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Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued
Optimization Problems
Reprinted from: Mathematics 2021, 9, 2979, doi:10.3390/math9222979 . . . . . . . . . . . . . . . . 171

Savin Treanţă
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1. Introduction

Over the years, many researchers have been interested in obtaining solution proce-
dures in variational (interval/fuzzy) analysis and robust control. In order to formulate
necessary and sufficient optimality/efficiency conditions and duality theorems for different
classes of robust and interval-valued/fuzzy variational problems, various approaches have
been proposed. In this regard, we provide the Special Issue “Variational Problems and
Applications” to cover the new advances in these mathematical topics. In this Special
Issue, we focused on formulating and demonstrating some characterization results of
well-posedness and robust efficient solutions in new classes of (multiobjective) variational
(control) problems governed by multiple and/or path-independent curvilinear integral
cost functionals and robust mixed and/or isoperimetric constraints involving first- and
second-order partial differential equations. In response to our invitation, we received
30 papers from many countries (Romania, China, India, Saudi Arabia, Australia, Egypt,
Yemen, Germany, Pakistan, Thailand, Russia), of which 14 were published.

2. Brief Overview of the Contributions

In a review conducted by Treanţă [1], nonlinear dynamics, generated by some classes
of constrained control problems that involve second-order partial derivatives, were com-
prehensively reviewed. Specifically, necessary optimality conditions were formulated and
proved for the considered variational control problems governed by integral function-
als. In addition, the well-posedness and the associated variational inequalities have been
considered in this review paper.

Olteanu [2] briefly reviews a method of approximating any real-valued nonnega-
tive continuous compactly supported function defined on a closed unbounded subset by
dominating special polynomials that are sums of squares. This method also works in
several-dimensional cases. To perform this, a Hahn–Banach-type theorem (Kantorovich
theorem on an extension of positive linear operators), a Haviland theorem, and the notion
of a moment-determinate measure were applied. Second, completions and other results of
solving full Markov moment problems in terms of quadratic forms are proposed based on
polynomial approximation. The existence and uniqueness of the solution are discussed.

Treanţă and Das [3] introduced a new class of multi-dimensional robust optimization
problems (named (P)) with mixed constraints, implying second-order partial differential
equations (PDEs) and inequations (PDIs). Moreover, they defined an auxiliary (modified)
class of robust control problems (named (P)(b,c)), which is much easier to study, and
provided some characterization results of (P) and (P)(b,c) by using the notions of a normal
weak robust optimal solution and robust saddle-point associated with a Lagrange functional
corresponding to (P)(b,c). For this aim, they considered path-independent curvilinear
integral cost functionals and the notion of convexity associated with a curvilinear integral
functional generated by a controlled closed (complete integrable) Lagrange 1-form.
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In 1961, Kestelman first proved the change in the variable theorem for the Riemann
integral in its modern form. In 1970, Preiss and Uher supplemented this result with
the inverse statement. Later, in a number of papers (Sarkhel, Výborný, Puoso, Tandra,
and Torchinsky), the alternative proofs of these theorems were provided within the same
formulations. In [4], Kuleshov showed that one of the restrictions (namely, the boundedness
of the function f on its entire domain) can be omitted, while the change of variable formula
still holds.

By considering the new forms of the notions of lower semicontinuity, pseudomono-
tonicity, hemicontinuity and monotonicity of the considered scalar multiple integral func-
tional, Treanţă [5] studied the well-posedness of a new class of variational problems with
variational inequality constraints. More specifically, by defining the set of approximating
solutions for the class of variational problems under study, he established several results
on well-posedness.

Guo et al. [6] studied the derivation of optimality conditions and duality theorems
for interval-valued optimization problems based on gH-symmetrical derivatives. Further,
the concepts of symmetric pseudo-convexity and symmetric quasi-convexity for interval-
valued functions are proposed to extend the above optimization conditions. Examples are
also presented to illustrate corresponding results.

The concepts of convex and non-convex functions play a key role in the study of
optimization. So, with the help of these ideas, some inequalities can also be established.
Moreover, the principles of convexity and symmetry are inextricably linked. In the last
two years, convexity and symmetry have emerged as a new field due to considerable
association. In the work of Khan et al. [7], the authors studied a new version of interval-
valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued functions
(LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, they derived numerous
new dynamic inequalities interval Riemann–Liouville fractional integral operators. The
applications of these repercussions are taken into account in a unique way.

Lai et al. [8] introduced a new class of interval-valued preinvex functions termed as
harmonically h-preinvex interval-valued functions. They established new inclusion of
Hermite–Hadamard for harmonically h-preinvex interval-valued functions via interval-
valued Riemann–Liouville fractional integrals. Further, they proved fractional Hermite–
Hadamard–type inclusions for the product of two harmonically h-preinvex interval-valued
functions. In this way, these findings include several well-known results and newly
obtained results of the existing literature as special cases. Moreover, applications of the
main results have been demonstrated with some examples.

The principles of convexity and symmetry are inextricably linked. Because of the
considerable association that has emerged between the two in recent years, we may apply
what we learn from one to the other. In the study of Khan et al. [9], the main aim is to
establish the relationship between integral inequalities and interval-valued functions (IV-Fs)
based upon the pseudo-order relation. Firstly, we discussed the properties of left and right
preinvex interval-valued functions (left and right preinvex IV-Fs). Then, we obtained a
Hermite–Hadamard (H–H) and Hermite–Hadamard–Fejér (H–H–Fejér) type inequality
and some related integral inequalities with the support of left and right preinvex IV-Fs via
a pseudo-order relation and interval Riemann integral. Moreover, some exceptional special
cases have been discussed.

In Alnowibet et al. [10], a hybrid gradient simulated annealing algorithm is guided to
solve the constrained optimization problem. When trying to solve constrained optimization
problems using deterministic, stochastic optimization methods or using a hybridization
between them, penalty function methods are the most popular approach due to their sim-
plicity and ease of implementation. There are many approaches to handling the existence
of the constraints in the constraint problem. The simulated-annealing algorithm (SA) is one
of the most successful meta-heuristic strategies. On the other hand, the gradient method
is the most inexpensive method among the deterministic methods. In previous literature,
the hybrid gradient simulated annealing algorithm (GLMSA) demonstrated efficiency and

2
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effectiveness in solving unconstrained optimization problems. In Alnowibet et al. [10],
the GLMSA algorithm is generalized to solve the constrained optimization problems.
Hence, a new approach penalty function is proposed to handle the existence of the con-
straints. The proposed approach penalty function is used to guide the hybrid gradient
simulated annealing algorithm (GLMSA) to obtain a new algorithm (GHMSA) that finds
the constrained optimization problem. The performance of the proposed algorithm is
tested on several benchmark optimization test problems and some well-known engineering
design problems with varying dimensions. Comprehensive comparisons against other
methods in the literature are also presented. The results indicate that the proposed method
is promising and competitive. The comparison results between the GHMSA and the other
four state-Meta-heuristic algorithms indicate that the proposed GHMSA algorithm is com-
petitive with, and in some cases superior to, other existing algorithms in terms of the
quality, efficiency, convergence rate, and robustness of the final result.

Data-mining applications are growing with the availability of large data; sometimes,
handling large data is also a typical task. Segregation of the data for the extraction of useful
information is inevitable for designing modern technologies. Considering this fact, the work
of Alrasheedi et al. [11] proposes a chaos-embedded marine predator algorithm (CMPA)
for feature selection. The optimization routine is designed with the aim of maximizing
the classification accuracy with the optimal number of features selected. The well-known
benchmark datasets have been chosen for validating the performance of the proposed
algorithm. A comparative analysis of the performance with some well-known algorithms
proves the applicability of the proposed algorithm. Further, the analysis was extended to
some of the well-known chaotic algorithms; first, the binary versions of these algorithms
are developed, and then a comparative analysis of the performance is conducted on the
basis of the mean features selected, the classification accuracy obtained and the fitness
function values. Statistical significance tests have also been conducted to establish the
significance of the proposed algorithm.

In the work of Peng et al. [12], the reverse space-time nonlocal complex modified
Kortewewg–de Vries (mKdV) equation is investigated by using the consistent tanh expan-
sion (CTE) method. According to the CTE method, a nonauto-Bäcklund transformation
theorem of nonlocal complex mKdV is obtained. The interactions between one kink soli-
ton and other different nonlinear excitations are constructed via the nonauto–Bäcklund
transformation theorem. By selecting cnoidal periodic waves, the interaction between one
kink soliton and the cnoidal periodic waves is derived. The specific Jacobi function-type
solution and graphs of its analysis are provided in this paper.

Lai et al. [13] obtained characterizations of solution sets of the interval-valued mathe-
matical programming problems with switching constraints. Stationary conditions, which
are weaker than the standard Karush–Kuhn–Tucker conditions, need to be discussed in
order to find the necessary optimality conditions. The authors introduced corresponding
weak, Mordukhovich, and strong stationary conditions for the corresponding interval-
valued mathematical programming problems with switching constraints (IVPSC) and
interval-valued tightened nonlinear problems (IVTNP), because the W-stationary condition
of IVPSC is equivalent to the Karush–Kuhn–Tucker conditions of the IVTNP. Furthermore,
they used strong stationary conditions to characterize the solution sets for IVTNP, in which
the last ones are particular solutions sets for IVPSC, because the feasible set of tightened
nonlinear problems (IVTNP) is a subset of the feasible set of the mathematical programs
with switching constraints (IVPSC).

In the work of Cipu and Barbu [14], the authors are concerned with solutions for
Sturm–Liouville problems (SLP) using a variational problem (VP) formulation of regular
SLP. The minimization problem (MP) is also established, and the connection between
the solution of each formulation is then proved. Variational estimations (the variational
equation associated with the Euler–Lagrange variational principle and Nehari’s method,
shooting method and bisection method) and iterative variational methods (He’s method

3
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and HPM) for regular RSL are presented in the final part of the paper, which ends with
applications.

Acknowledgments: I am thankful to the editors and reviewers of the Mathematics journal for their
help and support.

Conflicts of Interest: The author declares no conflict of interest.
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9. Khan, M.B.; Treant, ǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some New Versions of Integral Inequalities for Left and Right
Preinvex Functions in the Interval-Valued Settings. Mathematics 2022, 10, 611. [CrossRef]

10. Alnowibet, K.A.; Mahdi, S.; El-Alem, M.; Abdelawwad, M.; Mohamed, A.W. Guided Hybrid Modified Simulated Annealing
Algorithm for Solving Constrained Global Optimization Problems. Mathematics 2022, 10, 1312. [CrossRef]

11. Alrasheedi, A.F.; Alnowibet, K.A.; Saxena, A.; Sallam, K.M.; Mohamed, A.W. Chaos Embed Marine Predator (CMPA) Algorithm
for Feature Selection. Mathematics 2022, 10, 1411. [CrossRef]

12. Peng, J.; Ren, B.; Shen, S.; Wang, G. Interaction Behaviours between Soliton and Cnoidal Periodic Waves for Nonlocal Complex
Modified Korteweg–de Vries Equation. Mathematics 2022, 10, 1429. [CrossRef]

13. Lai, K.K.; Mishra, S.K.; Singh, S.K.; Hassan, M. Stationary Conditions and Characterizations of Solution Sets for Interval-Valued
Tightened Nonlinear Problems. Mathematics 2022, 10, 2763. [CrossRef]

14. Cipu, E.C.; Barbu, C.D. Variational Estimation Methods for Sturm–Liouville Problems. Mathematics 2022, 10, 3728. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4



Citation: Cipu, E.C.; Barbu, C.D.

Variational Estimation Methods for

Sturm–Liouville Problems.

Mathematics 2022, 10, 3728. https://

doi.org/10.3390/math10203728

Academic Editors: Simeon Reich and

Alessio Pomponio

Received: 31 July 2022

Accepted: 7 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Variational Estimation Methods for Sturm–Liouville Problems
Elena Corina Cipu 1,2,* and Cosmin Dănuţ Barbu 1
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Abstract: In this paper, we are concerned with approach solutions for Sturm–Liouville problems
(SLP) using variational problem (VP) formulation of regular SLP. The minimization problem (MP) is
also set forth, and the connection between the solution of each formulation is then proved. Variational
estimations (the variational equation associated through the Euler–Lagrange variational principle
and Nehari’s method, shooting method and bisection method) and iterative variational methods
(He’s method and HPM) for regular RSL are unitary presented in final part of the paper, which ends
with applications.

Keywords: BVP nonlinear problems; variational methods; estimating nonlinearities; Green function

MSC: 34A12; 34A45

1. Introduction

Nonlinearities are different from linear type by a function, an operator or a system
that is nonlinear or is the case in which only some characteristics of it are known. The
existence of the solution and the dependence of conditions for solving some classes of
differential equations described by an operator is specified by the general framework of the
Sturm–Liouville problem, with parametric conditions at the limit. The general framework
of the Sturm–Liouville problem with parametric conditions at the limit is specified in the
first part of the paper. The existence of the solution and the dependence of conditions is
specified through the connection between the differential operator and Green’s function.
Based on the properties of Green’s function, the operator used to analyze the behavior of
the solution of the parameters given by the boundary conditions is specified. Variational
problems derived from the initial RSLP are outlined with different type conditions in order
to estimate the solution.

Let be the operator L = − d
dx

[
p(x)

d
dx

]
+ ρ(x) as part of the regular Sturm–Liouville

problem (RSL). The Sturm–Liouville (SL) problem expressed by the differential equation
and the boundary conditions

a(x)
d2u
dx2 + b(x)

du
dx

+ c(x)u− λd(x)u = 0, (1)

B1 : a1u(a) + a2u′(a) = 0, |a1|+ |a2| 6= 0, a1, a2 ∈ R,
B2 : b1u(b) + b2u′(b) = 0, |b1|+ |b2| 6= 0, b1, b2 ∈ R (2)

could be written as
Lu + λs(x)u = 0, x ∈ (a, b) = I, λ ∈ R (3)

5
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with p(x) = a(x), ρ(x) = −c(x), s(x) = d(x) in case b(x) = a′(x) and with integrant

factor µ = ke

∫ x

a

b(t)
a(t)

dt
, p(x) = µa(x), ρ(x) = −µc(x), s(x) = µd(x) in case b(x) 6= a′(x)

(see [1,2]).
The Sturm–Liouville equation is regular in the interval [a, b] if the functions verify the

condition p(x) > 0 and s(x) > 0, ∀x ∈ I or s ≡ 0 and the operator L : H = L2(I)∩C2(I)→
L2(I) is self-adjoint with real eigenvalues and orthogonal eigenfunctions in space L2

s (I)
according to the inner product

〈 f , g〉 =
∫ b

a
f g dx f , g ∈ L2(I); 〈 f , g〉s =

∫ b

a
s f g dx in L2

s (I). (4)

and for a given λ, there exist two linearly independent solutions of a RSL equation in the I
interval, L2(I) =

{
f : I → R,

∫ b
a | f (x)|2 dx < ∞

}
.

We denote D(L) as the domain of L that is defined by

D(L) =
{

y ∈ C([a, b]), y′′ ∈ L2(I), y satisfies B1, B2
}

for general case
D(L) = {y ∈ C([a, b]), (py′)′ ∈ C([a, b]), y satisfies B1, B2} for regular case.

(5)

The adjoint operator, L∗, associated to the operator L verifies 〈L f , g〉 = 〈 f , L∗g〉, ∀ f , g ∈
H and L is self-adjoint if L = L∗. Additionally, the operator L is symmetric if 〈L f , g〉 =
〈 f , Lg〉, ∀ f , g ∈ D(L). For the operator defined for SL problems, one obtains

〈g, L f 〉 − 〈 f , Lg〉 =
[
p
(

f ′g− f g′
)]
|ba, ∀ f , g ∈ D(L)

and the condition 〈L f , g〉 = 〈 f , Lg〉 holds if p( f g′ − f ′g)|ba = 0 verified in D(L) and the
Lagrange identity is expressed by

gL f − f Lg =
[
p
(

f g′ − f ′g
)]′, ∀ f , g ∈ D(L).

Remark 1. L for SL problems is the self-adjoint operator if

p
(
u′v− uv′

)∣∣b
a = p(b)u′(b)v(b)− p(a)u′(a)v(a) = 0. (6)

For example, for p(b) = p(a) and periodic conditions

u(a) = u(b) = A, u′(a) = u′(b) = B

or antiperiodic conditions

u(a) = −u(b) = A, u′(a) = −u′(b) = B

the operator L is self-adjoint.

The RSL eigenvalue problem is to find v ∈ D(L) such that for Lv + λv = 0 with λ, the
eigenvalue associated with v is the eigenfunction. For RSL problems, all the eigenvalues are
real and positive [3–5], and there exists an infinite number of eigenvalues. The sequence of
the eigenvalues (λn)n is considered such that λ0 < λ1 < . . . < λn < . . . with lim

x→∞
λn = ∞.

For each eigenvalue λn, the corresponding eigenfunction vn is unique up to a constant
factor and has exactly n − 1 zeros in interval (a, b). The set V = {(vn)n, vn ∈ D(L)} is
complete in the D(L) space, and the solution of RSL is represented by a generalized Fourier
series of the eigenfunction

u =
∞

∑
n=1

cnvn(x). (7)

6
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2. General Framework of SLPs

In this section, we will mention certain conditions that the functions defining the
operator L fulfill for different SL or RSL problems.

A second method to find the solution of a RSL problem, different from the generalized
Fourier series development, is described using the Green function and two linear indepen-
dent solutions. The section ends with the analysis of the Fourier equation with different
types of boundary conditions.

Remark 2. For Sturm–Liouville problems, we consider two types of assumptions that are usually
used (see [4])

General assumptions:

(1) p(x) ∈ C([a, b]), differentiable in x = a, p(x) 6= 0 ∀x ∈ (a, b] with p(a) = 0, p′(a) 6= 0.
For p(x) = (x− a)ϕ(x), we suppose ϕ ∈ C([a, b]), ϕ(x) 6= 0, ∀x ∈ [a, b]

(2) ρ, f ∈ C([a, b]).

RSL assumptions

(1) p(x) > 0 and s(x) > 0 or s ≡ 0 on [a, b];
(2) p, ρ, s ∈ C([a, b]);
(3) a1, a2, b1, b2 ∈ R;
(4) p, ρ, s continuously differentiable on [a, b].

Known equations, such as Fourier, Graetz–Nusslet, Collatz and Airy equations, for
which RSL assumptions are verified, are given in Table 1, and the first eigenvalues and
eigenfunctions are depicted in Figures 1 and 2.

Table 1. Examples of regular Sturm–Liouville problems.

Equation Associated Functions Name

−u′′ + λu = f , x ∈ (a, b) p ≡ 1, s ≡ 1, ρ ≡ 0 Fourier

−(xu′)′ = 2λx(1− x2)u, x ∈ (0, 1) p(x) = x, s(x) = 2x(1− x2) Graetz–Nusselt

−x6u′′ + (3/4)x4u = λu, x ∈ (1, 2) p(x) = x6, s(x) =
3
4

x4 Collatz

−u′′ + xu = λxu, x ∈ (0, 1) p(x) = x, s(x) = 2x(1− x2) Airy
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(a) Fourier equation, Dirichlet conditions
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Figure 1. (a) Fourier equation; (b) Graetz–Nusselt equation.
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Figure 2. (a) Collatz problem; (b) Airy problem.

Some other known equations, such as the Legendre differential equation, Chebysev’s
differential equation or Bessel equation, must be transformed into the Sturm–Liouville
form that we considered in (3). These forms are specified in Table 2. Other SL equations for
which general assumptions are fulfilled are exemplified in Table 3.

Table 2. Examples of differential equations and their SL form.

Type Equation Sturm–Liouville Form

Legendre −u′′ − 2x
1− x2 +

µ

1− x2 u = 0, −((1− x2)u′)′ + µu = 0

Chebysev −(1− x2)u′′ − xu′ + n2u = 0 −(
√

1− x2u′)′ =
n2

√
1− x2

u

Bessel x2u′′ + xu′ + (λ2 − n2)y = 0, −(xu′)
′
+

n2

x
u = λ2xu

Table 3. Examples of Sturm–Liouville problems.

−(sin(x)u′)′ + cos(x)u = λx2u, x ∈ (0, b) p = sin(x), ρ = cos(x) s = x2

−(x2u′)′ − x sin(x)u = λxu, x ∈ (0, b) p = x, s = 2x(1− x2)

For an example of a singular SL, a discontinuity on the middle of the interval is

considered [a, b], x0 = (b− a)/2, with ρ(x) ≡ 0 and p(x) =

{
1, x ∈ [0, x0)

c2, x ∈ [x0, 1]
, c 6= 0, c 6= 1.

The problem to solve is Lu + λu = 0, u(0) = u(1) = 0 and with u(x0−)− u(x0+) = 0,
u′(x0−)− c2u′(x0+) = 0 transmission conditions.

The asymptotic behavior of the eigenvalues leads to
λn

n2 →
(

2πc
1 + c

)2
, as n→ ∞.

2.1. Resolvent Operator and Green Function

This RSL problem is solved using a Green function solution for the resolvent operator
R(λ) = (L + λI)−1 of the form

R(λ) f =
ϕλ(x)
ω(λ)

∫ x

a
f (t)ψλ(t)dt +

ψλ(x)
ω(λ)

∫ b

x
f (t)ϕλ(t)dt (8)

8
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where ψλ, ϕλ are non-trivial classical solutions of (L + λI) f = 0 which satisfy

a1 ϕλ(a) + a2 ϕ′λ(a) = 0 (9)

b1ψλ(b) + b2ψ′λ(b) = 0

A simple normalization that eliminates some complexity can be specified by requiring

ϕλ(a) = a2, ϕ′λ(a) = −a1 (10)

ψλ(b) = b2, ψ′λ(b) = −b1

Then, the Wronskian ω(λ) = v1(x)v′2(x)− v′1(x)v2(x) of these solutions is a function
that depends only on λ:

ω(λ) = (pϕ′λ)ψλ − ϕλ(pψ′λ) (11)

Therefore, ω(λ) 6= 0, ∀x ∈ [a, b] or ω(λ) ≡ 0. The Wronskian vanishes if {ϕλ, ψλ}
is a dependent set of functions of x, which is precisely when both functions satisfy
(L + λI)h = 0 as well as the specified conditions at x = a and x = b, meaning λ is an
eigenvalue of L (see [6]).

For the RSL case, the equation Lu = 0 has two linear independent solutions, v1
and v2 such that a1v1(a) + a2v′1(a) = 0, b1v2(b) + b2v′2(b) = 0, the Green function G :
[a, b]× [a, b]→ R,

G(x, y) =

{
v1(y)v2(x)/m, a ≤ y ≤ x ≤ b
−v1(x)v2(y)/m, a ≤ x ≤ y ≤ b

, (12)

m = p(x)ω(λ) has the properties

(i) G ∈ C1([a, b]2
)
, G(x, y) = G(y, x) and satisfies the boundary conditions according to

each variable;
(ii) G ∈ C2([a, b]2\M

)
,with LρG ≡ −p(x)Gxx(x, y) − p′(x)Gx(x, y) + ρ(x)G(x, y) = 0

over [a, b]2\M and M = {(x, y) | x = y};
(iii) Gx(y+, y)− Gx(y−, y) = lim

ε→0
ε>0

[Gx(y + ε, y)− Gx(y− ε, y)] =
1

p(x)
, Gx is discontinuous

on M.

Now let T be the operator Tu(x) =
∫ b

a
G(x, y)u(y)dy defined on C[a, b]. Using the

properties of the Green function G and the continuity of u, one obtains that Tu ∈ C2[a, b]
and is the solution of the equation Lu = f . The function Tu satisfies the same boundary
conditions as u ∈ C2[a, b], then T(Lu)(x) = u(x), and T is the inverse operator of L. The
problem of eigenvalues and eigenfunctions Lu + λu = 0, B1u(a) = 0; B2u(b) = 0 becomes
Tu = µu, with µ = −1/λ. For results for the construction of the operator T for fractional
SLPs, see [7,8].

Remark 3 (Rayleigh quotient). The eigenvalues of the operator L are lower bounded by a real
constant. The smallest eigenvalue of the SL eigenvalue problem satisfies

λ0 = min
u 6=0

u∈D(L)

〈Lu, u〉
〈u, u〉s

= min
u 6=0

u∈D(L)

− p uu′|ba +
∫ b

a p(u′)2 + ρu2dx
∫ b

a u2s dx
(13)

and the minimum u0 is achieved if u0 is the eigenfunction corresponding to λ0.

2.2. Sturm–Liouville Fourier Problems

Consider the operator L = − d
dx

[
p(x) d

dx

]
+ ρ(x) and nonhomogeneous equation Lu +

λs(x)u = f (x) with functions p(x) smooth, ρ(x) positive, and also (i) p(a) = 0 or p(b) = 0
or both or (ii) the interval I is infinite. In this section, we study the Fourier problem

9
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−u′′ + αu = f (x), x ∈ (a, b), BVP conditions (2) and (3)

with different type of boundary conditions. For example, in the case of Dirichlet conditions
u(a) = u(b) = 0, the operator L = − d2

dx2 + α in space C∞
0 (I) is self-adjoint.

In Example 1, we study the case for α = 0. Additionally, for the case α = n2 > 0,
general solutions of the homogeneous equation are vn(x) = A exp(nx) + B exp(−nx), and
for boundary conditions u(a) = u(b) = 0, the RSL solution is v = 0.

In Example 2, for α < 0, we consider different cases, shown in Tables 4 and 5.

Table 4. Examples of Sturm–Liouville problems with a = 0, b > 0, x ∈ (0, b), case 1: a1 · a2 = 0.

case 1.1a a1 6= 0, a2 = 0 b1 6= 0, b2 = 0 u(0) = 0, u(b) = 0

case 1.1b a1 6= 0, a2 = 0 b1 = 0, b2 6= 0 u(0) = 0, u′(b) = 0

case 1.1c a1 6= 0, a2 = 0 b1 6= 0, b2 6= 0 u(0) = 0, b1u(b) + b2u′(b) = 0

case 1.2 a1 = 0, a2 6= 0 b1 = 0, b2 6= 0 u′(0) = 0, b1u(b) + b2u′(b) = 0

Table 5. Examples of Sturm–Liouville problems with a = 0, b > 0, x ∈ (0, b), case 2: a1 · a2 6= 0.

case 2.1 a1 6= 0, a2 = −a1 b1 = 0, b2 6= 0 u′(0) = 0, b1u(b) + b2u′(b) = 0

case 2.2 a1 > 0, a2 = −1 b1 = 0, b2 6= 0 a1u(0)− u′(0) = 0, b1u(b) + b2u′(b) = 0

Example 1. Let us consider the RSL equation −u′′(x) = f (x), with general solution
v(x) = mx + n for the homogeneous equation and associated Green’s function

G(x, y) =

{
x (b− y)/b, 0 ≤ x ≤ y
y (b− x)/b, y ≤ x ≤< b.

Using the superposition principle, the solution of the problem defined for u(0) = A, u′(b) = B
is u(x) = v1(x) + v2(x), v1(x) = (b− x)A + xB and

v2(x) =
∫ b

0
G(x, y) f (y)dy =

1
b

[
(b− x)

∫ x

0
y f (y)dy−

∫ 1

x
y(b− y) f (y)dy

]
.

Changing the boundary conditions in the previous problem, we now consider

−u′′(x) = f (x), B1 : u(0)− u′(0) = 0, B2 : u(b) + u′(b) = 0.

Solving the initial value problem −u′′(x) = f (x), B1 : u(0) = A, u′(0) = A, one
finds the solution u(x) = A(1 + x) −

∫ b
0 (x − y) f (y)dy and boundary condition B2 leads to

u(x) =
∫ b

0
G(x, y) f (y)dy with G(x, y) =

{
(1 + x) (b + 1− y)/(b + 2), x < y
(1 + y) (b + 1− x)/(b + 2), y < x.

Example 2. For α = −n2 and a = 0, b = π, general solutions of the equation are
vn(x) = A cos(nx) + B sin(nx) with λn = n2 the eigenvalues and for u(0) = u(π) = 0
the eigenfunctions are vn = sin(nx). The general solution is a Fourier series:

u(x) =
∞

∑
n=1

Bn sin(nx), Bn =
〈 f (x), sin(nx)〉
〈sin(nx), sin(nx)〉 =

2
π

∫ π

0
f (x) sin(nx)dx (14)

10
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Case 1.1

According to Table 4, for cases 1.1, we consider a2 = 0 and B1 is u(0) = 0 and the eigenfunc-

tions vn = sin(
√

λnx). The eigenvalues corresponding to cases 1.1a and 1.1b are λn =
(nπ

b

)2

and λn =

(
(2n + 1)π

2b

)2

, respectively. For problems P1c

P1c :− u′′(x) = λu + f (x) in (0, b); u(0) = 0, b1u(b) + b2u′(b) = 0 (15)

the general solution is u(x) = ∑∞
n=1 cnvn(x) with the eigenvalues determined by the equation

tan(
√

λnb) = − b2

b1

√
λn. The determination of the first eigenvalues is graphically presented in

Figure 3.
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Figure 3. The eigenvalues determination and the corresponding eigenfunctions example (15).

Case 1.2

The eigenfunctions corresponding to case 1.2 are vn = cos(
√

λnx) with the eigenvalues

determined by the equation tan(
√

λnb) =
b1

b2
√

λn
.

Case 2

The eigenfunctions corresponding to case 2.1 are vn =
√

λn cos(
√

λnx) + sin(
√

λnx) with

the eigenvalues determined by the equation tan(
√

λnb) = − (b1 + b2)
√

λn

b1 − b2
√

λn
. If b has the form

(2n + 1)π
2

· b2

b1
, then λn =

b1

b2
is the eigenvalue for the problem. In Figure 4a, the determination of

the first eigenvalues is graphically presented as the roots of the function tan(x) +
(b1 + b2)x
b1b− b2x

with

notation x =
√

λnb and in Figure 4b, the corresponding eigenfunctions are plotted.

For case 2.2, the eigenfunctions are vn =

√
λn

a1
cos(

√
λnx)+ sin(

√
λn), and the eigenvalues

are the solutions of the nonlinear equation tan(
√

λnb) =
(a1 − b1)

√
λn

a1 +
√

λn
.
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Figure 4. The eigenvalues determination and the corresponding eigenfunctions example 2.1.

Example 3. The conditions can be considerably weakened with respect to continuity and differen-
tiability. In some cases, changes of variables, dependent and independent, may transform a problem
from singular to regular; see [4].

For construction of the solutions, the Dirac function is used. Green’s function verifies − d
dx[

p(x)
dG(x, y)

dx

]
+ ρ(x)G(x, y) = δ(x − y), and expresses the response under homogeneous

boundary conditions to a forcing function consisting of a concentrated unit of inhomogeneity at
x = y.

For the problem −u′′(x) = λu(x) + f (x) in (0, b); u(0) = u(b) = 0, λ = n2, the solution

is u(x) =
∫ b

0
G(x, y) f (y)dy using the Green function

G(x, y) =





sin(nx) sin(n(b− y))
n sin(nb)

, 0 ≤ x < y

− sin(n(b− x)) sin(ny)
n sin(nb)

, y < x ≤ b.

That leads to the representation

u(x) =
sin(nx)

n sin(nb)

∫ x

0
sin(n(b− y)) f (y)dy− sin(n(b− x))

n sin(nb)

∫ b

x
sin(ny) f (y)dy.

Remark 4. Using the definition of the norm convergence, namely: “A sequence (ϕn)n in L2
s (I)

converges to ϕ ∈ L2
s (I) if lim

n→∞
‖ϕn − ϕ‖s = 0, i.e., ϕn → ϕ in L2

s norm”, some sequences δn(x)

could be used instead of δ(x) in order to obtain the Green function.

Starting from the definition δ(x− y) =

{
0, x 6= y
∞, x = y

and use some properties (see [6,9]):

δ is symmetric with δ(ax) = − 1
|a| δ(x), δ(x) = lim

n→∞
δn(x), δn(x) =

n√
π

e−n2x2
, δn(x) =

sin2(nx)
nπx2 or δn(x) =

n
π(1 + n2x2)

, also

δ
(

x2 − a2
)
=

1
|2a| [δ(x + a) + δ(x− a)] and

∫ +∞

−∞
f (y)δ(x− y)dx = f (x).

12
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3. Variational RSL Problems

We define problem P1 as follows:

−
(

pu′
)′
+ ρu + λsu = f , on (a, b) (16)

B1u(a) :a1u(a) + a2u′(a) = 0 (17)

B2u(b) :b1u(b) + b2u′(b) = 0

and the set V =
{

v ∈ C1([a, b]), v′ piecewise continuous on [a, b], B1v(a), B2v(b)verified
}

.

For v ∈ D(L), we have
∫ b

a
pu′v′dx +

∫ b

a
(ρ + λs)uvdx =

∫ b

a
f vdx, ∀v ∈ V (see [10,11]).

Variational problem (VP1) associated to the problem P1 is as follows: find u ∈ V such
that a(u, v) = l v,∀v ∈ V with

a(u, v) =
∫ b

a
pu′v′ + (ρ + λs)uv dx , ∀u, v ∈ V; l v =

∫ b

a
f v dx, ∀v ∈ V. (18)

The functional F : V → R, Fv =
1
2

a(u, v) − lv, ∀v ∈ V expresses the difference
between the internal elastic energy and the load potential.

Lemma 1.

(i) l : V → R is linear;
(ii) Let a : V ×V → R with λ positive eigenvalue of RSL (P1), then a(u, v) is bilinear functional,

positive and symmetric.

Proof. (i) Let v1, v2 ∈ V and α, β ∈ R, then l(αv1 + βv2) = α lv1 + β lv2 is the result that is
obtained from the properties of the scalar product.

(ii) Let u1, u2, v ∈ V and α, β ∈ R then

a(αu1 + βu2, v) =
∫ b

a
p(αu1 + βu2)

′v′ + (ρ + λs)(αu1 + βu2)vdx

= α
∫ b

a
pu′1v′ + (ρ + λs)u1vdx + β

∫ b

a
pu′2v′ + (ρ + λs)u2vdx

= α a(u1, v) + β a(u2, v)

Let u, v1, v2 ∈ V and α, β ∈ R, then

a(u, αv1 + βv2) =
∫ b

a
pu′(αv1 + βv2)

′ + (ρ− λs)u(αv1 + βv2)dx

= α
∫ b

a
pu′v′1 + (ρ + λs)uv1dx + β

∫ b

a
pu′v2 + (ρ + λs)uv2dx

= α a(u, v1) + β a(u, v2)

Let u ∈ V, then

a(u, u) =
∫ b

a
p
(
u′
)2

+ (ρ + λs)u2dx = p
∫ b

a

(
u′
)2dx +

∫ b

a
(ρ + λs)u2dx

The weight function p(x) in [a, b] is positive and in RSL(P1) conditions, ρ + λs is a
positive function in [a, b] accordingly a(u, u) ≥ 0, ∀u ∈ V, and hence a(·, ·) is positive. Let
u, v ∈ V, then

a(u, v) =
∫ b

a
p u′v′ + (ρ + λs) uv dx = a(v, u)

Consequently, a(·, ·) is symmetric.
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Minimization problem (MP1) associated to (VP1) is as follows.
Find u ∈ V such that Fu = min

v∈V
Fv with

Fv =
1
2

∫ b

a
p(v′)2 + (ρ + λs)v2dx−

∫ b

a
f v dx (19)

Theorem 1.

(1) u ∈ V is the solution of (VP1) if u is solution of (MP1);
(2) u ∈ H = C1([a, b]) ∩ C2((a, b)), u solution of (VP1), then u solution of (P1).

Proof. (1) (i) Let u ∈ V be the solution of (VP1), then a(u, v) = lv, ∀v ∈ V. For any w ∈ V,
denoting v = w− u ∈ V, we have

Fw− Fu =
1
2

a(u + v, u + v)− l(u + v)− Fu

= Fu + Fv + a(u, v)− Fu = a(u, v) + F(v)

= a(u, v)− lv + lu + F(v) =
1
2

a(v, v) ≥ 0

meaning that

Fu = min
w∈V

Fw i.e. u solution of (MP1)

(1) (ii) Let u ∈ V be the solution of (MP1), then Fu = min
w∈V

Fw; therefore, Fw− Fu ≥
0, ∀w ∈ V.

Using w = u + tv, t ∈ R, one finds F(u + tv)− Fu ≥ 0, ∀t ∈ R meaning

1
2

a(u + tv, u + tv)− l(u + tv)− 1
2

a(u, u) + lu ≥ 0, ∀t ∈ R, ∀u, v ∈ V

1
2

a(u, u) + t a(u, v) +
t2

2
a(v, v)− lu− t lv− 1

2
a(u, u) + lu ≥ 0, ∀t ∈ R, ∀u, v ∈ V

[
1
2

a(v, v)
]

t2 + [a(u, v)− lv]t ≥ 0 ∀t ∈ R

Using the positivity of the term a(v, v), one finds

[a(u, v)− lv]2 ≤ 0 ⇒ a(u, v) = lv ∀v ∈ V

meaning the u solution of (VP1).
(2) Let u ∈ V ∩H solution of (VP1), then

∫ b

a
pu′v′ + (ρ + λs)uv dx =

∫ b

a
f v dx

∫ b

a
pu′v′ dx +

∫ b

a
(ρ + λs)uv dx =

∫ b

a
f v dx

(
pu′
)
v
∣∣b
a −

∫ b

a

(
pu′
)′v dx +

∫ b

a
(ρ + λs)uv dx =

∫ b

a
f v dx

(
pu′
)
v
∣∣b
a +

∫ b

a

[
−
(

pu′
)′
+ (ρ + λs)u− f

]
v dx = 0, ∀v ∈ V

In case of a self-adjoint operator for L, such as in the case of periodic or antiperiodic
boundary conditions, we have

(
pu′
)
v
∣∣b
a = p(b)u′(b)v(b)− p(a)u′(a)v(a) = 0, ∀u, v ∈ V

14
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and one obtains
∫ b

a
ϕv dx = 0, ∀v ∈ V for ϕ(x) = −(pu′)′ + (ρ + λs)u ∈ C(a, b) that is

ϕ ≡ 0 over interval (a, b).
This means that the u solution of P1 also verifies the boundary conditions.

The theorem proved above transfers the search space of the solution u of the problem
P1 to the search space for the solution of the problem MP1, where the existence is ensured
through the Lax–Milgram theorem for a coercive quadratic form, even more general from
the Lions–Stampacchia theorem, where a(·, ·) is of a symmetric positive bilinear form.

4. Variational Approaches for VP of RSL
4.1. Nehari Variational Method

Let u ∈ C2([a, b]) and F : [a, b]× C2([a, b])× C([a, b]) → [a, b] be a function that has
continuous second-order derivatives with respect to all of its arguments. According to the
Euler–Lagrange variational principle, a necessary condition for the functional

J(u) =
∫ b

a
F
(
x, u, u′

)
dx, (20)

to be stationary at u is that u is a solution of the Euler–Lagrange equation (see [3])

∂F
∂u
− d

dx

(
∂F
∂u′

)
= 0, a ≤ x ≤ b (21)

with the Dirichlet conditions u(a) = A and u(b) = B.
For a nonlinear RSL problem,

−u′′ = f (x, u2), f ∈ H, x ∈ (a, b) = I; u(a) = A and u(b) = B, (22)

forH = { f ∈ C([a, b]× [0, ∞])| f verifies (ip1), (ip2) and boundary conditions}.

(ip1) : f (x, y) > 0for y > 0

(ip2) : ∃ν, y−ν f (x, y) is a non-decreasing function ofy ∈ [0, ∞)

For the problem (22), looking for the extremum value of the functional

J(u) =
∫ b

a

[
(
u′
)2 −

∫ u2(x)

0
( f (x, y)dy)

]
dx, (23)

for the set Va,b = {u|u ∈ C([a, b]), u′piecewise continuous in[a, b], u(a) = u(b) = 0} the
functional J(u) is not bounded. Using the Nehari method, a new condition on the function
f and u is imposed:

∫ b

a

(
u′
)2dx =

∫ b

a
u2 f (x, u2)dx, (24)

which is satisfied by the solutions of (22).
Let us consider the set Va,b =

{
u|u ∈ Va,bverifies (24)

}
. For I given, let

µ(a, b) = inf
u∈V

J(u). Then ∃u ∈ Va,b such that J(u) = µ(a, b) and also (see [12]),

for u ∈ Va,b with J(u) = µ(a, b), w = |u| ∈ Va,b is a positive solution of (22).
The function µ(a, b) is continuous with respect to both arguments and

µ(a, b) = inf
c<d∈[a,b]

µ(c, d) with lim
b→a

µ(a, b) = ∞. (25)

15
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Remark 5. For a partition ∆n : a = x0 < x1 < · · · < xn−1 < xn = b of the interval I, over each
subinterval [xi; xi+1], consider ui ∈ Vxi ,xi+1 normalized with the Nehari condition and

For x ∈ [xi; xi+1] : u(x) = (−1)i|ui(x)|, J(u) = µn−1(x1, x2, . . . , xn−1) (26)

For ∆n given : µn−1(x1, x2, . . . , xn−1) =
n

∑
i=1

µ(xi−1, xi), (27)

then the solution u(x) is in Va,b and is vanishing n − 1 times over interval I. Additionally, if

|u′k(xk)| 6= |u′k+1(xk)| then µn−1(x1, x2, . . . , xn−1) is not a minimum of
n

∑
i=1

µ(xi−1, xi).

4.2. Variational Estimations for RSL

In the following, two variational estimation methods are presented, the shooting
method and bisection method, consisting in solving the variational equations associated to
the problem given.

Shooting method:

(P2)

{
−(pu′)′ + (q + λs)u = 0, x ∈ [a, b]
u(a) = 0, u(b) = 0

(28)

For λ eigenvalue and uλ(x), the corresponding eigenfunction uλ(a) 6= 0 and

y =
uλ

u′λ(a)
is the normalized eigenfunction with y′(a) = 1, which is the solution for

the variational equation associated to (28) with the initial value conditions:

(VIP)
{
−(py′)′ + (q + λs)y = 0, x ∈ [a, b]
y(a) = 0, y′(a) = 1

(29)

with y(b) = 0 (see [4]).
Algorithm of the shooting method:

Step 1 Determine an interval of an eigenvalue and make a guess;
Step 2 Solve VIP (P2) and find the eigenfunction u = uλ(x);
Step 3 If uλ(b) = 0 or |uλ(b)| < ε given, then Stop.

Else, find λ the root of uλ(b) = 0 in a given interval and update λ.
GO TO Step 1.

Bisection method

For SL eigenvalue problem (P3) with functions and constants satisfying RSL assump-
tions (1)–(4):

(P3)




−(pu′)′ + (q + λs)u = 0, x ∈ [a, b]
B1u(a) : a1u(a) + a2u′(a) = 0
B2u(b) : b1u(b) + b2u′(b) = 0

(30)

the related variational initial value problem VIP3 is

(VIP3)





−(pu′)′ + (q + λs)u = 0, , x ∈ [a, b]
u(a) = − a2√

a2
1 + a2

2

; u′(a) =
a1√

a2
1 + a2

2

(31)

For the eigenvalue λ denoting uλ, the corresponding eigenfunction has uλ(0) 6= 0,
and y = uλ is the normalized uλ eigenfunction such that a1y(a) + a2y′(a) = 0. In this case,
λ is the eigenvalue for P3 if F(λ) := B2y(b) = b1y(b) + b2y′(b) = 0.

16
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The function wλ(x) =
∂uλ

∂λ
satisfies the variational initial value problem (VIVP3).

(VIVP3)

{
−(pw′)′ + (q + λs)w + sw = 0
w(a) = 0, w′(a) = 0

(32)

and F(λ) = b1uλ(b) + b2u′λ(b) is a continuously differentiable function on λ with F′(λ) =
b1wλ(b) + b2w′λ(b) 6= 0.

Remark 6. Under RSL assumptions (1)–(4), if λ is the eigenvalue of (P3) and y = uλ is the
corresponding normalized eigenfunction, then there exists (λinf, λsup) containing λ such that
F(λinf)F(λsup) < 0 and the approximate sequence (λn)n is convergent, λn → λ and yn = uλn

are the corresponding eigenfunctions obtained by solving (VIVP3) such that yn → y and y′n → y′.

For instance, the solution of the problem

(EP3)

{
−(p(x)u′)′ + ρu(x) = f (x), x ∈ (0, 1)
u(0) = 0, u(1) = 0

(33)

with p, ρ, f ∈ C([0, 1]) verifying (RSL) conditions (1)–(4) is obtained solving the associated

(VI − EP3)

{
−(py′)′ + ρy = f (x), x ∈ (0, 1)
y(0) = 0, y(1) = s

(34)

The solution of (EP3) is determined such that us(x) = up(x) + sv(x) with us(1) = 0
and up is a particular solution of Ly = f and v satisfies

Lv = 0, v(0) = 0; v′(0) = 1.

4.3. Iterative Variational Methods for RSL

Among analytical estimation methods, the variational iteration method (VIM or He’s
methods, see [13]) and homotopy perturbation method (HPM) (see [14,15]) are considered
to find approximations for the nonlinear equation

Lu + λs(x)u = f (x, u, u′), x ∈ (a, b) = I, λ ∈ R, (35)

under different boundary conditions (Dirichlet, Neumann or general case B1u(a), B2u(b)).

4.3.1. He’s Variational Method (VIM)

For the nonlinear Equation (35), we define N as the nonlinear operator such that (35)
becomes

Lu + Nu = g(x), x ∈ (a, b) = I, (36)

and the correction functional for the general Lagrange multiplier method is

un+1(x) = un(x) +
∫ x

0
µ(t, x, λ)[Lun(t) + Nũn(t)− g(t)]dt, (37)

with ũn considered as restricted variation, δũn = 0, and µ(t, x, λ) a Lagrange multiplier
determined through the calculus of variations from (37); see [10,16].

δun+1(x) = δun(x) + δ
∫ x

0
µ(t, x, λ)[Lun(t) + Nũn(t)− g(t)]dt. (38)

17
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4.3.2. Homotopy Perturbation Method (HPM)

For the nonlinear Equation (35) we define the operators L and N for q ∈ [0, 1]

L[Φ(x, q)] = − d
dx

[
p(x)

d
dx

Φ(x, q)
]

, (39)

N[Φ(x, q)] = − d
dx

[
p(x)

d
dx

Φ(x, q)
]
+ (ρ + λs)(x)Φ(x, q)− f (x, Φ(x, q), Φx(x, q)), (40)

given by the maximum order of derivation from the equation and by the form of the
equation; see [14,17]. We write the zero-order equation associated with the initial equation:

(1− q)L[Φ(x, q)− u0(x)] = hqN[Φ(x, q)] (41)

with h as a nonzero parameter, u0 as a first analytical approximation of the function u
with conditions

Φ(x, 0) = u0(x); Φ(x, 1) = u(x), x ∈ [a, b]. (42)

where u0 is a initial function that verifies the boundary conditions B1u(a) : a1u(a) +
a2u′(a) = 0, B2u(b) : b1u(b) + b2u′(b) = 0 could be obtained from polynomial approxima-
tion developing the function f .

We develop Φ(x, q) by a Taylor series in the vicinity of the origin in relation to the
second variable

Φ(x, q) = u0(x) +
∞

∑
1

um(x)qm; um(x) =
1

m!
∂mΦ
∂xm (x, q)

∣∣∣∣
q=0

(43)

A good choice for h (in relation to the error obtained compared to the initial equation)
leads to u(x) = u0(x) + ∑∞

m=1 um(x).
The equation of order m:

case m = 1→ L[um(x)] = hN[um−1]
case m ≥ 2→ L[ fm(x)− fm−1(x)] = hN[um−1]

with boundary conditions B1um(a), B2um(b).
For the approximation of order 1, we have

−
[
p(x)u′1(x)

]′
= h

{
−
[
p(x)u′0(x)

]′
+ (ρ(x) + λs(x))u0(x)− f (x, u0(x), u′0(x))

}

︸ ︷︷ ︸
ε0(x)

(44)

with ε1(x, h) = N[u1(x)].
The parameter h at step 1 is chosen such that the value of maxx∈I |ε1(x, h)| is the

smallest possible and becomes the next value of ε1, but also could be taken as h = 1.
Iteratively, for m ≥ 2

Lum + λs(x)um = f (x, um−1, u′m−1), x ∈ I; B1um(a), B2um(b) (45)

with start condition u0 being known and stop condition maxx|um − um−1| < ε.

4.3.3. Applications

Let us consider a nonlinear RSL, such as the following problem:

−u′′(x) + λu(x) = f
(
x, u, u′

)
, x ∈ [0, b]; B1u(0), B2u(b). (46)
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The corresponding correction functional (37) to the problem (46) for the variational
iteration method leads to the general Lagrange multiplier

for λ > 0, µ(t, x, λ) =
1

2α

(
eα(t−x) − eα(x−t)

)
=

1
α

sinh α(t− x), α =
√

λ (47)

for λ < 0, µ(t, x, λ) = − 1
α

sin α(t− x), α =
√
−λ (48)

and for f (x, u, u′) = g(x), one finds

un+1(x) =un(x) +
1
α

∫ x

0
sinh α(t− x)

[
−u′′n(t) + α2un(t)− g(t)

]
dt, λ > 0, (49)

un+1(x) =un(x)− 1
α

∫ x

0
sin α(t− x)

[
−u′′n(t) + α2un(t)− g(t)

]
dt, λ < 0 (50)

with u0(x) = A + Bx. Particularly, for g(x) = x, the first step leads to

u1(x) =u0(x) +
1
α

∫ x

0
sinh α(t− x)[λA + (λB− 1)t]dt, λ = α2, (51)

u1(x) =u0(x)− 1
α

∫ x

0
sin α(t− x)[λA + (λB− 1)t]dt, λ = −α2 (52)

from where

u1(x) =2A + 2Bx +
α2B− 1

α3 sinh(αx)− A cosh(αx)− x
α2 , λ = α2, (53)

u1(x) =2A +
α2B− 1

α3 sin(αx)− A cos(αx) +
x
α2 , λ = −α2, (54)

For n > 1, we have

un+1(x) =un(x) +
1
α

∫ x

0
sinh α(t− x)

[
−u′′n(t) + α2un(t)− t

]
dt, λ > 0, (55)

un+1(x) =un(x)− 1
α

∫ x

0
sin α(t− x)

[
−u′′n(t) + α2un(t)− t

]
dt, λ < 0 (56)

Constants A and B are determined from the boundary condition imposed to the last
function un computed, and for u(x) = un(x), boundary conditions are imposed, resulting
in a system for the constants A, B. Thus, the solution of the problem is obtained.

In the case of using HPM, Equation (44), with λ = α2, for the first step becomes

−u′′1 (x) = h
(
−u′′0 (x) + λu0(x)− x

)
= hε0(x) (57)

and for case m ≥ 2

−
[
u′′m − u′′m−1

]
(x) = h

(
−u′′m−1(x) + λum−1(x)− x

)
= εm(x, h). (58)

One obtains

u1(x) = −h
(

λAx2

2
+

(λB− 1)x3

3

)
, (59)

u′′2 = h(1− h)(λA + (λB− 1)x) + hx− h2
(

λ2 Ax2

2
+ λ

(λB− 1)x3

3

)
= −ε1(x, h). (60)

from where

u2 = h(1− h)(λA
x2

2
+ (λB− 1)

x3

6
) + h

x3

6
− h2

(
λ2 Ax4

24
+ λ

(λB− 1)x5

603

)
. (61)
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The solution will be u(x) = u0(x) + u1(x) + u2(x) + . . . .
Additionally, if we consider the nonlinearity in (46) through function f (x, u, u′) =

g(x)u, that is, for g(x) = −x2, x ∈ (−l, l) we are in the harmonic oscillator case (λ < 0),
then the following correction functional appears

un+1(x) =un(x) +
1
α

∫ x

0
sinh α(t− x)

[
−u′′n(t) + (α2 − g(t))un(t)

]
dt, λ > 0, (62)

un+1(x) =un(x)− 1
α

∫ x

0
sin α(t− x)

[
−u′′n(t) + (α2 − g(t))un(t)

]
dt, λ < 0 (63)

as an eigenfunction of the equation Hermite polynomials appears.
For B1u(−l) : u(−l) = 0; B2u(−l) : u(l) = 0 and (λ < 0)

u1(x) =A + Bx− 1
α

∫ x

0
sin α(t− x)

[
t2(A + Bt) + α2(A + Bt)

]
dt, (64)

un+1(x) =un(x)− 1
α

∫ x

0
sin α(t− x)

[
−u′′n(t) + (α2 + t2)un(t)

]
dt, (65)

−u′′1 (x) = h
(
−u′′0 (x) + (x2 + α2)u0(x)

)
= hε0(x) (66)

and for case m ≥ 2

−
[
u′′m − u′′m−1

]
(x) = h

(
−u′′m−1(x) + (x2 + α2)um−1(x)

)
= εm(x, h). (67)

The two methods are fast convergent methods.
Variational iteration methods, such as VIM and HPM, could be used also for nonlinear

propagation problems in which the temporal variable is considered, for example, for the
coupled pseudo-parabolic equation, or the one-dimensional coupled Burgers equation
numerically studied in [18]. The nonlinear coupled Burgers equations are also studied
in [19] as an application of EOHAM (extension optimal homotopy asymptotic method) in
which homotopy is combined with perturbation techniques. The Newell–Whitehead–Segel
equation (NWSE) was also studied using the VIM technique and He’s polynomials [20].

5. Conclusions

In the first part of the paper, definitions and results are presented connected to regular
and singular Sturm–Liouville problems. Some types of direct singular SLPs were solved
in [5,21] and a study of the inverse SLP algorithm was made. We defined in a different
manner the SLP, and different boundary conditions were considered. All the figures were
made using Matlab codes, the academic versions.

In the core of the paper, the variational formulation (VP) through a bilinear functional
positive and symmetric is made. The minimization problem (MP) is also outlined through
the functional of energy, and the equivalence of the formulations under some conditions
imposed for RSL problems is proved.

Variational estimations are in the final part of the paper through the construction of
the solution trough variational equations associated to the problem, such as the shooting
method and bisection method, or using a sequential analytical approximate solution that
is constructed according to the accuracy established. Here, we present He’s variational
method and the homotopy method. In the closing part, a is taken into account and the
sequentiality of the transition from one step to another is specified for both methods.
Al-Khaled et al. (see [22]) solve numerically a SLP using the general Sinc–Galerkin and
Newton method but for different types of boundary conditions. In the paper, He’s method,
the Adomian method and Lagrange multiplier for special ODEs were given in detail,
numerical results being obtained for Duffing and Titchmarch equations. We considered
our applications the interval (0, b) and general conditions B1u(0), B2u(b) for a linear and a
nonlinear case of f (x, u, u′).
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In [23] spectral problems of the nonlocal SLP with an integral B2u(b) were studied.
Kernel of the operator, properties of the first eigenvalue and oscillation properties of
eigenfunctions to the nonlocal problem were expressed. Additionally, the solution of the
Cauchy problem for the SL equation on a star graph was constructed in [24].

For fractional differential equations, VIM could also be a very powerful instrument, in
which Equations (36) and (37) are written using the Caputo fractional derivative, see [25].
This is our intention for the new study.

Nonlinear RSL problems could appear in the case of non-Newtonian fluid flows.
Variational estimation methods are efficient techniques for finding analytical approxi-
mate solutions for a class of problems and also for optimal problems when looking for a
minimum, using the functional of energy.
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Abstract: As is well-known, unlike the one-dimensional case, there exist nonnegative polynomials
in several real variables that are not sums of squares. First, we briefly review a method of approxi-
mating any real-valued nonnegative continuous compactly supported function defined on a closed
unbounded subset by dominating special polynomials that are sums of squares. This also works in
several-dimensional cases. To perform this, a Hahn–Banach-type theorem (Kantorovich theorem
on an extension of positive linear operators), a Haviland theorem, and the notion of a moment-
determinate measure are applied. Second, completions and other results on solving full Markov
moment problems in terms of quadratic forms are proposed based on polynomial approximation.
The existence and uniqueness of the solution are discussed. Third, the characterization of the con-
straints T1 ≤ T ≤ T2 for the linear operator T, only in terms of quadratic forms, is deduced. Here,
T1, T, and T2 are bounded linear operators. Concrete spaces, operators, and functionals are involved
in our corollaries or examples.
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1. Introduction

We begin by recalling a few general remarks on approximation theory and its applica-
tions. A first fact is that the results of the present review paper focus on the existence and
uniqueness of the solution of the solution for a large class of Markov moment problems. The
involved solutions are bounded linear operators T mapping L1

ν(F) into an order-complete
Banach lattice Y, where ν is a moment-determinate positive regular Borel measure on the
closed unbounded subset F ⊆ Rn, n ∈ {1, 2, . . .}. The uniqueness follows from the density
of polynomials in L1

ν(F) (Lemma 1) via the continuity of the operator T. Of note, our first
result (Lemma 1) also works for n ≥ 2, when, unlike the case n = 1, there exist moment-
determinate measures ν on Rn for which the polynomials are not dense in L2

ν(F) (according
to [1]). Thus, for n ≥ 2, Lemmas 1, 2, and 3 are no longer valid if we turn L1

ν(F) into L2
ν(F).

Moreover, Lemma 1 holds true for any closed (unbounded) subset of F ⊆ Rn. Hence, the
nonnegative polynomials on F are dense in the positive cone of L1

ν(F). If F = Rn or F = Rn
+,

special convex cones of nonnegative polynomials (which are sums of squares) are dense in
the positive cone of L1

ν(F) (Lemmas 2 and 3). These remarks lead to the characterizations
in terms of quadratic forms in the case n ≥ 2, which is the main contribution of this review
paper. Going back to our aim on the applications of approximation theory, in [2] an interest-
ing connection of a moment problem on [0, 1] (the Hausdorff moment problem) with fixed
point theory was pointed out. As a rule, fixed point theorems use an iteration process. In [2],
this iteration involved a rational function. The solution of the Hausdorff moment problem
under attention is regarded as the fixed point of a transformation appearing naturally from
the context. In [3], deep results on the uniqueness of the solutions for moment problems
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were carefully discussed. The article [4] provided approximation results on various locally
compact spaces not necessarily related to the moment problem. In references [5] and [6],
the geometric and iterative aspects of optimization theory were emphasized. The article [7]
provided several interesting functional equations and new simple proofs of related inequal-
ities involving logarithmic convexity and proposed new conjectures on the subject. In the
article [8], an iterative method and its related algorithm, accompanied by a convergence
analysis, for solving an optimization problem were discussed. As a general remark, recall
that determining the element of minimum norm of a closed convex subset in a Hilbert
space, not containing the origin, is also a passing to the limit process associated with an
iteration geometrical method. This method can be adapted for a more general setting. The
article [9] provides an iterative method for solving and approximating the solution of an
operator equation, starting from Newton’s global method for convex monotone increasing
(or decreasing) operators. Sometimes, the usual iteration defining Newton’s method leads
to an iteration Ak+1 = ϕ(Ak), where Ak are self-adjoint operators acting on a Hilbert space
and ϕ is a contractive convex mapping. As is well-known, the convergence of the sequence
generated by Newton’s method generally only works locally. For convex monotone opera-
tors of the C1 class, it works globally, with the control of the norm of the error (providing
the velocity of the convergence). The key point of the article [9] is that the convergence of
the sequence of the successive approximations associated with the contraction mapping
ϕ can be handled more easily than that provided by Newton’s method. The contraction
constant of ϕ can be determined quite easily. In particular, if the matrices have real entries,
the result holds for functions of symmetric matrices. In the end, recall the connection
between optimization (such as the best approximation by the elements of a closed subspace
of a Hilbert space) and Fourier approximation. This is a useful remark that can be used in
controlling the mean square error g− h2

2 between the solutions g, h of the reduced moment
problems

〈
g, ψj

〉
= yj,

〈
h, ψj

〉
= mj, j = 0, 1, . . . , m in terms of the squares of the errors(

mj − yj
)2, j = 0, 1, . . . , m. Here, all the involved functions g, h, ψj are elements of the

Hilbert space L2
µ(F), and F ⊆ Rn is a closed subset:

ψj(t) = tj := tj1
1 · · · t

jn
n , t = (t1, . . . , tn) ∈ F, j = (j1, . . . , jn) ∈ Nn,

where yj are the exact values of the moments, determined in the experimental stage,
while mj are the modified values for yj, perturbed by external influences in the real-
life measuring stage. Another important field in approximation theory is provided by
Korovkin-type theorems and their applications. The article [10] presents such an application
in approximating a Kantorovich-type rational operator by means of Korovkin’s classical
approximating result and completing technique. Associated inequalities are established as
well. The papers [11,12] refer to the aspects related to or like those of the moment problem,
being inverse problems, as the moment problem is as well. The references [13,14] contain
a polynomial approximation on the unbounded subsets discussed in the beginning of
this introduction. Another direction of applying these approximation results is that of
characterizing sandwich conditions on bounded linear operators defined on L1

ν(F) (where
ν is moment-determinate) only in terms of quadratic forms (see below). Another well-
known application of approximation theory arises from Krein-Milman theorem, which
leads to approximation by convex combinations of the extreme points of a compact convex
subset in a locally convex space. Such results lead to representation theorems and possible
applications for optimization (see the references [14–17]).

