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Macı́as-Dı́az and Mohamed S. Soliman
Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
Reprinted from: Symmetry 2022, 14, 341, doi:10.3390/sym14020341 . . . . . . . . . . . . . . . . . 121

Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macı́as-Dı́az, Savin Treant, ǎ and
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Editorial

Special Issue of Symmetry: “Symmetry in Mathematical
Analysis and Functional Analysis”
Octav Olteanu

Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania;
octav.olteanu50@gmail.com

This Special Issue consists of 11 papers recently published in MDPI’s journal Symmetry
under the general thematic title “Symmetry in Mathematical Analysis and Functional Analy-
sis” (see [1–11]). The deadline for manuscript submissions was 31 July 2022. This Special Is-
sue belongs to the section of the journal entitled “Mathematics and Symmetry/Asymmetry”.

Among other aspects of the theory underlying this area of research, the content of these
11 published papers (and their references) covers, but is not limited to, the following subjects:

1. Common fixed-point results in general metric space settings and applications.
2. Constrained optimization.
3. Optimal control.
4. Solving systems of special differential equations.
5. Applications of fractional calculus.
6. Inclusion and inequalities in interval-valued pre-invex and convex functions.
7. Fuzzy fractional integral inequalities in pre-invex fuzzy interval-valued functions.
8. Multi-objective convex optimization in real Banach space.
9. Well-posedness for certain classes of equations.
10. Families of convex operators and related linear operators.
11. Symmetry of sublinear continuous operators and its applications (see [11]).

In the first part of paper [11], the symmetry of sublinear continuous operators P : X → Y
(P(x) = P(−x) ∀x ∈ X) appears in Theorem 2 and in some of its consequences. Of note, if
X, Y are Banach lattices, with Y being an order complete, then the norm of a continuous
sublinear operator from X into Y controls the norm of all its subgradients. In the second
part of the same paper, elements of the theory of the Markov moment problem are explored.
Since this thematic area is closely related to many other fields of mathematics, here, we
briefly review some of the notions regarding the classical one dimensional and, in particular,
the multidimensional moment problem and its relationship with other areas of research,
such as the explicit form of any non-negative polynomial on a closed subset of Rn in terms
of the sums of the squares of some polynomials; the extension of positive linear functionals
and operators; the extension of linear operators dominated by a convex continuous oper-
ator and dominating a given continuous concave operator (these constraints might hold
only on the positive cone of the domain space); measure theory; the notion of a moment
determinate measure and study of determinacy; matrix theory; spaces of commuting self-
adjoint operators (in particular, spaces of commuting symmetric matrices with real entries);
inequalities; the Banach lattices of functions and self-adjoint operators; existence, unique-
ness, and the eventual construction of the linear solution to an interpolation problem with
one or two constraints; and examples of continuous sublinear (or only convex) operators,
operator theory, and the complex functions of complex variables. In the present editorial,
only the analysis and functional analysis of the real field are addressed. As is well-known
and pointed out by the authors of [12], symmetric matrices with real entries have special
properties, and there exits a natural order relation with respect to the real vector space
Sym(n× n,R) of all such matrices. With respect to this order relation, for n ≥ 2, the
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ordered vector space Sym(n× n,R) is not a lattice. On the other hand, the multiplication
operation of such n× n matrices is not commutative for n ≥ 2. Clearly, the corresponding
assertions hold true regarding the space A(H) of all the self-adjoint operators acting on a
real or complex Hilbert space H, where dim(H) ≥ 2. The same article [12] contains simple
proof of the fact that any positive linear operator applying an ordered Banach space X
to an ordered Banach space Y is continuous. In particular, any positive linear operator
mapping an arbitrary Banach lattice onto a Banach lattice is continuous. In order to avoid
the two main difficulties mentioned above, regarding the space A(H) for any A ∈ A(H),
as demonstrated in [13], one must construct a commutative real Banach algebra over the
real field, denoted by Y(A), which is also an order complete Banach lattice (endowed with
the operatorial norm onA(H)). In this Banach lattice, we have |U| := sup{U,−U} =

√
U2

for all U ∈ Y(A). In other words, the modulus of U in this Banach lattice equals the
positive square root of the positive self-adjoint operator U2. Moreover, due to the order
completeness of the vector lattice Y(A), Hahn–Banach-type extension theorems for linear
operators have Y(A) as a codomain hold. In the classical one-dimensional moment prob-
lem, given a sequence

(
yj
)

j∈N of real numbers, we should find necessary and sufficient
conditions for the existence of a positive regular Borel measure ν on the closed subset
F ⊆ R, which satisfies the interpolation conditions

∫
F tjdν(t) = yj, j ∈ N := {0, 1, 2, . . .}.

This is an inverse problem, because the measure ν is not known. Thus, it must be identified
starting with its moments

∫
F tjdν(t), j ∈ N. If such a measure does exist, its uniqueness and,

eventually, its construction can be studied. The multidimensional real moment problem
can be formulated in a similar way. In the case of an n− dimensional moment problem,
we have j = (j1, . . . , jn) ∈ Nn, t = (t1, . . . , tn) ∈ F ⊆ Rn, n ≥ 2, n, being a fixed integer.
Considering the unique linear form L0 on the space of all the polynomials with real co-
efficients, satisfying the interpolation condition L0

(
ϕj
)
= yj, j ∈ Nn, the existence of a

solution is reduced to the representation of L0 by a positive measure dν. Namely, through
linearity, the following equality is true for dν : L0(p) =

∫
F p(t)dν(t) for all the polynomi-

als p ∈ R[t1, . . . , tn]. This is a motivation for the terminology representing measure for L0.
According to the Haviland theorem [14], the sufficient (and necessary) condition for the
existence of the representing positive measure dν for L0 is L0(p) ≥ 0 for any polynomial
p ∈ R[t1, . . . , tn] satisfying p(t) ≥ 0 for all t = (t1, . . . , tn) ∈ F. In the important case of
n = 1, F = R, this positivity condition can be expressed in terms of the semi-positiveness
of quadratic forms, since each polynomial (with real coefficients) which is non-negative
on the entirety of the real axes is the sum of two squares of the polynomials from R[t]
(see [15,16]). With the abovementioned notations, the coefficients of the quadratic forms
are yi+j. This is the one-dimensional Hamburger moment problem. It represents a good
example of symmetry, given by the symmetric matrices

(
yi+j

)
0≤i,j≤m and m ∈ N. A similar

remark is valid for the one-dimensional moment problem on [0,+∞) : p ∈ R[t], p(t) ≥ 0
for all t ∈ [0,+∞)⇐⇒ p(t) = q2(t) + tr2(t) ∀t ∈ [0,+∞) for some polynomials q, r ∈ R[t].
Unlike the one-dimensional case, there are non-negative polynomials on R2, which are
not sums of the squares of the polynomials in R[t1, t2] (see [16]). Up to now, the terms
of the sequence

(
yj
)

j∈Nn have been numbers. This is the scalar moment problem. Next,

we consider a sequence
(
yj
)

j∈Nn of elements of an ordered vector space Y and, with the
notation forms above, we study the existence of a linear positive operator T : X1 → Y ,
such that T

(
ϕj
)
= yj for all j ∈ Nn. Here, X1 is an ordered vector space of real functions,

containing the polynomials and the space Cc(F) of all the continuous compactly supported
functions on F, such that the subspace of the polynomials is a majorizing subspace in X1.
For example, if X := Lp

ν(F), p ∈ [1,+∞), the space X1 will be the sublattice of X formed
by all the functions f from X, possessing the modulus | f | dominated by a polynomial on
the entire subset F. Then, it is easy to observe that the subspace of the polynomials is a
majorizing subspace in X1 and, clearly, X1 contains Cc(F) and the space of the polynomials.
Assuming that Y is order complete, we consider the unique linear operator T0 mapping the

2
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space of the polynomials to Y, T0

(
∑

j∈J0

αj ϕj

)
:= ∑

j∈J0

αjyj, J0 ⊂ Nn, being an arbitrary finite

subset. Additionally, assume that T0(p) ∈ Y+ for all the non-negative polynomials p on F.
The application of the Kantorovich extension theorem for positive linear operators (see [17])
leads to the existence of a linear positive extension T1 of T0, where T1 is mapped X1 to Y. If
we prove the continuity of T1 on X1, then there exists a unique continuous positive exten-
sion T : X → Y of T1. This follows from the density of Cc(F) in X = Lp

ν(F), p ∈ [1,+∞)
(see [18]). When an upper constraint on the solution T is required, we have a Markov
moment problem. Usually, the following constraints on the solution T of the interpolation
problem are required: 0 ≤ T ≤ T2 on the positive cone X+, where T2 is a given linear
positive operator mapping the Banach lattice X to the order complete Banach lattice Y.
In [19], the explicit form of non-negative polynomials on a strip is highlighted in terms of
the sums of squares. In the papers [20–36], various results on the full and truncated moment
problem are provided. These results refer to connection with fixed-point theory (see [23]),
the moment problem on compact subsets with a nonempty interior in Rn, (see [25]), and the
decomposition of positive polynomials on such compact subsets, the moment problem, and
the decomposition of positive polynomials on compact semi-algebraic subsets (see [26–29].
In [29], a class of moment problems on unbounded semi-algebraic sets are also discussed.
The truncated Markov moment problem, including the construction of a solution, is em-
phasized in the articles [30,31]. For optimization related to the truncated moment problem,
see [32,33]. A solution to a full moment problem obtained as a limit of the solutions for
the associated truncated moment problem is provided by the authors of [34]. In [35], an
operator-valued moment problem is solved, while an L-moment problem is discussed
in [36]. The geometric aspects of functional analysis in nonstandard spaces are discussed in
the papers [37,38], without any connection with the moment problem. Iterative methods
regarding fixed-point and related optimization problems are discussed in [39–41]. In the
monograph [42], the authors study the sandwich condition T1 ≤ T ≤ T2 on the positive
cone of the domain space, where T1, T2 are given linear functionals and T is a solution
for a finite number of the interpolation moment conditions. The article [43] provides the
necessary and sufficient conditions for the existence of a positive linear operator solution
dominated by a convex operator. A result of G. Cassier (see [25]) is applied in order to
apply the first theorem in [43] to the classical multidimensional Markov moment problem
on a compact with a nonempty interior in Rn. A characterization of the existence of a linear
operator solution T for an arbitrary infinite number of moment conditions, such that the
sandwich constraint T1 ≤ T ≤ T2 on X+ holds, is also provided. Here, T1, T2 are the given
linear operators. In the article [44], sufficient conditions for the determinacy of probability
distributions on R or respectively on [0,+∞) are studied. We recall that a measure is a
determinate measure on the closed subset F if it is uniquely determined by its moments on
F. In the paper [45], the notion of a finite simplicial set is reviewed and applied to a non-
standard sandwich theorem on that set. Notably, a finite simplicial set can be unbounded
in the case of any locally convex topology on the vector space in which the set is contained.
As we have already seen, the non-negative polynomials on Rn are not expressible in terms
of the sums of squares. This is the motivation for the polynomial approximation results
provided in [46,47] and applied to the Markov moment problem with the operator solution
in [46–49]. These results are essentially based on the notion of a moment determinate
measure. In [46], it was proved that for a moment determinate measure ν, the non-negative
polynomials on F are dense in the positive cone of L1

ν(F). Consequently, the subspace of the
polynomials is dense in L1

ν(F). Notably, if n ≥ 2, there exist moment determinate measures
ν on Rn, such that the polynomials are not dense in L2

ν(Rn) (see [22]). We can assume
that all the measures are positive Borel regular measures on F, with finite moments of
all the orders. In [47–49], the authors prove that for the products ν = ν1 × · · · × νn of n
moment determinate measures νi on R, any function of the positive cone of L1

ν(F) can be
approximated by finite sums of special products of polynomials, p(t) = p1(t1) · · · pn(tn),
where each pi is non-negative on R, which, hence, is a sum of (two) squares, i = 1, . . . , n. For

3
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such measures ν, this enables us to solve the multidimensional Markov moment problems
on Rn mentioned above in terms of the quadratic forms. The corresponding result for the
products of the n moment determinate measures on [0,+∞)n holds. Here, assume that
Y is an order complete Banach lattice and T1, T2 are bounded linear operators applying
L1

ν(F) to T. In this case, the linear solution T of the problem under investigation is also
bounded due to the constraint T1 ≤ T ≤ T2 on the positive cone of L1

ν(F). The uniqueness
of the solution follows according to the density of the polynomials in L1

ν(F). To conclude,
we can observe that polynomial approximation on bounded subsets solves the existence,
as well as the uniqueness, of the solution to a large class of Markov moment problems
on Rn or on [0,+∞)n, n ≥ 2.

Data Availability Statement: This study uses only theoretical results and their applications published
in the cited references.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The objective of this paper is to obtain new relation-theoretic coincidence and common
fixed point results for some mappings F and g via hybrid contractions and auxiliary functions in
extended rectangular b-metric spaces, which improve the existing results and give some relevant
results. Finally, some nontrivial examples and applications to justify the main results.
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1. Introduction and Preliminaries

Throughout the article, we denote, by R, the set of all real numbers; by R+, the set of all
non-negative real numbers; and by N, the set of all non-negative integers. At the beginning,
we retrace several known metric-type spaces, which will be useful in the following.

In 1993, Czerwik [1] formally introduced and studied this interesting generalized met-
ric space named b-metric space . Since then, many scholars have extended and developed
fixed point theorems in b-metric spaces. Recent studies of fixed point theorems in b-metric
spaces can be seen in [2–4].

Definition 1 ([1]). Let Ω 6= ∅ and s > 1 be a given real number. If a function d : Ω×Ω→ R+

satisfies the following conditions:
(d1) d(u, v) = 0 if and only if u = v;
(d2) d(u, v) = d(v, u), for all u, v ∈ Ω;
(d3) d(u, v) 6 s[d(u, w) + d(w, v)], for all u, v, w ∈ Ω ,

then d is said to be a b-metric, and (Ω, d) is said to be a b-metric space with the coefficient s.

In 2000, a generalized metric that replaces the triangular inequality with quadrilateral
inequality was proposed by Branciari [5].

Definition 2 ([5]). Let Ω 6= ∅. For all u, v ∈ Ω and all distinct points w, t ∈ Ω \ {u, v}, if a
function dr : Ω×Ω→ [0, ∞) satisfies the following conditions:

(d1) dr(u, v) = 0⇔ u = v;
(d2) dr(u, v) = dr(v, u); and
(d3) dr(u, v) 6 dr(u, w) + dr(w, t) + dr(t, v),

then dr is said to be a rectangular metric and (Ω, dr) is said to be a rectangular metric space
(Branciari distance space).

In 2015, rectangular b-metric was raised by George et al. [6], which is a development
of b-metric and rectangular metric.
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Definition 3 ([6]). Let Ω 6= ∅ and s > 1 be a given real number. If, for all u, v ∈ Ω and for all
distinct points w, t ∈ Ω\{u, v}, a function drb : Ω×Ω→ R+ satisfies the following conditions:

(drb1) drb(u, v) = 0 if and only if u = v;
(drb2) drb(u, v) = drb(v, u); and
(drb3) drb(u, v) 6 s[drb(u, w) + drb(w, t) + drb(t, v)],

then drb is said to be a rectangular b-metric and (Ω, drb) is said to be a rectangular b-metric space
with the coefficient s.

In 2017, a binary function proposed by Kamran et al. [7] was used to introduce a novel
metric-type space.

Definition 4 ([7]). Let Ω 6= ∅ and θ : Ω×Ω → [1, ∞). A function dθ : Ω×Ω → [0, ∞) is
said to be an extended b-metric if it satisfies the following conditions:

(dθ1) dθ(u, v) = 0 if and only if u = v;
(dθ2) dθ(u, v) = dθ(v, u), for all u, v ∈ Ω;
(dθ3) dθ(u, v) 6 θ(u, v)[dθ(u, w) + dθ(w, v)], for all u, v, w ∈ Ω,

then (Ω, dθ) is said to be an extended b-metric space with θ.

In 2019, inspired by [5,7], Asim et al. [8] presented a more generalized metric space
called extended rectangular b-metric space(also extended Branciari b-distance in [9]).

Definition 5 ([8]). Let Ω 6= ∅ and ξ : Ω×Ω→ [1, ∞). A function dξ : Ω×Ω→ [0, ∞) is said
to be an extended rectangular b-metric, if for all u, v ∈ Ω and all distinct points w, t ∈ Ω \ {u, v},
dξ satisfies the following conditions:

(dξ1) dξ(u, v) = 0⇔ u = v;
(dξ2) dξ(u, v) = dξ(v, u); and
(dξ3) dξ(u, v) 6 ξ(u, v)[dξ(u, w) + dξ(w, t) + dξ(t, v)],

then (Ω, dξ) is said to be an extended rectangular b-metric space.

Remark 1. The relationship between these types of metric spaces are shown in Figure 1.

Figure 1. The relationship between these types of metric spaces.

Now, we review some topological properties of the extended rectangular b-metric space.

Definition 6 ([8]). Let (Ω, dξ) be an extended rectangular b-metric space.
(i) a sequence {un} in Ω is said to be a Cauchy sequence if lim

n,m→∞
dξ(un, um) = 0;

(ii) a sequence {un} in Ω is said to be convergent to u if lim
n→∞

dξ(un, u) = 0; and

(iii) (Ω, dξ) is said to be complete if every Cauchy sequence in Ω convergent to some point
in Ω.

Next, we introduce the simulation function was introduced by Khojasteh et al. [10].
It plays an important role in recent studies on the fixed point theory, which has inspired
many scholars. Some results via simulation functions can be referred to [11–14].
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Definition 7 ([10]). A function η : R+ × R+ → R is said to be a simulation function, if it
satisfies the following conditions:

(η1) η(0, 0) = 0;
(η2) η(u, v) < v− u, for u, v > 0; and which
(η3) if {un}, {vn} are sequences in (0, ∞) such that lim

n→∞
un = lim

n→∞
vn > 0, then

lim sup
n→∞

η(un, vn) < 0.

We denote the set of all simulation functions by Z .

Definition 8 ([10]). Let (Ω, d) be a metric space, F : Ω→ Ω be a mapping and η ∈ Z . Then, T
is called a Z-contraction with respect to η if the following condition holds:

η(d(Fu, Fv), d(u, v)) > 0,

where u, v ∈ Ω, with u 6= v.

Theorem 1 ([10]). Every Z-contraction on a complete metric space has a unique fixed point.

Another new variant of Banach contraction principle with binary relation is proposed
by Alam and Imdad [15] on complete metric spaces. In this case, the contraction condition
is relatively weaker than the usual contraction, since it only needs to keep those elements
that are related under the binary relation, not the whole space. With the introduction of
binary relations, the study of fixed point theory is more colorful.

For instance, Al-Sulami et al. [15] raised (θ,<) contraction by binary relation and
applied it to nonlinear matrix equations, Alfaqih et al. [16] proposed (F,<)g-contraction in
the metric space with a binary relation and investigated the existence and uniqueness of
a solution of integral equation of Volterra type, Zadal and Sarwar [17] obtained common
fixed point for two mappings in the case of binary relation. Now, we recall some basic
definitions of binary relations, which play an important role in our main results.

Definition 9 ([18]). Let Ω 6= ∅ and < be a binary relation on Ω. For any u<v or (u, v) ∈ <,
where u, v ∈ Ω, we say that "u is <-related to v" or "u relates to v under <".

Definition 10 ([18]). Let Ω 6= ∅, < be a binary relation on Ω and F : Ω→ Ω be a mapping.
(i) A sequence {un} is called an <-preserving sequence if un<un+1, for all n ∈ N.
(ii) A binary relation < on Ω is said to be F-closed if Fu<Fv, whenever u<v.
(iii) A binary relation < on Ω is said to be d-self-closed if for any sequence {un} ⊆ Ω such

that {un} is <-preserving with un → u ∈ Ω, there exists a subsequence {unk} of {un} such that
unk<u or u<unk , for all k ∈ N.

(iv) A binary relation < on Ω is said to be transitive if u<v and v<w implies that u<w.

Definition 11 ([18]). For u, v ∈ Ω, a path of length p ∈ N in < from u to v is a finite sequence
{u0, u1, · · · , up} such that u0 = u, up = v and ui<ui+1 for all i ∈ {0, 1, · · · , p− 1}.

In addition, Alam and Imdad [19] utilized some relatively weaker notions to prove
results on the existence and uniqueness of coincidence points involving a pair of mappings
defined on a metric space endowed with an arbitrary binary relation. For completeness, we
first review some of the relevant definitions that are known.

Definition 12 ([19]). Let (Ω, d) be a metric space , < be a binary relation on Ω and F, g : Ω→ Ω
be two mappings.
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(i) The set Ω is <-complete if every <-preserving Cauchy sequence in Ω converges to a limit
in Ω.

(ii) A binary relation < on Ω is said to be (F, g)-closed if Fu<Fv, whenever gu<gv.
(iii) A binary relation < on Ω is said to be (g, d)-self-closed if for any sequence {un} ⊆ Ω

such that {un} is <-preserving with lim
n→∞

un = u, there exists a subsequence {unk} of un such that
gunk<gu or gu<gunk , for all k ∈ N.

(iv) F is <-continuous at u ∈ Ω if, for any <-preserving sequence, such that lim
n→∞

un = u, we
have lim

n→∞
Fun = Fu. Moreover, F is called <-continuous if it is <-continuous at each point of Ω.

(v) F is (g,<)-continuous at x if for any sequence {un} ⊆ Ω such that {gun} is<-preserving
with lim

n→∞
gun = gu, we have lim

n→∞
Fun = Fu. Moreover, F is called (g,<)-continuous if it is

(g,<)-continuous at each point of Ω.
(vi) (F, g) is <-compatible if for any sequence {un} ⊆ Ω such that {gun} and {Fun} are

<-preserving and lim
n→∞

gun = lim
n→∞

Fun = u ∈ Ω, we have lim
n→∞

d(Fgun, gFun) = 0.

(vii) A subset E ⊆ Ω is said to be <-connected, if for any u, v ∈ E, there exists a path in <
from u to v.

Definition 13 ([19]). Let (Ω, d) be a metric space and F and g are two self-mappings on Ω. Then,
(i) a point u ∈ Ω is called a coincidence point of F and g if gu = Fu;
(ii) if u ∈ Ω is a coincidence point of F and g, and there exists a point ū such that ū = gu =

Fu, then ū is called a point of coincidence of F and g;
(iii) if u ∈ Ω is a coincidence fixed point of F and g and u = gu = Fu, then u is called a

common fixed point of F and g; and
(iv) F and g are called weakly compatible if for all u ∈ Ω with Fu = gu implies F(gu) = g(Fu).

Theorem 2 ([19]). Let (Ω, d) be a metric space with a binary relation <, and4 be an <-complete
subspace of Ω. F and g are two self-mappings on Ω, which satisfy

d(Fu, Fv) 6 kd(gu, gv), for all gu<gv,

where k ∈ (0, 1). In addition, if F and g satisfy the following conditions:
(i) there exists v0 ∈ Ω such that gv0<Fv0;
(ii) < is (F, g)-closed;
(iii) F(Ω) ⊆ (4∩ g(Ω)); and
(iv) (a)4 ⊆ g(Ω) is <-complete; and

(b) one of the conditions satisfies:
(1) F is (g,<)-continuous;
(2) F and g are continuous; and
(3) <|Ω is d-self-closed,

or alternatively,
(iv′) (a′) F and g are <-compatible;

(b′) g is <-continuous; and
(c) one of the conditions satisfies:

(1′) f is <-continuous; and
(2′) < is (g, d)-self-closed,

then F and g have a coincidence point.

The following lemma plays a crucial role in proving the main results of this paper.

Lemma 1 ([19]). Let Ω be a nonempty set and g : Ω → Ω. Then, there exists a subset E of Ω
such that g(E) = g(Ω) and g : E→ E is one to one.

Through the above inspiration, we can understand that the extended rectangular
b-metric spaces are a type of generalized metric spaces including metric spaces, rectangular
metric spaces and b-metric spaces. As far as we know, in metric space, rectangular metric
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and b-metric space, there are also some contractions that have not been studied; thus, we
intend to study the coincidence point and common fixed point results for some mappings
F and g in the extended rectangular b-metric with a binary relation <, which develops the
results of [1,6,8,14,18–23].

2. Main Results

In this section, we introduce an auxiliary function before we begin our discussion of
the main results. Let Ψ be the set of all increasing functions ψ : [0, ∞)→ [0, ∞) satisfying
the following condition: lim

n→∞
ψn(t) = 0, for all t > 0.

Remark 2. If ψ ∈ Ψ , then ψ(t) < t, for all t > 0.

Theorem 3. Let (Ω, dξ) be an extended rectangular b-metric space with a binary relation < such
that < is (F, g)-closed, and4 be an <-complete subspace of Ω. F and g are two self-mappings on
Ω, which satisfy F(Ω) ⊆ (4∩ g(Ω)) and

η(dξ(Fu, Fv), ψ(MF,g(u, v))) > 0, for all gu<gv, (1)

where η ∈ Z , ψ ∈ Ψ and

MF,g(u, v) = max{dξ(gu, gv), dξ(gu, Fu), dξ(Fv, gv),

dξ(gv, Fv)(1 + dξ(gu, Fu))
1 + dξ(gu, gv)

,
dξ(gu, Fu)(1 + dξ(gv, Fv))

1 + dξ(gu, gv)
}.

In addition, if F and g satisfy the following conditions:
(i) there exists v0 ∈ Ω such that gv0<Fv0 and gv0<Fv1, where v1 is such that gv1 = Fv0;

(ii) for v0 in (i), we have lim sup
n→∞

ψn+1(t)
ψn(t) ξ(un+1, up) < 1, where for all p, n ∈ N, un =

Fvn = gvn+1 and t ∈ (0, dξ(u0, u1)] with u0 6= u1;
(iii) (a)4 ⊆ g(Ω);

(b) F is (g,<)-continuous or F and g are continuous or <|g(Ω) is dξ-self-closed and
dξ(gw, Fw) > 0, where w ∈ Ω, such that

lim sup
t→dξ (gw,Fw)

ψ(t) <
dξ(gw, Fw)

ξ(Fw, gw)
or lim sup

t→dξ (gw,Fw)

ψ(t) <
dξ(gw, Fw)

ξ(gw, Fw)
;

or alternatively,
(iii′) if dξ is continuous, (F, g) is <-compatible, and g and F are <-continuous,

then F and g have a coincidence point.

Proof. For gu<gv, by (1) and (η1), it is easy to show that

dξ(Fu, Fv) 6 ψ(MF,g(u, v)), for MF,g(u, v) 6= 0. (2)

Considering F(Ω) ⊆ (4 ∩ g(Ω)), we deduce that F(Ω) ⊆ g(Ω). Now, we define
two sequences {un} and {vn} by un = Fvn = gvn+1. By gv0<Fv0 and < is (F, g)-closed, it
follows that

gv0<Fv0 ⇒ gv0<gv1 ⇒ Fv0<Fv1 ⇒ gv1<gv2. (3)

Combining (3) with < is (F, g)-closed, we have

gv1<gv2 ⇒ Fv1<Fv2 ⇒ gv2<gv3. (4)

Repeating the above process, we can find

Fvn<Fvn+1 (5)
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and
gvn<gvn+1. (6)

By gv0<Fv1 and < is (F, g)-closed , we obtain

gv0<Fv1 ⇒ gv0<gv2 ⇒ Fv0<Fv2 ⇒ gv1<gv3. (7)

Taking (7), (i) and < is (F, g)-closed in mind, we find

gv1<gv3 ⇒ Fv1<Fv3 ⇒ gv2<gv4. (8)

Repeating the above process, it follows that

Fvn<Fvn+2 (9)

and
gvn<gvn+2. (10)

If there exists n0 ∈ N such that un0 = un0+1, that is, gvn0+1 = Fvn0+1, then vn0+1 is the
coincidence point of F and g. The proof is complete.

Now, suppose that un 6= un+1, for all n ∈ N. Let u = vn, v = vn+1 in (2), by (6),
we have

dξ(un, un+1) = dξ(Fvn, Fvn+1)

6 ψ(MF,g(vn, vn+1))

= ψ(max{dξ(gvn, gvn+1), dξ(gvn, Fvn), dξ(Fvn+1, gvn+1),

dξ(gvn+1, Fvn+1)(1 + dξ(gvn, Fvn))

1 + dξ(gvn, gvn+1)
,

dξ(gvn, Fvn)(1 + dξ(gvn+1, Fvn+1))

1 + dξ(gvn, gvn+1)
})

= ψ(max{dξ(un−1, un), dξ(un−1, un), dξ(un+1, un),

dξ(un, un+1)(1 + dξ(un−1, un))

1 + dξ(un−1, un)
,

dξ(un−1, un)(1 + dξ(un, un+1))

1 + dξ(un−1, un)
})

= ψ(max{dξ(un−1, un), dξ(un, un+1)). (11)

If
max{dξ(un−1, un), dξ(un, un+1)} = dξ(un, un+1),

by (11) and Remark 2, we gain

dξ(un, un+1) 6 ψ(dξ(un, un+1)) < dξ(un, un+1).

This is a contradiction. Thus,

max{dξ(un−1, un), dξ(un, un+1)} = dξ(un−1, un).

In view of (11), we can deduce that

dξ(un, un+1) 6 ψ(dξ(un−1, un)). (12)

By (12), we acquire

dξ(un, un+1) 6 ψ(dξ(un−1, un)) 6 · · · 6 ψn(dξ(u0, u1)). (13)

12
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Taking the limits on the both sides of (13), we have

lim
n→∞

dξ(un, un+1) = 0. (14)

Now, we show that un 6= um, for all n 6= m∈ N. If there exist n0, m0 ∈ N such that
un0 = um0 with n0 < m0, we have

dξ(un0 , un0+1) = dξ(un0 , Fvn0+1)

= dξ(um0 , Fvn0+1)

= dξ(Fvm0 , Fvn0+1)

6 ψ(MF,g(vm0 , vn0+1))

= ψ(max{dξ(gvm0 , gvn0+1), dξ(gvm0 , Fvm0), dξ(Fvn0+1, gvn0+1),

dξ(gvn0+1, Fvn0+1)(1 + dξ(gvm0 , Fvm0))

1 + dξ(gvm0 , gvn0+1)
,

dξ(gvm0 , Fvm0)(1 + dξ(gvn0+1, Fvn0+1))

1 + dξ(gvm0 , gvn0+1)
})

= ψ(max{dξ(um0−1, um0), dξ(um0−1, um0), dξ(un0+1, un0),

dξ(un0 , un0+1)(1 + dξ(um0−1, um0))

1 + dξ(um0−1, um0)
,

dξ(um0−1, um0)(1 + dξ(un0 , un0+1))

1 + dξ(um0−1, um0)
})

= ψ(dξ(un0 , un0+1)

< dξ(un0 , un0+1),

which contradicts dξ(un0 , un0+1) > 0. Thus, un 6= um, for all n, m ∈ N.
Letting u = vn, v = vn+2 in (2), by (10), we obtain

dξ(un, un+2) = dξ(Fvn, Fvn+2)

6 ψ(MF,g(vn, vn+2))

= ψ(max{dξ(gvn, gvn+2), dξ(gvn, Fvn), dξ(Fvn+2, gvn+2),

dξ(gvn+2, Fvn+2)(1 + dξ(gvn, Fvn))

1 + dξ(gvn, gvn+2)
,

dξ(gvn, Fvn)(1 + dξ(gvn+2, Fvn+2))

1 + dξ(gvn, gvn+2)
})

= ψ(max{dξ(un−1, un+1), dξ(un−1, un), dξ(un+2, un+1),

dξ(un+2, un+1)(1 + dξ(un−1, un))

1 + dξ(un−1, un+1)
,

dξ(un−1, un)(1 + dξ(un+2, un+1))

1 + dξ(un−1, un+1)
})

6 ψ(max{dξ(un−1, un+1), dξ(un−1, un),

dξ(un−1, un)(1 + dξ(un−1, un))

1 + dξ(un−1, un+1)
})

= ψ(An), (15)

where

An = max{dξ(un−1, un+1), dξ(un−1, un),
dξ(un−1, un)(1 + dξ(un−1, un))

1 + dξ(un−1, un+1)
}.

If An = dξ(un−1, un+1).

13
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By (15), we have

dξ(un, un+2) 6 ψ(dξ(un−1, un+1)) 6 · · · 6 ψn(dξ(u0, u2)). (16)

If An = dξ(un−1, un), from (13) and (15), we gain

dξ(un, un+2) 6 ψ(dξ(un−1, un)) 6 ψn−1(dξ(u0, u1)). (17)

If An =
dξ (un−1,un)(1+dξ (un−1,un))

1+dξ (un−1,un+1)
, combining (13), (15) with Remark 2, we acquire

dξ(un, un+2) 6 ψ(
dξ(un−1, un)(1 + dξ(un−1, un))

1 + dξ(un−1, un+1)
)

<
dξ(un−1, un)(1 + dξ(un−1, un))

1 + dξ(un−1, un+1)

< dξ(un−1, un)(1 + dξ(un−1, un))

6 ψn−1(dξ(u0, u1))(1 + ψn−1(dξ(u0, u1))). (18)

Taking the limits on the both sides of (16), (17) and (18), by lim
n→∞

ψn(t) = 0, for all t > 0,

we find
lim

n→∞
dξ(un, un+2) = 0. (19)

Now, we show that {un} is a Cauchy sequence. The next discussion can be divided
into the following cases.

Case I: when m = n + 2k + 1 with k > 1. By (dξ3) and (13), for all n ∈ N, we have

dξ(un, un+2k+1) 6 ξ(un, un+2k+1)[(dξ(un, un+1) + dξ(un+1, un+2) + dξ(un+2, un+2k+1)]

= ξ(un, un+2k+1)[dξ(un, un+1) + dξ(un+1, un+2)] + ξ(un, un+2k+1)dξ(un+2, un+2k+1)

6 ξ(un, un+2k+1)(dn + dn+1) + ξ(un, un+2k+1)ξ(un+2, un+2k+1)(dn+2 + dn+3)

+ ξ(un, un+2k+1)ξ(un+2, un+2k+1)dξ(un+2, un+2k+1)

6 ξ(un, un+2k+1)(dn + dn+1) + ξ(un, un+2k+1)ξ(un+2, un+2k+1)(dn+2 + dn+3) + · · ·
+ ξ(un, un+2k+1)ξ(un+2, un+2k+1) · · · ξ(un+2k−2, un+2k+1)(dn+2k−2 + dn+2k−1)

+ ξ(un, un+2k+1)ξ(un+2, un+2k+1) · · · ξ(un+2k−2, un+2k+1)dξ(un+2k, un+2k+1)

6 ξ(un, un+2k+1)(ψ
n(G0) + ψn+1(G0)) + ξ(un+2, un+2m+1)(ψ

n+2(G0) + ψn+3(G0)) + · · ·
+ ξ(un, un+2k+1)ξ(un+2, un+2k+1) · · · ξ(un+2k−2, un+2k+1)(ψ

n+2k−2(G0) + ψn+2k−1(G0))

+ ξ(un, un+2k+1)ξ(un+2, un+2k+1) · · · ξ(un+2k−2, un+2k+1)ψ
n+2k(G0)

6 ξ(u0, un+2k+1)ξ(u1, un+2k+1)ξ(u2, un+2k+1) · · · ξ(un, un+2k+1)[ψ
n(G0)

+ ξ(un+1, un+2k+1)ψ
n+1(G0)] + ξ(u0, un+2k+1)ξ(u1, un+2k+1)ξ(u2, un+2k+1) · · ·

× ξ(un+2, un+2k+1)[ψ
n+2(G0) + ξ(un+3, un+2k+1)ψ

n+3(G0)] + · · ·+ ξ(u0, un+2k+1)

× ξ(u1, un+2k+1)ξ(u2, un+2k+1) · · · ξ(un+2k−2, un+2k+1)[ψ
n+2k−2(G0)

+ ξ(un+2k−1, un+2k+1)ψ
n+2k−1(G0)] + ξ(u0, un+2k+1)ξ(u1, un+2k+1)ξ(u2, un+2k+1)

× · · · ξ(un+2k, un+2k+1)ψ
n+2k(G0)

=
n+2k

∑
i=n

ψi(G0)
i

∏
j=0

ξ(uj, un+2k+1), (20)

where dn = dξ(un, un+1) and ψn(G0) = ψn(dξ(u0, u1)), for all n ∈ N. Let

Sn =
n

∑
i=0

ψi(G0)
i

∏
j=0

ξ(uj, un+2k+1).

