper, we will show how to derive the above-mentioned predictive probability
distribution conditional on one or more predictive models as the fundamental tool for estimating
expected benefits (or expected losses) to be maximised (or minimised), within a Bayesian decision
making framework.
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Abstract: This paper proposes a short-term water demand forecasting method based on the use of the
Markov chain. This method provides estimates of future demands by calculating probabilities that
the future demand value will fall within pre-assigned intervals covering the expected total variability.
More specifically, two models based on homogeneous and non-homogeneous Markov chains were
developed and presented. These models, together with two benchmark models (based on artificial
neural network and naïve methods), were applied to three real-life case studies for the purpose of
forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the
model based on a homogeneous Markov chain provides more accurate short-term forecasts than the
one based on a non-homogeneous Markov chain, which is in line with the artificial neural network
model. Both Markov chain models enable probabilistic information regarding the stochastic demand
forecast to be easily obtained.

Keywords: water demand; forecasting; Markov chain; stochastic

1. Introduction

Water distribution systems fulfil the fundamental task of satisfying the water demand of users, and
their long-term and short-term management can be supported by the use of water demand forecasting
models. In fact, for the purpose of activities related to the design, maintenance and upgrading of water
supply networks (e.g., expansion of distribution systems or replacement of parts of networks), which
entail long-term planning, it is fundamental to have an accurate estimate of monthly or yearly demand
in the years to come, that is, over the useful lifetime of the installation. Analogously, forecasts of daily
or hourly demands over limited time horizons (for example a week or the next 24 h) can provide useful
information for planning short-term or real-time management of the devices at the service of water
distribution systems, such as the planning of pumping station operations, the control of valves, etc.

Depending on their features, water demand forecasting models can be divided into different
categories. A first distinction can be made, in relation to the different practical objectives just mentioned,
based on the forecasting frequency and the time horizon (i.e., the length of future time interval the
forecast is intended to cover) (see [1]). In this work, the attention is focussed on short-term demand
forecasting models, which generally predict hourly or sub-hourly demands over a time horizon
normally ranging between 6 and 48 h [2–6].

A further distinction can be made in relation to the adopted modelling technique. Various
water demand forecasting models based on data-driven techniques, in particular artificial neural
networks (ANN), have recently been proposed [3,7–14]. A different approach to demand forecasting is
based on the representation of periodic behaviours that typically characterise water demands. It is in
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fact possible to recognise trends or patterns, which are generally influenced by seasonality, climate
conditions and the types and habits of the users served by the system. The structure of various water
demand forecasting models is based precisely on the description of such behaviours [4], possibly in
conjunction with techniques of time series analysis such as autoregressive processes [2], or Markov
processes [15]. Most of the above techniques, especially the forecasting models based on ANN and
similar methods, fall into the category of black box models (as opposed to white box models, such as
physically-based models). Whilst accurate, black box models are simply not transparent in terms of
mapping inputs (past demands and different explanatory factors) onto outputs (forecasted demands).
The water demand forecasting model proposed here falls into the category of grey box-type models,
i.e., with limited but better transparency when compared with black box models.

Finally, it is possible to formulate a further distinction between forecasting models based on
the type of results they furnish. Water demand forecasting is characterised by a certain degree of
uncertainty, due to the natural variability of the water consumption. Quantification/characterisation
of this natural variability is very important in the planning or management of water distribution
systems [16]. The models can therefore be classified into deterministic models, which provide a
deterministic estimate of future water demands, and models that also provide an estimate of the
stochastic behaviour of the demand forecast. Most models proposed in the scientific literature,
including the ones mentioned thus far, belong to the former category, whereas the latter category
embraces less recently proposed models, such as the Bayesian-based models [17–22], the approach
proposed by Alvisi and Franchini [16] based on the use of the Model Conditional Processor [23], and the
approach proposed by Cutore et al. [24], based on a neural network trained by means of the SCEM-UA
algorithm [25]. All in all, stochastic models should be preferred to deterministic ones, due to additional
information provided about the forecasted demands. However, existing stochastic forecasting models
can be very computationally demanding, as they tend to use Monte Carlo simulations to assess the
probability distribution of the future demand value and the related prediction bounds.

In this paper, a new approach for short-term water demand forecasting based on the statistical
concept of the Markov chain (grey box modelling approach) is proposed. The model is capable of
providing both a deterministic forecast of the future values of water demand, and a characterisation of
the stochastic behaviour of the forecasted values (at reduced computational effort compared to most of
the existing methods). The model, applied with the aim of estimating future hourly demands over
a time horizon of 24 h relying solely on observed water demand data, is characterised by a simple
structure, easy to comprehend and control.