Before stating our work on the multidimensional Markov moment problem and the
related results studied in Section 3, we recall some basic notions and related terminology
on compatible structures on usual spaces, which are used in the sequel. The motivation
for this is that all concrete spaces of functions and self-adjoint operators have such natural
structures. For complete and related information, see the monographs and books [18–27].
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An ordered vector space is a real vector space X endowed with an order relation compatible
with the algebraic structure expressed by the following two properties:

x, y ∈ X, x ≤ y := x + z ≤ y + z for all z ∈ X,
x ≤ y := αx ≤ αy for all real α ∈ [0, ∞).

An order relation with the above two compatibility properties is called a linear order
relation on X. An ordered vector space X with the property that for any x1, x2 ∈ X there
exists the least upper bound sup{x1, x2} = x1 ∨ x2 for the set {x1, x2} is called a vector
lattice. In a vector lattice X, the following basic notations are used:

x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x), x ∈ X.

All the usual vector spaces have such a natural order relation. If X is an order vector space,
one denotes by X+ the convex cone with a vertex at 0, defined by X+ := {x ∈ X; x ≥ 0}. This
cone is called the positive cone of X. In the function spaces and in the spaces of symmetric
matrices with real entries, as well as in the space of self-adjoint operators acting on an
infinite-dimensional Hilbert space, there exist natural norms, which make them Banach
spaces. Generally, the structures given by the norms are compatible with the algebraic and
order structures on the Banach spaces appearing in applications. An ordered Banach space
is a Banach space X endowed with a linear order relation such that the positive cone X+ is
topologically closed and the norm is monotone increasing (isotone) on X+ :

x1, x2 ∈ X, 0 ≤ x1 ≤ x2 := ‖x1‖ ≤ ‖x2‖.

A Banach lattice is a Banach space X, which is also a vector lattice, such that the norm
is solid on X :

x1, x2 ∈ X, |x1| ≤ |x2| := ‖x1‖ ≤ ‖x2‖.
Almost all Banach function spaces have a natural structure of a Banach lattice. From

the above definitions, clearly, any Banach lattice is an ordered Banach space. The converse
is false. A first example of an ordered Banach spaces that is not a lattice is the space
SM(n× n) of all symmetric n× n matrices with real entries. The order relation on this
space is given by:

A, B ∈ SM(n× n), A ≤ B if and only if 〈Ah, h〉 ≤ 〈Bh, h〉 for all h ∈ Rn.

From this definition, we infer that A ≤ B if and only if B− A is positive semidefinite.
The norm of the symmetric matrix A is: A = sup

h≤1
|〈Ah, h〉|. Here, by ‖h‖ we denote the

Euclidean norm of the vector h. These definitions and notations make sense and have moti-
vations in the infinite-dimensional case. Namely, if H is an arbitrary infinite-dimensional
real or complex Hilbert space, a linear operator A : H → H is called a symmetric operator
if 〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈ H. A linear symmetric (continuous) operator is called a
self-adjoint operator. Of note, any symmetric linear operator acting on H is continuous and
therefore self-adjoint thanks to the closed graph theorem. The last definition makes sense
for linear operators A : D(A)→ H, where D(A) ⊆ H is a vector subspace of H, called the
domain of definition of A. In this case, 〈Ax, y〉 = 〈x, Ay〉 holds for all x, y ∈ D(A). To avoid
the inconvenience arising from the fact that the real vector space of self-adjoint operators
is not a lattice as well as the noncommutativity of the multiplication (composition) of
self-adjoint operators (and of symmetric square matrices), the following subspace has been
studied. Let A ∈ A(H), where A(H) is the real vector space of all self-adjoint operators
acting on H. We define:

Y1(A) := {V ∈ A(H); AV = VA}, Y(A) := {W ∈ Y1(A); UW = WU ∀U ∈ Y1(A)}.
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Then, Y(A) is an order complete Banach lattice and a commutative real algebra of
self-adjoint operators (according to [22]). P = R[t1, . . . , tn] is the real vector space of all
polynomial functions with real coefficients of n real variables t1, . . . , tn.In what follows,
F is a closed, unbounded subset of Rn, and P+(F) is the convex cone of polynomials
p : F → R, with p(t) ≥ 0 for all t ∈ F. We denote by P++(F) a convex subcone of P+(F)
whose elements are special nonnegative polynomials. For example, P++(Rn) can be the
convex cone of all sums of polynomials of the form p1 ⊗ · · · ⊗ pn, where:

(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn), t = (t1, . . . , tn) ∈ Rn,
pi ∈ P+(R), i = 1, . . . , n.

(1)

We recall that:
p ∈ P+(R)⇔ p = q2 + r2 (2)

for some polynomials q, r and

p ∈ P+(R+)⇔ p(t) = q(t)2 + tr(t)2 for all t ∈ R+ := [0, ∞). (3)

for some q, r ∈ R[t]. We denote by N := {0, 1, . . .} the set of all nonnegative integers. If
F is a closed unbounded subset of Rn, then Cc(F) is the vector space of all real-valued
continuous compactly supported functions defined on F. In the sequel, all the involved
vector space and linear operators (or functionals) are considered over the real field.

The classical moment problem can be written as follows: being given a sequence(
yj
)

j∈Nn of real numbers and a closed subset F ⊆ Rn, n ∈ {1, 2, . . .}, find a positive regular

Borel measure µ on F such that
∫

F tjdµ = yj, j ∈ Nn. This is the full moment problem. The
existence, uniqueness, and construction of the unknown solution µ are the focus of attention.
The truncated (or reduced) moment problem requires the interpolation moment conditions
only for jk ≤ d, k = 1, . . . , n, , j = (j1, . . . , jn), where d is a given positive integer. The
numbers yj, j ∈ Nn are called the moments of the measure µ. When a sandwich condition
on the solution is required, we have a Markov moment problem. The moment problem is
an inverse problem since the measure µ is not known. It must be found, starting from its
moments. Instead of real number moments, one can work with elements yj ∈ Y, j ∈ Nn,
where Y is an order complete Banach lattice of functions or self-adjoint operators. If the yj
are operators, we have an operator-valued moment problem. When Y is a Banach lattice
of functions, we have a vector-valued moment problem. The requirement for Y to be
order-complete is motivated by the necessity of applying Hahn–Banach-type theorems in
order to obtain a linear positive extension T : X → Y of the linear operator T0 : P → Y,
satisfying the moment conditions T0

(
ϕj
)

:= yj, j ∈ Nn, ϕj(t) = tj = tj1
1 · · · t

jn
n from P to an

ordered Banach space X containing both spaces P and Cc(F). When a sandwich condition
T1 ≤ T ≤ T2 is required on the extension T, where Ti, i = 1, 2 are given bounded linear
operators mapping X into Y, we have a Markov moment problem. In this case the positivity
of T on X+ is replaced by the condition T1 ≤ T, while the requirement T ≤ T2 controls
the norm of the solution T. As in the case of a scalar-valued linear solution, we now study
the existence, the uniqueness, and eventually the construction of a/the linear solution T
satisfying the interpolation moment conditions and the sandwich condition. A basic result
in solving the classical moment on unbounded closed subsets is the Haviland theorem [28].
In [29], the result of Kantorovich on the extension of positive linear operators preserving
linearity and positivity was reviewed and proven. This a Hahn–Banach-type result. The
references [30–43] point out various aspects of the moment and related problems. Unlike
other unbounded subsets of Rn, n ≥ 2, the expression of nonnegative polynomials on
a strip in terms of sums of squares is known due to M. Marshall’s theorem [39]. Using
the polynomial approximation ensured by Lemma 1 and Theorem 1, proven below, the
Markov moment problem in terms of quadratic forms is solved (see Theorem 3 below).
Applications of Hahn–Banach-type extension theorems to the study of the isotonicity
(increasing monotonicity) of continuous convex operators on the positive cone X+ were
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published in the article [44]. References [45–48] focus mainly on several aspects of the
truncated or full Markov moment problem. The rest of this paper is organized as follows.
Section 2 summarizes the basic methods and results used along the proofs of the theorems
in the present paper. Section 3 is devoted to the results: polynomial approximation on
unbounded subsets in some L1

ν spaces, applications of such results accompanied by other
theorems to the existence and uniqueness of the solution of the Markov moment problem on
an unbounded closed subset, and characterizations of the sandwich condition for bounded
linear operators. All these applications of approximation-type results are partially or
completely formulated in terms of quadratic forms. Section 4 concludes the paper.

2. Methods

Here are the basic methods used directly or as background of this paper:

(1) Polynomial approximation on closed unbounded subsets F ⊆ Rn. in spaces L1
ν(F),

where ν is a moment-determinate positive regular Borel measure on F. Here, we use
notions on the determinacy of measures, Kantorovich theorem on the extension of
positive linear operators, Haviland theorem, and measure theory standard results.
However, the key point is the notion of a moment-determinate measure and its use
in the proof of Lemma 1. Bernstein-approximating polynomials are applied in the
proofs of Lemmas 2 and 3.

(2) The characterization of the existence and uniqueness of the solution for full vector-
valued Markov moment problems on unbounded subsets and their consequences for
scalar Markov moment problems.

(3) The characterization of the sandwich-type conditions for a large class of bounded
linear operators on L1

ν(Rn), only in terms of quadratic forms.

3. Results

3.1. On Polynomial Approximation on Unbounded Closed Subsets F ⊆ Rn in Spaces L1
ν(F),

Where ν Is a Moment-Determinate Positive Regular Borel Measure on F

In the sequel, the following approximation lemmas are applied

Lemma 1. Let F ⊆ Rn be an unbounded closed subset and ν be a moment-determinate pos-
itive regular Borel measure on F, with finite moments of all natural orders. Then, for any
x ∈ Cc(F), x(t) ≥ 0, ∀t ∈ F, there exists a sequence (pm)m, pm ≥ x, m ∈ N, pm → x in
L1

ν(F). Consequently, we have:

lim
m

∫

F

pm(t)dν =
∫

F

x(t)dν,

where P+ = P+(F) is dense in
(

L1
ν(F)

)
+, and P is dense in L1

ν(F).

Proof To prove the assertions of the statement, it is sufficient to show that for any
x ∈ (Cc(F))+ we have

Q1(x) := in f
{∫

F
p(t)dν; p ≥ x, p ∈ P

}
=
∫

F
x(t)dν.

Obviously, one has

Q1(x) ≥
∫

F
x(t)dν.

To prove the converse, we define the linear form

T0 : X0 := P ⊕ Sp{x} → R, F0(p + αx) :=
∫

F
p(t)dν + αQ1(x), p ∈ P , α ∈ R.
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Next, we show that F0 is positive on X0. In fact, for α < 0, one has (from the definition
of Q1, which is a sublinear functional on X1):

p + αx ≥ 0 := p ≥ −αx := (−α)Q1(x) = Q1(−αx) ≤
∫

F

p(t)dν := T0(p + αx) ≥ 0.

If a ≥ 0, we infer that:

0 = Q1(0) = Q1(αx− αx) ≤ αQ1(x) + Q1(−αx) =⇒∫
F

p(t)dν ≥ Q1(−αx) ≥ −αQ1(x) := T0(p + αx) ≥ 0,

where, in both possible cases, we have x0 ∈ (X0)+ := T0(x0) ≥ 0. Since X0 contains the
space of the polynomials’ functions, which is a majorizing subspace of X1, there exists a
linear positive extension T : X → R of T0 (cf. [29]), which is continuous on Cc(F) with
respect to the sup-norm. Therefore, T has a representation by means of a positive Borel
regular measure µ on F such that

T(x) =
∫

F
x(t)dµ, x ∈ Cc(F).

Let p ∈ P+ be a nonnegative polynomial function. There is a nondecreasing se-
quence (xm)m of continuous nonnegative function with compact support such that xm ↗ p
pointwise on F. The positivity of T and Lebesgue’s dominated convergence theorem for
µ yield

∫

F

p(t)dν = T(p) ≥ supT(xm) = sup
∫

F
xm(t)dµ =

∫

F
p(t)dµ, p ∈ P+.

Thanks to Haviland’s theorem [28], there exists a positive Borel regular measure λ on
F such that

λ(p) = ν(p)− µ(p)⇔ ν(p) = λ(p) + µ(p), p ∈ P .

Since ν is assumed to be M-determinate, it follows that:

ν(B) = λ(B) + µ(B),

for any Borel subset B of F. From this last assertion, approximating each x ∈
(

L1
ν(F
)
+

by a nondecreasing sequence of nonnegative simple functions and using Lebesgue’s con-
vergence theorem, one obtains, first for positive functions, then for arbitrary ν-integrable
functions, ϕ : ∫

F
ϕdν =

∫

F
ϕdλ +

∫

F
ϕdµ, ϕ ∈ L1

ν(F).

In particular, we must have
∫

F
xdν ≥

∫

F
xdµ = T(x) = T0(x) = Q1(x).

The conclusion is: Q1(x) =
∫

F x(t)dν. This ends the proof. �
Using Bernstein polynomial of n real variables when Lemma 1 is applied to n = 1,

for F = R and Fubini’s theorem we derive the following multidimensional polynomial
approximation result.
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Lemma 2. Let ν = ν1 × · · · × νn be a product of n positive regular Borel-moment-determinate
measures on R, with finite moments of all orders. Then, we can approximate any nonnegative
continuous compactly supported function ψ ∈ X = (Cc(Rn))+ with the sums of products:

p1 ⊗ · · · ⊗ pn,
(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn).t = (t1, . . . , tn) ∈ Rn,

where pj is a nonnegative polynomial on the entire real line, j = 1, . . . , n, and any such sum of
special polynomials dominates ψon Rn.

Lemma 3. Let ν = ν1 × · · · × νn be a product of n positive regular Borel-moment-determinate
measures on R+, with finite moments of all orders. Then, we can approximate any nonnegative
continuous compactly supported function ψ ∈

(
Cc
(
Rn
+

))
+ with the sums of products:

p1 ⊗ · · · ⊗ pn,
(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) := p1(t1) · · · pn(tn).t = (t1, . . . , tn) ∈ Rn

+,

where pj is a nonnegative polynomial on the entire nonnegative semi axes, j = 1, . . . , n, and any
such sum of special polynomials dominates ψ on Rn

+.

Proof. Let f ∈
(
Cc
(
Rn
+

))
+,Ki = pri(supp( f )), ai = in f Ki,bi = supKi, i = 1, . . . , n,

K = [a1, b1]× · · · × [an, bn].

The restriction of f to the parallelepiped K can be approximated uniformly on K
by Bernstein polynomials Bm in n variables. Any such polynomial Bm is a sum of the
products of the form qm,1 ⊗ · · · ⊗ qm,n, where each qm,i is a polynomial nonnegative on
[ai, bi], i = 1, . . . , n, m ∈ N. Bm can be written as:

Bm = ∑
ki=0,...,m,
i=1,...,n

qm,k1 ⊗ · · · ⊗ qm,kn ,

where qm,ki
is a nonnegative polynomial on [ai, bi], i = 1, . . . , n, m ∈ N. By the Weierstrass–

Bernstein uniform approximation theorem, we have:

‖ f − Bm‖∞ := sup
t∈K
| f (t)− Bm(t)| → 0, m→ ∞.

By an abuse of notation, we write qm,i = qm,ki
. We need a similar approxima-

tion, with sums of tensor products of nonnegative polynomials pi, pi(ti) ≥ 0, for all
ti ∈ R+, i = 1, . . . , n in the space L1

ν

(
Rn
+

)
. To this aim, the idea is to use Lemma 18

for n = 1, F = R+, followed by Fubini’s theorem. We define q0,m,i = qm,i·χ[ai ,bi ]
,

i = 1, . . . , n and fi(t) = qm,i(t), t ∈ [ai, bi], fi(t) = 0 for t outside an interval [ai − ε, bi + ε]
with small ε > 0, the graph of fi on [bi, bi + ε] being the line segment of the ends of the
points (bi, qi(bi)) and (bi + ε, 0). We proceed similarly on an interval [ai − ε, ai]. Clearly,
for ε > 0 small enough, fi approximates q0, m,i in L1

νi
(R+) as accurate as we wish. On

the other hand, fi is nonnegative, compactly supported, and continuous on R+, so that
Lemma 1 ensures the existence of an approximating polynomial pi with respect to the
norm of L1

dνi
( R+), pi(t) ≥ 0 for all t ∈ R+, i = 1, . . . , n. According to Fubini’s the-

orem, the preceding reasoning yields p1 ⊗ · · · ⊗ pn , which approximates f1 ⊗ · · · ⊗ fn,
and f1 ⊗ · · · ⊗ fn, which approximates q0,m,1 ⊗ · · · ⊗ q0,m,n = q0,m,k1 ⊗ · · · ⊗ q0,m,kn . The
approximations hold for finite sums of these products in L1

ν

(
Rn
+

)
. Moreover, finite sums of

functions q0,m,1, ⊗ · · · ⊗ q0,m,n approximate f uniformly on K because their restrictions to K
define the restriction to K of approximating Bernstein polynomials (Bm)m∈N associated to
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f . Since f and q0,m,1, ⊗ · · · ⊗ q0,m,n vanish outside K, we infer that the following norm ‖ ‖1
in L1

ν

(
Rn
+

)
is evaluated as:

‖ f − ∑
ki=0,...,m,
i=1,...,n

q0,m,k1, ⊗ · · · ⊗ q0,m,kn‖

1

=
∫

K

∣∣∣∣∣∣∣∣
f − ∑

ki=0,...,m,
i=1,...,n

qm,,k1 ⊗ · · · ⊗ qm,kn

∣∣∣∣∣∣∣∣
dν ≤

sup
t∈K
| f (t)− Bm(t)|·ν(K)→ 0, m→ ∞.

The conclusion is that f can be approximated in L1
ν

(
Rn
+

)
by the sums of products

p1 ⊗ · · · ⊗ pn, where pi is nonnegative on R+ for all i = 1, . . . , n. This ends the proof. �

Example 1. For any α ∈ (0, ∞), dν = e−αtdt is a moment-determinate positive Borel measure on
R+, according to [14]. The application of Lemma 3 shows that for the product measure:

dν = exp

(
−

n

∑
j=1

αjtj

)
dt1 · · · dtn =

exp(−α1t1)dt1 × · · · × exp(−αntn)dtn, αj > 0, j = 1, . . . , n,

the polynomials are dense in L1
ν

(
Rn
+

)
. In particular, the measureν is moment-determinate on Rn

+. A
similar consequence follows from Lemma 2, for the measure

dµ = exp

(
−

n

∑
j=1

αjt2
j

)
dt1 · · · dtn, αj > 0, j = 1, . . . , n.

In this case, the polynomials are dense in L1
µ(Rn); in particular, µ is a moment-

determinate measure on Rn.

3.2. Solving Markov Moment Problems in Terms of Signatures of Quadratic Forms

The approximation results reviewed in Section 3.1 allow the extension of sandwich
conditions on the solution T, preserving the interpolation moment conditions, from the
subspace of polynomials to the entire space L1

ν(F) for moment-determinate measures ν.
The results stated in the sequel complete theorems previously published in [13,14,16].

Theorem 1. Let F be a closed unbounded subset of Rn, Y an order-complete Banach lattice,(
yj
)

j∈Nn a given sequence in Y, and ν a positive regular moment-determinate Borel measure on

F, with finite moments of all orders. Let T1,T2 ∈ B
(

L1
ν(F), Y

)
be two linear bounded operators from

L1
ν(F) to Y. The following statements are equivalent:

(a) there exists a unique bounded linear operator T ∈ B
(

L1
ν(A), Y

)
such that T

(
ϕj
)
= yj, j ∈

Nn, and T is between T1 and T2 on the positive cone of L1
ν;

(b) for any finite subset J0 ⊂ Nn and any
{

aj
}

j∈J0
⊂ R, we have

∑
j∈J0

aj ϕj ≥ 0onF ⇒

∑
j∈J0

ajT1
(

ϕj
)
≤ ∑

j∈J0

ajyj ≤ ∑
j∈J0

ajT2
(

ϕj
)
.

Proof. We define T0 : P → Y by

T0

(
∑
j∈J0

λj ϕj

)
:= ∑

j∈J0

λjyj. (4)
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Here, J0 ⊂ Nn is an arbitrary finite subset, and λj, j ∈ J0 are real coefficients. With this
notation, point (b) says that

T1(p) ≤ T0(p) ≤ T2(p), p ∈ P+(F). (5)

In other words, U1 := T0 − T1, U2 := T2 − T1, Ui : P → Y, i = 1, 2 are positive linear
operators on the positive coneP+(F) of the ordered vector spaceP , and U1

∣∣∣P+(F) ≤ U2

∣∣∣
P+(F)

.

According to the Kantorovich extension result for positive linear operators, there exists a
positive linear extension V1 of U1 from P to a dense subspace X1 of X := L1

ν(F) since P is
a majorizing subspace of X1 := { f ∈ X; ∃p ∈ P , | f | ≤ p}. Clearly, the space X1 contains
both subspaces Cc(F) and P . Then, V1 + T1 extends T0 to a linear operator:

W1 : X1 → Y, W1 := V1 + T1 ≥ T1 on P+(F).

Using Lemma 1, the continuity of T1, T2, and the inequalities 0 ≤ U1 ≤ U2 on P+, we
infer that for any sequence of nonnegative compactly supported functions (gl)l , gl → 0 ,
there exists a sequence of polynomials (pl)l , 0 ≤ gl ≤ pl for all l, pl − gl → 0, l → ∞.
These yield:

pl = (pl − gl) + gl → 0, l → ∞. (6)

On the other hand, (5) and (6) lead to:

0← T1(pl) ≤ T0(pl) ≤ T2(pl)→ 0.

Thus, W1(pl) = T0(pl)→ 0, which further implies

0 ≤W1(gl) ≤W1(pl)→ 0.

Thus, W1(gl)→ 0 for any convergent to zero sequence of elements from (Cc(F))+. Now,
let (gl)l be an arbitrary sequence in Cc(F), gl → 0. Then, g+l → 0, g−l → 0, and the preced-
ing reasons imply W1

(
g+l
)
→ 0, W1

(
g−l
)
→ 0 . Therefore, W1(gl) = W1

(
g+l
)
−W1

(
g−l
)
→ 0 .

The conclusion is that the linear operator W1 is continuous on Cc(F). It admits a unique
linear continuous extension T ∈ B(X, Y), since Cc(F) is dense in X. Hence, T is continuous
and defined on the entire space X = L1

ν(F), verifying T
(

ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn. If

ψ ∈ X+, there exists a sequence (gl)l of functions in (Cc(F))+ such that gl → ψ in X. If (pl)l
is a sequence of polynomial functions, gl ≤ pl for all l, pl − gl → 0, then the continuity of
the operators T1, T, T2 on X and the inequalities (5) yield:

T1(ψ) = lim
l

T1(pl) ≤ lim
l

T0(pl) = lim
l

T(pl) ≤ lim
l

T2(pl) = T2(ψ), ψ ∈ X+.

This ends the proof. �
If the nonnegative polynomials on F are expressible in terms of sums of squares,

theorem 1 allows the characterization of the existence and uniqueness of the solution in
terms of quadratic forms. The following consequences hold. We start with the simplest
case, when F = R.

Corollary 1. Let X = L1
ν(R), where ν is a positive regular moment-determinate Borel measure on

R, with finite moments of all orders. Assume that Y is an arbitrary order complete Banach lattice
and (yn)n≥0 is a given sequence with its terms in Y. Let T1, T2 be two linear operators from X to Y
such that 0 ≤ T1 ≤ T2 on X+. The following statements are equivalent:

(a) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
‖T1‖ ≤ ‖T‖ ≤ ‖T2‖ such that T(ϕn) = yn for all n ∈ N;

(b) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1
(

ϕi+j
)
≤ ∑

i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
.
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Proof. We apply Theorem 1 to F = R as well as the explicit form of nonnegative polynomi-
als on the real axes (2). One uses the obvious equality:

q = ∑
j∈J0

λj ϕj ⇒ q2 = ∑
i,j∈J0

λiλj ϕi ϕj = ∑
i,j∈J0

λiλj ϕi+j,

Here, J0 ⊂ N is an arbitrary finite subset, λj ∈ R, j ∈ J0. It remains to prove that

‖T1‖ ≤ ‖T‖ ≤ ‖T2‖.

The positivity of the linear operators T1, T, T2, T − T1, T2 − T on X+ and their
continuity yields:

± T1(x) = T1(±x) ≤ T1(|x|) ≤ T(|x|),
which implies |T1(x)| ≤ T(|x|), x ∈ X. Since Y is a Banach lattice, we infer that
the inequalities:

‖T1(x)‖ ≤ ‖T(|x|)‖ ≤ ‖T‖‖x‖,
hold for all x ∈ X. This proves that ‖T1‖ ≤ ‖T‖. Similarly, we show that ‖T‖ ≤ ‖T2‖. This
ends the proof. �

Here is the scalar-valued version of Corollary 1.

Corollary 2. Let ν be a positive regular moment-determinate Borel measure on R, with finite
moments of all orders. Assume that h1, h2 are two functions in L∞

ν (R) such that 0 ≤ h1 ≤ h2
almost everywhere. Let (yn)n≥0 be a given sequence of real numbers. The following statements
are equivalent:

(a) There exists a unique h ∈ L∞
ν (R) such that h1 ≤ h ≤ h2 ν−almost everywhere and∫

R tjh(t)dν = yj for all j ∈ N.
(b) If J0 ⊂ N is a finite subset, and

{
λj; j ∈ J0

}
⊂ R, then:

∑
i,j∈J0

λiλj

∫

R

ti+jh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλj

∫

R

ti+jh2(t)dν.

Proof. The implication (a) := (b) is obvious. To prove the converse, we apply Corollary 1
to the case Y = R, Ti( f ) :=

∫
R hi(t) f (t)dν, i = 1, 2. The linear positive (hence, continuous)

functional T is represented by a function h ∈ L∞
ν (R) according to the measure theory

results from [9]. The moment interpolation conditions from Corollary 1 must be written as
∫

R
h(t)tjdν = T

(
ϕj
)
= yj, j ∈ N.

To finish the proof, we must show that h1 ≤ h ≤ h2 ν−almost everywhere in R.
According to Corollary 1, we already know that:

∫

R
h1(t) f (t)dν ≤

∫

R
h(t) f (t)dν ≤

∫

R
h2(t) f (t)dν,

for all f ∈
(

L1
ν(R)

)
+. Writing this for any f = χB, where B ⊆ R is an arbitrary Borel subset

with ν(B) ∈ (0, ∞), the following conclusion holds:
∫

B
(h(t)− h1(t))dν ≥ 0,

∫

B
(h2(t)− h(t))dν ≥ 0, B ∈ B, ν(B) > 0.
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Here, B is the sigma algebra of all Borel subsets of R. Now, a well-known measure
theory argument [9] leads to h1(t) ≤ h(t) ≤ h2(t) for almost all t ∈ R with respect to the
measure dν. This ends the proof. �

If in Corollaries 1 and 2 we take R+ instead of R, the following statements hold, via
proofs like those shown above.

Corollary 3. Let X = L1
ν(R+), where ν is a positive regular moment-determinate Borel measure on

R+. Assume that Y is an arbitrary order-complete Banach lattice and (yn)n≥0 is a given sequence
with its terms in Y. Let T1, T2 be two linear operators from X to Y such that 0 ≤ T1 ≤ T2 on X+.
The following statements are equivalent:

(c) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
‖T1‖ ≤ ‖T‖ ≤ ‖T2‖ such that T(ϕn) = yn for all n ∈ N;

(d) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1

(
ϕi+j+k

)
≤ ∑

i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+k

)
, k ∈ {0, 1}.

Corollary 4. Let ν be a positive regular moment-determinate Borel measure on R+, with finite
moments of all orders. Assume that h1, h2 are two functions in L∞

ν (R+) such that 0 ≤ h1 ≤ h2
almost everywhere. Let (yn)n≥0 be a given sequence of real numbers. The following statements
are equivalent:

(c) There exists a unique h ∈ L∞
ν (R+) such that h1 ≤ h ≤ h2 ν−almost everywhere, and
∫

R+

tjh(t)dν = yjfor all j ∈ N.

(d) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then:

∑
i,j∈J0

λiλj

∫

R+

ti+j+kh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλj

∫

R+

ti+j+kh2(t)dν, k ∈ {0, 1}.

Example 2. If, in Corollary 4, we take dν = e−tdt, h1(t) := te−t,, h2(t) := 1/2, then dν is
moment-determinate [14],

∫
R+

ti+j+kh1(t)dν =
∞∫
0

ti+j+k+1e−2t,dt = 2−(i+j+k+2)
∞∫
0

ui+j+k+1e−udu =

2−(i+j+k+2)(i + j + k + 1)!,∫
R+

ti+j+kh2(t)dν = 2−1(i + j + k)!.

Thus, condition (b) must be written as follows:

∑
i,j∈J0

λiλj2−(i+j+k+2)(i + j + k + 1)! ≤ ∑
i,j∈J0

λiλjyi+j+k ≤

∑
i,j∈J0

λiλj2−1(i + j + k)!, k ∈ {0, 1},

where J0 ⊂ N is an arbitrary finite subset and λj, j ∈ J0 are arbitrary real numbers.
We go on with the two-dimensional case, starting with the Markov moment problem

on a strip. The motivation is that the explicit expression of nonnegative polynomials on a
strip in terms of sums of squares is known due to following M. Marshall’s result [39].
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Theorem 2. If p(t1, t2) ∈ R[t1, t2] is nonnegative on the strip F = [0, 1]×R, then p(t1, t2) is
expressible as:

p(t1, t2) = σ(t1, t2) + τ(t1, t2)t1(1− t1),

where σ(t1, t2), τ(t1, t2) are sums of squares in R[t1, t2].

From Theorems 1 and 2, the next result also holds. Let F = [0, 1]×R, ν be a positive reg-
ular Borel M-determinate (moment-determinate) measure on F, and
X = L1

ν(F), ϕj(t1, t2) := tj1
1 tj2

2 , j = (j1, j2) ∈ N2, (t1, t2) ∈ F. Let Y be an order-complete
Banach lattice and

(
yj
)

j∈N2 be a sequence of given elements in Y.

Theorem 3. Let T1, T2 ∈ B+(X, Y) be two linear (bounded) positive operators mapping X into Y.
The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y such that T
(

ϕj
)
= yj, j ∈ N2,

where T is between T1 and T2 on the positive cone of X, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;
(b) For any finite subset J0⊂ N2 and any

{
λj; j ∈ J0

}
⊂ R, we have:

∑
i,j∈J0

λiλjT1
(

ϕi+j
)
≤ ∑

i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
,

∑
i,j∈J0

λiλj
(
T1
(

ϕi1+j1+1, i2+j2 − ϕi1+j1+2, i2+j2
))
≤

∑
i,j∈J0

λiλj
(
yi1+j1+1, i2+j2 − yi1+j1+2, i2+j2

)
≤

∑
i,j∈J0

λiλj
(
T2
(

ϕi1+j1+1, i2+j2 − ϕi1+j1+2, i2+j2
))

, i = (i1, i2), j = (j1, j2) ∈ J0.

Unfortunately, similar results cannot be proven for moment problems on Rn and Rn
+.

This is a motivation for reviewing the following result [13].
If F ⊆ Rn is an arbitrary closed unbounded subset, then we denote, by P++, a sub-

cone of P+ generated by special nonnegative polynomials expressible in terms of sums
of squares.

Theorem 4. Let F ⊆ Rn be a closed unbounded subset; ν be a positive regular Borel-moment-
determinate measure on F, having finite moments of all orders; and X = L1

ν (F), ϕj(t) = tj,
t ∈ F, j ∈ Nn. Let Y be an order-complete Banach lattice,

(
yj
)

j∈Nn be a given sequence of elements
in Y, and T1 and T2 be two bounded linear operators mapping X into Y. Assume that there
exists a subcone P++ ⊆ P+ such that each f ∈ (Cc(F))+ can be approximated in X by a sequence
(pl)l , pl ∈ P++, pl ≥ f for all l. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator

T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn, 0 ≤ T1 ≤ T ≤ T2 X+, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implications

hold true:
∑
j∈J0

λj ϕj ∈ P+(F) := ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj,

∑
j∈J0

λj ϕj ∈ P++ := ∑
j∈J0

λjT1
(

ϕj
)
≥ 0, ∑

j∈J0

λjyj ≤ ∑
j∈J0

λjT2
(

ϕj
)
.

The application of Theorem 4 and Lemma 2 yields the following result.

Theorem 5. Let ν = ν1 × · · · × νn, n ≥ 2, νj being a positive regular M−determinate (moment-
determinate) Borel measure on R, j = 1, . . . , n, X = L1

ν (Rn), ϕj(t) = tj, t ∈ Rn, j ∈ Nn.
Additionally, assume that νj has finite moments of all orders, j = 1, . . . , n. Let Y be an order-
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complete Banach lattice,
(
yj
)

j∈Nn a given sequence of elements in Y, and T1 and T2 two bounded
linear operators mapping X into Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T(ϕj) = yj, j ∈ Nn,
0 ≤ T1 ≤ T ≤ T2. on X+, ‖T1‖ ≤ ‖T‖ ≤ ‖T2‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implication

holds true:
∑
j∈J0

λj ϕj ∈ P+ ⇒ ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj.

For any finite subsets Jk ⊂ N, k = 1, . . . , n and any
{

λjk
}

jk∈Jk
⊂ R, the following inequali-

ties hold true:

0 ≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1,..,,in+jn
)
)
· · ·
)

,

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn yi1+j1,..,,in+jn

)
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1,..,,in+jn
)
)
· · ·
)

.

A similar result holds for products of n moment-determinate measures on R+, n ≥ 2
via Theorem 4 and Lemma 3, also using the explicit form of nonnegative polynomials on
R+ written in (3).

3.3. Characterizing Sandwich Conditions on Bounded Linear Operators in Terms of
Quadratic Forms

Lemma 2 leads to the following characterization.

Theorem 6. Let ν, X be as in the statement of Theorem 5, Y a Banach lattice, and T1, T, T2 bounded
linear operators mapping X into Y. The following statements are equivalent:

(a) T1 ≤ T ≤ T2 on the positive cone X+;
(b) For any finite subsets Jk ⊂ N, k = 1, . . . , n and any

{
λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following inequalities hold:

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1 , . . . ,in+jn
)
)
· · ·
)

≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T
(

ϕi1+j1 , . . . ,in+jn
)
)
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1 , . . . ,in+jn
)
)
· · ·
)

.

Proof. Statement (b) says that T1(p) ≤ T(p) ≤ T2(p) for all p ∈ P++(Rn), where P++(Rn)
is the subcone of P+(Rn) formed by all polynomials that can be written as finite sums of
the polynomial defined by (1), with pi ∈ P+(R), i = 1, 2, . . . , n. Hence, the implication
(a) := (b) is obvious. For the converse, according to a measure-type result [9], for any
ψ ∈ X+ there exists a sequence (gl)l∈N of functions from (Cc(Rn))+, with ψ = lim

l
gl . On the

other hand, Lemma 2 implies that there is a sequence of polynomials (pl)l∈N, pl ∈ P++(Rn)
for all l such that pl − gl → 0, l → ∞. Thus,

ψ− pl = (ψ− gl) + (gl − pl)→ 0.
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This means that ψ = lim
l→∞

pl . From (b), we know that T1(pl) ≤ T(pl) ≤ T2(pl) for all

l ∈ N. Now, the continuity of the three involved operators T1, T, T2 yields

T1(ψ) = lim
l

T1(pl) ≤ lim
l

T(pl) = T(ψ) ≤ lim
l

T2(pl) = T2(ψ), ψ ∈ X+.

This ends the proof. �
Using Lemma 3 and the form of nonnegative polynomials on R+ (3), the next result

holds too.

Theorem 7. Let X = L1
ν

(
Rn
+

)
, ϕj(t) = tj, t ∈ Rn

+, j ∈ Nn, where ν is as in Lemma 3, Y is
a Banach lattice, and T1, T, T2 are bounded linear operators mapping X into Y. The following
statements are equivalent:

(a) T1 ≤ T ≤ T2 on the positive cone X+;
(b) For any finite subsets Jk ⊂ N, k = 1, . . . , n and any

{
λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following inequalities hold:

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1

(
ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)

≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T
(

ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2

(
ϕl1+i1+j1 , . . . ,ln+in+jn

))
· · ·
)

,

for all (l1, . . . , ln) ∈ {0, 1}n.

4. Discussion

The present paper provides recently published results and a new way to present
them. Such results refer to the Markov moment problem, which motivated the polynomial
approximation on unbounded subsets stated in the beginning of the previous section.
Instead of looking for the explicit form of nonnegative polynomials on unbounded closed
subsets F of Rn, n ≥ 2 (which has been proven to not always be expressible in terms of
sums of squares), the approximation by finite sums of special polynomials pointed out in
Lemmas 2 and 3, followed by the passing to the limit process, solved partially or completely,
respectively, the problems discussed in the present work. With respect to our own previous
similar results, this review paper comes with generalizations and improvements in the
theorems, which clearly needed to be improved. We did not see a simpler method in the
literature that was able to solve polynomial approximation on unbounded subsets (which
is important as a separate subject) and the applications emphasized in this paper. It is a
work in the settings of analysis and functional analysis over the real field. The presentation
of some statements completes or generalizes the published results on the subject. As a
direction for future work, it would be interesting to study what these theorems say in the
cases when the codomains Y are concrete Banach lattices.
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Abstract: In this paper, we obtain characterizations of solution sets of the interval-valued mathemati-
cal programming problems with switching constraints. Stationary conditions which are weaker than
the standard Karush–Kuhn–Tucker conditions need to be discussed in order to find the necessary
optimality conditions. We introduce corresponding weak, Mordukhovich, and strong stationary
conditions for the corresponding interval-valued mathematical programming problems with switch-
ing constraints (IVPSC) and interval-valued tightened nonlinear problems (IVTNP), because the
W-stationary condition of IVPSC is equivalent to Karush–Kuhn–Tucker conditions of the IVTNP.
Furthermore, we use strong stationary conditions to characterize the several solutions sets for IVTNP,
in which the last ones are particular solutions sets for IVPSC at the same time, because the feasible set
of tightened nonlinear problems (IVTNP) is a subset of the feasible set of the mathematical programs
with switching constraints (IVPSC).

Keywords: nonlinear programming; switching constraints; stationary conditions; interval-valued
optimization

MSC: 90C30; 90C33; 49K10

1. Introduction

Mathematical programming problems with equilibrium constraints (MPEC) [1] and
mathematical programming problems with vanishing constraints (MPVC) [2] have recently
found considerable attention in the area of optimal control, mathematical equilibrium, truss
topology, and other research fields [3] due to a wide range of applications in real-life problems.

Singh et al. [4] established Lagrange-type duality results and saddle point optimality
criteria for mathematical programs with equilibrium constraints for differentiable func-
tions. Pandey and Mishra [5] established Wolfe and Mond–Weir-type duality results for
mathematical programs with equilibrium constraints using convexificators. Pandey and
Mishra [6] obtained optimality and duality results for semi-infinite mathematical programs
with equilibrium constraints using convexificators. Pandey and Mishra [7] established that
the Mordukhovich (M) stationary conditions [7] are strong KKT-type sufficient optimality
conditions for the nonsmooth multiobjective semi-infinite mathematical programs with
equilibrium constraints. Mishra et al. [8] obtained duality results for mathematical pro-
grams with vanishing constraints for differentiable functions. Mishra et al. [9] showed that
Cottle, Slater, and Mangasarian–Fromovitz constraint qualifications do not hold at an effi-
cient solution under fairly mild assumptions, whereas the Guignard constraint qualification
was satisfied sometimes for mathematical programs with vanishing constraints. Mishra
et al. [9] introduced suitable modifications of said constraint qualifications, established
relationships, and derived the KKT-type necessary optimality conditions. Guu et al. [10]
established strong KKT-type sufficient optimality conditions for nonsmooth multiobjective
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semi-infinite programming problems with vanishing constraints. Lai et al. [11] estab-
lished Fritz–John and KKT-type stationary points conditions for nonsmooth semi-definite
multiobjective mathematical programs with vanishing constraints.

Mehlitz [12] introduced the mathematical program with switching constraints (MPSC).
It is not surprising that the issues involving the usual constraint qualifications for MPEC and
MPVC also exist for MPSC. Mehlitz [12] showed that if an MPSC is treated as a nonlinear
program, the Mangasarian–Fromovitz constraint qualifications fail at any feasible point
for which there is a pair of switching functions with a value equal to zero. As a result,
he introduced the concepts of weak, Mordukhovich (M-), and strong (S-) stationarity for
MPSC and presented some constraint qualifications. Kanzow et al. [13] provided several
relaxation methods from the numerical solutions of MPEC to MPSC. Liang and Ye [14]
obtained various optimality conditions and local error bounds for MPSC. Pandey and
Singh [15] studied several constraint qualifications and stationarity for multiobjective
mathematical programs with switching constraints.

Uncertainty in the real world is inevitable. Therefore, imposing uncertainty in op-
timization problems becomes an interesting research topic. Interval-valued nonlinear
programming is one such research area; see [16–19]. Lai et al. [20] established sufficient
optimality conditions and duality results for semidifferentiable mathematical programming
problems. Sharma et al. [21] established the Hermite–Hadamard inequalities for preinvex
interval-valued functions. Su and Dinh [22] established duality results for interval-valued
pseudoconvex optimization problems with equilibrium constraints with applications. Wang
and Wang [23] obtained duality results for nondifferentiable semi-infinite interval-valued
optimization problems with vanishing constraints.

The characterization of solution sets in mathematical programming is useful in under-
standing the development of solution methods for solving the problem. Mangasarian [24]
introduced the concept of the characterization of solutions sets for convex programs, and
Burke and Ferris [25] provided several characterizations of solution sets for nonsmooth
convex programs. Jeyakumar et al. [26] provided Lagrange multiplier-based characteri-
zations of solution sets of cone-constrained convex programs and semidefinite programs.
Dinh et al. [27] studied Lagrange multiplier characterizations of solution sets of constrained
pseudolinear optimization problems. Furthermore, Jeyakumar et al. [28] gave a dual char-
acterization of the weak and proper solution sets. Jeyakumar et al. [28] discussed Lagrange
multiplier characterizations of the solutions sets under regularity conditions. Lalitha and
Mehta [29] derived Lagrange multiplier characterizations of solution sets for nonlinear
mathematical programs with an h-convex objective and h-pseudolinear constraints. Several
Lagrange multiplier characterizations of solution sets for a convex infinite programming
problems are obtained in [30]. Mishra et al. [31] established several Lagrange multiplier
characterizations of solution sets for constrained nonsmooth pseudolinear optimization
problems. Recently, Sisarat and Wangkeeree [32] provided some characterizations of solu-
tion sets of constant pseudo Lagrangian-type functions and established Lagrange multiplier
characterizations. Some recent developments of significant research on characterizations
of solution sets are in [33–43] and references therein. Recently, Treanta [44] provided sev-
eral characterizations of solution sets of interval-valued variational control problems and
discussed its relationship with variational control problems.

Motivated by the above-mentioned work, firstly, we consider interval-valued mathe-
matical programming with switching constraints (IVPSC). We introduce corresponding
weak, Mordukhovich, and strong stationary conditions (W-stationary, M-stationary and S-
stationary for short). We propose an interval-valued tightened nonlinear problem (IVTNP)
associated with IVPSC. We provide several characterizations of solution sets for IVPSC
with the help of the S-stationary condition and IVTNP. We construct the corresponding
Lagrangian function for IVPSC. We use semiconvex functions introduced by Mifflin [45],
extend for interval-valued nonsmooth functions and provide the properties of interval-
valued semiconvex functions. Furthermore, we prove that the associated Lagrangian is
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constant under the S-stationary and semiconvexity conditions with a Clarke subdifferential.
We also provide an example to support the theoretical findings.

2. Preliminaries
2.1. Interval Analysis

We collect some basic concepts and essential definitions related to interval-valued
functions from Moore [46] and Wu [18].
We denote by I(R) the class of all closed intervals in R. Let U = [uL, uU ], where uL and uU

denote the lower and upper bounds of U, respectively. Let U = [uL, uU ] and V = [vL, vU ]
be in I(R); then, we have

(i) U + V = {u + v : u ∈ U, v ∈ V} = [uL + vL, uU + vU ],
(ii) −U = {−u : u ∈ U} = [−uU ,−uL],
(iii) U −V = U + (−V) = [uL − vU , uU − vL],

(iv) tU = {tu : u ∈ U} =
{

[tuL, tuU ] if t ≥ 0
[tuU , tuL] for t < 0

where t is a real number.

Let U = [uL, uU ] and V = [vL, vU ] be two closed intervals in R. We write U � V if and
only if uL ≤ vL and uU ≤ vU . It means that U is inferior to V, or V is superior to U. It is
easy to see that “ � ” is a partial ordering on I(R).

The function f : Rn → I is called an interval valued function; this means
f (u) = f (u1, · · · , un) is a closed interval in R for each u ∈ Rn. f can be written as
f (u) = [ f L(u), f U(u)], where f L and f U are two real valued functions defined on Rn

such that f L(u) ≤ f U(u), ∀u ∈ Rn.
We write U ≺LU V if and only if U �LU V and U 6= V. We say U = (U1, · · · , Up) is an

interval valued vector if each component Uk = [uL
k , uU

k ] is a closed interval for k = 1, · · · , p.
Suppose U = (U1, · · · , Up) and V = (V1, · · · , Vp) are two interval valued vectors. We
write U �LU V if and only if Uk �LU Vk ∀k = 1, · · · , p, and U ≺LU V if and only if
Uk �LU Vk, ∀k = 1, · · · , p and Uq ≺LU Vq for at least one q.

Definition 1 ([17]). An interval-valued function f (u) = [ f L(u), f U(u)] defined on X ⊆ Rn is
said to be LU-convex if ∀u, v ∈ X, λ ∈ (0, 1),

f (λu + (1− λ)v) �LU λ f (u) + (1− λ) f (v).

2.2. Generalized Derivatives

We collect the definitions and properties of generalized derivatives from Clarke [47].
Suppose f : Rn → R is a locally Lipschitz function at u ∈ Rn. The generalized directional
derivative of f at u in the direction d ∈ Rn is denoted by f c(u; d) and is defined by

f c(u; d) := lim sup
h→0
t↓0

f (u + h + td)− f (u + h)
t

and the Clarke’s subdifferential of f at u, denoted by ∂c f (u), is defined by

∂c f (u) := {u ∈ Rn : f c(u; d) ≥ 〈u, d〉, ∀d ∈ Rn}.
We denote by 〈u, v〉 the usual inner product in n-dimensional real Euclidean space Rn,

i.e.,
〈u, v〉 = uTv, for u, v ∈ Rn.

The directional derivatives of f at u in the direction of d, denoted by f
′
(u; d), are

defined by

lim
t↓0

f (u + td)− f (u)
t

provided the limit exists.
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f is said to be regular at u in the Clarke sense if f
′
(u; d) exists and is equal to f c(u; d) for

every d ∈ Rn [48].
Consider f : Rn → I(R) is an interval-valued function; then, f (u) = [ f L(u), f U(u)] is

regular if both the upper and lower bound functions f L and f U are regular.
Suppose M is the closed convex subset of Rn. The normal cone [49] to M at u is

N(M, u) = {η ∈ Rn : 〈η, v− u〉 ≤ 0, ∀v ∈ M}.

Definition 2 ([45]). Suppose X is a nonempty subset of Rn. A function f : Rn → R is said
to be semiconvex at u ∈ X if f is locally Lipschitz at u and regular at u, and it satisfies the
following condition

u + d ∈ X, d ∈ Rn, f
′
(u; d) ≥ 0 =⇒ f (u + d) ≥ f (u).

The interval-valued function f : Rn → I(R) is said to be semiconvex on X if f L and f U are
semiconvex at every u ∈ X.

We can easily see from the above definition that f is semiconvex at u if ∃ u ∈ ∂c f (u) :
〈η, v− u〉 ≥ 0 =⇒ f (v) ≥ f (u).

Mifflin [45] provided an important result on semiconvex functions, which can be
further generalized for interval-valued functions.

Lemma 1. Let the function f be semiconvex on a convex set X ⊂ Rn. Then, for u ∈ X, d ∈ Rn

with u + d ∈ X, we have

f (u + d) ≤ f (u) =⇒ f
′
(u; d) ≤ 0.

The interval-valued function f : Rn → I(R) is semiconvex; then, for u ∈ X ⊂ Rn, d ∈
Rn with u + d ∈ X, we have

f (u + d) �LU f (u) =⇒ f
′
(u; d) �LU 0.

This means that

f L(u + d) ≤ f L(u) =⇒ f L′(u; d) ≤ 0

and f U(u + d) ≤ f U(u) =⇒ f U′(u; d) ≤ 0.

2.3. Interval-Valued Mathematical Programs with Switching Constraints (IVPSC)

We consider the following interval-valued mathematical programs with switching
constraints (IVPSC)

min f (u) = [ f L(u), f U(u)] (1)

subject to gi(u) ≤ 0, ∀ i = 1, · · · , p,

hj(u) = 0, ∀ j = 1, · · · , q,

Gk(u)Hk(u) = 0, ∀ k = 1, · · · r,

where the functions f L, gi, hj, Gk, Hk : Rn → R are continuously differentiable on Rn.
We say Gk(u)Hk(u) = 0, while the switching constraint since functions Gk(u), Hk(u) are
active is at least one, Gk(u) = 0 or Hk(u) = 0 for all k = 1, · · · , r, at any feasible point
of IVPSC.

We denote the solution set of IVPSC by S.

S = {u ∈ M : f L(u) ≤ f L(v), f U(u) ≤ f U(v), g(u) ≤ 0,

h(u) = 0, Gk(u)Hk(u) = 0, ∀v ∈ M}.
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2.4. Stationary Conditions

We need to mention some index sets to define stationary conditions at the feasible
point ū for IVPSC.

Ig(ū) := {i ∈ {1, · · · , p} : gi(ū) = 0},
IG(ū) := {k ∈ {1, · · · , r} : Gk(ū) = 0 and Hk(ū) 6= 0},
IH(ū) := {k ∈ {1, · · · , r} : Gk(ū) 6= 0 and Hk(ū) = 0},
IGH(ū) := {k ∈ {1, · · · , r} : Gk(ū) = 0 and Hk(ū) = 0}.

We establish some stationary conditions in the Clarke subdifferential form motivated
by Mehlitz [12]. In order to define the stationary conditions, we need to introduce the KKT
system of IVPSC, which is as follows.

Definition 3. (KKT-type conditions): A feasible point ū of IVPSC is said to satisfy KKT-type
conditions if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk, µk(k ∈
{1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū).

1. Weakly stationary point (W-stationary point): A feasible point ū of IVPSC is called W-
stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk,
µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū).

2. Mordukhovich stationary point (M-stationary point): A feasible point ū of IVPSC
is called M-stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈
{1, · · · , q}), λk, µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū),

and λkµk = 0 ∀ k ∈ IGH(ū).

3. Strong stationary point (S-stationary point): A feasible point ū of IVPSC is called
S-stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk,
µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)
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+
r

∑
k=1

[λk∂cGk(ū) + µk∂c Hk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū),

and λk = 0, µk = 0 ∀ k ∈ IGH(ū).

We can easily see that the following relationship holds between the above stationary
conditions.

S-stationary condition =⇒ M-stationary condition =⇒ W-stationary condition.
The W-stationary condition of IVPSC at one of its feasible points ū is equivalent to

KKT conditions of the following tightened nonlinear problem.
We consider the interval-valued tightened nonlinear problem (IVTNP) at ū.

(IVTNP) min f (ū) = [ f L(ū), f U(ū)]

subject to gi(ū) ≤ 0, ∀ i = 1, · · · , p,

hj(ū) = 0, ∀ j = 1, · · · , q,

Gk(ū) = 0, ∀ k ∈ IG(ū) ∪ IGH(ū),

Hk(ū) = 0, ∀ k ∈ IH(ū) ∪ IGH(ū). (2)

The feasible set of IVTNP is a subset of the feasible set of IVPSC.

3. Lagrange Multiplier Characterization

We suppose that there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}),
λk, µk(k ∈ {1, · · · , r}) such the the following optimality conditions hold

0 ∈ λL∂c f L(u) + λU∂c f U(u) +
p

∑
i=1

λi∂
cgi(u) +

q

∑
j=1

λj∂
chi(u)

+
r

∑
k=1

(
λk∂cGk(u) + µk∂cHk(u)

)
+ N(M, u),

λigi(u) = 0, ∀i ∈ {1, · · · , p}, λjhj(u) = 0, ∀j ∈ {1, · · · , q},
λkGk(u) = 0, ∀k ∈ IG(ū) ∪ IGH(ū), µk Hk(u) = 0, ∀k ∈ IH(ū) ∪ IGH(ū). (3)

The addition of normal cone N(M, u) in the above optimality condition is motivated
by Theorem 5.1.6 of [50].

The Lagrangian function is defined by

L(u, λ, µ) = λL f L(u) + λU f U(u) +
p

∑
i=1

λigi(u) +
q

∑
j=1

λjhi(u)

+
r

∑
k=1

(
λkGk(u) + µk Hk(u)

)
. (4)

Lemma 2. Let ū be the solution to the problem (IVTNP) such that the condition (3) and S-stationary
condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}),
Gk, Hk(k ∈ {1, · · · , r}) are regular at ū and the Lagrangian function L(·, λ, µ) is semiconvex at ū;
then, L(·, λ.µ) is constant on S.

Proof. Let ū ∈ S, and there exist multipliers λg, λh, λG, λH such that condition (3) holds.
Then, there exist uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū), w ∈ N(M, ū), νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}),
νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈ ∂cHk(ū)(k ∈ {1, · · · , r}), such that

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
= −w.
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As M is a closed convex subset of X, 〈w, v− ū〉 ≤ 0 ∀v ∈ M, hence, we have
〈

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
≥ 0. (5)

Now, since L(·, λ, µ) is regular at ū, we have

[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]c
(ū, v− ū)

=
[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]′
(ū, v− ū). (6)

Using the regularity of f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk,
Hk(k ∈ {1, · · · , r}) and from (5) and (6), we obtain

[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]′
(ū, v− ū) ≥ 0.

Since L(·, λ, µ) is semiconvex at ū, we have

λ f (ū) + ∑
i∈Ig(ū)

λigi(ū) +
q

∑
j=1

λjhj(ū) +
r

∑
k=1

(
λkGk(ū) + µk Hk(ū)

)

�LU λ f (v)) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
.

This means

λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)

≥ λL f L(ū) + λU f U(ū) + ∑
i∈Ig(ū)

λigi(ū) +
q

∑
j=1

λjhj(ū) +
r

∑
k=1

(
λkGk(ū) + µk Hk(ū)

)
. (7)

Since condition (3) and S-stationary condition hold at ū, so

λigi(ū) = 0, ∀i ∈ {1, · · · , p}, λjhj(ū) = 0, ∀j ∈ {1, · · · , q},
λkGk(ū) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

µk Hk(ū) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

Hence, (7) becomes

λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)

≥ λL f L(ū) + λU f U(ū). (8)

When v ∈ S, this means v ∈ M, gi(v) = 0 ∀i ∈ Ig(ū) and λL f L(v) + λU f U(v) =
λL f L(ū) + λU f U(ū). Hence,

λL f L(ū) + λU f U(ū) = λL f L(v) + λU f U(v)
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≥λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v)

+
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)

≥ λL f L(ū) + λU f U(ū). (9)

Then, it follows from (8) and (9) that

∑
i∈Ig(ū)

λigi(v) = 0 i.e., gi = 0 (i ∈ Ig(ū)),

q

∑
j=1

λjhj(v) = 0 i.e., hj = 0 (j ∈ {1, · · · , q}),

r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0 i.e., Gk = 0 = Hk (k ∈ {1, · · · , r}.

Therefore, L(·, λ, µ) is constant on S.

Theorem 1. Let ū be the solution to the problem (IVTNP), such that the condition (3) and S-
stationary condition hold. Suppose that the functions f L, f U are semiconvex on M and the La-
grangian function L(·, λ, µ) is semiconvex at ū, and suppose that the functions f L, f U ,
gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are regular at ū. Then,
S = S1 = S

′
1, where

S1 =
{

v ∈ M : ∃η ∈ {λL∂c f L(ū) + λU∂c f U(ū)} ∩ {λL∂c f L(v) + λU∂c f U(v)},
〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

Proof. Clearly, S1 ⊂ S
′
1, we claim that S ⊂ S1 and S

′
1 ⊂ S.

Let us suppose that v ∈ S
′
1, then ∃ η ∈ λL∂c f L(v) + λU∂c f U(v), such that 〈η, ū −

v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū), hj(v) = 0 ∀ j ∈
{1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū), Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

Since f L and f U are semiconvex on X, f L(ū) ≥ f L(v) and f U(ū) ≥ f U(v).
In addition, since ū, v ∈ M and ū is a solution to (IVPSC), v ∈ S.
Now, we claim that S ⊂ S1. Suppose v ∈ S, it follows from Lemma 2 that we have

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū).
As ū satisfies condition (3) with λi ∈ R+ and the S-stationary condition holds at ū, then
there exists uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū), w ∈ N(M, ū), νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}),
νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈ ∂cHk(ū)(k ∈ {1, · · · , r}), such that

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
= −w.
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As M is a closed convex subset of X, 〈w, v− ū〉 ≤ 0 ∀v ∈ M, therefore, for v ∈ S ⊆ M,
we obtain

〈
λLuL + λUuU +

p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
≥ 0.

i.e.,

〈λLuL + λUuU , v− ū〉 ≥ −
〈 p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉

= −
〈

∑
i∈Ig(ū)

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
. (10)

Since λigi(ū) = 0, ∀i ∈ {1, · · · , p}, λjhj(ū) = 0, ∀j ∈ {1, · · · , q} and S-stationary
holds at ū,

(λigi)
′
(ū, v− ū) = lim

t↓0
λigi(ū + t(v− ū))− λigi(ū)

t
= lim

t↓0
λigi(ū + t(v− ū))

t
, (11)

(λh
j hj)

′
(ū, v− ū) = lim

t↓0

λh
j hj(ū + t(v− ū))− λjhj(ū)

t
= lim

t↓0

λh
j hj(ū + t(v− ū))

t
, (12)

(λkGk)
′
(ū, v− ū) = lim

t↓0
λkGk(ū + t(v− ū))− λkGk(ū)

t
= lim

t↓0
λkGk(ū + t(v− ū))

t
, (13)

(µk Hk)
′
(ū, v− ū) = lim

t↓0
µk Hk(ū + t(v− ū))− µk Hk(ū)

t
= lim

t↓0
µk Hk(ū + t(v− ū))

t
. (14)

Since M is a convex subset of M, we have ū + t(v− ū) ∈ M, provided ū, v ∈ M and
t ∈ (0, 1).

Hence,

λigi(ū + t(v− ū)) ≤ 0, ∀i ∈ {1, · · · , p},
λjhj(ū + t(v− ū)) = 0, ∀j ∈ {1, · · · , q},

λkGk(ū + t(v− ū)) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

µk Hk(ū + t(v− ū)) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

From (11)–(14) and the above argument, we obtain

(λigi)
′
(ū, v− ū) ≤ 0, i ∈ {1, · · · , p},

(λh
j hj)

′
(ū, v− ū) = 0, j ∈ {1, · · · , q},

(λkGk)
′
(ū, v− ū) = 0, k ∈ {1, · · · , r},

(µk Hk)
′
(ū, v− ū) = 0, k ∈ {1, · · · , r}.

Since, gi, hj, Gk, Hk are regular at ū, i.e.,

(λigi)
′
(ū, v− ū) = (λigi)

c(ū, v− ū),

(λh
j hj)

′
(ū, v− ū) = (λh

j hj)
c(ū, v− ū),

(λkGk)
′
(ū, v− ū) = (λkGk)

c(ū, v− ū),
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(µk Hk)
′
(ū, v− ū) = (µk Hk)

c(ū, v− ū).

Let νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}), νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈
∂cHk(ū)(k ∈ {1, · · · , r}), such that

〈λiνg, v− ū〉 ≤ 0, ∀ i ∈ {1, · · · , p},
〈λjνh, v− ū〉 = 0, ∀ j ∈ {1, · · · , q},

〈λkνG, v− ū〉 = 0, ∀ k ∈ IG(ū) ∪ IGH(ū),

〈µkνH , v− ū〉 = 0, ∀ k ∈ IH(ū) ∪ IGH(ū). (15)

From (15) and (10), we obtain 〈λLuL + λUuU , v− ū〉 ≥ 0.
Now, since f L(v) = f L(ū) and f U(v) = f U(ū), and f L, f U are semiconvex at ū.
Lemma 1 implies that f

′
(ū, v− ū) �LU 0; this means (λL f L + λU f U)

′
(ū, v− ū) ≤ 0.