14
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By (20), we obtain
dξ(un, un+2k+1) 6 Sn+2k − Sn−1. (21)

Suppose that un = ψn(G0)
n
∏
j=0

ξ(uj, un+2k+1). We have

un+1

un
=

ψn+1(G0)
n+1
∏
j=0

ξ(uj, un+2k+1)

ψn(G0)
n
∏
j=0

ξ(uj, un+2k+1)
=

ψn+1(G0)

ψn(G0)
ξ(un+1, un+2k+1).

By (ii) and Ratio test, we deduce that the series
∞
∑

i=0
ψi(G0)

i
∏
j=0

ξ(uj, un+2k+1) is conver-

gent. Letting n→ ∞ in (21), we have

dξ(un, um)→ 0, n→ ∞.

Case II: when m = n + 2k with k > 1. By (dξ3) and (13), for all n ∈ N, we obtain

dξ(un, un+2k) 6 ξ(un, un+2k)[(dξ(un, un+2) + dξ(un+2, un+3) + dξ(un+3, un+2k)]

= ξ(un, un+2k)[dξ(un, un+2) + dξ(un+2, un+3)] + ξ(un, un+2k)dξ(un+3, un+2k)

6 ξ(un, un+2k)(dξ(un, un+2) + dn+2) + ξ(un, un+2k)ξ(un+3, un+2k)(dn+3 + dn+4)

+ ξ(un, un+2k)ξ(un+3, un+2k)dξ(un+5, un+2k)

6 ξ(un, un+2k)(dξ(un, un+2) + dn+2) + ξ(un, un+2k)ξ(un+3, un+2k)(dn+3 + dn+4) + · · ·
+ ξ(un, un+2k)ξ(un+3, un+2k) · · · ξ(un+2k−3, un+2k)(dn+2k−3 + dn+2k−2 + dn+2k−1)

6 ξ(un, un+2k)(dξ(un, un+2) + ψn+2(G0)) + ξ(xn, un+2k)ξ(un+3, un+2k)

(ψn+3(G0) + ψn+4(G0)) + · · ·+ ξ(un, un+2k)

ξ(un+3, un+2k) · · · ξ(un+2k−3, un+2k)(ψ
n+2k−3(G0) + ψn+2k−2(G0) + ψn+2k−1(G0))

< ξ(un, un+2k)dξ(un, un+2) + ξ(u0, un+2k)ξ(u1, un+2k)ξ(u2, un+2k) · · ·
ξ(un+2, un+2k)ψ

n+2(G0) + ξ(u0, un+2k)ξ(u1, un+2k)ξ(x2, un+2k) · · ·
ξ(un+3, un+2k)[ψ

n+3(G0) + ξ(un+4, un+2k)ψ
n+4(G0)] + · · ·+

ξ(u0, un+2k)ξ(u1, un+2k)ξ(u2, un+2k) · · · ξ(un+2k−3, un+2k)[ψ
n+2k−3(G0)

+ ξ(un+2k−2, un+2k)ψ
n+2k−2(G0)] + ξ(u0, un+2k)ξ(u1, un+2k)

ξ(u2, un+2k) · · · ξ(un+2k−1, un+2k)ψ
n+2k−1(G0)

= ξ(un, un+2k)dξ(un, un+2) +
n+2k−1

∑
i=n+2

ψi(G0)
i

∏
j=0

ξ(uj, un+2k), (22)

where ψn(G0) = ψn(dξ(u0, u1)) and dn = dξ(un, un+1). For all n ∈ N, assume that

Rn =
n

∑
i=0

ψi(G0)
i

∏
j=0

ξ(uj, un+2k).

According to (22), we find

dξ(un, un+2k) < ξ(un, un+2k)dξ(un, un+2) + Rn+2k−1 − Rn+1. (23)

Now, let wn = ψn(G0)
n
∏
j=0

ξ(uj, un+2k). It follows that

15
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wn+1

wn
=

ψn+1(G0)
n+1
∏
j=0

ξ(uj, un+2k)

ψn(G0)
n
∏
j=0

ξ(uj, un+2k)
=

ψn+1(G0)

ψn(G0)
ξ(un+1, un+2k).

In a similar way as in thecase I, we deduce that the series
∞
∑

i=0
ψi(G0)

i
∏
j=0

ξ(uj, un+2k) is

convergent. Taking the limits on the both sides of (23), by (19), we have

dξ(un, um)→ 0, n→ ∞.

In both Cases, lim
n,m→∞

dξ(un, um) = 0.

Thus, {un} is a Cauchy sequence.
Now, we show that F and g have a coincidence point. We discuss the following cases:
Case I: (iii) holds.
Since (4, dξ) is <-complete, F(Ω) ⊆ 4, un = Fvn = gvn+1 and (6), there exists u ∈ 4

such that
lim

n→∞
dξ(gvn, u) = 0. (24)

Considering4 ⊆ g(Ω); thus, there exists v ∈ Ω such that u = gv. That is,

lim
n→∞

dξ(gvn, gv) = 0. (25)

By un = Fvn = gvn+1, we have

lim
n→∞

dξ(Fvn, gv) = 0. (26)

If there exists an infinite subsequence {unk} of {un} such that unk = Fv or unk = gv,
then it will lead to a contradiction with un 6= um, for all n 6= m∈ N. Thus, we assume that
un 6= Fv and un 6= gv for all n ∈ N.

If F is (g,<)-continuous. Thinking about (6) and (25), we obtain

lim
n→∞

dξ(Fvn, Fv) = 0. (27)

By (dξ3), it follows that

dξ(Fv, gv) 6 ξ(Fv, gv)[dξ(Fv, Fvn) + dξ(Fvn, Fvn+1) + dξ(Fvn+1, gv)]

= ξ(Fv, gv)[dξ(Fv, Fvn) + dξ(un, un+1) + dξ(Fvn+1, gv)] (28)

Taking the limits on the both sides of (28), keep (14), (26) and (27) in mind, we deduce
that

dξ(Fv, gv) = 0.

Thus, v is a coincidence point of F and g.
Assume that F and g are continuous. By Lemma 1, it is not difficult to find that there

exists E ⊂ Ω such that g(E) = g(Ω) and g : E → E is one to one. Define a function
T : g(E) → g(E) by Fe = Tge, where e ∈ E. Clearly, T is well-defined. Since F and g are
continuous , we deduce that, T is continuous as well. Without loss of generality, we choose
{vn} ⊆ E and v ∈ E. By (25), we obtain

lim
n→∞

dξ(Fvn, Fv) = lim
n→∞

dξ(Tgvn, Fv)

= lim
n→∞

dξ(Tgvn, Tgv)

= 0,

16



Symmetry 2022, 14, 1588

that is (27) holds. Taking the limits on the both sides of (28), keep (14), (26) and (27) in
mind, we deduce that

dξ(Fv, gv) = 0.

Then, v is a coincidence point of F and g.
If <|gΩ is dξ-self closed, form (6) and (25), there exists a subsequence {gvnk} of {gvn}

satisfying
gvnk<gv or gv<gvnk . (29)

Assume that gvnk<gv. Let u = vnk in (2), keep (29) in mind, we have

dξ(Fvnk , Fv) 6 ψ(MF,g(vnk , v))

= ψ(max{dξ(gvnk , gv), dξ(gvnk , Fvnk ), dξ(Fv, gv),

dξ(gv, Fv)(1 + dξ(gvnk , Fvnk ))

1 + dξ(gvnk , gv)
,

dξ(gvnk , Fvnk )(1 + dξ(gv, Fv))
1 + dξ(gvnk , gv)

})

= ψ(max{dξ(gvnk , gx), dξ(unk−1, unk ), dξ(Fv, gv),

dξ(gv, Fv)(1 + dξ(unk−1, unk ))

1 + dξ(gvnk , gv)
,

dξ(unk−1, unk )(1 + dξ(gv, Fv))
1 + dξ(gvnk , gv)

}). (30)

Taking the super limits on the both sides of (30), we gain

lim sup
k→∞

dξ(Fvnk , Fv) 6 lim sup
t→dξ (gv,Fv)

ψ(t). (31)

Taking the super limits on the both sides of (28), according to (14), (25) and (31), we
have

dξ(Fv, gv) 6 ξ(Fv, gv) lim sup
t→dξ (gv,Fv)

ψ(t).

This leads to a contradiction with

lim sup
t→dξ (gv,Fv)

ψ(t) <
dξ(gv, Fv)
ξ(Fv, gv)

.

Thus, dξ(gv, Fv) = 0.

If gv<gvnk , by the similar discussion and keep

lim sup
t→dξ (gw,Fw)

ψ(t) <
dξ(gw, Fw)

ξ(gw, Fw)

in mind, we can also find dξ(gv, Fv) = 0.
Case II: (iii′) holds.
By F(Ω) ⊆ (4∩ g(Ω)),4 being an <-complete and the construction of the sequence

{un}, there exists u ∈ (∆ ∩ gΩ) such that

lim
n→∞

Fvn = u (32)

and
lim

n→∞
gvn = u. (33)

If F and g are <-continuous, we obtain

lim
n→∞

gFvn = gu (34)

17



Symmetry 2022, 14, 1588

and
lim

n→∞
Fgvn = Fu. (35)

Considering (32), (33) and (F, g) is <-compatible, we gain

lim
n→∞

dξ(Fgvn, gFvn) = 0. (36)

Clearly, by (34)–(36) and dξ is continuous, we have

dξ(Fu, gu) = 0.

The proof is complete.

Example 1. Let Ω = [0, 1] with u<v if and only if u, v ∈ [ 1
32 , 1

16 ] and dξ(u, v)= (u−v)2

2 with
ξ(u, v) = u + v + 4 for all u, v ∈ Ω. Suppose that ∆ = [0, 5

32 ], clearly, (Ω, dξ) is an extended
rectangular b-metric space and ∆ is <-complete. Indeed, dξ is generated from standard metric, for
every <-preserving Cauchy sequence {un} in Ω, we acquire sequence {un} converges to a point in
Ω. Define the mappings F, g : Ω→ Ω by

Fu =





u
2

, if u ∈ [0,
1
4
],

1
8

, otherwise.

and

gu =





u
2

, if u ∈ [0,
1
2
],

1
4

, otherwise.

Clearly, F(Ω) ⊆ ∆ ⊆ g(Ω), < is (F, g)-closed. Indeed, for all gu<gv, we obtain u, v ∈ [ 1
16 , 1

8 ],
then Fu, Fv ∈ [ 1

32 , 1
16 ], that is Fu<Fv. Suppose that a sequence {un} ⊆ Ω and a point u ∈ Ω

such that lim
n→∞

un = u. For mapping F, if un ∈ [0, 1
4 ], by the definitions of function dξ and mapping

F, we have u ∈ [0, 1
4 ], Fun = un

2 and Fu = u
2 . Then, lim

n→∞
Fun = Fu. If un ∈ ( 1

4 , 1], by the

definitions of function dξ and mapping F, we have u ∈ [ 1
4 , 1] and Fun = 1

8 and Fu = 1
8 . Then,

lim
n→∞

Fun = Fu. Thus, mapping F is continuous. By similarly discuss, we can also find g is

continuous. In addition, there exists v0 = 1
32 such that gv0<Fv0 and gv0<Fv1, where v1 is such

that gv1 = Fv0. Take η(u, v) = 1
2 v− u and

ψ(t) =





2
9

t, if t ∈ [0, 1],

260
1161

, otherwise.

For all t ∈ (0, dξ(u0, u1)] and for all p ∈ N, we have

lim sup
n→∞

ψn+1(t)
ψn(t)

ξ(un+1, up) = lim sup
n→∞

2
9
(4 + un+1 + up)

= lim sup
n→∞

2
9
(4 +

v0

2
+

v0

2
)

=
2
9
(4 +

1
32

)

< 1.

18
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Now, we show that F and g satisfy condition (1). Indeed, for all gu<gv,

1
2

ψ(MF,g(u, v))− dξ(Fu, Fv) > 1
9

max{dξ(gu, Fu), dξ(gv, Fv)} − ( u
2 − v

2 )
2

2

=
1
9

max{9u2

8
,

9v2

8
} − (u− v)2

8

> (
1× 9

9
− 1)dξ(Fu, Fv)

> 0.

Thus, by Theorem 3, there exists v = 1
32 such that F( 1

32 ) = g( 1
32 ).

Example 2. Let Ω = [0, 3), u<v if and only if (u, v) ∈ [0, 1
8 ]× [0, 1

8 ] and dξ(u, v)= (u− v)2

with ξ(u, v) = u + v + 4, for all u, v ∈ Ω. Define the mappings F, g : Ω→ Ω by

Fu =





u
4

, if u ∈ [0,
1
2
],

2, if u ∈ (
1
2

, 3).

and

gu =





u, if u ∈ [0,
1
2
],

2, if u ∈ (
1
2

, 3).

Clearly, F(Ω) ⊆ ∆ ⊆ g(Ω), < is (F, g)-closed and F is (g,<)-continuous. Indeed, for all gu<gv,
we obtain u, v ∈ [0, 1

8 ], then Fu, Fv ∈ [0, 1
32 ], that is Fu<Fv. For any sequence {un} ⊆ Ω such

that {gun} is <-preserving with lim
n→∞

gun = gu, we have sequence {un} ⊆ [0, 1
32 ] and u ∈ [0, 1

32 ],

so lim
n→∞

Fun = Fu. We can find that both F and g are not continuous at u = 1
2 , and ∆ is <-complete

via dξ is generated from standard metrics, where ∆ = [0, 1
2 ] ∪ {2}. In addition, there exists

v0 = 1
8 such that gv0<Fv0 and gv0<Fv1, where v1 with gv1 = Fv0. Take η(u, v) = 1

2 v− u and
ψ(t) = 4

17 t, for all t ∈ [0, ∞).
For every t ∈ (0, dξ(u0, u1)], we have

lim sup
n→∞

ψn+1(t)
ψn(t)

ξ(un+1, up) = lim sup
n→∞

4
17

(4 + un+1 + up)

= lim sup
n→∞

4
17

(4 +
v0

4n+1 +
v0

4p+1 )

=
4
17

(4 +
1
8
)

< 1.

Now, we show that condition (1) for F and g holds. Indeed, for all gu<gv,

η(dξ(Fu, Fv), MF,g(u, v)) =
1
2

ψ(MF,g(u, v))− dξ(Fu, Fv)

> 2
17

dξ(gu, gv)− (
u
4
− v

4
)2

= (
2

17
− 1

16
)dξ(gu, gv)

> 0.
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So, by Theorem 3, there exists v = 0 such that F0 = g0. Further, we claim that the
common fixed point theorems in [20,21] are not valid in proving the existence of common fixed
points of F and g. Indeed, for u = 0, v = 2, dξ(Fu, Fv) > k1dξ(gu, gv) and dξ(Fu, Fv) >

k2[dξ(gu, Fu) + dξ(gv, Fv)], where k1 ∈ (0, 1), k2 ∈ (0, 1
2 ).

According to Examples 1 and 2, we find that the coincidence point of F and g is not
unique. Thus, Theorem 3 shows only the existence of coincidence point of F and g. Now,
we add some conditions to show that the point of coincidence of F and g is unique.

Theorem 4. In addition the assumption in Theorem 3, we also suppose the following condition:
(iv) If gu<gv or gv<gu, for all u, v ∈ C(F, g), where C(F, g) = {u ∈ Ω : Fu = gu},

then the point of coincidence of F and g is unique.

Proof. Assume that there exist u, v ∈ C(F, g) with dξ(Fu, Fv) > 0. If gu<gv, by (2),
we have

dξ(Fu, Fv) 6 ψ(MF,g(u, v))

= ψ(max{dξ(gu, gv), dξ(gu, Fu), dξ(Fv, gv),

dξ(gv, Fv)(1 + dξ(gu, Fu))
1 + dξ(gu, gv)

,
dξ(gu, Fu)(1 + dξ(gv, Fv))

1 + dξ(gu, gv)
})

= ψ(max{dξ(Fu, Fv), 0, 0, 0, 0})
= ψ(dξ(Fu, Fv))

< dξ(Fu, Fv),

which leads to a contradiction with dξ(Fu, Fv) > 0. Thus, dξ(Fu, Fv) = 0. If gv<gu, by the
similar discussion, we have dξ(Fu, Fv) = 0. The proof is complete.

Theorem 4 shows that the point of coincidence of F and g is unique. Now, we add a
condition to show that F and g have a unique common fixed point.

Theorem 5. Except for the assumption in Theorem 4, if (F, g) is weakly compatible, then F and g
have a unique common fixed point.

Proof. By Theorem 3, there exists v ∈ Ω such that Fv = gv. Assume that u = Fv = gv.
Since (F, g) is weakly compatible, we have Fu = Fgv = gFv = gu. By Theorem 4, we have
Fu = gu = Fv = gv = u. Thus, u is the common point of F and g. Suppose that there exists
s such that s = Fs = gs and s 6= u. By s 6= u, we have Fs 6= Fu—a contradiction. Thus,
s = u. The proof is complete.

Remark 3. (i) By the proof of Theorem 3, we only use the property (η1) of function η.
(ii) In the proofs of Theorem 3, Theorem 4 and Theorem 5, we can find that we mainly use (2)

instead of (1). Thus, if we replace (1) with

dξ(Fu, Fv) 6 ψ(MF,g(u, v)), for all gu<gv,

in Theorem 3, these results still hold.
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(iii) We observe that

dξ(gvn, gvn+1)dξ(gvn+1, Fvn+1)

1 + dξ(gvn, Fvn)
6 dξ(un, un+1);

dξ(gvn, gvn+2)dξ(gvn+2, Fvn+2)

1 + dξ(gvn, Fvn)
=

dξ(un−1, un+1)dξ(un+1, un+2)

1 + dξ(un−1, un)
;

dξ(gvnk , gv)dξ(gv, Fv)
1 + dξ(gvnk , Fvnk )

=
dξ(unk−1, gv)dξ(gv, Fv)

1 + dξ(unk−1, unk )
;

dξ(gvn, Fvn)dξ(gvn+1, Fvn+1)

1 + dξ(Fvn, Fvn+1)
6 dξ(un−1, un);

dξ(gvn, Fvn)dξ(gvn+2, Fvn+2)

1 + dξ(Fvn, Fvn+2)
=

dξ(un−1, un)dξ(un+1, un+2)

1 + dξ(un, un+2)
;

dξ(gvn, Fvn)dξ(gv, Fv)
1 + dξ(Fvn, Fv)

=
dξ(un−1, un)dξ(gv, Fv)

1 + dξ(un, Fv)
.

Thus, we add dξ (gu,gv)dξ (gv,Fv)
1+dξ (gu,Fu) and dξ (gu,Fu)dξ (gv,Fv)

1+dξ (Fu,Fv) to MF,g(u, v), the above results still hold.

3. Corollaries

Corollary 1. Let (Ω, dξ) be an extended rectangular b-metric space with a binary relation <. F is
a self-mapping on Ω, which satisfies

η(dξ(Fu, Fv), ψ(M(u, v))) > 0, for all u<v, (37)

where η ∈ Z , ψ ∈ Ψ and

M(u, v) = max{dξ(u, v), dξ(u, Fu), dξ(Fv, v),

dξ(v, Fv)(1 + dξ(u, Fu))
1 + dξ(u, v)

,
dξ(u, Fu)(1 + dξ(v, Fv))

1 + dξ(u, v)
}.

In addition, if F satisfies the following conditions:
(i) There exists v0 ∈ Ω such that v0<Fv0 and v0<F2v0.
(ii) < is F-closed.

(iii) For v0 in (i), we have lim sup
n→∞

ψn+1(t)
ψn(t) ξ(vn+1, vp) < 1, where p ∈ N, vn+1 = Fvn and

t ∈ (0, dξ(v0, v1)] with v0 6= v1.
(iv) There exists4 ⊆ Ω such that F(Ω) ⊆ 4 and (4, dξ) is <-complete.
(v) One of the conditions holds:

(a) F is <-continuous; or
(b) <|Ω is dξ-self-closed and for all w ∈ Ω with dξ(w, Fw) > 0 such that

lim sup
t→dξ (w,Fw)

ψ(t) <
dξ(w, Fw)

ξ(Fw, w)
or lim sup

t→dξ (w,Fw)

ψ(t) <
dξ(w, Fw)

ξ(w, Fw)
,

then F has a fixed point.
In addition, if
(vi) u<v or v<u, for all u, v with u = Fu and v = Fv,

then F has a unique fixed point.

Proof. Take g = I (the identity map) in Theorem 5, it is clear that the result is true.
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Corollary 2. Let (Ω, dξ) be an extended rectangular b-metric space with a binary relation < and
4 be an <-complete subspace of Ω. F and g are self-mappings on Ω, which satisfy F(Ω) ⊆
(g(Ω) ∩4), and

dξ(Fu, Fv) 6 kMF,g(u, v), for all gu<gv, (38)

where k ∈ (0, 1) and

MF,g(u, v) = max{dξ(gu, gv), dξ(gu, Fu), dξ(Fv, gv),

dξ(gv, Fv)(1 + dξ(gu, Fu))
1 + dξ(gu, gv)

,
dξ(gu, Fu)(1 + dξ(gv, Fv))

1 + dξ(gu, gv)
}.

In addition, if F and g satisfy the following conditions:
(i) there exists v0 ∈ Ω such that gv0<Fv0 and gv0<Fv1, where v1 is such that gv1 = Fv0;
(ii) < is (F, g)-closed;
(iii) for v0 in (i), we have lim sup

n→∞
ξ(un+1, up) <

1
k , where p ∈ N, un = Fvn = gvn+1 and

t ∈ (0, dξ(u0, u1)] with u0 6= u1; and
(iv) (a)4 ⊆ g(Ω); and

(b) F is (g,<)-continuous or F and g are continuous or <|g(Ω) is dξ-self-closed and
dξ(gw, Fw) > 0, where w ∈ Ω, such that ξ(Fw, w) < 1

k or ξ(w, Fw) < 1
k ;

or alternatively,
(iv′) dξ is continuous and (F, g) is <-compatible, and g and F are <-continuous;
(v) if gu<gv or gv<gu, for all u, v with gu = Fu and gv = Fv; and
(vi) (F, g) is weakly compatible,

then F and g have a unique fixed point.

Proof. By Remark 3, if ψ(u) = ku , where k ∈ (0, 1), it is clear that the result is true.

Remark 4. Let < = Ω2 and MF,g(u, v) = dξ(gu, gv) in Corollary 2, we can find the results of
Hassen et al. [20].

Corollary 3. Let (Ω, dξ) be an extended rectangular b-metric space with a binary relation <. F is
a self-mappings on Ω, which satisfies

dξ(Fu, Fv) 6 kM(u, v), for all u<v,

where k ∈ (0, 1) and

M(u, v) = max{dξ(u, v), dξ(u, Fu), dξ(Fv, v),

dξ(v, Fv)(1 + dξ(u, Fu))
1 + dξ(u, v)

,
dξ(u, Fu)(1 + dξ(v, Fv))

1 + dξ(u, v)
}.

In addition, if F satisfies the following conditions:
(i) there exists v0 ∈ Ω such that v0<Fv0 and v0<F2v0;
(ii) < is F-closed;
(iii) for v0 in (i), we have lim sup

n→∞
ξ(vn+1, vp) <

1
k , where p ∈ N, vn+1 = Fvn;

(iv) (a) there exists4 such that F(Ω) ⊆ 4 and (4, dξ) is <-complete; and
(b) F is <-continuous or <|Ω is dξ-self-closed and dξ(w, Fw) > 0, where w ∈ Ω, such

that ξ(Fw, w) < 1
k or ξ(w, Fw) < 1

k ; and
(v) if u<v or v<u, for all u, v with u = Fu and v = Fv,

then F has a unique fixed point.

Proof. By Corollary 2, let g = I, it is clear that the result is true.
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Example 3. Let Ω = [1, 4] with < = [1, 2]2, dξ(u, v) = |u− v| with ξ(u, v) = u + v + 1 for all
u, v ∈ Ω. Clearly, (Ω, dξ) be an <-complete extended rectangular b-metric space. Consider that
the mapping F : Ω→ Ω is defined by

F(u) =





7
4

, if u ∈ [1, 2];

u
10

, otherwise.

Then, for all u<v, we obtain u, v ∈ [1, 2]2, then Fu = Fv = 7
4 ∈ [1, 2], that is Fu<Fv. Since < is

F-closed. for any sequence {un} ⊆ Ω such that {un} is <-preserving with lim
n→∞

un = u, we obtain

that un ∈ [1, 2], for all n ∈ N and u ∈ [1, 2], then Fu = Fun = 7
4 , for all n ∈ N, that is, <|Ω is

dξ-self-closed. Moreover, there exists v0 = 7
4 such that v0<Fv0 and v0<F2v0. Clearly,

dξ(Fu, Fv) 6 1
10

(M(u, v)), for all u<v,

and for all w ∈ Ω with dξ(w, Fw) > 0 satisfies ξ(Fw, w) < 10 and lim sup
n→∞

ξ(vn+1, vp) < 10.

Thus, by Corollary 3, 7
4 is the unique fixed point of F.

Corollary 4. Let (Ω, dξ) be an extended rectangular b-metric space. F is a self-mapping on Ω,
which satisfies

dξ(Fu, Fv) 6 kM(u, v), for all u, v ∈ Ω,

where k ∈ [0, 1) and

M(u, v) = max{dξ(u, v), dξ(u, Fu), dξ(Fv, v),

dξ(v, Fv)(1 + dξ(u, Fu))
1 + dξ(u, v)

,
dξ(u, Fu)(1 + dξ(v, Fv))

1 + dξ(u, v)
}.

In addition, if F satisfies the following conditions:
(i) there exists v0 ∈ Ω such that lim sup

n→∞
ξ(vn+1, vp) <

1
k , where p ∈ N and vn+1 = Fvn;

(ii) there exists4 ⊆ Ω such that F(Ω) ⊆ 4 and (4, dξ) is complete; and
(iii) one of the conditions holds:

(a) F is continuous; or
(b) for all w ∈ Ω with dξ(w, Fw) > 0 such that k < 1

ξ(Fw,w)
or k < 1

ξ(w,Fw)
,

then F has a unique fixed point.

Proof. Let < = Ω2, by Corollary 3, the proof is complete.

Corollary 5. Let (Ω, dξ) be an extended rectangular b-metric space with a binary relation <.
Assume that F is a self-mapping on Ω, which satisfies

dξ(Fu, Fv) 6 a1dξ(u, v) + a2dξ(u, Fu) + a3dξ(Fv, v)+

a4
dξ(v, Fv)(1 + dξ(u, Fu))

1 + dξ(u, v)
+ a5

dξ(u, Fu)(1 + dξ(v, Fv))
1 + dξ(u, v)

, for all u<v,

where
5
∑

i=1
ai ∈ (0, 1). In addition, if F satisfies the following conditions:

(i) there exists v0 ∈ Ω such that v0<Fv0 and v0<F2v0;
(ii) < is F-closed;
(iii) for v0 in (i), we have lim sup

n→∞
ξ(vn+1, vp) <

1
5
∑

i=1
ai

, where p ∈ N and vn+1 = Fvn;

(iv) there exists4 ⊆ Ω such that F(Ω) ⊆ 4 and (4, dξ) is <-complete;
(v) one of the conditions holds:
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(a) F is <-continuous; or
(b) <|Ω is dξ-self-closed and for all w ∈ Ω with dξ(w, Fw) > 0 such that

5

∑
i=1

ai <
1

ξ(Fw, w)
or

5

∑
i=1

ai <
1

ξ(w, Fw)
;

and
(vi) if u<v or v<u, for all u, v with Fu = u and Fv = v,

then F has a unique fixed point.

Proof. For all u<v,

dξ(Fu, Fv) 6 a1dξ(u, v) + a2dξ(u, Fu) + a3dξ(Fv, v)+

a4
dξ(v, Fv)(1 + dξ(u, Fu))

1 + dξ(u, v)
+ a5

dξ(u, Fu)(1 + dξ(v, Fv))
1 + dξ(u, v)

6
5

∑
i=1

ai max{dξ(u, v), dξ(u, Fu), dξ(Fv, v),

dξ(v, Fv)(1 + dξ(u, Fu))
1 + dξ(u, v)

,
dξ(u, Fu)(1 + dξ(v, Fv))

1 + dξ(u, v)
}

= kM(u, v),

where k =
5
∑

i=1
ai. By Corollary 4, the proof is complete.

Remark 5. (i) In Corollary 5, take ai = 0, i = 2, 3, 4, 5, our results generalized the results of
Alam et al. [18] to extended rectangular b-metric spaces.

(ii) In Corollary 5, if ai = 0, i = 2, 3, 5, then we develop the result of Hossain et al. [23] into
extended rectangular b-metric space.

Corollary 6. Let (Ω, dξ) be an extended rectangular b-metric space. F is a self-mapping on Ω,
which satisfies

dξ(Fu, Fv) 6 a1dξ(u, v) + a2dξ(u, Fu) + a3dξ(Fv, v)+

a4
dξ(v, Fv)(1 + dξ(u, Fu))

1 + dξ(u, v)
+ a5

dξ(u, Fu)(1 + dξ(v, Fv))
1 + dξ(u, v)

, for all u, v ∈ Ω,

where
5
∑

i=1
ai ∈ (0, 1). In addition, if F satisfies the following conditions:

(i) there exists v0 ∈ Ω such that lim sup
n→∞

ξ(vn+1, vp) <
1

5
∑

i=1
ai

, where p ∈ N and vn+1 = Fvn;

(ii) there exists a set4 ⊆ Ω such that F(Ω) ⊆ 4 and (4, dξ) is complete; and
(iii) one of the conditions holds:

(a) F is continuous; or

(b) for all w ∈ Ω with dξ(w, Fw) > 0 such that
5
∑

i=1
ai <

1
ξ(Fw,w)

or
5
∑

i=1
ai <

1
ξ(w,Fw)

,

then F has a unique fixed point.

Proof. Let < = Ω2, by Corollary 5, the proof is complete.

Remark 6. (i) In Corollary 6, if ai = 0, i = 2, 3, 4, 5, we can obtain the Banach type fixed point
theorem.

(ii) In Corollary 6, if ai = 0, i = 1, 4, 5, we can find the Kannan type fixed point theorem.
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(iii) In Corollary 6, if ai = 0, i = 2, 3, 5, we can develop the result of Dass et al. [22] into
extended rectangular b-metric space.

4. Applications
4.1. Application to Ordinary Differential Equations with Periodic Boundary Value

In this section, we apply our results to show the existence of solutions to the following
ordinary differential equations with periodic boundary value.

{
u′(t) = f (t, u(t)), t ∈ [0, T],

u(0) = u(T),
(39)

where T ∈ (0, ∞) is a constant, u(t) : [0, T]→ R and f : [0, T]×R→ R is continuous. It is
clear that the solution of (39) is equivalent to the following integral equation

u(t) =
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds, t ∈ [0, T], (40)

where λ > 0 and

G(t, s) =





eλ(T+s−t)

eλT − 1
, 0 6 s < t 6 T,

eλ(s−t)

eλT − 1
, 0 6 t < s 6 T.

Let C([0, T],R) be the set of all continuous real value functions defined on [0, T].
For all u, v ∈ C([0, T],R), we define two functions ξ(u, v), dξ(u, v) and a mapping F by
ξ(u, v) = |u|+ |v|+ 4,

dξ(u, v) = max
t∈[0,T]

|u(t)− v(t)|2,

and

F(u(t)) =
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds, t ∈ [0, T]. (41)

Clearly, (dξ , C([0, T],R)) is a complete extended rectangular b-metric space and F is
continuous.

Theorem 6. If the following conditions hold,
(i) there exist λ, µ > 0 with µ < λ2 and ψ ∈ Ψ such that

0 6 f (t, u) + λu− [ f (t, v) + λv], for all u 6 v

and
| f (t, u) + λu− [ f (t, v) + λv]|2 6 µψ( max

t∈[0,T]
|u(t)− v(t)|2), for all u 6 v;

(ii) (39) has a lower solution, that is, there exists u0(t) ∈ C([0, T],R) such that
{

u′0(t) 6 f (t, u0(t)), t ∈ [0, T],

u0(0) 6 u0(T); and

(iii) for u0 in (ii), we have lim sup
n→∞

ψn+1(t)
ψn(t) ξ(un+1, up) < 1, where p, n ∈ N, un+1 = Fun

and t ∈ (0, dξ(u0, u1)] with u0 6= u1, then the ordinary differential equation with periodic boundary
value (39) has a solution.

Proof. First, we define a binary relation < by u<v if and only if u(t) 6 v(t), for all t ∈ [0, T].
Clearly, considering (ii), we have u0(t) 6 Fu0(t). By 0 6 f (t, u) + λu− [ f (t, v) + λv], for
all u 6 v, u0(t) 6 Fu0(t) and the definition of F, we have F(u0(t)) 6 F2(u0(t)).
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We can easily deduce that u0(t) 6 Fu0(t) and u0(t) 6 F2(u0(t)). By the definition of
<, there exists u0(t) such that u0(t)<F(u0(t)) and u0(t)<F2(u0(t)). We can conclude that
< is F-closed via 0 6 f (t, u) + λu− [ f (t, v) + λv], for all u 6 v, u0(t) 6 Fu0(t) and the
definitions of F and <. Now, we prove that F satisfies (37). Indeed, for all u<v, we have

|Fu(t)− Fv(t)|2 = |
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds−

∫ T

0
G(t, s)[ f (s, v(s)) + λv(s)]ds|2

= |
∫ T

0
G(t, s){[ f (s, u(s)) + λu(s)]− [ f (s, v(s)) + λv(s)]}ds|2

6 max
t∈[0,T]

|{[ f (s, u(s)) + λu(s)]− [ f (s, v(s)) + λv(s)]}|2|
∫ T

0
G(t, s)ds|2

6 µψ( max
t∈[0,T]

|u(t)− v(t)|2)|max
t∈[0,T]

∫ T

0
G(t, s)ds|2

6 µψ(M(u, v))|max
t∈[0,T]

∫ T

0
G(t, s)ds|2

= µψ(M(u, v))× 1
λ2

=
µ

λ2 ψ(M(u, v)),

that is, dξ(Fu, Fv) 6 µ

λ2 ψ(M(u, v)). Therefore, all conditions of Corollary 1 are satisfied,
and thus (39) has a solution.