The Markov chain technique is outlined in Section 2 below where, after giving the theoretical basis,
the developed models are then illustrated. In Section 3, the case studies the models were applied to,
and the benchmark models used by way of comparison, are described. After analysing and comparing
the results obtained from the application of the Markov models and the benchmark models in Section 4,
the final conclusions are presented in Section 5.

2. Markov Chain Based Demand Forecasting

2.1. Overview

The proposed approach is based on the statistical concept of the Markov Chain (MC) and aims
to forecast short-term water demand while characterising the demand’s stochastic behaviour. In the
scientific literature, various examples of forecasting models applying this concept can be found, both
in the context of water demands [15], and in other engineering contexts such as in the prediction of
the performance of bridge decks [26], traffic flow forecasting [27], wind power forecasting [28] and
streamflow forecasting for the prediction of flood events [29]. In particular, in the context of water
demand, proposed by Shvarster et al. [15] propose an hourly water demand forecasting model in
which each day is divided into three parts, referred to as “rising”, “oscillating”, and “falling” segments.
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Within each segment, the water demand is modelled with a third-order autoregressive process. The
transition from one segment to the next is modelled with a Markov process.

The approach proposed here, by contrast, exploits the Markov chain concept to characterise the
probability that the demand in one or more successive times (for example, in the next hour or in the
next 2, 3, . . . hours) will fall into an assigned interval, where the interval at the current time step is
known. In the sections that follow, the Markov chain concept is illustrated, and then its application to
water demand forecasting is described.

2.2. The Markov Chain

A statistical process, i.e., the succession of a random variable X(t), with t ∈ T, may be considered
a Markov process if it exploits the Markov theorem [30]. Let us assume that the domain T of the variable
t is the time, divided in discrete intervals Δt, and that the domain of existence of the variable X(t) is
known and divided into N intervals, each of which is defined as a class ci (with i = 1,.., N) of the process
(see Figure 1).

Figure 1. Reference diagram of a Markov process showing the N classes into which the domain of
existence of the variable X(t) is divided, and the probabilities referred to each class at the time t + 1.

The probability pi(t) that, at a generic time t, the process will be in a generic class ci, can be
defined as:

pi(t) = Pr[X(t) ∈ ci], (1)

The generic pi(t) represents the i-th component of the row-vector p(t) = [p1(t), p2(t), . . . , pN(t)],
which contains all the probabilities that the process is at the generic time t in each of the N classes.

Of course, it results
N
∑

i=1
pi(t) = 1 for every t.

In passing from a class ci at time t to a class cj at the next time t + Δt, the process undergoes a
transition, which is associated with a probability πij(t), called transition probability. The probabilities
associated with every possible transition from t to t + Δt are the components making up the
transition matrix Π(t) ∈ �NxN :

Π(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

π11(t) . . . π1i(t) π1j(t) . . . π1N(t)
. . . . . . . . . . . . . . . . . .

πi1(t) . . . πii(t) πij(t) . . . πiN(t)
πj1(t) . . . πji(t) πjj(t) . . . πjN(t)

. . . . . . . . . . . . . . . . . .
πN1(t) . . . πNi(t) πNj(t) . . . πNN(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where every row of the matrix Π(t) corresponds to the starting class of the process, and every column
to the class of arrival: for instance, the probability πij(t) of belonging in class cj at time t + Δt starting
from class ci at the preceding time t, is placed in the i-th row and j-th column of the matrix.

356



Water 2017, 9, 507

It should be noted that the transition matrix Π(t) can vary at every step of the process, and this
behaviour is generally indicated as a non-homogeneous Markov chain. A homogeneous Markov
chain is based, by contrast, on the assumption that the transition probability is independent of t. This
condition implies the existence of a single transition matrix, Π, which remains constant with variations
in t and is characteristic of the entire process.