Therefore,

〈λLuL + λUuU , v− ū〉 ≤ (λL f L + λU f U)c(ū, v− ū)

= (λL f L + λU f U)
′
(ū, v− ū) ≤ 0,

where uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū).

Hence, 〈λLuL + λUuU , v− ū〉 = 0.
Now, we have to prove that λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū) ∩ λL∂ f L(v) +

λU∂ f U(v).
Since λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū), it remains to prove that λLuL + λUuU ∈

λL∂ f L(v) + λU∂ f U(v).
f L and f U are regular at ū and v, so we have

(λL f L + λU f U)c(ū, d) = (λL f L + λU f U)
′
(ū, d),

(λL f L + λU f U)c(v, d) = (λL f L + λU f U)
′
(v, d), ∀d ∈ Rn.

Now, we claim that there does not exist any d0 ∈ Rn such that (λL f L +λU f U)
′
(ū, d0) <

(λL f L + λU f U)
′
(v, d0).

Suppose on contrary, there exists d0 ∈ Rn, such that (λL f L + λU f U)
′
(ū, d0) < (λL f L +

λU f U)
′
(v, d0), i.e.,

lim
t1↓0

(λL f L + λU f U)(v + t1d0)− (λL f L + λU f U)(v)
t1

− lim
t2↓0

(λL f L + λU f U)(ū + t2d0)− (λL f L + λU f U)(ū)
t2

< 0.

Then

lim
t↓0

[
(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(v)

t

− (λL f L + λU f U)(ū + td0)− (λL f L + λU f U)(ū)
t

]
< 0.

Since (λL f L + λU f U)(v) = (λL f L + λU f U)(ū), we have

lim
t↓0

(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0)

t
< 0.
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Thus, ∃t0 ∈ (0, 1) and ε > 0 small enough such that

(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0) < −ε < 0∀t ∈ (0, t0). (16)

Easily, we can see that F(t) = (λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0) is
continuous at t = 0.

Letting t → 0, we have (λL f L + λU f U)(v) − (λL f L + λU f U)(ū) < 0, which is a
contradiction, hence, if

λLuL(d) ≤ (λL f L + λU f U)
′
(ū, d) = (λL f L + λU f U)c(ū, d) ∀ d ∈ Rn,

and λUuU(d) ≤ (λL f L + λU f U)
′
(ū, d) = (λL f L + λU f U)c(ū, d) ∀ d ∈ Rn.

This proves that λLuL +λUuU ∈ λL∂c f L(ū)+λU∂c f U(ū) implies λLuL +λUuU ∈ λL∂c f L(v)
+λU∂c f U(v). We have λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū) ∩ λL∂ f L(v) + λU∂ f U(v).
Hence, v ∈ S1. This completes the proof.

Example 1. Consider an interval-valued optimization problem (IVPSC)

min f (u)

subject to u1 − u2 ≤ 0,

u1u2 = 0.

where f : R2 → I(R) is defined by

f (u1, u2) =
[
u2

2 − u2
1, u2

2

]
.

As f L(u) = u2
2 − u2

1 and f U(u) = u2
2 are differentiable convex functions so the coresponding

subgradient and gradient are the same.
∇ f L(u) = (−2u1, 2u2)

T and ∇ f U(u) = (0, 2u2)
T .

Consider a set M = {u = (u1, u2) : u1 − u2 ≤ 0, u1u2 = 0}. f is a LU-convex on the set

M = {u = (u1, u2) : u1 − u2 ≤ 0, u1u2 = 0}.

Lagrangian L(·, λ, µ)(u) = λL(u2
2 − u2

1) + λU(u2
2) + λg(u1 − u2) + λu1 + µu2.

Here, the solution set is S = {(0, 0)}. Let ū = (0, 0) hold the condition (3) and L(·, λ, µ)
is convex.

We can easily see that the condition (3) holds for the above interval-valued problem

λL
[ −2u1

2u2

]
+ λU

[
0

2u2

]
+ λg

[
1
−1

]
+ λG

[
1
0

]
+ λH

[
0
1

]
= (0, 0),

with λg = λG = λH = 0 and for any values of λL and λU at point ū = (0, 0). We can also see
that the S-stationary condition holds for IVPSC.

Choosing η = 0 ∈ λL∂ f L(ū) + λU∂ f U(ū) such that 〈η, ū− v〉 = 0⇔ v = 0.
Hence,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}
= {(0, 0)} = S.

This verifies the above result.
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Figure 1 represents the lower and upper bound function f L(u) and f U(u) of interval-
valued objective function f (u). Figure 2 shows the constraint functions gi(u) and switching
constraints Gk(u)Hk(u) for Example 1.

(a) f L(u) (b) f U(u)
Figure 1. The lower and upper bound objective functions.

(a) gi(u) (b) Gk(u)Hk(u)
Figure 2. Constraints gi(u) and Gk(u)Hk(u).

Corollary 1. Let ū be the solution to the problem (IVTNP) such that the condition (3) and
S-stationary condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈
{1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are semiconvex on M and if the Lagrangian function
L(·, λ, µ) is semiconvex at ū, then S = S1 = S

′
1, where

S1 =
{

v ∈ M : ∃η ∈ {λL∂c f L(ū) + λU∂c f U(ū)} ∩ {λL∂c f L(v) + λU∂c f U(v)},
〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

We know that every convex function is semiconvex [51]. In the case where f L, f U , gi(i ∈
{1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are convex functions, the Clarke sub-
differential coincides with the subdifferential in the convex analysis.
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Corollary 2. Let ū be the solution to the problem (IVTNP) such that the condition (3) and
S-stationary condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈
{1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are convex; then, S = S2 = S

′
2, where

S2 =
{

v ∈ M : ∃η ∈ {λL∂ f L(ū) + λU∂ f U(ū)} ∩ {λL∂ f L(v) + λU∂ f U(v)},
〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
2 =

{
v ∈ M : ∃η ∈ λL∂ f L(v) + λU∂ f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

We can easily see that

[
ū ∈ M, ∑

i∈Ig(ū)
λigi(v) +

q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0

]

⇔
[
ū ∈ M, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū),
]
,

and by Lemma 2, L(v, λ, µ) = λL f L(v) + λU f U(v) ∀ v ∈ S.

Corollary 3. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk,
Hk(k ∈ {1, · · · , r}) and L(·, λ, µ) are semiconvex on M, then S = S3 = S

′
3, where

S3 =
{

v ∈ M : ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0,

∃η ∈ ∂cL(·, λg, λh, λG, λH)(v), 〈η, ū− v〉 = 0
}

,

S
′
3 =

{
v ∈ M : ∑

i∈Ig(ū)
λigi(v) +

q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0,

∃η ∈ ∂cL(·, λg, λh, λG, λH)(ū) ∩ ∂cL(·, λg, λh, λG, λH)(v), 〈η, ū− v〉 = 0
}

.

4. Conclusions and Future Remarks

We have considered the interval-valued mathematical programming problem with
switching constraints (IVPSC) and studied the Lagrange multiplier characterizations of
solution sets with the help of a semiconvex function and S-stationary condition. The S-
stationary condition is stronger than the W-stationary and M-stationary conditions. We
have proved that the associated Lagrangian function is constant for IVTNP withholding
of the S-stationary condition. Thus, the W-stationary condition holds, too. Based on the
proved by Mehlitz [12] condition, for the W-stationary condition, the feasible set of a
tightened nonlinear problem (IVTNP) is a subset of the feasible set of the mathematical
programs with switching constraints (IVPSC). Therefore, we have characterized the par-
ticular solutions sets for IVTNP. The IVPSC is a new class of optimization problems with
significant applications. MPSC can be used for the discretized version of the optimal control
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problem with switching structure [12], and we can extend the results to interval-valued
optimization problems from a practical point of view. The IVPSC can be reformulated as
a mathematical program with disjunctive constraints (MPDC) [14]. We can introduce an
alternative approach to LICQ and establish the first and second order optimality conditions
for MPDC with interval-valued objective functions. To the best of our knowledge, there
are a few papers related to characterizations of solution sets and interval-valued nonlinear
optimization. This article can be extended for various nonlinear programming problems
such as MPEC, MPVC, MPDC, and many more from the application point of view.
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Abstract: This paper comprehensively reviews the nonlinear dynamics given by some classes of
constrained control problems which involve second-order partial derivatives. Specifically, necessary
optimality conditions are formulated and proved for the considered variational control problems
governed by integral functionals. In addition, the well-posedness and the associated variational
inequalities are considered in the present review paper.
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1. Introduction

We all know that Calculus of Variations and Optimal Control Theory are two strongly
connected mathematical fields. In this direction, several researchers have investigated these
areas, achieving remarkable results (see Friedman [1], Hestenes [2], Kendall [3], Udrişte [4],
Petrat and Tumulka [5], Treanţă [6] and Deckert and Nickel [7]). The problems (in several
time variables) studied by the aforementioned researchers have been continued, in the last
period, in the study of multi-dimensional optimization problems. These studies have many
applications in different branches of mathematical sciences, web access problems, man-
agement science, portfolio selection, engineering design, query optimization in databases,
game theory, and so on. In this respect, we mention the papers conducted by Mititelu
and Treanţă [8], Treanţă [9–18], and Jayswal et al. [19]. For other connected but different
ideas on this topic, the reader can consult Arisawa and Ishii [20], Lai and Motta [21], Shi
et al. [22], An et al. [23], Zhao et al. [24], Hung et al. [25], Chen et al. [26], Antonsev and
Shmarev [27], Cekic et al. [28], Chen et al. [29], Diening et al. [30], and Zhikov [31].

This review article is structured as follows. Section 2 introduces the second-order PDE-
constrained optimal control problem under study (see Theorem 1). This result formulates
the necessary conditions of optimality for the considered PDE-constrained optimization
problem. Section 3 states the associated necessary optimality conditions for a new class of
isoperimetric constrained control problems governed by multiple and curvilinear integrals.
In Section 4, by using the pseudomonotonicity, hemicontinuity, and monotonicity of the
considered integral functionals, we present the well-posedness of some variational inequal-
ity problems determined by partial derivatives of a second-order. Section 5 formulates
some very important open problems to be investigated in the near future. Section 6 contains
the conclusions of the paper.
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2. Second-Order PDE-Constrained Control Problem

LetHζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ζ = 1, m be some functions of C3-class, called multi-

time controlled Lagrangians of second order, where t = (tα) = (t1, · · · , tm) ∈ Λt0,t1 ⊂ Rm
+, b =

(bi) =
(

b1, · · · , bn
)

: Λt0,t1 → Rn is a function of C4-class (the state variable) and u =

(uϑ) =
(

u1, · · · , uk
)

: Λt0,t1 → Rk is a piecewise continuous function (the control variable).

In addition, denote bα(t) :=
∂b
∂tα

(t), bαβ(t) :=
∂2b

∂tα∂tβ
(t), α, β ∈ {1, ..., m} and consider

Λt0,t1 = [t0, t1] (multi-time interval in Rm
+) as a hyper-parallelepiped determined by the

diagonally opposite points t0, t1 ∈ Rm
+. Moreover, we assume that the previous multi-time

controlled Lagrangians of second order determine a closed controlled Lagrange 1-form

Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ

(see summation over the repeated indices), which provides the following curvilinear
integral functional:

J(b(·), u(·)) =
∫

Υt0,t1

Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ , (1)

where Υt0,t1 is a smooth curve, included in Λt0,t1 , joining t0, t1 ∈ Rm
+.

Second-order PDE-constrained control problem. Find the pair (b∗, u∗) that minimizes
the aforementioned controlled path-independent curvilinear integral functional Equation (1), among
all the pair functions (b, u) satisfying

b(t0) = b0, b(t1) = b1, bγ(t0) = b̃γ0, bγ(t1) = b̃γ1

and the partial speed-acceleration constraints:

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , m.

In order to investigate the above controlled optimization problem in Equation (1),
associated with the aforementioned partial speed-acceleration constraints, we introduce
the Lagrange multiplier p = (pa(t)) and build new multi-time-controlled second-order
Lagrangians (see summation over the repeated indices):

H1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)

+pa(t)ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ζ = 1, m,

which change the initial controlled optimization problem (with second-order PDE con-
straints) into a partial speed-acceleration, unconstrained, controlled optimization problem:

min
(b(·), u(·), p(·))

∫

Υt0,t1

H1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
dtζ (2)

b(tq) = bq, bγ(tq) = b̃γq, q = 0, 1,

if the Lagrange 1-formH1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
dtζ is completely integrable.

In accordance with Lagrange theory, an extreme point of Equation (1) is found among
the extreme points of Equation (2).

To formulate the necessary optimality conditions associated with the aforementioned
control problem, we shall introduce the Saunders’s multi-index (Saunders [32], Treanţă [9–12]).

The following theorem represents the main result of this section (see Treanţă [12]). It
establishes the necessary conditions of optimality associated with the considered second-
order PDE-constrained control problem.
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Theorem 1 (Treanţă [12]). If (b∗(·), u∗(·), p∗(·)) solves Equation (2), then

(b∗(·), u∗(·), p∗(·))

solves the following Euler–Lagrange system of PDEs:

∂H1ζ

∂bi − Dγ
∂H1ζ

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂bi
αβ

= 0, i = 1, n, ζ = 1, m

∂H1ζ

∂uϑ
− Dγ

∂H1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

∂H1ζ

∂pa
− Dγ

∂H1ζ

∂pa,γ
+

1
µ(α, β)

D2
αβ

∂H1ζ

∂pa,αβ
= 0, a = 1, r, ζ = 1, m,

where pa,γ :=
∂pa

∂tγ
, pa,αβ :=

∂2 pa

∂tα∂tβ
, uϑ

αβ :=
∂2uϑ

∂tα∂tβ
, α, β, γ ∈ {1, 2, ..., m}.

Remark 1 (Treanţă [12]). The system of Euler–Lagrange PDEs given in Theorem 1 becomes

∂H1ζ

∂bi − Dγ
∂H1ζ

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂bi
αβ

= 0, i = 1, n, ζ = 1, m

∂H1ζ

∂uϑ
− Dγ

∂H1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

ga
ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , m.

Remark 2 (Treanţă [12]). (i) The most general Lagrange 1-form that can be used in the previous
problem is of the form:

H2ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)

+pλ
aζ(t)ga

λ

(
b(t), bγ(t), bαβ(t), u(t), t

)
.

(ii) The closeness conditions DθHζ = DζHθ associated with the Lagrange 1-form
Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ are actually PDE constraints for the considered problem. The

optimization problem of the controlled curvilinear integral cost functional J(b(·), u(·)), conditioned
by DθHζ = DζHθ , can be studied by using the following Lagrange 1-form:

H3ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)

+pθλ
ζ (t)(DθHλ − DλHθ).

Illustrative example. Minimize the following objective functional:

J(b(·), u(·)) =
∫

Υ0,1

(
b2(t) + u2(t)

)
dt1 +

(
b2(t) + u2(t)

)
dt2

subject to bt1(t) + bt2(t) = 0, b(0, 0) = 0, b(1, 1) = 0, where Υ0,1 is a curve of C1-class in
[0, 1]2, joining (0, 0) and (1, 1).

Solution. The path-independence of the functional J(b(·), u(·)) gives:

b
( ∂b

∂t2 −
∂b
∂t1

)
= u

( ∂u
∂t1 −

∂u
∂t2

)
.
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Moreover, for the Lagrange 1-form (Remark 2), we obtain:

Θ11 = b2(t) + u2(t) + ω1(t)(bt1(t) + bt2(t)),

Θ12 = b2(t) + u2(t) + +ω2(t)(bt1(t) + bt2(t))

and the extreme points are formulated as below:

2s− ∂ω1

∂t1 −
∂ω1

∂t2 = 0, 2s− ∂ω2

∂t1 −
∂ω2

∂t2 = 0,

2u = 0,

bt1(t) + bt2(t) = 0.

It follows that (b∗, u∗) = (0, 0) is the optimal point of the considered optimization

problem, and satisfies
∂φ

∂t1 +
∂φ

∂t2 = 0, where φ := ω1 −ω2.

3. Isoperimetric Constrained Controlled Optimization Problem

In this section, we use similar notations as in the previous section. We consider
a C3-class function H

(
b(t), bγ(t), bαβ(t), u(t), t

)
, called multi-time-controlled, second-order

Lagrangian, where t = (tα) = (t1, · · · , tm) ∈ Λt0,t1 ⊂ Rm
+, b = (bi) =

(
b1, · · · , bn

)
:

Λt0,t1 → Rn is a function of the C4-class (the state variable), and u = (uϑ) =
(

u1, · · · , uk
)

:

Λt0,t1 → Rk is a piecewise continuous function (the control variable). In addition, denote

bα(t) :=
∂b
∂tα

(t), bαβ(t) :=
∂2b

∂tα∂tβ
(t), α, β ∈ {1, ..., m}, and consider Λt0,t1 = [t0, t1] as a

hyper-parallelepiped generated by the diagonally opposite points t0, t1 ∈ Rm
+.

Isoperimetric constrained control problem. Find the pair (b∗, u∗) that minimizes the
following multiple integral functional:

J(b(·), u(·)) =
∫

Λt0,t1

H
(
b(t), bγ(t), bαβ(t), u(t), t

)
dt1 · · · dtm (3)

among all the pair functions (b, u) satisfying

b(t0) = b0, b(t1) = b1, bγ(t0) = b̃γ0, bγ(t1) = b̃γ1,

or
b(t)|∂Λt0,t1

= given, bγ(t)|∂Λt0,t1
= given

and the isoperimetric constraints (that is, constant level sets of some functionals) formulated
as follows.

Isoperimetric Constraints Defined by Controlled Curvilinear Integral Functionals

Consider the isoperimetric constraints:
∫

Υt0,t1

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ = la, a = 1, 2, · · · , r ≤ n,

where Υt0,t1 is a smooth curve, included in Λt0,t1 , joining the points t0, t1 ∈ Rm
+, and

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ , a = 1, 2, · · · , r

are completely integrable differential 1-forms, namely, Dγgζ = Dζ gγ, γ, ζ ∈ {1, · · · , m}, γ 6=
ζ, with Dγ :=

∂

∂tγ
, γ ∈ {1, · · · , m}.
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In order to investigate the above controlled optimization problem in Equation (3),
associated with the aforementioned isoperimetric constraints, we introduce the curve
Υt0,t ⊂ Υt0,t1 and the auxiliary variables:

ya(t) =
∫

Υt0,t
ga

ζ

(
b(τ), bγ(τ), bαβ(τ), u(τ), τ

)
dτζ , a = 1, 2, · · · , r,

which satisfy ya(t0) = 0, ya(t1) = la. Consequently, the functions ya fulfill the next
first-order PDEs:

∂ya

∂tζ
(t) = ga

ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ya(t1) = la.

Considering the Lagrange multiplier p =
(

pζ
a(t)

)
and by denoting y = (ya(t)), we

introduce a new multi-time-controlled Lagrangian of second order:

H1
(
b(t), bγ(t), bαβ(t), u(t), y(t), yζ(t), p(t), t

)
= H

(
b(t), bγ(t), bαβ(t), u(t), t

)

+pζ
a(t)

(
ga

ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
− ∂ya

∂tζ
(t)
)

that changes the initial control problem into an unconstrained control problem

min
b(·), u(·), y(·), p(·)

∫

Λt0,t1

H1
(
b(t), bγ(t), bαβ(t), u(t), y(t), yζ(t), p(t), t

)
dt1 · · · dtm (4)

b(tq) = bq, bγ(tq) = b̃γq, q = 0, 1

y(t0) = 0, y(t1) = l.

In accordance with Lagrange theory, an extreme point of Equation (3) is found among
the extreme points of Equation (4).

The following theorem (see Treanţă and Ahmad [13]) establishes the necessary condi-
tions of optimality associated with the considered isoperimetric constrained control problem.

Theorem 2 (Treanţă and Ahmad [13]). If (b∗(·), u∗(·), y∗(·), p∗(·)) solves Equation (4), then

(b∗(·), u∗(·), y∗(·), p∗(·))

solves the following Euler–Lagrange system of PDEs:

∂H1

∂bi − Dγ
∂H1

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂bi
αβ

= 0, i = 1, n

∂H1

∂uϑ
− Dγ

∂H1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂uϑ
αβ

= 0, ϑ = 1, k

∂H1

∂ya − Dζ
∂H1

∂ya
ζ

+
1

µ(α, β)
D2

αβ

∂H1

∂ya
αβ

= 0, a = 1, r

∂H1

∂pζ
a
− Dγ

∂H1

∂pζ
a,γ

+
1

µ(α, β)
D2

αβ

∂H1

∂pζ
a,αβ

= 0,

where pζ
a,γ :=

∂pζ
a

∂tγ
, pζ

a,αβ :=
∂2 pζ

a

∂tα∂tβ
, uϑ

αβ :=
∂2uϑ

∂tα∂tβ
, ya

αβ :=
∂2ya

∂tα∂tβ
, α, β, γ, ζ ∈ {1, 2, ..., m}.
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Remark 3 (Treanţă and Ahmad [13]). The system of Euler–Lagrange PDEs given in
Theorem 2 becomes

∂H1

∂bi − Dγ
∂H1

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂bi
αβ

= 0, i = 1, n

∂H1

∂uϑ
− Dγ

∂H1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂uϑ
αβ

= 0, ϑ = 1, k

∂pζ
a

∂tζ
= 0, a = 1, r, ζ ∈ {1, 2, · · · , m}

∂ya

∂tζ
(t) = ga

ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
.

In consequence, the Lagrange matrix multiplier p has null total divergence. Moreover, it is
well determined only if the optimal solution is not an extreme for at least one of the functionals∫

Υt0,t1

ga
ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
dtζ , a = 1, r.

4. Well-Posedness of Some Variational Inequalities Involving Second-Order
Partial Derivatives

In the following, in accordance with Treanţă [14–16], we consider: Λs1,s2 as a compact
set in Rm; Λs1,s2 3 s = (sζ), ζ = 1, m as a multi-variate evolution parameter; Λs1,s2 ⊃ Υ
as a piecewise differentiable curve that links the points s1 = (s1

1, . . . , sm
1 ), s2 = (s1

2, . . . , sm
2 )

in Λs1,s2 ; B as the space of C4-class state functions b : Λs1,s2 → Rn; and bκ :=
∂b
∂sκ

, bαβ :=

∂2b
∂sα∂sβ

denote the partial speed and partial acceleration, respectively. In addition, let U be the

space of C1-class control functions u : Λs1,s2 → Rk and assume that B×U is a (nonempty)
convex and closed subset of B ×U, equipped with

〈(b, u), (q, z)〉 =
∫

Υ
[b(s) · q(s) + u(s) · z(s)]dsζ

=
∫

Υ
[

n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]dsζ

=
∫

Υ
[

n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]ds1 + · · ·+ [
n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]dsm,

∀(b, u), (q, z) ∈ B ×U

and the norm induced by it.
Let J2(Rm,Rn) be the jet bundle of the second order of Rm and Rn. Assume that the

Lagrangians wζ : J2(Rm,Rn)×Rk → R, ζ = 1, m provide a closed controlled Lagrange
1-form

wζ(s, b(s), bκ(s), bαβ(s), u(s))dsζ ,

which gives the following integral functional:

W : B ×U→ R, W(b, u) =
∫

Υ
wζ

(
s, b(s), bκ(s), bαβ(s), u(s)

)
dsζ

=
∫

Υ
w1
(
s, b(s), bκ(s), bαβ(s), u(s)

)
ds1 + · · ·+ wm

(
s, b(s), bκ(s), bαβ(s), u(s)

)
dsm.

In order to state the problem under study, we introduce the Saunders’s multi-index
(Saunders [32]).
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Now, we introduce the variational problem: find (b, u) ∈ B×U such that

∫

Υ

[
∂wζ

∂b
(Ψb,u(s))(q(s)− b(s)) +

∂wζ

∂bκ
(Ψb,u(s))Dκ(q(s)− b(s))

]
dsζ (5)

+
∫

Υ

[
1

x(α, β)

∂wζ

∂bαβ
(Ψb,u(s))D2

αβ(q(s)− b(s))

]
dsζ

+
∫

Υ

[
∂wζ

∂u
(Ψb,u(s))(z(s)− u(s))

]
dsζ ≥ 0, ∀(q, z) ∈ B×U,

where Dκ :=
∂

∂sκ
is the total derivative operator, D2

αβ := Dα(Dβ), and (Ψb,u(s)) :=

(s, b(s), bκ(s), bαβ(s), u(s)).
Let Ω be the feasible solution set of (5):

Ω =
{
(b, u) ∈ B×U :

∫

Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψb,u(s))

+ Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψb,u(s))

+ (z(s)− u(s))
∂wζ

∂u
(Ψb,u(s))]dsζ ≥ 0,

∀(q, z) ∈ B×U
}

.

Assumption 1. The next working hypothesis is assumed:

dG := Dκ

[
∂wζ

∂bκ
(b− q)

]
dsζ (6)

as a total exact differential, with G(s1) = G(s2).

According to Equation (6) and considering the notion of monotonicity associated
with variational inequalities, we formulate (see Treanţă et al. [14]) the monotonicity and
pseudomonotonicity for W.

Definition 1. The functional W is monotone on B×U if

∫

Υ

[
(b(s)− q(s))

(
∂wζ

∂b
(Ψb,u(s))−

∂wζ

∂b
(Ψq,z(s))

)

+ (u(s)− z(s))
(

∂wζ

∂u
(Ψb,u(s))−

∂wζ

∂u
(Ψq,z(s))

)

+ Dκ(b(s)− q(s))
(

∂wζ

∂bκ
(Ψb,u(s))−

∂wζ

∂bκ
(Ψq,z(s))

)

+
1

x(α, β)
D2

αβ(b(s)− q(s))

(
∂wζ

∂bαβ
(Ψb,u(s))−

∂wζ

∂bαβ
(Ψq,z(s))

)]
dsζ ≥ 0,

∀(b, u), (q, z) ∈ B×U

is satisfied.
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Definition 2. The functional W is pseudomonotone on B×U if

∫

Υ
[(b(s)− q(s))

∂wζ

∂b
(Ψq,z(s)) + (u(s)− z(s))

∂wζ

∂u
(Ψq,z(s))

+Dκ(b(s)− q(s))
∂wζ

∂bκ
(Ψq,z(s))

+
1

x(α, β)
D2

αβ(b(s)− q(s))
∂wζ

∂bαβ
(Ψq,z(s))]dsζ ≥ 0

⇒
∫

Υ
[(b(s)− q(s))

∂wζ

∂b
(Ψb,u(s)) + (u(s)− z(s))

∂wζ

∂u
(Ψb,u(s))

+Dκ(b(s)− q(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(b(s)− q(s))
∂wζ

∂bαβ
(Ψb,u(s))]dsζ ≥ 0,

∀(b, u), (q, z) ∈ B×U

is valid.

By using Usman and Khan [33], we introduce the following definition.

Definition 3. W is hemicontinuous on B×U if

λ→
〈
((b(s), u(s))− (q(s), z(s)),

(
δζW
δbλ

,
δζW
δuλ

)〉
, 0 ≤ λ ≤ 1

is continuous at 0+, for ∀(b, u), (q, z) ∈ B×U, where

δζW
δbλ

:=
∂wζ

∂b
(Ψbλ ,uλ

(s))− Dκ
∂wζ

∂bκ
(Ψbλ ,uλ

(s)) +
1

x(α, β)
D2

αβ

∂wζ

∂bαβ
(Ψbλ ,uλ

(s)) ∈ B,

δζW
δuλ

:=
∂wζ

∂u
(Ψbλ ,uλ

(s)) ∈ U,

bλ := λb + (1− λ)q, uλ := λu + (1− λ)z.

Lemma 1 (Treanţă et al. [14]). Let the functional W be hemicontinuous and pseudomonotone on
B×U. A point (b, u) ∈ B×U solves Equation (5) if and only if (b, u) ∈ B×U solves:

∫

Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψq,z(s)) + (z(s)− u(s))

∂wζ

∂u
(Ψq,z(s))

+Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψq,z(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψq,z(s))]dsζ ≥ 0, ∀(q, z) ∈ B×U.

Furthermore, according to Treanţă et al. [14], we present two well-posedness results
associated with the considered variational inequality problem involving second-order
PDEs.
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Definition 4. The sequence {(bn, un)} ∈ B × U is called an approximating sequence of
Equation (5) if there exists a sequence of positive real numbers σn → 0 as n→ ∞, such that:

∫

Υ
[(q(s)− bn(s))

∂wζ

∂b
(Ψbn ,un(s)) + (z(s)− un(s))

∂wζ

∂u
(Ψbn ,un(s))

+Dκ(q(s)− bn(s))
∂wζ

∂bκ
(Ψbn ,un(s))

+
1

x(α, β)
D2

αβ(q(s)− bn(s))
∂wζ

∂bαβ
(Ψbn ,un(s))]dsζ + σn ≥ 0, ∀(q, z) ∈ B×U.

Definition 5. The problem Equation (5) is called well-posed if:

(i) The problem in Equation (5) has one solution (b0, u0);
(ii) Each approximating sequence of Equation (5) converges to (b0, u0).

The approximating solution set of Equation (5) is given as follows:

Ωσ =
{
(b, u) ∈ B×U :

∫

Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψb,u(s)) + (z(s)− u(s))

∂wζ

∂u
(Ψb,u(s))

+ Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψb,u(s))]dsζ + σ ≥ 0, ∀(q, z) ∈ B×U

}
.

Remark 4. We have: Ω = Ωσ, when σ = 0 and Ω ⊆ Ωσ, ∀σ > 0.
Furthermore, for a set P, the diameter of P is defined as follows

diam P = sup
φ,η∈P

‖φ− η‖.

Theorem 3 (Treanţă et al. [14]). Let the functional W be hemicontinuous and monotone on B×U.
The problem Equation (5) is well-posed if and only if:

Ωσ 6= ∅, ∀σ > 0 and diam Ωσ → 0 as σ→ 0.

Theorem 4 (Treanţă et al. [14]). Let the functional W be hemicontinuous and monotone on B×U.
Then, Equation (5) is well-posed if and only if it has one solution.

5. Open Problem

As in the previous sections, we start with T as a compact set in Rm and T 3 ζ =
(ζβ), β = 1, m, as a multi-variable. Let T ⊃ C : ζ = ζ(ς), ς ∈ [p, q] be a (piecewise) differen-
tiable curve joining the following two fixed points ζ1 = (ζ1

1, . . . , ζm
1 ), ζ2 = (ζ1

2, . . . , ζm
2 ) in

T . In addition, we consider Λ as the space of (piecewise) smooth state functions σ : T → Rn

and Ω as the space of control functions η : T → Rk, which are considered to be piecewise
continuous. Moreover, on the product space Λ×Ω, we consider the scalar product:

〈(σ, η), (π, x)〉 =
∫

C
[σ(ζ) · π(ζ) + η(ζ) · x(ζ)

]
dζβ

=
∫

C

[ n

∑
i=1

σi(ζ)πi(ζ) +
k

∑
j=1

η j(ζ)xj(ζ)
]
dζ1

+ · · ·+
[ n

∑
i=1

σi(ζ)πi(ζ) +
k

∑
j=1

η j(ζ)xj(ζ)
]
dζm, (∀)(σ, η), (π, x) ∈ Λ×Ω

together with the norm induced by it.
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In the following, we introduce the vector functional defined by curvilinear integrals:

Ψ : Λ×Ω→ Rp, Ψ(σ, η) =
∫

C
ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

=

(∫

C
ψ1

β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ, · · · ,
∫

C
ψ

p
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

)
,

where we used the vector-valued C2-class functions ψβ = (ψl
β) : T ×Rn ×Rnm ×Rnm2 ×

Rk → Rp, β = 1, m, l = 1, p. In addition, Dα, α ∈ {1, . . . , m} represents the operator of
total derivative, and the aforementioned 1-form densities

ψβ =
(

ψ1
β, . . . , ψ

p
β

)
: T ×Rn ×Rnm ×Rnm2 ×Rk → Rp, β = 1, m,

are closed (Dαψl
β = Dβψl

α, β, α = 1, m, β 6= α, l = 1, p). Throughout the paper, the
following rules for equalities and inequalities are applied:

a = b⇔ al = bl , a ≤ b⇔ al ≤ bl , a < b⇔ al < bl , a � b⇔ a ≤ b, a 6= b, l = 1, p,

for all p-tuples, a =
(

a1, · · · , ap
)

, b =
(

b1, · · · , bp
)

in Rp.
Next, we formulate the partial differential equation/inequation constrained optimiza-

tion problem:

(CP) min
(σ,η)

{
Ψ(σ, η) =

∫

C
ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

}
subject to (σ, η) ∈ S ,

where
Ψ(σ, η) =

∫

C
ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

=

(∫

C
ψ1

β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ, · · · ,
∫

C
ψ

p
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

)

=
(

Ψ1(σ, η), ..., Ψp(σ, η)
)

and

S =
{
(σ, η) ∈ Λ×Ω | Z(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ)) = 0, Y(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ)) ≤ 0,

σ|ζ=ζ1,ζ2 = given, σα|ζ=ζ1,ζ2 = given
}

.

Above, we considered Z = (Zι) : T ×Rn ×Rnm ×Rnm2 ×Rk → Rt, ι = 1, t, Y =

(Yr) : T ×Rn ×Rnm ×Rnm2 ×Rk → Rq, r = 1, q as C2-class functions.

Definition 6. A point (σ0, η0) ∈ S is called an efficient solution in (CP) if there exists no other
(σ, η) ∈ S such that Ψ(σ, η) � Ψ(σ0, η0), or, equivalently, Ψl(σ, η)−Ψl(σ0, η0) ≤ 0, (∀)l =
1, p, with strict inequality for at least one l.

Definition 7. A point (σ0, η0) ∈ S is called a proper efficient solution in (CP) if (σ0, η0) ∈ S is
an efficient solution in (CP) and there exists a positive real number M, such that, for all l = 1, p,
we have

Ψl(σ0, η0)−Ψl(σ, η) ≤ M
(

Ψs(σ, η)−Ψs(σ0, η0)
)

,

for some s ∈ {1, · · · , p} such that

Ψs(σ, η) > Ψs(σ0, η0),
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whenever (σ, η) ∈ S and
Ψl(σ, η) < Ψl(σ0, η0).

Definition 8. A point (σ0, η0) ∈ S is called a weak efficient solution in (CP) if there exists
no other (σ, η) ∈ S such that Ψ(σ, η) < Ψ(σ0, η0), or, equivalently, Ψl(σ, η)− Ψl(σ0, η0) <
0, (∀)l = 1, p.

According to Treanţă [17,18], for σ ∈ Λ and η ∈ Ω, we consider the vector functional

K : Λ×Ω→ Rp, K(σ, η) =
∫

C
κβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

and define the concepts of invexity and pseudoinvexity associated with K.

For examples of invex and/or pseudoinvex curvilinear integral functionals, the reader
can consult Treanţă [17].

Definition 9 (Treanţă [18]). We say that X×Q ⊂ Λ×Ω is invex with respect to ϑ and υ if

(σ0, η0) + λ
(

ϑ
(

ζ, σ, η, σ0, η0
)

, υ
(

ζ, σ, η, σ0, η0
))
∈ X×Q,

for all (σ, η), (σ0, η0) ∈ X×Q and λ ∈ [0, 1].
Now, we introduce the following (weak) vector controlled variational inequalities:
I. Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S satisfying

(VI)
( ∫

C

[
∂ψ1

β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ1
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫

C

[
∂ψ1

β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫

C

[
∂ψ1

β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ, · · · ,

∫

C

[
∂ψ

p
β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ
p
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫

C

[
∂ψ

p
β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫

C

[
∂ψ

p
β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ
)
≤ 0;

II. Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S satisfying

(WVI)
( ∫

C

[
∂ψ1

β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ1
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫

C

[
∂ψ1

β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫

C

[
∂ψ1

β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ, · · · ,

∫

C

[
∂ψ

p
β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ
p
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ
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+
∫

C

[
∂ψ

p
β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫

C

[
∂ψ

p
β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ
)
< 0.

Note. In the above formulation,
1

x(a, b)
represents the Saunders’s multi-index.

Open Problem. Taking into account the notion of an invex set with respect to some given
functions, the Fréchet differentiability and invexity/pseudoinvexity of the considered curvilinear
integral functionals (which are path-independent) state some relations between the solutions of
the (weak) vector-controlled variational inequalities and (proper, weak) efficient solutions of the
associated optimization problem.

6. Conclusions

This paper presented the nonlinear dynamics generated by some classes of constrained
controlled optimization problems involving second-order partial derivatives. More pre-
cisely, we have stated the necessary optimality conditions for the considered variational
control problems given by integral functionals. In addition, the well-posedness and the
associated variational inequalities have been considered in this review paper.
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Abstract: The reverse space-time nonlocal complex modified Kortewewg–de Vries (mKdV) equation
is investigated by using the consistent tanh expansion (CTE) method. According to the CTE method,
a nonauto-Bäcklund transformation theorem of nonlocal complex mKdV is obtained. The interactions
between one kink soliton and other different nonlinear excitations are constructed via the nonauto-
Bäcklund transformation theorem. By selecting cnoidal periodic waves, the interaction between one
kink soliton and the cnoidal periodic waves is derived. The specific Jacobi function-type solution and
graphs of its analysis are provided in this paper.

Keywords: nonlocal modified Korteweg–de Vries equation; consistent tanh expansion method;
parity-time symmetry

MSC: 35J60; 35N05; 35L05

1. Introduction

Physical systems exhibiting parity-time (PT )-symmetries have received increasing
attention since a family of non-Hermitian PT -symmetric Hamiltonians with a real constant
was first shown by Bender and Boettcher to admit entirely real spectra [1,2]. The study
of PT symmetry in mathematics and physics can offer great research value and strong
prospects for dynamical systems. PT -symmetric nonlinear systems have become a major
focus of nonlinear science, such as soliton theory, fluid mechanics, hydrodynamics and
optical theory. Some effective methods have been developed to derive exact solutions of
nonlinear integrable systems, such as the inverse scattering transform method [3,4], the
dressing method [5], the Hirota direct method [6,7], the Darboux transformations [8–10]
and the Bäcklund transformations [11–13], etc.

The modified Kortewewg–de Vries (mKdV) equation, which describes the evolutions
of weakly dispersive wavelets in shallow water, is widely studied. The integrable nonlocal
nonlinear Schrödinger equation proposed by Ablowitz and Musslimani [14] attracted many
researchers because of its special property. Ablowitz and Musslimani proposed some new
nonlocal nonlinear integrable equations, including the reverse space-time nonlocal complex
mKdV equation [15]. In these new types of nonlocal equations; in addition to the terms at
space-time point (x, t), there are terms at mirror image point (−x,−t). The self-induced
potential of the nonlocal complex mKdV equation is V(x, t) = u(x, t)u∗(−x,−t) [15]. The
PT-symmetry for the nonlocal complex mKdV equation amounts to the invariance of the
self-induced potential in the case of classical optics, i.e., V(x, t) = V∗(−x,−t), under the
combined effect of parity and time reversal symmetry. A family of traveling solitary wave
solutions including soliton, kink, periodic and singular solutions of the nonlocal mKdV
equation is discussed [16].
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The interaction between solitons and a periodic cnoidal wave of the Korteweg–de Vries
equation and the cubic Schrödinger equation is discussed by using the inverse scattering
technique [17,18]. Rogue waves on a periodic background and the nonlinear superposition
of the two periodic solutions of mKdV equation are obtained by using the Darboux trans-
formation [19,20]. The soliton excitation of the circular vortex motion can be constructed
based on localized-induction approximation equations [21,22]. Recently, the consistent tanh
expansion (CTE) method has been proposed to identify CTE-solvable systems [23,24]. The
interaction between one soliton and other different nonlinear excitations such as cnoidal
periodic waves can be obtained by using the CTE method. The method has been valid for
classical integrable nonlinear systems, including the nonlinear Schrödinger system [25],
the Broer–Kaup system [26], the higher-order KdV equation [27], etc. [28–30]. The appli-
cation of the CTE method to nonlocal integrable systems with PT -symmetric is deficient.
Applying the CTE method to nonlocal PT -symmetric integrable systems is innovative
and convenient. In this paper, the CTE method is used to investigate the PT -symmetric
nonlocal complex mKdV equation and can construct the interaction solution of the soliton
and cnoidal periodic waves.

This paper is organized as follows. In Section 2, a nonauto-Bäcklund transformation
theorem is obtained by using the CTE method. The interactions between one kink soliton
and other different nonlinear excitations are constructed by the nonauto-Bäcklund trans-
formation theorem. Section 3 discusses the interaction between one kink soliton, and the
Jacobi-elliptic function types are explicitly discussed both with analytical and graphical
methods. Sections 4 and 5 include simple discussions and provide conclusions.

2. CTE Method for the Nonlocal Complex mKdV System

The reverse space-time nonlocal complex mKdV equation reads as follows [15]:

ut(x, t)− 6αu(x, t)u∗(−x,−t)ux(x, t) + uxxx(x, t) = 0, (1)

where u = u(x, t) is a complex function of real variables x and t, α is an arbitrary constant
and ∗ denotes complex conjugation. The self-induced potential V(x, t) = u(x, t)u∗(−x,−t)
of (1) satisfies the PT -symmetry condition V(x, t) = V∗(−x,−t). The nonauto-Bäcklund
transformations and the soliton phenomenology of the standard mKdV equation are
systematically studied [31].

For the nonlocal complex mKdV system, one can take the generalized truncated tanh
expansion form by using leading order analysis:

u = u0 + u1 tanh( f ), (2)

where u0 and u1 are arbitrary functions of (x, t). f satisfies constraint f (x, t) = f ∗(−x,−t).
By substituting (2) into the nonlocal complex mKdV system (1), a complicated poly-

nomial with respect to tanh( f ) is obtained. Collecting coefficients of the powers of tanh4( f )
and tanh3( f ), we derive the following.

αu1(x, t)u∗1(−x,−t)− f 2
x = 0, (3)

αu2
1(x, t)u∗0(−x,−t) fx + αu0(x, t)u∗1(−x,−t)u1(x, t) fx − αu1(x, t)u∗1(−x,−t)u1,x(x, t) + u1(x, t) fx fxx + u1,x(x, t) f 2

x = 0. (4)

Substituting u1 obtained by solving (3) into (4) and further solving for u0, a set of
solutions for u1 and u0 is derived as follows.

u1 =
1√−α

fx, u0 = − 1
2
√−α

fxx

fx
. (5)

Substituting (5) into the complicated polynomial obtained before and collecting the
coefficients of tanh2( f ), tanh1( f ) and tanh0( f ) via symbolic computation with the help of
Maple, we obtain the following three over-determined systems.
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3
2

f 2
xx + 2 f 4

x − fx fxxx − fx ft = 0, (6)

3
2

f 3
xx
f 2
x
− 3

fxx fxxx

fx
− 6 f 2

x fxx + fxt + fxxxx = 0, (7)

− 3
2

f 2
xx − 2 f 4

x −
21
4

f 2
xx fxxx

f 3
x

+
9
4

f 4
xx
f 4
x
+ fx ft + 4 fx fxxx + 3 f 2

xx −
1
2

fxxt

fx
+

1
2

fxx fxt

f 2
x
− 1

2
fxxxxx

fx
+

2 fxxxx fxx

f 2
x

+
3
2

f 2
xxx
f 2
x

= 0. (8)

Moreover, the above three Equations (6)–(8) are consistent each other, meaning that if
f satisfies one of the equations, it will be a solution for other two equations. According to
above analysis, we derive the following nonauto-Bäcklund transformation theorem.

Nonauto-Bäcklund transformation theorem. If one finds that solution f satisfies (6),
then u is obtained with the following:

u(x, t) = − 1
2
√−α

fxx

fx
+

1√−α
fx tanh( f ), (9)

which is a solution of the reverse space-time nonlocal complex mKdV system (1).
The Miura transform is known as the transformation connection the solutions between

KdV equation and mKdV equation. This nonauto-Bäcklund transformation can be treated
as a form of Miura transformation. According to the above theorem, the exact solutions
of the nonlocal complex mKdV system (1) are obtained by solving (6). Here are some
interesting examples.

A quite trivial solution of (6) has the following form:

f = i(k0x + w0t), w0 = −2k3
0, (10)

where k0 is a free constant, and w0 is determined by dispersion relations. Substituting
the trivial solution (10) into (9), one kink soliton solution of the nonlocal complex mKdV
system yields the following.

u = − 1√−α
k0 tan(k0x− 2k3

0t). (11)

Some nontrivial solutions of the mKdV equation can be derived from a quite trivial
solution of (10). To find interaction solutions between one kink soliton and other nonlinear
excitations, we assume the interaction solution form as follows:

f = i(k0x + w0t) + F(X), X = kx + wt, (12)

where k0, w0, k and w are all free constants. Substituting expression (12) into (6), (6) becomes
the following.

F4
X +

4ik
k0

F3
X −

12kk2
0 + w

2k3 F2
X −

i(8k3
0k + kw0 + k0w)

2k4 FX −
1
2

FX FXXX +
3
4

F2
XX −

ik0

2k
FXXX +

2k4
0 + k0w0

2k4 = 0. (13)

Then, the following equation is obtained by using transformation FX = F1.

F4
1 +

4ik0

k
F3

1 −
12kk2

0 + w
2k3 F2

1 −
i(8kk3

0 + kw0 + k0w)

2k4 F1 +
3
4

F2
1,X −

1
2
(F1 +

ik0

k
)F1,XX +

k0(2k3
0 + w0)

2k4 = 0. (14)

The CTE method is valid in many classical integrable systems. For the interaction
between soliton and Jacobi periodic waves in classical integrable systems, one can obtain
the standard Jacobi-elliptic function equation [32]. One only obtains Equation (14) rather
than the standard Jacobi-elliptic function equation. In order to obtain the Jacobi periodic
wave solution of (14), we assume that Equation (14) has a Jacobian elliptic function solution
as F1(X) = c1Sn(c2X, m) [33]. Hence, the solution expressed by (9) is just the explicit exact
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interaction between one kink soliton and cnoidal periodic waves. To show more clearly
this form of solution, we offer one special case for solving (14).

3. Interaction between Soliton and Cnoidal Periodic Waves

According to above analysis, the solution of (13) has the following form:

F(X) =
∫

c1Sn(c2X, m)dX =
c1 ln[Dn(c2X, m)−mCn(c2X, m)]

c2m
, (15)

where Sn, Cn and Dn are the Jacobian-elliptic functions with modulus m. Verified by
Maple’s symbolic calculation, (15) satisfies constraint f (x, t) = f ∗(−x,−t) and is a real
even function. By substituting the undetermined parameter solution (15) into (13) and
using symbolic computation with the help of Maple, the parameters satisfy the following.

c1 = − c2m
2

, c2 = 2
ik0

k
, w0 = −2k3

0(3m2 + 1), w = 2k2
0k(m2 − 5). (16)

The interaction between one kink soliton and the cnoidal wave of the nonlocal complex
mKdV system (1) has the the following form.

u =
2√−α(c1Sn + ik0)

[
tanh(

c1 ln(Dn −mCn) + ic2m(k0x + w0t)
c2m

)(
c2

1k2

2
S2

n + ic1kk0Sn −
k2

0
2
)− c1c2k2

4
CnDn

]
. (17)

The parameters c1, c2, w0 and w have been given in (16).
We select the parameters as α = −1, k0 = 0.4i, m = 0.4 in Figures 1–3. Figures 1 and 2

plot the interaction solution between one kink soliton and the cnoidal wave in the patterns
of three-dimensional and wave along x-axis. Field u exhibits one kink soliton propagating
on the cnoidal wave’s background. Figure 3 plots the status-only soliton or cnoidal wave at
t = 0. The superpose status is just the interaction between one kink soliton and the cnoidal
waves, which are depicted in Figure 2. The changes before and after superposition are
displayed visually. There are some nonlinear waves including interactions between solitary
waves and the cnoidal periodic waves, which can be described in certain ocean phenomena.

Figure 1. Plot of one kink soliton on the cnoidal wave background expressed by (17) of the nonlocal
mKdV equation in three dimensions.
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Figure 2. One dimensional image followed by t = −25, 0, 25.

Figure 3. Plot of separate state for one kink soliton or the cnoidal wave expressed by (10) and (15) of
the nonlocal mKdV equation at t = 0.

4. Discussion

Kuznetsov and Mikhailov discussed the interaction between solitons and a periodic
cnoidal wave of the Korteweg–de Vries equation [17]. Gorshkov and Ostrovsky investigated
the interaction between soliton and a periodic wave via the direct perturbation method [34].
The interaction between the Jacobi elliptic periodic wave and kink soliton for the complex
mKdV equation is directly obtained by the CTE method in this paper. Compared with the
previous two methods, the CTE method can obtain this type solution more directly and
conveniently. Other reverse space-time nonlocal system is worthy of study by using the
CTE method.

5. Conclusions

The reverse space-time nonlocal complex mKdV equation is investigated by using
the CTE method. A nonauto-Bäcklund transformation theorem is constructed by using
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the CTE method. The interactions between one kink soliton and the cnoidal waves are
derived by means of the nonauto-Bäcklund transformation theorem. The dynamics of
the interactions are studied both with analytical and graphical methods. These types
of interaction solutions can describe certain oceanic phenomena. The method is valid
and promising for the PT -symmetry models. The interactions between solitons and the
cnoidal waves can be obtained by symmetry reductions related by nonlocal symmetry [27].
Symmetry reductions related by the nonlocal symmetry of the nonlocal complex mKdV
equation will be studied in the future.
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Abstract: Data mining applications are growing with the availability of large data; sometimes,
handling large data is also a typical task. Segregation of the data for extracting useful information is
inevitable for designing modern technologies. Considering this fact, the work proposes a chaos embed
marine predator algorithm (CMPA) for feature selection. The optimization routine is designed with
the aim of maximizing the classification accuracy with the optimal number of features selected. The
well-known benchmark data sets have been chosen for validating the performance of the proposed
algorithm. A comparative analysis of the performance with some well-known algorithms advocates
the applicability of the proposed algorithm. Further, the analysis has been extended to some of the
well-known chaotic algorithms; first, the binary versions of these algorithms are developed and
then the comparative analysis of the performance has been conducted on the basis of mean features
selected, classification accuracy obtained and fitness function values. Statistical significance tests
have also been conducted to establish the significance of the proposed algorithm.

Keywords: metaheuristics; feature selection; classification

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

In recent years, the application of optimization in the field of data-mining has been
reported in many published approaches. Feature selection (FS) from a large data set is also
one of the optimization problems. The FS problem has many industrial and healthcare-
related applications. An effective FS technique can enhance the classification accuracy
of the classifier and reduce the complexity of the system. The complexity of the system
substantially enhanced with the dimension of the data. In other words, it speeds up
the learning rate and improves the ability of a machine to anticipate the information
pertaining to the data. The recent application of the FS technique in the field of healthcare
is reported in [1], where an ensemble-based hybrid feature selection has been employed
for the diagnosis of the brain tumor. The authors claimed that the proposed method is
able to handle the imbalanced data. A network intrusion detection scheme based on the
Least Square Support Vector Machine has been proposed by the authors [2]. The authors
validated the approach on intrusion data sets. The problem of the high dimensionality of
feature space pertaining to text characterization has been addressed in reference [3]. In
this work, the authors proposed a novel Gini index for the classification and reduction of

77



Mathematics 2022, 10, 1411

the features. Feature selection for the Brain Computer Interface (BCI) has been conducted
with the help of information gain ranking, correlation-based feature selection, ReliefF,
consistency-based feature selection and 1R ranking methods in the approach [4]. A brief
classification of the feature selection algorithms are given in Figure 1.

Figure 1. Classification of feature selection algorithms.

A very interesting approach on the path planning for the mobile robot is proposed in
reference. For defining the obstacle, the situation of workers in the Artificial Bee Colony
has been utilized and in the second phase, the shortest path is selected by Dijkstra’s algo-
rithm [5]. A very important application of the ABC algorithm has been reported for the
identification of mechanical parameters of the Servo-drive system [6]. A novel approach of
the Adaptive Procedure for Optimization Algorithms is proposed in reference [7]. Apart
from these approaches, recent approaches based on the metaheuristic optimization moti-
vated the author to employ the optimization algorithm in a feature selection task [8–10].
These references provide strong evidence of what optimization algorithms are capable of
for dealing with complex engineering problems.

Apart from the application of metaheuristic optimization algorithms and evolution-
based algorithms, there are many deterministic algorithms that are also employed for
conducting feature selection tasks. Due to the deterministic nature or gradient-based
mechanism, these algorithms are often stuck in a local minima trap and provide slow and
premature convergence. For avoiding such problems and to provide a smooth and fast
optimization environment, metaheuristic techniques are employed for executing feature
selection problems. The recent trend is to apply the metaheuristic optimization algorithm
for conducting this task; some of the fine approaches are depicted in the following refer-
ences, where the application of the Hybrid Whale Optimization Algorithm (HWOA) [11]
is explored with the amalgamation of the Whale Optimization Algorithm and Simulated
annealing Algorithm (SA). A chaotic dragonfly algorithm has been proposed and applied
on the feature selection task in reference [12].A similar approach based on the chaotic selfish
heard optimizer has been proposed in reference [13]. A rich review of literature pertaining
to the feature selection methods have been demonstrated in reference [14]. S-shaped and
V-shaped functions are employed to create a binary search space in gaining and sharing a
knowledge algorithm for the feature selection task in reference [15].
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1.1. Some Recent Chaos-Based Approaches for Feature Selection

A chaotic optimization algorithm based on gaining and sharing knowledge-based
optimization has been proposed in reference [16], as well as the the similar applications
based on chaotic fruit fly optimization [17], chaotic crow search algorithms [18], chaotic
multi verse optimizer [19] and chaotic salp swarm optimizers [20].

From these approaches, it is evident that the embedding chaos for making naive
algorithms compatible for feature selection is a potential area of research. These approaches
are strong evidence that by embedding chaos in the mechanism of algorithms, a substantial
improvement can be achieved as far as classification accuracy and reduction in dimension-
ality is considered. Based on this discussion, the following subsection presents the research
proposal for the work and objectives.

1.2. Research Objectives and Proposal

Recently, a new metaheuristic has been proposed [21] based on predatory behav-
ior. The algorithm is known as the marine predator algorithm (MPA). The application
of this algorithm in a multi-objective domain has been explored in reference [22]. A new
improved model of MPA has been established in reference [23]. The paper touched the
theme of introducing an opposition-based learning method, chaos map, self-adaption of
population, and switching between exploration and exploitation phases. Application of
this algorithm has been explored in the field of controller tuning. Further, a hybrid compu-
tational intelligence-based approach has been proposed for structural damage detection in
reference [24].

Keeping these facts in mind, the work proposed in this paper addresses following
objectives.

1. To propose a chaotic marine predator algorithm and develop a balance between the
exploration and exploitation phase considering the binary search space.

2. To benchmark the proposed algorithm on a standard data set used in state-of-the-art
classification tasks.

3. To evaluate the performance of the proposed algorithm with some recently proposed
approaches in the feature selection domain.

4. To evaluate the performance of the proposed algorithm on certain evaluation crite-
rion such as the statistical parameter calculation such as mean feature selected by
algorithms, mean values of classification accuracy obtained in optimization runs and
mean fitness values. Apart from these statistical attributes, a statistical test has also
been conducted for showcasing the statistical significance of the algorithm.

The remaining part of this paper is organized as follows: in Section 2, brief details of
the MPA are discussed. Section 3 presents the basic framework of the chaos embed marine
predator algorithm (CMPA). Section 4 presents the problem formulation and details of the
objective considered in this study. Section 5 presents the results and analysis of different
tests. Section 6 concludes all major findings.

2. Marine Predator Algorithm: An Overview

The marine predator algorithm (MPA) [21] is a recently developed optimization
technique that is based on the philosophy that while predator is searching for the prey,
the prey also updates its position according to the location of food. The MPA presents a
beautiful mimicry of a social life in terms of mathematical representations. This section
briefly discuss the steps incorporated in the development of MPA. The different steps of
MPA are as follows

1. Conceptualization of MPA: Like other nature-inspired algorithms, the initial popula-
tion in MPA is equally scattered in the search region, which can be given as:

Y0 = Ub + m(Ub − Lb) (1)

Here, Ub and Lb are the minimum and maximum values of variables and r is an
arbitrary number satisfying 0 < m < 1.
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Following the well-known Darwinian fittest theory in MPA, a group of best predators
are selected as a final solution. In MPA, the initial location of the prey can be expressed as
the following matrix of order n× d, where n represents the number of search agents and d
is the dimension of the problem.

TPREM =




Ytp
1,1 Ytp

1,2 · · · Ytp
1,d

Ytp
2,1 Ytp

2,2 · Ytp
2,d

...
...

. . .
...

Ytp
n,1 Ytp

n,2 · · · Ytp
n,d




(2)

where Ytp
1,1 represents the first top predator vector, which is replicated n times to construct

the Elite matrix TPREM, which can be extended up to n times and d dimensions. In MPA,
the prey is searching for food and the predator is searching for prey, hence both can be
considered as search agents. The matrix TPM has taken initial solutions, and after every
iteration, the position of prey has improved. This updated matrix is called the elite matrix
TPREM. The prey matrix (TPM) is given by following expression.

TPM =




Y1,1 Y1,2 · · · Y1,d
Y2,1 Y2,2 · Y2,d

...
...

. . .
...

Yn,1 Yn,2 · · · Yn,d


 (3)

Yi,j denotes the location of i-th prey in the j-th dimension. It is to be noted that during
the search process both prey and predators are search agents and they search for food.

1. Optimization steps: As predators and prey are two search agents of MPA, the whole
optimization process depends on their proportional velocity. To illustrate the optimiza-
tion process scientifically, it can be spilt up into three stages. Each stage predefined
a natural order and time and was inspired by the natural behavior of the prey and
predator. These stages are as follows:

• Stage 1: If the velocity of predator is greater than prey. This case occurs in the
initial steps or in intensification. When the proportion velocity is very high,
i.e., (≥10), then the predator is almost still. This can be mathematically written as
when t < Tmax/3,

~stepi = ~RB ⊗ (~TPREM
i − ~RB ⊗

−→
TPi) (4)

where t is the current iteration and TMax maximum values of iteration.

−−→
TPMi =

−−→
TPMi + K.~R⊗~stepi (5)

where stepi = step size of i-th iteration, ~RB = vector including arbitrary numbers
related to Brownian motion, K = constant number taken as equal to 0.5 and
~R = a vector of arbitrary numbers ∈ [0, 1]. This stage occurs in almost the first
33 percentage of the total iteration, when the intensification is high.

• Stage 2: If the proportional velocity of predator and prey is almost the same,
which indicates that the prey is looking for its food and the predator is looking
for its prey. This case happens in middle iterations, when intensification is slowly
converting into diversification. At this time, half of the part of the population,
i.e., predator, is accountable for the intensification and the prey is responsible for
the diversification. If the prey follows the Levy motion and the predator follows
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the Brownian motion, then we get proportional velocity (≈1). Mathematically,
when 1

3 Tmax < t < 2
3 Tmax. For the first part of the population:

~stepi = ~RL ⊗ (~TPREM
i − ~RL ⊗

−−→
TPMi) (6)

−−→
TPMi =

−−→
TPMi + K.~R×~stepi (7)

Here, the ~RL= vector includes arbitrary numbers related to the Levy motion. As in
the Levy distribution, the step size is very small, hence this movement represents
diversification.
In the second half population MPA consider

~stepi = ~RB ⊗ (~RB ⊗ ~TPREM
i −−−→TPMi) (8)

−−→
TPMi =

−−→
TPMi + K.C×~si (9)

C =
(

1− t
Tmax

)( 2t
Tmax ) is a control parameter that commands the step size of

movements of the predator. The predator moves according to the Brownian
motion and the prey follow the predator for its position updates.

• Stage 3: If the proportional velocity ratio is low, i.e., the predator is moving
faster in comparison to the prey. This situation occurs in the last iterations of
optimization, and is related to diversification. The predator adopts the Levy
motion in the case of low proportional velocity (=0.1). This can be given in the
following way, if t > 2

3 Tmax

−−→
stepi =

−→
R L ⊗

(−→
R L ⊗

−→
T PREM

i −−−→TPMi

)
i = 1, ..., n (10)

−−→
TPMi =

−→
T PREM

i + K.C× −−→stepi (11)

These three stages present different steps of predators in finding their prey.
According to their behaviour, we consider that the predator follows both the
Brownian and Levy motion equally. In stage I, the predator is still, in stage II it
follows the Brownian motion and in the last stage it moves in the Levy motion.
These same things are also followed by the prey, as the prey is also a predator for
some other marine creatures. For example, bony fish and marine invertebrates
are prey for tuna fish and themselves a prey for silky sharks.