4.2. Application to Linear Matrix Equations

In this section, of the paper, Corollary 3 is used to prove the existence of solutions to a
class of linear matrix equations. For convenience, we first give the following notations:

We denote Mm is the set of all complex number matrices of order m, Hm is the set
of all Hermitian matrices of order m, Pm and Hm

+ represent the set of all m× m positive
matrices and m×m positive semi-definite matrices, respectively. Clearly, Pm ⊆ Hm ⊆ Mm,
Hm
+ ⊆ Hm. Here, A1 � O(O represents null matrix of same order) and A1 � O mean that

A1 ∈ Pm and A1 ∈ Hm
+ , respectively; for A1 − A2 � O and A1 − A2 � O, we will use

A1 � A2 and A1 � A2, respectively.
In the section, we investigate the existence of the solution to the following linear matrix

equations:

U = G +
m

∑
i=1

A∗i UAi +
m

∑
i=1

B∗i UBi, (42)

where G ∈ Pm, Ai, Bi are arbitrary m×m matrices for each i. We use the metric d(A, B) =

‖A− B‖tr,X = ‖X 1
2 (A− B)X

1
2 ‖tr, which is induced by the norm ‖A‖tr =

n
∑

i=1
σi(A), where

X ∈ Pm, A, B ∈ Hm and σi(A), i = 1, 2, 3, · · · , n, are the singular values of A ∈ Mm.
Clearly, the set Hm equipped with the metric d is a complete metric space, then (Hm, d) is a
complete extended rectangular b-metric space with respect to ξ = 3.

Define < and mapping F : Hm → Hm by A<B iff B− A ∈ Hm and

F(U) = G +
m

∑
i=1

A∗i UAi +
m

∑
i=1

B∗i UBi, for all A, B ∈ Hm.

Note that the solutions of the matrix Equation (42) are the fixed point of the mapping
F, furthermore, the mapping F is continuous in Hm, < is F-closed and there exists U0 such
that U0<F(U0) and U0<F2(U0).

To establish the existence result, we introduce the following Lemmas.

Lemma 2 ([24]). If A, B ∈ Hm
+ , then 0 6 tr(AB) 6 ‖A‖tr(B).
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Lemma 3 ([24]). If A ∈ Hm such that A ≺ In, then ‖A‖ < 1.

Theorem 7. If X ∈ Pm,
m
∑

i=1
A∗i XAi ≺ 1

7 X and
m
∑

i=1
B∗i XBi ≺ 1

7 X, then the mapping F has a fixed

point in Hm.

Proof. Suppose that U, V ∈ Hm and U<V. Consider

‖F(U)− F(V)‖tr,X = tr(X
1
2 (F(U)− F(V))X

1
2 )

= tr(
m

∑
i=1
{X 1

2 (A∗i (U −V)Ai + B∗i (U −V)BiX
1
2 )})

= tr(
m

∑
i=1

X
1
2 A∗i (U −V)AiX

1
2 +

m

∑
i=1

X
1
2 B∗i (U −V)BiX

1
2 )

=
m

∑
i=1

tr(X
1
2 A∗i (U −V)AiX

1
2 + X

1
2 B∗i (U −V)BiX

1
2 )

=
m

∑
i=1

tr(X
1
2 A∗i (U −V)AiX

1
2 ) +

m

∑
i=1

tr(X
1
2 B∗i (U −V)BiX

1
2 )

=
m

∑
i=1

tr(A∗i XAi(U −V)) +
m

∑
i=1

tr(B∗i XBi(U −V))

=
m

∑
i=1

tr(A∗i XAiX−
1
2 X

1
2 (U −V)X−

1
2 X

1
2 ) +

m

∑
i=1

tr(B∗i XBiX−
1
2 X

1
2 (U −V)X−

1
2 X

1
2 )

=
m

∑
i=1

tr(X−
1
2 A∗i XAiX−

1
2 X

1
2 (U −V)X

1
2 ) +

m

∑
i=1

tr(X−
1
2 B∗i XBiX−

1
2 X

1
2 (U −V)X

1
2 )

= tr(
m

∑
i=1

X−
1
2 A∗i XAiX−

1
2 X

1
2 (U −V)X

1
2 ) + tr(

m

∑
i=1

X−
1
2 B∗i XBiX−

1
2 X

1
2 (U −V)X

1
2 )

6 ‖
m

∑
i=1

X−
1
2 A∗i XAiX−

1
2 ‖‖(U −V)‖tr,X + ‖

m

∑
i=1

X−
1
2 B∗i XBiX−

1
2 ‖‖(U −V)‖tr,X

= (‖
m

∑
i=1

X−
1
2 A∗i XAiX−

1
2 ‖+ ‖

m

∑
i=1

X−
1
2 B∗i XBiX−

1
2 ‖)‖(U −V)‖tr,X

= k‖(U −V)‖tr,X

6 kM(U, V),

where k = ‖
m
∑

i=1
X−

1
2 A∗i XAiX−

1
2 ‖+ ‖

m
∑

i=1
X−

1
2 B∗i XBiX−

1
2 ‖ and

M(U, V) = max{‖(U −V)‖tr,X , ‖(U − F(U))‖tr,X , ‖(V − F(V))‖tr,X ,

‖(V − F(V))‖tr,X(1 + ‖(U −−F(U))‖tr,X)

1 + ‖(U −V)‖tr,X
,
‖(U − F(U))‖tr,X(1 + ‖(V − F(V))‖tr,X)

1 + ‖(U −V)‖tr,X
}.

By Lemma 3, we have k < 2
7 . Mapping F and < satisfy the conditions of the Corollary

3; therefore, F has a fixed point, and linear matrix Equation (42) has a solution.

5. Conclusions

In this paper, some new relation-theoretic coincidence and common fixed point results
of for some mappings of F and g are obtained by using hybrid contractions and auxiliary
functions in extended rectangular b-metric space. We improve and expand some recent
results. Furthermore, we use instances and applications to justify the results. Finally,
regarding the main results of this paper, we draw some corollaries. Due to the importance
of the fixed point theory, we consider possible future research directions.

These are potential works in the future:
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(i) replace or weak some conditions in our main theorems;
(ii) extend our results to another metric spaces; and
(iii) use our contraction to study the problem of fixed-circle and fixed-disc [25–29] in

different generalized metric spaces.
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Abstract: For optimal control problems of Bolza involving time-state-control mixed constraints,
containing inequalities and equalities, fixed initial end-point, variable final end-point, and nonlinear
dynamics, sufficient conditions for weak minima are derived. The proposed algorithm allows us to
avoid hypotheses such as the continuity of the second derivatives of the functions delimiting the
problems, the continuity of the optimal controls or the parametrization of the final variable end-point.
We also present a relaxation relative to some similar works, in the sense that we arrive essentially to
the same conclusions but making weaker assumptions.

Keywords: optimal control; mixed constraints; free final end-point; sufficiency; weak minima

MSC: 49K15

1. Introduction

In this paper, we study sufficiency conditions for a weak minimum in two constrained
parametric and nonparametric optimal control problems having nonlinear dynamics, a left
fixed end-point, a right variable end-point and mixed time-state-control restrictions involv-
ing inequalities and equalities. In the parametric problem, we show how the deviation
between admissible costs and optimal costs is derived by some functions playing the role
of the square of some norms; in particular, the involvement of a functional whose structure
is very similar to the square of the classical norm of the Lebesgue measurable functions is a
fundamental component. See [1–4], where the authors study sufficient conditions for opti-
mality, and they obtain a similar behaviour with respect to the corresponding deviations
between optimal and feasible costs. In the parametric problem, the variable end-point is
subject to a parametrization involving a twice continuously differentiable manifold, and,
in the nonparametric problem, we make a relaxation of that concept because of the fact
that the final end-point is not only variable but also completely free, in the sense that the
final end-point may belong to any set which only must be contained in a surface having
continuous second derivatives of the independent variable. Another important relaxation
of this paper is that we avoid the imposition of two functional restrictions involving the
maximum of some crucial integrals, one of them concerning derivatives of admissible and
optimal dynamics and the other concerning the admissible and optimal controls, see [5,6].
In contrast, we show how, by fixing the left end-point, we are able to eliminate the integral
depending on the admissible dynamics of the problem and only make a weaker hypothesis
only involving the integral of admissible and the optimal controls. It is worth emphasizing
that the conclusions are very similar and the hypotheses are weaker.

On the other hand, the sufficiency technique employed to prove the main theorem
of the paper is self-contained because it is independent of classical approaches used to
obtain sufficiency in optimal control such as the Hamilton–Jacobi theory, the incorporation
of symmetric solutions of some matrix-valued Riccati equations or the use of fundamental
concepts appealing to Jacobi’s theory in terms of conjugate points, see [7–9], respectively.
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In contrast, our approach is direct in nature since it strongly depends upon three funda-
mental concepts; the first one concerns a similar version of the Legendre–Clebsch necessary
condition; the second one is related with the positivity of the second variation over the
cone of critical directions, and the third one involves a crucial integral inequality involving
a Weierstrass verification excess function and the integral of a mapping whose behavior
is very similar to the quadratic function around zero and very analogous to the absolute
value function around infinity and minus infinity. As the right end-point is variable in
the parametric optimal control problem as well as in the nonparametric optimal control
problem, our hypotheses also impose a transversality condition and the properties of the
proof of the theorem of the article find out the fulfillment of a second order inequality to
be crucial. This second order inequality has its origin in a symmetric inequality presented
in hypothesis (ii) of Theorem 1 and Corollary 1 of [5,6]. The absence of the continuity
of the proposed optimal controls in the content of this paper is also one of the essential
components of this work. See [7–21], where that assumption of continuity in the sufficiency
approaches containing a degree of generality very similar to that obtained in this article, is
a uniform unfortunate assumption since the admissible controls must only lie in the family
of measurable functions. To be more precise, it is an unfortunate issue that, in the works
mentioned above, their optimal controls need to be confined to the space of continuous
functions; meanwhile, all the feasible controls must only be measurable, see [5,6,22], where
we show that this assumption of continuity on the optimal controls is very strong.

The paper is organized as follows: In Section 2, we state the parametric optimal control
problem that we shall study, some basic definitions, and we enunciate the main theorem
of the article. In Section 3, we pose the nonparametric optimal control problem we are
going to study together with a fundamental lemma and a corollary which turns out to
be the principal result of the paper. In the same section, we illustrate with two examples
how even the non-expert can apply the main corollary of the article. In Section 4, we
establish three supplementary lemmas whose proofs can be found in [23] and on which
the proof of the theorem is strongly based. In Section 5, we make the proof of the theorem
of the paper by means of two lemmas. In Section 6, we present a discussion concerning
the relations between necessary and sufficient conditions, we add some comments about
an experimental economic model, and we exhibit some relevant references containing
the fundamental subject of mixed constraints. Finally, in Section 7, we provide the main
conclusions of the article.

2. An Auxiliary Theorem

Suppose that we are given an interval T := [t1, t2] in R, a fixed point ξ1 ∈ Rn

and C any nonempty subset of Rs, called the set of parameters, that we have functions
γ : Rn → R, Ψ : Rn → Rn, Γ(t, x, u) : T × Rn × Rm → R, f (t, x, u) : T × Rn × Rm → Rn

and ϕ(t, x, u) : T ×Rn ×Rm → Rq. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | ϕσ(t, x, u) ≤ 0 (σ ∈ P), ϕς(t, x, u) = 0 (ς ∈ Q)}

where P := {1, . . . , p} and Q := {p + 1, . . . , q} (p = 0, 1, . . . , q). If p = 0, then P is empty,
and we disregard statements about ϕσ. If p = q, then Q is empty, and we disregard
statements about ϕς.

Throughout the paper, we suppose that Γ, f and ϕ = (ϕ1, . . . , ϕq) have first and
second derivatives with respect to x and u. Additionally, if we denote by G(t, x, u) either
Γ(t, x, u), f (t, x, u), ϕ(t, x, u) or any of their partial derivatives of order ≤ 2 with respect
to x and u, we are going to assume that, if G is any bounded subset of T × Rn × Rm,
then |G(G)| is a bounded subset of R. In addition, we suppose that, if ((hq, lq)) is any
sequence in AC(T ; Rn)× L∞(T ; Rm) such that for some (h, l) ∈ AC(T ; Rn)× L∞(T ; Rm),

(hq(·), lq(·)) L∞
−→ (h(·), l(·)) on T , then, for all q ∈ N, G(·, hq(·), lq(·)) is measurable on

T and
G(·, hq(·), lq(·)) L∞

−→ G(·, h(·), l(·)) on T .
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It is worth observing that conditions given above are satisfied if the functions Γ, f , ϕ
and their first and second derivatives relative to x and u are continuous on T ×Rn ×Rm.
We are going to suppose that the functions γ and Ψ are of class C2 on Rn.

Designate by X := {x : T → Rn | x is absolutely continuous} and for any positive
integer s, set Us := L∞(T ; Rs). Define A := X ×Um × Rs. The notation za := (z, a) =
(x, u, a) denotes any element za ∈ A.

We are going to study a parametric optimal control problem, denoted by
P(γ, Γ, C, f , ξ1, Ψ, R, s), consisting of minimizing a functional of the form

I(za) := γ(a) +
∫ t2

t1

Γ(t, x(t), u(t))dt

over all za in A satisfying the constraints





a ∈ C.
ẋ(t) = f (t, x(t), u(t)) (a.e. in T ).
x(t1) = ξ1, x(t2) = Ψ(a).
(t, x(t), u(t)) ∈ R (t ∈ T ).

Elements a = (a1, . . . , as)∗ in Rs (∗ denotes transpose) will be called parameters, mem-
bers za in A will be called processes, and a process is admissible if it verifies the constraints.

• A process ẑâ solves P(γ, Γ, C, f , ξ1, Ψ, R, s) if it is admissible and I(ẑâ) ≤ I(za) for all
admissible processes za. An admissible process ẑâ is a weak minimum of
P(γ, Γ, C, f , ξ1, Ψ, R, s) if it is a minimum of I relative to the norm

‖za‖ := |a|+ ‖(x, u)‖∞,

that is, if, for some ε > 0, I(ẑâ) ≤ I(za) for all admissible processes za verifying
‖za − ẑâ‖ < ε.

• For all (t, x, u, ω, ν) ∈ T ×Rn ×Rm ×Rn ×Rq, define the augmented Hamiltonian by

H(t, x, u, ω, ν) := ω∗ f (t, x, u)− Γ(t, x, u)− ν∗ϕ(t, x, u).

If ω ∈ X and ν ∈ Uq are given, set, for all (t, x, u) ∈ T ×Rn ×Rm,

F (t, x, u) := −H(t, x, u, ω(t), ν(t))− ω̇(t)x

and let

J(za) := ω∗(t2)x(t2)−ω∗(t1)x(t1) + γ(a) +
∫ t2

t1

F (t, x(t), u(t))dt.

• The second variation of J with respect to za in the direction wα, is given by

J′′(za; wα) := α∗γ′′(a)α +
∫ t2

t1

2Ω(t, x(t), u(t); y(t), v(t))dt,

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, x(t), u(t); y, v) := y∗Fxx(t, x(t), u(t))y + 2y∗Fxu(t, x(t), u(t))v + v∗Fuu(t, x(t), u(t))v,

and the notation wα means any element (y, v, α) ∈ X× L2(T ; Rm)×Rs. In addition,
γ′′(a) is the second derivative of γ evaluated at a.

• Let
E(t, x, u, v) := F (t, x, v)−F (t, x, u)−Fu(t, x, u)(v− u).
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• Define

D(u) :=
∫ t2

t1

L(u(t))dt where L(c) := (1 + |c|2)1/2 − 1 (c ∈ Rm).

Finally, if (t, x, u) ∈ T ×Rn ×Rm is given, denote by

i(t, x, u) := {σ ∈ P | ϕσ(t, x, u) = 0},

the set of active indices of (t, x, u) relative to the inequality constraints. For all za ∈ A,
let Y(za) be the cone of all wα ∈ X× L2(T; Rm)×Rs satisfying





ẏ(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (a.e. in T ).
y(t1) = 0, y(t2) = Ψ′(a)α.
ϕσx(t, x(t), u(t))y(t) + ϕσu(t, x(t), u(t))v(t) ≤ 0 (a.e. in T , σ ∈ i(t, x(t), u(t))).
ϕςx(t, x(t), u(t))y(t) + ϕςu(t, x(t), u(t))v(t) = 0 (a.e. in T , ς ∈ Q).

The set Y(za) is the cone of critical directions with respect to za.

Theorem 1. Let ẑâ be an admissible process. Assume that i(·, x̂(·), û(·)) is piecewise constant on
T that there exist ω ∈ X, ν ∈ Uq with νσ(t) ≥ 0, νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, t ∈ T ) and
δ, ε > 0, such that

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ),

H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),
and the following is satisfied:

(i) γ′∗(â) + Ψ′∗(â)ω(t2) = 0.
(ii) ω∗(t2)Ψ′′(â; h) ≥ 0 for all h ∈ Rs.
(iii) Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ).
(iv) J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0).
(v) za admissible with ‖(x, u) − (x̂, û)‖∞ < ε implies that

∫ t2
t1

E(t, x(t), û(t), u(t)) ≥
δD(u− û).

Then, for some ρ1, ρ2 > 0 and all admissible processes za satisfying ‖za − ẑâ‖ < ρ1,

I(za) ≥ I(ẑâ) + ρ2 min{|a− â|2,D(u− û)}.

In particular, ẑâ is a weak minimum of P(γ, Γ, C, f , ξ1, Ψ, R, s).

3. The Principal Result

Suppose that an interval T := [t1, t2] in R is given, a fixed point Υ1 ∈ Rn, a set B ⊂ Rn

and functions ` : Rn → R, L(t, x, u) : T ×Rn ×Rm → R, g(t, x, u) : T ×Rn ×Rm → Rn

and φ(t, x, u) : T ×Rn ×Rm → Rq. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | φσ(t, x, u) ≤ 0 (σ ∈ P), φς(t, x, u) = 0 (ς ∈ Q)}

where P := {1, . . . , p} and Q := {p + 1, . . . , q} (p = 0, 1, . . . , q). If p = 0, then P is empty,
and we disregard statements about φσ. If p = q, then Q is empty, and we disregard
statements about φς.

In this section, we shall assume that L, g and φ = (φ1, . . . , φq) satisfy the regularity
hypotheses mentioned in Section 2. In particular, if L, g, and φ have first and second
continuous partial derivatives with respect to x and u on T ×Rn ×Rm, then they verify
the previously mentioned regularity hypotheses. Moreover, we shall be assuming that the
function ` is of class C2 on Rn.
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Set A := X ×Um, where usually X is the space of absolutely continuous functions
mapping T to Rn, and Um is the space of all essentially bounded measurable functions
mapping T to Rm.

In this section, we are going to study the non-parametric optimal control problem
P(`,L, g, Υ1, B,R, n) of finding a minimum value to the functional

J (x, u) := `(x(t2)) +
∫ t2

t1

L(t, x(t), u(t))dt

over all pairs (x, u) in A verifying the constraints




ẋ(t) = g(t, x(t), u(t)) (a.e. in T ).
x(t1) = Υ1, x(t2) ∈ B.
(t, x(t), u(t)) ∈ R (t ∈ T ).

The elements (x, u) in A will be called processes. A process is admissible if it satisfies
the restrictions.

A process (x̂, û) is a global solution of P(`,L, g, Υ1, B,R, n) if it is admissible and
J (x̂, û) ≤ J (x, u) for all (x, u) admissible. An admissible process (x̂, û) is a weak minimum
of P(`,L, g, Υ1, B,R, n) if it is a minimum of J with respect to the essential supremum
norm, that is, J (x̂, û) ≤ J (x, u) for all admissible processes verifying ‖(x, u)− (x̂, û)‖∞ <
ε, for some ε > 0.

Let Ψ : Rn → Rn be any twice continuously differentiable function such that B ⊂
Ψ(Rn). Connect the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) with the
parametric optimal control problem stated in Section 2, denoted by P(γ, Γ, C, f , ξ1, Ψ, R, s),
that is, P(γ, Γ, C, f , ξ1, Ψ, R, s) is the parametric problem stated in Section 2, with the next
data; γ = ` ◦Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given above, R = R
and s = n.

Lemma 1. The following conditions are satisfied:

(i) za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n) if and only if (x, u) is a feasible process
of P(`,L, g, Υ1, B,R, n) and a ∈ Ψ−1(x(t2)).

(ii) If za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n), then

J (x, u) = I(za).

(iii) If ẑâ solves P(γ, Γ, C, f , ξ1, Ψ, R, n), then (x̂, û) solves P(`,L, g, Υ1, B,R, n).

Proof. Index (i) follows from the definition of the problems. In order to prove (ii), note that,
if za is an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n), then, by (i), (x, u) is an admissible
process of P(`,L, g, Υ1, B,R, n) and x(t2) = Ψ(a). Then,

J (x, u) = `(x(t2)) +
∫ t2

t1

L(t, x(t), u(t))dt

= `(Ψ(a)) +
∫ t2

t1

Γ(t, x(t), u(t))dt

= γ(a) +
∫ t2

t1

Γ(t, x(t), u(t))dt = I(za).

Finally, in order to prove (iii), let za be an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n).
By (i), (x̂, û) and (x, u) are admissible of P(`,L, g, Υ1, B,R, n). Then, by (ii) and (iii),

J (x̂, û) = I(ẑâ) ≤ I(za) = J (x, u).
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Corollary 1 below is a straightforward implication of Theorem 1 and Lemma 1. It provides
sufficient conditions for weak minima of the nonparametric problem P(`,L, g, Υ1, B,R, n). It
is worth observing that the proposed optimal control is not necessarily continuous but only
measurable as was the case of Theorem 1.

Corollary 1. Let Ψ : Rn → Rn be any twice continuously differentiable function such that
B ⊂ Ψ(Rn) and let P(γ, Γ, C, f , ξ1, Ψ, R, n) be the parametric optimal control problem before
pronouncing Lemma 1. Let ẑâ be an admissible process of P(γ, Γ, C, f , ξ1, Ψ, R, n). Suppose that
i(·, x̂(·), û(·)) is piecewise constant on T , there exist ω ∈ X, ν ∈ Uq satisfying νσ(t) ≥ 0 and
νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, t ∈ T ), two positive numbers δ, ε such that

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ),

H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),
and the following conditions are satisfied:

(i) γ′∗(â) + Ψ′∗(â)ω(t2) = 0.
(ii) ω∗(t2)Ψ′′(â; h) ≥ 0 for all h ∈ Rn.
(iii) Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ).
(iv) J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0).
(v) za admissible with ‖(x, u) − (x̂, û)‖∞ < ε implies that

∫ t2
t1

E(t, x(t), û(t), u(t)) ≥
δD(u− û).

Then, (x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

Examples 1 and 2 below show how even a non-expert can apply Corollary 1. Examples 1 and 2
are concerned with an inequality-equality restrained optimal control problem in which one
has to verify that an element (x̂, û, ω, ν) satisfies the sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and that the former also satisfies conditions (i), (ii), (iii), (iv), and (v) of Corollary 1, implying
that it is a weak minimum of P(`,L, g, Υ1, B,R, n).

Example 1. Consider the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) of finding
a minimum value to the functional

J (x, u) = x2(1)− x(1) +
∫ 1

0
{exp(tu(t)) + sinh x(t)}dt

over all (x, u) in A verifying the constraints




ẋ(t) = u(t) almost everywhere in [0, 1].
x(0) = 0, x(1) ∈ (−∞, 0].
(t, x(t), u(t)) ∈ R (t ∈ [0, 1])

where

R := {(t, x, u) ∈ [0, 1]×R×R | (3/2)u2 − x2 − exp(−x)− x + 1 ≤ 0},

A := X×U1,

X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},
U1 := {u : [0, 1]→ R | u is essentially bounded on [0, 1]}.

For this event, the data of the proposed nonparametric problem are given by T = [0, 1],
m = 1, p = 1, q = 1, `(·) = x2(·) − x(·), L(t, x, u) = exp(tu) + sinh x, g(t, x, u) = u,
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Υ1 = 0, B = (−∞, 0], R = {(t, x, u) ∈ T ×R×R | (3/2)u2 − x2 − exp(−x)− x + 1 ≤ 0}
and n = 1. Observe that

φ1(t, x, u) = (3/2)u2 − x2 − exp(−x)− x + 1.

We have that the functions L, g, φ = φ1, and their first and second derivatives relative
to x and u are continuous on T ×R×R. Additionally, the function ` is C2 in R.

Moreover, one can verify that the process (x̂, û) ≡ (0, 0) is admissible of
P(`,L, g, Υ1, B,R, n). Let Ψ : R → R be given by Ψ(b) := b. Clearly, Ψ is C2 in R and
B ⊂ Ψ(R). The connected parametric problem designated by P(γ, Γ, C, f , ξ1, Ψ, R, s) has
the next data; γ = ` ◦Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given above,
R = R and s = n.

Observe that, if we set â := 0, then ẑâ = (x̂, û, â) ≡ (0, 0, 0) is admissible of
P(γ, Γ, C, f , ξ1, Ψ, R, n). Moreover, i(·, x̂(·), û(·)) ≡ {1} is constant on T . Let ω ≡ t, ν1 ≡ 1
and observe that (ω, ν) ∈ X ×U1, νσ ≥ 0 and νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (t ∈ T , σ = 1).
Recall that ϕ = φ.

Now,

H(t, x, u, ω, ν) = ωu− exp(tu)− sinh x− ν1[(3/2)u2 − x2 − exp(−x)− x + 1],

and observe that

Hx(t, x, u, ω, ν) = − cosh x− ν1[−2x + exp(−x)− 1],

Hu(t, x, u, ω, ν) = ω− t exp(tu)− 3ν1u.

Then,

ω̇(t) = −Hx(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ) and Hu(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T )
and hence (x̂, û, ω, ν) verifies the first order sufficiency conditions of Corollary 1. Since
Ψ(b) = b (b ∈ R), we have that γ(b) = b2 − b (b ∈ R). Then,

γ′(â) + Ψ′(â)ω(1) = 0

and hence condition (i) of Corollary 1 is verified. Moreover, one can verify that

ω(1)Ψ′′(â; h) = 0 for all h ∈ R

and then condition (ii) of Corollary 1 is verified.
Now, for all (t, x, u) ∈ T ×R×R,

H(t, x, u, ω(t), ν(t)) = tu− exp(tu)− sinh x− [(3/2)u2 − x2 − exp(−x)− x + 1]

and hence, for all t ∈ T ,

Huu(t, x̂(t), û(t), ω(t), ν(t)) = −t2 − 3 ≤ 0

implying that (x̂, û, ω, ν) satisfies condition (iii) of Corollary 1.
Additionally, note that, for all t ∈ T ,

fx(t, x̂(t), û(t)) = 0 and fu(t, x̂(t), û(t)) = 1,

ϕx(t, x̂(t), û(t)) = 0 and ϕu(t, x̂(t), û(t)) = 0.

Consequently, Y(ẑâ) is given by all wα ∈ X× L2(T ; R)×R verifying
{

ẏ(t) = v(t) (a.e. in T ).
y(0) = 0, y(1) = α.
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In addition, observe that, for all (t, x, u) ∈ T ×R×R,

F (t, x, u) = −tu + exp(tu) + (3/2)u2 + sinh x− x2 − exp(−x)− 2x + 1

and, for all t ∈ T ,

Fxx(t, x̂(t), û(t)) = −3, Fxu(t, x̂(t), û(t)) = 0, Fuu(t, x̂(t), û(t)) = t2 + 3.

Thus, for all wα ∈ Y(ẑâ),

J′′(ẑâ; wα) = 2α2 +
∫ 1

0
3{v2(t)− y2(t)}dt +

∫ 1

0
3t2v2(t)dt ≥ 2α2 +

∫ 1

0
3{ẏ2(t)− y2(t)}dt.

Hence,
J′′(ẑâ; wα) > 0

for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0), and hence condition (iv) of Corollary 1 is fulfilled.
Now, note that, if za is admissible, for all t ∈ T ,

E(t, x(t), û(t), u(t)) = −tu(t) + exp(tu(t)) + (3/2)u2(t)− 1.

Thus, if za is admissible,

∫ 1

0
E(t, x(t), û(t), u(t))dt =

∫ 1

0
{−tu(t) + exp(tu(t)) + (3/2)u2(t)− 1}dt ≥

∫ 1

0
(1/2)u2(t)dt

≥
∫ 1

0
L(u(t)− û(t))dt = D(u− û).

Therefore, condition (v) of Corollary 1 is satisfied for any ε > 0 and δ = 1. By Corollary
1, (x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

Example 2. Let us study the nonparametric optimal control problem P(`,L, g, Υ1, B,R, n) of
minimizing the functional

J (x, u) = x2(1) +
∫ 1

0
{ 1

2 (u1(t) + u2(t))2 + u1(t)}dt

over all (x, u) in A satisfying the constraints




ẋ(t) = u1(t) + u2(t) + x3(t) almost everywhere in [0, 1].
x(0) = 0, x(1) ∈ R.
(t, x(t), u(t)) ∈ R (t ∈ [0, 1])

where
R := {(t, x, u) ∈ [0, 1]×R×R2 | − 1

2 x2 − u1 ≤ 0, sin u2 = 0},
A := X×U2,

X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},
U2 := {u : [0, 1]→ R2 | u is essentially bounded on [0, 1]}.

For this event, the data of the nonparametric problem are given by T = [0, 1], m = 2,
p = 1, q = 2, `(·) = x2(·), L(t, x, u) = 1

2 (u1 + u2)
2 + u1, g(t, x, u) = u1 + u2 + x3, Υ1 = 0,

B = R,R = {(t, x, u) ∈ T ×R×R2 | − 1
2 x2 − u1 ≤ 0, sin u2 = 0} and n = 1. Observe that

φ1(t, x, u) = − 1
2 x2 − u1 and φ2(t, x, u) = sin u2.
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We have that the functions L, g, φ = (φ1, φ2) and their first and second derivatives
with respect to x and u are continuous on T ×R×R2. Additionally, the function ` is C2

in R.
Moreover, as one readily verifies, the process (x̂, û) ≡ (0, 0, 0) is admissible of

P(`,L, g, Υ1, B,R, n). Let Ψ : R → R be defined by Ψ(b) := b. Clearly, Ψ is C2 in R
and B ⊂ Ψ(R). The connected parametric problem designated by P(γ, Γ, C, f , ξ1, Ψ, R, s)
has the next data; γ = ` ◦ Ψ, Γ = L, C = Ψ−1(B), f = g, ξ1 = Υ1, Ψ the function given
above, R = R and s = n.

Observe that, if we set â := 0, then ẑâ = (x̂, û, â) ≡ (0, 0, 0, 0) is admissible of
P(γ, Γ, C, f , ξ1, Ψ, R, n). Moreover, i(·, x̂(·), û(·)) ≡ {1} is constant on T . Let ω ≡ 0,
ν1 ≡ 1, ν2 ≡ 0 and observe that (ω, ν) ∈ X ×U2, νσ ≥ 0 and νσ(t)ϕσ(t, x̂(t), û(t)) = 0
(t ∈ T , σ = 1). Recall that ϕ = φ.

Now,

H(t, x, u, ω, ν) = ωu1 + ωu2 + ωx3 − 1
2 (u1 + u2)

2 − u1 +
1
2 ν1x2 + ν1u1 − ν2 sin u2,

and observe that
Hx(t, x, u, ω, ν) = 3ωx2 + ν1x,

Hu(t, x, u, ω, ν) = (ω− u1 − u2 − 1 + ν1, ω− u1 − u2 − ν2 cos u2).

Consequently,

ω̇(t) = −Hx(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ) and Hu(t, x̂(t), û(t), ω(t), ν(t)) = (0, 0) (t ∈ T )
and hence (x̂, û, ω, ν) satisfies the first order sufficiency conditions of Corollary 1. Since
Ψ(b) = b (b ∈ R), we have that γ(b) = b2 (b ∈ R). Then,

γ′(â) + Ψ′(â)ω(1) = 0

and then condition (i) of Corollary 1 is satisfied. Moreover, one can verify that

ω(1)Ψ′′(â; h) = 0 for all h ∈ R

and hence condition (ii) of Corollary 1 is fulfilled.
Now, for all (t, x, u) ∈ T ×R×R2,

H(t, x, u, ω(t), ν(t)) = − 1
2 (u1 + u2)

2 + 1
2 x2

and hence, for all t ∈ T ,

Huu(t, x̂(t), û(t), ω(t), ν(t)) =
( −1 −1
−1 −1

)
≤ 0

implying that (x̂, û, ω, ν) verifies condition (iii) of Corollary 1.
Additionally, note that, for all t ∈ T ,

fx(t, x̂(t), û(t)) = 0 and fu(t, x̂(t), û(t)) = (1, 1),

ϕx(t, x̂(t), û(t)) =
(

0
0

)
and ϕu(t, x̂(t), û(t)) =

( −1 0
0 1

)
.

Therefore, Y(ẑâ) is given by all wα ∈ X× L2(T ; R2)×R verifying




ẏ(t) = v1(t) + v2(t) (a.e. in T ).
y(0) = 0, y(1) = α.
−v1(t) ≤ 0, v2(t) = 0 (a.e. in T ).
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In addition, observe that, for all (t, x, u) ∈ T ×R×R2,

F (t, x, u) = 1
2 (u1 + u2)

2 − 1
2 x2

and, for all t ∈ T ,

Fxx(t, x̂(t), û(t)) = −1, Fxu(t, x̂(t), û(t)) = (0, 0), Fuu(t, x̂(t), û(t)) =
(

1 1
1 1

)
.

Thus, for all wα ∈ Y(ẑâ),

J′′(ẑâ; wα) = 2α2 +
∫ 1

0
{(v1(t) + v2(t))2 − y2(t)}dt = 2α2 +

∫ 1

0
{ẏ2(t)− y2(t)}dt.

Hence,
J′′(ẑâ; wα) > 0

for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0, 0), and then condition (iv) of Corollary 1 is verified.
Now, note that, if za is admissible, for all t ∈ T ,

E(t, x(t), û(t), u(t)) = 1
2 (u1(t) + u2(t))2.

Therefore, if za is admissible,

∫ 1

0
E(t, x(t), û(t), u(t))dt =

∫ 1

0

1
2 (u1(t) + u2(t))2dt ≥

∫ 1

0
L(u(t)− û(t))dt = D(u− û).

Thus, condition (v) of Corollary 1 is verified for any ε > 0 and δ = 1. By Corollary 1,
(x̂, û) is a weak minimum of P(`,L, g, Υ1, B,R, n).

4. Supplementary Lemmas

Now, we enunciate three supplementary lemmas which are going to be fundamental
in proving Theorem 1. These lemmas are direct consequences of Lemmas 3.1–3.3 of [23].

If (Σn) is a sequence of measurable functions and Σ is a measurable function, we shall

designate uniform convergence of (Σn) to Σ by Σn
u−→ Σ. Similarly, strong convergence in

Lp by Σn
Lp
−→ Σ and weak convergence by Σn

Lp
⇀ Σ.

In the next three lemmas, we suppose that û ∈ L1(T ; Rm) is given and a sequence (uq)
in L1(T; Rm) such that

lim
q→∞
D(uq − û) = 0 and dq := [2D(uq − û)]1/2 > 0 (q ∈ N).

For all q ∈ N, define

vq :=
uq − û

dq
.

Lemma 2. For some v̂ ∈ L2(T ; Rm) and some subsequence of (uq) (without relabeling), vq
L1
⇀ v̂

on T .

