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EEG Signal Processing for Biomedical Applications

Yvonne Tran

Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW 2109, Australia;
yvonne.tran@mq.edu.au

1. Introduction

Electroencephalography (EEG) signals are used widely in clinical and research settings.
Electrical activity generated from large populations of neurons in the brain is measured
using scalp-mounted EEG sensors. As a result, we can obtain information regarding brain
activity in various cognitive and emotional states. Due to their ability to provide this type
of information, EEG signals are used in applications such as monitoring levels of alertness
and mental engagement, investigating chronic conditions, and as signals for biofeedback
or assistive devices. Innovations in this field have led to advancements in signal processing
methods and the development of novel applications ranging from brain–computer inter-
faces (BCIs) to neuromarketing. EEG signals can be processed in time, frequency, or spatial
domains, providing multi-dimensional means to interpret brain activities. Aside from pro-
viding invaluable information, EEG signals also have the advantage of capturing complex
neural patterns at a high rate of speed. As a reliable, portable, and non-invasive way to
measure the electrical activity in the brain, EEG is a central methodology for affordable
and practical research and a promising clinical healthcare tool. This Special Issue focuses
on EEG signal processing for biomedical engineering applications with original research,
communication, and review papers demonstrating broad methodologies and applications.
Fifteen papers address various informative themes. These range from examining physical
innovations for the development of EEG sensors to studies in clinical populations such as
individuals with epilepsy, spinal cord injury, and Amyotrophic Lateral Sclerosis (ALS). In
this Special Issue, many novel EEG signal-processing strategies and analysis techniques are
explored.

2. Overview of Contribution

Two communication papers are included in the Special Issue, with the first highlight-
ing a new concept for EEG sensor development [1]. As EEG signals are acquired from the
scalp, this paper presented an anatomically realistic textile-based head phantom for the as-
sessment of EEG sensors. A gelatin-based head phantom is long-lasting and can accurately
mimic body electrode frequencies, allowing for stable and accurate measurements of EEG
signals. The outcomes from this paper will add to this field by allowing newly developed
EEG electrodes to be validated. The second communication paper [2] presented a novel
network analysis approach using a multi-layer model. Traditionally, in graph analysis,
models are based on single layers. However, with the brain being a multi-layer network,
analysis will be constrained when conveying brain topologies through single-layer models.
Multi-layer networks produce more reliable approximations of the topology and dynamics
of motor functions from the brain.

Within the theme of graph analysis, papers by Hag et al., Perez-Ortiz et al., and Šverko
et al. all examined functional connectivity from EEG signals [3–5]. Friston (1994) defines
functional connectivity as the temporal coincidence of spatially distant neurophysiological
events [6]. It is said to have a measurable statistical relationship that captures two things
occurring together which are related to each other [7]. Hag et al. used hybrid multi-domain
EEG-based machine learning feature sets to assess mental stress. The functional connectiv-
ity network showed a statistically significant decrease during mental stress. Results from
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the time, frequency, and functional connectivity domains showed that the accuracy in de-
tecting mental stress from EEG signals was highest with functional connectivity. However,
combining the features from all three domains improved the overall accuracy, demon-
strating greater nuance when using multiple EEG processing methods. Perez-Ortiz et al.
examined functional connectivity and frequency power alterations in evoked potentials,
specifically P300, in patients with ALS. P300 signals were utilized in a BCI device to control
a robotic arm. People with ALS had overactivated beta bands and under-activated alpha
bands in connectivity measures compared to the control participants. The results indicated
that connectivity in EEG signals may be a valuable tool for monitoring disease progress and
measuring cognitive atrophy. In their study, Šverko et al. presented a method for analyzing
EEG connectivity. In this paper, they proposed the complex Pearson correlation coefficient
(CPCC) as a unique single measure to provide information on phase locking and weighted
phase lag. This proposed connectivity measure could accelerate the computation of brain
connectivity and enhance our understanding of brain processes. A review paper in this
issue also showed the importance of connectivity measures in mental stress assessment. In
their review [8], Katmah et al. found that the selection of the most appropriate features is
crucial to successful mental stress detection. Features with additional connectivity network
measures and deep learning approaches could improve detection accuracy in terms of
mental stress.

The examination of EEG signals in clinical populations can contribute to a better under-
standing of brain processes in people with neurological disorders. Tran et al. explored the
effects of virtual reality (VR) intervention on the brain activity of people with neuropathic
pain and spinal cord injury [9]. A significant reduction in pain intensity was reported
after VR intervention, corresponding to statistically significant changes in EEG signals,
specifically in the alpha and low gamma bands. Guo and Wang [10] examined brain activity
associated with acupuncture. As the scientific explanation for the effects of acupuncture is
still unknown, in this research, they studied the power spectrum changes during acupunc-
ture manipulation. They found acupuncture manipulations were associated with delta and
alpha rhythms. The neural responses from this study may have implications for the use of
acupuncture as a complementary treatment for improving symptoms in neurological disor-
ders. EEG signals in epilepsy were examined in two other studies [11,12], in which novel
analysis techniques were assessed. Sánchez-Hernández et al. evaluated dimensionality
reduction for feature selection methods with classification methods for epileptic seizures
from EEG signals. They found that reducing selected features increased the classifier’s
performance. Obukhov et al. used wavelet ridges as a diagnostic EEG feature for the
detection of epileptic seizures. It was shown that the application of this methodology
will reduce the total duration and number of fragments needed for analysis. Additionally,
Hossain et al. examined wavelet decomposition for the correction of movement artifacts
in single-channel EEG with fNIRS signals [13]. This method combined wavelet packet
decomposition with canonical correlation analysis. This proposed method outperformed
comparative methods in removing motion artifacts from a single EEG channel.

Novel EEG signal-processing methods for various applications were also examined in
four additional papers which focused on other topics. Zhang et al., in their review paper,
discussed the application of transfer learning for EEG signals and BCIs [14]. In machine
learning, transfer learning refers to using a model developed for one task as a starting
point for constructing another model. The decoding performance in classification and
regression tasks was found to be effective with this method. Kamrud et al. [15] investigated
the detection of vigilance decrement in both cross-participant and cross-task modes, that
is, robust models which can perform in unseen conditions. The research from this paper
demonstrated that models could be built for EEG as a marker of vigilance levels even from
unseen tasks. Charuthamrong et al. [16] used both auditory- and visual-based event-related
potential to assess speech discrimination. Both the visual and auditory methods achieved
reasonable accuracy rates and were shown to be potentially suitable for use in an automatic
speech discrimination assessment system. Additionally, Zhou et al. used evoked potentials
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to investigate repetitive transcranial magnetic stimulation (rTMS) [17]. The goal was to
develop rTMS EEG-evoked potentials as biomarkers for cortical excitability from rTMS. The
changes found in the evoked potentials may have reflected GABAergic-mediated inhibition
in specific brain regions.

3. Conclusions

A primary focus of this Special Issue was the demonstration of new methods for
the analysis of EEG signals for biomedical engineering applications. The examination of
various analysis methods led to the presentation of a diverse range of novel strategies.
Through their results, the authors of these papers have provided a better understanding of
cognitive states and brain activity based on different EEG signal processing methodologies
and machine learning strategies.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: During the development of new electroencephalography electrodes, it is important to
surpass the validation process. However, maintaining the human mind in a constant state is im-
possible which in turn makes the validation process very difficult. Besides, it is also extremely
difficult to identify noise and signals as the input signals are not known. For that reason, many
researchers have developed head phantoms predominantly from ballistic gelatin. Gelatin-based
material can be used in phantom applications, but unfortunately, this type of phantom has a short
lifespan and is relatively heavyweight. Therefore, this article explores a long-lasting and lightweight
(−91.17%) textile-based anatomically realistic head phantom that provides comparable functional
performance to a gelatin-based head phantom. The result proved that the textile-based head phantom
can accurately mimic body-electrode frequency responses which make it suitable for the controlled
validation of new electrodes. The signal-to-noise ratio (SNR) of the textile-based head phantom was
found to be significantly better than the ballistic gelatin-based head providing a 15.95 dB ± 1.666
(±10.45%) SNR at a 95% confidence interval.

Keywords: e-textile; head phantom; electroencephalography; conductive material

1. Introduction

Measuring the electrical activity in the brain, heart, muscles, etc., using electrodes
to know the health condition of humans and/or animals is a common clinical practice.
However, such electrodes have to be validated prior to being employed in clinical practices.
For instance, PEDOT/PSS-based and silver-based electrocardiography (ECG) electrodes
have been developed [1] to measure heart activity but a scientific validation was not
performed as part of that research as ECG signals were different from person to person
and even for the same person over time. Electroencephalography (EEG) measurements to
monitor brain activity are much more variable with changes over seconds.

For the validation of EEG electrodes, it is, therefore, required to develop head phan-
toms as maintaining a constant brain activity is hardly possible. Hence, it is required to
conduct a test in an environment as realistic as possible with a known ground truth of
source location and brain activity. This can be performed via digital phantoms by modeling
the propagation of the signal originating within the brain to the electrodes [2]. However,
the studies via digital head phantom are hardly suited to mimic motion artifacts of a
realistic EEG, electromagnetic interference noise generated by the power lines, and high
power electronic equipment [3]. For that reason, many researchers have developed head
phantoms predominantly from ballistic gelatin [4–8]. Gelatin-based materials are a good
material to be used in phantom applications, but unfortunately, this type of phantom has a
short life span [9] and is too heavyweight. Examples of gelatin-based head phantoms are
shown in Figure 1.

Sensors 2021, 21, 4658. https://doi.org/10.3390/s21144658 https://www.mdpi.com/journal/sensors5
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(a) (b) 

Figure 1. Examples of gelatin-based phantoms: (a) from [7]; (b) from [8].

Recently, Tsizin et al. developed a realistic head phantom mimicking the electromag-
netic properties of the head where the internal volume of a human skull was filled with
a conductive gel [10]. However, the lifetime of the phantom was only about a month.
Other EEG head phantoms [11,12] prepared by casting were also introduced but still,
the casting process is complicated, the phantoms are heavy and expensive. Therefore,
developing a simple lightweight and long-lasting textile-based head phantom would be an
important improvement.

The emergence of electrically conductive textiles led textile materials to a versatile
application in the electronic and medical industries [13]. Electrically conductive textiles can
be developed by different techniques and in different forms [14]. Moreover, the electrical
and physical properties of the textile substrate can be easily controlled, and the required
extent of stretchability, flexibility, and conductivity can be imparted by regulating the
substrate, textile construction, and application of the conductive component. Therefore,
this work explores the use of e-textiles for a head phantom.

2. Materials and Methods

2.1. Head Phantoms Construction

A textile-based head phantom was constructed by placing a bi-directional stretchy
nylon/spandex (18:7) EeonTex conductive stretchable fabric (obtained from MANDU,
Finland) over an anatomically realistic 3D-print polylactic acid (PLA) skull. The conductive
fabric has a surface resistivity that can be custom-tuned for specific requirements in the
range of 104 to 107 Ω/square. To mimic the neurons, twenty (20) 3.5 mm stereo male–
male dipole wires were installed underneath the conductive fabric per the 10–20 EEG
placement system as shown in Figure 2a. Side to side, a gelatin-based head phantom
was also constructed from 900 g gelatin, 40.5 g table salt, and 4.5 L demineralized water
according to [15], for comparison. Thirty-seven (37) dipole wires were installed inside
the ballistic gelatin as shown in Figure 2b. The skull, base-ring, inner-post, and guiding
wires have been constructed from PLA using an FDM 3D printer at Ingegno Maker Space
(Drongen, Belgium). The photographic images of the constructed textile and gelatin-based
head phantoms and their components are shown in Figure 2a,b, respectively.

6



Sensors 2021, 21, 4658

 
(a) 

(b) 

Figure 2. Head Phantom: (a) textile-based; (b) ballistic gelatin-based.

2.2. Head Phantom Validation

To validate the head phantoms, a synthetic sine wave (360 mV peak to peak voltage,
168 mV maximum voltage, −192 mV minimum voltage, 9.925 Hz frequency) was generated
using a function generator DDS Function Signal Generator and recorded with a handheld
tablet digital oscilloscope (Micsig TO1104). This was then injected into the head phantoms
as shown in Figure 3. To impersonate events, the electroencephalography (EEG) phantom
signal parameters were set in the alpha wave range and the amplitude was varied with the
function generator to mimic a neurological event.

  
(a) (b) 

Figure 3. Synthetic sine wave generation: (a) wave generation setup using a function generator and digital oscilloscope; (b)
the photographic image of the generated synthetic sine wave.

The head phantom replaces a real human head, and EEG electrodes can be attached
as one would do on a human. In this test, the generated EEG wave was measured on both
types of head phantoms using an active reusable snap Ag/AgCl dry electrode connected
to a Cyton biosensing Board (8-channels) of OpenBCI according to the setup in Figure 4.
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(a) 

 
(b) 

Figure 4. Measurement-setup: (a) schematic illustration; (b) actual.

2.3. Phantom-to-Electrode Impedance

The head phantom-to-electrode impedance was measured using a three-electrode
configuration (reference, counter, and active electrodes), also with the Cyton Biosensing
(OpenBCI) board and reusable snap Ag/AgCl dry EEG electrodes to study the difference
between the ballistic gelatin and textile-based head phantoms. The system was adopted
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from OpenBCI and was suggested to measure skin-to-electrode impedance as the OpenBCI
Cython board has an installed ADS1299 to measure impedance. A 5 kΩ resistor is built
into the OpenBCI board in series to each electrode and has to be taken into account. The
ADS1299 has a feature called “Lead Off Detection” that can do the impedance measurement
by injecting a known current into each electrode. A 6 nA current is forced into the electrode
line by a current source built into the ADS1299 [16], regardless of how much resistance
or impedance there is between the current source and the ground (within reason). Hence,
a 6 nA current will be present through the electrode to the ground during this test. For
this work, only the head phantoms were used, no humans. Therefore, the impedance was
calculated using Equation (1), where the current is 6 × 10−9 A. Then, the phantom-to-
electrode impedance was analytically calculated.

Average Impedance(Ω) =
Average Voltage(V)

Current(I)
(1)

However, the average voltages collected during the test are in root mean square
voltages (Vrms). Thus, the average voltage was calculated using Equation (2).

Average Voltage =
Vrms × 2

√
2

π
=

Vrms
1.1107

(2)

Finally, the average impedance here is the series resistance of the head phantom-to-
electrode interface and the 5 kΩ resistor built into the OpenBCI board. So, to obtain the
actual impedance of just the phantom-to-electrode interface, one needs to subtract 5 kΩ
from the average impedance as in Equation (3).

Actual Average Impedance(Ω) = Average Impedance(Ω)− 5000 (3)

2.4. Signal Analysis

The quality of signals collected was mathematically analyzed in terms of Signal-to-
Noise Ratio (SNR) using Equation (4). The peak-to-peak voltage signal is the synthetic
peak-to-peak voltage injected from the digital oscilloscope to the head phantom and the
peak-to-peak voltage signal is the difference between the injected and collected back peak-
to-peak voltage signal.

SNR(dB) = 10log
(

Peak to Peak Voltage Signal
Peak to Peak Voltage Noise

)
(4)

The event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) time-
frequency measurements were then processed and analyzed via EEGLAB software that is
treated as in Equation (5) according to spectral and coherence estimates on EEG record-
ings [17]. ITC is computed from single-trial EEG to reflect the temporal and spectral
synchronization within EEG, explaining the extent to which underlying phase-locking
occurs [17].

ITC( f , t) =
1
n

n

∑
k=1

Fk( f , t)
Fk( f , t)∨ (5)

where F, t and n denote frequency, time and amount of data, respectively.

3. Results and Discussion

The new textile-based head phantom has a much lighter weight than the gelatin-based
i.e., 0.5 and 6 kg, respectively. Therefore, the weight reduction is 91.67% which makes it
more suitable for handling and moving from place to place. In addition, it is not delicate
like the ballistic gelatin-based, where the shape of ballistic gelatin could be distorted and
decays fast even when kept in a refrigerator. In our case, the gelatin-based head phantom
begun decaying after a week of its construction which may also depend on the weather
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where it is placed during testing. In contrast, the textile-based head phantom does not
decay at all.

3.1. Phantom-to-Electrode Impedance

The results in Table 1 indicate that the impedance of the textile-based head phantom
is significantly lower with an f-ratio value of 2123.35 and a p-value of <0.001 at a 95%
confidence interval according to one-way ANOVA. It is 1863 Ω for the textile-based head
phantom and 2297 Ω, so they are in the same operating range. For comparison, a skin-
to-electrode impedance measurement was performed on a human with the OpenBCI
board and was found to be in the range of 3239.55 Ω to 1991.09 Ω, which is in the same
range as the textile-based head phantom. The lower impedance means the long-lasting
and lightweight textile-based head phantom can collect somewhat better-quality signals
than the gelatin-based head phantom which would make it preferable for validating
EEG electrodes in particular and other bio-potential electrodes in general. The head
phantom can also potentially be used during modeling and simulation work related to
brain neurological activities.

Table 1. Head phantom to electrode impedance.

Test
Time

Counter (s)

Textile-Based Head Phantom Gelatin-Based Head Phantom

Vraw Zraw Zact Vraw Zraw Zact

1 30 41.18 6863 1863 43.93 7321 2321
2 60 43.81 7301 2301 43.98 7330 2330
3 90 42.66 7110 2110 44.54 7423 2423
4 120 42.92 7153 2153 43.87 7311 2311
5 150 43.13 7188 2188 42.49 7081 2081
6 180 42.44 7073 2073 44.12 7353 2353
7 210 41.33 6888 1888 43.72 7286 2286
8 240 42.72 7120 2120 43.63 7271 2271

Mean 41.18 6863 1863 43.79 7297 2297

Vraw = Raw Average Voltage (μV), Zavg = Raw Average Impedance (Ω), Zact = Actual Average Impedance (Ω).

3.2. Electroencephalogram (EEG) Signal

EEG is a term for the electrical signals of the brain [18] and was introduced by Hans
Berger in 1929 [19]. Electrodes located outside (noninvasive brain-computer interface)
of our brain, i.e., on the human scalp, are used to measure EEG. The frequency is the
most common method for classifying EEG waveforms, to the point that EEG waves are
denoted using Greek numerals based on their frequency spectrum. Delta (0.5 to 4 Hz),
theta (4 to 7 Hz), alpha (8 to 12 Hz), sigma (12 to 16 Hz), and beta are the most widely
studied waveforms (13 to 30 Hz).

The textile-based head phantom allowed for the injection of well-defined synthetic
waves using a digital oscilloscope, and collection of the EEG waveform using an OpenBCI
board, strongly similar and matching to the gelatin-based. The EEG wave collected from the
textile-based head phantom predominantly lays in the alpha band, the same as the injected
sine wave. Whereas, from the ballistic gelatin, a very small theta band was observed where
an injected band power was generated. From the EEG band powers in Figure 5, the noise
in the textile-based head phantom was less, however, statistically, the root-mean-square
voltages (Vrms) from the time series in Figure 5 in both phantoms were not significantly
different at 95% of confidence interval according to one-way ANOVA. The frequency
vs. FFT (Fast Fourier Transform) plot showed that the amplitude and frequencies were
strongly similar and in the same range, in addition, the head plot was also quite similar.
Therefore, this textile-based head phantom can potentially replace the gelatin-based head
for validating EEG electrodes.

10
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(a) 

 
(b) 

Figure 5. EEG signal from OpenBCI board: (a) textile-based head phantom; (b) gelatin-based head phantom.

3.3. SNR Analysis

From Table 2, the SNR of the textile-based head phantom was found to be significantly
better than the gelatin-based one. The marginal error was 15.95 dB ± 1.666 (±10.45%) with
a 95% confidence interval. Therefore, textile-based head phantoms are preferable.

Table 2. Injected wave, acquired signal, and SNR of the head phantoms.

Wave V Max (mV) V Min (mV) V Pk-Pk (mV) SNR (dB)

Function generator Synthetic Signal 168.00 −192.00 360.00

Gelatin-based head phantom
Signal 164.92 −184.30 349.22

15.1Noise 3.08 −7.701 10.78
Signal/Noise 0.054 0.024 0.032

Textile-based head phantom
Signal 166.83 −185.80 352.63

16.8Noise 1.17 −6.20 7.37
Signal/Noise 0.142 0.03 47.84
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3.4. Inter-Trial Coherence (ITC) and Event-Related Spectral Perturbation (ERSP)

The frequency and time ranges are plotted on the y-axis and x-axis, respectively, and
a color scale is used, with green representing non-significant ITC and red representing
significant ITC at a 99% confidence interval. The averaged ERP response for that person
(in blue) is plotted beneath each ITC plot. The ERP response amplitude scale for both
phantoms is somewhat close in this study. From EEGLAB software analysis, the log power
spectral density for both the CDE and TE was ~90 dB. However, the distribution of spectral
powers was more uniform in the textile-based main phantom. The ITC and ERP plots of
the textile-based and gelatin-based head phantoms are shown in Figure 6.

 
(a) 

 
(b) 

Figure 6. ITC and ERSP: (a) gelatin-based head phantom; (b) textile-based head phantom.
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4. Conclusions

Keeping the human brain constant is hardly possible. Therefore, anatomically realistic
head phantoms should be used to validate bio-potential electrodes such as for an elec-
troencephalogram (EEG). In this work, we explored a long-lasting and lightweight head
phantom that allows synthetic wave injection and measuring at a performance similar to the
commonly used ballistic gelatin-based head phantoms. It was found to perform similarly,
and for some users even better than the gelatin-based one. While the textile-based phan-
tom was designed for EEG, it can also be adapted to electrocardiogram, electromyogram,
electrooculogram, and other related studies as well.
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Abstract: The brain has been understood as an interconnected neural network generally modeled as a
graph to outline the functional topology and dynamics of brain processes. Classic graph modeling is
based on single-layer models that constrain the traits conveyed to trace brain topologies. Multilayer
modeling, in contrast, makes it possible to build whole-brain models by integrating features of
various kinds. The aim of this work was to analyze EEG dynamics studies while gathering motor
imagery data through single-layer and multilayer network modeling. The motor imagery database
used consists of 18 EEG recordings of four motor imagery tasks: left hand, right hand, feet, and
tongue. Brain connectivity was estimated by calculating the coherence adjacency matrices from each
electrophysiological band (δ, θ, α and β) from brain areas and then embedding them by considering
each band as a single-layer graph and a layer of the multilayer brain models. Constructing a reliable
multilayer network topology requires a threshold that distinguishes effective connections from
spurious ones. For this reason, two thresholds were implemented, the classic fixed (average) one
and Otsu’s version. The latter is a new proposal for an adaptive threshold that offers reliable insight
into brain topology and dynamics. Findings from the brain network models suggest that frontal and
parietal brain regions are involved in motor imagery tasks.

Keywords: adaptive threshold; coherence; functional connectivity; multilayer network; otsu

1. Introduction

The brain is a complex system with spatio-temporal dynamics that can be mapped
by techniques that measure brain activity: electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional magnetic resonance imaging (fMRI) [1]. These
techniques have been widely used to model brain networks that represent the structural
and functional connectivity of the brain. Among all those techniques, EEG is an accessible,
widespread method that measures the electrical activity of the brain on the scalp with
a time resolution in milliseconds [2]. EEG analyses have divided brain waves into five
major frequency bands: delta, δ (0.5–4 Hz); theta, θ (4–8 Hz); alpha, α (8–13 Hz); beta,
β (13–30 Hz); and gamma, γ (30–128 Hz) [3]. Network models based on these frequency
bands have revealed distinctive patterns and brain dynamics that have been used to study
both normal and pathological mental states [4–6]. These network models can be analyzed
using graphs built from an adjacency matrix that results from a brain connectivity analysis.

Brain connectivity analyses estimate the interaction strength among local information
processing areas of the brain. Current state-of-the-art reports three types of connectivity:
structural, based on the anatomical structure of the brain; functional, that measures the
statistical dependence of different brain areas; and effective, which estimates causal re-
lations among brain regions [7]. Concerning functional connectivity, literature describes
various methods of estimation; including correlation (time domain dependence), and coher-
ence (frequency domain dependence) [7]. Coherence measures the statistical relationship
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between two signals in the frequency domain [8] and it has been widely used in cere-
bral activity analyses involving memory [9], mathematical [5,6], and reasoning [10] task
studies. It has also been applied to analyze differences at specific frequencies in patients
with brain disorders [11], such as Parkinson’s [12] and Alzheimer’s diseases [13] and
epilepsy [14]. In this work, adjacency matrices calculated from coherence between brain
areas in electrophysiological bands were used to estimate functional connectivity.

Motor imagery is a cognitive-motor process widely studied by coherence analysis
that has the potential to trigger and control actuators in brain-machine interface systems
without any external motor action. Such systems aim to control a device through the
brain activity of a user. Recent studies have focused on characterizing EEG through graph
analysis to pinpoint not only brain areas but also interactions between them [15].

A graph is a mathematical tool used to describe the brain as a set of nodes (brain
regions) and edges (connections) [16]. In Graph theory, there are different kinds of graphs,
among which we can mention single-layer and multilayer ones. In single-layer networks,
the edges represent the same type of connections between nodes. The associations between
zones depend on a single character, which may be directed or undirected [17]. Some studies
of brain connectivity have examined the brain as a single-layer graph linked by a single
temporal or frequency property [18,19]. In cases where nodes can be linked based on
multiple characters, associations are treated independently to build multiple single-layer
networks that ignore the synergy between characters. Multilayer networks are suitable
for these scenarios because they have the flexibility required to integrate multiple types of
interactions in a single model.

The brain is currently considered a multilayer network [20]. As it was pointed out
by [21], brain networks are intrinsically multilayers. There is not a single neuronal con-
nectivity pattern able to fully represent brain functioning. Then, a multilayer framework
is suitable for analyzing brain connectivity without either throwing away or combining
different information. This focus improves understanding of brain complexity and interac-
tion spectra with no need to discard electrophysiological data. This approach has proved
to be a powerful tool in describing the complex organization and evolution of the human
brain and its relationship to cognition [22]. Multilayer networks have been applied in brain
analyses [23] using fMRI [24,25], MEG [4,26], gene expression [27] and EEG [20,21,28,29]
techniques. The range of topological properties to be explored is, therefore, wider than
in classic single-layer modeling [30]. Here, the efficiency of information flow results from
multilayer interdependence within the network, rather than being an effect of each layer
individually [31].

In the workflow of graph analysis, a common practice consists of thresholding net-
works to eliminate spurious connections [32]. That is because functional connectivity
analysis, through measuring the statistical dependence among brain areas, yields a con-
tinuous weight range for interaction strength. Since some of these interactions should be
labeled as spurious by the randomness of the signal, it is critical to exclude them from the
brain connectivity analysis.

In this study, two thresholds were tested: the fixed (average) threshold, which is
widely used in the literature, and a recently proposed threshold called Otsu. The fixed
threshold method establishes a single, absolute threshold value over the entire network,
typically fixed by averaging the adjacency matrices [33]. Values above this average are
considered connections and are assigned a value of 1, while values below the average are
discarded and receive a value of 0 that results in a binarized adjacency matrix. The main
disadvantage of this approach is that a fixed threshold based on averages is conditioned
by the weight distribution in the adjacency matrices, but this means that it will behave
unreliably in the presence of outliers and non-normal distributions.

In contrast to the fixed threshold, Otsu’s approach involves optimizing the threshold
value by evaluating how well the binarization process identifies two types of data (i.e.,
pixels, voxels, etc.) [34]. Some applications of Otsu’s methodology include structural
segmentation in fMRI [35–38], and noise removal in EEG recordings using wavelet decom-
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position [39]. In our case, Otsu’s methodology was implemented for image segmentation
and binarization [40]. To the best of our knowledge, and after an exhaustive literature
search, Otsu’s method has not been applied to estimate the threshold of adjacency matrices
in brain connectivity analyses. In this context, and considering the adjacency matrices as
images that contain information about brain connectivity gathered from EEG recordings,
this work proposes to apply Otsu’s threshold to these matrices to estimate an optimal
threshold for brain connectivity analyses.

In light of the foregoing, this study aimed to analyze EEG dynamics by classical single-
layer and multilayer network models for a motor imagery dataset. This was conducted to
feature the movement and its dynamics, and thus pinpoint patterns capable of feeding a
BCI system. The coherence adjacency matrices for each electrophysiological band (δ, θ, α
and β) of the brain areas were analyzed individually on a single-layer approach, and then
integrated, considering each band as a layer, to build a brain network model following the
multilayer approach. Both approaches were built with fixed and Otsu’s thresholds.

Our results show that multigraph models cluster the four studied movements and
lead to pinpointing the key electrodes for the motor imagery task that are located mainly
on the frontal and parietal cortex. These brain zones coincide with the results presented
in [15,41–44]. These works model brain connectivity with single-layer approach and a
known threshold. However, our work explores a proof-of-concept EEG multilayer brain
connectivity with an adaptative threshold. For this purpose, the paper is organized as
follows: Section 2 addresses the material and methods, including the database description,
the EEG signal preprocessing, and the connectivity estimation; in Section 3 the threshold,
and single-layer and multilayer networks approaches are introduced, concluding with
the results and discussion of the single-layer and the multilayer brain models with both
thresholds in Section 4. The paper ends with the conclusions.

2. Materials and Methods

2.1. Database

In this study, the open access BNCI Horizon 2020 dataset (2a of BCI Competition
IV) [45] was retrieved to pinpoint patterns of motor imagery. This dataset consists of
18 EEG recordings (Figure 1a) taken from 9 subjects (recorded in two sessions on different
days) for four different motor imagery tasks (Figure 1b): left hand (class 1), right hand
(class 2), feet (class 3), and tongue (class 4). The signals were recorded at a 250 Hz sampling
rate and then band-pass filtered between 0.5–100 Hz. Electrodes were placed according
to the 10–10 International System at Fz, Fc3, Fc1, Fcz, Fc2, Fc4, C5, C3, C1, Cz, C2, C4, C6,
Cp3, Cp1, Cpz Cp2, Cp4, P1, Pz, P2, and POz.

Figure 1. Time and scheme paradigm.

The experimental paradigm for each trial is illustrated in Figure 1c [46]. On the trials,
subjects began by focusing their eyes on a black screen (t = 0 s). After two seconds t = 2 s,
an arrow image pointing left, right, down, or up (representing one of the four classes)
appeared and remained on the screen for 1.25 s. Subjects then carried out the corresponding
motor imagery task until the arrow image on the screen disappeared at t = 6 s, indicating a
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brief pause before the beginning the next trial. The time window corresponding to motor
imagery (MI) onset) t = 3.5–5.5 s of the experimental paradigm was analyzed.

2.2. Preprocessing

Each EEG recording was composed of 6 runs (Figure 2a) separated by a short break.
Each run consisted of 48 trials (12 for each class), resulting in 288 total trials of 2 s each (72
for each class).

Figure 2. Schematic flowchart of the study methodology. Here, (a) correspond to the acquisition paradigm of all four classes
of motor imagery, (b) data prepossessing, while (c–f) outline the stages of the connectivity graph analysis.

To reduce the EEG spatial interference, a Common Average Reference (CAR) filter
(Equation (1)) was applied for each of the 288 two-second EEG windows.

VCAR
i = VCR

i − 1
N ∑

j=1
VCR

j (1)

where VCR
i represents the potential between electrode i and the reference electrode, and N

is the total number of electrodes.
Once the 288 windows filtered, each two-second window was transformed into the

frequency domain. The power spectral for the 72 windows of each motion class was
averaged to obtain 4 two-second frequency-averaged EEG windows. This process was
carried out on each of the 18 recordings (Figure 2b).

2.3. Connectivity Estimation

The coherence index values between two signals range from 0 to 1. A value close
to 1 indicates a strong relationship, while a value close to 0 represents weak interactions
between signals. Coherence index is defined as (Equation (2)):

Cxy( f ) =

∣∣Sxy( f )
∣∣2

Sxx( f )Syy( f )
, (2)
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where x and y are two signals or channels, Cxy( f ) is the coherence spectrum matrix as
a function of a given frequency f , Sxy( f ) is the cross-power spectrum, and Sxx( f ) and
Syy( f ) are the auto-power spectra of x and y, respectively [47].

3. EEG Processing

3.1. Layers Construction

To generate the single- and multilayer network models for the used motor imagery
dataset, four layers were estimated, each corresponding to the main electrophysiological
bands (δ, θ, α and β). Each layer was built by estimating the coherence among the EEG
electrodes, then averaging the magnitude of the frequencies that comprised each band.
This approach generated an adjacency matrix for each band (Figure 2c).

As mentioned above, four two-second averaged windows were obtained from the
18 EEG recordings for each MI class. After that, functional brain connectivity was estimated
in each window by calculating the pairwise coherence indices among the 22 electrodes.
This allowed us to obtain 22 × 22 weighted adjacency matrices for each class as a layer.
Figure 3 shows an example of a β band-coherence adjacency matrix for the left-hand
IM. Red indicates a high coherence value, while blue represents weakly connected areas.
These layers were evaluated by the approaches of a single layer, where the layers of
electrophysiological bands were analyzed separately; and the multilayer, where each class
layer was integrated to build a multiple network model.
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Figure 3. Example of a coherence adjacency matrix in the β electrophysiological band (13–30 Hz) for
the IM of the left-hand.

3.2. Threshold Estimation

The threshold stage (Figure 2d) is a key step in graph analysis that provides reliable
estimates of the network topology [48] and preserves the local topological features of the
network measures [16,49]. In this study, the adjacency matrices were thresholded to build
the connectivity networks using two methods: the widely used fixed threshold approach
(i.e., average degree across the network) [33], and a proposal for a novel method based on
image segmentation the Otsu’s method [40].
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Otsu’s Threshold

This threshold uses the adjacency matrix data to calculate data distribution represented
as a histogram Figure 4). In brain networks, histograms such as this one correspond to
the scores of the weighted adjacency matrix. In our case, the matrices consisted of 22 × 22
values from 0 to 1 (coherence range values).
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Figure 4. An adjacency matrix weight histogram for use in Otsu’s method. The data correspond to
the β band (13–30 Hz) for the IM of the left-hand.

For example, if we fix the threshold at T = 0.01, then adjacency values below T can be
classified as class C1 and correspond to spurious connections. Values above T are classified
as class C2 and correspond to effective connections. Thus, connections in C1 are counted
and divided by the total number of connections, N (22 × 22), to obtain the intensity w1,
and, likewise, for C2 to estimate the intensity, w2. The means, μ1 and μ2, and variances, σ2

1
and σ2

2 , of these intensity values are also estimated, and the procedure is repeated for each
increment of T until the range of values is completed. Obviously, all connections for C2
are 1.

Next, the “Within-Class Variance (WCV)” (Equation (3)) and the “Between-Class
Variance (BCV)” (Equation (4)) were computed in this threshold.

WCV = w1σ2
1 + w2σ2

2 (3)

BCV = w1w2(μ1 − μ2)
2 (4)

The optimal threshold is the value that minimizes WCV while maximizing BCV.
Figure 5 shows an example of the distributions for an adjacency matrix with a maximum
BCV and a minimum WCV. As can be seen, the optimal threshold is T = 0.9698. Once
calculated, the weighted adjacency matrix is binarized. An example of this procedure is
shown in Figure 5.
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Figure 5. WCV and BCV histograms for the β band (13–30 Hz) for the IM right-hand. The optimum
threshold value is T = 0.9698, indicating the minimum WCV value and the maximum BCV value.
(a) Within-Class Variance (WCV) with the minimum value of 8.61 × 10−05 at threshold position
T = 0.9698. (b) Between-Class Variance (BCV) with the maximum value of 1.62 × 10−04 at threshold
position T = 0.9698.

Comparing the values of the thresholds obtained by the fixed (T = 0.9747) and Otsu’s
methods (T = 0.9698) we find that they tend to be similar. Therefore, the binarized matrices
obtained from these thresholds (Figure 6) are close related. This suggests that both methods
could generate similar topologies. However, as mentioned above, Otsu’s threshold has the
advantage of estimating an optimized threshold based on the distribution of the weights
in the adjacency matrix, while the fixed threshold average is sensitive to outliers and
non-normal distributions.
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Figure 6. Example of the binarized adjacency matrix from Figure 3; (a) fixed threshold (0.9809) and
(b) Otsu’s threshold (0.9750) for the β band (13–30 Hz) for the IM right-hand. (a) Example of the
binarized adjacency matrix by a fixed threshold (0.9747), in the β band (13–30 Hz) for the IM of the
left-hand. (b) Example of the binarized adjacency matrix by the Otsu’s threshold (0.9698), in the β

band (13–30 Hz) for the IM of the left-hand.

3.3. Single-Layer Network Estimation

To model brain dynamics in motor imaginary tasks by the single-layer approach,
multiple single-layer graphs were built for each class for all 18 EEG recordings. Each graph
corresponds to a band network representation (δ, θ, α, and β) of the 22 EEG electrodes
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as the graph nodes, and the brain wiring or graph edges corresponding to the effective
band-coherence score between electrodes. Notice that such graphs are independent one of
another, despite in nature, the brain oscillome is not compartmentalized but modulates
electrophysiological bands as a whole. Then, 72 graphs were obtained for each MI class
that corresponds to the four frequency bands of the 18 EEG MI recordings.

Then, four graph metrics were estimated: degree (Equation (5)), that measures the elec-
trode neighborhood by adding all j-column aij adjacency matrix coefficients for the i-node v;
eigenvector centrality xv (Equation (6)), that evaluates the neighborhood (M(v)) integration
by estimating the eigenvalues λ and their eigenvector xt; k-core number (Equation (7)), that
represents the electrode coreness level where each node’s score k is the subgraph G(C) to
which it belongs with degree nodes dG(C)(v) greater than k; and PageRank (Equation (8)),
that ranks the node importance by averaging the ratio of its neighbors’ pagerank PR(v)
and their degree d(v).

d(v) = ∑
i,j∈V

aij (5)

xv =
1
λ ∑

t∈M(v)
xt (6)

∀v ∈ C : dG(C)(v) ≥ k (7)

PR(v) = ∑
u∈Bv

PR(u)
d(u)

(8)

3.4. Multilayer Network Estimation

For the multilayer approach, the layers that correspond to each electrophysiological
band were retrieve, and then integrated into multi-level graph models for each class
of all 18 EEG recordings. For these graphs, the intra-layer edges were considered to
be present between the nodes themselves, since all electrophysiological bands operate
simultaneously. In the next step, multilayer metrics were estimated (Figure 2e,f) using the
MuxViz framework in R language [50].

The metrics considered were degree, PageRank, eigenvector centrality, and k-core.
The degree (Equation (9)) is the number of links through the layers, ignoring the interlayer
link nodes themselves. PageRank (Equation (10)) is the probability of a node reaching any
other node (1−r)

NL , so it ranks the nodes based on the latter probability [51]. As in a single-
layer model, those probabilities are uniform, uiα

jβ, through all nodes, and are interactively

updated. However, in the multilayer case, the probabilities. uiα
jβ, are considered to be the

initial values of the next layer. For eigenvector centrality (Equation (11)), the suprajacency
matrix is encoded into an aggregate matrix, Miα

jβ via an eigentensor Θjα. The eigenvector

centrality is the dot product of the leading eigenvector, λ−1
1 and the neighborhood of each

node [52]. Finally, k-core (Equation (12)) represents the ratio of the coreness nk−core for the
probability of specific degree-node nk(q) through all the layers [53].

ki = Miα
jβUβ

α uj (9)

Riα
jβ = rTiα

jβ +
(1 − r)

NL
uiα

jβ (10)

Θjβ = λ−1
1 Miα

jβΘiα (11)

Pk(q) =
nk(q)

nk−core
(12)
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4. Results and Discussion

4.1. Single-Layer Network

Statistical analysis for each band was performed to evaluate which electrode metric
differs among the MI classes. Thus, the electrode metric distributions for each MI class
were considered to be dependent variables of such class. Thereafter, a MANOVA was
performed to determine the significative electrodes and followed by a post hoc test on
each electrode.

MANOVA post hoc test consists of applying a one-way ANOVA on the significative
electrodes and a posterior Games-Howell post hoc test, to locate the motions that have a
significant difference at these electrodes.

The single-layer network results presented in Table 1 and Figure 7 show that the
significant electrodes correspond to the frontal and parietal cortex in β band (Figure 7c).
Post hoc analysis points that the significant electrodes on these brain areas corresponding to
each graph metrics are: degree—C3, FC4, POZ, CP2 and CP3 (Figure 7d); eigenvector—C3,
POZ, CP2 and CP4 (Figure 7e); k-core and PageRank metrics were not significative for the
MANOVA. From these results, and considering those electrodes that were significative in
at least two metrics, we first labeled as key electrodes: C3, POZ and CP2. Later, from these
electrodes, we identified which were higher than the fixed and Otsu’s thresholds. Thus,
the fixed threshold retrieved the C3, POZ and CP2 electrodes (Figure 7b), while Otsu’s
threshold only retained C3 and POZ electrodes (Figure 7a).

Table 1. p-values < 0.05 for the post hoc Games-Howell test in single layer of the fixed and Otsu’s
threshold.

Metric Band Electrode
Movement Movement Threshold

1 2 Fixed Otsu

Degree Beta

C3 Foot Right Hand ∗ ∗
POz Right Hand Tongue ∗ ∗
CP2 Left Hand Right Hand ∗ −
CP3 Right Hand Tongue ∗ −
FC4 Right Hand Tongue ∗ −

Eigenvector Beta

C3 Foot Right Hand ∗ ∗
POz Right Hand Tongue ∗ ∗
CP2 Left Hand Right Hand ∗ −
CP4 Foot Left Hand ∗ −

Entries ‘−’ indicate no data according to threshold (average or Otsu); ‘∗’ indicates significant data found in either
the same threshold individually, or in both with the same threshold (fixed or Otsu).

Our results support that the frontal and parietal brain areas drive MI, as reported by
Shenoy and Vinod [54]. In the latter study, the authors analyzed the same database for the
four MI movements as in the present work. The common electrodes in both studies are C3,
FC4, CP3 and CP4. These areas have been reported as the main MI electrodes in several
connectivity analyses [15,41–44]. Most of these works are subject-wise analyzed, and their
findings slightly deviate. However, all coincided with the brain zones (frontal and parietal)
and the electrophysiological bands and sub-bands (mainly α and β) involved in MI.

The aforementioned picture suggests that an integrative analysis for all electrophysio-
logical bands can retrieve the driver nodes on the MI brain dynamics. Multilayer network
analysis is a model that meets the above-mentioned constraints.

23



Sensors 2021, 21, 8305

Figure 7. The electrodes with significative differences according to the post hoc MANOVA. In (a) all electrodes obtained
with the post hoc analysis; (b,c) display the significative electrodes for the single-layer metrics with significative differences,
while (d,e) identify the electrodes that were significative for both thresholds.

4.2. Multilayer Network

To analyze the dynamics of MI in EEG recordings through a multilayer network model,
a one-way ANOVA was performed to evaluate the multilayer metrics estimated for both
thresholds. The metric distributions for each movement were obtained independently of
its associated electrode; that is, all the metrics per electrode were concatenated. In this
analysis, PageRank, Eigenvector and k-core were significatives (p < 0.05) for the Otsu’s
threshold, while the fixed threshold in k-core was only significative (Table 2). This points
to a difference between movements in the topology of the brain nucleus. Figure 8 shows
the metric distribution for each movement.

To eliminate familywise errors, a post hoc paired t-test was performed using Benjamin-
Hochberg FDR correction. This resulted in significative differences between the left-hand
movement when k-core distributions were compared to the other movements for both
thresholds (Figure 9).

Next, two analyses were conducted, a clustering to verify whether the movements
are distinguishable based on all multilayer metrics, and statistical analysis to unveil the
significant electrodes between imaginary movements.
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Figure 8. Multilayer graph metric distributions for all four MI classes. After applying a one-way ANOVA test, Otsu’s
threshold showed significant values (p < 0.05) for k-core and degree, while fixed threshold only k-core was significantly
different (p < 0.05).

Figure 9. Post hoc test scores in k-core for Otsu’s threshold on window 3.5–5.5 s.

4.2.1. Clustering

To assess whether the imaginary movements diverged between them by multilayer
metrics, an unsupervised approach was performed for the evaluated window data, i.e.,
the time from 3.5–5.5 s. Thus, all electrode metrics were concatenated and linear discrimi-
nant analysis (LDA) was carried out to lower the data dimensionality into a 3D mapping
(Figure 10).

Afterward, k-means clustering was developed with four clusters, assuming that each
cluster will depict each of the four movements. To evaluate the intersection between the
estimated k-means cluster and the real targets (the imagery movements), the completeness
score was calculated yielding a score equal to one of both thresholds.

For each threshold, the clusters mapped differently for movements. For the fixed
threshold, cluster 1 (red) represents the left hand, cluster 2 (green) the right hand, cluster
3 (blue) the foot, and cluster 4 (black) the tongue. Meanwhile, for the Otsu’s threshold,
cluster 1 (red) maps to the foot movement, cluster 2 (green) to the left hand, cluster 3 (blue)
to the tongue, and cluster 4 (black) to the right hand. This finding points out that the
multilayer graph metrics despite the threshold do illustrate the topological connectivity
dynamics all during imaginary movements.
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Figure 10. 4-cluster k-means for a low dimensionality representation (LDA) of multilayer graph metrics, on the left for the
fixed threshold and right for the Otsu’s threshold. The four estimated clusters mapped to the imaginary movements in the
window 3.5–5.5 s studied in the present work.

4.2.2. Key Electrodes

To elucidate the electrodes most likely associated with the movements, an electrode-
wise statistical analysis was conducted for all multilayer metrics among the four move-
ments. This was evaluated by considering that the electrodes in brain dynamics are the
dependent variable among the movements. In this case, a multivariate analysis of variance
(MANOVA) was performed for both thresholds. The k-core metric was discarded in both
cases since it did not comply with the MANOVA assumption that the data must be normally
distributed between groups. The three remaining metrics showed significant differences
(Table 3). Table 3 shows significative p for the eigenvector, PageRank, and degree metrics
for both thresholds. This can illustrate that brain topology during imaginary movement is
driven by key brain electrodes that switch to control distinct movements.

Table 2. p-values from the ANOVA test on window 3.5–5.5 s.

Fixed Otsu

Degree 9.42 × 10−01 9.83 × 10−01

PageRank 2.29 × 10−02 3.3 × 10−03

Eigenvector 8.72 × 10−02 1.77 × 10−02

Kcore 2.7 × 10−03 3.7 × 10−03

Table 3. p-values from the MANOVA test of the average and Otsu’s thresholds on window 3.5–5.5 s.

Fixed Otsu

Degree 3.72 × 10−01 9.56 × 10−01

PageRank 5.94 × 10−02 6.2 × 10−02

Eigenvector 3.48 × 10−02 1.71 × 10−02

Kcore Error Error

After the MANOVA analysis, a one-way ANOVA for each of the 22 electrodes was
performed to identify the key electrodes that contributed to the significant differences
found in the MANOVA.

These 22 one-way ANOVAs were applied for the metrics with significant p-value
of Table 3; that is, degree, eigenvector and PageRank for both thresholds. After the one-
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way ANOVAs, a post hoc Games-Howell test was conducted to determine the electrodes
involved in the changes in brain dynamics for the four movements. Results of this analysis
are presented in Table 4.

Table 4. p-values < 0.05 for the post hoc Games-Howell test in multilayer of the fixed and Otsu’s
threshold on window 3.5–5.5 s.

Electrode
Movement Movement Metric Threshold

1 2 Degree Eigenvector PageRank Fixed Otsu

CP2 Left Hand Tongue − ∗ − ∗ −
P2 Foot Left Hand − ∗ − − ∗

Entries ‘−’ indicate no data according to the metric (degree, eigenvector or PageRank) or threshold (average or
Otsu); ‘∗’ indicates significative data found in either the same graph metric individually, or in both with the same
threshold (fixed or Otsu).

Table 4 shows that 2 electrodes most likely drive the brain dynamics of the MI dataset
analyzed. These electrodes are P2 and CP2 (Figure 11a). Among these electrodes, multilayer
eigenvector metric point that the significant ones are: P2 and CP2 (Figure 11d). Degree,
k-core and PageRank metrics were not significative for the MANOVA.

The key nodes that the fixed threshold gather the P2 (Figure 11c) electrode, while the
Otsu threshold identified the electrode CP2 (Figure 11b).

These results suggests that both Fixed and Otsu’s thresholds are selective to yield the
pivotal electrodes from the multilayer network. Despite that the electrodes imaged by both
thresholds differ, these electrodes are neighbors and localized over the same brain area.
Thus, it suggests that the Otsu threshold can recognize the underlying dynamics which
widely tested thresholds as Fixed have also distinguished. Figure 12 shows an example of
a multilayer graph.

The multilayer approach outlined in this study allowed us to cluster the dynamics
linked to all the studied imaginary movements. Based on this finding, we pinpointed
the key electrodes for such dynamics. Our results are congruent with the state-of-the-art
analyses [15,41–44] that reported the frontal and parietal areas as the main brain areas in MI.
In more detail, Babiloni et al. [55] indicated that sensorimotor events are correlated via the
coherence with a functional coupling between parietal and central areas. All these works
applied a single-layer approach for different frequency bands. To the best of our knowledge
in the literature, there was not reported MI analysis based on multilayer graph models.
For future work, our multilayer workflow will be tested in practical BCI applications.
Our proposal, which couples an adaptive threshold with a multilayer network model,
shall be cross-validated on new databases to validate its advantages over the widespread
single-layer analysis.
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Figure 11. The electrodes with significative differences according to the post hoc MANOVA. In (a) all electrodes obtained
with the post hoc analysis; (b,c) display the significative electrodes for the multilayer metrics with significative differences,
while (d) identify the electrodes that were significatives for both thresholds.

Figure 12. Multilayer graph for right-hand movement intention. Each electrophysiological band
is a layer of the graph. Those electrodes with significative difference identified (CP2 and P2) are
highlighted in red in the present study. Cross-layer edges are found for all nodes, yet only those
corresponding to the significant electrodes are plotted. Each individual layer is shown separately to
provide a more detailed picture of the intra-layer connectivity.
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5. Conclusions

In this study, we modeled single-layer and multilayer network models to analyze MI
in EEG recordings. Our analysis shows that the regions activated in MI tasks are located
mainly in the frontal and parietal cortex for the single-layer approach and in the parietal
cortex for the multilayer approach. To pinpoint the effective connections in MI graphs
a proof-of-concept threshold approach known as Otsu was proposed. The present work
illustrates that combining an adaptive threshold, such as Otsu, together with integrative
graph models, such as multilayer networks, produces a more reliable approximation of
both the topology and dynamics associated with cognitive and motor brain functions.

Finally, future work should aim to implement this methodology to study brain con-
nectivity in other kinds of EEG databases.
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Abstract: The algorithms of electroencephalography (EEG) decoding are mainly based on machine
learning in current research. One of the main assumptions of machine learning is that training and test
data belong to the same feature space and are subject to the same probability distribution. However,
this may be violated in EEG processing. Variations across sessions/subjects result in a deviation of
the feature distribution of EEG signals in the same task, which reduces the accuracy of the decoding
model for mental tasks. Recently, transfer learning (TL) has shown great potential in processing EEG
signals across sessions/subjects. In this work, we reviewed 80 related published studies from 2010 to
2020 about TL application for EEG decoding. Herein, we report what kind of TL methods have been
used (e.g., instance knowledge, feature representation knowledge, and model parameter knowledge),
describe which types of EEG paradigms have been analyzed, and summarize the datasets that have
been used to evaluate performance. Moreover, we discuss the state-of-the-art and future development
of TL for EEG decoding. The results show that TL can significantly improve the performance of
decoding models across subjects/sessions and can reduce the calibration time of brain–computer
interface (BCI) systems. This review summarizes the current practical suggestions and performance
outcomes in the hope that it will provide guidance and help for EEG research in the future.

Keywords: EEG; transfer learning; review; decoding; classification

1. Introduction

A brain–computer interface (BCI) is a communication method between a user and a computer
that does not rely on the normal neural pathways of the brain and muscles [1]. According to the
methods of electroencephalography (EEG) signal collection, BCIs can be divided into three types,
namely, non-invasive, invasive, and partially-invasive BCIs. Among them, non-invasive BCIs realize
the control of external equipment via EEG and by transforming EEG recordings into a command,
which have been widely used due to their convenient operation. Figure 1 shows a typical non-invasive
BCI system framework based on EEG, which usually consists of three parts: EEG signal acquisition,
signal decoding, and external device control. During this process, signal decoding is the key step to
ensure the operation of the whole system.

Sensors 2020, 20, 6321; doi:10.3390/s20216321 www.mdpi.com/journal/sensors
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Figure 1. Framework of an electroencephalography (EEG)-based brain–computer interface (BCI) system.

The representation of EEG typically takes the form of a high-dimensional matrix, which includes
the information of sampling points, channels, trials, and subjects [2]. Meanwhile, the most common
features of EEG-based BCIs include spatial filtering, band power, time points, and so on. Recently,
machine learning (ML) has shown its powerful ability for feature extraction in EEG-based BCI tasks [3,4].

BCI technology based on EEG has made great progress, but the challenges of weak robustness
and low accuracy greatly hinder the application of BCIs in practice [5]. From the perspective of signal
decoding, the reasons are as follows: First, one of the main assumptions of ML is that training and test
data belong to the same feature space and are subject to the same probability distribution. However,
this assumption is often violated in the field of bioelectric signal processing, because differences in
physiological structure and psychological states may cause obvious variation in EEG. Therefore, signals
from different sessions/subjects on the same task show different features and distribution.

Second, EEG signals are extremely weak and are always accompanied by unrelated artifacts from
other areas of the brain, which potentially mislead discriminant results and decrease the classification
accuracy. Third, the strict requirements for the experimental conditions of BCI systems make it difficult
to obtain large and high-quality datasets in practice. It is difficult for a classification model based on
small-scale samples to obtain strong robustness and high classification accuracy. However, large-scale
and high-quality datasets are the basis for guaranteeing the decoding accuracy of models.

One promising approach to solve these problems is transfer learning (TL). The principle of TL
is realizing the knowledge transfer from different but related tasks, i.e., using existing knowledge
learned from accomplished tasks to help with new tasks. The definition of TL is as follows: A given
domain D consists of a feature space X and a marginal probability distribution P(X). A task T consists
of a label space y and a prediction function f . A source domain Ds and a target domain DT may have
different feature spaces or different marginal probability distributions, i.e., Xs � XT or Ps(X) � PT(X).
Meanwhile, tasks Ts and TT are subject to different label spaces. The aim of TL is to help improve the
learning ability of the target predictive function fT(·) in DT using the knowledge in Ds and Ts [6].

There are two main scenarios in EEG-based BCIs, namely, cross-subject transfer and cross-session
transfer. The goal of TL is to find the similarity between new and original tasks and then to realize the
discriminative and stationary information transfer across domains [7]. In this study, we attempted to
summarize the transferred knowledge for EEG based on following three types: Knowledge of instance,
knowledge of feature representation, and knowledge of model parameters.

This review of TL applications for EEG classification attempted to address the following critical
questions: What problems does TL solve for EEG decoding? (Section 3.1); which paradigms of EEG
are used for TL analysis? (Section 3.2); what kind of datasets can we refer to in order to verify the
performance of these methods? (Section 3.3); what types of TL frameworks are available? (Section 3.4).

First, the search methods for the identification of studies are introduced in Section 2. Then, the
principle and classification criteria of TL are analyzed in Section 3. Next, the TL algorithms for EEG
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from 2010 to 2020 are described in Section 4. Finally, the current challenges of TL in EEG decoding are
discussed in Section 5.

2. Methodology

A wide literature search from 2010 to 2020 was conducted, resorting to the main databases, such
as Web of Science, PubMed, and IEEE Xplore. The keywords used for the electronic search were TL,
electroencephalogram, brain–computer interface, inter-subject, and covariate shift. Table 1 lists the
collection criteria for inclusion or exclusion.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Published within the last 10 years (as transfer
learning (TL) for EEG has been proposed and
developed in recent years).

• A focus on the processing of invasive EEG,
electrocorticography (ECoG),
magnetoencephalography (MEG), source
imaging, fMRI, and so on, or joint studies
with EEG.

• A focus on non-invasive EEG signals (as the
object for discussion in this review).

• No specific description of TL for EEG processing.

• A specific explanation of how to apply TL to
EEG signal processing.

\

The search method of this review is shown in Figure 2, which was used to identify and to narrow
down the collection of TL-based studies, resulting in a total of 246 papers. Duplicates between all
datasets and studies without full-text links were excluded. Finally, 80 papers that meet the inclusion
criteria were included.

 

Figure 2. The search method for identifying relevant studies.

3. Results

3.1. What Problems Does Transfer Learning Solve?

This review of the literature on TL applications for EEG attempted to address the following
critical questions:
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3.1.1. The Problem of Differences across Subjects/Sessions

Although advanced methods such as machine learning have been proven to be a critical tool in
EEG processing or analysis, they still suffer from some limitations that hinder their wide application
in practice. Consistency of the feature space and probability distribution of training and test data is
an important prior condition of machine learning. However, in the field of biomedical engineering,
such as EEG based on BCIs, this hypothesis is often violated. Obvious variation in feature distribution
typically occurs in representations of EEG across sessions/subjects. This phenomenon results in a
scattered distribution of EEG signal features, an increase in the difficulty of feature extraction, and a
reduction in the performance of the classifier.

3.1.2. The Problem of Small Sample Size

In recent years, machine learning and deep neural networks have provided good results for the
classification of linguistic features, images, sounds, and natural texts. A main reason for its success is
that their massive amount of data guarantees the performance of the classifier. However, in practical
applications of BCI, it is difficult to collect high-quality and large EEG datasets due to the limitations of
strict requirements for the experimental environment and available subjects. The performance of these
methods is highly sensitive to the number of samples; a small sample size tends to lead to overfitting
during model training, which adversely affects the classification accuracy [8].

3.1.3. The Problem of Time-Consuming Calibration

A large amount of data are required to calibrate a BCI system when a subject performs a specific
EEG task. This requirement commonly takes a long calibration session, which is inevitable for a new
user. For example, when a subject performs a steady-state visually evoked potential (SSVEP) speller
task, the various commands cause a long calibration time. However, collecting calibration data is
time-consuming and laborious, which reduces the efficiency of the BCI system.

3.2. EEG Paradigms for Transfer Learning

There are four paradigms of EEG-BCIs discussed in this paper and the percentage of these
paradigms across collected studies are shown in Figure 3.

Figure 3. The percentage of different EEG pattern strategies across collected studies.

3.2.1. Motor Imagery

Motor imagery (MI) is a mental process that imitates motor intention without real motion
output [9], which activates the neural potential in primary sensorimotor areas. Different imagery tasks
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will induce potential activity in different regions of the brain. Thus, this response can be converted
into a classification task. The feature of MI signals is often expressed in the form of frequency or band
energy [10]. Due to task objectives and various feature representations, a variety of machine learning
algorithms (e.g., deep learning and Riemannian geometry) can be applied to the decoding of MI [11,12].

3.2.2. Steady-State Visually Evoked Potentials

When a human receives a fixed frequency of flashing visual stimuli, the potential activity of
the cerebral cortex is modulated to produce a continuous response related to the frequency (same or
multiples) of these stimuli. This physiological phenomenon is referred to a SSVEP [13]. Due to their
stable and obvious representation of signals, BCI systems based on SSVEP are widely used to control
equipment such as mobile devices, wheelchairs, and spellers.

3.2.3. Event-Related Potentials

Event-related potentials are responses for multiple or diverse stimuli corresponding to specific
meanings [14]. P300 is the most representative type of ERP, which occurs about 300 ms after a visual or
auditory stimulus. A feature classification model can be used for decoding P300.

3.2.4. Passive BCIs

A passive BCI is a form of interaction that does not rely on external stimuli. It achieves a brain
control task by encoding the mental activity from different states of the brain [15]. Common types of
passive BCI tasks include driver drowsiness, emotion recognition, mental workload assessment, and
epileptic detection [16], which can be decoded by regression and classification models [17,18].

3.3. Case Studies on a Shared Dataset

Analysis between different datasets is not valid because they use different equipment or
communication protocols. In addition, different mental tasks and collecting procedures also bring great
differences to EEG. Therefore, the reviewed studies mainly concentrate on the TL across subjects/sessions
in the same dataset. In Table 2, we briefly summarize the publicly available EEG dataset in this review.

Table 2. Dataset.

Datasets Task Subject Channel
Amount of Data

(Per Subject)
Sampling

Rate
Reference

BCIC-II-IV 2 MI classes 1 28 3 sessions/416
trials 1000 Hz [19]

BCIC-III-II P300 2 64 5 sessions 240 Hz [20]

BCIC-III-IVa 2 MI classes 5 118 4 sessions/280
trials 1000 Hz [21]

BCIC-IV-2a MI 9 25 2 sessions/288
trials 250 Hz [22]

BCIC-IV-2b 2 MI classes 9 6 720 trials 250 Hz [23]

P300 speller P300 8 8 5 sessions/20
trials 256 Hz [24]

DEAP ER 32 40 125 trials 128 Hz [25]
BCIC -III-

IVC MI 1 118 630 trials 200 Hz [26]

SEED ER 15 64 3 sessions/15
trials 200 Hz [27]

OpenMIIR Music Imagery 10 64
5 sessions/12
trials in four

tasks
512 Hz [28]

CHB-MIT ED 22 23 844 hours’
collection 256 Hz [29]
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3.4. Transfer Learning Architecture

In this review, we summarize previous studies according to “what knowledge should be transferred
in EEG processing.” Multi-step processing for EEG across subjects/sessions results in discriminative
information in different steps. Therefore, determining what should be transferred is the key problem
according to different EEG tasks. Pan et al. [6] proposed authoritative classification approaches based
on “what to transfer.” All papers collected in this review were classified according to this method
(Figure 4). In the following sections, we have selected several representative methods for analysis.

 

Figure 4. Different approaches to transfer learning.

3.4.1. Transfer Learning Based on Instance Knowledge

It is often assumed that we can easily obtain large amounts of markup data from a source domain,
but this data cannot be directly reused. Instance transfer approaches re-weight some source domain
data as a supplement for the target domain. Based on instance transfer, the majority of the literature
utilized the measurement method to evaluate the similarity between data from the source and target
domains. The similarity metric was then converted into the transfer weight coefficient, which was
directly used to instance transfer by re-weighting the source domain data [30–32]. Herein, we have
listed a few typical methods based on instance transfer.

Reference [33] proposed an instance TL method based on K–L divergence measurements. They
measured the similarity of the normal distribution between two domains and transformed this similarity
into a transfer weight coefficient for the target subject.

Suppose that the normal distribution from the two datasets N0 and N1 can be expressed as:

N0 ∼ N(μ0, Σ0) , N1 ∼ N(μ1, Σ1) (1)

where μi and Σi are the mean value and variance (i = 1/0), respectively. The K–L divergence of the two
distributions can be expressed as:

KL[N0][N1] = 0.5[(μ1 − μ0)]
TΣ−1

1 (μ1 − μ0) + trace
(
Σ−1

1 Σ0
)
− ln
(

detΣ0

detΣ1

)
−K] (2)

where K denotes the dimension of the data, μ represents the mean value, and Σ is the variance, det
represents calculation of the determinant.

The similarity weight δs can be calculated by:

δs =
1/(KL[N0, N1] + ∂)4

Σm
i=1(1/

(
KL[N0, N1] + ∂

)4
)

(3)

where ∂ is the balancing coefficient and KL is the summed divergence of the distribution characteristics
of the target subjects. The results show that instance transfer can effectively reduce the calibration time
and can significantly improve the average classification accuracy of MI tasks.
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Li et al. [34] proposed importance-weighted linear discriminant analysis (IWLDA) with bootstrap
aggregation. They defined the ratio r(x) of test and training input densities as transfer weight:

r(x) =
Pte(x)
Ptr(x)

(4)

where Ptr and Pte represent the marginal probability distribution of the training set and the test
set, respectively.

Then, they optimized the parameters of the LDA model by adding a regularization coefficient and
transfer weights:

min
N∑

i=1

r(xi)(yi − f̂ (xi;θ)
2) + λ‖θ‖ (5)

where yi refers to the target labels corresponding to the feature vectors xi for i-th trials. Parameter θ is
learned by least-squares.

min
N∑

i=1

(yi − f̂ (xi;θ))
2

(6)

where

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1, x1

2, x2

.

.

.

.
n, xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

The least-squares solution can be obtained by:

θ̂IWLDA =
(
XTDX + λI

)−1
XTDy (8)

where λ (≥0) is the regularization parameter, D is the diagonal matrix with the i-th diagonal element,
I is the identity matrix and θ̂IWLDA is the least-squares solution. They also combined the bagging
method that independently constructs accurate and diverse base learners to improve the classification
accuracy and to reduce the variance. The weighted parameters of the LDA model in the target domain
can thus be optimized.

Covariate shift [35] is a common phenomenon in EEG processing across subjects/sessions. It is
defined as follows: Given an input space X and an output space Y, the marginal distribution of Ds is
inconsistent with DT, i.e., PS(x) � PT(x). However, the conditional distribution of the two domains
is the same, PS(y/x) = PT(y/x). Covariate shift obviously affects the unbiasedness of a model in
standard model selection, which reduces the generalization ability of the machine model during EEG
decoding [30].

To address this issue, research has proposed covariate shift adaptation. For example, Raza et
al. [36] proposed a transductive learning model based on the k-nearest neighbor principle. They
initialized the classifier using data from the calibration stage and trained the optimal classification
boundary. Then, adaptation was executed to update the classifier. The updated rules are as follows:

First, the Euclidean distance is used to measure unlabeled and labeled data:

dist(p,q) =

√∑m

j=1

(
qj − pj

)2
(9)

where p and q refer to the unlabeled and labeled data points, respectively, and dist is the Euclidean
distance. Then, the k-nearest neighbors are selected based on the Euclidean distance. Next, this
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distance is converted to inverse form distinv(i), which represents the corresponding pattern in the
training database that is closer to the current unlabeled feature set.

distinv(i) =
1

di
(q,p)

+ ε
(10)

where i is the label and ε = 0.001 is the bias. To decide if the current trial’s features and estimated label
should be added to the existing knowledge base, a confidence ratio CR is calculated:

CRj =

∑k
1 distinv(i)(l(i) == j)∑k

1 distinv(i)
(11)

The CR index is calculated to predict the label for the unlabeled test data. The predicted test data
are then added into the knowledge database, following which the decision boundary is recalculated to
realize the update.

3.4.2. Transfer Learning Based on Feature Representation

TL based on feature representation can be achieved by reducing the difference between two
domains by feature transformation or projecting the feature from two domains into the uniform
feature space [37–39]. Unlike instance transfer, feature representation TL aims to encode the shared
information across subjects/sessions into a feature representation. For example, spatial filtering and
time–frequency transformation are used to transform the raw data into feature representations.

Nakanish et al. proposed a spatial filtering approach called the task-related component analysis
(TRCA) method to enhance the reproducibility during SSVEP tasks and to improve the performance of
an SSVEP-based BCI [40].

Suppose that two domain signals consist of two parts: A task-related signal s(t) and a task-unrelated
signal z(t). A multichannel signal from x(t) can be calculated as:

xi(t) = a1,i s(t) + a2,iz(t), i = 1, 2, 3 . . . n (12)

where i represents the number of channels and a refers to the project coefficients; 1 and 2 represent labels.

y(t) = xi(t)
n∑

i=1

x(t) =
n∑

i=1

(a1,i s(t) + a2,iz(t)) (13)

where y(t) refers to the target data, and the optimization goal is to solve a1,i = 1 and a2,i = 0. The
covariance between the j1 − th and the j2 − th trials is described as:

cj1, j2 = Cov
(
y( j1)(t), y( j2)(t)

)
=

n∑
i1i2=1

wi1wi2Cov(x( j1)(t), x( j2)(t)) (14)

All combinations of the trials are summed as:

Nt∑
j1, j2=1, j1� j2

cj1, j2 = ωTSω (15)

where j represents the number of trials and ω refers to the spatial filters. Matrix s is defined as:

si1,i2 =

Nt∑
i1,i2=1,i1�i2

Cov
(
xj1

i1
(t), xj2

i2
(t)
)

(16)
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The variance of y(t) is constrained to obtain a finite solution:

Var
(∑

(t)
)
= ωTQω = 1 (17)

The optimization is calculated as:

ω̃ = argmax
ωTSω
ωTQω

(18)

where ω̃ is the optimal spatial filter. Finally, the correlation coefficient is calculated by Pearson’s
correlation analysis between the data from the two domains. In their study, spatial filters as a feature
representation were transferred to the target domain. The results showed that this method significantly
improves the information transfer rates and classification accuracy. Based on this research, Tanaka [41]
improved the TRCA method by maximizing the similarity across group of subjects, and they named
this novel method group TRCA. The results showed that the group representation calculated by
the group TRCA method achieve high consistency between two domains and offer effective data
supplementation during brain–computer interaction.

CSP is a popular method for feature extraction, which is often used for MI classification. During
calculation, a spatial filter is adopted to maximize the separation between the class variances of EEG.
However, heterogeneous data across subjects/sessions causes poor classification performance of the
model in the training stage. One feasible approach to solve the limitation is regularization. Lotte [42]
presented regularized CSP to improve the classification accuracy across subjects. In their study, they
discussed two strategies. One of them was regularizing the covariance matrix estimated. They can be,
respectively, expressed as:

S̃i = (1− γ)S̃i + γI (19)

Ŝi = (1− β)ciSi + βDi (20)

where Si represents the initial spatial covariance matrix for class i, S̃i is the regularized estimate, I
is the identity matrix, ci is a constant scaling parameter, and Di represents the generic covariance
matrix. The regularization parameters can be defined as γ and β. This strategy aims to optimize the
covariance matrix by transforming other subjects’ data into covariance combined with the regularization
parameters and by transferring this feature to the target subject.

Another approach is regularizing the CSP objective function. CSP uses spatial filtersω to extremize
the function:

J(ω) =
ωTC1ω

ωTC2ω
(21)

where Ci is spatial covariance matrix from class i. This approach optimizes CSP algorithms by
regularizing the CSP objective function itself:

GP1(ω) =
ωTS1ω

ωTS2ω+ ∂P(ω)
(22)

where P(ω) represents a penalty function for the measurement distance between the spatial filter and
the prior information. The goal of the objective function is to maximize GP1(ω) and to minimize P(ω).
∂ is a user-defined regularization parameter. The prior information from the source domain provides a
good solution to guide the optimization direction of the estimation of spatial filters.

In addition, adaptation regularization is a typical feature TL method based on the structural risk
minimization principle and the regularization theory. Cross-domain feature transfer is mainly operated
by three methods: (1) Utilize the structural risk minimization principle and minimize the structural
risk functional; (2) minimize the distribution difference between the joint probability distributions;
(3) maximize the manifold consistency underlying the marginal distributions [43]. In recent research,
Chen et al. [44] developed an efficient cross-subject TL framework for driving status detection. They
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used adaptation regularization to measure and reduce the difference of the features from the two
domains and to extract the features by filtering algorithms. The results showed that this framework
can achieve high recognition accuracy and good transfer ability.

3.4.3. Transfer Learning Based on Model Parameters

The assumption of model parameter TL is that individual models across subjects/sessions should
share some parameters. The key step of this approach is to find shared parameter information and to
realize knowledge transfer. The domain adaption (DA) of a classifier is the common method of model
parameter transfer. The knowledge of the parameter information from Ds is reused and adjusted
according to the prior distribution of DT [45]. A DA method, named adaptive extreme learning
machine (ELM), was proposed by Bamdadian et al. [46]. ELM is a single-hidden layer feedforward
neural network, which determines the output weights by operating the inverse operation of the hidden
layer weight matrices [47]. This method has two steps: First, the classifier is initialized by data from
the calibration session. Then, the update rule for the output weight based on least-square minimization
is calculated. The update rule is calculated as follows:

The initial output weight α can be defined as:

α = H+T = ϕ−1HTT (23)

where H is the output matrix of hidden layer, ϕ = HTH and H+ refer to the Moore–Penrose
pseudo-inverse of H, and T represents the label category. The updated weight αm+1 is calculated as:

αm+1 = αm + ϕ−1
k+1HT

k+1(Tk+1 −Hk+1α
m) (24)

ϕk+1 = ϕk + HT
k+1Hk+1 (25)

ϕ−1
k+1 = ϕ−1

k −ϕ−1
k HT

k+1

[
I + Hk+1ϕ

−1
k HT

k+1

]
Hk+1ϕ

−1
k (26)

where k is k-th hidden node,ϕ is orthogonal matrix calculated by H. The experiential results showed that
adaptive ELM can significantly improve the classification accuracy in MI classification across subjects.

Another strategy is ensemble learning, which combines multiple weak classifiers from the source
domain into a strong classifier. Dalhoumi et al. [48] proposed a novel ensemble strategy based on
Bayesian model averaging. They calculated the probability of having a class label yq+1 given a feature
vector hq+1:

P(yq+1/xq+1) =
N∑

n=1

P

⎛⎜⎜⎜⎜⎜⎝ y
xn

q+1, jn

⎞⎟⎟⎟⎟⎟⎠P
(

jn
T

)
(27)

where xn
q+1 is the logarithmic variance feature vector, jn is a set of hypotheses from the source domain,

and T is the test set. The hypothesis prior P
( jn

T

)
is estimated in the following method:

w∗ = argmin
p∑

p=1

l

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

jn
(
xn

p

)
yp

⎞⎟⎟⎟⎟⎟⎠ (28)

p
(

jn
T

)
= w∗n (29)

where xk
p is the projection of the feature vector x on the spatial filters of subject k. The learned ensemble

classifier can be used to predict labels for the target user:

h∗ =
N∑

n=1

w∗n jn (30)
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The results showed that this ensemble strategy can improve the classification performance in
small-scale EEG data by evaluation on a real dataset.

In recent years, deep neural networks have provided good results for the processing of EEG
signals [49,50]. Due to their end-to-end model structure and automatic feature extraction ability, deep
neural networks minimize the interference of redundant information and improve the classification
performance. Inspired by computer vision, a deep neural network learns generic feature representations
by lower layers of the model. Specific feature representations with the relevant specific subjects or
sessions are learned by the high layer [51]. Therefore, freezing lower layers and fine-tuning higher
layers is a good way to realize model parameter transfer based on deep learning.