The transition matrix characterises the Markov process itself, since it quantifies the tendency of
the process to move from one class to another in two successive times. With the transition matrix of a
certain Markov process being known, the Markov chain theory allows the estimation of the probability
that the process has to belong to each class one time ahead of the current one (for example in t + Δt
when t is the current time). In particular, in a real-time forecasting framework, with t being the current
time, p(t) the corresponding probability vector of the process and Π(t) the correspondent transition
matrix, the probability vector of the process at time t + Δt, pfor(t+Δt), can be estimated as:

p f or(t + Δt) = p(t)× Π(t), (3)

This estimation is displayed in Figure 2a showing, at the time step centered in t + Δt, each
class coloured with a shade of grey, correspondent to the calculated probability. More in general, by
triggering a Markov chain and exploiting, for every time lag k following the first, the forecast made for
the preceding times, it is possible to extend the time horizon to kΔt ahead (with k > 1), i.e.,:

p f or(t + kΔt) = p f or(t + (k − 1)Δt)× Π(t + (k − 1)Δt) with k > 1, (4)

What has been illustrated thus far can be used to obtain probability vectors at every time t + kΔt,
one for every time lag k (with k = 1, . . . , K) (see Figure 2b); these vectors characterise, for every time
lag, the probability that the process will fall into each of the N classes.

The proposed Markov chain method exploits this concept in order to provide stochastic and
deterministic forecasts of water demand, as detailed in the next section.

Figure 2. Estimated posterior probability vector pfor (a) for one step ahead and (b) for k steps ahead,
highlighted using a shade of grey for each class.
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2.3. Demand Forecasting Model

The proposed water demand forecasting model is based on the assumption that the trend in water
demand can be defined as a Markov process. Generally speaking, it can be assumed that the random
variable of the process at the time t can be identified with the mean water demand q(t) in the generic
time interval Δt (for example, Δt = 1 h). Moreover, it is possible to identify N classes c1,c2, . . . , cN into
which the entire range of variability of the water demand can be divided.

If the state, i.e., the class ci, of the water demand at the current time t and the transition matrix
referred to t are known, the Markov chain allows us to define what its state in the future Δt will be
in probabilistic terms. In fact, Equation (3) can be used to estimate the probability vector pfor(t + Δt),
where p(t) is referred to a real observed value, being in a context of real-time application of the model,
thus composed of N − 1 null values and a value of 1 correspondent to the class the demand q(t) belongs
to. As regards the transition matrix, it represents a parameter of the model that can be estimated on the
basis of the observed water demands used in the model calibration phase, as detailed below. Since it is
a calibrated variable, it will be henceforth indicated as Π̂(t). The forecast can be tied up to kΔt ahead
using Equation (4), thus estimating the probabilities of the demand to fall within each class at the time
t + kΔt, pfor(t + kΔt), using the estimate made one time earlier and the correspondent transition matrix.

This information can also be used to obtain a deterministic forecast of future water demand qfor (t
+ kΔt) at a generic time t + kΔt in the following manner [28].

A weighted average of the N central values of the classes ci (with i = 1, . . . , N), represented in the
vector m = [m1, m2, . . . , mN], is computed using the components p f or

i (t + kΔt) (with i = 1,.., N) of the
probability vector predicted for the time t + kΔt as weights:

q f or(t + kΔt) =
N

∑
i=1

mi · p f or
i (t + kΔt) , (5)

At this point it is important to set forth some considerations regarding the advisability of adopting
a non-homogeneous or homogeneous Markov chain to predict the vector pfor(t + kΔt) in the case
of short-term water demands (for example, to obtain hourly water demand forecasts for the next
K = 24 h). Water demands are generally characterised by periodic patterns, present on different time
scales. Considering, for example, the hourly water demands over the course of a day, it is possible to
observe that they follow a trend or pattern that tends to reflect the type and the habits of the users
served. In the case of residential users, the demand trends show morning and evening peaks, reduced
demand during the night and variable demand in the afternoon hours; water use may also differ
depending on whether it is a weekday or a holiday [2]. In the trends in demand over time, it is thus
possible to distinguish different phases—rising, falling, etc.—characterised by a probability of demand
transitioning from one class to another, which will clearly vary from phase to phase. As we are dealing
with a time series characterised by periodic patterns, it would seem appropriate to use an approach
based on a non-homogeneous Markov chain. On the other hand, prior to the application of the model,
the demand time series could be suitably normalised (brought to a mean of zero and unit variance),
thus creating the conditions for the use of an approach based on a homogeneous Markov chain.

Two different formulations of the model based respectively on the use of a non-homogeneous
Markov chain (NHMC) and a homogeneous Markov chain (HMC), were developed on the basis of
these considerations as detailed below.