Lemma 3. Let Aq ∈ L∞(T ; Rn×n) and Bq ∈ L∞(T ; Rn×m) be matrix-valued functions for which
we have the existence of some constants m0, m1 > 0 such that ‖Aq‖∞ ≤ m0, ‖Bq‖∞ ≤ m1
(q ∈ N), and for all q ∈ N indicate by yq the solution of the initial value problem

ẏ(t) = Aq(t)y(t) + Bq(t)vq(t) (a.e. in T ), y(t1) = 0.

Then, there exist ζ ∈ L2(T ; Rn) and a subsequence (without relabeling), such that ẏq
L1
⇀ ζ on

T , and hence, if ŷ(t) :=
∫ t

t1
ζ(τ)dτ (t ∈ T ), then yq

u−→ ŷ on T .
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Lemma 4. Suppose uq
L∞
−→ û on T , let Φq, Φ ∈ L∞(T ; Rm×m); suppose that Φq

L∞
−→ Φ on T ,

Φ(t) ≥ 0 (a.e. in T ) and let v̂ be the function given in Lemma 2. Then,

lim inf
q→∞

∫ t2

t1

v∗q(t)Φq(t)vq(t)dt ≥
∫ t2

t1

v̂∗(t)Φ(t)v̂(t)dt.

5. Proof of Theorem 1

The proof of Theorem 1 will be divided into two Lemmas. In Lemmas 5 and 6 below,
we shall suppose that all the hypotheses of Theorem 1 are verified. Before stating the
lemmas, let us present some definitions.

Note first that, given x = (x1, . . . , xn)∗ in Rn and a = (a1, . . . , as)∗ in Rs, if we set xi,
aj in Rn+s by xi := (x1, . . . , xn, 0, . . . , 0)∗ and aj := (0, . . . , 0, a1, . . . , as)∗, then

xi + aj = (x1, . . . , xn, a1, . . . , as)
∗ =

(
x
a

)
∈ Rn+s.

Define F̃ : T ×Rn+s ×Rm → R by

F̃ (t, ξ, u) :=
γ(ξn+1, . . . , ξn+s)

t2 − t1
+F (t, ξ1, . . . , ξn, u).

Observe that the Weierstrass function Ẽ : T ×Rn+s ×Rm ×Rm → R of F̃ is given by

Ẽ(t, ξ, u, v) := F̃ (t, ξ, v)− F̃ (t, ξ, u)− F̃u(t, ξ, u)(v− u).

It is not difficult to see that, for all (t, x, u, v) ∈ T ×Rn ×Rm ×Rm and all a in Rs,

Ẽ(t, xi + aj, u, v) = E(t, x, u, v).

Set

J̃(za) := ω∗(t2)x(t2)−ω∗(t1)x(t1) +
∫ t2

t1

F̃ (t, x(t)i + aj, u(t))dt.

As one readily verifies, J(za) = J̃(za) for all za in A, and

J̃(za) = J̃(ẑâ) + J̃′(ẑâ; za − ẑâ) + K̃(ẑâ; za) + Ẽ(ẑâ; za) (1)

where

Ẽ(ẑâ; za) :=
∫ t2

t1

Ẽ(t, x(t)i + aj, û(t), u(t))dt,

K̃(ẑâ; za) :=
∫ t2

t1

{M̃(t, x(t)i + aj) + [u∗(t)− û∗(t)]Ñ (t, x(t)i + aj)}dt,

J̃′(ẑâ; za − ẑâ) := ω∗(t2)[x(t2)− x̂(t2)]−ω∗(t1)[x(t1)− x̂(t1)]

+
∫ t2

t1

{F̃ξ(t, x̂(t)i + âj, û(t))([x(t)− x̂(t)]i + [a− â]j)

+F̃u(t, x̂(t)i + âj, û(t))(u(t)− û(t))}dt,

and M̃, Ñ are defined by

M̃(t, xi + aj) := F̃ (t, xi + aj, û(t))− F̃ (t, x̂(t)i + âj, û(t))

−F̃ξ(t, x̂(t)i + âj, û(t))([x− x̂(t)]i + [a− â]j),

41



Symmetry 2022, 14, 1520

Ñ (t, xi + aj) := F̃ ∗u (t, xi + aj, û(t))− F̃ ∗u (t, x̂(t)i + âj, û(t)).

By Taylor’s theorem,

M̃(t, xi + aj) = 1
2 ([x

∗ − x̂∗(t)]i + [a∗ − â∗]j)P̃(t, xi + aj)([x− x̂(t)]i + [a− â]j), (2a)

Ñ (t, xi + aj) = Q̃(t, xi + aj)([x− x̂(t)]i + [a− â]j), (2b),

where

P̃(t, xi + aj) := 2
∫ 1

0
(1− θ)F̃ξξ(t, [x̂(t) + θ(x− x̂(t))]i + [â + θ(a− â)]j, û(t))dθ,

Q̃(t, xi + aj) :=
∫ 1

0
F̃uξ(t, [x̂(t) + θ(x− x̂(t))]i + [â + θ(a− â)]j, û(t))dθ.

Lemma 5. If the deduction of Theorem 1 is false, then we have the existence of a subsequence (zq
aq)

of admissible processes such that

lim
q→∞
D(uq − û) = 0 and dq := [2D(uq − û)]1/2 > 0 (q ∈ N).

Proof. If the deduction of Theorem 1 is false, then, for all ρ1, ρ2 > 0, there exists an
admissible process za such that

‖za − ẑâ‖ < ρ1 and I(za) < I(ẑâ) + ρ2 min{|a− â|2,D(u− û)}. (3)

Since
νσ(t) ≥ 0 (σ ∈ P, a.e. in T ),

if za is admissible, then I(za) ≥ J(za). Additionally, as

νσ(t)ϕσ(t, x̂(t), û(t)) = 0 (σ ∈ P, a.e. in T )

then I(ẑâ) = J(ẑâ). Thus, (3) implies that, for ρ1, ρ2 > 0, we have the existence of za
admissible such that

‖za − ẑâ‖ < ρ1 and J(za) < J(ẑâ) + ρ2 min{|a− â|2,D(u− û)}.

Therefore, if the deduction of Theorem 1 is false, then, for all q ∈ N, we have the
existence of a sequence of admissible processes (zq

aq) such that

‖zq
aq − ẑâ‖ < min{ε, 1/q}, J(zq

aq)− J(ẑâ) < min
{ |aq − â|2

q
,
D(uq − û)

q

}
. (4)

The first relation in (4) assures that

lim
q→∞
D(uq − û) = 0.

Moreover, as (zq
aq) is a sequence of admissible processes, we see that D(uq − û) = 0 if

and only if zq = ẑ. Hence, the second relation of (4) implies that

D(uq − û) = 0 =⇒ aq 6= â.

Assume that D(uq − û) = 0 for infinitely many q’s. We have

0 = xq(t2)− x̂(t2) = Ψ(aq)−Ψ(â) =
∫ 1

0
Ψ′(â + θ[aq − â])(aq − â)dθ, (5)

0 = Ψ(aq)−Ψ(â) = Ψ′(â)(aq − â) +
∫ 1

0
(1− θ)Ψ′′(â + θ[aq − â]; aq − â)dθ. (6)
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If we designate by (aq, â) the line segment in Rs joining the points aq and â, by the
second relation of (4), by hypothesis (i) of Theorem (1), by (6), and the mean value theorem,
we have the existence of Θq ∈ (aq, â) such that

0 > J(ẑaq)− J(ẑâ)

= γ(aq)− γ(â)

= γ′(â)(aq − â) + 1
2 (aq − â)∗γ′′(Θq)(aq − â)

= −ω∗(t2)Ψ′(â)(aq − â) + 1
2 (aq − â)∗γ′′(Θq)(aq − â) (7)

=
∫ 1

0
(1− θ)ω∗(t2)Ψ′′(â + θ[aq − â]; aq − â)dθ + 1

2 (aq − â)∗γ′′(Θq)(aq − â).

Select an adequately subsequence of ((aq − â)/|aq − â|), such that

lim
q→∞

aq − â
|aq − â| = α̂ (8)

for some α̂ ∈ Rs satisfying |α̂| = 1. By (5),

Ψ′(â)α̂ = 0.

By (7) and (8) and hypothesis (ii) of Theorem 1, we see that

0 ≥ 1
2 ω∗(t2)Ψ′′(â; α̂) + 1

2 α̂∗γ′′(â)α̂ ≥ 1
2 α̂∗γ′′(â)α̂ = 1

2 J′′(ẑâ; 0α̂)

contradicting (iv) of Theorem 1. Consequently, we may suppose that, for all q ∈ N,

dq = [2D(uq − û)]1/2 > 0.

Lemma 6. If the deduction of Theorem 1 is false, then condition (iv) of Theorem 1 is false.

Proof. Let (zq
aq) be the sequence of admissible processes provided in Lemma 5. Hence,

lim
q→∞
D(uq − û) = 0 and dq = [2D(uq − û)]1/q > 0 (q ∈ N).

Case(1): First, assume that the sequence ((aq − â)/dq) is bounded in Rs. For all
q ∈ N, set

yq :=
xq − x̂

dq
, vq :=

uq − û
dq

, vq := yqi +
aq − â

dq
j.

By Lemma 2, there exist v̂ ∈ L2(T ; Rm) and a subsequence of (zq
aq) (without relabeling)

such that vq
L1
⇀ v̂ on T . We have, for all q ∈ N, that

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T ), yq(t1) = 0,

where

Aq(t) :=
∫ 1

0
fx(t, x̂(t) + θ[xq(t)− x̂(t)], û(t) + θ[uq(t)− û(t)])dθ,

Bq(t) :=
∫ 1

0
fu(t, x̂(t) + θ[xq(t)− x̂(t)], û(t) + θ[uq(t)− û(t)])dθ.

We obtain the existence of m0, m1 > 0 such that ‖Aq‖∞ ≤ m0, ‖Bq‖∞ ≤ m1 (q ∈ N).
By Lemma 3, there exist ζ ∈ L2(T ; Rn) and some subsequence of (zq

aq) (we do not relabel)

such that, if for all t ∈ T , ŷ(t) :=
∫ t

t1
ζ(τ)dτ, then
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yq
u−→ ŷ on T . (9)

As the sequence ((aq − â)/dq) is bounded in Rs, then we can suppose that there exists
some α̂ ∈ Rs such that

lim
q→∞

aq − â
dq

= α̂. (10)

First, we shall show that
ŷ(t2) = Ψ′(â)α̂. (11)

Note that, we have, for all q ∈ N, that

yq(t2) =
∫ 1

0
Ψ′(â + θ[aq − â])

(aq − â)
dq

dθ. (12)

By (9), (10), and (12), as one readily verifies, (11) holds. Now, we claim that

J′′(ẑâ; ŵα̂) ≤ 0 and ŵα̂ = (ŷ, v̂, α̂) 6≡ (0, 0, 0). (13)

In order to prove it, note that, by (2), (9), and (10),

M̃(·, xq(·)i + aqj)
d2

q
= 1

2 v∗q (·)P̃(·, xq(·)i + aqj)vq(·) L∞
−→

1
2 [ŷ
∗(·)i + α̂∗j]F̃ξξ(·, x̂(·)i + âj, û(·))[ŷ(·)i + α̂j],

Ñ (·, xq(·)i + aqj)
dq

= Q̃(·, xq(·)i + aqj)vq(·) L∞
−→ F̃uξ(·, x̂(·)i + âj, û(·))[ŷ(·)i + α̂j]

both on T . This fact together with Lemma 2 implies that

lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

=
1
2

∫ t2

t1

{[ŷ∗(t)i + α̂∗j]F̃ξξ(t, x̂(t)i + α̂j, û(t))[ŷ(t)i + α̂j]

+2v̂∗(t)F̃uξ(t, x̂(t)i + α̂j, û(t))[ŷ(t)i + α̂j]}dt. (14)

As (x̂, û, ω, ν) satisfies the first order sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

and, by condition (i) of Theorem 1, we obtain

lim
q→∞

J̃′(ẑâ; zq
aq − ẑâ)

d2
q

= lim
q→∞

1
d2

q
[ω∗(t2)(xq(t2)− x̂(t2)) + γ′(â)(aq − â)]

= lim
q→∞

1
d2

q
[ω∗(t2)(Ψ(aq)−Ψ(â))−ω∗(t2)Ψ′(â)(aq − â)]

= lim
q→∞

1
d2

q
ω∗(t2)(Ψ(aq)−Ψ(â)−Ψ′(â)(aq − â)) (15)

= lim
q→∞

1
d2

q

∫ 1

0
ω∗(t2)(1− θ)Ψ′′(â + θ[aq − â]; aq − â)dθ

= 1
2 ω∗(t2)Ψ′′(â; α̂).
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Then, by (1), the fact that

J(zq
aq)− J(ẑâ) < min

{ |aq − â|2
q

,
D(uq − û)

q

}
,

Equation (15) and hypothesis (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

+ lim inf
q→∞

Ẽ(ẑâ; zq
aq)

d2
q

. (16)

Now, we have, for all t ∈ T and q ∈ N, that

1
d2

q
Ẽ(t, xq(t)i + aqj, û(t), uq(t)) = 1

2 v∗q(t)Φq(t)vq(t),

where

Φq(t) := 2
∫ 1

0
(1− θ)F̃uu(t, xq(t)i + aqj, û(t) + θ[uq(t)− û(t)])dθ.

We have
Φq(·) L∞

−→ Φ(·) := F̃uu(·, x̂(·)i + âj, û(·)) on T .

By condition (iii) of Theorem 1, we have

F̃uu(t, x̂(t)i + âj, û(t)) = Φ(t) ≥ 0 (a.e. in T ). (17)

By the fact that

‖zq
aq − ẑâ‖ <

1
q

,

uq
L∞
−→ û on T . Keeping this in mind, by (17) and Lemma 4,

lim inf
q→∞

Ẽ(ẑâ; zq
aq)

d2
q

= lim inf
q→∞

1
d2

q

∫ t2

t1

Ẽ(t, xq(t)i + aqj, û(t), uq(t))dt

=
1
2

lim inf
q→∞

∫ t2

t1

v∗q(t)Φq(t)vq(t)dt ≥ 1
2

∫ t2

t1

v̂∗(t)Φ(t)v̂(t)dt. (18)

By (16) and (18), we have

0 ≥
∫ t2

t1

{v̂∗(t)F̃uu(t, x̂(t)i + âj, û(t))v̂(t) + 2v̂∗(t)F̃uξ(t, x̂(t)i + âj, û(t))[ŷ(t)i + α̂j]

+[ŷ∗(t)i + α̂∗j]F̃ξξ(t, x̂(t)i + âj, û(t))[ŷ(t)i + α̂j]}dt

= α̂∗γ′′(â)α̂ +
∫ t2

t1

{v̂∗(t)Fuu(t, x̂(t), û(t))v̂(t) + 2v̂∗(t)Fux(t, x̂(t), û(t))ŷ(t)

+ŷ∗(t)Fxx(t, x̂(t), û(t))ŷ(t)}dt

= α̂∗γ′′(â)α̂ +
∫ t2

t1

2Ω(t, x̂(t), û(t); ŷ(t), v̂(t))dt = J′′(ẑâ; ŵα̂).

Now, let us prove that ŵα̂ 6≡ (0, 0, 0). By (16) and hypothesis (v) of Theorem 1, we have

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

d2
q

+ lim inf
q→∞

δ

d2
q
D(uq − û) = lim

q→∞

K̃(ẑâ; zq
aq)

d2
q

+
δ

2
.

Keeping this in mind together with (14), if we assume that ŵα̂ ≡ (0, 0, 0), then δ would
be nonpositive, which is a contradiction, and this proves (13). Now, let us show that
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d
dt

ŷ(t) = fx(t, x̂(t), û(t))ŷ(t) + fu(t, x̂(t), û(t))v̂(t) (a.e. in T ). (19)

In fact, since

Aq(·) L∞
−→ fx(·, x̂(·), û(·)), Bq(·) L∞

−→ fu(·, x̂(·), û(·)), yq
u−→ ŷ, vq

L1
⇀ v̂

all on T , we see that

ẏq(·) L1
⇀ fx(·, x̂(·), û(·))ŷ(·) + fu(·, x̂(·), û(·))v̂(·) on T .

By Lemma 3, ẏq
L1
⇀ ζ = dŷ

dt on T . Consequently, (19) is fulfilled. Additionally, we
claim that

i. ϕσx(t, x̂(t), û(t))ŷ(t) + ϕσu(t, x̂(t), û(t))v̂(t) ≤ 0 (a.e. in T , σ ∈ i(t, x̂(t), û(t))).
ii. ϕςx(t, x̂(t), û(t))ŷ(t) + ϕςu(t, x̂(t), û(t))v̂(t) = 0 (a.e. in T , ς ∈ Q).

As one readily verifies, (i) and (ii) above follows if one copies the proofs from (13) to
(15) of [24].

Hence, from (11), (19), (i) and (ii), above, we see that ŵα̂ ∈ Y(ẑâ). This fact combined
with (13) contradict condition (iv) of Theorem 1.

Case (2): Now, suppose that the sequence ((aq − â)/dq) is not bounded. Then,

lim
q→∞

∣∣∣∣
aq − â

dq

∣∣∣∣ = +∞. (20)

Select an adequately subsequence of ((aq − â)/|aq − â|) (without relabeling), and
α̃ ∈ Rs satisfying |α̃| = 1, such that

lim
q→∞

aq − â
|aq − â| = α̃. (21)

For all q ∈ N and t ∈ T , set

ṽ(t) :=
xq(t)− x̂(t)
|aq − â| i +

aq − â
|aq − â| j.

By Lemma 2 and (20),

xq(·)− x̂(·)
|aq − â| = yq(·) ·

dq

|aq − â|
u−→ ŷ(·) · 0 = 0 on T . (22)

For all q ∈ N, we have

xq(t2)− x̂(t2)

|aq − â| =
∫ 1

0
Ψ′(â + θ[aq − â])

(
aq − â
|aq − â|

)
dθ. (23)

By (21)–(23),
Ψ′(â)α̃ = 0. (24)

Now, by (2), (21), and (22),

M̃(·, xq(·)i + aqj)
|aq − â|2 = 1

2 ṽ∗q (·)P̃(·, xq(·)i + aqj)ṽq(·)

L∞
−→ 1

2 0∗α̃F̃ξξ(·, x̂(·)i + âj, û(·))0α̃ =
α̃∗γ′′(â)α̃
2(t2 − t1)

,
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Ñ (·, xq(·)i + aqj)
|aq − â| = Q̃(·, xq(·)i + aqj)ṽq(·)

L∞
−→ F̃uξ(·, x̂(·)i + âj, û(·))0α̃ = 0

both on T . Combined this fact with Lemma 2, this implies that

lim
q→∞

K̃(ẑâ; zq
aq)

|aq − â|2 = 1
2 α̃∗γ′′(â)α̃ + lim

q→∞

∫ t2

t1

dq

|aq − â| · v
∗
q(t)
Ñ (t, xq(t)i + aqj)

|aq − â| dt (25)

= 1
2 α̃∗γ′′(â)α̃.

As in (15), we have

lim
q→∞

J̃′(ẑâ; zq
aq − ẑâ)

|aq − â|2 = 1
2 ω∗(t2)Ψ′′(â; α̃). (26)

In addition, by (1), (4), and (26) and condition (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃(ẑâ; zq
aq)

|aq − â|2 + lim inf
q→∞

Ẽ(ẑâ; zq
aq)

|aq − â|2 . (27)

Hence, as Ẽ(ẑâ; zq
aq) ≥ 0 (q ∈ N), by (25) and (27),

0 ≥ 1
2 α̃∗γ′′(â)α̃ = 1

2 J′′(ẑâ; 0α̃). (28)

Accordingly, (24) and (28) contradict condition (iv) of Theorem 1.

6. Discussion Part

Let us point out that our hypotheses try to respect the property that the first and second
order sufficient conditions are closely related to the necessary conditions for optimality. For
instance, the sufficient conditions

ω̇(t) = −H∗x(t, x̂(t), û(t), ω(t), ν(t)) (a.e. in T ), H∗u(t, x̂(t), û(t), ω(t), ν(t)) = 0 (t ∈ T ),

are the Pontryagin maximum principle in normal form. On the other hand, a cone of critical
directions that we strengthen in the article is the following:

Y(ẑâ) :=





ẏ(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (a.e. in T ).
y(t1) = 0, y(t2) = Ψ′(a)α.
ϕσx(t, x(t), u(t))y(t) + ϕσu(t, x(t), u(t))v(t) ≤ 0 a.e. in T , σ ∈ i(t, x(t), u(t))) with νσ(t) = 0.
ϕςx(t, x(t), u(t))y(t) + ϕςu(t, x(t), u(t))v(t) = 0 a.e. in T , ς ∈ P with νς(t) > 0 or ς ∈ Q.

Here, condition (iv) of Theorem 1 and Corollary 1 asks for

J′′(ẑâ; wα) > 0 for all wα ∈ Y(ẑâ), wα 6≡ (0, 0, 0),

that is, the positivity of the second variation on Y(ẑâ), which can be considered as a
strengthening of the second order necessary condition

J′′(ẑâ; wα) ≥ 0 for all wα ∈ Y(ẑâ).

Additionally, condition (i),

γ′∗(â) + Ψ′∗(â)ω(t2) = 0,
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is the classical transversality condition. It is well-known that the transversality condition is
a necessary condition for a weak minimum of problem P(γ, Γ, C, f , ξ1, Ψ, R, s). As explained
in the article, condition (iii),

Huu(t, x̂(t), û(t), ω(t), ν(t)) ≤ 0 (a.e. in T ),

is a similar version of the Legendre–Clebsch necessary condition. It is not the necessary
condition of Legendre–Clebsch because the former is less restrictive, that is,

Huu(t, x̂(t), û(t), ω(t), ν(t))

must be less or equal than zero almost everywhere on T , but only in a subset related with
the kernel of the linear transformation ϕu(t, x̂(t), û(t)). In the fixed-endpoints problem of
calculus of variations, it is well-known that, if x̂ is a smooth nonsingular extremal satisfying
Legendre necessary condition, then, for some ε > 0,

E(t, x, ẋ, u) > 0 for (t, x, ẋ, u) ∈ T(x̂, ε), u 6= ẋ,

is a sufficient condition for a weak minimum. Here,

T(x̂, ε) := {(t, x, ẋ, u) ∈ T ×Rn ×Rn ×Rn | |x− x̂(t)| < ε, |ẋ− (d/dt)x̂(t)| < ε}.

In fact, as one can be seen in [10], the above condition implies that

E(t, x, ẋ, u) ≥ δL(u− ẋ) for (t, x, ẋ, u) ∈ T(x̂, ε) (29)

for some δ, ε > 0. Then, (29) implies that for some δ, ε > 0,

∫ t2

t1

E(t, x(t), (d/dt)x̂(t), ẋ(t))dt ≥ δ
∫ t2

t1

L(ẋ(t)− (d/dt)x̂(t))dt = δD(ẋ− (d/dt)x̂), (30)

whenever x is such that ‖x− x̂‖1 < ε, where

‖x‖1 := ‖x‖∞ + ‖ẋ‖∞.

It is worth to say that (30) gave us the inspiration to obtain the sufficient condition (v)
of Theorem 1 and Corollary 1. Condition (ii) arises from the properties of the algorithm
established to prove Theorem 1. In summary, our goal consists of providing an alternate
model of sufficiency. Even though we do not necessarily obtain no gap hypotheses between
necessary and sufficient conditions for optimality, we follow a classical way of obtaining
sufficient conditions by strengthening the necessary ones. Finally, in [25], one could find
an experimental application involving an economic model of population growth. More
precisely, in [25], an application concerning a model for a one sector economy taking into
consideration population growth is presented. In the proposed economic model, it is shown
that the only factor decreasing the capital per worker is the inclusion of additional workers
to the economy, and the only factor increasing the economy is the rate of production. The
presence of nonlinear time-state-control mixed constraints plays a crucial role in that model,
see [25], for details. For comparison reasons, it is worthwhile mentioning some of the
bibliography studying necessary and sufficient conditions involving mixed constraints.
Some relevant works we found convenient for that issue are the following [26–36].

7. Conclusions

In this article, we derive sufficiency conditions for weak minima in optimal control
problems of Bolza in the parametric as well as in the nonparametric forms. These prob-
lems include nonlinear dynamics, a fixed initial end-point, a variable final end-point, and
nonlinear mixed time-state-control constraints involving inequalities and equalities. In
the nonparametric optimal control problem, the final end-point is not only variable, but
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also completely free, in the sense that it must not be confined to a parametrization, but it
only must be contained in the image of a twice continuously differentiable manifold. Due
to the fact that the left end-point is fixed, we were able to make a relaxation, in the sense
that we arrived essentially to the same conclusions, but we made weaker assumptions.
This relaxation is relative to some recently published works whose initial left end-point
is not necessarily fixed. The algorithm used to prove the main theorem of the paper is
independent of some classical concepts such as the Hamilton–Jacobi theory, the verification
of bounded solutions of certain matrix Riccati equations, or extended notions of the con-
jugate points theory. Finally, in the parametric problem, we were able to present how the
deviation between optimal costs and admissible costs is estimated by quadratic functions,
in particular, the square of the norm of the classical Banach space of integrable functions in
the deviation mentioned above, is a fundamental component.
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Abstract: The concept of symmetry is a very vast topic that is involved in the studies of several
phenomena. This concept enables us to discuss the phenomenon in some systematic pattern de-
pending upon the type of phenomenon. Each phenomenon has its own type of symmetry. The
phenomenon that is used in the discussion of this article is a symmetric distance-measuring function.
This article presents the notions of abstract interpolative Reich-Rus-Ćirić-type contractions with a
shrink map and examines the existence of φ-fixed points for such maps in complete metric space.
These notions are defined through special types of simulation functions. The proof technique of
the results presented in this article is easy to understand compared with the existing literature on
interpolative Reich-Rus-Ćirić-type contractions.

Keywords: φ-fixed points; interpolative Kannan contraction; abstract interpolative Reich-Rus-Ćirić-
type contractions with a shrink map

1. Introduction and Preliminaries

Metric fixed point theory has a significant contribution to nonlinear analysis with
its applications. This branch of fixed point theory is based on the work of the famous
mathematician Banach. He proved that [1], on a complete metric space, every contraction
map possesses a unique fixed point. Later on, Kannan [2] and Chatterjea [3] modified the
contraction inequality to study the existence of fixed points of discontinuous self-maps
on a complete metric space. Afterward, this field has flourished with several interesting
results. A few results have been obtained for the following aspects:

(1) Modifying contraction inequality,
(2) Modifying distance measuring function.

Recently, Karapınar [4] derived the interpolative Kannan contraction, which can be
considered a modified form of the Kannan contraction. Inspiration from this work led
several researchers to extend the existing contraction type inequalities in the pattern of
interpolative Kannan contraction.

A few generalizations of contraction inequality have been obtained using some special
types of simulation functions, for example [5,6].

Symmetry is a very vast topic that is involved in the studies of several phenomena.
Each phenomenon has its own definition of symmetry, which helps to discuss the phe-
nomenon in a systematic pattern. Metric space is a symmetric distance measuring function,
which is used in the discussion of this article. In the literature related to interpolative
Kannan contractions, we have seen several results based on the symmetric distance mea-
suring function, for example, [7,8], and the asymmetric distance measuring function, for
example, [9,10].

In this article, we use special types of simulation functions to extend interpolative
Reich-Rus-Ćirić-type contraction inequalities. The proof technique of the fixed point results
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involving interpolative contraction type inequalities is more complicated than the proof
technique of the fixed point results involving contraction type inequalities. With the help of
a simulation function, we have tried minimizing these complications of the proof technique,
and now the presented proofs are easier to understand.

Before moving on to the next section, we will recall some basic concepts such as
interpolative Kannan contraction, a few generalizations of the interpolative Kannan con-
traction, well-known simulation functions and some other notions that are required for the
next section.

Let (V, dV) be a metric space and let Q : V → V be a self map. Then, we have the
following notions.

• A map Q : V → V is said to be an interpolative Kannan contraction [4], if

dV(Qk, Ql) ≤ ηdV(k, Qk)ω1 dV(l, Ql)1−ω1

for all k, l ∈ V with k 6= Qk, where η ∈ [0, 1) and ω1 ∈ (0, 1).
Later on, it was observed by Karapinar et al. [11] that the above inequality does not
ensure the existence of a unique fixed point of a map in complete metric space. Hence,
to discuss the uniqueness of a fixed point, the above inequality was redefined in the
following way.

• A map Q : V → V is said to be an improved interpolative Kannan contraction [11], if

dV(Qk, Ql) ≤ ηdV(k, Qk)ω1 dV(l, Ql)1−ω1

for all k, l ∈ V\Fix(Q), where η ∈ [0, 1), ω1 ∈ (0, 1) and Fix(Q) = {k ∈ V : Qk = k}.
• A map Q : V → V is said to be an interpolative Reich-Rus-Ćirić-type contraction [12], if

dV(Qk, Ql) ≤ ηdV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)1−ω1−ω2

for each k, l ∈ V \ Fix(Q), where η ∈ [0, 1) and ω1, ω2 ∈ (0, 1) with ω1 + ω2 < 1.

In the literature, CB(V) represents the collection of all nonvoid closed and bounded
subsets of V and the Pompeiu–Hausdorff distance is a map HV : CB(V)× CB(V)→ [0, ∞)
defined by

HV(E, F) = max{sup
e∈E

dV(e, F), sup
f∈F

dV( f , E)}

where dV( f , E) = inf{dV( f , e) : e ∈ E}.
A set-valued generalization of interpolative Reich-Rus-Ćirić-type contraction is de-

fined in the way: A map Q : V → CB(V) is said to be a set-valued interpolative Reich-Rus-
Ćirić-type contraction [13], if

HV(Qk, Ql) ≤ ηdV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)1−ω1−ω2

for each k, l ∈ V \ Fix(Q), where η ∈ [0, 1) and ω1, ω2 ∈ (0, 1) with ω1 + ω2 < 1.
In the literature, we have seen many auxiliary type functions from [0, ∞)× [0, ∞) into

R, for example, simulation functions, R-functions and C-class functions. Recently, Karap-
inar [14] used the simulation function ζ : [0, ∞)× [0, ∞)→ R given by Khojasteh et al. [15]
to define the following notion.

A map Q : V → V is said to be an interpolative Hardy–Rogers type Z-contraction, if

ζ(dV(Qk, Ql), C(k, l)) ≥ 0,

for each k, l ∈ V \ Fix(Q), where ω1, ω2, ω3 ∈ (0, 1) with ω1 + ω2 + ω3 < 1, and

C(k, l) = dV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)ω3
[dV(k, Ql) + dV(l, Qk)

2

]1−ω1−ω2−ω3
.

A few more studies related to interpolative type contractions are available in [16–18].
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In the next section, we use the following family of functions defined in [19]:
ΘF is the collection of functions θ f : [0, ∞)4 → [0, ∞) with the given properties

θ1: θ f (d, b, c, 0) = 0 ∀d, b, c ∈ [0, ∞);
θ2: continuous and nondecreasing.

It is well-known that for a self-map Q : V → V, a point v ∈ V with v = Qv is called a
fixed point of Q. If v is a fixed point of Q with φ(v) = 0 for a map φ : V → [0, ∞), then v is
called a φ-fixed point of Q. This notion is presented in [20].

2. Results

In this section, we denote ΞF by the collection of functions ξ f : [0, ∞)3 → [0, ∞)
such that

(f1) ξ f is nondecreasing in each coordinate;
(f2) ξ f (gω1 , gω2 , gω3) ≤ g for each g ∈ (0, ∞) and for each ω1, ω2, ω3 ∈ [0, 1] with ω1 +

ω2 + ω3 = 1.

Example 1. The following functions belong to ΞF.

(E1) ξ f (a, b, c) = abc;

(E2) ξ f (a, b, c) =
(

ac
1+b

)(
ab

1+c

)(
bc

1+a

)
.

Throughout this article, ξ f belongs to Ξ f , θ f belongs to ΘF, φ represents a map from
V into [0, ∞), and (V, dV) is a metric space.

The following definition is the first form of abstract interpolative Reich-Rus-Ćirić type
contraction with a shrink map.

Definition 1. A self-map Q : V → V is called an abstract interpolative Reich-Rus-Ćirić type-I
contraction with φ shrink, if the below-stated inequalities hold:

dV(Qk, Ql) ≤ ηξ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

)

+Lθ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3 , dV(l, Qk)ω4

)
(1)

for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1, ω4 > 0,
and L ≥ 0;

for every l ∈ V, we have

φ(Ql) ≤ ηφ(l), (2)

where η ∈ [0, 1) and Fix(Q) = {v ∈ V : v = Qv}.

The following theorem ensures the existence of φ-fixed points of the map Q satisfying
the above definition.

Theorem 1. Let Q : V → V be an abstract interpolative Reich-Rus-Ćirić type-I contraction with
φ shrink on a complete metric space (V, dV). Then at least one φ-fixed point of Q exists in V.

Proof. Take an arbitrary point l0 ∈ V, and define an iterative sequence ln = Qln−1∀n ∈ N.
If ln0 = ln0+1 for some n0, then ln0 is a fixed point of Q. Moreover, by (2) we get
φ(ln0) = φ(Qln0) ≤ λφ(ln0). This gives φ(ln0) = 0. Hence, ln0 is a φ-fixed point of Q.
Now, consider ln−1 6= ln ∀n ∈ N. By (1), for each n ∈ N, we get

dV(Qln−1, Qln) ≤ ηξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
)

(3)

+Lθ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3 , dV(ln, Qln−1)
ω4
)
.
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That is,

dV(ln, ln+1) ≤ ηξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, ln)ω2 , dV(ln, ln+1)

ω3
)
∀n ∈ N. (4)

Now, claim that dV(ln, ln+1) < dV(ln−1, ln) ∀n ∈ N. If it is wrong, then we have
m0 ∈ N with dV(lm0 , lm0+1) ≥ dV(lm0−1, lm0). By (4) we get

dV(lm0 , lm0+1) ≤ ηξ f
(
dV(lm0−1, lm0)

ω1 , dV(lm0−1, lm0)
ω2 , dV(lm0 , lm0+1)

ω3
)

≤ ηξ f
(
dV(lm0 , lm0+1)

ω1 , dV(lm0 , lm0+1)
ω2 , dV(lm0 , lm0+1)

ω3
)

≤ ηdV(lm0 , lm0+1)

which is only possible when dV(lm0 , lm0+1) = 0, and it contradicts our assumption. Thus,
the claim is true. Since dV(ln, ln+1) < dV(ln−1, ln) ∀n ∈ N, then (4) we get

dV(ln, ln+1) ≤ ηξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, ln)ω2 , dV(ln, ln+1)

ω3
)

≤ ηξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, ln)ω2 , dV(ln−1, ln)ω3

)
(5)

≤ ηdV(ln−1, ln) ∀n ∈ N.

The above inequality implies that

dV(ln, ln+1) ≤ ηndV(l0, l1) ∀n ∈ N. (6)

To verify that the sequence {ln} is Cauchy. Consider m, n ∈ N with n > m. By triangle
inequality and (6) we obtain

dV(lm, ln) ≤
n−1

∑
j=m

dV(lj, lj+1) ≤
n−1

∑
j=m

η jdV(l0, l1).