2. Fish Aggregating Device Effect (FAD): FAD is a floating device made by humans to
find some specific marine creatures in tropical regions. It also affects marine animals
in many other ways. According to [25], 80% of the lifespan of sharks has been spent
around FAD and the rest in jumping in various dimensions to find prey. These FADs
can be considered as local optima trapping agents of marine predators. The effect of
FADs can be given mathematically as:

−−→
TPMi =





−−→
TPMi + C

[−→
L b +

−→
R ×

(−→
U b −

−→
L b

)]
×−→A i f r ≤ f

−−→
TPMi + [ f (1− q) + q]

(−−→
TPMr1 −

−−→
TPMr2

)
i f r > f

(12)

Here, f is the probability of the FAD effect on any optimizer and taken as f = 0.2,
q = a is the random number between 0 and 1, and r1 and r2 represent two arbitrary
indexes of the prey matrix.

−→
A =

0 i f r < 0.2
1 i f r > 0.2

(13)
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3. Memory of marine predators: Almost all marine predators are good at memorizing
their location of successful foraging, which is referred to as the memory saving term
in MPA. When the prey updates their location and the FAD effect is implemented,
the fitness of the prey matrix has evaluated whether to update the elite matrix or not
and the most fit matrix is chosen. This step also helpful in the improvement of the
solution, according to [26].

3. Development of Chaos Embed Marine Predator Algorithm

This section presents the development of the chaos embed marine predator algorithm
(CMPA). The following are the procedural steps for the development.

1. The MPA has been divided into three phases. During the first phase, the search
agents take big leaps and try to acquire as much space as they can; hence, in a way
it can be said that this phase is primarily governed by exploratory action. Likewise,
during the final phase, the exploration virtue of the algorithm becomes weakened and
the exploitation virtue becomes enhanced. In a way, the starting phase that governs
1/3 of the iterations and the last phase that governs last 1/3 phase of iterations is
solely dedicated to the exploration and exploitation virtues. Hence, any modifications
in these either enhance the exploration or exploitation virtue of MPA. Considering
this fact, the authors are motivated to develop a new position update mechanism that
can affect both virtues simultaneously.

2. During the intermediate phase, where the both processes are simultaneously pro-
gressing, a position update mechanism that can search alternative solutions is acutely
required. Considering this argument, we propose a chaotic function-inspired position
update mechanism that helps the algorithm to transit swiftly between exploration
and exploitation phases.

(a) The generation of β-chaotic sequence through the initialization of the parameters
(ν, µ, J1, J2) is carried out. A generalized equation for the β distribution, as given in
following expression, is as follows:

β(J; ν, µ, J1, J2) =

{(
J−J1
Jc−J1

)ν( J2−J
J2−Jc

)µ
i f J ∈ [J1, J2]

0 otherwise
(14)

where (ν, µ, J1, J2) ∈ R and J1 < J2. The β-Chaotic sequence at any iteration t will be
given as:

Jt+1 = kβ(Jt; ν, µ, J1, J2) (15)

(b) For the first part of the population, during the second phase an update mechanism is
introduced and represented as:

~stepi = ~RL ⊗ (~TPREM
i − ~RL ⊗

−−→
TPMi) (16)

−−→
TPMi =

−−→
TPMi + K.~R×~stepi (17)

Here, the ~RL= vector includes the arbitrary numbers related to the Levy motion.
As in the Levy distribution the step size is very small, this movement represents
diversification.

(c) More precisely, the update in prey position can be governed by by the following
decision-making loop. −−→

TPMi =
−−→
TPMi + K.~J ×~stepi (18)

In this modification, R has been replaced by Equation (15). This implies that for every
iteration there will a new chaotic number is assigned for making a decision process.
Hence, the decision for the position update is handled with the help of the chaotic
function instead of a random function that is normally distributed. Pseudo code of
the proposed algorithm is depicted in Algorithm 1.
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Algorithm 1 Pseudo code of proposed CMPA.

1: Initialize the search agent number, maximum iteration Tmax and FAD probability
2: while Termination criterion is not met, start the algorithm loop do

if(t < Tmax/3)
3: Update prey based on phase 1 Equations (4) and (5).
4: else if(Tmax/3 > t < 2 ∗ Tmax/3)
5: Update prey based on phase 2 Equations (8), (9) and (15)–(18).
6: Else update prey based on phase 3 Equations (10) and (11).
7: End if loop
8: Accomplish Memory saving and update TPREM

9: Apply FAD effect and update based on the last phase as per Equations (12) and (13)
10: end while
11: Print the values of Fitness, Accuracy and Attributes.

Discussion

During stage 2, both prey and predator moves at the same pace; hence, there is a
chance of local minima stagnation as the exploration and exploitation rates are almost same.
Hence, to keep the exploration and exploitation phase alive the position update equation
based on a random number has been replaced with chaotic numbers, which are obtained
from the sequence generation as per the definition in Equations (14) and (15).

Embedding chaos at this stage, when the velocity of prey and predator is almost the
same, is more meaningful because these search agents can be directed to a local minima spot
without changing or exploring in the different direction. Hence, it is quite necessary to keep
the gradient of the velocity agile. This fact also motivates the experimental investigation of
embedding chaos in other phases. In this work, our focus is to embed chaos and observe
the impact of this addition only on the optimization performance of the algorithm in the
binary domain. The following section presents the problem formulation part for evaluation
of the proposed CMPA.

4. Problem Formulation

From the evaluation perspective, the feature selection problem can be classified into
two broad categories, in the first type of approach, which is based on filter-based methods,
an effective subset of the feature is selected and its performance is evaluated; finally,
the algorithm suggests the optimal subset. In this type of approach, the subset is not
evaluated over the training samples. On the other hand, the wrapper feature selection-
based approaches evaluate the feature subset and performance validation is conducted
with testing and validation of the data sets. Feature selection is always considered as a
multi objective optimization problem where objectives can be the maximization of the
classification accuracy with the minimum number of feature subsets. It appears that both
of the objectives are conflicting in nature. Hence, the objective function employed in this
study is a weighted combination of these objectives.

ObjectiveFuncion(J) = w1 × Er(D) + w2 ×
Rc

N
(19)

where Er(D) is the error in the classification rate of a given classifier; in this work, we have
employed the K-nearest Neighbor classifier (KNN), and w1 and w2 are the weights where
w1 = 1− w2. The weighted combination philosophy has been adapted from reference [11].

5. Results and Discussions

For comparing the proposed variant we draw a comparison on the basis of the accuracy
of the classification, fitness values obtained by algorithm and average attributes obtained
from the optimization runs. In order to access the performance of the proposed algorithm,
17 classical data sets have been chosen. The details of data sets are shown in Table 1.
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We have reported our results in two sets. In set-1, a comparison is made with contem-
porary algorithms, and in set-2 the chaotic algorithms are simulated and their comparative
analysis is presented.

5.1. Experimental Details

Designing a mechanism that chooses the optimal feature from the given sets is a very
important procedure, as the randomness can alter the results in a very effective manner;
hence, a rigorous experimental analysis has been carried out for choosing the number of
iterations, number of search agents and both chaotic marine algorithms, along with the
marine algorithm, have been analyzed for many independent runs. We choose the Vote,
Tic-Tac-Toe, Sonar, Penguin, Lymphography, Exactly, CongressEw and Breast Cancer for
analysis. In this analysis, we change the values of search agents from (5, 10 and 20) and
number of maximum iterations (20, 30, 50 and 70). From the analysis conducted in this
experiment, we have adopted the numbers of search agents to be 10 and the maximum
iteration number is 100. This analysis is conducted in such a manner that the parametric
impact can be observed on the accuracy of classification and fitness values. We observe
that in choosing these values of the parameters, the accuracy of the classification is not
compromised and fitness values are also optimal. Further, the experimental details of this
study has been shown in Figure 2.

Table 1. Data sets used for experimental verification.

S. No. Data Set No. of Attributes No. of Objects

1 Breastcancer 9 699

2 Breast EW 30 569

3 CongressEw 16 435

4 Exactly 13 1000

5 Exactly2 13 1000

6 HeartEW 13 270

7 IonosphereEW 34 351

8 KrvskpEw 36 3196

9 Lymphography 18 148

10 Penguin 325 73

11 SonarEw 60 208

12 SpectEw 22 267

13 Tic-tac-toe 9 958

14 Vote 16 300

15 WaveformEw 40 5000

16 Wine 13 178

17 Zoo 16 101

Comparison with Previously Published Approaches

For investigation, the comparison is made with some of the previously reported
approaches in the classification domain, where the objective function depicted in the
previous section has been considered for dealing with the KNN classifier. The comparison
results of the fitness values has been shown in Table 2. It is worth mentioning here that the
simulation process is time consuming, hence the mean values of 10 runs are reported in the
table. We observe that the fitness values for all the test data is optimal for the proposed
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CMPA and in some cases these values are optimal. This fact establishes the applicability
of CMPA in the binary domain. For example, in the case of CongressEw data, the fitness
values are optimal for both CMPA and MPA.

Figure 2. Classification of feature selection algorithms.

Table 2. Fitness value.

Data Set MPA [21] CMPA ALO [27] GA [28] PSO [29]

Breastcancer 0.05 0.04 0.02 0.03 0.03

Breast EW 0.06 0.06 0.03 0.04 0.03

CongressEw 0.02 0.02 0.05 0.04 0.04

Exactly 0.16 0.12 0.29 0.28 0.28

Exactly2 0.21 0.21 0.24 0.25 0.25

HeartEW 0.19 0.19 0.12 0.14 0.15

IonosphereEW 0.07 0.07 0.11 0.13 0.14

KrvskpEw 0.03 0.03 0.05 0.07 0.05

Lymphography 0.13 0.13 0.14 0.17 0.19

Penguin 0.03 0.03 0.14 0.22 0.22

SonarEw 0.10 0.10 0.18 0.13 0.13

SpectEw 0.17 0.17 0.12 0.14 0.13

Tic-tac-toe 0.22 0.23 0.22 0.24 0.24

Vote 0.03 0.03 0.04 0.05 0.05

WaveformEw 0.21 0.21 0.021 0.2 0.22

Wine 0.03 0.03 0.02 0.01 0.02

Zoo 0.02 0.02 0.07 0.08 0.1
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Further, the comparative analysis of the classification accuracy has also been conducted
with previously published algorithms; we observed that the classification accuracy of the
proposed algorithm is better than MPA and better than GA, PSO and ALO. These results
are shown in Table 3. For example, in the case of the ZOO data base, we observed that
the classification accuracy of the CMPA is about 98%, on the other hand, the classification
accuracy has been substantially compromised in ALO (91%), GA (88%) and PSO (83%).

It is also important to showcase the fact that classification accuracy has been achieved
without compromising feature size. Hence, the attributes (feature) selected by every
algorithm in each run has been averaged and showcased in Table 4. These values are
very important indicators, as it can be easily observed from the table that the number of
features selected by the algorithm is optimal in many cases, and this happens without
compromising the classification accuracy.

Table 3. Comparative analysis of classification accuracy.

Data Set MPA CMPA ALO GA PSO

Breastcancer 0.96 0.96 0.96 0.96 0.95

Breast EW 0.94 0.94 0.93 0.94 0.94

CongressEw 0.98 0.98 0.93 0.94 0.94

Exactly 0.84 0.89 0.66 0.67 0.68

Exactly2 0.78 0.78 0.75 0.76 0.75

HeartEW 0.81 0.82 0.83 0.82 0.78

IonosphereEW 0.93 0.93 0.87 0.83 0.84

KrvskpEw 0.97 0.97 0.96 0.92 0.94

Lymphography 0.87 0.87 0.79 0.71 0.69

Penguin 0.97 0.97 0.63 0.7 0.72

SonarEw 0.90 0.90 0.74 0.73 0.74

SpectEw 0.83 0.83 0.8 0.78 0.77

Tic-tac-toe 0.78 0.78 0.73 0.71 0.73

Vote 0.97 0.97 0.92 0.89 0.89

WaveformEw 0.79 0.79 0.77 0.77 0.76

Wine 0.97 0.97 0.91 0.93 0.95

Zoo 0.98 0.98 0.91 0.88 0.83

Table 4. Optimized mean of attributes.

Data Set MPA CMPA ALO GA PSO

Breastcancer 3.44 3.38 6.28 5.09 5.72

Breast EW 7.02 6.22 16.08 16.35 16.56

CongressEw 4.63 4.37 6.98 6.62 6.83

Exactly 4.75 5.61 6.62 10.82 9.75

Exactly2 2.10 2.05 10.7 6.18 6.18

HeartEW 5.07 5.73 10.31 9.49 7.94

IonosphereEW 7.39 6.88 9.42 17.31 19.18

KrvskpEw 18.82 15.94 24.7 22.43 20.81
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Table 4. Cont.

Data Set MPA CMPA ALO GA PSO

Lymphography 5.30 5.89 11.05 11.05 8.98

Penguin 63.83 60.43 164.13 177.13 178.75

SonarEw 20.78 16.23 37.92 33.3 31.2

SpectEw 5.29 5.00 16.15 11.75 12.5

Tic-tac-toe 5.60 5.53 6.99 6.85 6.61

Vote 3.81 3.61 9.52 6.62 8.8

WaveformEw 22.41 19.79 35.72 25.28 22.72

Wine 4.55 4.30 10.7 8.63 8.36

Zoo 4.92 4.78 13.97 10.11 9.74

5.2. Comparative Analysis of MPA and CMPA

For conducting this analysis, we have compared the optimization run results on the
basis of attributes selected by the optimization algorithms, i.e., MPA and CMPA, on the
basis of the fitness function values and on the basis of the classification accuracy achieved
for different data sets. Table 5 showcases the results of the Wilcoxon rank-sum test [30]
between MPA, and CMPA and the p-values are depicted in the table. This test is conducted
with 95% confidence interval (5% significance level).

Table 5. Statistical significance test with MPA.

Data Set Attributes
Fitness Classification Attributes

MPA CMPA MPA CMPA MPA CMPA

Breastcancer
Mean Values 4.48 × 10−2 4.52 × 10−2 9.60 × 10−1 9.60 × 10−1 3.44 3.38

p-values 1.00 5.82 × 10−1 1.00 5.69 × 10−1 1.00 9.03 × 10−1

Breast EW
Mean Values 5.88 × 10−2 6.13 × 10−2 9.40 × 10−1 9.40 × 10−1 7.02 6.22

p-values 1.00 4.32 × 10−1 1.00 5.03 × 10−1 1.00 1.81 × 10−1

CongressEw
Mean Values 2.02 × 10−2 2.12 × 10−2 9.80 × 10−1 9.80 × 10−1 4.63 4.37

p-values 1.00 3.48 × 10−1 1.00 5.80 × 10−1 1.00 5.08 × 10−1

Exactly
Mean Values 1.16 × 10−1 1.57 × 10−1 8.40 × 10−1 8.90 × 10−1 4.75 5.61

p-values 1.00 2.35 × 10−1 1.00 2.35 × 10−1 1.00 3.10 × 10−1

Exactly2
Mean Values 2.15 × 10−1 2.15 × 10−1 7.80 × 10−1 7.80 × 10−1 2.10 2.05

p-values 1.00 2.35 × 10−1 1.00 2.35 × 10−1 1.00 7.35 × 10−1

HeartEW
Mean Values 1.86 × 10−1 1.92 × 10−1 8.10 × 10−1 8.20 × 10−1 5.07 5.73

p-values 1.00 1.26 × 10−1 1.00 1.10 × 10−1 1.00 2.07 × 10−2

IonosphereEW
Mean Values 6.60 × 10−2 7.05 × 10−2 9.30 × 10−1 9.30 × 10−1 7.39 6.88

p-values 1.00 5.41 × 10−2 1.00 6.39 × 10−2 1.00 4.41 × 10−1

KrvskpEw
Mean Values 3.41 × 10−2 3.01 × 10−2 9.70 × 10−1 9.70 × 10−1 1.88 × 101 1.59 × 101

p-values 1.00 2.67 × 10−1 1.00 1.55 × 10−1 1.00 5.65 × 10−2
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Table 5. Cont.

Data Set Attributes
Fitness Classification Attributes

MPA CMPA MPA CMPA MPA CMPA

Lymphography
Mean Values 1.28 × 10−1 1.29 × 10−1 8.70 × 10−1 8.70 × 10−1 5.30 5.89

p-values 1.00 6.62 × 10−1 1.00 6.64 × 10−1 1.00 2.18 × 10−1

Penguin
Mean Values 2.66 × 10−2 2.68 × 10−2 9.70 × 10−1 9.70 × 10−1 6.38 × 101 6.04 × 101

p-values 1.00 5.88 × 10−1 1.00 1.00 1.00 4.57 × 10−1

SonarEw
Mean Values 1.03 × 10−1 1.03 × 10−1 9.00 × 10−1 9.00 × 10−1 2.08 × 101 1.62 × 101

p-values 1.00 5.43 × 10−1 1.00 9.67 × 10−1 1.00 3.97 × 10−3

SpectEw
Mean Values 1.69 × 10−1 1.66 × 10−1 8.30 × 10−1 8.30 × 10−1 5.29 5.00

p-values 1.00 4.80 × 10−1 1.00 4.58 × 10−1 1.00 6.36 × 10−1

Tic-tac-toe
Mean Values 2.26 × 10−1 2.20 × 10−1 7.80 × 10−1 7.80 × 10−1 5.60 5.53

p-values 1.00 3.19 × 10−1 1.00 3.19 × 10−1 1.00 5.79 × 10−1

Vote
Mean Values 3.50 × 10−2 3.19 × 10−2 9.70 × 10−1 9.70 × 10−1 3.81 3.61

p-values 1.00 1.73 × 10−1 1.00 1.08 × 10−1 1.00 8.39 × 10−1

WaveformEw
Mean Values 2.11 × 10−1 2.11 × 10−1 7.90 × 10−1 7.90 × 10−1 2.24 × 101 1.98 × 101

p-values 1.00 7.76 × 10−1 1.00 9.89 × 10−1 1.00 1.33 × 10−1

Wine
Mean Values 3.33 × 10−2 3.19 × 10−2 9.70 × 10−1 9.70 × 10−1 4.55 4.30

p-values 1.00 7.62 × 10−1 1.00 7.41 × 10−1 1.00 5.43 × 10−1

Zoo
Mean Values 2.32 × 10−2 2.21 × 10−2 9.80 × 10−1 9.80 × 10−1 4.92 4.78

p-values 1.00 4.22 × 10−1 1.00 3.42 × 10−1 1.00 5.43 × 10−1

The column entry, which indicates value 1 in the p-values column, is considered as
the native algorithm, from which the statistical comparison is executed. Here, MPA is
considered as native algorithm and the rank-sum test calculation has been executed between
MPA and the proposed CMPA. Hence, the results that obtained 0.05 were considered as a
different distribution. From the entries depicted in the table, it has been observed that the
CMPA provides competitive results when compared with MPA, and provides an optimal
values of attributes, fitness function values and classification accuracies for almost all
data sets. This fact advocates the applicability of a proposed algorithm on the feature
selection problem.

5.3. Comparative Analysis of Performance of the Proposed CMPA with Other Chaotic Algorithms

Further, it has been an established fact that amending the chaos in the metaheuristic
algorithms improvises the optimization efficiency in the binary domain. In order to in-
vestigate this fact, some recently published algorithms are considered for the evaluation
of the performance of the proposed CMPA. These algorithms are the enhanced chaotic
grasshopper optimization algorithm (ECGOA) (with sine map) [31], sinusoidal bridging
mechanism-based grasshopper algorithm (with sine map) [32] and enhanced chaotic ar-
tificial bee colony algorithm (ECABC) (with sine map) [33]. The binary version of these
chaotic algorithms are obtained, as per reference [11].
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For showcasing the impact of chaos on the performance of these algorithms, the
classification accuracy along with the mean fitness attribute selected by the algorithms
is depicted in Table 6. From the table it has been observed that for majority of the data
sets the classification accuracy is very competitive and that is with a smaller number of
selected features.

Table 6. Comparative analysis of performance with chaotic algorithms.

Data Set Parameter MPA CMPA ECGOA [31] SFECGOA [32] ECABC [33]
Mean (Feature) 3.44 3.38 3.54 3.65 6.74

Breastcancer
Classification 0.96 0.96 0.95 0.94 0.95

Mean (Feature) 7.02 6.22 7.29 7.56 7.25
Breast EW

Classification 0.94 0.94 0.94 0.93 0.93
Mean (Feature) 4.63 4.37 4.44 4.56 4.92

CongressEw
Classification 0.98 0.98 0.97 0.98 0.97

Mean (Feature) 4.75 5.61 5.68 5.92 6.01
Exactly

Classification 0.84 0.89 0.85 0.84 0.83
Mean (Feature) 2.10 2.05 2.21 2.35 2.47

Exactly2
Classification 0.78 0.78 0.77 0.78 0.79

Mean (Feature) 5.07 5.73 5.65 4.98 5.24
HeartEW

Classification 0.81 0.82 0.8 0.8 0.8
Mean (Feature) 7.39 6.88 7.21 7.46 7.15

IonosphereEW
Classification 0.93 0.93 0.92 0.91 0.93

Mean (Feature) 18.82 15.94 18.26 19.24 18.25
KrvskpEw

Classification 0.97 0.97 0.95 0.96 0.96
Mean (Feature) 5.30 5.89 5.48 5.98 5.77

Lymphography
Classification 0.87 0.87 0.86 0.86 0.86

Mean (Feature) 63.83 60.43 64.25 64.98 69.32
Penguin

Classification 0.97 0.97 0.97 0.95 0.96
Mean (Feature) 20.78 16.23 21.56 23.87 25.36

SonarEw
Classification 0.90 0.90 0.89 0.9 0.9

Mean (Feature) 5.29 5.00 5.24 5.63 5.41
SpectEw

Classification 0.83 0.83 0.82 0.85 0.83
Mean (Feature) 5.60 5.53 5.98 5.72 5.69

Tic-tac-toe
Classification 0.78 0.78 0.76 0.76 0.75

Mean (Feature) 3.81 3.61 3.89 3.95 3.63
Vote

Classification 0.97 0.97 0.96 0.95 0.96
Mean (Feature) 22.41 19.79 23.54 25.36 23.01

WaveformEw
Classification 0.79 0.79 0.77 0.78 0.78

Mean (Feature) 4.55 4.30 5.65 4.35 4.69
Wine

Classification 0.97 0.97 0.96 0.96 0.96
Mean (Feature) 4.92 4.78 4.98 4.65 4.79

Zoo
Classification 0.98 0.98 0.97 0.97 0.97

Further, as proof, the statistical significance test has been conducted for comparison
of the proposed algorithm with other chaotic algorithms. The results of the mean feature
obtained from the optimization runs along with the p-values of the rank-sum test have
been showcased in Table 7. The following points are observed:
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Table 7. Statistical significance analysis of CMPA with chaotic algorithms.

Data Set Parameter CMPA ECGOA SFECGOA ECABC
Mean (Feature) 3.38 3.54 3.65 6.74

Breastcancer p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 6.22 7.29 7.56 7.25
Breast EW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 4.37 4.44 4.56 4.92
CongressEw p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.61 5.68 5.92 6.01
Exactly p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 2.05 2.21 2.35 2.47
Exactly2 p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.73 5.65 4.98 5.24
HeartEW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 6.88 7.21 7.46 7.15
IonosphereEW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 15.94 18.26 19.24 18.25
KrvskpEw p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.89 5.48 5.98 5.77
Lymphography p-values 1.00 4.40 × 10−8 6.99 × 10−8 1.80 × 10−8

Mean (Feature) 60.43 64.25 64.98 69.32
Penguin p-values 1.00 2.18 × 10−8 1.96 × 10−8 2.80 × 10−8

Mean (Feature) 16.23 21.56 23.87 25.36
SonarEw p-values 1.00 2.18 × 10−8 1.96 × 10−8 2.80 × 10−8

Mean (Feature) 5.00 5.24 5.63 5.41
SpectEw p-values 1.00 6.80 × 10−8 2.48 × 10−8 6.80 × 10−8

Mean (Feature) 5.53 5.98 5.72 5.69
Tic-tac-toe p-values 1.00 4.40 × 10−8 2.48 × 10−8 6.80 × 10−8

Mean (Feature) 3.61 3.89 3.95 3.63
Vote p-values 1.00 6.80 × 10−8 4.40 × 10−8 2.48 × 10−8

Mean (Feature) 19.79 23.54 25.36 23.01
WaveformEw p-values 1.00 2.48 × 10−8 4.40 × 10−8 6.80 × 10−8

Mean (Feature) 4.30 5.65 4.35 4.69
Wine p-values 1.00 2.48 × 10−8 2.80 × 10−8 3.20 × 10−8

Mean (Feature) 4.78 4.98 4.65 4.79
Zoo p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

• The mean values of features for 15 data sets are found optimal. Only the Zoo data set
has optimal results for SFECGOA, and the HeartEW data set has the ECABC. This fact
suggests that the selection of features without compromising accuracy can be possible
with the proposed CMPA.

• Inspecting the p-values obtained from the Wilcoxon rank-sum test [30], it has been
observed that all the algorithms have p-values less than 0.05. Hence, it can be said that
a statistical significance exists in the results for obtaining the mean attributes. This
fact indicates that if we repeat this experiment again with the same parameters, we
will obtain the same results.

• The graphical analysis of the results obtained from the optimization process has been
depicted with the help of bar charts in Figures 3 and 4. From these figures it is evident
that the optimization capability of the proposed CMPA is superior to other algorithms.

• From the analysis conducted in this experiment, it has been observed that the chaotic
position update mechanism in MPA yields better results as compared with the con-
temporary chaotic algorithms that uses chaos as a bridging mechanism. In short,
the modification suggested in the MPA is meaningful and demonstrates a positive
impact on the optimization performance of the proposed algorithm.
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(a) Breastcancer (b) Breast EW

(c) Congress EW (d) Exactly

(e) Exactly 2 (f) HeartEW

(g) IonosphereEW (h) KrvskpEw

Figure 3: Graphical Representation of the Optimization Results (Set-1)

17

Figure 3. Graphical representation of the optimization results (set-1).
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(a) Lymphography (b) SonarEw

(c) SpectEw (d) Tic-tac-toe

(e) Vote (f) WaveformEw

(g) Wine (h) Zoo

Figure 4: Graphical Representation of the Optimization Results (Set-2)

19

Figure 4. Graphical representation of the optimization results (set-2).

6. Conclusions

This paper reports an application of the chaotic marine predator algorithm in a feature
selection task; a binary version of the chaotic MPA algorithm is proposed in this work
by altering the decision making of the position update phase of stage-2 with a chaotic
sequence. We have changed the decision process by inculcating chaotic numbers generated
from a chaotic sequence. Further, the proposed binary algorithm has been tested over
17 data sets and the algorithm analysis has been performed with the native algorithm.
We observed that the native algorithm is strong and robust but some modifications in the
position update process make it more suitable for the feature selection task. The results
are reported with the help of different analyses. The following are the major conclusions
drawn from this work.

1. The algorithm analysis has been conducted on the basis of the number of search
agents selected and the number of iterations selected for feature selection. After this

92



Mathematics 2022, 10, 1411

analysis, the optimal values of design parameters have been selected for executing
the feature selection task.

2. A comparison with a recently published algorithm and state-of-the-art algorithms
has been conducted to showcase the efficacy of the algorithm; the fitness value of the
objective function along with classification accuracy have been reported in order to
validate the efficacy of the proposed modification.

3. A comparison of some chaotic algorithms along with the proposed CMPA has also
been reported to showcase the feasibility of CMPA. It is observed that the classification
accuracy of the algorithm has not been compromised and the number of features
obtained from the optimization runs are found optimal for the majority of cases.

4. Graphical analysis along with statistical comparison of the proposed algorithm with
others revealed that a modification in the stage-2 of MPA algorithm has some positive
implications on the optimization performance of MPA.

Application of chaos in multiple phases with normalization and scaled functions will
be evaluated in the future.
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Abstract: In this paper, a hybrid gradient simulated annealing algorithm is guided to solve the
constrained optimization problem. In trying to solve constrained optimization problems using
deterministic, stochastic optimization methods or hybridization between them, penalty function
methods are the most popular approach due to their simplicity and ease of implementation. There
are many approaches to handling the existence of the constraints in the constrained problem. The
simulated-annealing algorithm (SA) is one of the most successful meta-heuristic strategies. On the
other hand, the gradient method is the most inexpensive method among the deterministic methods.
In previous literature, the hybrid gradient simulated annealing algorithm (GLMSA) has demonstrated
efficiency and effectiveness to solve unconstrained optimization problems. In this paper, therefore,
the GLMSA algorithm is generalized to solve the constrained optimization problems. Hence, a new
approach penalty function is proposed to handle the existence of the constraints. The proposed
approach penalty function is used to guide the hybrid gradient simulated annealing algorithm
(GLMSA) to obtain a new algorithm (GHMSA) that finds the constrained optimization problem. The
performance of the proposed algorithm is tested on several benchmark optimization test problems
and some well-known engineering design problems with varying dimensions. Comprehensive
comparisons against other methods in the literature are also presented. The results indicate that
the proposed method is promising and competitive. The comparison results between the GHMSA
and the other four state-Meta-heuristic algorithms indicate that the proposed GHMSA algorithm is
competitive with, and in some cases superior to, other existing algorithms in terms of the quality,
efficiency, convergence rate, and robustness of the final result.

Keywords: nonlinear function; constrained optimization; hybrid algorithm; global optima; line
search; gradient method; meta-heuristics; simulated annealing algorithm; constraint handling; penalty
function; evolutionary computation; numerical comparisons

MSC: 65D05

1. Introduction

Optimization problems arise in different applications fields, such as technical sciences,
industrial engineering, economics, networks, chemical engineering, etc. See for example [1–5]
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In general, the constrained optimization problem can be formulated as follows:

min
x∈Rn

f (x),

s.t gl (x) ≤ 0, l = 1, 2, . . . , q,
hd(x) = 0, d = 1, 2, . . . , m, m < n
ai ≤ xi ≤ bi , i = 1, 2, . . . , n,

(1)

where ai ∈ {R∪ {−∞}}, and bi ∈ {R∪ {∞}}.
The functions f (x), gl(x), hj(x) : Rn → R are real valued functions, n denotes the

number of variables in x, q is the number of inequality constraints, m is the number of
equality constraints, a is a lower bounded on x and b is an upper bounded on x. The
objective function f , the inequality constraints gl , l = 1, 2, . . . , q, and the equality constraint
hd , d = 1, 2, . . . , m, are assumed to be continuously differentiable nonlinear functions.

Recently, there has been great development of optimization algorithms that are pro-
posed to find global solutions to optimization problems. See for example [2,6–8].

The global optimization methods are used to prevent convergence to local optima and
increase the probability of finding the global optimum [9].

The numerical global optimization algorithms can be classified into two classes: deter-
ministic and stochastic methods. In stochastic methods, the minimization process depends
partly on probability. In deterministic methods, in contrast, no probabilistic information is
used [9].

So, for finding the global minimum of the unconstrained problem by using determin-
istic methods, it needs an exhaustive search over the feasible region of the function f and
additional assumptions for the function f . On the contrary, to find the global minimum of
the unconstrained problems, by using stochastic methods, one can prove the asymptotic
convergence in probability, i.e., these methods are asymptotically successful with prob-
ability 1, see for example [10–12]. In general, the computational results of the stochastic
methods are better than those of the deterministic methods [13].

Due to those reasons, a meta-heuristics strategy (stochastic method) is used to guide
the search process [13]. Hence a meta-heuristic is a technique designed for solving a
problem more quickly when classic methods are too slow, or for finding an approximate
solution when classic methods fail to find any exact or near-exact solution. This is achieved
by trading optimality, completeness, accuracy, or precision for speed [14–16].

The simulated-annealing algorithm (SA) is one of the most successful meta-heuristic
strategies. In fact, the numerical results display that the simulated annealing technique is
very efficient and effective for finding the global minimizer. See, for example, [2,5,17–19].

On the other hand, the gradient method is the most inexpensive method for finding
a local minimizer of a continuously differentiable function. It has been proved that the
gradient algorithm converges locally to a local minimizer [20]. Therefore, if a line-search
(L) is added to the gradient method (G) as a globalization strategy, the resulting algorithm
is globally convergent to a local minimizer (GL) [9,21,22].

Hence, when the simulated-annealing algorithm (SA) as a global optimization algo-
rithm is combined with the line-search gradient method (GL) as a globally convergent
method, the result is the hybrid gradient simulated annealing algorithm (GLMSA) [23].
The idea behind this hybridization is to gain the benefits and advantages of both the GL
algorithm and the MSA algorithm.

As a matter of fact, the numerical results demonstrated that the (GLMSA) algorithm
is a very efficient, effective and strong competitor for finding the global minimizer. For
example, Table 4 of [23] shows that the GL algorithm is able to reach the optimum point of
all test problems whose objective functions have only one minimum point (no local minima
except the global one. i.e., convex function) and it is stuck at a local minimum for test
problems whose objective functions have several local minima (with one global minimum,
i.e., non-convex function). Table 6 of [23] demonstrates that the SMA modified simulated
annealing algorithm finds the global minimum of all test problems from any starting point
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of the feasible search space S. However, the GLMSA hybrid gradient simulated annealing
algorithm is faster than MSA; also, GLMSA is efficient and effective compared to other
meta-heuristic algorithms.

All the above have motivated and encouraged us to generalize the GLMSA algorithm
to solve Problem (1).

The literature review analysis shows that the handling constraint which is based on a
penalty function is considered the most popular implemented mechanism; this is due to its
simplicity and ease of implementation [24–27]. A penalty technique transforms Problem (1)
into an unconstrained problem by adding the penalty term of each constraint violation
to the objective function value. The remainder of this paper is organized as follows. The
next section provides a brief description of the GLMSA algorithm. Constraint handling,
the penalty function method, proposed penalty method and interior-point algorithm are
presented in Section 3. A guided hybrid simulated annealing algorithm to solve constrained
problems is presented in Section 4. Numerical results are given in Section 5. Section 6
contains some concluding remarks.

Note: Section Abbreviations provides a list of the abbreviations and symbols which
are used in this paper.

2. Summarized Description of GLMSA Algorithm

The GLMSA algorithm has been designed for solving unconstrained optimization
problems; in this paper the GLMSA algorithm is generalized to solve Problem (1). The
GLMSA algorithm contains two approaches to find a new step at each iteration, the first
one is the gradient method. In this approach, a candidate point is generated and it might
be accepted or rejected. If the objective function f is decreased at this point, then it will be
accepted, otherwise, the second approach will be used to generate another point.

2.1. The First Approach (Gradient Method)

The gradient method solves an unconstrained optimization problem iteratively, such
that at each iteration, a step in the direction of the negative gradient is computed and
added to the current point as follows. Given an initial guess x0 ∈ Rn, the gradient method
generates a sequence {xk}, k ≥ 0 of the objective function of the unconstrained optimization
problem such that:

xk+1 = xk + dk , (2)

where dk is the first step, and it is defined by:

dk = −|αk|g(xk ), (3)

where g(xk ) the gradient vector of the function f at point xk and αk is a step length along
the negative gradient direction (−g(xk )). The step length αk along the −g(xk ) is defined by:

αk =
f (xk)

‖ g(xk ) ‖2
2

. (4)

The G gradient algorithm is listed in Algorithm 1 of [23]. The step length λk that is
computed by the backtracking line-search approach is very important for global conver-
gence of the gradient method. The following section presents a brief description of the
backtracking line-search approach for globalizing the gradient method.

Globalizing the First Approach (Gradient Method)

To make the gradient method capable of finding a local minimizer x∗ of the objective
function of the unconstrained optimization problem from any starting point x0 , the G
algorithm (gradient algorithm) is combined with the L algorithm (line-search algorithm) in
order to obtain globally convergent algorithm GL. This algorithm is listed in Algorithm 1
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below and it contains the first approach (gradient algorithm G) and the backtracking
line-search algorithm L.

Algorithm 1 Line-Search Gradient Algorithm “GL”

Input: f : Rn → R, f ∈ C1, γ ∈ (0, 1), k = 0, a starting point xk ∈ Rn and ε > 0.
Output: x∗ = xac the local minimizer of f , f (x∗), the value of f at x∗

1: Set xac = x0. . xac is accepted solution.
2: Compute fac = f (xac), gac = g(xac) and dk .
3: while ‖gac‖2 > ε do . gac is the value of the gradient vector at the accepted point xac.
4: Set k = k + 1.
5: xk = xac + dk . xac is the accepted point form the previous iteration.
6: Compute fk = f (xk )
7: Set λ = 1.
8: while fk > fac + γλgT

ac dk do
9: Set λ = λ

2
10: xk = xac − λgac . in this paper the value of γ is 10−4.
11: Compute fk = f (xk )
12: end while
13: Set xac ← xk and fac ← f (xk ).
14: Compute gac = g(xac) and dk .
15: end while
16: return xac the local minimizer and its function value fac

For more details about the gradient method and the backtracking line-search ap-
proach see [23]. The second approach of the GLMSA algorithm is presented in the
following subsection.

2.2. The Second Approach (Simulated Annealing SA)

It must be noted that the modified simulated annealing algorithm in [23] contains
three alternatives to generate a new point, but in this paper, the first alternative is consid-
ered to generate a new point. This procedure is very important for reducing the function
evaluations from three times at each iteration to one function evaluation for every iteration,
because we need to allow for more inner iterations when solving constrained optimization
problems. This procedure guarantees that the parameters of the penalty function are increas-
ing enough because it is a necessary condition for non-stationary penalty functions [28],
i.e., when k→ ∞, parameters must also go to infinity.

The second point is generated by

xk′+1 = xac + ψ′
k
, (5)

where xac is the best point which is accepted so far and ψ′
k

is the step of the second approach
and computed by Algorithm 2 below.

The gradient line-search algorithm (GL) has been listed in Algorithm 1 and a modified
simulated annealing algorithm (MSA) is illustrated by Algorithm 3.
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Algorithm 2 The second approach to generate the step ψ′
k
.

Step 1: Set k′ = 0.
Step 2: Compute ωk′ = 10(0.1∗k′).
Step 3: Generate a random vector X′k ∈ [−1, 1]n.

Step 4: Compute Di
′
k
=
−1+(1+ω′

k
)
|Xi′

k
|

ω′
k

, i = 1, 2, . . . , n. . n is the number of variables.

Step 5: Set DXi
′
k
= sign(Xi

′
k
).

Step 6: Compute DEj
′
k
= Di

′
k
∗ DX j

i .

Step 7: Compute ψi
′
k
= bi ∗ DEi

′
k
. . bi is the upper bound of the feasible search space.

Step 8: k′ ← k′ + 1.
Step 9: Repeat steps 2–8 until k′ = N. . N is the number of iterations and it is given
in advance.

Algorithm 3 Modified Simulated-Annealing “MSA”.

Input: xac, fac, N and T. . T control parameter (Temperature)
Output: xbest is the best point of N points and it value fbest

1: for k′ = 0→ N do
2: x′

k
= xac + ψ′

k
, using Equation (5).

3: Compute ∆ f = f (x′
k
)− fac.

4: if ∆ f < 0 then
5: Set xac′

k
← x′

k
, fac′

k
← f (x′

k
).

6: else
7: Generate a random number β ∈ (0, 1)

8: if β < e−
∆ f
T then

9: Set xac′
k
← x′

k
, fack

← f (x′
k
).

10: end if
11: end if
12: end for
13: return xac and its function value fac. . fac = f (xac).

where N is the maximum number of possible trials (Length Markov Chains of MSA)
and T is the control parameter (temperature). For more details about the MSA algorithm,
please, see [23].

For a detailed description of the simulated annealing algorithm SA see for exam-
ple [18,29–31].

As we have mentioned above, Algorithm 1 (gradient line-search algorithm (GL)) is
hybridized with Algorithm 3 (a modified simulated annealing algorithm (MSA)) to get the
LGMSA algorithm that solves the unconstrained optimization problem.

In the next section, the LGMSA algorithm is guided to solve Problem (1) by using
the penalty function method. There are many methods for handling the existence of the
constraints in the constrained problem.

3. Constraints Handling

The algorithms which have been proposed to solve unconstrained optimization prob-
lems are unable to deal directly with constrained optimization problems. There are several
approaches proposed to handle the existence of the constraints, see for example [27,32,33].
The most popular of them is the penalty function method.

The penalty function method is a successful technique for handling constraints [27,34,35].
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3.1. Penalty Function Methods

The penalty methods have been most widely studied and used due to their simplicity
in implementation. The major definition of the penalty function methods is the degree to
which each constraint is penalized [28]. There are several types of penalty methods that are
used to penalize the constraints in constrained optimization problems.

Three groups of penalty function methods are most popular; the first one is a group of
methods of static penalties. In these methods, the penalty parameter does not depend on the
current iteration, i.e., parameters remain constant through the evolutionary process [24,36].

The second one is a set of methods of dynamic penalties. In these methods the penalty
parameters are usually dependent on the current iteration, in other words, the penalty
parameters are functions in the iteration k, i.e., they are non-stationary. See [24,37,38].

The third is a set of methods of adaptive penalties; in this group penalty parameters
are updated for every iteration [24].

The next section presents a suggested penalty function method with dynamic and
adaptive parameters.

Proposed Penalty Function Method

This section shows how Problem (1) is transformed to an unconstrained optimization
problem which is simple bounded as follows:

min
x∈Rn

θ(x, r) = f (x) + rp(x),

s.t ai ≤ xi ≤ bi , i = 1, 2, . . . , n,
(6)

where f (x) is the original objective function in Problem (1), r is a penalty parameter. The
penalty term p(x) is defined by:

p(x) =
q

∑
l=1

(
max{0, gl (x)}

)2
+

m

∑
j=1
|hj(x)|2. (7)

The difference between the penalty function methods is in the way of defining the
penalty term and its parameter r [24].

The penalty function methods force infeasible points toward the feasible region by
step-wise increasing the penalty; r is used in the penalizing function p(x).

Therefore, the solution x∗ minimizes the objective function of Problem (6) and also
minimizes the objective function of Problem (1), i.e., as long as k → ∞ and rk → ∞, x∗

approaches the feasible region and rk p(x)→ 0 [28].
In this paper, the penalty function method has two parameters—the first one is r

which penalizes the inequality constraint that is violated , i.e., when gl (x) > 0. The second
parameter is t which penalizes the equality constraint hj(x) whose value is not equal to zero.

Accordingly, the θ(x, r) function is defined by:

θ(x, r) = f (x) +
r
2

p1(x) +
t
2

p2(x), (8)

where p1(x) =
q
∑

l=1

(
max{0, gl (x)}

)2, p2(x) =
m
∑

j=1
|hj(x)|2 and r and t are the parameters for

inequality and equality constraints respectively.
The parameters r and t are updated at each iteration k as follows.

rk+1 = rk + ϕk ∗Φk ,
tk+1 = tk + 1,

(9)

where the parameter ϕk is updated by:
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ϕk =

{
0 if gl (x) ≤ 0,
2 otherwise.

(10)

The parameter ϕk is an adaptive parameter, i.e., when the candidate solutions are
out of the feasible region then ϕk penalizes a violated constraint by multiplying the term
Φk by 2, where r0 = 1 is the initial value of r. The parameter Φ is updated as follows:
Φk+1 = Φk + 1, t0 = 1.

Note: The equality constraint is more difficult than the inequality constraint because
the size of the feasible region of the equality constraint is smaller than the size of the feasible
region of the inequality constraint. For example, f (x, y) = xy s.t h(x, y) = x2 + y2 − 1 = 0
and f (x, y) = xy s.t g(x, y) = x2 + y2 − 1 <= 0. The first problem is much harder than the
second because in the first problem the size of the feasible region is the circumference of the
circle while in the second problem, the feasible region is the whole disk. So, the parameter
t(k) must be taken carefully.

3.2. Mechanism of Working of the Penalty Function Method

The penalty method solves the general Problem (1), during a succession of uncon-
strained optimization problems.

Let us discuss two examples in order to illustrate how the parameters of the penalty
function are run.

The first example is very easy (one dimension); minimize f (x) = x2 − 3 subject to
g(x) = 0.5− 0.5x ≤ 0, where S = [−6, 6] is the search domain.

If we want to find the optimal solution of the objective function f (x) = x2 − 3 as
an unconstrained problem, it is clear that the global solution to this problem is the point
x∗ = 0, such that f (x∗) = −3, for x ∈ R, but when we want to find the optimal solution of
the objective function f (x) = x2 − 3 subject to g(x) ≤ 0, in this case, the problem is very
difficult because we have to find the point x∗ that minimizes f (x) and at the same time it
must satisfy the condition of the constraint g(x) ≤ 0, which is why we need to apply the
penalty function.

Hence, the problem f (x) = x2 − 3 subject to g(x) = 0.5− 0.5x ≤ 0 is transformed into
θ(x, r) = x + r

2 (max{0, ( 1
2 − 0.5x)}2), if g(x) > 0; (g(x) is violated), the first derivative is

computed by the function θ(x, r); dθ(x,r)
dx = 1− r

2 (
1
2 − 0.5x), then 1− r

2 (
1
2 − 0.5x) = 0; x∗ =

1− 4
r , when r = {1, 2, 3, . . . , ∞}, then x∗ = {−3,−1, −1

3 , . . . , 1}, f (x∗) = {6,−2, −26
9 . . . ,−2}

and g(x∗) = {2, 1, 2
3 , . . . , 0}, i.e., when r → ∞, x∗ → 1, g(x∗)→ 0, rp(x∗)→ 0, f (x∗)→ −2,

and θ(x∗, r)→ −2.
Hence, the optimal point is x∗ = 1, such that f (x∗) = −2 and the constraint g(x∗) = 0

is satisfied.
Figure 1 illustrates the behavior of the penalty functions; rp1(x), rp2(x) and rp3(x)

and the objective function f (x) of the original problem (constrained problem) and the
objective function θ(x, r) of the transformed problem (unconstrained problem) for all
x ∈ S = [−6, 6].

Example 2: minimize−xy s.t g(x, y) = x+ 2y− 4 ≤ 0; θ(x, y, r) = −xy+ r
2 (max{0, (x+

2y − 4)}2), if g(x, y) > 0; (g(x, y) is violated), the gradient vector is computed by the
function θ(x, y); g(x, y) = [−y + r(x + 2y − 4),−x + 2r(x + 2y − 4)], hence, (x∗, y∗) =
( 2

1− 1
4r

, 1
1− 1

4r
), then (x∗, y∗)→ (2, 1) as r → ∞; this is why it must allow for the parameters

rk and tk to increase as long as there exists a violated constraint, i.e., when a process of
searching for a solution is an infeasible region.

To ensure that the process of searching for the optimal solution remains within the
search domain, the interior-point algorithm is used. Therefore, the next section presents a
brief description of this technique.
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Figure 1. Penalty function rp(x) converges to zero VS f (x) → −2 and θ(r, x) → −2 that is the
optimal solution of the constrained problem.

3.3. Interior-Point Method

The interior-point method is used in this paper, when a simple bounded exists in the
test problem. Therefore, the interior point technique is used to ensure that the candidate
solution lies inside a feasible region. This technique is used as follows at each iteration k, a
damping parameter τk is applied to insure that xk+1 is feasible with respect to the limits
ai ≤ xi ≤ bi, i = 1, 2, . . . n and k = 1, 2, . . . M as the inner loop of Algorithm 4, ref. [39].

Algorithm 4 Guided Hybrid Modified Simulated-Annealing Algorithm (GHMSA).

Input: f (x), gl (x) and hd(x) : Rn −→ R, x0 ∈ Rn, M, T, Tf , Tout, ε, r0 , Φ0 and t0 .
1: set xac = x0 . at the beginning we accept the initial point x0 as an optimal solution.

2: compute θ(xac) = f (xac) +
rk
2 p1(xac) +

tk
2 p2(xac) . Using Formula (8).

3: set θb = θ(xac) and θ
δ
= 1. . The values of θb and θ

δ
= 1 are updated after M iterations.

4: while
(

T > Tf and θδ > ε
)

or
(

T > Tout

)
do . Tout < Tf ≤ 10−4 are as stopping

criteria.
5: for k = 0 to M do
6: compute θ(xac) = f (xac) +

rk
2 p1(xac) +

tk
2 p2(xac).

7: set θac = θ(xac).
8: compute x1 = xac + dk . . dk is competed by (16).
9: go to Formula (8) to ensure that the point x1 lies inside [a, b]n. by Formula (14).

10: compute ∆θ = θ(x1)− θac

11: if ∆θ < 0 then
12: go to Algorithm 1.
13: else
14: go to Formula (5) to generate other point.
15: end if
16: end for
17: compute Φk+1 = Φk + 1 . here update penalty parameters.
18: T = rT ∗ T . decrease temperature, where rT = 0.8.
19: compute θδ = |θb − θac | and θb ← θac.. θδ is a stopping criterion when the solutions

converge in the accumulation point for all iterations.
20: end while
21: Set xg ← xac , θg ← θac
22: return xg the global minimizer and the value of the objective function θ(xg) at xg .

102



Mathematics 2022, 10, 1312

The damping parameter τk is defined to be:

τk = min{1, min
i
{ui

k, vi
k}}, (11)

where

ui
k =





[
ai−xi

k

]

∆xi
k

if ai > −∞ and ∆xi
k < 0,

1, otherwise,
(12)

vi
k =





[
bi−xi

k

]

∆xi
k

if bi < ∞ and ∆xi
k > 0,

1 otherwise,
(13)

where ai and bi are the lower and upper bounds of the domain of the problem respectively,
i = 1, 2, . . . n , n is the number of variables of function in problem, xi

k
is the component

ith of variable x at iteration k and ∆xk denotes the steps which are obtained by either
Formula (2) or by Formula (5).

Since the {xk} is always required to satisfy, for all k, a < xk < b, and then the point
xk+1 is computed by:

xk+1 = xk + 0.99τk ∆xk , (14)

where the constant 0.99 is a damping parameter to ensure that xk is feasible with respect to
the domain of function in the problem.

4. The Proposed Algorithm for Solving Constrained Optimization Problems (GHMSA)

According to the above procedures the GLMSA Algorithm is capable of solving
Problem (1) as a constrained optimization problem during the solving of Problem (6) as
an unconstrained optimization problem, hence there are some changes to the objective
function θ(x, r) in Problem (6) to fit with the first step of the GLMSA Algorithm as follows.

• the function f (x) is replaced by the function θ(x, r) defined in Equation (8), and
then calculate

αk =
θ(xac)

‖ g(xac , rk ) ‖2
2

, (15)

where xac is the accepted solution at iteration k,

dk = −|αk |g(xac , rk ), (16)

where the parameter rk might denote r only or t only or both together according to
a type of constrained optimization problem, for example, if the constraints contain
mixed constraints inequality and equality, then rk = (rk , tk ).

• if the constrained problem contains simple bounded, we use Formula (14) to limit the
new point inside this simple bounded.

In light of the above procedures, we rename the GLMSA Algorithm the “Guided
Hybrid Modified Simulated-Annealing Algorithm” with the abbreviation “GHMSA”.

Setting Parameters of GHMSA Algorithm

The choice of a cooling schedule has an important impact on the performance of
the simulated-annealing algorithm. The cooling schedule includes two terms: the initial
value of the temperature T and the cooling coefficient rT which is used to reduce T. Many
suggestions have been proposed in the literature for determining the initial value of the
temperature T and the cooling coefficient rT , see for example [4,18,40–42].

In general, it is a unanimous fact that the initial temperature T must be sufficiently high
(to ensure escape from local points) and rT ∈ (0.1, 1) [7,43,44]. In this section, we suggest
that the initial value of T be related to the number of variables and the value of f (x) at
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the starting point x0. The cooling coefficient is taken to be rT ∈ [0.8, 1) to decrease the
temperature T slowly.

Therefore, the parameters used in Algorithm 4 are presented as follows. M is the
inner loop maximum number of iterations, T is the control parameter (Temperature),
Tout is a final value of T, rT is the cooling coefficient and Tf is a final value of T if it is
sufficiently small.

The setting of parameters is as follows: T = 104, ε = 10−6, Tf = 10−14, Tout = 10−20,
rT = 0.8, and M = 10 n.

5. Numerical Result

To test the effectiveness and efficiency of the proposed algorithm, the algorithm is
run on some test problems. The test problems are divided into two sets. The first set of
test problems are taken from [45]. They are 24 well-known constrained real-parameter
optimization problems. The objective functions in these problems take different shapes and
the number of variables is between 2 and 24. These test problems also contain four types of
constraints as follows: (LI) denotes a linear inequality, (LE) is a linear equality, (NI) refers
to a nonlinear inequality, and (NE) denotes a nonlinear equality. They are listed in Table 1,
where f (x∗) is the best known optimal function value and a denotes the active constraint
number at the known optimal solution. “The information mentioned in Table 1 is taken
from [46]”.

Table 1. List of first and second types of test problems and their exact solutions.

pr n f (x∗) Kind of Function LI N I LE NE a

G1 13 −15 quadratic 9 0 0 0 6
G3 10 −1.0005001000 polynomial 0 0 0 1 1
G4 5 −30,665.5386717834 quadratic 0 6 0 0 2
G5 4 5126.4967140071 cubic 2 0 0 3 3
G6 2 −6961.8138755802 cubic 0 2 0 0 2
G7 10 24.3062090681 quadratic 3 5 0 0 6
G8 2 −0.0958250415 nonlinear 0 2 0 0 0
G9 7 680.6300573745 polynomial 0 4 0 0 2
G10 8 7049.2480205286 linear 3 3 0 0 6
G11 2 0.7499000000 quadratic 0 0 0 1 1
G12 3 −1.0000000000 quadratic 0 1 0 0 0
G13 5 0.0539415140 nonlinear 0 0 0 3 3
G14 10 −47.7648884595 nonlinear 0 0 3 0 3
G15 3 961.7150222899 quadratic 0 0 1 1 2
G16 5 −1.9051552586 nonlinear 4 34 0 0 4
G18 9 −0.8660254038 quadratic 0 13 0 0 6
G19 15 32.6555929502 nonlinear 0 5 0 0 0
G24 10 −5.5080132716 polynomial 0 0 0 1 1

The GHMSA Algorithm solved 18 test problems out of the 24 because the other
problems are either not continuous or not differentiable. The second set of test problems
contains four known non-linear engineering design optimization problems. These test
problems do not have known exact solutions.

5.1. Results of “GHMSA” Algorithm

The GHMSA algorithm is programmed using MATLAB version 8.5.0.197613 (R2015a)
and it is run on a personal laptop and the machine epsilon about 1× 10−16.

The results of our algorithm are compared against the results of the CB-ABC Algo-
rithm in [47], the CCiALF Algorithm in [48], the NDE Algorithm in [49] and the CAMDE
Algorithm in [50].

Liang et al. [45] suggested that the achieved function error values of the obtained opti-
mal solution x after 5× 103, 5× 104 and 5× 105 function evaluations (FES) are summarized
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in terms of {Best, Median, Worst, c, v (v = p(x)
q+m , p(x) is a penalty term in Equation (7)),

Mean, s.d}.
The results are listed in Tables 2–4; where c is a concatenation of three numbers

indicating the violated constraint number at the median solution by more than 1.0, between
0.01 and 1.0, and between 0.0001 and 0.1, respectively. v is the mean value of the violations
of all constraints at the median solution. The numbers in the parenthesis after the error
value of the Best, Median, Worst solution are the constraint numbers not satisfying the
feasible condition of the Best, Median, and Worst solutions, respectively. Tables 2–4 denote
that the GHMSA can determine feasible solutions at each run utilizing 5× 103 FES for
12 test problems {G01, G03, G04, G06, G08, G09, G10, G12, G13, G16, G18, G24}. As for
problems G11, G14 and G15, the GHMSA Algorithm finds feasible solutions by using
5× 104 FES. For the other three test problems, {G05, G07, G19}, the GHMSA Algorithm is
able to reach feasible solutions by using 5× 105 FES.

Assume that if the result x is a feasible one satisfying ( f (x)− f (x∗) ≤ 0.0001, then x is
in a neighborhood (near-optimal) of the optimal point x∗ = xg . Tables 2–4 indicate that the
GHMSA Algorithm can get near-optimal points for six problems, { G01, G04, G06, G08, G12,
G24,} by using only 5× 103 FES, { G03, G11, G13, G14, G15, G16,G18} by using only 5× 104

FES and { G07, G09, G13, G19} by using only 5× 105 FES. However, the GHMSA Algorithm
failed to satisfy ( f (x)− f (x∗) ≤ 0.0001, for two problems {G05, G10}. As suggested by [45],
Table 5 presents the Best, Median, Worst, Mean, and s.d values of successful run, feasible
rate, success rate, and success performance over 40 runs. Let us define the following:

Feasible run: A run through which at least one feasible solution is found in Max FES.
Successful run: A run during which the algorithm finds a feasible solution x satisfying
( f (x)− f (x∗) ≤ 0.0001.
Feasible rate (f.r) = (# of feasible runs)/ total runs.
Successrate(s.r) = (# of successful runs) / total runs.
Successperformance(s.p) = mean (FES for successful runs) × (# of total runs)/(# of
successful runs).

Table 2. Error values achieved if FES = 5× 103, FES = 5× 104, FES = 5× 105 for G1, G3, G4, G5, G6
and G7.

FES G1 G3 G4 G5 G6 G7

Best 1.93× 10−05 (0) 2.70× 10−04 (0) 2.68× 10−09 (0) 0.02 (3) 8.00× 10−08 (0) −1.26 (8)
Median 8.44× 10−05 (0) 9.34× 10−04 (0) 1.5× 10−05 (0) 0.41 (3) 3.7× 10−06 (0) 0.206 (8)
Worst 9.99× 10−05 (0) 1 (0) 4.25× 10−05 (0) 13.18 (3) 2.89× 10−04 (0) 28.16 (8)

5× 103 c 0, 0, 0 0 0, 0, 0 0, 3, 3 0, 0, 0 0, 8, 8
v 0 4.22× 10−04 0 0.02 0 0.016

Mean 8.15× 10−05 1.77× 10−01 1.9× 10−05 1.97 1.7× 10−05 6.644
s.d 1.70× 10−05 0.380881 1.48× 10−05 3.44 5.5× 10−05 9.222

Best 0 (0) 3.62× 10−06 (0) 1.09× 10−11 (0) 0.0016 (3) 8× 10−08 (0) −0.07 (4)
Median 0 (0) 3.64× 10−06 (0) 8.00× 10−11 (0) 0.02 (3) 1× 10−06 (0) − 4.55× 10−03 (4)
Worst 0 (0) 3.99× 10−06 (0) 9.82× 10−11 (0) 1.32 (3) 4× 10−05 (0) 0.819 (4)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0 0, 0, 0, 4
v 0 1.51× 10−06 0 3.45× 10−04 0 2× 10−04

Mean 0 3.71× 10−06 6.90× 10−11 0.166 5× 10−06 −0.04
s.d 0 1.24× 10−07 2.86× 10−11 0.3237 8× 10−06 0.004

Best 0 (0) 9.99× 10−07 (0) 1.09× 10−11 (0) 0.0016 (0) 8× 10−08 (0) −1× 10−04 (0)
Median 0 (0) 2.58× 10−06 (0) 8.00× 10−11 (0) 0.0233 (0) 1× 10−06 (0) − 3× 10−05 (0)
Worst 0 (0) 8.50× 10−06 (0) 9.82× 10−11 (0) 1.3182 (0) 4× 10−05 (0) 410−05 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 4.05× 10−07 0 3.45× 10−05 0 2.3× 10−05

Mean 0 2.37× 10−06 6.90× 10−11 0.166 5× 10−06 −4× 10−05

s.d 0 1.92× 10−06 2.86× 10−11 0.03237 8× 10−06 4× 10−05
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Table 3. Error values achieved when FES = 5× 103, FES = 5× 104, FES = 5× 105 for Problems G8,
G9, G10, G11, G12 and G13.