2.3.1. Non-Homogeneous Markov Chain (NHMC) Model

In this first case, it is assumed to work directly on the water demand time series q(t) and, given
their periodic nature, to adopt a non-homogeneous Markov chain in order to take into account that
the transition probability (and hence the transition matrix) varies as a function of time. In fact, given
that, as mentioned earlier, the demand patterns generally show rising and falling phases during the
day, each of them can be characterised by a different behaviour of the Markov process, in terms of
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transitions between classes. In the rising phases, for example, it should be more likely to see demands
transition, in two consecutive instances, toward a higher class than the starting one, or at least remain
in the same class. There is a reduced probability of observing demands transition to a lower class than
the starting one. The opposite applies for the falling phases.

Assuming, moreover, that each of the phases making up the demand pattern over the course of
the day is characterised by a single transition matrix, it is thus necessary to identify the F time ranges
f 1,f 2, . . . , fF, corresponding to the different rising and falling phases of the pattern. Incidentally, the
assumption that each phase is characterised by a single transition matrix implies that the process is
described through a sort of sequence of different homogeneous Markov processes.

From an operational viewpoint, the F time phases can be identified by making reference to the
average trend in demand over the course of a day, possibly distinguishing between working and
non-working days. Therefore, for the various phases f 1, f 2, . . . , fF, the corresponding transition
matrices Π̂ f1 , Π̂ f2 , . . . , Π̂ fF can be estimated, using the observed calibration data. An estimation of
the generic component π̂ fw ,ij (with w = 1, . . . , F and i,j = 1, . . . , N) of the transition matrix Π̂ fw is
made, during the model calibration phase, by counting the transitions from ci to cj (with i,j = 1, . . . ,
N) between successive pairs of times, for which the starting time belongs to the phase fw, and then
dividing by the total transitions for which the starting time is inside the phase fw, and which have the
class ci as the starting class, i.e.:

π̂ fw ,ij =
n fw ,ij

N
∑

j=1
n fw ,ij

with i, j = 1, . . . , N , w = 1, . . . , F , (6)

where n fw ,ij indicates the number of transitions from class ci to class cj in the consecutive times for
which the starting time is inside the phase fw. It is necessary to highlight that as the number of F phases
increases, the accuracy of the estimate of the transition matrices will tend to decrease, because the
number of data available for the purpose of the estimate decreases. Therefore, the number of the F
phases adopted should not depend only on the trend in demand, but should also take into account the
number of observed data available for calibrating the model.

During the actual application of the model, the forecast at a time lag 1, from the generic time t,
to the time t + Δt is made using the transition matrix Π̂ fw associated with the phase fw, in which the
starting time t falls, i.e.:

p f or(t + Δt) = p(t)× Π̂ fw with t ∈ fw, (7)

while for time lags larger than one, the model is based on the following equation:

p f or(t + kΔt) = p f or(t + (k − 1)Δt)× Π̂ fw with (t + (k − 1)Δt) ∈ fw, (8)

In practical terms, therefore, in the event that the set of kΔt data forecasted by the model at a
generic time t straddles two different phases, the transition matrix used to estimate the vector pfor

at the different time lags will change. The transition matrix used for each forecast will be “moving”
with the forecast, instead of being fixed and equal to the one correspondent to t (i.e., the start time
of the forecast). Thus, for every time lag k, the water demand of the generic time t + kΔt, which is
based on the forecast made one time earlier t + (k − 1)Δt, will be estimated basing on the transition
matrix associated with the phase the time t + (k − 1)Δt belongs to (rather than being based on the one
correspondent to the time t).

2.3.2. Homogeneous Markov Chain (HMC) Model

The second formulation of the Markov demand forecasting model is based on the application
of a homogeneous Markov chain to a duly transformed demand time series. It may be noted, in fact,
that in the case of a homogeneous Markov chain, the probability of a transition between classes in two
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successive instances is time-independent, and the estimate of the probability vector associated with
the time t + Δt made at the generic time t will always use the same transition matrix, irrespective of
the time of the day at which the time t occurs. Thus, since, as previously observed, water demand time
series are affected by significant periodicities, they are transformed through a normalisation process
prior to the application of the HMC. Indeed, as shown in the numerical application, this transformation
is likely to substantially reduce periodicities. More in detail, if we assume, for example, a time step
Δt = 1 h, taking into account the daily periodicity of the data and distinguishing working days from
non-working days, the original demand data are normalised in the following manner:

qnorm(t) =
q(t)− μh

work/non_work

σh
work/non_work

with h = 1, .., 24, (9)

where q(t) is the original generic water demand at time t, qnorm(t) is the corresponding normalised
value, and μh

work/non_work and σh
work/non_work, respectively, are the mean and the standard deviation of

the data observed in the calibration phase in the h-th hour of the day, corresponding to the time t in
which the original data q(t) occurs, a distinction being made between the data related to working days
(work) and non-working (non_work).