Since ∑∞
j=1 η j is a convergent series, thus, by the above inequality, we get limn,m→∞

dV(lm, ln) = 0. As (V, dV) is complete and {ln} is Cauchy in V, then there exists an element
l∗ ∈ V with ln → l∗. Now, claim that l∗ = Ql∗. If it is wrong, then dV(l∗, Ql∗) > 0. Since
{ln} is an iterative sequence with ln → l∗, thus, we get

max{dV(ln, l∗), dV(ln, ln+1), dV(l∗, Ql∗)} = dV(l∗, Ql∗) ∀n ≥ N0 (7)

for some N0 ∈ N. By (1), for each n ∈ N, we obtain

dV(Qln, Ql∗) ≤ ηξ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

)
(8)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
.

From (7) and (8), for each n ≥ N0, we get

dV(ln+1, Ql∗) ≤ ηξ f
(
dV(ln, l∗)ω1 , dV(ln, ln+1)

ω2 , dV(l∗, Ql∗)ω3
)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ηξ f
(
dV(l∗, Ql∗)ω1 , dV(l∗, Ql∗)ω2 , dV(l∗, Ql∗)ω3

)
(9)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ηdV(l∗, Ql∗)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)
.

By applying the limit n→ ∞ in (9), we get

dV(l∗, Ql∗) ≤ ηdV(l∗, Ql∗).
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As η < 1, thus, the above inequality, only exists when dV(l∗, Ql∗) = 0. Hence, the
claim is correct. Since l∗ = Ql∗, then by (2) we get

φ(l∗) = φ(Ql∗) ≤ λφ(l∗).

This implies that φ(l∗) = 0. Hence, l∗ is φ-fixed point of Q.

By letting ξ f (a, b, c) = abc and θ f (a, b, c, d) = abcd in Theorem 1, we get the follow-
ing result.

Corollary 1. Let (V, dV) be a complete metric space. Let Q : V → V and φ : V → [0, ∞) be two
maps such that

dV(Qk, Ql) ≤ ηdV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)ω3

+LdV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)ω3 dV(l, Qk)ω4

for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1 and
ω4 > 0; further, for every l ∈ V, we have

φ(Ql) ≤ ηφ(l),

where η ∈ [0, 1) and L ≥ 0. Then at least one φ-fixed point of Q exists in V.

By taking ω1 = ω4 = 1 and ω2 = ω3 = 0 in the above mentioned corollary, we obtain
the following result.

Corollary 2. Let (V, dV) be a complete metric space. Let Q : V → V and φ : V → [0, ∞) be two
maps such that

dV(Qk, Ql) ≤ ηdV(k, l) + LdV(k, l)dV(l, Qk)

for each k, l ∈ V \ Fix(Q) with l 6= k; further, for every l ∈ V, we have

φ(Ql) ≤ ηφ(l),

where η ∈ [0, 1) and L ≥ 0. Then at least one φ-fixed point of Q exists in V.

Corollary 3. Let (V, dV) be a complete metric space. Let Q : V → V be a map such that

dV(Qk, Ql) ≤ ηdV(k, l)ω1 dV(k, Qk)ω2 dV(l, Ql)ω3 (10)

for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1, and
η ∈ [0, 1). Then a fixed point of Q exists in V.

The conclusion of the above result can be concluded from Corollary 1 by considering
L = 0 and φ(k) = 0 ∀k ∈ V.

The following corollary follows from Corollary 3 by defining ω1 = τ1, ω2 = τ2 and
ω3 = 1− τ1 − τ2.

Corollary 4. Let (V, dV) be a complete metric space. Let Q : V → V be a map such that

dV(Qk, Ql) ≤ ηdV(k, l)τ1 dV(k, Qk)τ2 dV(l, Ql)1−τ1−τ2 (11)

for each k, l ∈ V \ Fix(Q) with l 6= k, where τ1, τ2 ∈ (0, 1) with τ1 + τ2 < 1, and η ∈ [0, 1).
Then fixed point of Q exists in V.
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Inequality (12) can be considered as a rational type interpolative contraction inequal-

ity obtained through (1) by taking ξ f (a, b, c) =
(

ac
1+b

)(
ab

1+c

)(
bc

1+a

)
and L = 0. Some

interesting results related to rational type contraction conditions are given in [21].

Corollary 5. Let (V, dV) be a complete metric space. Let Q : V → V and φ : V → [0, ∞) be two
maps such that

dV(Qk, Ql) ≤ η
(dV(k, l)ω1 dV(l, Ql)ω3

1 + dV(k, Qk)ω2

)(dV(k, l)ω1 dV(k, Qk)ω2

1 + dV(l, Ql)ω3

)(dV(k, Qk)ω2 dV(l, Ql)ω3

1 + dV(k, l)ω1

)
(12)

for each k, l ∈ V \ Fix(Q) with k 6= l, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1; further,
for every l ∈ V, we have

φ(Ql) ≤ ηφ(l)

where η ∈ [0, 1). Then at least one φ-fixed point of Q exists in V.

Consider a simulation function βψ : [0, ∞)2 → R with the properties:

(b1) βψ(0, 0) = 0;
(b2) βψ(t, s) ≤ ψ(s)− t;

where ψ : [0, ∞)→ [0, ∞) is a nondecreasing function that fulfills that ∑∞
j=1 ψj(s) is conver-

gent for each s > 0, moreover, ψ(0) = 0 and ψ(s) < s if s > 0.

Example 2. A function βψ : [0, ∞) × [0, ∞) → R defined by βψ(k, l) = αl − k for each
k, l ∈ [0, ∞), where ψ(l) = αl and α ∈ (0, 1), is the simplest example of the above-defined
simulation function.

Throughout the article, βψ represents the above simulation function. Now, we define
an abstract interpolative Reich-Rus-Ćirić type-II contraction with φ shrink by using the
simulation function βψ.

Definition 2. A self-map Q : V → V is called an abstract interpolative Reich-Rus-Ćirić type-II
contraction with φ shrink, if the below-stated inequalities hold:

βψ

(
dV(Qk, Ql), ξ f

(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

))

+ Lθ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3 , dV(l, Qk)ω4

)
≥ 0 (13)

for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1, ω4 > 0,
and L ≥ 0;

for every l ∈ V, we have

βψ

(
φ(Ql), φ(l)

)
≥ 0. (14)

Now, we discuss the following φ-fixed point result for self-maps satisfying the
above definition.

Theorem 2. Let Q : V → V be an abstract interpolative Reich-Rus-Ćirić type-II contraction with
φ shrink on a complete metric space (V, dV). Then at least one φ-fixed point of Q exists in V.

Proof. Define an iterative sequence {ln}, that is ln = Qln−1∀n ∈ N, for an arbitrary point
l0 ∈ V. If ln0 = ln0+1 for some n0, then ln0 is a fixed point of Q. Moreover, from (14) we obtain
0 ≤ βψ

(
φ(Qln0), φ(ln0)

)
≤ ψ(φ(ln0))− φ(Qln0); that is φ(ln0) = φ(Qln0) ≤ ψ(φ(ln0)). This
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gives φ(ln0) = 0. Hence, ln0 is a φ-fixed point of Q. To work with the proof, we consider
ln−1 6= ln ∀n ∈ N. By (13), for each n ∈ N, we get

βψ

(
dV(Qln−1, Qln), ξ f

(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
))

(15)

+ Lθ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3 , dV(ln, Qln−1)
ω4
)
≥ 0.

Using (b2) and (15), we get

ψ
(
ξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
))
− dV(Qln−1, Qln)

+ Lθ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3 , dV(ln, Qln−1)
ω4
)

≥ βψ

(
dV(Qln−1, Qln), ξ f

(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
))

+ Lθ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3 , dV(ln, Qln−1)
ω4
)
≥ 0.

This implies

dV(Qln−1, Qln) ≤ ψ
(
ξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
))

(16)

+Lθ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3 , dV(ln, Qln−1)
ω4
)
.

That is,

dV(ln, ln+1) ≤ ψ
(
ξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, Qln−1)

ω2 , dV(ln, Qln)ω3
))
∀n ∈ N. (17)

Now, let us claim that dV(ln, ln+1) < dV(ln−1, ln) ∀n ∈ N. Assume that the claim is
wrong, then we have m0 ∈ N with dV(lm0 , lm0+1) ≥ dV(lm0−1, lm0). By (17) we get

dV(lm0 , lm0+1) ≤ ψ
(
ξ f
(
dV(lm0−1, lm0)

ω1 , dV(lm0−1, lm0)
ω2 , dV(lm0 , lm0+1)

ω3
))

≤ ψ
(
ξ f
(
dV(lm0 , lm0+1)

ω1 , dV(lm0 , lm0+1)
ω2 , dV(lm0 , lm0+1)

ω3
))

≤ ψ
(
dV(lm0 , lm0+1)

)

which is impossible, since lm0 6= lm0+1. Hence, the claim holds. As dV(ln, ln+1) <
dV(ln−1, ln) ∀n ∈ N, then (17) we get

dV(ln, ln+1) ≤ ψ
(
ξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, ln)ω2 , dV(ln, ln+1)

ω3
))

≤ ψ
(
ξ f
(
dV(ln−1, ln)ω1 , dV(ln−1, ln)ω2 , dV(ln−1, ln)ω3

))

≤ ψ
(
dV(ln−1, ln)

)
∀n ∈ N. (18)

This yields

dV(ln, ln+1) ≤ ψn(dV(l0, l1)
)
∀n ∈ N. (19)

Consider m, n ∈ N with n > m. By triangle inequality and (19) we obtain

dV(lm, ln) ≤
n−1

∑
j=m

dV(lj, lj+1) ≤
n−1

∑
j=m

ψj(dV(l0, l1)
)
.

Since ∑∞
j=1 ψj(s) is a convergent series for each s > 0, hence, by the above inequality

we get limn,m→∞ dV(lm, ln) = 0. The completeness of (V, dV) confirms the existence of an
element l∗ ∈ V with ln → l∗. Now, let us claim that l∗ = Ql∗. Let us suppose that the
claim is wrong, then dV(l∗, Ql∗) > 0. Since {ln} is an iterative sequence with ln → l∗, thus,
we get

max{dV(ln, l∗), dV(ln, ln+1), dV(l∗, Ql∗)} = dV(l∗, Ql∗) ∀n ≥ N0 (20)
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for some N0 ∈ N. By (13), for each n ∈ N, we obtain

βψ

(
dV(Qln, Ql∗), ξ f

(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
≥ 0. (21)

This gives

dV(Qln, Ql∗) ≤ ψ
(
ξ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
. (22)

By (20) and (22), for each n ≥ N0, we get

dV(ln+1, Ql∗) ≤ ψ
(
ξ f
(
dV(ln, l∗)ω1 , dV(ln, ln+1)

ω2 , dV(l∗, Ql∗)ω3
))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ψ
(
ξ f
(
dV(l∗, Ql∗)ω1 , dV(l∗, Ql∗)ω2 , dV(l∗, Ql∗)ω3

))
(23)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ψ
(
dV(l∗, Ql∗)

)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)
.

Letting n→ ∞ in (23), we get

dV(l∗, Ql∗) ≤ ψ
(
dV(l∗, Ql∗)

)
.

The above inequality, only holds when dV(l∗, Ql∗) = 0. Hence, the claim is cor-
rect, l∗ = Ql∗. By (14) we get 0 ≤ βψ

(
φ(Ql∗), φ(l∗)

)
≤ ψ(φ(l∗)) − φ(Ql∗); that is

φ(l∗) = φ(Ql∗) ≤ ψ(φ(l∗)). This implies that φ(l∗) = 0. Hence, l∗ is a φ-fixed point
of Q.

We will extend the above results by considering Q as a set-valued map. In the
following, CB(V) represents the collection of all nonvoid closed and bounded subsets
of V and CL(V) represents the collection of all nonvoid closed subsets of V.

Definition 3. A set-valued map Q : V → CB(V) is called an abstract interpolative Reich-Rus-
Ćirić type-I set-valued contraction with φ shrink, if the below-stated inequalities hold:

HV(Qk, Ql) ≤ ηξ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

)

+Lθ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3 , dV(l, Qk)ω4

)
(24)

for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1, ω4 > 0,
and L ≥ 0;

for every k ∈ V, we have

sup
l∈Qk

φ(l) ≤ ηφ(k), (25)

where η ∈ (0, 1) and Fix(Q) = {v ∈ V : v ∈ Qv}.

The following theorem can be used to validate the existence of φ-fixed points for a
map satisfying the above definition.

Theorem 3. Let Q : V → CB(V) be an abstract interpolative Reich-Rus-Ćirić type-I set-valued
contraction with φ shrink on a complete metric space (V, dV). Then at least one φ-fixed point of Q
exists in V; that is, there exists a point v∗ in V with v∗ ∈ Qv∗ and φ(v∗) = 0.
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Proof. For an arbitrary point l0 ∈ V, we get some l1 ∈ Ql0. If l0 = l1, then l0 is a fixed point
of Q. Moreover, by (25) we get φ(l0) ≤ supl∈Ql0 φ(l) ≤ ηφ(l0); that is φ(l0) = 0. Hence,
l0 is a φ-fixed point of Q. Suppose that neither l0 nor l1 is a fixed point of Q, then by (24)
we get

dV(l1, Ql1) ≤ HV(Ql0, Ql1)

≤ ηξ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3

)
(26)

+Lθ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3 , dV(l1, Ql0)ω4

)
.

That is,

dV(l1, Ql1) ≤ ηξ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3

)
. (27)

Since η ∈ (0, 1), thus, for 1√
η > 1 we have l2 ∈ Ql1 satisfying the given inequality

dV(l1, l2) ≤
1√
η

dV(l1, Ql1). (28)

To proceed with the proof, we assume that l1 6= l2, otherwise l2 is a φ-fixed point.
From (27) and (28), we get

dV(l1, l2) ≤
√

ηξ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3

)
. (29)

From the facts that l1 ∈ Ql0, l2 ∈ Ql1, and nondecreasing property of ξ f , by (29),
we get

dV(l1, l2) ≤
√

ηξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l1, l2)ω3

)
. (30)

If dV(l0, l1) ≤ dV(l1, l2), then from the above inequality we get dV(l1, l2) = 0, which is
impossible. Thus, dV(l1, l2) < dV(l0, l1). Now, by (30), we get

dV(l1, l2) ≤
√

ηξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l1, l2)ω3

)

≤ √
ηξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l0, l1)ω3

)

≤ √
ηdV(l0, l1). (31)

Continuing the proof on the above lines we can obtain a sequence {ln} with ln ∈
Qln−1 ∀n ∈ N, ln−1 6= ln ∀n ∈ N, and

dV(ln, ln+1) ≤ (
√

η)ndV(l0, l1) ∀n ∈ N.

Moreover, it is trivial to conclude that {ln} is a Cauchy sequence in a complete metric
space (V, dV), thus, there is a point l∗ ∈ V with ln → l∗. Now, we claim that l∗ ∈ Ql∗. If it
is wrong, then dV(l∗, Ql∗) > 0. Thus, we can obtain N0 ∈ N such that

max{dV(ln, l∗), dV(ln, ln+1), dV(l∗, Ql∗)} = dV(l∗, Ql∗) ∀n ≥ N0. (32)

By (24), for k = ln and l = l∗, we obtain

dV(ln+1, Ql∗) ≤ HV(Qln, Ql∗)

≤ ηξ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

)
(33)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
∀n ∈ N.

From (32) and (33), for each n ≥ N0, we get
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dV(ln+1, Ql∗) ≤ ηξ f
(
dV(ln, l∗)ω1 , dV(ln, ln+1)

ω2 , dV(l∗, Ql∗)ω3
)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ηξ f
(
dV(l∗, Ql∗)ω1 , dV(l∗, Ql∗)ω2 , dV(l∗, Ql∗)ω3

)
(34)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ηdV(l∗, Ql∗)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)
.

By applying the limit n→ ∞ in (34), we get

dV(l∗, Ql∗) ≤ ηdV(l∗, Ql∗).

The existence of the above inequality is impossible when dV(l∗, Ql∗) > 0. Hence, the
claim is correct, l∗ ∈ Ql∗. By (25) we get

φ(l∗) ≤ sup
l∈Ql∗

φ(l) ≤ λφ(l∗).

This implies that φ(l∗) = 0. Hence, l∗ is a φ-fixed point of Q.

The following result examines the existence of φ-fixed points for a set-valued map
Q : V → CL(V).

Theorem 4. Let (V, dV) be a complete metric space and let Q : V → CL(V) be a set-valued map
and φ : V → [0, ∞) be another map fulfilling the following inequalities:

dV(l, Ql) ≤ ηξ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

)
(35)

for each k, l ∈ V \ Fix(Q) with l ∈ Qk, where ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1, and
ω3 6= 1; further, for every k ∈ V, we have

sup
l∈Qk

φ(l) ≤ ηφ(k), (36)

where η ∈ (0, 1). Moreover, assume that Graph(Q) = {(k, l) : k ∈ V, l ∈ Qk} is closed. Then at
least one φ-fixed point of Q exists in V.

Proof. Following the proof of Theorem 3, here, one can easily obtain a Cauchy sequence
{ln} in a complete metric space (V, dV) with ln ∈ Qln−1 ∀n ∈ N, ln−1 6= ln ∀n ∈ N, and

dV(ln, ln+1) ≤ (
√

η)ndV(l0, l1) ∀n ∈ N.

Furthermore, there exists a point l∗ ∈ V with ln → l∗. Since ln ∈ Qln−1 ∀n ∈ N, thus,
(ln−1, ln) ∈ Graph(Q) ∀n ∈ N. As given that Graph(Q) is closed, thus, (l∗, l∗) ∈ Graph(Q),
that is l∗ ∈ Ql∗. Hence, l∗ is a fixed point of Q. By considering (36), we conclude that l∗ is
a φ-fixed point of Q.

Now we present the definition of the abstract interpolative Reich-Rus-Ćirić type-II
set-valued contraction with φ shrink.

Definition 4. A set-valued map Q : V → CB(V) is called an abstract interpolative Reich-Rus-
Ćirić type-II set-valued contraction with φ shrink, if the below-stated inequalities are fulfilled:

βψ

(
HV(Qk, Ql), ξ f

(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

))

+ Lθ f
(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3 , dV(l, Qk)ω4

)
≥ 0 (37)
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for each k, l ∈ V \ Fix(Q) with l 6= k, where ω1, ω2, ω3 ∈ [0, 1] with ω1 +ω2 +ω3 = 1, ω3 6= 0,
ω4 > 0, and L ≥ 0;

for every k ∈ V, we have

βψ

(
sup
l∈Qk

φ(l), φ(k)
)
≥ 0. (38)

In the following theorems, we assume that ξ f and ψ are strictly increasing instead
of nondecreasing.

Theorem 5. Let Q : V → CB(V) be an abstract interpolative Reich-Rus-Ćirić type-II set-valued
contraction with φ shrink on a complete metric space (V, dV). Then at least one φ-fixed point of Q
exists in V.

Proof. For an arbitrary point l0 ∈ V, we get a point l1 ∈ Ql0. If l0 = l1, then l0 is a
fixed point of Q. Moreover, by (38), we get 0 ≤ βψ

(
supl∈Ql0 φ(l), φ(l0)

)
≤ ψ(φ(l0)) −

supl∈Ql0 φ(l), this implies φ(l0) ≤ ψ(φ(l0)), hence, l0 is a φ-fixed point of Q. Suppose that
neither l0 nor l1 is a fixed point of Q, then by (37) we get

βψ

(
HV(Ql0, Ql1), ξ f

(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3

)
(39)

+Lθ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3 , dV(l1, Ql0)ω4

)
≥ 0.

This implies that

HV(Ql0, Ql1) ≤ ψ
(
ξ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3

))

+Lθ f
(
dV(l0, l1)ω1 , dV(l0, Ql0)ω2 , dV(l1, Ql1)ω3 , dV(l1, Ql0)ω4

)
. (40)

Since l1 ∈ Ql0, thus, by the above inequality we get

dV(l1, Ql1) ≤ ψ
(
ξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l1, Ql1)ω3

))
. (41)

If dV(l0, l1) ≤ dV(l1, Ql1), then by (41) we get dV(l1, Ql1) ≤ ψ(dV(l1, Ql1)) < dV(l1, Ql1),
which is impossible. Thus, we conclude dV(l0, l1) > dV(l1, Ql1). By considering strictly
increasing behavior of ψ, ξ f , and using (41) we get

dV(l1, Ql1) ≤ ψ
(
ξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l1, Ql1)ω3

))

< ψ
(
ξ f
(
dV(l0, l1)ω1 , dV(l0, l1)ω2 , dV(l0, l1)ω3

))

≤ ψ
(
dV(l0, l1)

)
. (42)

As dV(l1, Ql1) < ψ
(
dV(l0, l1)), there exists some real number ε1 > 0 such that

dV(l1, Ql1) + ε1 = ψ
(
dV(l0, l1)). Thus, we get l2 ∈ Ql1 such that dV(l1, l2) ≤ dV(l1, Ql1) +

ε1. Hence, we conclude that

dV(l1, l2) ≤ ψ
(
dV(l0, l1)

)
. (43)

Continuing the proof on the above lines we can obtain a sequence {ln} with ln ∈
Qln−1 ∀n ∈ N, ln−1 6= ln ∀n ∈ N, and

dV(ln, ln+1) ≤ ψn(dV(l0, l1)
)
∀n ∈ N.

Further, it can be seen that {ln} is a Cauchy sequence in a complete metric space
(V, dV) and there exists l∗ ∈ V with ln → l∗. Now, we claim that l∗ ∈ Ql∗. If it is wrong
then dV(l∗, Ql∗) > 0. Thus, we can obtain N0 ∈ N such that

max{dV(ln, l∗), dV(ln, ln+1), dV(l∗, Ql∗)} = dV(l∗, Ql∗) ∀n ≥ N0. (44)
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By (37), for k = ln and l = l∗, we get

βψ

(
HV(Qln, Ql∗), ξ f

(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
∀n ∈ N. (45)

From the above inequality, we obtain

dV(ln+1, Ql∗) ≤ HV(Qln, Ql∗)

≤ ψ
(
ξ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3

))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, Qln)ω4

)
∀n ∈ N. (46)

From (44) and (46), for each n ≥ N0, we get

dV(ln+1, Ql∗) ≤ ψ
(
ξ f
(
dV(ln, l∗)ω1 , dV(ln, ln+1)

ω2 , dV(l∗, Ql∗)ω3
))

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ψ
(
ξ f
(
dV(l∗, Ql∗)ω1 , dV(l∗, Ql∗)ω2 , dV(l∗, Ql∗)ω3

))
(47)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)

≤ ψ
(
dV(l∗, Ql∗)

)

+Lθ f
(
dV(ln, l∗)ω1 , dV(ln, Qln)ω2 , dV(l∗, Ql∗)ω3 , dV(l∗, ln+1)

ω4
)
.

By letting n→ ∞ in (47), we get

dV(l∗, Ql∗) ≤ ψ
(
dV(l∗, Ql∗)

)

which is impossible for dV(l∗, Ql∗) > 0. Hence, the claim is correct, l∗ ∈ Ql∗. Moreover,
by (38) we get 0 ≤ βψ

(
supl∈Ql∗ φ(l), φ(l∗)

)
≤ ψ(φ(l∗))− supl∈Ql∗ φ(l). As l∗ ∈ Ql∗, thus,

φ(l∗) ≤ supl∈Ql∗ φ(l) ≤ ψ(φ(l∗)). This implies that φ(l∗) = 0. Hence, l∗ is a φ-fixed point
of Q.

The following theorem can examine φ-fixed points of set-valued map Q : V → CL(V).

Theorem 6. Let (V, dV) be a complete metric space and let Q : V → CL(V) be a set-valued map
and φ : V → [0, ∞) be another map fulfilling the following inequalities:

βψ

(
dV(l, Ql), ξ f

(
dV(k, l)ω1 , dV(k, Qk)ω2 , dV(l, Ql)ω3

))
≥ 0 (48)

for each k, l ∈ V \ Fix(Q) with l ∈ Qk, where ω1, ω2 ∈ [0, 1] and ω3 ∈ (0, 1) with ω1 + ω2 +
ω3 = 1; further, for every k ∈ V, we have

βψ

(
sup
l∈Qk

φ(l), φ(k)
)
≥ 0. (49)

Furthermore, assume that Graph(Q) = {(k, l) : k ∈ V, l ∈ Qk} is closed. Then at least one
φ-fixed point of Q exists in V.

3. Application

A suitable application of the work can be seen as an existence theorem for the following
type of fractional-order integral equation:

k(t) = q(t) +
µ

[Γ(α)]2

∫ p(t)

0
(p(t)− s)α−1w(s, k(s))ds, α ∈ (0, 1), t ∈ J = [a, b] (50)

where q : J → R, p : J → R+ = [0, ∞), and w : J ×R → R are continuous functions, µ is
constant real number, and Γ is the Euler gamma function; that is Γ(α) =

∫ ∞
0 tα−1e−tdt.
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Consider V = (C[a, b],R) is the space of all continuous and bounded real-valued
functions defined on J = [a, b]. Define a metric on V by

dV(k, l) = ‖k− l‖ = max
t∈J
|k(t)− l(t)| ∀k, l ∈ V.

Clearly, (V, dV) is a complete metric space.
Now, we move towards the existence theorem of (50).

Theorem 7. Consider V = (C[a, b],R) and consider the operator

Q : V → V, Qk(t) = q(t) +
µ

[Γ(α)]2

∫ p(t)

0
(p(t)− s)α−1w(s, k(s))ds, α ∈ (0, 1), t ∈ J

where q : J → R, p : J → R+ = [0, ∞), and w : J × R → R are continuous functions, µ is
constant, and Γ is the Euler gamma function; that is Γ(α) =

∫ ∞
0 tα−1e−tdt. Moreover, consider

that there are ω1, ω2, ω3 ∈ [0, 1] with ω1 + ω2 + ω3 = 1 satisfying

|w(s, k(s))− w(s, l(s))|
‖k−Qk‖ω2‖l −Ql‖ω3

≤ [Γ(α + 1)]2|k(s)− l(s)|ω1 (51)

for all s ∈ J and for each k, l ∈ V with min{‖k− l‖, ‖k−Qk‖, ‖l −Ql‖} > 0, moreover,

sup
t∈J

∣∣∣µ(p(t))α
∣∣∣ ≤ 1.

Then, (50) possesses at least one solution.

Proof. For each k, l ∈ V with min{‖k− l‖, ‖k−Qk‖, ‖l −Ql‖} > 0, we obtain

|Qk(t)−Ql(t)| =
∣∣∣ µ

[Γ(α)]2

∫ p(t)

0
(p(t)− s)α−1[w(s, k(s))− w(s, l(s))]ds

∣∣∣

≤
∣∣∣ µ

[Γ(α)]2

∫ p(t)

0
(p(t)− s)α−1ds

∣∣∣[Γ(α + 1)]2‖k− l‖ω1‖k−Qk‖ω2‖l −Ql‖ω3

=
∣∣∣ µ

[Γ(α)]2
(p(t))α

α

∣∣∣[αΓ(α)]2‖k− l‖ω1‖k−Qk‖ω2‖l −Ql‖ω3

= α
∣∣∣µ(p(t))α

∣∣∣‖k− l‖ω1‖k−Qk‖ω2‖l −Ql‖ω3 ∀t ∈ J.

Thus, we get

‖Qk−Ql‖ ≤ α‖k− l‖ω1‖k−Qk‖ω2‖l −Ql‖ω3

for each k, l ∈ V \ Fix(Q) with k 6= l. Thus, by Corollary 3, a fixed point of Q occurs; that
is, the integral Equation (50) possesses at least one solution.

Example 3. Consider V = {0, 1, 2 · · · , 20} and define

dV(k, l) =

{
0, k = l
max{k, l}, k 6= l.

Define Q : V → V and φ : V → [0, ∞) by

Q(k) =

{
0, k = 0
k− 1, otherwise
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and
φ(k) =

k
2

.

Then, it is easy to verify that the axioms of Theorem 1 are valid, by taking ξ f (a, b, c) = abc,
ω1 = 0.99, ω2 = 0.005, ω3 = 0.005, L = 0 and η = 99

100 . Thus, there is an element k ∈ V with
Qk = k and φ(k) = 0.

Example 4. Consider V = W the set of all whole numbers and define

dV(k, l) =

{
0, k = l
max{k, l}, k 6= l.

Define Q : V → CB(V) and φ : V → [0, ∞) by

Q(k) =





{0}, k ∈ {0, 1}
{0, k− 1}, k ∈ {2, 3, · · · , 10}
{0, k}, otherwise

and

φ(k) =

{
k/2, k ∈ {1, 2, · · · , 10}
0, otherwise.

Then, it is easy to check that the axioms of Theorem 6 are valid, by taking ξ f (a, b, c) = abc,
βψ(k, l) = (49/50)l − k, ω1 = 0.99, ω2 = 0.005, and ω3 = 0.005. Since

(k− 1)0.995 ≤ (49/50)k0.995 for each k ∈ {1, 2, · · · , 10}.

Hence, there is an element k ∈ V with k ∈ Qk and φ(k) = 0.

4. Conclusions

In this article, we have studied the existence of φ-fixed points for the mappings
satisfying abstract interpolative Reich-Rus-Ćirić-type contractions with a shrink map on
a complete metric space. Abstract interpolative Reich-Rus-Ćirić-type contraction with a
shrink map has the following characteristics:

• It is an extended form of interpolative Reich-Rus-Ćirić-type contraction.
• It provides an easier proof of the results, ensuring φ-fixed points.

Finally, we have studied the existence of a solution for a fractional-order integral
equation using our results.
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Abstract: In this manuscript, some similar tripled fixed point results under certain restrictions on
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1. Introduction and Basic Concepts

One of the most crucial methods for comprehending the world around us is mathemat-
ics. With the help of the various fields of mathematics, other sciences can be analyzed. The
use of integral and differential equations is crucial for creating patterns for better under-
standing. Integral and differential equations likewise heavily rely on the fixed point theory.

In 2011, Berinde and Borcut [1] defined the notion of a tripled fixed point (TFP) for
self-mappings and established some interesting consequences in partially ordered metric
spaces. The (TFP) theory has a large number of significant applications that have been
successfully employed to address a wide variety of issues. Researchers have focused on
these issues to examine possible solutions, as seen in [2–7].

In 2008, Jachymski [8] proposed considering partial order sets as graphs in metric
spaces. He obtained novel contraction mappings using this concept, which generalized
many of the prior contractions. Moreover, in a metric space endowed with a graph, some
results of the fixed points under these contractions were successfully deduced. Several
authors have used this contribution in various applications. See the series of papers [9–12].

As a continuation of this approach, the results of coupled fixed points and TFPs for
edge-preserving mappings with applications in abstract spaces have been investigated. For
more details, see [13–17].

Czerwik [18] introduced the concept of b−metric spaces as a generalization of ordinary
metric spaces as follows:

Definition 1. Let χ 6= ∅ be a set and s ≥ 1 be a real number. A function v : χ× χ→ R+ is said
to be a b−metric on χ, if for each z, d, r ∈ χ, the hypotheses below hold:

• v(z, d) = 0⇔ z = d;
• v(z, d) = v(d, z)⇔ z = d;
• v(z, d) ≤ s[v(z, r) + v(r, d)].
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The pair (χ, v) is known as b−metric space.

In the context of a metric space (χ, v), let ∇ = {(z, z) : z ∈ χ} be the set of self loops
and f = (∨(f), Ξ(f)) be a directed graph where ∨(f) represents the set of vertices and
Ξ(f) refers to the set of edges, so Ξ(f) ⊇ ∇ and f has no parallel edges.

Consider z, d ∈ ∨(f), a path from z to d is a finite sequence {zt}N
t=0 ⊆ f, where z0 = z,

zt = d, and (zt, zt−1) ∈ Ξ(f), t = 1, 2, . . . , N. For simplicity, we write

[z]f = {d ∈ χ there is a path from z to d}.

If ∨(f) = [z]f, then f is said to be connected for all l ∈ χ.
By reversing the directions of the edges on a directed graph f, we may obtain the

directed graph f−1, i.e., ∨(f−1) = ∨(f) and

Ξ
(
f−1

)
= {(d, z) : (z, d) ∈ Ξ(f)}.

Moreover, by neglecting the direction of edges, we have the indirect graph f̃, i.e.,
∨(f̃) = ∨(f) and

Ξ
(
f̃
)
= Ξ(f) ∪ Ξ

(
f−1

)
.

Herein, we assume that (χ, v) is a b−metric space, and f is a directed graph, so
∨(f) = χ and Ξ(f) ⊇ ∇. Further, we define another graph f on the product χ× χ× χ
as follows:

(
(z, d, r),

(
z, d, r

))
∈ Ξ(f)⇔ (z, z) ∈ Ξ(f),

(
d, d
)
∈ Ξ(f) and (r, r) ∈ Ξ(f),

for all (z, d, r),
(

z, d, r
)
∈ χ3.

Definition 2 ([1]). A trio (z, d, r) ∈ χ3 is called a TFP of the mapping Ω : χ3 → χ if

z = Ω(z, d, r), d = Ω(d, r, z), and r = Ω(r, z, d).

Definition 3 ([15]). Let Ω : χ× χ → χ be a given mapping defined on a complete metric space
(χ, v) equipped with a directed graph f. We say that Ω has the mixed f−monotone property if for
all z, z1, z2, d, d1, d2 ∈ χ,

(z1, z2) ∈ Ξ(f) implies (Ω(z1, d), Ω(z2, d)) ∈ Ξ(f),

and
(d1, d2) ∈ Ξ(f) implies (Ω(z, d2), Ω(z, d1)) ∈ Ξ(f).

In a similar vein, our work seeks to create a new generalization of TFP results in the
context of a b−metric space with a graph. Our results extend and unify the results of
Alfuraidan and Khamsi [15], Luong and Thuan [19], and Işik and Türkoğlu [20] in partially
ordered metric spaces. Our theoretical findings have been used to show that a system of
ordinary differential equations with infinite delay has a solution.

2. Main Results

This section starts with a generalization of Definition 3 as follows:
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Definition 4. Let Ω : χ3 → χ be a function defined on a complete metric space (χ, v) with a di-
rected graph. We say that Ω has the mixed f-monotone property if for
all z, z1, z2, d, d1, d2, r, r1, r2 ∈ χ,

(z1, z2) ∈ Ξ(f) implies (Ω(z1, d, r), Ω(z2, d, r)) ∈ Ξ(f),
(d1, d2) ∈ Ξ(f) implies (Ω(z, d1, r), Ω(z, d2, r)) ∈ Ξ(f),

and
(r1, r2) ∈ Ξ(f) implies (Ω(z, d, r1), Ω(z, d, r2)) ∈ Ξ(f).

In order to facilitate our study, we denote by Γ the set of pairs of functions (θ, ϑ),
where θ, ϑ : [0, ∞)→ [0, ∞) fulfilling the constraints below:

(c1) θ is non-decreasing and continuous;
(c2) θ(a) = 0, if and only if a = 0;
(c3) ϑ is continuous;
(c4) for all a > 0, θ(a) > ϑ(a).

The lemma below is useful for our main results.

Lemma 1. Assume that (χ, v) is a b−metric space with s ≥ 1. Suppose that {`k}, {δk}, and
{λk} are three sequences in χ, and there is σ ∈ [0, 1

s ), justifying

v(`k, `k+1) + v(δk, δk+1) + v(λk, λk+1) ≤ σ(v(`k−1, `k) + v(δk−1, δk) + v(λk−1, λk)), (1)

for any k ∈ N. Then, {`k}, {δk}, and {λk} are Cauchy sequences.