Zhao et al. [52] proposed an end-to-end deep convolution network for MI classification. To avoid
the limitation of a small sample and overfitting, they utilized the data from Ds to pre-train the source
network and to transfer the parameters of several layers to initialize the target network. First, the
network was pre-trained using data from the source domain. Then, they used the M source subjects
Ws to initialize the nth layer’s target network by a weight average:

Wt
n =

M∑
m=1

ρmWs
mn (31)

where ρ represents the strength of the source network and Ws
mn refers to the connecting weights of the

nth layer to the next layer. The next stage is to fine-tune the target initialized network by data from
DT. The results showed that the parameter transfer strategy can reduce the calibration time for new
subjects and can help the deep convolution network to obtain better classification performance.

Raghu et al. used CNN combined with TL to recognize epileptic seizures [53]. They proposed
two different transfer methods: To finetune a pre-trained network and then extract image features
by said pre-trained network, and to classify the status of brain using an SVM. Popular networks
such as Alexnet, VGG16net, VGG19net, and Squeezenet, were used to verify the performance of the
proposed framework.

The summary of collected studies is shown in Table 3.
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4. Discussion

Based on the numerous papers surveyed herein, we briefly summarized the development of the
application of TL to EEG decoding. This will help researchers scan the status of this field and receive
useful guidance in future work.

According to the various studies surveyed in this paper, it is not hard to determine the points of
interest that researchers focus on. As shown in Figure 2, more studies have focused on active BCI (i.e.,
MI, SSVEP, and ERP) among these different EEG paradigms. One possible explanation is that the goal
of these mental activity decoding studies is to categorize EEG from different classes. This would allow
many machine learning methods to be applied to this paradigm. From Table 2, it can be seen that the
application scenarios of TL in the existing literature have focused almost only on classification and
regression tasks.

The method of model parameter transfer is not applicable to only a few subjects with initially
low BCI performance. The feature of EEG from these subjects exhibits inseparability in feature space.
Therefore, the parameter optimization of the classifier does not significantly improve the classification
results. It is worth noting that the adaptive strategy of the classifier should be considered a supplement
to achieve the goal of a calibration-free mode of operation [123]. The combination of TL and the
adaptive strategy may receive increasing attention in future studies.

It is also worth noting that TL showed good results across subjects/experiments, but the detail
of variability across sessions/subjects was unclear. Some studies proposed that the Bayesian model
is a promising approach to capture variability. This model is built based on multitask learning, and
variation in some features is often extracted, such as spectral and spatial [124,125].

Due to its end-to-end structure and competitive performance, deep learning has been successful
in processing EEG data [126]. However, the computational power and small-scale data are a limitation
during practical operation. A hybrid structure based on TL and deep learning is a promising way to
address this issue. For example, one of the methods is fine-tuning the pre-trained network, which
has proven to be effective. With the development of deep learning technology, the research for such a
hybrid structure is still a hot topic for future research.

As reported in the above-cited studies, TL is instrumental in EEG decoding across subjects/sessions.
However, knowledge transfer across tasks/device is still a blank field. This issue is worth exploring
and will make EEG-based BCI systems much more practical.

5. Conclusions

In this paper, we reviewed the research on TL for EEG decoding that was published between
2010 and 2020. We discussed numerous approaches that can be divided into three categories: Instance
transfer, feature representation transfer, and parameter of classifier transfer. Based on the summary of
their results, we can conclude that TL can effectively improve the decoding performance in classification
and regression tasks. In addition, TL provides adequate performance in initializing BCI systems for
a new subject, which reduces the length of time of the calibration process. Although there are some
limitations for using TL for EEG decoding, such as the scope of application of TL and suboptimal
performance on some occasions, TL shows strong robustness. Overall, TL is instrumental in EEG
decoding across subjects/sessions. In addition, achieving a calibration-free model of operation and
higher accuracy of decoding are worthy of further research.
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Abbreviations: List of Acronyms

AL Active learning
ALS Amyotrophic Lateral Sclerosis
ATL Active Transfer Learning
BCIC Brain Computer Interface Competition
CCA Canonical Correlation Analysis
CNN Convolution Neural Network
CSA Covariate Shift Adaptation
CSP Common Spatial Pattern
DA Domain Adaptation
DD Drowsiness Detection
ELM Extreme Learning Machine
ED Epileptic Detection
ER Emotion Recognition
ERP Event-Related Potential

ErrPs
Electroencephalography -measured error-related
potentials

FTL Feature Transfer Learning
ITL Instance Transfer Learning
JSR Jensen Shannon Ratio
KL Kullback–Leibler
KNN K-Nearest Neighbor
LDA Linear Discriminate Analysis
LR Logistic Regression
LSTM Long Short-Term Memory
MDRM Minimum Distance to Riemannian Mean classifiers
MI Motor Imagery
MMD Maximum mean discrepancy
MK Means Kappa value
MTL Model Transfer Learning
MWA Mental-Workload Assessment
MRP Movement Related Potentials
RNN Recurrent Neural Network
RR Ridge Regression
RBM Restricted Boltzmann Machine
SMR Sensory Motor Rhythm
SVM Support Vector Machine
SSVEP Steady State Visual Evoked Potential
SELM Sigmoid Extreme Learning Machine
SPD Symmetric Positive Definite
TL Transfer Learning
TRCA Task-Related Component Analysis
VEP Visual Evoked Potential
VGG Visual Geometry Group
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118. Özdenizci, O.; Wang, Y.; Koike-Akino, T.; Erdoğmuş, D. Transfer learning in brain-computer interfaces with
adversarial variational autoencoders. In Proceedings of the 2019 9th International IEEE/EMBS Conference
on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 207–210.

119. Arevalillo-Herráez, M.; Cobos, M.; Roger, S.; García-Pineda, M. Combining Inter-Subject Modeling with a
Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals. Sensors 2019, 19, 2999.
[CrossRef]

120. Yang, S.; Yin, Z.; Wang, Y.; Zhang, W.; Wang, Y.; Zhang, J. Assessing cognitive mental workload via EEG
signals and an ensemble deep learning classifier based on denoising autoencoders. Comput. Boil. Med. 2019,
109, 159–170. [CrossRef]

121. Zou, Y.; Zhao, X.; Chu, Y.; Zhao, Y.; Xu, W.; Han, J. An inter-subject model to reduce the calibration time for
motion imagination-based brain-computer interface. Med. Boil. Eng. Comput. 2019, 57, 939–952. [CrossRef]
[PubMed]

122. Hang, W.; Feng, W.; Du, R.; Liang, S.; Chen, Y.; Wang, Q.; Liu, X. Cross-Subject EEG Signal Recognition Using
Deep Domain Adaptation Network. IEEE Access 2019, 7, 128273–128282. [CrossRef]

123. Congedo, M.; Sherlin, L. EEG Source Analysis; Elsevier BV: Amsterdam, The Netherlands, 2011; pp. 25–433.

56



Sensors 2020, 20, 6321

124. Alamgir, M.; Grosse-Wentrup, M.; Altun, Y. Multitask learning for brain–computer interfaces. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May
2010; pp. 17–24.

125. Kang, H.; Choi, S. Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 2014,
57, 39–50. [CrossRef]

126. Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep Learning for Electroencephalogram (EEG) Classification Tasks:
A Review. J. Neural Eng. 2019, 16, 031001. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

57





sensors

Review

A Review on Mental Stress Assessment Methods Using
EEG Signals

Rateb Katmah 1, Fares Al-Shargie 2,*, Usman Tariq 2, Fabio Babiloni 3,4, Fadwa Al-Mughairbi 5

and Hasan Al-Nashash 2

Citation: Katmah, R.; Al-Shargie, F.;

Tariq, U.; Babiloni, F.; Al-Mughairbi,

F.; Al-Nashash, H. A Review on

Mental Stress Assessment Methods

Using EEG Signals. Sensors 2021, 21,

5043. https://doi.org/10.3390/

s21155043

Academic Editor: Yvonne Tran

Received: 31 May 2021

Accepted: 19 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates;
b00081299@aus.edu

2 Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates;
utariq@aus.edu (U.T.); hnashash@aus.edu (H.A.-N.)

3 Department of Molecular Medicine, University of Sapienza Rome, 00185 Rome, Italy;
fabio.babiloni@uniroma1.it

4 College Computer Science and Technology, University Hangzhou Dianzi, Hangzhou 310018, China
5 College of Medicines and Health Sciences, United Arab Emirates University,

Al-Ain 15551, United Arab Emirates; f.almughairbi@uaeu.ac.ae
* Correspondence: fyahya@aus.edu

Abstract: Mental stress is one of the serious factors that lead to many health problems. Scientists and
physicians have developed various tools to assess the level of mental stress in its early stages. Several
neuroimaging tools have been proposed in the literature to assess mental stress in the workplace.
Electroencephalogram (EEG) signal is one important candidate because it contains rich information
about mental states and condition. In this paper, we review the existing EEG signal analysis methods
on the assessment of mental stress. The review highlights the critical differences between the research
findings and argues that variations of the data analysis methods contribute to several contradictory
results. The variations in results could be due to various factors including lack of standardized
protocol, the brain region of interest, stressor type, experiment duration, proper EEG processing,
feature extraction mechanism, and type of classifier. Therefore, the significant part related to mental
stress recognition is choosing the most appropriate features. In particular, a complex and diverse
range of EEG features, including time-varying, functional, and dynamic brain connections, requires
integration of various methods to understand their associations with mental stress. Accordingly, the
review suggests fusing the cortical activations with the connectivity network measures and deep
learning approaches to improve the accuracy of mental stress level assessment.

Keywords: mental stress; EEG; data analysis; connectivity network; machine Learning

1. Introduction

Mental stress is one of the contributing factors to health problems. It is defined as
the human body’s response, controlled by the sympathetic nervous system (SNS) and
hypothalamus–pituitary–adrenocortical axis (HPA axis), to mental, physical and emotional
stimuli [1]. This expression can be used with regard to internal (personality structure) or
external (dealing with problems) matters triggering various physiological and negative
emotional changes [2]. Literature defined three types of stress; acute stress, episodic
stress, and chronic stress [3]. Acute stress is related to short-lasting exposure and is
not harmful. Episodic stress happens when the stimulus is more frequent for a limited
time [4]. Meanwhile, chronic stress is the most damaging, resulting from permanent and
long-standing stressors [5]. Several studies have reported that mental stress has direct
physiological effects leading to several diseases including stroke, cardiovascular disease,
cognitive problems, speech distinctiveness and depression [6,7]. Moreover, stress affects the
human body indirectly at different levels varying between skin conditions, eating habits,
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inadequate sleeping and decision-making [8–10]. Thus, researchers have developed various
methods to assess the stress level in its early stages to avoid the negative consequences on
health and performance.

Assessment of mental stress is challenging because each individual experiences stress
differently [11]. Besides, the reliability of evaluating mental stress depends on the method
of assessment and analysis. Traditionally, stress is assessed using subjective methods. The
most commonly used method is the self-report questionnaires [12] such as the perceived
stress scale [13,14]. Many studies have established the questionnaire score and self-report
rating or interview as ground truth to estimate the mental stress level. However, ques-
tionnaires are subjective and require the user’s full attention. As a result, individuals are
not always aware of their genuine stress levels. Hence, the procedures, such as self-report
questionnaires, may result in an inaccurate stress level measurement. Furthermore, they
seem to be less informative than physiological measures. Researchers have identified sev-
eral physiological measurements as stress indicators such as heart rate variability (HRV),
electrodermal activity (EDA), electromyogram (EMG), blood pressure, pupil diameter,
salivary cortisol and salivary alpha amylase [2]. Nevertheless, physiological markers can
be influenced by many factors including mental stress. Cortisol level has been reported to
be affected by circadian rhythm (i.e., its concentration changes throughout the day) [15,16].
In addition, a subject’s physical activity affects salivary alpha amylase level [17,18], and
EDA is sensitive to skin disease and humidity [19].

Various neuroimaging techniques have been used to assess mental stress by directly or
indirectly measuring the brain activity. These include functional near-infrared spectroscopy
(fNIRS), electroencephalography (EEG) [20], positron emission tomography (PET) [21]
and functional magnetic resonance imaging (fMRI) [22]. The EEG modality has some
advantages such as high temporal resolution, low cost, and ease of use. Hence, it is the
most used technique to analyze mental states including stress [23,24]. A typical EEG stress
assessment method consists of two major parts: feature extraction and stress classifica-
tion. There are three categories of EEG features: time-domain, frequency-domain, and
synchronicity-domain features [25–27]. The time-domain features capture the temporal
information using amplitude related to energy, variability, coefficient of variation, Hjorth
feature, fractal dimension feature and higher-order crossing feature. On the other hand, the
most used frequency-domain features are obtained from the EEG signal clinical frequency
bands, delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma
(30–50 Hz) [28]. These brain rhythms contain relevant information related to mental stress
and other psychological disorders. The commonly used spectral EEG features include
the power spectral density (PSD), differential asymmetry features, phase synchroniza-
tion, phase lag index, directed transfer function and entropies [29–32]. In addition, the
time-frequency features are obtained through the short-time Fourier transform (STFT),
or discrete wavelet transform (DWT) [33–35]. The findings of subsequent studies on the
usefulness of EEG signal analysis methods for the assessment of mental stress have been
conflicting and impeding the development of further research. To resolve these difficulties,
this work aims at conducting a comprehensive review of the state-of-art of the published
EEG analysis methods on mental stress and to propose potential future research directions.

The rest of the paper is organized as follows. The materials and methods are described
in Section 2, where the explanation of inclusion and exclusion strategy in addition to the
variables of interest are reported. EEG pre-processing and the data analysis methods are
presented in Section 3. Section 4 reviews the most common classifiers that have been used
in quantifying stress levels. Section 5 shows the review results, including the relationship
between EEG analysis methods and type of classifier and the variables can be considered in
assessing mental stress. The discussion of the findings on the reviewed papers is described
in Section 6. Finally, Sections 7 and 8 summarize the main challenges and conclusion of the
research in stress estimation-based EEG signal.
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2. Materials and Methods

2.1. Search Strategy

The Preferred Reporting Items for Systemic Reviews and Analysis (PRISMA) was used
to conduct this review [36]. The following databases were searched for study publications,
namely Google Scholar, PubMed, Science Direct, IEEE Xplore, and PsycINFO. The used
search terms were the single terms of mental stress and EEG. This was combined with
at least one of the following terms: connectivity, power spectral, coherence, entropy
and classification. In addition to searching databases, the reference list for all selected
articles was checked to specify any additional relevant studies that might have been
overlooked during the primary search. Figure 1 shows the search strategy and identification
of relevant studies.

Figure 1. Flow chart of search strategy and identification of relevant studies.

2.2. Inclusion and Exclusion Strategy

Manuscripts in English and EEG experimental studies were considered in this re-
view. In contrast, those involving animals were excluded to avoid any possible effect of
cognitive impairments.

2.3. Variables of Interest

The main variables detected in each paper were (i) type of stressor, (ii) experiment
duration, (iii) number of subjects who participated in the experiment, (iv) number of
EEG electrodes, (v) EEG frequency bands, (vi) type of features, (vii) type of classifier,
(viii) classification performance, (ix) summary of results compared before and after the
stress task, and (x) comments on the findings.

3. EEG Analysis Methods

The EEG signal goes through extensive preprocessing steps to remove artifacts and
noise before applying data analysis methods. Data preprocessing plays a major role in
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getting meaningful information about the signal. Thus, comprehensive knowledge about
the types of artifacts is required. According to Jiang et al. [37], physiological artifacts
are the most common artifacts that affect EEG signal. In addition, artifacts represent
another vital source of biased information. The digitized EEG signal can be segmented
into epochs (e.g., 2 s) for visually identifying and rejecting visible artifacts. To remove the
noise and artifacts from EEG signals, researchers have utilized a variety of methods such as
regression techniques, blind source separation (BSS), empirical-mode decomposition (EMD)
and wavelet transform algorithms. This is in addition to Adaptive and Wiener filtering,
high pass, band pass, notch filters, and independent component analysis (ICA) [38]. In fact,
we still have a lack of standardization related to EEG pre-processing that can be used by all
research studies.

In stress studies, the process of reviewing, cleansing, transforming, and modelling EEG
signals with the aim of finding useful knowledge, informing conclusions, and assisting
decision-making is known as data analysis. Several data analysis methods have been
reported in the literature to analyze mental stress based on EEG signals. However, selecting
an appropriate analysis method is very important to minimize the data processing cost,
storage size and dimensional space. The following sub-section provides a comprehensive
review of the EEG analysis methods on mental stress.

3.1. Connectivity Methods

The primary objective of EEG research is to link diverse measures of neural rhythms
to functional brain states reflecting cognition, behavior, or neuropathology [39]. Each
EEG signal is produced by the superposition of several brain current sources [40]. The
involvement of each source varies depending on the location and orientation of the source
and measuring electrodes. Several researchers have shown interest in functional or effective
connectivity. However, the various forms of data used to assess functional connectivity
differ in many ways, involving temporal and spatial information, as well as whether the
data reflect electrical neuron activities, neuronal ensemble activities, or hemodynamics of
macroscopic brain areas. Furthermore, the exact computational techniques employed to
find these values vary amongst researchers, even when dealing with the same data type.

The issue is considerably more complex in the case of EEG, where numerous aspects
of the signals might be linked. The information in an EEG signal comes from a complex
and dense network of interconnected neurons. Hence, studying brain connectivity may
provide us with a more exact model of the brain and how its various areas interact with
each other. There are two types of brain connectivity: functional connectivity and effective
connectivity [41]. The functional connectivity reflects the relationships between different
brain regions as reflected on the temporal coherence between the networks. The vari-
ous methods for determining functional connectivity may result in different conclusions
depending on factors such as the strength of the interaction between neural units, type
of stressor and number and location of electrodes. This can even be true for data from
the same modality and even data obtained using the same task. Employing multiple
interpretations of what defines functional connectivity might also lead to conflicting find-
ings [41]. Effective connectivity, on the other hand, is the simplest circuit that describes
the experimentally achieved relationship between two neurons. It explains how the neural
system affects the others [42]. Effective connectivity, in contrast to the non-directional
and correlative functional connectivity, assesses the directional influences between distinct
brain regions [43]. As such, functional and effective connectivity measures are important
in trying to understand the brain behavior under stress and non-stress conditions. There
are numerous features utilized to detect this connectivity measurement, and the following
is a quick description of them.

Coherence analysis aims to identify the functional connectivity and synchronization
between different brain regions (several electrode sites). These mutual relations can be
found by analyzing the amplitude and the phase of signal within the used EEG elec-
trodes [44,45]. Xia et al. [44] examined coherence using multilevel stress assessment and
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found a significant increase for all frequency bands (except beta) at frontoparietal lobe. In
addition, strong coherency for delta wave was detected in prefrontal and temporal regions
at higher stress level. Meanwhile, study in [46] has shown an increased brain connectivity
between interhemispheric locations in delta and theta bands, whereas the alpha and beta
coherence connectivity networks spread all over the scalp. In particular, this increase in
coherence level under stress in the article [46] was regarded as the brain attempting to attain
redundant communication between its different regions in order to quickly process the
cognitive load of the applied stressor. The full mathematical expressions of the coherence
measures can be found in a previous study [47].

Magnitude Square Coherence (MSC) is another measure of functional connectivity in
stress studies. A study in [48] found significant reduction in the functional connectivity
from control to the stress situation in intra-hemispheric and inter-hemispheric prefrontal
cortex (PFC). Meanwhile, when applying sleep deprivation as a stressor, the EEG con-
nectivity maps show a decreased MSC for alpha band in the anterior region of scalp and
increased beta coherence spread all over the scalp [49]. However, this behavior was not
reproduced when dealing with Stroop color word task (SCWT) where there was only
elevated beta coherence for sagittal middle regions. Darzi et al. [50] have proved that
extracting MSC features with a length of 56 s achieved the highest accuracy by applying
support vector machines (SVM) as a classifier compared to the directed transfer function
(DTF), phase–slope Index (PSI), canonical correlation (CC), and power spectral density
(PSD) techniques. Likewise, Khosrowabadi et al. [51], reported that MSC accuracy, sen-
sitivity and specificity were greater than those obtained by Gaussian mixture models
(GMM) and fractal dimension (FD) features using K-nearest neighbors (KNN) or SVM
classifiers. Consequently, the most useful advantage about using coherence in analyzing
EEG to quantify stress is that it cannot be affected by the amplitude oscillations for the
different brain locations. However, the main drawback for coherence analysis is the high
sensitivity to phase coupling and power changes [46,52]. The mathematical formulations
of the employed MSC can be found in [53].

Pearson’s correlation-based captures linear, time-domain dependencies among EEG
signals. It could be found over a single epoch or over several epochs, and it is calculated
using the Pearson’s correlation coefficient, cross-covariance, and auto-covariance of EEG
signals [54]. Therefore, increasing the value for the Pearson correlation coefficient from (−1)
to (1) indicates intense connections between brain regions. In particular, this technique has
been used by study [54] to reduce feature vectors and computational time, and to improve
accuracy of SVM classifiers in detecting human stress. The main interest of such features
is the high performance while reducing dimensionality of the EEG data set [55]. On the
other hand, canonical correlation analysis (CCA) is useful to get information from the cross-
covariance matrices in order to estimate the effect of mental stress. This is done by detecting
the linear combination that achieves maximum correlation between two vectors [56]. The
main advantage of using CCA is its applicability to be used with multimodal data that
has different modal dimensionalities [57]. The mathematical expressions of the correlation
analysis can be found in previous study [58].

Amplitude asymmetry refers to the difference in absolute amplitude that exists be-
tween the homologous electrodes positioned on the hemispheres when a stressor is applied.
It is used to find the difference in the relative stimulation between brain locations [59]. De-
spite its high performance in estimating acute stress levels [44], this technique is influenced
by HRV biofeedback [60]. The study in [61] describes the math of the asymmetry method.

Mutual information (MI) is used to detect dynamic concatenate and similarity of joint
probability distribution function between two EEG signals [50,62]. Therefore, MI aims to
find the statistical dependency between signals and analyze EEG with different spectral
bands [63]. The MI during stress is represented by EEG connectivity maps. According
to the study in [49], mutual information did not achieve significant increase in the EEG
map when using Stroop task, whereas the sleep deprivation physical stressor showed
widespread decreases of linear area comparing to a significant increase of nonlinear area in
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the anterior, central, and temporoparietal regions of head. Meanwhile, Pernice et al. [64]
reported that the shared information between brain locations during relaxing state was low,
whereas a significant MI increase was noted for alpha, theta and delta bands in the frontal
region during mental arithmetic task. On the other hand, comparing to other connectivity
measures, this technique has a short time processing and it is not restricted to real-valued
variable; therefore, it could be used on several kinds of variables [65]. The mathematical
formulations that describe MI can be found in [66].

Phase lag is used to detect the lag or delay between two EEG signals related to different
brain regions. Xia et al. [44], has detected a significant role for the phase lag technique
in discrimination between stress and control conditions for different levels. However,
a study in [45] has found low accuracy for this feature compared to the other used methods
such as coherence, absolute power and amplitude asymmetry. The main limitation of this
technique is that it does not provide the directionality of connectivity and the volume
conduction problem [67]. The mathematical expressions of the phase lag analysis can be
found in previous study [68].

Phase–slope index (PSI) is a measure of phase synchronization that is not sensitive to
volume conduction or common reference effects. Studies in [50] found several patterns of
brain locations connectivity during the perception of external stimuli that chronic stress
can change them, whereas the synchronization between left parietal and right temporal
showed a decrease of 55% in the stressful subjects. Darzi et al. [50] have shown a high
performance when using PSI features, whereas the results of Khosrowabadi et al. [69]
achieved low accuracy for PSI comparing to DTF and PDC features. The main advantages
of using PSI are overcoming the independent background activity generated between
two electrodes and the ability to give meaningful information even though the nonlinear
phase spectrum [69]. However, PSI may fail to correctly describe the directionality of
EEG [70]. The mathematical formulations of the PSI method can be found in [71].

Partial directed coherence (PDC) is a measure used to detect the direction and weight
of information flow in the frequency domain between multivariate data. Specifically,
multivariate analysis will represent the stress phenomenon without loss of information
of data with several variables. In particular, two directed coherences (feed-forward and
feedback aspects) can be predicted from the classical coherence function using PDC. There-
fore, directional flow between two channels within specific frequency involves several
calculated factors such as Akaike information criterion and Granger causality [72]. Studies
in [72,73] have found that when fatigue level increases due to stress, the functional coupling
decreases over parietal-frontal regions while using theta, alpha and beta frequency bands.
A significant form of PDC to get functional connectivity measurement is the Generalized
Partial Directed Coherence (GPDC), which is used to control negative causality of the
EEG multichannel analysis. Khosrowabadi et al. [69] has used GPDC features in detecting
stress/non-stress cases, and they found medium and low accuracy compared to PSI and
DTF features. The full mathematical expressions of the PDC measures can be found in
a previous study [74].

Directed transfer function (DTF) is an effective connectivity technique used to detect
the interaction patterns between neurons. Yu et al. [75] found that DTF has increased values
(enhanced EEG coupling) at alpha and beta bands after applying a mental arithmetic stress
task. In particular, these results lead to enhancing the flow of information from the central
regions (the source of information outflow) to parietal and occipital areas for alpha and beta.
According to a study [69] in quantifying stress, DTF shows the highest accuracy comparing
to PSI and GPDC. However, DTF does not differentiate between directed influence of
one signal to another [76], but it shows a higher performance than CCA, PSI, MSC and
PSD [50]. Meanwhile, the main limitation for using DTF is its sensitivity to cortico-cortical
and brain to heart functional coupling [75]. DTF mathematical expressions can be found
in articles [77].
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3.2. Power Spectral (Frequency Domain)

Spectral features are the characteristics obtained from the EEG signal in frequency
domain. In order to get meaningful information about the EEG, it is important to check the
segmentation process of EEG to get stationary signal. Thus, some of the more widely used
spectral features and processing techniques are described below.

Power spectral density (PSD) pursues to find power distribution for time-domain
EEG signal over frequency range and this provides significant information about cortical
activation. In particular, PSD is useful in describing stochastic process of the signal and
evaluating short data records [78]. There are several methods applied to estimating the
PSD, for example, fast Fourier transform (FFT), Welch, Burg, Yule walker, welch method
and periodogram [54]. Several studies have demonstrated the effectiveness of using PSD
to estimate the level of stress. For example, study in [79], reported that mental stress
decreased the EEG power spectral density in the alpha band. Likewise, the study in [20]
found a significant decrease in alpha rhythm when increasing the level of stress from
level 1 to level 2 (based on increasing the complexity/difficulty of the math task), and
then increasing from levels 2 to level 3. In particular, the difficulty of the math task was
increased from level 1 up to 3 by increasing the integer numbers and operands that were
used in the math operation. Meanwhile, according to [20], the most dominant cortical
structure that is involved in stress detection is the right prefrontal cortex. For detailed
mathematical formulations of the PSD method, refer to [80].

Other studies utilized absolute power (AP) as an indicator of stress. The AP at
a particular band is calculated by dividing the absolute value of fast Fourier transform of
the EEG signal by the signal’s length [81]. Meanwhile, studies in [59,82] used the relative
power (RP) to check the rhythm of EEG signal by finding the ratio between the power
of each band and the power of the total bands. Subhani et al. [45] and Arsalan et al. [83]
found that applying AP on stress/non-stress detection shows a significant difference
regarding theta EEG band (4–7 Hz) compared to other bands, whereas in the case of RP,
they reported that when stress levels increased, the RP decreased [45]. Consequently, RP
showed a better performance compared to the AP in spite of its sensitivity to the noise
and memory recall [81]. The detailed math expressions for the AP and RP methods are
identified by study [45].

Studies in [26,79] utilized powers from the wavelet transform (WT) coefficients to
extract features that are highly correlated with mental stress. They found that the mean
alpha rhythm power has significantly decreased from one stress level to the next higher
one. Moreover, WT is an appropriate method for multi-resolution time-frequency analysis.
This is done by decomposing the EEG signal into its frequency bands retaining information
in both: frequency and time domain. Then, from wavelet coefficients, the average power
and energy can be estimated. Even though the Fourier transform (FT) provides a frequency
domain representation of the signal, the wavelet transform creates a time and frequency
domain representation, providing a quick access to the localized information of the signal.
In particular, since EEG signals are nonstationary, using the FT may result in tiny changes
in the spectrum, and the analysis may alter depending on the duration of data. Thus,
WT is preferable to FT [84]. The mathematical formulations of the employed WT can be
found in [85].

Other studies used Gaussian mixtures of EEG spectrogram to detect stress by analyz-
ing the changing of spectral density of the EEG signal related to time domain. Moreover,
this data analysis method involves short-time Fourier transform (STFT) to calculate the
spectrogram of the time signal. After computing spectrogram, Gaussian mixture model
(GMM), which is a linear combination of Gaussian pdfs, can be estimated to find the
density [51]. The obvious role of this model is extracting the symmetric and asymmetric
EEG signal; however, some drawbacks of considering infinite range and symmetric nature
are reported [86]. Khosrowabadi et al. [51,87] have used this technique to quantify chronic
mental stress. They found that GMM has a lower accuracy than MSC, but higher than
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FD features when using SVM classifier. The detailed math expressions for the Gaussian
method are identified by studies [87].

The study in [88] quantified mental stress by using spectral moments (SM). SM was
processed to detect three power spectral moments from each EEG segment, that are related
to different root square moments with orders of zero, two and four. These moments are
found depending on the phase excluded power spectrum and the EEG length. Attallah
in [88] verified the effectiveness of spectral moment in differentiating stress/non-stress
cases and between several stress levels and reported high accuracy for SM with a linear
discriminant analysis (LDA) classifier. The full mathematical expressions of the SM method
can be found in [89].

3.3. Time Domain Techniques

The most widely used temporal features in quantifying mental stress are reviewed below:
Hjorth parameters are statistical parameters used to describe the EEG signal in the

time domain. The Hjorth parameters are also known as normalized slope descriptors
(NSDs). They consist of activity, mobility, and complexity descriptors. Activity parameter
demonstrates the signal power leading to denoting the surface of the power spectrum in
the frequency domain. The mobility approximates the mean frequency, and complexity
approximates the bandwidth of the signal [90,91]. These parameters depend on the time
domain, but they provide information about the frequency spectrum of the EEG [92].
However, theses parameters are sensitive to noise. Besides, the Hjorth parameters need
shorter computation time in getting frequency information in addition to forming a good
alternative for short time Fourier transform (STFT). Oh et al. [93] found that combining
Hjorth parameter with band pass filtering has a higher classification performance than
the general Hjorth parameter. The mathematical formulation of the employed Hjorth
parameter can be found in [94].

Other methods to estimate the complexity of EEG signals in the time domain are the
entropies. For example, Shannon entropy (SE) is used to estimate EEG signal irregularity
and to quantify energy distribution of power spectrum by analyzing the EEG time series.
This leads us to know brain behavior during a variety of states to detect mental stress [95].
Therefore, the study in [95] found the group that had the highest stress index (high mental
stress) tend to have the lowest alpha-band-entropy. Zhu et al. [96] used VR-based relaxation
therapy to relieve stress by evaluating the changes in Shannon entropy. They reported
that SE had an increased trend in the alpha band, before and after watching VR. Another
type of entropy is the Approximate Entropy (ApEn), which is used with time series data
to know the fluctuations unpredictability and the amount of the regularity. According to
Wang et al. [97], the complexity of the system is responsible for determining data length
when estimating the value of ApEn. Meanwhile, the study in [97] showed that mental
arithmetic task induced a significant increase of ApEn at the anterior cingulate and insular
cortex. The main advantage for ApEn is its ability to deal with noise and possibility to
be used with stochastic and deterministic chaotic signals. Moreover, the wavelet sum of
entropy was utilized by Hasan et al. [90] as a separate feature to identify the signs of stress
from EEG recordings. It represents the summation of the entropy after being calculated
for each wavelet band. These wavelet bands can be found as a result of dividing EEG
signal onto distinct frequency bands (generally five bands) and applying discrete wavelet
transform (DWPT) [90]. Finally, self-entropy (SE) is used to detect information processing
within the physiological network by estimating dynamical activity of the EEG signal [19,62].
Studies [96] include the mathematical expression for all entropy kinds.

Higuchi’s fractal dimension (FD) is the estimation of irregularity, complexity, and
nonlinear properties of the EEG signal where high and low values of FD are related to
irregular and regular waveforms, respectively [11]. Higuchi FD provides a significant
analysis for stress phases by computing fractal dimension, which is useful in real-time
testing for brain chaotic behavior during chronic mental stress [51]. Studies in [11,98] have
shown that combining FD with statistical features outperforms spectral power features.
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The recorded EEG complexity in frontal lobe has high values when using mental arithmetic
stressor [98]. On the other hand, Khosrowabadi et al. [51] detected a low accuracy for
Higuchi’s FD comparing to GMM and MSC features for SVM and KNN classifiers. The
main interest about FD is its independency of signal nature and high efficiency, but it is
sensitive to noise and frequency bands and its performance will be low when it is used
alone [99]. The mathematical formulations of the employed FD can be found in [100].

3.4. Statistical Features

This type of features can be found by applying standard statistical operations on the
EEG signal within the time domain to quantify stress levels. Thus, statistical techniques are
simple, easy to use and often complement each other [101]. Meanwhile, the most common
features for EEG data analysis are the mean, skewness, kurtosis, standard deviation, shape
factor, first and second difference, root mean square, and impulse factor [88,90,92,102].
Hou et al. [11] found that combining statistical features with fractal dimension and power
features improved the classification accuracy of stress. Moreover, study in [103] found that
the variance values are higher in rest than stress levels, whereas kurtosis showed increased
values in stress conditions when moving from delta to gamma bands. On the other hand,
the main drawback is related to using all these features in stress estimation, which leads to
longer time processing. Furthermore, some studies utilized principal component analysis
(PCA) as a conventional and statistical method for detecting samples in the EEG data of
high dimension. According to Deshmukh et al. [104], the main purpose of using PCA was
to reduce the dimension of the stress features before feeding into the classifier. This is done
by applying features Eigen vectors on features dimensionality to get the lowest orthogonal
dimensions [44]. Moreover, PCA provides information about how the investigated groups,
related to stress/non-stress conditions, could be separated into principal components
(PCs) space [105]. Shon et al. [92] analyzed mental stress and demonstrated that PCA
has a lower accuracy (65.30%) in the process of features selection than genetic algorithm
(71.76%). However, PCA limitation is the probability to fail in processing data when dealing
with complicated manifold [104].

4. Classification

Stress studies have examined various types of classifiers to assess the level of men-
tal stress. The most common and significant classifiers are SVM, LR, NB, KNN, LDA,
multi-layer perceptron (MLP), convolutional neural network (CNN) and long short-term
memory (LSTM). The following sections describe the implementation of the aforemen-
tioned classifiers on EEG stress studies. Table 1 summarizes the main findings of previous
EEG stress studies.

SVM is a binary classification model built in feature vector to discover the hyperplane
that optimizes the margin between input data classifications. Several studies used SVM
to discriminate between stress levels. For example, the studies in [51,106] applied SVM to
quantify two levels of stress and achieved accuracy levels of 75% and 90%, respectively.
On the other hand, studies in [107] have utilized SVM to classify three levels of stress.
Meanwhile, [26] combined SVM with an error-correcting output code and reported that the
average classification accuracy of these mental stress levels showed a drop in value from
97.61 to 95.37 and to 91.40 with the increased stress level. Besides, Gaikwad et al. [107]
had an accuracy of 72.30% in the real time by using a trained algorithm as a reference.
According to Hou et al. [11], increasing the number of stress levels (from two levels up to
four) declined the SVM accuracy.

Furthermore, studies in [19] have utilized LR to differentiate between stress levels.
LR is a statistical model that utilizes a logistic function to represent a binary dependent
variable in its most basic form, however many more advanced extensions exist. It is
used to investigate the relationship between one dichotomous dependent variable and
one (categorical or continuous) independent variable. Zanetti et al. [19] analyzed three
mental states and the recorded accuracy by LR was 84.30%, but even though LR had some
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errors in detecting resting states. Meanwhile, the achieved accuracy by LR was as high
as SVM and random forest classifiers when it was used with several stress states induced
by arithmetic stress task [45]. Saeed et al. [108] showed that logistic regression provides
a significant performance with 85.15% accuracy in stress quantification (specifically with
alpha asymmetry feature) comparing to other classification techniques such as KNN, NB
and MLP.

Some studies employed NB to classify stress levels. NB is a simple and fast prob-
abilistic classifier that is used when input dimensionality is large. It is based on Bayes’
theorem, which assumes that extracted features are independent to each other. Subhani
et al. [45] reported that NB achieved the highest accuracy in quantifying four levels of stress
with a recorded accuracy of 94.0%, 94.6%, and 91.7% for levels 1, 2, and 3, respectively.
Darzi et al. [50] detected two levels of stress using NB and found that SVM has a better
performance than NB even though the running time of NB is about five times shorter
than SVM, therefore NB is more suitable for online tasks. Thus, NB provides fast stress
quantification because no complex optimization parameters are required. Meanwhile, NB
had a low accuracy in Arsalan et al. [83] when dealing with theta band of two stress levels
(75%) and three stress levels (50%). Moreover, Saeed et al. [108] recorded an accuracy of
80.79% for quantifying stress by NB, whereas in [109] they showed that using low beta
waves as a feature vector will reduce NB performance to get an accuracy equal to 71.4%.

Furthermore, the non-parametric learning algorithm K-NN can be involved in quanti-
fying mental stress. The mechanism of K-NN depends on estimating the distance between
neighbors and choosing the K closest neighbors. Thus, two of the critical factors to be
identified are the optimal value of K and neighbors distance D [90,108]. Saeed et al. [108]
used K-NN with alpha asymmetry, beta, and gamma waves as features to quantify long-
term stress. They found that K-NN has an accuracy of (65.96%) when these features are
combined with each other. Meanwhile, the study in [50] found that K-NN has achieved an
accuracy of (90.0%) comparing to the SVM and Bayesian classifiers. The main advantage of
K-NN is the low computational complexity in quantifying stress/non-stress phases when
dealing with small-sized data [50,90]. However, K-NN has a drawback, which is the high
sensitivity to data local structure (dimensions).

On the other hand, some studies applied LDA as a machine learning method to classify
stress by finding the linear combination between EEG features. Therefore, it is difficult to
apply LDA on nonlinear EEG data due to LDA’s linear nature [110]. LDA was applied by
Minguillon et al. [111] to quantify three levels of stress using the average relative gamma
as a feature and found that, increasing the number of stress markers will enhance the value
of the recorded accuracy (50.0%). Meanwhile, Vanitha et al. [112] found that LDA has the
lowest accuracy (70.166%) comparing to the SVM (89.07%) and K-NN (72.67%) classifiers
when detecting stress levels for students. Consequently, the main drawback of LDA is
the assumptions and restrictions (linear decision boundaries) that are needed to establish
this classifier [111].

Besides, MLP is a non-linear artificial neural network model that is used to map
the input data into output data. It consists of multiple layers (at least three) that vary
between input, output and one or more hidden layers. Since MLPs are fully connected,
each layer is connected to the next one and each node will be as a neuron that uses non-
linear activation function. Several studies have employed MLP to quantify mental stress.
Saeed et al. [108] reported that, integrating alpha, beta and gamma features with MLP
provides the highest accuracy (85.13%) compared to the one that can be achieved using
a single feature. Meanwhile, Arsalan et al. [83] found that MLP outperforms both SVM and
NB classifiers and gives the highest accuracy for both two-and three-class quantification
of mental stress. Even though, the main drawback of MLP is the formation of over-fitting
because of excessive or insufficient neurons [108].

Another example for deep networks is that of deep CNN, which is considered as
a regulated MLP. It provides an alternative form to mimic the brain functionality in quan-
tifying mental stress [23]. Comparing to the other classification algorithms, CNN needs
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a little pre-processing, can be used for large size nonlinear data and it provides a significant
feature discrimination [113]. The main advantage of using CNN is the independence
from human effort and prior knowledge. Several studies utilized CNN to analyze mental
stress. For example, Jebelli et al. [114] quantified three levels of workers’ stress where
CNN yielded an accuracy of 79.26% that outperforms SVM’s accuracy (79.12%), whereas
in the study [115], CNN’s accuracy was equal to 86.62%. Meanwhile, they found that the
optimum network configuration to quantify workers’ stress level needs two hidden layers
with 83 and 23 neurons in the first and second hidden layers, respectively. Therefore, CNN
facilitates the need for EEG feature extraction, which consumes time in the supervised
learning algorithms [115].

5. Results

Most of the reviewed studies have reported high alpha activity during relaxation
states compared to the stressful conditions. In particular, a significant increase in the
spectral power is more apparent after applying stimulus. EEG gamma activity showed
a varied response, but generally a relatively decreased gamma activity can be observed
with both relaxed and stressful situations. Hence, gamma oscillations may not be sensitive
to stress level variations. Regarding fast beta band, it has a significant positive interaction
indicating stronger increase in stress phases. Furthermore, central, and parieto-temporal
areas are the most affected cortical regions with alpha and slow beta. Inspection of these
variations related to different frequency bands were sided by the result of having stronger
interaction effects in the right hemisphere comparing to the left one. Figure 2 summarizes
the classification accuracy for each of the five different frequency bands extracted from the
reviewed studies.

Figure 2. Classification accuracy based on EEG frequency bands.

In general, accuracy refers to the percentage of accurate predictions. A value close
to 100 indicates that the classification model is performing well. As a result, features are
chosen from those EEG frequency bands that improve classification accuracy. To choose
the best frequency band, all possible combinations (from five frequency bands) were used.
According to the discussed sections, different classifiers were used to quantify mental
stress using EEG. In order to get the proper performance, there are three parameters that
will be needed: accuracy, sensitivity and specificity. They have been used to identify
the classifier ability in correctly distinguish between positive and negative results and
to measure each one of them properly. This performance is influenced by the quality of
EEG signal, processing power and the EEG feature components that are used as an input
to the classifier [83,116]. Arsalan et al. [83] found that, combining MLP classifier with
PSD, correlation and rational asymmetry features outperforms SVM and NB in classifying
two/three levels of stress. Furthermore, combining several results for multiple sensors may
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provide a better classification accuracy [117]. In particular, specific features and classifiers
have reached high levels of accuracy such as PSD and SVM. Meanwhile, all references
that have used Montreal Imaging Stress Task (MIST) as a stressor, rely on SVM classifier
except Minguillon et al. [111], which has LDA instead. Despite the achieved low accuracy
(50.00%) by the article [111], EEG measurements provided shorter response time, significant
cognitive information and low sensitivity to physical activity. Thus, combining EEG with
physiological signals elevates the LDA accuracy up to 86.00%. On the other hand, Xia
et al. [44] got an accuracy equal to 79.45% when using ECG and EEG measurements with
SVM classifier in addition to high number of participants and EEG electrodes. Therefore,
the selected EEG features (relative power, power ratios, amplitude asymmetry, coherence,
and phase lag) have shown promising and robust results when employed with MIST
stressor and SVM classifier in quantifying mental stress. Furthermore, using NB classifier
and the increased number of frequency bands were the main reason of getting high accuracy
by Subhani et al. [45] comparing to Xia et al. [44] that have used the same criteria.

Different stressors can be employed to generate mental stress, resulting in a variety
of impacted brain regions. Students’ examination periods can be used to develop long-
term psychological mental stressors. According to Darzi et al. [50] long-term stress affects
the functional connectivity of the temporal-parietal and the left central and temporal
regions. Furthermore, for music and videos stressors, pre-frontal region of the brain
has shown increased activities when using two EEG electrodes to get differences between
two frontal regions [92]. Lotfan et al. [118] utilized the Trier Social Stress Test (TSST), which
includes free speech and mental arithmetic task in front of an audience, to induce moderate
psychosocial stress. The brain connectivity measures revealed that the two situations,
including before and 20 min after the TSST exposure, produced the same levels of stress.
This indicates that the persistence of stress after 20 min fades and the brain network mimics
the condition before stress. Al-Shargie et al. [119] used MIST, which increased beta rhythm
power and decreased alpha rhythm power in the right pre-frontal cortex (sensitive to
mental stress) and this is what was estimated by fMRI studies [120,121]. Likewise, using
MIST task, the ventrolateral prefrontal area (VLPFC) achieved a higher accuracy than
other PFC subregions [56]. Stroop color word task affects the temporal and spatiotemporal
regions where several stress levels are induced individually to each subject [11]. For
Maastricht Acute Stress Test (MAST), its protocol induces a realistic stress reaction in the
subjects, which leads to variation of several salient physiological features [105]. Finally,
driving task shows increased cortical activities for low level of stress, but it decreases
with elevated stress level and time. Hence, this test makes a drop in alpha rhythm power
when moving from rest to the stress state [122]. Figures 3 and 4 compare the resulted
classification accuracy of different types of EEG data analysis methods using MIST and
SCWT stressors, respectively.

Figure 3. Classification accuracy with MIST stressor.
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Figure 4. Classification accuracy with SCWT stressor.

Some experiments of stress detection combined more than one stressor such as arith-
metic task with either Stroop test [102,123] or relaxing videos [19] and mental workload
with public speaking [124]. Moreover, as discussed by studies in [19,124], employing
normal four frequency bands showed accuracy levels of 83.33% and 84.30% using NB and
RF classification methods, respectively. However, Ahn et al. [123] derived two frequency
fields (low and high bands) and reached 77.90% accuracy by SVM whereas the accuracy
of Jun et al. [102] was about 96% by three different bands (theta, alpha, and beta) with
SVM classifier.

For studies that are interested in analyzing stress in normal daily life (psychological
labelling), no stressors were introduced to the subjects. They used the same procedure
in labelling participants and acquiring EEG data. There was an obvious variation in
the treated frequency ranges. Thus, the highest accuracy was acquired when dealing
with seven bands where they got 85.20% for SVM [108] comparing with the three bands
78.57% [54] and four bands 83.33% [106] that have used same classifier. Besides, the lowest
performance was related to two frequency fields with 71.4% accuracy with NB classifier.

There are significant accuracies that have been achieved related to variety of stressor
types. Studies in [118,124,125] used four bands but different classifiers and stimuli; for
example, Lotfan et al. [118] obtained an accuracy of 92.31% with SVM and TSST stressor
and noted increasing levels for another physiological measurement, which was cortisol
level, whereas Masood et al. [125] detected 87.50% performance when applying CNN
classifier and cognitive tasks, but Secerbegovic et al. [124] got a low value of 77.08% for
SVM and mental workload test despite detecting a critical positive effect for applying EDA
and ECG with the used EEG.

Another set of studies examined the temporal lobe when having stressors as a form of
odor and traffic noise. They found a positive correlation between mental stress and EEG
beta power rhythms [126–128]. Table 1 summarizes previous studies related to mental
stress classification using EEG signal. The summary focuses on the type of techniques that
are used to quantify mental stress taking into consideration the number of subjects, number
of EEG channels, type of stressor, duration of the experiment, the analyzed frequency band,
the extracted features, type of classifier, and the achieved performance. The summary in
Table 1 orders the reviewed studies based on the type of stressor.
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6. Discussion

Stress has become a growing problem in our daily lives by having a negative impact
on both individuals and society. Different systems of the human body, such as the nervous,
immune, cardiovascular, and gastrointestinal systems, are negatively affected by stress.
This directly influences or transforms the hippocampus, a brain field, regardless of the
nature of the stress. The victim’s memory and decision-making capabilities are harmed as
a result of this brain alteration. It also has a detrimental effect on hormone excretion, which
is important for proper immune system processing. Stress also causes cardiac-arrhythmias
by amplifying or decreasing heartbeats, blood pressure, and creating disturbances in
the cardio-vascular system. Meanwhile, it has negative effects on the gastrointestinal (GI)
system, such as decreased appetite, disruption of normal GI tract activity, and crabby-bowel-
syndrome. Thus, mental stress evaluation and analysis are very important procedures
that can be done to detect stress in order to prevent significant health problems. Despite
the number of studies that covered this phenomenon using EEG signals, there is a lack of
inclusive guidelines about the relevance between EEG feature and its extraction methods.
Here, we conducted a comprehensive review on the methods of analysis of mental stress-
based EEG signals. Specifically, our review focused on the type of the method used for data
analysis and classification model. In particular, we found that selecting the right method
of analysis is challenging because of factors variety that are exercised in the experiments.
These factors include EEG sensor, sample size, stressor type, task duration, time of the
day, proper EEG processing, feature extraction mechanism, number of features and type of
classifier. Therefore, the significant part related to mental stress quantification is choosing
the most appropriate features. Another case of concern is the large discrepancy between
individuals and response to stress. For example, different stress response may be acquired
for a particular subject depending on his psychology, sociality, health, and emotional state.

The methods of quantifying mental stress using EEG varies across the analysis spec-
trum. As previously stated, because the brain acts in networks, descriptors of network
functioning will be required to completely comprehend neural processing. In this work, we
provided a comprehensive review on these analysis methods. Meanwhile, we highlighted
the key differences spotted between the research findings and argued that variations of the
data analysis techniques could be a significant contributing factor towards several contra-
dictory results. Besides, the extracting features that are related to brain connectivity showed
a clear model of the brain and how its different regions are interacting with each other.
Therefore, studying feature extraction techniques related to brain connectivity provides
a clear model of the brain and how its different regions are interacting with each other.

Moreover, there is a variety in the experiment duration between the discussed refer-
ences. Thirty minutes process of the study in [111] involves maximum voluntary contrac-
tion (MVC), resting state (RS), MIST training and task, three questions about self-perceived
level of stress and a relaxation period. Meanwhile, the eighty minutes period of data
acquisition of the studies [44,45] comes from two conditions (stress and control) where
each one consists of 40 min of habituation, rest, four levels main condition, and recovery
periods. In the experiment protocol of Al-Shargie et al. [20], it takes 60 min duration
divided between introduction, training, resting, and the main experiment, which needs
about 40 min using three levels of mental arithmetic task. Besides, the four minutes of
the study in [88] depend on the experiment procedure, which includes 3 min of counting
and 1 min of serial subtraction where EEG data is recorded. They have used 18 min du-
ration in the study that involves a brief introduction, training, data recording for control
and stress conditions. Saeed et al. [108] achieved an increase in beta rhythm power and
a decrease in alpha rhythm power in the pre-frontal cortex with a total duration of 25 min.
Consequently, to avoid the effect of time on subject’s cognitive ability and the influences of
circadian rhythm on stress performance, it is preferred to conduct the EEG experiment on
all participants at the same time of day [44].

The task nature and sample size had a direct influence on classifier accuracy, such as
the restricted duration in doing mental arithmetic tasks, which leads to low performance

77



Sensors 2021, 21, 5043

accuracy [45] and the varied results gained with a large number of participants with
the studies in [44,45] compared to [111]. It is worth noting that the majority of studies
have a limited sample size, meaning that the amount of people involved is insufficient to
overcome prejudices caused by individual differences. A larger sample size is needed to
ensure statistical power and to bolster our findings.

On the other hand, decreasing the number of EEG electrodes maintains real time
stress detection, but could increase system mobility and ease. Therefore, using one or two
frontal electrodes might be sufficient to detect stress/control phases, but in order to get
their level it is better to use more electrodes as suggested [88]. As mentioned in the EEG
processing section, the extracted EEG signal undergoes to several denoising processes that
may eliminate the unwanted peaks and artefacts, but small remaining noise could deform
the information of analyzed EEG.

Finally, the used EEG sensor to record data and measure mental stress has a huge
impact on the number of channels available. The number of channels in a typical EEG
system can range from 1 to 256. The 10/20 system, which governs the positioning of
electrodes on the brain, is followed. The benefits of multi-channel EEG systems are that
they do a better job of avoiding data loss, particularly as the sensor network expands to
more channels (caused by when electrode distances grow further apart when fewer are
deployed) as well as in detecting vital clinical signals. This means that medical applications
need higher resolution EEG systems (larger sensor networks) to complete the task.

7. Challenges and Future Work

Most of studies induced stress in controlled environments, whereas the better method
is to develop a protocol that sustains the real scenarios such as virtual reality. Furthermore,
the discussed researches did not correlate the physiological changes, such as cortisol
levels, with the behavioral response. Most of the reviewed studies conducted offline
experiments, but we suggest developing an online system that deals with stress recognition
in the real time. Moreover, one of the critical factors that influences stress assessment
results is the ground truth that is needed to train the classifier by sorting subjects into
stress/non-stress groups. Most of studies established this labelling by questionnaire
score, psychologist interview or both of them. Nevertheless, these two methods cannot
provide a direct judgment on mental stress existence because of the high dependency on
participants themselves (in many cases, they expect a wrong stress situation because of
subconsciousness). Unlike the used simulated experiments, a significant challenge will be
faced when labelling subjects in real world tasks.

As a future work, suggesting EEG feature extraction techniques could be useful in
improving stress detection such as phase synchronization and source localization. Phase
synchronization is used to analyze interdependence between two-time EEG signals re-
gardless of their amplitude. It has high sensitivity that leads to detect dynamical changes
of brain functions during mental stress. While EEG is a powerful tool for measuring
neuronal activity and connectivity, the lack of spatial resolution could be a drawback. EEG
source localization may be used to estimate the locations of electrical activities from the
scalp potential measurements. The information of localization about these active sources
(depending on the recorded potential from the electrodes) provides a good diagnosis for
the mental state and brain abnormalities. This method can be combined with other feature
extraction techniques such as directed connectivity measures.

8. Conclusions

In this paper, we have presented a comprehensive review of EEG signal analysis
methods for the assessment of mental stress. A rigorous procedure was adopted for the
search strategy and identification of relevant studies. The review emphasized the major
discrepancies between the research findings. It also suggests that various data processing
methodologies have contributed to numerous conflicting outcomes. These various can
be attributed to a number of variables, including the lack of a consistent procedure, brain
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regions of interest, type of stressor, duration of experiment, EEG signal processing, feature
extraction technique, and the type of classifiers used. In addition, we have reported
the effect of sample size bias in connectivity estimation. This problem can be solved
by equalizing sample sizes between different conditions or participants, using statistical
methods that explicitly account for sample size bias, or employing connectivity approaches
that are not affected by sample size bias. Moreover, understanding the relationships
between mental stress and the complex and diverse EEG characteristics, such as time-
varying, functional, and dynamic brain connections, necessitates the integration of several
data analysis methods. As a result, we propose combining the network connectivity
measures with deep learning to increase the accuracy of assessing mental stress levels.
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Abstract: Exposure to mental stress for long period leads to serious accidents and health problems.
To avoid negative consequences on health and safety, it is very important to detect mental stress at
its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed
an experimental protocol to induce two different levels of stress by utilizing a mental arithmetic
task with time pressure and negative feedback as the stressors. We assessed the levels of stress on
22 healthy subjects using frontal electroencephalogram (EEG) signals, salivary alpha-amylase level
(AAL), and multiple machine learning (ML) classifiers. The EEG signals were analyzed using a fusion
of functional connectivity networks estimated by the Phase Locking Value (PLV) and temporal and
spectral domain features. A total of 210 different features were extracted from all domains. Only the
optimum multi-domain features were used for classification. We then quantified stress levels using
statistical analysis and seven ML classifiers. Our result showed that the AAL level was significantly
increased (p < 0.01) under stress condition in all subjects. Likewise, the functional connectivity
network demonstrated a significant decrease under stress, p < 0.05. Moreover, we achieved the
highest stress classification accuracy of 93.2% using the Support Vector Machine (SVM) classifier.
Other classifiers produced relatively similar results.

Keywords: mental stress; electroencephalography; feature extraction; functional connectivity net-
work; time-frequency features; machine learning

1. Introduction

Mental stress has become a catchphrase nowadays, affecting almost everyone, due to
the increasing demands in the workplace, life burdens, changing lifestyles, and technologi-
cal interventions. The long-term effects of stress not only impact health issues, such as heart
disease, obesity, diabetes, stroke, and depression [1–3], but have economic consequences
too. The economic losses can reach up to billions of dollars [4]. Thus, researchers are
trying to detect mental stress at its early stage to prevent it from becoming chronic. The
evaluation of human psychological stress usually performed using subjective or objective
measurement methods. The subjective stress assessment methods used psychological as-
sessment approaches, such as a clinical interview and psychological-based questionnaires,
such as the Trier Social Stress Test (TSST) [5,6], Perceived Stress Scale (PSS) [7–9], State-Trait
Anxiety Inventory (STAI), and Hospital Anxiety and Depression Scale (HADS) [10].

The drawback of subjective methods is that it is subjective to the user’s reported
answers, and it only describe the current state of the subject’s stress level. Recent studies
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have focused on an objective method of physiological assessment, which gives the indi-
viduals the freedom to assess their mental stress states without the expert’s intervention
and drives more reliable evaluation [11–13]. The physiological assessment depends on
the body’s reactions towards stress, such as facial expressions [5], blink rate [14], pupil
dilation [15], eye gaze, and voice intonation [16]. Several studies have reported that for
anyone diagnosed with stress, their body had shown different symptoms by changing the
normal activities of these bio-markers: catecholamine, cortisol level, and alpha-amylase
enzyme [11,12]. Additionally, during stress, the frontal area of the brain showed high
activity of glucose metabolism and blood flow [9,17]. Therefore, several studies utilized
different modalities such as functional brain imaging (i.e., functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG)) technologies to identify the brain
regions and fluctuation of brain activities affected by stress [12,17,18]. The prefrontal cortex
(PFC) was the common area that appeared to be sensitive to stress exposure. Moreover,
there is an evidence of changes in the autonomic nervous system’s (ANS) activities under
stress [19]. Consequently, physiological features of stress from the ANS can be seen as
subtle changes in heart rate (HR), heart rate variability (HRV) [6], respiration [20], skin
conductance [21], and blood pressure [22]. Currently, the focus is on brain activities as,
according to the latest work in neuroscience, it is the main target organ of mental stress
due to its responsibility to distinguish between different situations’ contexts (i.e., stressful
and threatening or not) [23]. The brain activities are usually analyzed by several tools, such
as EEG [24], fMRI [25], positron emission tomography (PET) [26] and other neuroimaging
modalities. EEG is a measurement tool that depicts the electrical activities on the brain’s
surface. Compared to other modalities, EEG provides high temporal resolution to detect
the time variance of changes in the brain’s state [27], is easy to setup, and is commercially
available at a lower cost.

To measure stress in real life, researchers used a different approach to stimulate stress
in laboratory settings. Several validated stress inducement methods were established
such as mental arithmetical tasks [13], negative feedback and time pressure [28], public
speaking [29], and noise manifested by music [30]. For the sake of validity and increasing
the accuracy of detection, researchers, in many cases, employed a combination of one
or more modalities with EEG, such as skin conductance [31], functional near-infrared
spectroscopy (fNIRS) [13], and electrocardiography (ECG) [11]. Even though applying
additional modulation with EEG improved the accuracy, it is not suitable for home-based
applications due to the knowledge base required, lengthy setup time, and the expensive
and inconvenient usage for wearable devices. Therefore, current studies suggest that the
enhancement of EEG signals could be accomplished by obtaining the optimal features from
specific regions of the brain related to the task.

For the aim of finding the relative EEG markers that explain mental stress and increase
its detection rate, several studies employed different types of features from the time domain,
frequency domain, and time-frequency domain [8,32–36], and several machine learning
algorithms have been used to predict the mental stress state, such as SVM [37], K-Nearest
Neighbors(KNN) [29,38], LR [1], Feed-Forward Neural Network (FF-NN) [30], Naive
Bayes(NB) [9,38], and Random Forest(RF) [39]. In the literature, non-invasive EEG-based
stress studies suggested that bio-markers (i.e., alpha, beta, and gamma) in specific brain
areas could reveal the mental stress state [18,40,41]. However, no consensus has been
reached about the particular established EEG patterns/features that differentiate stress
levels, see review [36]. In studies [8,29,42], different frequency band features have been
demonstrated to classify stress tasks. The low beta was considered as one approach to
recognize mental stress [9]. Similarly, alpha rhythm power at the right PFC was shown to
be more discriminative to stress and rest states [28,36]. Another study in [11] showed that
the PFC relative gamma power (RG) was more discriminative between stress levels than
alpha asymmetry.

Current researchers acknowledge that multi-domain features and multi-channel analy-
ses are required to create an effective information feature space in which a good interpreter
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can eventually produce effective alarms for the current mental state. As a result, studies
presented by Attallah [34] and Hasan [43] revealed that hybrid feature sets from various
domains (time domain, frequency domain, and time-frequency domain) may enhance the
overall classification of EEG emotion analysis. To the best of our knowledge, no study on
fusing such domains with functional connectivity network features has been done. In con-
trast to the majority of cortical activation features, which focus on a single channel feature,
functional connectivity features look for relationships and interactions across different re-
gions of the brain (inter-channel relations). This knowledge aids in a better understanding
of how the brain functions and could offer more accurate representations of mental stress
states. To address the aforementioned limitation, this study aims to investigate the fusion of
functional connectivity network features with cortical activation features from the time and
frequency domains to detect mental stress in order to aid in the development of wearable
devices. In contrast to prior research, our objective is to combine single-channel features
with inter-join channel features (connectivity). Thus, we employ a well-established clinical
assessment method using salivary alpha amylase (cortisol measure) to enhance the labeling
of the task given. We then propose an objective method based on the machine learning
framework to classify stress levels with a minimum number of EEG channels. We present
a novel methodology to identify mental stress by investigating the statistical difference
between stress and rest conditions. The proposed method is analyzed and evaluated using
seven classifiers [36], namely: KNN, RF, Logistic Regression (LR), SVM, classification and
regression Decision Tree (CART), Linear Discrimination Analysis (LDA), and NB. The
accuracy, precision, recall, and F-score matrices were used to evaluate the performance of
the classifiers.

The following section summarizes our contributions in this work.

1. Developing an experimental protocol to induce two levels of mental stress (stress/rest
or control) in a short time, which is important for real-life application.

2. A multi-domain feature set is proposed by fusing features from the time domain,
frequency domain, and functional connectivity networks.

3. A feature selection method was implemented to select the most discriminative fea-
ture sets.

4. The performance of the proposed method is tested and evaluated using seven machine
learning classifiers.

The rest of the paper is organized as follows: Section 2 describes the dataset, protocol
setup, and data annotation. Section 3 explains the detailed methodology. In Section 4,
the classification evaluation method is presented. In Section 5, results and analysis are
discussed in detail. In Section 6, a discussion of the results is provided, and the study’s
conclusions are presented in Section 7.

2. Dataset and Materials

2.1. Participants

In this dataset, the total number of participants was 22 subjects (aged 26 ± 4 with head
size of 56 ± 2 cm). All subjects were male right-handed healthy adults having the same
culture and background (undergraduate students). The participants were asked about
their medical condition to fit the experiment eligibility. Smokers and drug users were
excluded due to their effect on the sympathetic nervous system. Moreover, participants
must have no history of any physical or mental health problems. Several rules had been
imposed on them before starting the experiment. For example, no eating or drinking
two hours before the experiment and no physical activity occurred [13]. The experiment
time was chosen between 4.00 and 5.30 p.m. to reduce the circadian rhythm’s effects on
cortisol collection. The experiment protocol was approved by the institute review board of
University Teknologi Petronas.

87



Sensors 2021, 21, 6300

2.2. Stress EEG Measurement and Protocol

The experiment task protocol was based on the Montreal Imaging Stress Task (MIST),
which was described in detail in [44]. The task was created using MATLAB and presented
using a Graphical User Interface (GUI). It involved a mental arithmetic task (MA) using
simple calculation of two-digit integers (ranging from 0 to 100) with operands restricted to
+,−, and (/ or *) (example 99/3 − 76 + 51). The answer for each question was displayed
in the GUI using a numerical order ranging from ‘0’ to ‘9’, and participants were trained
to select the correct answer with a mouse click. The experiment task was performed in
three subsequent phases: preparation, rest condition, and stress condition. Each phase is
described in detail below. In the preparation phase, participants were given five minutes to
practice the MA task, and the average time taken to answer the questions was recorded for
each participant, which would later be utilized as a time constraint to induce stress.

In the stress phase, a cap of EEG electrodes was placed on the frontal region of each
participant’s scalp, and simultaneous measurement was performed while the participant
solved the arithmetic within a time limit (derived based on a 10% reduction from the
average time recorded during the preparation phase). Additionally, the average peer
performance was displayed on the screen as a real-time performance indicator of subject’s
performance compared to other participants. Notification of a negative message for each
response that exceeds the time limit or gets the answer wrong, i.e., a message of “Incorrect”,
or “Time’s up” being flashed on the screen. The negative feedback was intended to add
more stress to the participants.

In the rest phase, the participant was instructed to keep calm and relax while looking
at the fixation cross presented at a computer monitor. The presentation of the stress and
rest states was in a block design. There was a total of five blocks in each of the stress and
rest conditions, as shown in Figure 1. For every block, an arithmetic task popped up for
30 s to induce stress, followed by 20 s of rest. During the 30 s of the stress task, multiple
mathematical questions were displayed on the computer monitor based on participants’
response time in answering each question. For the 20 s of a rest condition, the participant
looked at the fixation cross in the computer screen as a visual cue for the trial onset.

Figure 1. Experiment block design. A total of five active blocks for each task with salivary alpha
amylase (SAA) cortisol was collected before and after the stress task and presented by the letter S
with a red background. For each block, arithmetic tasks are given for the 30 s followed by 20 s of rest.
The red dashed line marks the start of the task, and the green dashed line marks the end of the task
(the marking is done at every block).
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The EEG signals were recorded using the Discovery 24E system (BrainMaster Tech-
nologies Inc, Bedford, OH, USA). The system was equipped with 7-electrodes (Fp1, Fp2,
F7, F3, F4, Fz, F) placed on the prefrontal cortex, as shown in Figure 2. The EEG electrodes
were referenced to the earlobe electrodes (A1 and A2). The placement of the EEG electrodes
was based on the 10–20 system and was sampled at 256 Hz.

Figure 2. EEG Channels’ Position on Scalp.

2.3. Dataset Labelling

The EEG signal has been labeled for each subject based on the cortisol of the salivary
amylase level (AAL). During the experiment, two samples of AAL were obtained, as
shown in Figure 1. The first AAL sample was collected before starting the experiment
task (stress/rest condition) as a baseline. The first AAL result was supposed to show
the initial state of the subject as not stressed; otherwise, the subject would be removed
from the study. The second AAL sample was collected at the end of the experiment. The
data annotation/labeling of the EEG signal was based on the cortisol level; medically,
cortisol levels greater than 60 micrograms per decilitre (mcg/dL) indicate that the subject is
stressed, while those between 30 and 60 (mcg/dL) are labeled as working brain condition,
and those less than 30 (mcg/dL) are labeled as the rest state [44,45].

3. EEG Base Mental Stress Analysis Method

This section describes the proposed methodology process for implementing the stress
detection method, namely signal preprocessing, feature extraction and selection, and
classification, as shown in Figure 3.

3.1. Signal Preprocessing

The raw EEG signals were preprocessed using Python and an external MNE pack-
age [46]. The raw EEG signals were band-pass filtered using a finite impulse response (FIR)
filter with 1 Hz to 35 Hz bandwidth. Since we only measured the frontal cortex, the EEG
data were re-referenced to the average reference as suggested by [47]. Consequently, the
noise caused by 50/60 Hz of line power was omitted. Furthermore, Fast-ICA has been
used to eliminate the associated noise caused by eye blinking called electrooculogram
(EOG) artifacts under 4 Hz, muscle artifacts (EMG) with frequency beyond 30 Hz, and
heart rate [48]. Fast-ICA has the significant ability of denoising ocular artifacts (OAs) that
exist in low frequencies less than 16 Hz, therefore delineating the overlapping frequency
bands [49]. The EEG signals were segmented into 1000 ms EEG epochs relative to the target
task. The selection of 1000 ms or 256 EEG data points was due to its stationarity at an epoch
size of >256 for experiments involved in event-related potential. This number of data points
is appropriate to show the stationarity of EEG signals and have been reported in previous
EEG studies with a comparable data point [50–52]. The baseline was extracted and omitted
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using the full length of each epoch. Then, all EEG epochs were visually double-checked
to eliminate data segments contaminated with noise. Lastly, we identify from the clean
EEG signals two mental states (stress and rest). The first 20 s of rest from the first block
were considered for the rest state, and another 20 s from the last stress block (block 5)
were considered for the stress condition. The two states were labeled based on the results
obtained from the cortisol data collection of AAL.

Figure 3. Proposed ML methodology flow chart for mental stress state recognition.

3.2. Feature Extraction

Feature extraction is a crucial step in analyzing and classifying EEG signals [43]. Be-
cause the EEG signal is a non-stationary and time-varying signal, choosing an appropriate
technique to extract useful features that reflect brain activity is critical for reducing di-
mensional space, improving processing performance, and increasing the detection rate.
EEG features can be broadly categorized into single-channel features and multi-channel
features. The majority of the existing features are computed on a single channel that
involves temporal and or spatial information from a specific brain region, e.g., statistical
features, frequency-domain features, e.g., PSD. A few multi-channel features are computed
to reflect the relationships between different brain regions, e.g., brain connectivity features.
The EEG signal comes from a complex of interconnected brain neurons. Hence, the fusion
of the brain connectivity with cortical activation features may provide us with a more exact
model of the brain and how its various areas interact with each other. In this paper, both
cortical activation features (single-channel features) and functional connectivity network
features (multi-channel features) have been employed.

In particular, twelve (single-channel) features were extracted from both the time
domain and frequency domain of the cleaned EEG signals for each of the seven channels
(Fp1, Fp2, F7, F3, F4, Fz, and F8) located at the prefrontal and frontal region of the brain.
Those EEG features were six features per EEG channel from the time domain: kurtosis,
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peak-to-peak amplitude, skewness, and Hjorth parameters of activity, complexity, and
mobility. Likewise, six features per EEG channels were extracted from the frequency
domain of relative powers for frequency bands: delta δ, theta θ, alpha α, sigma σ, low
beta β, and high beta β. Additionally, a total of 126 features (multi-channel features) were
extracted from the connectivity network of all channels. The EEG signal’s length used
for feature extraction methods was 40 s (20 s stress, 20 s rest), segmented by the epoch of
1 s, which results in a total of 40 segments, and each segment consists of 210 features per
subject for both stress and rest tasks. Table 1 shows the summary of dataset content.

Table 1. A summary of Dataset Structure Content.

Name Array Shape Array Content

Data 40 × 7 × 256 Trails × channels × samples (256 Hz × 1 s)

Label 40 × 2 Trail × label (stress, rest)

Each of the domain’s features was explained in detail in the following subsections.

3.2.1. Time-Domain Features (TDFs)

The TDFs were calculated from the cleaned EEG signals at each epoch. The TDFs are
also called statistical features widely used in the classification of EEG signals to measure the
irregularity of signal amplitude in the time domain. Therefore, several studies employed
TDFs in emotion [29] and stress classification [37,39]. In this paper, six statistical features
were extracted from the time domain, namely: kurtosis, peak amplitude, skewness, and
Hjorth parameters of activity, complexity, and mobility. Each of these features was extracted
from each channel per subject. The full details of these parameters are given below.

Kurtosis: is the measure of the relative flatness of an EEG signal distribution per
segment (epoch), and it is calculated using the equation.

Kurtosis =

1
T ∑T

t=1(x(t)− μ)4

σ4 (1)

where T is the number of epochs , x(t) is time-series sample points, and μ, σ are the mean
and standard deviation of the signal.

Skewness: measures the distribution difference between the mean and the median for
each variable of epochs.

Skewness =

1
T ∑T

t=1(x(t)− μ)3

σ3 (2)

Peak-to-peak amplitude (ptp_amp): the change between the peak of the highest
amplitude value and the lowest amplitude value among the various time windows.

Hjorth parameters: three features of Hjorth Parameters (TDHPs), namely activity,
mobility, and complexity of the signal, are extracted, which are useful for the quantitative
evaluation of an EEG signal and can be expressed as:

• Hjorth Activity: The activity measure represents the signal power and measures the
variance of a time function using the equation.

Activity = var(x(t)) (3)

where x(i) represents the signal on time.
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• Hjorth Mobility: mobility represents the mean frequency or the proportion of the
standard deviation of the signal and is denoted by:

Mobility =

√√√√√ var(
dy(t)

dt
)

Activity(y(t))
(4)

where mobility represents the square root of the variance of the first derivative of the
signal x(t) divided by the activity.

• Hjorth complexity: the complexity parameter gives an estimate of the bandwidth of
the signal, which indicates the similarity of the shape of the signal to a pure sine wave.

Complexity =

√√√√√ Mobility(
dy(t)

dt
)

Mobility(y(t))
(5)

All these extracted features were then fed as an input to the classifiers.

3.2.2. Frequency-Domain Features (FDFs)

In the frequency domain, the multitaper method is used to estimate the power spectral
density (PSD) because it provides a more robust spectral estimation than the classical
methods and Welch’s periodograms [53]. Compared to Welch’s approach, the multitaper
method does not need to identify a window duration because it computes the periodogram
on the whole signal and provides a high-frequency resolution and low variance [53].

Multitaper spectrum estimation (MSE): a Nonparametric method used to estimate PSD
from a combination of multiple orthogonal tapers (or “windows”). MSE aims to recover the
information lost when using a single taper and offers significant performance gains over a
nonparametric single taper. The estimator is the average of the K direct spectral estimators,
each acting on the whole data record (rather than on a signal segment, as happens in the
Welch method) and applying different tapers. Each (partial) estimator is computed by:

Ŝk =

∣∣∣∣∣
N

∑
i=1

hi,kXi+l−1e−2jΠ f tΔt

∣∣∣∣∣
2

(6)

Let x(t), for t = 0, 1,..., N 1, be a zero-mean time series with unit sampling and spectral
density S(f), Δt is the sampling interval, hi,k is the kth data taper, and the bandwidth for Δt
is 1 s.