On the basis of the normalised data, the N normalised classes cnorm
i (with i = 1, . . . , N) are then

defined and the (only) transition matrix is estimated using the same approach as previously described
for the NHMC model (see Equation (6)). However, the data are in no way dependent on time in
this case, which requires counting the transitions nij from cnorm

i to cnorm
j (with i,j = 1, . . . , N) between

pairs of successive times within the entire calibration dataset, and dividing by the total number of
transitions that have class cnorm

i as the starting class. The transition matrix Π̂ thus estimated is used
to estimate the probability that the normalised future water demand falls in each of the normalised
classes by using the same approach as previously described for the NHMC model (see Equations (7)
and (8)). However, in this case, the transition matrix does not change in time. Clearly, in this case, the
vector pfor(t + kΔt) (with k = 1, . . . , 24) provides an estimate of the probability that the normalised
water demand will fall into each of the normalised classes cnorm

i (with i = 1, . . . , N). This information
must then be brought back to the original space by de-normalising the values at the ends of the classes
using the mean μh

work/non_work and standard deviation σh
work/non_work previously defined at the time of

normalisation, and relating to the h-th hour of the day (working or non-working) corresponding to the
time t + kΔt considered. For example, with clnorm

i and cunorm
i representing, respectively, the lower and

upper ends of the i-th normalised class cnorm
i , the corresponding de-normalised lower and upper ends

cli and cui are given by:

cli = μh
work/non_work + clnorm

i · σh
work/non_work with i = 1, . . . , N , h = 1, . . . , 24, (10)

cui = μh
work/non_work + cunorm

i · σh
work/non_work with i = 1, . . . , N , h = 1, . . . , 24, (11)

where h is the hour of the day corresponding to the time considered on each occasion and the type of
day in which that time occurs is taken into account.

Incidentally, it is worth observing that the definition of classes in the normalised space, and the
subsequent de-normalisation performed taking into account the hour and the type of day in which the
data occurs, means that once de-normalised, the generic class ci—which in the normalised space is
the sole class and independent of the time considered—will have a width varying according to the
hour and type of day in which the considered time occurs. In particular, the width will increase as the
standard deviation σh

work/non_work increases. Therefore, for example, the classes corresponding to the
hours of peak demand (for example, 7 in the morning), which are characterised by a high variability
in water use, will be much wider than those corresponding to night-time hours, which are typically
characterised by low variability.
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3. Case Studies

The proposed models were applied to the observed water demand data relating to three district
metering areas (DMAs) situated in Harrogate and Dales area of Yorkshire (UK), which have already
been used in the past to assess water demand forecasting methods [17]. In all three cases, a time step
Δt = 1 hour and a forecasting time horizon of K = 24 h were assumed. The periods of observation of
water demands in the three DMAs were the following:

• DMA1: from 24 March 2011 to 19 December 2011 (270 days)
• DMA2: from 4 May 2011 a 31 October 2011 (181 days)
• DMA3: from 11 April 2011 a 20 November 2011 (224 days)

The number of users belonging to each metering area becomes progressively lower as we go from
DMA1 to DMA3, as confirmed by the calculation of the mean flow rates: 26.7 L/s for DMA1, 24.6 L/s
for DMA2 and 6.6 L/s for DMA3.

The two proposed models NHMC and HMC require calibration for the purpose of defining the
classes and time phases (in the case of the non-homogeneous model) and estimating the transition
matrix or matrices. Each data time series was thus divided into two sets: one for calibrating the
parameters, made up of the first 80% of the data in the series, and one for validating the model, made
up of the remaining 20% of the data.

The number N of classes of hourly flow rates was fixed equal to four for both the NHMC and
HMC models. The classes were identified on the basis of the data in the calibration set (original or
normalised, respectively, for models NHMC and HMC) in the following way. Once the minimum,
mean and maximum values of the dataset were identified, two macro classes were defined; they were
delimited, respectively, by the minimum and mean values of the data and by the mean and maximum
values of the data. The mean values of the data belonging to each of the two macro classes were
then calculated so as to identify two classes of values within each macro class and thereby obtain
four classes altogether. Indeed, other approaches based on use of the median rather than mean or
data-driven approaches, such as clustering techniques, could be used to identify the classes.