Proof. Let j, k ∈ N, and j < k. Then,

v
(
`j, `k

)
+ v

(
δj, δk

)
+ v

(
λj, λk

)
≤ s

(
v
(
`j, `j+1

)
+ v

(
`j+1, `k

))
+ s
(
v
(
δj, δj+1

)
+ v

(
δj+1, δk

))

+s
(
v
(
λj, λj+1

)
+ v

(
λj+1, λk

))

≤ s
(
v
(
`j, `j+1

)
+ v

(
δj, δj+1

)
+ v

(
λj, λj+1

))

+s2(v
(
`j+1, `j+2

)
+ v

(
δj+1, δj+2

)
+ v

(
λj+1, λj+2

))

+s2(v
(
`j+2, `k

)
+ v

(
δj+2, δk

)
+ v

(
λj+2, λk

))

≤ · · ·
≤ s

(
v
(
`j, `j+1

)
+ v

(
δj, δj+1

)
+ v

(
λj, λj+1

))

+s2(v
(
`j+1, `j+2

)
+ v

(
δj+1, δj+2

)
+ v

(
λj+1, λj+2

))
+ · · ·

+sk−j−1(v(`k−2, `k−1) + v(`k−1, `k) + v(δk−2, δk−1) + v(δk−1, δk))

+sk−j−1(v(λk−2, λk−1) + v(λk−1, λk))

≤ s
(
v
(
`j, `j+1

)
+ v

(
δj, δj+1

)
+ v

(
λj, λj+1

))

+s2(v
(
`j+1, `j+2

)
+ v

(
δj+1, δj+2

)
+ v

(
λj+1, λj+2

))

+sk−j−1(v(`k−2, `k−1) + v(δk−2, δk−1) + v(λk−2, λk−1))

+sk−j(v(`k−1, `k) + v(δk−1, δk) + v(λk−1, λk)).

From the fact that sσ < 1, and using (1), we have
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v
(
`j, `k

)
+ v

(
δj, δk

)
+ v

(
λj, λk

)

≤
(

sσj + s2σj+1 + · · ·+ sk−j−1σk−2 + sk−jσk−1
)
(v(`0, `1) + v(δ0, δ1) + v(λ0, λ1))

= sσj
(

1 + sσ + · · ·+ sk−j−2σk−−j−2 + sk−j−1σk−j−1
)
(v(`0, `1) + v(δ0, δ1) + v(λ0, λ1))

=
sσj

1 + sσ
(v(`0, `1) + v(δ0, δ1) + v(λ0, λ1)).

It follows that

lim
j→∞

(
v
(
`j, `k

)
+ v

(
δj, δk

)
+ v

(
λj, λk

))
= 0.

Hence, {`k}, {δk}, and {λk} are Cauchy sequences.

Now, we formulate and prove the first main result.

Theorem 1. On (χ, Ξ, v), let (χ, v) be a complete b−metric space with s ≥ 1 and Ω : χ3 → χ
be a continuous mapping that has the mixed f−monotone property on χ for which there is a pair
(θ, ϑ) ∈ Γ, so that

θ
(

s2v(Ω(z, d, r), Ω(z∗, d∗, r∗))
)
≤ 1

3
ϑ(v(z, z∗) + v(d, d∗) + v(r, r∗)), (2)

for all (z, d, r), (z∗, d∗, r∗) ∈ χ3, where ((z, d, r), (z∗, d∗, r∗)) ∈ Ξ(f). If there are z0, d0, r0 ∈ χ
so that

((z0, d0, r0), (Ω(z0, d0, r0), Ω(d0, r0, z0), Ω(r0, z0, d0))) ∈ Ξ(f);

then, Ω owns a TFP
(

ẑ, d̂, r̂
)
∈ χ3.

Proof. Put zk+1 = Ω(zk, dk, rk), dk+1 = Ω(dk, rk, zk), and rk+1 = Ω(rk, zk, dk). Based on our
assumption, we have

((z0, d0, r0), (z1, d1, r1)) ∈ Ξ(f),

which leads to

θ
(

s2v(z2, z1)
)

= θ
(

s2v(Ω(z1, d1, r1), Ω(z0, d0, r0))
)

≤ 1
3

ϑ(v(z1, z0) + v(d1, d0) + v(r1, r0)).

Analogously, since ((d0, r0, z0), (d1, r1, z1)) ∈ Ξ(f), one can obtain

θ
(

s2v(d2, d1)
)
≤ 1

3
ϑ(v(d1, d0) + v(r1, r0) + v(z1, z0)).

Similarly, since ((r0, z0, d0), (r1, z1, d1)) ∈ Ξ(f), we can write

θ
(

s2v(r2, r1)
)
≤ 1

3
ϑ(v(r1, r0) + v(z1, z0) + v(d1, d0)).

Because Ω has the mixed f−monotone property, we have for k ≥ 1,

((zk, dk, rk), (zk+1, dk+1, rk+1)) ∈ Ξ(f),
((dk, rk, zk), (dk+1, rk+1, zk+1)) ∈ Ξ(f),

and
((rk, zk, dk), (rk+1, zk+1, dk+1)) ∈ Ξ(f).
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Then,

θ
(

s2v(zk+1, zk)
)
≤ 1

3
ϑ(v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1)), (3)

θ
(

s2v(dk+1, dk)
)
≤ 1

3
ϑ(v(dk, dk−1) + v(rk, rk−1) + v(zk, zk−1)), (4)

and
θ
(

s2v(rk+1, rk)
)
≤ 1

3
ϑ(v(rk, rk−1) + v(zk, zk−1) + v(dk, dk−1)). (5)

Adding (3)–(5), we obtain

θ
(

s2v(zk+1, zk)
)
+ θ
(

s2v(dk+1, dk)
)
+ θ
(

s2v(rk+1, rk)
)
≤ ϑ(v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1)).

It follows from the properties of (θ, ϑ) that

θ
(

s2(v(zk+1, zk) + v(dk+1, dk) + v(rk+1, rk))
)
≤ ϑ(v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1));

again, from the properties of (θ, ϑ), we have

θ
(

s2(v(zk+1, zk) + v(dk+1, dk) + v(rk+1, rk))
)
≤ θ(v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1));

since θ is non-decreasing, we obtain

s2(v(zk+1, zk) + v(dk+1, dk) + v(rk+1, rk)) ≤ v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1),

which leads to

v(zk+1, zk) + v(dk+1, dk) + v(rk+1, rk) ≤
1
s2 (v(zk, zk−1) + v(dk, dk−1) + v(rk, rk−1)).

Because 0 ≤ 1
s2 < 1

s , then by Lemma 1, we observe that {zk}, {dk}, and {rk} are
Cauchy sequences. The completeness of χ implies that there are ẑ, d̂, r̂ ∈ χ, so that

lim
k→∞

zk = ẑ, lim
k→∞

dk = d̂m and lim
k→∞

rk = r̂.

Since Ω is continuous, we obtain

ẑ = lim
k→∞

zk = lim
k→∞

Ω(zk−1, dk−1, rk−1) = Ω
(

lim
k→∞

zk−1, lim
k→∞

dk−1, lim
k→∞

rk−1

)
= Ω

(
ẑ, d̂, r̂

)
,

d̂ = lim
k→∞

dk = lim
k→∞

Ω(dk−1, rk−1, zk−1) = Ω
(

lim
k→∞

dk−1, lim
k→∞

rk−1, lim
k→∞

zk−1

)
= Ω

(
d̂, r̂, ẑ

)
,

r̂ = lim
k→∞

rk = lim
k→∞

Ω(rk−1, zk−1, dk−1) = Ω
(

lim
k→∞

rk−1, lim
k→∞

zk−1, lim
k→∞

dk−1

)
= Ω

(
r̂, ẑ, d̂

)
.

This proves that
(

ẑ, d̂, r̂
)

is a TFP of Ω.

In the case of the non continuity of Ω, we can state another sufficient condition for the
existence of TFP by giving the following postulate on the trio (χ, Ξ, v) :

(p) for any sequence {zk}k∈N in χ, so that (zk, zk+1) ∈ Ξ(f), (zk+1, zk) ∈ Ξ(f), and
limk→∞ zk = z, we have (zk, z, ) ∈ Ξ(f) and (z, zk) ∈ Ξ(f).

Now, our second theoretical result is as follows:

Theorem 2. On (χ, Ξ, v), suppose that (χ, v) is a complete b−ms with s ≥ 1, and (χ, Ξ, v)
satisfies Postulate (p). Suppose also the mapping Ω : χ3 → χ has the mixed f−monotone property
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on χ. Assume that (θ, ϑ) ∈ Γ, so that the contractive condition (2) holds. If there are z0, d0, r0 ∈ χ
so that

((z0, d0, r0), (Ω(z0, d0, r0), Ω(d0, r0, z0), Ω(r0, z0, d0))) ∈ Ξ(f),

then Ω possesses a TFP
(

ẑ, d̂, r̂
)
∈ χ3.

Proof. By the same line proof of Theorem 1 and since

lim
k→∞

zk+1 = lim
k→∞

Ω(zk, dk, rk) = ẑ,

lim
k→∞

dk+1 = lim
k→∞

Ω(dk, rk, zk) = d̂,

lim
k→∞

rk+1 = lim
k→∞

Ω(rk, zk, dk) = r̂,

and
(zk, zk+1) ∈ Ξ(f), (dk, dk+1) ∈ Ξ(f) and (rk, rk+1) ∈ Ξ(f),

then, by Postulate (p), one can write

(zk, ẑ) ∈ Ξ(f),
(

dk, d̂
)
∈ Ξ(f) and (rk, r̂) ∈ Ξ(f).

Then, (
(zk, dk, rk),

(
ẑ, d̂, r̂

))
∈ Ξ(f).

Hence, we obtain

θ
(

s2v
(

Ω(zk, dk, rk), Ω
(

ẑ, d̂, r̂
)))

≤ 1
3

ϑ
(

v(zk, ẑ) + v
(

dk, d̂
)
+ v(rk, r̂)

)
. (6)

Analogously, we obtain

θ
(

s2v
(

Ω(dk, rk, zk), Ω
(

d̂, r̂, ẑ
)))

≤ 1
3

ϑ
(

v
(

dk, d̂
)
+ v(rk, r̂) + v(zk, ẑ)

)
, (7)

and
θ
(

s2v
(

Ω(dk, rk, zk), Ω
(

d̂, r̂, ẑ
)))

≤ 1
3

ϑ
(

v
(

dk, d̂
)
+ v(rk, r̂) + v(zk, ẑ)

)
. (8)

Taking the limit as k→ ∞ in (6)–(8), we have

lim
k→∞

v
(

Ω(zk, dk, rk), Ω
(

ẑ, d̂, r̂
))

= 0, lim
k→∞

v
(

Ω(dk, rk, zk), Ω
(

d̂, r̂, ẑ
))

= 0

and lim
k→∞

v
(

Ω(dk, rk, zk), Ω
(

d̂, r̂, ẑ
))

= 0.

This implies that

lim
k→∞

zk+1 = Ω
(

ẑ, d̂, r̂
)

, lim
k→∞

dk+1 = Ω
(

d̂, r̂, ẑ
)

and lim
k→∞

rk+1 = Ω
(

r̂, ẑ, d̂
)

,

which yields that

ẑ = Ω
(

ẑ, d̂, r̂
)

, d̂ = Ω
(

d̂, r̂, ẑ
)

and r̂ = Ω
(

r̂, ẑ, d̂
)

;

that is,
(

ẑ, d̂, r̂
)

is a TFP of Ω on χ.

Next, we shall state some contributions of Theorems 1 and 2 in the literature.
The results of Alfuraidan and Khamsi [15] can be generalized if we let θ(a) = a and

ϑ(a) = `a in Theorems 1 and 2 with b = 1 as follows:
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Corollary 1. Let (χ, v) be a complete metric space with a direct graph Ξ and the mapping Ω :
χ3 → χ has the mixed f−monotone property on χ for which there exists ` ∈ [0, 1) such that

θ(v(Ω(z, d, r), Ω(z∗, d∗, r∗))) ≤ `

3
θ(v(z, z∗) + v(d, d∗) + v(r, r∗)),

for all (z, d, r), (z∗, d∗, r∗) ∈ χ3 with ((z, d, r), (z∗, d∗, r∗)) ∈ Ξ(f). Assume that either Ω is a
continuous mapping or the triple (χ, Ξ, v) has the property (p). If there are z0, d0, r0 ∈ χ so that

((z0, d0, r0), (Ω(z0, d0, r0), Ω(d0, r0, z0), Ω(r0, z0, d0))) ∈ Ξ(f),

then, Ω has a TFP
(

ẑ, d̂, r̂
)
∈ χ3.

It should be noted that if (θ, ϑ) ∈ Γ and ϑ1(a) = θ(a)− 3ϑ
( a

3
)
, then (θ, ϑ1) ∈ Γ. Based

on this notion, the results of Luong and Thuan [19] in a metric space endowed with a graph
can be re-formulated as follows:

Corollary 2. Let (χ, v) be a complete metric space with a direct graph Ξ, and the mapping
Ω : χ3 → χ has the mixed f−monotone property. Let (θ, ϑ) ∈ Γ, so that

θ(v(Ω(z, d, r), Ω(z∗, d∗, r∗))) ≤ 1
3

θ(v(z, z∗) + v(d, d∗) + v(r, r∗))

−ϑ

(
v(z, z∗) + v(d, d∗) + v(r, r∗)

3

)

for all (z, d, r), (z∗, d∗, r∗) ∈ χ3 with ((z, d, r), (z∗, d∗, r∗)) ∈ Ξ(f). Assume either the mapping
Ω is continuous or a trio (χ, Ξ, v) satisfies the postulate (p). If there are z0, d0, r0 ∈ χ, so that

((z0, d0, r0), (Ω(z0, d0, r0), Ω(d0, r0, z0), Ω(r0, z0, d0))) ∈ Ξ(f),

then, Ω has a TFP
(

ẑ, d̂, r̂
)
∈ χ3.

In the following, we discuss the uniqueness of a TFP of the mapping Ω.

Theorem 3. In addition to the assumptions of Theorems 1 and 2, assume that for
any (z, d, r) , (z∗, d∗, r∗) ∈ χ3, there is

(
̂̀, ˜̀, `

)
∈ χ3, so that

(
(z, d, r),

(
̂̀, ˜̀, `

))
∈ Ξ(f) and

(
(z∗, d∗, r∗),

(
̂̀, ˜̀, `

))
∈ Ξ(f).

Then, Ω has a unique TFP.

Proof. Assume that there are two TFPs (z, d, r) and (z∗, d∗, r∗) of Ω. By our hypothesis,
there is (κ, η, ζ) ∈ χ3, so that ((z, d, r), (κ, η, ζ)) ∈ Ξ(f), and ((z∗, d∗, r∗), (κ, η, ζ)) ∈ Ξ(f).
Define three sequences {κk}, {ηk}, and {ζk} by

κ = κ0, η = η0, ζ = ζ0, κk+1 = Ω(κk, ηk, ζk), ηk+1 = Ω(ηk, ζk,κk) and ζk+1 = Ω(ζk,κk, ηk), for all n.

Since ((z, d, r), (κ, η, ζ)) ∈ Ξ(f) and Ω has a mixed f−monotone property, we can
show that ((z, d, r), (κk, ηk, ζk)) ∈ Ξ(f). Then,

θ
(

s2v(z,κk+1)
)
= θ

(
s2v(Ω(z, d, r), Ω(κk, ηk, ζk))

)
≤ 1

3
ϑ(v(z,κk) + v(d, ηk) + v(r, ζk)). (9)

Similarly, we can write

θ
(

s2v(d, ηk+1)
)
= θ

(
s2v(Ω(d, r, z), Ω(ηk, ζk,κk))

)
≤ 1

3
ϑ(v(d, ηk) + v(r, ζk) + v(z,κk)), (10)
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and

θ
(

s2v(r, ζk+1)
)
= θ

(
s2v(Ω(r, z, d), Ω(ζk,κk, ηk))

)
≤ 1

3
ϑ(v(r, ζk) + v(z,κk) + v(d, ηk)). (11)

Combining (9)–(11) and using the properties of θ and ϑ, we have

θ
(

s2(v(z,κk+1) + v(d, ηk+1) + v(r, ζk+1))
)
≤ ϑ(v(z,κk) + v(d, ηk) + v(r, ζk)). (12)

Because θ is non-decreasing function, and θ(a) > ϑ(a) for a > 0, we have

s2(v(z,κk+1) + v(d, ηk+1) + v(r, ζk+1)) ≤ v(z,κk) + v(d, ηk) + v(r, ζk).

Since s ≥ 1, we obtain

v(z,κk+1) + v(d, ηk+1) + v(r, ζk+1) ≤ v(z,κk) + v(d, ηk) + v(r, ζk).

This leads to {v(z,κk) + v(d, ηk) + v(r, ζk)} being a nonnegative decreasing se-
quence; consequently, there is ρ ≥ 0, so that

lim
k→∞

(v(z,κk) + v(d, ηk) + v(r, ζk)) = ρ.

As the functions θ and ϑ are continuous, and by taking k→ ∞ in (12), one can write

θ
(

s2ρ
)
≤ ϑ(ρ).

It follows from the properties of θ and ϑ that ρ = 0. Hence,

lim
k→∞

(v(z,κk) + v(d, ηk) + v(r, ζk)) = 0;

that is,
lim
k→∞

v(z,κk) = 0, lim
k→∞

v(d, ηk) = 0, and lim
k→∞

v(r, ζk) = 0.

Following the same scenario, we have

lim
k→∞

v(z∗,κk) = 0, lim
k→∞

v(d∗, ηk) = 0 and lim
k→∞

v(r∗, ζk) = 0.

Let k→ ∞ in the following inequalities

v(z, z∗) ≤ s(v(z,κk) + v(κk, z∗)),

v(d, d∗) ≤ s(v(d,κk) + v(κk, d∗)),

v(r, r∗) ≤ s(v(r,κk) + v(κk, r∗)).

Thus, v(z, z∗) = 0, v(d, d∗) = 0, and v(r, r∗) = 0. Hence, z = z∗, d = d∗,
and r = r∗.

Theorem 4. Assume that
((

ẑ, d̂
)

,
(

d̂, r̂
)

, (r̂, ẑ)
)
∈ Ξ(f) and the assumptions of Theorems 1 and 2

are true. If
(

ẑ, d̂, r̂
)

is a TFP of Ω, then ẑ = d̂ = r̂.

Proof. Because
((

ẑ, d̂
)

,
(

d̂, r̂
)

, (r̂, ẑ)
)
∈ Ξ(f), we have

θ
(

s2v
(

ẑ, d̂
))

= θ
(

s2v
(

Ω
(

ẑ, d̂, r̂
)

, Ω
(

d̂, r̂, ẑ
)))

≤ 1
3

ϑ
(

v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ)

)
.
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Similarly, we can write

θ
(

s2v
(

d̂, r̂
))
≤ 1

3
ϑ
(

v
(

d̂, r̂
)
+ v(r̂, ẑ) + v

(
ẑ, d̂
))

,

and
θ
(

s2v(r̂, ẑ)
)
≤ 1

3
ϑ
(

v(r̂, ẑ) + v
(

ẑ, d̂
)
+ v

(
d̂, r̂
))

.

Combining the above three inequalities, we have

θ
(

s2
[
v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ)

])
≤ ϑ

(
v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ)

)

< θ
(

v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ)

)
.

Since the function θ is non-decreasing, we obtain

s2
(

v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ)

)
< v

(
ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ).

Hence, v
(

ẑ, d̂
)
+ v

(
d̂, r̂
)
+ v(r̂, ẑ) = 0; that is, v

(
ẑ, d̂
)

= 0, v
(

d̂, r̂
)

= 0, and

v(r̂, ẑ) = 0. So, ẑ = d̂ = r̂. This completes the proof.

In the end of this part, we present the following example to support
our theoretical results.

Example 1. Assume that χ = R, v(z, d) = |z− d|2 is a b−metric space with s = 2. Define a
directed graph f on χ by

((z, d, r), (z∗, d∗, r∗)) ∈ Ξ(f), if and only if z ≤ z∗, d∗ ≤ d and r ≤ r∗.

Describe the mapping Ω : χ3 → χ as Ω(z, d, r) = 1
6 (z + d + r), (z∗, d∗, r∗) ∈ χ3. It is clear

that Ω has af−monotone property. For any (z, d, r), (z∗, d∗, r∗) ∈ χ3 with ((z, d, r), (z∗, d∗, r∗)) ∈
Ξ(f), we have

θ
(

s2v(Ω(z, d, r), Ω(z∗, d∗, r∗))
)

=
1
4

(
22
(

z + d + r
6

− z∗ + d∗ + r∗

6

)2
)

=
1

36
((z− z∗) + (d− d∗) + (r− r∗))2

≤ 1
9

(
(z− z∗)2 + (d− d∗)2 + (r− r∗)2

)

=
1
3

ϑ(v(z, z∗) + v(d, d∗) + v(r, r∗)).

Hence, the condition (2) is satisfied with θ(a) = 1
4 a and ϑ(a) = 1

3 a. Clearly, (θ, ϑ) ∈ Γ.
Therefore, all requirements of Theorem 1 are fulfilled. Moreover, ((0, 0, 0), (0, 0, 0)) ∈ Ξ(f) So, by
Theorems 1 and 3, the point (0, 0, 0) is a unique TFP of the mapping Ω.

3. Solving a System of Ordinary Differential Equations

This section is the mainstay of our paper in which the existence and uniqueness of the
solution to a system of ordinary differential equations is investigated. This system is given
as follows:





z
′
(ν) = ℘(ν, zν, uν, rν),

u
′
(ν) = ℘(ν, uν, rν, zν),

r
′
(ν) = ℘(ν, rν, zν, uν),

ν ∈ χ, (13)
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under the conditions

z(ν) = v1(ν), u(ν) = v2(ν) and r(ν) = v3(ν), ν ∈ (−∞, 0], (14)

where χ = [0, b], ℘ : χ× a3 → Rk, (where a3 = a× a× a) v1, v2, v3 ∈ a, and zν, uν, rν

are the history of the state from −∞ to the time ν. Let the histories zν, uν, rν ∈ a, where
(a, ‖.‖a) is a seminormed linear space of functions mapping z : (−∞, 0]→ Rk, k ∈ N and
satisfying the hypotheses below that were presented by Hale and Kato [21] for the ODE.

(i) If z : (−∞, b] → Rk, b > 0 is continuous on χ and z0 ∈ a, then there are constant
τ, ξ > 0; so, for each a ∈ [0, b), the following assumptions are satisfied:

(1) za ∈ a;
(2) ‖z‖ ≤ ‖za‖a;
(3) ‖za‖a ≤ τ sup{‖z(c)‖ : 0 ≤ c ≤ a}+ ξ‖z0‖a.

(ii) The function za is a a−valued continuous function on [0, b), where z(.) is the function
defined in (i).

(iii) The space a is complete.

Now, we consider the following space to define a solution for Problems (13) and (14):

Θ =
{

z, z : (−∞, 0]→ Rk, z ∈ C
(

χ,Rk
)

, k ∈ N, z(ν) = v1(ν), ν ∈ (−∞, 0], v1 ∈ a
}

,

equipped with the following seminorm

‖z‖Θ = ‖z0‖a + sup
0≤c≤b

‖z(c)‖.

It should be noted that the function (z, u, r) ∈ Θ3 (where Θ3 = Θ × Θ × Θ) is a
solution of (13) and (14), if (z, u, r) fulfills (13) and (14).

Describe the operator Υ : Θ3 → Θ as

Υ(z, u, r) =





v1(ν) if ν ∈ (−∞, 0)

v1(ν) +
ν∫

0
℘(h̄, zh̄, uh̄, rh̄)dh̄ if ν ∈ χ

,

Υ(u, r, z) =





v2(ν) if ν ∈ (−∞, 0)

v2(ν) +
ν∫

0
℘(h̄, uh̄, rh̄, zh̄)dh̄ if ν ∈ χ

,

and

Υ(r, z, u) =





v3(ν) if ν ∈ (−∞, 0)

v3(ν) +
ν∫

0
℘(h̄, rh̄, zh̄, uh̄)dh̄ if ν ∈ χ

.

Assume that ṽ1, ṽ2, ṽ3 : (−∞, b)→ Rk are functions defined by

ṽ1(ν) =

{
v1(ν) if ν ∈ (−∞, 0)
v1(0) if ν ∈ χ

, ṽ2(ν) =

{
v2(ν) if ν ∈ (−∞, 0)
v2(0) if ν ∈ χ

,

and

ṽ3(ν) =

{
v3(ν) if ν ∈ (−∞, 0)
v3(0) if ν ∈ χ

.
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Then, ṽ0
1 = v1, ṽ0

2 = v2, and ṽ0
3 = v3. For each δ1, δ2, δ3 ∈ C

(
[0, b],Rk

)
with

δ1(0) = 0, δ2(0) = 0, and δ3(0) = 0. Describe the functions δ̂1, δ̂2, and δ̂3 as

δ̂1(ν) =

{
0 if ν ∈ (−∞, 0)

δ1(ν) if ν ∈ χ
, δ̂2(ν) =

{
0 if ν ∈ (−∞, 0)

δ2(ν) if ν ∈ χ
,

and

δ̂3(ν) =

{
0 if ν ∈ (−∞, 0)

δ3(ν) if ν ∈ χ
.

If z(.), u(.), and r(.) satisfy the integral equations

z(ν) = v1(ν) +

ν∫

0

℘(h̄, zh̄, uh̄, rh̄)dh̄,

u(ν) = v2(ν) +

ν∫

0

℘(h̄, uh̄, rh̄, zh̄)dh̄,

and

r(ν) = v3(ν) +

ν∫

0

℘(h̄, rh̄, zh̄, uh̄)dh̄,

we can decompose z(.), u(.), and r(.) as z(ν) = δ̂1(ν) + ṽ1(ν), u(ν) = δ̂2(ν) + ṽ2(ν), and
r(ν) = δ̂3(ν) + ṽ3(ν) for every 0 ≤ ν ≤ b. In addition, the functions δ1, δ2, and δ3 satisfy

δ1(ν) =

ν∫

0

℘
(

h̄, δ̂1(h̄) + ṽ1(h̄), δ̂2(h̄) + ṽ2(h̄), δ̂3(h̄) + ṽ3(h̄)
)

dh̄,

δ2(ν) =

ν∫

0

℘
(

h̄, δ̂2(h̄) + ṽ2(h̄), δ̂3(h̄) + ṽ3(h̄), δ̂1(h̄) + ṽ1(h̄)
)

dh̄,

and

δ3(ν) =

ν∫

0

℘
(

h̄, δ̂3(h̄) + ṽ3(v), δ̂1(h̄) + ṽ1(h̄), δ̂2(h̄) + ṽ2(h̄)
)

dh̄.

Put C0 =
{

δ ∈ C
(
[0, b],Rk

)
: δ(0) = 0

}
equipped with a

b−metric v(z, u) =
(

supν∈χ‖z(ν)− u(ν)‖
)2

with s = 2.

Consider the following partial order relation on C3
0 (where C3

0 = C0 × C0 × C0) :

(z1, u1, r1) ≤ (z2, u2, r2)⇔ z1(a) ≤ z2(a), u1(a) ≥ u2(a), and r1(a) ≤ r2(a), a ∈ χ.

Now, Problems (13) and (14) will be considered under the following hypotheses:

Hypothesis 1 (H1). The function ℘ : χ× a3 → Rk, k ∈ N is continuous.

Hypothesis 2 (H2). For all z, u, r, z1, u1, r1 ∈ Rk with z ≤ z1, u1 ≤ u and r ≤ r1,

℘(ν, z, u, r) ≤ ℘(ν, z1, u1, r1).

Hypothesis 3 (H3). For each ν ∈ [0, b], z, u, r, z1, u1, r1 ∈ Rk, z ≤ z1, u1 ≤ u, and r ≤ r1,
we have

‖℘(ν, z, u, r)− (ν, z1, u1, r1)‖2 ≤ 1
12b2 ln

(
1 +

1
τ
‖z− z1‖2

a + ‖u− u1‖2
a + ‖r− r1‖2

a

)
.
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Theorem 5. Consider Problems (13) and (14) under the hypotheses (H1)–(H3). If there are
(e, f , g) ∈ C3

0 , so that

e(ν) ≥
ν∫

0

℘
(

h̄, ê(h̄) + ṽ1(h̄), f̂ (h̄) + ṽ2(h̄), ĝ(h̄) + ṽ3(h̄)
)

dh̄,

f (ν) ≤
ν∫

0

℘
(

h̄, f̂ (h̄) + ṽ1(h̄), ĝ(h̄) + ṽ2(h̄), ê(h̄) + ṽ3(h̄)
)

dh̄,

and

g(ν) ≥
ν∫

0

℘
(

h̄, g(h̄) + ṽ1(h̄), ê(h̄) + ṽ2(h̄), f̂ (h̄) + ṽ3(h̄)
)

dh̄.

Then, there is at least one solution to the problem (13) and (14).

Proof. Let ℵ : C3
0 → C0 be an operator defined by

ℵ(δ1, δ2, δ3) =

ν∫

0

℘
(

h̄, δ̂1(ν) + ṽ1(ν), δ̂2(ν) + ṽ2(ν), δ̂3(ν) + ṽ3(ν)
)

dh̄.

It is clear that if Υ has a TFP, then ℵ has a TFP and vice versa. So the existence solution
of Problems (13) and (14) is equivalent to finding a TFP of the mapping ℵ. To achieve this,
we demonstrate that ℵ fulfills the requirements of Theorems 1 or 2.

Define the graph f with ∨(f) = C3
0 and

Ξ(f) =
{
((z, u, r), (z∗, u∗, r∗)) ∈ C3

0 × C3
0 : z ≤ z∗, u∗ ≥ u and r ≤ r∗

}
.

It follows that

((z, u, r), (z∗, u∗, r∗)) ∈ Ξ(f)⇔ (z, z∗) ∈ Ξ(f), (u∗, u) ∈ Ξ(f) and (r, r∗) ∈ Ξ(f),

for all ((z, u, r), (z∗, u∗, r∗)) ∈ C3
0 .

Consider z, u, r, z1, u1, r1, z2, u2, r2 ∈ C0. If (z1, z2) ∈ Ξ(f), then, from (H2), we
can write

ℵ(z1, u, r) =

ν∫

0

℘(h̄, ẑ1(h̄) + ṽ1(h̄), û(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))dh̄

≤
ν∫

0

℘(h̄, ẑ2(h̄) + ṽ1(h̄), û(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))dh̄

= ℵ(z2, u, r),

which implies that (ℵ(z1, u, r),ℵ(z2, u, r)) ∈ Ξ(f). Moreover, if (u1, u2) ∈ Ξ(f), we
can write

ℵ(z, u2, r) =

ν∫

0

℘(h̄, ẑ1(h̄) + ṽ1(h̄), û2(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))dh̄

≤
ν∫

0

℘(h̄, ẑ2(h̄) + ṽ1(h̄), û1(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))dh̄

= ℵ(z, u1, r),
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which leads to (ℵ(z, u2, r),ℵ(y, u1, r)) ∈ Ξ(f). Analogously, we obtain
(ℵ(z, u, r1),ℵ(y, u, r2)) ∈ Ξ(f). Hence, ℵ has the mixed f-monotone property. In order to
prove the contractive condition of Theorem 1, assume that
((z, u, r), (z∗, u∗, r∗)) ∈ C3

0 , so that

((z, u, r), (z1, u1, r1)) ∈ Ξ(f)⇔ (z, z1) ∈ Ξ(f), (u1, u) ∈ Ξ(f), and (r, r1) ∈ Ξ(f);

then, by using the assumptions (H1), (H1), and (H3), we have

‖ℵ((z, u, r))− ℵ(z1, u1, r1)‖2

=

∥∥∥∥∥∥

ν∫

0

℘(h̄, ẑ(h̄) + ṽ1(h̄), û(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))dh̄

−
ν∫

0

℘(h̄, ẑ1(h̄) + ṽ1(h̄), û1(h̄) + ṽ2(h̄), r̂1(h̄) + ṽ3(h̄))dh̄

∥∥∥∥∥∥

2

≤ b
ν∫

0

‖℘(h̄, ẑ(h̄) + ṽ1(h̄), û(h̄) + ṽ2(h̄), r̂(h̄) + ṽ3(h̄))

−℘(h̄, ẑ1(h̄) + ṽ1(h̄), û1(h̄) + ṽ2(h̄), r̂1(h̄) + ṽ3(h̄))‖2dh̄

≤ 1
12b

ν∫

0

ln
(

1 +
1
τ
‖ẑ(dh̄)− ẑ1(h̄)‖2

a +
1
τ
‖û(h̄)− û1(h̄)‖2

a +
1
τ
‖r̂(h̄)− r̂1(h̄)‖2

a

)
dh̄

≤ 1
12

ln

(
sup
h̄∈χ

‖ẑ(h̄)− ẑ1(h̄)‖2
a + sup

h̄∈χ

‖û(h̄)− û1(h̄)‖2
a + sup

h̄∈χ

‖r̂(h̄)− r̂1(h̄)‖2
a

)
,

which yields

θ
(

s2v(ℵ((z, u, r))− ℵ(z1, u1, r1))
)
≤ 1

3
ϑ(v(z, z1), v(u, u1), v(r, r1)),

where θ(a) = a, and ϑ(a) = ln(1 + a). Obviously, the pair (θ, ϑ) ∈ Γ. Hence, by our
assumptions, we conclude that

((z, u, r), (Ω(z, u, r), Ω(u, r, z), Ω(r, z, u))) ∈ Ξ(f).

The operator ℵ is continuous, and the triple (C0, Ξ, v) satisfy the property (p). Hence,
all requirements of Theorems 1 and 3 are fulfilled. Hence, there is a TFP of the mapping Ω
in C3

0 , which represents a solution to the problem (13) and (14).

4. Conclusions

There has been much development of the theory of delay differential equations. This
was connected to a variety of practical issues whose study required the resolution of delay
equations. Equations of this kind are necessary to describe processes whose rate depends
on their prior states. Such processes are commonly described as “delay processes” or
“processes with aftereffects”. The present paper was dedicated to the study of the existence
and uniqueness of tripled fixed points in a b−metric space with a directed graph. Common
tripled fixed point results were also provided. Moreover, some applications of the main
results in solving different types of tripled equation systems were presented. Then, using
our main results, we studied the existence and uniqueness of a solution to a system of
ordinary differential equations with infinite delay. Our results help to improve some results
from the related literature and provide new directions in the study of economic phenomena,
using the tripled fixed point technique.
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Abstract: This paper provides a uniform boundedness theorem for a class of convex operators, such
as Banach–Steinhaus theorem for families of continuous linear operators. The case of continuous
symmetric sublinear operators is outlined. Second, a general theorem characterizing the existence
of the solution of the Markov moment problem is reviewed, and a related minimization problem is
solved. Convexity is the common point of the two aims of the paper mentioned above.