The final estimator is computed as:

Ŝk =
1
k

k−1

∑
k=0

Ŝk( f ) (7)

where K is equal to 2NW − 1, and 2 W is the normalized bandwidth of the tapers.
The relative power (RP) of six frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), sigma (12–15 Hz), low beta (15–20 Hz), and high beta (20–30 Hz) were computed
from the MSE of PSD. The RP is expressed by divided the specific power band over the
total power of all bands and calculated as below:

RP =
power(selected_band)
power(total_bands)

∗ 100 (8)

The RP features were then used as an input to the classifiers.
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3.2.3. Functional Connectivity Network

The functional connectivity network is generated by measuring the connection be-
tween electrode pairs in each frequency band using Phase Locking Value (PLV). The PLV
technique, similar to the conventional coherence method, computes the correlation between
two pairs of EEG channels in distinct frequency bands. The PLV is an effective measure
of brain functional signals due to its ability to quantify locking between the phases of the
signals from two distinct electrodes and does not depend on the assumption of stationary
signals [54]. Therefore, PLV was proved to be a valid method to investigate task-induced
changes in the long-range synchronization of neural activity from EEG data [55]. To cal-
culate the phase-locking value, we extract the instantaneous phase φa

i (t) of the analytical
signal xa

i (t)of the time series xi(t).
Then, for each pair (i, j) of EEG channels, we compute the modulus of the time-

averaged phase difference projection onto the unit circle and computed it in Equation (9):

VLPij =

∣∣∣∣∣ 1
T ∑

t
ei(φa

i (t)−φa
j (t))

∣∣∣∣∣ (9)

where N is the total number of trials in time series, and φi and φj are the instantaneous
phase values at trial index n. The PLV values range between [0, 1], with 0 indicating no
phase synchronization and 1 indicating that there is a fixed relative relationship between the
two signals in all trials. Because PLV employs undirected measurement for all electrodes, it
is known as symmetric measure (PLV(k1, k2) = PLV(k2, k1)).Thus, the direct connection is
ignored, and the total number of connections between the EEG channels is measured using:

N =
k(k − 1)

2
(10)

where k is the total number of channels. In this paper, the total extracted connectivity
features are 126 features (21 features × 6 bands) since we are using only 7 EEG chan-
nels. However, we only utilized the PLV with a phase-difference distribution that was
significantly different from zero using t-test feature selection at p < 0.05.

3.3. Hybrid Features of Time, Frequency Domain and Connectivity Features

Fusion information from cortical activation (Time and Frequency Domain) and connec-
tivity features might complement each other, giving us a more accurate representation of
the brain and how its various regions interact. In this paper, the total features extracted from
multi-domain features were 210 features (42 features from time, 42 features from frequency
domain, and 126 features from PLV connectivity features), resulting in high-dimensional
feature space. Therefore, the significant-features-based channels from the time domain,
frequency domain, and connectivity features were identified using a statistical t-test with a
95% confident interval and p = 0.05 level of significance. Thus, the most significant features
from each domain were fused to form a new subset of the significant features from the time
domain, frequency domain, and connectivity network. The total significant-features-based
channels were 42 (15 from the time domain, 20 from the frequency domain, and 64 from
connectivity features ) and used as a new fusion feature set to subsequent classifiers.

4. Classification

To classify and evaluate stress levels, three scenarios have been conducted. First, indi-
vidual feature of the selected channels within each domain was considered as a bio-marker
and evaluated separately (i.e., Hjorth complexity, Hjorth mobility, relative alpha, . . . , etc.,
see Tables 3–5). In the second scenario , we utilized the features from the selected channels
in each domain as a feature vector and classified them separately (i.e., see Figures 8–10).
Meanwhile, we fused the features of the selected channels from the three domains: time
domain, frequency domain, and connectivity network features into a single feature vector
and used them as an input to the ML classifiers (see Figure 11). Several machine learn-
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ing algorithms have been used for EEG signal analysis to train and predict the features
extracted from target EEG tasks. In this paper, seven classifiers, namely LR, RF,LDA, KNN,
SVM, DT, and NB, were employed to evaluate the model performance of mental stress
recognition based on the scenarios mentioned and provide the researchers with useful
information about the effective classifier to be considered in future work. Table 2 shows
the classifier’s tuning parameters utilized. More details about the utilized classifiers can be
found in our previous study [56]. The extracted features are split into 80% for training and
20% for testing. In each classifier, an independent subject test with 5-fold cross-validation
was performed.

Table 2. Default Parameters for Classification Techniques.

No. Classifier Default Value

1 SVM
C = 1.0,

Kernal = Radial Basis Function (RBF),
1.0 × 10−3

2 KNN K = 5,
distance function = euclidean distance

3 NB variance_smoothing = 1 × 10−9

4 RF n_estimators = 100 trees,
criterion = ‘gini’

5 DT criterion = ‘gini’

6 LR
penalty = ‘l2’, *,

tolerance = 0.0001,
C = 1.0

7 LDA solver = ‘Singular value decomposition (svd)’,
tolerance = 0.0001

The proposed model’s performance has been evaluated using seven classifiers with
5-fold cross-validation and a four-measure matrix. These include accuracy, precision,
sensitivity, and F-measure. The equations below show the mathematical formulation for
each prediction. The results obtained from the confusion matrix has:

• True Positives (Tp): The number of labels correctly identified as stress conditions.
• True Negatives (Tn): The number of labels correctly identified as a rest condition.
• False Positives (Fp): The number of labels incorrectly identified as stress.
• False Negatives (Fn): The number of labels incorrectly identified as rest.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(11)

Precision =
Tp

Tp + Fp
(12)

Sensitivity =
Tp

Tp + Fn
(13)

Speci f icity =
Tn

Tn + Fp
(14)

F-measure = 2
Precision ∗ Sensitivity
Precision + Sensitivity

(15)

Accuracy denotes the measurement of how many correct predictions were made in the
whole dataset in two-class problems, i.e., stress and rest conditions. Precision indicates the
correct measure of a positive prediction. Meanwhile, sensitivity refers to the completeness
measure of a classifier, measuring the number of true stress conditions that get predicted
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over whole stress labels in the dataset. Specificity measures the proportion of rest conditions
that are correctly identified. The F-measure was used to evaluate the detection result using
both sensitivity and precision.

5. Result and Analysis

5.1. Statistical Analysis

The stress inducement using an arithmetic task under time pressure and negative
feedback for 22 subjects was evaluated using a salivary alpha-amylase level and EEG. The
stress inducement reported higher levels of salivary alpha-amylase in stress (M = 93.64,
SD = 13.99) (KIU/L) compared rest condition (M = 24.45, SD = 4.44) (KIU/L), as shown in
Figure 4. The increase in the alpha-amylase level from rest condition to stress condition
was significant with a mean p < 0.0001. This also correlates with our previous results [13],
which revealed a significant difference in alpha-amylase level between the two conditions
across all subjects. Therefore, time pressure and negative feedback prove to be reliable for
stress induction in the lab.

Figure 4. The mean and standard deviation of the salivary amylase cortisol measured by (mcg/dL)
for rest and stress conditions.

In EEG signal analysis, an independent-sample t-test was conducted to compare stress
and rest for each feature-based electrode. The star symbols are used in topographic maps
to show the significant electrodes per feature. For time-domain features, Figure 5a shows
the mean and standard deviation of the Hjorth complexity, Hjorth mobility, Hjorth activity,
kurtosis, peak-to-peak amplitude (ptp_amp), and skewness of EEG signals at 1–30 Hz
for stress and rest conditions, which were taken by averaging all subjects’ data for each
condition.

The placement of EEG electrodes is coordinated based on the international 10–20 sys-
tem, as shown in Figure 2. The means of Hjorth complexity, Hjorth activity, and ptp_amp
were decreasing from rest condition to stress condition when subjects were exposed to
mathematical stressor tasks and increased from rest to stress conditions in Hjorth activ-
ity and skewness. This variation in different parameters indicates a further decrease in
complexity and ptp_amp from rest to stress conditions but a high increase in the mobility
component in the signal. The significant electrodes for time-domain features are shown in
Figure 5b, where the color scale represents statistical differences based on t-test values.

The total number of features for each channel is six, giving a total of (7 channels ×
6 features) 42 features in the time domain. However, only 15 significant features in the
time domain that discriminate the rest and stress conditions were selected and used in this
study. The topographic T-map for both complexity and mobility features shows the same
significant channels of ’Fp1’, ’F3’, and ‘F4’; significant Hjorth activity channels were ’F7’
and ’F3’. Finally, ptp_amp has four significant channels: ‘F7’, ’F3’, ’Fz’, and ’F8’. Note that
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skewness and kurtosis were also selected as a useful feature even though there was only
one channel, ’Fp4’ and ’Fp1’, respectively, for each one, showing a statistically significant
difference between the two conditions. This means that the skewness and kurtosis features
can offer additional discriminative information between the two conditions. Figure 6 shows
the frequency changes on the brain with respect to the stressor test using scale colors of
the power distribution of PSD. A statistical analysis of the averaged normalized relative
power of the frequency bands (delta, theta, alpha, sigma, low_beta, high_beta) was carried
out to demonstrate the difference between rest and stress states. The topographic T-map
shows the significant electrodes corresponding to each band with ‘*’ star symbols and the
color scale of the T-map. Out of 42 features (7 channels * 6 relative power bands) in the
frequency domains, only 20 features were selected as significant features based on t-test
values for the experiment task of rest and stress conditions.

Figure 5. (a) The mean and standard deviation using scatter for time-domain features of the Hjorth complexity, Hjorth
mobility, Hjorth activity, kurtosis, peak-to-peak amplitude (ptp_amp), and skewness of EEG signals at 1–30 Hz for stress and
rest conditions. The difference between stress and rest is shown using T-maps in (b). The star (*) symbols denote statistically
significant electrodes using topographic maps (two-sample t-test; p < 0.01, Bonferroni correction).

Figure 6. The mean topographic maps for relative bands power of delta, theta, alpha, sigma, low beta, and high beta
at 1–30 Hz for rest and stress conditions. The difference between stress and rest relative powers are shown using T-
maps. The star (*) symbols denote to the significant electrodes related to specific feature (two-sample t-test; p < 0.01,
Bonferroni correction).
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High beta β(20–30 Hz) showed a significant decrease from the rest condition to
the stress condition across all participants with (p < 0.001). Consequently, a noticeable
significant decrease in the alpha α relative power (8–12 Hz) was found in the right cortex
of the frontal area for the mathematical stressor tests from the rest condition to the stress
condition. Likewise, theta θ (4–8 Hz) relative power indicated a slightly significant increase
in stress conditions compared to rest conditions. The overall statistical analysis of the
average relative power was shown to be discriminative among stress and rest conditions
in all significant electrodes with p < 0.0001 in alpha and high beta and p < 0.001 in delta
and sigma (12–15 Hz) with p-value 0.05. Interestingly, the prefrontal right cortex channels
(‘Fp1’, ‘Fp2’, and ‘F4’) were shown to be more significant in most relative power bands to
distinguish rest and stress conditions.

Similarly, Figure 7 shows the functional connectivity network features of PLV, which
measures the changes (increase/decrease) in the connectivity network between two pairs
of channels. The PLV was extracted from six frequency bands of both tasks (rest/stress).
The significant channels denoted either an increase or decrease (*+/*−) in the connectivity
network measurements from the rest condition to the stress condition. From Figure 7, it
can be seen that significant functional connectivity networks in delta and alpha decreased
from the rest condition to the stress condition. On the other hand, high beta shows an
increase in the connectivity network from the rest condition to the stress conditions. Other
bands showed increases and decreases in the connectivity network between different
brain regions. The significant discrimination connectivity features between stress and rest
conditions were selected using a t-test and fused with other significant features from the
time and frequency domains.

Figure 7. The PLV connectivity network among EEG channel pairs over all trails for rest and stress condition. The star (*)
symbol denotes the significant connections between electrodes selected by the t-test.

5.2. Classification Results

The overall classification performance results in terms of the average accuracy/
precision/recall/f-score and standard deviations of the proposed methods with the types
of classifiers are presented in Table 3 for time-domain features, in Table 4 for frequency-
domain features, and Table 5 for connectivity network features. Those average accuracies
were evaluated for the seven classification algorithms with respect to the number of chan-
nels selected by the t-test. From the time-domain features in Table 3, we obtain the following
significant findings:

• The best classification accuracy was obtained by using the peak-to-peak amplitude
feature with four channels (‘F7’, ‘F3’, ‘Fz’, and ‘F8’) of the frontal region with a mean
accuracy of 79.4% using Random Forest and 76.1% using SVM. Meanwhile, the rest of
the classifiers achieved an average accuracy of 75% for ptp_amp.

• The Hjorth parameters of complexity, mobility, and activity achieved a result of an
average of 69.1%, 71.5%, and 71.8% using KNN, SVM, and NB, respectively. The
significant channels of Hjorth complexity and mobility were located in the prefrontal
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cortex (‘Fp1’, ‘F3’, and ‘F4’), while Hjorth activity had only two significant channels
that were selected from the left frontal cortex of (‘F7’ and ‘F3’).

• Features with a low number of channels tends to achieve low accuracy due to low
spatial resolution. Kurtosis and skewness got one significant channel for each and ob-
tained a maximum average accuracy of 55% and 56%, respectively, for ‘Fp1’ and ‘F4’.

Table 3. The average accuracies and standard deviations of significant time-domain features from the selected channels
with the seven classifiers.

Features
Sig.

Channels
(p < 0.001)

Performance CART KNN LDA LR NB RF SVM

Hjorth complexity ‘Fp1’, ‘F3’,
‘F4’

accuracy 0.644 ± 0.146 0.691 ± 0.119 0.671 ± 0.103 0.659 ± 0.118 0.682 ± 0.114 0.671 ± 0.145 0.677 ± 0.124
precision 0.653 ± 0.151 0.715 ± 0.118 0.680 ± 0.109 0.672 ± 0.126 0.696 ± 0.116 0.673 ± 0.15 0.694 ± 0.128
recall 0.650 ± 0.149 0.701 ± 0.117 0.675 ± 0.107 0.668 ± 0.123 0.689 ± 0.117 0.672 ± 0.146 0.688 ± 0.127
f1-score 0.641 ± 0.149 0.688 ± 0.119 0.667 ± 0.108 0.656 ± 0.119 0.678 ± 0.118 0.667 ± 0.148 0.675 ± 0.125

Hjorth mobility ‘Fp1’, ‘F3’,
‘F4’

accuracy 0.706 ± 0.127 0.702 ± 0.158 0.705 ± 0.122 0.516 ± 0.072 0.709 ± 0.129 0.712 ± 0.146 0.715 ± 0.140
precision 0.711 ± 0.128 0.721 ± 0.159 0.713 ± 0.114 0.519 ± 0.081 0.715 ± 0.126 0.718 ± 0.140 0.729 ± 0.135
recall 0.704 ± 0.124 0.711 ± 0.155 0.711 ± 0.117 0.519 ± 0.078 0.711 ± 0.124 0.715 ± 0.136 0.725 ± 0.137
f1-score 0.703 ± 0.128 0.698 ± 0.160 0.702 ± 0.123 0.609 ± 0.039 0.707 ± 0.128 0.708 ± 0.147 0.710 ± 0.144

Hjorth activity ‘F7’, ‘F3’

accuracy 0.541 ± 0.000 0.706 ± 0.184 0.655 ± 0.173 0.511 ± 0.001 0.718 ± 0.168 0.540 ± 0.120 0.688 ± 0.117
precision 0.301 ± 0.000 0.714 ± 0.189 0.659 ± 0.179 0.431 ± 0.000 0.727 ± 0.164 0.387 ± 0.032 0.699 ± 0.183
recall 0.371 ± 0.000 0.705 ± 0.183 0.656 ± 0.177 0.372 ± 0.000 0.723 ± 0.166 0.394 ± 0.013 0.691 ± 0.177
f1-score 0.321 ± 0.000 0.699 ± 0.190 0.648 ± 0.180 0.321 ± 0.000 0.708 ± 0.177 0.386 ± 0.024 0.681 ± 0.176

Kurtosis ‘Fp1’

accuracy 0.549 ± 0.118 0.531 ± 0.089 0.515 ± 0.130 0.517 ± 0.129 0.516 ± 0.136 0.549 ± 0.118 0.518 ± 0.136
precision 0.551 ± 0.117 0.539 ± 0.107 0.539 ± 0.163 0.541 ± 0.163 0.511 ± 0.200 0.551 ± 0.117 0.524 ± 0.184
recall 0.549 ± 0.115 0.536 ± 0.100 0.526 ± 0.139 0.526 ± 0.139 0.523 ± 0.147 0.549 ± 0.115 0.521 ± 0.153
f1-score 0.544 ± 0.119 0.524 ± 0.095 0.504 ± 0.131 0.509 ± 0.129 0.484 ± 0.151 0.544 ± 0.119 0.498 ± 0.153

PTP_AMP ‘F7’, ‘F3’,
‘Fz’, ‘F8’

accuracy 0.758 ± 0.127 0.735 ± 0.146 0.754 ± 0.126 0.401 ± 0.000 0.745 ± 0.152 0.794 ± 0.122 0.761 ± 0.145
precision 0.764 ± 0.125 0.745 ± 0.144 0.767 ± 0.120 0.301 ± 0.000 0.752 ± 0.154 0.798 ± 0.119 0.766 ± 0.146
recall 0.759 ± 0.125 0.738 ± 0.141 0.761 ± 0.121 0.371 ± 0.000 0.745 ± 0.162 0.796 ± 0.121 0.766 ± 0.146
f1-score 0.754 ± 0.126 0.732 ± 0.146 0.752 ± 0.127 0.321 ± 0.000 0.734 ± 0.162 0.790 ± 0.123 0.756 ± 0.146

Skewness ‘F4’

accuracy 0.561 ± 0.108 0.538 ± 0.101 0.490 ± 0.141 0.467 ± 0.119 0.490 ± 0.120 0.561 ± 0.108 0.483 ± 0.125
precision 0.566 ± 0.112 0.546 ± 0.104 0.493 ± 0.148 0.467 ± 0.132 0.503 ± 0.153 0.566 ± 0.112 0.492 ± 0.154
recall 0.564 ± 0.110 0.546 ± 0.101 0.491 ± 0.145 0.467 ± 0.125 0.491 ± 0.128 0.564 ± 0.110 0.493 ± 0.134
f1-score 0.559 ± 0.107 0.533 ± 0.103 0.488 ± 0.140 0.461 ± 0.124 0.480 ± 0.118 0.559 ± 0.107 0.471 ± 0.134

Furthermore, significant findings from frequency-domain features in Table 4 were
elaborated below.

• The highest average accuracy achieved by the relative power of the high beta band
(20–30 Hz) with significant channels ‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’ was 73% accuracy with
KNN and 71% with both RF and SVM.

• For the lower frequencies of delta (1–4 Hz) and theta (4–8 Hz), the significant selected
channels were located in the prefrontal and middle frontal cortex area of the scalp—
‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’. Both achieved an average accuracy of 68% using SVM and
KNN, respectively.

• The lowest accuracy obtained in frequency-band features was 52.4% from sigma
relative power with only one channel of ‘F7’.

• Likewise, the average accuracy of alpha relative power and low betas were 63.4% and
64.5% with KNN and LDA, respectively.

The overall observation of significant selected channels for both time-domain and
frequency-domain features was observed in ‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’.
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Table 4. The summary of average accuracies and standard deviations of significant frequency-domain features from the
selected channels with the seven classifiers.

Band
Sig. Channels
(p < 0.001)

Performance CART KNN LDA LR NB RF SVM

Delta
‘Fp1’, ‘Fp2’,
‘F3’, ‘Fz’,
’F4’

accuracy 0.631 ± 0.127 0.659 ± 0.152 0.680 ± 0.123 0.488 ± 0.069 0.672 ± 0.128 0.675 ± 0.113 0.682 ± 0.144
precision 0.639 ± 0.122 0.679 ± 0.150 0.692 ± 0.120 0.488 ± 0.076 0.682 ± 0.128 0.686 ± 0.102 0.694 ± 0.145
recall 0.635 ± 0.121 0.674 ± 0.146 0.689 ± 0.121 0.495 ± 0.066 0.679 ± 0.129 0.682 ± 0.104 0.690 ± 0.145
f1-score 0.627 ± 0.127 0.652 ± 0.152 0.679 ± 0.123 0.481 ± 0.079 0.672 ± 0.128 0.673 ± 0.113 0.677 ± 0.145

Theta
‘Fp1’, ‘Fp2’,
‘F3’, ‘Fz’,
‘F4’

accuracy 0.614 ± 0.088 0.619 ± 0.087 0.679 ± 0.142 0.473 ± 0.059 0.655 ± 0.118 0.643 ± 0.107 0.656 ± 0.135
precision 0.614 ± 0.091 0.623 ± 0.100 0.683 ± 0.146 0.471 ± 0.064 0.662 ± 0.132 0.646 ± 0.107 0.659 ± 0.140
recall 0.614 ± 0.091 0.616 ± 0.095 0.671 ± 0.138 0.475 ± 0.060 0.652 ± 0.119 0.645 ± 0.104 0.655 ± 0.140
f1-score 0.611 ± 0.091 0.607 ± 0.097 0.669 ± 0.138 0.464 ± 0.068 0.647 ± 0.122 0.640 ± 0.103 0.648 ± 0.136

Alpha ‘Fp1’, ‘Fp2’,
‘F4’

accuracy 0.622 ± 0.107 0.634 ± 0.149 0.634 ± 0.089 0.481 ± 0.070 0.619 ± 0.123 0.606 ± 0.096 0.622 ± 0.137
precision 0.627 ± 0.108 0.646 ± 0.153 0.640 ± 0.096 0.477 ± 0.076 0.622 ± 0.126 0.608 ± 0.094 0.630 ± 0.141
recall 0.622 ± 0.101 0.639 ± 0.144 0.633 ± 0.091 0.477 ± 0.076 0.615 ± 0.124 0.607 ± 0.093 0.626 ± 0.136
f1-score 0.618 ± 0.105 0.628 ± 0.151 0.630 ± 0.091 0.474 ± 0.073 0.611 ± 0.122 0.602 ± 0.095 0.618 ± 0.136

Sigma ‘F7’

accuracy 0.524 ± 0.101 0.485 ± 0.153 0.467 ± 0.143 0.422 ± 0.083 0.520 ± 0.145 0.524 ± 0.101 0.494 ± 0.166
precision 0.532 ± 0.121 0.491 ± 0.161 0.470 ± 0.147 0.422 ± 0.091 0.522 ± 0.153 0.532 ± 0.120 0.501 ± 0.181
recall 0.528 ± 0.111 0.490 ± 0.156 0.473 ± 0.145 0.422 ± 0.087 0.519 ± 0.150 0.528 ± 0.111 0.499 ± 0.175
f1-score 0.521 ± 0.103 0.475 ± 0.156 0.463 ± 0.144 0.415 ± 0.085 0.510 ± 0.151 0.521 ± 0.103 0.480 ± 0.169

Low Beta ‘Fp1’, ‘F4’

accuracy 0.608 ± 0.081 0.597 ± 0.134 0.646 ± 0.087 0.494 ± 0.050 0.626 ± 0.123 0.574 ± 0.100 0.617 ± 0.104
precision 0.612 ± 0.082 0.601 ± 0.136 0.649 ± 0.091 0.489 ± 0.060 0.635 ± 0.124 0.580 ± 0.101 0.624 ± 0.106
recall 0.610 ± 0.082 0.598 ± 0.136 0.647 ± 0.090 0.492 ± 0.055 0.630 ± 0.120 0.578 ± 0.101 0.618 ± 0.101
f1-score 0.605 ± 0.081 0.592 ± 0.134 0.643 ± 0.091 0.488 ± 0.060 0.626 ± 0.123 0.571 ± 0.100 0.613 ± 0.103

High Beta ‘Fp1’, ‘Fp2’,
‘F3’, ‘F4’

accuracy 0.658 ± 0.120 0.729 ± 0.122 0.726 ± 0.133 0.505 ± 0.069 0.734 ± 0.136 0.713 ± 0.118 0.714 ± 0.115
precision 0.660 ± 0.105 0.736 ± 0.125 0.733 ± 0.137 0.505 ± 0.071 0.735 ± 0.135 0.716 ± 0.115 0.718 ± 0.109
recall 0.656 ± 0.104 0.731 ± 0.119 0.726 ± 0.129 0.509 ± 0.065 0.732 ± 0.134 0.713 ± 0.112 0.716 ± 0.111
f1-score 0.651 ± 0.111 0.727 ± 0.124 0.723 ± 0.132 0.499 ± 0.078 0.731 ± 0.137 0.707 ± 0.119 0.711 ± 0.116

Table 5 presents the classification performance of each significant PLV of the connec-
tivity frequency bands. The highest accuracy achieved by PLV bands were 0.752 ± 0.144,
0.734 ± 0.145, and 0.719 ± 0.177 for PLV’s of delta, high beta, and alpha, respectively, using
LDA. The rest of the PLV bands got an average accuracy of 0.65 ± 0.12.

Table 5. The summary of average accuracies and standard deviations of PLV’s significant connectivity network features
from each band.

Features Performance CART KNN LDA LR NB RF SVM

Delta_PLV

accuracy 0.678 ± 0.107 0.684 ± 0.141 0.752 ± 0.144 0.657 ± 0.161 0.718 ± 0.166 0.717 ± 0.150 0.724 ± 0.179
precision 0.678 ± 0.111 0.691 ± 0.153 0.757 ± 0.142 0.661 ± 0.161 0.720 ± 0.162 0.719 ± 0.152 0.731 ± 0.182
recall 0.677 ± 0.109 0.681 ± 0.143 0.753 ± 0.140 0.658 ± 0.160 0.717 ± 0.162 0.713 ± 0.146 0.725 ± 0.177
f1-score 0.674 ± 0.108 0.678 ± 0.143 0.749 ± 0.145 0.653 ± 0.161 0.712 ± 0.165 0.711 ± 0.148 0.717 ± 0.181

Theta_PLV

accuracy 0.606 ± 0.172 0.681 ± 0.137 0.683 ± 0.129 0.631 ± 0.163 0.683 ± 0.145 0.629 ± 0.170 0.651 ± 0.179
precision 0.614 ± 0.172 0.681 ± 0.139 0.687 ± 0.130 0.631 ± 0.168 0.690 ± 0.144 0.636 ± 0.174 0.651 ± 0.180
recall 0.612 ± 0.172 0.674 ± 0.136 0.685 ± 0.128 0.627 ± 0.164 0.681 ± 0.146 0.631 ± 0.169 0.649 ± 0.178
f1-score 0.604 ± 0.174 0.673 ± 0.137 0.681 ± 0.129 0.624 ± 0.164 0.676 ± 0.145 0.627 ± 0.169 0.646 ± 0.178

Alpha_PLV

accuracy 0.686 ± 0.140 0.662 ± 0.148 0.719 ± 0.177 0.657 ± 0.180 0.710 ± 0.162 0.699 ± 0.142 0.691 ± 0.143
precision 0.686 ± 0.139 0.664 ± 0.154 0.719 ± 0.182 0.659 ± 0.181 0.709 ± 0.161 0.701 ± 0.142 0.696 ± 0.146
recall 0.686 ± 0.139 0.657 ± 0.149 0.713 ± 0.181 0.658 ± 0.181 0.706 ± 0.160 0.703 ± 0.145 0.687 ± 0.143
f1-score 0.682 ± 0.139 0.653 ± 0.152 0.711 ± 0.178 0.654 ± 0.179 0.707 ± 0.159 0.698 ± 0.143 0.686 ± 0.142

Sigma_PLV

accuracy 0.613 ± 0.124 0.675 ± 0.125 0.659 ± 0.125 0.591 ± 0.120 0.677 ± 0.117 0.629 ± 0.136 0.656 ± 0.131
precision 0.619 ± 0.125 0.680 ± 0.126 0.662 ± 0.126 0.597 ± 0.122 0.681 ± 0.117 0.632 ± 0.137 0.659 ± 0.133
recall 0.616 ± 0.122 0.675 ± 0.121 0.657 ± 0.122 0.595 ± 0.121 0.675 ± 0.114 0.631 ± 0.136 0.656 ± 0.130
f1-score 0.611 ± 0.122 0.670 ± 0.124 0.653 ± 0.124 0.589 ± 0.121 0.672 ± 0.118 0.626 ± 0.136 0.655 ± 0.130

L_beta_PLV

accuracy 0.663 ± 0.148 0.628 ± 0.134 0.679 ± 0.163 0.595 ± 0.132 0.655 ± 0.127 0.642 ± 0.137 0.641 ± 0.183
precision 0.663 ± 0.144 0.635 ± 0.145 0.686 ± 0.162 0.604 ± 0.137 0.659 ± 0.126 0.641 ± 0.137 0.642 ± 0.186
recall 0.663 ± 0.144 0.631 ± 0.139 0.683 ± 0.161 0.603 ± 0.132 0.655 ± 0.123 0.643 ± 0.136 0.640 ± 0.186
f1-score 0.659 ± 0.149 0.624 ± 0.136 0.675 ± 0.165 0.592 ± 0.135 0.653 ± 0.126 0.636 ± 0.140 0.636 ± 0.183

H_beta_PLV

accuracy 0.714 ± 0.143 0.680 ± 0.133 0.734 ± 0.145 0.675 ± 0.134 0.696 ± 0.141 0.719 ± 0.126 0.698 ± 0.137
precision 0.715 ± 0.146 0.699 ± 0.136 0.738 ± 0.150 0.684 ± 0.137 0.701 ± 0.141 0.723 ± 0.129 0.708 ± 0.140
recall 0.715 ± 0.147 0.688 ± 0.131 0.734 ± 0.149 0.680 ± 0.133 0.696 ± 0.143 0.722 ± 0.127 0.702 ± 0.136
f1-score 0.710 ± 0.145 0.677 ± 0.132 0.732 ± 0.147 0.672 ± 0.131 0.691 ± 0.140 0.716 ± 0.126 0.696 ± 0.136

We further classified each subset of significant features of the time domain, frequency
domain, and connectivity features as feature vectors and passed them to the classifiers.
Figure 8 shows the average accuracy of 15 significant time-domain features and achieved a
high accuracy of 81.4% and 80% using RF and SVM, respectively, while other classifiers
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achieved an average of 76.4%. Figure 9 represents the average accuracies of 20 significant
features of relative powers in the frequency domain. The highest accuracy of 80% was
obtained by SVM, and 74% was the average accuracy of the other classifiers. Similarly,
Figure 10 shows the results of 29 significant features from the connectivity network of
PLV, and the average performance accuracy obtained was 88% with SVM and RF, while
the rest of the classifiers achieved an average of 84%. Meanwhile, Figure 11 presents
the average classification result of 64 hybrid significant features from the time domain,
frequency domain, and functional connectivity network, as shown in Tables 3–5.

Figure 8. The average classification performance and standard deviation σ of 15 significant features
of the time domain. The vertical line indicates σ.

Figure 9. The average classification performance and standard deviation of 20 significant features
from the frequency domain.
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Figure 10. The average classification performance and standard deviation of all significant connectiv-
ity network features of PLV.

Figure 11. The average classification performance and standard deviation of hybrid features consist-
ing of 42 significant features from the time domain, frequency domain, and connectivity network.

Figure 12 demonstrates the comparison of classification accuracy of each feature’s
subset domain (time-domain feature, frequency domain, connectivity network feature)
as well as after their fusion. In summary, these results show that SVM achieved the best
classification performance when fusing connectivity features with cortical connectivity
features, scoring 93.2%, 92.4%, 92.5%, and 92.1% for accuracy, precision, recall, and f1-score,
respectively. Overall, fusing the multi-domain feature set from cortical and connectivity
features improves the classification performance by 13% compared to a single subset
domain alone.
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Figure 12. A summary comparison between the average accuracy of single subset domain fea-
tures (time domain, frequency domain, connectivity network features) and the fusion of all three
using SVM.

6. Discussion

This study has presented a methodological approach based on the fusion of multi-
domain EEG features and ML for the sake of mental stress classification. To the best of our
knowledge, this is the first EEG study on stress that fused functional connectivity features
with temporal and spectral features. For this aim, an experimental paradigm based on MIST
was designed to induce mental stress and rest conditions using mathematical task with time
pressure and negative feedback. For the comparison between the two conditions, a valid
objective measurement using the alpha-amylase level (AAL) was collected from the saliva
of each subject under both conditions (rest/stress) and quantitatively analyzed, as shown
in Figure 4. We found that induced stress revealed a significant difference in AAL between
the rest and stress conditions across all subjects, with a considerable increase in AAL from
the rest condition to the stress condition. This study correlates to prior findings [13,57] of
utilizing arithmetical tasks to induce mental stress in the laboratory setting.

Compared to previous stress detection methods, the main contributions of the pro-
posed method are exploiting the different feature extraction methods and analyzing the
significant corresponding channels. For the identification of mental stress in EEG, three
scenarios for feature analysis were conducted:

The first scenario analyzed features of the time domain, frequency domain, and
functional connectivity network separately, as shown in Tables 3 and 4 and Figure 7. Prior
to the analysis, only significant channels were selected for classification. The selection of
significant channels in all types of features was based on a statistical t-test at p < 0.05. The
second scenario was based on combining the significant features within the time domain,
frequency domain, and connectivity features of PLV to form subset feature vectors for
classification (Figures 8 and 9). The third scenario was based on the fusion of the significant
features from all domains (time domain, frequency domain, and connectivity network
features) to form a single hybrid subset feature vector for subsequent classifiers.

In particular, for the temporal features of Hjorth complexity, Hjorth activity, ptp_amp,
and kurtosis, we found a significant decrease from the rest condition to the stress condition.
The decrease in the temporal activities within stress conditions indicates that participants
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experience difficulties in engaging with the MA task. In fact, the greater the complexity
value is, the more active the brain is. Previous studies have found that higher complexity
meant increased behavioral performance [58,59]. In line with that, the decreased complexity
in our study is a sign of decreased behavioral performance (accuracy of detection) due to
stress. It should be noted, however, that the decrease in brain activity/complexity in our
study was localized to a certain brain region. For example, when the temporal features of
Hjorth complexity are considered, the left frontal region at ‘Fp1’ and ‘F3’ is highly reduced
under stress. This reduction is consistent with the previous emotion study that utilized
videos to induce negative emotions in the participants [60]. Likewise, when the complexity
and skewness are considered, the right frontal region at ‘FP2’ and ‘F4’ is highly reduced.
This is also consistent with our previous studies that utilized simple arithmetic tasks with
time pressure to induce stress [13,27].

On the other hand, we found that the relative EEG power in theta, alpha, sigma,
and beta showed a significant increase from the rest condition to the stress condition at a
particular region of the brain. Considering all of the relative powers together, we found that
the right hemisphere was highly sensitive to stress exposure. This confirms that negative
emotions are induced under stress. This is in line with previous studies that showed when
the stress level increased, the alpha power increased across the frontal cortex [44,57,61,62].
Likewise, the increase in relative beta power in our study is also consistent with previous
studies that utilized driving and public speaking as stressors in their studies [39,63]. These
findings demonstrate the potential of using temporal, spectral, and connectivity features in
finding patterns associated with mental stress, as demonstrated in our previous studies on
stress and control states [64,65].

We further analyze the classification accuracy of stress based on the first scenario
using CAR, KNN, LDA, LR, NB, RF, and SVM classifiers. The temporal features of the
peak-to-peak amplitude of the significant channels—‘F7’, ‘F3’, ‘Fz’, and ‘F8’—showed the
highest classification accuracy of 79.4% using SVM. Meanwhile, the frequency-domain
features of the high beta band (20–30 Hz) at significant channels of ‘Fp1’, ‘Fp2’, ‘F3’, and
‘F4’ achieved the highest classification accuracy of 73% using KNN.

Meanwhile, in the second scenario (domain feature subset analysis), we observed a 2%,
7%, and 13% improvement in classification accuracy in the time domain, frequency domain,
and connectivity features, respectively, when compared to the first scenario. Particularly,
the high accuracies of 81.4%, 80% and 88% were achieved when using the significant feature
subset of the 15 time-domain features, 20 frequency-domain features, and 29 connectivity
network features, respectively. It is noteworthy that the subset of connectivity features
outperformed other domains in classifying mental stress. Our findings are consistent with
prior functional connectivity research, which has shown that functional connection is more
reflective of the mental task performance [66].

Additionally, in the third scenario, fusing significant features of the time domain,
frequency domain, and connectivity features of PLV (a total of 64 features) improved the
overall accuracy of detecting the rest/stress condition with the highest accuracy of 93.2%
obtained using SVM. As expected, the improvements in the classification performance
support the hypothesis that fusing multi-domain features may provide complementary
information for better stress detection. In general, the proposed method of selecting a
significant EEG-channel-based feature yield a total reduction of feature space of almost
60%, with 64 significant features out of 210 features.

The overall classifiers’ performance depends significantly on relevant EEG features
and the selected channel related to the given task. Previous studies have found that using
a large number of EEG channels could provide high resolution and improve accuracy;
however, they have inherited issues, such as cost and applicability, particularly outside
laboratories. Subhani [57] discusses the identification of stress using 19 EEG channels
with features of absolute power, relative power (RP), coherence, phase lag, and amplitude
asymmetry, and they reported high accuracy of 94.58%; yet, high dimensionality existed
when the 190-feature vector was used. This high accuracy could be interpreted as the
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result of using a high spatial resolution of 19 EEG channels. However, in this study, the
maximum accuracy was 93.2% with the 64-feature vector. Although the accuracy was
slightly lower than the one reported by [57,63], this study efficiently reduced feature space
with high performance.

This study confirmed that the fusion of temporal, spectral, and connectivity features
significantly improved mental stress classification accuracy. Although the study was
informative for the mental stress classification, it had a few limitations. First, we only
reported the results of EEG feature extraction at an epoch length of one second, which
corresponds to 256 EEG data points. Future studies may consider reporting the results of
epochs with more than one second, i.e., in the range of one to ten seconds. Second, this
study was constructed on fusion functional connections using PLV with cortical features.
Other connectivity features, such as the Phase Lock Index (PLI), Partial Directed Coherence
(PDC), and Directed Transfer Function (DTF) [54], were not included in the study. Third,
while we conducted statistical analysis with a t-test to select the brain regions relevant
to mental stress in this study, different methods for detecting mental stress using feature-
based channel selection (e.g., swarm intelligence) should be considered in future work to
reduce the high dimensionality and select the optimal feature set. Finally, throughout the
experiment, we found that the SVM outperformed other classifiers in terms of classification
performance using the selected hyperparameters, but using algorithm optimization for
finding optimal parameters could improve the overall performance.

In essence, the proposed framework empirically proved the possibility of having
significant channels corresponding to each feature while eliminating the redundancy and
ignoring un-relevant channels. Then, it could be suggested that EEG signals have the
potential to be reliable for identifying stress for home-based applications with an optimal
number of channels and the relevant features. However, multiple methods for detecting
mental stress using feature-based channel selection should be considered in future work.

7. Conclusions

This paper aims to find feature sets that would distinguish the stress and non-stress
conditions using seven frontal EEG channels. EEG’s features from the time domain,
frequency domain, functional connectivity network, and all three fused together were
investigated. Seven classifiers were used to evaluate the performance of each feature set
before and after fusion. The highest accuracy of 93.2% was achieved using hybrid features
with the SVM classifier. In comparison, the evaluation performance of the time domain,
frequency domain, and connectivity feature subsets were 81.4%, 80%, and 88% respectively.
The results demonstrated that the proposed method of fusing the connectivity network
with temporal and spectral features was capable of detecting mental stress state with high
classification performance. The overall results support developing a real-time system for
stress measurement and analysis.
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Abstract: Amyotrophic Lateral Sclerosis (ALS) is one of the most aggressive neurodegenerative
diseases and is now recognized as a multisystem network disorder with impaired connectivity.
Further research for the understanding of the nature of its cognitive affections is necessary to monitor
and detect the disease, so this work provides insight into the neural alterations occurring in ALS
patients during a cognitive task (P300 oddball paradigm) by measuring connectivity and the power
and latency of the frequency-specific EEG activity of 12 ALS patients and 16 healthy subjects recorded
during the use of a P300-based BCI to command a robotic arm. For ALS patients, in comparison to
Controls, the results (p < 0.05) were: an increment in latency of the peak ERP in the Delta range (OZ)
and Alpha range (PO7), and a decreased power in the Beta band among most electrodes; connectivity
alterations among all bands, especially in the Alpha band between PO7 and the channels above
the motor cortex. The evolution observed over months of an advanced-state patient backs up these
findings. These results were used to compute connectivity- and power-based features to discriminate
between ALS and Control groups using Support Vector Machine (SVM). Cross-validation achieved a
100% in specificity and 75% in sensitivity, with an overall 89% success.

Keywords: ALS; EEG; classifier; neural; connectivity; frequency-specific; BCI

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is one of the most aggressive neurodegenerative
diseases causing the patient to lose the ability to move their muscles; it affects and kills
upper and lower motor neurons [1]. Being a complex disease, the specific nature of the
affectations is still unknown [1]. There is no particular detection method for ALS; thus, the
detection procedure involves taking several tests to discard other diseases; this may be due
to the lack of a biological marker or biomarker for ALS [1]. To understand ALS, more global
holistic approaches have been undertaken. New research has indicated neurodegeneration
in nonmotor areas too [2], and the disease has also been recognized as a multisystem
network disorder characterized by impaired connectivity (a measure of how synchronized
two brain regions are) [3–7]. Correlations have been found between changes in connectivity
and cognitive scores from a neuropsychological battery (cognitive tests) [7]. Frontotemporal
dementia [8] and cognitive disability [9] have been linked with ALS.

The use of different technologies gives some insight; for example, Positron Emission
Tomography (PET) and Magnetic Resonance Imaging (MRI) studies have shown deteriora-
tion in motor cortex regions [3]. Alterations and differences in ALS are primarily found in
functional Magnetic Resonance Imaging (fMRI) or similar costly procedures [3]. Correla-
tions have been found, in studies with ALS patients, between Electro-encephalography
(EEG) rhythms and MRI and transcranial magnetic stimulation (TMS) findings [10], and
between fMRIs and EEG [11] in the past, suggesting that other neuroimaging findings

Sensors 2021, 21, 6801. https://doi.org/10.3390/s21206801 https://www.mdpi.com/journal/sensors109



Sensors 2021, 21, 6801

could be replicated with EEG. EEG offers an understanding of the activity happening on
the cerebral cortex originating from neural activity. It is also a portable, noninvasive brain
imaging sensor that obtains cerebral information in real-time and generates responses [12].
This type of neuroimaging has been used as a detection method for neurodegenerative
diseases. For example, analyzing the sharpness of the brain signals is commonly used
to detect epilepsy [13]. Thus, EEG studies can show how the activity in an ALS brain is
changing or degenerating, offering specialists further comprehension of a disease whose
evolutive nature is still unknown. Even though some studies have been performed on ALS
patients, they have usually focused on rest-state activity [5,7]. The potential use of these
types of findings as a biomarker to detect ALS has even been assessed with a result of 100%
in specificity but only 58% in sensitivity [4].

Testing during a cognitive activity offers additional information of a mental state.
The P300 oddball paradigm tests cognitive activity through EEG. The oddball test is the
presentation of repetitive stimuli randomly interrupted by a different stimulus. P300 is
an Event-Related Potential (ERP) elucidated 300 ms after a stimulus. It is a signal that
arises as a response of the brain to an external stimulus [14]. The visual P300 task involves
communication between the parietal region and the frontal region [15], the frontal one
being one of the most affected areas for ALS individuals [3]. P300 is commonly used in
Brain–Computer Interfaces (BCIs) as its response is repetitive and detectable through the
cognitive task. This quality permits P300 to act as a detection method. Additionally, the
magnitude and latency of the P300 peak have shown a solid ability to detect other diseases
such as Alzheimer’s, which is linked to a decreased peak and higher latency [16], and many
other neurological disorders [14].

More recent studies have demonstrated the cognitive impairment of ALS individu-
als, especially with delayed latencies in P300 peaks [17–19]. These studies could offer a
more robust understanding of the EEG if analyzed in the frequency domain as it offers a
significant correlation to neural oscillations. Differences have been found in the functional
connectivity and amplitude of Alpha and Beta frequency bands (9–13 and 14–30 Hz, re-
spectively), suggesting a frequency-specific reduction in patterns in functional connectivity
and amplitude [11,20], but a longitudinal analysis of the biomarkers found during the EEG
studies among the same individuals has not been performed, in other words, showing that
the advance of the disease has not been assessed until now.

The present study provides insight into the neural alterations or changes occurring in
ALS patients during a cognitive task (P300 oddball paradigm) by measuring EEG activity.
The objective was to find the neural alterations, define these alterations as biomarkers,
analyze their change in a longitudinal study in ALS patients, and classify between groups
with them. Three numeric values were calculated (variables) from the time–frequency
power signals to measure the EEG activity: the value of the peak power and its latency,
and the connectivity between electrodes (a value between 0 and 1) for each frequency band.
These variables were tested for a significant difference between ALS and Control groups;
those who were found different were used to train a classifier that separates both groups
and were further analyzed.

2. Materials and Methods

Finding neural alterations in ALS patients with respect to healthy subjects is a method
of obtaining insight into the mechanism that ALS follows. It could also serve as a de-
tection aid to confirm or diagnose ALS. Different tests were made with the EEG data of
12 ALS patients and 16 healthy subjects to find these alterations. The data came from a 16
electrode-P300-based BCI system that was previously designed to aid ALS patients with
communication with the outer world, such as moving a robotic hand orthosis [21].

The tests made to the data had the objective of obtaining a numeric value from the
data, such as the time in milliseconds where the P300 peak was found or the power of that
peak. The connectivity analysis calculated the connectivity (values from 0 to 1) between
one electrode and the others. These three tests were made on the data decomposed in
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spectral power. A point-wise graphical analysis helped to analyze the 3D images from the
time–frequency–power charts. Finally, the numeric values were taken as variables. The
significantly different variables were further analyzed and some variables were selected
as biomarkers. The biomarkers were used to train an SVM classifier or to observe an ALS
patient’s evolution over time.

Finally, the numeric values were taken as variables. The significantly different vari-
ables were selected as biomarkers, and the biomarkers were used to train an SVM classifier.

2.1. P300-BCI System

The data used for this analysis were taken from the training stage of a P300-BCI
designed for ALS patients. A P300-based BCI was previously developed with the purpose
of assisting ALS patients to control a Hand of Hope robotic arm (Rehab-Robotics Company,
China). Muscle movement loss is a common ALS symptom, hence deteriorating the original
pathway for muscle movement; the objective of this BCI is to generate an alternative path for
hand-muscles movement, as shown in Figure 1a. Instead of the brain moving the muscles
of the hand, a WiFi-controlled hand orthosis forces the movement onto the hand [21].

 
(a) 

 
(b) 

Figure 1. Cont.
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(c) 

Figure 1. (a) Layout of the BCI (Brain Computer Interface) system whose purpose is to generate an alternative pathway for
muscle movement. (b) Graphical interface of the P300-BCI in its different stages used to control a robotic hand-orthosis [21].
(c) Position of electrodes used in this P300-BCI according to 10–20 system.

For this test, subjects are comfortably seated in front of an LCD monitor in a silent
room where only the testers and subject are present. An EEG cap is placed on the subject’s
head, and gel is applied to the 16 selected electrodes (shown in grey in Figure 1a) and
on the reference (which is attached to the right ear) by the testers. The Graphical User
Interface (GUI) is composed of a picture of an open hand wearing the hand orthosis with
one grey dot on top of each finger and another dot on the hand’s palm, and on the bottom,
it has a rectangle for different instructions, depending on the stage. The task is based on
the P300 oddball paradigm. The happy faces represent the oddball stimuli that will cause
the P300 response or the ERP. This is the response the BCI is looking for to detect intentions.
The first stage of the P300 experiments consists of training or calibration of the BCI system.
With this training, the algorithm learns the subject’s P300 characteristics so that they can be
identified later.

The Training stage is composed of 8 blocks of training. Each block is composed of
5 stages, and the GUI’s state in each stage is shown in Figure 1b. First, in the Fixation
stage, where the subjects must get ready for the experiment, a cross appears on the GUI’s
rectangle for 2 s. Then, in the Target Presentation stage, one finger or the whole hand is
indicated in the rectangle. The indicated finger shows which of the grey dots to observe
in the Active Task stage, or if the whole hand appears indicated; then, the finger in the
palm must be observed in the Active Task stage. Then, a second of Preparation is given,
for the subject to prepare to begin the Active Task. Then, the Active Task stage begins. A
happy face begins flashing in one dot at a time and the participant is asked to count in their
head the number of happy faces that appear in the indicated spot while observing only
the indicated dot. The face appears in a dot for 75 ms and then all dots are grey for 75 ms,
repeating this pattern until the face appears in the indicated spot about 32 times. Finally, a
5 s rest is given to the subject, in preparation for the next block [21].

The Free Validation stage comes after the Training stage, where the subject is indicated
to choose any desired dot, and as soon as the BCI detects the subject’s desired dot, it is
colored red. This is repeated about 3 or 4 total times for the user to see that the BCI is
following their instructions. Then, the Online Validation stage begins. This stage is very
similar in procedure to the Training stage, except the BCI’s objective is to detect the dot the
user is indicated to concentrate on. This block is repeated once per dot. Finally, the robotic
arm is attached to the subject’s left hand by the testers and the Free Validation and Online
Validations are repeated with it on. With the robotic arm attached, when the desired dot is
detected by the BCI, the corresponding finger is contracted by the motors in the Hand of
Hope. When the palm dot is detected, all the fingers are contracted. The results of these
BCIs have already been reported in another paper [21].
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The data from the Training stage were selected as it is the stage where more trials are
available; with more trials, the signal-to-noise ratio is increased. To extract the trials, the
moment where the happy faces or stimuli appear was extracted. The period from 300 ms
before each stimulus until 700 ms after it was extracted for each trial. Only the trials where
the happy face was located on the indicated (by the BCI) dot were taken into consideration
for this analysis, as these trials were where the ERPs were present. A total of 264 trials were
initially used for each patient.

2.2. Data Acquisition

The data were recorded by 16 monopolar electrodes positioned according to the 10–20
international system at positions in FZ, CZ, PZ, OZ, C1, C2, C3, C4, C5, C6, CP3, CP4, P3,
P4, PO7, and PO8, as shown in Figure 1c, with the reference placed on the right earlobe and
ground electrode at AFz. The electrodes were selected by the designers of the BCI with the
objective of covering the motor cortex and the sites commonly used in P300 BCIs [21]. The
signals were amplified using a g.USBamp amplifier (a g.GAMMASYS active wet electrode
arrangement and a g.USBamp amplifier provided by g.tec medical engineering GmbH,
Schiedlberg, Austria). The sampling rate was set at 256 Hz. The computer processed the
EEG signals, displayed the GUI, synchronized and displayed stimuli, and sent control
messages to the robotic arm.

2.3. Subjects

The users of the experimental protocol were divided into two groups: ALS patients
and the Control group. The ALS group contained 12 patients with Bulbar or Spinal ALS
with mild to advanced levels of hand atrophy, six women and six men whose age had a
mean of 59 ± 7. Additionally, 4 ALS patients went through the training more than once
(with a minimum of three months between tests). These older training data were used to
observe the evolution of selected variables. Only the oldest training data of each patient
were used in the variable’s extractions. The ALS group was recruited from the patients
attending the TecSalud ALS Multidisciplinary Clinic [21]. The Control group consisted of
16 healthy subjects, eight women and eight men whose ages were 33 ± 15.

2.4. Analysis

The trials obtained from the training stage were the basis of the analysis. The steps for
the presented analysis are shown in Figure 2. These signals were preprocessed to obtain
the most information out of them, and then two different studies were performed on each
individual’s data: power and connectivity analysis. Latency and amplitude variables were
extracted from the power analysis and the connectivity value between two electrodes
was extracted from the connectivity analysis. All the variables obtained were compared
between ALS and Control groups to select the best ones. Finally, the selected variables were
observed over time in the ALS individuals and were used to train a classification model.

 

Figure 2. Processing stages of information.

2.5. Pre-Processing

A DC baseline correction was performed by averaging the activity from 200 ms
before the P300 stimulus to time 0 (the specific time of the stimulus) and subtracting this
value from every time point. An automatic trial rejection was performed based on three
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parameters: first, the maximum peak-to-peak value after the stimulus >200, as the brain
signals being observed were between −100 and 100 mV [14]; then, the standard deviation
of the trial after stimulus <50, and the noise to signal ratio >0.7. If any of these conditions
is true, the trial is rejected.

2.6. Power Analysis

For each trial, the EEG signal was extracted from 300 milliseconds (ms) pre-stimulus
to 700 ms post-stimulus. It was decomposed via complex Morlet wavelet convolution with
a set of wavelets ranging from 0.5 to 40 Hz and a variable number of cycles from 2 to 10.
For each user and each electrode, the percentage change with a pre-stimulus base was
calculated, so the power could be compared among frequencies and time.

The power, pow, at each time point, t, is obtained by squaring the voltage, v, at each
corresponding time point, as shown in Formula (1). The baseline interval selected was
between 200 ms pre-stimulus and 0 ms (the moment of the stimulus). The value of the
baseline, R, is the average power in this interval for each frequency band, f, as shown in
Formula (2). Then, to obtain the activity, A, the voltage at each time point, v(t), is squared to
obtain the power, pow(t), and an average is performed among all the trials, tr (for each sub-
ject), as shown in Formula (3). Finally, the power percentage change is obtained as shown
in Formula (4). In this case, this was performed for each 0.75 Hz in the plot. Anything
over 0 is considered a power increase or Event-Related Synchronization, and everything
between below 0 is considered a power decrease or Event-Related Desynchronization [22].
The final powers were divided by neural bands (Delta [0.5–3 Hz], Theta [4–8 Hz], Alpha
[9–13 Hz], and Beta [14–30 Hz]), and an average was performed among the frequencies of
each band.

pow(t) = v(t)2 (1)

R( f ) =
∑

iy
i=ix pow(i, f )

tp
(2)

A( f , t) = ∑tr
x=1 pow(i, f , t)

tr
(3)

power % change =
(A − R)

R
∗ 100 (4)

2.7. Point-Wise Analysis

Complementary to the maximum values power analysis, a point-wise analysis was
performed over the 3D graphs whose axes were time, frequency, and spectral power
percentage change. Permutation-based statistics were performed to determine areas of
significant difference. For this analysis, we assumed that there were no significant areas on
the map. A null-hypothesis map was made by shuffling subjects among groups, taking
the mean of each new group, and subtracting one map from another. Point by point (pixel
by pixel), this operation was permuted 1000 times to create a distribution. Finally, the
observed value was compared to the distribution obtained. The points whose observed
value had a p-value below 0.05 were considered significant.

2.8. Connectivity Analysis

Connectivity is a measure used to determine the oscillatory synchronization that exists
between two brain regions, represented by electrodes. InterSite Phase Clustering (ISPC) is
a connectivity measure that relies on the phase of the signals to determine the degree of
connectivity. This theory is based on the concept that for two regions to be synchronized,
they must be sending information and reading it at its maximum excitation point.

To calculate the ISPC values of each subject between signals from electrodes x and y,
first, the signal is converted to an analytic signal; then, the analytic signal, as, is divided in
frequency bands, f. The signal is then divided among the frequencies of each band, resulting
in four signals, one for each band. Then, the signal’s instantaneous phases, ph(t,f ), are
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calculated at each frequency band and each instant of time, t. An average of the differences
(at each instant of time) between the two signals is obtained, as shown in Formula (5), and
this is the ISPC. If the signals are synchronized, the value should be close to 1. The ISPC
was calculated between every electrode and the other 15 electrodes.

ISPCx,y( f ) = ph(t, f , x)− ph(t, f , y) (5)

Formula (5): How ISPC is obtained.

2.9. Variables Extraction

Variables from the power and connectivity analysis were extracted. All variables
mentioned were extracted for each subject and patient. From the power analysis, the values
of the P300 peak and its latency were extracted. To compute these, the maximum value
and its latency between 200 and 650 ms post-stimulus in the time–frequency data were
calculated. From the connectivity, the ISPC value was used. In addition, 16 electrodes,
4 neural bands, and two conditions (magnitude and latency of P300 peak) resulted in
128 power variables; 16 electrodes compared with 15 electrodes in 4 neural bands resulted
in 960 connectivity variables. All variables added to a total of 1088 total variables for each
of the 28 subjects and patients.

2.10. Separability Test

To find the variables that might be of interest among both groups (ALS and Control),
a Wilcoxon rank-sum test (a nonparametric test that contrasts two samples in order to
determine if they come from equally distributed populations) was performed for each
variable. Only the variables significantly different were further observed (p < 0.05).

Two approaches were made with the selected variables. First, we analyzed how the se-
lected variables were represented in the original data. Second, we observed where patients’
older training data (the four of them that we have) stood among these selected data.

2.11. Multiple Comparisons Correction

When multiple tests are being performed, a multiple-tests correction is needed. The
reason is that in a normal distribution, we are expected to obtain some results that seem
significantly different but occur because of chance. For the tests performed, two types of
multiple-tests correction were performed. For the extracted variables analysis (maximum
power, maximum power latency, and connectivity), a False Discovery Rate (FDR) was
performed. For the graphical power analysis, an Extreme Point Correction was performed.

2.11.1. FDR Correction

The False Discovery Rate (FDR) is a method to fix the p-value when testing multiple
comparisons, as in this case. The basis of this method is to compute the p-value of all
nonsignificant results and use this value as a cutoff to make everything above it significant
and below it nonsignificant, adjusting the p-value. While this is a graphical method, it can
be performed through a mathematical approach. In this approach, first, all the p-values
must be sorted from smallest to largest and ranked. The last value (top rank) is kept. The
next largest value is the smaller between the previously adjusted p-value and the result of
Formula (6) (where p(r) is the p-value of rank r of the current p-value, n_p is the number of
p-values, and r is the rank r), and so on, until the smallest p-value.

adjusted p-valuer = p(r)∗ np

r
(6)

Formula (6): Adjusted p-value
After performing this correction, the significance of all the discoveries was above 0.05,

with the least value being 0.056, corresponding to the power results.
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2.11.2. Extreme Point Correction

When performing graphical analysis, FDR is not the correct approach, as the number of
points (or pixels) in the image affects the parameters of FDR, and intuitively this makes no
sense, as a significant cumulus of points (or pixels) should remain significant independently
of the resolution of the image. For this reason, an extreme point correction was performed.
In this correction, the assumption is made that there are no significant areas on the map.
A null-hypothesis map was made by shuffling subjects among groups, taking the mean
of each new group, and subtracting one map from another. In this new graph, the least
value and maximum values were extracted. The process was repeated 1000 times to create
a bi-modal distribution. Then, everything above 0.025 and below 0.975 was considered not
statistically important or different. Only the points outside of this area were still considered
statistically different.

3. Results

In this section, the results are presented and described. Additional figures were used
to examine the distribution of groups variables.

3.1. Power: Magnitude

The four bands were examined, each of which contained 16 electrodes. As a result,
64 variables were obtained for magnitude for each patient or Control.

A significant difference was found only in the beta band. All of the ten variables that
were found to have statistical differences were found in the same band. The electrodes that
were found to be different between both groups are shown in Table 1. They were in the
locations FZ, C2, CP3, and PO7 (p < 0.05), and C1, CZ, C4, P3, PZ, and P4 (p < 0.01). The
locations of these specific electrodes are shown in Figure 3a.

Table 1. Variables of power magnitude with significant difference resulting from a ranksum test
(Wilcoxon for independent groups) between ALS group and Control group.

ELECTRODE p-Value

BETA
FZ 0.0244
C1 0.0013
CZ 0.0028
C2 0.0114
C4 0.0028

CP3 0.0434
P3 0.005
PZ 0.0066
P4 0.0043

PO7 0.0148

3.1.1. Distribution of Power Variables

In Figure 3b, the distribution of the power magnitude variables of each group, Control
and ALS, can be seen. The distributions of electrodes found to be statistically different
can be seen to have different interquartile ranges. The ALS median is below the Control
median, showing a decrease in magnitude for the ALS group or a decreased activity.
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(a) (b) 

Figure 3. (a) Electrodes’ locations found to be statistically different in power magnitude variables
between Amyotrophic Lateral Sclerosis (ALS) ALS and Control group; (b) distribution of power
magnitude variables for each electrode of ALS group and Control group.

3.1.2. ERPs

The ERP of the Beta band was computed to observe the differences remarked in the
statistical analysis. As the ERPs show, in the Beta band, a peak can be seen at about 500 ms
after the stimuli. The mean ERPs of channels located in the Central area (e.g., C1, CZ, C2,
and C4) show opposite phases for both groups around 450 ms after the stimuli. This area is
significantly different, as shown in Figure 4. In electrodes located on the Parietal area, the
ALS group has lower peaks in P3, PZ, and P4. All of these variables (e.g., the peak value
of spectral power in electrode CZ in the Beta band) are found amongst selected variables.
For instance, in Figure 4, the ERP of channel CZ in the Beta band is shown. The Control
average shows a positive peak around 400 ms, while the ALS average shows a negative
deflection in this same time point. A negative peak where a positive peak should appear is
usually due to an overactivation in another cerebral region. In contrast, in Figure 4, the PZ
electrode, Beta band, both the Control and ALS group have a positive peak around 400 ms.
However, the peak magnitude corresponding to the Control group is almost double that
the ALS peak. This indicates a reduced activity in the beta band for the ALS group.

These results can also be seen in the time–frequency charts. In Figure 5c,d, we can see
channel PZ for the Control and ALS group. There is a clear difference in the magnitudes in
all frequencies around 400 ms, especially around 20 Hz. The magnitude can be seen much
higher for the Control group. In addition, in Figure 5a,b, the differences between groups are
noticeable—the ALS group shows a spectral power decrement, where the Control group
shows an increase.
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Figure 4. Mean ERPs of all 16 channels in Beta band. In cyan, the ALS group mean is observed, while
blue represents the Control group. The segments that are red are significantly different with p < 0.05.
The x-axis represents milliseconds and y-axis microvolts.

  
(a) (b) 

  

(c) (d) 

Figure 5. (a) Mean spectral power percent change of electrode CZ for ALS group; (b) mean spectral
power percent change of electrode CZ for Control group; the Control group has a power increment
and the ALS group has a power decrement; (c) mean spectral power percent change in electrode PZ
for ALS group; (d) mean spectral power percent change in electrode PZ for Control group.

3.1.3. FDR Correction

An FDR correction was needed, as mentioned before. All 1088 variables were no
longer significant after FDR correction with p > 0.05. Power results had the lowest value
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after the FDR correction with a p-value of 0.056. To avoid false negatives (error type 2),
further tests were performed.

3.1.4. Point-Wise Analysis

After performing the point-wise analysis and the extreme pixel correction, the channels
that were found to have an area of significant difference were C1, CZ, C2, C4, and OZ. In
the central band, the effect seemed to dissipate as the channel became more distant from
the central (Z or CZ) zone, which is on the center of the scalp in the central band, and
underactivation was occurring for the ALS group. Another channel that had a significant
difference, but was barely observed in previous results, was in channel OZ, almost at the
same latency, as shown in the Figure 6.

(a) 

  
(b) (c) 

Figure 6. (a) Channel CZ. Time–frequency power map (up left). Time–frequency power map with the
significant area highlighted (up right). Time–frequency power map displaying only significantly dif-
ferent area (down left); (b) Channel C2. Time–frequency power map with significant area highlighted;
(c) Channel C4. Time–frequency power map with the significant area highlighted.

3.2. Power: Latency

The four bands were examined, each of which contained 16 electrodes. As a result,
64 variables were obtained for magnitude for each patient or Control.
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From the 64 variables for latency, only two were found to be statistically different,
with p < 0.05, shown in Table 2. These two variables were in two different bands, Delta
and Alpha. The variable in the Delta band was located in OZ (p < 0.01), and the one in the
Alpha band was situated in PO7 (p < 0.01). The locations of these two electrodes are shown
in Figure 7a.

Table 2. Variables of power latency with significant difference resulting from a ranksum test
(Wilcoxon for independent groups) between ALS group and Control group.

ELECTRODE p-Value

DELTA
OZ 0.015

ALPHA
PO7 0.011

 
  

(a) (b) (c) 

Figure 7. (a) Electrodes’ locations found to be statistically different in power latency variables
between ALS and Control group; (b) distribution of latencies for ALS and Control group in location
OZ for the Theta band; (c) distribution of latencies for ALS and Control group in location PO7 for the
Alpha band.

The power latency had the least variables. Only two electrodes in one band each were
found to have statistical differences. In Figure 7b, the distribution of latencies is shown for
the ALS and Control group in location OZ for the Theta band. The ALS group showed a
higher latency than the Control. In Figure 7c, the Alpha band was shown in location PO7.
A higher latency was seen for ALS as well.

3.3. Connectivity

For the connectivity analysis, all 16 electrodes were compared with all the other
15 electrodes to find their connectivity. This was performed among four bands, resulting
in 960 variables for each patient. All of the 960 groups underwent the statistical analysis,
and only nine variables were found to be statistically different, with p < 0.05. Six of these
variables were in the same band, in the same electrode.

The selected variable pairs, in this case, were located in CZ—C4 in the Delta band,
PO8—OZ in the Theta band, and FZ-CP4 in the Beta band (p < 0.05); these three pairs
are shown in Figure 8a. The other six pairs were located in the Alpha band and were all
between the PO7 and another electrode (p < 0.05). The other pairs were C3, C1, CZ, C2, C3,
and CP4, as shown in Figure 8b. This information can be seen in Table 3.
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The connectivity variables were mainly focused on the Alpha band between electrode
PO7 and other electrodes in the Central area. In Figure 8c, we can see the distributions of
connectivity of channels CP4 and PO7. It is clear that in the CP4 electrodes, both groups
were difficult to distinguish. In contrast, in PO7, the green group (ALS) was below the
Control group in almost every electrode.

  
(a) (b) 

 
(c) 

Figure 8. (a) Electrodes’ locations found to be statistically different in connectivity variables between
ALS and Control group for bands Delta, Theta, and Beta; (b) electrodes’ locations found to be
statistically different in connectivity variables between ALS and Control group for Beta band; (c) ISPC
of all subjects and patients of electrodes PO7 (bottom) and CP4 (top) with all channels. Control is in
blue and ALS in green. Most connectivity values’ significant differences were found between the
PO7 electrode and the electrodes above the motor cortex area, CZ, C1 C2, C3, C4, and CP4. This can
be seen in the PO7 chart, where almost all ALS connectivities are below the Control group.
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Table 3. Variables of connectivity with significant difference resulting from a ranksum test (Wilcoxon
for independent groups) between ALS group and Control group.

ELECTRODE PAIR p-Value

DELTA
CZ—C4 0.0484
THETA

PO8—OZ 0.0274
ALPHA
PO7—C3 0.0484
PO7—C1 0.0274
PO7—CZ 0.0484
PO7—C2 0.0346
PO7—C4 0.0484

PO7—CP4 0.0308
BETA

FZ—CP4 0.0434

This indicates a decreased connectivity for the ALS group.
In Figure 9a–c, the following electrode pairs are seen, PO7 and CP4, PO7 and C2, and

FZ and CP4, respectively. In the first two-electrode pair, a statistical difference was found in
the Alpha band, which is marked in blue in Figure 9a,b. In this area, we can see a negative
deflection for the ALS group. The Alpha occipital cycles are thought to be activated during
temporal integration in visual perception [23].

  
(a) (b) 

Figure 9. Cont.
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(c) 

Figure 9. (a) Average InterSite Phase Clustering (ISPC) between electrodes PO7 and CP4 of Control
(red) and ALS (blue). Alpha band is shown in blue. In the Alpha band, the ALS group is below
the Control group; (b) Average ISPC between electrodes PO7 and C2 of Control (red) and ALS
(blue). Alpha band is shown in blue. In the Alpha band, the ALS group is below the Control group;
(c) Average ISPC between electrodes FZ and CP4 of Control (red) and ALS (blue). Beta band is shown
in blue. In the Beta band, the ALS group is above the Control group.

In Figure 9c in the beta band, we can see that the Control group was below the ALS
group in all of the bands, indicating augmented connectivity for the ALS group.

3.4. Classification Model

To select the variables for the classifier, first, a fourfold was performed to extract 25% of
participants of each group for testing. With the remaining 75%, a threefold was performed
to select the most important variables. To pick them, in each fold, it was determined which
variables were significantly different between groups. This process was in a loop and
was repeated 25 times. The variables selected the most times among all the repetitions
were considered for the classification testing. The chosen variable was power in CZ in the
Beta band. A simple linear SVM was trained with this variable, and with a leave-one-out
cross-validation, a 100% in specificity and 75% in sensitivity were achieved, with an overall
89% success classifying individuals into each group. The reason of the effectiveness of this
classification is shown in Figure 10a, where the ALS and control groups showed different
population densities. The probability density function of the Healthy Control (HC) group
and ALS group was estimated with the nonparametric kernel density estimation method.
The ALS group seemed to have a bimodal distribution with one of its modes being inside
the HC group.
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(a) 

 
(b) 

Figure 10. (a) Estimated population density of maximum power for ALS group and Healthy Control;
(b) connectivity (ISPC) value between electrodes CZ and PO7 in the Alpha range for four different
sessions for Px1 and three different sessions for Px2. Each session was three months apart.

3.5. Evolution of Patients

Data were gathered of two ALS patients at different times, with three months between
each session. In Figure 10b, a graph that contains the values of the ISPC between Cz
and PO7 in the Alpha range can be appreciated. The values calculated for three sessions
for patient 2 and four sessions for patient 1 can be seen. For patient 2, a reduction in
connectivity was seen as the disease advanced. Patient 1 had a similar result, but a
connectivity increase was seen in the third session.
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4. Discussion

The main objective of this study was to understand the underlying cognitive neural
alterations that affect people with ALS as an aid for the detection or to monitor the disease’s
evolution. In the present work, alterations were found for ALS patients’ EEG data during
a cognitive test, a P300 task, in comparison to HC subjects. These alterations for the ALS
group were a decreased activity in the Beta band in electrode locations FZ, CZ, and PZ;
around them, an augmented latency in frequency bands Delta (OZ) and Alpha (PO7); and
variations in connectivity among all frequency bands, but an especially reduced band-
specific connectivity in the Alpha band between channel PO7 and channels above the
motor cortex (CZ, C1, C2, C3, C4, and CP4). The tracking of connectivity values in two
ALS patients indicated an Alpha-related connectivity decrease between channels PO7
and CZ. Finally, data from CZ were used to classify individuals between both groups;
cross-validation achieved a 100% in specificity and 75% in sensitivity, with an overall
89% success.

Decreased activity in the Beta band in electrodes over the sensorimotor band was
found. Beta band activity in the sensory-motor band had been found to be important for
accurate motor performance in healthy individuals [24]. This also supports what has been
reported for ALS individuals [10,23–25]. Motor system degeneration in ALS individuals has
been linked to a decrease in the Beta band [25]. This strengthens the theory that CZ could
work as a biomarker to monitor ALS. The only problem is that those studies were made
during a motor task, not a cognitive task. On the cognitive side, beta oscillations are also
traditionally associated with sensorimotor processing [22]. This indicated a sensorimotor
processing dysfunction for ALS individuals. Additionally, the Beta band is associated with
attention, so it is expected to be of interest. A reduction in P300 power is usually seen
in older patients, but this effect is typically present in the PZ electrode [26]. However,
in the graphical analysis, the difference was detectable in CZ but not in PZ, giving a
strong indication that the effect is not due to age but ALS degeneration. Moreover, when
reperforming the graphical analysis only with subjects older than 50 in the control group,
the region in the CZ channel was still present.

Connectivity results indicated overactivation in the Beta band and underactivation
in the Alpha band for ALS individuals. The difference in the connectivity maps could be
clearly seen, and it was noticeable how these changes in connectivity were band-specific. A
decrement in Alpha connectivity was so evident that an apparent valley in connectivity
was located on this band between electrodes PO7 and CP4. Alpha band oscillations has
been linked with a top-down control of the temporal resolution of visual perception [27].
More research is needed, and additional tests must be performed to study more deeply the
connectivity in ALS patients; this could mean applying additional filtering to the signals,
such as a Laplace, or calculating another type of connectivity between electrodes, such as
power correlation. Additionally, the evolution of the two ALS patients whose results were
available at different time points indicates an overall decrement in the connectivity between
PO7 and CZ in the Alpha band, strongly indicating a connectivity degeneration in the
Alpha band for ALS individuals. Alterations in connectivity in the Alpha band have been
found in ALS patients [6,28] and also in the Beta band [5]; yet, these results were found
in the rest-state. Beta band connectivity has also been found to be essential for accurate
motor performance in healthy individuals [24]. This may indicate an over-effort from ALS
individuals, but as the connectivity results in the Beta band were only significant in one
pair of electrodes, this is hard to generalize. A reduction in connectivity has been linked
to a decrease in cognition for patients with Multiple Sclerosis [29]. Rates of ALS-related
impairment are noted to be related to the disease stage. Cognitive deficit is more frequent
with more severe ALS stages [30]. This strengthens the theory that connectivity could serve
as a tool to monitor the disease’s advances in cognitive atrophy, specifically.

Most of the previous papers that have studied either connectivity or signal ampli-
tudes did so in the resting-state, not during an active task [6,7,23,28], or during a motor
task [10,24,25]. The few that have studied it during a P300 task did not analyze connec-
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tivity and amplitude simultaneously in a spectral analysis [11]. The selected variable for
classification was the peak power in the Beta band in CZ. Achieving a 100% in sensitivity
indicates that no false positives were present, which strengthens the possibility of using
this characteristic as a potential biomarker to track ALS degeneration. Classifiers for ALS
individuals have been performed, but they do not usually analyze the signals [31]. Using
cognitive alterations in the Beta band to classify between ALS and Control groups has been
performed with success but using a generic BCI (BCI2000) [20]. The signals used in this
work came from a P300-based BCI for ALS patients [21], so understanding the cognitive
neural alterations occurring could help improve the BCI’s performance as its performance
will most likely be different for a CLIS ALS patient than for a control subject, or even a
more moderate ALS case. A follow-up of an ALS patient’s potential biomarker has not been
performed to our knowledge. For the magenta patient in Figure 10b, a gradual decrement
was seen for the peak power in the Beta band in CZ. Yet, this was not the case for the other
ALS patients represented. This may be because the magenta patient had a more severe
case of atrophy, but without further research, this is mere speculation. The results were
achieved with a simple univariate Support Vector Machine (SVM) classification model. The
only three patients that were classified as Controls had either not very good signals or had
taken the P300 evaluation previously, which may alter the results.