FES G8 G9 G10 G11 G12 G13

Best 1.05× 10−10 (0) 1.0467 (0) 4.77 (0) 1.9× 10−04 (1) 0 (0) 1.25× 10−04 (0)
Median 6.52× 10−09 (0) 1.494 (0) 17.67 (0) 1.04× 10−03 (1) 0 (0) 3.83× 10−03 (0)
Worst 4.13× 10−08 (0) 3.42 (0) 300.41 (0) 5.66× 10−03 (1) 0 (0) 9.83× 10−02 (0)

5× 103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0
v 0 0 0 0.00173 0 7.27× 10−05

Mean 9.24× 10−09 1.863 49.86 0.00161 0 0.01171
Std 1.20× 10−08 0.9631 75.17 0.00151 0 0.02013

Best 1.05× 10−10 (0) 0.3489 (0) 0.10 (0) 6.67× 10−05 (0) 0 (0) 8.96× 10−06 (0)
Median 6.52× 10−09 (0) 4.98× 10−01 (0) 0.35 (0) 9.60× 10−05 (0) 0 (0) 6.93× 10−05 (0)
Worst 4.13× 10−08 (0) 1.14 (0) 6.01 (0) 9.96× 10−05 (0) 0 (0) 2.94× 10−04 (0)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 4.72× 10−06 0 2.02× 10−06

Mean 9.24× 10−09 6.21× 10−01 1.00 9.60× 10−05 0 4.39× 10−05

Std 1.20× 10−08 0.321034 1.50 1.70× 10−06 0 6.53× 10−05

Best 1.05× 10−10 (0) 6.58× 10−05 (0) 0.02 (0) 6.67× 10−05 (0) 0 (0) 8.50× 10−06 (0)
Median 6.52× 10−09 (0) 8.53× 10−05 (0) 0.09 (0) 9.60× 10−05 (0) 0 (0) 5.70× 10−05 (0)
Worst 4.13× 10−08 (0) 9.88× 10−05 (0) 1.50 (0) 9.96× 10−05 (0) 0 (0) 9.90× 10−05 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 4.72× 10−06 0 4.90× 10−07

Mean 9.24× 10−09 8.38× 10−05 0.25 9.60× 10−05 0 5.50× 10−05

Std 1.20× 10−08 1.52× 10−05 0.38 1.70× 10−06 0 2.70× 10−05

Table 4. Error values achieved when FES = 5× 103, FES = 5× 104, FES = 5× 105 for Problems G14,
G15, G16, G18, G19 and G24.

FES G14 G15 G16 G18 G19 G24

Best 4.25× 10−01 (3) − 5.83× 10−02 (2) 4.31× 10−04 (0) 0.01 (0) − 5.58× 10−02 (3) 5.10× 10−12 (0)
Median 1.4 (3) 0.18 (2) 0.0064 (0) 0.21 (0) 4.28× 10−01 (3) 9.05× 10−12 (0)
Worst 1.53 (3) 55.40 (2) 0.0181 (0) 0.79 (0) 27.6 (3) 9.99× 10−12 (0)

5× 103 c 0, 3, 3 0, 1, 2 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0
v 2.62× 10−02 1.16× 10−03 0 0 9.80× 10−03 0

Mean 1.23 2.60 0.0076 0.27 4.07 8.57× 10−12

s.d 0.40 10.79 0.0046 0.21 7.69 1.32× 10−12

Best 2.85× 10−07 (0) 1.12× 10−07 (0) 7.70× 10−11 (0) 4.51× 10−06 (0) − 5.58× 10−03 (3) 5.10× 10−12 (0)
Median 4.68× 10−05 (0) 6.96× 10−06 (0) 8.40× 10−11 (0) 7.97× 10−05 (0) 4.28× 10−02 (3) 9.05× 10−12 (0)
Worst 9.11× 10−05 (0) 4.75× 10−04 (0) 8.90× 10−11 (0) 9.88× 10−05 (0) 2.76 (3) 9.99× 10−12 (0)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0
v 3.62× 10−05 8.10× 10−06 0 0 9.80× 10−04 0

Mean 5.17× 10−05 5.08× 10−05 8.40× 10−11 6.83× 10−05 4.07× 10−01 8.57× 10−12

s.d 2.42× 10−05 1.20× 10−04 3.40× 10−12 2.65× 10−05 0.76855 1.32× 10−12

Best 2.85× 10−07 (0) 1.12× 10−07 (0) 7.70× 10−11 (0) 4.51× 10−06 (0) − 9.94× 10−05 (0) 5.10× 10−12 (0)
Median 4.68× 10−05 (0) 6.96× 10−06 (0) 8.40× 10−11 (0) 7.97× 10−05 (0) − 3.21× 10−05 (0) 9.05× 10−12 (0)
Worst 9.11× 10−05 (0) 4.75× 10−04 (0) 8.90× 10−11 (0) 9.88× 10−05 (0) 8.70× 10−05 (0) 9.99× 10−12 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 3.62× 10−05 8.10× 10−06 0 0 8.09× 10−05 0

Mean 5.17× 10−05 5.08× 10−05 8.40× 10−11 6.83× 10−05 − 1.86× 10−05 8.57× 10−12

s.d 2.42× 10−05 1.20× 10−04 3.40× 10−12 2.65× 10−05 6.76× 10−05 1.32× 10−12

Table 5 shows that the GHMSA Algorithm obtains a 100% feasible rate and success
rate for all 18 problems with the exception of problems G05 and G10.
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Table 5. Number of FES to achieve the fixed accuracy level (( f (x)− f (x∗)) ≤ 0.0001), success rate,
feasible rate and success performance.

pr Best Median Worst Mean s.d f.r (%) s.r (%) s.p

G1 1964 2360 2748 2386.68 172.3774278 100 100 2386.68
G3 7681 11,558 13,545 11,566.82353 1167.105632 100 100 11,566.82353
G4 1906 4417 4924 4295.6 563.9451037 100 100 4295.6
G5 - - - - - 0 0 -
G6 3628 4455 5409 4388.851852 390.8762903 100 100 4388.851852
G7 34,773 210,502 500,559 259,738.33 224,164.15 100 100 259,738.33
G8 794 1108 1350 1109.9615 133.37526 100 100 1109.9615
G9 417,565 4.33× 1005 495,232 444,552.9 31,764.59 100 100 444,552.9
G10 - - - - - 0 0 -
G11 6248 8146 9877 8233.92 917.8058 100 100 8233.92
G12 117 230 339 226.6 57.190209 100 100 226.6
G13 12,800 37,261 80,814 42,242.04 17,190.94051 100 100 42242.04
G14 28,366 54,687 71,293 52,486.30769 16,047.27821 100 100 52,486.30769
G15 9258 25,435 90,720 30,647.44 19,355.55703 100 100 30,647.44
G16 5758 9199 11,398 8970.76 1060.014463 100 100 8970.76
G18 10,300 36,198 85,882 42,434.56 20,906.48809 100 100 42,434.56
G19 73,800 193,000 499,000 247,000 187,852.1 100 100 247,000
G24 537 755.5 999 744.846154 103.587456 100 100 744.846154

For achieving the success condition during the view of success performance in Table 5,
the GHMSA Algorithm needs:

(1) 117 ≤ FES ≤ 4.924× 103 for 5 problems i.e., {G01, G04, G08, G12, G24}.

(2) 3628 ≤ FES ≤ 1.4× 104 for 4 problems i.e., {G03, G06, G11, G16}.

(3) 9258 ≤ FES ≤ 90,720 for 4 problems i.e., {G13, G14, G15, G18}.

(4) 34,773 ≤ FES ≤ 500,559 for 3 problems i.e., {G07, G09, G19}.

The GHMSA Algorithm failed to achieve the success condition for two problems,
i.e., {G05, G10}. More information about the performance of the GHMSA Algorithm for
solving these problems is given in Figures 2–4. We have plotted the relationship between
log10( f (x)− f (x∗)) and FES for showing the convergence of the GHMSA at the median
run over 40 independent runs. So the convergence graphs of these problems in Figures 2–4
show that the error values decrease dramatically with increasing FES for all test problems.

Figure 2. Convergence graph for G01 to G07.

107



Mathematics 2022, 10, 1312

Figure 3. Convergence graph for G08 to G13.

Figure 4. Convergence graph for G14 to G24.

5.2. Performance of GHMSA Algorithm Using Statistical Hypothesis Testing

In this section, we use statistical hypothesis testing to evaluate the efficiency of the
GHMSA Algorithm versus the efficiency of the CB-ABC, the CCiALF, the NDE and the
CAMDE Algorithms.

A statistical hypothesis is a surmise about a population parameter. This expectation
might be true or false. The null hypothesis is denoted by H0 , and it is a statistical hypothesis
that announces that there is no difference between a parameter and a specific value or that
there is no difference between two parameters. The alternative hypothesis is indicated by
Ha , and it is a statistical hypothesis that declares a specific difference between a parameter
and a specific value or states that there is a difference between two parameters. Hypothesis
testing is a form of inferential statistic which authorizes us to draw conclusions on a whole
population based on a representative sample [51]. Parametric tests can provide trustworthy
results with distributions that are skewed and non normal. Parametric analysis can produce
reliable results even if the continuous data are non normally distributed. We just have to be
sure that the sample size is greater than 30. A one sample t-test is one of the parametric tests
that is used to compare the mean (Average) of a sample with a mean of the population. The
important conditions for using the one-sample t-test are independence and normality (or
sample size > 30). In our study the sample size is 50, i.e., the number of runs is 50 randomly
(from any starting point) run; this criterion is suggested by [45]. The significance level in
this study is 95%, i.e., α = 0.05. Our hypotheses are formulated in the following:
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H0 : the mean (average) of the results of the GHMSA Algorithm and the mean (average)
of the results of other algorithms are equal.

Ha : the mean (average) of the results of the GHMSA Algorithm and the mean of the
results of other algorithms are different.

The above hypotheses can be formulated in Equation (17).

H0 : MeGHMSA = MeAlgorithml
,

Ha : MeGHMSA 6= MeAlgorithml
,

(17)

where l denotes one of the algorithms, CB-ABC, CCiALF, NDE and CAMDE, and Me
denotes the average results of the algorithms.

In order to compare the performance of the GHMSA Algorithm with the CB-ABC,
the CCiALF, the NDE and the CAMDE Algorithms, the t-test with a significance level of
α = 0.05 is performed. To perform the t-test, the hypotheses in Equation (17) are considered.

Statistical processes are performed by using the SPSS Program. Rejecting or accepting
H0 is based on the value of the p-value (Sig. (2-tailed)) according to Column 1 of Table 6.
While the performance of the algorithm based on the value of the t-test is in Column 3 of
Table 6. So, Column 4 of Table 6 takes three values according to the probabilities in (18).

Decision =





1 then MeGHMSA < MeAlgorithmal
,

−1 then MeGHMSA > MeAlgorithml
,

0 then MeGHMSA = MeAlgorithml
.

(18)

The results of the GHMSA are compared to the results of the CB-ABC, the CCiALF, the
NDE and the CAMDE Algorithms. The statistical hypotheses in Equation (17) are tested by
using the t-test. Tables 7–10 present these results.

The results of the GHMSA are compared versus the four meta-heuristic algorithms in
the literature. The results of statistical tests are presented in Tables 7, 9 and 10. In Table 7,
Column 1 presents the abbreviation of the test problems denoted by pr. Column 2 presents
the results of the s.t which include {b.s, mean, s.d, Decision }, where Decision denotes wins,
losses and draws of the GHMSA compared with the other algorithms. Columns 3–7 give
the results of the five algorithms. Tables 9 and 10 are similar to Table 7.

After executing the pairwise t-test for all algorithms, if the GHMSA Algorithm is
superior, inferior or equal to the compared algorithm denoted by algorithml , then the
decision is set to 1, –1 and 0 respectively, as we have shown in Table 6. The left of Figure 5
summarizes the results that are presented in Tables 7–10 regarding the decision. The left of
Figure 5 shows that the GHMSA Algorithm was superior at {7, 6, 9, 5 } problems, equal at
{6, 6, 3, 5 } problems and inferior at {4, 5, 5, 7 } problems compared to the CB-ABC, the CALF,
the NDE and the CAMDE Algorithms, respectively. However, the GHMSA is inferior at
seven problems compared to the CAMDE, but the GHMSA needs 1,590,905 as a total FES
versus the CAMDE needing 4,320,000, as shown in Figure 6. To gain the success condition
from the point of view of successful execution, the GHMSA needs less than 5× 103 FES for
five problems, i.e., {G01, G04, G08, G12, G24} versus the CAMDE needing at least 5× 103

FES for two problems, i.e., {G08, G12}. We can say that the percentage of superior, equal
and inferior of the GHMSA are 40%, 30%, 30% respectively.

Table 6. How the null hypothesis is rejected (or accepted) and the decision is made.

p-Value H0 t Decision

<α reject <0 1
<α reject >0 −1
>α accept - 0
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Table 7. Comparison of results for test problems G01 to G08.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G1 b.s −15 −15 −15 −15 −15
mean −15 −15 −15 −15 −15

s.d 5.03× 10−15 2.39× 10−08 0 0 0
decision 0 0 0 0 0

FES 135,180 30,819 240,000 240,000 5773.84

G3 b.s −1.0005 −1.000501 −1.0005001 −1.000500 −1.000009
mean −1.0005 −1.000501 −1.0005001 −1.000500 −1.000002

s.d 3.64× 10−07 1.69× 10−08 0 6.80× 10−16 1.92× 10−06

decision ‡ ‡ ‡ ‡
FES 90,090 87,860 240,000 240,000 62,546.38462

G4 b.s −30,665.54 −30,665.539 −30,665.539 −30,665.53867 −30,665.53867
mean −30,665.54 −30,665.539 −30,665.539 −30,665.53867 −30,665.53867

s.d 8.72× 10−11 9.80× 10−06 0 3.71× 10−12 3.49× 10−07

decision 0 0 0 0
FES 45,045 26,268 240,000 240,000 9671.32

G5 b.s 5126.50 5126.4967 5126.49671 5126.496710 5126.49833
mean 5126.50 5126.497 5126.49671 5126.496710 5126.662712

s.d 1.07× 10−10 9.17× 10−08 0 2.78× 10−12 0.03442
decision −1 −1 −1 −1

FES 135,180 156,248 240,000 240,000 33,917.7702

G6 b.s −6961.81 −6961.814 −6961.813875 −6961.81388 −6961.813826
mean −6961.81 −6961.814 −6961.813875 −6961.81388 −6961.813811

s.d 1.82× 10−12 5.19× 10−11 0 0 9.20× 10−06

decision 1 0 1 1
FES 45,045 17,573 240,000 240,000 8921.518519

G7 b.s 24.3062 24.3062 24.306209 24.30621 24.30610911
mean 24.3062 24.3062 24.306209 24.30621 24.30617

s.d 4.16× 10−07 6.82× 10−07 1.35× 10−14 8.55× 10−15 4.34× 10−05

decision 1 1 1 1
FES 135,180 8745 240,000 240,000 259,738.33

G8 b.s −0.095825 −0.095825 −0.095825 −0.09583 −0.0958141
mean −0.095825 −0.095825 −0.095825 −0.09583 −0.0957819

s.d 2.87× 10−17 1.07× 10−15 0 1.42× 10−17 2.58× 10−05

decision 1 1 1 −1
FES 8000 4812 240,000 240, 000 2394.577

The mark ‡ means that we do not use G03 to compare the result of the GHMSA with results of the four algorithms
because the h(x∗) = 0.0001, i.e., v = 0.0001 in [45], but v for the GHMSA is 4.05× 10−07, see Tables 1, 2 and 8.

Table 8. Statistical results of “GHMSA” Algorithm for first set of test problems and four mechanical
engineering problems.

pr Best Median Worst Mean s.d FES

G1 −15 −15 −15 −15 0 5773.84

G3 −1.000009 −1.000003 −1.000001 −1.000002 1.91679× 10−06 62,546.38462
G4 −30,665.538672 −30,665.538672 −30,665.53867 −30,665.538672 3.49× 10−07 9671.32
G5 5126.49833 5126.520053 5127.81491 5126.662712 0.03442 33,917.7702
G6 −6961.813826 −6961.813811 −6961.81377 −6961.813811 9.19642× 10−06 8921.518519
G7 24.30610911 24.30618042 24.30625377 24.30617 4.34× 10−05 259,738.33
G8 −0.0958141 −0.095824999 −0.09582499 −0.0957819 2.58× 10−05 2394.577
G9 680.6301232 680.6301426 680.6301562 680.6301412 1.52× 10−05 444,552.9

G10 7049.271862 7049.689888 7049.460323 7049.336552 2.69× 10−02 290,146
G11 0.74999176 0.749996 0.75 0.7499961 0.0000001 8233.92
G12 −1 −1 −1 −1 0 1515
G13 0.053950002 0.053998358 0.054040318 0.053996327 2.73× 10−05 53,754
G14 −47.76497953 −47.76493525 −47.76488874 −47.76494056 2.51× 10−05 52,486.30769
G15 961.71502 961.71502 961.715107 961.7149837 1.31× 10−04 38,609.24
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Table 8. Cont.

pr Best Median Worst Mean s.d FES

G16 −1.905155259 −1.905155259 −1.905155259 −1.905155259 2.06× 10−10 36,346.76
G18 −0.866025404 −0.865945746 −0.865926597 −0.865958115 2.85× 10−05 42,434.56
G19 32.65549 32.65556 32.65568 32.6555744 6.76× 10−05 247,295.25
G24 −5.508013272 −5.508013272 −5.508013272 −5.508013272 1.09× 10−10 2460.038

Enp1 5885.332773 5885.332773 5885.332773 5885.332773 2.2× 10−12 32,129
Enp2 0.012665233 0.012665268 0.012665243 0.012665334 1.54× 10−09 9970
Enp3 1.724852306 1.724852306 1.724852306 1.724852306 1.33× 10−16 24,270
Enp4 2994.471066 2994.471066 2994.471066 2994.471066 4.27× 10−15 16,764

Table 9. Comparison of results for test problems G09 to G15.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G9 b.s 680.63 680.63 680.630057 680.63006 680.6301232
mean 680.63 680.63 680.630057 680.63006 680.6301412

s.d 2.77× 10−09 5.43× 10−08 0 2.32× 10−13 1.52× 10−05

decision 0 0 −1 −1
FES 45,045 12,801 240,000 240,000 444,552.9

G10 b.s 7049.25 7049.248 7049.24802 7049.24802 7049.271862
mean 7049.25 7049.248 7049.24802 7049.24802 7049.336552

s.d 3.98× 10−05 6.04× 10−07 3.41× 10−09 4.39× 10−12 2.69× 10−02

decision −1 −1 −1 −1
FES 135,180 2858 240,000 240,000 240,146

G11 b.s 0.7499 0.749896 0.749999 0.749900 0.74999176
mean 0.7499 0.749898 0.749999 0.749900 0.7499961

s.d 1.29× 10−10 2.05× 10−16 0 1.13× 10−16 0.0000001
decision −1 −1 1 −1

FES 90,090 168,448 240,000 240,000 8233.92

G12 b.s −1 −1 −1 −1 −1
mean −1 −1 −1 −1 −1

s.d 0 7.76× 10−11 0 0 0
decision 0 0 0 0

FES 13,500 17,892 240,000 240,000 1515

G13 b.s 0.053942 0.053942 0.0539415 0.05394 0.053950002
mean 0.06677 0.053943 0.0539415 0.05394 0.053996327

s.d 6.91× 10−02 4.03× 10−06 0 2.32× 10−17 2.73× 10−05

decision 1 −1 −1 −1
FES 198,270 19,883 240,000 240,000 53,754

G14 b.s −47.7649 −47.764900 −47.7648885 −47.764890 −47.76497953
mean −47.7649 −47.764900 −47.7648885 −47.764890 −47.76494056

s.d 1.02× 10−05 4.04× 10−08 5.14× 10−15 2.21× 10−14 2.51× 10−05

decision 1 1 1 1
FES 239,715 152,697 240,000 240,000 52,486.30769

G15 b.s 961.715 961.715 961.7150223 961.715020 961.71502
mean 961.715 961.715 961.7150223 961.715020 961.7149837

s.d 2.81× 10−11 1.86× 10−08 0 5.80× 10−13 1.31× 10−04

decision 0 0 1 1
FES 135, 180 77, 910 240, 000 240, 000 38, 609.24

For the four engineering problems, we give a brief description. The pressure ves-
sel problem is a practical problem that is often used as a benchmark problem for test-
ing optimization algorithms [52]. The left of Figure 7 shows the structure of this issue,
where a cylindrical pressure vessel is capped at both ends by hemispherical heads. The
aim of the problem is to find the minimum total cost of fabrication, including costs
from a combination of welding, material and forming. The thickness of the cylindri-
cal skin,x1(Ts), thickness of the spherical head, x2(Th), the inner radius, x3(R), and
the length of the cylindrical segment of the vessel, x4(L), were included as the opti-
mization design variables of the problem. The GHMSA Algorithm obtains these re-
sults: xGHMSA = {0.778168641375105, 0.384649162627902, 40.3196187240987, 200}, i.e.,
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f (xGHMSA) = 5885.332774, c = {0, –3.8858× 10−16, 1.1642× 10−97, −40}, i.e., v = 0; the left
of Figure 8 shows a convergence graph of the GHMSA to the best solution for this problem.

Table 10. Comparison of results for test problems G16, G18, G19, G24 and Enp1-Enp4.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G16 b.s −1.905 −1.905155 −1.90515525 −1.905160 −1.905155259
mean −1.905 −1.905155 −1.90515525 −1.905160 −1.905155259

s.d 7.90× 10−11 9.77× 10−09 0 4.53× 10−16 2.06× 10−10

decision 1 1 1 0
FES 45,045 196,196 240,000 240,000 36,346.76

G18 b.s −0.866025 −0.866026 −0.8660254 −0.86603 −0.866025404
mean −0.866025 −0.866026 −0.8660254 −0.86603 −0.865958115

s.d 1.72× 10−08 3.58× 10−07 0 4.53× 10−17 2.85× 10−05

decision −1 −1 −1 −1
FES 135,180 8742 240,000 240,000 42,434.56

G19 b.s 32.6556 32.655610 32.65559377 32.655590 32.65549
mean 32.6556 32.660770 32.65562603 32.655590 32.6555744

s.d 1.88× 10−05 2.35× 10−04 3.73× 10−05 7.11× 10−15 6.76× 10−05

decision 0 1 1 0
FES 198,270 240,000 240,000 240,000 247,295.25

G24 b.s −5.508 −5.508013 −5.50801327 −5.508010 −5.508013272
mean −5.508 −5.508013 −5.50801327 −5.508010 −5.508013272

s.d 7.15× 10−15 1.30× 10−08 0 9.06× 10−16 1.09× 10−10

decision 1 1 1 1
FES 27,000 6450 240,000 240,000 2460.038

Enp1 b.s 6059.71 6059.714335 6059.714335 6059.714335 5885.332773
mean 6126.62 6059.714335 6059.714335 6059.714335 5885.332773

s.d 1.14× 1002 1.01× 10−11 4.56× 10−07 1.22× 10−06 2.2× 10−12

Decision 1 1 1 1
FES 15,000 12,000 20,000 10,000 32,1290

Enp2 b.s 0.012665 0.012665233 0.012665232 0.012665233 0.01266523
mean 0.012671 0.012665251 0.012668899 0.012666981 0.01266533

s.d 1.42× 10−05 9.87× 10−08 5.38× 10−06 3.65× 10−06 1.54× 10−09

Decision 1 0 1 1
FES 15,000 5000 24,000 10,000 9970

Enp3 b.s 1.724852 1.724852 1.724852309 1.724852 1.724852
mean 1.724852 1.724852 1.724852309 1.724852 1.724852

s.d 0 5.11× 10−07 3.73× 10−12 2.32× 10−13 1.33× 10−16

Decision 0 0 1 0
FES 15,000 10,000 8000 10,000 24,270

Enp4 b.s 2994.471066 2994.471066 2994.471066 2994.471066 2994.471065
mean 2994.471066 2994.4710660 2994.47106610 2994.471066 2994.471065

s.d 2.48× 10−07 2.31× 10−12 4.17× 10−12 2.20× 10−12 4.27× 10−15

Decision 0 0 1 0
FES 15,000 10,000 18,000 10,000 16,764

Another well-known engineering optimization task is the design of a tension (com-
pression spring) for a minimum weight. This problem has been studied by several authors.
For example, [52]. The right of Figure 7 shows a tension (compression spring) with three
design variables. It needs to minimize the weight of a tension (compression string) subject
to constraints on minimum deflection, shear stress, surge frequency, limits on outside
diameter and on design variables. The design variables are the wire diameter, d(x1), the
mean coil diameter, D(x2), and the number of active coils, P(x3). The GHMSA obtains
these results: xGHMSA = {0.0516890825110813, 0.356718255308635, 11.2889355307237}, i.e.,
f (xGHMSA) = 0.01266523279, c = {−1.55× 10−10, 4.44× 10−16, –4.05379, –0.72773}, i.e.,
v = 1.11× 10−16. The convergence graph for Engp2 is presented on the right of Figure 8.
The welded beam design optimization problem has been solved by many researchers [52].
The left of Figure 9 shows the welded beam structure which consists of a beam A and the
weld required to hold it to member B. The goal of this problem is to minimize the overall
cost of fabrication, subject to some constraints. This problem has four design variables—x1,
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x2, x3 and x4—with constraints of shear stress τ, bending stress in the beam σ, buckling
load on the bar Pc, and end deflection on the beam δ. The GHMSA obtains these results:
xGHMSA = {0.205729642092758, 3.4704886133955, 9.03662391715327, 0.205729639752274},
i.e., f (xGHMSA) = 1.7248523060, c = {–9.03× 10−08, –4.02× 10−05, 2.34× 10−09, –3.43298,
–0.08073, –0.23554, –8.73× 10−09 }, i.e., v = 3.3429× 10−10. The convergence graph for Engp3
is presented by the left of Figure 10.

Figure 5. The number of “wins-draws-losses” of GHMSA compared with other algorithms for G01 to
G24 and Enp1 to Enp4.

Figure 6. Comparison Between GHMSA With CAMDE Regarding FES.

Figure 7. Design engineering problems (Engp1 and Engp2).

Figure 8. Convergence graph for engineering problems (Engp1 and Engp2).
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Figure 9. Design engineering problems (Engp3 and Engp4 ).

Figure 10. Convergence graph for engineering problems (Engp3 and Engp4 ).

The speed reducer design problem is one of the benchmark structural engineer-
ing problems [52]. It has seven design variables as described in the right of Figure 9,
with the face width x1 , module of teeth x2 , number of teeth on pinion x3 , length of
the first shaft between bearings x4 , length of the second shaft between bearings x5 , di-
ameter of the first shaft x6 , and diameter of the first shaft x7 . The aim of this prob-
lem is to minimize the total weight of the decelerator. The GHMSA obtains these re-
sults: xGHMSA = {3.499999999, 0.7, 17, 7.3, 7.715319913, 3.350214666, 5.286654465}, i.e.,
f (xGHMSA) = 2994.471066, c = {−0.073915,−0.198,−0.49917,−0.90464, 8.6365× 10−11,
−1.0931× 10−11,−0.7025, 2.86× 10−10,−0.58333,−0.051326,−1.944210−10}, i.e, v = 2.6×
10−11. The convergence graph for Engp4 is presented by the right of Figure 10. The four
engineering problems are used to compare the performance of the GHMSA against the
CB-ABC, the CCiALF, the NDE and the CAMDE Algorithms. Statistical hypotheses in
Equation (17) are used to compare the mean of the GHMSA with means of the CB-ABC,
the CCiALF, the NDE and the CAMDE Algorithms. Rows 22–41 of Table 10 present
the statistical comparisons of the GHMSA versus the four Algorithms for engineering
problems Enp1 to Enp4. The right of Figure 5 gives the number of “wins-draws-losses” of
the GHMSA compared with the CB-ABC, the CCiALF, the NDE and the CAMDE for Enp1
to Enp4. Figure 11 shows the convergence graph of standard deviation for problems Enp1,
Enp2, Enp3 and Enp4 for the five algorithms. The relation between the four engineering
problems {Enp1, Enp2, Enp3 and Enp4} and their values for log10(s.d) are plotted. From
the right of Figures 5 and 11, it can be said that the performance of the GHMSA algorithm
is better than the other algorithms for problems Enp1 to Enp4, for the following reasons:

(1) The GHMSA obtains a minimum value of objective function (5885.332774) for
engineering problem Enp1 (pressure vessel), the point minimum x∗ is feasible; many of the
algorithms obtained a value of objective function equal to or greater than 6059.71. see for
example [48–50,52–58].

In addition to that, if 10 ≤ x4(L) < ∞, then f (x∗) = 5804.37621675626, otherwise if
10 ≤ x4(L) < 208, then f (x∗) = 5866.99226593889, where L is shown in the left of Figure 8.

(2) The right of Figure 5 shows that the GHMSA Algorithm does not fall at any problem
versus the other algorithms.

(3) The GHMSA is superior at {2, 1, 4, 2} problems versus the CB-ABC Algorithm, the
CCiALF Algorithm, the NDE and the CAMDE Algorithm, respectively.

(4) The GHMSA is equal at {2, 3, 0, 2} problems versus the CB-ABC Algorithm, the
CCiALF Algorithm, the NDE and the CAMDE Algorithm, respectively.
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(5) Figure 11 shows that the GHMSA Algorithm converges to zero for the standard
deviation (s.d). See the green color.

Figure 11. Convergence graph of standard deviation for Enp1 to Enp4.

6. Conclusions and Future Work

The unconstrained nonlinear optimization algorithms have been guided to find the
global minimizer of the constrained optimization problem. A result, Algorithm “GHMSA”,
has been proposed for finding the global minimizer of the non-linear constrained optimiza-
tion problem. Algorithm “GHMSA” contains a new technique that is applied to convert
the constrained optimization problem into the unconstrained optimization problem. The
results of the algorithm demonstrate that the proposed penalty function is a good tech-
nique to make the unconstrained algorithm able to deal with the constrained optimization
problem. The interior-point algorithm keeps the candidate solutions inside the domain
search. The results of some nonlinear constrained optimization problems and four non-
linear engineering optimization problems show that the GHMSA algorithm has superiority
over the other four algorithms in some test problems. For the future work, the proposed
algorithm can be enhanced and modified to solve the multi-objective function, and the
convergence analysis of the modified simulated annealing algorithm will be performed.

Moreover, it will be considered in future work to propose a new free derivative to
approximate the gradient vector that will be combined (hybridized) with a new simulated
annealing algorithm to solve unconstrained optimization, constrained, or multi-objective
optimization problems. Convergence analysis of the GMLSA and GHMAS algorithms will
be considered in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

CB-ABC Crossover-Based Artificial Bee Colony Algorithm
CCiALF Cooperative Coevolutionary Differential Evolution Algorithm
NDE A novel Differential Evolution Algorithm
CAMDE Adaptive Differential Evolution with Multi-Population-based

Mutation Operators for Constrained Optimization
GLMSA Gradient Line-Search Modified Simulated-Annealing Algorithm
GHMSA Guided Hybrid Gradient Modified Simulated-Annealing Algorithm
Symbols
T Control Parameter (Temperature)
k Number Iteration
n Number of Variables
V ∈ [−1, 1]n A random Vector of n Dimension in Interval [−1, 1]
x0 Starting Point
x1 A point Computed by GHMSA Algorithm
x2 A point Computed by GHMSA Algorithm
xac the Best Point Accepted by Our Algorithm at Iteration k
θac Function Value at Point xac
θ1 Function Value at Point x1
θ2 Function Value at Point x2
4 f the Difference Between the Value fac and f1
M the Inner Loop Maximum Number of Iterations
ψ the Step Size which is Generated by First Approach in “EMSA”

Algorithm
d the Step Size which is Generated by GHMSA Algorithm
β A random Number in (0, 1)
rT the Cooling Coefficient
Tf A final Value of T it is Sufficiently Small
Tout A final Value of T; Tout < Tf2

ε A parameter has Small Value Used as A stopping Criterion
#pr Number of Test Problems
xg Global Minimizer Found by GHMSA Algorithm
θ(xg) Function Value at Global Minimum
g(x) the gradient vector
‖ g(xg) ‖2 Norm of the gradient vector of θ at xg
p(x) Penalty Term
gi (x) Inequality Constraint
hj (x) Equality Constraint
q A number of the Inequality Constraints
m A number of the Equality Constraints
r Penalty Parameter for the Inequality Constraints
t Penalty Parameter for the Equality Constraints
U Upper Feasible Region (Domain Search)
L Lower Feasible Region (Domain Search)
b.s the Best Solution Found by the Algorithm
w.s the Worst Solution Found by the Algorithm
s.d the Standard Deviation
w.b Absolute Value Between the Worst Solution and the Best Denoted

by |worst− best|
er Absolute Value Between the Best Solution and the Exact Denoted

by |best− exact|
e.c Error Constraint where e.c = max{0, gi(x)}+ max{0, hj(x)}
e : v1 the Average of {s.d, w.b, er}
e : v2 the Average of {s.d, w.b, e.c}
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FES Function Evaluation
c A sequence of 3 Numbers Denoting the Violated Constraint Number

at the Median solution
v Is the Mean Value of the Violations of All Constraints at the Median

Solution
H0 the Null Hypothesis
Ha the Alternative Hypothesis
Me the Average Results
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Soliman, M.S.; Nonlaopon, K.;

Zaini, H.G. Some New Versions of

Integral Inequalities for Left and

Right Preinvex Functions in the

Interval-Valued Settings. Mathematics

2022, 10, 611. https://doi.org/

10.3390/math10040611

Academic Editors: Simeon Reich

and Janusz Brzdęk

Received: 13 December 2021

Accepted: 15 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Some New Versions of Integral Inequalities for Left and Right
Preinvex Functions in the Interval-Valued Settings
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Abstract: The principles of convexity and symmetry are inextricably linked. Because of the consid-
erable association that has emerged between the two in recent years, we may apply what we learn
from one to the other. In this paper, our aim is to establish the relation between integral inequalities
and interval-valued functions (IV-Fs) based upon the pseudo-order relation. Firstly, we discuss the
properties of left and right preinvex interval-valued functions (left and right preinvex IV-Fs). Then, we
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1. Introduction 
Hanson [1] defined the class of invex functions as one of the most significant exten-

sions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex func-
tions to demonstrate adequate optimality criteria and duality in nonlinear programming. 
For a differentiable mapping, the concept of fractional integral identities involving Rie-
mann–Liouville fractional and Hadamard fractional integrals integrals was considered by 
Wang et al. [3], who identified some inequalities using standard convex, 𝑟-convex, 𝑚-
convex, 𝑠-convex, (s, m)-convex, and (𝛽, 𝑚)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5–8] 
for other generalizations of the 𝓗-𝓗 inequality.  

For accurate solutions to various problems in practical mathematics, Moore [9] used 
interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and 
lower limits. Moore [9] showed that, if a real-valued mapping 𝛶(𝜘) meets an ordinary 
Lipschitz condition in 𝑌, |𝛶(𝜘) − 𝛶(𝜔)| ≤ 𝐿|𝜘 − 𝜔|, for 𝜔, 𝜘 ∈ 𝑌, then, the united exten-
sion is a Lipschitz interval extension in 𝑌. To combine the study of discrete and continu-
ous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use 
of dynamic equations and integral inequalities on time scales, in domains as diverse as 
electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, 
and population dynamics [11], has highlighted the need for this theory. Young’s inequal-
ity, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, 
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1. Introduction

Hanson [1] defined the class of invex functions as one of the most significant ex-
tensions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex
functions to demonstrate adequate optimality criteria and duality in nonlinear program-
ming. For a differentiable mapping, the concept of fractional integral identities involving
Riemann–Liouville fractional and Hadamard fractional integrals integrals was consid-
ered by Wang et al. [3], who identified some inequalities using standard convex, r-convex,
m-convex, S-convex, (s, m)-convex, and (β, m)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various
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inequality.
For accurate solutions to various problems in practical mathematics, Moore [9] used

interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and
lower limits. Moore [9] showed that, if a real-valued mapping Y(κ) meets an ordinary
Lipschitz condition in Y, |Y(κ)−Y(ω)| ≤ L|κ −ω|, for ω, κ ∈ Y, then, the united exten-
sion is a Lipschitz interval extension in Y. To combine the study of discrete and continuous
dynamical systems, Hilger [10] introduced a time scales theory. The widespread use of
dynamic equations and integral inequalities on time scales, in domains as diverse as elec-
trical engineering, quantum physics, heat transfer, neural networks, combinatorics, and
population dynamics [11], has highlighted the need for this theory. Young’s inequality,

121



Mathematics 2022, 10, 611

Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality,

 
 

 

 
Mathematics 2021, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/mathematics 

Article 

Some New Versions of Integral Inequalities for Left and Right 
Preinvex Functions in the Interval-Valued Settings 
Muhammad Bilal Khan 1, Savin Treanțǎ 2, Mohamed S. Soliman 3, Kamsing Nonlaopon 4,* and Hatim Ghazi Zaini 5 

1 Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan;  
bilal42742@gmail.com 

2 Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania;  
savin.treanta@upb.ro 

3 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, 
Saudi Arabia; soliman@tu.edu.sa 

4 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 
5 Department of Computer Science, College of Computers and Information Technology, Taif University,  

P.O. Box 11099, Taif 21944, Saudi Arabia; h.zaini@tu.edu.sa 
* Correspondence: nkamsi@kku.ac.th; Tel.: +668-6642-1582 

Abstract: The principles of convexity and symmetry are inextricably linked. Because of the consid-
erable association that has emerged between the two in recent years, we may apply what we learn 
from one to the other. In this paper, our aim is to establish the relation between integral inequalities 
and interval-valued functions (IV-Fs) based upon the pseudo-order relation. Firstly, we discuss the 
properties of left and right preinvex interval-valued functions (left and right preinvex IV-Fs). Then, 
we obtain Hermite–Hadamard (𝓗-𝓗) and Hermite–Hadamard–Fejér (𝓗-𝓗-Fejér) type inequality 
and some related integral inequalities with the support of left and right preinvex IV-Fs via pseudo-
order relation and interval Riemann integral. Moreover, some exceptional special cases are also dis-
cussed. Some useful examples are also given to prove the validity of our main results. 

Keywords: left and right preinvex interval-valued function; interval Riemann integral;  
Hermite–Hadamard type inequality; Hermite–Hadamard–Fejér type inequality 
 

1. Introduction 
Hanson [1] defined the class of invex functions as one of the most significant exten-

sions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex func-
tions to demonstrate adequate optimality criteria and duality in nonlinear programming. 
For a differentiable mapping, the concept of fractional integral identities involving Rie-
mann–Liouville fractional and Hadamard fractional integrals integrals was considered by 
Wang et al. [3], who identified some inequalities using standard convex, 𝑟-convex, 𝑚-
convex, 𝑠-convex, (s, m)-convex, and (𝛽, 𝑚)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5–8] 
for other generalizations of the 𝓗-𝓗 inequality.  

For accurate solutions to various problems in practical mathematics, Moore [9] used 
interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and 
lower limits. Moore [9] showed that, if a real-valued mapping 𝛶(𝜘) meets an ordinary 
Lipschitz condition in 𝑌, |𝛶(𝜘) − 𝛶(𝜔)| ≤ 𝐿|𝜘 − 𝜔|, for 𝜔, 𝜘 ∈ 𝑌, then, the united exten-
sion is a Lipschitz interval extension in 𝑌. To combine the study of discrete and continu-
ous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use 
of dynamic equations and integral inequalities on time scales, in domains as diverse as 
electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, 
and population dynamics [11], has highlighted the need for this theory. Young’s inequal-
ity, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, 

Citation: Khan, M.B.; Treanțǎ, S.;  

Soliman, M.S.; Nonlaopon, K.;  

Zaini, H.G. Some New Versions of 

Integral Inequalities for Left and 

Right Preinvex Functions in the  

Interval-Valued Settings.  

Mathematics 2022, 9, x. 

https://doi.org/10.3390/xxxxx 

Academic Editors: Simeon Reich and 

Janusz Brzdęk 

Received: 13 December 2021 

Accepted: 15 February 2022 

Published: 16 February 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

-

 
 

 

 
Mathematics 2021, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/mathematics 

Article 

Some New Versions of Integral Inequalities for Left and Right 
Preinvex Functions in the Interval-Valued Settings 
Muhammad Bilal Khan 1, Savin Treanțǎ 2, Mohamed S. Soliman 3, Kamsing Nonlaopon 4,* and Hatim Ghazi Zaini 5 

1 Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan;  
bilal42742@gmail.com 

2 Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania;  
savin.treanta@upb.ro 

3 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, 
Saudi Arabia; soliman@tu.edu.sa 

4 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 
5 Department of Computer Science, College of Computers and Information Technology, Taif University,  

P.O. Box 11099, Taif 21944, Saudi Arabia; h.zaini@tu.edu.sa 
* Correspondence: nkamsi@kku.ac.th; Tel.: +668-6642-1582 

Abstract: The principles of convexity and symmetry are inextricably linked. Because of the consid-
erable association that has emerged between the two in recent years, we may apply what we learn 
from one to the other. In this paper, our aim is to establish the relation between integral inequalities 
and interval-valued functions (IV-Fs) based upon the pseudo-order relation. Firstly, we discuss the 
properties of left and right preinvex interval-valued functions (left and right preinvex IV-Fs). Then, 
we obtain Hermite–Hadamard (𝓗-𝓗) and Hermite–Hadamard–Fejér (𝓗-𝓗-Fejér) type inequality 
and some related integral inequalities with the support of left and right preinvex IV-Fs via pseudo-
order relation and interval Riemann integral. Moreover, some exceptional special cases are also dis-
cussed. Some useful examples are also given to prove the validity of our main results. 

Keywords: left and right preinvex interval-valued function; interval Riemann integral;  
Hermite–Hadamard type inequality; Hermite–Hadamard–Fejér type inequality 
 

1. Introduction 
Hanson [1] defined the class of invex functions as one of the most significant exten-

sions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex func-
tions to demonstrate adequate optimality criteria and duality in nonlinear programming. 
For a differentiable mapping, the concept of fractional integral identities involving Rie-
mann–Liouville fractional and Hadamard fractional integrals integrals was considered by 
Wang et al. [3], who identified some inequalities using standard convex, 𝑟-convex, 𝑚-
convex, 𝑠-convex, (s, m)-convex, and (𝛽, 𝑚)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5–8] 
for other generalizations of the 𝓗-𝓗 inequality.  

For accurate solutions to various problems in practical mathematics, Moore [9] used 
interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and 
lower limits. Moore [9] showed that, if a real-valued mapping 𝛶(𝜘) meets an ordinary 
Lipschitz condition in 𝑌, |𝛶(𝜘) − 𝛶(𝜔)| ≤ 𝐿|𝜘 − 𝜔|, for 𝜔, 𝜘 ∈ 𝑌, then, the united exten-
sion is a Lipschitz interval extension in 𝑌. To combine the study of discrete and continu-
ous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use 
of dynamic equations and integral inequalities on time scales, in domains as diverse as 
electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, 
and population dynamics [11], has highlighted the need for this theory. Young’s inequal-
ity, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, 

Citation: Khan, M.B.; Treanțǎ, S.;  

Soliman, M.S.; Nonlaopon, K.;  

Zaini, H.G. Some New Versions of 

Integral Inequalities for Left and 

Right Preinvex Functions in the  

Interval-Valued Settings.  

Mathematics 2022, 9, x. 

https://doi.org/10.3390/xxxxx 

Academic Editors: Simeon Reich and 

Janusz Brzdęk 

Received: 13 December 2021 

Accepted: 15 February 2022 

Published: 16 February 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

inequality, Stef-
fensen’s inequality, Opial type inequality and Čhebyšhev’s inequality were all explored
by Agarwal et al. [11]. Srivastava et al. [12] discovered some generic time scale weighted
Opial type inequalities in 2010. Srivastava et al. [13] also proposed several time-based
expansions and generalizations of Maroni’s inequality. Under certain proper conditions,
some new local fractional integral analogue of Anderson’s inequality on fractal space was
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inequality for a convex IV-F and
its product. For more information related to generalized convex functions and fractional
inequalities in interval-valued settings, see [29–53] and the references therein.

Inspired by the ongoing research, we introduce the concept of left and right preinvex
IV-F and establish the
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-Fejér inequality for left and right preinvex IV-Fs and
the product of two left and right preinvex IV-Fs using Riemann integrals in interval-valued
settings, which are motivated by the above studies and ideas. We also provide some
examples to support our ideas.

2. Preliminaries

First, we offer some background information on interval-valued functions, the theory
of convexity, interval-valued integration, and interval-valued fractional integration, which
will be utilized throughout the article.

We offer some fundamental arithmetic regarding interval analysis in this paragraph,
which will be quite useful throughout the article.

Z = [Z∗, Z∗], Q = [Q∗, Q∗] (Z∗ ≤ κ ≤ Z∗ and Q∗ ≤ z ≤ Q∗κ , z ∈ R)
Z + Q = [Z∗, Z∗] + [Q∗, Q∗] = [Z∗ + Q∗, Z∗ + Q∗],
Z −Q = [Z∗, Z∗]− [Q∗, Q∗] = [Z∗ −Q∗, Z∗ −Q∗],

minX = min{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}, maxX = max{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}

ν.[Z∗, Z∗] =





[νZ∗, νZ∗] if ν > 0,
{0} if ν = 0,

[νZ∗, νZ∗] if ν < 0.

Let KC, K+
C , K−C be the set of all closed intervals of R, the set of all closed positive

intervals of R and the set of all closed negative intervals of R. Then, KC, K+
C , and K−C are

defined as
KC = {[Z∗, Z∗] : Z∗, Z∗ ∈ R and Z∗ ≤ Z∗}
K+

C = {[Z∗, Z∗] : Z∗, Z∗ ∈ KC and Z∗ > 0}
K−C = {[Z∗, Z∗] : Z∗, Z∗ ∈ KC andZ∗ < 0}

For [Z∗, Z∗], [Q∗, Q∗] ∈ KC, the inclusion “ ⊆ ” is defined by [Z∗, Z∗] ⊆ [Q∗, Q∗],
if and only if, Q∗ ≤ Z∗, Z∗ ≤ Q∗.
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Remark 1. [36] The relation “ ≤p ” defined on KC by

[Q∗, Q∗] ≤p [Z∗, Z∗] i f and only i f Q∗ ≤ Z∗, Q∗ ≤ Z∗, (1)

for all [Q∗, Q∗], [Z∗, Z∗] ∈ KC, is a pseudo-order relation.

Theorem 1. [9] If Y : [µ, υ] ⊂ R→ KC is an IV-F, such that Y(ω) = [Y∗(ω), Y∗(ω)], then,
Y is Riemann integrable over [µ, υ] if and only if, Y∗(ω) and Y∗(ω) are both Riemann integrable
over [µ, υ], such that

(IR)
∫ υ

µ
Y(ω)dω =

[
(R)

∫ υ

µ
Y∗(ω)dω, (R)

∫ υ

µ
Y∗(ω)dω

]
(2)

where Y∗, Y∗ : [µ, υ]→ R .

The collection of all Riemann integrable real valued functions and Riemann integrable
IV-Fs is denoted byR[µ,υ] and IR[µ,υ], respectively.

Definition 1. A set K ⊂ Rn is said to be a convex set, if, for all ω,κ ∈ K, t ∈ [0, 1], we have

tκ + (1− t)ω ∈ K, or tω + (1− t)κ ∈ K.

Definition 2. [36] Let K be a convex set. Then, IV-F Y : K → K+
C is said to be left and right

convex on K if
Y(tω + (1− t)κ) ≤p tY(ω) + (1− t)Y(κ), (3)

for all ω,κ ∈ K, t ∈ [0, 1]. Y is called left and right concave on K if Equation (3) is reversed.

Definition 3. [7] A set A ⊂ Rn is said to be an invex set, if, for all ω,κ ∈ A, t ∈ [0, 1], we have

ω + (1− t)ζ(κ, ω) ∈ A or ω + tζ(κ, ω) ∈ A,

where ζ : Rn ×Rn → Rn .

Definition 4. [6] Let A be an invex set. Then, IV-F Y : A→ K+
C is said to be left and right

preinvex on A with respect to ζ if

Y(ω + (1− t)ζ(κ, ω)) ≤p tY(ω) + (1− t)Y(κ), (4)

for all ω,κ ∈ A, t ∈ [0, 1], where ζ : Rn ×Rn → Rn. Y is called left and right preincave on A
with respect to ζ if inequality (4) is reversed. Y is called affine if Y is both convex and concave.

Remark 2. The left and right preinvex IV-Fs have some very nice properties similar to left and right
convex IV-F:

- if Y is left and right preinvex IV-F, then, θY is also left and right preinvex for θ ≥ 0.
- if Y and D both are left and right preinvex IV-Fs, then, max(Y(ω),D(ω)) is also left and

right preinvex IV-Fs.

In the case of ζ(κ, ω) = −ω, we obtain (4) from (3).

The following outcome is very important in the field of interval-valued calculus
because, by using this result, we can easily handle IV-Fs. Basically, Theorem 2 establishes
the relation between IV-F Y(ω) and lower function Y∗(ω) and upper function Y∗(ω).

The following assumption will be required to prove the next result regarding the
bifunction ζ : Rn ×Rn → Rn , which is known as:
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Condition C. [7] Let A be an invex set with respect to ζ. For any κ, ω ∈ A and t ∈ [0, 1],

ζ(ω, ω + tζ(κ, ω)) = −tζ(κ, ω),
ζ(κ, ω + tζ(κ, ω)) = (1− t)ζ(κ, ω).

Clearly for t = 0, we have ζ(κ, ω) = 0 if and only if, κ = ω, for all κ, ω ∈ A. For the applications
of Condition C, see [26,30,34,35].

Theorem 2. [6] Let A be an invex set and Y : A→ K+
C be a IV-F such that

Y(ω) = [Y∗(ω), Y∗(ω)], ∀ ω ∈ A, (5)

for all ω ∈ A . Then, Y is left and right preinvex IV-F on A, if and only if, Y∗(ω) and Y∗(ω) both
are preinvex functions.

Remark 3. If Y∗(ω) = Y∗(ω), then, from (4), one can acquire the following inequality, see [2]:

Y(ω + (1− t)ζ(κ, ω)) ≤ tY(ω) + (1− t)Y(κ), (6)

for all ω, ∈ A, t ∈ [0, 1], where ζ : Rn ×Rn → Rn.
If Y∗(ω) = Y∗(ω) with ζ(κ, ω) = κ − ω, then, from (4), one can acquire the following

inequality:
Y(tω + (1− t)κ) ≤ tY(ω) + (1− t)Y(κ), (7)

for all ω,κ ∈ K, t ∈ [0, 1].

Example 1. We consider the IV-F Y : [0, 1]→ K+
C defined by Y(ω) = [2, 4 ]ω2. Since end point

functions Y∗(ω), Y∗(ω) are preinvex functions with respect to ζ(κ, ω) = κ −ω. Hence, Y(ω) is
left and right preinvex IV-F.

3. Main Results

In this section, we derive interval
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mann–Liouville fractional and Hadamard fractional integrals integrals was considered by 
Wang et al. [3], who identified some inequalities using standard convex, 𝑟-convex, 𝑚-
convex, 𝑠-convex, (s, m)-convex, and (𝛽, 𝑚)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5–8] 
for other generalizations of the 𝓗-𝓗 inequality.  

For accurate solutions to various problems in practical mathematics, Moore [9] used 
interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and 
lower limits. Moore [9] showed that, if a real-valued mapping 𝛶(𝜘) meets an ordinary 
Lipschitz condition in 𝑌, |𝛶(𝜘) − 𝛶(𝜔)| ≤ 𝐿|𝜘 − 𝜔|, for 𝜔, 𝜘 ∈ 𝑌, then, the united exten-
sion is a Lipschitz interval extension in 𝑌. To combine the study of discrete and continu-
ous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use 
of dynamic equations and integral inequalities on time scales, in domains as diverse as 
electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, 
and population dynamics [11], has highlighted the need for this theory. Young’s inequal-
ity, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, 
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type inequalities for left and right preinvex
functions in interval-valued settings. Moreover, we provide some nontrivial examples to
verify the validity of the theory developed in this study.

Theorem 3. Let Y : [υ, υ + ζ(µ, υ)]→ K+
C be a left and right preinvex IV-F such that

Y(ω) = [Y∗(ω), Y∗(ω)] for all ω ∈ [υ, υ + ζ(µ, υ)]. If Y ∈ TR([υ, υ+ζ(µ, υ)]), then

Y
(

2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≤p

Y(υ) + Y(υ + ζ(µ, υ))

2
≤p

Y(υ) + Y(µ)
2

(8)

If Y is left and right preincave, then, we achieve the following coming inequality:

Y
(

2υ + ζ(µ, υ)

2

)
≥p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≥p

Y(υ) + Y(υ + ζ(µ, υ))

2
≤p

Y(υ) + Y(µ)
2

(9)

Proof. Let Y : [υ, υ + ζ(µ, υ)]→ K+
C be a left and right preinvex IV-F. Then, by hypothesis,

we have

2Y
(

2υ + ζ(µ, υ)

2

)
≤p Y(υ + (1− t)ζ(µ, υ)) + Y(υ + tζ(µ, υ)).

Therefore, we have

2Y∗
(

2υ+ζ(µ, υ)
2

)
≤ Y∗(υ + (1− t)ζ(µ, υ)) + Y∗(υ + tζ(µ, υ)),

2Y∗
(

2υ+ζ(µ, υ)
2

)
≤ Y∗(υ + (1− t)ζ(µ, υ)) + Y∗(υ + tζ(µ, υ)).
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Then

2
∫ 1

0 Y∗
(

2υ+ζ(µ, υ)
2

)
dt ≤

∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))dt +

∫ 1
0 Y∗(υ + tζ(µ, υ))dt,

2
∫ 1

0 Y∗
(

2υ+ζ(µ, υ)
2

)
dt ≤

∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))dt +

∫ 1
0 Y∗(υ + tζ(µ, υ))dt.

It follows that
Y∗
(

2υ+ζ(µ, υ)
2

)
≤ 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)dω,

Y∗
(

2υ+ζ(µ, υ)
2

)
≤ 2

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)dω.

That is
[

Y∗

(
2υ + ζ(µ, υ)

2

)
, Y∗

(
2υ + ζ(µ, υ)

2

)]
≤ p

1
ζ(µ, υ)

[∫ υ+ζ(µ, υ)

υ
Y∗(ω)dω,

∫ υ+ζ(µ, υ)

υ
Y∗(ω)dω

]
.

Thus,

Y
(

2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω. (10)

In a similar way to the above, we have

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≤p

Y(υ) + Y(µ)
2

. (11)

Combining (10) and (11), we have

Y
(

2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≤p

Y(υ) + Y(µ)
2

.

This completes the proof. �

Remark 4. If ξ(µ, υ) = µ− υ, then Theorem 3 reduces to the result for left and right convex IV-F,
see [29]:

Y
(

υ + µ

2

)
≤p

1
µ− υ

(IR)
∫ µ

υ
Y(ω)dω ≤p

Y(υ) + Y(µ)
2

. (12)

If Y∗(ω) = Y∗(ω), then Theorem 3 reduces to the result for the preinvex function, see [30]:

Y
(

2υ + ζ(µ, υ)

2

)
≤ 1

ζ(µ, υ)
(R)

∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≤ [Y(υ) + Y(µ)]

∫ 1

0
tdt. (13)

If Y∗(ω) = Y∗(ω) with ξ(µ, υ) = µ− υ, then Theorem 3 reduces to the result for the convex
function, see [31,32]:

Y
(

υ + µ

2

)
≤ 1

µ− υ
(R)

∫ µ

υ
Y(ω)dω ≤ Y(υ) + Y(µ)

2
. (14)

Example 2. We consider the IV-F Y : [υ, υ + ζ(µ, υ)] = [0, ζ(2, 0)]→ K+
C defined by

Y(ω) =
[
2ω2, 4ω2]. Since end point functions Y∗(ω) = 2ω2, Y∗(ω) = 4ω2 are preinvex

functions with respect to ζ(µ, υ) = µ − υ. Hence, Y(ω) is left and right preinvex IV-F with
respect to ζ(µ, υ) = µ− υ. We now compute the following

Y
(

2υ+ζ(µ, υ)
2

)
≤p

1
ζ(µ, υ) (IR)

∫ υ+ζ(µ, υ)
υ Y(ω)dω ≤p

Y(υ)+Y(µ)
2 .

Y∗
(

2υ+ζ(µ, υ)
2

)
= Y∗(1) = 2,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)dω = 1

2

∫ 2
0 2ω2dω = 8

3 ,
Y∗(υ)+Y∗(µ)

2 = 4,
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that means
2 ≤ 8

3
≤ 4.

Similarly, it can be easily shown that

Y∗
(

2υ + ζ(µ, υ)

2

)
≤ 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)

υ
Y∗(ω)dω ≤ Y∗(υ) + Y∗(µ)

2

such that
Y∗
(

2υ+ζ(µ, υ)
2

)
= Y∗(1) = 4,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)dω = 1

2

∫ 2
0 4ω2dω = 16

3 ,
Y∗(υ)+Y∗(µ)

2 = 8.

From which, it follows that

4 ≤ 16
3
≤ 8,

that is

[2, 4] ≤ p

[
8
3

,
16
3

]
≤ p[4, 8]

hence,

Y
(

2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)dω ≤p

Y(υ) + Y(µ)
2

.

Theorem 4. Let Y,D : [υ, υ + ζ(µ, υ)]→ K+
C be two left and right preinvex IV-F such that

Y(ω) = [Y∗(ω), Y∗(ω)] and D(ω) = [D∗(ω), D∗(ω)] for all ω ∈ [υ, υ + ζ(µ, υ)]. If Y, D
and Y×D ∈ TR([υ, υ+ζ(µ, υ)]), then

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)×D(ω)dω ≤p

A(υ, µ)

3
+
C(υ, µ)

6
, (15)

where A(υ, µ) = Y(υ)×D(υ) + Y(µ)×D(µ), C(υ, µ) = Y(υ)×D(µ) + Y(µ)×D(υ), and
A(υ, µ) = [A∗((υ, µ)), A∗((υ, µ))] and C(υ, µ) = [C∗((υ, µ)), C∗((υ, µ))].

Proof. Since Y, D ∈ IR([υ, υ+ζ(µ, υ)]), then we have

Y∗(υ + (1− t)ζ(µ, υ)) ≤ tY∗(υ) + (1− t)Y∗(µ),
Y∗(υ + (1− t)ζ(µ, υ)) ≤ tY∗(υ) + (1− t)Y∗(µ).

And
D∗(υ + (1− t)ζ(µ, υ)) ≤ tD∗(υ) + (1− t)D∗(µ),
D∗(υ + (1− t)ζ(µ, υ)) ≤ tD∗(υ) + (1− t)D∗(µ).

From the definition of left and right preinvex IV-F, it follows that 0 ≤p Y(ω) and 0 ≤p D(ω),
so

Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
≤
(

tY∗(υ) + (1− t)Y∗(µ)
)(

tD∗(υ) + (1− t)D∗(µ)
)

= Y∗(υ)×D∗(υ)t2 + Y∗(µ)×D∗(µ)t2 + Y∗(υ)×D∗(µ)t(1− t)
+Y∗(µ)×D∗(υ)t(1− t),

Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
≤
(

tY∗(υ) + (1− t)Y∗(µ)
)(

tD∗(υ) + (1− t)D∗(µ)
)

= Y∗(υ)×D∗(υ)t2 + Y∗(µ)×D∗(µ)t2 + Y∗(υ)×D∗(µ)t(1− t)
+Y∗(µ)×D∗(υ)t(1− t),
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Integrating both sides of the above inequality over [0,1], we obtain

∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))D∗(υ + (1− t)ζ(µ, υ))

= 1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω

≤ (Y∗(υ)D∗(υ) + Y∗(µ)D∗(µ))
∫ 1

0 t2dt
+(Y∗(υ)D∗(µ) + Y∗(µ)D∗(υ))

∫ 1
0 t(1− t)dt,∫ 1

0 Y∗(υ + (1− t)ζ(µ, υ))D∗(υ + (1− t)ζ(µ, υ))

= 1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω

≤ (Y∗(υ)D∗(υ) + Y∗(µ)D∗(µ))
∫ 1

0 t2dt
+(Y∗(υ)D∗(µ) + Y∗(µ)D∗(υ))

∫ 1
0 t(1− t)dt.

It follows that,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω ≤ A∗((υ, µ))

∫ 1
0 t2dt + C∗((υ, µ))

∫ 1
0 t(1− t)dt,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω ≤ A∗((υ, µ))

∫ 1
0 t2dt + C∗((υ, µ))

∫ 1
0 t(1− t)dt,

that is
1

ζ(µ, υ)

[∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω,

∫ υ+ζ(µ, υ)
υ Y∗(ω)D∗(ω)dω

]

≤p

[A∗((υ,µ))
3 , A

∗((υ,µ))
3

]
+
[ C∗((υ,µ))

6 , C
∗((υ,µ))

6

]
.

Thus,
1

ζ(µ, υ)
(IR)

∫ υ+ζ(µ, υ)

υ
Y(ω)D(ω)dω ≤p

A(υ, µ)

3
+
C(υ, µ)

6
,

and the theorem has been established. �

Example 3. We consider the IV-Fs Y, D : [υ, υ + ζ(µ, υ)] = [0, ζ(1, 0)]→ K+
C defined by

Y(ω) =
[
2ω2, 4ω2] and D(ω) = [ω, 2ω]. Since end point functions Y∗(ω) = 2ω2,

Y∗(ω) = 4ω2 and D∗(ω) = ω, D∗(ω) = 2ω are preinvex functions with respect to
ζ(µ, υ) = µ − υ. Hence Y, D both are left and right preinvex IV-Fs. We now compute
the following

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω = 1

2 ,
1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω = 2,

A∗((υ,µ))
3 = 1

3 ,
A∗((υ,µ))

3 = 8
3 ,

C∗((υ,µ))
6 = 0,

C∗((υ,µ))
6 = 0,

that means
1
2 ≤ 2

3 , 2 ≤ 8
3 .