Keywords: convex operator; uniform boundedness; symmetric operators; Hahn–Banach type theorems;
Markov moment problems; constrained minimization

1. Introduction

This paper provides an overview on a few basic topics in functional analysis, joined
together by the notion of convexity and its applications. The references partially illustrate
old and recent research in this area and relationships between them. The motivation of this
paper consists of pointing out two different main aspects of convexity: convex operators
and their properties, and Hahn–Banach type theorems applied to the Moment Problem.
Concerning the second aspect, a related optimization problem with infinitely many linear
constraints is solved. For basic notions in analysis and functional analysis related to this
work, see references [1–9]. First, we prove a uniform boundedness theorem for a class
of convex continuous operators. The corresponding result for classes of bounded linear
operators is the well-known Banach–Steinhaus theorem, whose proof is based on Baire’s
theorem. We assume that the domain space, which is a topological vector space, cannot be
written as a union of a sequence of closed subsets, each of them having an empty interior.
Similar results to our Theorem 1 proved below concerning classes of continuous convex
operators were published in [9–11]. Notably, in [9], the case of sublinear operators is
under attention. Following the idea of [10], we prove the existence of a common convex
neighborhood of the origin W0 in the domain space, for all involved convex operators,
without assuming that the domain space is locally convex. The convexity of W0 is a
consequence of the properties of the codomain and of the convex continuous operators
in the given class. The important case of classes of continuous sublinear operators is
under attention. We study the classes of sublinear operators P satisfying the symmetry
condition P(x) = P(−x) for all x in the domain space X. We point out an example related
to this first part. The relevance consists not only in reviewing the result from [10] but also
completing it with some consequences and remarks, discussed in the end of Section 3.1.
Such theorems and their consequences are published in [11]. From the point of view of
uniform boundedness, references [12,13] discuss the collections of linear operators more.
In the papers [14–17], the interested reader could find similar properties formulated in
the physics setting and possible interactions, especially concerning new results in the
Jensen-type inequalities.

The second part of the results section is first motivated by solving the existence
problems related to the moment problem. Basic results on this subject are outlined in [1–4]
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and [18]. Second, we continue with results on the extension of linear functionals and
linear operators, most of them being related to the moment problem. The classical moment
problem is formulated as follows: given a sequence (yn)n∈Nn of real numbers, and a non-
empty closed subset F ⊆ Rn, find a positive regular Borel measure ν on F such that the
interpolation moment conditions hold.

∫

F
ϕj(t)dν =

∫

F
tjdν = yj, j ∈ Nn, (1)

Here, we use the notations:

N = {0, 1, 2, . . .}, ϕj(t) = tj = tj1
1 · · · t

jn
n , j = (j1, . . . , jn) ∈ Nn,

t = (t1, . . . , tn) ∈ F ⊆ Rn,P = R[t1, . . . , tn], n ∈ N, n ≥ 1.
(2)

If n = 1, we have a one-dimensional moment problem, while for n ≥ 2, the corre-
sponding moment problem is called a multidimensional moment problem. From the scalar
moment problem (1), many authors studied the vector valued (or operator valued, or matrix
valued) moment problems, when the yj, j ∈ Nn are elements of an ordered vector space Y
with additional properties, whose elements are vectors, functions, self-adjoint operators or
symmetric matrices with real entries. The moment problem is an inverse problem, since we
are looking for an unknown positive measure ν which satisfies the moment conditions (1),
knowing only his known (given) moments

∫
F tjdν, j ∈ Nn. Finding the measure means

studying its existence, uniqueness, and construction. In case of the vector-valued moment
problem, the codomain Y is assumed to be an order complete vector space. This condition
is required since we need to extend the linear operator

T0 : P → Y, T0

(
∑
j∈J0

αj ϕj

)
= ∑

j∈J0

αjyj. (3)

from the vector space of all polynomials with real coefficients to an ordered Banach func-
tion space X which contains P and the vector space Cc(F) of all real valued continuous
compactly supported functions defined on F. In Equation (3), J0 ⊂ Nn is a finite subset,
αj ∈ R. To ensure the existence of a linear positive extension T : X → Y of T0, we need a
Hahn–Banach type extension result, which requires the order completeness of Y. From (3),
it results

T
(

ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn,

which is the vector-valued variant of (1). There are moment problems when, besides the
positivity of the solution T, we naturally obtain, from the proof of its existence, the property

T(x) ≤ P(x), (4)

for all x ∈ X, where X, Y are Banach lattices, Y is order complete, and P : X → Y is a
continuous convex or sublinear operator. Such problems are Markov moment problems.
Sometimes, the constraints on the solution T are T1 ≤ T ≤ T2 on the positive cone of the
domain space X, where Ti, i = 1, 2 are two given bounded linear operators from X to Y.

The moment problems mentioned up to now are called full moment problems, because
they involve the moment conditions T

(
ϕj
)
= yj for all j ∈ Nn. The reduced (or truncated)

moment problem requires the conditions T
(

ϕj
)
= yj only for

j = (j1, . . . , jn), jk ∈ {0, 1, . . . , d}, k = 1, . . . , n,

where d is a fixed natural number. For a basic result on the extension of linear positive
operators, see [19]. Other extension results of linear operators, with two constraints, were
published in [20–22]. Such old theorems found new applications in characterizing the
isotonicity of continuous convex operators on a convex cone, recently published in [23]. We
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recall that an operator P : X+ → Y defined on the positive cone X+ of the ordered vector
space X, to the ordered vector space Y is called isotone (monotone increasing) if:

0 ≤ x1 ≤ x2 in X implies P(x1) ≤ P(x2).

Various aspects of the full and reduced moment problem are discussed in [24–34].
These results include the existence, the uniqueness, and the construction of the solution.
Obviously, the uniqueness of the solution makes sense only for the full moment problem.
In the end of the article [34], a minimization problem related to a Markov moment problem
is discussed. Here, we start from an idea appearing in the PhD thesis [28], also using some
other methods. This is the second purpose of the paper. Optimization problems are studied
in the articles [35–39], from which the last three are providing corresponding iterative
methods and algorithms. As is well known, in any reflexive Banach space, for a non-empty
closed convex subset not containing the origin, there exists at least one element of minimum
norm in that subset. The point of this work is to discuss the case when the convex subset
under attention appears from natural constraints related to a Markov moment problem.

Thus, the points of the first part of this paper are recalling and mainly completing
the uniformly boundedness of some classes of convex operators, a subject which is not
very well covered in the literature, except the references cited here. The significance of the
second part consists in pointing out a necessary and sufficient condition for the existence of
a solution of a Markov moment problem (an interpolation problem with two constraints),
accompanied by a related minimization problem with infinitely many constraints. One
characterizes the non-emptiness of the set of feasible solutions, and the existence of at least
one minimum point is also proved (see Theorem 4). The uniqueness of such a point is
briefly discussed (see Remark 7). The reader can find details and completions to the second
part of this work by means of our references.

The rest of the paper is organized as follows. In Section 2, the main methods used in
the sequel are pointed out. Section 3 contains the results on the subjects briefly mentioned
above and is divided into two subsections. The common point is the notion of convexity
for operators and for real valued functions, and its relationships with linear operators.
Section 4 discusses the relevant results and concludes the paper.

2. Methods

The main methods used in what follows are:

(1) The general notions and results in algebra and topology, Baire categories, Baire spaces,
Banach spaces, Banach lattices, and the Banach–Steinhaus theorem (see [5,9–11]).

(2) General knowledge on convex functions and convex operators
(see [7,10,11,13,19–26,28–30,34–39]).

(3) A Hahn–Banach-type theorem formulated in terms of a Markov moment problem,
recalled in the second subsection of Section 3 (see [11,22,24,26]).

(4) Weak compactness and a related property of weakly lower semi-continuous real
function on a weak compact subset (see [5,34,36]).

(5) Giving supporting examples for the theoretical results (see [5,11,23]).

3. Results
3.1. Uniform Boundedness for Families of Convex Operators and Related Consequences

In the sequel, X will be a (not necessarily locally convex) topological vector space
which cannot be expressible as the countable union of closed subsets having empty interiors,
and Y will be a locally convex vector lattice (on which the lattice operations are continuous
and there exists a fundamental system V of neighborhoods V of 0Y which are convex,
closed, and solid subsets, i.e.,

|y1| ≤ |y2|, y2 ∈ V ⇒ y1 ∈ V.
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Both spaces X, Y are vector spaces over the real field. Consider a class C of convex
continuous operators P : X → Y, P(0) = 0 . Recall that we can always reduce the problem
of proving the equicontinuity of a family of convex operators at a point x0 ∈ X to the
equicontinuity of a corresponding family of convex operators at 0, where each element P of
the latter family satisfies the condition P(0) = 0 (cf. [10], the proof of Theorem 3.1). The
next result was published in [11].

Theorem 1. Additionally assume that for each V ∈ V , and any x ∈ X, there exists a small enough
positive number r such that

rP(x) ∈ V ∀P ∈ C.

Then, for any V0 ∈ V , there exists a closed convex neighborhood W0 of 0X such that
⋃

P∈C
P( W0) ⊂ V0.

One writes lim
x→0X

P(x) = 0Y uniformly in P ∈ C.

Proof. For any V0 ∈ V and any P ∈ C, define P1 : X→ Y, P1(x) := sup{P(x), P(−x)},
x ∈ X. The operator P1 is obviously convex. An additional property of P1 is
P1(x) = P1(−x), x ∈ X. Consequently, the codomain of P1 is Y+, since 0Y = P1(0X) =

P1

(
1
2 x + 1

2(−x)
)
≤ 1

22P1(x) = P1(x), x ∈ X. The operator P1 is also continuous, as the least
upper bound of two continuous operators, thanks to the continuity of “sup” operation from
Y×Y to Y. The subset P−1

1 (V0) is closed, due to the continuity of P1. Now, we prove that it is
also convex. Indeed, for x1, x2 ∈ P−1

1 (V0), t ∈ [0, 1], the following relations hold:

P1((1− t)x1 + tx2) ≤ (1− t)P1(x1) + tP1(x2) ∈ V0,

since V0 is convex and P1 is convex too. Now, using the assumption on V0 of being solid,
it results

P1((1− t)x1 + tx2) ∈ V0

(
⇔ ((1− t)x1 + tx2) ∈ P−1

1 (V0)
)

.

We define
W0 :=

⋂
P∈CP−1

1 (V0).

The subset W0 is closed and convex, as an intersection of such subsets. Clearly,⋃
P∈C

P1( W0) ⊂ V0. For any x ∈ W0 and any P ∈ P , it results

|P(x)| ≤ sup{P(x), P(−x)} = P1(x) ∈ V0,

because of −P(x) ≤ P(−x), x ∈ X. Indeed, 0Y = P(0X) ≤ 1
2 (P(x) + P(−x)), x ∈ X.

Having in mind the property of V0, we infer that P(x) ∈ V0, ∀x ∈ W0, ∀P ∈ C. The
first conclusion is

⋃
P∈C P( W0) ⊂ V0. To finish the proof, we have to show that W0 is a

neighborhood of 0X. For any x ∈ X and for any V0 ∈ V , there exists a sufficiently small
r0 > 0 such that αP1(x) ∈ V0 ∀α ∈ R, |α| ≤ r0, ∀P ∈ C. We can suppose that r0 ≤ 1. From
the preceding considerations, it results

α ∈ [0, r0] ⊂ [0, 1]⇒ P1(αx) = P1((1− α)0X + αx) ≤

αP1(x) ∈ V0 ⇒ P1(αx) ∈ V0,

α ∈ [−r0, 0]⇒ P1(αx) = P1((−α)(−x)) ≤ (−α)P1(−x) ≤ r0P1(x) ∈ V0, P ∈ C.

These relations lead to x ∈ X, |α| ≤ r0 ⇒ αx ∈W0 ⇒ x ∈ 1
|α|W0 ⊂ nW0 for a sufficiently

large n ∈ N. Consequently, the following basic relation holds true: X =
⋃

n∈N nW0. Now,
recall that W0 is closed, convex, and our assumption on X yields int(W0) 6= ∅, so that there
exists x0 ∈ int(W0)⇒ 0X = 1

2 (x0 + (−x0)) ∈ int(W0). This concludes the proof. �
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Corollary 1. Let X be a Banach space, Y a Banach lattice, C a collection of continuous convex
operators P : X → Y, P(0) = 0, such that for any x ∈ X, we have sup

P∈C
||P(x)||Y < ∞. Then the

following relation holds: sup
P∈C, ||x||≤1

||P(x)||Y < ∞.

In the sequel, X will be an (F) space, i.e., a metrizable complete (not necessarily locally
convex) topological vector space, Y will be a normed vector lattice (in particular, its norm is
monotone on Y+ : (0Y ≤ y1 ≤ y2 ⇒ ||y1||Y ≤ ||y2||Y) and the multiplication with scalars
is continuous). Recall that a normed vector lattice Y is a vector lattice endowed with a solid
norm ( |y1| ≤ |y2| ⇒ ||y1|| ≤ ||y2||), so the lattice operations are continuous. Consider a
class S of sublinear operators Φ : X → Y+ such that Φ(x) = Φ(−x) ∀x ∈ X, ∀Φ ∈ S .

Corollary 2. Let X, Y,S be as above. Assume that Φ is continuous ∀Φ ∈ S and sup
Φ∈S
||Φ(x)||Y <

∞ ∀x ∈ X. Then there exists a convex closed neighborhood U of 0X such that
⋃

Φ∈S
Φ(U) ⊂

B1,Y := B1(0Y), where B1(0Y) is the closed unit ball centered at the origin of the space Y.

The poof follows the ideas from that of Theorem 1, also applying Baire’s theorem.

Remark 1. Under previous conditions, assuming that Y is a normed vector lattice (the norm on Y
is solid and the lattice operations are continuous), Corollary 2 says that

x1 − x2 ∈ U ⇒ |Φ(x1)−Φ(x2)| ≤ Φ(x1 − x2) ∈ B1,Y ⇒

Φ(x1)−Φ(x2) ∈ B1,Y ∀Φ ∈ S .

It results that S is equicontinuous.

Example 1. Using the above notations, let L be a family of linear continuous operators from X to
Y such that sup

T∈L
||T(x)||Y < ∞ ∀x ∈ X. Define Φ(x) = ΦT(x) := |T(x)|, x ∈ X, T ∈ L. Then,

the family S = {ΦT}T∈L verifies the condition sup
T∈L
||ΦT(x)||Y < ∞ ∀x ∈ X.

Remark 2. Theorem 1 holds true when X is a Banach space, Y is a normed vector lattice, and the
other conditions of Theorem 1 are accomplished. It is possible that a similar result be true for more
general spaces X (involving the notion of a barreled TVS). However, only for a few spaces can it be
easily proved that they are barreled spaces, without using Baire’s theorem. On the other side, for
applications, the most important spaces are Banach spaces, especially Banach lattices.

Theorem 2. Let X be a Banach space and Y an order complete normed vector lattice with strong
order unit u0, such that B1,Y = [−u0, u0]. Let S be a class of sublinear operators with the properties
mentioned in Corollary 2. Additionally, assume that Φ(x) = Φ(−x) ∀x ∈ X, ∀Φ ∈ S . Then,
the relation

Φ̃(x) = sup
Φ∈S

Φ(x) ∀x ∈ X,

defines a sublinear Lipschitz operator Φ̃, such that Φ̃(x) = Φ̃(−x) ∈ Y+ ∀x ∈ X.

Proof. Application of Corollary 2 leads to the existence of a closed ball of sufficiently small
radius r > 0 such that

||x||X ≤ r ⇒ Φ(x) ∈ B1,Y = [−u0, u0] ∀Φ ∈ S .

It results

Φ
(

r
x
||x||X

)
≤ u0 ⇔ Φ(x) ≤ ||x||X

r
u0 ∀x ∈ X\{0X}, ∀Φ ∈ S . (5)
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Thus, according to (5), for any fixed x ∈ X, the set {Φ(x); Φ ∈ S } is bounded from above
in Y. Thanks to the hypothesis on order completeness of Y, there exists

Φ̃(x) := sup
Φ∈S

Φ(x) ≤ ||x||X
r

u0 ∀x ∈ X. (6)

It is easy to see that Φ̃ is sublinear and has the property Φ̃(x) = Φ̃(−x) ∈ Y+ ∀x ∈ X. Next,
we prove the Lipschitz property of Φ̃. To do this, one uses the subadditivity property of
Φ̃, the fact that the norm of Y is monotone on Y+, and relation (6). Namely, the following
implications hold:

x1, x2 ∈ X, |Φ̃(x1)− Φ̃(x2)| ≤ Φ̃(x1 − x2)⇒

||Φ̃(x1)− Φ̃(x2)||Y ≤ ||Φ̃(x1 − x2)||Y ≤
∣∣∣∣
∣∣∣∣
||x1 − x2||X

r
u0

∣∣∣∣
∣∣∣∣Y =

||x1 − x2||X
r

.

Hence, Φ̃ is a Lipschitz mapping from X to Y+. This concludes the proof. �

Remark 3. Under the hypothesis of Theorem 2, each element of Φ ∈ S is a Lipschitz operator, with
the same Lipschitz constant 1/r.

Remark 4. It seems that topological completeness of Y is not necessary for the above results.
However, the usual concrete spaces verifying the hypothesis of Theorem 2 are Banach spaces.

Remark 5. The set C of all continuous sublinear operators Φ from X to Y+, such that Φ(x) =
Φ(−x) ∀x ∈ X, ∀Φ ∈ C, sup

ϕ∈C
||ϕ(x)||Y < ∞ ∀x ∈ X, is a convex cone. With the notations and

under the assumptions of Theorem 2, the subset of all Φ ∈ C formed by all elements of C with the
property ϕ(B1,X) ⊂ B1,Y is convex, and its elements are the non-expansive operators from C. If r of
the proof of Theorem 2 is strictly greater than 1, then the elements of S (as well as the operator Φ̃)
are contractions.

Remark 6. An arbitrary sublinear operator ϕ : X → Y+ is a Lipschitz operator if and only if Φ is
continuous at 0X .

Corollary 3. Let X and Y be as in Theorem 2, S = {Φn; n ∈ N} a countable set of sublin-
ear continuous operators from X to Y, such that Φn(x) = Φn(−x) ∀x ∈ X, ∀n ∈ N, and
sup
n∈N
||Φn(x)||Y < ∞ ∀x ∈ X. Then, the relation

Φ̃(x) = sup
n∈N

Φn(x) ∀x ∈ X

defines a sublinear Lipschitz operator Φ̃ : X → Y+, such that Φ̃(x) = Φ̃(−x) ∀x ∈ X.

Corollary 4. Let X, Y be as in Theorem 2, T = {Φn; n ∈ N, n ≥ 1} a countable set of sublinear
continuous operators from X to Y+, such that Φn(x) = Φn(−x) ∀x ∈ X, ∀n ∈ {1, 2, . . .}, and

sup
n ∈ N,
n ≥ 1

||
n

∑
k=1

Φk(x)||Y < ∞ ∀x ∈ X.

Then, the relation

Φ̃(x) = sup
n ∈ N,
n ≥ 1

(
n

∑
k=1

Φk(x)

)
∀x ∈ X,
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defines a sublinear Lipschitz operator Φ̃ : X → Y+, such that Φ̃(x) = Φ̃(−x) ∀x ∈ X.

Example 2. Let K be a Hausdorff compact topological space, endowed with a regular Borel prob-
ability measure µ, X := C(K) the Banach lattice of all real valued, continuous functions on K,
Y := l∞ the space of all bounded sequences of real numbers. The norm ||·||sup on the space X is
the sup-norm and the norm on ||·||Y is the usual norm ||·||Y = ||·||∞, ||(xn)n≥1||∞ = sup

n≥1
|xn|.

The space Y = l∞ verifies the hypothesis of Theorem 2, since it is an order complete normed vector
lattice, the appropriate strong order unit being the sequence u0, which has all the terms equal to 1.
Define the scalar valued norms on X

Nk( f ) :=



∫

K

| f |kdµ




1/k

, f ∈ X, k ∈ N, k ≥ 1,

and the finite dimensional vector-valued norms on X

Sn( f ) := || f ||n : X → Y,

|| f ||n :=
(

N1( f ), 21/2N2( f ), . . . , n1/nNn( f ), 0, . . . , 0, . . .
)

, n ∈ N, n ≥ 1, f ∈ X,

Nk( f ) ≤ || f ||sup(µ(K))
1/k = || f ||sup, Nk( f ) = 1⇒ sup

|| f ||sup=1
Nk( f ) = 1,

k ∈ {1, 2, . . .}, f ∈ X.

Consider the elementary function t→ g(t) := ln(t)/t, t ∈ [1, ∞) , which is increasing on [1, e]
and decreasing on the interval [e, ∞). This function has a global maximum point at t0 = e ∈ (2, 3).
It results that the function

h : (1, ∞)→ (0, ∞), h(t) := t1/t = eln(t)/t

has the same monotonicity properties; hence,

max
1≤k≤n

k1/k ≤ max
{

21/2, 31/3
}
= 31/3 ∀n ∈ {1, 2, . . .}

Thus, we obtain

f ∈ X ⇒ Sn( f ) = || f ||n ≤ max
1≤k≤n

k1/k|| f ||supu0 ≤ 31/3 || f ||supu0 ∀n ∈ {1, 2, . . .} ⇒

Φ̃( f ) = sup
n∈N

Sn( f ) =
(

n1/nNn( f )
)

n≥1
≤ 31/3 := || f ||supu0,

u0 = (1, . . . , 1, . . .), f ∈ X,

where Φ̃ is the sublinear operator from Corollary 4. Observe that Φ̃ has as Lipschitz constant
31/3 > 1. Next, we apply the same method, replacing n1/n by

n−1/n = exp(−ln(n)/n) ≤ 1 ∀n ∈ {1, 2, . . .}.

In this case, the above estimations turn into the following ones:

Φ̃( f ) = sup
n∈N

Sn( f ) =
(

n−1/nNn( f )
)

n≥1
≤ || f ||supu0 ∀ f ∈ X ⇒

|Φ̃( f )− Φ̃(g)| ≤ Φ̃( f − g) ≤ || f − g||supu0 ⇒

||Φ̃( f )− Φ̃(g)||Y ≤ ||Φ̃( f − g)|| ≤ || f − g||sup ∀ f , g ∈ X.
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To conclude, in this case, Φ̃ is a nonexpansive vector valued norm from X to Y. To obtain
contractions Φ̃, consider

(cn)n≥1 ∈ Y = l∞, 0 ≤ cn ≤ q < 1 ∀n ≥ 1,

Sn( f ) = (c1N1( f ), . . . , cnNn( f ), 0, . . . , 0, . . .),

Φ̃( f ) = sup
n≥1

Sn( f ) = (cnNn( f ))n≥1 ≤ q|| f ||supu0 ∀ f ∈ X ⇒

|Φ̃( f )− Φ̃(g)|Y ≤ Φ̃( f − g) ≤ q|| f − g||supu0 ⇒

||Φ̃( f )− Φ̃(g)||Y ≤ q|| f − g||sup||u0||Y = q|| f − g||sup ∀ f .g ∈ X.

Thus Φ̃ : X → Y+ is a contraction vector-valued norm, of contraction constant q, and the best
value for q is q = sup

n≥1
cn. In particular, if 0 ≤ in f

n≥1
cn ≤ sup

n≥1
cn = 1/2 ∀n ≥ 1, then Φ̃ is a

contraction operator, of contraction constant q = 1/2. In this example, the operators Φn mentioned
in Corollary 4 stand for (0, . . . , 0, cnNn( f ), 0, 0, . . .), and cnNn( f ) is the n− th coordinate of the
vector Sn( f ) ∈ Y+.

3.2. A Constrained Minimization Problem Related to a Markov Moment Problem

The present subsection has as a motivation proving similar results to some of those
of [28]. One proves a result in a general setting, obtained by means of Theorem 3 stated
below. A constrained related optimization problem in infinite dimensional spaces is solved
too. The results presented in the sequel were published in [34]. In particular, using the latter
theorem, one obtains a necessary and sufficient condition for the existence of a feasible
solution (see theorem 4 from below). Under such a condition, the existence of an optimal
feasible solution follows too. On the other hand, the uniqueness and the construction of the
optimal solution does not seem to be obtained easily by such general methods. Therefore,
we focus mainly on the existence problem. For other aspects of such problems on an
optimal solution (uniqueness or non-uniqueness, construction of a unique solution, etc.),
see [28]. In the latter work, one considers the following primal problem (P): study the
constrained minimization problem:

ν = in f
{
||ϕ||∞; ϕ ∈ L∞

µ (Z),
∫

X
ϕ f jdµ = bj, j = 1, . . . , n, 0 ≤ α ≤ ϕ ≤ β

}
,

where α, β are in L∞
µ (Z),

(
f j
)n

j=1 is a subset of L1
µ(Z), and b = (b1, . . . , bn)

t ∈ Rn. The
function ϕ is unknown, and in general, it is not determined by a finite number of moments.
The next theorem discusses some of the above existence type results for a feasible solution.
Here, (Z,M) is a measure space endowed with a σ−finite positive measure µ, andM is
the σ−algebra of all measurable subsets of Z.

Theorem 3. See [22]. Let X be an ordered vector space, Y an order complete vector lattice,{
ϕj
}

j∈J ⊂ X,
{

yj
}

j∈J ⊂ Y given arbitrary families, T1, T2 ∈ L(X, Y) two linear operators. The
following statements are equivalent:

(a) there is a linear operator T ∈ L(X, Y), such that

T1(x) ≤ T(x) ≤ T2(x) ∀x ∈ X+, T
(

ϕj
)
= yj ∀j ∈ J;

(b) for any finite subset J0 ⊂ J and any
{

λj; j ∈ J0
}
⊂ R, the following implication holds true:

(
∑
j∈J0

λj ϕj = ψ2 − ψ1, ψ1, ψ2 ∈ X+

)
:= ∑

j∈J0

λjyj ≤ T2(ψ2)− T1(ψ1);
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If X is a vector lattice, then assertions (a) and (b) are equivalent to (c), where (c) is formulated
as follows:

(c) T1(w) ≤ T2(w) for all w ∈ X+ and for any finite subset J0 ⊂ J and ∀
{

λj; j ∈ J0
}
⊂ R,

we have

∑
j∈J0

λjyj ≤ T2



(

∑
j∈J0

λj ϕj

)+

− T1



(

∑
j∈J0

λj ϕj

)−
.

The next result is an application of Theorem 3 stated above, also using a constrained
minimization argument.

Theorem 4. Let p ∈ (1, ∞) and let q be the conjugate of p. Let
(

f j
)

j∈J be an arbitrary family of

functions in Lp
µ(Z), where the measure µ is σ–finite, and

(
bj
)

j∈J a family of real numbers. Assume

that α, β ∈ Lq
µ(Z) are such that 0 ≤ α ≤ β. The following statements are equivalent:

(a) there exists ϕ ∈ Lq
µ(Z) such that

∫
Z ϕ f jdµ = bj, ∀ j ∈ J, 0 ≤ α ≤ ϕ ≤ β;

(b) for any finite subset J0 ⊆ J and any
{

λj
}

j∈J0
⊂ R, the following implication holds:

∑
j∈J0

λj f j = ψ2 − ψ1, ψ1, ψ2 ∈
(

Lp
µ(Z)

)
+
=⇒ ∑

j∈J0

λjbj ≤
∫

Z
βψ2 dµ−

∫

Z
αψ1 dµ;

Moreover, the set of all feasible solutions ϕ (satisfying the conditions (a)) is weakly compact with
respect the dual pair (Lp, Lq) and the inferior

ν = in f
{
||ϕ||q; ϕ ∈ Lq

µ(Z),
∫

Z
ϕ f jdµ = bj, j ∈ J, 0 ≤ α ≤ ϕ ≤ β

}
≥ ||α||q,

is attained for at least one optimal feasible solution ϕ0.

Proof. Since the implication (a) =⇒ (b) is obvious, the next step consists in proving that
(b) =⇒ (a) . We define the linear positive (continuous) forms T1, T2 on X = Lp

µ(Z), by

T1( f ) =
∫

Z
α f dµ, T2(ϕ) =

∫

Z
β f dµ, f ∈ X.

Then, condition (b) of the present theorem coincides with condition (b) of Theorem 3. A
straightforward application of the latter theorem leads to the existence of a linear form T on
X, such that the interpolation conditions T

(
ϕj
)
= bj, j ∈ J are verified and

∫

Z
αψdµ ≤ T(ψ) ≤

∫

Z
βψdµ, ψ ∈ X+.

In particular, the linear form T is positive on X = Lp
µ(Z), and this space is a Banach lattice.

It is known that on such spaces, any linear positive functional is continuous (see [5], or [8],
or [23]). The conclusion is that T can be represented by means of a nonnegative function
ϕ ∈ Lq

µ(Z). From the previous relations, we infer that

∫

Z
αψdµ ≤

∫

Z
ϕψdµ ≤

∫

Z
βψdµ, ψ ∈ X+.

Writing these relations for ψ = χB, where B is an arbitrary measurable set of positive
measure µ(B), one deduces

∫

B
(ϕ− α)dµ ≥ 0,

∫

B
(β− ϕ)dµ ≥ 0, B ∈ M, µ(B) > 0.
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Now, a standard measure theory argument shows that α ≤ ϕ ≤ β almost everywhere
in Z. This finishes the proof of (b) =⇒ (a). To prove the last assertion of the theorem,
observe that the set of all feasible solutions is weakly compact in Lq

µ(Z), by Alaoglu’s
theorem; it is a weakly closed subset of the closed ball centered at the origin, of radius ||β||q,

and Lq
µ(Z) is reflexive. On the other hand, the norm of any normed linear space is lower

weakly semi-continuous, as the supremum of continuous linear forms, which are also weak
continuous with respect to the dual pair

(
Lq

µ(Z), Lp
µ(Z)

)
, 1 < p < ∞, 1/p + 1/q = 1.

Since Lq
µ(Z) is reflexive for 1 < q < ∞, we conclude that the norm ||·||q is weakly lower

semi-continuous on the weakly (convex) and compact set described at point (a), so that it
attains its minimum at a function ϕ0 of this set. Hence, there exists at least one optimal
feasible solution. This concludes the proof. �

Remark 7. If the set
{

f j
}

j∈J is total in the space Lp
µ(Z), then the set of all feasible solutions is a

singleton, so that there exists a unique solution.

Remark 8. In the proof of Theorem 4, we claimed that any positive linear function on Lp
µ(Z),

1 < p < ∞ is continuous. Actually, there is a much more general result on this subject. Namely, any
positive linear operator acting between two ordered Banach spaces is continuous (see [8] and/or [23]).
In particular, this result holds for positive linear operators acting between Banach lattices.

4. Discussion

In the first part of Section 3, this paper brings a few new elements and completions
with respect to the basic results previously published on this subject. The main completions
are formulated as Corollaries, Remarks, and two examples. The second subsection of
Section 3 reviews the main Theorem 3 and gives one of its applications, stated as Theorem
4. The latter theorem can be applied to the existence of at least one feasible solution for the
constrained minimization problem formulated in the same theorem. The problem under
attention is solved on a concrete function space. The index set J appearing in Theorems 3
and 4 is arbitrary, finite, countable, or uncountable. In the case of the full moment problem
on a closed subset of Rn, we have J = Nn, n ∈ N, n ≥ 1, so in this case, J is a countable
infinite set of indexes. Theorem 4 provides a necessary and sufficient condition for the
feasible set of a minimization problem with many countable constraints being non-empty.
The common point of the two subsections of Section 3 is the notion of convexity, applied to
real-valued functions and to operators. The connection of convex functions (respectively,
convex operators) with the linear functionals (respectively, linear operators) is emphasized
in both subsections. As a direction for future work, we recall the importance of Markov
linear operators. Many such operators arise as solutions of Markov moment problems.
They are dominated by a given continuous sublinear operator and apply the strong order
unit of the domain space to the strong order unit of the codomain space (assuming that
both the domain and the codomain are endowed with a strong order unit).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank the reviewers for their comments and sugges-
tions, leading to the improvement of the presentation of this paper.

Conflicts of Interest: The author declares no conflict of interest.

90



Symmetry 2022, 14, 1390

References
1. Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh, UK, 1965.
2. Berg, C.; Christensen, J.P.R.; Ressel, P. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions; Springer:

New York, NY, USA, 1984.
3. Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI,

USA, 1977.
4. Schmüdgen, K. The Moment Problem. In Graduate Texts in Mathematics; Springer International Publishing AG: Cham, Switzer-

land, 2017.
5. Schaefer, H.H.; Wolff, M.P. Topological Vector Spaces, 2nd ed.; Springer: New York, NY, USA, 1999.
6. Cristescu, R. Ordered Vector Spaces and Linear Operators; Academiei: Bucharest, Romania; Abacus Press: Tunbridge Wells, UK, 1976.
7. Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.; CMS Books in

Mathematics; Springer: New York, NY, USA, 2018; Volume 23.
8. Niculescu, C.; Popa, N. Elements of Theory of Banach Spaces; Academiei: Bucharest, Romania, 1981. (In Romanian)
9. Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980.
10. Neumann, M.M. Uniform boundedness and closed graph theorems for convex operators. Mat. Nachr. 1985, 120, 113–125.

[CrossRef]
11. Olteanu, O. Recent Results on Markov Moment Problem, Polynomial Approximation and Related Fields in Analysis; Generis Publishing:
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Abstract: Sharp bounds for cosh(x)
x , sinh(x)

x , and sin(x)
x were obtained, as well as one new bound for

ex+arctan(x)√
x . A new situation to note about the obtained boundaries is the symmetry in the upper and

lower boundary, where the upper boundary differs by a constant from the lower boundary. New
consequences of the inequalities were obtained in terms of the Riemann–Liovuille fractional integral
and in terms of the standard integral.

Keywords: polynomial bounds; L’Hôpital’s rule of monotonicity; Jordan’s inequality; trigonometric
functions

MSC: 26D05; 26D07; 26D20

1. Introduction and Preliminaries

Inequalities have been an ongoing topic of research since their discovery. As the proof
of how interesting they are, many books were written in that field; for example, refer to
the famous book [1]. The sin(x)

x inequality in this paper will be improved; thus, we must
mention the first inequality of that nature known as Jordan’s inequality.

2
π

<
sin(x)

x
< 1; 0 < x <

π

2
.

Multiple proofs of the Jordans inequality exist, and we refer the reader to the following
papers for more detail [2–4]. Jordan’s inequality was improved on the left-hand side by
Mitrinović-Adamović, while the right-hand side is the known Cusa inequality. We state it
here for educational purposes.

(cos(x))
1
3 <

sin(x)
x

<
2 + cos(x)

3
.

Recently, the authors [5] sharpened Jordan’s inequality further.

(
1− x2

π2

)
e−

ln(2)
π2 x2

<
sin(x)

x
<

(
1− x2

π2

)
e(

1
π2− 1

6 )x2
; 0 < x < π.
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They also provided other interesting bounds in another paper [6].

(
1− x2

π2

) π4
90

e(
π2
90 − 1

6 )x2
<

sin(x)
x

; 0 < x < π

sin(x)
x

<
2
3
+

1
3

(
1− 4x2

π2

) π4
96

e(
π2
24 − 1

2 )x2
; 0 < x <

π

2
.

In this paper, we will sharpen these bounds in a simple and efficient manner. More
about such inequalities can be found in the following papers [7–11].

We provide our first definition of a fractional integral that will be used in the corollaries
of the results.

Definition 1. The generalized hypergeometric function qFq(a; b; x) is defined as follows [12]:

pFq(a; b; x) =
+∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!

where (a)k is the Pochhammer symbol defined as follows [12].

(a)k =
Γ(a + k)

Γ(a)
= a(a + 1) . . . (a + k− 1).

Definition 2. The Riemann–Liouville fractional integral is defined by [13–15] where <(α) > 0
and f is locally integrable.

a Iα
t f (t) =

1
Γ(α)

∫ t

a
(t− x)α−1 f (x)dx.