In conclusion, the ALS group seemed to have a statistically important difference in
power and connectivity during the P300 task, a cognitive task, the two most important
being in power magnitude in the Beta band and connectivity in the Alpha band. All
21 variables had p > 0.05 after FDR correction. Yet, the evidence implied that some of
these results may be false negatives. This evidence is the fact that the Cz, C2, and C4
electrodes showed significant differences in the same region (Beta band around 500 ms
after stimuli) in the time–frequency power maps, and that the power values of electrode
Cz in the Beta band had a good overall performance in classifying correctly between ALS
and HC groups. This is also the case for the connectivity decrease for the ALS group in
the Alpha band, as Figure 9 clearly shows a frequency band-related decrease, and the
connectivity value decreased in ALS patients (in the same electrode pair) as the disease
advanced. The variables selected by the analysis did not seem to be random but had a
correlation with what other researchers have found, strengthening the theory that they
could serve as biomarkers for ALS. The SVM model that resulted from the classification
between ALS patients and Control subjects had very promising results. All Control subjects
were classified correctly, which means that a false ALS diagnosis would not occur. Clearly,
this was a simple bivariate model. A much more complex model may be obtainable.
The potential of these variables as ALS biomarkers that could aid detection or monitor
the advance of the disease is noticeable and must be further studied. Finally, this was
an exploratory research whose objective was to find areas that potentially need further
examination. The hypothesis for the underactivations presented by the ALS group is a
general neural degeneration; more studies are needed to localize the degeneration site and
the level of its affectations. The next stage is to test these results by observing these specific
variables with more electrodes in these areas.
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Abstract: In the background of all human thinking—acting and reacting are sets of connections
between different neurons or groups of neurons. We studied and evaluated these connections using
electroencephalography (EEG) brain signals. In this paper, we propose the use of the complex
Pearson correlation coefficient (CPCC), which provides information on connectivity with and without
consideration of the volume conduction effect. Although the Pearson correlation coefficient is a widely
accepted measure of the statistical relationships between random variables and the relationships
between signals, it is not being used for EEG data analysis. Its meaning for EEG is not straightforward
and rarely well understood. In this work, we compare it to the most commonly used undirected
connectivity analysis methods, which are phase locking value (PLV) and weighted phase lag index
(wPLI). First, the relationship between the measures is shown analytically. Then, it is illustrated by
a practical comparison using synthetic and real EEG data. The relationships between the observed
connectivity measures are described in terms of the correlation values between them, which are,
for the absolute values of CPCC and PLV, not lower that 0.97, and for the imaginary component of
CPCC and wPLI—not lower than 0.92, for all observed frequency bands. Results show that the CPCC
includes information of both other measures balanced in a single complex-numbered index.

Keywords: EEG; functional connectivity; phase locking value; weighted phase lag index; complex
Pearson correlation coefficients

1. Introduction

A human brain contains on average about 100 billion (1011) neurons connected by
about 100 trillion (1014) synapses. The neurons are anatomically organized in different
spatial regions and functionally interact over different time points [1]. In this work, elec-
troencephalography (EEG) was used to record neuron activity. EEG is an electrophysiologi-
cal monitoring method for observing neurophysiological changes related to postsynaptic
activity in the neocortex, i.e., a method for recording the electrical activity of the brain [2].
Monitoring brain activity using this method provides high temporal resolution. This prop-
erty makes EEG one of the most suitable monitoring methods for non-invasive detection
of neurons’ interactions inside the brain and, consequently, for detection of information
transmission within the same brain regions and between different brain regions [3]. Brain
connectivity analysis is generally divided into two types: structural and functional. Track-
ing the direction of fibers between different brain regions or within a brain region is called
structural connectivity analysis [4]. The most suitable recording methods for determining
structural connectivity are magnetic resonance imaging (MRI) [5] and diffusion tensor
imaging (DTI) [6]. On the other hand, functional connectivity analysis can be defined as an
analysis of the amount of information transmitted between brain regions or within a brain
region. This type of connectivity analysis is usually divided into two groups: undirected
and directed. Undirected connectivity measures evaluate the degree of connectivity, while
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directed connectivity measures evaluate the degree and direction of connectivity between
observed brain regions. In this paper, we focus on undirected connectivity measures. Dif-
ferent cognitive tasks require different information flows within a brain area or between
different brain areas. This is due to the fact that neuronal oscillations are background
mechanisms essential for dynamic cooperation in the brain [7–12].

The most suitable methods for monitoring brain activity to determine functional
connectivity are magnetoencephalography (MEG) and electroencephalography (EEG) due
to their good temporal resolutions [13].

Different types of measures can be used to determine functional connectivity, such as
phase synchronization, generalized synchronization measures, linear temporal correlation,
etc. [14–16]. In this paper, we focus on undirected phase synchronization measures. The
most often used measures are the phase locking value (PLV) [17,18] and the weighted phase
lag index (wPLI) [19]. The main difference between these two measures is the ability to
avoid the effect of volume conduction.

The PLV index is based on phase differences of signals from two EEG channels. For
a set of N time points, it calculates an average of N unit vectors that represent the phase
difference between the signals of both channels. The PLV value of zero represents no
connection between the observed signals’ regions and the maximum PLV value of one
represents a perfect connection. Although very widely used, a drawback of the PLV
measure is the tendency to be biased towards higher values due to volume conduction [17].

The phase lag index (PLI) was designed as a solution to avoid the misinterpretation of
volume conduction as a connectivity component [17]. Volume conduction reflects in the
appearance of signal components with phase differences closer to 0 or ±π. PLI avoids them
by only considering the number of samples with positive and negative phase differences.
Only if the number of samples in one group, i.e., positive or negative, is predominant then
PLI gets value close to one. This cancels out the components with phase angle distributions
centered at 0 and ±π.

The extended version of the PLI is the weighted phase lag index (wPLI [19]). The wPLI
measure adds weighting of samples by the imaginary component of the cross-spectral
density. Because the real component of cross spectral density is not considered, samples
where the phase differences are close to 0 or ±π have no contribution to the connectiv-
ity estimation and signal components that may arise due to volume conduction have
no influence.

There are several other undirected connectivity measures, such as coherence, imagi-
nary part of coherence, mutual information, etc., but for the purposes of this article, we
limit our analysis to only those two most common ones, i.e., PLV and wPLI. They comple-
ment one another, providing connectivity estimation with and without consideration of
the volume conduction effect. As an alternative, we propose a complex Pearson correla-
tion coefficient (CPCC), which in a single unique measure provides information of both
connectivity components.

The rest of the article is structured in the following way. In Section 2, we propose
the complex Pearson correlation coefficient as a novel measure of undirected channel
connectivity, review the PLV and wPLI measures, and analytically show their relationships
to CPCC. In section three, the relationship is demonstrated with practical experiments,
using synthetic and real EEG signals. We end the paper with a discussion and conclusion.

2. Methods

In this section, we define the proposed complex Pearson correlation measure (CPCC)
and show its analytical relationship with PLV and wPLI connectivity measures.

2.1. Complex Pearson Correlation Coefficient as a Measure of Undirected Connectivity

Various types of complex correlation calculations are used in the literature [20], and in
different research fields, such as geophysics [21], radar systems [22], optics [23], etc. In this
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section, we propose the use of complex Pearson correlation coefficient for EEG connectivity
analysis.

Pearson’s linear correlation coefficient (r) is the most commonly used linear correlation
coefficient. It is a statistical measure of the degree to which variables change their values
in relation to each other, or in other words, expresses the level to which two variables are
linearly related. It is defined as follows:

r(x1, x2) =
∑N

n=1(x1,n − x1)(x∗2,n − x∗2)√
∑N

n=1(x1,n − x1)2 ∑N
n=1(x∗2,n − x∗2)2

. (1)

Here, N is the number of samples, x1 and x2, are the series being analyzed, {.}
represents mean values of observed series, and {.}∗ is the complex conjugate operator (if
the values in series are complex). The resulting r ranges from −1 (indicating perfect negative
correlation) to +1 (indicating perfect positive correlation). A zero value is an indicator of no
linear signal relationship. Assuming that EEG signals for the analysis should be pre-filtered,
which removes DC signal components, the equation can be simplified:

r(x1, x2) =
∑N

n=1 x1,n · x∗2,n√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

. (2)

The numerator in the Equation (2) can be understood as a time-averaged temporal
estimation of sample relationship, while the denominator is a weighting factor to obtain
the desired range from −1 to 1. Let us first focus to the numerator. For two oscillatory
signals represented as series of real values, the temporal relationship estimation is also an
oscillatory signal. Consequently, the temporal contribution of a single time step does not
have any direct meaning and at least one period of signal samples need to be averaged
to become informative. To improve temporal meaningfulness of the estimation, analytic
signal representations can be used instead of real valued ones. Analytic signal sample
is a complex number that adds an imaginary part indicating the oscillatory nature of
the signal to its existent real valued part. Thus, in addition to a real signal value, the
analytic signal sample includes the information of signal instantaneous amplitude and
instantaneous phase, which can be represented as a vector in a complex plane. Because
basic sinusoidal oscillatory signal keeps the instantaneous amplitude constant over time
while its instantaneous phase increases linearly, these vectors are also called phasors. For
two phase-locked signals the phase difference is constant and the numerator of Equation (2)
gets constant over time, too. Its real value represents the dot product of the phasors, while
its imaginary part equals the size of the cross product. Altogether the product of two
phasors of two analytic signals is analogous to the cross spectral density for the stationary
or quasi-stationary signals. The denominator of Equation (2), needed for scaling, relates
to the power of both signals. The final result when using analytic signals is the complex
Pearson correlation coefficient (CPCC):

CPCC = r(xa,1, xa,2), (3)

where xa denotes analytic signals.
The analytic signal representation is defined only for narrow frequency band signals.

In such cases analytic signals can be computed from real ones by adding imaginary part
equal to the Hilbert transform (HT) of the original signal:

xa(t) = x(t) + iHT(x(t)), (4)

where HT (x(t)) represents the Hilbert transform of x (real signal) and xa(t) is an analytic
signal, as explained in [17]. With HT we obtain a phasor influenced by all the frequencies
in the observed narrow band. Phasors can also be obtained using the discrete Fourier
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transform, where one phasor presents each frequency component, but only stationary,
without temporal dimension. HT provides this additional temporal perspective, which
enables analysis of non-stationary signals. Because EEG signals are non-stationary, in
this paper we limit to the analysis of their narrow band pre-filtered components with the
analytic form obtained using HT.

Connectivity measures estimate the relationship between two signals and this can
be performed using the CPCC. The in-phase signals have high real CPCC part and zero
imaginary part. On the other hand, imaginary component represents the relationship
between signals with the phase lag of ±π/2. Thus, the connectivity of two brain regions
can be estimated considering both parts of the complex CPCC value for the corresponding
EEG signals, by computing its absolute value (absCPCC). In such a case the obtained value
should be related to the PLV value. When the volume conduction effect needs to be avoided,
only the imaginary component shall be used (imCPCC). Such estimation is expected to be
related to the wPLI value.

2.2. Phase Locking Value PLV and Its Relation to CPCC

Phase-locking value (PLV) is calculated based on the phase differences of the two
analytical signals [17,18]:

PLVx1,x2 =

∣∣∣∣∣ 1
N

N

∑
n=1

ei(Δφx1,n ,x2,n )

∣∣∣∣∣. (5)

In Equation (5), Δφ represents the phase difference and N represents the number of
samples. The instantaneous phase difference is defined as:

Δφx1,n ,x2,n = φx1,n − φx2,n , (6)

where φx1,n and φx2,n stand for the phase angles at n-th sample. In order to obtain instan-
taneous phases, analytical signals need to be computed, using (HT). Computation of PLV
can be visualized by creating a set of N unit vectors corresponding to N time samples, see
Figure 1. Phase angles of those vectors are equal to phase differences between the two EEG
signals for samples from 1 to N. All the N unit vectors representing phase differences are
averaged to obtain PLV.

Figure 1. Visualization of averaging used in calculation of the PLV. The PLV is computed from unit
vectors representing instantaneous phase differences.

The high value of PLV is obtained when the vectors are well clustered, which means
that the phase difference between the two EEG channels is mostly constant for all the
time samples On the other hand, when the phase difference between the two channels is
changing with time, the unit vectors are scattered, which results in low PLV value.

The lack of this measure is its tendency to falsely over-estimate the connectivity level
due to the volume conduction. The reason is that the volume conduction enables a signal
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from a single source to be measured on both EEG electrodes under consideration, which
results in a zero-phase difference over a larger time interval, leading to a larger PLV value.

In order to prove our assumption that the absolute value of the complex Pearson cor-
relation is related to the PLV index, the Equation (2) can be rewritten in the following way:

absCPCCx1,x2 = |r(x1, x2)| =
|∑N

n=1 Ax1,n · Ax2,n · eiΔφx1,n ,x2,n |√
∑N

n=1 A2
x1,n

·
√

∑N
n=1 A2

x2,n

, (7)

where Ax represents the instantaneous amplitude of a complex signal.
Comparing Equations (5) and (7), we can see that the PLV is related to the absCPCC,

but scales the contributions of instantaneous phases with instantaneous amplitudes:

|∑N
n=1 Ax1,n · Ax2,n · eiΔφx1,n ,x2,n |√
∑N

n=1 A2
x1,n

·
√

∑N
n=1 A2

x2,n

♦ �=
∣∣∣∣∣ 1

N

N

∑
n=1

ei(Δφx1,n ,x2,n )

∣∣∣∣∣, (8)

absCPCC is therefore a weighted version of PLV.

2.3. Weighted Phase Lag Index wPLI and Its Relation to CPCC

The PLI and wPLI measures of connectivity address the volume conduction problem.
Let us first present the PLI measure, as a transitional step towards a more refined weighted
PLI measure (wPLI). The PLI is defined as [17]:

PLIx1,x2 =

∣∣∣∣∣ 1
N

N

∑
n=1

sign(Im(Sx1,n ,x2,n))

∣∣∣∣∣, (9)

where N is the number of samples. In the original definition [24], Sx1,n ,x2,n is the cross-
spectral density of the observed signals defined by Fourier transform. In [17], PLI was
defined using analytical signals obtained by HT and the cross-spectral density is defined as:

Sx1,n ,x2,n = |Ax1,n | · |Ax2,n |ei(φx1,n−φx2,n ), (10)

where Ax1,n and Ax2,n are the instantaneous amplitudes of the observed signals x1 and x2
at sample n. Based on Equation (9) and as shown in , Computation of PLI is illustrated in
Figure 2. All unit vectors that represent phase differences are first divided into two subsets:
those with positive, and those with negative imaginary part. Then, the difference of subsets’
sizes is divided by the number of all vectors N, and its absolute value equals the PLI.

Figure 2. Visualization of averaging used in calculation of the PLI. The PLI is computed from unit
vectors representing instantaneous phase differences.

Therefore, if there is a predominant positive or negative phase difference throughout
the observed time interval, then the obtained value of PLI will be close or equal to 1. On
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the contrary, PLI which equals 0 is obtained when half of the phase differences are negative
and the other half of them are positive.

The weighted phase lag index (wPLI) is an improved version of the phase lag index
connectivity measure. The unit vectors of phase differences from PLI are now scaled
with instantaneous amplitudes of both signals [19]. In other words, wPLI is obtained by
weighting PLI with the imaginary part of the cross spectral density:

wPLIx1,x2 =

∣∣∣∣∣
1
N ∑N

n=1 |Im(Sx1,n ,x2,n)|sign(Im(Sx1,n ,x2,n))

1
N ∑N

n=1 |Im(Sx1,n ,x2,n)|

∣∣∣∣∣. (11)

By expressing the cross spectral density from Equation (10) using the complex conju-
gate operator, the wPLI can be rewritten as follows:

Sx1,n ,x2,n = x1,n · x∗2,n. (12)

wPLIx1,x2 =

∣∣∣∣∣
1
N ∑N

n=1 |Im(x1,n · x∗2,n)|sign(Im(x1,n · x∗2,n))

1
N ∑N

n=1 |Im(x1,n · x∗2,n)|

∣∣∣∣∣, (13)

which can be further simplified as:

wPLIx1,x2 =
|∑N

n=1 Im(x1,n · x∗2,n)|
∑N

n=1 |Im(x1,n · x∗2,n)|
. (14)

Now we can show its relationship to the CPCC or more specifically to its imaginary
part, denoted imCPCC:

imCPCCx1,x2 = |Im[r(x1, x2)]|

=
|Im[∑N

n=1 x1,n · x∗2,n]|√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

=
|∑N

n=1 Im(x1,n · x∗2,n)|√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

(15)

Comparing Equations (14) and (15) we see that both measures, wPLI and imCPCC, are
based on the imaginary part of the cross spectral density S in the numerator, and differ
only in scaling in the denominator. The wPLI is scaled using the imaginary part of S only,
while imCPCC with the power of both signals.

2.4. Connectivity Estimation Based on Phase Difference Histograms

In this section, we explain how connectivity reflects in phase difference histograms, to
illustrate the connectivity measures. Although statistical properties of the phase difference
distribution can clearly indicate phase locking of the signals [25], in practice, connectivity
measures are rarely explained in these terms. We will use it to gain better insight into
real connectivity between signals, particularly for the cases where values of connectivity
measures are the highest or most different between each other.

Let us first assume no volume conduction is present. When two signals are not
connected, they change independently and the phase differences are uniformly distributed.
Connectivity between two brain regions reflect in more expressed phase differences of
corresponding signals. The higher the connectivity, the more pronounced the extreme
gets, and the standard deviation of the distribution gets lower, see Figure 3a. The “red”
distribution reflects the highest connectivity and its standard deviation is the lowest. On
the other hand, the “orange” distribution has the highest standard deviation and reflects
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the lowest connectivity. The mean value of the phase distribution equals the average phase
difference, and can have an arbitrary value in the [−π, π] range, and it does not depend on
the connectivity level.

(a) (b)
Figure 3. The relationship between connectivity and phase differences distributions. When volume
conduction is not considered (a) higher connectivity reflects in lower variance, while the mean value is
irrelevant. In the presence of volume conduction (b), it reflects in higher values for phase differences
close to 0 or π, which, therefore, do not (necessarily) indicate connectivity. Connectivity level is
expressed with colors; red is the highest and yellow is the lowest.

If volume conduction is present, certain signal components are included in both of the
signals under consideration. These signal components have a phase difference of 0 or ±π,
but due to noise and signal interference, instantaneous phase differences spread around
these values. These values therefore do not (necessarily) imply higher connectivity. In the
example in Figure 3b, we can expect that distributions with peaks closer to 0 ± kπ are more
likely to reflect volume conduction and not connectivity. The estimated connectivity is
therefore the highest when the value at 0 and ±π is the lowest and the variance the smallest.

3. Results

In this section, we compare the proposed CPCC measures with PLV and wPLI using
synthetic signals and real-life signals from freely available datasets.

3.1. Synthetic Signals from the MRC Brain Network Dynamics Unit (University of Oxford)

In the first experiment, we generated synthetic signals following Mäkinen et al. [26].
The EEG data we generated contained 31 channels from 973 trials, which were concatenated
into a single large signal. This suited our particular purpose, as we analyzed general brain
connectivity independent of specific brain events.

We computed connectivity using the proposed and established methods for different
frequency bands. The connectivity matrices representing the estimated connectivity for
each electrode pair and for all four measures are shown in Figure 4. We can clearly see
strong visual similarities between the proposed measures and the most commonly used
measures, i.e., between PLV and absCPCC, as well as wPLI and imCPCC.

To better compare the connectivity measures, see Figure 5, with scatter plots for
measure pairs PLV to absCPCC and wPLI to imCPCC. Each dot in a scatter plot represents
one electrode pair. The color of the dots depends on the relative density of the dots in the
graph. There are also two lines shown, where the black one represents identity while the
cyan one the best linear fit. High correlation is evident for both connectivity measure pairs,
while the scaling differences depend on the frequency band, most evidently for the PLV to
absCPCC pair. There are some electrode pairs that deviate slightly from the general linear
relationship while the overall correlation of the measures seem to be high.
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(a) (b)

(c) (d)
Figure 4. Connectivity matrices obtained with PLV (a), wPLI (b), absCPCC (c), and imCPCC (d) for
signals generated with [26], for 8–13 Hz frequency band.

To evaluate the relationship between the measures, evident from Figure 5, we com-
puted their correlation. In addition to frequency bands shown in Figure 5, 0.5–4 Hz, 4–8 Hz
and 8–13 Hz, we computed it for 13–18, 18–30, and 35–45 Hz frequency bands. For all the
frequency bands and both pairs, i.e., PLV to absCPCC, and wPLI to imCPCC; the obtained
correlation equaled 0.99, proving the close to perfect relationship between the measures.

Finally, we selected electrode pairs with the highest connectivity values and the
highest ratio between them. Their phase difference distributions are shown in Figure 6.
As expected, the same electrode pair (16–11) had the highest PLV and absCPCC values.
The corresponding phase distribution was centered at the phase angle 0, indicating the
possibility of volume conduction. Similarly, one electrode pair (14–12) had the highest in
both wPLI and imCPCC values. The corresponding phase distribution has a less pronounced
peak off the center. The ratios between PLV and wPLI, as well as absCPCC and imCPCC
values, were the highest when the later ones equalled 0 and the histogram was centered
(electrode pair 15–12). The highest and wPLI to PLV ratio and imCPCC to absCPCC ratio
were obtained when absCPCC equaled imCPCC.

(a) (b)
Figure 5. Cont.
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(c) (d)

(e) (f)
Figure 5. Scatter plots of absCPCC to PLV relationship (left) and imCPCC to wPLI relationship (right).
Each dot represents one electrode pair. Dots are colored according to their relative density. The
black line represents identity, while the cyan one is the best linear fit. Rows correspond to different
frequency bands: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz; (e,f) 8–13 Hz.

(a) (b)

(c) (d)
Figure 6. Phase difference distributions for selected electrode pairs (synthetic signals [26]). Shown are
the distributions corresponding to the highest: (a) PLV and absCPCC values, (b) wPLI and imCPCC
values, (c) ratio between absCPCC and imCPCC values, (d) ratio between imCPCC and absCPCC values.

3.2. Synthetic Signals Generated with the Kuramoto Model

The second set of synthetic signals to test connectivity estimation methods was gen-
erated using the Kuramoto model according to [27]. The reason for using it is that the
relationship between electrodes is defined and known in advance. Twenty-four signals
(channels/electrodes) were generated. The signals form three groups, from 1 to 8, 9 to 16,
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and 17 to 24. They are composed of two signal components, where the first component
is synchronized between all electrodes in a group and the second component is not syn-
chronized and gives a more realistic variability to the signal set. The signals from 17 to 24
are composed of the first components only and due to the high coupling factor (K = 1000),
these signals are synchronized very quickly. As a result of the fast synchronization, these
signals are in phase and can be observed as an example of high volume conduction.

Figure 7 shows the connectivity matrices of the observed connectivity measures. It
is visible that the signals are connected within groups and much less between the groups.
The random nature of the generation process could lead to synchronous signals even
between different groups. Looking at the third group of signals, we also see a tendency for
the PLV and absCPCC to include volume conduction as an acceptable contribution to the
connectivity, while wPLI and imCPCC avoid this component.

(a) (b)

(c) (d)
Figure 7. Connectivity matrices obtained with PLV, wPLI, absCPCC, and imCPCC for signals generated
with the Kuramoto model [27].

In Figure 8 is a scatter plot showing the relationship between absCPCC and PLV values
(a) and between the imCPCC and wPLI values (b). A strong linear relationship is evident
for both connectivity estimation method pairs, while the scaling is different.

The correlation between PLV and absCPCC values as well as the correlation between
wPLI and imCPCC equals 0.99, indicating strong similarities between these measures.

The phase difference distributions for signal pairs with the highest connectivity values
and the highest ratio between them are shown in Figure 9. The phase difference distribution
corresponding to the highest PLV and absCPCC values was narrow and centered around
0. It was obtained for two signals from the last group (24–17), which modeled volume
conduction. The highest wPLI and imCPCC values were obtained for signals from the first
group (7–3), with wide distribution centered at π/2 radians. The ratio between the absCPCC
and imCPCC values was the highest when the latter one equaled 0 and the histogram was
centered, indicating possible volume conduction (signal pair 19–18). The highest imCPCC
to absCPCC ratio was, again, obtained when values for both measures were equal, with a
clear peak of the distribution at π/2 radians.
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(a) (b)
Figure 8. Relationships between absCPCC and PLV (a), and wPLI and imCPCC (b), shown as a scatter
plot of values for all signal pairs where signals were generated with the Kuramoto model [27]. The
black line represent the identity while the cyan line shows the best linear fit. The colors of the dots
represent the relative density of the connectivity values.

(a) (b)

(c) (d)
Figure 9. Phase difference distributions for selected synthetic signal pairs generated using the
Kuramoto model [27]. Shown are the distributions corresponding to the highest: (a) PLV and
absCPCC values, (b) wPLI and imCPCC values, (c) ratio between absCPCC and imCPCC values,
(d) ratio between imCPCC and absCPCC values.

3.3. Real-Life Signals

For testing on real-life data, we used the SPIS Resting State Dataset [28], a multimodal
dataset with EEG and forehead EOG signals. In our analysis, we used only EEG signals
from the “eyes closed” (EC) and “eyes open” (EO) states with a duration of 2.5 min, using
256 Hz sampling rate.

Offline preprocessing of the EEG signal was performed in the following sequence
of steps:

1. The raw brain activity data were imported into MATLAB using the EEGLAB toolbox;
2. Electrode positions (also called channel locations) were defined in the software;
3. The data were referenced to average;
4. The data were filtered with a band pass filter limited to 0.5 and 45 Hz;
5. Automatic spectral-based channel suppression (z = 5) was performed using the

EEGLAB “pop rejchan” function;
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6. Artifacts were removed using the ICLabel plugin for EEGLAB (thresholds for removing
components were less than or equal to 0.05 for brain activity and greater than or equal
to 0.9 for artifacts);

7. The data were re-referenced to average;
8. Sub-bands of the EEG signal were extracted (delta 0.5–4 Hz, theta 4–8 Hz, alpha

8–13 Hz, low beta 13–18 Hz, high beta 18–30 Hz, gamma 35–45 Hz).

Figure 10 shows the connectivity matrices for PLV, absCPCC, wPLI, and imCPCC for
both conditions (EC and EO) in the alpha band (8–13 Hz). The similarity between PLV and
absCPCC, as well as between wPLI and imCPCC, is visible, although with some evident
differences, mainly between the latter two. Although the patterns are similar, the color
scaling (based on the highest value) is different.

(a) (b)

(c) (d)

(e) (f)
Figure 10. Cont.
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(g) (h)
Figure 10. Connectivity matrices for the the alpha band (8–13 Hz) of the real-life signals [28] for eyes
closed (EC) and eyes open (EO) states, computed with PLV, wPLI, absCPCC (g), and imCPCC (h).

Figures 11 and 12 show the relationship between absCPCC and PLV values (left) and
between the imCPCC and wPLI values (right) for all the frequency ranges. Figure 11 shows
the signals recorded with eyes closed (EC state), while Figure 12 is for eyes open (EO
state). We can see that absCPCC and PLV as well as imCPCC and wPLI are positively
correlated in all frequency bands. However, we have to be aware that real-life signals
include multiple signal components with different amplitudes, while the scaling is common
for the whole sequence. This makes the results more scattered in PLV-absCPCC and wPLI-
imCPCC distributions. The relationship between absCPCC and PLV is evident, but with
visible deviation from being perfectly linear due to reduced scaling difference for high
connectivity values. The relationship between imCPCC and wPLI also deviates from linear,
with evident range of scaling differences. The relationships do not seem to be dependent
on the EC/EO state.

(a) (b)

(c) (d)
Figure 11. Cont.
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(e) (f)
Figure 11. Scatter plots of the absCPCC to PLV relationship (left) and the imCPCC to wPLI relationship
(right), for all electrode pairs and for 10 test subjects (EC state). The black line represents the identity,
while the cyan line shows the best linear fit. The colors of the dots represent the relative density of the
connectivity values. Each row is shown for a different frequency band: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz;
(e,f) 8–13 Hz.

(a) (b)

(c) (d)

(e) (f)
Figure 12. Scatter plots of the absCPCC to PLV relationship (left) and the imCPCC to wPLI relationship
(right), for all electrode pairs and for 10 test subjects (EO state). The black line represents the identity,
while the cyan line shows the best linear fit. The colors of the dots represent the relative density of the
connectivity values. Each row is shown for a different frequency band: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz;
(e,f) 8–13 Hz.

To enumerate the linearity of relationships between the connectivity measures, we
show the correlation values between them in Table 1.
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Table 1. Correlation values between compared connectivity measures (real-life signal). Here, rabs and
rim denote r(absCPCC, PLV) and r(imCPCC, wPLI) respectively.

Frequency State-EC State-EO

(Hz) rabs rim rabs rim

0.5–4 0.93 0.86 0.94 0.89
4–8 0.98 0.91 0.97 0.94

8–13 0.98 0.86 0.97 0.91
13–18 0.99 0.94 0.99 0.96
18–30 0.98 0.96 0.99 0.96
35–45 0.96 0.95 0.99 0.95

The correlation between absCPCC and PLV connectivity measures is high for all
frequency bands and both states (EC and EO), with an average of 0.97. Only slightly lower
values are obtained for the correlation between imCPCC and wPLI, with an average of 0.92.
The corresponding p-values for the alternative hypothesis that measures are not correlated
are all smaller than 0.0001 and, thus, well below the significance level of 0.05, which means
that the hypothesis of the correlation between the absCPCC and PLV and between imCPCC
and wPLI is proven for all frequency bands and both states.

Phase difference distributions for real-life signals for electrode pairs with the highest
connectivity values and the highest ratios between them are shown in Figure 13. The
phase difference distributions corresponding to the highest PLV and absCPCC values are
narrow and centered around 0. The highest wPLI and imCPCC values are obtained when
the distribution that is wide, slightly asymmetric, and centered at non-zero phase difference.
The ratio between absCPCC and imCPCC values is the highest when the later one equal
0 and the histogram is centered at ±π radians. The highest imCPCC to absCPCC ratio is,
again, obtained when their values are equal and the histogram is not symmetric around 0.

(a) (b)

(c) (d)
Figure 13. Phase difference distributions for selected electrode pairs (real-life signals [28]). For each
distribution, all four measures are calculated. The figure shows the electrode pair with the highest:
(a) PLV and absCPCC values, (b) wPLI, and imCPCC values, (c) ratio between absCPCC and imCPCC
values, (d) ratio between imCPCC and absCPCC values.
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4. Discussion and Conclusions

In this paper, we shed new light on the Pearson correlation for the EEG connectivity
analysis. We introduced the complex correlation (CPCC) as a measure of brain connectivity.
We compared it to the (currently) most widely used brain connectivity measures, i.e.,
PLV [17,18] and wPLI [19]. The correlation coefficient (CC) has been used before, but
only between the real signals, not the analytic ones, and it was shown that it does not
represent the optimal metric to estimate functional interactions [29]. It equals the real
component of CPCC, while we showed the importance of the absolute value and the
imaginary component of CPCC.

We showed that the imaginary part of the complex Pearson correlation (imCPCC) is
closely related to the wPLI measure and that the absolute value of the complex Pearson
correlation absCPCC is closely related to PLV. The relationships are proven analytically
and numerically, on two types of synthetic signals [26,27] and on real-life EEG signals [28].
Analytically, the differences are only in the denominators that are normalizing the measures
to the [0, 1] interval. Numerically, high correlations between the results obtained with
related measures are shown. For synthetic signals, the correlation level is for all frequency
bands equal to 0.99. The scaling differences are evident for absCPCC to PLV relationship,
and differ for different frequency bands. The connectivity results for real-life signals show
more differences and the measures are less correlated, but still with an average correlation
of 0.97 for absCPCC to PLV relationship and 0.92 for the imCPCC to wPLI relationship.
Real-life signals consist of more components, which originate in different sources, are
related through different neural paths, and include different (although similar) frequencies.
Even when limiting frequency bandwidths, they are more information-rich than simulated
signals. Connectivity could be understood as a portion of signal components that affects
two distinct electrode signals, but can vary with time. All of this reflects in more complex
phase difference histograms and more complex scatter-plotted relationships between the
measures.

Based on the results shown in this paper, and the fact that connectivity measures are
currently typically analyzed relatively, we conclude that PLV can be replaced with absCPCC
and wPLI with imCPCC. Moreover, the absCPCC and imCPCC measures are defined as two
components of the the same CPCC measure and are, therefore, related, while PLV and wPLI
are not. This enables comparison of the connectivity components that may be affected
by volume conduction and those which are certainly not. The imaginary component of
CPCC can only be lower or equal to the absolute CPCC value due to the excluded real
CPCC component, which depends on signal components that may result from volume
conduction. It can be expected that the true connectivity may also yield in-phase signals
of two electrodes, which makes them indistinguishable from volume conduction. Similar
to wPLI, imCPCC scales the components, such that ones more likely arise from volume
conduction have lower influence. Thus, the estimated connectivity deviates from the true
one, but CPCC provides the upper and lower boundary, with absCPCC and imCPCC
respectively. Neuroscientists sometimes have a practice of calculating both the PLV and
wPLI (or PLI) and then interpreting the results [29–32] because the PLV method, unlike the
wPLI, does not take into account the influence of volume conduction. With the proposed
CPCC measures, they can get additional information, related to the ratio of both connectivity
components. As such, the CPCC measure could be used for various neurology related
studies. Such studies include the EEG-based brain mechanism of sleep stages, which is
important for sleep quality assessment and disease diagnosis [33]. By averaging over the
trial set, the proposed measures could also be used as a solution to improve the prediction
results of the phases of the synchronization and desynchronization tasks [34]. The potential
application of CPCC also lies in the assessment of mental stress levels using functional
connectivity as a parameter [35,36] and in the diagnosis dyslexia [37]. In addition, the
proposed measures could be used as parameters for the evaluation of simulated EEG data
based on the theory of functional connectivity of the brain [38].
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The next valuable property of the proposed CPCC measure is that it can be computed
as a summation of temporal sample contributions. This enables the measure to reveal
temporal changes of connectivity and opens a new direction for further research. This
can be especially useful for analyzing human brain networks in auditory and visual
tasks [39,40] and is also promising for assessing motor skills [41]. This also allows us
to observe changes in the organization of brain network connectivity over time using
well-known measures from complex network graph theory [42].

The CPCC measure has an advantage in the computational complexity. In our ex-
periments the computation of absCPCC and imCPCC was 65% to 179% faster than the
computations of PLV and wPLI.

Finally, the computation of the correlation of two analytic signals is easy to implement
and already available in most of the statistical and signal analysis tools.

Following the above discussion—we can state that the newly proposed CPCC connec-
tivity measure, with absCPCC and imCPCC as its components, could replace PLV and wPLI
measures, accelerate the computation of brain connectivity, and provide further information
about brain processes. The data, code, and instructions for replicating the study presented
in this article are freely available at https://github.com/zsverko/Code_CPCC.git (accessed
on 10 January 2022).

Author Contributions: Conceptualization, S.V. and P.R.; methodology, S.V., P.R. and Z.Š.; software,
Z.Š. and P.R.; validation, Z.Š. and P.R.; formal analysis, Z.Š.; investigation, Z.Š.; resources, M.V.
and P.R.; data curation, Z.Š.; writing—original draft preparation, Z.Š. and P.R.; writing—review
and editing, Z.Š., P.R., S.V. and M.V.; visualization, Z.Š.; supervision, P.R., S.V. and M.V.; project
administration, Z.Š.; funding acquisition, Z.Š., S.V. and M.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data, code, and instructions are freely available at https://github.
com/zsverko/Code_CPCC.git (accessed on 10 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

absCPCC absolute value of complex Pearson correlation coefficient
CPCC complex Pearson correlation coefficient
DTI diffusion tensor imaging
EC eyes closed
EEG electroencephalography
EO eyes open
HT Hilbert transform
imCPCC imaginary component of complex Pearson correlation coefficient
MEG magnetoencephalography
MRI magnetic resonance imaging
PLV phase locking value
PLI phase lag index
wPLI weighted phase lag index
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Abstract: Neuropathic pain in people with spinal cord injury is thought to be due to altered central
neuronal activity. A novel therapeutic intervention using virtual reality (VR) head-mounted devices
was investigated in this study for pain relief. Given the potential links to neuronal activity, the
aim of the current study was to determine whether use of VR was associated with corresponding
changes in electroencephalography (EEG) patterns linked to the presence of neuropathic pain. Using
a within-subject, randomised cross-over pilot trial, we compared EEG activity for three conditions:
no task eyes open state, 2D screen task and 3D VR task. We found an increase in delta activity in
frontal regions for 3D VR with a decrease in theta activity. There was also a consistent decrease in
relative alpha band (8–12 Hz) and an increase in low gamma (30–45 Hz) power during 2D screen
and 3D VR corresponding, with reduced self-reported pain. Using the nonlinear and non-oscillatory
method of extracting fractal dimensions, we found increases in brain complexity during 2D screen
and 3D VR. We successfully classified the 3D VR condition from 2D screen and eyes opened no task
conditions with an overall accuracy of 80.3%. The findings in this study have implications for using
VR applications as a therapeutic intervention for neuropathic pain in people with spinal cord injury.

Keywords: EEG; brain activity; virtual reality; neuropathic pain; spinal cord injury; fractal dimension

1. Introduction

Spinal cord injury (SCI) is a life-changing event that causes not only a debilitating loss
of sensorimotor and autonomic functions but is also associated with numerous secondary
conditions. One prevalent secondary condition is chronic pain, with research showing over
50% of patients reporting more than one pain type and the pain often described as unrelent-
ing and excruciating [1,2]. For people with SCI, neuropathic pain (NP) has been reported to
be as common as musculoskeletal pain [2]. At the injury level, SCI NP is thought to result
from altered central neuronal activity, with hyperexcitable neurones having exaggerated
responses to stimuli; however, below the level of injury, the mechanisms are less clear [3].
The neurophysiological responses are thought to generate abnormal pain impulses back
to the brain. SCI also leads to the reorganisation of the primary somatosensory cortex,
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which is associated with abnormal patterns of firing in the cortex and thalamus, known as
thalamocortical dysrhythmia (TCD) [4], and is proposed as a mechanism underlying the
generation of neuropathic pain and other neurological symptoms [5,6].

Given these complex mechanisms, involving structural and functional changes in
central pain pathways at multiple levels of the neuroaxis, current treatments provide only
partial and often unsatisfactory pain relief [7]. As such, alternative therapeutic approaches,
such as virtual reality (VR), are now being examined [8] where advancement in technology
offers an alternative treatment for a number of medical and psychological conditions
and procedures [9–11]. VR is a simulated creation of a 3D environment using computer
technology [12]. Current VR systems include head-mounted devices (HMD) with 3D-
enabled glasses, noise-cancelling headphones for sound and head and/or body-tracking
sensors in addition to devices such as joysticks and data gloves [13]. Together, this forms
a realistic multisensory experience that surrounds the user, generating strong feelings of
“presence”, a subjective sensation of being in another place [14].

Several pilot studies using a variety of 3D HMD and 2D screen-based VR applications
have shown a reduction in NP in people with SCI pain in over two-thirds of partici-
pants [15–17]. Such encouraging findings suggest that VR may be an effective, accessible,
and inexpensive method of reducing NP in both the long and short term. Recent evidence
suggests that, compared to 2D VR, 3D VR technologies are more realistic and vivid [18],
where the three-dimensional perception of an image or video is considered more immersive
where users feel completely involved [19].

Although clinical studies in people with SCI-related NP have shown promise for
the effectiveness of VR, the neural mechanism underlying the positive response to VR
is unknown. In previous studies, there is evidence for neural mechanisms underlying
VR immersion. From electroencephalography (EEG) studies, task-related differences in
EEG alpha activity and coherence were correlated with spatial presence [20]. Frontal-
midline theta activity increases were found from different levels of immersion in VR
applications [21].

Given that the brain activity of SCI people with NP has been found to be associated
with resting-state EEG [6,22,23], we were interested in examining underlying brain activ-
ity changes in persons with SCI and NP during VR intervention. Current studies have
demonstrated brain activity markers for NP, specifically, increases in theta- and beta-wave
frequencies and reduced alpha-wave frequencies in EEG signals, thought to be associated
with TCD [6,22,23]. Another study from Vuckovic and colleagues showed that these EEG
frequency changes can be used to identify patients with SCI who are at risk of developing
NP before physical symptoms appear [24]. These EEG markers of NP have also been shown
to be reversible following treatments to reduce SCI pain, where, for example, Hasan and
colleagues showed significant reductions in beta- and theta-wave frequencies following
biofeedback treatment [22]. Additionally, recent pilot studies investigating EEG and VR en-
couragingly show (a) decreases in beta-wave frequencies in response to VR in people with
anxiety [23], and (b) in a case report, increases in alpha-wave frequency during phantom
limb pain relief in people with brachial plexus injury during VR [25].

Thus, the aim of the current study was to determine whether use of VR is associated
with corresponding changes in EEG patterns linked to the presence of neuropathic pain.
We hypothesised that using a 3D VR application would be associated with a shift of EEG
activity from a TCD brain wave pattern towards a reduced TCD state and thus a reduction
in the severity of NP. We examined brain activity in three states, a resting eyes-open state
with no task (EO-no task), using a 2D screen-based VR (2D screen) as an active control and
during immersive 3D HMD VR (3D VR).

2. Materials and Methods

2.1. Study Design

We used a randomised cross-over study design for this exploratory study. This in-
volved two sequential VR interventions and a baseline measure using within participant
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comparisons. Baseline measure was taken for EEG comparisons involving an eyes-open
condition, whereby participants were asked to remain still and focus on the middle of a
blank computer screen. There were two VR interventions, one utilising an immersive 3D
VR and one with 2D screen applications using the same virtual environment. Seventeen
adults with SCI and known NP were recruited using convenience sampling. We randomly
allocated the type of VR intervention used first and second using sequentially numbered,
opaque sealed envelopes. As it was important to show parity in describing both inter-
ventions, a script using neutral language was prepared. This study was registered by the
Australia New Zealand Clinical Trials Registry, number ACTRN12618000959279, in May
2018, and further detail on the exploratory trial can be found in Austin et al., 2020 [26].

2.2. Participants

Participants were recruited from both a database of participants with SCI as well as
through clinical contact. The inclusion criteria were adult males with SCI of longer than
12 months duration, lesion at C6 level or below, a confirmed diagnosis of NP (>6 months),
reported neuropathic pain over the previous week prior to attending interventions, and
stable pharmacological or no pharmacological treatment for at least four weeks. We limited
the study to male participants only as they account for the majority of new SCI cases (up to
80%) and because of potential gender differences in pain reporting and medication use [27].
The exclusion criteria were the presence of other pain types that were more prominent
during the time of the interventions, a SCI level higher than C6, presence of brain injury, or
other neurological diagnosis.

2.3. Study Schedule

All participants attended the intervention on one occasion. To account for circadian
influences on wakefulness in the brain activity of people with SCI, all participants were
asked to attend at 11 a.m. Baseline pain intensity measures were taken with an 11-point
numerical pain rating scale (NPRS). We examined average, worst, least and current NP
intensities. Current NP intensity were taken immediately after the intervention and used
for the analysis. As we used a cross-over design, we included a washout period in the
experimental design. This was implemented to reduce any potential carryover effect
that may be from the effects of the first intervention. The washout period separated
the two intervention periods. Washout periods need to be at least five times the half-
life of a given treatment [28], so a 60 min washout period was used. The hour-long
washout was calculated from reports that pain significantly reduces immediately after
VR exposures but returns to baseline levels at 10 min after VR exposure [29]. The cross-
over was counterbalanced so that exposure to both interventions were equal. The entire
study took place in a temperature-controlled room maintained at 25 ◦C. Details on the
intervention protocol can be found in Austin et al. (2020) [26]. The height of the bench for
the screens was modified for wheelchair access and adjusted appropriately for each person.
Participants were required to report any headset discomfort and cyber-sickness (includes
symptoms of nausea, vomiting, headache, vertigo and fatigue) prior to, during or after
using the 3D HMD VR device.

2.4. 3D HDM VR Device and Task

The Oculus Rift® headset is commercially available, inexpensive and commonly used
for VR studies in medical research [30]. The screen sampling rate was 80 Hz. For the VR
task in this study, participants viewed a 3D VR experience called Nature Trek® that includes
nine nature environments all containing many types of animals and calming music. Prior
to use, participants were instructed on the use of a hand-held joystick to move around an
alpine meadow environment and make full use of the 360◦ scene. The VR application was
standardised across the group. The VR headset was calibrated for participants’ eyesight in
addition to advice on motion sickness prevention during VR such as reducing the speed of
their character and/or reducing head movement.
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2.5. 2D Screen Application

The same Nature Trek® application was run on a 17.3-inch Alienware® laptop screen
with the participant seated in the same position. This allowed for a reliable comparison
between the effects of 3D VR and 2D screen experiences. The screen sampling rate was
60 Hz.

2.6. Self-Reported Pain Measures

We used the numerical pain rating scale (NPRS) to investigate the effects of 3D HMD
VR and 2D screen applications on SCI NP. The NPRS was completed at three time points to
gather pain information for baseline and VR interventions. Participants completed the 11-
point NPRS after each intervention and reported levels of pain intensity immediately after
the intervention, as well as reporting their average pain intensity during each intervention
and lowest pain intensity during each intervention. The 11-point NPRS is a reliable and
valid measure used across many pain populations [31]. Changes in pain intensity from these
VR interventions has been reported in our previous feasibility study (see Austin et al. [26]).

2.7. EEG Recording and Preprocessing

Thirty-two EEG channels were measured using the EmotivPro® system over the entire
cortex, following the International 10–20 Montage System. EEG was recorded using the
EmotivPRO® software and was sampled at a 256 Hz sample rate with left and right ear (A1,
A2) references. Once fitted, the Oculus Rift VR HMD system was placed over the top of the
EEG cap (Figure 1). Two minutes of baseline EEG was taken. During baseline, participants
were instructed to remain still and focus on the middle of a blank computer screen to avoid
eye movement. They were asked to fixate on a printed cross placed in the middle of the
screen. The VR interventions were each 15 min in length.

EEG pre-processing was conducted in the following steps.

1. The EEG signals were re-sampled to 128 Hz from EmotivePRO®

2. EEG signals were imported into EEGLab
3. All channels were transformed to the average reference in EEGlab.
4. EEG signals were filtered with a 0.1 Hz high-pass filter.
5. EEG signals were visually inspected so that 20 s segments relatively free of major

artifact could be extracted from the three conditions EO-no task, 2D screen and 3D VR.
EEG from EO-no task was taken at approximately the 1 min point, after participant’s
EEG had settled and both 2D screen and 3D VR were taken at approximately the
5 min mark during the immersive task, where the first 20 s of relatively clean EEG
segment could be obtained.

6. With the 20 s EEG segment, EEG artifact from blinks, eye saccades, lateral eye move-
ments and cardiac signal components were analysed using independent component
analysis (ICA) using EEGLab [32]. Artifact components were visually inspected and
manually removed. Fast frequency and EMG (electromyography) noise was then
removed using the Automatic artifact removal (AAR) plugin for EEGLab [33].

2.8. Spectral Analysis

To determine the corresponding changes in EEG patterns linked to the use of VR
in those with neuropathic pain, we started with an examination of EEG spectral activity
using a robust power spectral estimation method following Melman and Victor (2016),
which utilises a multi-taper method [34]. We used this method to ensure that any noise
from the VR system does not influence the spectral EEG activity, as it is more resistant
to transient artifacts. Spectral analysis quantifies the amount of oscillatory activity in
the different frequencies, and we examined the relative power for the widely accepted
frequency bands: the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and
low gamma (30–45 Hz) waves. Relative power for the spectral bands was calculated as
the power of each given band divided by the sum power from 1 to 45 Hz. To ensure that
signals were not affected by the VR headsets (that is, electrode sites where the VR device
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band sat on top) and representative of the regions of the scalp, we chose nine channels that
covered the frontal region (F3, Fz, F4), central region (C3, Cz, C4) and parietal region (P3,
Pz, P4). The conditions were baseline eyes open (EO), 2D screen and 3D VR.

Figure 1. Participant with EEG and 3D HMD VR set up.

2.9. Fractal Dimension Analysis

We also explored a nonlinear and non-oscillatory EEG feature using Fractal Dimension
(FD). Whereas spectral analysis explored oscillatory markers and different frequency bands,
using FD, we could examine non-oscillatory markers for the different immersion levels
from VR interventions. The FD of an EEG signal measures its complexity, that is, the
amount of irregularity within the time series. We explored the FD of data from individual
EEG channels using a method used most with EEG signals that was introduced by Higuchi
(1988) [35]. The Higuchi’s FD is a straightforward method that can be applied to time series
data in order to extract the fractal dimension.

Suppose we have a time series:

X(i)(i = 1, . . . ..N)

From this, the length of the curve Lm(k), for m = 1, . . . .k can be defined as follows:

Lm(k) =
1
k
{(

[ N−m
k ]

∑
i=1

|X(m + ik)− X(m + (i − 1)k|) N − 1
k[N−m

k ]
}
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where the square brackets [] denotes Gauss’ notation, both m and k are integers, k indicates
the discrete time interval and m indicates the initial time value.

The length of the curve for the time interval k is then defined as:

L(k) =
1
k

k

∑
m=1

Lm(k)

If the curve contains fractal properties, then L(k) is proportional to k−D, where D is
the fractal dimension. The value of the time interval is varied from k = 1, 2, 3 up to kmax.

A log–log plot of L(k) against k will give a straight line with slope–D.
From numerical analysis, a choice of kmax = 6 was found to sufficiently estimate the

slope. The FD for this study was calculated over time in a sliding non-overlapping window
with a fixed length.

2.10. Artificial Neural Network Analysis and Evaluation Metrics

We used the artificial neural network (ANN) analysis from the SPSS v27 toolbox
(SPSS Inc., Chicago, IL, USA) to demonstrate whether neural differences existed in brain
activity between three immersion conditions that are distinct and can be classified using
ANN models. We used a multilayer perceptron (MLP) ANN model with three-layer
feedforward back propagation. EEG spectral and FD data were randomly divided into
training (70%) and testing (30%) sets. A hyperbolic tangent function was used for the
hidden and output layer. A gradient descent was used to estimate the synaptic weights.
The initial learning rate was set as 0.4 with a momentum of 0.9. We performed these models
for binary classifications. For performance of the classifications, we used the receiver
operating characteristics (ROC) analysis as a measure of predictive accuracy. We also used
well-known performance indicators sensitivity or true positive rate (TPR), specificity or true
negative rate (TNR) and accuracy, obtained from the testing sample. These were calculated
as follows:

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

3. Results

One participant was excluded from all analysis due to reporting no pain over the
previous week before the study. Another participant was excluded from EEG analysis
as they had poor and corrupted EEG signals. All participants reported no cybersickness
following the VR interventions. Table 1 shows the participants’ demographic characteristics
including age, duration in years since SCI, level and extent of SCI, pain consistency and
prescribed pain medication.

3.1. Evidence of Improvement in Pain Scores from Participating in the Tasks

The mean pain intensity scores over the week prior to their attendance, during and
after 2D screen and 3D VR interventions were examined. Repeated measures ANOVA
showed overall significant differences in pain ratings for all three conditions (pre-task, 2D
screen and 3D VR), F (2, 14) = 46.6, p < 0.001. Post hoc analysis using the Bonferroni test
showed significant reductions within participants from pre-task to interventions (p < 0.001),
with mean (95% CI) pain ratings of 4.9 (4.1–5.8) for pre-task, 3.4 (2.4–4.4) for 2D screen and
1.9 (1.0–2.9) for 3D VR.
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Table 1. Participant demographic characteristics (n = 15).

Characteristics n (%)

Age Mean (SD) 56.0 (13.1)
Years in pain since injury Mean (SD) 20.0 (12.3)
ASIA impairment grade A 10 (66.7)

B 2 (13.3)
C 0 (0.0)
D 3 (20.0)

Injury level Paraplegia 13 (86.7)
Tetraplegia 2 (13.3)

Pain consistency Constant 12 (80.0)
Intermittent 3 (20.0)

Pain medication Multiple 4 (26.7)
Single 6 (40)
None 5 (33.3)

3.2. Regional Differences in Relative Power for the Three Conditions

Repeated measures MANOVAs were conducted to test for differences in the spectral
relative power of the three conditions for the three regions, frontal (F3, Fz, F4), central
(C3, Cz, C4) and parietal (P3, Pz, P4). Tables 2–6 shows the relative power (Mean (SE))
breakdowns for each of the frequency bands from the nine sites in the three conditions.
Univariate main effects from repeated-measures ANOVAs were used to determine any
statistical differences between the three conditions. For the frontal region, EEG differ-
ences were found in the relative delta (Wilks’ Lambda = 0.52, F (6, 52) = 3.34, p = 0.007,
η2

P = 0.28), theta (Wilks’ Lambda = 0.56, F (6, 52) = 2.92, p = 0.016, η2
P = 0.25 alpha (Wilks’

Lambda = 0.47, F (6, 52) = 4.0, p = 0.002, η2
P = 0.31) and gamma (Wilks’ Lambda = 0.58,

F (6, 52) = 2.72, p = 0.023, η2
P = 0.24 frequencies. Post hoc test using Bonferroni found

significant increases in delta activity in the F3 and F4 sites with the 3D VR condition. A
significant reduction in frontal theta was found in the Fz site, whereas a reduction in alpha
activity was found in F3 and F4, and was greatest during 3D VR. There were statistical
differences in the beta band, but significant increases in gamma activity were found in
the F3 site with greatest increase for the 2D screen condition. For the central region, rel-
ative power difference was found for the theta frequency only (Wilks’ Lambda = 0.57,
F (6, 52) = 2.77, p = 0.020, η2

P = 0.24), with significant decreases for the VR interventions
compared with resting EO. The alpha frequency band did not show an overall significant
difference between the three conditions, despite significant differences in the univariate
main effects. In the parietal region, relative power differences were significant for the alpha
(Wilks’ Lambda= 0.58, F (6, 52) = 2.75, p = 0.021, η2

P = 0.24), theta (Wilks’ Lambda = 0.54,
F (6, 52) = 3.09, p = 0.012, η2

P = 0.26) and gamma (Wilks’ Lambda = 0.46, F (6, 52) = 4.09,
p = 0.002, η2

P = 0.32) frequency bands. There were significant reductions in relative theta
and alpha power for the 3D VR condition. Gamma activity increases were also found to be
significantly greater for the 2D screen condition.

Table 2. Relative EEG delta power for the three conditions EO-no task, 2D screen and 3D VR.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SE)

2D Screen
Mean (SE)

3D VR
Mean (SE)

F (2, 28) p η2
P

F3 0.370 (0.018) 0.338 (0.011) 0.422 (0.010) 8.852 0.001 0.387
F4 0.358 (0.018) 0.355 (0.019) 0.397 (0.015) 2.674 0.087 0.160
Fz 0.366 (0.019) 0.349 (0.013) 0.365 (0.015) 0.373 0.692 0.026
C3 0.325 (0.016) 0.341 (0.017) 0.374 (0.019) 2.628 0.090 0.158
C4 0.329 (0.023) 0.342 (0.014) 0.352 (0.018) 0.539 0.589 0.037
Cz 0.348 (0.014) 0.363 (0.018) 0.375 (0.018) 0.769 0.473 0.052
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Table 2. Cont.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SE)

2D Screen
Mean (SE)

3D VR
Mean (SE)

F (2, 28) p η2
P

P3 0.346 (0.013) 0.326 (0.011) 0.359 (0.019) 1.487 0.243 0.096
P4 0.322 (0.013) 0.344 (0.013) 0.338 (0.019) 0.525 0.597 0.036
Pz 0.352 (0.015) 0.365 (0.015) 0.388 (0.016) 2.051 0.147 0.128

SE = Standard error, η2
P = Partial eta squared.

Table 3. Relative EEG theta power for the three conditions EO-no task, 2D screen and 3D VR.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SD)

2D Screen
Mean (SD)

3D VR
Mean (SD)

F (2, 28) p η2
P

F3 0.169 (0.009) 0.166 (0.010) 0.132 (0.013) 8.031 0.002 0.365
F4 0.180 (0.013) 0.159 (0.012) 0.149 (0.013) 2.507 0.100 0.152
Fz 0.192 (0.011) 0.165 (0.012) 0.155 (0.011) 3.165 0.058 0.184
C3 0.191 (0.010) 0.167 (0.013) 0.145 (0.011) 5.135 0.013 0.268
C4 0.191 (0.012) 0.152 (0.012) 0.172 (0.011) 4.261 0.024 0.233
Cz 0.196 (0.008) 0.173 (0.014) 0.172 (0.013) 2.214 0.128 0.137
P3 0.203 (0.009) 0.172 (0.009) 0.164 (0.012) 8.059 0.002 0.365
P4 0.201 (0.011) 0.158 (0.011) 0.148 (0.012) 10.484 <0.001 0.428
Pz 0.180 (0.007) 0.147 (0.011) 0.148 (0.014) 4.274 0.024 0.234

SE = Standard error, η2
P = Partial eta squared.

Table 4. Relative EEG alpha power for the three conditions EO-no task, 2D screen and 3D VR.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SD)

2D Screen
Mean (SD)

3D VR
Mean (SD)

F (2, 28) p η2
P

F3 0.126 (0.013) 0.111 (0.009) 0.074 (0.006) 10.625 <0.001 0.431
F4 0.115 (0.009) 0.107 (0.014) 0.081 (0.008) 6.952 0.004 0.332
Fz 0.114 (0.009) 0.098 (0.009) 0.088 (0.003) 3.056 0.063 0.179
C3 0.139 (0.015) 0.109 (0.011) 0.090 (0.008) 4.490 0.020 0.243
C4 0.146 (0.018) 0.117 (0.012) 0.106 (0.010) 4.764 0.017 0.254
Cz 0.132 (0.013) 0.109 (0.012) 0.096 (0.008) 4.520 0.020 0.244
P3 0.128 (0.012) 0.112 (0.010) 0.102 (0.012) 1.501 0.240 0.097
P4 0.144 (0.014) 0.101 (0.009) 0.100 (0.007) 5.897 0.007 0.296
Pz 0.127 (0.010) 0.099 (0.008) 0.089 (0.011) 6.715 0.004 0.324

SE = Standard error, η2
P = Partial eta squared.

Table 5. Relative EEG beta power for the three conditions EO-no task, 2D screen and 3D VR.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SD)

2D Screen
Mean (SD)

3D VR
Mean (SD)

F (2, 28) p η2
P

F3 0.157 (0.012) 0.175 (0.012) 0.138 (0.007) 3.583 0.041 0.204
F4 0.166 (0.013) 0.175 (0.012) 0.148 (0.013) 1.818 0.181 0.115
Fz 0.157 (0.013) 0.184 (0.012) 0.160 (0.013) 1.835 0.178 0.116
C3 0.186 (0.011) 0.188 (0.009) 0.174 (0.016) 0.598 0.557 0.041
C4 0.174 (0.012) 0.180 (0.010) 0.183 (0.014) 0.300 0.743 0.021
Cz 0.166 (0.008) 0.173 (0.013) 0.161 (0.013) 0.325 0.725 0.023
P3 0.158 (0.008) 0.190 (0.008) 0.175 (0.012) 4.022 0.029 0.223
P4 0.181 (0.009) 0.181 (0.011) 0.199 (0.021) 0.673 0.518 0.046
Pz 0.169 (0.010) 0.179 (0.011) 0.150 (0.012) 2.251 0.124 0.139

SE = Standard error, η2
P = Partial eta squared.
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Table 6. Relative EEG gamma power for the three conditions EO-no task, 2D screen and 3D VR.

Three Conditions Main Effect between Conditions

Channel
EO-No Task
Mean (SD)

2D Screen
Mean (SD)

3D VR
Mean (SD)

F (2, 28) p η2
P

F3 0.058 (0.007) 0.085 (0.009) 0.061 (0.005) 7.584 0.002 0.351
F4 0.066 (0.008) 0.082 (0.008) 0.066 (0.007) 1.953 0.161 0.122
Fz 0.060 (0.008) 0.082 (0.007) 0.073 (0.008) 2.798 0.078 0.167
C3 0.061 (0.005) 0.082 (0.008) 0.074 (0.007) 3.904 0.032 0.218
C4 0.061 (0.009) 0.076 (0.008) 0.077 (0.010) 1.323 0.283 0.086
Cz 0.056 (0.005) 0.073 (0.10) 0.066 (0.007) 1.884 0.171 0.119
P3 0.060 (0.006) 0.089 (0.007) 0.078 (0.009) 9.533 <0.001 0.405
P4 0.059 (0.006) 0.085 (0.009) 0.086 (0.009) 7.017 0.003 0.334
Pz 0.064 (0.007) 0.080 (0.009) 0.068 (0.008) 2.108 0.140 0.131

SE = Standard error, η2
P = Partial eta squared.

Figure 2 shows the overall EEG power spectrum for the three conditions in three EEG
channels Fz, Cz and Pz, representative of the frontal, central and parietal regions. An
increase in delta activity occurred for the VR interventions compared with baseline EO
condition. The greatest reduction in the theta band was observed for the 3D VR condition.
The reduction in the alpha frequency band was gradual, with the greatest reduction during
the 3D VR intervention. Increases at higher frequencies occurred in the gamma frequencies
(30–45 Hz). This can be seen with 2D screen and 3D VR, with greater increases during the
2D screen task.

3.3. Regional Differences in Higuchi’s FD for the Three Conditions

Repeated measures MANOVA also was conducted to test for differences in FD for
three regions, frontal (F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4). There were
no significant differences in the FD for the three conditions in the frontal region. There were
significant FD differences in brain activity for both the central region (Wilks’ Lambda = 0.21,
F (6, 9) = 5.6, p = 0.011) and the parietal region (Wilks’ Lambda = 0.27, F (6,9) = 4.1, p = 0.028).
Post hoc analysis using Bonferonni found differences between the eyes-open with both 2D
screen and 3D VR, but not between 2D screen and 3D VR. The mean percent change for 2D
screen from baseline EO was 4.73%, and the mean percent change for 3D VR from baseline
EO was 5.08% (See Table 7 for summary statistics). Figure 3 shows the FD by EEG channel
for each of the three conditions. Compared with the eyes-open task, both 2D screen and 3D
VR conditions displayed raised FD.

3.4. Performance of ANN model for Classifying 3D VR Using EEG Activity

The final three-layer model consisted of 6-6-2 feedforward back propagation. Table 8
shows the performance of the ANN model for each binary classification explored. For the
classification of 3D VR against both EO-no task and 2D screen, we obtained an overall
accuracy of 80.3%. However, sensitivity for this model was low at only 43.8%. The highest
sensitivity was between 3D VR with EO-no task at 78%. The differences in the sensitivity,
specificity and accuracy demonstrate that the neural activity during 3D VR was distinct
and can be classified.
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Figure 2. EEG average power spectrum for n = 15 participant during eyes-open task (red line), 2D
screen (blue line) and 3D VR (orange line) in the Fz, Cz and Pz channels. Blue shade = Delta (1–4 Hz),
Yellow shade = Theta (4–8 Hz), Gray shade = Alpha (8–12 Hz), Green shade = Beta (12–30 Hz) and
Pink shade = Gamma (30–45 Hz).
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Table 7. Fractal dimensions in nine EEG sites for the three conditions EO-no task, 2D screen and
3D VR.

Three Conditions % Change from EO Main Effect

Channel
EO-No Task
Mean (SD)

2D Screen
Mean (SD)

3D VR
Mean (SD)

2D screen 3D VR F (2, 13) p

F3 1.58 (0.09) 1.66 (0.11) 1.65 (0.12) 5.06 4.43 3.25 0.07
F4 1.61 (0.11) 1.65 (0.12) 1.66 (0.10) 2.48 3.11 1.45 0.27
Fz 1.56 (0.08) 1.67 (0.09) 1.66 (0.09) 7.05 6.41 9.87 0.002
C3 1.57 (0.06) 1.65 (0.09) 1.67 (0.08) 5.10 6.37 18.13 <0.001
C4 1.58 (0.10) 1.64 (0.09) 1.65 (0.09) 3.80 4.43 4.81 0.03
Cz 1.56 (0.09) 1.63 (0.11) 1.62 (0.09) 4.49 3.84 4.62 0.03
P3 1.58 (0.10) 1.64 (0.09) 1.65 (0.09) 3.80 4.43 4.81 0.03
P4 1.57 (0.11) 1.66 (0.09) 1.67 (0.09) 5.73 6.37 8.39 0.005
Pz 1.57 (0.09) 1.65 (0.10) 1.67 (0.12) 5.10 6.37 10.20 0.002

Figure 3. The fractal dimension from EEG activity during three conditions, no-eyes-open task (red),
2D screen task (blue) and 3D VR task (orange).

Table 8. Performance of binary classifications using ANN models.

Binary Classification Sensitivity (%) Specificity (%) Accuracy (%) ROC

3D VR vs. 2D screen + EO 43.8 94.1 80.3 0.767
3D VR vs. EO 78.0 79.5 78.8 0.877

3D VR vs. 2D screen 68.3 73.8 71.1 0.744
2D screen vs. EO 66.7 76.7 72.4 0.730

4. Discussion

The occurrence of NP in people with a SCI is thought to have a neural basis that is both
complex and multilevel. Current available treatments have only provided partial and often
unsatisfactory pain relief [36]. In this study, we explored a novel alternative therapeutic
approach of utilising VR to reduce NP in people with SCI while examining the underlying
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brain activity during the interventions. As reported in our previous paper [26], our findings
showed a significant reduction in self-reported pain intensity ratings in participants with
SCI for their NP during VR interventions. The reduction in pain intensity was greatest
during the 3D VR task. This demonstrates that VR interventions can be viable alternative
therapeutic interventions for NP in persons with SCI.

We then examined whether there were any corresponding neural changes during the
VR intervention. The results from this study found a reduction in EEG theta in the frontal
and parietal regions. The decrease in relative theta was greatest for the 3D VR intervention.
A significant and consistent reduction in relative EEG alpha frequency band was found
in almost all EEG sites for 3D VR and 2D screen. The full EEG spectrum averaged for all
participants shows the reduction to be gradual in the frontal and parietal regions and based
on the level of immersion, such that reduced alpha power was greatest during 3D VR. These
EEG changes for the three conditions partially supports our hypothesis that EEG changes
will shift in the direction towards reduced TCD with decreased theta activity and increased
alpha activity. A reduction in theta activity was observed during VR interventions; however,
rather than an increase in alpha activity to counter the TCD, we found a further decrease in
alpha frequency power during VR application. Similarly, Jensen et al. (2013) confirmed
TCD EEG patterns in chronic pain for SCI (increased theta and reduced alpha), but they
also found significant associations between pain severity and EEG alpha wave activity,
with higher alpha activity associated with increased levels of pain [37]. They concluded
that successful pain suppression may be associated with decreased frontal alpha activity,
and this was confirmed in the current study.

The reduction in EEG alpha power, with increases in delta and low gamma activity,
may also be associated with the “distraction” or immersion effects of VR applications with
3D VR thought to have the greatest degree of immersion [38]. Lim et al. 2019 found alpha
waves to decrease during concentration and immersion [39]. Similarly, in a study with
cancer pain and VR immersion, it was low frequency power in theta and alpha frequency
ranges that were found to decrease during VR meditation task compared to their pre-
condition [40]. Other EEG changes such as frontal delta activity increases has also been
found to be associated with concentration during cognitive tasks [41], and it is thought that
this link is moderated by motivation [42]. We found increases in frontal delta activity, and
this only occurred during the 3D VR condition and not during the 2D screen. Low gamma
activity increases were highest for the 2D screen condition in the frontal region but were
the same as in the 3D VR in the parietal region. Gamma activity has often been linked to
cognitive function or processes [43]. Increases in gamma activity are thought to be related
to perception [44].

We were also interested in non-oscillatory EEG markers for NP and effects of VR
interventions. FD is a nonlinear measure for complexity in brain signals. The FD of EEG
signals have repeatedly been shown to be of a lower value for people suffering from brain
disorders compared to healthy individuals [45]. Anderson and colleagues (2021) found
able-bodied participants to have higher FD compared to SCI participants with neuropathic
pain and used FD as a diagnostic marker for NP [45]. Foss and colleagues (2006) were
able to differentiate between different pain states from FD values. They found FD to be
lowest for thermal pain and greatest for back pain [46]. Using Higuchi’s FD, we found
significant increases in FD for the central and parietal regions during 2D screen and 3D
VR compared with the EO-no task. However, there were no distinguishable differences
between the FD for 2D screen and 3D VR. The increase in FD for 2D screen and 3D VR
may be showing changes in neural signals, demonstrating a normalisation of the affected
thalamocortical system. Higher FD values generally correspond to higher signal complexity,
and a reduction in FD may indicate a loss of neural efficiency, as previously found in people
with Alzheimer’s disease [47,48].

Although we did not find significant differences for 2D screen and 3D VR in FD, we
were able to distinguish the two brain activity states using ANN. Using both oscillatory
and non-oscillatory measures for our feature set, classification of 2D screen against 3D
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VR had an accuracy of 68.3%. Classifying 3D VR from both 2D screen and EO-no task
gave an overall accuracy of 80.3%; however, this was largely from the high-specificity (true
negative) result. Sensitivity was only at 43.8%. This low sensitivity was probably due to
the gradual changes from level of immersion between baseline EO to 2D VR to 3D VR,
making it difficult to detect 3D VR from a mixture of immersion levels. Classifying 3DVR
from baseline EO had highest predictive accuracy with an ROC of 0.877. The results match
the findings from the spectral bands, in that the gradual changes in immersion levels are
reflected with the sensitivity analysis. Sensitivity was highest between baseline EO and
3D VR. Sensitivity between baseline EO with 2D screen and 3D VR with 2D screen were
similar at 66.7% and 68.6%, respectively. The results from the ANN models indicate that
brain activity during 3D VR immersion is distinct and can be classified; the ROC shows
reasonable predictive accuracy.

5. Strengths and Limitations

The findings in this study have implications for using VR applications as a therapeutic
intervention for NP in people with SCI and our understanding of the mechanisms responsi-
ble for VR-associated pain relief. Both changes in alpha and theta wave activity have been
demonstrated in association with SCI-related NP. The significant reduction in self-reported
pain intensity after the intervention was found to correspond to significant changes in
EEG brain activity. The changes seem to suggest that two pathways may be occurring
during VR intervention. There is some evidence that VR-associated pain relief is associated
with a remediation or reversal of TCD through reductions in theta activity, but there is
also evidence for a possible attention-related mechanism involving alpha activity, delta
activity in the frontal cortex, and low gamma activity in the parietal region. The strengths
in this study include the use of both oscillatory and non-oscillatory methods in EEG signal
processing to understand the underlying neural mechanisms during VR immersion. As to
limitations, we applied a common average reference strategy for the EEG signals to first
remove any common noise. However, common average referencing can introduce bias
and lower amplitudes of the signal when the coverage of electrodes is not dense enough.
Our study only utilized 32 channels, and the recommended electrode density is at least
64 channels (Nunez, 2006). As such, there may have been bias in the amplitudes of the
signals in this study. Additionally, as this study is a preliminary exploratory examination,
we did not examine post-VR session effects, and we are unable to determine if the effects
on pain reduction are able to persist longer than the VR session. However, a more recent
study using the same VR distraction protocols in people with cancer pain did show pain
relief remained for up to 20 min after the VR sessions [49]. Encouragingly, recent work also
shows that more frequent use of cognitive-based VR applications over weeks or months in
people with NP and phantom limb pain in combination with other non-pharmacological
therapies offers both long-term relief in pain intensity and decreases in pain-related be-
haviours [50,51]. Future research should be conducted with a larger sample with focus on
longer-term outcomes to test for cumulative effects from VR interventions. A larger study
should also examine different baseline pain intensity levels to test whether this intervention
can be used in people with high levels of pain.
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Abstract: Acupuncture is one of the oldest traditional medical treatments in Asian countries. How-
ever, the scientific explanation regarding the therapeutic effect of acupuncture is still unknown. The
much-discussed hypothesis it that acupuncture’s effects are mediated via autonomic neural networks;
nevertheless, dynamic brain activity involved in the acupuncture response has still not been elicited.
In this work, we hypothesized that there exists a lower-dimensional subspace of dynamic brain
activity across subjects, underpinning the brain’s response to manual acupuncture stimulation. To
this end, we employed a variational auto-encoder to probe the latent variables from multichannel
EEG signals associated with acupuncture stimulation at the ST36 acupoint. The experimental results
demonstrate that manual acupuncture stimuli can reduce the dimensionality of brain activity, which
results from the enhancement of oscillatory activity in the delta and alpha frequency bands induced
by acupuncture. Moreover, it was found that large-scale brain activity could be constrained within a
low-dimensional neural subspace, which is spanned by the “acupuncture mode”. In each neural sub-
space, the steady dynamics of the brain in response to acupuncture stimuli converge to topologically
similar elliptic-shaped attractors across different subjects. The attractor morphology is closely related
to the frequency of the acupuncture stimulation. These results shed light on probing the large-scale
brain response to manual acupuncture stimuli.

Keywords: acupuncture; EEG; dimensionality; neural subspace; latent variables; attractor

1. Introduction

Acupuncture, an ancient practice in traditional Chinese medicine (TCM), is gradu-
ally being recognized throughout the world as an important modality of alternative and
complementary medicine [1,2]. The World Health Organization (WHO) and the National
Institutes of Health (NIH) have reported that acupuncture is an efficient treatment for vari-
ous conditions, such as addiction, headaches, myofascial pain, and lower back pain [3–6].
A number of available pieces of evidence have demonstrated that acupuncture may also
help with stroke rehabilitation [7]. However, the scientific explanation of acupuncture’s
effects is still unknown. Clinical and experimental studies have indicated that acupuncture,
as a complex somatosensory stimulation of the central nervous system, can mediate the
electrical activity of autonomous neuronal networks [8,9]. Furthermore, neuroimaging data
strongly suggest that widely distributed cortical and subcortical brain areas are recruited
during acupuncture stimulation [10,11]. For example, Bai et al. demonstrated that acupunc-
ture can increase activity in the amygdala, the perigenual anterior cingulate cortex (pACC),
the periaqueductal gray (PAG), and the hypothalamus [12]. Therefore, more attention has
been focused on probing brain activities during and after acupuncture stimulation.