For the purpose of applying the NHMC model, it was necessary to identify the phases into which
the generic day can be divided in order to take into account the periodic patterns of hourly demand
over the course of the day. Since there was a clear difference between working and non-working days
in terms of the hourly water demand patterns, a distinction was made accordingly, which resulted
in the identification of different time phases for the two types of days. In particular, these phases,
corresponding to the rising and falling phases of demand over the 24 h period, were defined on
the basis of the average trend shown by the data relating to the three DMAs, as identified during
calibration of the model (see Figure 3).

For the purpose of applying the HMC model, data are normalised by using Equation (9).
In particular, subtraction at each original water demand q(t) of the mean of the data observed in
the calibration phase in the corresponding hour, a distinction being made between working and
non-working days, substantially reduces periodicity. This is supported by Figure 4a,c, which show a
comparison between observed and normalised hourly demands, respectively, for a one-week period in
DMA1. Furthermore, a fast Fourier transform (FFT) algorithm [31] was applied to compute the
amplitude of sinusoidal components, as a function of the frequency, characterising the original
(Figure 4b) and normalised (Figure 4d) time series. In order to make the results of the analysis
comparable, both the time series were preliminary scaled to belong to the [0 1] interval. It can be
observed that the original data show strong dominant frequencies at 1.157 × 10−5 and 2.135 × 10−5 Hz,
corresponding to 24 and 48 h. Even though periodicities are not completely removed by normalisation,
the power spectral densities of the normalised series are much more smoothed, and the dominant
frequencies at 24 and 48 h are less evident, leading to time series whereto the HMC can effectively be
applied, as shown in the subsequent analysis of the numerical results. Similar considerations apply to
DMA2 and DMA3.
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Figure 3. Average daily pattern of hourly demands during working (left-hand column, (a,c,e)) and
non-working days (right-hand column, (b,d,f)) and initial and final ends of the time phases f 1, f 2, f 3,
and f 4 relating to DMA1 (row 1), DMA2 (row 2) and DMA3 (row 3).
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Figure 4. Comparison of (a) observed and (c) normalised hourly demands for a one-week period in
DMA1 and the frequency analysis of the entire (b) observed and (d) normalised time series of DMA1.

Two benchmark models were applied by way of comparison to the same datasets, in order to
assess the accuracy of the forecasts provided by the NHMC and HMC models. The first benchmark
model adopted was a multi-layer perceptron artificial neural network (ANN) model structured in such
a way as to provide water demand forecasts for the next K = 24 h. The network has the same structure
of the one proposed by Alvisi and Franchini [16], whose inputs are the water demands observed in
the past 24 h, normalised in the same manner seen for the HMC model, scaled in the [0 1] interval,
and assigned a binary code identifying the type of the day (working or non-working). The second
benchmark model used is of the naïve type. The model has a decidedly simpler structure than an
artificial neural network, and the specific type used in this study is referred to in the scientific literature
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as ‘mean’ naïve [32], since it is based on the mean trend in demand during the day. The forecast water
demand at each time is assumed to be equal to the mean value of the corresponding hour of the day
computed by using the calibration data set.

4. Results and Discussion

The performances of the NHMC and HMC models were first evaluated by considering the
deterministic forecasts obtained by these two models (see Equation (5)), and then comparing these
with the corresponding forecasts obtained by the ANN and naïve deterministic models. This is
followed by the analysis of the additional information provided by the HMC model with regard to the
stochastic behaviour of forecasted demands.

For the purpose of evaluating the accuracy of the deterministic forecasts provided by the different
models over different time horizons, use was made of the Nash–Sutcliffe index (NS) [33], computed
for each forecasting time horizon k comprised between 1 and 24:

NS(k) = 1 −

nd
∑

t=1
(qobs(t)− q f or(t

∣∣∣t − kΔt) )2

nd
∑

t=1
(qobs(t)− μqobs)

2
, (12)

where qobs(t) is the observed water demands at the time instant t, μqobs is the mean value of the observed

demands, qfor(t|t − kΔt) is the forecasted flow rate kΔt instances before t and, finally, nd is the number
of data of the forecasted time series.

Figure 5 shows the results obtained when the models were applied to the three datasets (i.e.,
DMAs) during calibration (left-hand column) and validation (right-hand column) phases.