Hence, Theorem 4 is verified.

Theorem 5. Let Y,D : [υ, υ + ζ(µ, υ)]→ K+
C be two left and right preinvex IV-Fs, such that

Y(ω) = [Y∗(ω), Y∗(ω)] and D(ω) = [D∗(ω), D∗(ω)] for all ω ∈ [υ, υ + ζ(µ, υ)]. If Y, D
and Y×D ∈ TR([υ, υ+ζ(µ, υ)]) and condition C hold for ζ, then

2 Y
(

2υ + ζ(µ, υ)

2

)
×D

(
2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)×D(ω)dω +

A(υ, µ)

6
+
C(υ, µ)

3
, (16)

where A(υ, µ) = Y(υ)×D(υ) +Y(µ)×D(µ), C(υ, µ) = Y(υ)×D(µ) +Y(µ)×D(υ), and
A(υ, µ) = [A∗((υ, µ)), A∗((υ, µ))] and C(υ, µ) = [C∗((υ, µ)), C∗((υ, µ))].
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Proof. Using condition C, we can write

υ +
1
2

ζ(µ, υ) = υ + tζ(µ, υ) +
1
2

ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ)).

By hypothesis, we have

Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)

Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)

= Y∗
(

υ + tζ(µ, υ) + 1
2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))

)

×D∗
(

υ + tζ(µ, υ) + 1
2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))

)

= Y∗
(

υ + tζ(µ, υ) + 1
2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))

)

×D∗
(

υ + tζ(µ, υ) + 1
2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))

)

≤ 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
+Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
4

[
Y∗(υ + tζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]
,

≤ 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
+Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
4

[
Y∗(υ + tζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))
+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]
,

≤ 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))

+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
4

[
(tY∗(υ) + (1− t)Y∗(µ))× ((1− t)D∗(υ) + tD∗(µ))
+((1− t)Y∗(υ) + tY∗(µ))× (tD∗(υ) + (1− t)D∗(µ))

]
,

≤ 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))

+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
4

[
(tY∗(υ) + (1− t)Y∗(µ))× ((1− t)D∗(υ) + tD∗(µ))
+((1− t)Y∗(υ) + tY∗(µ))× (tD∗(υ) + (1− t)D∗(µ))

]
,

= 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))

+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
2

[ {
t2 + (1− t)2

}
C∗((υ, µ))

+{t(1− t) + (1− t)t}A∗((υ, µ))

]
,

= 1
4

[
Y∗(υ + (1− t)ζ(µ, υ))×D∗(υ + (1− t)ζ(µ, υ))

+Y∗(υ + tζ(µ, υ))×D∗(υ + tζ(µ, υ))

]

+ 1
2

[ {
t2 + (1− t)2

}
C∗((υ, µ))

+{t(1− t) + (1− t)t}A∗((υ, µ))

]
.

Integrating over [0, 1], we have

2 Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)
≤ 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω + A∗((υ,µ))

6 + C∗((υ,µ))
3 ,

2 Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)
≤ 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω + A∗((υ,µ))

6 + C∗((υ,µ))
3 ,

from which, we have

2
[
Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)
, Y∗

(
2υ+ζ(µ, υ)

2

)
×D∗

(
2υ+ζ(µ, υ)

2

)]

≤ p
1

ζ(µ, υ)

[∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω ,

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω

]

+
[A∗((υ,µ))

6 , A
∗((υ,µ))

6

]
+
[ C∗((υ,µ))

3 , C
∗((υ,µ))

3

]
,

that is
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2 Y
(

2υ + ζ(µ, υ)

2

)
×D

(
2υ + ζ(µ, υ)

2

)
≤p

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)×D(ω)dω +

A(υ, µ)

6
+
C(υ, µ)

3
.

This completes the proof. �

Example 4. We consider the IV-Fs Y, D : [υ, υ + ζ(µ, υ)] = [0, ζ(1, 0)]→ K+
C defined by,

Y(ω) =
[
2ω2, 4ω2] and D(ω) = [1, 2]ω, and these functions fulfill all the assumptions of Theo-

rem 5. Since Y(ω), D(ω) both are left and right preinvex IV-Fs with respect to
ζ(µ, υ) = µ − υ, we have Y∗(ω) = 2ω2, Y∗(ω) = 4ω2 and D∗(ω) = ω, D∗(ω) = 2ω.
We now compute the following

2 Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)
= 1

2 ,

2 Y∗
(

2υ+ζ(µ, υ)
2

)
×D∗

(
2υ+ζ(µ, υ)

2

)
= 2,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω = 1

2 ,
1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)×D∗(ω)dω = 2,

A∗((υ,µ))
6 = 1

3 ,
A∗((υ,µ))

6 = 4
3 ,

C∗((υ,µ))
3 = 0,

C∗((υ,µ))
3 = 0,

that means
1
2 ≤ 1

2 + 0 + 1
3 = 5

6 ,
2 ≤ 2 + 0 + 4

3 = 10
3 .

Hence, Theorem 5 is verified.

It is well known that classical
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-Fejér inequality for left and right preinvex IV-F.

Theorem 6. Let Y : [υ, υ + ζ(µ, υ)]→ K+
C be a left and right preinvex IV-F with

υ < υ + ζ(µ, υ) such that Y(ω) = [Y∗(ω), Y∗(ω)] for all ω ∈ [υ, υ + ζ(µ, υ)]. If
Y ∈ TR([υ, υ+ζ(µ, υ)]) and S : [υ, υ + ζ(µ, υ)]→ R, S(ω) ≥ 0, symmetric with respect to
υ + 1

2 ζ(µ, υ), then

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)S(ω)dω ≤p [Y(υ) + Y(µ)]

∫ 1

0
tS(υ + tζ(µ, υ))dt. (17)

Proof. Let Y be a left and right preinvex IV-F. Then, we have

Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))
≤ (tY∗(υ) + (1− t)Y∗(µ))S(υ + (1− t)ζ(µ, υ)),

Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))
≤ (tY∗(υ) + (1− t)Y∗(µ))S(υ + (1− t)ζ(µ, υ)).

(18)

And

Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ)) ≤ ((1− t)Y∗(υ) + tY∗(µ))S(υ + tζ(µ, υ)),
Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ)) ≤ ((1− t)Y∗(υ) + tY∗(µ))S(υ + tζ(µ, υ)).

(19)
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After adding (18) and (19), and integrating over [0, 1], we get

∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt

+
∫ 1

0 Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ))dt

≤
∫ 1

0

[
Y∗(υ){tS(υ + (1− t)ζ(µ, υ)) + (1− t)S(υ + tζ(µ, υ))}
+Y∗(µ){(1− t)S(υ + (1− t)ζ(µ, υ)) + tS(υ + tζ(µ, υ))}

]
dt,

∫ 1
0 Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ))dt

+
∫ 1

0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt

≤
∫ 1

0

[
Y∗(υ){tS(υ + (1− t)ζ(µ, υ)) + (1− t)S(υ + tζ(µ, υ))}
+Y∗(µ){(1− t)S(υ + (1− t)ζ(µ, υ)) + tS(υ + tζ(µ, υ))}

]
dt.

= 2Y∗(υ)
∫ 1

0 tS(υ + (1− t)ζ(µ, υ)) dt + 2Y∗(µ)
∫ 1

0 tS(υ + tζ(µ, υ)) dt,
= 2Y∗(υ)

∫ 1
0 tS(υ + (1− t)ζ(µ, υ)) dt + 2Y∗(µ)

∫ 1
0 tS(υ + tζ(µ, υ)) dt.

Since S is symmetric, then

= 2[Y∗(υ) + Y∗(µ)]
∫ 1

0 tS(υ + tζ(µ, υ)) dt,
= 2[Y∗(υ) + Y∗(µ)]

∫ 1
0 tS(υ + tζ(µ, υ)) dt.

(20)

Since ∫ 1
0 Y∗(υ + (1− t)ζ(u, v))S(υ + (1− t)ζ(µ, υ))dt

=
∫ 1

0 Y∗(υ + tζ(u, v))S(υ + tζ(µ, υ))dt
= 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω,

∫ 1
0 Y∗(υ + tζ(u, v))S(υ + tζ(µ, υ))dt

=
∫ 1

0 Y∗(υ + (1− t)ζ(u, v))S(υ + (1− t)ζ(µ, υ))dt
= 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω.

(21)

From (21), we have

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω ≤ [Y∗(υ) + Y∗(µ)]

∫ 1
0 tS(υ + tζ(µ, υ)) dt,

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω ≤ [Y∗(υ) + Y∗(µ)]

∫ 1
0 tS(υ + tζ(µ, υ)) dt,

that is
[

1
ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω, 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω

]

≤p [Y∗(υ) + Y∗(µ), Y∗(υ) + Y∗(µ)]
∫ 1

0 tS(υ + tζ(µ, υ)) dt

hence

1
ζ(µ, υ)

(IR)
∫ υ+ζ(µ, υ)

υ
Y(ω)S(ω)dω ≤p [Y(υ) + Y(µ)]

∫ 1

0
tS(υ + tζ(µ, υ))dt.

�

Now, we present the succeeding reformative version of the generalized version of first
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-Fejér inequalities for left and right preinvex IV-Fs.

Theorem 7. Let Y : [υ, υ + ζ(µ, υ)]→ K+
C be a left and right preinvex IV-F with

υ < υ + ζ(µ, υ) such that Y(ω) = [Y∗(ω), Y∗(ω)] for all ω ∈ [υ, υ + ζ(µ, υ)]. If
Y ∈ TR([υ, υ+ζ(µ, υ)]) and S : [υ, υ + ζ(µ, υ)]→ R, S(ω) ≥ 0, symmetric with respect to

υ + 1
2 ζ(µ, υ), and

∫ υ+ζ(µ, υ)
υ S(ω)dω > 0, and Condition C for ζ, then

Y
(

υ +
1
2

ζ(µ, υ)

)
≤p

1
∫ υ+ζ(µ, υ)

υ S(ω)dω
(IR)

∫ υ+ζ(µ, υ)

υ
Y(ω)S(ω)dω. (22)
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Proof. Using condition C, we can write

υ +
1
2

ζ(µ, υ) = υ + tζ(µ, υ) +
1
2

ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ)).

Since Y is a left and right preinvex, we have

Y∗
(

υ + 1
2 ζ(µ, υ)

)
= Y∗

(
υ + tζ(µ, υ) + 1

2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))
)

≤ 1
2 (Y∗(υ + (1− t)ζ(µ, υ)) + Y∗(υ + tζ(µ, υ))),

Y∗
(

υ + 1
2 ζ(µ, υ)

)
= Y∗

(
υ + tζ(µ, υ) + 1

2 ζ(υ + (1− t)ζ(µ, υ), υ + tζ(µ, υ))
)

≤ (Y∗(υ + (1− t)ζ(µ, υ)) + Y∗(υ + tζ(µ, υ))).

(23)

By multiplying (23) by S(υ + (1− t)ζ(µ, υ)) = S(υ + tζ(µ, υ)) and integrating it by t over
[0, 1], we obtain

Y∗
(

υ + 1
2 ζ(µ, υ)

) ∫ 1
0 S(υ + tζ(µ, υ))dt

≤ 1
2

( ∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt

+
∫ 1

0 Y∗(υ + tζ(µ, υ))dtS(υ + tζ(µ, υ))

)

Y∗
(

υ + 1
2 ζ(µ, υ)

) ∫ 1
0 S(υ + tζ(µ, υ))dt

≤ 1
2

( ∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt

+
∫ 1

0 Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ))dt

)
.

(24)

Since ∫ 1
0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt

=
∫ 1

0 Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ))dt
= 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω

∫ 1
0 Y∗(υ + tζ(µ, υ))S(υ + tζ(µ, υ))dt

=
∫ 1

0 Y∗(υ + (1− t)ζ(µ, υ))S(υ + (1− t)ζ(µ, υ))dt
= 1

ζ(µ, υ)

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω.

(25)

From (25), we have

Y∗
(

υ + 1
2 ζ(µ, υ)

)
≤ 1∫ υ+ζ(µ, υ)

υ S(ω)dω

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω,

Y∗
(

υ + 1
2 ζ(µ, υ)

)
≤ 1∫ υ+ζ(µ, υ)

υ S(ω)dω

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω.

From which, we have
[
Y∗
(

υ + 1
2 ζ(µ, υ)

)
, Y∗

(
υ + 1

2 ζ(µ, υ)
)]

≤ p
1∫ υ+ζ(µ, υ)

υ S(ω)dω

[ ∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω,

∫ υ+ζ(µ, υ)
υ Y∗(ω)S(ω)dω

]
,

that is

Y
(

υ +
1
2

ζ(µ, υ)

)
≤p

1
∫ υ+ζ(µ, υ)

υ S(ω)dω
(IR)

∫ υ+ζ(µ, υ)

υ
Y(ω)S(ω)dω.

This completes the proof. �

Remark 5. If one considers taking ζ(µ, υ) = µ− υ, then, by combining inequalities (17) and (22),
we achieve the expected inequality.

If one considers taking Y∗(ω) = Y∗(ω), then, by combining inequalities (17) and (22), we
achieve the classical
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1. Introduction 
Hanson [1] defined the class of invex functions as one of the most significant exten-

sions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex func-
tions to demonstrate adequate optimality criteria and duality in nonlinear programming. 
For a differentiable mapping, the concept of fractional integral identities involving Rie-
mann–Liouville fractional and Hadamard fractional integrals integrals was considered by 
Wang et al. [3], who identified some inequalities using standard convex, 𝑟-convex, 𝑚-
convex, 𝑠-convex, (s, m)-convex, and (𝛽, 𝑚)-convex. Moreover, Işcan [4] also used frac-
tional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5–8] 
for other generalizations of the 𝓗-𝓗 inequality.  

For accurate solutions to various problems in practical mathematics, Moore [9] used 
interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and 
lower limits. Moore [9] showed that, if a real-valued mapping 𝛶(𝜘) meets an ordinary 
Lipschitz condition in 𝑌, |𝛶(𝜘) − 𝛶(𝜔)| ≤ 𝐿|𝜘 − 𝜔|, for 𝜔, 𝜘 ∈ 𝑌, then, the united exten-
sion is a Lipschitz interval extension in 𝑌. To combine the study of discrete and continu-
ous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use 
of dynamic equations and integral inequalities on time scales, in domains as diverse as 
electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, 
and population dynamics [11], has highlighted the need for this theory. Young’s inequal-
ity, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, 
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If one considers taking Y∗(ω) = Y∗ω and ζ(µ, υ) = µ− υ, then, by combining inequalities
(17) and (22), we acquire the classical
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Example 5. We consider the IV-F Y : [1, 1 + ζ(4, 1)]→ K+
C defined by Y(ω) = [2, 4]eω . Since

end point functions Y∗(ω), Y∗(ω) are preinvex functions ζ(κ, ω) = κ − ω, then, Y(ω) is left
and right preinvex IV-F. If

S(ω) =

{
ω− 1, σ ∈

[
1, 5

2
]
,

4−ω, σ ∈
( 5

2 , 4
]
.

Then, we have

1
ζ(4, 1)

∫ 1+ ζ(4, 1)
1 Y∗(ω)S(ω)dω = 1

3

∫ 4
1 Y∗(ω)S(ω)dω

= 1
3

∫ 5
2

1 Y∗(ω)S(ω)dω + 1
3

∫ 4
5
2

Y∗(ω)S(ω)dω,
1

ζ(4, 1)

∫ 1+ ζ(4, 1)
1 Y∗(ω)S(ω)dω = 1

3

∫ 4
1 Y∗(ω)S(ω)dω

= 1
3

∫ 5
2

1 Y∗(ω)S(ω)dω + 1
3

∫ 4
5
2

Y∗(ω)S(ω)dω,

= 2
3

∫ 5
2

1 eω(ω− 1)dω + 2
3

∫ 4
5
2

eω(4−ω)dω ≈ 22,

= 4
3

∫ 5
2

1 eω(ω− 1)dω + 4
3

∫ 4
5
2

eω(4−ω)dω ≈ 44,

(26)

and
[Y∗(υ) + Y∗(µ)]

∫ 1
0 tS(υ + tζ(µ, υ)) dt

[Y∗(υ) + Y∗(µ)]
∫ 1

0 tS(υ + tζ(µ, υ)) dt

= 2
[
e + e4]

[∫ 1
2

0 3t2dω +
∫ 1

1
2

t(3− 3t)dt
]
≈ 43.

= 4
[
e + e4]

[∫ 1
2

0 3t2dω +
∫ 1

1
2

t(3− 3t)dt
]
≈ 86.

(27)

From (26) and (27), we have
[22, 44] ≤ p[43, 86]

Hence, Theorem 6 is verified. For Theorem 7, we have

Y∗
(

υ + 1
2 ζ(µ, υ)

)
≈ 122

5 ,

Y∗
(

υ + 1
2 ζ(µ, υ)

)
≈ 244

5 ,
(28)

∫ υ+ζ(µ, υ)

υ
S(ω)dω =

∫ 5
2

1
(ω− 1)dω +

∫ 4

5
2

(4−ω)dω =
9
4

,

1∫ υ+ζ(µ, υ)
υ S(ω)dω

∫ 4
1 Y∗(ω)S(ω)dω ≈ 146

5

1∫ υ+ζ(µ, υ)
υ S(ω)dω

∫ 4
1 Y∗(ω)S(ω)dω ≈ 293

5
(29)

From (28) and (29), we have
[

122
5

, 49
]
≤ p

[
146
5

,
293
5

]
.

Hence, Theorem 7 is verified.

4. Conclusions and Prospective Results

In this study, the notion of left and right preinvex functions in interval-valued settings
was presented. For left and right preinvex interval-valued functions, we constructed
Hermite–Hadamard type inequalities, as well as for the product of two left and right
preinvex interval-valued functions. We also established Hemite–Hadamard–Fejér type
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inequality. We also discussed some special cases and provided some examples to prove the
validity of our main results. In future, we will seek to explore this concept by using different
fractional integral operators, such as Riemann–Liouville fractional operators, Katugampola
fractional operators and generalized K-fractional operators.

Finally, we think that our results may be relevant to other fractional calculus models
having Mittag–Liffler functions in their kernels, such as Atangana–Baleanu and Prabhakar
fractional operators. This consideration has been presented as an open problem for aca-
demics interested in this topic. Researchers who are interested might follow the steps
outlined in the references [54,55].
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4. İşcan, I. Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv

2012, arXiv:1204.0272.
5. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized

convex functions in interval-valued calculus. AIMS Math 2022, 7, 4266–4292. [CrossRef]
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Abstract: We introduce a new class of interval-valued preinvex functions termed as harmonically
h-preinvex interval-valued functions. We establish new inclusion of Hermite–Hadamard for harmon-
ically h-preinvex interval-valued function via interval-valued Riemann–Liouville fractional integrals.
Further, we prove fractional Hermite–Hadamard-type inclusions for the product of two harmonically
h-preinvex interval-valued functions. In this way, these findings include several well-known results
and newly obtained results of the existing literature as special cases. Moreover, applications of the
main results are demonstrated by presenting some examples.

Keywords: Hermite–Hadamard inequalities; harmonical convex functions; interval-valued functions;
fractional integrals

1. Introduction

It is well known that extensive literature on the class of integral inequalities is being
introduced under various notions of convexity; see, for instance [1–6]. Inspired by the
importance of convexity in multiple fields of pure and applied sciences, researchers gener-
alized and extended the notion of convexity in various settings. A useful generalization
of convex functions is introduced by Hanson [7] which is called invex functions. In 1986,
Ben-Israel and Mond [8] proposed the notion of preinvex functions and showed that every
differentiable preinvex function is invex, but the converse may not be true. Yang and Li [9]
provided two conditions that determine the preinvexity of a function via an intermediate-
point preinvexity check under conditions of upper and lower semicontinuity, respectively.

On the other hand, interval analysis was introduced to handle interval uncertainty
in many mathematical or computer models of some deterministic real-world phenomena.
Moore [10] was the first to propose the concept of interval analysis and extend the arithmetic
of intervals to the computer. Moore et al. [11] discussed an arithmetic for intervals,
integration of interval functions, and interval Newton methods. Bhurjee and Panda [12]
provided a methodology to determine the efficient solution of general multi-objective
interval fractional programming problem. Lupulescu [13] gave a theory of the fractional
calculus for interval-valued functions using gH-difference for closed intervals. Further,
Li et al. [14] introduced the concept of invexity using gH-derivative of interval-valued
functions and derived Kuhn–Tucker optimality conditions for an interval-valued objective
function. Interval analysis has applications in various fields such as experimental and
computational physics, error analysis, computer graphics, robotics, numerical integration,
and many other fields (see [15–19]).

2. Literature Survey

Işcan [20] proposed the concept of harmonically convex functions and presented
some Hermite–Hadamard (H–H)-type inequalities for harmonically convex functions.
Noor et al. [21] defined a new class of preinvex functions named h-preinvex functions and
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established H–H-type inequalities for these preinvex functions under certain conditions.
Further, Noor et al. [22] introduced harmonic h-preinvex function and obtained Ostrowski
type inequalities for harmonic h-preinvex functions using Riemann–Liouville (R–L) frac-
tional integrals. In recent years, several integral inequalities for different type of preinvex
functions are investigated by many authors; see, for instance [23–30].

Cano et al. [31] obtained some Ostrowski type inequalities for interval-valued func-
tions using gH-derivative. Zhao et al. [32] investigated Riemann interval delta integrals for
interval-valued functions on time scales and proved Jensen’s, Hölder’s, and Minkowski’s
inequalities using Riemann interval delta integrals. Budak et al. [33] defined right-sided
R–L fractional integrals for interval-valued functions and obtained H–H-type inequalities
for interval-valued R–L fractional integrals. Lou et al. [34] presented the notions of the
Iq-integral and Iq-derivative and gave the Iq-H–H inequalities for interval-valued functions.
Further, numerous concepts of quantum calculus for interval-valued functions have been
investigated by [35–37].

Considering the importance of interval analysis, many researchers established re-
lations between integral inequalities and different types of interval-valued functions.
Zhao et al. [38] introduced the notion of harmonical h-convexity for interval-valued func-
tions and proved some new H–H-type inequalities for the interval Riemann integral.
Further, Zhao et al. [39,40] introduced the concept of interval-valued coordinated convex-
ity and established H–H-type inequalities for newly defined interval-valued coordinated
convex functions. Recently, Sharma et al. [41] introduced (h1, h2)-preinvex interval-valued
function and derived fractional H–H-type inequalities for these class of interval-valued
preinvex functions. Zhou et al. [42] derived H–H-type inequalities for interval-valued
exponential type preinvex functions for R–L interval-valued fractional operator. For more
inequalities for interval-valued functions, see references [43–49].

The work in this paper is mainly motivated by Zhao et al. [38] and Shi et al. [50]. We
propose the concept of harmonically h-preinvex interval-valued function which includes
harmonical h-convex interval-valued functions as a special case. We prove new fractional
inclusions of H–H-type for harmonically h-preinvex interval-valued functions. We also
present H–H-type inclusions for the product of two harmonically h-preinvex interval-
valued functions for interval-valued R–L fractional integrals. Further, we discuss some
special cases of our main results. The results obtained in this paper may be generalized
for other kinds of interval-valued fractional integrals including harmonically h-preinvex
interval-valued functions. As future directions, we can investigate the interval-valued
preinvexity on coordinates and establish new inclusions of H–H-type for interval-valued
coordinated preinvex functions.

The presentation sequence of the proposed work is the following. In Section 3, we
consider some basic definitions and notions of interval analysis. Additionally, we discuss
the related results required for this paper. In Section 4, we define harmonically h-preinvexity
of interval-valued functions and prove fractional H–H-type inclusions for harmonically
h-preinvex interval-valued functions. Some special cases of these results are also discussed
in Section 4. In Section 5, we discuss the results obtained by us in this paper. Finally,
in Section 6, conclusions and future directions of this study are given.

3. Preliminaries

Let XI be the collection of all closed intervals of R and ∆ ∈ XI . Then, interval ∆ is
defined by:

∆ = [∆, ∆] = {u ∈ R| ∆ ≤ u ≤ ∆}, ∆, ∆ ∈ R.

We say ∆ is positive if ∆ > 0 or negative if ∆ < 0. We denote the set of all positive
closed intervals by X+

I and the set of all negative closed intervals by X−I . The following
binary operations for intervals ∆1 = [∆1, ∆1] and ∆2 = [∆2, ∆2] are given by [17].

∆1 + ∆2 = [∆1, ∆1] + [∆2, ∆2] = [∆1 + ∆2, ∆1 + ∆2],
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∆1 − ∆2 = [∆1, ∆1]− [∆2, ∆2] = [∆1 − ∆2, ∆1 − ∆2],

∆1.∆2 = [min{∆1 ∆2, ∆1 ∆2, ∆1 ∆2, ∆1 ∆2}, max{∆1 ∆2, ∆1 ∆2, ∆1 ∆2, ∆1 ∆2}],

1/∆ = {1/u : 0 6= u ∈ ∆} = [1/∆, 1/∆],

∆1/∆2 = ∆1.(1/∆2) = {u.(1/v) : u ∈ ∆1, 0 6= v ∈ ∆2},

ρ∆ = ρ[∆, ∆] =





[ρ∆, ρ∆], if ρ > 0,
{0}, if ρ = 0,
[ρ∆, ρ∆], if ρ < 0,

where ρ ∈ R.

Definition 1 ([17]). A function ψ is called an interval-valued function on [ω1, ω2] if it assigns a
nonempty interval to each u ∈ [ω1, ω2] and

ψ(u) = [ψ(u), ψ(u)],

where ψ and ψ are real-valued functions.

Theorem 1 ([11]). Let ψ : [ω1, ω2] → XI be an interval-valued function such that ψ(u) =
[ψ(u), ψ(u)]. Then, ψ is interval Riemann integrable (IR−integrable) on [ω1, ω2] if and only if
ψ(u) and ψ(u) are Riemann integrable (R−integrable) on [ω1, ω2] and

(IR)
∫ ω2

ω1

ψ(u)du =

[
(R)

∫ ω2

ω1

ψ(u)du, (R)
∫ ω2

ω1

ψ(u)du
]

.

The collection of all R-integrable and IR-integrable functions on [ω1, ω2] denoted by
R([ω1,ω2])

and IR([ω1,ω2])
, respectively.

Definition 2 ([51]). Let ψ ∈ L1[ω1, ω2]. The R–L fractional integrals Jα
ω+

1
ψ and Jα

ω−2
ψ of order

α > 0 with ω1 ≥ 0 are defined by

Jα
ω+

1
ψ(u) =

1
Γ(α)

∫ u

ω1

(u− ε)(α−1)ψ(ε)dε, u > ω1

and
Jα
ω−2

ψ(u) =
1

Γ(α)

∫ ω2

u
(ε− u)(α−1)ψ(ε)dε, u < ω2,

respectively. Here, Γ(.) is the Gamma function defined by

Γ(α) =
∫ ∞

0
e−εεα−1dε.

Definition 3 ([13,33]). Let ψ : [ω1, ω2]→ XI be an interval-valued function and ψ ∈ IR([ω1,ω2])
.

The interval-valued R–L fractional integrals of function ψ are defined by

Jα
ω+

1
ψ(u) =

1
Γ(α)

(IR)
∫ u

ω1

(u− ε)(α−1)ψ(ε)dε, u > ω1, α > 0

and
Jα
ω−2

ψ(u) =
1

Γ(α)
(IR)

∫ ω2

u
(ε− u)(α−1)ψ(ε)dε, u < ω2, α > 0,

where Γ(α) is the Gamma function.
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Corollary 1 ([33]). If ψ : [ω1, ω2] → XI is an interval-valued function such that ψ(u) =
[ψ(u), ψ(u)] with ψ(u), ψ(u) ∈ R([ω1,ω2])

, then we have

Jα
ω+

1
ψ(u) = [Jα

ω+
1

ψ(u), Jα
ω+

1
ψ(u)]

and
Jα
ω−2

ψ(u) = [Jα
ω−2

ψ(u), Jα
ω−2

ψ(u)].

Definition 4 ([52]). A set I = [ω1, ω2] ⊆ R\{0} is called a harmonic convex set if

uv
tu + (1− t)v

∈ I, ∀u, v ∈ I, t ∈ [0, 1].

Definition 5 ([20]). A function ψ : I = [ω1, ω2] ⊆ R\{0} → R is called harmonic convex, if

ψ

(
uv

tu + (1− t)v

)
≤ (1− t)ψ(u) + tψ(v), ∀u, v ∈ I, t ∈ [0, 1].

Now we consider some concepts for harmonic preinvex functions. Let ψ : I ⊆ R\{0} →
R and η(., .) : I × I → R be continuous functions.

Definition 6 ([53]). A set I = [ω1, ω1 + η(ω2, ω1)] ⊆ R\{0} is called a harmonic invex with
respect to η(., .), if

u(u + η(v, u))
u + (1− t)η(v, u)

∈ I, ∀u, v ∈ I, t ∈ [0, 1].

It is well known that every harmonic convex set is harmonic invex with respect to
η(v, u) = v− u but not conversely.

Definition 7 ([53]). A function ψ : I = [ω1, ω1 + η(ω2, ω1)] ⊆ R\{0} → R is said to be
harmonic preinvex with respect to the bifunction η(., .), if

ψ

(
u(u + η(v, u))

u + (1− t)η(v, u)

)
≤ (1− t)ψ(u) + tψ(v), ∀u, v ∈ I, t ∈ [0, 1].

Condition C [54]. Let I ⊆ R be an invex set with respect to η(., .). Then, function η
holds the condition C if for any t ∈ [0, 1] and any u, v ∈ I,

η(v, v + tη(u, v)) = −tη(u, v),

η(u, v + tη(u, v)) = (1− t)η(u, v).

Note that ∀ t1, t2 ∈ [0, 1], u, v ∈ I and from condition C, we have

η(v + t2η(u, v), v + t1η(u, v)) = (t2 − t1)η(u, v).

Theorem 2 ([55]). Let ψ : I = [ω1, ω1 + η(ω2, ω1)] ⊆ R→ (0, ∞) be a preinvex function on I
and ω1, ω2 ∈ I with ω1 < ω1 + η(ω2, ω1). Then

ψ

(
2ω1 + η(ω2, ω1)

2

)
≤ 1

η(ω2, ω1)

∫ ω1+η(ω2,ω1)

ω1

ψ(u)du ≤ ψ(ω1) + ψ(ω2)

2
,

which is called the H–H-Noor inequality.
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Definition 8 ([41]). If I ⊆ R is an invex set with respect to η(., .), ψ(u) = [ψ(u), ψ(u)] is an
interval-valued function on I. Then ψ is preinvex interval-valued function on I with respect to
η(., .) if

ψ(v + tη(u, v)) ⊇ tψ(u) + (1− t)ψ(v), ∀ t ∈ [0, 1] and ∀ u, v ∈ I.

4. Main Results

In this section, first, we define harmonically h-preinvex interval-valued function and
discuss some special cases of harmonically h-preinvex interval-valued function.

Definition 9. Let h : [0, 1] ⊆ J → R be a non-negative function such that h 6≡ 0, and I ⊆ R\{0}
be a harmonic invex set with respect to η(., .). Let ψ : I ⊆ R\{0} → X+

I be an interval-valued
function on set I, then ψ is called harmonically h-preinvex interval-valued function with respect to
η(., .) if

ψ

(
u(u + η(v, u))

u + (1− t)η(v, u)

)
⊇ h(1− t)ψ(u) + h(t)ψ(v), ∀ t ∈ [0, 1] and ∀ u, v ∈ I.

Now, we consider some special cases of harmonically h-preinvex interval- valued func-
tions.

For h(t) = 1, function ψ is called a harmonically P−preinvex interval-valued function.
For h(t) = t, function ψ is called a harmonically preinvex interval-valued function.
If h(t) = ts, s ∈ (0, 1), then we find the definition of Breckner type of s−harmonically
preinvex interval-valued functions.
If h(t) = t−s, s ∈ (0, 1), then we find the definition of Godunova–Levin type of
s−harmonically preinvex interval-valued functions.

Example 1. Let I = [1, 2] ⊂ R\{0}, ψ(u) =
[
1− 1

2u2 , 1 + 1
2u

]
, η(v, u) = v− 2u, h(t) = t

then ψ is harmonically h-preinvex interval-valued function on I.

Now, we establish fractional inclusion of H–H for harmonically h-preinvex interval-
valued functions.

Theorem 3. Let h : [0, 1] → R be a non-negative function such that h( 1
2 ) 6= 0. Let ψ :

I = [ω1, ω1 + η(ω2, ω1)] ⊆ R\{0} → X+
I be a harmonically h-preinvex interval-valued

function such that ψ = [ψ, ψ] and ω1, ω2 ∈ I with ω1 < ω1 + η(ω2, ω1). If ψ ∈ L[ω1, ω1 +
η(ω2, ω1)], α > 0 and η holds condition C, then

1
αh( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
+ Jα(

1
ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ [ψ(ω1) + ψ(ω1 + η(ω2, ω1))]
∫ 1

0
tα−1[h(t) + h(1− t)]dt,

where Ω(u) = 1
u and ψoΩ is defined by ψoΩ(u) = ψ(Ω(u)), ∀ u ∈

[
1

ω1+η(ω2,ω1)
, 1

ω1

]
.

Proof. As ψ is harmonically h-preinvex interval-valued function on [ω1, ω1 + η(ω2, ω1)],
we have

1
h( 1

2 )
ψ

(
2u(u + η(v, u))

2u + η(v, u)

)
⊇ ψ(u) + ψ(v), ∀ u, v ∈ [ω1, ω1 + η(ω2, ω1)]. (1)

Let u = ω1(ω1+η(ω2,ω1))
ω1+(1−t)η(ω2,ω1)

and v = ω1(ω1+η(ω2,ω1))
ω1+tη(ω2,ω1)

. Then, using Condition C in (1), we find
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1
h( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
⊇ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
. (2)

Multiplying (2) by tα−1, α > 0 and integrating over [0, 1] with respect to t, we have

1
h( 1

2 )
(IR)

∫ 1

0
tα−1ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
dt ⊇ (IR)

∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt

+ (IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt. (3)

Applying Theorem 1 in above relation, we find

(IR)
∫ 1

0
tα−1ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
dt

=

[
(R)

∫ 1

0
tα−1ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
dt, (R)

∫ 1

0
tα−1ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
dt
]

=

[
1
α

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
,

1
α

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)]

=
1
α

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
, (4)

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt

=

[
(R)

∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt, (R)

∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt
]

= Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+ψoΩ
(

1
ω1

)
, Jα(

1
ω1+η(ω2,ω1)

)+ψoΩ
(

1
ω1

)]

= Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
. (5)

Similarly,

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt = Γ(α)

(
ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α

Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
. (6)

Using (4)–(6) in (3), we have

1
αh( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
⊇ Γ(α)

(
ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)]
. (7)

As ψ is an harmonically h-preinvex interval-valued function on [ω1, ω1 + η(ω2, ω1)],
we have

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
= ψ

(
(ω1 + η(ω2, ω1))(ω1 + η(ω2, ω1) + η(ω1, ω1 + η(ω2, ω1))

ω1 + η(ω2, ω1) + tη(ω1, ω1 + η(ω2, ω1))

)

⊇ h(t)ψ(ω1 + η(ω2, ω1)) + h(1− t)ψ(ω1) (8)

and
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ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
= ψ

(
(ω1 + η(ω2, ω1))(ω1 + η(ω2, ω1) + η(ω1, ω1 + η(ω2, ω1))

ω1 + η(ω2, ω1) + (1− t)η(ω1, ω1 + η(ω2, ω1))

)

⊇ h(1− t)ψ(ω1 + η(ω2, ω1)) + h(t)ψ(ω1). (9)

Adding (8) and (9), we have

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
⊇ [h(t) + h(1− t)][ψ(ω1) + ψ(ω1 + η(ω2, ω1))]. (10)

Multiplying (10) by tα−1 and integrating over [0, 1] with respect to t, we have

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt + (IR)

∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt

⊇ (IR)
∫ 1

0
tα−1[h(t) + h(1− t)][ψ(ω1) + ψ(ω1 + η(ω2, ω1))]dt.

This implies

Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
+ Jα(

1
ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ [ψ(ω1) + ψ(ω1 + η(ω2, ω1))]
∫ 1

0
tα−1[h(t) + h(1− t)]dt. (11)

From (7) and (11), we find

1
αh( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
+ Jα(

1
ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ [ψ(ω1) + ψ(ω1 + η(ω2, ω1))]
∫ 1

0
tα−1[h(t) + h(1− t)]dt.

Example 2. Let I = [ω1, ω1 + η(ω2, ω1)] = [1, 2], η(ω2, ω1) = ω2 − 2ω1. Let α = 1 and
h(t) = t ∀ t ∈ [0, 1],
ψ : I → X+

I be defined by

ψ(u) =
[
− 1

u
+ 2,

1
u
+ 2
]

, ∀ u ∈ I.

We find

1
αh( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
= 2ψ

(
4
3

)
=

[
5
2

,
11
2

]
, (12)

Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
+ Jα(

1
ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)]

=
2ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

∫ ω1+η(ω2,ω1)

ω1

ψ(u)
u2 du = 2

∫ 2

1

1
u2

[
− 1

u
+ 2,

1
u
+ 2
]

du =

[
5
2

,
11
2

]
(13)

and
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[ψ(ω1) + ψ(ω1 + η(ω2, ω1))]
∫ 1

0
tα−1[h(t) + h(1− t)]dt = [ψ + ψ] =

[
5
2

,
11
2

]
. (14)

From (12)–(14), we see Theorem 3 is verified.

Remark 1. If we put η(ω2, ω1) = ω2 −ω1 in the above theorem, we obtain Theorem 5 of [50].

Remark 2. If we put η(ω2, ω1) = ω2 − ω1 and α = 1 in the above theorem, we obtain Theorem 1
of [38].

Remark 3. If we put η(ω2, ω1) = ω2 − ω1 and h(t) = t in the above theorem, we obtain
Theorem 3.6 of [56].

Now we present some particular cases of Theorem 3.

Corollary 2. If α = 1, then Theorem 3 gives the following result:

1
h( 1

2 )
ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
⊇ 2ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

∫ ω1+η(ω2,ω1)

ω1

ψ(u)
u2 du

⊇ [ψ(ω1) + ψ(ω1 + η(ω2, ω1))]
∫ 1

0
[h(t) + h(1− t)]dt.

Corollary 3. If h(t) = t, then Theorem 3 gives the following result:

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ Γ(α + 1)
2

(
ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+ψ

(
1

ω1

)
+ Jα(

1
ω1

)−ψ

(
1

ω1 + η(ω2, ω1)

)]

⊇ ψ(ω1) + ψ(ω1 + η(ω2, ω1))

2
.

Next, we prove fractional inclusions of H–H-type for the product of two harmonically
h-preinvex interval-valued functions.

Theorem 4. Let h1, h2 : [0, 1] → R be non-negative functions and h1, h2 6≡ 0. Let ψ, ϕ :
I = [ω1, ω1 + η(ω2, ω1)] ⊆ R\{0} → X+

I be two harmonically h1- and h2-preinvex interval-
valued functions, respectively, such that ψ = [ψ, ψ], ϕ = [ϕ, ϕ] and ω1, ω2 ∈ I with ω1 < ω1 +
η(ω2, ω1). If ψϕ ∈ L[ω1, ω1 + η(ω2, ω1)], α > 0 and η holds condition C, then

Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
(ϕoΩ)

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
[tα−1 + (1− t)α−1]h1(t)h2(t)dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
[tα−1 + (1− t)α−1]h1(1− t)h2(t)]dt, (15)

where F(ω1, ω1 + η(ω2, ω1)) = ψ(ω1)ϕ(ω1) + ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1)),
N(ω1, ω1 + η(ω2, ω1)) = ψ(ω1)ϕ(ω1 + η(ω2, ω1)) + ψ(ω1 + η(ω2, ω1))ϕ(ω1)
and Ω(u) = 1

u .
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Proof. As ψ and ϕ are two harmonically h1- and h2-preinvex interval-valued functions on
[ω1, ω1 + η(ω2, ω1)], respectively. Therefore,

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
= ψ

(
(ω1 + η(ω2, ω1))(ω1 + η(ω2, ω1) + η(ω1, ω1 + η(ω2, ω1))

ω1 + η(ω2, ω1) + tη(ω1, ω1 + η(ω2, ω1))

)

⊇ h1(t)ψ(ω1 + η(ω2, ω1)) + h1(1− t)ψ(ω1) (16)

and

ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
= ϕ

(
(ω1 + η(ω2, ω1))(ω1 + η(ω2, ω1) + η(ω1, ω1 + η(ω2, ω1))

ω1 + η(ω2, ω1) + tη(ω1, ω1 + η(ω2, ω1))

)

⊇ h2(t)ϕ(ω1 + η(ω2, ω1)) + h2(1− t)ϕ(ω1). (17)

As ψ(u), ϕ(u) ∈ X+
I , ∀ u ∈ [ω1, ω1 + η(ω2, ω1)], then from (16) and (17), we obtain

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

⊇ h1(t)h2(t)ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1)) + h1(1− t)h2(1− t)ψ(ω1)ϕ(ω1)

+ h1(t)h2(1− t)ψ(ω1 + η(ω2, ω1))ϕ(ω1) + h1(1− t)h2(t)ψ(ω1)ϕ(ω1 + η(ω2, ω1)). (18)

Similarly,

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

⊇ h1(1− t)h2(1− t)ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1)) + h1(t)h2(t)ψ(ω1)ϕ(ω1)

+ h1(1− t)h2(t)ψ(ω1 + η(ω2, ω1))ϕ(ω1) + h1(t)h2(1− t)ψ(ω1)ϕ(ω1 + η(ω2, ω1)). (19)

Adding (18) and (19), we have

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

⊇ [h1(t)h2(t) + h1(1− t)h2(1− t)][ψ(ω1)ϕ(ω1) + ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1))]

+ [h1(t)h2(1− t) + h1(1− t)h2(t)][ψ(ω1 + η(ω2, ω1))ϕ(ω1) + ψ(ω1)ϕ(ω1 + (ω2, r))]

= F(ω1, ω1 + η(ω2, ω1))[h1(t)h2(t) + h1(1− t)h2(1− t)]

+ G(ω1, ω1 + η(ω2, ω1))[h1(1− t)h2(t) + h1(t)h2(1− t)]. (20)

Multiplying (20) by tα−1 and integrating over [0, 1] with respect to t, we have

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt

+ (IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt

⊇ (IR)
∫ 1

0
tα−1F(ω1, ω1 + η(ω2, ω1))[h1(t)h2(t) + h1(1− t)h2(1− t)]dt

+ (IR)
∫ 1

0
tα−1G(ω1, ω1 + η(ω2, ω1))[h1(1− t)h2(t) + h1(t)h2(1− t)]dt. (21)

As

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt
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= Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
(ϕoΩ)

(
1

ω1

)
, (22)

(IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt

= Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α

Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)
. (23)

Using (22), (23) in (21), we have

Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
(ϕoΩ)

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
[tα−1 + (1− t)α−1]h1(t)h2(t)dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
[tα−1 + (1− t)α−1]h1(1− t)h2(t)]dt.

Remark 4. If we put η(ω2, ω1) = ω2 −ω1 in the above theorem, we obtain Theorem 6 of [50].

Remark 5. If we put η(ω2, ω1) = ω2 −ω1 and α = 1 in the above theorem, we obtain Theorem
3 of [38].

Corollary 4. If α = 1, then Theorem 4 gives the following result:

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

∫ ω1+η(ω2,ω1)

ω1

ψ(u)ϕ(u)
u2 du

⊇ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
h1(t)h2(t)dt + G(ω1, ω1 + η(ω2, ω1))

∫ 1

0
h1(1− t)h2(t)]dt.

Corollary 5. If h1(t) = h2(t) = t, then Theorem 4 gives the following result:

Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
(ϕoΩ)

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

⊇ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
t2[tα−1 + (1− t)α−1]dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
t(1− t)[tα−1 + (1− t)α−1]dt

=
α2 + α + 2

α(α + 1)(α + 2)
F(ω1, ω1 + η(ω2, ω1)) +

2
(α + 1)(α + 2)

G(ω1, ω1 + η(ω2, ω1))

=
(α2 + α + 2)F(ω1, ω1 + η(ω2, ω1)) + 2αG(ω1, ω1 + η(ω2, ω1))

α(α + 1)(α + 2)
.

Theorem 5. Let h1, h2 : [0, 1] → R be non-negative functions and h1(
1
2 )h2(

1
2 ) 6= 0. Let

ψ, ϕ : I = [ω1, ω1 + η(ω2, ω1)] ⊆ R\{0} → X+
I be two harmonically h1- and h2-preinvex
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interval-valued functions, respectively, such that ψ = [ψ, ψ], ϕ = [ϕ, ϕ] and ω1, ω2 ∈ I with
ω1 < ω1 + η(ω2, ω1). If ψϕ ∈ L[ω1, ω1 + η(ω2, ω1)], α > 0 and η holds condition C, then

1
αh1(

1
2 )h2(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
(ϕoΩ)

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

+ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
(tα−1 + (1− t)α−1)h1(t)h2(1− t)dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
(tα−1 + (1− t)α−1)h1(t)h2(t)dt,

where F(ω1, ω1 + η(ω2, ω1)) and G(ω1, ω1 + η(ω2, ω1)) are defined as previous.

Proof. As ψ is harmonically h1-preinvex interval-valued function on [ω1, ω1 + η(ω2, ω1)], we
have

1
h1(

1
2 )

ψ

(
2u(u + η(v, u))

2u + η(v, u)

)
⊇ ψ(u) + ψ(v), ∀ u, v ∈ [ω1, ω1 + η(ω2, ω1)]. (24)

Let u = ω1(ω1+η(ω2,ω1))
ω1+(1−t)η(ω2,ω1)

and v = ω1(ω1+η(ω2,ω1))
ω1+tη(ω2,ω1)

. Then, using Condition C in (24), we find

1
h1(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
⊇ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
. (25)

Similarly,

1
h2(

1
2 )

ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
⊇ ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
. (26)

From (25) and (26), we find

1
h1(

1
2 )h2(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇
[

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)]

×
[

ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
+ ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)]

= ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

+

[
ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

+ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)]
. (27)

As ψ(u) and ϕ(u) ∈ X+
I , ∀u ∈ [ω1, ω1 + η(ω2, ω1)] are two harmonically h1- and h2-

preinvex interval-valued functions, respectively. Therefore,
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ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

⊇ h1(t)h2(t)ψ(ω1 + η(ω2, ω1))ϕ(ω1) + h1(1− t)h2(1− t)ψ(ω1)ϕ(ω1 + η(ω2, ω1))

+ h1(t)h2(1− t)ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1)) + h1(1− t)h2(t)ψ(ω1)ϕ(ω1). (28)

Similarly,

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

⊇ h1(t)h2(t)ψ(ω1)ϕ(ω1 + η(ω2, ω1)) + h1(1− t)h2(1− t)ψ(ω1 + η(ω2, ω1))ϕ(ω1)

+ h1(t)h2(1− t)ψ(ω1)ϕ(ω1) + h1(1− t)h2(t)ψ(ω1 + η(ω2, ω1))ϕ(ω1 + η(ω2, ω1)). (29)

Adding (28) and (29), we obtain

ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

⊇ G(ω1, ω1 + η(ω2, ω1))[h1(t)h2(t) + h1(1− t)h2(1− t)]

+ F(ω1, ω1 + η(ω2, ω1))[h1(1− t)h2(t) + h1(t)h2(1− t)]. (30)

From (27) and (30), we have

1
h1(

1
2 )h2(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)

+ ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)

+ G(ω1, ω1 + η(ω2, ω1))[h1(t)h2(t) + h1(1− t)h2(1− t)]dt

+ F(ω1, ω1 + η(ω2, ω1))[h1(1− t)h2(t) + h1(t)h2(1− t)]dt. (31)

Multiplying (31) by tα−1, then integrating over [0, 1] with respect to t, we find

1
h1(

1
2 )h2(

1
2 )

(IR)
∫ 1

0
tα−1ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
dt

⊇ (IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + (1− t)η(ω2, ω1)

)
dt

+ (IR)
∫ 1

0
tα−1ψ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
ϕ

(
ω1(ω1 + η(ω2, ω1))

ω1 + tη(ω2, ω1)

)
dt

+ G(ω1, ω1 + η(ω2, ω1))(IR)
∫ 1

0
tα−1[h1(t)h2(t) + h1(1− t)h2(1− t)]dt

+ F(ω1, ω1 + η(ω2, ω1))(IR)
∫ 1

0
tα−1[h1(1− t)h2(t) + h1(t)h2(1− t)]dt.

This implies

1
αh1(

1
2 )h2(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
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⊇ Γ(α)
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
ϕoΩ

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

+ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
(tα−1 + (1− t)α−1)h1(t)h2(1− t)]dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
(tα−1 + (1− t)α−1)h1(t)h2(t)dt.

Remark 6. If we put η(ω2, ω1) = ω2 −ω1 in the above theorem, we obtain Theorem 7 of [50].

Remark 7. If we put η(ω2, ω1) = ω2 −ω1 and α = 1 in the above theorem, we obtain Theorem
4 of [38].

Corollary 6. If α = 1, then Theorem 5 gives the following result:

1
2h1(

1
2 )h2(

1
2 )

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

∫ ω1+η(ω2,ω1))

ω1

ψ(u)ϕ(u)
u2 du + F(ω1, ω1 + η(ω2, ω1))

∫ 1

0
h1(t)h2(1− t)dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
h1(t)h2(t)dt.

Corollary 7. If h1(t) = h2(t) = t, then Theorem 5 gives the following result:

4
α

ψ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)
ϕ

(
2ω1(ω1 + η(ω2, ω1))

2ω1 + η(ω2, ω1)

)

⊇ Γ(α)ψ
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
ϕoΩ

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

+ F(ω1, ω1 + η(ω2, ω1))
∫ 1

0
t(1− t)(tα−1 + (1− t)α−1)dt

+ G(ω1, ω1 + η(ω2, ω1))
∫ 1

0
t2(tα−1 + (1− t)α−1)dt

= Γ(α)ψ
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
ϕoΩ

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]

+
2

(α + 1)(α + 2)
F(ω1, ω1 + η(ω2, ω1)) +

α2 + α + 2
α(α + 1)(α + 2)

G(ω1, ω1 + η(ω2, ω1))

= Γ(α)ψ
(

ω1(ω1 + η(ω2, ω1))

η(ω2, ω1)

)α
[

Jα(
1

ω1+η(ω2,ω1)

)+(ψoΩ)

(
1

ω1

)
ϕoΩ

(
1

ω1

)

+Jα(
1

ω1

)−(ψoΩ)

(
1

ω1 + η(ω2, ω1)

)
(ϕoΩ)

(
1

ω1 + η(ω2, ω1)

)]
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+
2αF(ω1, ω1 + η(ω2, ω1)) + (α2 + α + 2)G(ω1, ω1 + η(ω2, ω1))

α(α + 1)(α + 2)
.

5. Results and Discussions

After illustrating the concept of interval-valued functions, this paper proposes a new
definition of harmonically h-preinvex interval-valued functions. Further, with the help of
the proposed harmonically h-preinvexity for interval-valued functions, we have proven
H–H-type inclusions for interval-valued R–L fractional integrals. From the definition of
harmonically h-preinvex interval-valued function, we can see that every harmonical h-
convex interval-valued function is harmonically h-preinvex interval-valued function with
respect to η(v, u) = v − u. The results obtained in this paper are generalization of the
results of Zhao et al. [38] and Shi et al. [50]. Moreover, some particular cases of our main
outcomes are considered.

6. Conclusions and Future Directions

In this paper, we have introduced harmonically h-preinvex interval-valued functions
which include harmonical h-convex interval-valued functions and harmonical convex
interval-valued functions as special cases. We have obtained H–H-type fractional inclu-
sions for harmonically h-preinvex interval-valued functions. After that, we have proven
fractional H–H-type inclusions for the product of two harmonically h-preinvex interval-
valued functions. The results obtained in this paper may be extended for other kinds of
interval-valued fractional integrals including harmonically h-preinvex interval-valued func-
tions. In the future, we can investigate the interval-valued preinvexity on coordinates and
establish new inclusions of H–H-type for interval-valued coordinated preinvex functions.
It is expected that current work will motivate researchers working in fractional calculus,
interval analysis, and other related areas.
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and Kamsing Nonlaopon 5,*

1 Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan;
bilal42742@gmail.com

2 Department of Computer Science, College of Computers and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia; h.zaini@tu.edu.sa

3 Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania;
savin.treanta@upb.ro

4 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; soliman@tu.edu.sa

5 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: nkamsi@kku.ac.th; Tel.: +66-866-421-582

Abstract: The concepts of convex and non-convex functions play a key role in the study of opti-
mization. So, with the help of these ideas, some inequalities can also be established. Moreover, the
principles of convexity and symmetry are inextricably linked. In the last two years, convexity and
symmetry have emerged as a new field due to considerable association. In this paper, we study a new
version of interval-valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued
functions (LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new
dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of
these repercussions are taken into account in a unique way. In addition, instructive instances are
provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be
extrapolated from our primary findings.

Keywords: LR-χ-pre-invex interval-valued function; interval Riemann–Liouville fractional integral
operator; Hermite–Hadamard inequality; Hermite–Hadamard Fejér inequality

1. Introduction

The Hermite–Hadamard inequality (see [1,2], p. 137) is a well-known inequality in
convex function theory, with a geometrical explanation and a wide range of applications.
Hermite–Hadamard inequality (H-H inequality) is a development of the concept of convex-
ity, and it logically follows from Jensen’s inequality. In recent years, the H-H inequality for
convex functions has sparked a lot of attention, and several refinements and extensions
have been investigated; see [3–14] and the references therein.

On the other hand, interval analysis is a subset of set-valued analysis and is concerned
with the study of intervals in the context of mathematical analysis and topology. It was
developed as a means of dealing with interval uncertainty, which is included in many
mathematical or computer models of deterministic real-world systems. A historical example
of an interval enclosure is Archimedes’ method for calculating the circumference of a circle.
In 1966, Moore [15] released the first book on interval analysis. Moore is recognized as being
the first usage of intervals in computer mathematics. Following the release of his book,
a lot of scientists began to study interval arithmetic’s theory and applications. Because
of its universality, interval analysis is currently a useful approach in a range of sectors
that are interested in ambiguous data. Moreover, interval analysis has also applications in
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different fields like in error analysis, computer graphics, error analysis, experimental and
computational physics, and many more.

Numerous significant inequalities for I-V·Fs (Hermite–Hadamard, Ostrowski, etc.)
have been investigated in recent years. In [16,17], Chalco–Cano et al. constructed Ostrowski
type inequalities for I-V·Fs using the Hukuhara derivative for I-V·Fs. Román-Flores et al.
developed Minkowski and Beckenbach’s inequality for I-V·Fs in [18]. For more informa-
tion, see [18–22] and the references therein. Moreover, inequalities can be examined for
the more general set-valued mappings for example, Sadowska [23] introduced the H-H
inequality general set-valued mappings. Similarly, for generalized inequalities, we refer to
the following articles, see [24,25] and the references therein. Recently, Khan et al. extended
the interval H-H inequalities in terms of fuzzy interval H-H inequalities using fuzzy Rie-
mannian and fuzzy Riemann–Liouville fractional integral operators such as in [26]. Khan
et al. also presented the new class of convex fuzzy mappings known as (χ1, χ2)-convex
fuzzy-interval-valued functions ((χ1, χ2)-convex F-I-V·F) and obtained the new version
of H-H inequalities for (χ1, χ2)-convex F-I-V·Fs. Moreover, Khan et al. introduced new
notions of generalized convex F-I-V·Fs, and derived new fractional H-H type and H-H type
inequalities for convex F-I-V·Fs [27–32]. For more analysis and applications of F-I-V·Fs,
see [33–50] and the references therein.

This study is organized as follows: Section 2 presents preliminary and new concepts
and results in interval space, and convex analysis. Section 3 obtains interval H-H inequali-
ties and H-H Fejér inequalities for LR-χ-pre-invex I-V·Fs via interval Riemann–Liouville
fractional integral operators. In addition, some interesting examples are also given to verify
our results. Section 4 gives conclusions and future plans.

2. Preliminaries

Let KC stand for the collection of all closed and bounded intervals of R. We use
K+

C to represent the set of all positive intervals. The collections of all Riemann integrable
real valued functions and Riemann integrable I-V-F are denoted by R[µ,ω] and IR[µ,ω],
respectively. For more conceptions on I-V·Fs, see [36]. Moreover, we have:

Remark 1. [35] (i) The relation “ ≤p ” defined on KC by:

[U∗, U∗] ≤p [Z∗, Z∗] if and only if U∗ ≤ Z∗, U∗ ≤ Z∗, (1)

for all [U∗, U∗], [Z∗, Z∗] ∈ KC, it is a pseudo-order relation. For given [U∗, U∗], [Z∗, Z∗] ∈ KC,
we say that [U∗, U∗] ≤p [Z∗, Z∗] if and only if U∗ ≤ Z∗, U∗ ≤ Z∗ or U∗ ≤ Z∗, U∗ < Z∗. The
relation [U∗, U∗] ≤p [Z∗, Z∗] coincident to [U∗, U∗] ≤ [Z∗, Z∗] on KC.

(ii) It can be easily seen that “ ≤p ” looks like “left and right” on the real line R, so we call
“ ≤p ” “left and right” (or “LR” order, in short).

The concept of the Riemann integral for I-V-F first introduced by Moore [15] is defined
as follows:

Theorem 1. [15] If S : [µ, ω] ⊂ R→KC is an I-V·F on [µ, ω] such thatS(x) = [S∗(x), S∗(x)],
then S is Riemann integrable over [µ, ω] if and only if, S∗(x) and S∗(x) both are Riemann integrable over
[µ, ω] such that:

(IR)
∫ ω

µ
S(x)dx =

[
(R)

∫ ω

µ
S∗(x)dx, (R)

∫ ω

µ
S∗(x)dx

]
(2)

Lupulescu and Budak et al. [36,37] introduced the following interval Riemann–Liouville
fractional integral operators:
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Let α > 0 and L
(
[µ, ω],K+

C
)

be the collection of all Lebesgue measurable I-V-Fs on [µ, ω].
Then the interval left and right Riemann–Liouville fractional integrals of S ∈ L

(
[µ, ω],K+

C
)

with
order α > 0 are defined by:

Iα
µ+ S(x) =

1
Γ(α)

∫ x

µ
(x− ς)α−1S(ς)dς, (x > µ), (3)

and:
Iα

ω− S(x) =
1

Γ(α)

∫ ω

x
(ς− x)α−1S(ς)dς, (x < ω) (4)

respectively, where Γ(x) =
∫ ∞

0 ςx−1e−ςdς is the Euler gamma function.

Definition 1. [34] A real-valued function S : [µ, ω]→ R+ is named as convex function if:

S(ςx + (1− ς)z) ≤ ςS(x) + (1− ς)S(z), (5)

for all x, z ∈ [µ, ω], ς ∈ [0, 1]. If (5) is reversed, then S is named as concave.

Definition 2. [40] A real valued function S : [µ, ω]→ R+ is named as pre-invex function if:

S(x + (1− ς)ϕ(z, x)) ≤ ςS(x) + (1− ς)S(z), (6)

for all x, z ∈ [µ, ω], ς ∈ [0, 1], where ϕ : [µ, ω]× [µ, ω]→ R . If (6) is reversed, then S is
named as pre-incave.

Definition 3. [35] The I-V·F S : [µ, ω]→ K+
C is named as LR-convex I-V·F on [µ, ω] if:

S(ςx + (1− ς)z) ≤p ςS(x) + (1− ς)S(z), (7)

for all x, z ∈ [µ, ω], ς ∈ [0, 1]. If (7) is reversed, then S is named as LR-concave I-V·F on [µ, ω].
S is affine, if and only if it is both LR-convex and LR-concave I-V·F.

Definition 4. [41] The I-V·F S : [µ, ω]→ K+
C is named as LR-pre-invex I-V·F on invex interval

[µ, ω] if:
S(x + (1− ς)ϕ(z, x)) ≤p ςS(x) + (1− ς)S(z), (8)

for all x, z ∈ [µ, ω], ς ∈ [0, 1], where ϕ : [µ, ω]× [µ, ω]→ R . If (8) is reversed then, S is
named as LR-pre-incave I-V·F on [µ, ω]. S is a LR-affine if and only if, it is both LR-pre-invex and
LR-pre-incave I-V·Fs.

Definition 5. Let χ : [0, 1] ⊆ [µ, ω]→ R+ such that χ0. Then, I-V·F S : [µ, ω]→ K+
C is said

to be LR-χ-pre-invex I-V·F on [µ, ω] if:

S(x + (1− ς)ϕ(x, z)) ≤p χ(ς)S(x) + χ(1− ς)S(z), (9)

for all x, z ∈ [µ, ω], ς ∈ [0, 1], where ϕ : [µ, ω]× [µ, ω]→ R . If S is LR-χ-pre-incave on
[µ, ω], then inequality (9) is reversed.