In addition, an electroencephalogram (EEG) is an effective method for obtaining brain
electrical signals, and is able to record spontaneous cerebral activity with a time resolution
at the millisecond level. It has been widely used in clinical and experimental studies to
analyze brain activity associated with acupuncture stimulation. Methods of characterizing
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brain activity based on EEG recordings can be divided into two categories. The first
category is the statistical analysis of brain oscillatory activity, such as power spectral density,
complexity, and coherence [13–15]. For example, Tanaka et al. investigated the variance
of EEG power induced by acupuncture. They found that acupuncture could increase
EEG power in all frequency bands, and this increment remained after acupuncture [16].
Furthermore, Qi et al. quantified the approximate entropy (ApEn) of EEG signals and
confirmed the variance of ApEn in the prefrontal lobe, the posterior temporal lobe, and the
occipital lobe before, during and after acupuncture stimulation [17]. The other category
involves constructing a functional network based on various measurement of correlation
or synchronization [18,19]. Yu et al. constructed the functional network of acupuncture
EEG signals based on phase synchronization and found that acupuncture at ST36 can
significantly improve the synchronization of alpha rhythms and enhance the small-world
connection characteristics of the brain’s functional network [20,21].

Brain activity is a high-dimensional dynamical process that evolves over time, and
the data analysis methods above cannot be directly associated with brain dynamics, which
poses a challenge in probing the dynamic response of the brain to acupuncture stimuli.
As a usual feature of complex systems, the degrees of freedom traversed by its dynamics
are much lower than the number of units comprising the system [22]. The human brain is
such a complex system of numerous neurons coupled through synapses. Observations in
electrophysiological experiments have demonstrated that the brain has low dimensionality
at different levels, from macroscopic, to the mesoscopic and microscopic scales [23–25].
Based on this perspective, several neuroscientists have focused on investigating the low-
dimensional dynamics of brain. They suggest that a low-dimensional representation of
brain, known as “latent variables”, can afford a deeper understanding of the core principles
underpinning whole-brain patterns of neural activity [26–28]. For example, Cueva et al.
found that low-dimensional dynamics provide a mechanism for the brain to solve the
problem of storing information across time [29]. Abbaspourazad et al. extracted the low-
dimensional dynamics in both spiking and LFP recordings within the motor cortex during
reach-and-grasp tasks, and addressed that the multiscale, low-dimensional motor cortical
state dynamics accounted for the neural control of motor behaviors [30].

Additionally, these latent variables are explanatory variables that are not directly
observed but can be identified from the data using dimensionality reduction methods.
These methods transform high-dimensional data into low-dimensional representations that
retain important features of interest [31]. The variational auto-encoder (VAE) method is
one of dimensionality reduction methods that consists of unsupervised neural networks, in
which latent variables can be learned from the original high-dimensional datasets [32]. VAE
is composed of an encoder and a decoder, the former is responsible for inferring the latent
variables, and the latter is designed to generate a new dataset based on latent variables.
This method shows good applicability in the study of brain activity. For example, Bi et al.
put forward a semi-supervised VAE method to probe low-dimensional representations
of ERPs, and found that the latent variables are of good applicability in brain-controlled
vehicles [33]. Furthermore, the knowledge of low dimensional dynamics extracted from
video-evoked cortical responses can predict its response with high accuracy, which has the
potential to explain the cortical response scientifically [34]. Li et al. utilized VAE to learn
the latent variables from the multichannel EEG signals and found that emotion recognition
achieves excellent performance based on the learnt latent variables [35].

At present, study on brain activity under acupuncture stimuli mostly focus on the
study of rhythm, complexity, synchronization, and functional networks. However, the
brain is a high-dimensional, complex system composed of numerous neurons, and the
response of the brain to acupuncture stimulation is associated with many distributed
coupled cortical areas. To solve the problem of high dimensionality, we proposed to apply
a dimensionality reduction method to probe the latent dynamics of brain activity associated
with acupuncture stimulation. Latent variables can not only reflect the lower-dimensional
features of brain activity, but can also yield clues about the underlying associated neural
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dynamics related to the intrinsic properties of external stimuli [36,37]. Specifically, we
adopted the VAE method to extract latent variables from the experimental acupuncture
signals, and further explored the brain activity associated with acupuncture stimuli.

Acupuncture is a complex interventional stimulation of the human body. Multiple
stimulation parameters, including the needle sensation, acupoint specificity, acupuncture
manipulation, and needle duration, have relevant influences on brain activity. Acupunc-
ture manipulation is a key factor that determines the therapeutic effect of acupuncture.
It is reported that acupuncture can reduce acute lower back pain for patients, and the
improvement critically depends on the acupuncture manipulation. Therefore, this work
focused on investigating the instant effect of acupuncture manipulation on brain activity.
It was found that the characteristics of latent dynamics are associated with acupuncture
manipulation. Overall, these results can provide a theoretical support for the selection of
an appropriate acupuncture frequency for patients in clinical settings, and the proposed
methods have potential in exploring the effects of acupuncture on brain activity.

This paper is organized as follows. In Section 2, the experimental acupuncture pro-
cedure and the corresponding method of analysis are introduced. In Section 3, the results are
presented. Finally, the discussion and conclusion are provided in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Experiment Design and EEG Recording

Twelve right-handed healthy subjects (7 female, 5 male, mean age 23 years, range
22–25 years), who had never been treated with acupuncture, participated in the acupunc-
ture experiment. They confirmed that they had not been taking any medication in the
past 30 days and had no history of mental illness. Participants were informed about the
needle stimulation in the acupuncture experiments and gave written informed consent to
participate in the experiment. The Institutional Review Board of Armed Police Logistics
College Affiliated Hospital approved our experimental protocol (LLKYPJ2010005).

In our experiment, acupuncture was administered manually at the ST36 (Zusanli)
acupoint on the left leg (shown in Figure 1a) by a licensed acupuncturist using a single-
use stainless steel needle of 0.2 mm in diameter and 40 mm in length. We adopt the
twirling-twisting method with different frequencies as the acupuncture manipulation
method. Specifically, the needle was twirled, mainly with the thumb forward, and the
twisting was within a range of 90–180◦ and at a certain frequency. The subjects were
randomly divided into three groups (four subjects in each group), which received manual
acupuncture stimulation with different twirling and twisting frequencies of 50 times/min,
100 times/min, and 150 times/min, respectively.

The experiment was carried out in a dark, quiet room. The participants were asked
to keep their eyes closed and stay awake to eliminate significant electromyoelectrical
disturbance. For each subject, the entire experiment lasted about 59 min. The experimental
procedure was carried out as follows (shown in Figure 1b): all subjects first rested for
10 min, then the acupuncture needle was inserted by the acupuncturist to a depth of 10 mm
at the ST36 acupoint until deqi. The needle was kept inserted without operation for 10 min,
referred to as the pre-acupuncture state (Pre-acu). Then, the twirling-twisting operation
was conducted for 3 min (acupuncture, Acu). After the operation, it was necessary to
keep the subject in a resting state for 10 min (post-acupuncture, Post-acu). This procedure
was repeated 3 times. Finally, after removing the needle, the acupuncturist finished
the experiment.

167



Sensors 2021, 21, 7432

Figure 1. The schematic diagram of the experimental operation. (a) Schematic diagram of the acupuncture experiment.
Electroencephalographic signals evoked by manual acupuncture at the ST36 acupoint of healthy subjects were directly
recorded in three states: pre-acupuncture, acupuncture, and post-acupuncture. (b) A timeline of the detailed experimental
procedure of manual acupuncture manipulation and (c) the EEG signals recorded.

EEG signals were recorded using a Neuroscan system with 19 Ag-AgCl electrodes,
which were placed in accordance with the international standard 10–20 system. The
reference electrode was located between electrodes A1 and A2, and the earlobe was used
as the reference ground of the electrode. The data sampling frequency was 256 Hz, and the
hardware filter passband was 0.5 Hz~100 Hz. Every subject selected a median of 1 min of
EEG data of acupuncture for the elimination of the effect of the insertion or withdrawal
of needle and other possible factors. For signal preprocessing, the noise in the EEG data
was filtered out to extract effective data with a band-pass finite impulse digital filter with a
band pass frequency ranging from 0.5 Hz to 30 Hz. Then, systematic effects which might
be caused by referencing to a particular channel were removed by referencing the EEG
data of each channel to the average of all channels. The EEG data after preprocessing are
shown in Figure 1c.

2.2. Measurement of Dimensionality

Dimensionality, the minimal number of dimensions necessary to offer a precise repre-
sentation of neural activity, is defined as [38]:

Dim(C) =
(Tr C)2

Tr C2 =
(∑i λi)

2

∑i λ2
i

, (1)

where C is the covariance matrix of the activity vectors, and λi is the ith eigenvalue of the
covariance matrix C. In this work, C is the covariance matrix of the electrical signals of 19
electrodes. Dim(C) ∈ [1, 19], where Dim(C)= 19 indicates that the activity of the brain is
independent and has equal variance, and Dim(C)= 1 demonstrates strongly correlated
brain activity.
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2.3. Method for Extracting Low-Dimensional Latent Variables

The variational auto-encoder (VAE) is a powerful deep learning method for extracting
the latent variables from data, which occurs in a feedforward manner, consisting of sym-
metrical networks: the “encoder” and “decoder” (as shown in Figure 2). More specifically,
the encoder is in charge of encoding the high-dimensional input into a low-dimensional
representation, and the decoder is in charge of reestablishing the input data on the basis of
the low-dimensional representation.

 

Figure 2. Neural network architectures of VAE. The encoder is in charge of encoding the high-
dimensional input (x) into a low-dimensional representation (z), and the decoder is in charge of
reestablishing the input data (x) on the basis of the low-dimensional representation (z).

Considering the dataset χ = {x(t)}N
t=1 of variable x, the VAE assumes that one

random process involving an unobservable latent variable z generates all the data, which
are produced from one prior distribution pθ(z), thus x is determined by the conditional
distribution pθ(x|z ) [35]. According to the Bayesian theory, the “decoder” network is in
the form:

x ∼ pθ(x|z )pθ(z), (2)

and the “encoder” network is of the form:

pθ(z) ∼ qφ(z|x )p(x). (3)

The optimization function is defined based on minimizing the difference between the
reconstructed data (output) and the original data (input), which is of the form:

maxEqφ(z|x)[log pθ(x|z )]− DKL
(
qφ(z|x )‖pθ(z)

)
. (4)

According to the Monte Carlo estimation method, the first term in the equation above
is calculated through sampling L times as follows:

Eqφ(z|x)[log pθ(x|z )] = 1
L

L

∑
l=1

log pθ(x(t)|zl(t) ) (5)

The KL divergence of the approximate posterior qφ(z|x ) from the true prior pθ(z) is

computed through −DKL
(
qφ(z|x )‖pθ(z)

)
= 1

2

J
∑

j=1

(
1 + log

(
σ2

j (t)
)
− μ2

j (t)− σ2
j (t)

)
, where

J is the dimensionality of z.
We utilized stochastic gradient descent and a back-propagation method to optimize

the unknown parameter θ and the latent variable z by minimizing the difference between
the output data and the input data. In this work, the 3-min-long dataset under different
states was cut into 18 10-s-long data segments; thus, the number of samples for one segment
is 2560. Hence, the batch size for unsupervised VAE learning is set as 20 to balance the

169



Sensors 2021, 21, 7432

training speed. The VAE approach was realized through the Deep Learning Toolbox in
Matlab (R2021b).

3. Results

3.1. The Oscillatory Properties of Brain Activity Evoked via Manual Acupuncture Stimulation

Brain activity is composed of high-dimensional complex oscillatory activity with rich
rhythmic information. Therefore, the power spectrum density (PSD) of EEG signals was
first investigated using the Welch method. Before acupuncture, the energy reaches two
peaks near 1.2 Hz and 10 Hz, and the energy is mainly concentrated in the low-frequency
band (1.2 Hz, the delta frequency band), as shown in Figure 3a. In the acupuncture state,
the tendency of the energy distribution is similar to the pre-acupuncture state, but with
a significant increment in energy in the delta and alpha frequency bands compared with
the state before acupuncture. The results show that acupuncture at ST36 could affect the
neural oscillatory activity, especially in the delta and alpha frequency bands.

Figure 3. Brain activity associated with manual acupuncture stimulation. (a) Power spectrum char-
acteristics of EEG data under different states. (b) PSD distribution in different frequency bands.
p < 0.05 (*) and p < 0.01 (**) represent significant difference levels between pre-acupuncture and
acu-puncture states. (c,d) Topographic map showing the variance of the PSD distribution between
ac-tivity during and before different acupuncture manipulation states in (c) delta and (d) alpha
fre-quency bands. Acupuncture can significantly affect the oscillatory activity in the delta and alpha
frequency bands within EEGs. This variance is increased in the frontal and parietal lobes.
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We further computed the average energy distribution across four sub-bands (delta,
theta, alpha and beta), as shown in Figure 3b. Particularly, the energy in the delta frequency
band was higher when the manipulation frequency was 50 times/min and 100 times/min.
This phenomenon implies the emergence of resonance induced by acupuncture. As shown
in Figure 3a,b, the neural activity oscillates at an inherent frequency (about 1.2 Hz). When
the frequency of external stimulation comes close to this inherent frequency, the phe-
nomenon of resonance occurs; thus, the oscillatory response in the delta band is amplified.
The results indicate that the neural system may encode and transmit the acupuncture stim-
ulus through resonance. Scientific studies have documented the experimental occurrence
of resonance in electrical processes of the human brain, as recorded by EEG, elicited by
mechanical tactile stimuli [39]. It can be inferred that resonance is one of the mechanisms
by which the neural system encodes acupuncture stimulation.

In order to investigate the resonance effect of acupuncture on neural oscillations across
brain regions, we calculated the PSD variance (the difference in the PSD value between the
acupuncture state and the pre-acupuncture state). Figure 3c,d present the PSD variance
in two typical frequency bands (delta and alpha). In the delta frequency band, energy in
the frontal and parietal lobes is increased, especially in the left frontal lobe and the right
parietal lobe. In the alpha frequency band, the energy is increased under acupuncture
stimulation, except for the manipulation at 50 times/min. The findings obtained here are
consistent with other experimental reports based on fMRI and PET data. Xiang et al. found
that the brain regions that responded to acupuncture at ST36 only (specifically) were the
inferior parietal lobe, the middle inferior gyrus, the posterior lobe of cerebellum, and the
angular gyrus [40].

3.2. Dimensionality of Brain Activity

Recent research has investigated the dimensionality of neural ensembles from the sen-
sory cortex of alert rats during periods of ongoing and stimulus-evoked activity, and found
that stimuli could reduce the dimensionality of cortical activity [38]. Acupuncture is an
external stimulation to the sensory system. It is of great importance to investigate whether
the dimensionality of neural activity is affected by acupuncture. Figure 4a computes the
dimensionality across all trials in the empirical dataset before and during acupuncture.
The average dimensionality of brain activity in the pre-acupuncture state was larger than
that in the acupuncture state. Moreover, the value of the dimensionality increased with
an increase in the manipulation frequency. The dimensionality was minimal when the
manipulation frequency was 50 times/min.

Figure 4. Dimensionality of brain activity. (a) Dependence of dimensionality of brain activity on
acupuncture manipulation. (b) Dependence of dimensionality of brain activity in different sub-bands
on acupuncture manipulation. Acupuncture can reduce the dimensionality of brain activity, especially
with the manipulation at 50 times/min. The dimensionality in the delta and alpha frequency band
was lower than that in the other two bands.
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Furthermore, the dimensionality of neural activity in each sub-frequency band is ex-
plored in Figure 4b. The dimensionality in the delta and alpha frequency bands was smaller
than that in the theta and beta frequency bands. In the delta and alpha frequency bands,
the dimensionality was minimal when the manipulation frequency was 50 times/min,
whereas in the theta and beta frequency bands, the dimensionality was maximized by
acupuncture stimulation with a manipulation frequency of 100 times/min. Indeed, the
oscillatory activity was more coherent in the delta and alpha frequency bands. It can be
inferred that the enhancement of the correlated activity in the delta and alpha frequency
bands induced by acupuncture could reduce the dimensionality of brain activity.

3.3. Low-Dimensional Dynamics of Brain Activity

Acupuncture’s effects are higher-order processes that are produced by the collab-
orative involvement of various latent brain factors, including different brain areas and
physical or functional brain networks [41]. For example, Dhond et al. have confirmed
that acupuncture may exert its therapeutic effects on pain by modulating a distributed
network of brain areas involved in sensory, autonomic, and cognitive/affect processing,
including endogenous antinociceptive limbic networks, as well as cognitive and affective
control centers within the prefrontal cortex and the medial temporal lobe [10]. Moreover,
the relationships between acupuncture analgesia and attentional mechanisms have been
gradually revealed [42]. As EEG results are an external manifestation of the latent brain
factors’ activities, it is of great importance to probe the low-dimensional dynamics of brain
activity associated with acupuncture stimulation based on multichannel EEG signals.

We employed the VAE method to extract the low-dimensional latent variables from
the EEGs recorded before and during acupuncture. First, the reconstruction performance
of VAE under different assumed numbers of latent variables was investigated. The re-
construction performance was quantified as the mean correlation between the original
and reconstructed EEG channel signals. As shown in Figure 5, the performance gradually
improved with an increasing number of latent variables for all subjects. When the number
of latent variables was greater than three, the model was able to obtain a reconstruction
performance of more than 80% on the EEG dataset.

Figure 5. The reconstruction performance of VAE using different numbers of latent variables. The
reconstruction performance increased with the enlargement of the latent variable number.

We further examined the dynamic properties of these latent variables extracted from
the EEG dataset. For each acupuncture stimulation, we plotted the top 3 dimensions of
latent variables in Figure 6. It was shown that all units in each acupuncture manipulation
operation contributed to a span, which is known as a latent dynamic space. Each latent
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dynamic space captured a population-wide activity pattern. For different subjects, the
latent factors of different states still formed a latent dynamic space, but they had different
planes (Figure 6b). To test whether the neural latent dynamic spaces corresponded to
different manipulation frequencies, we set the latent dynamic space formatted by the
pre-acupuncture period as the reference plane (or null plane), and computed the angles
between each plane (induced by each different acupuncture stimulation) and the reference
plane. The measurement is depicted in Figure 6c. The statistical results shown in Figure 6d
demonstrate that although the planes of different individuals varied, the angles between
them and the reference plane remained unchanged with different subjects. Moreover, the
angle (θ) linearly depends on the manipulation frequency with a high goodness of fit
of 0.78.

Figure 6. Latent variables in a 3-dimensional plane. (a) Different states of one subject. (b) Four
ran-dom selected subjects in the pre-acupuncture period. Each color trace corresponds to a single
trial. (c) Illustration of the variance of the latent dynamic space, where the angle between reference
plane (pre-acupuncture state, orange) and acupuncture state (50 times/min, blue) was measured as θ.
(d) Relationship between acupuncture manipulation and the plane included angle. Using VAE, the
low-dimensional subspace of brain activity can be identified. The characteristics of the subspaces
were determined by individuals and acupuncture stimulations.

In addition, we inspected the dynamics of the top three latent variables in each
latent dynamic space, as shown in Figure 7. It was evident that the units representing
time-varying activity in the neural space converged to an ellipse (defined as an attractor).
The trajectory was mostly confined to the latent neural space, a plane shown in Figure 7
and spanned by the acupuncture modes p1 and p2. The arrow in each figure reflected
the direction of the trajectory as it evolved over time. Intuitively, the long axes of the
elliptic attractor increased. We computed the mean distance of the long and short axes
across different trials and plotted them in Figure 8a. The quantitative results confirmed
that the variance trends were influenced by different acupuncture manipulations. A one-
way analysis of variance (ANOVA) was applied to determine whether there were any
statistically significant differences in the attractors between acupuncture states. The index
p was calculated based on the mean and variance of the length of the long and short axes
of the elliptic attractors in each state. Table 1 indicates that the long and short axes of the
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attractor in each state had significant differences, where p < 0.05 (*) and p < 0.01 (**) stand
for their significance levels in statistical analysis. Furthermore, the difference between p1
and p2 was calculated between any two states in Table 2. The maximum p-value was on the
order of 10−3, far less than 0.01. The obtained results confirmed the statistically significant
differences of the attractors.

Figure 7. Schematic diagram of the trajectory under different acupuncture manipulation frequencies in latent dynamic
space. (a) Pre-acupuncture, (b) 50 times/min, (c) 100 times/min, (d) 150 times/min. (e) An illustration exhibiting points’
evolution over time in (b). The color labels present the time order of each point, and the time step between points is 1/256 s.
It can be seen that the units representing time-varying activity in the neural space converge to an elliptic attractor.

Figure 8. Statistical analysis of attractors of different states. (a) Dependence of long and short axes on manipulation
frequency. (b) Cluster of manipulation operation based on attractors. The statistics of attractors can be discriminants for
different brain states.

Table 1. ANOVA 1 analysis for comparison of the length of the long and short axes in different states.

Axis Pre-Acu 50 Times/Min 100 Times/Min 150 Times/Min

p1 vs. p2 1.65 × 10−33 5.08 × 10−29 1.00 × 10−27 3.07 × 10−17
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Table 2. ANOVA 1 analysis for comparison of the length of the long and short axes in different states, respectively.

Axis
Pre-Acu vs. 50

Times/Min
Pre-Acu vs. 100

Times/Min
Pre-Acu vs. 150

Times/Min
50 Times/Min vs.
100 Times/Min

50 Times/Min vs.
150 Times/Min

100 Times/Min vs.
150 Times/Min

p1 8.05 × 10−13 1.89 × 10−28 1.46 × 10−29 1.28 × 10−3 8.28 × 10−7 2.61 × 10−3

p2 1.34 × 10−3 1.72 × 10−10 7.20 × 10−28 8.52 × 10−3 2.03 × 10−26 9.15 × 10−24

Based on the different statistical characteristics of the attractors, the neural dynamics
of different trials induced by different acupuncture manipulation conditions were clustered
(as shown in Figure 8b). In order to automatically classify different states, four machine
learning models—a support vector machine (SVM), the k-nearest neighbor (KNN) method,
linear discriminant analysis (LDA), and decision trees (DTs)—were constructed. The length
of the long and short axes extracted from the low-dimensional attractors were considered
for the training of the classifier model. The average accuracy of the acupuncture classifi-
cation was calculated by means of five-fold cross validation, conducted 10 times. Table 3
compares the mean classification accuracy obtained for these machine learning models.
It indicates that all these four models were able to achieve more than 95% classification
accuracy. This result suggests the universality of the proposed classification scheme based
on the statistical characteristics of the attractors. Furthermore, the performance of LDA
was better than that of the other three classifiers.

Table 3. Mean classification accuracy for various machine learning models.

Model SVM KNN LDA DT

Accuracy 97.5% 97.5% 98.8% 95.0%

4. Discussion

The present study was aimed at probing the low-dimensional dynamics of brain
activity associated with acupuncture at the ST36 acupoint with different manipulation fre-
quencies. Specifically, we studied the changes in the power spectrum of brain activity before
and during acupuncture stimulation. We extracted the neural subspace and characterized
the relationship between acupuncture stimuli and low-dimensional dynamics.

Using a manual acupuncture paradigm, in conjunction with brain electroencephalog-
raphy (EEG) signal recording, we observed that acupuncture episodes were associated with
increased spectral power in the delta and alpha frequency bands compared to episodes of
resting, especially in the delta frequency band. This phenomenon suggests that stochas-
tic resonance is a way in which the brain processes periodic acupuncture stimulation.
Stochastic resonance is commonly understood to be the enhancement of the response of a
nonlinear system in cases where the frequency of the external input is close to its intrinsic
oscillatory frequency, with the help of noise [43,44]. Noise, which is ubiquitous in the
brain, comes from synaptic transmission, channel gating, ion concentrations, and mem-
brane conductance, and is possibly involved in stochastic resonance phenomena [45,46].
In the acupuncture experiment, when the stimulation frequency was close to the intrinsic
frequency of the cerebral oscillations (the delta frequency band), the rhythmic activity of
the cerebral oscillation was enhanced. This enhancement was mainly concentrated in the
parietal lobe, which is associated with the somatosensory area. Resonance in the central
nervous system of mammalians may account for their higher brain functions, such as hu-
man tactile sensations, visual perception, and animal feeding behavior [47,48]. In this study,
we preliminarily found a resonant response of the brain to acupuncture stimulation. More
experimental and analytical studies will be carried out to investigate the potential benefits
of stochastic resonance in acupuncture information processing in the neural system.

Additionally, we found that acupuncture stimuli could reduce the dimensionality of
the neural electrical response of the cerebral cortex. At present, the study of dimensionality
in neural systems has attracted extensive attention [49–51]. Dimensionality analysis has
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been employed for various tasks and across neural systems [31,52]. For example, Rigotti
et al. studied the relationship between the dimensionality of an evoked activity and task
complexity, and suggested that the evoked dimensionality roughly amounted to the num-
ber of task conditions [53]. Acupuncture is a complex stimulation comprising multimodal
sensory stimulations, including temperature, pressure, and noxious stimulations. Differ-
ent manual acupuncture manipulations, such as lifting, thrusting, and twisting, contain
different stimulating parameters, thus generating different responses to acupuncture [54].
The study of the dimensionality of brain activity under acupuncture stimuli will help to
reveal the mechanisms underlying different acupuncture manipulations. Setting up an
accurate experimental and theoretical connection between dimensionality and acupuncture
manipulations, supported by an understanding of neural activity, is a significant question
for further studies.

In this work, VAE was an efficient approach for reducing dimensionality and extracting
latent variables from multichannel EEG signals. Essentially, the VAE adopted in this work
was carried out in a feedforward manner, and this oversimplification of the network
structure may result in lower effectiveness of VAE when the input becomes complex. One
possible solution to this problem is to combine the recurrent network and VAE frameworks,
which has been gradually applied in research on image recognition. In addition, the
small world is a type of recurrent network with a smaller average transmission delay and
more robust network connectivity. The combination of a small world network and the
VAE framework may improve the processing performance for high-dimensional complex
datasets and reduce the training time required.

Furthermore, using a dimensionality reduction method, we obtained a neural subspace
of brain activity and found that the low-dimensional dynamics converged to topologi-
cally similar elliptic-shaped attractors. The brain state (pre-acupuncture or undergoing
acupuncture with different manipulation frequencies) can be well classified based on the
statistical characteristics of these attractors. The elliptical attractors implied characteristics
of continuous fluctuation of the brain, which may result from internal variability (noise)
and external stimuli. In a previous study [55], we observed fluctuations in the scaling of
neural activity in a spontaneously active brain circuit. Olguin-Rodriguez et al. have inves-
tigated characteristic fluctuations around stable attractor dynamics extracted from highly
nonstationary EEG recordings [56]. On the other hand, researchers have demonstrated
that the dynamical regime of the sensory cortex converges to stable dynamics around a
single stimulus-tuned attractor [57]. The attractor dynamics are not only associated with
the properties of stimuli, but are associated with brain function. Finkelstein et al. showed
that communication between brain regions can be gated via attractor dynamics, which
control the degree of commitment to an action [58]. Therefore, it is of great importance to
investigate the attractor dynamics of brain activity evoked by acupuncture stimuli, which
will shed light on revealing the action mechanism of acupuncture.

Typical neural responses are shaped both by internal dynamics and various external
stimuli. Even when exposed to the same external stimulation, different subjects responded
differently, as their inherent internal dynamics are not quite the same. Consequently, the
characteristics of low-dimensional dynamics extracted from multichannel EEG signals
vary between individuals. Although differences between subjects and latent variables are
informative for classification, there is still a key limitation of the proposed method, in that it
cannot directly extract the stimulus-related variables from neural responses. Acupuncture
can be regarded as a specific somatosensory stimulation on the acupoint, and can mediate
the function of the human body via the nervous system. Furthermore, the VAE method
neglects information about the relevant experimentally controlled variables. Therefore, in
order to better probe the relationship between brain activity and acupuncture stimulation,
we will decompose the acupuncture-evoked information from EEG signals, and further
characterize the low-dimensional dynamics of acupuncture-evoked signals in the next step
of our research. This further research will help to reveal the essential role of acupuncture.
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As a complementary therapeutic treatment, acupuncture could improve symptoms
in various neural diseases, such as depression, stroke rehabilitation, and Parkinson’s
disease [59–61]. Increasingly, clinical experiments have shown that the effectiveness of
acupuncture is related to changes in brain activity. For example, Chae et al. documented a
significant improvement in the motor function of PD patients after acupuncture treatment.
The putamen and the primary motor cortex were activated when patients with PD received
acupuncture treatment and these activations correlated with individual enhanced motor
function [62]. Moreover, it was found that acupuncture can reduce drug addiction via direct
activation of brain pathways [63]. In this work, we confirmed that acupuncture can affect
the characteristics of the latent neural subspace. For different neural diseases, we proposed
that abnormal brain activity may be reflected by the characteristics of this subspace as well.
In future works, we will conduct further clinical experiments to validate the relationship
between these latent neural dynamics and the therapeutic effects of acupuncture. These
results can provide a theoretical support for the selection of appropriate acupuncture
frequencies for patients in clinical settings, and the proposed methods have potential in
relation to exploring the effects of acupuncture on brain activity.

5. Conclusions

In this work, the low-dimensional dynamics of brain activity associated with acupunc-
ture stimuli was probed. We found that manual acupuncture stimuli can reduce the
dimensionality of brain activity, which results from the enhancement of oscillatory activity
in the delta and alpha frequency bands induced by acupuncture. Moreover, it was found
that large-scale brain activity could be approximated through the dynamics of a relatively
simple attractor contained within a low-dimensional neural space, and the attractor’s
morphology was closely related to the frequency of acupuncture stimulation. These results
shed light on the large-scale brain response to manual acupuncture stimuli.
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Abstract: Epilepsy is a disease that decreases the quality of life of patients; it is also among the most
common neurological diseases. Several studies have approached the classification and prediction of
seizures by using electroencephalographic data and machine learning techniques. A large diversity
of features has been extracted from electroencephalograms to perform classification tasks; therefore,
it is important to use feature selection methods to select those that leverage pattern recognition.
In this study, the performance of a set of feature selection methods was compared across different
classification models; the classification task consisted of the detection of ictal activity from the CHB-
MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets
and the number of features. Furthermore, the similarity between selected feature subsets across
classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor
along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly
outperformed the rest of the methods, as the performance was notably affected by the classifier,
dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the
best results were K-nearest neighbor/support vector machine and random forest/embedded random
forest.

Keywords: EEG; epilepsy; seizure detection; machine learning; features; feature selection

1. Introduction

Epilepsy is one of the most common neurological diseases, affecting around 50 million
people of all ages globally [1]. The Center for Surveillance, Epidemiology and Laboratory
Services of the United States of America estimated that in 2010, the number of adults
with active epilepsy in the United States was 2.3 million; by 2015, the estimate increased
to 3 million adults [2]. An additional study calculated that the cumulative incidence of
epilepsy, in Norwegian children at the age of ten was around 0.66%, with 0.62% having
active epilepsy [3]. The authors in [4] reported six studies of epilepsy prevalence in Mexico,
which found prevalence rates of 3.9 to 42.2 per 1000 inhabitants.

An important tool for the diagnosis and management of epilepsy is the electroen-
cephalogram (EEG). As mentioned in [5] (p. ii2), EEG is a “convenient and relatively
inexpensive way to demonstrate the physiological manifestations of abnormal cortical
excitability that underlie epilepsy.” Other diagnostic techniques used in conjunction with
EEG include neuroimaging, metabolic tests, and genetic tests. EEG can be processed and
classified by using machine learning methods. Several studies have applied machine
learning to classify ictal EEG signals [6,7] and predict seizures [8,9]. Concerning signal
description, several metrics have been used to characterize such problems, and to build
machine learning models, some of those metrics are computed from an EEG. Some re-
searchers have approached the classification problem by calculating statistical, entropy,
and univariate linear metrics from EEG [6,8–11]; those metrics can be fed to a model in
the form of a vector or a matrix. In addition, metrics can be estimated for the entire EEG
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bandwidth or for smaller sub-bands [12–14], the latter with the intention of obtaining
a more detailed view of the signal. Furthermore, transformation of the EEG signal to
different domains has been explored by applying Fourier [15], short-term Fourier [7,16,17],
wavelet transform [15,16,18–20], and contourlet transform [21]. It has also been analyzed
as a graph [8] and an image [16]. As a result of the increasing interest in this topic, Ref. [22]
presented a complete summary of several descriptors for time-domain, frequency-domain,
and time–frequency-domain, along with their interpretation, while applying to the epileptic
seizure detection on EEG signals.

Regarding the classification problem, a diversity of machine learning models have
been tested for epilepsy prediction; among these we have: decision trees [23–25], support
vector machine [23,26,27], K-nearest neighbor [23], and random forest [27]. In recent years,
diverse deep learning models have been tried for epilepsy-related tasks, e.g., convolutional
neural networks [16,17,28] and long-short term memory [8,28].

An important step in classifier modeling is feature selection. When performing feature
selection, it is important to take into account several facts: (a) there are numerous attributes
that can be calculated from EEG signals—each one describing a particular aspect of EEG;
(b) there is a strong relation between features and model accuracy; (c) the curse of dimen-
sionality, which is related to the difficulty of optimizing a solution in high-dimensional
spaces; (d) the complexity and interpretability of the resulting models, which are about
reducing the time and costs by training simpler learning models or selecting the features
that are more relevant and meaningful from the problem perspective [29]. In this sense,
several feature selection methods have been used to overcome the aforementioned issues.
Some of those techniques are statistical tests, information gain [30], principal component
analysis [31], permutation importance [32], and recursive feature elimination (RFE) [33],
among others [29].

In this regard, there are several works in the state-of-the-art focused on epileptic EEG
signal classification; some of them use feature selection methods (FSMs) to improve their
results and reduce the dimension of the feature vectors.

For example, principal component analysis was applied in [34] to obtain less correlated
features; however, their main goal was to evaluate the effects of channel selection on
epileptic analysis over adults and children, without considering the effect of the feature
selection method in the classification’s performance, and only one classification method
was considered, in this case linear discriminant analysis.

In [24], RFE was used to rank features and a support vector machine (SVM) for
classifying epilepsy, autism, and control groups in children. Even though they determined
which features and combinations of features contributed the most to the classification
accuracy, they did not analyze either several feature selection methods or other classification
methods.

The authors of [25] evaluated one feature selection method (recursive feature elimina-
tion) and one feature set, in combination with seven classifiers to improve the classification
accuracy of automatic seizure diagnosis. From the 11 features that were calculated from
the EEG signal, they reduced them to 8 features. All the experiments were performed only
on one adult dataset.

In [12], six FSMs along with nine classifiers were used for automatic seizure detection.
The FSMs were evaluated to rank and reduce the number of features, ranking the important
features using a t-test and selecting the top 20 or 25, without testing additional alternatives
that may result in different rankings. Furthermore, the authors provided experimental
results based on one dataset that belonged to children. Additionally, the hold-out cross-
validation methodology was used, which is commonly used for bigger datasets.

FSMs have also been tested in signals other than EEG such as magnetic resonance
images, as shown in [35]. The authors’ objective was to compare three different FSMs (i.e.,
t-test filtering, the sparse-constrained dimensionality reduction model, and the support
vector machine-recursive feature elimination) to determine which of them performed better
when using an SVM as the classifier. However, the authors only tested the performance
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of the FSM on one classifier (SVM). Furthermore, they only tested on one dataset without
considering if their result may change when either tested on different datasets or FSM sets.

In summary, it can be observed that, even though there is extensive research about the
feature selection methods applied in seizure and seizure-free EEG signals’ classification,
such approximations do not allow having a general perspective of the advantages and
disadvantages of using a particular combination of the feature selection method with a
classification algorithm (C-FSM) to determine: (1) the effect of the dimensionality reduction
on the performance of the classifiers; (2) the best C-FSM combinations; and (3) the amount of
coincidence of the best-selected features among FSMs; all of that considering two different
feature sets and two different databases (adults and children).

Hence, in this work, the CHB-MIT and Siena Scalp EEG databases were used along
with two different feature sets to evaluate the combination of six FSMs and five classification
models. The results of this work allow determining: the minimum number of features
that can be chosen for each FSM without scarifying the classifiers’ performances; the
performance of several C-FSM combinations in order to discover if a relationship exists
between the FSMs with a particular classification algorithm; and if there is a feature or
feature set that remains across different C-FSM combinations.

2. Materials and Methods

In this section, the features, models, and training procedures are described. A general
methodology overview is shown in Figure 1.

Figure 1. Flow diagram of the methodology.

2.1. Datasets

CHB-MIT was one of the two datasets used for this research. The dataset is available
for download at Physionet [36] under Open Data Commons Attribution License v1.0.

The data were collected at the Boston Children’s Hospital. The database contains
scalp electroencephalograms of 23 pediatric patients having epilepsy [37]. The number of
recordings per patient varies from 9 to 45; all of them contain a metadata file listing the
channels’ names and ictal activity intervals; most of the records have a duration of one
hour. EEG signals were sampled at 256 Hz; electrodes were placed according to the 10–20
system [37]. Most of the recordings are provided following a bipolar longitudinal montage.
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After exploring the data, recordings not containing ictal activity were discarded. Thus,
an amount of 137 EEG recordings containing an overall amount of 181 ictal activity intervals
from 23 patients were accomplished.

The second dataset used in this research was the Siena Scalp EEG database; it is also
available on the Physionet site under a Creative Commons Attribution 4.0 license. The
dataset was collected by the Unit of Neurology and Neurophysiology at the University
of Siena. It contains EEG recordings of 14 patients, 9 males (ages 36–71) and 5 females
(ages 20–58). There are a total of 41 EEG recordings, and these include 47 ictal activity
intervals; the recordings’ duration is variable, from 1 to 13 h. The start and end of each
seizure are detailed in the metadata file provided by the original authors [38]. EEG signals
were sampled at 512 Hz. Electrodes were placed according to the 10–20 system [38]. EEG
channels provided in the dataset are monopolar.

Recordings were further processed to design a dataset for a bi-class classification
problem: seizure or seizure-free.

2.2. Data Pre-Processing

The number of conserved bipolar channels for the CHB-MIT recordings was 21. A
few of the channels do not follow the 10–20 positioning, but channels were considered
because these are included in every recording of the dataset. The Siena Scalp recordings
were converted to a longitudinal bipolar montage, to have a fair comparison between both
datasets; 18 channels were conserved.

A second-order Butterworth high-pass filter was used for removing frequencies below
0.5 Hz; then, a notch filter was applied to remove power line frequency (60 Hz and 50 Hz
for CHB-MIT and Siena datasets, respectively).

A window length of 2 s was chosen. Epoch length was based on [13], as they men-
tioned, when extracting spectral features, it is important to choose small epochs due to the
non-stationarity of the EEG.

As the number of ictal segments was significantly lower than the non-ictal ones, a 50%
overlap was applied to ictal windows; besides that, some non-ictal windows were removed
in order to keep an approximate ratio of 9:1 between both classes.

Ten percent of the CHB-MIT epochs were kept apart for adjusting the parameters of
the classification models.

Inspired by [12], windowed EEG signals were separated into the following 5 sub-
bands: complete bandwidth (0.5–30 Hz), delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
and beta (12–25 Hz). Second-order Butterworth band-pass filters were used for band
separation.

2.3. Feature Extraction

Two different features sets were evaluated to observe the effect of varying the metrics
and determine which one outperforms (see Table 1). Therefore, half of Feature Set 1 (FS1)
was conformed by statistical metrics and was applied in the time-domain or frequency-
domain. Specifically, the median frequency (i) was estimated to characterize the power
spectrum of the EEG data. On the other hand, the variance (ii), skewness (iii), and kurtosis
(iv) were estimated in time-domain to characterize the variability and the distribution of
the EEG data. Other features such as the peak frequency (v) were used to describe the
frequency of the highest peak in the power spectral density; the root mean square (vi), range
(vii), and the number of zero crossings (viii) in the time-domain were used respectively to
estimate the effective value of the signal, to measure the maximum wave amplitude, and to
count the number of points where the EEG wave cuts the horizontal axis, changing its state
from positive to negative and vice versa.
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Table 1. Features’ set.

Feature Set 1 (FS1) Feature Set 2 (FS2)

Median Frequency (i) [39] Minimum (ix) [34]
Variance (ii) [40] Complexity (x) [34]

Skewness (iii) [40] Mobility (xi) [34]
Kurtosis (iv) [40] Interquartile Range (xii) [40]

Peak Frequency (v) [41] Median Absolute Deviation (xiii) [42]
Root Mean Square (vi) [40] Sample Entropy (xiv) [43]

Range (vii) [40] Mean (xv) [40]
Number of Zero Crossings (viii) [34] Standard Deviation (xvi) [40]

Those features were selected based on previous studies where the authors performed
an extensive review on the state-of-the-art on epileptic seizure detection based on EEG [22]
along with some other works [6,8,10,12,25,34] that have successfully applied such feature
metrics. In particular, Features i–vi were selected based on [12]. The number of zero
crossings (ZCs) was estimated instead of the ZC rate because all EEG epochs had the same
length.

On the other hand, FS2 was formed by the minimum (ix), which describes the mini-
mum value that a signal can take, complexity (x), used to describe the change in frequency,
mobility (xi), which is a measure of the mean frequency, interquartile range (xii), which is a
measure of statistical dispersion, the spread of the data or observations, median absolute
deviation (xiii), which is a robust measure of how spread out a set of data is, sample entropy
(xiv), used for assessing the complexity of physiological time series signals, mean (xv),
and standard deviation (xvi), statistical parameters that describe the average value and
the amount of variability, or dispersion, from the individual data values to this average
value. These features have been utilized across different studies for the classification of
ictal EEG data [6,10–12,34]. Parameters used for the sample entropy (SampEn) are r = 0.2,
m = 2. When applied to seizure discrimination in EEG, it was previously observed [44] that
there is no best parameter combination, but several optimal combinations, one of which is
the one used in this work.

The features from FS1 and FS2 were computed per channel and frequency band. For
both feature sets (FS1 and FS2), feature vectors of 840 and 720 in length were obtained for
the CHB-MIT and Siena datasets, respectively.

After that, correlations between features in all bands and channels were identified
in both feature sets. For each pair of features, the Pearson correlation coefficient was
computed. If a combination had a coefficient over 0.95, one of the features of the pair would
be discarded. As a result, from FS1, 105 and 113 features were removed for the CHB-MIT
and Siena datasets, respectively; on the other hand, from FS2, 304 and 257 features were
removed for the CHB-MIT and Siena datasets, respectively.

2.4. Classification Methods

The following five algorithms were selected for classifying ictal EEG signals:

1. Decision tree (DT): This is a hierarchical model composed of decision nodes and
terminal leaves, each leaf have an output label. Decision nodes implement a test
function f (x), which is a discriminator dividing the input space into smaller regions.
Among all possible splits, the DT looks for the one that minimizes impurity. There are
several impurity measures, e.g., the Gini index and entropy. For a two-class problem,
the Gini index is defined as [45]:

φ(p, 1 − p) = 2p(1 − p) (1)

where p is the probability of a sample reaching a node m, to belong to a class C. The
classification and regression trees algorithm (CART) was applied in this research.
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2. Support vector machine (SVM): This constructs a hyperplane or set of hyperplanes in
a high-dimensional space that can be used for classification. Those hyperplanes have
the largest distance to the nearest training data points (also known as the functional
margin) [23]. The task of finding the optimal separating hyperplanes can be defined
as [45]:

min
1
2
||w||2 subject to rt(wTxt + w0) ≥ 1, ∀t (2)

where w are the parameters defining the hyperplane, xt are the instances of the
training set, and rt is the actual label. If the problem is not linearly separable, the
problem can be mapped to a new space by using non-linear basis functions [45].

3. K-nearest neighbor (KNN): This is a classifier that learns by analogy. A target un-
known instance is compared to all the instances in the training set, locating the k
closest instances; the algorithm assigns the class that corresponds to the majority.
“Closeness” is measured by using a distance metric; in this study, we used the Man-
hattan distance (selected through a parameter grid search). The Manhattan distance
for a p-dimension space is defined as [46]:

d(i, j) = |xi1 − xj1|+ |xi2 − xj2|+ ... + |xip − xjp| (3)

4. Random forest (RF): This is an ensemble method, and each classifier of the ensemble
is a DT. For each node of the DT, a random selection of features is used to determine
the best split. RF also uses bagging (bootstrap aggregation), which means that the
training set for each DT is sampled with replacement from the original training set.
After model training, each DT votes, and the most voted class is assigned to the test
instance [46].

5. Artificial neural network (ANN): This is a classifier that uses the idea of the perceptron,
and it is referred to as a multi-layer perceptron. It can contain three or more layers,
and these are: an input layer, one or more hidden layers, and an output layer [19].
Simply speaking, it is a set of input/output interconnected units, each connection
having a weight associated with it. During the learning process, the ANN adjusts
the weights of the connections in order to be able to predict the correct labels of new
instances [46]. The neural network used in this study is described in Table 2.

Table 2. Structure of ANN layers.

Layer Type Size Activation

1 Dense 100 ReLU
2 Dense 50 ReLU
3 Dense 1 Sigmoid

To select the best-suited parameters for the above machine learning models, a grid
search was performed; accuracy was utilized as a comparison metric. For selecting the
ANN structure, a different number of neurons and hidden layers (1 and 2 layers) were
evaluated, resulting in our best architecture, the one depicted in Table 2. The configuration
settings and parameters of the grid search are listed in Table 3 for FS1 and in Table 4 for FS2.
Both FSs used the same parameter grid detailed in Table 3. It is worth mentioning that the
selected classification algorithms have been previously implemented for epilepsy-related
tasks; however, the model parameters were not inspired by any specific work; on the
contrary, they were selected by performing a grid search.
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Table 3. Configuration setting per classification method. It was adjusted from FS1.

Method Parameter Selected Value Parameters Grid

DT Min. samples per node 8 2, 4, 8, 16
Split criterion Gini impurity Gini impurity

SVM
Regularization parameter 2 0.1, 0.5, 1, 2, 10

Kernel RBF Linear, RBF
Gamma coefficient 1/(n_ f eatures × var(x)) 1/(n_ f eatures × var(x)), 1/n_ f eatures

KNN
Num. of neighbors 15 3, 5, 10, 15

Distance metric Manhattan Euclidean, Manhattan
Weight function Uniform Uniform, distance-based

RF Num. of trees 150 30, 50, 100, 150
Min. samples per node 4 2, 4, 8, 16

ANN
Optimizer Adam

Loss measure Cross-entropy
Epochs 200

Table 4. Configuration setting per classification method. It was adjusted from FS2.

Method Parameter Selected Value

DT Min. samples per node 2
Split criterion Gini impurity

SVM
Regularization parameter 2

Kernel RBF
Gamma coefficient 1/(n_ f eatures × var(x))

KNN
Num. of neighbors 10

Distance metric Euclidean
Weight function Distance

RF Num. of trees 150
Min. samples per node 4

ANN
Optimizer Adam

Loss measure Cross-entropy
Epochs 200

2.5. Feature Selection Methods

In this research, six FSMs were used. The metrics used to assign the importance of
each feature are detailed below. The parameters selected for training each algorithm are
mentioned in Table 5.

Table 5. Configuration setting per feature selection method.

Method Parameter Values

DT Min. samples per node 4
Split criterion Gini impurity

SVM Regularization parameter C 1
Kernel Linear kernel

LIME Discretization of values No

SHAP Length of background dataset 50

ERF
Num. of trees 10

Min. samples per node 2
Split criterion Gini impurity

1. Decision tree (DT): The measure used to assign the feature importance is the Gini
importance. As described in [47], the importance of feature Xm in an RF can be
measured by Equation (4)

Imp(Xm) =
1

NT
∑
T

∑
t∈T:v(st)=Xm

p(t)�i(st, t) (4)
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where T is a set of DTs, v(st) is the feature used to split node t, �i(st, t) is the impurity
decrease in node t, and p(t) is:

p(t) = Nt/N (5)

N is the number of training samples, and Nt is the number of samples reaching the
node t. As this study uses a single DT, the size of T is 1.

2. Support vector machine (SVM): Coefficients estimated by SVM can be utilized to
produce features’ ranking [33]. A linear SVM is trained on the input dataset, then
features are ranked as per the absolute values of the hyperplane weights [48].

3. Local interpretable model-agnostic explanations (LIME): This is a technique for ex-
plaining the predictions of any classifier by learning an interpretable model locally
around the prediction. For a classification model f and interpretable model class G,
the explanation is obtained by optimizing Equation (6) [49].

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (6)

Function L measures the approximation of g to f in the locality defined by πx. Func-
tion Ω(g) is a measure of the complexity of g. As per [49], the exponential kernel was
used for πx, the weighted square loss for L, and the linear model for G.

4. Shapley additive explanations (SHAP): This is a unified approach to interpreting
model predictions. It assigns each feature an importance value or SHAP value. These
are the Shapley values of a conditional expectation function of the original model [50].
The implementation applied in this study, kernel SHAP, optimizes (6), but it uses
different forms of πx′ , L, and Ω:

Ω(g) = 0 (7)

πx′(z
′) = M − 1

(M choose |z′|)|z′|(M − |z′|) (8)

L( f , g, π′
x) = ∑

z′∈Z
[ f (hx(z′))− g(z′)]2πx′(z

′) (9)

where g is the explanation model and follows a linear form, f is the classification
model, M is the total number of features, and |z′| is the number of used features.
Parameter z′ is the set of features represented as {0, 1}M. As explained in [51], the
function hx maps the 1s of z′ to the value from the instance to be explained x, and 0s
are replaced by a random feature value of another instance sampled from the data.

5. Embedded random forest (ERF): “feature importance is measured by randomly
permuting the feature in the out-of-bag samples and calculating the percent in-
crease in misclassification rate as compared to the out-of-bag rate with all variables
intact” [48] (p. 319). This technique was originally described in [52].

6. Reciprocal ranking (RR): Known also as inverse rank position [53], this is an ensemble
method that merges ranked lists into a single one r based on Equation (10) [54]:

r( f ) =
1

∑j
1

rj( f )

(10)

where rj( f ) is the ranking position assigned to a feature by the rest of the FSMs.

Instances of the SHAP background dataset (Table 5) were estimated by applying
K-means (k = 50) to a subset of the training dataset. This was done in order to use a
small, but representative set of instances for the estimation of the SHAP values. For feature
evaluation in ERF, first, RF was trained, then permutation importance was estimated in a
separate dataset.

The DT and SVM were chosen due to simplicity and training speed. SHAP, ERF,
and RR were selected because, in [54], these methods returned good performance and
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consistency for a prediction task related to environmental datasets. LIME was considered
because it is model-agnostic and allows model interpretation, similar to SHAP.

2.6. Model Training and Evaluation

Feature importance rankings were obtained for each combination of feature selection
and classification method, and as a result, 30 feature rankings were estimated per dataset.
For convenience, if any negative importance score was assigned to a feature, the absolute
value was calculated. As LIME and SHAP compute feature importance per instance, the
average was computed across all instances. When model training was required during
ranking computation, 50% of the training dataset was passed to the model, and min–max
normalization [46] was used for data scaling.

During the training and evaluation of the classification models, data were min–max-
normalized and a 5 × 2 cross-validation (2-fold, 5 repetitions) was implemented for model
evaluation [55]. On each database (i.e., CHB-MIT and Siena), patients’ epochs were merged
into a single dataset; then, each new dataset was randomized after each iteration of the
validation methodology.

The 5 × 2 CV F-test procedure was originally proposed to compare supervised classi-
fication algorithms, even though it has been previously implemented for comparison of
FSMs (not applied to EEG data) [56,57].

First, the classification models were trained by keeping all the features in the training
set and assessed in order to compute their classification performance. Then, features
having the smallest ranking criterion were removed, and the model was re-trained and
re-evaluated. Feature removal was performed in steps of 50 features at a time. There were
25, 12, 6, and 1 features also considered during the evaluation. Rankings were computed at
the beginning of the process.

It should be noted that the above pipeline was repeated 6 times per classification
method, as there were 6 FSMs. In addition, models were trained per each dataset separately.

2.7. Computing and Software

The experiments were run on 2 different computing devices: a computer with Intel
Core i7, 12 GB of RAM, and Ubuntu 18.04 and a server with Intel Xeon Gold and NVIDIA
Tesla P100. Python 3.7 was used for coding all the experiments. Numpy (1.19.5) [58],
pandas (1.2.2) [59], and scipy (1.6.1) [60] were used for data engineering, scikit-learn
(0.24.1) [61] and tensorflow (2.4.1) [62] for building machine learning models and feature
selection algorithms, and matplotlib (3.3.4) [63] for plotting. Other needed libraries were
lime (0.2.0.1) [49] and shap (0.39.0) [50]. Some processing pipelines were run on a Jupyter
Notebook in order to visualize the charts.

3. Results

3.1. Evaluation of Feature Dimensionality Reduction

This analysis was performed in order to visualize the effect of the reduction of the
feature vector size on the classification models’ performance. By doing this, it was possible
to have a general overview of the robustness of the classification models regarding the
reducing of the feature vectors that may result from feature selection methods.

Figures 2–5 present five plots depicting the average F1-score for the combination
classifier (C), feature selection method (FSM), and a number of features (NF) (C-FSM-NF).
Every subplot corresponds to a different classification model, namely (a) decision tree (DT),
(b) support vector machine (SVM), (c) artificial neural network (ANN), (d) random forest
(RF), and (e) K-nearest neighbor (KNN). Colored lines indicate the average performance
for different NF values, and each color indicates a different FSM.

When the CHB-MIT dataset and the FS1 were used, the best performances were
reported by the ANN model and the worsts by the DT and SVM models. The former
reported the best F1-score with 0.86 corresponding to the combination ANN-ERF-250/200
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(see Figure 2c). Additionally, it was observed that for every classifier, the RR feature
selection method (brown line) decreased from the early stages (see Figure 2).

The second-best-performing classifier was RF (see Figure 2d); most of the F1-score
values were between 0.80 and 0.85. Most of the curves showed similar tendencies, but the
RR curve (brown line) went down faster, again.

KNN (see Figure 2e) returned few F1-scores that overcame the RF classifier, but it was
less stable (i.e., its performance was more dependent on the FSM). A pair of the curves was
over 0.80 (yellow and purple lines corresponding to the SVM and ERF feature selection
methods, respectively). The rest of them presented a diminishing tendency that started
from the early beginning.

The classifiers having the lowest performance were DT and SVM (see Figure 2a,b).
The F1-score curves of the DT classifier had values slightly under 0.75. On the other hand,
some of the SVM’s F1-scores reached 0.75.

Figure 2. F1-score of the model was obtained by using a different number of features, using the
CHB-MIT dataset and FS1. Classification model used: (a) decision tree, (b) support vector machine,
(c) artificial neural network, (d) random forest, and (e) K-nearest neighbor.

When the Siena dataset and the FS1 were used, several classification models returned
lower performance in comparison with the CHB-MIT experiments (see Figure 3a–c,e).

The best classification model was RF (see Figure 3d), and the combination RF-ERF
reached an F1-score of 0.85. SVM and RR decreased faster than the rest of the FSMs.

The ANN model reached a performance of 0.80 for some combinations (ANN-LIME,
ANN-SHAP). The RR curve decreased faster than the rest of the FSMs. SVM and the DT
had a better performance than RR, but not as good as LIME and SHAP (see Figure 3c).
The DT (see Figure 3a) showed a steadier behavior compared to all the classifiers, but its
performance was around 0.70

Figure 3b depicts an interesting pattern. The F1-score was 0.5 at the beginning of the
training, then several curves decreased almost from the beginning of the training (brown,
blue, and purple lines). On the other hand, the LIME curve rose markedly as the number
of features reduced.
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Figure 3. F1-score of the model is obtained by using a different number of features, using the Siena
dataset and FS1. Classification model used: (a) decision tree, (b) support vector machine, (c) artificial
neural network, (d) random forest, and (e) K-nearest neighbor.

When the CHB-MIT dataset and FS2 were used, the performance was better than the
performance obtained during the FS1 experiments. Once again, the RR experiments tended
to show poor performance and a faster decay in comparison to the rest of the FSMs.

The best performances were reported by the KNN model (see Figure 4e) and the worst
by the DT and SVM models (see Figure 4a,b). KNN reported the best F1-score (0.90), and it
corresponded to the experiments that removed a low number of features (e.g., 500 and 450).
The combinations KNN-ERF-400/350/300/250/200 also reported an F1-score of 0.90.

The second-best-performing classifier was the ANN (see Figure 4c); most of the F1-
score values were between 0.85 and 0.90. Most of the curves depicted a similar tendency,
but the RR curve. RF (see Figure 4d) returned some F1-scores around 0.85, and these were
slightly lower than the ANN scores.

When the Siena dataset and FS2 were used, the performances were a bit worse than
the CHB-MIT experiments. The SVM classifier (see Figure 5b) depicted a similar pattern to
the one observed in Figure 3b); when the number of features was reduced, the LIME and
SHAP curves showed an increase in performance.

The best classification models were RF and KNN (see Figure 5d,e). These classifiers
reported F1-scores around 0.85. For the KNN case, the RR curve (brown line) did not decay
as fast as it did for the rest of the classifiers; however, RR was still the FSM with the worst
performance.

Finally, to perform the comparison of the C-FSM combination and the feature selected,
different cutoffs were selected. It is important to mention that based on the average of the
F1-scores across every experiment, the decrease in classification performance between two
consecutive cutoffs points was approximately equal, so based on the visual inspection of
the Figures 2–5, four cutoffs were defined: 450, 150, 100, and 50 features. Notice that we
discarded analyzing cutoff points under 50 features, because several models showed an
F1-score lower than 0.6.
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Figure 4. F1-score of the model is obtained by using a different number of features, using the
CHB-MIT dataset and FS2. Classification model used: (a) decision tree, (b) support vector machine,
(c) artificial neural network, (d) random forest, and (e) K-nearest neighbor.

Figure 5. F1-score of the model is obtained by using a different number of features, using the Siena
dataset and FS2. Classification model used: (a) decision tree, (b) support vector machine, (c) artificial
neural network, (d) random forest, and (e) K-nearest neighbor.

3.2. Comparison of C-FSM Combinations

This analysis intended to observe, in detail, the performance of several C-FSM combi-
nations. To do so, several cutoff points were chosen, then, to every cutoff point, the F1-score,
sensitivity, and accuracy of all the combinations for a model classifier and feature selection
method were computed. For the best-performing combinations of C-FSMs, the 5 × 2 CV
F-test was applied to find statistically significant differences between the error rates.
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Tables 6–9 depict the different C-FSM tuples and their respective F1-score, sensitivity,
and accuracy for different sizes of the feature vector. In particular, these tables show the
performances when the 450, 150, 100, and 50 best features were kept.

When 450 features were used, it is depicted in Table 6 that there was not an FSM
that outperformed the rest. The best performances were obtained by the KNN and ANN
models, the former using the FS2 and the combination KNN-SVM/SHAP/ERF (0.90)
and the latter using FS1; the best combination was ANN-SVM/SHAP/ERF (0.84). On
the other hand, the F1-scores of the Siena dataset experiments were lower, on average.
The combinations having the best performance were KNN-SVM/LIME (0.83) and KNN-
DT/SVM/LIME/SHAP/ERF/RR (0.86), for FS1 and FS2, respectively.

Observe that the experiments using FS2 tended to report better performances than
those in the FS1 experiments, no matter the dataset used. Furthermore, it should be noted
that there were large differences between the accuracy and the F1-score values, due to the
large class imbalance. The performances of the DT and SVM classifiers were noticeably
lower than ANN/RF/KNN, the SVM being the classifier with the worst performance
values.

Table 6. Performance comparison using 450 features. The largest F1-scores are displayed in red bold

and blue bold for FS1 and FS2, respectively. F1s = F1-score, Se = sensitivity, Acc = accuracy.

DT SVM ANN RF KNN

CHB-MIT dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.72 0.73 0.94 0.69 0.53 0.95 0.82 0.76 0.96 0.81 0.69 0.96 0.78 0.65 0.96
FS2 0.74 0.74 0.94 0.75 0.61 0.95 0.86 0.81 0.97 0.84 0.73 0.97 0.89 0.83 0.98

SVM FS1 0.72 0.73 0.94 0.70 0.55 0.95 0.84 0.78 0.97 0.81 0.69 0.96 0.82 0.72 0.96
FS2 0.73 0.74 0.94 0.76 0.63 0.96 0.86 0.80 0.97 0.84 0.73 0.97 0.90 0.84 0.98

LIME FS1 0.72 0.72 0.94 0.72 0.58 0.95 0.83 0.77 0.96 0.80 0.68 0.96 0.78 0.65 0.96
FS2 0.73 0.74 0.94 0.76 0.63 0.96 0.87 0.81 0.97 0.84 0.73 0.97 0.89 0.83 0.98

SHAP FS1 0.72 0.73 0.94 0.70 0.56 0.95 0.84 0.77 0.97 0.81 0.69 0.96 0.78 0.65 0.96
FS2 0.73 0.74 0.94 0.76 0.62 0.96 0.87 0.82 0.97 0.84 0.73 0.97 0.90 0.83 0.98

ERF FS1 0.72 0.73 0.94 0.70 0.55 0.95 0.84 0.78 0.97 0.82 0.70 0.96 0.80 0.68 0.96
FS2 0.74 0.74 0.94 0.75 0.61 0.95 0.86 0.81 0.97 0.84 0.73 0.97 0.90 0.84 0.98

RR FS1 0.67 0.68 0.93 0.62 0.46 0.94 0.73 0.63 0.95 0.73 0.59 0.95 0.73 0.59 0.95
FS2 0.71 0.72 0.94 0.71 0.56 0.95 0.84 0.78 0.97 0.81 0.69 0.96 0.89 0.82 0.97

Siena Scalp EEG dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.69 0.69 0.91 0.48 0.33 0.90 0.75 0.69 0.93 0.80 0.68 0.95 0.82 0.77 0.95
FS2 0.71 0.71 0.91 0.53 0.37 0.90 0.78 0.71 0.94 0.85 0.75 0.96 0.86 0.84 0.96

SVM FS1 0.69 0.69 0.91 0.52 0.36 0.90 0.75 0.68 0.93 0.80 0.68 0.95 0.83 0.79 0.95
FS2 0.71 0.72 0.91 0.53 0.37 0.90 0.78 0.74 0.94 0.85 0.75 0.96 0.86 0.84 0.96

LIME FS1 0.69 0.70 0.91 0.54 0.38 0.91 0.78 0.72 0.94 0.81 0.69 0.95 0.83 0.79 0.95
FS2 0.71 0.71 0.91 0.53 0.37 0.90 0.77 0.73 0.93 0.85 0.76 0.96 0.86 0.84 0.96

SHAP FS1 0.69 0.70 0.91 0.51 0.35 0.90 0.77 0.71 0.94 0.81 0.70 0.95 0.82 0.79 0.95
FS2 0.71 0.71 0.91 0.53 0.37 0.90 0.78 0.71 0.94 0.85 0.75 0.96 0.86 0.84 0.96

ERF FS1 0.70 0.70 0.91 0.47 0.32 0.90 0.75 0.68 0.93 0.82 0.71 0.95 0.67 0.68 0.95
FS2 0.71 0.72 0.91 0.53 0.36 0.90 0.79 0.75 0.94 0.85 0.76 0.96 0.86 0.84 0.96

RR FS1 0.67 0.68 0.90 0.28 0.17 0.88 0.68 0.60 0.92 0.76 0.62 0.94 0.78 0.72 0.94
FS2 0.70 0.71 0.91 0.51 0.35 0.90 0.78 0.73 0.94 0.85 0.75 0.96 0.86 0.83 0.96

Table 7 shows the classification metrics for the 150-feature experiments. The best
performances, using the CHB-MIT dataset and FS1, were returned by the combination
ANN-LIME/SHAP/ERF (0.85); for the FS2 case, this was KNN-SVM/ERF (0.89). On the
other hand, the Siena experiments showed that the best-performing combinations included
the ERF as an FSM; RF-ERF returned the largest F1-scores, and these were 0.85 and 0.86 for
FS1 and FS2, respectively.
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Table 7. Performance comparison using 150 features. The largest F1-scores are displayed in red bold

and blue bold for FS1 and FS2, respectively. F1s = F1-score, Se = sensitivity, Acc = accuracy.

DT SVM ANN RF KNN

CHB-MIT dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.73 0.74 0.94 0.68 0.53 0.94 0.83 0.77 0.96 0.82 0.71 0.96 0.70 0.55 0.95
FS2 0.74 0.74 0.94 0.74 0.60 0.95 0.85 0.79 0.97 0.84 0.74 0.97 0.87 0.79 0.97

SVM FS1 0.73 0.73 0.94 0.66 0.50 0.94 0.84 0.77 0.97 0.82 0.71 0.96 0.82 0.73 0.96
FS2 0.74 0.75 0.94 0.72 0.58 0.95 0.86 0.79 0.97 0.84 0.74 0.97 0.89 0.82 0.97

LIME FS1 0.72 0.73 0.94 0.75 0.62 0.95 0.85 0.80 0.97 0.81 0.69 0.96 0.69 0.54 0.95
FS2 0.73 0.74 0.94 0.80 0.68 0.96 0.87 0.82 0.97 0.84 0.74 0.97 0.86 0.77 0.97

SHAP FS1 0.73 0.74 0.94 0.73 0.59 0.95 0.85 0.80 0.97 0.80 0.68 0.96 0.71 0.56 0.95
FS2 0.74 0.75 0.94 0.76 0.63 0.96 0.87 0.82 0.97 0.83 0.73 0.97 0.86 0.77 0.97

ERF FS1 0.73 0.74 0.94 0.74 0.60 0.95 0.85 0.79 0.97 0.83 0.72 0.97 0.80 0.69 0.96
FS2 0.74 0.75 0.94 0.72 0.58 0.95 0.86 0.80 0.97 0.84 0.74 0.97 0.89 0.83 0.98

RR FS1 0.63 0.63 0.92 0.51 0.35 0.93 0.63 0.51 0.93 0.66 0.50 0.94 0.57 0.41 0.93
FS2 0.67 0.68 0.93 0.59 0.42 0.93 0.77 0.68 0.95 0.76 0.62 0.96 0.84 0.74 0.97

Siena Scalp EEG dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.70 0.70 0.91 0.30 0.18 0.88 0.73 0.66 0.93 0.82 0.71 0.95 0.72 0.64 0.93
FS2 0.72 0.73 0.91 0.41 0.26 0.89 0.74 0.66 0.93 0.85 0.76 0.96 0.85 0.82 0.95

SVM FS1 0.66 0.67 0.90 0.42 0.27 0.89 0.71 0.64 0.93 0.77 0.63 0.94 0.80 0.75 0.94
FS2 0.70 0.71 0.91 0.61 0.45 0.91 0.78 0.72 0.94 0.83 0.73 0.95 0.85 0.81 0.95

LIME FS1 0.69 0.70 0.91 0.62 0.47 0.92 0.80 0.76 0.94 0.82 0.71 0.95 0.80 0.74 0.94
FS2 0.71 0.71 0.91 0.69 0.55 0.92 0.83 0.80 0.95 0.84 0.74 0.96 0.85 0.81 0.95

SHAP FS1 0.71 0.71 0.91 0.56 0.40 0.91 0.79 0.75 0.94 0.83 0.73 0.95 0.80 0.75 0.94
FS2 0.71 0.72 0.91 0.67 0.52 0.92 0.82 0.78 0.95 0.85 0.77 0.96 0.85 0.81 0.95

ERF FS1 0.71 0.72 0.92 0.30 0.18 0.88 0.75 0.71 0.93 0.85 0.76 0.96 0.64 0.65 0.93
FS2 0.72 0.73 0.92 0.40 0.25 0.89 0.76 0.71 0.93 0.86 0.77 0.96 0.83 0.78 0.95

RR FS1 0.64 0.65 0.90 0.16 0.09 0.87 0.57 0.47 0.90 0.66 0.50 0.93 0.66 0.56 0.92
FS2 0.67 0.68 0.90 0.29 0.17 0.87 0.62 0.52 0.91 0.78 0.65 0.94 0.81 0.76 0.94

In the 100-feature case (see Table 8), the behavior was similar to the 450-feature case,
in the sense that the best-suited FSM depended on the feature set and dataset. For the
CHB-MIT dataset, the combinations with the best performances were KNN-SVM (0.85) and
KNN-DT/SVM/ERF (0.87) for FS1 and FS2, respectively. For the Siena dataset, the best
performance was reported by RF-ERF (0.85 and 0.86).

Table 8. Performance comparison using 100 features. The largest F1-scores are displayed in red bold

and blue bold for FS1 and FS2, respectively. F1s = F1-score, Se = sensitivity, Acc = accuracy.

DT SVM ANN RF KNN

CHB-MIT dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.73 0.74 0.94 0.68 0.53 0.95 0.81 0.74 0.96 0.83 0.72 0.97 0.73 0.60 0.95
FS2 0.74 0.75 0.94 0.72 0.58 0.95 0.84 0.78 0.97 0.84 0.74 0.97 0.87 0.79 0.97

SVM FS1 0.73 0.73 0.94 0.67 0.52 0.94 0.83 0.76 0.96 0.83 0.72 0.97 0.85 0.76 0.97
FS2 0.74 0.75 0.94 0.68 0.52 0.94 0.84 0.77 0.97 0.84 0.74 0.97 0.87 0.80 0.97

LIME FS1 0.72 0.73 0.94 0.74 0.61 0.95 0.84 0.77 0.96 0.81 0.69 0.96 0.65 0.49 0.94
FS2 0.73 0.74 0.94 0.79 0.68 0.96 0.86 0.80 0.97 0.84 0.74 0.97 0.83 0.73 0.96

SHAP FS1 0.74 0.74 0.94 0.73 0.59 0.95 0.84 0.78 0.97 0.80 0.68 0.96 0.68 0.52 0.94
FS2 0.74 0.75 0.94 0.75 0.63 0.95 0.85 0.80 0.97 0.83 0.72 0.97 0.83 0.73 0.97

ERF FS1 0.74 0.74 0.94 0.70 0.55 0.95 0.83 0.75 0.96 0.83 0.73 0.97 0.82 0.72 0.96
FS2 0.74 0.75 0.94 0.71 0.56 0.95 0.85 0.79 0.97 0.85 0.74 0.97 0.87 0.80 0.97

RR FS1 0.61 0.62 0.91 0.44 0.29 0.92 0.59 0.46 0.93 0.65 0.49 0.94 0.46 0.30 0.92
FS2 0.66 0.67 0.93 0.54 0.37 0.93 0.74 0.65 0.95 0.73 0.58 0.95 0.80 0.68 0.96
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Table 8. Cont.

DT SVM ANN RF KNN

Siena Scalp EEG dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.71 0.72 0.91 0.24 0.14 0.87 0.70 0.63 0.92 0.83 0.73 0.96 0.70 0.61 0.92
FS2 0.72 0.72 0.91 0.36 0.22 0.88 0.71 0.63 0.92 0.85 0.76 0.96 0.83 0.80 0.95

SVM FS1 0.66 0.67 0.90 0.35 0.22 0.89 0.70 0.63 0.92 0.78 0.66 0.95 0.75 0.69 0.93
FS2 0.69 0.70 0.91 0.61 0.46 0.91 0.78 0.73 0.94 0.82 0.72 0.95 0.84 0.81 0.95

LIME FS1 0.69 0.70 0.91 0.64 0.50 0.92 0.77 0.72 0.94 0.81 0.71 0.95 0.78 0.71 0.94
FS2 0.71 0.72 0.91 0.71 0.58 0.93 0.82 0.78 0.95 0.84 0.75 0.96 0.84 0.80 0.95

SHAP FS1 0.70 0.71 0.91 0.55 0.40 0.91 0.78 0.74 0.94 0.84 0.74 0.96 0.78 0.73 0.94
FS2 0.71 0.72 0.91 0.70 0.57 0.93 0.81 0.77 0.94 0.85 0.77 0.96 0.83 0.80 0.95

ERF FS1 0.72 0.72 0.92 0.32 0.20 0.88 0.74 0.67 0.93 0.85 0.76 0.96 0.62 0.63 0.92
FS2 0.73 0.74 0.92 0.28 0.16 0.87 0.72 0.65 0.92 0.86 0.77 0.96 0.80 0.73 0.94

RR FS1 0.62 0.63 0.89 0.14 0.07 0.87 0.51 0.39 0.89 0.64 0.47 0.92 0.61 0.49 0.91
FS2 0.65 0.66 0.89 0.25 0.14 0.87 0.58 0.47 0.90 0.77 0.64 0.94 0.76 0.69 0.93

Table 9 shows that classifiers accounting for the best performances, RF and KNN, 0.84
and 0.85 being the largest values for both of the datasets. It is interesting to note that the
best performances were similar for both datasets and the feature sets.

Table 9. Performance comparison using 50 features. The largest F1-scores are displayed in red bold

and blue bold for FS1 and FS2, respectively. F1s = F1-score, Se = sensitivity, Acc = accuracy.