Figure 5. Nash–Sutcliffe index (NS) values obtained by the non-homogeneous Markov chain (NHMC),
homogeneous Markov chain (HMC), artificial neural networks (ANN) and naïve models applied to the
calibration (left-hand column, (a,c,e)) and validation (right-hand column, (b,d,f)) data for DMA1 (row
1), DMA2 (row 2) and DMA 3 (row 3).

With reference to DMA1, we can observe that in both the calibration (Figure 5a) and validation
(Figure 5b) phases, the HMC and ANN models deliver higher predictive accuracy than the NHMC
and naïve models. In the calibration phase, the NS indices calculated using the ANN model range
from a maximum of 0.98 to a minimum of 0.97, and those calculated using the HMC model between
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a maximum of 0.96 and a minimum of 0.95. Moreover, both models appear to be stable, since the
forecasting accuracy does not undergo appreciable decreases as the time horizon increases. The NHMC
and naïve models, by contrast, provide a forecasting accuracy that is very similar, but distinctly worse
than that of the HMC and ANN models, with values of NS ranging from 0.89 to 0.88 for NHMC and a
value of 0.88 for the naïve model. Similar observations can be made with respect to the results obtained
in the validation phase, again for DMA1 (Figure 5b): in the case of the HMC and ANN models, the
values of the NS index remained very similar to the ones obtained in the calibration phase, whereas we
observe a slight decline in the performance of the NHMC and naïve models. The performance of the
models ANN and HMC was substantially the same also in the case of DMA2 and DMA3, as regards
both calibration (Figure 5c,e) and validation (Figure 5d,f). For what concerns the NHMC model, it
tends to lose effectiveness with respect to the naïve model. It can thus be observed that, insofar as
deterministic water demand forecasting is concerned, the HMC model delivers a better predictive
accuracy than the NHMC model, and an accuracy that is in line with that of the ANN model. It is
worth highlighting that the outperformance of the HMC model with respect to the NHMC can mainly
be due to the necessity to estimate several transition matrices for the non-homogeneous model, instead
of a single transition matrix, such as for the homogeneous model. In fact, in the HMC model, all the
calibration data are used for the estimation of the single transition matrix components, whereas in the
NHMC, the calibration dataset is divided into eight sets (see Figure 3), one for each time phase and
distinguishing working and non-working days. Thus, a lower number of data is used to calibrate each
transition matrix, resulting in a less accurate estimate.

Given above, an analysis on the probabilistic results provided by the HMC model is performed
in order to derive some considerations on its prediction capability, as the time horizon varies, to
characterise the probability distribution of the water demand at time t + kΔt when forecasted at time
t. Figure 6 shows some examples of the results, in probabilistic terms, provided by the HMC model
for DMA1. In particular, each graph shows the results provided by the model in relation to the
forecasts made at a generic time for the next K = 6 h. The results are here shown with reference to a 6-h
forecasting horizon, in order to make the graphs clearer and easier to comprehend and analyse. In fact,
each graph contains a representation of the four classes (de-normalised) of water demand values for
each of the 6 h of the forecasting time horizon; the background colour of each class, defined on a grey
scale as shown in the legend, corresponds to the probability of the future value belonging to that class.
The light colours, in particular, represent low probabilities that the future demand will belong to the
class, whereas darker colours indicate high probabilities of them belonging to the class. Also shown
are the observed and forecasted (deterministically) values for each hour of the time horizon.

For the purpose of interpreting the results, it is important to note first of all that the width of
the classes does not depend on the time horizon k considered, but only on the hour of the day to
which the forecast refers. In fact, in the case of the HMC model, as previously observed, the classes
defined in the normalised space have a width, following de-normalisation, which depends on the
standard deviation of the demand in different hours of the day. Let us consider, for example, Figure 6a,
which shows the results related to the forecast made at 1 a.m. for the next 6 h, and thus the classes
of de-normalised values for the hours between 2 and 7 in the morning. The classes associated with
night-time hours (Figure 6a for k = 1, . . . , 4) have a similar, reduced width, since water demand in
these hours shows little variability relative to the mean. The width increases towards the first hours of
light and the time the majority of users wake up, and culminates in the peak hour, 7 a.m. (Figure 6a k
= 6), where the variability in demand is high. It is further important to observe that the width of the
classes in Figure 6a for k = 6, i.e., 7 in the morning, and those in Figure 6b for k = 1 are the same, as
Figure 6b refers to the forecast made at 6 a.m. for the next 6 h, and thus k = 1 likewise corresponds to 7
in the morning.
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Figure 6. Probabilistic demand forecasts obtained by using model HMC model applied to DMA1 at
following times: (a) 1 a.m. (with forecasts made from 2 a.m. to 7 a.m.); (b) 6 a.m. (with forecasts from
7 a.m. to 12 p.m.); (c) 1 p.m. (with forecasts 2 p.m. to 7 p.m.) and (d) 6 p.m. (with forecasts from 7 p.m.
to 12 a.m.).