Remark 2. If χ(ς) = ς, then LR-χ-pre-invex I-V·F becomes LR-pre-invex I-V·F. If χ(ς) ≡ 1,
then LR-χ-pre-invex I-V·F becomes LR-P I-V·F, that is:

S(x + (1− ς)ϕ(x, z)) ≤p S(x) +S(z), ∀ x, z ∈ [µ, ω], ς ∈ [0, 1]. (10)
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Theorem 2. Let χ : [0, 1] ⊆ [µ, ω]→ R be a non-negative real valued function such that χ0 and
let S : [µ, ω]→ K+

C be a I-V·F such that:

S(z) = [S∗(z), S∗(z)], (11)

for all z ∈ [µ, ω]. Then, S(z) is LR-χ-pre-invex I-V·F on [µ, ω], if and only if, S∗(z) and S∗(z)
both are χ-pre-invex.

Proof. Assume that, S∗(x) and S∗(x) are χ-pre-invex on [µ, ω]. Then from (6), we have:

S∗(x + (1− ς)ϕ(x, z)) ≤ χ(ς)S∗(x) + χ(1− ς)S∗(z), ∀ x, z ∈ [µ, ω], ς ∈ [0, 1],

and:

S∗(x + (1− ς)ϕ(x, z)) ≤ χ(ς)S∗(x) + χ(1− ς)S∗(z), ∀ x, z ∈ [µ, ω], ς ∈ [0, 1].

Then by (11), we obtain:

S(x + (1− ς)ϕ(x, z)) = [S∗(x + (1− ς)ϕ(x, z)), S∗(x + (1− ς)ϕ(x, z))],
≤ [χ(ς)S∗(x), χ(ς)S∗(x)] + [χ(1− ς)S∗(z), χ(1− ς)S∗(z)],

that is:

S(x + (1− ς)ϕ(x, z)) ≤p χ(ς)S(x) + χ(1− ς)S(z), ∀ x, z ∈ [µ, ω], ς ∈ [0, 1].

Hence, S is LR-χ-pre-invex IVF on [µ, ω].
Conversely, let S be a LR-χ-pre-invex IVF on [µ, ω]. Then for all x, z ∈ [µ, ω] and

ς ∈ [0, 1], we have:

S(x + (1− ς)ϕ(x, z)) ≤p χ(ς)S(x) + χ(1− ς)S(z).

Therefore, from (11), we have:

S(x + (1− ς)ϕ(x, z)) = [S∗(x + (1− ς)ϕ(x, z)), S∗(x + (1− ς)ϕ(x, z))].

Again, from (11), we obtain:

χ(ς)S(x) + χ(1− ς)S(x) = [χ(ς)S∗(x), χ(ς)S∗(x)] + [χ(1− ς)S∗(z), χ(1− ς)S∗(z)],

for all x, z ∈ [µ, ω] and ς ∈ [0, 1]. Then by LR-χ-pre-invexity of S, we have for all
x, z ∈ [µ, ω] and ς ∈ [0, 1] such that:

S∗(x + (1− ς)ϕ(x, z)) ≤ χ(ς)S∗(x) + χ(1− ς)S∗(z),

and:
S∗(x + (1− ς)ϕ(x, z)) ≤ χ(ς)S∗(x) + χ(1− ς)S∗(z),

hence, the result follows. �

Example 1. We consider χ(ς) = ς, for ς ∈ [0, 1] and the I-V·F S : [0, 4]→ K+
C defined by

S(z) =
[
z, 2ez2

]
. Since end point functions S∗(z), S∗(z) are χ-pre-invex functions with respect

to ϕ(x, z) = x− z. Hence S(z) is LR-χ-pre-invex I-V·F.

Remark 3. If χ(ς) ≡ ς and S∗(z) = S∗(z), then from (8), we obtain the inequality (6).

If χ(ς) ≡ ς and S∗(z) = S∗(z) and ϕ(x, z) = x − z, then from (8), we obtain the
inequality (5).
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We’ll need to make the following assumption about the function ϕ : [µ, ω]× [µ, ω]→ R ,
which will be crucial in the major findings.

Condition C. [40]
ϕ(x, z + ςϕ(x, z)) = (1− ς)ϕ(x, z),

ϕ(z, z + ςϕ(x, z)) = −ςϕ(x, z).

Note that ∀ z, x ∈ [µ, ω] and ς ∈ [0, 1], then from condition C we have

ϕ(z + ς2 ϕ(x, z), z + ς1 ϕ(x, z)) = (ς2 − ς1)ϕ(x, z)

Clearly for ς = 0, we have ϕ(x, z) = 0 if and only if x = z, for all z, x ∈ [µ, ω]. For the
application of condition C, see [40,41].

3. Interval Fractional Hermite–Hadamard Inequalities

In this section, we will prove some new H-H type inequalities for LR-χ-pre-invex
I-V·Fs via Riemann–Liouville fractional integral operators. In the next results, we will
denote L

(
[µ, µ + ϕ(ω, µ)],K+

C
)

as the family of Lebesgue measurable I-V·Fs.

Theorem 3. Let S : [µ, µ + ϕ(ω, µ)]→ K+
C be a LR--pre-invex I-V·F on [µ, µ + ϕ(ω, µ)]

such that S(z) = [S∗(z), S∗(z)] for all z ∈ [µ, µ + ϕ(ω, µ)]. If ϕ satisfies condition C and
S ∈ L

(
[µ, µ + ϕ(ω, µ)],K+

C
)
, then:

1
αχ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)
≤p

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)
]

≤p (S(µ) +S(µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

≤p (S(µ) +S(ω))
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

(12)

If S(z) is pre-incave I-V·F, then:

1
αχ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)
≥p

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)
]

≥p (S(µ) +S(µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

≥p (S(µ) +S(ω))
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

(13)

Proof. Let S : [µ, µ + ϕ(ω, µ)]→ K+
C be a LR--pre-invex I-V·F. If condition C holds then,

by hypothesis, we have:

1

χ
(

1
2

)S
(

2µ + ϕ(ω, µ)

2

)
≤p S(µ + (1− ς)ϕ(ω, µ)) +S(µ + ςϕ(ω, µ)).

Therefore, we have:

1
χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
≤ S∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ)),

1
χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
≤ S∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ)).

Multiplying both sides by ςα−1 and integrating the obtained result with respect to ς
over (0, 1), we have

1
χ( 1

2 )

∫ 1
0 ςα−1S∗

(
2µ+ϕ(ω,µ)

2

)
dς ≤

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))dς +

∫ 1
0 ςα−1S∗(µ + ςϕ(ω, µ))dς,

1
χ( 1

2 )

∫ 1
0 ςα−1S∗

(
2µ+ϕ(ω,µ)

2

)
dς ≤

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))dς +

∫ 1
0 ςα−1S∗(µ + ςϕ(ω, µ))dς.
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Let x = µ + (1− ς)ϕ(ω, µ) and x = µ + ςϕ(ω, µ). Then, we have:

1
αχ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
≤ 1

(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (µ + ϕ(ω, µ)− x)α−1S∗(x)dx

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)dz

1
αχ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
≤ 1

(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (µ + ϕ(ω, µ)− x)α−1S∗(x)dx

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)dz,

≤ Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)
]

≤ Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)
]
,

that is:
1

αχ( 1
2 )

[
S∗
(

2µ+ϕ(ω,µ)
2

)
, S∗

(
2µ+ϕ(ω,µ)

2

)]

≤p
Γ(α)

(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ), Iα
µ+ S∗(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗(µ)

]

thus,

1

αχ
(

1
2

) S

(
2µ + ϕ(ω, µ)

2

)
≤p

Γ(α)
(ϕ(ω, µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)
]
. (14)

In a similar way as above, we have:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)
]

≤p [S(µ) +S(µ + ϕ(ω, µ))]
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς.
(15)

Combining (14) and (15), we have:

1
αχ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)
≤p

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)
]

≤p [S(µ) +S(µ + ϕ(ω, µ))]
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

≤p [S(µ) +S(ω)]
∫ 1

0 ςα−1[χ(ς)− χ(1− ς)]dς

hence, the required result. �

Remark 4. From Theorem 3 we clearly see that:
If ϕ(ω, µ) = ω − µ, then from Theorem 3, we get the following new result in fractional

calculus, see [42].

Q

(
µ + ω

2

)
≤p

Γ(α + 1)
2(ω− µ)α

[
Iα

µ+ Q(ω) + Iα
ω− Q(µ)

]
≤p

Q(µ) +Q(ω)

2
(16)

If α = 1, then from Theorem 3, we obtain the following results for LR--pre-invex I-V·F, which
are also new ones:

1
2χ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)
≤p

1
ϕ(ω,µ) (FR)

∫ µ+ϕ(ω,µ)
µ S(z)dz

≤p [S(µ) +S(µ + ϕ(ω, µ))]
∫ 1

0 χ(ς)dς.
(17)

If χ(ς) = ς, then Theorem 3 reduces to the result for LR-pre-invex I-V·F, see [41]:

S

(
2µ + ϕ(ω, µ)

2

)
≤p

Γ(α + 1)
2(ϕ(ω, µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)− S(µ)

]
≤p

S(µ) +S(µ + ϕ(ω, µ))

2
(18)
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Let α = 1 and χ(ς) = ς. Then, Theorem 3 reduces to the result for LR-pre-invex-I-V·F,
see [41]:

S

(
2µ + ϕ(ω, µ)

2

)
≤p

1
ϕ(ω, µ)

(FR)
∫ µ+ϕ(ω,µ)

µ
S(z)dz ≤p

S(µ) +S(ω)

2
(19)

Example2. α = 1
2,χ(ς) = ς, forallς ∈ [0, 1]andtheI-V·F S : [µ, µ+ ϕ(ω,µ)] = [2, 2+ ϕ(3,2)]→K+

C ,

defined by S(z) = [1,2]
(

2− z
1
2

)
. Since left and right end-point functions S∗(z) =

(
2− z

1
2

)
,

S∗(z) = 2
(

2− z
1
2

)
, are LR-χ-pre-invex functions, then S(z) is LR-χ-pre-invex I-V·F. We clearly see that

S ∈ L
(
[µ, µ+ ϕ(ω,µ)],K+

C
)

and:

1

αχ
(

1
2

)S∗
(

2µ + ϕ(ω, µ)

2

)
= S∗

(
5
2

)
=

4−
√

10
8

1

αχ
(

1
2

)S∗
(

2µ + ϕ(ω, µ)

2

)
= S∗

(
5
2

)
=

4−
√

10
4

,

S∗(µ) +S∗(µ + ϕ(ω, µ))

2

∫ 1

0
ςα−1[χ(ς)− χ(1− ς)]dς =

(
4−
√

2−
√

3
)

S∗(µ) +S∗(µ + ϕ(ω, µ))

2

∫ 1

0
ςα−1[χ(ς)− χ(1− ς)]dς = 2

(
4−
√

2−
√

3
)

.

Note that:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)
]

=
Γ( 1

2 )
2

1√
π

∫ 3
2 (3− z)

−1
2 ·
(

2− z
1
2

)
dz

+
Γ( 1

2 )
2

1√
π

∫ 3
2 (z− 2)

−1
2 ·
(

2− z
1
2

)
dz

= 1
2

[
7393

10,000 + 9501
10,000

]

= 8447
20,000 .

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)
]

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)
]

+
Γ( 1

2 )
2

1√
π

∫ 3
2 (z− 2)

−1
2 · 2

(
2− z

1
2

)
dz

=
[

7393
10,000 + 9501

10,000

]

= 8447
10,000 .

Therefore:
[

4−
√

10
8

,
4−
√

10
4

]
≤p

[
8447

20, 000
,

8447
10, 000

]
≤p

[(
4−
√

2−
√

3
)

, 2
(

4−
√

2−
√

3
)]

and Theorem 3 is verified.

From Theorems 4 and 5, we obtain some interval fractional integral inequalities related
to interval fractional H-H inequalities.
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Theorem 4. Let S,H : [µ, µ + ϕ(ω, µ)]→ K+
C be LR-χ1-pre-invex and LR-χ2-pre-invex I-V·Fs on

[µ, µ + ϕ(ω, µ)], respectively, such that S(z) = [S∗(z), S∗(z)] andH(z) = [H∗(z), H∗(z)] for all
z ∈ [µ, µ + ϕ(ω, µ)]. If ϕ satisfies condition C and S×H ∈ L

(
[µ, µ + ϕ(ω, µ)],K+

C
)
, then:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ))×H(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)×H(µ)
]

≤p ξ(µ, µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂(µ, µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς.

(20)

where ξ(µ, µ + ϕ(ω, µ)) = S(µ) × H(µ) + S(µ + ϕ(ω, µ)) × H(µ + ϕ(ω, µ)),
∂(µ, µ + ϕ(ω, µ)) = S(µ) × H(µ + ϕ(ω, µ)) + S(µ + ϕ(ω, µ)) × H(µ), and
ξ(µ, µ + ϕ(ω, µ)) = [ξ∗((µ, µ + ϕ(ω, µ))), ξ∗((µ, µ + ϕ(ω, µ)))] and
∂(µ, µ + ϕ(ω, µ)) = [∂∗(µ, µ + ϕ(ω, µ)), ∂∗(µ, µ + ϕ(ω, µ))].

Proof. Since S, H both are LR-χ1-pre-invex and LR-χ2-pre-invex I-V·F then, we have:

S∗(µ + (1− ς)ϕ(ω, µ)) = S∗(µ + ϕ(ω, µ) + ςϕ(µ, µ + ϕ(ω, µ)))
≤ χ1(ς)S∗(µ) + χ1(1− ς)S∗(µ + ϕ(ω, µ))

S∗(µ + (1− ς)ϕ(ω, µ)) = S∗(µ + ϕ(ω, µ) + ςϕ(µ, µ + ϕ(ω, µ)))
≤ χ1(ς)S

∗(µ) + χ1(1− ς)S∗(µ + ϕ(ω, µ)).

and:

H∗(µ + (1− ς)ϕ(ω, µ)) = H∗(µ + (1− ς)ϕ(ω, µ))
≤ χ2(ς)H∗(µ) + χ2(1− ς)H∗(µ + ϕ(ω, µ))

H∗(µ + (1− ς)ϕ(ω, µ)) = H∗(µ + (1− ς)ϕ(ω, µ))
≤ χ2(ς)H∗(µ) + χ2(1− ς)H∗(µ + ϕ(ω, µ)).

From the definition of LR--pre-invex I-V·F, we have:

S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
≤ χ1(ς)χ2(ς)S∗(µ)×H∗(µ) + χ1(1− ς)χ2(1− ς)S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))
+χ1(ς)χ2(1− ς)S∗(µ)×H∗(µ + ϕ(ω, µ)) + χ1(1− ς)χ2(ς)S∗(µ + ϕ(ω, µ))×H∗(µ)

S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
≤ χ1(ς)χ2(ς)S

∗(µ)×H∗(µ) + χ1(1− ς)χ2(1− ς)S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))
+χ1(ς)χ2(1− ς)S∗(µ)×H∗(µ + ϕ(ω, µ)) + χ1(1− ς)χ2(ς)S

∗(µ + ϕ(ω, µ))×H∗(µ).

(21)

Analogously, we have:

S∗(µ + ςϕ(ω, µ))H∗(µ + ςϕ(ω, µ))
≤ χ1(1− ς)χ2(1− ς)S∗(µ)×H∗(µ) + χ1(ς)χ2(ς)S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))
+χ1(1− ς)χ2(ς)S∗(µ)×H∗(µ + ϕ(ω, µ)) + χ1(ς)χ2(1− ς)S∗(µ + ϕ(ω, µ))×H∗(µ)

S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))
≤ χ1(1− ς)χ2(1− ς)S∗(µ)×H∗(µ) + χ1(ς)χ2(ς)S

∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))
+χ1(1− ς)χ2(ς)S

∗(µ)×H∗(µ + ϕ(ω, µ)) + χ1(ς)χ2(1− ς)S∗(µ + ϕ(ω, µ))×H∗(µ).

(22)

Adding (21) and (22), we have:
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S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

≤
[

χ1(ς)χ2(ς)
+χ1(1− ς)χ2(1− ς)

]
[S∗(µ)×H∗(µ) +S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))]

+

[
χ1(ς)χ2(1− ς)
+χ1(1− ς)χ2(ς)

]
[S∗(µ + ϕ(ω, µ))×H∗(µ) +S∗(µ)×H∗(µ + ϕ(ω, µ))]

S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

≤
[

χ1(ς)χ2(ς)
+χ1(1− ς)χ2(1− ς)

]
[S∗(µ)×H∗(µ) +S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ))]

+

[
χ1(ς)χ2(1− ς)
+χ1(1− ς)χ2(ς)

]
[S∗(µ + ϕ(ω, µ))×H∗(µ) +S∗(µ)×H∗(µ + ϕ(ω, µ))].

(23)

Taking multiplication of (23) with ςα−1 and integrating the obtained result with respect
to ς over (0,1), we have:

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))

+ ςα−1S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))dς

≤ ξ∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))

+ ςα−1S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))dς

≤ ξ∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς.

It follows that:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)×H∗(µ)
]

≤ ξ∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς
Γ(α)

(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)×H∗(µ)
]

≤ ξ∗((µ, µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂∗((µ, µ+]ϕ(ω, µ)))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς.

It results that:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)×H∗(µ), Iα
µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗(µ)×H∗(µ)

]

≤p [ξ∗((µ, µ + ϕ(ω, µ))), ξ∗((µ, µ + ϕ(ω, µ)))]
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+[∂∗((µ, µ + ϕ(ω, µ))), ∂∗((µ, µ + ϕ(ω, µ)))]
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς

that is:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ))×H(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S(µ)×H(µ)
]

≤p ξ(µ, µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)]dς

+∂(µ, µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)]dς

and the theorem has been established. �

Theorem 5. Let S, H : [µ, µ + ϕ(ω, µ)]→ K+
C be two LR-χ1-pre-invex and LR-χ2-pre-invex

I-V·Fs, respectively, such that S(z) = [S∗(z), S∗(z)] and H(z) = [H∗(z), H∗(z)] for all
z ∈ [µ, µ + ϕ(ω, µ)]. If ϕ satisfies condition C and S×H ∈ L

(
[µ, µ + ϕ(ω, µ)],K+

C
)
, then:
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1
αχ1( 1

2 )χ2( 1
2 )

S
(

2µ+ϕ(ω,µ)
2

)
×H

(
2µ+ϕ(ω,µ)

2

)

≤p
Γ(α)

(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ))×H(ω) + Iα
µ+ϕ(ω,µ)−

S(µ)×H(µ)
]

+∂(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(ς)χ2(1− ς)dς

+ξ(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(1− ς)χ2(1− ς)dς,

(24)

where ξ(u, u + ϕ(ν, u)) = S(u) × H(u) + S(µ + ϕ(ω, µ)) × H(µ + ϕ(ω, µ)),
∂(µ, µ + ϕ(ω, µ)) = S(µ) × H(µ + ϕ(ω, µ)) + S(µ + ϕ(ω, µ)) × H(µ), and
ξ(µ, µ + ϕ(ω, µ)) = [ξ∗(µ, µ + ϕ(ω, µ)), ξ∗(µ, µ + ϕ(ω, µ))] and
∂(µ, µ + ϕ(ω, µ)) = [∂∗((µ, µ + ϕ(ω, µ))), ∂∗(µ, µ + ϕ(ω, µ))].

Proof. Consider S,H : [µ, µ + ϕ(ω, µ)]→ K+
C . are LR-χ1-pre-invex and LR-χ2-pre-invex

I-V·Fs. Then, by hypothesis, we have:

S∗
(

2µ+ϕ(ω,µ)
2

)
×H∗

(
2µ+ϕ(ω,µ)

2

)

S∗
(

2µ+ϕ(ω,µ)
2

)
×H∗

(
2µ+ϕ(ω,µ)

2

)

≤ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + ςϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

≤ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + ςϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]
,

≤ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)



(χ1(ς)S∗(µ) + χ1(1− ς)S∗(µ + ϕ(ω, µ),))
×(χ2(1− ς)H∗(µ) + χ2(ς)H∗(µ + ϕ(ω, µ),))
+(χ1(1− ς)S∗(µ) + χ1(ς)S∗(µ + ϕ(ω, µ),))
×(χ2(ς)H∗(µ) + χ2(1− ς)H∗(µ + ϕ(ω, µ),))




≤ χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)



(χ1(ς)S
∗(µ) + χ1(1− ς)S∗(µ + ϕ(ω, µ),))

×(χ2(1− ς)H∗(µ) + χ2(ς)H∗(µ + ϕ(ω, µ),))
+(χ1(1− ς)S∗(µ) + χ1(ς)S

∗(µ + ϕ(ω, µ),))
×(χ2(ς)H∗(µ) + χ2(1− ς)H∗(µ + ϕ(ω, µ),))


,

= χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)[ {χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)}∂∗((µ, µ + ϕ(ω, µ)))
+{χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)}ξ∗((µ, µ + ϕ(ω, µ)))

]

= χ1

(
1
2

)
χ2

(
1
2

)[ S∗(µ + (1− ς)ϕ(ω, µ))×H∗(µ + (1− ς)ϕ(ω, µ))
+S∗(µ + ςϕ(ω, µ))×H∗(µ + ςϕ(ω, µ))

]

+ χ1

(
1
2

)
χ2

(
1
2

)[ {χ1(ς)χ2(1− ς) + χ1(1− ς)χ2(ς)}∂∗(µ, µ + ϕ(ω, µ))
+{χ1(ς)χ2(ς) + χ1(1− ς)χ2(1− ς)}ξ∗(µ, µ + ϕ(ω, µ))

]
.

(25)

162



Mathematics 2022, 10, 204

Taking multiplication of (25) with ςα−1 and integrating over (0, 1), we get:

1
αχ1( 1

2 )χ2( 1
2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
×H∗

(
2µ+ϕ(ω,µ)

2

)

≤ Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)×H∗(µ)
]

+∂∗(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(ς)χ2(1− ς)dςb

+ξ∗(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(1− ς)χ2(1− ς)dς

1
αχ1( 1

2 )χ2( 1
2 )
S∗
(

2µ+ϕ(ω,µ)
2

)
×H∗

(
2µ+ϕ(ω,µ)

2

)

≤ Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗(µ + ϕ(ω, µ))×H∗(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗(µ)×H∗(µ)
]

+∂∗(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(ς)χ2(1− ς)dς

+ξ∗(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(1− ς)χ2(1− ς)dς.

It follows that:

1
αχ1( 1

2 )χ2( 1
2 )

S
(

2µ+ϕ(ω,µ)
2

)
×H

(
2µ+ϕ(ω,µ)

2

)

≤p
Γ(α)

(ϕ(ω,µ))α

[
Iα

µ+ S(µ + ϕ(ω, µ))×H(µ + ϕ(ω, µ))

+Iα
µ+ϕ(ω,µ)−

S(µ)×H(µ)
]

+∂(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(ς)χ2(1− ς)dς

+ξ(µ, µ + ϕ(ω, µ))
∫ 1

0

[
ςα−1 + (1− ς)α−1

]
χ1(1− ς)χ2(1− ς)dς

Hence, the required result. �

Now, we present the successful reformative version of the generalized version of inter-
val H-H inequality on invex set for LR-χ-pre-invex I-V·F via interval Riemann–Liouville
fractional integral.

Theorem 6. (Second fractional H-H Fejér inequality) Let S : [µ, µ + ϕ(ω, µ)]→ K+
C be a LR-χ-pre-

invex I-V·F with µ < µ + ϕ(ω, µ), such that S(z) = [S∗(z), S∗(z)] for all z ∈ [µ, µ + ϕ(ω, µ)].
If S ∈ L

(
[µ, µ + ϕ(ω, µ)],K+

C
)

and D : [µ, µ + ϕ(ω, µ)]→ R, D(z) ≥ 0, symmetric with re-

spect to 2µ+ϕ(ω,µ)
2 , then:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ SD(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

SD(µ)
]

≤p (S(µ) +S(µ + ϕ(ω, µ)))
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ))dς .
(26)

If S is pre-incave I-V·F, then inequality (26) is reversed.

Proof. Let S be a LR-χ-pre-invex I-V·F and ςα−1D(µ + (1− ς)ϕ(ω, µ)) ≥ 0. Then, we have:

ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + (1− ς)ϕ(ω, µ))
≤ ςα−1(χ(ς)S∗(µ) + χ(1− ς)S∗(µ + ϕ(ω, µ)))D(µ + (1− ς)ϕ(ω, µ))

ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + (1− ς)ϕ(ω, µ))
≤ ςα−1(χ(ς)S∗(µ) + χ(1− ς)S∗(µ + ϕ(ω, µ)))D(µ + (1− ς)ϕ(ω, µ)),

(27)

and:

ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))
≤ ςα−1(χ(1− ς)S∗(µ) + χ(ς)S∗(µ + ϕ(ω, µ)))D(µ + ςϕ(ω, µ))

ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))
≤ ςα−1(χ(1− ς)S∗(µ) + χ(ς)S∗(µ + ϕ(ω, µ)))D(µ + ςϕ(ω, µ)).

(28)

After adding (27) and (28), and integrating over [0, 1], we get:
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∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + (1− ς)ϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

≤
∫ 1

0

[
ςα−1S∗(µ){χ(ς)D(µ + (1− ς)ϕ(ω, µ)) + χ(1− ς)D(µ + ςϕ(ω, µ))}

+ςα−1S∗(µ + ϕ(ω, µ)){χ(1− ς)D(µ + (1− ς)ϕ(ω, µ)) + χ(ς)D(µ + ςϕ(ω, µ))}

]
dς,

= S∗(µ)
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + (1− ς)ϕ(ω, µ)) dς

+S∗(µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) dς,∫ 1
0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + (1− ς)ϕ(ω, µ))dς

≤
∫ 1

0

[
ςα−1S∗(µ){χ(ς)D(µ + (1− ς)ϕ(ω, µ)) + χ(1− ς)D(µ + ςϕ(ω, µ))}

+ςα−1S∗(µ + ϕ(ω, µ)){χ(1− ς)D(µ + (1− ς)ϕ(ω, µ)) + χ(ς)D(µ + ςϕ(ω, µ))}

]
dς,

= S∗(µ)
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + (1− ς)ϕ(ω, µ)) dς

+S∗(µ + ϕ(ω, µ))
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) dς.

(29)

Taking the right hand side of inequality (29), we have:

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

= 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(2µ + ϕ(ω, µ)− z)D(z)dz

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)D(z)dz

= 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (µ + ϕ(ω, µ)− z)α−1S∗(z)D(2µ + ϕ(ω, µ)− z)dz

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)D(z)dz

= Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
,

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

= Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]

(30)

From (30), we have:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]

≤ (S∗(µ) +S∗(µ + ϕ(ω, µ)))
∫ 1

0 ςα−1
[

χ(ς)
+χ(1− ς)

]
D(µ + ςϕ(ω, µ))

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]

≤ (S∗(µ) +S∗(µ + ϕ(ω, µ)))
∫ 1

0 ςα−1
[

χ(ς)
+χ(1− ς)

]
D(µ + ςϕ(ω, µ)) ,

that is:

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ), Iα
µ+ S∗D(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗D(µ)

]

≤p [S∗(µ) +S∗(µ + ϕ(ω, µ)), S∗(µ) +S∗(µ + ϕ(ω, µ))]
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ))dς

Hence,

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ SD(µ + ϕ(ω, µ)) + Iµ+ϕ(ω,µ)− SD(µ)
]

≤p (S(µ) +S(ω))
∫ 1

0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ))dς

�

Now, we propose the first H-H Fejér inequality for LR--pre-invex I-V·F using the
interval Riemann–Liouville fractional integral. Then we will prove the validity of Theorem
6 and Theorem 7 with a nontrivial Example 3.
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Theorem 7. (First fractional H-H Fejér inequality) Let S : [µ, µ + ϕ(ω, µ)]→ K+
C be a LR--pre-

invex I-V·F such that S(z) = [S∗(z), S∗(z)] for all z ∈ [µ, µ + ϕ(ω, µ)]. Let
S ∈ L

(
[µ, µ + ϕ(ω, µ)],K+

C
)

and D : [µ, µ + ϕ(ω, µ)]→ R, D(z) ≥ 0, symmetric with

respect to 2µ+ϕ(ω,µ)
2 . If ϕ satisfies condition C, then:

1
2χ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤p

[
Iα

µ+ SD(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

SD(µ)
] (31)

If S is pre-incave I-V·F, then inequality (31) is reversed.

Proof. Since S is a LR-χ-pre-invex I-V·F then, we have:

S∗
(

2µ+ϕ(ω,µ)
2

)
≤ χ

(
1
2

)
(S∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ)))

S∗
(

2µ+ϕ(ω,µ)
2

)
≤ χ

(
1
2

)
(S∗(µ + (1− ς)ϕ(ω, µ)) +S∗(µ + ςϕ(ω, µ))).

(32)

Since D(µ + (1− ς)ϕ(ω, µ)) = D(µ + ςϕ(ω, µ)), then by multiplying (32) by
ςα−1D(µ + ςϕ(ω, µ)) and integrate it with respect to ς over [0, 1], we obtain:

S∗
(

2µ+ϕ(ω,µ)
2

) ∫ 1
0 ςα−1D(µ + ςϕ(ω, µ))dς

≤ χ
(

1
2

)( ∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

)
,

S∗
(

2µ+ϕ(ω,µ)
2

) ∫ 1
0 ςα−1D(µ + ςϕ(ω, µ))dς

≤ χ
(

1
2

)( ∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

)
.

(33)

Let x = µ + ςϕ(ω, µ). Then, on the right hand side of inequality (33), we have:

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

= 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(2µ + ϕ(ω, µ)− z)D(z)dz

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)D(z)dz

= 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)D(µ−ω− z)dz

+ 1
(ϕ(ω,µ))α

∫ µ+ϕ(ω,µ)
µ (z− µ)α−1S∗(z)D(z)dz

= Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
,

∫ 1
0 ςα−1S∗(µ + (1− ς)ϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

+
∫ 1

0 ςα−1S∗(µ + ςϕ(ω, µ))D(µ + ςϕ(ω, µ))dς

= Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
.

(34)

Then from (34), we have:

1
2χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤
[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]

1
2χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤
[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
,

from which, we have:
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1
2χ( 1

2 )

[
S∗
(

2µ+ϕ(ω,µ)
2

)
, S∗

(
2µ+ϕ(ω,µ)

2

)][
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤ p

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ), Iα
µ+ S∗D(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗D(µ)

]
,

and it follows that:

1
2χ( 1

2 )
S
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤ p

[
Iα

µ+ SD(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

SD(µ)
]

This completes the proof. �

Remark 5. If D(z) = 1, then from (26) and (31), we get Theorem 3.
If χ(ς) = ς, then from (26) and (31), we achieve the following coming inequality, see [42]:

S
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤p

[
Iα

µ+ SD(µ + {ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

SD(µ)
]

≤p
S(µ)+S(µ+ϕ(ω,µ))

2

[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤p
S(µ)+S(ω)

2

[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

(35)

Let χ(ς) = ς and α = 1. Then, from (26) and (31), we achieve the following coming inequality:

S

(
2µ + ϕ(ω, µ)

2

)
≤p

1
∫ µ+ϕ(ω,µ)

µ D(z)dz
(FR)

∫ µ+ϕ(ω,µ)

µ
S(z)D(z)dz ≤p

S(µ) +S(ω)

2
(36)

If S∗(z) = S∗(z) and χ(ς) = ς, then from (26) and (31), we achieve the following coming
inequality:

S
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(ω) + Iα
ω− D(µ)

]
≤
[
Iα

µ+ SD(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

SD(µ)
]

≤ S(µ)+S(µ+ϕ(ω,µ))
2

[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

≤ S(µ)+S(ω)
2

[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]

(37)

If S∗(z) = S∗(z) and α = 1 and χ(ς) = ς, then from (26) and (31), we acquire the classical
H-H Fejér inequality.

If S∗(z) = S∗(z) and D(z) = α = 1 and χ(ς) = ς, then from (26) and (31), we acquire the
classical H-H inequality.

Example 3. We consider the I-V·F S : [0, ϕ(2, 0)]→ K+
C defined by, S(z) = [1, 2]

(
2−√z

)
.

Since end-point functions S∗(z), S∗(z) are LR-χ-pre-invex functions, then S(z) is LR-χ-pre-invex
I-V·F.

If:

D(z) =
{ √

z, σ ∈ [0, 1],√
2− z, σ ∈ (1, 2],

then D(2− z) = D(z) ≥ 0, for all z ∈ [0, 2]. Since S∗(z) =
(
2−√z

)
and

S∗(z) = 2
(
2−√z

)
. If χ(ς) = ς and α = 1

2 , then we compute the following:

S∗(µ)+S∗(µ+ϕ(ω,µ))
2

∫ 1
0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) = π√

2

(
4−
√

2
2

)
,

S∗(µ)+S∗(µ+ϕ(ω,µ))
2

∫ 1
0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) = π√

2

(
4−
√

2
)

,
(38)
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S∗(µ)+S∗(µ+ϕ(µ+ϕ(ω,µ),µ))
2

∫ 1
0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) = π√

2

(
4−
√

2
2

)
,

S∗(µ)+S∗(µ+ϕ(ω,µ))
2

∫ 1
0 ςα−1[χ(ς) + χ(1− ς)]D(µ + ςϕ(ω, µ)) = π√

2

(
4−
√

2
)

,

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
= 1√

π

(
2π + 4−8

√
2

3

)
,

Γ(α)
(ϕ(ω,µ))α

[
Iα

µ+ S∗D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

S∗D(µ)
]
= 2√

π

(
2π + 4−8

√
2

3

)
.

(39)

From (38) and (39), we have:

1√
π

[(
2π +

4− 8
√

2
3

)
, 2

(
2π +

4− 8
√

2
3

)]
≤ p

π√
2

[
4−
√

2
2

, 4−
√

2

]
.

Hence, Theorem 6 is verified.
For Theorem 7, we have:

Iα
µ+ S∗D(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗D(µ)

= 1√
π

∫ 2
0 (2− z)

−1
2 D(z)

(
2−√z

)
dz + 1√

π

∫ 2
0 (z)

−1
2 D(z)

(
2−√z

)
dz

= 1√
π

(
π + 8−8

√
2

3

)
+ 1√

π

(
π − 4

3

)
= 1√

π

(
2π + 4−8

√
2

3

)

Iα
µ+ S∗D(µ + ϕ(ω, µ)) + Iα

µ+ϕ(ω,µ)−
S∗D(µ)

= 2√
π

∫ 2
0 (2− z)

−1
2 D(z)

(
2−√z

)
dz + 2√

π

∫ 2
0 (z)

−1
2 D(z)

(
2−√z

)
dz

= 2√
π

(
π + 8−8

√
2

3

)
+ 2√

π

(
π − 4

3

)
= 2√

π

(
2π + 4−8

√
2

3

)
.

(40)

1
2χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]
=
√

π,

1
2χ( 1

2 )
S∗
(

2µ+ϕ(ω,µ)
2

)[
Iα

µ+ D(µ + ϕ(ω, µ)) + Iα
µ+ϕ(ω,µ)−

D(µ)
]
= 2
√

π.
(41)

4. Conclusions

We have proposed the class of LR-χ-pre-invexity for I-V·Fs. By using this class, we
have presented several interval H-H inequalities and interval H-H Fejér inequalities using
interval Riemann–Liouville fractional integral operators. Useful examples that illustrate
the applicability of theory developed in this study are also presented. In future, we intend
to discuss generalized LR-χ-pre-invex I-V·Fs. We hope that this concept will be helpful for
other authors to play their roles in different fields of sciences.
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1. Introduction

Due to the complexity of the environment and the inherent ambiguity of human cogni-
tion, the information data in real world optimization problems are usually uncertain. More
often, we can not ignore the fact that small uncertainties in data may lead to a completely
meaningless of the usual optimal solutions from a practical viewpoint. Therefore, much
interest has been paid to the uncertain optimization problems, see [1–4].

There are various approaches used to tackle the optimization problems with uncer-
tainty, such as stochastic process [5], fuzzy set theory [6] and interval analysis [7]. Among
them, the method of interval analysis is to express an uncertain variable as a real interval
or an interval-valued function (IVF), which has been applied to many fields, such as, the
models involving inexact linear programming problems [8], data envelopment analysis [9],
optimal control [10], goal programming [11], minimax regret solutions [12] and multi-
period portfolio selection problems [13] etc. Up to now, we can find many works involving
interval-valued optimization problems (IVOPs) (see [14,15]).

In classical optimization theory, the derivative is the most frequently used one. It plays
an important role in the study of optimality conditions and duality theorems in constrained
optimization problems. To date, various notions of IVF’s derivative have been proposed,
see [16–23]. One famous concept is H-derivative defined in [16]. However, the H-derivative
is restrictive. In 2009, Stefanini and Bede presented the gH-derivative [23] to overcome
the disadvantages of H-derivative. Furthermore, in [24], Guo et al. proposed the gH-
symmetrically derivative which is more general than gH-derivative. Researchers of optimal
problems have largely used these derivatives of IVFs. For instance, Wu [25] considered the
Karush–Kuhn–Tucker (KKT) conditions for nonlinear IVOPs using H-derivative. In [26,27],
Wolfe type dual problems of IVOPs were investigated. Later, more general KKT optimality
conditions has been proposed by Chalco-Cano et al. [28,29] based on gH-derivative.
Besides, Jayswal et al. [30] extended optimality conditions and duality theorems for IVOPs
with the generalized convexity. Antczak et al. [31] studied the optimality conditions and
duality results for nonsmooth vector optimization problems with multiple IVFs [32]. In
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2019, Ghosh [33] have extended the KKT condition for constrained IVOPs. In addition,
Van [34] investigated the duality results for interval-valued pseudoconvex optimization
problems with equilibrium constraints.

Based on the fact that the IVOPs have been extensively studied on optimality condition
and duality by many researchers in recent years, in this paper, we continue to study and
develop these results on optimality conditions and Wolfe duality of IVOPs on the basis of
the gH-symmetrically derivative. In addition, we are going to introduce more appropriate
concepts of symmetric pseudo-convexity and symmetric quasi-convexity to weak the
convexity hypothesis.

The remaining of the paper is as follows: In Section 2, we give preliminaries and recall
some main concepts. In Section 3, we propose the directional gH-symmetrically derivative
and more appropriate concepts of generalized convexity. Section 4 establishes the necessary
optimality conditions and Wolfe duality theorems. In Section 5, we apply the generalized
convexities to investigate the content in Section 4. Our results are properly wider than the
results in [28–30].

2. Preliminaries

Theorem 1 ([35]). Suppose that f : M → R is symmetrically differentiable on M and N is an
open convex subset of M. Then f is convex on N if and only if

f (t)− f (t∗) ≥ f s(t∗)T(t− t∗), for all t, t∗ ∈ N. (1)

Theorem 2 ([36]). Let A be a m× n real matrix and let c ∈ Rn be a column vector. Then the
implication

At ≤ 0⇒ cTt ≤ 0 (2)

holds for all t ∈ Rn if and only if
∃u ≥ 0 : uT A = cT , (3)

where u ∈ Rm.

Let I be the set of all bounded and closed intervals in R, i.e.,

I = {a = [a, a]|a, a ∈ R and a ≤ a}.

For a = [a, a], b = [b, b], c = [c, c] ∈ I and k ∈ R, we have

a + b = [a, a] + [b, b] = [a + b, a + b],

k · a = k · [a, a] =
{

[ka, ka], if k > 0;
[ka, ka], if k ≤ 0.

In [23], Stefanini and Bede presented the gH-difference:

a	g b = c⇔
{

a = b + c;
or b = a + (−1)c.

In addition, this difference between two intervals always exists, i.e.,

a	g b =
[

min{a− b, a− b}, max{a− b, a− b}
]
.

Furthermore, the partial order relation “�LU" on I is determined as follows:

[a, a] �LU [b, b]⇔ a ≤ b and a ≤ b,

[a, a] ≺LU [b, b]⇔ [a, a] �LU [b, b] and [a, a] 6= [b, b],

a and b are said to be comparable if and only if a �LU b or a �LU b.
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Let Rn be the n-dimensional Euclidean space, and T ⊂ Rn is an open set. We call the
function F : T → I an IVF, i.e., F(t) is a closed interval in R for every t ∈ T. The IVF F can
also be denoted as F = [F, F], where F and F are real functions and F ≤ F on T. Moreover,
F, F are called the endpoint functions of F.

Definition 1 ([24]). Let F : T → I. Then F is said to be gH-symmetrically differentiable
at t0 ∈ T if there exists Fs(t0) ∈ I such that:

lim
||h||→0

F(t0 + h)	g F(t0 − h)
||h|| = Fs(t0). (4)

Definition 2 ([24]). Let F : T → I and t0 ∈ T. If the IVF ϕ(ti) = F(t0
1, . . . , t0

i−1, ti, t0
i+1, . . . , t0

n)

is gH-symmetrically differentiable at t0
i , then we say that F has the ith partial gH-symmetrically

derivative ( ∂s F
∂ti

)g(t0) at t0 and

(
∂sF
∂ti

)g(t0) = ϕs(t0
i ).

Definition 3 ([24]). Let F : T → I be an IVF, and ∂s
ti

F stands for the partial gH-symmetrically
derivative with respect to the ith variable ti. If ∂s

ti
F(t0) (i = 1, . . . , n) exist on some neighborhoods

of t0 and are continuous at t0, then F is said to be gH-symmetrically differentiable at t0 ∈ T.
Moreover, we denote by

∇sF(t0) =
(
∂s

t1
F(t0), . . . , ∂s

tn F(t0)
)

the symmetric gradient of F at t0.

Theorem 3 ([24]). Let the IVF F : T → I be continuous in (t0 − δ, t0 + δ) for some δ > 0. Then
F is gH-symmetrically differentiable at t0 ∈ T if and only if F and F are symmetrically differentiable
at t0.

Definition 4 ([28]). Let F = [F, F] be an IVF defined on T. We say that F is LU-convex at t∗ if

F(θt∗ + (1− θ)t) �LU θF(t∗) + (1− θ)F(t)

for every θ ∈ [0, 1] and t ∈ T.

Now, we introduce the following IVOP :

min F(t) (5)

subject to gi(t) ≤ 0, i = 1, . . . , m,

where F : M→ I, gi : M→ R (i = 1, . . . , m), and M ⊂ Rn is an open and convex set. Let

X = {t ∈ Rn : t ∈ M and gi(t) ≤ 0, i = 1, . . . , m}

be the collection of feasible points of Problem (5), and the set of objective values of primal
Problem (5) is indicated by:

OP(F,X ) = {F(t) : t ∈ X}. (6)

Moreover, we review the definition of non-dominated solution to the Problem (5):

Definition 5 ([27]). Let t∗ be a feasible solution of Problem (5), i.e., t∗ ∈ X . Then t∗ is said to be a
non-dominated solution of Problem (5) if there exists no t ∈ X \ {t∗} such that: F(t) ≺LU F(t∗).

The KKT sufficient optimality conditions of Problem (5) have been obtained in [24]:
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Theorem 4 ([24], Sufficient optimality condition). Assume that F : M→ I is LU-convex and
gH-symmetrically differentiable at t∗, g : M→ Rn is convex and symmetrically differentiable at
t∗. If there exist (Lagrange) multipliers 0 ≤ µi ∈ R, i = 1, . . . , m such that

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µi∇sgi(t∗) = 0;

m

∑
i=1

µigi(t∗) = 0, where µ = (µ1, . . . , µm)
T ,

(7)

then t∗ is a non-dominated solution to Problem (5).

Example 1. Consider the IVOP as below:

min F(t) (8)

subject to g1(t) ≤ 0,

g2(t) ≤ 0,

where

F(t) =
{

[4t2 + 2t− 3, 3t2 + 3t], if t ∈ (−1, 0);
[3t− 3, 3t], if t ∈ [0, 1),

and
g1(t) = −t; g2(t) = t− 1.

By simple calculation, F is LU-convex and gH-symmetrically differentiable at t = 0 and

∇sF(0) = [
5
2

, 3], gs
1(0) = −1, and gs

2(0) = 1.

The condition (7) in Theorem 4 is satisfied at t = 0 when µ1 = 11
2 , and µ2 = 0.

On the other hand, it can be easily verified that t = 0 is a non-dominated solution of
Problem (8). Hence, Theorem 4 is verified.

Noted that F is not gH-differentiable at t = 0, the sufficient conditions in [24] are properly
wider than those in [28].

3. Generalized Convexity of gH-Symmetrically Differentiable IVFs

The LU-convexity assumption in [28] may be restrictive. For example, the IVF

F(t) =
{

[t, 2t], if t ≥ 0;
[2t, t], if t < 0,

is not LU-convex at t = 0. Inspired by this, we introduce the directional gH-symmetrically
derivative and the concepts of generalized convexity for IVFs which will be used in
Section 4.

Definition 6. Let F : T → I be an IVF and h ∈ Rn. Then F is called directional gH-symmetrically
differentiable at t0 in the direction h if DsF(t0 : h) ∈ I exists and

DsF(t0 : h) = lim
α→0+

F(t0 + αh)	g F(t0 − αh)
2α

. (9)

If t = (t1, . . . , tn)T and ei = (0, . . . ,
i
1, . . . , 0), then DsF(t : ei) is the partial gH-symmetrically

derivative of F with respect to ti at t.
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Theorem 5. If F : T → I is gH-symmetrically differentiable at t ∈ T and h ∈ Rn, then the
directional gH-symmetrically derivative exists and

DsF(t : h) = Fs(t)Th.

Proof. Since, by hypothesis, F is gH-symmetrically differentiable at t, then there exists
Fs(t) ∈ I such that:

lim
αh→0

F(t + αh)	g F(t− αh)
2αh

= Fs(t).

Then, we have:

lim
α→0

D
( F(t + αh)	g F(t− αh)

2α
, Fs(t)h

)
= 0.

i.e.,
DsF(t : h) = Fs(t)h.

Thus, we complete the proof.

Definition 7. The IVF F : T → I is called symmetric pseudo-convex (SP-convex) at t0 ∈ T, if F
is gH-symmetrically differentiable at t0 and

Fs(t0)(t− t0) �LU 0 implies F(t) �LU F(t0),

for all t ∈ T.

F is said to be symmetric pseudo-concave (SP-concave) at t0 if −F is SP-convex at t0.

Definition 8. The IVF F : T → I is called symmetric quasi-convex (SQ-convex) at t0 ∈ T, if F is
gH-symmetrically differentiable at t0 and

F(t) �LU F(t0) implies Fs(t0)(t− t0) �LU 0,

for all t ∈ T.

F is said to be symmetric quasi-concave (SQ-concave) at t0 if −F is SQ-convex at t0.

Remark 1. When F = F, i.e., F degenerates to a real function, the concepts of SQ-convexity and
SP-convexity will degenerate to s-quasiconvexity and s-pseudoconvexity in [35].

4. KKT Necessary Conditions

The necessary optimality conditions are an important part of the optimization theory,
because these conditions can be used to exclude all the feasible solutions which are not
optimal solutions, i.e., they can identify all options for solving the problem. From this point,
using gH-symmetrically derivative, we establish a KKT necessary optimality condition
which is more general than [28,29].

In order to obtain the necessary condition of Problem (5), we shall use the Slater’s
constraint qualification [37]. Such condition is:

∃t0 ∈ X such that gi(t0) < 0, i = 1, . . . , m. (10)

Theorem 6 (Necessary optimality condition). Assume that F : M → I is LU-convex and
gH-symmetrically differentiable, gi : M→ R(i = 1, . . . , m) are symmetrically differentiable and
convex on M. Suppose H = {i : gi(t∗) = 0}. If t∗ is a non-dominated solution to Problem (5) and
the following conditions are satisfied:
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(A1) For every i ∈ H and for all y ∈ Rn, there exist some positive real numbers ξi, when 0 < ξ < ξi
and ∇sgi(t∗)Ty < 0, we have:

∇sgi(t∗ + ξy)Ty < 0;

(A2) The set X satisfies the Slater’s constraint qualification. For i ∈ H and for all h ∈ Rn,
D+F(t∗ : h) ≥ 0 implies that DsF(t∗ : h) ≥ 0 or D+F(t∗ : h) ≥ 0 implies that DsF(t∗ :
h) ≥ 0;

where D+F and D−F (D+F and D−F) are the right-sided and left-sided directional derivative of F
(F). Then, there exists u∗ ∈ Rm

+ such that condition (7) in Theorem 4 holds.

Proof. Suppose the above conditions are satisfied. Assume there exists w ∈ Rn such that:

wT∇sgi(t∗) ≤ 0,

and wT∇sF(t∗) < 0, wT∇sF(t∗) < 0, (∀i ∈ H).
(11)

Since X satisfies the Slater’s constraint qualification, by Equation (10), there exists
t0 ∈ X such that gi(t0) < 0 (i = 1, . . . , m). Then we have:

gi(t0)− gi(t∗) < 0, (∀i ∈ H),

Combining Theorem 1 and the convexity of gi, we have

∇sgi(t∗)(t0 − t∗) < 0, (∀i ∈ H).

by inequality (11), we get

∇sgi(t∗)[w + ρ(t0 − t∗)] < 0, (∀i ∈ H)

for all ρ > 0. By hypothesis in (A1), there exists ξi > 0 such that

gi(t∗ + ξ[w + ρ(t0 − t∗)] < 0, (∀i ∈ H)

for 0 < ξ < ξi. Therefore, we have: t∗ + ξ[w + ρ(t0 − t∗)] ∈ X .
Since t∗ is a non-dominated solution to Problem (5), there exists no feasible solution t

such that: F(t) ≺ F(t∗), i.e.,

F(t∗ + ξ[w + ρ(t0 − t∗)]) ≥ F(t∗),

or F(t∗ + ξ[w + ρ(t0 − t∗)]) ≥ F(t∗).

By hypothesis (A2), we have

[w + ρ(t0 − t∗)]∇sF(t∗) ≥ 0,

or [w + ρ(t0 − t∗)]∇sF(t∗) ≥ 0,

for all ρ > 0. When ρ→ 0+, we obtain

wT∇sF(t∗) ≥ 0, or wT∇sF(t∗) ≥ 0, (12)

which contradicts to the inequality (11).
Thus, inequality (11) has no solution. By Theorem 2, there exists 0 ≤ µ∗i ∈ R such that

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0.
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For i 6∈ H, let µi = 0, then we have
m
∑

i=1
µigi(t∗) = 0. The proof is complete.

Example 2. Continued from Example 1, note that g1(0) = 0 and gs
1(t) ≡ −1. Moreover, M

satisfies the Slater’s condition. For h ∈ Rn we have:

D+F(0 : h) = lim
α→0+

F(0 + αh)− F(0)
α

=

{
3h, h > 0;
2h, h ≤ 0.

D−F(0 : h) = lim
α→0−

F(0 + αh)− F(0)
α

= 3h.

Obviously, D+F(t∗ : h) ≥ 0 implies that

D+F(t∗ : h) + D−F(t∗ : h) ≥ 0.

Thus, the conditions in Theorem 6 hold at t = 0.
On the other hand, we have:

∇sF(0) +∇sF(0) + ∑
i∈H

µ∗i ∇sgi(0) (13)

=
5
2
+ 3 + µ1 · (−1) + µ2 · 1 = 0

when µ1 = 11
2 , µ2 = 0. Hence, Theorem 6 is verified.

5. Wolfe Type Duality

In this section, we consider the Wolfe dual Problem (14) of Problem (5) as follows:

max F(t) +
m

∑
i=1

µigi(t) (14)

subject to ∇sF(t) +∇sF(t) +
m

∑
i=1

µi∇sgi(t) = 0,

µ = (µ1, . . . , µm) ≥ 0.

For convenience, we write:

L(t, µ) = F(t) +
m

∑
i=1

µ1gi(t). (15)

We denote by

Y = {(t, µ) ∈ Rn ×Rm : ∇sF(t) +∇sF(t) +
m

∑
i=1

µi∇sgi(t) = 0} (16)

the feasible set of dual Problem (14) and

OD(L,Y) = {L(t, µ) : (t, µ) ∈ Y} (17)

the set of all objective values of Problem (14).

Definition 9. Let (t∗, µ∗) be a feasible solution to Problem (14), i.e., (t∗, µ∗) ∈ Y . (t∗, µ∗) is said
to be a non-dominated solution to Problem (14), if there is no (t, µ) ∈ Y such that L(t∗, µ∗) ≺LU
L(t, µ).

Next, we discuss the solvability for Wolfe primal and dual problems.
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Lemma 1. Assume that F : M→ I is LU-convex and gH-symmetrically differentiable, gi : M→
R(i = 1, . . . , m) are symmetrically differentiable and convex on M. Furthermore, H = {i :
gi(t∗) = 0}. If t̂, (t, µ) are feasible solutions to Problems (5) and (14), respectively, then the
following statements hold true:

(B1) If F(t) ≥ F(t̂), then F(t̂) ≥ L(t, µ);
(B2) If F(t) ≥ F(t̂), then F(t̂) ≥ L(t, µ).

Moreover, the statements still hold true under strict inequality.

Proof. Suppose t̂, (t, µ) are feasible solutions to Problem (5) and (14), respectively. Since F
is LU-convex, we have:

F(t̂) ≥ F(t) +∇sF(t)(t̂− t)

= F(t)−∇sF(t)(t̂− t)−
m

∑
i=1
∇sgi(t)(t̂− t)

≥ F(t) + F(t)− F(t̂) +
m

∑
i=1

[gi(t)− gi(t̂)].

If F(t)− F(t̂) ≥ 0, it follows that

F(t̂) ≥ F(t) +
m

∑
i=1

gi(t) = L(t, µ).

Thus, the statement (B1) holds true. On the other hand, if F(t)− F(t̂) > 0, then

F(t̂) > F(t) +
m

∑
i=1

gi(t) = L(t, µ).

The other statements can also be proof by using similar arguments.

Lemma 2. Under the same assumption to Lemma 1, if t̂, (t, µ) are feasible solutions to Problems
(5) and (14), respectively, then the following statements hold true:

(C1) If F(t) ≤ F(t̂), then F(t̂) ≥ L(t, µ);
(C2) If F(t) ≤ F(t̂), then F(t̂) ≥ L(t, µ).

Moreover, the statements still hold true under strict inequality.

Proof. Suppose F(t) ≤ F(t̂), then we have:

F(t̂)− L(t, µ)

=F(t̂)− F(t)−
m

∑
i=1

µigi(t)

≥Fs
(t)(t̂− t) + [−

m

∑
i=1

µigi(t̂) +
m

∑
i=1

µigi(t̂)−
m

∑
i=1

µigi(t)]

≥Fs
(t)(t̂− t) + [−

m

∑
i=1

µigi(t̂) +
m

∑
i=1

µigs
i (t)(t̂− t)]

=[Fs
(t) +

m

∑
i=1

µigs
i (t)](t̂− t)−

m

∑
i=1

µigi(t̂)

=− Fs(t̂− t)−
m

∑
i=1

µigi(t̂)

≥F(t)− F(t̂)−
m

∑
i=1

µigi(t̂)
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=F(t)− L(t̂, µ)

≥0.

Thus, the statement (C1) holds true. On the other hand, if F(t) < F(t̂), then:

F(t̂) > L(t, µ).

The proof of (C2) is similar to (C1), so we omit it.

Theorem 7. (Weak duality) Under the same assumption of Lemma 1, if t̂, (t, µ) are feasible
solutions to Problems (5) and (14), respectively, then the following statements hold true:

(D1) If F(t) and F(t̂) are comparable, then F(t̂) � L(t, µ).
(D2) If F(t) and F(t̂) are not comparable, then F(t̂) > L(t, µ) or F(t̂) > L(t, µ).

Proof. If F(t) and F(t̂) are comparable, by Lemmas 1 and 2, we can obtain the statement
(D1); If F(t), F(t̂) are not comparable, then we have:

F(t̂) ⊂ F(t), or F(t̂) ⊃ F(t).

By Lemmas 1 and 2, we obtain that:

F(t̂) > L(t, µ), or F(t̂) > L(t, µ).

The proof is complete.

Example 3. Consider the optimization problem in Example 1. The corresponding Wolfe duality
problem is:

max F(t) + µ1g1(t) + µ2g2(t) (18)

subject to ∇sF(t) +∇sF(t) + µ1∇sg1(t) + µ2∇sg2(t) = 0,

µ = (µ1, µ2) ≥ 0.

Clearly, t̂ = 0 is a feasible solution of the Problem (8) and the objective value is [−3, 0].
Moreover, (t, µ1, µ2) = (− 1

2 , 0, 2) is a feasible solution to the Problem (18), and objective value is
[−6,− 15

4 ].
We observe that

F(0) � L(−1
2

, 0, 2). (19)

Hence, Theorem 7 is verified.

Theorem 8. (Solvability) Under the same assumption of Lemma 1, if (t∗, µ∗) ∈ Y and L(t∗, µ∗) ∈
OP(F,X ), then (t∗, µ∗) solves the Problem (14).

Proof. Suppose (t∗, µ∗) is not a non-dominated solution to Problem (14), then there exists
(t, µ) ∈ Y so that:

L(t∗, µ∗) ≺ L(t, µ).

Since L(t∗, µ∗) ∈ OP(F,X ), there exists t̂ ∈ X such that:

F(t̂) = L(t∗, µ∗) ≺ L(t, µ). (20)

According to Theorem 7, if F(t), F(t̂) are comparable, then we have

F(t̂) � L(t, µ).
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If F(t), F(t̂) are not comparable, then:

F(t̂) > L(t, µ), or F(t̂) > L(t, µ).

These two results are contradict to Equation (20). Thus, we complete the proof.

Theorem 9. (Solvability) Under the same assumption of Lemma 1, if t̂ ∈ X is a feasible solution
to Problem (5) and F(t̂) ∈ OD(L,Y), then t̂ solves the Problem (5).

Proof. The proof is similar to Theorem 8, so we omit it.

Corollary 1. Under the same assumption of Lemma 1, if t̂, (t∗, µ∗) are feasible solutions to
Problems (5) and (14), respectively, moreover, if F(t̂) = L(t∗, µ∗), then t̂ solves Problem (5) and
(t∗, µ∗) solves the Problem (14).

Proof. The proof follows Theorem 8 and Theorem 9.

Theorem 10. (Strong duality) Under the same assumption of Lemma 1, if F, gi (i = 1, . . . , m)
satisfy the conditions (A1) and (A2) at t∗, then there exists µ∗ ∈ Rm

+ such that (t∗, µ∗) is a solution
of Problem (14) and

L(t∗, µ∗) = F(t∗).

Proof. By Theorem 6, there exists µ∗ ∈ Rm
+ such that:

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0, (21)

and
m
∑

i=1
gi(t∗) = 0. It can be shown that L(t∗, µ∗) ∈ OD(L,Y) and

L(t∗, µ∗) = F(t∗).

By Corollary 1, there exists µ∗ ∈ Rm
+ such that (t∗, µ∗) is a solution to Problem (14).

The proof is complete.

Example 4. Continued from Example 2, after calculation, the non-dominated solution to Problem
(18) is (0, 11

2 , 0) and the objective value is [−6, 0]; While t = 0 is also a non-dominated solution to
Problem (8) and the objective value is [−6, 0]. Then we have:

L(0,
7
2

, 0) = F(0).

On the other hand, the IVF F in Example 2 satisfies the conditions (A1) and (A2), which
verifies Theorem 10.

6. The optimality Conditions with Generalized Convexity

In this section, we use the concepts of SP-convexity and SQ-convexity which are
less restrictive than LU-convexity to obtain some generalized optimality theorems of
Problem (5).

Theorem 11. (Sufficient condition) Suppose F is SP-convex and gi is s-quasiconvex at t∗ for i ∈ H.
If t∗ ∈ X , and for some µ∗ ∈ Rn

+ condition (7) in Theorem 4 holds, then t∗ is a non-dominated
solution to Problem (5).
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Proof. Assume for some µ∗ ≥ 0, condition (7) in Theorem 4 holds. We have
m
∑

i=1
µ∗i gi(t∗) =

0, where µ∗i = 0 when i 6∈ H. Since gi(t) ≤ gi(t∗) and gi is s-quasiconvex at t∗ for i ∈ H,
we obtain gs

i (t
∗)(t− t∗) ≤ 0. Thus:

m

∑
i=1

µ∗i gs
i (t
∗)(t− t∗) ≤ 0, for all t ∈ X ,

which implies:
∇s(F(t∗) + F(t∗))(t− t∗) ≥ 0 for all t ∈ X .

Thanks to the SP-convexity of F, we have:

F(t) + F(t) ≥ F(t∗) + F(t∗) for all t ∈ X . (22)

Then t∗ is an optimal solution to the real-valued objective function F + F subject to the
same constraints of Problem (5). Suppose t∗ is not a non-dominated solution of Problem
(5), there exists t ∈ X such that:

F(t) ≺ F(t∗)

which contradicts Equation (22). The proof is complete.