DT SVM ANN RF KNN

CHB-MIT dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.73 0.74 0.94 0.68 0.53 0.94 0.79 0.70 0.96 0.83 0.72 0.97 0.70 0.56 0.95
FS2 0.74 0.74 0.94 0.70 0.55 0.95 0.82 0.75 0.96 0.84 0.74 0.97 0.82 0.72 0.96

SVM FS1 0.71 0.72 0.94 0.65 0.49 0.94 0.79 0.71 0.96 0.81 0.70 0.96 0.85 0.77 0.97
FS2 0.73 0.74 0.94 0.63 0.47 0.94 0.81 0.73 0.96 0.83 0.73 0.97 0.84 0.75 0.97

LIME FS1 0.72 0.73 0.94 0.73 0.59 0.95 0.81 0.73 0.96 0.78 0.65 0.96 0.60 0.44 0.94
FS2 0.73 0.74 0.94 0.76 0.63 0.95 0.81 0.74 0.96 0.83 0.72 0.97 0.76 0.64 0.95

SHAP FS1 0.74 0.74 0.94 0.73 0.59 0.95 0.80 0.73 0.96 0.78 0.65 0.96 0.62 0.46 0.94
FS2 0.74 0.75 0.94 0.71 0.57 0.95 0.79 0.71 0.96 0.82 0.72 0.96 0.78 0.66 0.96

ERF FS1 0.73 0.74 0.94 0.60 0.44 0.94 0.79 0.71 0.96 0.83 0.72 0.96 0.82 0.73 0.96
FS2 0.74 0.75 0.94 0.65 0.49 0.94 0.82 0.74 0.96 0.84 0.74 0.97 0.84 0.75 0.97

RR FS1 0.55 0.57 0.90 0.37 0.23 0.91 0.53 0.39 0.93 0.53 0.37 0.93 0.37 0.23 0.91
FS2 0.64 0.65 0.92 0.48 0.32 0.92 0.64 0.52 0.94 0.69 0.54 0.95 0.70 0.55 0.95

Siena Scalp EEG dataset

FSM F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc F1s Se Acc

DT FS1 0.71 0.71 0.91 0.20 0.11 0.87 0.65 0.56 0.91 0.83 0.73 0.95 0.57 0.47 0.90
FS2 0.72 0.73 0.92 0.21 0.12 0.87 0.64 0.53 0.91 0.84 0.75 0.96 0.79 0.73 0.94

SVM FS1 0.63 0.64 0.89 0.28 0.16 0.88 0.64 0.54 0.91 0.75 0.61 0.94 0.66 0.56 0.92
FS2 0.68 0.68 0.90 0.52 0.36 0.90 0.72 0.66 0.92 0.80 0.69 0.95 0.80 0.74 0.94

LIME FS1 0.69 0.70 0.91 0.64 0.50 0.92 0.71 0.64 0.92 0.81 0.71 0.95 0.74 0.66 0.93
FS2 0.70 0.71 0.91 0.67 0.53 0.92 0.75 0.69 0.93 0.83 0.73 0.95 0.81 0.76 0.94

SHAP FS1 0.71 0.73 0.92 0.56 0.40 0.91 0.73 0.68 0.93 0.83 0.73 0.95 0.73 0.64 0.93
FS2 0.71 0.72 0.91 0.68 0.55 0.92 0.77 0.71 0.93 0.84 0.76 0.96 0.82 0.77 0.95

ERF FS1 0.72 0.72 0.92 0.21 0.11 0.87 0.64 0.55 0.91 0.84 0.75 0.96 0.63 0.64 0.89
FS2 0.73 0.73 0.92 0.19 0.10 0.87 0.66 0.55 0.91 0.85 0.76 0.96 0.71 0.64 0.92

RR FS1 0.63 0.64 0.89 0.14 0.07 0.87 0.40 0.27 0.88 0.59 0.43 0.91 0.49 0.36 0.89
FS2 0.63 0.64 0.89 0.19 0.10 0.87 0.48 0.35 0.89 0.73 0.59 0.93 0.71 0.62 0.92

It is worth noticing that the RF classifier presented the most steady performance (≈ 0.8)
no matter the FSM, dataset, and feature reduction (see Tables 6–9).

In order to identify the significant differences between FSMs, Tables 10 and 11 show
the results of the F-test; given a dataset, a number of features, and a feature set (FS1 or FS2),
the F-test was applied to the results of the 5 × 2 CV experiments. During the testing, the
best-performing C-FSM (as per the F1-score) was compared to the rest of the FSMs. It must
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be considered that the 5 × 2 CV F-test evaluates the error rates, not the F1-scores, so the
accuracy is computed and depicted in Tables 6–9.

In the case of several combinations having the same F1-score, the sensitivity and
accuracy were considered to choose the best-performing combinations.

Table 10. Comparison of the best C-FSM when FS1 is used. It is compared against the rest of the
FSMs. • denotes p < 0.05.

Best FSM Dataset Classifier DT SVM LIME SHAP ERF RR

450 features

SVM CHB-MIT ANN •
ERF CHB-MIT ANN •
SVM Siena KNN •
LIME Siena KNN • •

150 features

LIME CHB-MIT ANN • •
SHAP CHB-MIT ANN • •
ERF Siena RF • • • • •

100 features

SVM CHB-MIT KNN • • •
ERF Siena RF • • • • •

50 features

SVM CHB-MIT KNN • • • • •
ERF Siena RF • • •

Table 11. Comparison of the best C-FSM when FS2 is used. It is compared against the rest of the
FSMs. • denotes p < 0.05.

Best FSM Dataset Classifier DT SVM LIME SHAP ERF RR

450 features

SVM CHB-MIT KNN • • •
ERF CHB-MIT KNN • • • •
DT Siena KNN •

SVM Siena KNN • •
LIME Siena KNN •
SHAP Siena KNN
ERF Siena KNN •

150 features

ERF CHB-MIT KNN • • • •
ERF Siena RF • •

100 features

SVM CHB-MIT KNN • • •
ERF CHB-MIT KNN • • •
ERF Siena RF • • •

50 features

SVM CHB-MIT KNN • • • •
ERF CHB-MIT KNN • • • •
ERF Siena RF • • •

The 450 feature section of Tables 10 and 11 shows that most of the test results were
not statistically significant (p > 0.05). In Table 10, there were three cases where the FSM
error rates resulted in being statistically different from the rest of the FSMs, and these
were RF-ERF-150 (Siena dataset), RF-ERF-100 (Siena dataset), and KNN-SVM-50 (CHB-MIT
dataset). It must be noted that the differences in accuracy may be small (see Table 6–9),
even if there are statistical differences.
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In Table 11, there are no cases where an FSM was statistically different from the rest of
the FSMs. It was observed that the RR experiments tended to show a statistical significance
that did not depend on the number of features or the dataset.

Finally, Tables 10 and 11 show that the most common combinations were KNN-SVM
and RF-ERF.

3.3. Comparison of Selected Features

To determine if there were coincidences in the features selected by the FSMs and if
the FSMs assigned more importance to the same features, the Jaccard index [64] was used
to calculate the similarity by pairs of FSMs. For this analysis, the FS2 experiments were
chosen because those experiments produced higher performances in comparison with FS1.

When 450 features were used for training the KNN classifier (see Figure 6a,e), the
feature sets practically overlapped; indices had values over 0.85 for the CHB-MIT dataset
and the Siena dataset. This behavior was expected, as it is highly probable to select similar
features when the number of features in a dataset is large, so the 450 case will not be further
discussed.

Figure 6. The similarity of the sets of features selected per each feature selection method when KNN
was used as a classifier. CHB-MIT dataset: (a) best 450 features, (b) best 150, (c) best 100, and (d) best
50. Siena dataset: (e) best 450 features, (f) best 150, (g) best 100, and (h) best 50.

When 150 features were used during training (see Figure 6b,f), the Jaccard index for
SHAP-LIME (0.43) was the largest of all the combinations when the Siena dataset was used;
it was equivalent to 91 out of 150 features. For the CHB-MIT dataset, RR-ERF (0.19) and
RR-DT (0.19) obtained the largest values. Figure 6c,d,g,h show a low coincidence for most
of the FSMs when 100 or 50 features were used, and this applies to both datasets. The only
notorious index was 0.41 belonging to SHAP-LIME (see Figure 6g).

In the case of the SVM classifier, by using 150 features (see Figure 7b,f), the largest
values were obtained by SHAP-LIME (0.43 and 0.72); the FSMs coincided in selecting
91 features for the CHB-MIT dataset and 126 for the Siena dataset. The Jaccard indices
computed for 100 features (see Figure 7c,g) showed a good similarity for SHAP-LIME
(0.41), and the selected feature sets coincided in 59 features for both of the datasets. When
50 features were used for training (see Figure 7d,h), several combinations returned a
similarity value of 0.2.

197



Sensors 2022, 22, 3066

Figure 7. The similarity of the sets of features selected per each feature selection method when SVM
was used as a classifier. CHB-MIT dataset: (a) best 450 features, (b) best 150, (c) best 100, and (d) best
50. Siena dataset: (e) best 450 features, (f) best 150, (g) best 100, and (h) best 50.

The ANN classifier followed a similar pattern as SVM; SHAP-LIME obtained larger
indices than most of the combinations, and these were 0.72 and 0.52 for 150 features, 0.71
and 0.50 for 100, and 1.0 and 0.33 for 50 (see Figure 8b–d,f–h), respectively. It should be
noted that a Jaccard index of 1 means that both sets totally overlapped.

Figure 8. The similarity of the sets of features selected per each feature selection method when ANN
was used as a classifier. CHB-MIT dataset: (a) best 450 features, (b) best 150, (c) best 100, and (d) best
50. Siena dataset: (e) best 450 features, (f) best 150, (g) best 100, and (h) best 50.
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Interestingly, when the DT classifier was used, the SHAP-LIME similarity was equal
to or lower than other combinations. When using 150 features, the largest indices were
returned by the combination RR-SHAP (see Figure 9b,f). Figure 9c,g,h show that the largest
similarity values were returned by combinations including LIME or SHAP.

Figure 9. The similarity of the sets of features selected per each feature selection method when DT
was used as a classifier. CHB-MIT dataset: (a) best 450 features, (b) best 150, (c) best 100, and (d) best
50. Siena dataset: (e) best 450 features, (f) best 150, (g) best 100, and (h) best 50.

Comparable to the DT, the RF case showed the largest values when a combination
included LIME or SHAP. A remarkable fact is that there were two combinations having an
index value of 0.5 (see Figure 10c,d).

Figure 10. The similarity of the sets of features selected per each feature selection method when RF
was used as a classifier. CHB-MIT dataset: (a) best 450 features, (b) best 150, (c) best 100, and (d) best
50. Siena dataset: (e) best 450 features, (f) best 150, (g) best 100, and (h) best 50.

199



Sensors 2022, 22, 3066

In order to compare the selected features for the best C-FSM combinations in Table 9,
Figures 11 and 12 show the top-10 features for KNN-SVM and RF-ERF, respectively. The
former figure corresponds to the CHB-MIT dataset, while the latter to the Siena dataset.
Each feature is defined as follows: EEG band/bipolar channel/metric. For example, in
Figure 11, the feature with the greatest importance value is “alpha_FP1-F3_skew”, which
indicates that the most important feature was the skewness measured in the bipolar channel
FP1-F3 on the alpha band. It is important to note that the selected features may vary
due to several factors, including seizure type, epileptogenic region, and EEG montage,
among others.

Figure 11. Features having the largest assigned importance. The results correspond to the combina-
tion KNN-SVM and the CHB-MIT dataset. Importance values are not normalized.

Figure 12. Features having the largest assigned importance. The results correspond to the combina-
tion RF-ERF and the Siena dataset. Importance values are not normalized.

4. Discussion

In the evaluation of feature dimensionality reduction analysis, it was observed that
the best machine learning classifiers were ANN, RF, and KNN, taking into account neither
the database nor the FS. This is evident by looking at the performance tendency of every
combination of C-FSMs (colored lines). It is important to note that there was a recurrent
behavior in all the combinations, that is almost all of them started showing a performance
decrease when the feature vectors were around a length of 50. Lower than that, the
scores began to be around 0.6 or less. Therefore, a feature vector of a length of 50 is the
minimum suggested for having good classification performance using some of the C-FSM
combinations, for FS in epilepsy databases. Moreover, if FS2 is used, the scores achieved by
most of the C-FSM combinations were improved and steadier. In this sense, the DT and RF
classifiers were less affected by the dimensionality reduction no matter the database, the
FS, nor the FSM. This could be explained by the nature of those algorithms, that is both
algorithms use a ranking metric to determine the importance of each feature vector in a
particular classification task.

Regarding to the comparison of C-FSM combinations, it can be noticed that the models
that were trained with CHB-MIT data had better F1-scores than the ones trained with
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Siena data. We considered that the performance difference was due to the CHB-MIT
database being larger than the Siena Scalp EEG database. Actually, the number of CHB-MIT
epochs used during experimentation was more than twice the number of Siena epochs.
Another aspect to consider is the number of channels, 21 and 18 for the CHB-MIT and Siena
datasets, respectively.

In addition, we can observe in Tables 6–9 that the greater the number of features,
the ANN and KNN showed better F1-scores; on the other hand, the lower the number of
features, KNN kept showing the best F1-scores, and RF emerged with better F1-scores than
the ANN. Note that, even though KNN presented the highest F1-scores, the difference
between KNN and RF reduced as the number of features decreased.

Furthermore, in Tables 10 and 11, it can be seen that the smaller the number of features,
the greater the number of significant differences was between the best C-FSM and the other
FSMs. In this sense, these significant differences in the classifiers’ performance indicate a
relationship between the classifier and the feature selection method; in this case, for a lower
number of features, KNN was better when using SVM and ERF, while RF was better when
using ERF.

The main purpose of this study was not to train a classifier for seizure classification
from EEG data; however, it can be considered that the performances obtained, in particular
for KNN and RF, were similar to other studies when experiments were conducted under
similar conditions, specifically the same classifier and EEG database.

In this sense, comparing our work with the state-of-the-art, in [12], the authors used
the CHB-MIT database, seven feature selection methods, nine classifiers, and selecting
the top 20 or 25 features, obtaining the best mean classification error of 0.12 by using
the KNN classifier. Nonetheless, the authors tested their methodology neither using a
wider spectrum of feature vector sizes, nor using different databases. In this work, we
found that having the top 50 features, on the same database, the combinations KNN-
SVM-50 (FS1), KNN-SVM-50 (FS2), and KNN-ERF-50 (FS2) (see Table 9) returned a mean
classification error of 0.03. Moreover, the results in [12] correspond to a balanced dataset,
while in this work, the proportion between seizure and no-seizure was 1:9, respectively,
our methodology being more appropriate for seizure and no-seizure detection considering
that epilepsy datasets are naturally unbalanced.

Additionally, Kathi and Ingle [25] presented an accuracy of 0.97 and an F1-score of 0.97
by using KNN and 11 feature metrics, testing their methodology on the Bonn University
database [65] and using an equal proportion of healthy and seizure instances for the training
and test sets. Furthermore, they reported a reduction in the feature set used to compute
the feature vectors instead of directly reducing the size of the feature vectors. Hence, the
authors did not evaluate either different sizes of the feature vectors or the different feature
selection methods. On the contrary, in the present work, several experiments reported an
accuracy of 0.97, but had a lower F1-score (0.84 and 0.85); however, these lower scores were
expected considering that, for unbalanced datasets, the F1-score is more reliable.

On the other hand, RR presented the worst results no matter the classifier used,
contrasting with [54], who reported RR as one of the FSMs that performed better and also
provided good stability across datasets. However, the nature of the datasets used in [54]
was different from EEG, which indicates that RR is not appropriate to be used for seizure
and no-seizure detection.

Finally, concerning the comparison of selected features, by using the Jaccard index, it
was observed that most of the time, SHAP-LIME returned the largest levels of similarity,
meaning that both FMSs usually selected the same features, even though they did not
present the best performance on the classification; on the contrary, SVM and ERF, which
were the best FSMs for KNN and RF, respectively, did not present a higher Jaccard index.

Large values in SHAP-LIME were partially expected because, as explained in [49,50],
SHAP and LIME are designed to be model-agnostic and to explain the classification model.
In addition, the SHAP implementation applied in this study (kernel SHAP) followed a
similar approach to LIME, but different functions were applied for the estimation of the
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locality and the similarity between the classification f and interpretable g model. In the
case of SVM and ERF, the low levels of the similarity of features selected were partially
explained because the nature and training procedure of SVM are quite different from
tree-based models.

Therefore, this experiment showed that two different feature spaces might result in a
good classification performance, such as the features selected for KNN-SVM and RF-ERF
(Figures 11 and 12). On the contrary, the RR method presented good similarity values
compared to other FSMs; nonetheless, it presented the worst classification performances.

5. Conclusions and Future Work

In the present study, six FSMs were compared to define, first, the minimum number of
features that can be chosen for each FSM without sacrificing the classifiers’ performances,
second, the performance of several C-FSM combinations to discover if a relationship exists
between the FSMs with a particular classification algorithm, and third, if there is a feature
or feature set that remains across different C-FSM combinations.

We can conclude that when the number of selected features was drastically reduced
(100 and 50 features), the differences between classifiers’ performance increased, but none
of the FSMs showed a predominance over the rest. Furthermore, it was observed that it
was possible to perform a large reduction of the number of features while having a low
impact on the model performance until having a 50-feature vector length.

The results indicated that the classifiers’ performance might be affected by diverse
factors such as the EEG database, the features, and the number of features. However,
the combinations KNN-SVM and RF-ERF are advised. Furthermore, the use of RR is not
appropriate for seizure EEG data, as it yielded lower performances than the rest of the
FSMs, and it was more time-consuming.

Regarding the proposed feature sets, FS2 is suggested to be used on seizure and
no-seizure classification problems, given that the performance of several C-FSMs was
improved while using it.

In future work, some opportunity areas could be explored: First, a more extended
analysis is required to evaluate the FSMs in combination with deep learning models,
including a more extensive parameter tuning process and the use of more complex features.
Furthermore, considering that our results showed that RF-ERF obtained one of the best
performances, it would be interesting to perform an evaluation of tree-based models for
feature selection and classification of seizure and no-seizure EEG data.

Second, FSM stability was not evaluated in this study; the evaluation of stability with
instance perturbation, as proposed by [48], would help to evaluate the robustness of an
FSM against small variations in the EEG dataset, because variations can be caused by
inter-subject variability or noise.

Finally, assessing a subject cross-validation methodology would be interesting for
future work to test inter-subject performances.
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Abstract: Interchannel EEG synchronization, as well as its violation, is an important diagnostic sign of
a number of diseases. In particular, during an epileptic seizure, such synchronization occurs starting
from some pairs of channels up to many pairs in a generalized seizure. Additionally, for example,
after traumatic brain injury, the destruction of interneuronal connections occurs, which leads to a
violation of interchannel synchronization when performing motor or cognitive tests. Within the
framework of a unified approach to the analysis of interchannel EEG synchronization using the ridges
of wavelet spectra, two problems were solved. First, the segmentation of the initial data of long-term
monitoring of scalp EEG with various artifacts into fragments suspicious of epileptic seizures in order
to reduce the total duration of the fragments analyzed by the doctor. Second, assessments of recovery
after rehabilitation of cognitive functions in patients with moderate traumatic brain injury. In the first
task, the initial EEG was segmented into fragments in which at least two channels were synchronized,
and by the adaptive threshold method into fragments with a high value of the EEG power spectral
density. Overlapping in time synchronized fragments with fragments of high spectral power density
was determined. As a result, the total duration of the fragments for analysis by the doctor was
reduced by more than 60 times. In the second task, the network of phase-related EEG channels
was determined during the cognitive test before and after rehabilitation. Calculation-logical and
spatial-pattern cognitive tests were used. The positive dynamics of rehabilitation was determined
during the initialization of interhemispheric connections and connections in the frontal cortex of
the brain.

Keywords: electroencephalogram; wavelet spectrum; ridge; segmentation; phase connectivity;
epilepsy; traumatic brain injury

1. Introduction

Wavelet transform (WT) is widely used in the processing and analysis of non-stationary
signals [1–5]. Since the 1990s, in various fields of biology and medicine [6], in neurophysi-
ology [7], discrete and continuous wavelet transforms have been used to extract diagnostic
information from signals and images of various types.
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Considering EEG as a simultaneously amplitude and phase modulated analytical
signal, and if the scanning wavelet width is narrower than the changes in signal phase,
then it is possible to use the property of the wavelet spectrum ridge, namely those that the
amplitude and phase of the signal are equal to the amplitude and phase of the wavelet
spectrum ridge [8–11]. Thus, defining the ridge as the absolute maximum of the wavelet
spectrum at each moment (reference point) of time, we obtain instantaneous values of the
amplitude, frequency and phase of the signal. This very useful property of WT ridges
makes it easy to find interchannel synchronized EEG fragments during epileptic seizures
(ESs) in long-term clinical monitoring data, restoring the cognitive functions of patients
after moderate traumatic brain injury using interchannel phase coupling link analysis, and
other tasks of EEG diagnostics.

WT is used for EEG decomposition into time-frequency fragments for the subsequent
detection of epileptic seizures (ESs). Currently, there are many publications on the use of
various classifiers for the detection and prediction of an epileptic seizure in EEG signals
using various classifiers [12–19]. Initial data on epilepsy monitoring should be preliminarily
processed, including removal of artifacts and filtering noise to get a clean epilepsy EEG
signal for the next step, feature extraction and classification [18,19].

In decision support systems, methods based on the analysis of EEG patterns are most
often used and one of them is the “Persyst” system by Persyst Development Corpo ation
(https://www.persyst.com, accessed on 13 August 2021). To detect ES in the time domain,
discrete-time sequences are analyzed into which the original EEG signal is divided. One of
such methods is based on tracking successive extrema in the selected time interval of the
signal and evaluating the histogram of the amplitude difference and time separation be-
tween the maximum and minimum values of the histogram [20]. The different approaches
for detecting ESs which were proposed in the time domain are the calculation of signal
energy [21]; the frequency characteristics of the signal were studied: the index of the phase
slope of multichannel EEG [22]; frequency-moment signatures [23]; entropy features [24];
Bayesian linear discriminant analyses of lacunarity and fluctuation index [25], four-level
Daubechies wavelet transform [26] and five-level wavelet decomposition method [27].
The most promising method of EEG analysis is the study of the parameters of the ridges
of wavelet spectrograms. In the EEG signals for the detection of epileptic seizures, the
dynamics of synchronization and changes in the phase ratio before, during and after the
seizures are monitored.

At present, attempts are being made to improve methods for detecting ESs in EEG.
Paper [28] describes a way to improve the support vector machine method by adding an
adaptive median feature baseline correction method. A combination of methods is also used
to search for ESs, for example, complementary ensemble empirical mode decomposition
with extreme gradient boosting [15]. A method has been proposed that combines time-
domain feature analysis and entropy calculation [16]. A similar combination was also
presented in work [14], but the study of parameters in the time domain was used to segment
the signal sections, in order to then carry out analysis using machine learning methods.
To differentiate ESs from non-seizure events, neural networks [13] and similar methods
are used, such as the method of binarization of frequency and temporal features of signal
fragments [29].

It should be noted that the estimation of the accuracy and specificity of the classi-
fication was carried out on EEG fragments previously selected and annotated by EEG
neurosciensists as ictal and interictal events. The most representative databases are the
EPILEPSIAE database [30], the Temple University Hospital EEG Data Corpus [31], Bonn
epilepsy dataset etc.

Clinical EEG investigations of epilepsy consist in long-term (several days) monitoring
of multichannel EEG using scalp or intracrinial electrodes in the presence of various
artifacts: the electrical activity that is not recorded in the cerebral zone, such as that due
to the equipment, patient behavior or the environment; eye movement and chewing are
common events that can often be confused with a spike; signals instrument fluctuations
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and artifacts of vital activity [32]. It can be seen from the review that the methods for
removing artifacts described in the literature are mainly focused on removing one type of
possible artifacts or ocular and muscular ones present in the real initial data of long-term
EEG monitoring. In general, we can conclude that the problem of automated removal
of artifacts of various types from the initial data of long-term EEG monitoring has not
been fully resolved. Additionally, this article describes canonical correlation analysis as a
successful method for removing muscle artifacts.

One of the most important characteristics of ES is abnormal inter-channel synchro-
nization or so-called coherency. To assess interchannel EEG synchronization, canonical
correlation analysis [33], normalized cross-correlation and imaginary part of coherency or
phase synchronization are used [34]. The main disadvantage of estimation coherence is the
necessity to average it over time epochs and frequency ranges [35]. The study of short-term
frequency synchronization of signals in two EEG channels by comparing their WT ridges
frequencies during a previously selected by physicians is presented in ES [36].

We did not find in the literature any information on taking into account one of the
most important feature of ESs—EEG interchannel synchronization for detecting ESs. So
this article describes a new approach to the segmentation of the initial long-term clinical
multichannel EEG monitoring data of patients with epilepsy into temporal fragments
suspicious of an ES, to reduce the quantity of EEG fragments. This approach is based at
first on the EEG WT ridges segmentation of the into frequency-synchronized fragments,
and secondly with a thresholding of the ridge spectral power density.

Another part of this paper is devoted to a new approach to the diagnosis and as-
sessment of rehabilitation of patients after traumatic brain injury (TBI). TBI is an insult
to the brain from an external mechanical force, which can lead to permanent or tem-
porary impairment of cognitive, physical, and psychosocial functions. The most used
EEG methods of investigation TBI are spectral analysis, absolute and relative amplitude
and power, coherence, and symmetry between homologous pairs of electrodes (see re-
view [36]). A multivariate support system has been developed to quantify and classify by
Random Forest classifier TBI stage based on analysis of EEG power in various frequency
ranges [37]. A study [38] investigated the possibility of detecting moderate TBI according
to the Glasgow Coma Scale [39] by EEG amplitude analysis and convolutional neural
network classification. Recently, a single channel system was developed for real-time mild
TBI detection with Convolutional Neural Networks classifier of EEG power in different
frequency ranges [40]. The proposed method can be applied for screening of the moderate
TBI and for selection of the patients for further diagnostics and treatment. In [41] the analy-
sis of the EEG data applying the energy, sample entropy, approximate entropy, Lempel–Ziv
complexity features demonstrated the increase in sample entropy was related with the
functional recovery, i.e., the rehabilitation dynamics of the injured brain region. EEG-based
neurofeedback is used for cognitive rehabilitation of patients with TBI [42].

Our approach is based on the analysis of the network of phase sinchronized EEG
channels WT ridges in patients with moderate TBI. The interchannel phase difference of
the EEG is determined during cognitive tests at the points of the frequency-modulated
wavelet spectra ridges. We investigate the neurons connectivity disruption of the brain
after TBI and consider the inter-channel phase connectivity between EEG channels during
cognitive tests. It does not depend on the EEG signal amplitude. In this paper Section 2
contains the basic formulae and conditions for their application. Section 3 describes a new
approach to segmentation of long-term EEGs into temporal fragments suspicious of an ES
by interchannel WT ridges frequency sincronization and power spectral density thresh-
olding. Section 4 describes a new approach to determine the evaluation of rehabilitation
positive dynamics of patients with moderate TBI.

2. Materials and Methods

We studied long-term (from several hours to several days) initial EEG records of
preoperative patients with epilepsy, obtained in laboratory of invasive neurointerfaces
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of the Research Institute TechnoBioMed. A.I. Yevdokimov Moscow State University of
Medicine and Dentistry. The segmentation method was used for several days’ 19-channel
EEG. The records were carried out according to the 10–20 system [43] in reference montage
with a sampling rate of 256 Hz. Power supply artifacts were removed from all EEG channels
using a notch filter at frequencies multiples of 50 Hz. The use of Morlet WT in the frequency
range from 0.5 to 22 Hz, so myographic artifacts were rejected.

The records of 19-channel EEG were considered, therefore the quantity of pairs of
channels is 171 for the group of control volunteers (18 subjects) and for the group of
patients with moderate TBI (12 subjects), where three patients had repeated EEG records
after rehabilitation in two cognitive tests. Cognitive tests were calculation-logical (CT1)
and spatial-pattern (CT2). During the CT1 test, the doctor randomly spoke words from the
category of “clothing” or “food” to the subject. During the test, the subject counted in their
mind the number of items belonging to one of these categories. At the end of the test, the
subject announced the result of the number of items. On the CT2 test, the doctor named an
arbitrary time. The subject had to represent the position of the hands-on-dial in accordance
with the indicated time. If both clock hands were in the same half of the dial, he said “yes”,
and if they were in different halves, he kept silent. Investigations of control volunteers and
patients with moderate TBI were carried out at the National Medical Research Center for
Neurosurgery named after Academician N.N. Burdenko. All subjects were right-handed
and signed written consent to participate in the research in accordance with the provisions
of the Helsinki Agreement. The rehabilitation was performed for 1–2 months. The time of
the rehabilitation was 40–45 min two times a week. The criteria for the inclusion of patients
in the investigation were the ability to stand on their own and the ability to follow the
doctor’s instructions, and also the absence of hemiparesis and other neurological disorders.
The international 10–20 system of the position of scalp electrodes was used for EEG record.
The recording time for every test was 60 s. EEG recording was carried out both during
the tests and without them. The sampling rate of the EEG was 250 Hz in the processing
of EEG signals. The original signals were recorded with a high-pass filter with a cut-off
frequency of 0.5 Hz, a low pass filter with a cut-off frequency of 70 Hz. Then, a notch
filter at frequencies multiples of 50 Hz and a Butterworth filter were used. The signals
were filtered by a fourth-order Butterworth bandpass filter with a bandwidth from 2 to
10 Hz. The EEG records were analyzed without selecting individual fragments of the
signal. However, the removal of outliers in the EEG signals was done with the Huber’s
X84 method [44].

We considered EEG as an analytical signal with time-varying amplitude and frequency.
The analytic signal was first locally represented as a modulated oscillation, demodulated
by its own instantaneous frequency, and then Taylor-expanded at each point in time. We
represent this signal as the following function:

S(t) = AS(t) exp(iΦS(t)), (1)

where AS(t) is the amplitude and ΦS(t) is the phase of the signal. Continuous wavelet
transform of signal S(t) is represented as:

W(a, b) =
∞∫

−∞

S(t)ψ∗
a,b(t) dt (2)

ψa,b(t) =
1√|a|ψ

(
t − b

a

)
(3)

where a, b, a �= 0 are the real numbers defining the scale and the shift. We used the following
function (Morlet mother wavelet) that was employed in the Matlab software:

ψ(t) =
1√
π fb

exp(−t2/ fb) exp(2πi fct) (4)
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where fb is a positive and related with the variance of Gaussian function and fc is a positive
value that corresponds with central frequency. The Morlet wavelet transform can be
represented as follows:

W(a, b) = M(a, b) exp(iΦ(a, b)), (5)

where M(a, b) is the absolute value of wavelet transform and Φ(a, b) is the phase of wavelet
transform (2).

Substituting expressions (3) and (4) in formula (2), we obtain:

W(a, b) =
1√

aπ fb

∞∫
−∞

AS(t) exp
(
− (t − b)2

a2 fb

)
exp

(
i
(

ΦS(t)− 2π fc
t − b

a

))
dt, (6)

usually (in Matlab) fb = fc = 1.
Integral (6) is approximately calculated by the method of stationary phase [45]. Under

certain conditions, the main contribution to the integral is made by the imaginary part of
the exponential function, since the contributions of rapidly changing phases cancel each
other out, and the contribution is made by the values located at the point of the stationary
phase. The stationary phase method is applicable when the amplitude A(t) of the signal
exhibits relatively slow changes compared to fast changes in the total signal associated
with fast changes in phase, for example, and asymptotic properties are satisfied concerning
the window ψ(t) under the following assumptions; so that the following conditions are
satisfied [11]: ∣∣∣∣ dΦS(t)

dt

∣∣∣∣ �
∣∣∣∣ 1

AS(t)
dAS(t)

dt

∣∣∣∣,
∣∣∣∣ 1

AS(t)
dAS(t)

dt

∣∣∣∣ �
∣∣∣∣ 1
ψ(t)

dψ(t)
dt

∣∣∣∣ (7)

The relationship between the phase from expression (5) and the phase from expres-
sion (6) is given as follows:

Φ(t) = ΦS(t)− 2π fc

(
t − b

a

)
(8)

For the stationary phase Φ(t), we have

dΦ(t)
dt

= Φ′
S(t)−

2π fc

a
= 0 (9)

Such a condition is satisfied at t = t(a). To estimate the integral from formula (6), we
expanded the phase Φ(t) in a Taylor series up to a polynomial of the second degree in the
neighborhood of point t = t(a) till the order (t − t(a))2:

Φ(t) ≈ ΦS(t(a))− 2π fc

(
t(a)− b

a

)
+

1
2

Φ′′
S(t(a))(t − t(a))2 (10)

Below, we use the notation ΦS ≡ ΦS(t(a)) and Φ′′
S ≡ Φ′′

S(t(a)).
After substituting formula (10) into formula (6), we obtained an approximate value

for the phase and absolute value of the wavelet transform:

Φ(a, b) ≈ ΦS − 2π fc

(
t(a)− b

a

)
+

1
2

arctan
(

a2 fb
2

Φ′′
S

)
+

2(t(a)− b)2Φ′′
S

4 + a4 f 2
b (Φ

′′
S)

2
(11)

M(a, b) ≈ AS(t(a))

(
1 +

a4 f 2
b

4
(Φ′′

St(a))2

)− 1
4

exp

(
− (t(a)− b)2a2 fb(Φ′′

S)
2

4 + a4 f 2
b (Φ

′′
S)

2

)
(12)
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Expression (12) shows that the maximum of wavelet transform absolute value was
reached at b = t(a). The instantaneous frequency at the ridge point fr at time moment
t = t(a) was calculated using expression (9):

fr(t(a)) = 2π
fc

a
(13)

In this case, the maximal value of the wavelet transform (ridge) of the signal is given by

max
a

|W(a, b)| ≈ AS(t(a))

(
1 +

a4 f 2
b

4
(Φ′′

St(a))2

)− 1
4

(14)

and the phase is approximated of a ridge point as

Φ(a, b) ≈ ΦS +
1
2

arctan
(

a2 fb
2

Φ′′
S

)
(15)

As in [46], the relationship between the frequency of Fourier spectrum of the wavelet
transform and the scales a of the wavelet transform (2) is given as follows:

f =
f0

2a
+

√
2 + 4(π f0)2

4πa
∼= f0

a
=

1
a

(16)

where f0 is a wavelet central frequency and it is considered that 4(π f0)
2 � 2. So, for the

ridge points ( fr, t) we have:

Wr(t) = max
f

|W( f , t)|, fr(t) = argmax
f

|W( f , t)|,

ΦS(t) ∼= Φr( f , t) = arctan
(

Im(W(t, fr))

Re(W(t, fr))

)
,

(17)

when the condition
Φ′′

S
2 f 2

r
=

f ′r
2 f 2

r
� 1, (18)

is satisfied.
Summarizing, it should be noted that, in contrast to other works, the obtained simple

method for determining the ridge points as the maximum of the modulus of the wavelet
spectrum at each time point was undoubtedly easy to calculate.

3. EEG Segmentation

This chapter describes an EEG segmentation method based on the study of Morlet
wavelet transform ridges, which allows finding time intervals of interest in ES detec-
tion, which is used to analyze continuous long-term EEG monitoring data during post-
processing. The long-term EEG segmentation method consists of the following stages, as
shown in Figure 1: 1. signal filtration at frequencies multiples 50 Hz, 2. wavelet Morlet
transform of signals, 3. determination of wavelet spectrogram ridges, 4. marking time
intervals with interchannel synchronization, 5. marking time intervals with power spectral
density (PSD) values above the threshold, 6. intersections of time intervals, 7. visualization
of a segmented signal with marked time intervals.
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Figure 1. Block diagram of a long-term EEG segmentation.

Let us show how segmentation was carried out using the example of an EEG recording
fragment containing an ES. For each EEG channel, we calculated the wavelet spectrogram
(2) and the ridges of the wavelet spectrogram (17) in frequency range [0.5; 22] Hz.

Generalized ESs were characterized by changes in power in several EEG channels
and the synchronization of different channels pairs. In order to estimate the inter-channel
synchronization, the modulus of the frequency difference at the points of the ridges was
calculated for each pair of channels. If the modulus of the difference was less than ε, then
there was synchronization Synci,j, otherwise, it was not:

Synci,j(k) =
{

1, | fri(k)− frj(k)| ≤ ε

0, | fri(k)− frj(k)| > ε
(19)
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where fri, frj are the frequencies of the ridges of the wavelet spectrograms on the i and j
EEG channels, k is the point of the ridge.

Figure 2 shows the projection of the wavelet spectrogram onto the PSD-frequency
plane of the sinusoidal signals with a frequency of 2 and 2.5 Hz. At ε = 0.5 the peaks were
distinguishable. On smaller epsilons, the peaks could merge.

Figure 2. PSD-Frequency projection of wavelet spectrums of two sinusoidal signals: blue is 2 Hz,
orange is 2.5 Hz.

Nearby points at which condition (19) was satisfied were combined into fragments.
Fragments between which the time interval was less than 10 s were combined into one. For
each fragment, the beginning and end times of synchronization in pairs of channels were
calculated. Table 1 shows a histogram of the number of synchronized fragments depending
on the duration in 19 pairs of EEG channels. For neurophysiological considerations, this
work considered fragments with a duration of 10 s or more.

Table 1. Histogram of the number of synchronized fragments depending on the duration in 19 pairs
of EEG derivations.

Pairs of Channels
Fragment Duration, s

>2 >5 >10 >15
>30≤5 ≤10 ≤15 ≤30

FP1-F7 3040 621 131 44 4
F7-T3 3683 430 84 29 9
T3-T5 4265 336 68 27 6
T5-O1 4210 375 77 40 4
FP1-F3 3413 534 90 20 1
F3-C3 3784 350 43 17 2
C3-P3 4140 397 41 15 1
P3-O1 4047 401 63 31 1
FZ-CZ 4250 362 35 18 1
CZ-PZ 4223 409 54 24 2
FZ-Pz 4044 329 31 16 0
FP2-F4 3352 535 99 46 7
F4-C4 3310 405 78 25 3
C4-P4 3869 421 75 15 1
P4-O2 4028 426 76 32 6
FP2-F8 3024 678 130 48 3
F8-T4 3385 518 88 46 5
T4-T6 3946 454 67 28 3
T6-O2 4190 470 76 28 3
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Figure 3 shows an example of ES fragment from observed EEG recording with visual-
ization of the presence of synchronization in channels pairs.

Figure 3. Fragment of daily EEG signal with ES illustrating the frequency of the wavelet spectrogram
ridge synchronization in different pairs of EEG channels. Black shows the presence of synchronization.
The ordinate shows the labels of channel pairs.

As can be seen, EEG synchronization could be observed in not all channels simultane-
ously (Figure 3). In this example, synchronization was observed in most channel pairs from
about 5970 s to 6000 s, but synchronization began to appear earlier in a smaller number
of pairs.

The time intervals in which the inter-channel synchronization in the frequency of the
ridges was recorded could correspond to both ES and artifacts of chewing, sleep, and random
physical influences on the electrodes, which generated artifacts of a non-epileptic nature.

A characteristic feature of the ES was a sharp change in the amplitude over a short
period of time. Therefore, in addition to searching for time intervals in which there was
synchronization on several pairs of EEG derivations, the detection of areas with high
values of the power spectral density (PSD) was carried out. In order to understand the
idea of the method, let us consider the histogram of the ridge points of the wavelet
spectrogram, calculated for one of the leads. The peak of the histogram contained about
1.2 × 106 points, the maximum PSD value at which the number of ridge points tended
to 0, about 2.8 × 107μ V2/Hz. Such a histogram gave a large peak in the region of low
PSD values and did not allow us to estimate the distribution of the ridge points, therefore,
Figure 4 shows the “window” of the PSD histogram. As can be seen from the figure, the
number of ridge points with low PSD values was large and could be interpreted as noise.
It was necessary to separate the informative points of the ridge from the noise.

In order to separate the points of the ridge of the wavelet spectrogram related to
high-amplitude electrical activity from noise, it was required to find the threshold value of
PSD Tr. The ridge PSDr values of the wavelet spectrogram were determined as follows:

PSDr(t) =
{

PSDr(t), PSDr(t) ≥ Tr
0, PSDr(t) < Tr

(20)

The points of the ridge PSDr(t) lying between the nearest points PSDr(t) = 0 was
called the ridge segment. Figure 5 shows a histogram of the number of ridge segments
from the PSD threshold Tr to Tr = 5 × 105μ V2/Hz. At large values of PSDr, the number
of segments tended to be 0. The PSDr values could differ greatly not only from patient to
patient but also by channels; therefore, it was required to determine the threshold value
adaptively. Figure 5 shows a sharp decrease in the number of fragments with an increase
in the threshold value. To identify the threshold value, the second derivative of segments
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quantity from the threshold changes was analyzed. After reaching a local maximum (circle
mark in Figure 5), it became negligible. This means that the segments quantity linearly
decreased with growing threshold. In Figure 5 threshold PSD value Tr = 1.5× 105μ V2/Hz.
With this choice of the threshold, most ESs detected by the expert and a small number
of artifacts like ES were observed. Figure 6 shows an example of a segmented ridge of a
wavelet spectrum containing an ES.
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Figure 4. The window of the histogram of the PSD of the wavelet spectrogram ridge of the long-term
EEG signal.

Figure 5. Histogram of the number of ridge segments from the threshold PSD Tr. The circle marks
the local maxima at threshold value Tr = 1.27 × 105μ V2/Hz.

Figure 7 shows a fragment of a daily EEG signal showing an ES. Marks of the expert
neurophysiologist are green vertical lines; the blue line, repeating the waveform, marks the
fragment on which the synchronization was recorded on several pairs of EEG derivations;
the dotted rectangles mark the areas found by the threshold method. Thus, the method of
application for the search for ES is shown.

For the 5-hour EEG 2017 the overall synchronized fragments duty more than 10 were
found (see Table 1), 112 segments were detected by thresholding, and finally we obtained
nine intersected segments. with total duration total duration about 4 min. Earlier [47],
we showed that by processing synchronous video of these nine fragments four fragments
were recognized as moving artefacts. As a result, there were five segments left with a total
duration of 4 min.
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Figure 6. The segmented wavelet spectrogram ridge of the EEG signal fragment typical for ES. The
upper figure shows a segmented ridge PSDr, the bottom one shows fr.

Figure 7. Fragment of an EEG with ES. Green vertical lines are expert marks. The blue line repeating
the signal waveform is a mark obtained by searching for synchronized channel pairs. Dotted squares
are marks obtained by the threshold method for detecting ES.

The detection of ES on EEG is complicated by the presence of many non-epileptic artifacts
in signals received from scalp electrodes: electromyographic, motor, instrumental human
actions, etc. An overview of various types of artifacts is given in [48]. Therefore, there is a
need to develop methods to differentiate ES from artifacts of a non-epileptic nature.

To solve this problem, an algorithm was proposed, which consisted of studying
the broadband peaks of the wavelet spectrograms, which were characteristic of an ES
and a chewing artifact. Let us make a comparison using the example of wavelet spectra
of an epileptic seizure (Figure 8) and chewing (Figure 9). We analyzed slices of wavelet
spectrograms frequency fcur(t) higher ridge frequency fr(t), for example, at Figures 8 and 9
fcur(t) = 4 Hz (green line).

For each slice, we calculated Fourier spectra. Figure 10 Fourier spectra of ES and
chewing artifact at fcur = 4 Hz. The frequency of the main peak and full width at half
maximum (FWHM) of the Fourier spectrum were calculated.

217



Sensors 2021, 21, 5989

t,sec

6

1

2

3

4

5

5880 5885 5890 5895 5900 5905 5910 5915 5920

Figure 8. Wavelet spectrogram of an EEG with ES. Green line corresponds to slice of the wavelet
spectrogram at the frequency fcur = 4 Hz.
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Figure 9. Wavelet spectrogram of an EEG with chewing artifact. Green line corresponds to slice of
the wavelet spectrogram at the frequency fcur = 4 Hz.
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Figure 10. Fourier spectra of wavelet spectrograms slices fcur = 4 Hz. The red line is the Fourier
Spectrum of the ES slice; the blue line is the Fourier spectrum of the chewing artifact slice.
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Figure 10 shows differences between ES and chewing artifacts. The main peak fre-
quency of the Fourier spectrum was at 0.71 Hz for the chewing artifact, and at 1.86 Hz
for the ES. Two peaks could be observed in ES slice spectrum, this can be interpreted as
the presence of spike-wave activity. There was a difference in FWHM of the peaks of the
Fourier spectrum of the slices: for a chewing artifact, it was almost 2 times more than for
an epileptic seizure. This may mean that the seizure period was more stable than chewing.

4. The Estimation of Inter-Channel EEG Phase Connectivity in Patients with TBI

Various methods of EEG phase coherence are used to estimate the connectivity of
brain regions. Usually, the phase coherency of signals is used for the estimation of the inter-
channel connectivity of EEG [33,49,50]. Coherency Cohxy( f ) is defined by the normalized
complex cross-correlation Cxy of signals x(t) and y(t):

Cohxy( f ) = | < Cxy > |, Cxy =
Sxy( f )(|Sxx( f )||Syy( f )|)1/2 , (21)

and a phase coherency is defined as | < exp(iΔΦ) > |, where | < • > | is an averaging [33].
In coherency analysis of non-stationary EEG, it is necessary to average exp(iΔΦ) over

different time intervals (epochs), and it is the first problem. The presence of the peak
in the histogram of the phase difference in different epochs determines the presence or
the absence of the phase synchronization in the absence of a peak. In addition to this,
Cohxy( f ) is averaged in preliminary selected frequency bands that are specified using
neurophysiological data. Usually, these bands correspond to the delta (2–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz) EEG, and other rhythms, and this is the second
problem. These disadvantages of the coherency analysis that leads to instability in the
definition of the inter-channel EEG connectivity. The validity of the coherent analysis of
non-stationary EEG signals is questioned [34].

Another method for the estimation of the phase connectivity is to determinate the
analytical signal x∗(t) = x(t) + iH(x(t)), where H(x(t)) is the Hilbert transform [51].
Then, the phase of signal x∗(t) is calculated as the arccosine (arcsine) of the ratio of the real
(imaginary) part x∗(t) to its modulus [52]. The phase synchronization of two signals takes
place when:

|ΔΦx,y(t)| ≤ const, (22)

where ΔΦx,y(t) = nΦx(t)− mΦy(t), Φ is a phase of the signal; n, m are integers. Then,
the angular frequency of the signal can be found by the phase differentiating with respect
to time. Numerical differentiation in the presence of phase fluctuations is an unstable
procedure. Additionally, the disadvantage of the approach associated with the calculation
of analytical signals is that it is well applicable for narrowband signals and not good
enough for broadband signals [53].

The paper describes the methods and results of determining the phase-connected
pairs of EEG channels of patients with moderate TBI before and after rehabilitation, which
can be used to estimate the dynamics of treatment and rehabilitation of patients. The
method of the estimation of the inter-channel EEG phase synchronization at the points of
the ridges fr(ti) of their wavelet-spectrograms (6) is considered as an inverse task for the
task of modeling ridges:

fr(ti) = arg

{
max

f (ti)∈[1:25 Hz]
(|W(ti, f (ti))|)

}
, (23)

on the condition (18). Φx(t) ∼= Φr( f , t) = arctan
(

Im(W(t, fr))
Re(W(t, fr))

)
according to (17), when the

condition (18) is satisfied.
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However, the ridge Wr(t) can be considered as the frequency-modulated signal. It is
necessary to take an unmodulated oscillation [54]:

x = A0 sin(ω0t + Φ0), (24)

and enter a variable frequency ω = ω0 + Δωξ(t) = ω(t), where ξ(t) is some unknown
function, and ω(t) is known.

Then if Φ0 = 0:

x = A0 sin

⎛
⎝ω0t + Δω

t∫
0

ξ(t) d t

⎞
⎠ = A0 sin(ω(t)t), (25)

Then it is possible to estimate the phase of the ridge as [55]:

Φ(t, fr) = 2π fr(t)t, (26)

Figure 11 represents two ridge frequencies of the Morlet wavelet transform for two
EEG channels. Ridge points are points of the maximum power spectral density. Fp1 EEG
channel is indicated by the blue line. Fp2 EEG channel is indicated by the red line. The
abscissa is the time in seconds; the ordinate is the frequency in Hz.

Figure 11. Ridge frequencies of the Morlet wavelet transform for two EEG channels. Fp1 EEG
channel is indicated by the blue line. Fp2 EEG channel is indicated by the red line.

The EEG frequencies coincided in some time fragments. The phase of the ridge could
be estimated with the formula (26) if the ridge frequency was known.

The phases of the EEG signals were calculated and compared at the points of the
ridges (ti, fr) of their wavelet spectrograms in EEG records both with cognitive tests and
without tests. Then, the phase difference of two signals x(t) and y(t) in two EEG channels
was calculated. Next, the normalized histogram of portions ρx,y = nx,y/N in different pairs
of EEG channels was calculated, where nx,y is the quantity of reference points of ridges
with |ΔΦx,y(t)| < 0.01π, N is a total quantity of EEG signal reference points in the test.

Figure 12 represents the normalized histograms of portions of the phase difference
at the ridge points of the wavelet spectrograms of two EEG channels for the case of a
phase coupled pair of EEG channels Fp1-Fp2, which were obtained by two methods.
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Figure 12a demonstrates the first way based on the calculation of the phase according to
the formula (26). Figure 12b demonstrates the second way based on the calculation of the
phase according to the formula (17).

x,
y

(a)

x,
y

(b)

Figure 12. Histograms of portions ρx,y for the phase difference at ridge points for two EEG channels.
This example shows a phase-connected pair of Fp1-Fp2 EEG channels. (a) The histogram is obtained
from the phase calculation by (26). (b) The histogram is obtained from the phase calculation by (17).

Figure 12a demonstrates that the histogram of portions of the phase difference at the
points of the ridge of the wavelet spectrograms calculated by the first way (26) had a higher
and sharper peak versus the second way (17) (Figure 12b). Below, we will calculate the
phase by formula (26).

Let A = max(ρx,y) be the maximum values of the histogram in the cognitive test and
let B = max(ρx,y) are the maximum values of the histogram in the EEG record without a
test. It is convenient to consider the difference D = A − B, which was sorted in order to
increase max(ρx,y). Figure 13 demonstrates the dependence of D sorted in increasing order
versus the numbers of a pair of EEG channels and its derivative for a healthy subject in the
CT1 test.

EEG channels pair number

1 D-

1

2

- derivative ( )2 D

Figure 13. The dependence of D sorted in increasing order (line1) versus the numbers of a pair of
EEG channels and its derivative (line 2) for a control subject in the CT1 test.

221



Sensors 2021, 21, 5989

Figure 13 shows that the curve of the graph appears at some point D. It is advisable
to consider pairs of channels with numbers greater than at point sharp of increasing of
derivative D (black point) as phase-connected pairs. Thus, phase-connected pairs of EEG
channels were identified before and after rehabilitation of patients with moderate TBI.

Figure 14 shows a block diagram of the developed algorithm for the determination
of phase-connected EEG channels. The developed algorithm for the determination of
phase-connected EEG channels consisted of the following stages, as shown in Figure 14:
1. Preprocessing of signals. It was outlier removing; notch filter at frequencies multiples of
50 Hz; filtering of signals with a Butterworth filter; 2. Calculation of wavelet spectra and
ridges; 3. Calculation of the ridges phase at each point of the wavelet spectra ridges. Calcu-
lation histograms of the phase difference portions (ρx,y) in two channels for 171 channels
pairs. The determination max(ρx,y) for each channel pairs; 4. Calculation of the difference
between max(ρx,y) with cognitive test and without a test (D), sorting in in-creasing order
of D. Calculation derivative (D); 5. The determination of phase connected EEG channels.
If the derivative (D) sharply increased with the growing pair, the pairs with numbers
greater than at the sharp point of the increasing derivative (D) were considered as a phase
connected pairs. If the derivative (D) did not sharply increase, it was impossible to identify
phase connected pairs.

Raw EEG data

Preprocessing signals:of

1. outlier removing;

2. notch filter at fre uencies multiples of 50 Hz;q

3. filtering signals with a Butterworth filterof

Calculation wavelet spectra and ridgesof

Calculation of the ridge phase at each point of the wavelet spectra ridge.

Histograms plotting of portions of the phase difference ( ) in two EEG channelsρx,y

for 171 EEG channels pairs. The determination max( )ρx,y

Calculation of the difference between max( ) with cognitive test and without a test ( ),ρx,y D

sorting in increasing order of . Calculation derivative ( )D D

Derivative ( ) sharply increasesD

Pairs of channels with numbers greater

than at point sharp of increasing of derivative ( )D

are phase-connected pairs

It is impossible to identify

phase-connected pairs

Yes No

Figure 14. The block diagram of the developed algorithm for the determination of phase-connected
EEG channels.

Figure 15 demonstrates the phase-coupled pairs of EEG channels for seven healthy
subjects during the EEG recording in the CT1 test.
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Figure 15. Phase-connected pairs of EEG channels of control subjects during the EEG recording in
the CT1 test.

Figure 15 represents that the frontal regions and interhemispheric connections are
activated in cognitive tests (CT1). Interhemispheric connections and connections in the
frontal cortex in control subjects are activated during CT1 test in accordance with pub-
lished work [56]. However, each control subject and patient with TBI are characterized by
different phase-connected pairs due to the individuality of each person during the CT1 test.
Therefore, we considered phase-connected pairs individually for each subject.

Figure 16 demonstrates the phase-connected pairs of EEG channels for the seven
control subjects during the EEG recording in the CT2 test.

Figure 16. Phase-connected pairs of EEG channels of the control subjects during the EEG recording
in the CT2 test.

Figure 16 represents that the frontal regions and interhemispheric connections were
activated in cognitive tests (CT2). Interhemispheric connections and connections in the
frontal cortex in control subjects were activated during CT2 test in accordance with pub-
lished work [56]. However, each control subject and patient with TBI were characterized
by different phase-connected pairs due to the individuality of each person during the CT2
test. Therefore, we considered phase-connected pairs individually for each subject.

Figure 17 demonstrates phase-connected pairs of EEG channels for three patients with
TBI during the EEG recording in CT1 and CT2 tests.
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СТ1
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Figure 17. Phase-connected pairs of EEG channels of patients with TBI during the EEG recording in
CT1 and CT2 tests.

Figure 17 shows that phase-connected pairs appeared more in the parietal and occipital
regions, than in the interhemispheric and frontal cortex in patients with TBI during CT1
and CT2 tests.

Additionally, the dynamics of inter-channel EEG synchronization of three patients
with TBI before and after the rehabilitation was also investigated. The phase-connected EEG
pairs in patients before and after rehabilitation were compared with the phase-connected
pairs of the control group for each test. If interhemispheric connections or connections in
the frontal cortex were activated in patients, as in control subjects in cognitive tests (CT1
and CT2), it could be concluded that the cognitive function had positive dynamics.

Figure 18 demonstrates that the positive dynamics could be seen of the rehabilitation
of a patient with TBI in the CT1 test. If interhemispheric connections or connections in the
frontal cortex in the CT1 test appeared after rehabilitation, as in the control subjects, the
positive dynamics of rehabilitation could be concluded.

(a) (b)

Figure 18. Phase-connected pairs of EEG channels of patients with TBI before (dotted lines) and after
the rehabilitation (solid lines) in the CT1 test. (a) Patient 1. (b) Patient 2.
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Figure 19 demonstrates that the positive dynamics could be seen of the rehabilitation
of patients with TBI in the CT2 test.

( )a (b)

Figure 19. Phase-connected pairs of EEG channels of a patients with TBI before (dotted lines) and
after the rehabilitation (solid lines) in the CT2 test. (a) Patient 1. (b) Patient 2.

Figure 19 demonstrates that the positive dynamics could be seen of the rehabilitation
of a patient with TBI in the CT2 test because interhemispheric connections or connections
in the frontal cortex were activated in patients, as in control subjects. If interhemispheric
connections or connections in the frontal cortex in the CT2 test appeared after rehabilitation,
as in the control subjects, it the positive dynamics of rehabilitation could be concluded.

Let us consider an example of the lack of progress of the rehabilitation of a patient
with TBI. Figure 20 demonstrates the dependence of D sorted in increasing order versus
the numbers of pairs of EEG channels and its derivative for a patient with TBI.

EEG channels pair number

1

2

1 - D

2 Dderivative ( )-

(a)
EEG channels pair number

1

2

1 - D

2 Dderivative ( )-

(b)

Figure 20. The dependence of D sorted in increasing order (line 1) versus the numbers of a pair
of EEG channels and its derivative (line 2) for a patient with TBI in the CT1 test. (a) before the
rehabilitation; (b) after the rehabilitation.

Figure 20b shows that there was no sharp increase in the D derivative after the
rehabilitation during the cognitive calculate-logical test, in contrast to Figure 20a. Thus, it
was impossible to clearly determine the quantitative signs and identify phase-connected
pairs by the suggested method. It could be concluded that there was no progress in
rehabilitation during the cognitive calculation-logical test.
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5. Conclusions

The paper presents an approach for segmenting long-term 19-channel EEG monitoring
data. For the signals, the ridges of Morlet wavelet transform were calculated. Interchannel
synchronization was used as a new feature of epileptic seizure. We also used the adaptive
thresholding of the wavelet spectrogram ridges for signal segmentation. The intersection
of the synchronized and the power spectral density intervals were obtained. As a result,
the total duration of the fragments for analysis by the doctor was reduced by more than
60 times. It was shown that the frequency of the peak of the Fourier spectrum of the
cutoff of the wavelet spectrogram at a frequency higher than the frequency of the ridge
during an epileptic discharge was 2.5 times higher than the frequency of the Fourier peak
corresponding to chewing. The Fourier peak full width at half maximum of the chewing
artifact was 2 times larger than that of ES.

A comparison of the phases of EEG at the points of the Morlet wavelet spectrogram
ridges were used for evaluation the EEG interchannel phase synchronization during cog-
nitive tests in control subjects and patients with moderate TBI. Calculation-logical and
spatial-pattern cognitive tests were used. Interhemispheric connections and connections in
the frontal cortex in control subjects are initiated during the cognitive tests. The possibility
of determining the positive dynamics of rehabilitation during the initialization of inter-
hemispheric connections and connections in the frontal cortex of the brain or the absence
of progress in rehabilitation has been shown.
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Abstract: The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals,
highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable
sensors. Since successful detection of various neurological and neuromuscular disorders is greatly
dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce
motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard,
this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD
in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from
single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using
a benchmark dataset and the performance of the proposed methods is measured using two well-
established performance matrices: (i) difference in the signal to noise ratio (ΔSNR) and (ii) percentage
reduction in motion artifacts (η). The proposed WPD-based single-stage motion artifacts correction
technique produces the highest average ΔSNR (29.44 dB) when db2 wavelet packet is incorporated
whereas the greatest average η (53.48%) is obtained using db1 wavelet packet for all the available
23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA
method utilizing db1 wavelet packet has shown the best denoising performance producing an average
ΔSNR and η values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other
hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e.,
WPD-CCA has produced the best average ΔSNR (16.55 dB, utilizing db1 wavelet packet) and largest
average η (41.40%, using fk8 wavelet packet). The highest average ΔSNR and η using single-stage
artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS
signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in
motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques
are employed in comparison with the single-stage WPD method. In addition, the average ΔSNR also
increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS
signals. The increment in both ΔSNR and η values is a clear indication that two-stage WPD-CCA
performs relatively better compared to single-stage WPD. The results reported using the proposed
methods outperform most of the existing state-of-the-art techniques.
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1. Introduction

Due to the paradigm shift of hospital-based treatment in the direction of wearable and
ubiquitous monitoring, nowadays, the acquisition and processing of vital physiological
signals have become prevalent in the ambulatory setting. Since the acquisition of physio-
logical signals is inclined to movement artifacts that happen due to the deliberate and/or
voluntary movement of the patient during signal procurement utilizing wearable devices,
restricting patients totally from physical movements, intentional and/or unintentional,
is exceptionally troublesome. As a result, the physiological signals may get corrupted to
some degree by motion artifacts. In some instances, this defilement may end up so conspic-
uous that the recorded signals may lose their usability unless the movement artifacts are
diminished significantly.

Electroencephalogram (EEG) measures the electrical activity of the human brain quan-
titatively which took place due to the firing of neurons [1] and such brain activity is recorded
utilizing a good number of cathodes which are located at different regions of the scalp [2].
EEG is one of the key diagnostic tests for epileptic seizure detection [3,4]. Other decisive
utilization of EEG includes the estimation of drowsiness levels [5–8], emotion detection [9],
cognitive workload [6,10], and brain-computer interfaces (BCIs) [11–16]. All of which have
potential applications in the personal healthcare domain. Lately, the implementation of
EEG-based biometric systems utilizing the inborn anti-spoofing capability of EEG signals
was studied and appeared to be promising [17].

The functional near-infrared spectroscopy (fNIRS), a non-invasive optical brain imag-
ing technique, measures changes in hemoglobin (Hb) concentrations inside the human
brain [18] by employing light of various wavelengths in the infrared band and estimat-
ing the difference in the optical absorption [19]. Medical applications of fNIRS mainly
focus on the noninvasive measurement of brain functions [20,21], cognitive tasks identifica-
tion [22,23], and BCI [24–26].

Apart from movement artifacts, physiological signals undergo other types of artifacts
as well. Gradient artifacts (GA) and pulse artifacts (PA) are the two most frequent artifacts
observed in EEG during the simultaneous EEG-fMRI tests [27–29]. On the other hand,
event-related fNIRS signals are regularly sullied by heartbeat, breath, Mayer waves, etc., as
well as extra-cortical physiological clamors from the superficial layers [30].

Numerous attempts were made to reduce motion artifacts from EEG previously,
which were summarized in [31,32]. In [33], the performance of motion artifacts correction
techniques utilizing discrete wavelet transform (DWT) [34], empirical mode decomposi-
tion (EMD) [35], ensemble empirical mode decomposition (EEMD) [36], EMD along with
canonical correlation analysis (EMD-CCA), EMD with independent component analysis
(EMD-ICA), EEMD with ICA (EEMD-ICA), and EEMD with CCA (EEMD-CCA) were re-
ported. Maddirala and Shaik [37] used singular spectrum analysis (SSA) [38], whereas DWT
along with the thresholding technique was utilized in [39]. Gajbhiye et al. [40] employed
wavelet-based transform along with the total variation (TV) and weighted TV (WTV) de-
noising techniques, whereas in [41], wavelet domain optimized Savitzky–Golay filter was
proposed for the removal of motion artifacts from EEG. Recently, Hossain et al. [42] utilized
variational mode decomposition (VMD) [43] for the correction of motion artifacts from
EEG signals.

In the last few decades, multiple motion artifacts removal techniques were pro-
posed [44–46] for the removal of motion artifacts from the fNIRS signal. Sweeney et al. [47]
used adaptive filter, Kalman Filter, and EEMD-ICA. Scholkmann et al. [48] utilized the
moving standard deviation and spline interpolation method, whereas in [49], a wavelet-
based method was proposed. The authors of [33] used DWT, EMD, EEMD, EMD-ICA,
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EEMD-ICA, EMD-CCA, and EEMD-CCA. In [50], Barker et al. used an autoregressive
model-based algorithm, while kurtosis-based wavelet transform was proposed in [51], and
Siddiquee et al. [52] utilized nine-degree of freedom inertia measurement unit (IMU) data
to mathematically estimate the movement artifacts in the fNIRS signal using autoregressive
exogenous (ARX) input model. A hybrid algorithm was proposed in [53] to filter out the
movement artifacts from fNIRS signals where both the spline interpolation method and
Savitzky–Golay filtering were employed. Very recently, the two-stage VMD-CCA technique
was employed in [42].

The development of robust algorithms that can successfully reduce motion artifacts sig-
nificantly from EEG and fNIRS data is critical; otherwise, the signals’ interpretation could
be erroneous by medical doctors and/or machine-learning-based applications. As men-
tioned earlier, DWT, EMD, EEMD, VMD, DWT-ICA, EMD-ICA, EEMD-ICA, EMD-CCA,
EEMD-CCA, VMD-CCA, etc. were the most commonly used methods for the correction of
motion artifacts from EEG and fNIRS signals. ICA and CCA cannot be used independently
for single-channel EEG/fNIRS motion artifacts correction as the input of ICA/CCA algo-
rithms require at least two (or more) channels data, whereas DWT, EMD, EEMD, VMD, etc.
algorithms suffer from several limitations which are discussed in the discussion section
of this paper. Additionally, there is still room for improvement for ΔSNR and η values
which can be achieved using other effective novel methods. Therefore, in this paper, two
novel motion artifacts removal techniques have been proposed which can eliminate mo-
tion artifacts from single-channel EEG and fNIRS signals to a great extent. The first is a
single-stage motion artifacts correction technique using the wavelet packet decomposition
(WPD), whereas the other novel method is WPD in combination with CCA (WPD-CCA), a
two-stage motion artifacts removal technique, as the name suggests.

In this extensive study, for the correction of motion artifact from EEG and fNIRS
signals using the WPD method, four different wavelet packet families (Daubechies (dbN),
Symlets (symN), Coiflets (coifN), Fejer-Korovkin (fkN)) have been used with three different
vanishing moments (for each of the wavelet packets) that resulted in a total of 12 different
investigations. The wavelet packets used in the WPD method are db1, db2, db3, sym4,
sym5, sym6, coif1, coif2, coif3, fk4, fk6, and fk8. To the best of our knowledge, the WPD
algorithm has not been used for the removal of motion artifacts from single-channel EEG
and fNIRS signals to date. WPD-CCA method is another novel contribution of this research
work where Daubechies and Fejer-Korovkin wavelet packet families are utilized. In the
WPD-CCA technique, db1, db2, db3, fk4, fk6, and fk8 have been used separately, resulting
in six different investigations to reduce motion artifacts from EEG and fNIRS signals
more efficiently.

The rest of this paper is organized as follows: Section 2 discusses the theoretical
background of the different algorithms (WPD, CCA, WPD-CCA) investigated here, while
Section 3 provides brief information about the EEG and fNIRS benchmark dataset and
experimental methodology. Section 4 provides the results of the artifact removal techniques
proposed in this work and Section 5 covers the discussion. Finally, the paper is concluded
in Section 6.

2. Theoretical Background

2.1. Wavelet Packet Decomposition (WPD)

Using the WPD technique, signals can be decomposed into a wavelet packet basis at
diverse scales [54,55]. For j-level decomposition, a wavelet packet basis is represented by
multiple signals

[(
n − 2jk

)]
k∈Z, where i ∈ Z

+, 0 ≤ i ≤ 2j − 1. The wavelet packet bases
ψi

j(n) are produced recursively from the scaling and wavelet functions, ψ0
1(n) = φ(n) and

ψ1
1(n) = ψ(n), respectively, as follows:

ψ2i
j (n) = ∑k h(k)ψi

j−1

(
n − 2j−1k

)
(1)

ψ2i+1
j (n) = ∑k g(k)ψi

j−1

(
n − 2j−1k

)
(2)
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where h(n) represents lowpass filter and g(n) is the highpass filter defined as [54,56]:

h(k) =
〈

ψ2i
j (u), ψi

j−1

(
u − 2j−1k

)〉
(3)

g(k) =
〈

ψ2i+1
j (u), ψi

j−1

(
u − 2j−1k

)〉
(4)

The decomposition of a signal x(n) onto the wavelet basis j(n) at level j can be
expressed as:

x(n) = ∑i,k Xi
jψ

i
j

(
n − 2jk

)
(5)

where Xi
j(k) signifies the kth wavelet coefficient of the packet i, at level j. Here, Xi

j(k)
represents the intensity of the localized wavelet ψi

j
(
n − 2jk

)
, defined by:

Xi
j(k) =

〈
x(n), ψi

j

(
n − 2jk

)〉
(6)

Let x(n) represent a recorded EEG/fNIRS signal which can be expressed as the sum
of a source signal s(n) and a motion artifact signal v(n) as follows:

x(n) = s(n) + v(n) (7)

In general, the source signal s(n) is assumed to be normally distributed having a mean
value equals to zero, s(n) ∼ N(0, σ), where σ2 characterizes the variance of s(n) [57]. On
the other hand, general assumptions regarding the artifact signal v(n) includes temporal
localization, not normally distributed with high local variance.

According to [58], Xi
j(k), can be represented as the sum of Si

j(k) and Vi
j (k), where

Xi
j(k), Si

j(k), and Vi
j (k) are the wavelet coefficients of x(n), s(n), and v(n), respectively:

Xi
j(k) = Si

j(k) + Vi
j (k) (8)

It is noteworthy to mention that the wavelet coefficients Vi
j (k) will be sparse as well

as the non-zero coefficients will have a relatively higher magnitude as the variance of
v(n) is locally high, which would cause an increase in the local variance of the recorded
EEG/fNIRS signal x(n).

2.2. Canonical Correlation Analysis (CCA)

CCA [59] is one of the most popular blind source separation methods which has the
capability of dissociating multiple mixed or noisy signals. Assuming linear mixing, square
mixing, and stationary mixing [60], the CCA technique computes an un-mixing matrix W,

which helps identify the unknown independent components
^
S from a matrix X, which is a

recorded multi-channel signal as follows:
^
S = WX (9)

CCA also estimates the unknown independent components
^
S using Equation (9)

utilizing second-order statistics (SOS). CCA forcefully makes the sources to be auto-
correlated maximally as well as makes the sources mutually uncorrelated [61]. Let us
assume y as a linear combination of neighboring samples for an input signal x (i.e.,
y(t) = x(t − 1) + x(t + 1)) [62]. Consider the linear combinations of the components
in x and y, known as the the canonical variates:

x = wT
x

(
x − ¯

x

)
(10)

y = wT
y

(
y − ¯

y

)
(11)

where wx and wy represents the weight matrices. CCA computes wx and wy in such a way
so that the correlation ρ between x and y will be maximized [62]:

232



Sensors 2022, 22, 3169

ρ =
wT

x CxywT
y√

wT
x CxxwxwT

y Cyywy

(12)

where Cxx and Cyy signify the nonsingular within-set covariance matrices and Cxy represent
the between-sets covariance matrix. The maximized ρ is calculated by setting the derivatives
of Equation (12) (with respect to wx and wy) equal to zero:

C−1
xx CxyC−1

yy CT
yx

^
wx = ρ2 ^

wx

C−1
yy CyxC−1

xx CT
xy

^
wy = ρ2 ^

wy

(13)

wx and wy can then be found out as the eigenvectors of the matrices C−1
xx CxyC−1

yy CT
yx

and C−1
yy CyxC−1

xx CT
xy, respectively, and the corresponding eigenvalues ρ2 are the squared

canonical correlations. It is sufficient to solve only one of the eigenvalue equations to obtain
the un-mixing matrix W as the solutions are related. Furthermore, the underlying source

signals
^
S can be estimated.

The components that seem to be artifacts can then be discarded by simply setting the

corresponding columns of the
^
S matrix to zero before the signal reconstruction.

2.3. WPD-CCA

The WPD algorithm can be utilized to decompose a single-channel signal into multi-
channel signal X where each column of matrix X represents the detailed and approximated
sub-band signals. The total number of generated sub-band signals would be equal to 2j,

where j denotes the level, a priori. To estimate the underlying true sources
^
S (Equation (9)),

these generated sub-band signals can then be used as the multi-channel input signals to

the CCA algorithm. After that, the component/s of
^
S which seem to be artifacts can be

discarded by making the corresponding columns of the matrix
^
S equal to zero. Bypassing

this newly obtained source matrix through the inverse of the un-mixing matrix W−1, the

multi-channel signals
^
X can be obtained. Finally, the cleaner signal

^
x can be produced by

simply summing all the columns of the matrix
^
X.

3. Methods

This section describes the benchmark dataset used, pre-processing, study design,
motion component identification, and evaluation metrics.

3.1. Dataset Description

A publicly available PhysioNet dataset [32,33,63] is used in this study that contains
“reference ground truth” and motion corrupted signals for both EEG and fNIRS modalities.
The details of the data recording procedure for EEG and fNIRS modalities were mentioned
in [47]. During the data acquisition, two channels having the same hardware properties
were placed on the test subject’s scalp at very close proximity (20 mm for EEG modality
and 30 mm for fNIRS modality), where the first channel was impacted with motion artifacts
for 10–25 s at regular 2 min interval and the second channel was left untouched and
undisturbed for the entire recording period. From the unimpacted channel (2nd channel),
the EEG/fNIRS signal was extracted, which was free from motion artifacts and referred to
as “reference ground truth” signal, whereas the impacted channel (1st channel) provided
EEG/fNIRS signal corrupted with motion artifacts. It is worthwhile to mention that both
the motion corrupted and “reference ground truth” signals were extracted simultaneously
from channels 1 and 2, respectively, for approximately 9 min for each of the trial/test
subjects. Additionally, the same channels were used to extract EEG/fNIRS data from all of
the test subjects.
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Twenty-three sets of EEG recordings, sampled at 2048 Hz, collected from six patients
in four different sessions, are available in the database. Each recording consists of one
motion corrupted EEG signal and one reference “ground truth” EEG signal. The average
correlation coefficient between the reference “ground truth” and motion corrupted EEG
signals is very high over the epochs where the motion artifacts are absent and the average
correlation coefficient drops significantly during the epochs of motion artifacts [32]. The
superimposed reference “ground truth” and motion corrupted EEG signals are illustrated
in Figure 1a.

Figure 1. Example of motion-corrupted EEG (a) and fNIRS (b) signals. Two signals (blue: ground
truth and red: motion-corrupted) are highly correlated during the motion artifacts free epochs. Boxed
areas show the epochs of motion corrupted signals. A zoomed version is presented underneath
each sub-plot.

fNIRS signals were recorded at two different wavelengths: 690 nm and 830 nm
wavelengths. There were 16 sets of fNIRS recordings (9 recordings at 830 nm wavelength
and 7 recordings at 690 nm wavelength) in total from 10 test subjects at a sampling frequency
of 25 Hz [33,63]. Like EEG recordings, each recording of fNIRS consists of one motion
corrupted fNIRS signal and one “reference ground truth” fNIRS signal. The overlaid
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“reference ground truth” fNIRS signal and motion artifact contaminated fNIRS signal is
depicted in Figure 1b.

3.2. Signal Preprocessing

Downsampling: As EEG signals can be partitioned into a few sub-bands, specifically
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) [64],
we downsampled all the 23 sets of EEG recordings from 2048 Hz to 256 Hz, which guar-
antees data reliability without losing any vital signal information and morphology. The
fNIRS signals were not upsampled/downsampled as the original sampling rate was 25 Hz
during acquisition.

Power line noise removal: To remove power line noise, a third-order Butterworth notch
filter with a center frequency of 50 Hz was utilized to remove 50 Hz and its subsequent
harmonics as a pre-processing technique for all the EEG and fNIRS signals.