On the other hand, with reference to the Figure 6a, considering the shade of grey in the background
of each class, which is proportional to the probability of the future value belonging to that same class,
we can observe that for k = 1, the model indicates a high probability that the future water demand
will fall in the middle classes 2 and 3 (and the observed data actually does fall in class 2), whereas
the probabilities for classes 4 and 1 are much lower (very light grey). As the forecasting time horizon
increases, the probability of the future value falling into each of the different classes tends to become
uniform (as shown by increasingly similar shades of grey), which is indicative of higher uncertainty
in defining the probability to be assigned to each class. This also emerges from a comparison of the
probability distributions associated with forecasts of demand at 7 a.m. that are made one hour ahead
(Figure 6b k = 1) and 6 h ahead (Figure 6a k = 6). This confirms that the uncertainty in defining the
probabilities to be assigned to each class is, as expected, greater when the forecast is made several
hours in advance. The same comment applies to other two metering areas, DMA 2 and DMA3.

It is worth remarking that the capability of the MC to define the probabilistic behaviour of future
water demand is implicitly contained in its structure and, unlike other existing methods, it requires
a minimum computational effort. In other words, due to its own structure, the MC can produce a
deterministic forecast and, at the same time, a description of the expected probability distribution of
the water demand at time t + kΔt, when the forecast is made at time t. As expected, as the lead time of
forecast decreases, the probability estimates become more accurate.

It is also worth noting that we are not presenting, for the MC, uncertainty intervals limited by
upper and lower bounds, but instead the entire, even though discretised, probability distribution of
the future values as the time of forecast changes. This probability distribution overall characterises the
uncertainty, or rather, the variability around the deterministic value forecasted by the model. Unlike
the MC method, the ANN model used here, which is based on a standard multi-layer perceptron
feedforward ANN, produces only deterministic demand forecasts. This does not mean that it is
impossible to produce stochastic forecasts using the ANN—in fact, examples exist in the scientific
literature where probabilistic forecasts have been presented e.g., [17,18,20–22]. However, this is
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possible only at the high computational cost due to Monte Carlo simulations typically used in a
post-processing phase.

In summary, when compared to ANN-based and similar existing demand forecasting models,
the advantage of the MC model presented here, is in its capacity to produce accurate deterministic
forecasts and, at the same time, provide additional information on the probabilistic behaviour of
future demands, thus characterising their dispersion around the forecasted value, all with minimum
computational effort.

5. Conclusions

A new approach to short-term water demand forecasting based on the Markov chain is presented
in this paper. The application of a homogeneous and non-homogeneous Markov chain gave rise to
two models, which make it possible to estimate the probabilities of future water demand falling within
pre-established classes/intervals and, based on these probabilities, provide a deterministic forecast of
the future value.

The two models were applied to the water demand time series of three district metering areas,
and the deterministic forecasts obtained were compared with the corresponding ones provided by the
ANN and naïve forecasting models. The findings showed that the homogeneous Markov chain model
(HMC) delivers better forecasting accuracy, matching the prediction accuracy of the ANN model
and surpassing the Naïve model one. The homogeneous Markov chain model (HMC) proved to be
distinctly more efficient than the non-homogeneous one (NHMC), and is hence preferred to the latter.

The application of the HMC model further demonstrated that probability estimates provided
in relation to the state of future demands make it possible to derive, in a computationally efficient
manner, useful considerations regarding the probability distribution of the forecasts. Note that this
information is not readily available in either of the two benchmark models, and could be obtained only
via post-processing analysis, by computationally using much more expensive Monte Carlo simulations.
Note also that all this is achieved using a rather simple conceptual structure of the HMC model, which
is easy to implement in a suitable software tool. The model also does not need a large amount of data
for the calibration of its parameter, since just one transition matrix has to be estimated.

The future work will involve further comparison of the proposed model’s performance to other
short-term water demand forecasting models, both deterministic and probabilistic, on several different
real life case studies.
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