Example 5. Consider the following optimization:

min F(t) (23)

subject to g1(t) ≤ 0,

g2(t) ≤ 0.

where:

F(t) =
{

[t3 + t, 2t3 + t], if t ≥ 0;
[2t, 1.5t], if t < 0,

and g1(t) = −t, g2(t) = t− 1.
We observe that F is not gH-differentiable at t = 0, and F is not LU-convex at t = 0 with:

F(0) 6� 2
3

F(
1
4
) +

1
3

F(−1
2
).

However, F is SP-convex at t = 0 and gi is s-quasiconvex at t = 0 for i ∈ H. Furthermore, F
is gH-symmetrically differentiable at t = 0 with

Fs(0) = [
5
4

,
3
2
].

Moreover, we have:

∇sF(0) +∇sF(0) +
m

∑
i=1

µi∇sgi(0) = 0;

m

∑
i=1

µigi(0) = 0, where µ = (
11
4

, 0)T .
(24)

On the other hand, t = 0 is a non-dominated solution to Problem (23), which verifies
Theorem 11.

Theorem 12. (Necessary condition) Suppose F is SQ-concave at t∗ and gi is s-pseudoconcave at
t∗ for i ∈ H. If t∗ is a non-dominated solution to Problem (5) and gi is lower semicontinuous on M
for all i 6∈ H, then (t∗, µ∗) satisfies condition (7) in Theorem 4 with some µ∗ ≥ 0.
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Proof. Assume X1 = {t ∈ X : gi(t) < 0 for all i 6∈ H}. The set X1 is relatively open since
gi is lower semicontinuous on M for each i 6∈ H. Since t∗ ∈ X1, there is some α0 such that
for any y ∈ En, t∗ + αy ∈ X1 when: 0 < α < α0.

Suppose 0 < α < α0 and for i ∈ H we have gs
i (t
∗)Ty ≤ 0, then gs

i (t
∗)Tαy ≤ 0 for

i ∈ H. According to the s-pseudoconcavity of gi at t∗, we have:

gi(t∗ + αy) ≤ gi(t∗).

Since t∗ solves Problem (5), we have: F(t∗) �LU F(t∗ + αy). The SQ-concavity of F at
t∗ implies that

(∇sF(t∗) +∇sF(t∗))(αy) ≥ 0.

Thus:
gs

i (t
∗)Ty ≤ 0, (∇sF(t∗) +∇sF(t∗))y < 0

has no solution y in Rn. Hence, by Farkas’ lemma, there exist µ∗i ≥ 0 such that:

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0.

Example 6. Note that in Example 5, t = 0 is a non-dominated solution. F is SQ-concave at t = 0,
and g1(t) = −t is s-pseudoconcave at t = 0, g2(t) = t− 1 is lower semicontinuous on R.

On the other hand, for µ = ( 11
4 , 0), the condition (7) is satisfied at t = 0 which verifies

Theorem 12.

Theorem 13. (Weak duality) Suppose for each µ such that (t, µ) ∈ R, L(·, µ) is SP-convex on X .
Then for all t̂ ∈ X and (t, µ) ∈ Y , L(t, µ) �LU F(t̂).

Proof. Consider t̂ ∈ X and (t, µ) ∈ Y . Then we have: Ls
t(t, µ) = 0. Since L(·, µ) is

SP-convex on X , we obtain L(t̂, µ) � L(t, µ). Therefore,

F(t̂) +
m

∑
i=1

uigi(t̂) � L(t, µ).

The proof is complete.

Example 7. Continued the problem of Example 5, t = 0 is a feasible solution to Problem (23) and
the objective value is F(0) = 0.

Moreover, (t, µ) = (1, 11, 0) is a feasible solution to the Wolfe problem of Problem (23) and
the objective value is [−9,−8]. Furthermore, we have

F(0) � L(1, 11, 0),

which verifies Theorem 13.

Theorem 14. (Strong duality) Suppose F, gi (i = 1, . . . , m) and t∗ satisfy the conditions of
Theorem 12. Furthermore, for each µ such that (t, µ) ∈ R, L(·, µ) is SP-convex on X . Then there
exists a µ∗ ≥ 0 such that (t∗, µ∗) solves Problem (14) and L(t∗, µ∗) = F(t∗).

Proof. The proof is similar to the proof of Theorem 10.

Example 8. Continued from Example 5, the non-dominated solution to Wolfe dual of Problem (23)
is (0, 11

4 , 0) and the objective value is L(0, 11
4 , 0) = 0.
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While t = 0 is also a non-dominated solution of Problem (23) and the objective value is
F(0) = 0. Then we have:

L(0,
11
4

, 0) = F(0).

On the other hand, the IVF F in Example 5 satisfies the conditions of Theorem 14, which
verifies Theorem 14.

7. Conclusions

The IVOP is an interesting topic with many real world applications. The nondiffer-
entiable counterpart of this problem is an interesting topic too. In this work, we newly
investigate a topic on gH-symmetrically differentiable IVOPs and obtain the KKT condi-
tions and duality theorems which are properly wider than those in [28]. Additionally, more
appropriate concepts of generalized convexity are introduced to extend the optimality
conditions in [24]. Some developments of the results presented in this paper, which will be
investigated in future papers, are given by the study of the saddle-point optimality criteria
for the considered class of IVOPs.
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Abstract: By considering the new forms of the notions of lower semicontinuity, pseudomonotonicity,
hemicontinuity and monotonicity of the considered scalar multiple integral functional, in this paper
we study the well-posedness of a new class of variational problems with variational inequality con-
straints. More specifically, by defining the set of approximating solutions for the class of variational
problems under study, we establish several results on well-posedness.
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1. Introduction

The concept of well-posedness is a very useful mathematical tool in the study of
optimization problems. Thus, beginning with the work of Tykhonov [1], many types
of well-posedness associated with variational problems have been introduced (Levitin–
Polyak well-posedness [2–5], α-well-posedness [6,7], extended well-posedness [8–16], L-
well-posedness [17]). Additionally, this mathematical tool can be used to study some
related problems: variational inequality problems [18–20], complementary problems [21],
equilibrium problems [22,23], fixed point problems [24], hemivariational inequality prob-
lems [25], Nash equilibrium problems [26], and so on. The well-posedness of generalized
variational inequalities and the corresponding optimization problems have been analyzed
by Jayswal and Shalini [27]. Moreover, an interesting and important extension of varia-
tional inequality problem is the multidimensional variational inequality problem and the
associated multi-time optimization problems (see [28–33]). Recently, Treanţă [30] inves-
tigated the well-posed isoperimetric-type constrained variational control problems. For
other different but connected ideas, the reader is directed to Dridi and Djebabla [34] and
Jana [35].

In this paper, motivated and inspired by the above research papers, we study the
well-posedness property for new constrained variational problems, implying second-order
multiple integral functionals and partial derivatives. In this regard, we formulate new
forms of monotonicity, lower semicontinuity, hemicontinuity, and pseudomonotonicity
for the considered multiple integral-type functional. Further, we introduce the set of ap-
proximating solutions for the constrained optimization problem under study and establish
several theorems on well-posedness. The previous research works in this scientific area
did not take into account the new form of the notions mentioned above. In essence, the
results derived here can be considered as dynamic generalizations of the corresponding
static results already existing in the literature. In this paper, the framework is based on
function spaces of infinite-dimension and multiple integral-type functionals. This element
is completely new for the well-posed optimization problems.

The present paper is structured as follows: In Section 2, we formulate the problem
under study and introduce the new forms of monotonicity, lower semicontinuity, hemi-
continuity, and pseudomonotonicity for the considered multiple integral-type functional.
Additionally, an auxiliary lemma is provided. In Section 3, we study the well-posedness
for the considered constrained variational problem. More precisely, we prove that well-
posedness is equivalent with the existence and uniqueness of a solution in the aforesaid
problem. Finally, Section 4 concludes the paper and provides further developments.
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2. Preliminaries and Problem Formulation

In this paper, we consider the following notations and mathematical tools: denote by
K a compact domain in Rm and consider the point K 3 ζ = (ζα), α = 1, m; let E denote the

space of state functions of C4-class s : K → Rn and sα :=
∂s

∂ζα
, sβγ :=

∂2s
∂ζβ∂ζγ

denote the

partial speed and partial acceleration, respectively; consider E ⊆ E as a nonempty, closed and
convex subset, with s|∂K = given, equipped with the inner product

〈s, z〉 =
∫

K
[s(ζ) · z(ζ)

]
dζ =

∫

K

[ n

∑
i=1

si(ζ)zi(ζ)
]
dζ, ∀s, z ∈ E

and the induced norm, where dζ = dζ1 · · · dζm is the element of volume on Rm.

Let J2(Rm,Rn) be the second-order jet bundle for Rm and Rn. By using the real-
valued continuously differentiable function f : J2(Rm,Rn) → R, we define the multiple
integral-type functional:

F : E → R, F(s) =
∫

K
f
(
ζ, s(ζ), sα(ζ), sβγ(ζ)

)
dζ.

By using the above mathematical framework, we formulate the constrained variational
problem (in short, CVP) ((πs(ζ)) := (ζ, s(ζ), sα(ζ), sβγ(ζ)))):

(CVP) Minimize
∫

K
f (πs(ζ))dζ

subject to s ∈ Ω,
where Ω stands for the set of solutions for the variational inequality problem (in short, VIP):
find s ∈ E such that

(VIP)
∫

K

[∂ f
∂s

(πs(ζ))(z(ζ)− s(ζ)) +
∂ f
∂sα

(πs(ζ))Dα(z(ζ)− s(ζ))

+
1

n(β, γ)

∂ f
∂sβγ

(πs(ζ))D2
βγ(z(ζ)− s(ζ))

]
dζ ≥ 0, ∀z ∈ E,

where D2
βγ := Dβ(Dγ), and n(β, γ) represents the multi-index notation (Saunders [36],

Treanţă [33]).
More precisely, the set of all feasible solutions of (VIP) is defined as

Ω =
{

s ∈ E :
∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E

}
.

Definition 1. The functional F(s) =
∫

K
f (πs(ζ))dζ is monotone on E if the inequality holds:

∫

K

[
(s(ζ)− z(ζ))

(
∂ f
∂s

(πs(ζ))−
∂ f
∂s

(πz(ζ))

)

+ Dα(s(ζ)− z(ζ))
(

∂ f
∂sα

(πs(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

for ∀s, z ∈ E.
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Definition 2. The functional F(s) =
∫

K
f (πs(ζ))dζ is pseudomonotone on E if the implica-

tion holds: ∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0

⇒
∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πs(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0,

for ∀s, z ∈ E.

Example 1. Consider m = 2, n = 1, and K = [0, 3]2. Additionally, we define

f (πs(ζ)) = 2 sin s(ζ) + s(ζ)es(ζ).

The functional F(s) =
∫

K
f (πs(ζ))dζ is pseudomonotone on E = C4(K, [−1, 1]),

∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ

=
∫

K

[
(s(ζ)− z(ζ))(2 cos z(ζ) + ez(ζ) + z(ζ)ez(ζ))

]
dζ ≥ 0

∀s, z ∈ E

⇒
∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πs(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ

=
∫

K

[
(s(ζ)− z(ζ))(2 cos s(ζ) + es(ζ) + s(ζ)es(ζ))

]
dζ ≥ 0

∀s, z ∈ E.

By direct computation, we obtain

∫

K

[
(s(ζ)− z(ζ))

(
∂ f
∂s

(πs(ζ))−
∂ f
∂s

(πz(ζ))

)

+ Dα(s(ζ)− z(ζ))
(

∂ f
∂sα

(πs(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ

=
∫

K

[
(s(ζ)− z(ζ))[2(cos s(ζ)− cos z(ζ)) + s(ζ)es(ζ) + es(ζ) − z(ζ)ez(ζ) − ez(ζ)]

]
dζ � 0,

∀s, z ∈ E,
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which implies that the functional F(s) =
∫

K
f (πs(ζ))dζ is not monotone on E (in the sense of

Definition 1).
By considering the work of Usman and Khan [37], we provide the following definition.

Definition 3. The functional F(s) =
∫

K
f (πs(ζ))dζ is hemicontinuous on E if the application

λ→
〈

s(ζ)− z(ζ),
δF
δsλ

(ζ)

〉
, 0 ≤ λ ≤ 1

is continuous at 0+, for ∀s, z ∈ E, where

δF
δsλ

(ζ) :=
∂ f
∂s

(πsλ
(ζ))− Dα

∂ f
∂sα

(πsλ
(ζ)) +

1
n(β, γ)

D2
βγ

∂ f
∂sβγ

(πsλ
(ζ)) ∈ E,

sλ := λs + (1− λ)z.

Lemma 1. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as hemicontinuous and pseudomono-

tone on E. Then, the function s ∈ E solves (VIP) if and only if it solves the variational inequality

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

Proof. Firstly, let us consider that the function s ∈ E solves (VIP). In consequence, it follows

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E.

By using the pseudomonotonicity property of F(s) =
∫

K
f (πs(ζ))dζ, the previous

inequality involves

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

Conversely, assume that

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

For z ∈ E and λ ∈ (0, 1], we define

zλ = (1− λ)s + λz ∈ E.
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Therefore, the above inequality can be rewritten as follows

∫

K

[
(zλ(ζ)− s(ζ))

∂ f
∂s

(πzλ
(ζ)) + Dα(zλ(ζ)− s(ζ))

∂ f
∂sα

(πzλ
(ζ))

+
1

n(β, γ)
D2

βγ(zλ(ζ)− s(ζ))
∂ f

∂sβγ
(πzλ

(ζ))
]
dζ ≥ 0, z ∈ E.

By considering λ → 0 (and the hemicontinuity property of F(s) =
∫

K
f (πs(ζ))dζ),

it results that
∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E,

which shows that s is solution for (VIP). The proof of this lemma is now complete.

Definition 4. The functional F(s) =
∫

K
f (πs(ζ))dζ is lower semicontinuous at s0 ∈ E if

∫

K
f (πs0(ζ))dζ ≤ lim

s→s0
inf
∫

K
f (πs(ζ))dζ.

3. Well-Posedness Associated with (CVP)

In this section, we analyze the well-posedness property for the constrained variational
problem (CVP). To this aim, we provide the following mathematical tools.

Let us denote by S the set of all solutions for (CVP), that is,

S =
{

s ∈ E |
∫

K
f (πs(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ and

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E

}
.

Additionally, for θ, ϑ ≥ 0, we define the set of approximating solutions for (CVP) as

S(θ, ϑ) =
{

s ∈ E |
∫

K
f (πs(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ + θ and

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ + ϑ ≥ 0, ∀z ∈ E

}
.

Remark 1. For (θ, ϑ) = (0, 0), we have S = S(θ, ϑ) and, for (θ, ϑ) > (0, 0), we obtain
S ⊆ S(θ, ϑ).

Definition 5. If there exists a sequence of positive real numbers ϑn → 0 as n→ ∞, such that the
following inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ

and ∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))
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+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E

are fulfilled, then the sequence {sn} is called an approximating sequence of (CVP).

Definition 6. The problem (CVP) is called well-posed if:

(i) It has a unique solution s0;
(ii) Each approximating sequence of (CVP) will converge to this unique solution s0.

Further, the symbol "diam B" stands for the diameter of B. Moreover, it is defined by

diam B = sup
x,y∈B

‖x− y‖.

Theorem 1. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as lower semicontinuous, hemicon-

tinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if

S(θ, ϑ) 6= ∅, ∀θ, ϑ > 0 and diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0).

Proof. Let us consider the case that (CVP) is well-posed. Therefore, it admits a unique
solution s̄ ∈ S . Since S ⊆ S(θ, ϑ), ∀θ, ϑ > 0, we obtain S(θ, ϑ) 6= ∅, ∀θ, ϑ > 0. Contrary
to the result, let us suppose that diam S(θ, ϑ) 9 0 as (θ, ϑ) → (0, 0). Then, there exists
r > 0, a positive integer m, θn, ϑn > 0 with θn, ϑn → 0, and sn, s′n ∈ S(θn, ϑn) such that

‖sn − s′n‖ > r, ∀n ≥ m. (1)

Since sn, s′n ∈ S(θn, ϑn), we obtain
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ + θn,

∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E

and ∫

K
f (πs′n(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ + θn,

∫

K

[
(z(ζ)− s′n(ζ))

∂ f
∂s

(πs′n(ζ)) + Dα(z(ζ)− s′n(ζ))
∂ f
∂sα

(πs′n(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s′n(ζ))
∂ f

∂sβγ
(πs′n(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E.

It results that {sn} and {s′n} are approximating sequences of (CVP) which tend to s̄
(the problem (CVP) is well-posed, by hypothesis). By direct computation, it follows that

‖sn − s′n‖ = ‖sn − s̄ + s̄− s′n‖

≤ ‖sn − s̄‖+ ‖s̄− s′n‖ ≤ ϑ,

which contradicts (1) for some ϑ = r. In consequence, diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0).
Conversely, let us consider that {sn} is an approximating sequence of (CVP). Then

there exists a sequence of positive real numbers ϑn → 0 as n→ ∞ such that the inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ, (2)
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∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E (3)

hold, including sn ∈ S(θn, ϑn), for a sequence of positive real numbers θn → 0 as n→ ∞.
Since diam S(θn, ϑn)→ 0 as (θn, ϑn)→ (0, 0), {sn} is a Cauchy sequence which converges
to some s̄ ∈ E as E is a closed set.

By hypothesis, the multiple integral functional
∫

K
f (πs(ζ))dζ is monotone on E. There-

fore, by Definition 1, for s̄, z ∈ E, we have

∫

K

[
(s̄(ζ)− z(ζ))

(
∂ f
∂s

(πs̄(ζ))−
∂ f
∂s

(πz(ζ))

)

+Dα(s̄(ζ)− z(ζ))
(

∂ f
∂sα

(πs̄(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs̄(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

or, equivalently,

∫

K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ

≥
∫

K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (4)

Taking limit in inequality (3), we have

∫

K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≤ 0. (5)

On combining (4) and (5), we obtain

∫

K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0.

Further, taking into account Lemma 1, it follows that

∫

K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≥ 0, (6)

which implies that s̄ ∈ Ω.
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Since the functional
∫

K
f (πs(ζ))dζ is lower semicontinuous, it results that

∫

K
f (πs̄(ζ))dζ ≤ lim

n→∞
inf
∫

K
f (πsn(ζ))dζ ≤ lim

n→∞
sup

∫

K
f (πsn(ζ))dζ.

By using (2), the above inequality reduces to
∫

K
f (πs̄(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ. (7)

Thus, from (6) and (7), we conclude that s̄ solves (CVP).
Now, let us prove that s̄ is the unique solution of (CVP). Suppose that s1, s2 are two

distinct solutions of (CVP). Then,

0 < ‖s1 − s2‖ ≤ diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0),

and the proof is complete.

Theorem 2. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as lower semicontinuous, hemicon-

tinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if it has a unique
solution.

Proof. Let us consider that (CVP) is well-posed. Thus, it possesses a unique solution s0.
Conversely, let us consider that (CVP) has a unique solution s0, that is,

∫

K
f (πs0(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ,

∫

K

[
(z(ζ)− s0(ζ))

∂ f
∂s

(πs0(ζ)) + Dα(z(ζ)− s0(ζ))
∂ f
∂sα

(πs0(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s0(ζ))
∂ f

∂sβγ
(πs0(ζ))

]
dζ ≥ 0, ∀z ∈ E, (8)

but it is not well-posed. Therefore, by Definition 6, there exists an approximating sequence
{sn} of (CVP), which does not converge to s0, such that the following inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ

and ∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E (9)

are fulfilled. Further, we proceed by contradiction to prove the boundedness of {sn}.
Contrary to the result, we suppose that {sn} is not bounded; consequently, ‖sn‖ → +∞

as n → +∞. We define δn =
1

‖sn − s0‖
and sn = s0 + δn[sn − s0]. We observe that {sn} is

bounded in E. Therefore, if necessary, passing to a subsequence, we may consider that

sn → s weakly in E 6= (s0).

It is not difficult to see that s 6= s0 due to ‖δn[sn − s0]‖ = 1, for all n ∈ N. Since s0 is a
solution of (CVP), the inequalities (8) are verified. By using Lemma 1, it follows that

∫

K
f (πs0(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ,
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∫

K

[
(z(ζ)− s0(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s0(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s0(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E. (10)

By considering the monotonicity property of the functional
∫

K
f (πs(ζ))dζ, for sn, z ∈ E,

we obtain ∫

K

[
(sn(ζ)− z(ζ))

(
∂ f
∂s

(πsn(ζ))−
∂ f
∂s

(πz(ζ))

)

+Dα(sn(ζ)− z(ζ))
(

∂ f
∂sα

(πsn(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(sn(ζ)− z(ζ))

(
∂ f

∂sβγ
(πsn(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

or, equivalently,

∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ

≤
∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (11)

Combining with (9) and (11), we have

∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ −ϑn, ∀z ∈ E.

Next, we can take n0 ∈ N be large enough such that δn < 1, for all n ≥ n0 (because of
δn → 0 as n → ∞). Multiplying the above inequality and (10) by δn > 0 and 1− δn > 0,
respectively, we obtain

∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ −ϑn, ∀z ∈ E, ∀n ≥ n0.

By using sn → s 6= s0 and sn = s0 + sn[sn − s0], we obtain

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ

= lim
n→∞

∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ
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≥ − lim
n→∞

ϑn = 0, ∀z ∈ E.

Taking into account Lemma 1 and by using the lower semicontinuity property, we obtain
∫

K
f (πs(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ,

∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E. (12)

This involves that s solves (CVP), contradiction with the uniqueness of s0. Therefore,
{sn} is a bounded sequence having a convergent subsequence {snk}, which converges to
s̄ ∈ E as k→ ∞. Now, for snk , z ∈ E, we obtain (see (11))

∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πsnk
(ζ)) + Dα(z(ζ)− snk (ζ))

∂ f
∂sα

(πsnk
(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πsnk

(ζ))
]
dζ

≤
∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− snk (ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (13)

Additionally, by (9), we can write

lim
k→∞

∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πsnk
(ζ)) + Dα(z(ζ)− snk (ζ))

∂ f
∂sα

(πsnk
(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πsnk

(ζ))
]
dζ ≥ 0. (14)

By (13) and (14), we have

lim
k→∞

∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− snk (ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0

⇒
∫

K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0.

Using Lemma 1 and the lower semicontinuity property of the considered functional,
we obtain ∫

K
f (πs̄(ζ))dζ ≤ inf

z∈Ω

∫

K
f (πz(ζ))dζ,

∫

K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≥ 0,

which shows that s̄ is a solution of (CVP). Hence, snk → s̄, that is, snk → s0, involving
sn → s0 and the proof is complete.
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Example 2. We consider n = 1 and K = [0, 2]2 = [0, 2]× [0, 2]. Let us minimize the mass of K
having the density (that depends on the current point) f

(
ζ, s(ζ), sα(ζ), sβγ(ζ)

)
= es(ζ) − s(ζ),

such that the following behavior (positivity property)
∫∫

K
(z(ζ)− s(ζ))(es(ζ) − 1)dζ1dζ2 ≥ 0,

∀z ∈ E = C1(K, [−15, 15]), s|∂K = 0,

is satisfied.
To solve the previous practical problem, we consider the following constrained optimiza-

tion problem:

(CVP1) Minimize
∫∫

K
[es(ζ) − s(ζ)]dζ1dζ2

subject to s ∈ Ω,
where Ω is the solution set of the following inequality problem

∫∫

K
(z(ζ)− s(ζ))(es(ζ) − 1)dζ1dζ2 ≥ 0,

∀z ∈ E = C1(K, [−15, 15]), s|∂K = 0.

Clearly, S = {0} and the functional
∫

K
es(ζ) − s(ζ))dζ is hemicontinuous, monotone and

lower semicontinuous on E. Thus, all the hypotheses of Theorem 2 hold and, in consequence, the
problem (CVP1) is well-posed. Additionally, S(θ, ϑ) = {0} and, therefore, S(θ, ϑ) 6= ∅ and
diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0). In conclusion, by Theorem 1, the variational problem (CVP1)
is well-posed.

4. Conclusions

In this paper, we have studied the well-posedness property of new constrained varia-
tional problems governed by second-order partial derivatives. More precisely, by using the
concepts of lower semicontinuity, monotonicity, hemicontinuity and pseudomonotonicity
of considered multiple integral-type functional, we have proved that the well-posedness
property of the problem under study is described in terms of existence and uniqueness
of solution.
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8. Čoban, M.M.; Kenderov, P.S.; Revalski, J.P. Generic well-posedness of optimization problems in topological spaces. Mathematika
1989, 36, 301–324. [CrossRef]

9. Dontchev, A.L.; Zolezzi, T. Well-Posed Optimization Problems; Springer: Berlin, Germany, 1993.
10. Furi, M.; Vignoli, A. A characterization of well-posed minimum problems in a complete metric space. J. Optim. Theory Appl. 1970,

5, 452–461. [CrossRef]
11. Huang, X.X. Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res.

2001, 53, 101–116. [CrossRef]
12. Huang, X.X.; Yang, X.Q. Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 2006, 17,

243–258. [CrossRef]
13. Lignola, M.B.; Morgan, J. Well-posedness for optimization problems with constraints defined by variational inequalities having a

unique solution. J. Glob. Optim. 2000, 16, 57–67. [CrossRef]
14. Lin, L.J.; Chuang, C.S. Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-

posedness for optimization problems with constraint. Nonlinear Anal. 2009, 70, 3609–3617. [CrossRef]
15. Lucchetti, R. Convexity and Well-Posed Problems; Springer: New York, NY, USA, 2006.
16. Zolezzi, T. Extended well-posedness of optimization problems. J. Optim. Theory Appl. 1996, 91, 257–266. [CrossRef]
17. Lignola, M.B. Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory. Appl. 2006, 128, 119–138.

[CrossRef]
18. Ceng, L.C.; Hadjisavvas, N.; Schaible, S.; Yao, J.C. Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory

Appl. 2008, 139, 109–125. [CrossRef]
19. Fang, Y.P.; Hu, R. Estimates of approximate solutions and well-posedness for variational inequalities. Math. Meth. Oper. Res. 2007,

65, 281–291. [CrossRef]
20. Lalitha, C.S.; Bhatia, G. Well-posedness for parametric quasivariational inequality problems and for optimization problems with

quasivariational inequality constraints. Optimization 2010, 59, 997–1011. [CrossRef]
21. Heemels, P.M.H.; Camlibel, M.K.C.; Schaft, A.J.V.; Schumacher, J.M. Well-posedness of the complementarity class of hybrid

systems. In Proceedings of the IFAC 15th Triennial World Congress, Barcelona, Spain, 21–26 July 2002.
22. Chen, J.W.; Wang, Z.; Cho, Y.J. Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium

problems. Math. Meth. Oper. Res. 2013, 77, 33–64. [CrossRef]
23. Fang, Y.P.; Hu, R.; Huang, N.J. Well-posedness for equilibrium problems and for optimization problems with equilibrium

constraints. Comput. Math. Appl. 2008, 55, 89–100. [CrossRef]
24. Ceng, L.C.; Yao, J.C. Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems.

Nonlinear Anal. 2008, 69, 4585–4603. [CrossRef]
25. Xiao, Y.B.; Yang, X.M.; Huang, N.J. Some equivalence results for well-posedness of hemivariational inequalities. Glob. Optim.

2015, 61, 789–802. [CrossRef]
26. Lignola, M.B.; Morgan, J. α-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints.

Glob. Optim. 2006, 36, 439–459. [CrossRef]
27. Jayswal, A.; Jha, S. Well-posedness for generalized mixed vector variational-like inequality problems in Banach space. Math.

Commun. 2017, 22, 287–302.
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Abstract: In 1961, Kestelman first proved the change in the variable theorem for the Riemann integral
in its modern form. In 1970, Preiss and Uher supplemented his result with the inverse statement.
Later, in a number of papers (Sarkhel, Výborný, Puoso, Tandra, and Torchinsky), the alternative
proofs of these theorems were given within the same formulations. In this note, we show that one
of the restrictions (namely, the boundedness of the function f on its entire domain) can be omitted
while the change of variable formula still holds.
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1. Introduction

Throughout this paper, we denote [a, b] as the closed interval connecting the points
a, b ∈ R, and denote R[a, b] as the class of all Riemann-integrable real functions on
[a, b]. In 1961, Kestelman (see [1]) first proved the following fundamental theorem for
the Riemann integral.

Theorem 1. Suppose that g ∈ R[α, β], c ∈ R,

G(t) :=
t∫

α

g(y)dy + c (1)

and f ∈ R
(
G([α, β])

)
. Then, ( f ◦ G)g ∈ R[α, β] and the following change of variable formula

holds:
G(β)∫

G(α)

f (x)dx =

β∫

α

f
(
G(t)

)
g(t)dt (2)

In 1970, Preiss and Uher (see [2]) supplemented this result with the following statement.

Theorem 2. Suppose that g ∈ R[α, β], G is defined by (1), f is bounded on [c, d] := G([α, β]) and
( f ◦ G)g ∈ R[α, β]. Then f ∈ R[c, d] ⊂ R[G(α), G(β)] and the change of variable Formula (2)
holds.

Later, in a number of papers (see [3–6]), the alternative Proofs of Theorems 1 and 2
were given within the same formulations. The main goal of this note is to abandon the
requirement of boundedness of the function f on [c, d] := G([α, β]) in Theorem 2. At the
same time, the condition for the boundedness of the function f on [G(α), G(β)] is essential
for the existence of the integral on the left-hand side of (2) and does not follow from other
conditions of the theorem, which are shown by the example at the end of [3]. Let us now
proceed to formulating the main result.
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2. The Main Result

Theorem 3. Suppose that g ∈ R[α, β], G is defined by (1), f is bounded on I := [G(α), G(β)]
and ( f ◦ G)g ∈ R[α, β]. Then, f ∈ R(I) and the change of variable Formula (2) holds.

For the proof of Theorem 3, we need the following lemma.

Lemma 1. If g, gh ∈ R[α, β], then g|h| ∈ R[α, β].

Proof. By Lebesgue’s criterion, the functions g and gh are both continuous a.e. on [α, β].
Let x0 ∈ [α, β] be the point of their mutual continuity. If h is continuous at x0, then g|h| is
continuous at x0. If h is discontinuous at x0, then the equality g(x0) = 0 must hold because
otherwise, h must be continuous at x0 as a quotient of continuous functions gh and g. Then,
we have the following:

g(x)h(x)→ g(x0)h(x0) = 0,

and therefore,

g(x)|h(x)| = g(x)h(x)sgn
(
h(x)

)
→ 0 = g(x0)|h(x0)|

as x → x0, which means the continuity of g|h| at x0, and thus, its continuity a.e. on [α, β].
Thus, g|h| ∈ R[α, β] by Lebesgue’s criterion.

Proof of Theorem 3. By the hypothesis of the theorem, there is M1 > 0 such that | f (x)| ≤
M1 for all x ∈ I. For all n ∈ N, let cn := M1 + n and define for all x ∈ [c, d] := G([α, β])
the following function:

fn(x) :=





f (x), if | f (x)| ≤ cn;
cn, if f (x) > cn;
−cn, if f (x) < −cn.

From the given definition for all n ∈ N, we obtain the boundedness of fn as well as
the following equality:

fn
∣∣

I = f
∣∣

I . (3)

Additionally, for every n ∈ N for all x ∈ [c, d], we obtain the following:

| fn(x)| ≤ | f (x)|, (4)

and for all x ∈ [c, d], we have the following:

fn(x)→ f (x) (5)

as n→ ∞. Next, we show that ( fn ◦ G)g ∈ R[α, β] for all n ∈ N. For each n ∈ N, we have
the following explicit formula:

fn = min{max{ f ,−cn}, cn} =
1
4
(

f − cn − | f − cn|+
∣∣3cn + f − | f − cn|

∣∣),

from which, for h := f ◦ G, we obtain the following equality:

( fn ◦ G)g =
1
4
(
h− cn − |h− cn|+

∣∣3cn + h− |h− cn|
∣∣)g. (6)

Since by the hypothesis of the theorem g, gh ∈ R[α, β], then by Lemma 1, we have
g|h− cn| ∈ R[α, β], and thus, g

∣∣3cn + h− |h− cn|
∣∣ ∈ R[α, β] by the same lemma. Finally, (6)

implies that ( fn ◦ G)g ∈ R[α, β] for all n ∈ N.
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Since the function ( f ◦ G)g is integrable (and, thus, bounded), there exists M2 > 0
such that for all n ∈ N, t ∈ [α, β] holds the inequality as follows:

∣∣ fn
(
G(t)

)
g(t)

∣∣ (4)
≤
∣∣ f
(
G(t)

)
g(t)

∣∣ ≤ M2,

Additionally, for all t ∈ [α, β] as n→ ∞, we have the following:

fn
(
G(t)

)
g(t)

(5)→ f
(
G(t)

)
g(t).

By virtue of (3), using Theorem 2 and Arzela’s bounded convergence theorem for the
Riemann integral (see [7]), as n→ ∞ we obtain the following:

G(β)∫

G(α)

f (x)dx
(3)
=

G(β)∫

G(α)

fn(x)dx Th. 2
=

β∫

α

fn
(
G(t)

)
g(t)dt→

β∫

α

f
(
G(t)

)
g(t)dt,

which completes the verification of (2) and the proof of the theorem.

3. Some applications

The following example illustrates Theorem 3 in use: let α := −1, β := 2, g(t) := 2t,
G(t) := t2 and

f (x) :=





1√
x

if x > 0;

0 if x = 0.

Clearly, f is unbounded on G([−1, 2]) = [0, 4], but there exists

4∫

1

dx√
x
=

G(β)∫

G(α)

f (x)dx Th. 3
=

β∫

α

f
(
G(t)

)
g(t)dt =

2∫

−1

2 sgn(t)dt = 2.

To illustrate some other applications of our result, we obtain as a consequence the
theorem on the change of a variable in an improper integral (in one direction) under quite
general conditions.

Corollary 1 (of Theorem 3). Suppose that a < b, α < β, f is bounded on [a, c] for all c ∈ (a, b),
g ∈ R[α, γ] for all γ ∈ (α, β),

G(t) :=
t∫

α

g(y)dy + a
t→β−−−−→ b−

and

lim
z→β−

z∫

α

f
(
G(t)

)
g(t)dt = I.

Then, the following holds:

lim
x→b−

x∫

a

f (s)ds = I.
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Abstract: In this paper, we introduce a new class of multi-dimensional robust optimization problems
(named (P)) with mixed constraints implying second-order partial differential equations (PDEs) and
inequations (PDIs). Moreover, we define an auxiliary (modified) class of robust control problems
(named (P)(b̄,c̄)), which is much easier to study, and provide some characterization results of (P)
and (P)(b̄,c̄) by using the notions of normal weak robust optimal solution and robust saddle-point
associated with a Lagrange functional corresponding to (P)(b̄,c̄). For this aim, we consider path-
independent curvilinear integral cost functionals and the notion of convexity associated with a
curvilinear integral functional generated by a controlled closed (complete integrable) Lagrange
1-form.

Keywords: Lagrange 1-form; second-order Lagrangian; normal weak robust optimal solution;
modified objective function method; robust saddle-point

1. Introduction

As we all know, partial differential equations (PDEs) and partial differential inequa-
tions (PDIs) are essential in modeling and investigating many processes in engineering and
science. In this respect, many researchers have taken a special interest in their study. We spec-
ify, for example, the research works of Mititelu [1], Treanţă [2–4], Mititelu and Treanţă [5],
Olteanu and Treanţă [6], Preeti et al. [7], and Jayswal et al. [8] on the study of some opti-
mization problems with ODE, PDE, or isoperimetric constraints. In order to reduce the
complexity of the considered optimization problems, some auxiliary optimization problems
were formulated to investigate the initial problems more easily (Treanţă [9–12]). Neverthe-
less, since the real-life processes and phenomena often imply uncertainty in initial data,
many researchers have turned their attention to optimization issues governed by first- and
second-order PDEs, isoperimetric restrictions, stochastic PDEs, uncertain data, or a combi-
nation thereof. In this context, we mention the following research papers: Wei et al. [13],
Liu and Yuan [14], Jeyakumar et al. [15], Sun et al. [16], Preeti et al. [7], Lu et al. [17], and
Treanţă [18]. The structure of approximate solutions associated with some autonomous
variational problems on large finite intervals was studied by Zaslavski [19]. Furthermore,
Geldhauser and Valdinoci [20] investigated an optimization problem with SPDE constraints,
with the peculiarity that the control parameter s is the s-th power of the diffusion operator
in the state equation. In [21], Babamiyi et al. focused on identifying a distributed parameter
in a saddle point problem with application to the elasticity imaging inverse problem. Very
recently, Debnath and Qin [22], investigated the robust optimality and duality for minimax
fractional programming problems with support functions.

Motivated and inspired by previous research works, in this paper, we introduce and
study new classes of robust optimization problems. More exactly, by taking curvilinear in-
tegral objective functionals with mixed (equality and inequality) constraints implying data
uncertainty and second-order partial derivatives, we introduce the robust control problems
under study. Further, by using the concept of convexity associated with curvilinear integral
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functionals and the notion of robust saddle-point associated with a Lagrange functional
corresponding to the modified robust optimization problem, we formulate and prove
some characterization results for the considered classes of control problems. The novelty
elements included in the paper, in comparison with other research papers in this field,
are provided by the presence of uncertain data both in the objective functional and in
the constraint functionals and also by the presence of second-order partial derivatives.
Moreover, the proofs associated with the main results are established in an innovative
way. Furthermore, since the mathematical framework introduced here is appropriate for
various scientific approaches and viewpoints on complex spatial behaviors, the current
paper could be seen as a definitive research work for a large community of researchers in
engineering and science.

The paper is structured as follows. Section 2 provides the preliminary and necessary
mathematical tools, which will be used in the next sections. Section 3 includes the main
results of this paper. Under convexity assumption of the cost functional, the first main
result establishes a connection between a robust saddle point of the Lagrange functional as-
sociated with the associated modified problem (P)(b̄,c̄) and a weak robust optimal solution
of (P). By assuming the convexity hypotheses of the constraint functionals, the converse of
the first main result is presented in the second main result. In Section 4, we formulate the
conclusions and further development.

2. Preliminaries

In this paper, we use the following working hypotheses and notations:

• Consider Rp,Rq,Rr and Rn as Euclidean spaces of dimension p, q, r and n, respec-
tively;

• Consider Θ ⊂ Rp as a compact domain and the point t = (tα) ∈ Θ as a multi-parameter
of evolution or multi-time;

• Consider Γ ⊂ Θ as a piecewise smooth curve joining the points t0 and t1 in Θ;

• B is the space of C4-class state functions b = (bτ) : Θ → Rq and bα :=
∂b
∂tα

, bαβ :=

∂2b
∂tα∂tβ

denote the partial speed and partial acceleration, respectively;

• C is the space of C1-class control functions c = (cj) : Θ→ Rr;
• Consider T as the transpose for a given vector;
• Consider the following convention for inequalities and equalities of any two vectors

x, y ∈ Rn:

(i) x < y⇔ xi < yi, ∀i = 1, n,
(ii) x = y⇔ xi = yi, ∀i = 1, n,
(iii) x 5 y⇔ xi ≤ yi, ∀i = 1, n,
(iv) x ≤ y⇔ xi ≤ yi, ∀i = 1, n and xi < yi for some i.

In the following, we consider g = (g1, . . . , gm) = (gl) : J2
(

Θ,Rq
)
× C × Ul → Rm,

l = 1, m, fκ : J2
(

Θ,Rq
)
× C ×Wκ → R, κ = 1, p, h = (h1, . . . , hn) = (hζ) : J2

(
Θ,Rq

)
×

C × Vζ → Rn, ζ = 1, n, are C3-class functionals. Furthermore, let us assume that w =
(wκ), u = (ul) and v = (vζ) are the uncertain parameters for some convex compact
subsets W = (Wκ) ⊂ Rp, U = (Ul) ⊂ Rm and V = (Vζ) ⊂ Rn, respectively. Denote by

J2
(

Θ,Rq
)

the second-order jet bundle associated with Θ and Rq. Furthermore, assume
that the previous multi-time-controlled second-order Lagrangians fκ determine a controlled
closed (complete integrable) Lagrange 1-form (see summation over the repeated indices,
Einstein summation):

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ ,

which generates the following controlled path-independent curvilinear integral functional:
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∫

Γ
fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ .

The second-order PDE and PDI constrained variational control problem with uncer-
tainty in the objective and constraint functionals is defined as follows:

(P) min
(b(·),c(·))

∫

Γ
fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ

subject to

g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0, t ∈ Θ

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, t ∈ Θ

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

The associated robust counterpart of the aforementioned variational control problem
(P) is defined as:

(RP) min
(b(·),c(·))

∫

Γ
max
w∈W

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ

subject to

g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0, t ∈ Θ, ∀u ∈ U

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, t ∈ Θ, ∀vs. ∈ V

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

Further, denote by

D = {(b, c) ∈ B × C : g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0,

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, b(t0) = b0, b(t1) = b1,

bσ(t0) = bσ0, bσ(t1) = bσ1, t ∈ Θ, u ∈ U, vs. ∈ V }
the feasible solution set in (RP), and we call it the robust feasible solution set of (P).

To simplify the presentation, we use the following notation:

π = (t, b(t), bσ(t), bαβ(t), c(t)).

The associated first-order partial derivatives of fκ , κ = 1, p, are defined as

∂fκ

∂b
=
( ∂fκ

∂b1 , · · · ,
∂fκ

∂bq

)
,

∂fκ

∂c
=
( ∂fκ

∂c1 , · · · ,
∂fκ

∂cr

)
.

In the same manner, we have gb :=
∂g
∂b

and gc :=
∂g
∂c

by using matrices with m rows

and hb :=
∂h
∂b

and hc :=
∂h
∂c

by using matrices with n rows.

Further, in accordance to Treanţă [3], we define the notion of a weak robust optimal
solution of the considered class of constrained variational control problems. This notion
will be used to establish the associated robust necessary conditions of optimality and the
main results derived in the paper.

Definition 1. A pair (b̄, c̄) ∈ D is said to be a weak robust optimal solution to (P) if there does
not exist another point (b, c) ∈ D such that

∫

Γ
max
w∈W

fκ(π, w)dtκ <
∫

Γ
max
w∈W

fκ(π̄, w)dtκ .
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Next, we shall use the Saunders’s multi-index notation (Saunders [23], Treanţă [3,24])
to formulate the concept of convexity and the robust necessary optimality conditions
for (P).

Definition 2. A curvilinear integral functional

F(b, c, w̄) =
∫

Γ
fκ(t, b(t), bσ(t), bαβ(t), c(t), w̄)dtκ =

∫

Γ
fκ(π, w̄)dtκ

is said to be convex at (b̄, c̄) ∈ B × C if the following inequality

F(b, c, w̄)− F(b̄, c̄, w̄) ≥
∫

Γ

∂fκ

∂b
(π̄, w̄)[b(t)− b̄(t)]dtκ

+
∫

Γ

∂fκ

∂bσ
(π̄, w̄)[bσ(t)− b̄σ(t)]dtκ

+
1

n(α, β)

∫

Γ

∂fκ

∂bαβ
(π̄, w̄)[bαβ(t)− b̄αβ(t)]dtκ

+
∫

Γ

∂fκ

∂c
(π̄, w̄)[c(t)− c̄(t)]dtκ

holds for all (b, c) ∈ B × C.

According to Treanţă [24], we formulate the robust necessary optimality conditions
for (P).

Theorem 1. If (b̄, c̄) ∈ D is a weak robust optimal solution to (P) and maxw∈W fκ(π, w) =
fκ(π, w̄), κ = 1, p, then there exist the scalar µ̄ ∈ R, the piecewise smooth functions ν̄ =
(ν̄l(t)) ∈ Rm

+, γ̄ = (γ̄ζ(t)) ∈ Rn, and the uncertainty parameters ū ∈ U and v̄ ∈ V such that the
following conditions

µ̄
∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄) (1)

−Dσ

[
µ̄

∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]

+
1

n(α, β)
D2

αβ

[
µ̄

∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
= 0, κ = 1, p

µ̄
∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄) = 0, κ = 1, p (2)

ν̄T g(π̄, ū) = 0, ν̄ = 0, (3)

µ̄ ≥ 0 (4)

hold for all t ∈ Θ, except at discontinuities.

Remark 1. The robust necessary optimality conditions of (P) are given by the conditions (1)–(4).

Definition 3. A pair (b̄, c̄) ∈ D is said to be a normal weak robust optimal solution to (P) if µ̄ > 0
in Theorem 1. We can consider µ̄ = 1 without loss of generality.

Next, we use the modified objective function method to reduce the complexity of (P).
In this direction, let (b̄, c̄) be an arbitrary given robust feasible solution to (P). The modified
multi-dimensional variational control problem associated with the original optimization
problem (P) is defined as:
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(P)(b̄,c̄) min
(b(·),c(·))

∫

Γ

{∂fκ

∂b
(π̄, w)(b(t)− b̄(t)) +

∂fκ

∂bσ
(π̄, w)(bσ(t)− b̄σ(t))

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ(t)− b̄αβ(t)) +

∂fκ

∂c
(π̄, w)(c(t)− c̄(t))

}
dtκ

subject to

g(π, u) 5 0, t ∈ Θ

h(π, v) = 0, t ∈ Θ

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1,

where the functionals g, fκ and h are given as in (P).
The associated robust counterpart of the modified multi-dimensional variational

control problem (P)(b̄,c̄) is defined as:

(RP)(b̄,c̄) min
(b(·),c(·))

∫

Γ
max
w∈W

{∂fκ

∂b
(π̄, w)(b(t)− b̄(t)) +

∂fκ

∂bσ
(π̄, w)(bσ(t)− b̄σ(t))

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ(t)− b̄αβ(t)) +

∂fκ

∂c
(π̄, w)(c(t)− c̄(t))

}
dtκ

subject to

g(π, u) 5 0, t ∈ Θ, ∀u ∈ U

h(π, v) = 0, t ∈ Θ, ∀vs. ∈ V

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

Remark 2. The robust feasible solution set of the problem (P)(b̄,c̄) is the same as in (P). Conse-
quently, it is also denoted by D.

Definition 4. A pair (b̂, ĉ) ∈ D is said to be a weak robust optimal solution to (P)(b̄,c̄) if there
does not exist another point (b, c) ∈ D such that

∫

Γ
max
w∈W

[∂fκ

∂b
(π̄, w)(b− b̄) +

∂fκ

∂bσ
(π̄, w)(bσ − b̄σ)

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ − b̄αβ) +

∂fκ

∂c
(π̄, w)(c− c̄)

]
dtκ

<
∫

Γ
max
w∈W

[∂fκ

∂b
(π̄, w)(b̂− b̄) +

∂fκ

∂bσ
(π̄, w)(b̂σ − b̄σ)

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(b̂αβ − b̄αβ) +

∂fκ

∂c
(π̄, w)(ĉ− c̄)

]
dtκ .

3. Saddle-Point Optimality Criterion

In this section, under some convexity assumptions, we establish some connections
between a weak robust optimal solution of (P) and a robust saddle-point associated with
a Lagrange functional (Lagrangian) corresponding to the modified multi-dimensional
variational control problem (P)(b̄,c̄). In this regard, in accordance with Treanţă [9,11,12]
and Preeti et al. [7], we formulate the next definitions.

Definition 5. The Lagrange functional L((b, c), ν, γ, w, u, v) : B × C ×Rm
+ ×Rn ×W ×U ×

V → R associated with the modified variational control problem (P)(b̄,c̄) is defined as
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L((b, c), ν, γ, w, u, v) =
∫

Γ

{
max
w∈W

[
(b(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (bσ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(bαβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]

+νT(t)g(π, u) + γT(t)h(π, v)
}

dtκ .

Definition 6. A point ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) ∈ D ×Rm
+ ×Rn ×W ×U × V is said to be a robust

saddle-point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem (P)(b̄,c̄) if the following relations are fulfilled:

(i) L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀(u, v) ∈ U × V ,

(ii) L((b, c), ν̄, γ̄, w, ū, v̄) ≥ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀(b, c) ∈ B × C.

Now, taking into account the above definitions, we establish the following two main
results of this paper.

Theorem 2. Let (b̄, c̄) be a robust feasible solution to (P). Assume that maxw∈W fκ(π, w) =

fκ(π, w̄), κ = 1, p, and the objective functional
∫

Γ
fκ(π, w̄)dtκ is convex at (b̄, c̄). If the point

((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange functional L((b, c), ν, γ, w, u, v)
associated with the modified multi-dimensional variational control problem (P)(b̄,c̄), then (b̄, c̄) is a
weak robust optimal solution to (P).

Proof. By reductio ad absurdum, let us assume that (b̄, c̄) is not a weak robust optimal
solution to (P). Therefore, by using the convexity property of the objective functional∫

Γ
fκ(π, w̄)dtκ , we get

∫

Γ
max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w) (5)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
dtκ

<
∫

Γ
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
dtκ ,

for some (b̃, c̃) ∈ D.
From the feasibility of (b̃, c̃) to the problem (P) and ν̄ ∈ Rm

+, we get
∫

Γ
ν̄T g(π̃, ū)dtκ ≤ 0. (6)

On the other hand, since ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange
functional L((b, c), ν, γ, w, u, v) associated with the modified multi-dimensional variational
control problem (P)(b̄,c̄), by using Definition 6 (i), we have

L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀u ∈ U, ∀vs. ∈ V ,

which, using of the definition of Lagrange functional, can be rewritten as

∫

Γ

{
max
w∈W

[
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)
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+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]

+νT(t)g(π̄, u) + γT(t)h(π̄, v)
}

dtκ

≤
∫

Γ

{
max
w∈W

[
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]

+ν̄T(t)g(π̄, ū) + γ̄T(t)h(π̄, v̄)
}

dtκ .

Since maxw∈W fκ(π, w) = fκ(π, w̄), κ = 1, p, it follows that

∫

Γ

{
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w̄) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w̄)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w̄) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w̄)

+νT(t)g(π̄, u) + γT(t)h(π̄, v)
}

dtκ

≤
∫

Γ

{
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w̄) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w̄)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w̄) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w̄)

+ν̄T(t)g(π̄, ū) + γ̄T(t)h(π̄, v̄)
}

dtκ .

If we set ν = 0 and γ = 0 in the above inequality, we obtain
∫

Γ
ν̄T g(π̄, ū)dtκ ≥ 0. (7)

From (6) and (7), it follows that
∫

Γ
ν̄T g(π̃, ū)dtκ ≤

∫

Γ
ν̄T g(π̄, ū)dtκ ,

which, along with the inequality (5), gives

∫

Γ

{
max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̃, ū)

}
dtκ

<
∫

Γ

{
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̄, ū)

}
dtκ ,

equivalently with

∫

Γ

{
max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̃, ū) + γ̄Th(π̃, v̄)

}
dtκ
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<
∫

Γ

{
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ ,

or

L((b̃, c̃), ν̄, γ̄, w̄, ū, v̄) < L((b̄, c̄), ν̄, γ̄, w̄, ū, v̄), (b̃, c̃) ∈ B × C,

which contradicts Definition 6, and the proof is completed.

Theorem 3. Let (b̄, c̄) be a normal weak robust optimal solution to (P). Assume that maxw∈W
fκ(π, w) = fκ(π, w̄), κ = 1, p, and the constraint functionals

∫

Γ
ν̄T g(π, ū)dtκ ,

∫

Γ
γ̄Th(π, v̄)dtκ

are convex at (b̄, c̄). Then, ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange functional
L((b, c), ν, γ, w, u, v) associated with the modified variational control problem (P)(b̄,c̄).

Proof. Since the relations (1)–(4), with µ̄ = 1, are satisfied for all t ∈ Θ, except at disconti-
nuities, the conditions (1) and (2) yield

∫

Γ
(b− b̄){∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄) (8)

−Dσ

[ ∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]

+
1

n(α, β)
D2

αβ

[ ∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
}dtκ

+
∫

Γ
(c− c̄){∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dtκ

=
∫

Γ

[
(b− b̄){∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄)}

+(bσ − b̄σ){
∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)}

+
1

n(α, β)
(bαβ − b̄αβ){

∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)}

]
dtκ

+
∫

Γ
(c− c̄){∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dtκ = 0,

where we used the formula of integration by parts, the result “A total divergence is equal to
a total derivative” (see Treanţă [4]) and the boundary conditions formulated in the consid-
ered problem.

Further, taking into account the assumption of convexity for the following multiple

integral functionals
∫

Γ
ν̄T g(π, ū)dtκ ,

∫

Γ
γ̄Th(π, v̄)dtκ at (b̄, ū), we obtain

∫

Γ

{
ν̄T g(π, ū)− ν̄T g(π̄, ū)

}
dtκ ≥

∫

Γ
(b− b̄)ν̄T gb(π̄, ū)dtκ

+
∫

Γ
(bσ − b̄σ)ν̄

T gbσ
(π̄, ū)dtκ +

1
n(α, β)

∫

Γ
(bαβ − b̄αβ)ν̄

T gbαβ
(π̄, ū)dtκ

+
∫

Γ
(c− c̄)ν̄T gc(π̄, ū)dtκ ,
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∫

Γ

{
γ̄Th(π, v̄)− γ̄Th(π̄, v̄)

}
dtκ ≥

∫

Γ
(b− b̄)γ̄Thb(π̄, v̄)dtκ

+
∫

Γ
(bσ − b̄σ)γ̄

Thbσ
(π̄, v̄)dtκ +

1
n(α, β)

∫

Γ
(bαβ − b̄αβ)γ̄

Thbαβ
(π̄, v̄)dtκ

+
∫

Γ
(c− c̄)γ̄Thc(π̄, v̄s.)dtκ ,

implying ∫

Γ

{
ν̄T g(π, ū) + γ̄Th(π, v̄)

}
dtκ −

∫

Γ

{
ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ

≥
∫

Γ
(b− b̄)

[
ν̄T gb(π̄, ū) + γThb(π̄, v̄)

]
dtκ

+
∫

Γ
(bσ − b̄σ)

[
ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]
dtκ

+
1

n(α, β)

∫

Γ
(bαβ − b̄αβ)

[
ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
dtκ

+
∫

Γ
(c− c̄)

[
ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄s.)

]
dtκ

= −
∫

Γ
(b− b̄)

∂fκ

∂b
(π̄, w̄)dtκ −

∫

Γ
(bσ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

− 1
n(α, β)

∫

Γ
(bαβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ −

∫

Γ
(c− c̄)

∂fκ

∂c
(π̄, w̄)dtκ ,

by considering (8). The previous inequality can be formulated as follows

∫

Γ
(b− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫

Γ
(bσ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫

Γ
(bαβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫

Γ
(c− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

+
∫

Γ

{
ν̄T g(π, ū) + γ̄Th(π, v̄)

}
dtκ

≥
∫

Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫

Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫

Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫

Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

+
∫

Γ

{
ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ ,

which involves the inequality

L((b, c), ν̄, γ̄, w, ū, v̄) ≥ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀(b, c) ∈ B × C. (9)

Furthermore, the following inequality is satisfied
∫

Γ
νT g(π̄, u)dtκ +

∫

Γ
γTh(π̄, v)dtκ ≤ 0

for all (ν, γ) ∈ Rm
+ ×Rn, (u, v) ∈ U × V and, using the feasibility of (b̄, ū), we obtain

∫

Γ
νT g(π̄, u)dtκ +

∫

Γ
γTh(π̄, v)dtκ

≤
∫

Γ
ν̄T g(π̄, ū)dtκ +

∫

Γ
γ̄Th(π̄, v̄)dtκ ,
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or, equivalently,

∫

Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫

Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫

Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫

Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

∫

Γ
νT g(π̄, u)dtκ +

∫

Γ
γTh(π̄, v)dtκ

≤
∫

Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫

Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫

Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫

Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

∫

Γ
ν̄T g(π̄, ū)dtκ +

∫

Γ
γ̄Th(π̄, v̄)dtκ ,

involving

L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀(u, v) ∈ U × V . (10)

Consequently, by (9) and (10), we conclude that ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-
point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem (P)(b̄,c̄), and the proof is completed.

Illustrative application. Let us minimize the mechanical work performed by the
variable force F̄ (c2(t) + w1, c2(t) + w2), including the uncertain parameters wκ ∈ Wκ =
[0, 1], κ = 1, 2, to move its point of application along the piecewise smooth curve Γ,
contained in Θ = [0, 3]2 = [0, 3]× [0, 3] and joining the points t0 = (0, 0) and t1 = (3, 3),
such that the following constraints

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ

b(0, 0) = 1, b(3, 3) = 2,

are satisfied, where vζ ∈ Vζ = [1, 2], ζ = 1, 2 and u1 ∈ U1 =

[
1
2

, 1
]

.

To solve the previous problem, for m = 1, n = p = 2, we consider

fκ(π, w)dtκ = f1(π, w)dt1 + f2(π, w)dt2 = (c2 + w1)(t)dt1 + (c2 + w2)dt2

and the constrained robust control problem:

(P1) min
(b(·),c(·))

∫

Γ
fκ(π, w)dtκ

subject to

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ (11)

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ (12)

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ (13)
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b(0, 0) = 1, b(3, 3) = 2. (14)

The robust counterpart of (P1) is formulated as follows:

(RP1) min
(b(·),c(·))

∫

Γ
max
w∈W

fκ(π, w)dtκ

subject to

u1(b− 2)(b + 2) ≤ 0, ∀u1 ∈ U1, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, ∀v1 ∈ V1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, ∀v2 ∈ V2, t = (t1, t2) ∈ Θ

b(0, 0) = 1, b(3, 3) = 2.

Clearly, the set of all feasible solutions in (RP1) is

D = {(b, c) ∈ S × C : −2 ≤ b ≤ 2,
∂b
∂t1 =

∂b
∂t2 , b(0, 0) = 1, b(3, 3) = 2,

t ∈ Θ, u1 ∈ U1, vζ ∈ Vζ , ζ = 1, 2}.
Now, we are interested in finding a weak robust optimal solution to the problem (P1).

This means that we must find the control function c̄ : Θ → R (that determines the state
function b̄ : Θ→ R), which satisfies the dynamical system (11), (12) and (13) with respect
to the boundary conditions (14). Additionally, we assume that the state function is affine.

Let (b̄, c̄) ∈ D be a weak robust optimal solution to the problem (P1) and consider
maxw∈W fκ(π, w) = fκ(π, w̄), κ = 1, 2. Then, according to Theorem 1, there exists the scalar
µ̄ ∈ R, the piecewise smooth functions ν̄ = ν̄1(t) ∈ R+, γ̄ = (γ̄1(t), γ̄2(t)) ∈ R2, and the
uncertainty parameters ū1 ∈ U1 and v̄ζ ∈ Vζ , ζ = 1, 2, such that the following conditions

2ν̄1ū1 b̄ +
∂γ̄1

∂t1 +
∂γ̄2

∂t2 = 0, (15)

2µ̄c̄− γ̄1 − γ̄2 = 0, (16)

ν̄1ū1(b̄2 − 4) = 0, ν̄1 ≥ 0, µ̄ ≥ 0 (17)

hold for all t ∈ Θ, except at discontinuities.
One can easily verify that the robust necessary optimality conditions (15)–(17) are

satisfied at (b̄, c̄) =
(

1
6 (t

1 + t2) + 1, 29
6

)
, with the Lagrange multipliers µ̄ = 1, ν̄1 = 0, γ̄1 +

γ̄2 = d1 + d2 (with d1 + d2 = µ̄
(

17
3 + v̄1 + v̄2

)
) and the uncertain parameters w̄1 = w2 =

ū1 = 1, v̄1 = v̄2 = 2 ∈ [1, 2]. Further, it can also be easily verified that the objective

functional
∫

Γ
fκ(π, w̄)dtκ is convex at (b̄, c̄) and that ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-

point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem

(P1)(b̄,c̄) min
(b(·),c(·))

∫

Γ

(
29
3

+ w1

)(
c− 29

6

)
dt1 +

(
29
3

+ w2

)(
c− 29

6

)
dt2

subject to

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ
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b(0, 0) = 1, b(3, 3) = 2.

Hence, all the conditions of Theorem 2 are satisfied, which ensures that (b̄, c̄) =(
1
6 (t

1 + t2) + 1, 29
6

)
is a weak robust optimal solution to the problem (P1).

4. Conclusions and Further Development

In this paper, by considering path-independent curvilinear integral cost functionals
with mixed (equality and inequality) constraints implying data uncertainty and second-
order partial derivatives, we have introduced new classes of robust optimization problems.
More precisely, by using the notion of convexity for curvilinear integral functionals, the con-
cept of a normal weak robust optimal solution and the robust saddle-point of a considered
Lagrange functional, we have established some characterization results of the problems
under study.

As an immediate subsequent development of the results presented in this paper,
the author mentions the study of well-posedness for the considered classes of robust
control problems.
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24. Treanţă, S. Constrained variational problems governed by second-order Lagrangians. Appl. Anal. 2020, 99, 1467–1484. [CrossRef]

213





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6588-0 