Baseline Drift Correction: Both the EEG and fNIRS signals were found to have signifi-
cant baseline drift, which is defined as undesired amplitude shifts in the signal that would
result in inaccurate results if not corrected. To remove baseline drift from EEG and fNIRS
recordings, a polynomial curve fitting method was used to estimate the baseline, which
was then subtracted from the recorded raw signal.

3.3. Study Design

The simulations of this work were carried out in a PC with Intel(R) Core(TM) i5-8250U
CPU at 1.80 GHz which was equipped with 8 GB RAM. In-house-built MATLAB code
was written to pre-process the EEG and fNIRS data. The single-stage WPD and two
stages WPD-CCA methods were deployed in “MATLAB R2020a, The MathWorks, Inc.,
Natick, Massachusetts, USA”. Figure 2 depicts the motion artifacts elimination framework
presented in this study. An automated way for identifying motion corrupted components
of the preprocessed signal is also discussed.

Figure 2. Methodological framework for the motion artifact correction.

In this study, the whole 9 min of EEG/fNIRS data of each trial were analyzed at one
time using WPD and WPD-CCA methods. As mentioned earlier, WPD generates 2j num-
bers of sub-band signals where the level, j, is user-defined. Choosing j = 3 would produce
eight sub-band components, where the probability of getting mixed of motion-corrupted
components and artifacts-free signal components would be very high. Additionally, j = 5
would produce 32 sub-band signals, which would increase the computational complexity
of the algorithm. Hence, in this research work, we have chosen j equal to 4 for both EEG
and fNIRS recordings that produced 16 sub-band signals/components in total for each of
the EEG/fNIRS signals and ensured optimum performance. Again, 12 different wavelet
packets (db1, db2, db3, sym4, sym5, sym6, coif1, coif2, coif3, fk4, fk6, and fk8) were used in
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the single-stage motion artifact correction technique, i.e., WPD. Among these 12 wavelet
packets, 6 wavelet packets (db1, db2, db3, fk4, fk6, and fk8) were used in the WPD-CCA
method due to the relatively better performance shown by Daubechies and Fejer-Korovkin
wavelet packet families incorporated in the WPD technique. As several wavelet packets
were used in this study, in the rest of the manuscript, a subscript is added with WPD to
denote the corresponding wavelet packet used. As an example, WPD(db1) would refer to
that the db1 wavelet packet is used.

With the availability of sub-band signals decomposed using the WPD technique, the
artifact components can then be selected and removed. All the remaining sub-band signals
can then either be added up to reconstruct a cleaner signal or all the sub-band signals can
be fed as inputs to the CCA algorithm to determine the motion corrupted components to
enhance the signal quality further.

CCA technique needs the number of input channels to be at least two or greater. In
this work, single-channel EEG and fNIRS signals have been evaluated for the correction of
motion artifacts. Hence, it is required to generate several sub-band signals which would
be used as the inputs for the CCA algorithm. Six different WPD-CCA-based (WPD(db1)-
CCA, WPD(db2)-CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA)
two-stage artifacts removal technique has been realized for both single-channel EEG and
fNIRS signals.

3.4. Removal of Motion Artifact Components Using “Reference Ground Truth” Method

A common challenge in eliminating motion artifacts utilizing the aforementioned
artifact removal approaches is consistently identifying and removing the motion corrupted
components from the signal of interest and reconstructing a cleaner signal. The available
reference “ground truth” signal of EEG and fNIRS modalities were used to identify the
motion corrupted components as well as test the efficacy of the proposed algorithms. If a
component of the decomposed signal is removed and the signal is rebuilt using the other
components, the correlation coefficient between the newly reconstructed signal and the
ground truth signal will only rise if the removed component has motion artifacts. Using
this basic yet efficient notion, motion artifact-affected components of the decomposed
signal were discovered and discarded to reconstruct a cleaner signal, ensuring the best
performance of each suggested technique during evaluation.

Figure 3a shows an example motion corrupted EEG signal and below Figure 3b
represents the corresponding 16 sub-band components generated from that corresponding
EEG signal using WPD(sym4) algorithm. Figure 4a depicts an example motion corrupted
EEG signal and Figure 4b represents the resultant 16 CCA components where the input
of the CCA method was 16 sub-band signals generated from the motion corrupted EEG
signal using WPD(coif1).

Similarly, Figures 5a and 6a show two different motion corrupted fNIRS signals,
whereas Figures 5b and 6b represent the sub-band signals generated from WPD(db1), and
16 output CCA components where the input of the CCA algorithm consisted of 16 sub-band
signals generated from the motion corrupted EEG signal using WPD(fk8), respectively.

From visual inspection of the components generated from the single-stage (WPD) and
two-stage (WPD-CCA) motion artifacts removal techniques, it can be stated that in most
of the cases, motion artifacts components are usually found in one or two approximation
sub-band/CCA components. Although this was the case for most of the EEG and fNIRS
recordings, rather than blindly discarding these one or two sub-band/CCA components as
motion artifact components, only those components were discarded that, when removed,
improved the correlation coefficient of the reconstructed signal in comparison with the
available reference “ground truth” signal.
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Figure 3. An example motion-corrupted single-channel EEG signal (a) and the corresponding
16 sub-band components generated using WPD(sym4) algorithm (b). S15 denotes the Approxima-
tion sub-band signal having the lowest center frequency compared to the other sub-band signals,
i.e., D1–D15.
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Figure 4. An example motion-corrupted single-channel EEG signal (a) and the corresponding 16 CCA
components generated from the CCA algorithm (b).
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Figure 5. An example motion-corrupted single-channel fNIRS signal (a) and the corresponding
16 sub-band components generated using WPD(db1) algorithm (b). S15 denotes the Approxima-
tion sub-band signal having the lowest center frequency compared to the other sub-band signals,
i.e., D1–D15.
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Figure 6. An example motion-corrupted single-channel EEG signal (a) and the corresponding 16 CCA
components generated from the CCA algorithm (b).
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3.5. Performance Metrics

The efficacy and performance of each proposed artifact removal approach can be
computed using the provided reference “ground truth” signal for each modality, as detailed
before. Since the objective of each proposed technique is to reduce artifacts from the motion-
artifact contaminated signal, calculating ΔSNR and percentage reduction in motion artifacts
can assess the efficacy of that corresponding technique’s capacity to remove artifacts. Hence,
the difference in SNR before and after artifact removal (ΔSNR), and the improvement in
correlation between motion corrupted and reference “ground truth” signals, expressed by
the percentage reduction in motion artifact η [33], are utilized as performance metrics.

For the calculation of ΔSNR, the following formula is used which was given in [33]:

ΔSNR = 10 log10

(
σ2

x
σ2

ea f ter

)
− 10 log10

(
σ2

x
σ2

ebe f ore

)
(14)

where σ2
x , σ2

ebe f ore
, and σ2

ea f ter
represent the variance of the reference “ground truth”, motion

corrupted signal, and cleaned signal, respectively.
To calculate the percentage reduction in motion artifact η, the following formula is

used [33]:
η = 100

(
1 − ρclean − ρa f ter

ρclean − ρbe f ore

)
(15)

where ρbe f ore is the correlation coefficient between the reference “ground truth” and motion-
corrupted signals. The correlation coefficient between the reference “ground truth” and
the cleaned signals is denoted by ρa f ter, whereas ρclean is the correlation between the
reference “ground truth” and motion corrupted signals over the epochs where motion
artifact is absent.

In this study, we considered ρclean = 1, as in an ideal situation, the “reference ground
truth” and the motion corrupted signal over the artifacts-free epochs would always be
completely correlated. Hence, the following equation was used to estimate η:

η = 100

(
1 − 1 − ρa f ter

1 − ρbe f ore

)
(16)

4. Results

The results obtained in this work, using the various novel artifact removal techniques
are mentioned below where the performance metrics were calculated using Equations (14)
and (16).

4.1. Motion Artifact Correction from EEG Data

All the algorithms (18 in total) were applied on all the 23 recordings of EEG. Figure 7a–d
depicts four different examples of EEG recordings after the correction of the motion arti-
fact using WPD(db2), WPD(db3), WPD(fk6), and WPD(fk8) methods, respectively, whereas
Figure 8a,b illustrates example EEG signals after the motion artifact correction using
WPD(db1)-CCA and WPD(fk4)-CCA techniques, respectively.

WPD: Among all the 12 different approaches (WPD(db1),WPD(db2), WPD(db3), WPD(sym4),
WPD(sym5), WPD(sym6), WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), and WPD(fk8)),
the highest average ΔSNR of 29.44 dB with a standard deviation of 9.93 was found when
WPD(db2) algorithm was employed over all (23) EEG recordings. The best average per-
centage reduction in artifact was provided by WPD(db1) algorithm (53.48%) among these
12 single-channel motion artifact correction techniques.

WPD-CCA: Six different approaches namely WPD(db1)-CCA, WPD(db2)-CCA, WPD(db3)-
CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA were investigated, all of which
are two-stage motion artifacts correction techniques. The best average ΔSNR was found
to be 30.76 dB when WPD(db1)-CCA technique was applied over all the EEG records. The
highest average percentage reduction in artifact was also provided by the same algorithm,
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which is 59.51% among these six single-channel motion artifact correction techniques for
EEG modality.

Figure 7. Motion artifact correction from different example EEG signals using WPD(db2) (a),
WPD(db3) (b), WPD(fk6) (c), and WPD(fk8) (d) techniques.
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Figure 8. Motion artifact from example EEG signals using WPD(db1)-CCA (a) and WPD(fk4)-CCA (b)
techniques.

4.2. Motion Artifact Correction from fNIRS Data

All the algorithms (18 in total) were applied on all the 16 recordings of the fNIRS
modality. Figure 9a–d depicts four different example fNIRS signals after the correction
of the motion artifact using WPD(sym5), WPD(sym6), WPD(coif2), and WPD(coif1) techniques,
respectively, whereas Figure 10a,b illustrate example fNIRS signals after the motion artifact
correction using WPD(db1)-CCA and WPD(fk4)-CCA techniques, respectively.

WPD: Among all the 12 different approaches (WPD(db1),WPD(db2), WPD(db3), WPD(sym4),
WPD(sym5), WPD(sym6), WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), and WPD(fk8)),
the highest average ΔSNR of 16.03 dB with a standard deviation of 4.31 was found when
WPD(db1) algorithm was employed over all (16) fNIRS recordings. The best average percent-
age reduction in artifact was provided by WPD(fk4) algorithm among these 12 single-channel
motion artifact correction techniques.

WPD-CCA: Finally, the six different approaches namely WPD(db1)-CCA, WPD(db2)-
CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA, all of which are
two-stage motion artifacts correction techniques, were investigated for fNIRS modality. The
best average ΔSNR was found to be 16.55 dB when WPD(db1)-CCA technique was applied
over all the 16 fNIRS records. The highest average percentage reduction in artifact (41.40%)
was provided by WPD(fk8)-CCA technique among these six single-channel motion artifact
correction techniques for fNIRS modality.

Table 1 summarizes the results obtained (average ΔSNR and average percentage reduc-
tion in motion artifacts η) using the artifact removal techniques proposed in this paper, i.e.,
WPD(db1),WPD(db2), WPD(db3), WPD(sym4), WPD(sym5), WPD(sym6), WPD(coif1), WPD(coif2),
WPD(coif3), WPD(fk6), WPD(fk6), WPD(fk8), WPD(db1)-CCA, WPD(db2)-CCA, WPD(db3)-CCA,
WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA for all the EEG (23) and fNIRS (16)
recordings. The values inside first brackets in Table 1 denote the corresponding stan-
dard deviations.
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Figure 9. Motion artifact correction from example fNIRS signals using WPD(sym5) (a), WPD(sym6) (b),
WPD(coif2) (c), and WPD(coif1) (d) techniques.
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Figure 10. Motion artifact correction from example fNIRS signals using WPD(db1)-CCA (a) and
WPD(fk4)-CCA (b) techniques.

It is evident from the results of Table 1 that the cleaner EEG signals reconstructed using
the WPD(db1) technique provided the highest average η value (53.48%, with corresponding
ΔSNR value of 29.26 dB) compared to the other 11 types of single-stage motion artifact
correction approaches, whereas the greatest average ΔSNR value (29.44 dB) was provided
by WPD(db2) with corresponding average η value of 51.40%. Among these 12 different
single-stage artifact removal approaches, the lowest average η (50.00%) and smallest ΔSNR
(29.08 dB) was produced by the WPD(coif3) method. When two-stage motion artifacts
removal techniques were employed (WPD-CCA) using six different wavelet packets sepa-
rately, the best average correlation improvement (59.51%) and best average ΔSNR value
(30.76 dB) was produced by the WPD(db1)-CCA approach, whereas the lowest performance
was recorded utilizing the WPD(fk8)-CCA technique (average ΔSNR and η values of 28.86 dB
and 55.88%, respectively). Overall, an increase of 11.28% in the average percentage reduc-
tion in motion artifacts was found, while the best-performing two-stage WPD(db1)-CCA
was incorporated compared to the best-performing single-stage motion artifact correction
technique, namely WPD(db1). Additionally, the average ΔSNR value improved by 4.48%
(from 29.44 dB to 30.76 dB), while the best performing two-stage WPD(db1)-CCA technique
was utilized instead of the best-performing single-stage WPD(db2) method for the correction
of motion artifacts from single-channel EEG recordings.
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Table 1. Average ΔSNR and average percentage reduction in artifacts (η) for all the EEG and fNIRS
recordings. Corresponding standard deviations are shown inside the bracket. (*) represents the
best-performing metrics.

Type Technique

EEG (23 Records) fNIRS (16 Records)

Average ΔSNR
(in dB)

Average η
(in %)

Average ΔSNR
(in dB)

Average η
(in %)

Single-stage
motion artifact

correction
techniques

WPD(db1) 29.26 (10.29) 53.48 (33.35) * 16.03 (4.31) 26.21 (26.38)

WPD(db2) 29.44 (9.93) * 51.40 (33.59) 15.99 (4.49) 25.92 (28.86)

WPD(db3) 29.37 (10.01) 50.74 (33.55) 15.71 (4.52) 26.05 (29.11)

WPD(sym4) 29.27 (10.05) 50.40 (33.50) 15.54 (4.55) 26.14 (29.18)

WPD(sym5) 29.19 (10.09) 50.20 (33.47) 15.43 (4.57) 26.17 (29.22)

WPD(sym6) 29.11 (10.12) 50.05 (33.43) 15.35 (4.59) 26.16 (29.24)

WPD(coif1) 29.43 (9.94) 51.34 (33.59) 15.97 (4.49) 25.94 (28.88)

WPD(coif2) 29.25 (10.06) 50.35 (33.49) 15.51 (4.56) 26.15 (29.19)

WPD(coif3) 29.08 (10.13) 50.00 (33.42) 15.33 (4.60) 26.15 (29.25)

WPD(fk4) 29.21 (9.87) 52.58 (33.48) 16.11 (4.42) * 26.40 (27.53) *

WPD(fk6) 29.32 (10.03) 50.55 (33.51) 15.59 (4.54) 26.20 (29.08)

WPD(fk8) 29.15 (10.10) 50.15 (33.45) 15.38 (4.58) 26.25 (29.18)

Two-stage
motion artifact

correction
techniques

WPD(db1)-CCA 30.76 (12.29) * 59.51(25.99) * 16.55 (6.29) * 36.58 (11.22)

WPD(db2)-CCA 30.35 (12.50) 57.57 (25.89) 14.50 (5.85) 39.62 (10.59)

WPD(db3)-CCA 29.42 (12.57) 56.52 (25.71) 13.72 (5.82) 40.39 (10.60)

WPD(fk4)-CCA 30.36 (12.65) 58.83 (25.93) 14.97 (6.25) 38.32 (10.90)

WPD(fk6)-CCA 29.12 (13.00) 56.81 (25.16) 13.81 (5.70) 40.48 (10.43)

WPD(fk8)-CCA 28.86 (12.77) 55.88 (25.10) 12.41 (5.51) 41.40 (10.08) *

From Table 1, the cleaner fNIRS signals reconstructed using WPD(fk4) technique pro-
vided the highest average η value (26.40%) compared to the other 11 types of single-stage
motion artifact correction approaches. The greatest average ΔSNR value (16.11 dB) was also
provided by the same approach. Among these 12 different single-stage artifact removal
approaches, the lowest average η (25.92%) was produced by WPD(db2), whereas the small-
est ΔSNR value (15.33 dB) was produced by WPD(coif3). When two-stage motion artifacts
removal techniques were employed (WPD-CCA) using six different wavelet packets for
all the fNIRS signals, the best average correlation improvement (41.40%) was produced
by the WPD(fk8)-CCA technique and the lowest average percentage reduction in artifacts
(36.58%) was generated from WPD(db1)-CCA. On the other hand, the best average ΔSNR
value (16.55 dB) was obtained from the WPD(db1)-CCA technique, and the WPD(fk8)-CCA
technique produced the lowest ΔSNR value of 12.41 dB. Overall, an increase of 56.82% in
percentage reduction in motion artifacts was found while the best performing two-stage
motion artifacts technique, i.e., WPD(fk8)-CCA was incorporated compared to the best per-
forming single-stage motion artifact correction technique namely WPD(fk4). Additionally,
an increase of 2.73% in ΔSNR value was found when best performing two-stage WPD(db1)-
CCA was employed instead of the best-performing single-stage WPD(fk4) technique.

From Table 1, it is clear that two-stage artifacts correction techniques performed
relatively better compared to the single-stage artifacts correction approaches for both EEG
and fNIRS modalities.

The authors of [37] found that no brain activity was registered in trials 12 and 15.
Moreover, they found a poor correlation coefficient over the clean epochs of the recordings
of 12 and 15, and hence, they carried out their investigation on the remaining 21 recordings
of EEG. We have also observed a similar situation in this work. Trials 12 and 15 consistently
produced very bad performance metrics (ΔSNR and η values), while both single-stage and
two-stage artifact reduction techniques were applied proposed in this paper.
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Table 2 illustrates the average ΔSNR and average percent reduction in motion artifacts
using WPD(db1), WPD(sym4), WPD(coif1), and WPD(fk4). This time, the faulty trials (trials 12
and 15) were excluded and the experiments were conducted on the remaining 21 sets of EEG
recordings. The motion corrupted signal was decomposed into 16 sub-band components
using WPD and then the cleaner signals were generated by simply discarding the lowest-
frequency approximation sub-band component (for example, Figure 3, S15 component) and
adding the remaining 15 sub-band components (D1 to D15) directly. During this process,
the reference ground truth signal was only used to compute the performance metrics.

Table 2. Average ΔSNR and average percentage reduction in artifacts (η) for 21 recordings of EEG
modality. Corresponding standard deviations are shown inside the first bracket. (*) denotes the
best-performing metrics.

Type Method
EEG (21 Records)

Average ΔSNR (in dB) Average η (in %)

Single-stage motion
artifact correction

techniques

WPD(db1) 26.20 (6.35) 60.22 (21.79) *

WPD(sym4) 26.46 (6.56) 57.23 (22.11)

WPD(coif1) 26.70 (6.54) * 58.19 (22.04)

WPD(fk4) 26.36 (6.36) 59.37 (21.90)

From Table 2, it is clear that the cleaner EEG signals reconstructed using the WPD(db1)
technique provided the highest average η value (60.22%, corresponding ΔSNR value of
26.20 dB) compared to the other three types of single-stage motion artifact correction ap-
proaches, whereas the greatest average ΔSNR value (26.70 dB) was produced by WPD(coif1)
with an average η value of 58.19%. The values obtained following this process is a clear
indication that without the availability of “reference ground truth signal”, correction of
motion artifacts from EEG signal is still possible. The similar approach can also be used for
motion artifacts correction from fNIRS signals, but will be considered in a future work.

5. Discussion

In this paper, we have proposed two novel methods (WPD and WPD-CCA) using
four different wavelet packet families with three different vanishing moments, resulting in
18 different techniques (WPD(db1),WPD(db2), WPD(db3), WPD(sym4), WPD(sym5), WPD(sym6),
WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), WPD(fk8), WPD(db1)-CCA, WPD(db2)-
CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA) for the correc-
tion of motion artifacts from single-channel EEG and fNIRS recordings. The performance
metrics (ΔSNR and η) calculated and reported in the “Results” section utilizing these
18 approaches are a clear indication of the efficacy of our proposed techniques. Both
the Daubechies and Fejer-Korovkin wavelet packet families relatively performed better
compared to the Symlet and Coiflet wavelet packet families in removing motion artifacts
from EEG and fNIRS recordings. For this reason, while implementing the two-stage arti-
facts correction technique, we have used only the Daubechies and Fejer-Korovkin wavelet
packet families.

As previously stated, DWT, EMD, EEMD, VMD, EMD-ICA, EMD-CCA, EEMD-ICA,
EEMD-CCA, VMD-CCA, SSA, and DWT, along with approximation sub-band filtering,
adaptive filtering (ARX model with exogenous input), etc., were commonly employed for
the correction of movement artifacts from motion corrupted EEG and fNIRS signals. Each
of these methods suffers from some limitations.

Using DWT-based approaches, to improve signal quality from motion-corrupted phys-
iological data, selecting the suitable wavelet is critical and rather complex. To date, there is
no hard and fast rule for selecting the appropriate wavelet for the specific physiological
signal of interest; instead, wavelets are often selected depending on the morphology of the
signal. As a result, improper wavelet selection would result in inefficient denoising.
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The EMD-based motion artifact reduction approach suffers heavily from the “mode
mixing” issue [33], which may result in an incorrect outcome. To fix this problem, the
EEMD approaches are employed [33,36]. Although EEMD is not affected by the mode
mixing problem, it still requires a prior declaration of the number of ensembles to be
employed, which is determined through trial and error basis [33].

To make use of the SSA algorithm, for the correction of movement artifacts from
physiological signals, a prior declaration of the window length and the required number of
reconstruction components is necessary, which makes SSA inefficient as well [37].

The authors of [40] employed DWT along with approximation sub-band filtering using
total variation (TV) and weighted TV. While reconstructing the cleaner signal, the first three
high-frequency detailed sub-band signals were rejected, since they included no important
information from the EEG signal. However, detecting non-useful sub-band signals when
utilizing DWT-based algorithms is very challenging for removing motion artifacts from
EEG and fNIRS signals. Furthermore, the value of the regularization factor used to address
the optimization problem of TV and MTV approaches was picked without explanation.

Siddiquee et al. [52] studied the autoregressive exogenous input model (adaptive
technique) to model motion corrupted segments as output and IMU data as exogenous
input. Only four test participants’ fNIRS data were used by the authors to demonstrate the
efficacy of their prescribed approach. One of the most important aspects of adopting this
technique is the precise synchronization of fNIRS and IMU data. Furthermore, if the epoch
duration of the motion artifacts is sufficiently long (specifically, the sample size), modeling
the artifacts mathematically using the least square method would necessitate higher-order
models, which would eventually cause instability. Hence, incorporating this method to
remove motion artifacts would be extremely difficult in a real-world scenario.

ICA and CCA algorithms are multi-channel signal processing algorithms, meaning
there must be two (or more) channel data values as input. Therefore, ICA and CCA
algorithms cannot be incorporated independently for the processing of single-channel data.
Additionally, since ICA uses higher-order statistics (HOS) and CCA uses second-order
statistics (SOS) [33], the CCA algorithm is computationally efficient in comparison with
ICA. That is why previous studies as well as this study used the CCA algorithm as a
second-stage signal processing method.

WPD is the more generalized version of DWT, but the former provides better signal
decomposition which enhances the signal quality for further processing. Additionally, WPD
is better in denoising in the sense that there is no necessity of identifying and discarding
any sub-band signals other than the motion corrupted sub-band component. Additionally,
the results obtained in this work utilizing the WPD method for 12 different wavelet packets,
show a little variation while computing ΔSNR and η. This is a clear indication that
applying WPD compared to the DWT is much more robust and efficient in terms of
performance metrics improvement.

Although the two-stage motion artifacts removal approaches (WPD-CCA) proposed
in this paper performed better compared to the single-stage artifacts correction techniques
using WPD, the WPD-CCA technique will not be able to identify the motion corrupted
CCA components in the absence of a ground truth signal, which is a limitation of two-stage
artifacts removal technique. Hassan et al. provided an alternate technique in [65], in
which the authors employed the autocorrelation function to detect the motion corrupted
components. The automated artifact component selection approach introduced in [65]
employing the autocorrelation function has not been experimented within this study and
will be considered in a future study.

However, even in the absence of the “reference ground truth” signal, our proposed
single-stage motion artifact reduction approach (WPD) would produce optimal results.
While decomposing the signal of interest (EEG/fNIRS) using WPD, it was visually seen
that the approximation sub-band component (having the lowest frequency band compared
to the rest of the sub-band components) included the highest percentage of motion artifacts.
Hence, discarding this noisy sub-band component and reconstruction of the signal using
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the remaining sub-band signals would reduce the motion artifacts to a great extent. The
validation of this statement is supported by Table 2, where the performance metrics (ΔSNR
and η) were reported and produced reasonable noise reduction.

Throughout this work, while estimating the percentage reduction in motion artifacts η,
we have considered Equation (16), instead of Equation (15), where we have assumed that
ρclean = 1 as in an ideal situation, the “reference ground truth” and the motion corrupted
signal over the artifacts-free epochs would always be completely correlated. However,
in practice, the value of ρclean would always be less than 1, because it is impossible to
extract a “reference ground truth” signal which would completely be similar compared
with a motion-corrupted signal during the artifacts-free epochs. It is counter-intuitive that a
lower value of ρclean would produce a lower value of η; it is just the opposite. For example,
let ρbe f ore = 0.6; ρa f ter = 0.8; ρclean = 0.95, from Equation (15), we would get η equals
57.14% and Equation (16) would give 50%. That is why choosing ρclean = 1 would give a
worst-case scenario result. Additionally, this same formula is used in [40–42] assuming the
ideal “reference ground truth signal”.

6. Conclusions

In this extensive study, two novel motion artifact removal techniques have been
proposed, namely wavelet packet decomposition (WPD), and WPD in combination with
canonical correlation analysis (WPD-CCA) for EEG and fNIRS modalities. Furthermore,
the proposed algorithms were investigated by 18 different approaches where four dif-
ferent wavelet packet families namely Daubechies, Symlet, Coiflet, and Fejer-Korovkin
wavelet packet families were utilized. WPD-CCA techniques can be used on single-channel
recordings as the WPD algorithm can decompose a single-channel signal into a predefined
number of sub-band components which can be fed as the input channels for the CCA
algorithm. The performance parameters obtained from all these approaches are a clear
indication of the efficacy of these algorithms. The novel WPD(db1)-CCA and WPD(fk8)-CCA
technique provided the best performance in terms of the percentage reduction in motion
artifacts (59.51% and 41.40%) when analyzing the EEG and fNIRS data, respectively. On the
other hand, the WPD(db1)-CCA technique generated the highest average ΔSNR (30.76 dB
and 16.55 dB) for both EEG and fNIRS signals. An alternative approach for removing
motion artifacts from EEG signals using the WPD method has also been proposed where
the lowest-frequency approximation sub-band component was discarded and a clean EEG
signal was reconstructed by adding up the remaining sub-band components. By computing
the performance metrics, it has been shown that this single-stage motion artifacts correction
technique is also capable of removing motion artifacts to a great extent. In the future, deep
learning-based models will be investigated for the automated detection and removal of
artifacts in physiological signals (EEG, ECG, EMG, PPG, fNIRS, etc.). New methods based
on the use of different multivariate signal processing approaches will be developed for
the elimination of other artifacts from the EEG and fNIRS signals that are recorded using
multiple electrodes.
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Abstract: Tasks which require sustained attention over a lengthy period of time have been a focal
point of cognitive fatigue research for decades, with these tasks including air traffic control, watch-
keeping, baggage inspection, and many others. Recent research into physiological markers of mental
fatigue indicate that markers exist which extend across all individuals and all types of vigilance
tasks. This suggests that it would be possible to build an EEG model which detects these markers
and the subsequent vigilance decrement in any task (i.e., a task-generic model) and in any person
(i.e., a cross-participant model). However, thus far, no task-generic EEG cross-participant model
has been built or tested. In this research, we explored creation and application of a task-generic
EEG cross-participant model for detection of the vigilance decrement in an unseen task and unseen
individuals. We utilized three different models to investigate this capability: a multi-layer perceptron
neural network (MLPNN) which employed spectral features extracted from the five traditional EEG
frequency bands, a temporal convolutional network (TCN), and a TCN autoencoder (TCN-AE), with
these two TCN models being time-domain based, i.e., using raw EEG time-series voltage values.
The MLPNN and TCN models both achieved accuracy greater than random chance (50%), with
the MLPNN performing best with a 7-fold CV balanced accuracy of 64% (95% CI: 0.59, 0.69) and
validation accuracies greater than random chance for 9 of the 14 participants. This finding demon-
strates that it is possible to classify a vigilance decrement using EEG, even with EEG from an unseen
individual and unseen task.

Keywords: EEG; deep learning; vigilance decrement; sustained attention; mental fatigue;
cross-participant; cross-task; task-generic

1. Introduction

Mental fatigue is a significant contributor to a decline in performance for sustained
attention type tasks [1,2], also known as vigilance tasks. Vigilance tasks require operators to
remain focused and alert to stimulus during a task [3], and in the control and surveillance
of today’s automated systems, vigilance typically suffers either due to the low level of
workload and stimulus associated with the task [4] or due to the mental demands vigilance
requires over a lengthy task [5].

A decline in performance during these vigilance tasks is called a vigilance decrement,
and it is defined as a decrease in probability of detecting rare but significant events within
vigilance tasks [6]. Some form of mental fatigue is typically associated with a vigilance
decrement, and this mental fatigue has been linked to increased human error rate [7–9].
If this mental fatigue could be detected using artificial intelligence (AI), then systems could
be developed to regulate mental fatigue by varying levels of stimulus to aid in sustained
attention [10,11] or by providing recovery time [12].

Mental fatigue has also been linked to specific changes in physiological measures,
such as specific increases and decreases in magnitude for the average spectral power
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of different frequency bands for electroencephalography (EEG) signals [13,14]. Recent
machine learning research has utilized EEG signals to classify mental fatigue in specific
tasks such as driving [15]; however, a task-generic model which can accurately classify
either mental fatigue or a vigilance decrement through EEG signals has not yet been
generated. The EEG markers of mental fatigue during vigilance tasks are consistent across
both participants and different types of tasks, and mental fatigue is typically always
associated with a vigilance decrement in vigilance tasks [16], thus, a model could be built
which is capable of performing classification of a vigilance decrement in any vigilance
task, through detection of mental fatigue in EEG signals, in any individual’s EEG (i.e., a
cross-participant model).

Recently, Yin et al., pursued the goal of building a task-generic cross-participant
mental fatigue detector using extreme learning machines (ELMs) [17]. Two tasks were
used which had the participants replicate the role of an aircraft’s automated cabin air
management system. Eight participants performed Task 1, and six different participants
performed Task 2. Each task varied parameters within the task to create “low” and “high”
mental fatigue conditions, with these conditions then corresponding to labeled trials of
their respective condition. Models were then built from the EEG data for each task and
each condition using entropy features and spectral features (average power of the theta,
alpha, beta, and gamma bands) as input features. The models were then tested upon the
participant data of the opposite task, with classification accuracies ranging from 65% to
69%. An issue with relating this to vigilance decrement detection is that the tasks simply
varied parameters within the task to create “low” and “high” mental fatigue conditions.
These conditions were then used as the labels to train the classifier. This means the
classifier was trained to identify EEG signals which correspond to these “low” and “high”
mental fatigue conditions and not actual vigilance decrements. For proper identification
of a vigilance decrement, instead an objective measure of the participant’s performance
which is associated with the vigilance decrement (such as accuracy and/or response time)
would need to be recorded and used to generate the labels of vigilance decrement vs. no
decrement for the machine learning classifier. Another issue is that it is unclear if the two
stated tasks are analogous to two separate tasks in the real-world, such as the difference
between driving and monitoring closed-circuit security cameras, as both tasks used in the
experiment had participants performing the same role of the aircraft automated cabin air
management system, with only certain parameters and conditions being varied between
the two tasks. This suggests that their results are applicable to a varied version of the same
type of task that is not truly task-generic.

In this research, we build three different cross-participant models which use EEG
signals to perform task-generic classification of the vigilance decrement on any individual.
Two of the models are time-domain based, meaning they use the raw EEG time-series
voltage values as their data, and the third model is frequency-domain based, using spec-
tral features extracted from the average power of the five clinical EEG frequency bands.
The data is comprised of two EEG datasets, with each dataset containing different partici-
pants and each dataset containing different vigilance tasks (three different tasks in total).
These datasets were collected by the 711th Human Performance Wing (HPW) in partner-
ship with the University of Dayton through two different experiments for the purpose
of studying event related potentials (ERPs) during a vigilance decrement across various
vigilance tasks [18,19]. Models are trained on data from two of the vigilance tasks and only
a subset of the participants and then tested using data from a separate vigilance task that
the model has not seen, as well as participants that the model has not seen, which is crucial
in order to avoid overestimated test accuracies in cross-participant EEG models [20].

The significant contribution of this research is a model which is capable of detecting
a vigilance decrement in unseen participants in an unseen task, as evidenced by the best
performing model with 7-fold CV accuracy significantly greater than random chance at
64% (95% CI: 0.59, 0.69). This finding is novel as the cross-participant model was tested
with a separate task that the model had not seen, meaning the vigilance decrement was
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classified in unseen participants in an unseen task, and thus far, a task-generic model which
is capable of vigilance decrement classification in an unseen task has not yet been created.
Previous work by Yin et al. in building a task-generic model did not utilize a different type
of task in order to validate their model and instead only varied parameters within a single
task of operating an aircraft’s cabin air management system in order to create two tasks.
Our research in contrast utilized three different types of tasks (the air traffic controller task,
the line task, and the 3-stimulus oddball task), each of which are well established in the
literature as different kinds of vigilance-type tasks.

This paper has the following structure. First, in Section 2, background is provided for
the vigilance decrement and how it is linked to EEG. Next, in Section 3, we provide our
methodology, first providing details on the datasets collected and the tasks used within
those datasets, followed by details for the training and testing of all three models. Then,
in Section 4, results are presented for all three models. Finally, in Section 5, results are
compared and discussed, with conclusions and future work following in Section 6.

2. Related Work

Decision making and how it deteriorates in stressful work environments has been
extensively studied since the late 1800s [6]. One of the main phenomena studied has
been the concept of vigilance, which is the quality or state of being wakeful or alert.
Tasks which require vigilance fall under a taxonomy developed by Parasuraman and
Davies [21], with the taxonomy classifying tasks into different categories based on specific
information-processing transactions within the tasks themselves, such as signal discrim-
ination (successive or simultaneous), task complexity, event rate, and sensory modality.
For signal discrimination, simultaneous tasks are ones in which the critical stimulus and
non-critical stimulus are both present at the same time for participants to use for compari-
son. Successive tasks, however, do not provide these stimulus to the participant at the same
time, and therefore, it requires the participant to hold the non-critical stimulus in memory.

2.1. Vigilance Decrement

Extensive research over the decades on vigilance and the vigilance decrement has
found that the behavioral cause of the decrement is due to performing attention-demanding
tasks over an extended period of time, ranging from tens of minutes to hours, depending
on the task and its cognitive demand [22]. Performing these attention-demanding tasks
for extended periods of time results in mental fatigue and/or a decrease in sustained
attention [23], with mental fatigue being defined as a gradual and cumulative phenomenon
that is increased in magnitude by time spent on a tedious but mentally demanding task [24].

Numerous factors have also been found to affect the magnitude and timing of the vig-
ilance decrement [25]. For magnitude, simultaneous stimulus, shorter signals [26,27], task
type/source complexity [28], and stimulus event rate [29,30], all result in a greater vigilance
decrement. For timing, the vigilance decrement varies depending on the task demands,
with the vigilance decrement occurring earlier in more difficult tasks [22], and typically
occurring within the first 20–35 min of a task, with half of the decrement occurring in the
first 15 min [31].

Performance Measurement

To identify in data whether a vigilance decrement has occurred, some measure of
task performance through either accuracy, shown in Equation (1), response time (RT),
shown in Equation (2), or both, is needed. Accuracy and RT are frequently correlated,
such that slower responses are more accurate and vice versa, and this is referred to as the
speed-accuracy trade-off [32,33].

Accuracy =
hits + correct rejections

hits + false alarms + misses + correct rejections
. (1)

Response Time = Tresponse − Tstimulus. (2)
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Due to this correlation, it is best to use both accuracy and RT to assess performance,
and many different measures have been developed to combine both speed and accu-
racy into a single measure of performance. For example, there is the Inverse Efficiency
Score (IES), which is the ratio of the mean RT and the proportion of correct responses
(PC) [34], the Rate-Correct Score (RCS) which is the inverse of the correct RT-based IES [35],
the Balanced Integration Score (BIS) which is a combined z-score of RT and accuracy [36],
and many others. Recently, research by Mueller et al. examined 12 different measures of
accuracy and RT on a vigilance task to determine their sensitivity to the vigilance decrement
and found that most single measures which combined accuracy and RT were slight im-
provements over just accuracy or RT alone [37]. While they found that the Linear Ballistic
Accumulator model was the most sensitive and representative measure of the vigilance
decrement, they also noted that it was difficult and cumbersome to use and recommended
the BIS measure overall.

The BIS measure is designed to give equal weights to both PCs and RTs, hence the name
Balanced Integration Score, and is shown below in Equation (3). First, the PCs and RTs are
standardized as shown in Equations (4) and (5), with participants j and standard deviations s,
and then once standardized, the standardized RT is subtracted from the standardized PC. This
gives the difference in standardized mean correct RTs and PCs. zpc and zrt can be calculated
individually for each participant j, giving the BIS measurement for only that participant,
or across all participants, giving the BIS measurement for the group.

BISj = zPCj − zRTj . (3)

zpcj =
PCj − PC

spcj

. (4)

zrtj =
RTj − RT

srtj

. (5)

When calculating measures such as BIS from data collected during a vigilance task,
trials must be binned in some manner for the standardized measures of zpc and zrt to be
calculated. A common method is to divide the trials over the duration of the experiment
into four time segments (bins) [19,37,38]. Once the number of bins is selected, BIS can then
be calculated and compared for each bin to determine whether a vigilance decrement has
occurred for the participant; a decreasing BIS indicates a decrement in vigilance. A typical
method is to plot the bins on a graph to view the participant’s performance over the course
of the task as well as to plot a line of best fit (least squares) to see how their performance
trended over the course of the task, with a negative slope indicating a vigilance decrement
over the course of the entire task.

2.2. EEG

Physiological measurements such as EEG, electrocardiography (ECG), and electroocu-
lography (EOG) have been progressively utilized to better understand the underlying
mechanisms of mental fatigue and the vigilance decrement over the past two decades,
with EEG receiving significant attention in research for its insight into the status of the
brain [16]. EEG signals are a measure of the electrical activity in the brain using electrodes
distributed over the scalp, and EEG is often referred to by its different clinical frequency
bands, namely delta (2–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–29 Hz), and gamma
(33–80 Hz). A physiological measurement such as EEG has the advantage of providing a
more objective measurement of fatigue than a behavioral measure, as behavioral measures
are subjective in nature and left to the experimenter’s or participant’s judgment. EEG stud-
ies investigating neural correlates of fatigue have found differing results based on the type
of fatigue that the participant is experiencing, with the primary difference being fatigue
from sleepiness (sleep fatigue) versus accumulating fatigue from cognitive processes and
mental workload (mental fatigue). For example, neural correlates of sleep fatigue have
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been found to differ based on the task that is being performed. Driver fatigue research
found that symptoms associated with sleepiness (e.g., prolonged eye closure) correlated
to increases in spectral power for the alpha and beta bands [13], while in pilot fatigue
studies, sleepiness was more associated with the opposite effect, with decreases in spectral
power for the alpha band [39,40]. Mental fatigue, however, has shown consistent neural
correlates of increased spectral power for the alpha band across tasks [16]. This allows
for the detection of mental fatigue across tasks and across participants. However, given
that both types of fatigue can contribute to changes in performance, such as the vigilance
decrement, yet have differing neural correlates, it is important to distinguish sleep fatigue
from mental fatigue to reduce confounding variables.

Utilizing these neural correlates of EEG has been useful for both within-participant
and cross-participant detection of the vigilance decrement, with all previous research being
within-task detection of the vigilance decrement. EEG spectral features have been common
features used to detect drowsiness, mental fatigue, and alertness [41,42]. Power spectral
density (PSD) in combination with independent component analysis [42], the mean power
of the frequency bands and their ratios [41,43,44], power spectral indices of wavelet trans-
forms [45], and full spectrum log power are all spectral features that have been used [46].
Directed connectivity has also been utilized using relative wavelet transform entropy and
partial directed coherence to estimate the strength and directionality of information flow
between EEG nodes [47,48].

3. Methods

3.1. Datasets

In this study, two existing EEG datasets are utilized, each collected through experi-
ments conducted previously by the United States Air Force Research Laboratory, 711th
Human Performance Wing (HPW), in partnership with the University of Dayton. These
experiments were each conducted for the purpose of studying ERPs during a vigilance
decrement within various vigilance tasks [18,19]; however, the experiments were conducted
separately and did not coincide. All data was de-identified before it was shared with us
for our experiments, and because it was de-identified existing data, a Human Research
Protection Plan review determined this research to be not involving “human subjects”
under US Common Rule (32 CFR 219) on 6 June 2020.

In one experiment, 32 participants (10 men and 22 women, ages ranging from 18
to 36 with a mean of 22.7, with 27 being right-handed) completed three different tasks
across a two hour session in the following order: the Hitchcock Air Traffic Controller (ATC)
Task [49], the Psychomotor Vigilance Test (PVT) [50], and the 3-Stimulus Oddball Task [51].
The PVT was omitted from our research as the task length was short in duration (<10 min)
along with a few amount of trials (<100), making it difficult to segment into bins and
quantify with the BIS measure. The Hitchcock ATC task and 3-Stimulus Oddball Task
were performed as described in Sections 3.2.1 and 3.2.2, and trials for each task occurred as
follows. The ATC Task included 200 practice trials with feedback provided every 50 trials,
then a short break followed by 1600 trials without feedback or breaks. The 3-Stimulus
Oddball Task included 20 practice trials, a short break, and 4 blocks of 90 trials each,
with performance feedback after each block. Practice trials across both tasks are not utilized
in analysis or model training. Some participants had incomplete data, and only the data
from the 14 participants with complete datasets were analyzed.

The second experiment consisted of two sessions for each participant, conducted
over two separate days, and utilized the line task described in Section 3.2.3. Each day,
participants performed 200 practice trials and 4 blocks of 400 experimental trials each, with a
short few minute break offered between each block. There were 29 participants; however,
only 26 of the participants returned the second day. The data from all 29 participants was
utilized in the current study. Participant demographics were not available for this.

Experiment details and EEG/ERP analysis can be found in references [18,19], with
summary information provided here. For both datasets, the tasks were presented on an
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LCD 60 Hz monitor using Psychophysics Toolbox [52] within MATLAB. EEG was recorded
using a BioSemi Active II 64 + 2 electrode cap (10–20 system) with the 2 reference electrodes
placed over the mastoids (with no additional detail provided), with a sampling rate of
512 Hz. Vertical EOG (VEOG) and Horizontal EOG (HEOG) were also recorded [18,19].
Baseline resting EEG was recorded before starting the experiment and checked for artifacts.
Voltage offsets were reduced to less than 40 mV to ensure low impedance, and any high
impedance electrodes were re-gelled and re-applied.

3.2. Vigilance Decrement Tasks
3.2.1. Hitchcock Air Traffic Controller Task

The Hitchcock ATC Task was designed to test theories surrounding sustained attention,
workload, and performance, within a standardized controllable task that is relatively more
representative of the real world [53]. Stimulus of a filled red circle and three concentric
white circles are continually displayed to the participant. Two white line segments are then
displayed over these stimuli in different configurations, as seen in Figure 1. The red circle
represents a city, and the white line segments represent aircraft. Participants are instructed
to respond (through press of a key on a keyboard) only if the two jets are on a collision
course with one another, i.e., the white lines are colinear. If they are, this is a critical event,
and a small minority of trials are critical events (3.3%), the rest being non-critical as seen in
Figure 1. The stimulus appear every 2 s and only remain on screen for 300 ms.

Figure 1. Examples of the different Air Traffic Controller Task stimuli [19].

3.2.2. 3-Stimulus Oddball Task

The 3-Stimulus Oddball Task was designed to assess how individuals discriminate tar-
gets, non-target distractors, and standard distractors, in various challenging scenarios [51].
In this task, three different visual stimuli can appear: targets, non-target distractors,
and standard distractors. Targets and non-target distractors each appear separately in
10% of trials, and standard distractors appear in the remaining 80% of trials. As seen in
Figure 2, the target is a large circle, the standard distractor a small circle, and the non-target
distractor a large square. Stimuli are every 2 s with a 75 ms duration. Participants are
instructed to respond only to targets by pressing a response key on a keyboard, ignoring
non-target distractors and standard distractors.
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Figure 2. Shapes for the 3-Stimulus Task. The target is a large circle (A), the non-target distractor a
large square (B), and the standard distractor a small circle (C) [18].

3.2.3. Line Task

In the line task, participants observe a series of pairs of parallel lines and select
whether or not each stimulus is critical. The critical stimuli vary among four conditions
for the task, and with critical stimuli comprising 10% of the stimuli. The parallel lines are
0.75 mm in width and variable in length based on trial condition [29]. The first and second
conditions are successive-discrimination tasks, meaning the participant has to hold the
critical stimulus in memory. In the first condition, the set of lines both being 1.46 cm (short)
is the critical stimulus, with both lines being 1.8 cm (long) as the non-critical stimulus. In the
second condition, these are reversed. The third and fourth conditions are simultaneous-
discrimination tasks, meaning the participant is provided both the critical and non-critical
stimulus at the same time for comparison. In the third condition, the critical condition
occurs when the lines are different in length while in the fourth condition, these are
reversed. Critical stimuli are sequenced such that there are at least four non-critical stimuli
in between each pair of critical stimuli. Each participant completed both simultaneous and
successive discrimination conditions (counterbalanced across sessions). Stimulus appeared
on screen for 150 ms and total trial duration was randomized to be between 1.3 s and 1.7 s.
Figure 3 shows an example of the line stimulus.

Figure 3. Examples of the different line task stimuli, with lines being the same length on the left
and different lengths on the right.

3.3. Preprocessing and Epoching of EEG Signals

Preprocessing of EEG data was performed through script batch processing using
EEGLAB [54] and consisted of a combination of best practice steps from both Makoto’s
preprocessing pipeline [55] and the PREP pipeline [56]. Details for these steps can be found
in Appendix A but worth noting is that the data is downsampled to 250 Hz, and that
EOG is used for Independent Component Analysis (ICA) to remove eyeblink artifacts
from the EEG. All tasks were relatively similar in trial duration, ranging from 1 s to 1.7 s,
with inter-trial duration ranging from 1.2 s to 2 s. To avoid an epoching window which
extends into the following trial for some tasks but not others, a 1 s epoching window
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was selected based on both trial duration and inter-trial duration. Additionally, analysis
performed by the 711 HPW demonstrated that a 1 s window following stimulus-onset
contained the majority of EEG activity for each task [18,19]. This resulted in a sequence
length of 250 for observations across all three tasks.

For labeling of the EEG signals, trials are divided over the duration of the task into four
time segments (bins) for each task, and the BIS measure (described in Section 2.1) is used
to determine participant performance for each bin, with BIS values and the corresponding
z-scores calculated separately for each individual. Using this method resulted in a BIS
measure of a participant’s performance for the first, second, third, and fourth quarters of
the task, allowing analysis of a participant’s performance as the task progressed in time.
Performance for each task and each participant are plotted in Figure 4, including the best-fit
line for each task and each participant. From the best fit lines in Figure 4, it can be seen
that every participant, for every task, was at their highest performing state in the 1st bin,
meaning every bin following the 1st bin was a vigilance decrement in comparison to the
1st bin. However, across the tasks, participants had varying performance following the
1st bin as can be seen in Figure 4, with some experiencing their largest decrement in the
2nd, 3rd, or 4th bins. This makes labelling across all four bins difficult while trying to also
maintain a balanced dataset. Given this challenge, we opted to use the 1st and 4th bins
for our model creation, labelling the 1st bin as attentive, and the 4th bin as a decrement,
resulting in a perfectly balanced dataset.

Proper labeling of the data is crucial for a machine learning model, and utilizing
only the 1st bin as attentive maximizes tying the most attentive trials to their respective
neural correlates. Additionally, the underlying mechanism that allows success in building
a task-generic model is that mental fatigue is consistent in producing a vigilance decrement
in these tasks and that it is consistent in its neural correlates across different types of
vigilance tasks [16]. As mental fatigue has been shown to accumulate over the duration of
a vigilance task, the EEG data for the last bin is most likely to have the neural correlates of
mental fatigue. As the last bin is a vigilance decrement for all participants across all tasks,
using the 1st and 4th bins should maximize the likelihood that the data is labeled properly
and will contain the underlying neural correlates to best ensure its success.

3.4. Model Creation

To be effective in detection across participants, a model must be highly generalizable
and resistant to the effects of non-stationarity and individual differences. For training
and testing of a cross-participant model, this requires that data from participants used for
model training must not be used for model validation or testing [20]. This is due to the
individual differences and non-stationarity that are inherent within EEG data. If this rule is
not followed, the model will likely have overestimated test accuracies, and additionally,
the model will not train to be generalizable to a more general population, as the model
will learn parameters which are likely only accurate for those participants. Additionally,
as this is a task-generic model, the model should be tested with a vigilance task that is
unseen by the model. To follow these guidelines, we adopted a leave-two-participants-
out cross-validation (L2PO-CV) training method for all three models, resulting in 7-folds.
The ATC and line tasks were used to train the model, with the 3-Stimulus Oddball Task
used for validation. This L2PO-CV method was used for training and validation of all
three models. Both the ATC task and the line tasks have the greatest amount of trials,
with each participant having performed four times more trials in each of those tasks than
the 3-Stimulus Oddball task, resulting in a more desirable ratio of training to validation data
than if the ATC or line tasks were used for validation. Additionally, this ensures there is
training data from both experiments to allow additional generalization for the model, as the
line task was performed in a separate experiment, with an independently selected pool
of participants. Ideally, CV would be performed across all three tasks; however, this was
infeasible due to the immense amount of training time it would require. All together this
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results in training folds with 41 participants and 53,600 observations total and validation
folds with 2 participants and 360 observations total.

A)

B)

C)

Figure 4. BIS measures and the corresponding best-fit lines for: (A) Air Traffic Controller task (top),
(B) Oddball task (middle), and (C) Line task (bottom). The lines represent a participant’s BIS measures
over the duration of the task, with lines on the right being best-fit lines. BIS measures vary from
bin to bin for each participant, with some participants decreasing steadily throughout the entire
task, some decreasing initially and then recovering, or some alternating between decreasing and
increasing BIS. Note that every participant’s best-fit line has a negative slope, indicating that every
participant’s first bin is their most attentive bin with their largest BIS measure.

As these cross-participant models are also task-generic, features must be invariant for
not only the participants but also the task. For the frequency-domain model, the average
power of the five traditional EEG frequency bands for all 64 scalp electrodes were selected as
features, resulting in 320 spectral features for each observation, as literature demonstrated
that the average power correlates with mental fatigue and is invariant across task, time,
and participant [16]. However, an alternative to performing feature extraction by hand is
to have the model extract salient features itself. Recently, autoencoders (AEs) have been
shown to be more effective than handcrafted features in their ability to compose meaningful
latent features from EEG across various classification tasks [57–59]. Another recent deep
learning innovation is Temporal Convolutional Networks (TCNs), which are a new type of
architecture for time-series data. TCNs have the advantage of processing a sequence of
any length without having a lengthy memory history, leading to much faster training and
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convergence when compared to Long Short-Term Memory (LSTM) models [60]. For the
time-domain models, a TCN-AE is used for one of the models, and a TCN for the other.
In the next two sections, general information on TCNs and AEs is provided, followed by
the proposed architectures, hyperparameters, and training and testing parameters for all
three models.

3.5. Temporal Convolutional Networks

A TCN is a type of convolutional neural network (CNN) for 1D sequence data and
was recently developed by Bai et al. [60]. A TCN utilizes dilated convolutions to process
a sequence of any length, without having a lengthy memory history. TCNs are typically
causal, meaning there is no information leakage from the future to the past; however, they
can be non-causal as well. The primary elements of a TCN consist of the dilation factor
d, the number of filters n, and the kernel size k. The dilation factor controls how deep the
network is, with dilations typically consisting of a list of multiples of two. Figure 5 provides
a visual example of a causal TCN and aids in understanding the dilated convolutions on
a sequence, with the dilation list in the figure being (1,2,4,8). The kernel size controls the
volume of the sequence to be considered within the convolutions, with Figure 5 showing a
kernel size of 2. Finally, the filters are similar as they are in a standard CNN and can be
thought of as the number of features to extract from the sequence.

Figure 5. Visual illustration of a causal TCN [61]. This TCN has a block size of 1, a dilation list
(1,2,4,8) (i.e., dilation factor 8), and a kernel size of 2. This results in a receptive field of 2 · 1 · 8 = 16.

These combined elements form a block as in Figure 5, and blocks can be stacked as they
are in Figure 6. This increases the receptive field, which is the total length the TCN captures
in processing and is a function of the number of TCN blocks, the kernel size, and the final
dilation, as shown in Equation (6). It is common to have a receptive field which matches
the input sequence length; however, the receptive field is flexible and can be designed to
process any length, which is a primary advantage of TCNs. Other advantages include their
ability to be trained faster than LSTMs/Gated Recurrent Unit (GRU) models of similar
length, having a longer memory than LSTMs/GRUs when capacity of the networks is
equivalent and having similar or better performance than LSTMs/GRUs on a number of
sequence related datasets [60,62]

R f ield = Ksize · Nblocks · d f inal . (6)
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Figure 6. Visual illustration of a causal TCN with stacked blocks [62]. This TCN has a block size of 2,
a dilation list (1,2,4,8) (i.e., dilation factor 8), and a kernel size of 2. This results in a receptive field of
2 · 2 · 8 = 32.

3.6. Autoencoders

An autoencoder (AE) is a type of neural network architecture for unsupervised learn-
ing that is primarily used for reproduction of what is input into the network [63]. This
is done through the use of two separate networks. One network named the encoder f (x)
compresses the input into a lower-dimensional representation called the code or the latent-
space h = f(x) and another network named the decoder reconstructs the input from the code
r = g(h). An example of a standard AE architecture can be seen in Figure 7. Because of the
nature of the encoder, AEs are useful for dimensionality reduction, are powerful feature
detectors, and can also be used for unsupervised pretraining of deep neural networks [64].

Figure 7. Visual representation of a standard AE architecture [65].

In Figure 7, the code h is constrained to have a smaller dimension than the input x.
This is called being undercomplete and is typical of an AE, as it forces the AE to capture the
most salient features of the training data, and thus, the AE does not overfit the training
data and copy it perfectly [63].

3.7. Frequency-Domain Model

The frequency-domain model was a fully connected MLPNN as can be seen in Figure 8
and utilized spectral features extracted from the 1s epoched EEG signal using complex
Morlet wavelet transforms in MATLAB to determine the mean power of the five tradi-
tional frequency bands: delta (2–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–29 Hz),
and gamma (33–80 Hz) (details of this process are out of scope for this paper, and we
refer the reader to Chapters 12 and 13 in Mike Cohen’s book, Analyzing Neural Time Series
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Data [66] ). With 64 channels from the 64 electrode cap, this resulted in 320 spectral features
for each observation (5 × 64 = 320). To improve model training, the spectral features were
standardized and also log transformed.

The model consisted of three hidden layers with hidden units hu, each followed by a
dropout layer with dropout rate dr, with the ReLU activation function used for each hidden
layer. As specified at the beginning of Section 3.4, L2PO-CV was used for training and
validation of the MLPNN model. The Adam optimizer [67] was used to train the models
for 300 epochs by minimizing the binary cross-entropy loss, and a hyperparameter sweep
was performed over the hidden units hu, the dropout rate dr, and the learning rate lr.

3.8. Time-Domain Models
3.8.1. TCN-AE

The TCN-AE architecture was modeled after work done by Thill et al., who recently
developed one of the first published TCN-AE architectures for unsupervised anomaly
detection in time series data for health monitoring of machines [68]. They credit the success
of this model architecture to the architecture’s ability to compose and encode salient latent
features from the data, doing so unsupervised. This architecture involves first training the
AE to have the ability to reconstruct the EEG signal with minimal loss. Then the encoder of
the trained AE encodes the EEG signal to its latent representation, and those latent features
are used for training of a classification model. Their architecture was used as a basis for
the TCN-AE model of this research, as the goal for this TCN-AE was to encode the most
salient features of the EEG data, and then use those features as input to a fully connected
neural network (FCN) classifier to perform classification.

Figure 8. Visual representation of MLPNN classifier. The MLPNN architecture consists of three
fully-connected hidden layers with hidden units hu and the ReLU activation, each followed by a
dropout layer with a dropout rate dr.

The architecture of the TCN-AE is included below in Figure 9, with the encoder on
the left, the decoder on the right, and the latent space in the bottom center. The encoder
takes as input the EEG signal with dimensions of 250 × 64, with the 250 representing
the sequence length of the 1s epoch downsampled to 250 Hz and the 64 representing the
different features from the 64 electrodes. The first layer is a TCN with hyperparameters
as specified in Section 3.5, with d representing the dilation factor, k the kernel size, b the
number of blocks, and n the number of filters. The TCN also used batch normalization,
dropout, and recurrent dropout, with the dropout rate dr set as a hyperparameter. This is
followed by a 1D convolution (Conv1D) with a kernel size of 1 for further dimensionality
reduction and additional non-linearity [68], with L representing the number of filters for
this convolution layer, which also represents the number of latent features, as there is no
further dimensionality reduction after this layer. The ReLU activation function is used for
both the TCN and Conv1D layers. Temporal average pooling is then performed with a size
of 5 to reduce the sequence length by a factor of 5. This results in the latent space having a
sequence length of 50 × L number of features.
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Figure 9. Visual representation of the TCN-AE architecture. Each block corresponds to a layer,
with hyperparameters for that layer italicized. The activation function for the TCN and Conv1D
layers is in parentheses, using ReLU for the encoder and no activation function for the decoder.
The dimensions for the input are also provided in the upper-right of each layer as it passes throughout
the architecture, with the dimensions starting at T = 250 for the sequence length and 64 representing
the features (corresponding to the 64 electrodes). The latent space dimensions are 50 × L, with L
being a hyperparameter.

The decoder is similar to the encoder in its architecture, albeit in reverse. The sequence
is first upsampled back to its original length of 250 using nearest neighbor interpolation.
The sequence is then passed into a TCN which again has hyperparameters d, k, b, and n,
followed by a Conv1D layer which increases the dimensionality of the sequence back to its
original size of 64. There is no activation function for the TCN and Conv1D layers in the
decoder, as this allows the values of the sequence length to take on any value to recreate
the original signal.

L2PO-CV was used for training and validation of the reconstruction phase of the
AE, with EEG signals standardized by channel for faster model convergence. The Adam
optimizer [67] was used to train the autoencoder for 50 epochs for reconstruction of the EEG
signal by minimizing the MSE loss, and hyperparameters were grid-searched using Ray
Tune version 1.3.0, with the hyperparameters consisting of the dilation factor d, the kernel
size k, the number of blocks b, the number of filters n, the number of latent features L,
the dropout rate dr, and the learning rate lr.

Once the autoencoder was trained for reconstruction, the weights of the encoder were
locked and the encoder was then used to encode input sequences into latent features.
The latent features were then flattened and used as input features into a FCN classifier.
The TCN-AE architecture in its entirety can be seen in Figure 10. The FCN classifier had two
hidden layers, each with the ReLU activation function, followed by a dropout layer, and a
output layer using the sigmoid function. L2PO-CV was used for training and validation
of the FCN for classification. The Adam optimizer [67] was used to train the models by
minimizing the binary cross-entropy loss, and a hyperparameter sweep was performed
over the number of hidden units for each layer, the dropout rate, and the learning rate.
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Figure 10. Visual representation of the TCN-AE classifier. The Encoder and Decoder comprise the
AE architecture, with the latent space then used as input to the FCN classifier shown at the bottom.
The FCN classifier architecture consists of two fully-connected hidden layers with hidden units hu,
each followed by a dropout layer with a dropout rate dr.

3.8.2. TCN

The TCN model can be seen in Figure 11 and was similar to the encoder portion of the
TCN-AE architecture in that it consists of a TCN layer and a Conv1D layer; however, this
model differs in that prediction is performed after the Conv1D layer, using an output layer
with a sigmoid activation function. The TCN layer has hyperparameters as specified in
Section 3.5, with d representing the dilation factor, k the kernel size, b the number of blocks,
and n the number of filters. The TCN also used batch normalization, dropout, and recurrent
dropout, with the dropout rate dr set as a hyperparameter. The Conv1D has a kernel size
of 1 and a filter size of 4, providing dimensionality reduction before the output layer.
The ReLU activation function is used for both the TCN layer and the Conv1D layer. L2PO-
CV was used for training and validation of the TCN for classification, with EEG signals
standardized by channel for faster model convergence. The Adam optimizer [67] was used
to train the models for 100 epochs by minimizing the binary cross-entropy loss, and a
hyperparameter sweep was performed using Ray Tune and grid search over the dilation
factor d, the kernel size k, the number of blocks b, the number of filters n, the dropout rate
dr, and the learning rate lr.

Figure 11. Visual representation of the TCN classifier. Each block corresponds to a layer, with hyper-
parameters for that layer italicized, and the activation function in parentheses.
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4. Results

Below are the results for both the frequency-domain model and the time-domain
models. For each model, the best hyperparameter configuration is presented along with its
CV balanced accuracy and confidence interval (CI). As accuracy is a binomial distribution,
approximate binomial confidence intervals are used. Specifically we utilize Agresti Coull
confidence intervals, as they typically maintain α while not being overly conservative [69].
Each model’s CV balanced accuracy and its 95% Agresti Coull confidence interval are
compared to random chance, i.e., a naïve classifier with accuracy of 50% (accuracy is 50%
as this is a binary classification task). Validation accuracies are also provided for each
participant by the participant’s ID, along with their 95% confidence interval. At the end of
this section, a table is provided with the participant validation accuracies for each model
and the 7-fold CV accuracy for each model.

4.1. Frequency-Domain Model

Hyperparameter sweeps for the MLPNN model resulted in the best network achieving
a 7-fold CV balanced accuracy of 64% (95% CI: 0.59, 0.69) and 7-fold CV area under the
receiver operating characteristic (AUROC) of 0.71 with the following hyperparameters:
hidden units of (250, 200, 150) (by layer), learning rate of 0.00001, and dropout rate of 0.5.
This results in the model having CV accuracy statistically greater than random chance as
evidenced by the confidence interval. Figure 12 depicts the validation accuracies for each
participant for the MLPNN model, with nine participants having validation accuracies
statistically greater than random chance. Participants 2, 3, 7, 8, and 11 did not have
validation accuracies greater than random chance.

Figure 12. Participant validation accuracies for the MLPNN model, with 9 participants having
validation accuracies statistically greater than random chance. Participants 2, 3, 7, 8, and 11 did not
have validation accuracies greater than random chance. This model achieved a 7-fold CV accuracy of
64% (95% CI: 0.59, 0.69).

4.2. Time-Domain Model—TCN-AE

The best hyperparameters found for the TCN-AE signal reconstruction had the follow-
ing configuration: dilations (1, 2, 4, 8, 16, 32), kernel size of 2, number of filters 36, number
of blocks 2, learning rate of 0.0001, and dropout rate of 0.0; and resulted in a receptive
field of 2 · 2 · 32 = 128. For the classifier portion of the TCN-AE, all hyperparameter
sweeps resulted in similar performance, with accuracies ranging between 48% and 52%
for 7-fold CV balanced accuracy, with no set of hyperparameters resulting in a model
which performed statistically better than chance. Individual participant accuracies were
also investigated for each hyperparameter sweep, with two or less participants having
significant performance for the hyperparameter sweeps. No participants had validation
accuracies statistically greater than random chance.
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4.3. Time-Domain Model—TCN

The best hyperparameter sweep for the TCN model yielded a 7-fold CV balanced
accuracy of 56% (95% CI: 0.51, 0.61) and 7-fold CV AUROC of 0.57 with the following
hyperparameters: dilations (1, 2, 4, 8, 16, 32), kernel size of 4, number of filters 10, number
of blocks 2, learning rate of 0.0001, and dropout rate of 0.5; and resulted in a receptive field
of 4 · 2 · 32 = 256. This results in the model having CV accuracy statistically greater than
random chance as evidenced by the confidence interval. Figure 13 depicts the validation
accuracies for each participant for the TCN model, with 3 participants (1, 7, and 12) having
validation accuracies statistically greater than random chance.

Figure 13. Participant validation accuracies for the TCN model, with 3 participants (1, 7, and 12)
having validation accuracies statistically greater than random chance. This model achieved a 7-fold
CV accuracy of 56% (95% CI: 0.51, 0.61).

Table 1 provides the participant validation accuracies and the 7-fold CV accuracy for
all three models.

Table 1. Vigilance decrement classification model performance results for each model type. Par-
ticipant validation accuracies and the 7-fold CV accuracy are provided for each model, with 95%
confidence intervals provided in parentheses. For both participant accuracies and the 7-fold CV
results across all participants, Bold signifies statistical significance of accuracy over random chance
(defined as 50% for this binary classification task) as evidenced by the 95% confidence interval.

Participant #
MLPNN
Val Acc

TCN-AE
Val Acc

TCN
Val Acc

0 0.69 (0.62, 0.76) 0.51 (0.44, 0.58) 0.49 (0.42, 0.56)
1 0.78 (0.71, 0.83) 0.49 (0.42, 0.56) 0.57 (0.50, 0.64)
2 0.48 (0.41, 0.55) 0.49 (0.42, 0.57) 0.51 (0.44, 0.58)
3 0.48 (0.41, 0.56) 0.52 (0.45, 0.59) 0.50 (0.43, 0.57)
4 0.83 (0.77, 0.88) 0.49 (0.42, 0.57) 0.56 (0.48, 0.63)
5 0.68 (0.61, 0.74) 0.55 (0.48, 0.62) 0.53 (0.46, 0.60)
6 0.71 (0.63, 0.77) 0.47 (0.40, 0.54) 0.54 (0.47, 0.62)
7 0.52 (0.45, 0.59) 0.56 (0.48, 0.63) 0.65 (0.58, 0.72)
8 0.53 (0.46, 0.60) 0.56 (0.49, 0.63) 0.49 (0.42, 0.57)
9 0.67 (0.60, 0.74) 0.54 (0.47, 0.62) 0.48 (0.41, 0.55)
10 0.63 (0.56, 0.69) 0.49 (0.42, 0.57) 0.56 (0.49, 0.63)
11 0.46 (0.38, 0.53) 0.46 (0.38, 0.53) 0.48 (0.41, 0.56)
12 0.84 (0.78, 0.89) 0.48 (0.41, 0.55) 0.64 (0.57, 0.71)
13 0.63 (0.56, 0.70) 0.53 (0.46, 0.60) 0.52 (0.44, 0.59)

7-fold CV 0.64 (0.59, 0.69) 0.52 (0.47, 0.57) 0.56 (0.51, 0.61)
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5. Discussion

The frequency-domain model (MLPNN) had the highest level of performance of the
three model types, with 7-fold CV accuracy significantly greater than random chance at
64% (95% CI: 0.59, 0.69), and nine of the fourteen participants having validation accuracies
significantly greater than random chance, as evidenced by their respective 95% confidence
intervals. The best time-series domain model (TCN) also had 7-fold CV accuracy sig-
nificantly greater than random chance at 56% (95% CI: 0.51, 0.61); however, only three
of the fourteen participants had validation accuracies significantly greater than random
chance. Additionally, the MLPNN had significantly greater CV model accuracy than the
TCN model, as evidenced by the 95% confidence interval for the difference between the
two classifiers not containing 0, i.e., model accuracy difference of 8% (95% CI: 0.01, 0.15),
and the MLPNN also had significantly more participants with validation accuracies greater
than random chance than the TCN model, as evidenced by the McNemar’s test statistic
of 4.5 ≥ 3.84 (p < 0.034, α = 0.05). Two of the participants in the MLPNN model, 4 and
12, had validation accuracies greater than 80%. Participant IDs of this model that did not
have validation accuracies significantly greater than random chance were participants 2, 3,
7, 8, and 11, with Participant 7 having the worst validation accuracy of 46%. Participant
7, however, was the participant with the highest validation accuracy for the TCN model,
with Participant 12 being the second highest. Participants having such differing levels of
performance across all three model types suggests that low model performance for the
TCN and the TCN-AE was not due to certain individual participants having poor quality
of data.

One reason for the significant difference between the MLPNN and TCN models could
lie in their difference of domains, i.e., frequency vs. time. The literature suggests that
changes in the average power of specific bands correlates to mental fatigue in sustained
attention tasks [16], which also correlates to a vigilance decrement, and if these spectral
features are the most salient information for mental fatigue, then there is no additional
information gained by the network utilizing raw time-series signals versus spectral features.
Furthermore, TCN performance is contingent on being able to learn that these spectral
features are important given only the time-series signals, whereas these spectral features are
the input for the MLPNN, so the MLPNN does not have to learn them. Thus, the MLPNN
may have an advantage over the time-series domain models in that it could already have
the most salient features to perform classification.

BIS measures of the 3-stimulus oddball task were investigated to determine if they
correlated to model performance of the MLPNN model. If BIS measures are correlated to
model performance, this would suggest that the magnitude of decline in a participant’s
task performance is correlated to how well the model can classify the EEG; i.e., the worse a
decline in a participant’s performance, the better the model can classify the EEG. Addition-
ally, if the MLPNN model uses neural correlates of mental fatigue to perform classification,
this would also suggest that as a participant becomes more mentally fatigued, they suffer a
larger decline in task performance. To investigate if there was a correlation, BIS slopes of
each participant, as well as the difference between the BIS measure of the first and last bins
of each participant, were compared to the MLPNN model performance for that participant.
These values are provided in Table 2. The BIS slopes and MLPNN validation accuracies
were not found to be correlated (ρ = 0.07, p = 0.82) nor were the BIS difference values and
MLPNN validation accuracies (ρ = −0.09, p = 0.76).

For the MLPNN model, as this is an artificial neural network, there is no way to know
for certain if the model is utilizing neural correlates of mental fatigue to determine if there
is a vigilance decrement. However, if the model is utilizing neural correlates of mental
fatigue, the lack of correlation between BIS measures and model performance suggests that
the magnitude of the mental fatigue does not correlate to the magnitude of the vigilance
decrement or that the correlation is participant specific, i.e., some participants could be
heavily fatigued and only suffer a slight decrease in performance, while some participants
may have a significant decrease in performance when even moderately fatigued. In addi-
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tion, the vigilance decrement is a measure of task performance, and thus, in general, factors
other than fatigue can affect a person’s performance, such as outside distractions, lack of
motivation to perform well, etc. It is possible that, even in a lab environment, factors such
as this affected participant performance, resulting in a large BIS slope or BIS difference for
certain participants, yet with only minimal mental fatigue accumulation.

Table 2. This table provides the BIS slope and difference between the BIS measures of first and last bin
for the oddball task for each participant. Validation accuracy for the frequency-domain MLPNN model is
also provided for each participant. Bold signifies statistical significance of accuracy over random chance
(defined as 50% for this binary classification task) as evidenced by the 95% confidence interval.

Participant # BIS Slope
BIS Difference

(1st Bin–4th Bin)
MLPNN
Val Acc

0 −4.46 12.02 0.69 (0.62, 0.76)

1 −8.48 21.67 0.78 (0.71, 0.83)

2 −8.42 28.53 0.48 (0.41, 0.55)

3 −1.84 4.85 0.48 (0.41, 0.56)

4 −5.34 14.07 0.83 (0.77, 0.88)

5 −3.92 12.68 0.68 (0.61, 0.74)

6 −7.22 21.75 0.71 (0.63, 0.77)

7 −4.64 11.56 0.52 (0.45, 0.59)

8 −5.30 16.19 0.53 (0.46, 0.60)

9 −5.11 19.81 0.67 (0.60, 0.74)

10 −8.96 30.53 0.63 (0.56, 0.69)

11 −5.40 16.16 0.46 (0.38, 0.53)

12 −3.21 10.41 0.84 (0.78, 0.89)

13 −8.24 24.08 0.63 (0.56, 0.70)

The literature also notes that the neural correlates of mental fatigue and sleep fatigue
manifest differently depending on the task and that they can be opposites of one another,
yet both types of fatigue affect task performance in a similar manner. Given this, it could
be that some of the participants accumulated sleep fatigue, as opposed to mental fatigue,
as the task continued on, resulting in a decrease in performance but with neural correlates
which differ from mental fatigue. As these neural correlates can be opposites of one another
(e.g., an increase in spectral power for the alpha band as opposed to a decrease), it would
be difficult for the model to generalize both of these types of fatigue.

Additional challenges associated with this work include that each of the vigilance tasks
used in the datasets were visual tasks as opposed to other types of tasks (e.g., auditory).
In order to further validate the model, data from vigilance tasks outside of the visual
domain should be used to test the model. Additionally, in order to build a truly task-
generic model, training data will likely be needed from these different task domains.
To continue to properly validate the model with an unseen task, this would require at least
two tasks worth of data from each of the different task domains (one for training and one
for validation), requiring a diverse amount of data from many different experiments.

6. Conclusions and Future Work

In conclusion, the model type that was most capable of classifying the vigilance
decrement in an unseen task and unseen participant out of the models examined was
the MLPNN frequency-domain model, utilizing spectral features extracted from the EEG,
namely the average power of the five traditional EEG frequency bands. This finding
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is significant as thus far, a task-generic EEG cross-participant model of the vigilance
decrement, i.e., a model capable of classifying the vigilance decrement in an unseen task
and unseen participants, has not been built or validated. Previous work by Yin et al. in
building a task-generic model did not utilize a different type of task in order to validate their
model and instead only varied parameters within a single task of operating an aircraft’s
cabin air management system in order to create two tasks. In contrast, the advantage
with our research is that it utilized three different types of tasks (the air traffic controller
task, the line task, and the 3-stimulus oddball task), all of which are well established in
the literature as vigilance type tasks. Additionally, having utilized two tasks for training
from two separate experiments as opposed to only one task is likely to provide additional
generalization of the model.

To improve model performance, future work should incorporate more vigilance tasks
for both training and testing as more EEG vigilance type datasets become available. CV
should also be performed across all tasks to investigate if certain tasks provide more or less
generalization and task invariance to the model.

Selection of specific spectral features, such as certain frequency bands, should also be
explored. By selecting only certain frequency bands, and/or certain regions of the head,
model performance could be improved, as currently, the model utilizes a large number of
features (320), but only certain features or regions of the brain may be needed in order for
the model to accurately classify the vigilance decrement, and removing these unnecessary
features could reduce overfitting of the model. This feature importance of the neural
network model could be determined through visualization techniques which allow for
visual inspection of the model features which result in maximum discrimination between
the two classes (vigilance decrement vs. not). Further investigation into mental fatigue vs.
sleep fatigue could also be useful. Experiments which note the sleepiness of participants
throughout the experiment, either through objective measurements such as prolonged eye
closure, or through subjective measurements such as observation and surveys, could result
in separate data for neural correlates of mental fatigue vs. sleep fatigue. These experiments
could then be used for separate training and testing of the model, and this could reveal if
incorporating both types of fatigue either aids the model or hinders it.

To further validate the model, future experiments should investigate devising tasks
which result in an increase in vigilance. Currently, every participant experiences a vigilance
decrement over the duration of each task, as the tasks are designed to do so. However,
this presents a concern for model validation as the data is homogeneous across every
participant. Ideally, for model training and validation, there would be data for both
a vigilance decrement and a vigilance increase to ensure the model could differentiate
between the two and to ensure the model is not classifying based solely on task duration.
These tasks could perhaps be achieved through planned breaks throughout the task;
however, these experiments would require further validation themselves to ensure they
reliably produce an increase in vigilance.

Separate but related work which should stem from this research would be to use
EEG to determine when an individual is dropping below a standard level of performance.
The vigilance decrement is useful as it informs when someone is experiencing a decrease
in performance; however, this decrease in performance is relative to the person’s own
baseline level of performance. In certain tasks, it would be valuable to predict when an
individual’s expected performance would be too low for successful task completion. This
research has demonstrated that EEG can be utilized to determine whether or not someone
is experiencing a vigilance decrement, even in an unseen task, and thus it is possible that a
model could utilize a participant’s baseline measure of performance to determine if that
participant has dropped below a performance threshold; however, more work is necessary
for proper implementation. Additionally, a regression model could be investigated to
predict the measure of performance itself.

Lastly, EEG research into the vigilance decrement should overall move towards more
multi-task experiments, task agnostic models, and dataset sharing. This research demon-
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strated that the neural correlates of the vigilance decrement span across different task types
and can be utilized to detect the vigilance decrement across these task types; however,
to further pinpoint which specific features span across all of the different types of vigilance
tasks, additional experiments which utilize multiple tasks are needed. Dataset sharing
through repositories such as Kaggle [70] or the UCI machine learning data repository [71]
would also further enable future research into task agnostic models, as experiments with
different tasks could be combined for model building and neural correlate analysis. Future
experiments require time and funding; however, dataset sharing could quickly enable this
research by utilizing existing datasets across many types of vigilance tasks (piloting of
aircrafts, driving, air traffic control, etc.).
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Abbreviations

The following abbreviations are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ATC Air Traffic Controller
BIS Balanced Integration Score
CI Confidence Interval
CNN Convolutional Neural Network
CV Cross-Validation
ECG Electrocardiography
EEG Electroencephalography
ELM Extreme Learning Machine
EOG Electrooculography
ERP Event-Related Potential
FCN Fully Connected Network
GRU Gated Recurrent Unit
HEOG Horizontal Electrooculography
HPW Human Performance Wing
IES Inverse Efficiency Score
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L2PO-CV Leave-Two-Participants-Out Cross-Validation
LSTM Long Short-Term Memory
MLPNN Multi-Layer Perceptron Neural Network
MSE Mean Squared Error
PC Proportion of Correct Responses
PSD Power Spectral Density
PVT Psychomotor Vigilance Test
RCS Rate-Correct Score
ReLU Rectified Linear Unit
RT Response Time
TCN Temporal Convolutional Network
TCN-AE Temporal Convolutional Network Autoencoder
VEOG Vertical Electrooculography

Appendix A

Preprocessing of EEG data was performed through script batch processing using
EEGLAB [54] and consisted of a combination of best practice steps from both Makoto’s
preprocessing pipeline [55] and the PREP pipeline [56].

1. Modifed EEGLAB to use double precision, as single precision can destroy natural
commutativity of the linear operations.

2. Imported data into EEGLAB and included reference channels based on the equipment
used (e.g., Biosemi’s 64 scalp electrode cap uses channels 65 and 66 as reference
channels, which are electrodes placed on the mastoids specifically for the purpose
of referencing).

3. Downsampled to 250 Hz for purpose of improving ICA decomposition by cutting off
unnecessary high-frequency information and also to reduce data size.

4. High-pass filtered the data at 1 Hz to reduce baseline drift, to improve line-noise
removal, and to improve ICA [72]. High-pass filter is done before line-noise removal
and 1 Hz is used as we were not performing event-related potential (ERP) analysis,
which could be affected by using a 1 Hz high-pass filter, and would require an
alternate strategy.

5. Imported channel info using International 10–20 system to allow for re-referencing.
6. Removed line noise using CleanLine plugin (default 60Hz notch filter) [73].
7. Removed bad channels using EEGLAB clean_rawdata plugin patented by Christian

Kothe [74], which utilizes Artifact Subspace Reconstruction.
8. Interpolated all removed channels to minimize a potential bias in the average refer-

encing step.
9. Re-referenced data to the average. Mastoid referencing is not always sufficient [56],

and re-referencing the data to the average helps suppress line noise that was not
rejected by CleanLine [55].

10. Independent Component Analysis (ICA) "runica" “‘infomax’: (extended)” algorithm
variant was executed with the vertical EOG (VEOG) electrode used as input for
the function.

11. ICA results from Step 10 are used to remove artifact ICA components.
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Abstract: Speech discrimination is used by audiologists in diagnosing and determining treatment for
hearing loss patients. Usually, assessing speech discrimination requires subjective responses. Using
electroencephalography (EEG), a method that is based on event-related potentials (ERPs), could
provide objective speech discrimination. In this work we proposed a visual-ERP-based method to
assess speech discrimination using pictures that represent word meaning. The proposed method
was implemented with three strategies, each with different number of pictures and test sequences.
Machine learning was adopted to classify between the task conditions based on features that were
extracted from EEG signals. The results from the proposed method were compared to that of a similar
visual-ERP-based method using letters and a method that is based on the auditory mismatch negativ-
ity (MMN) component. The P3 component and the late positive potential (LPP) component were
observed in the two visual-ERP-based methods while MMN was observed during the MMN-based
method. A total of two out of three strategies of the proposed method, along with the MMN-based
method, achieved approximately 80% average classification accuracy by a combination of support
vector machine (SVM) and common spatial pattern (CSP). Potentially, these methods could serve as a
pre-screening tool to make speech discrimination assessment more accessible, particularly in areas
with a shortage of audiologists.

Keywords: EEG; ERP; speech discrimination; classifier

1. Introduction

Pure-tone audiometry (PTA) and speech audiometry are routinely used in a clinical
setting to assess auditory function [1]. PTA measures the minimum threshold level that
can be heard by the user at different frequencies. As PTA only evaluates the absolute
hearing threshold but not the ability to recognize speech, speech audiometry is used as a
complement to PTA in order to measure different aspects of a patient’s auditory function
altogether. Speech audiometry commonly includes three speech tests: speech-detection
threshold (SDT), speech reception threshold (SRT), and speech discrimination. SDT mea-
sures the threshold at which a patient can detect the presence of speech 50% of the time.
SRT represents the threshold at which a patient can repeat 50% of the speech. Both SDT
and SRT can be determined in a similar way to PTA but use speech instead of pure-tone
sounds. Speech discrimination is more complex to determine. A commonly used method to
assess speech discrimination includes presenting monosyllabic words at 50 dB above SRT
and measure the percentage of correctly repeated words [2]. Speech discrimination scores,
along with results from other tests, are used in diagnosing and determining treatment for
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hearing loss patients [2]. However, the behavioral assessment to test speech discrimination
requires subjective responses which makes the assessment more difficult in some cases such
as difficult-to-test patients or children. An electrophysiological method to assess speech
discrimination provides an objective assessment and would be suitable in these situations.

Electroencephalography (EEG) measures the electrical potentials at the scalp which
reflect the brain’s electrical activity [3]. An EEG test usually includes placing electrodes
on the scalp. The placement of the electrodes usually follows the 10–20 system [4] which
indicates the different positions of the scalp using a combination of letters and numbers.
For higher resolution, the ten percent electrode system [5] or the five percent electrode
system [6] which can accommodate a larger number of electrodes could also be used.
EEG signals have high temporal resolution compared to other modalities (e.g., functional
magnetic resonance imaging or functional near infrared spectroscopy) and directly reflects
neural activity [7]. For these reasons, EEG is a well-suited technique to study cognition
as it can capture the rapid dynamics of cognitive processes which happen in the order of
milliseconds. To analyze EEG signals, raw signals are often grouped into bands including
delta (2–4 Hz), theta (4–8 Hz), (8–12 Hz), beta (15–30 Hz), and gamma (30–150 Hz) [7].
EEG changes that are triggered by specific events or stimuli are termed event-related
potentials (ERPs). ERPs can be related to visual, auditory, or somatosensory stimuli [8].
ERP waveforms are obtained from averaging across many trials to extract the response that
is related to the stimuli. The observed ERP waveforms that are recorded from the scalp
usually represent the sum of multiple ERP components [9].

A commonly studied ERP component that is related to speech discrimination is the
mismatch negativity (MMN) [10–12]. MMN is an ERP component that is elicited by a
deviant stimulus that violates the representation of the standard stimulus that is formed
by repetition [11]. MMN is conventionally studied using an oddball paradigm which
usually involves a sequence of repeated standard stimuli, which occurs in most of the trials,
sporadically interrupted by a deviant stimulus. This component has been used in various
work that is related to auditory discrimination and speech discrimination [13–18]. The
presence of MMN in response to the deviant stimuli in an oddball task indicates that the user
can distinguish between the particular deviant and standard sounds that are used in the task.
As MMN can be elicited even when users are not paying attention to the sound, an MMN-
based method to assess speech discrimination is well-suited for a variety of participants,
particularly those who have difficulties following instructions. However, an oddball task
that is used to elicit MMN typically uses only one pair of sounds. Word lists that are used
to test speech discrimination in Thai usually consist of 20–50 words [19–21]. For example,
the word list that was proposed by Yimtae et al. [21] contained 24 words, the word list
that was used by Visessumon [20] had 21 words, and the word list that was proposed by
Hemakom et al. [19] comprised of 45 words. To test speech discrimination using an MMN-
based method, the participants would be required to undergo many rounds of oddball tasks
with different standard and deviant stimuli which would be time-consuming and repetitive.
These limitations have led to various improvements and alternatives being proposed such
as variations to the oddball paradigm [15,22], different analysis approaches [23,24], or an
alternative method or marker [25,26].

Morikawa et al. [26] proposed an alternative speech discrimination assessment method
that utilized visual ERP that was induced by visual stimuli that was associated with an
auditory stimuli instead of auditory ERP. In their method, the participants listened to a
sound corresponding to a Japanese letter and then were shown a picture of a Japanese letter.
In 50% of the trials, the picture matched the letter that was presented. In the remaining
trials, the picture matched another letter that had similar pronunciation and was often
confused with the former letter. The participants were required to answer whether the
picture and the sound matched. The study only included participants with normal hearing
but some of the auditory stimuli that were used were manipulated to imitate hearing
loss. They found that when the participants answered that the sound and picture matched
(match condition), an ERP component called the P3 [27,28] was elicited at 290–400 ms after
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the visual stimulus onset. P3 was usually observed during stimulus discrimination and
was theorized to be related to the brain activities that updated a mental model when a new
stimulus was detected. When the participants answered that the sound and picture did not
match (mismatch condition), a late positive potential (LPP) [29] was elicited at 480–570 ms
after visual stimulus onset. LPP was assumed to be similar to the P3b component [28,30]
and was elicited when there was a mismatch between the expectation and feedback. To
classify between the match and mismatch conditions, Morikawa et al. [26] calculated a
feature value from the average amplitude difference between the intervals where P3 and
LPP were observed. This feature value was compared to a predetermined threshold value
to separate between cases with successful and unsuccessful discrimination. They reported
achieving 70.5% accuracy when one trial was used and more than 80% accuracy when four
or more trials were averaged together. The promising result suggested that the proposed
method might be a viable alternative to an MMN-based method. However, this method
was only applicable to participants who can identify the Japanese letters. Therefore, the
method might not be accessible to young children or illiterate people.

Currently, there is no widely used method to automatically assess speech discrimina-
tion. An ERP-based method provides an objective assessment of speech discrimination
and could make the test more accessible, particularly in areas where there is a shortage
of audiologists. An MMN-based method that is employed in many studies would be
well-suited for assessing speech discrimination in children or patients who have difficulties
with the behavioral test. However, as mentioned, this method might be time-consuming as
many rounds of oddball task are needed in order to get an assessment that covers all the
meaningful contrasts in a language. A possible alternative to an MMN-based method is a
visual-ERP-based method that was proposed by Morikawa et al. [26] which was reported to
have high accuracy. However, the use of Japanese letters limited the use of this method to
literate patients only. Furthermore, there had not been an accuracy level obtained from an
MMN-based method for comparison. Our research proposed a modification to the visual-
ERP-based method by using pictures representing word meaning to make the method
more accessible. This modified method was compared to the original visual-ERP-based
method and an MMN-based method. In each method, machine learning techniques were
employed to separate between the two different conditions. We hoped to recommend
a suitable method that is based on ERP components, discrimination accuracy, and time
efficiency. An overall framework combining a suitable ERP method and a classification
technique into an automatic speech discrimination assessment system was also proposed.

2. Materials and Methods

2.1. Participants

A total of 30 native Thai volunteers participated in the research (mean age = 31 years,
age range = 19–43 years, 13 males, 17 females). All of them had self-reported normal
hearing and normal or corrected-to-normal vision. All the participants provided informed
consent before beginning the research. The Research Ethics Review Committee for Research
Involving Human at Chulalongkorn University approved the research protocol (protocol
no. 171.1/63).

2.2. Procedure and Stimuli

There were two Thai words that were used in the experiment -/kài/(meaning chicken)
and /khài/(meaning egg). Both words are basic nouns that are used in everyday life. The
two words have the same vowel and tone but have different consonants. As Thai is a
tonal language, tones are essential in distinguishing between words [31]. In this work, we
aimed to test the ability to differentiate between words with consonant contrasts. Thus, the
vowel and tone were the same for both words. The sounds were recorded by a native Thai
woman and were obtained from The Thai Alphabets multimedia exhibit [32]. Each word
had a duration of 500 ms with average sound pressure levels of approximately 60 dBSPL

279



Sensors 2022, 22, 2702

and 40 dBSPL as measured using a sound level meter. The stimuli were presented using
PsychoPy [33].

The experiment consisted of three methods. From here on, the modified visual-ERP-
based method that uses pictures of word meaning will be referred to as Method 1. The
original visual-ERP-based method that was proposed by Morikawa et al. (2012) will be
referred to as Method 2. The MMN-based method that only utilizes auditory stimuli will
be referred to as Method 3.

The results from a pilot experiment suggested that using multiple pictures led to
higher accuracy. However, using multiple pictures would also increase the experiment time
considerably. Thus, we decided to further separate the picture method (Method 1) into
three strategies. We aimed to compare between these strategies to find the optimal strategy
in terms of both accuracy and time-efficiency. The three strategies included single-picture,
multiple-pictures, and single-picture-with-expectation. We will call these Methods 1a, 1b,
and 1c, respectively. The participants were randomly separated into three groups, with
ten participants per group. Each group undertook either Method 1a, 1b, or 1c along with
Method 2 and 3. The presentation order of the methods was counterbalanced across the
participants. A laptop monitor and speaker were used to present the visual and auditory
stimuli. The participants were seated approximately 0.3 m from the laptop and instructed
to sit still to minimize movement artifacts.

Figure 1 shows the sequence of each trial in Method 1a, 1b, and 1c. For Method 1a,
each trial started by playing a word through the laptop speaker for 500 ms. Then, a picture
was shown for 1000 ms. There were 80 trials in this method, with the picture matching
the meaning of the word in 40 trials. In the remaining trials, the picture did not match the
meaning of the word. The participants were required to press ‘1’ on a standard keyboard if
they think the picture matched the word they heard and press ‘2’ otherwise.

Figure 1. Event sequence for each trial in each strategy in Method 1 including (a) Method 1a;
(b) Method 1c; (c) Method 1b.
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In Method 1b, the participants listened to a 500 ms long word then were shown a
sequence of four pictures. The pictures were shown one-by-one for 1000 ms each. In each
trial, one picture matched the meaning of the word that was played. The order of the
correct picture was randomized, appearing as the first (or second, third, or fourth) picture
in one fourth of the trials (12 trials out of 48 total trials). After seeing all four pictures,
the participants were required to press ‘1’, ‘2’, ‘3’, or ‘4’ on the keyboard according to the
position of the correct picture.

Method 1c consisted of two parts. In the first part, a 500 ms long word was played
before a picture corresponding to the meaning of the word was shown for 1000 ms. This
sequence was repeated 10 times for each word in a random order. This first part was added
to show the participants the correct picture to expect for each word. The second part was
identical to Method 1a.

Figure 2 shows the sequence of each trial in Methods 2 and 3. Method 2 was slightly
adjusted from the method that was proposed by Morikawa et al. [26]. Each trial started by
playing a word through the laptop speaker for 500 ms then showing a picture for 1000 ms.
In 40 out of 80 trials, the picture was of the word that was played, spelled out using a
standard font. In the remaining trials, the picture was of another word. The participants
were required to press ‘1’ on the keyboard if they think the picture matched the word they
heard and press ‘2’ otherwise.

Figure 2. Event sequence for each trial in (a) Method 2; (b) Method 3.

Method 3 was an active oddball paradigm. In each trial, a word was played through
the laptop speaker for 500 ms. On 80% of the trials (120 trials), the standard stimulus /kài/
was played. On the remaining 20% of the trials (30 trials), the deviant stimulus /khài/ was
played. The participants were required to press ‘1’ on the keyboard when they heard the
standard stimulus /kài/ and press ‘2’ when they heard the deviant stimulus /khài/.

2.3. EEG Recording and Analysis

Figure 3 shows the overall EEG recording system. EEG was recorded from eight
positions (Fz, Cz, C3, C4, Pz, P3, P4, and Oz) according to the 10–20 system [4] using a
g.SAHARA headset and a g.MOBIlab+ amplifier (g.tec medical engineering, Schiedlberg,
Austria). The positions were chosen based on the scalp distribution of the ERP components
that we expected to see. These included the MMN, P3, and LPP components. MMN had a
frontocentral distribution and is prominent at Fz or Cz. P3 and LPP were reported to be
most prominent at the parietal area. The signals were recorded with a sampling rate of
256 Hz.

The signal acquisition software, OpenViBE 3.0.0 [34], received the EEG signals via
Bluetooth and combined the signals with the stimulus event data from the stimulus pre-
sentation software, PsychoPy 2020.1.2 [33], before outputting the EEG data with an event
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marker to be analyzed further. The EEG data was filtered with a bandpass filter. For
stability and robustness, the filter used was an 847 point FIR filter with 1–40 Hz passband.
It had transition frequencies of 1 Hz, −6 dB corner frequencies at 0.5 Hz and 40.5 Hz,
and 50 dB attenuation at stopband. Then, it was passed through an EEGLAB [35] plugin
function, clean_rawdata [36] to remove artifacts. The clean_rawdata function cleaned the
EEG signals using the artifact subspace reconstruction (ASR) method [37]. The function
rejected and reconstructed artifacts with variance more than 30 standard deviations (the
cutoff parameter k = 30 was chosen according to [38]) away from the clean portions of
the data. After that, the data were re-referenced to the common average reference and
were extracted into epochs. For Method 1a, 1b, 1c, and 2, the interval from 0 to 900 ms
after visual stimulus onset was extracted. For Method 3 the interval from 0 to 400 ms after
stimulus onset was extracted. The −100 to 0 ms interval was used as a baseline. After
removing the artifacts and extracting epochs, the data were manually inspected. Datasets
that had less than half the original number of trials for each condition were excluded from
further analysis.

Figure 3. Overall EEG recording system [39].

Table 1 shows the amount of remaining data after preprocessing. For Method 1a, data
from 9 subjects remained, including 328 epochs in the match condition and 320 epochs in the
mismatch condition. For Method 1b, data from 10 subjects remained, including 389 epochs
in the match condition and 1193 epochs in the mismatch condition. For Method 1c, data
from 7 subjects remained, including 312 epochs in the match condition and 260 epochs in the
mismatch condition. For Method 2, data from 25 subjects remained, including 881 epochs
in the match condition and 879 epochs in the mismatch condition. For Method 3, data from
26 subjects remained, including 2795 epochs in the standard condition and 706 epochs in
the deviant condition.

Table 1. Remaining data after preprocessing.

Method Remaining Participants Remaining Epochs

1a 9 Match: 328
Mismatch: 320

1b 10 Match: 389
Mismatch: 1193

1c 7 Match: 312
Mismatch: 260

2 25 Match: 881
Mismatch: 879

3 26 Standard: 2795
Deviant: 706
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Figure 4 shows the overall EEG data processing. The EEG data were averaged accord-
ing to match/mismatch or deviant/standard condition for each participant. The difference
in waveforms between conditions were investigated by applying a paired t-test to the aver-
aged EEG data for each participant in order to account for inter-subject variability. As beta
and alpha waves were reported to be associated with attention [40], an average beta/alpha
ratio was used to investigate the level of attention that was paid to each method. For each
epoch, a beta/alpha ratio was calculated irrespective of the condition. Then, an average
beta/alpha ratio was calculated for each participant and method. The Kruskal–Wallis
test was applied to investigate the difference between beta/alpha ratios of each method.
Post hoc analyses using Bonferroni correction for multiple comparisons were conducted
when appropriate.

Figure 4. Overall EEG data processing. The black outlined boxes represent data while blue outlined
boxes represent processes. Bold blue arrows represent averaging.

To classify between the conditions, several features were extracted from each epoch of
EEG data. There were three types of features that were utilized including raw features, time-
domain features, and frequency-domain features. The raw features were taken directly
from the preprocessed data of each channel. The time-domain and frequency-domain
features were extracted from two intervals in each trial. These intervals were 100–250 ms
and 250–400 ms after stimulus onset for Method 3. For other methods, these intervals
were 200–400 ms and 500–800 ms after visual stimulus onset. The intervals were chosen
based on the result of the paired t-test and the expected ERP components for each method.
The time-domain features included mean amplitude, variance, peak amplitude (maximum
absolute amplitude), peak latency, maximal peak/amplitude ratio (MP ratio), positive area,
and negative area. The frequency-domain features consisted of power in six frequency
bands including Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), Gamma
(30–40 Hz), and total band (1–40 Hz). A common spatial pattern (CSP) was applied to
extract the CSP features. The extracted features were combined into four feature sets
including raw features (Raw), time- and frequency-domain features (T&F), CSP features
(CSP), and CSP features that were obtained after applying an additional bandpass filter
(CSP+). The additional filter was a 16th order IIR filter with 1–30 Hz passband. It had
0.1 dB passband ripple and 60 dB attenuation at stopband. Each feature set was used to
train and evaluate classifiers.

Figure 5 shows the process of training and evaluating classifiers in each fold of the
5-fold cross-validation framework. The dataset was separated into a training set (containing
80% of the data) and a test set (containing 20% of the data) with both sets having the same
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proportion of match/mismatch or standard/deviant conditions. Then, the features were
extracted for both sets as described in the previous paragraph. For the CSP or CSP+ feature
set, the training set was used to learn the CSP matrix, which was then applied to both the
training set and test set. No data from the test set was used while learning the CSP matrix
to prevent data leakage. After that, for the training set, the minority class (condition with
lower number of epoch) was oversampled using random oversampling to achieve a 1:1
proportion between the conditions in the training data. Then, the training data were used
to train either a linear discriminant analysis (LDA) or a support vector machine (SVM)
classifier to classify whether the epoch was from a match or mismatch (or, for Method 3,
standard or deviant) condition. The classifier was later evaluated using the test data and
the results were recorded. The results from each fold were averaged and the classification
accuracy was calculated from the number of correctly classified trials over the total number
of trials.

Figure 5. Process of training and evaluating the classifiers in each fold of the 5-fold cross-
validation framework.

The average classification accuracies across the participants for each method and
feature set were calculated and compared. The comparison was done using the Kruskal–
Wallis test. An analysis of variance (ANOVA) was used to compare the average accuracy
between each feature set. Additionally, the classification accuracy that was obtained from
the SVM and LDA classifiers trained using the same feature set were compared using a
paired t-test. Post hoc analyses using Bonferroni correction for multiple comparisons were
conducted when appropriate.

3. Results

3.1. Behavioral Measures

Table 2 shows the average behavioral accuracy and response time for each method.
The participants answered correctly most of the time in every method (98.47%, 98.54%,
99.29%, 98.55%, and 98.77% of the cases for Method 1a, 1b, 1c, 2, and 3 respectively). The
participants rarely failed to answer correctly (less than 2% of the cases in every method).
The average response time for each method was 0.672 s, 0.645 s, 0.473 s, 0.518 s, and
0.697 s, respectively. A one-way ANOVA showed that there was a significant difference
in the average response time between at least two groups (F(4,72) = 3.68, p = 0.0088). Post
hoc analyses using Bonferroni correction indicated a significant difference in the average
response time between Method 2 and 3 (p = 0.0202).

Table 2. Mean (standard error) behavioral accuracy and response time for each method.

Method Average Correct Answers (%) Average Response Time (s)

1a 98.47 (0.62) 0.672 (0.12)
1b 98.54 (0.62) 0.645 (0.05)
1c 99.29 (0.37) 0.473 (0.03)
2 98.55 (0.44) 0.518 (0.03)
3 98.77 (0.48) 0.697 (0.04)
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3.2. ERP Waveforms

Figure 6 shows the grand-average waveforms with standard error at Pz for each
method. In Method 1a, a positive wave was observed at approximately 450–800 ms after
stimulus onset in the mismatch condition. In Method 1b, no clear difference between the
match and mismatch conditions were observed. We observed two intervals with differ-
ence between conditions in Method 1c. Positive waves were observed at approximately
200–400 ms and 500–750 ms after stimulus onset in the mismatch condition. In Method 2,
a positive wave was elicited at approximately 500–900 ms after stimulus onset in the mis-
match condition. In Method 3, a negative wave was observed at approximately 100–300 ms
after stimulus onset in the deviant condition.

Figure 6. Grand-average waveforms with standard error at Pz (a) Method 1a; (b) Method 1b;
(c) Method 1c; (d) Method 2; (e) Method 3.

Despite having no clear difference between waveforms of match and mismatch condi-
tion at Pz, Method 1b had a more prominent difference at Fz. As illustrated in Figure 7,
a positive wave was observed at approximately 200–400 ms after stimulus onset in the
match condition. In the mismatch condition, a positive wave was elicited at approximately
400–800 ms after stimulus onset.
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Figure 7. Grand-average waveforms with standard error at Fz in method 1b.

Table 3 shows the intervals with a significant difference, as indicated by a paired
t-test, between the waveforms at Pz and Fz for each method. For Method 1a, a significant
difference was found between the waveforms of the match and mismatch conditions during
23–78 ms, 141–145 ms, 160–168 ms, 488–512 ms, and 617–703 ms after stimulus onset at
Pz. For Method 1b, a significant difference was found during 430–438 ms at Pz. However,
at Fz, a significant difference was found during 195–281 ms, 309–336 ms, 492–609 ms,
617–625 ms, and 672–719 ms. For Method 1c, a significant difference was found during
535–555 ms at Pz and during 90–98 ms, 316–340 ms, 348–363 ms, 375–387 ms, 539–602 ms,
621–691 ms, and 699–711 ms at Fz. For Method 2, a significant difference was found during
4–39 ms, 59–90 ms, 191–203 ms, 633–762 ms, and 809–848 ms after stimulus onset at Pz. For
Method 3, a significant difference was found between the waveforms of the standard and
deviant conditions during 230–277 ms after stimulus onset at Pz.

Table 3. Intervals with a significant difference at Pz and Fz for each method.

Method
Interval with Significant

Difference (at Pz)
Interval with Significant

Difference (at Fz)

1a 23–78 ms
141–145 ms
160–168 ms
488–512 ms
617–703 ms

1b 430–438 ms
195–281 ms
309–336 ms
492–609 ms
617–625 ms
672–719 ms

1c 535–555 ms
90–98 ms

316–340 ms
348–363 ms
375–387 ms
539–602 ms
621–691 ms
699–711 ms

2 4–39 ms
59–90 ms

191–203 ms
633–762 ms
809–848 ms

3 230–277 ms

The Kruskal–Wallis test indicated that no significant difference was found between
the mean amplitude of the difference curve (mismatch condition–match condition) of
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Method 1a, 1b, and 1c during the 200–400 ms interval (H(2,23) = 1.48, p = 0.4778) and
500–800 ms interval (H(2,23) = 5.00, p = 0.0820) at Pz. However, at Fz, the Kruskal–Wallis
test indicated that there was a significant difference in the mean amplitude of the differ-
ence curve between at least two methods during the 500–800 ms interval (H(2,23) = 13.23,
p = 0.0013). Post hoc analyses using the Bonferroni correction revealed a significant differ-
ence between Method 1a and 1b (p = 0.0049) and between Method 1b and 1c (p = 0.0075).
No significant difference was found during the 200–400 ms interval at Fz (H(2,23) = 3.14,
p = 0.2082).

3.3. Classification

Table 4 compares the average classification accuracy that was achieved by the SVM
and LDA classifiers. Both classifiers were trained using the same set of features (time- and
frequency-domain features). The LDA performed better in Method 1a and 2. Although,
a significant difference was found only for Method 2 (t(24) = −2.49, p = 0.0203). The
SVM performed better in the remaining methods with significant difference for Method 1b
(t(9) = 5.55, p = 0.0004) and 3 (t(25) = 5.01, p = 0.00004). No significant difference was found
between the classifier type for Method 1a (t(8) = −1.79, p = 0.1112) and 1c (t(6) = 1.42,
p = 0.2061).

Table 4. The mean (standard error) classification accuracy from support vector machine (SVM) and
linear discriminant analysis (LDA) classifiers for each method when using the time- and frequency-
domain feature set.

Method
Classification Accuracy

SVM LDA

1a 59.71 (4.85) 63.07 (4.03)
1b 72.73 (2.21) 62.01 (1.98)
1c 60.99 (2.78) 57.56 (3.16)
2 61.75 (2.03) 64.23 (2.11)
3 71.78 (1.94) 65.74 (1.95)

Table 5 and Figure 8 shows the average accuracy from different feature sets for each
method when using SVM. Overall, using raw features produced the worst average ac-
curacy. Using the time- and frequency-domain features resulted in slightly better accu-
racy. Applying CSP to transform the raw features caused the average accuracy to rise
further. The highest average accuracy for each method was obtained when using the
CSP+ feature set. A one-way ANOVA indicated that there was a significant difference
in accuracy between at least two feature sets (F(3,304) = 83.18, p = 2.5765 × 10−39). After
post hoc comparison, significant difference was found between each pair of feature sets
(p = 6.0125 × 10−7 between Raw and T&F sets, p = 3.4121 × 10−25 between Raw and CSP
sets, p = 1.416 × 10−35 between Raw and CSP+ sets, p = 1.6078 × 10−8 between T&F and
CSP sets, p = 1.7061 × 10−16 between T&F and CSP+ sets, and p = 0.028032 between CSP
and CSP+ sets).

Table 5. The mean (standard error) classification accuracy from each feature set for each method
when using SVM classifier.

Method
Classification Accuracy (%)

Raw T&F CSP CSP+

1a 50.77 (2.23) 59.71 (4.85) 79.31 (4.11) 82.79 (3.90)
1b 64.77 (2.49) 72.73 (2.21) 80.24 (1.87) 83.31 (1.70)
1c 54.39 (2.60) 60.99 (2.78) 67.80 (3.36) 78.41 (3.37)
2 50.74 (1.54) 61.75 (2.03) 71.48 (2.16) 78.90 (2.10)
3 64.27 (0.99) 71.78 (1.94) 80.15 (1.52) 81.35 (1.43)
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Figure 8. Comparison of the average accuracy between the different feature sets in each method.

The average accuracy was compared for each method, as shown in Figure 9a. When
using the CSP set, Method 1b and 3 achieved the highest classification accuracy (80.24% and
80.15%, respectively). Method 1a performed slightly worse (79.31%), followed by Method 2
(71.48%). The lowest accuracy was obtained from Method 1c (67.80%). The Kruskal–
Wallis test showed that there was a significant difference in the average accuracy between
at least two methods (H(4,72) = 16.98, p = 0.002). Post hoc analyses using Bonferroni
correction revealed a significant difference in average accuracy between Method 1c and
3 (p = 0.0378) and between method 2 and 3 (p = 0.0242). When using the CSP+ set, the
average accuracy increased slightly; a similar trend was observed, although the differences
were less pronounced. As shown in Figure 9b, the highest accuracy was obtained from
Method 1b (83.31%), followed by Method 1a (82.79%) and Method 3 (81.35%). Method 2
and 1c produced slightly lower accuracy (78.90% and 78.41%, respectively). The result
from the Kruskal–Wallis test indicated that no significant difference was found between
the methods (H(4,72) = 2.63, p = 0.6218).

3.4. Attention

Figure 10 shows the average beta/alpha ratio at Cz for each method. Method 1b,
1c, and 2 have slightly higher beta/alpha ratio (0.9867, 1.0191, and 1.0092, respectively).
Lower beta/alpha ratio was observed in Method 1a and 3 (0.8867 and 0.8002, respectively).
The Kruskal–Wallis test revealed a significant difference between at least two methods
(H(4,72) = 22.38, p = 0.0002). Post hoc analyses using Bonferroni correction showed a
significant difference in average beta/alpha ratio between Method 1b and 3 (p = 0.0041),
between Method 1c and 3 (p = 0.0366), and between Method 2 and 3 (p = 0.0012).
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Figure 9. Box plot of the classification accuracy of each method using support vector machine
(SVM) classifier (a) when using CSP feature set; (b) when using CSP+ feature set. The classification
accuracies for individual participants are shown as x marks on the left of each box. An asterisk (*)
denotes a significant difference in the classification accuracy between methods as indicated by the
Kruskal–Wallis test with Bonferroni correction for multiple comparisons (p < 0.05).

Figure 10. Box plot of the average beta/alpha ratio for each participant and method at Cz. Asterisks
(*) denotes significant difference in beta/alpha ratio between the methods as indicated by the Kruskal–
Wallis test with Bonferroni correction for multiple comparisons (* for p < 0.05 and ** for p < 0.01).

4. Discussion

Similar to Morikawa et al. [26], we found the LPP component during the mismatch
condition in Method 1a, 1b, 1c, and 2. The component appeared as a positive waveform at
approximately 500–800 ms after stimulus onset (Figures 6 and 7). LPP (also called P600 [41]
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or P3b [28]) is elicited when the presented stimulus is different from the expectation [29].
We also found a P3 component during the match condition, as seen from the positive
waveform between 300–400 ms after stimulus onset (Figures 6 and 7). However, the
difference in waveform was only significant in Method 1b and 1c. P3 is thought to be
related to updating a mental representation of the incoming stimulus [28]. This component
can be observed in various tasks such as oddball tasks [42,43], go/no-go or stop signal
tasks [44–46], or identification tasks [47] during stimulus discrimination. P3 can be affected
by stimulus probability and relevancy to the task. Method 1b included four pictures, from
which the participants were required to select the correct one. This lower probability
of the match stimulus resulted in a much clearer P3 component compared to all other
methods. This result is in line with the findings that found increased P3 amplitude for rare
stimuli compared to frequent stimuli [48,49]. We observed an MMN in response to deviant
stimulus in Method 3 at approximately 100–300 ms after stimulus onset. This is consistent
with the results from other works that utilizes MMN [13,15].

To classify between match/mismatch conditions, several feature sets were tested. The
raw features produced the lowest classification accuracy compared to the other feature
sets (Table 5). Combining the time-domain features and frequency-domain features into
a feature set improved the accuracy slightly (Figure 8). However, classification accuracy
from the time- and frequency-domain feature sets were below 80%. Thus, CSP was used to
transform the raw features into a CSP feature set. An additional bandpass filter was applied
to further improve the accuracy. CSP with the additional filter feature set produced the best
accuracy compared to other feature sets. With this set, we obtained over 80% accuracy from
Method 1a, 1b, and 3. This result is comparable to Morikawa et al. [26] which obtained
over 80% accuracy when at least four trials were averaged.

Method 1b utilized four pictures to better differentiate between conditions. Thus,
we expected this to result in much better classification accuracy compared to the other
methods. When using the CSP+ feature set, we found that Method 1b performed best
with 83.31% average classification accuracy. Method 1a and 3 also produced comparable
average accuracies although with more variability of individual accuracies (Figure 9).
Method 1c and 2 achieved slightly lower average accuracies (Figure 9). However, no
significant difference between the average accuracy of each method was found when using
this feature set. It is worth noting that this difference in accuracy between the methods was
more pronounced when using Raw, T&F, or CSP feature sets (Figure 8). For example, the
difference between the highest and lowest average accuracies (between Method 1b and 1c)
increased from 4.9% with the CSP+ set to 12.44% with the CSP set. When using the CSP
feature set, a significant difference was found between the average accuracy of Method 3
and 1c and between Method 3 and 2.

Despite being very similar to Method 1a, Method 1c produced the lowest accuracy
compared to the rest. This went against our initial hypothesis that adding a prior section to
set the expectation would increase the accuracy. This might be because of the participants
getting confused as the two sections had different instructions. Method 2 was expected to
achieve the same level of accuracy as experiment 1 in Morikawa et al. [26] as the design was
similar. However, Method 2 achieved slightly lower accuracy at 78.90% compared to over
80% accuracy in Morikawa et al. [26]. This disparity might be because Morikawa et al. [26]
used letters while our method used words. The participants had to evaluate the spelling
of the words, which is relatively harder than identifying letters. This might cause more
variation in ERP latency as each participant evaluates spelling using different techniques.
Some people consider the spelling of the whole word while some people only look at the
consonant. When averaged, this latency variation could cause ERP components to become
less prominent.

To investigate the attention level in each method, we inspected the power in the beta
and alpha bands. Higher attention is associated with an increase in beta power and a
decrease in alpha power [40]. Thus, we used beta/alpha ratio to represent the attention
level. Method 3, which included only auditory stimuli, had the lowest beta/alpha ratio
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(Figure 10). The beta/alpha ratio of this method also had lower variability compared to
the other methods, as can be seen from the shorter distance between the first and third
quartile in the box plot (Figure 10). This lower ratio indicates that less attention was paid
to the task. A significant difference was found between Method 3 and Method 1b, 1c,
and 2 (Figure 10). The latter three methods utilized visual stimuli which resulted in higher
attention being paid to the task. This is in line with how higher activation was observed in
a visual attention task compared to an auditory attention task [50]. Compared to the other
methods, Method 3 required less attention from the participants.

Method 1a and 1b used pictures matching the meaning of the words. This is similar
to the method that audiologists use to assess speech discrimination in children. This
should make it easier to compare the results from the ERP methods and conventional
methods. Furthermore, existing materials [19,20,51] can be conveniently adapted for the
ERP methods. Between these two methods, Method 1a used less time per trial while having
comparable accuracy to Method 1b. Furthermore, Method 1b required the participants to
remember the presentation order of the correct picture, which might make this method
more sensitive to errors in some population groups such as elderly patients with cognitive
decline. On the other hand, Method 3 was easier to perform. It required less attention than
Method 1a and 1b, as seen from the lower beta/alpha ratio (Figure 10). Also, with some
adjustment, this method could be performed using passive listening. Passive listening does
not require the participants to pay attention to what they are listening to. Participants can
even engage in other light activity such as reading or watching a video while listening. This
means that it can be used with a wider group of people, including very young children or
uncooperating patients. However, this method might get more time consuming as more
word pairs are added to the test. All things considered, we recommend using either Method
1a or 3 depending on the target population. Method 1a might be a better choice in cases
where existing materials can be adapted easily. However, Method 3 might be better for
participants who have difficulties following instructions.

The participants answered correctly in most of the cases in all methods, in line with
the fact that all the participants had normal hearing. The response time varied between
methods with the highest average time in Method 3. This was surprising as Method 3 was
the only method that utilized auditory stimulus only. Auditory stimulus usually had lower
response time than visual stimulus [52,53]. It was possible that, because the words sounded
very similar, they were difficult to differentiate, while the picture of word meaning did not
resemble the other, making it easier to discern the correct answer in the visual methods.
Thus, the average response time was higher in the auditory method and lower in the visual
methods. The participants’ opinion on each method varied. Some participants preferred
the auditory-only method as they did not have to focus their attention. Others preferred
having visual stimuli because they could differentiate between the conditions more easily
with visual stimuli.

Using a cap with eight electrodes, our setup time was approximately 10–20 min.
During this time, the participants were given instructions for each method. Some partic-
ipants requested a very detailed explanation which could extend this setup time further.
The two most promising methods, Method 1a and 3, took approximately five minutes to
complete for one contrast repeated 40 times. During offline analysis, the result for these
methods was obtained in under 10 s for each participant. In a real situation, more word
pairs should be used but with lower repetition for each pair. Hypothetically, for 50 pairs,
Method 1a would take under 10 min to complete if each pair was used twice. Method 3,
using 20 trials per pair, could be completed in approximately 30 min. The experiment time
for Method 3 could be reduced by adjusting the design. For example, using a double or
multi-feature oddball paradigm [15,22]. The analysis time would vary depending on the
hardware performance but should not take more than 30 min per patient. Overall, a speech
discrimination assessment system using these methods could be done in under one hour.

The ERP-based methods of speech discrimination assessment that were investigated
in this work could potentially be developed into an automated system that acts as a pre-
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screening tool. EEG is gradually becoming more accessible and user-friendly, as can be seen
from the increased availability of consumer EEG devices such as Emotiv Insight (Emotiv,
San Francisco, CA, USA), NeuroSky Mindwave (NeuroSky, San Jose, CA, USA), OpenBCI
headset (OpenBCI, Brooklyn, NY, USA), etc. (for review of low-cost EEG headsets, see [54]).
Such consumer EEG devices can be used by trained healthcare professionals (e.g., nurses,
practical nurses, or health technicians) in local health centers to pre-screen patients using
the automatic system. Then, if the result indicates speech discrimination problems, an
in-person or telemedicine appointment with an audiologist may be scheduled. Employing
such a system would make the assessment more accessible, especially in areas with a
shortage of audiologists.

5. Limitations

This study has some limitations that warrant future research. Although the sample
size used is not dissimilar to those in various BCI studies [55–57], it can still be considered
rather small, especially for Method 1a, 1b, and 1c which involved 10 participants. Further
studies with a larger sample size may help confirm the accuracy of the proposed methods.
Furthermore, this experiment used only one pair of words with a consonant contrast to
test the different methods. To cover all the meaningful contrast types in a language, a
comprehensive word list [19–21,58] could be included. For example, in Thai, which is a
tonal language, the word list should include all vowel and consonant groups with varied
tones [19]. The method could also be further validated with evaluations that are made
by audiologists in patients with hearing loss and other associated diseases. In addition,
all the methods that were included in this work used active listening. The feasibility
of a method utilizing passive listening should also be investigated. Näätänen et al. [11]
suggested passive listening might produce clearer MMN waveform. However, there has
not yet been any confirmation of any effect on classification accuracy. Passive listening
allows the assessment to be applied to a much wider group of people. Thus, a passive
listening method could be very useful if a comparable level of classification accuracy could
be achieved.

6. Conclusions

This research compared several ERP-based methods for assessing speech discrimina-
tion. Of these, two methods are recommended. Both achieved 80% classification accuracy
and required less time or effort than other methods. The first method used picture rep-
resenting word meaning which allowed for easy adaptation of existing materials to be
incorporated into the assessment. P3 and LPP were observed and used to classify whether
the sound and picture matched. This method achieved 82.79% accuracy. The second recom-
mended method used auditory stimuli only. MMN was elicited in response to the deviant
stimuli and was used to classify between standard and deviant stimulus, achieving 81.35%
accuracy. This method took longer to complete than the first but required less attention
from participants. It is well-suited for use in cases where pictures are not available or where
participants have difficulties following instructions.
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Abstract: The impact of repetitive magnetic stimulation (rTMS) on cortex varies with stimulation
parameters, so it would be useful to develop a biomarker to rapidly judge effects on cortical activity,
including regions other than motor cortex. This study evaluated rTMS-evoked EEG potentials
(TEP) after 1 Hz of motor cortex stimulation. New features are controls for baseline amplitude and
comparison to control groups of sham stimulation. We delivered 200 test pulses at 0.20 Hz before and
after 1500 treatment pulses at 1 Hz. Sequences comprised AAA = active stimulation with the same coil
for test–treat–test phases (n = 22); PPP = realistic placebo coil stimulation for all three phases (n = 10);
and APA = active coil stimulation for tests and placebo coil stimulation for treatment (n = 15). Signal
processing displayed the evoked EEG waveforms, and peaks were measured by software. ANCOVA
was used to measure differences in TEP peak amplitudes in post-rTMS trials while controlling for
pre-rTMS TEP peak amplitude. Post hoc analysis showed reduced P60 amplitude in the active (AAA)
rTMS group versus the placebo (APA) group. The N100 peak showed a treatment effect compared
to the placebo groups, but no pairwise post hoc differences. N40 showed a trend toward increase.
Changes were seen in widespread EEG leads, mostly ipsilaterally. TMS-evoked EEG potentials
showed reduction of the P60 peak and increase of the N100 peak, both possibly reflecting increased
slow inhibition after 1 Hz of rTMS. TMS-EEG may be a useful biomarker to assay brain excitability
at a seizure focus and elsewhere, but individual responses are highly variable, and the difficulty of
distinguishing merged peaks complicates interpretation.

Keywords: transcranial magnetic stimulation; epilepsy; cerebral cortex stimulation; electromagnetic
influence; neurostimulation

1. Introduction

Transcranial magnetic stimulation (TMS) [1,2], repetitive transcranial magnetic stimu-
lation (rTMS) [3,4], and intermittent or continuous theta burst stimulation [5] have been
evaluated for therapeutic effects in numerous clinical conditions. Results vary and the opti-
mal parameters of stimulation remain uncertain. For example, of seven controlled studies
of rTMS as a treatment for epilepsy, two have been favorable for seizure improvement [6,7]
and five documented transient, little, or no benefit against seizures [8–12]. Systematic
testing of various stimulation protocols against different clinical outcomes is a lengthy and
difficult process. Therefore, a biomarker able to efficiently assay the biological effect of
rTMS would likely accelerate development of useful therapies.

Small variations of stimulation parameters or locations can lead to widely varying–
sometimes opposite–clinical responses [13]. For example, low-frequency stimulation at
0.5–1 Hz depresses motor cortex excitability [14], whereas 5 Hz of stimulation increases
excitability [15].
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The most commonly used biomarker for effects of rTMS is the electromyogram (EMG)-
evoked response in the hand, while stimulating contralateral motor cortex [16]. A suffi-
ciently strong TMS stimulation delivered to motor cortex elicits a thumb or finger twitch
and an EMG response recorded by a surface electrode on the hand. Cortical stimulation
produces local excitation, followed by a silent period reflecting cortical inhibition [17]. A
second TMS pulse delivered during the period of inhibition will produce a smaller EMG
response in the hand, thereby allowing the ratio of EMG amplitudes of the second versus
the first response to serve as a marker of induced cortical inhibition [16]. This method of
estimating cortical inhibition only applies to motor cortex. However, the desired inhibitory
effect of rTMS often is on another region of the brain, for example, the dorsolateral frontal
cortex for treating depression [18] or a cortical seizure focus for treating epilepsy [19,20].

TMS evokes an electrical response in cortex that can be recorded by electroencephalog-
raphy (EEG) electrodes [21–31]. Because the EEG signals are low amplitude and distorted
by magnetic pulse artifact, signal averaging of multiple stimuli and digital signal process-
ing methods are required to characterize the EEG response to TMS [32–41]. Nevertheless,
TMS-evoked EEG potentials (TEPs) can be assessed in any region of cortex before and after
a putative therapeutic maneuver. This potentially affords an opportunity to use TEPs as a
biomarker of rTMS or TBS efficacy. Changes in TEPs in response to rTMS treatment were
demonstrated by the present authors in a single case study of a patient with epilepsy, also
correlating with improvement in seizures [42].

The usual TEP has negative (N) and positive (P) peaks at N20, P30, N40 [43] (sometimes
labeled as N45), P60 (sometimes labeled P70), N100, P180, and N280 ms [44]. The N40 peak
corresponds to the GABAA receptor-based fast IPSP [45–47]. Later peaks, including the
P60 and N100 peaks, may correspond to the GABAB receptor-based slow IPSP [30,48,49].
Casula and colleagues [50] demonstrated that 1 Hz of rTMS in normal subjects increased
the P60 and N100 peaks. Their study was carefully done, but only on 15 subjects and
without a placebo-stimulation control group. In this study, we explored whether rTMS at 1
Hz can alter the N40, P60, and N100 peaks, with 47 subjects and two control groups, and
we additionally examined cortical sources of the evoked potentials. The goal was to further
develop TEPs as a biomarker for assaying regional cortical excitability alterations produced
by rTMS in cortical regions that cannot be assayed by peripheral stimulation. This could be
useful, for example, for testing excitability in cortical seizure foci or areas of cortical injury.

2. Materials and Methods

2.1. Subjects

Forty-seven healthy adult participants (age 21–67 years; mean = 32.8 ± 9.6 years) were
recruited. Two participants reported left-handedness. All participants signed an informed
consent form before participation in present study approved by the Stanford University
Institutional Review Board (IRB). Exclusion criteria were extracted from the Rossi et al.
(2009) article [51].

2.2. TMS Device and Coils

TMS was delivered using an EB Neuro ATES STM9000 magnetic stimulator (EB Neuro
S.p.A., Florence, Italy) with the coil held tangentially to the skull, with its handle oriented
45 degrees from midline. TMS was delivered with the electrode cap on, as closely as
possible without touching the electrodes. Active TMS was delivered with a 70-mm air-
cooled figure-of-eight coil (B9621086004). (EB Neuro S.p.A., Florence, Italy) Pseudo-placebo
stimulation was delivered with a visually identical 70-mm air-cooled figure-of-eight coil
(B9621086009) (EB Neuro S.p.A., Florence, Italy). The placebo coil stimulated in a tangential
plane to cortex, which reduced the effect, but still permitted some stimulation to provide
a scalp sensation and mask the treatment group. Therefore, the treatment groups could
be considered high versus low stimulation treatment arms, rather than active versus true
placebo. A second control group consisting of exclusive use of the placebo coil for 0.20 Hz
of TMS and 1 Hz of rTMS blocks was studied to account for possible group differences
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that might be derived from use of two different coils (Table 1). The group with the active
coil for all stimulation was denoted as the full active AAA group (n = 22); full placebo as
the PPP group (n = 10) and the group with the active coil for both sets of 0.20-Hz test TMS
and placebo coil for the 1 Hz of rTMS was called the active–placebo–active (APA) group
(n = 15).

Table 1. Test stages.

Group n Test Pre 0.20 Hz rTMS 1 Hz Test Post 0.20 Hz

Full active (AAA) 22 active active active
Full placebo (PPP) 10 placebo placebo placebo

Mixed (APA) 15 active placebo active

TMS sound artifact was masked via use of white noise played with sound canceling
headphones. Volume was incrementally increased until participants reported that the TMS
“click” was obscured. Continuous visualization of stimulation site in relation to individual
cortical anatomy was ensured using an ATES Medica NetBrain Neuronavigation system.
All three test stages followed the same procedure without revealing the coil type to the
subjects. Figure 1 shows the experimental arrangement.

 

Figure 1. rTMS setup showing the subject in relation to the stimulator generator and coil, neuronav-
igation system, wire to the left thumb to stimulate and record EMG and (to the right) cable to the
EEG machine.
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2.3. EEG System

EEG was recorded using an Electrical Geodesic, Inc. 256-channel MicroCel sensor net.
Elefix conductive paste was used on 77 electrodes. Gelled electrodes included the standard
10–20 montage electrodes as well as a denser cluster of electrodes in regions of interest
near C3 and C4 (Figure 2). EEG data were recorded referenced to Cz and impedances were
kept below 10 kΩ. EEG was sampled at 1 kHz and the amplifier was set to fast recovery.
Electrodes were connected to scalp by conductive paste, comprising the 10–20 system and
a dense array around C3 and C4, which was the stimulation site.

 

Figure 2. Topography of the recording electrodes. EEG was recorded using an Electrical Geodesic, Inc.
256-channel MicroCel sensor net. All electrodes on the sensor net were spaced 0.5–1.5 cm from each
other at the center. Conductive paste was used on 76 electrodes including the standard 10–20 montage
electrodes and a denser cluster of 27 electrodes near the TMS region of interest, collectively falling
within 6 cm of C3 and C4, respectively.

2.4. Resting Motor Threshold (rMT)

Participants were seated in an adjustable chair with a headrest to keep the head stable
for the duration of the study. The resting motor threshold (rMT) was determined with
the EEG cap in place. The stimulation site was determined by finding location of the
stimulation that evoked the largest movement in a participant’s non-dominant hand. rMT
was defined as the minimal stimulation intensity used to evoke a visible muscle twitch with
time-locked EMG correlate in at least 5 out of 10 trials. When rMT could not be determined
(n = 6), we set rMT as 65% of maximum stimulator output.
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2.5. Repetitive Transcranial Magnetic Stimulation (rTMS)

Participants underwent the rTMS procedure in the late morning or early afternoon
hours. Participants were asked to keep eyes closed throughout stimulation, but were
kept awake for the duration of study, confirmed by EEG and behavioral monitoring. The
experiment was limited to a single session that delivered rTMS to non-dominant hand
region motor cortex (near the C4 electrode). Previous studies [52,53] provided evidence that
non-dominant hand motor cortex and dominant hand motor cortex have similar resting
motor thresholds; however, the non-dominant hand motor cortex may be more susceptible
to inhibitory stimulation than is the dominant hand motor cortex.

Stimulations were divided into three separate blocks, all delivered with the electrode
cap in place. The initial block of rTMS consisted of 200 single pulse rTMS (SpTMS) delivered
at 0.20 Hz and 110% of rMT. The second block consisted of 1500 rTMS pulses at 1 Hz and
90% rMT. The rTMS pulses were divided into three sub-blocks of 500 pulses, separated by
rest periods of 90–120 s to allow for coil cooling. The final stimulation block consisted of a
second round of 200 SpTMS delivered at 0.20 Hz at 110% rMT.

2.6. Processing of EEG Data

EEG analysis was performed in MATLAB using EEG-LAB and the TMS-EEG signal
analyzer, TESA [54], an open-source extension of EEGLAB. Order of operations for TMS-
EEG analysis was the following: (1) EEG data were segmented from −600 ms before
to +600 ms after the rTMS pulse. (2) Data were baseline corrected, based on EEG data
occurring from −100 to −6 ms. (3) EEG data from −5 to +15 ms were removed and
replaced with constant data extrapolated from the pre-artifact baseline, to eliminate the
majority of the rTMS pulse artifact. (4) Data were visually inspected for profound artifacts
(e.g., flat-lining or noise unrelated to the rTMS). Bad channels and trials were manually
removed. (5) TESA performed a first pass of fast independent component analysis (ICA)
to correct for rTMS-ringing artifact. (6) EEG data were band-pass filtered from 1–100 Hz
and band-stop filtered from 59–61 Hz. (7) A second round of fast ICA was performed to
remove remaining artifacts ICA components were grouped by TESA software into one of
six categories, including electrode noise, eye-blink, muscle artifact linked to TMS, muscle
artifact not linked to TMS, sensory artifact, and other. These were reviewed manually
and accepted or rejected based upon topography, being in an isolated topographic island,
localization only at sites of muscles or eye movement artifact, frequency spectrum, and
waveform shape. When in doubt, potentials were included in the reconstruction. This
was not done blinded as to treatment, but treatment was not actively considered during
decisions about artifact. (8) Data were re-referenced to an average reference, and data were
baseline corrected from −100 to −6 ms. (9) TEPs were averaged across all trials and the
mean TEPs were then visualized.

2.7. Source Localization

To localize the cortical areas with EEG responses to left motor cortex magnetic stimula-
tion, we reconstructed source activity in a manner comparable with methods used clinically
for surgical evaluation of epilepsy patients [55] albeit with a standardized MRI to build the
head model. Using trial group averaged pre-treatment TEP EEG signals, the distribution
of current density in cortex over time was estimated using low-resolution brain electro-
magnetic tomography (LORETA) with loose constraints within the Brainstorm plugin for
MATLAB. Results from LORETA were similar to those from LAURA (low-resolution elec-
tromagnetic tomography) so only results from LORETA were reported. This approximates
the optimal current density at the cortical sources needed to produce a distribution of
observed EEG potentials over the scalp.
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2.8. Statistical Analysis

An analysis of covariance (ANCOVA) at α = 0.05 was used to measure differences
in TEP peak amplitudes in post-rTMS trials while controlling for pre-rTMS TEP peak
amplitude differences. This allowed for adjustment of TEP amplitudes while accounting
for any pre-existing differences between groups. If a significant effect was detected by the
ANCOVA, Bonferroni-corrected post hoc analyses were conducted to decompose the effect.
No ANCOVA assumptions were violated for the reported analyses.

3. Results

No clinical or electrographic seizures were induced by the stimulation. Except for
occasional mild scalp discomfort, all were able to tolerate the procedure.

3.1. Motor-Evoked Potential (MEP)

The 47 subjects demonstrated a resting motor threshold of 67.47 ± 7.05 % of maximum
machine output. There was no significant change in motor evoked potential (MEP) after
1 Hz of rTMS (p = 0.26, Cohen’s d = 0.17). The MEP amplitude was not correlated signifi-
cantly with the P30, N40 (Pearson r = −0.04, p = 0.43) or N100 (Pearson r = 0.32, p = 0.07)
peaks or changes in peak amplitudes after rTMS (Pearson r = −0.01, p = 0.49 for N40 and
Pearson r = 0.10, p = 0.39 for N100).

3.2. TEP Latencies and Amplitudes

Within individual subjects, TEP peak latencies were reliable with variations between
pre- and post-rTMS treatments of no more than ±4.18 ms. Between subjects, the peak laten-
cies however showed substantial variability, with various individuals showing increases,
decreases, or no change from pre -rTMS to post- rTMS.

Mean amplitudes (see Figure 3) for the test block TEPs in the fully active (AAA)
group before and after 1 Hz of rTMS show that P60 and N100 amplitudes both became
more negative (P60 amplitude decreased and N100 increased). The mixed (APA) group
demonstrated increased (more negative) N40 amplitudes after 1 Hz of rTMS. The full
placebo stimulation (PPP) group did not consistently have well-formed TEP components.

Full placebo stimulation (PPP) produced poorly formed low-amplitude (see Table 2)
waveforms. Table 2 indicates that the amplitudes of the TEPs to the 0.2-Hz test pulses
were generally similar before and after 1-Hz treatments, but the absolute amplitude of the
all-placebo response was about 40% of those evoked by active stimulation. To determine
the effect of active 1-Hz rTMS, independent of effects of the baseline amplitude of TEPs
and of placebo stimulation, we performed ANCOVAs among the experimental conditions
on post-rTMS amplitudes, while controlling for pre-rTMS TEP peak amplitudes, with post
hoc testing conducted to decompose significant ANCOVAs (Figure 4).

Table 2. Baseline-adjusted amplitudes. All units are μV. SUM of AV represents the sum of the absolute
values of the peak amplitudes and their standard error.

AAA PPP APA

N20 −0.89 ± 0.38 −0.68 ± 0.59 −1.42 ± 0.48
P30 0.99 ± 0.39 0.62 ± 0.64 1.35 ± 0.46
N40 −1.17 ± 0.43 0.04 ± 0.68 −0.49 ± 0.50
P60 * 1.29 ± 0.24 0.86 ± 0.86 2.40 ± 0.31

N100 * −3.26 ± 0.57 −1.04 ± 0.92 −1.37 ± 0.67
P180 1.32 ±0.57 1.25 ± 0.84 1.65 ± 0.75

SUM of AV 8.91 3.48 8.68
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Figure 3. TEPs averaged at C4. Average pre (blue) vs. post (red) TEPs in response to 1-Hz rTMS for
AAA (n = 22), APA (n = 15), and PPP (n = 10) groups. Since there was jitter in peak latencies between
participants, the amplitudes of the grand averaged traces are lower than they would have been, had
each peak been adjusted individual for peak latency (see Figure 3). Significance was not calculated
for these raw averaged amplitudes, but on baseline-corrected peak amplitudes.

Figure 4. Absolute ANCOVA adjusted peak amplitudes. The amplitude of post-corrected for pre-
rTMS TEP peaks for each experimental group. No significant changes before and after active 1-Hz
rTMS were noted for N20 and P30. AAA showed a reduced P60 amplitude post rTMS compared
to the APA stimulation group. AAA showed a more negative N100 amplitude after rTMS when
compared to APA and PPP groups. (* p < 0.05). T-bars represent half the standard error.
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3.3. N40

The baseline-corrected N40 peak amplitude increased in the AAA group after rTMS,
but the change did not achieve significance according to the one-way analysis of covari-
ance (ANCOVA), F(2, 34) = 1.284, ηp2 = 0.070, 1–β = 0.259, and p = 0.290. The N40
peak did not show a significant difference among groups, although the AAA group
was descriptively larger after active stimulation (mean adjusted = −1.174, standard error
(SE) = 0.426) compared to PPP (mean adjusted = 0.042, SE = 0.681), d = 0.676, and APA
(mean adjusted = −0.493, SE = 0.500) d = 0.378 groups. The amplitude of APA was slightly
more negative than PPP, d = 0.297.

3.4. P60

The amplitude-corrected P60 peak became less positive after active rTMS for the AAA
group compared to the APA group. A one-way analysis of covariance (ANCOVA) of pre-
versus post-TEP P60 amplitudes across the three experimental conditions, while control-
ling for pre-rTMS TEP P60 amplitudes revealed a significant effect of experimental group,
F(2, 39) = 5.494, ηp2 = 0.220, 1–β = 0.822, and p = 0.008. Bonferroni-adjusted post hoc anal-
yses showed a significant difference between the AAA condition (mean adjusted = 1.287,
SE = 0.244), t(39) = 2.889, p = 0.024, d = 0.996 and the APA condition (mean adjusted = 2.398,
SE = 0.308), There was also a significant difference between the PPP condition and the
APA condition (mean adjusted = 0.860, SE = 0.403), t(39) = 3.113, p = 0.016, d = 0.1380.
There was not a significant difference between the AAA and PPP conditions, t(39) = 0.922,
p = 1.000, d = 0.383. Although the PPP group demonstrated a significantly more positive P60
peak amplitude after 1 Hz of rTMS in the averaged raw waveforms with the placebo coil,
the placebo coil had a high degree of variation, obscuring potentially significant differences.

3.5. N100

The N100 peak increased with 1 Hz of rTMS in the AAA group. ANCOVA was
conducted across the three experimental conditions on post-rTMS TEP N100 amplitudes
controlling for pre-rTMS TEP N100 amplitudes. The analysis revealed a significant effect of
experimental group, F(2, 40) = 3.295, ηp2 = 0.141, 1–β = 0.593, and p = 0.047, with N100 de-
scriptively more negative amplitudes in the AAA group compared to the other groups after
rTMS. However, Bonferroni-adjusted post hoc analyses failed to show significant differ-
ences between the APA condition (mean adjusted = −1.373, SE = 0.665), the AAA condition
(mean adjusted = −3.262, SE = 0.565), and the PPP condition (mean adjusted = −1.041,
SE = 0.921), all t-values ≤ 2.169, all p-values ≥ 0.109.

3.6. Topography of TEPs

rTMS caused topographically widespread TEP components. The early TEP waveforms
between 10 and 30 ms had larger amplitudes at electrode locations near C4, but later
components, while being visible contralaterally from the stimulation site, had their highest
amplitude peaks in electrodes covering the stimulated cortical areas. Later waveforms such
as the N100 and P180 were characterized by more profound bilateral distribution compared
to earlier waveforms. When comparing TEP amplitudes pre-post changes at electrode sites
distant from the stimulation site we found no significant changes in any groups (Figure 5).
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Figure 5. Group average TEP topography. Butterfly plot of EEG traces and topographic portrayal of
TEP amplitude averaged from 20–100 ms in response to the stimulation of left motor cortex region.
Left is left in the figure and right is right.

3.7. Source Analysis

The localized source activity for TEPs were shown to be likely evoked from focal
areas near or under the site of stimulation. However, later waveforms (N100 and P180)
affected a larger cortical area. At the initial stimulation, source activity shows a wide
area effected by rTMS near the site of stimulation around the C4 electrode, including
the ipsilateral precentral gyrus, superior frontal gyrus, and middle frontal gyrus, and
to a lesser extent the ipsilateral postcentral gyrus and contralateral superior precentral
and postcentral gyri (Figure 6). Source analysis of the P30 and N40 waveforms show
activity generators predominantly anterior to the site of rTMS including the ipsilateral
middle frontal and superior frontal gyri. The P60 waveform shows activity generators
in the ipsilateral precentral, postcentral, supramarginal, and superior frontal gyri. The
N100 waveform shows widespread activation, including generators in the temporal poles,
frontal poles, superior frontal gyri, superior parietal lobes, ipsilateral pre- and post-central
gyri, superior portions of the contralateral pre- and post-central gyri, and the ipsilateral
middle frontal gyrus. The P180 waveform generators arise predominantly from the superior
parietal lobes, ipsilateral superior frontal, middle frontal gyri, and the contralateral superior
frontal lobe and, to a lesser extent, the contralateral pre- and post-central gyri, and the
superior and middle temporal gyri.
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Figure 6. Source localization of TEP activity. Butterfly plot of EEG traces and topographic portrayal
of TEP amplitude averaged from 20–100 ms in response to the stimulation of left motor cortex region.
Right is on the left (MRI convention) and left is on the right.

4. Discussion

This study in normal volunteers confirms that 1 Hz of repetitive transcranial magnetic
stimulation alters rTMS-evoked EEG potential (TEP) waveforms. These waveforms can then
be rendered visible with signal averaging and processing [24,26,28,30,44,56]. Numerous
studies [57,58] have evaluated short-interval intracortical inhibition (SICI, typically 1–5 ms)
and long-interval intracortical inhibition (LICI, typically 50–200 ms) by measuring the
EEG response to paired TMS pulses. Our study evaluated the effect of 1-Hz repetitive
pulse trains on TEP waveforms, which is a much less commonly employed experimental
paradigm than is paired-pulse stimulation, but one that might have greater potential for
evaluation of different regions of cortex.

Previous related work includes a study by Casula and associates who found that
rTMS increased the P60 and N100, but not the P30 or N40 [50]. That study did not control
for pre-existing baseline amplitude differences and did not use a placebo comparison
group. We observed a less positive (smaller) P60 and more negative (bigger) N100 after
1 Hz of rTMS. This partially confirmed the results found by Casula, while controlling for
the confounding factor of highly variable TEP amplitudes among different subjects. The
divergent findings of our study versus those of Casula regarding the P60 may be in part
due to differences in our procedures. Casula and colleagues used 120% RMT and 50 single
pulses to measure TEP amplitudes. We used 110% RMT and 200 single pulses to measure
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TEP amplitudes, which might have improved the signal-to-noise ratio. Additionally, the
present study evaluated a larger study population, with a different method of marking
peak amplitudes, and addition of placebo comparison groups.

A control group with placebo stimulation is important to rule out nonspecific effects,
because rTMS produces auditory and somatosensory components of the TEP that are not
directly related to magnetic stimulation-induced cortical activity [59]. We were able to show
group difference for several peaks generated by test stimulations at 0.20 Hz for placebo
or active coils before and after 1 Hz of rTMS. Our placebo coil stimulation was able to
evoke variable and low amplitude cortically-generated waveforms; therefore, our placebo
stimulations might better be considered a low-dose comparator to active stimulation,
meaning that comparisons of active to placebo stimulation might have underestimated the
effects of active stimulation.

Only limited information is available about the physiological relevance of TEP peaks.
Pharmacological studies suggest that the N40 is enhanced in humans with administration
of diazepam, reflecting increased fast GABAA mediated inhibition [45–47,59,60]. The N100
peak increases with the GABAB agonist, baclofen [45,48] and decreases with presynaptic
inhibitors of excitatory transmitter release [61] implying potential for serving as a marker
of cortical inhibition that might be useful for reducing seizures [30]. The amplitude of
the N100 peak might depend more on the ratio of GABA to glutamate than upon GABA
alone [60]. However, increase in GABAB-mediated synaptic inhibition might be expected to
produce variable effects in different types of epilepsy. Absence seizures, for example, show
spike-wave EEG discharges, with the wave component reflecting a significant component
of slow GABAB-mediated inhibitory potentials [62,63].

The P60 peak occurs at a time of long-interval intracortical inhibition, also mediated
by GABAB receptors [45]. Excitatory transmission may play a role in generating the
P60 peak, since the glutamate AMPA receptor antagonist, perampanel, suppresses P60
amplitude [61,64]. Rogasch [30] suggested that the P60 TEP could reflect a component
of somatosensory feedback, but Cash [49] has argued that there is a significant cortical
component of P60.

Identifying cortical sources of TEPs could be important for rTMS use in a clinical
setting. Our study examined TEPs averaged across participants and modeled sources
coming from a normalized atlas brain. The TEP activity localized near the stimulation
site, but also with some distant activity, reflecting network spread. We again confirm the
findings of Casula [50] and Bikmullina [65] that motor cortex rTMS influences TEPs over a
wide region of ipsilateral cortex. In our study, the range of effect was from anterior temporal
to occipital regions. Studies using motor assays have identified transcallosal inhibition
provoked by contralateral motor cortex rTMS [66,67] and we can confirm a significant
contralateral component of the TEPs. The widespread effects of rTMS to increase the N40
marker on fast inhibition might argue against the need for exact targeting of stimulation.
However, enhancement of inhibition was maximal at the motor cortex stimulation site. TEP
changes in this study did not correlate with amplitude of the motor evoked responses, as has
been noted by others [28]. We did not systematically look for changes in motor threshold
or paired-pulse inhibition at various inter-stimulus intervals. Studies using individual
MRI brain modeling could take advantage of rTMS with cortical source modeling to create
detailed individual connectivity maps by plotting propagation patterns of TEPs evoked
from systematically chosen cortical areas.

Variability among participant’s TEP responses is high [68], limiting the significance of
post hoc pair-wise and group comparisons. However, individuals have relatively stable
TEPs at 20, 30, 40, 60, and 100 ms [69], suggesting that TEPs might provide a useful
biomarker for regional cortical excitability in specific patients. Of the TEPs we found the
N100 to be the most viable biomarker for rTMS induced cortical inhibition. If TEPs are
confirmed as a reliable surrogate marker for cortical inhibition in epilepsy patients, then
TEP recordings could become significantly more efficient than seizure counts in screening
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the effects of anti-seizure therapies. Of course, any such findings would require validating
the effect of a possible treatment on seizure counts.

Our study is subject to several interpretive limitations. Distinguishing continuous
waveforms is problematic, because changes in adjacent peaks can be additive or subtractive,
rather than independent. For this reason, we employed unbiased software measurements
of amplitudes at selected peaks, rather than trough-to-peak values, but this may have been
at the expense of evaluating effects on individual peaks. TMS-TEPs are subject to a wide
variety of artifacts [70]. Late TEP components can possibly be influenced by improper
masking of the loud rTMS “click” that occurs during stimulation [71]. We attempted to
account for this by use of white noise played via sound cancelling earbuds, but we cannot
guarantee that the rTMS “click” was completely obscured. We have no evidence that the
changes in TEP waveforms correlate with any clinical or even biological effect. Examining
grand averaged source space activity likely misses the nuances that would be critical to
clinical application of rTMS source reconstruction. rTMS-evoked EEG potentials might
differ from normal volunteers versus those with epilepsy or other neurological diseases
when stimulating the areas of neurological abnormality. Our experiments do not document
the durability and replicability of TEP changes. Future clarification of these issues will
further the use of rTMS-evoked EEG potentials as biomarkers for cortical excitability in
non-motor cortex.

5. Conclusions

As described by several prior studies, rTMS evokes measurable EEG potentials, dis-
cernible after suitable processing. A positive peak at 60 ms and a negative peak at 100 ms
are each altered by 1 Hz of repetitive TMS at motor cortex, with P60 decreased and N100
increased. N40 showed a non-significant trend towards an increase. Effects on other
evoked peaks are variable. While several of our findings are confirmatory of previous work,
new features include reliable persistence of evoked EEG potential changes in response to
rTMS when controlling for highly variable initial amplitude and as compared to sham-
stimulation controls. Comparing changes in the EEG, not only to before-after rTMS, but to
sham stimulation controls confirm the important increase of the N100 potential, but are
less confirmatory of P60 peak changes. Our topographic dipole analysis documents that
the largest effects of 1-Hz rTMS on TEPs are manifest early and close to the stimulation site.
These changes in rTMS-evoked EEGs may reflect increased GABAB-mediated inhibition in
specific brain regions.

Limitations of this technology are several, including difficulties in isolating individual
EEG peaks and intra-subject variability, often requiring population averages and statistics
to visualize changes. However, measurements of rTMS-evoked EEG changes are not
restricted to motor cortex, so they may serve as useful biomarkers for cortical excitability at
a seizure focus.
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