The functions on which we apply the Riemann–Liouville fractional integral are well
defined in terms of the integral formula. We will require the following Lemma. Lemma 1
([16], p. 10) taken below is known as L’Hôpital’s rule of monotonicity. It is a very useful
tool in the theory of inequalities.

Lemma 1. Let f , g : [m, n]→ R be two continuous functions which are differentiable on (m, n)
and g′ 6= 0 in (m, n). If f ′

g′ is increasing (or decreasing) on (m, n), then the functions f (x)− f (m)
g(x)−g(m)

and f (x)− f (n)
g(x)−g(n) are also increasing (or decreasing) on (m, n). If f ′

g′ is strictly monotone, then the
monotonicity in the relationship is also strict.

2. Main Results

We provide our first Theorem in the paper.

Theorem 1. The following bounds hold for x ∈ (0, 1).

1√
x
+

x
3
2

2
+
√

x <
ex + arctan(x)√

x
< e +

1
4
(π − 10) +

1√
x
+

x
3
2

2
+
√

x.

Proof. Set the following:

g(x) =
ex − 1 + arctan(x)− x2

2 − x√
x

=
h1(x)
h2(x)

where h1(x) = ex − 1 + arctan(x)− x2

2 − x and h2(x) =
√

x with h1(0) = 0 and h2(0) = 0.
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After differentiating, we obtain the following.

h′1(x)
h′2(x)

=

(
−1 + ex − x +

1
1 + x2

)
· 2
√

x.

Taking the following:

f (x) =
(
−1 + ex − x +

1
1 + x2

)
· 2
√

x

and by differentiating it, we obtain the following.

f ′(x) =
(2ex − 3)x5 + (ex − 1)x4 + 2(2ex − 3)x3 + (2ex − 5)x2 + (2ex − 3)x + ex

√
x(x2 + 1)2

The denominator is positive for all x ∈ (0, 1). We need to show that q(x) > 0 where
q(x) denotes the numerator. Using the simple estimates ex ≥ 1 + x, 1 > x2 where x ∈ (0, 1),
we obtain the following.

q(x) > 2x6 + 4x4 > 0.

Therefore f ′(x) > 0, which implies f (x) is increasing; therefore, h′1(x)
h′2(x) is increasing,

which by Lemma 1 means h1(x)−h1(0)
h2(x)−h2(0)

is increasing. However, since we chose functions
h1(x), h2(x) such that h1(0) = 0 and h2(0) = 0, we obtain the fact that the following:

g(x) =
ex − 1 + arctan(x)− x− x2

2√
x

=
h1(x)
h2(x)

is increasing. Therefore, the following inequality holds:

g(0+) < g(x) < g(1).

which provides us with the following inequality.

0 <
ex − 1 + arctan(x)− x− x2

2√
x

< e +
1
4
(π − 10)

This is rearranged and provides us with the desired inequality.

1√
x
+

x
3
2

2
+
√

x <
ex + arctan(x)√

x
< e +

1
4
(π − 10) +

1√
x
+

x
3
2

2
+
√

x

We provide a corollary in which we provide an estimate of the fractional inequality
using the previous theorem.

Corollary 1. The following inequality holds for 0 < a < t, α > t > 0 and t ∈ (0, 1):

1
Γ(α)

(√
πΓ(α)tα− 1

2

Γ
(

α + 1
2

) − 2
√

atα−1
2F1

(
1
2

, 1− α;
3
2

;
a
t

)
+ ψ(a, t, α)

+

tα

(
4(1− a

t )
α
(2αa−a+t)−4t 2F1(− 1

2 ,1−α; 1
2 ; a

t )
4α2−1 +

√
π
(
(at)3/2−

√
at5
)

Γ(α)

t(a−t)Γ(α+ 3
2 )

)

2
√

a

)
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< a Iα
t

(
ex + arctan(x)√

x

)
<

1
Γ(α)

(
(−10 + 4e + π)(t− a)α

4α

+

√
πΓ(α)tα− 1

2

Γ
(

α + 1
2

) − 2
√

atα−1
2F1

(
1
2

, 1− α;
3
2

;
a
t

)
+ ψ(a, t, α)

+

tα

(
4(1− a

t )
α
(2αa−a+t)−4t 2F1(− 1

2 ,1−α; 1
2 ; a

t )
4α2−1 +

√
π
(
(at)3/2−

√
at5
)

Γ(α)

t(a−t)Γ(α+ 3
2 )

)

2
√

a

)

where ψ(a, t, α) = a Iα
t

(
x

3
2

2

)
Γ(α).

Proof. Let us first consider the convergence of the integral for the sake of completeness.

a Iα
t

(
ex + arctan(x)√

x

)
=
∫ t

a
(t− x)α−1 arctan(x) + ex

√
x

dx.

As we can see, the quantity that can induce a problem is (t− x)α−1 when x → t. The
thing to note here is that α > 0, which means that the degree of the expression (t− x)α−1 will
be between (0, 1), which when integrated will not proceed to the denominator; therefore,
there is no division by zero. Another situation to note is that when a = 0, the quantity in
the denominator

√
x can be integrated around zero.

Similar discussions in the other corollaries lead to the same conclusion; therefore, they
are omitted.

Now we are certain about applying the formula. By pplying the Riemann–Liouville
integral transform:

a Iα
t f (t) =

1
Γ(α)

∫ t

a
(t− x)α−1 f (x)dx

on both sides of the inequality, we derived in the last theorem:

1√
x
+

x
3
2

2
+
√

x <
ex + arctan(x)√

x
< e +

1
4
(π − 10) +

1√
x
+

x
3
2

2
+
√

x

and we obtain the following inequality.

Corollary 2. The derived inequality can be used to approximate the solution to a first-order
nonlinear ordinary differential equation. Consider differential equation y = f (x) such that f :
(0, 1)→ (0, 1) and y(t0) are defined.

y′ =
√

yx
ey + arctan(y)

.

Separating the variables and integrating from t0 to t, we obtain the following.

∫ t

t0

ey + arctan(y)√
y

dy =
∫ t

t0

xdx.

Using the inequality and solving the integral, which is then in terms of polynomials, we obtain
the following solution.

The following inequality provides an estimate for cosh(x)
x .

Theorem 2. The following bounds hold for x ∈ (0, 1),
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1
x
+

x
2
+

x3

24
+

x5

720
<

cosh(x)
x

< cosh(1)− 1111
720

+
1
x
+

x
2
+

x3

24
+

x5

720
.

Proof. Let us consider the following function.

g(x) =
cosh(x)− 1− x2

2 − x4

24 − x6

720
x

=
h1(x)
h2(x)

where h1(x) = cosh(x)− 1− x2

2 − x4

24 − x6

720 and h2(x) = x.
Taking its derivative, we obtain the following.

h′1(x)
h′2(x)

= sinh(x)− x− x3

6
− x5

120

Now we realize that the terms with a negative sign are exactly the terms in the sinh(x)
Taylor expansion

sinh(x) =
+∞

∑
n=0

x2n+1

(2n + 1)!
.

h′1(x)
h′2(x)

=
+∞

∑
n=3

x2n+1

(2n + 1)!

This is obviously positive. Now, we need its increasing form. We take the following.

G(x) =
h′1(x)
h′2(x)

=
+∞

∑
n=3

x2n+1

(2n + 1)!

Taking a derivative, we obtain the following:

G′(x) =
(

h′1(x)
h′2(x)

)′
=

+∞

∑
n=3

(2n + 1)
x2n

(2n + 1)!
> 0

which means that G(x) is increasing. Therefore, according to the Lemma 1, we obtain an
increasing function g(x) = h1(x)−h1(0)

h2(x)−h2(0)
. However, since we chose h1, h2 to be zero at x = 0,

we obtain an increasing function g(x). Therefore, the following inequality holds.

g(0) <
cosh(x)− 1− x2

2 − x4

24 − x6

720
x

< g(1)

This provides us with the following:

0 <
cosh(x)− 1− x2

2 − x4

24 − x6

720
x

< cosh(1)− 1111
720

which when rearranged provides us with the desired inequality.

The following Corollary shows how our inequality can be paired up with the fractional
integral to produce an effective inequality for a Iα

t (
cosh(x)

x ).

Corollary 3. The following inequality holds for 0 < a < t and <(α) > 0, t ∈ (0, 1):

1
Γ(α)

(
ψ(a, t, α) + ζ(a, t, α)

)
< a Iα

t

(
cosh(x)

x

)
<
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1
Γ(α)

(
(720 cosh(1)− 1111)(t− a)α

720α
+ ψ(a, t, α) + ζ(a, t, α)

)

where

ψ(a, t, α) =
(t− a)α(aα + t)

2α(α + 1)

+
(t− a)α

(
α(α + 1)(α + 2)a3 + 3α(α + 1)a2t + 6αat2 + 6t3)

24α(α + 1)(α + 2)(α + 3)
+ a Iα

t

(
x5

720

)
Γ(α)

ζ(a, t, α) = tα−2
(

a(α− 1) 3F2

(
1, 1, 2− α; 2, 2;

a
t

)
− t(log(a) + ψ(0)(α)− log(t) + γ)

)

Proof. Applying the Riemann–Liouville integral transform on both sides of the inequality
we derived in the last Theorem and evaluating the left and right hand side, we arrive at the
following inequality.

Corollary 4. Using similar reasoning to the Corollary 2, we can form the following differential
equation, y = f (x), such that f : (0, 1)→ (0, 1) and y(t0) are defined.

y′ =
yx

cosh(y)
.

Separating the variables and using the inequality, we can find the following solution. We omit
the calculations for obvious reasons.

A similar construction of Corollaries for other Theorems can be performed, and we
omit them due to obvious reasons.
The following Theorem sharpens Jordan’s inequality.

Theorem 3. The following bounds hold for x ∈ (0, π
2 ).

1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− x10

11!
<

sin(x)
x

<

1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− x10

11!
− 1+

2
π
+

π2

24
− π4

1920
+

π6

322560
− π8

92897280
+

π10

40874803200
.

Proof. Let us consider the following function.

g(x) =
sin(x)− x + x3

3! − x5

5! +
x7

7! − x9

9! +
x11

11!
x

=
h1(x)
h2(x)

Differentiating h1 and h2, respectively, we obtain the following.

h′1(x)
h′2(x)

= cos(x)− 1 +
x2

2!
− x4

4!
+

x6

6!
− x8

8!
+

x10

10!

Expanding cos(x) into a Taylor series:

cos(x) =
+∞

∑
k=0

(−1)kx2k

(2k)!

we realize that the terms outside of summation are exactly the coefficients of the cos(x) ex-
pansion and, to be precise, the terms are exactly the first five terms of the cos(x) expansion,
which leaves us with the following:

h′1(x)
h′2(x)

=
+∞

∑
k=6

(−1)kx2k

(2k)!
.
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which is obviously positive since it is a remainder of the positive Taylor expansion.
Now, we need an increasing form. Taking the following:

G(x) =
h′1(x)
h′2(x)

=
+∞

∑
k=6

(−1)kx2k

(2k)!
.

and differentiating G(x), we obtain the following:

G′(x) =
(

h′1(x)
h′2(x)

)′
=

+∞

∑
k=6

2k
(−1)kx2k−1

(2k)!
> 0.

which means that G(x) is increasing. Therefore, we obtain the fact that h′1(x)
h′2(x) is increasing

in both cases; therefore, h1(x)−h1(0)
h2(x)−h2(0)

is increasing, but we chose h1(x), h2(x) such that the
following holds h1,2(0) = 0. Therefore since g(x) is an increasing function, the following
relation holds:

g(0) < g(x) < g
(π

2

)
.

which is evaluated at the following.

0 <
sin(x)− x + x3

3! − x5

5! +
x7

7! − x9

9! +
x11

11!
x

<

−1 +
2
π

+
π2

24
− π4

1920
+

π6

322560
− π8

92897280
+

π10

40874803200
When rearranged, it provides us with the desired inequality.

In the following, we provide a corollary of the previously improved inequality.

Corollary 5. The following inequality holds.

1.37076216382 <
∫ π

2

0

sin(x)
x

dx < 1.37076222008

Proof. Integrating the inequality derived in the last Theorem from 0 to π
2 and integrating

term by term, we obtain the following inequality.

The next Theorem provides an estimate on the sinh(x)
x inequality.

Theorem 4. The following bounds hold for x ∈ (0, 1).

1 +
x2

3!
+

x4

5!
+

x6

7!
<

sinh(x)
x

< 1 +
x2

3!
+

x4

5!
+

x6

7!
+ sinh(1)− 5923

5040
.

Proof. Let us consider the following function.

g(x) =
sinh(x)− x− x3

3! − x5

5! − x7

7!
x

=
h1(x)
h2(x)

Taking derivative of h1(x) and h2(x), we obtain the following.

h′1(x)
h′2(x)

= cosh(x)− 1− x2

2!
− x4

4!
− x6

6!
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Now we expand the cosh into its Taylor series and realize that the terms outside of the
sum are exactly the first four terms in the summation. Therefore, we obtain the following:

h′1(x)
h′2(x)

=
+∞

∑
n=4

x2n

(2n)!
.

which is positive. We also it in increasing form. Taking the following:

G(x) =
h′1(x)
h′2(x)

=
+∞

∑
n=4

x2n

(2n)!

and taking a derivative, we obtain the following:

G′(x) =
(

h′1(x)
h′2(x)

)′
=

+∞

∑
n=4

2n
x2n−1

(2n)!
.

which is positive; therefore, G(x) is increasing. From the Lemma, we obtain that function
h1(x)−h1(0)
h2(x)−h2(0)

is increasing too. However, since we chose functions h1, h2 to be zero when
x = 0, we obtain an increasing g(x) . Therefore, the following inequality follows.

g(0) < g(x) < g(1).

When the expression is solved for sinh(x)
x , we obtained the desired inequality.

The following Corollary illustrates how the improved bounds can be used in estimating
the integral.

Corollary 6. The following bounds for the integral hold.

1.05725056689 <
∫ 1

0

sinh(x)
x

dx < 1.05725334784.

Proof. Integrating the inequality in the previously derived Theorem from 0 to 1, we obtain
the desired bounds.

3. Conclusions

1. Sharper upper and lower bounds were obtained in terms of polynomials. New
consequences of such sharper bounds are provided in the corollaries in terms of the

integral estimate of
∫ π

2
0

sin(x)
x dx and in terms of the fractional integral estimates of

a Iα
t

(
ex+arctan(x)√

x

)
and a Iα

t

(
cosh(x)

x

)
.

2. Question arises with respect to which would be the lowest upper and biggest lower
bound for obtained inequalities, which leaves room for further research.

3. Each of Theorem 2–4 can be easily generalized to arbitrary n as they rely on the
remainder of Taylor expansion.
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11. Rodić, M. Some Generalizations of the Jensen-Type Inequalities with Applications. Axioms 2022, 11, 227. [CrossRef]
12. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publica-

tions: New York, NY, USA, 1992.
13. Hermann, R. Fractional Calculus An Introduction For Physicists; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011.
14. Oldham, K.B.; Spanier, J. The Fractional Calculus Theory and Applications of Differentation and Integration to Arbitrary Order; Academic

Press, Inc.: London, UK, 1974.
15. Yang, X.J. General Fractional Derivatives Theory, Methods and Applications; Taylor and Francis Group: London, UK, 2019.
16. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities and Quasiconformal Maps; John Wiley and

Sons: New York, NY, USA, 1997.

101





Citation: Lai, K.K.; Mishra, S.K.;

Bisht, J.; Hassan, M. Hermite–

Hadamard Type Inclusions for

Interval-Valued Coordinated

Preinvex Functions. Symmetry 2022,

14, 771. https://doi.org/10.3390/

sym14040771

Academic Editors: Octav Olteanu

and Savin Treanta

Received: 18 March 2022

Accepted: 2 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article
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Abstract: The connection between generalized convexity and symmetry has been studied by many
authors in recent years. Due to this strong connection, generalized convexity and symmetry have
arisen as a new topic in the subject of inequalities. In this paper, we introduce the concept of
interval-valued preinvex functions on the coordinates in a rectangle from the plane and prove
Hermite–Hadamard type inclusions for interval-valued preinvex functions on coordinates. Further,
we establish Hermite–Hadamard type inclusions for the product of two interval-valued coordinated
preinvex functions. These results are motivated by the symmetric results obtained in the recent article
by Kara et al. in 2021 on weighted Hermite–Hadamard type inclusions for products of coordinated
convex interval-valued functions. Our established results generalize and extend some recent results
obtained in the existing literature. Moreover, we provide suitable examples in the support of our
theoretical results.

Keywords: invex set; coordinated preinvex functions; Hermite–Hadamard inequalities; interval-valued
functions

1. Introduction

In recent years, many researchers have made efforts to generalize and extend the
classical convexity in different directions and discovered new integral inequalities for this
generalized and extended convexity; see, for instance, [1–6]. In 1981, Hanson [7] intro-
duced a useful generalization of convex functions known as invex functions. Craven and
Glover [8] showed that the class of invex functions is equivalent to the class of functions
whose stationary points are global minima. The concept of preinvex functions was intro-
duced by Ben-Israel and Mond [9]. It is well known that preinvex functions are nonconvex
functions. This concept inspired a large number of research papers dealing with the analysis
and applications of this newly defined nonconvex function in optimization theory and
related fields; see [10–12].

Noor [13] obtained Hermite–Hadamard (H-H) inequality for the preinvex functions,
which is a generalization of the classical H-H inequality. Dragomir [14] defined the concept
of classical convex functions on coordinates and demonstrated H-H type inequalities for
these functions. Further, Latif and Dragomir [15] defined preinvex functions on the coordi-
nates and established some H-H type inequalities for functions whose second-order partial
derivatives in absolute value are preinvex on the coordinates. Matłoka [16] introduced
the class of (h1, h2)-preinvex functions on the coordinates and proved H-H and Fejér type
inequalities using the symmetricity of the positive function. For more details on preinvex
functions and related inequalities, see [17–21].

The concept of interval analysis was first considered by Moore [22]. In 1979, Moore [23]
studied the integration of interval-valued functions and investigated interval methods for
computing upper and lower bounds on exact values of integrals of interval-valued func-
tions. Bhurjee and Panda [24] presented a general multi-objective fractional programming
problem whose parameters in the objective functions and constraints are intervals and
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developed a methodology to determine its efficient solutions. Zhang et al. [25] extended
the concepts of invexity and preinvexity to interval-valued functions and derived KKT
optimality conditions for LU-prinvex and invex optimization problems with an interval-
valued objective function. Zhao et al. [26] introduced the interval double integral for
interval-valued functions and gave Chebyshev type inequalities for interval-valued func-
tions. Practical applications of interval analysis include areas of economics, chemical
engineering, beam physics, control circuitry design, global optimization, robotics, error
analysis, signal processing, and computer graphics (see [27–31]).

Budak et al. [32] defined interval-valued right-sided Riemann–Liouville fractional in-
tegral and derived H-H type inequalities for interval-valued Riemann–Liouville fractional
integrals. Sharma et al. [33] introduced interval-valued preinvex function and established
fractional H-H type inequalities for these functions. Recently, Zhao et al. [34,35] proposed
the notion of interval-valued convex functions on coordinates and established H-H type in-
equalities for these interval-valued coordinated convex functions. Further, Budak et al. [36]
described a new concept of interval-valued fractional integrals on coordinates and investi-
gated H-H type inequalities for interval-valued coordinated convex functions using these
fractional integrals. Kara et al. [37] proved H–H–Fejér type inclusions for the product of
two interval-valued convex functions on coordinates. For more details of the relationships
between the different forms of interval-valued functions and integral inequalities, we refer
to [38–43] and references therein.

The work in this research paper is mainly motivated by Zhao et al. [34] and Sharma
et al. [33]. We propose the notion of interval-valued preinvex functions on coordinates,
which is a generalization of interval-valued convex functions on coordinates, and prove
new H-H type inclusions for these interval-valued coordinated preinvex functions. We also
present H-H type inclusions for the product of two interval-valued preinvex functions on
coordinates. Moreover, we illustrate our results with the help of some suitable examples.
The results established in this paper include the previously known results for interval-
valued convex functions on coordinates as a special case. For future directions, we can
investigate H-H type inclusions for interval-valued coordinated preinvex functions using
interval-valued fractional integrals on coordinates.

The organization of this paper is as follows: In Section 2, we present some necessary
preliminaries. In Section 3, we define preinvex interval-valued functions on coordinates
and investigate H-H type inclusions for coordinated preinvex interval-valued functions.
Further, we present H-H type inclusions for the product of two interval-valued preinvex
functions on coordinates. Some special cases of these results are also investigated in
Section 3. In Section 4, we discuss the conclusions and future directions of this study.

2. Preliminaries

In this section, we recall some notations, basic definitions, and related results that are
necessary for this paper.

Let RI , R+
I , R−I be the set of all closed intervals of R, set of all positive closed intervals

of R, and set of all negative closed intervals of R, respectively. If Λ ∈ RI , then interval Λ is
defined by:

Λ = [Λ, Λ] = {u ∈ R : Λ ≤ u ≤ Λ}, Λ, Λ ∈ R.

The interval Λ = [Λ, Λ] is called degenerated if Λ = Λ; positive if Λ > 0; and negative
if Λ < 0.

Let Λ1 = [Λ1, Λ1], Λ2 = [Λ2, Λ2] ∈ RI . We say Λ1 ⊆ Λ2 (or Λ2 ⊇ Λ1) if and only if
Λ2 ≤ Λ1 and Λ1 ≤ Λ2.

The Hausdorff distance between Λ1 = [Λ1, Λ1] and Λ2 = [Λ2, Λ2] is defined as

d(Λ1, Λ2) = d([Λ1, Λ1], [Λ2, Λ2]) = max{| Λ1 −Λ2 |, | Λ1 −Λ2 |}.

For more properties and notations of intervals, we refer to [23,28].

104



Symmetry 2022, 14, 771

Definition 1 ([23]). A function Ω is called an interval-valued function on [p, q] if it assigns a
nonempty interval to each u ∈ [p, q] and

Ω(u) = [Ω(u), Ω(u)],

where Ω and Ω are real-valued functions.

A partition P1 of [p, q] is a set of numbers {ωi−1, νi, ωi}m
i=1 such that

P1 : p = ω0 < ω1 < . . . < ωm = q

with ωi−1 ≤ νi ≤ ωi for all i = 1, 2, 3 . . . m. Partition P1 is said to be δ-fine if ∆ωi < δ for
all i, where ∆ωi = ωi − ωi−1. Let the set of all δ-fine partitions of [p, q] be denoted by
P(δ, [p, q]). If {ωi−1, νi, ωi}m

i=1 is a δ-fine P1 of [p, q] and {σj−1, µj, σj}n
j=1 is a δ-fine P2 of

[r, s], then the rectangles
∆i,j = [ωi−1, ωi]× [σj−1, σj]

partition rectangle ∆ = [p, q] × [r, s] with the points (νi, µj) are inside the rectangles
[ωi−1, ωi] × [σj−1, σj]. Furthermore, we denote the set of all δ-fine partitions of ∆ with
P1 × P2 by P(δ, ∆), where P1 ∈ P(δ, [p, q]) and P2 ∈ P(δ, [r, s]). Let ∆Ai,j be the area of
the rectangle ∆i,j. Choose an arbitrary (νi, µj) from each rectangle ∆i,j, where 1 ≤ i ≤ m,
1 ≤ j ≤ n, and we get

S(Ω, P, δ, ∆) =
m

∑
i=1

n

∑
j=1

Ω(νi, µj)∆Ai,j,

where Ω : ∆→ RI . S(Ω, P, δ, ∆) denotes integral sum of Ω corresponding to the P ∈ P(δ, ∆).

Definition 2 ([26]). A function Ω : [p, q] → RI is called interval Riemann integrable (IR-
integrable) on [p, q] with (IR)-integral I = (IR)

∫ q
p Ω(λ)dλ if for each ε > 0, there exists δ > 0

such that
d(S(Ω, P, δ, [p, q]), I) < ε

for each P ∈ P(δ, [p, q]).

The collection of all (IR)-integrable functions on [p, q] denoted by IR([p,q]).

Definition 3 ([26]). A function Ω : ∆→ RI is called interval double integrable (ID-integrable)
on ∆ with (ID)-integral I = (ID)

∫ ∫
∆ Ω(u, v)dA if for each ε > 0, there exists δ > 0 such that

d(S(Ω, P, δ, ∆), I) < ε

for each P ∈ P(δ, ∆).

The collection of all (ID)-integrable functions on ∆ denoted by ID(∆).

Theorem 1 ([28]). Let Ω : [p, q] → RI be an interval-valued function such that Ω = [Ω, Ω].
Then, ψ is (IR)-integrable on [p, q] if and only if Ω and Ω are R-integrable on [p, q] and

(IR)
∫ q

p
Ω(u)du =

[
(R)

∫ q

p
Ω(u)du, (R)

∫ q

p
Ω(u)du

]
.

Theorem 2 ([26]). Let ∆ = [p, q]× [r, s]. If Ω : ∆→ RI be an interval-valued function such that
Ω = [Ω, Ω] and Ω ∈ ID(∆), then we have

(ID)
∫ ∫

∆
Ω(u, v)dA = (ID)

∫ q

p
(ID)

∫ s

r
Ω(u, v)dvdu.

105



Symmetry 2022, 14, 771

Definition 4 ([12]). The set X ⊆ Rn is said to be invex with respect to vector function η :
Rn ×Rn → Rn, if

v + λη(u, v) ∈ X, f or all u, v ∈ X, λ ∈ [0, 1].

Remark 1. Every convex set is invex with respect to η(u, v) = u− v but not conversely.

Definition 5 ([12]). The function Ω on the invex set X is said to be preinvex with respect to η, if

Ω(v + λη(u, v)) ≤ (1− λ)Ω(v) + λΩ(u), f or all u, v ∈ X, λ ∈ [0, 1].

Remark 2. Every convex function is preinvex with respect to η(u, v) = u− v but not conversely.

Condition C [10] Let X ⊆ R be an invex set with respect to η(., .). Then, function η
satisfies Condition C if for any λ ∈ [0, 1] and any u, v ∈ X,

η(v, v + λη(u, v)) = −λη(u, v),

η(u, v + λη(u, v)) = (1− λ)η(u, v).

For all λ1, λ2 ∈ [0, 1], u, v ∈ X and from Condition C, we have

η(v + λ2η(u, v), v + λ1η(u, v)) = (λ2 − λ1)η(u, v).

Theorem 3 ([13]). Let Ω : [p, p + η(q, p)] → (0, ∞) be a preinvex function on the interval of
the real numbers Xo (the interior of X) and p, q ∈ Xo with p < p + η(q, p). Then the following
inequality holds:

Ω
(

2p + η(q, p)
2

)
≤ 1

η(q, p)

∫ p+η(q,p)

p
Ω(u)du ≤ Ω(p) + Ω(q)

2
.

Definition 6 ([33]). If X ⊆ R is an invex set with respect to η(., .), Ω(u) = [ψ(u), ψ(u)] is an
interval-valued function on X. Then Ω is preinvex interval-valued function on X with respect to
η(., .) if

Ω(v + λη(u, v)) ⊇ λΩ(u) + (1− λ)Ω(v), f or all u, v ∈ X, λ ∈ [0, 1].

Let X1 and X2 be two nonempty subsets of Rn, η1 : X1×X1 → Rn and η2 : X2×X2 →
Rn.

Definition 7 ([16]). Let (u, v) ∈ X1 × X2. The set X1 × X2 is said to be invex at (u, v) with
respect to η1 and η2, if for each (w, z) ∈ X1 × X2 and λ1,λ2∈ [0, 1],

(u + λ1η1(w, u), v + λ2η2(z, v)) ∈ X1 × X2.

X1 × X2 is said to be invex set with respect to η1 and η2 if X1 × X2 is invex at each
(w, z) ∈ X1 × X2.

Theorem 4 ([33]). Let X ⊆ R be an open invex subset with respect to η : X × X → R and
p, q ∈ X with p < p + η(q, p). If Ω : [p, p + η(q, p)] → R+

I is a preinvex interval-valued
function such that Ω(λ) = [Ω(λ), Ω(λ)]; Ω ∈ L[p, p + η(q, p)] and η satisfies Condition C and
α > 0, then

Ω
(

p +
η(q, p)

2

)
⊇ Γ(α + 1)

2ηα(q, p)
[Jα

p+Ω(p + η(q, p)) + Jα
(p+η(q,p))−Ω(p)]

⊇ Ω(p) + Ω(p + η(q, p))
2

⊇ Ω(p) + Ω(q)
2

.
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Corollary 1. If α = 1, then Theorem 4 reduces to the following result:

Ω
(

p +
η(q, p)

2

)
⊇ 1

η(q, p)

∫ p+η(q,p)

p
Ω(λ)dλ

⊇ Ω(p) + Ω(p + η(q, p))
2

⊇ Ω(p) + Ω(q)
2

.

Theorem 5 ([33]). Let X ⊆ R be an open invex subset with respect to η : X × X → R and
p, q ∈ X with p < p + η(q, p). If Ω, Υ : [p, p + η(q, p)] → R+

I is a preinvex interval-valued
function such that Ω(λ) = [Ω(λ), Ω(λ)] and Υ(λ) = [Υ(λ), Υ(λ)]; Ω, Υ ∈ L[p, p + η(q, p)]
and η satisfies Condition C and α > 0, then

Γ(α + 1)
2ηα(q, p)

[Jα
p+Ω(p + η(q, p))Υ(p + η(q, p)) + Jα

(p+η(q,p))−Ω(p)Υ(p)]

⊇
(

1
2
− α

(α + 1)(α + 2)

)
F(p, p + η(q, p)) +

α

(α + 1)(α + 2)
G(p, p + η(q, p)) (1)

and

2Ω
(

p +
1
2

η(q, p)
)

Υ

(
p +

1
2

η(q, p)
)

⊇ Γ(α + 1)
2ηα(q, p)

[Jα
p+Ω(p + η(q, p))Υ(p + η(q, p)) + Jα

(p+η(q,p))−Ω(p)Υ(p)]

+

(
1
2
− α

(α + 1)(α + 2)

)
G(p, p + η(q, p)) +

α

(α + 1)(α + 2)
F(p, p + η(q, p)), (2)

where F(p, p+ η(q, p)) = Ω(p)Υ(p) +Ω(p+ η(q, p))Υ(p+ η(q, p)) and G(p, p+ η(q, p)) =
Ω(p)Υ(p + η(q, p)) + Ω(p + η(q, p))Υ(p).

Corollary 2. If α = 1, then (1) reduces to the following result:

1
η(q, p)

∫ p+η(q,p)

p
Ω(λ)Υ(λ)dλ ⊇ 1

3
F(p, p + η(q, p)) +

1
6

G(p, p + η(q, p)).

Corollary 3. If α = 1, then (2) reduces to the following result:

2Ω
(

p +
1
2

η(q, p)
)

Υ

(
p +

1
2

η(q, p)
)

⊇ 1
η(q, p)

∫ p+η(q,p)

p
Ω(λ)Υ(λ)dλ +

1
3

G(p, p + η(q, p)) +
1
6

F(p, p + η(q, p)).

3. Main Results

In this section, first, we give the definition of interval-valued coordinated prein-
vex function.

Definition 8. Let X1 × X2 be an invex set with respect to η1 and η2, Ω = [Ω, Ω] be an interval
valued function defined on X1 × X2. The function Ω is said to be interval-valued coordinated
preinvex function with respect to η1 and η2 if the partial mappings Ωv : X1 → R+

I , Ωv(w) =
(w, v) and Ωu : X2 → R+

I , Ωu(z) = (u, z) are interval-valued preinvex functions with respect to
η1 and η2, respectively, for all u ∈ X1 and v ∈ X2.
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Remark 3. From the definition of interval-valued coordinated preinvex functions, it follows that if
Ω is an interval-valued coordinated preinvex function, then

Ω(u + λ1η1(w, u), v + λ2η2(z, v)) ⊇ (1− λ1)(1− λ2)Ω(u, v) + (1− λ1)λ2Ω(u, z)

+ λ1(1− λ2)Ω(w, v) + λ1λ2Ω(w, z),

for all (u, v), (u, z), (w, v), (w, z) ∈ X1 × X2 and λ1, λ2 ∈ [0, 1].

If η1(w, u) = w− u and η2(z, v) = z− v, then the definition of interval-valued coordi-
nated preinvex function reduces to the definition of interval-valued coordinated convex
function proposed by Zhao et al. [34].

Example 1. An interval-valued function Ω : [0, 1]× [ 1
2 , 1] → R+

I defined as Ω(u, v) = [u +
v, (2− u)(2− v)] is an interval-valued coordinated preinvex function with respect to η1(w, u) =
w− u− 1 and η2(z, v) = z− 2v for all u, w ∈ [0, 1] and v, z ∈

[ 1
2 , 1
]
.

Now, we establish H-H type inclusions for interval-valued preinvex functions on
coordinates. In what follows, without any confusion, we will not include the symbol (R),
(IR), or (ID) before the integral sign.

Theorem 6. Let X1 × X2 be an invex set with respect to η1 and η2. If Ω : X1 × X2 → R+
I is an

interval-valued coordinated preinvex function with respect to η1 and η2 such that Ω = [Ω, Ω] and
p < p + η1(q, p), r < r + η2(s, r), where p, q ∈ X1 and r, s ∈ X2. If η1, η2 satisfy Condition C,
then we have

Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)
⊇ 1

η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
4
[Ω(p, r) + Ω(q, r) + Ω(p, s) + Ω(q, s)].

Proof. Since Ω is an interval-valued preinvex function on coordinates with respect to η1
and η2, we have

Ω(p + λ1η1(q, p), r + λ2η2(s, r)) ⊇ (1− λ1)(1− λ2)Ω(p, r) + (1− λ1)λ2Ω(p, s)

+ λ1(1− λ2)Ω(q, r) + λ1λ2Ω(q, s). (3)

Integrating (3) with respect to (λ1, λ2) over [0, 1]× [0, 1], we get

∫ 1

0

∫ 1

0
Ω(p + λ1η1(q, p), r + λ2η2(s, r))dλ2dλ1

⊇
∫ 1

0

∫ 1

0
(1− λ1)(1− λ2)Ω(p, r)dλ2dλ1 +

∫ 1

0

∫ 1

0
(1− λ1)λ2Ω(p, s)dλ2dλ1

+
∫ 1

0

∫ 1

0
λ1(1− λ2)Ω(q, r)dλ2dλ1 +

∫ 1

0

∫ 1

0
λ1λ2Ω(q, s)dλ2dλ1.

This implies that

1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu ⊇ 1

4
[Ω(p, r) + Ω(p, s) + Ω(q, r) + Ω(q, s)]. (4)

Using the definition of an interval-valued coordinated preinvex function and Condi-
tion C for η1, η2, we get
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Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

= Ω(p + λ1η1(q, p) +
1
2

η1(p + (1− λ1)η1(q, p), p + λ1η1(q, p)), r + λ2η2(s, r)

+
1
2

η2(r + (1− λ2)η2(s, r), r + λ2η2(s, r)))

⊇ 1
4
[Ω(p + λ1η1(q, p), r + λ2η2(s, r)) + Ω(p + λ1η1(q, p), r + (1− λ2)η2(s, r))

+ Ω(p + (1− λ1)η1(q, p), r + λ2η2(s, r)) + Ω(p + (1− λ1)η1(q, p), r + (1− λ2)η2(s, r))] (5)

Thus, integrating (5) with respect to (λ1, λ2) over [0, 1]× [0, 1], we get

∫ 1

0

∫ 1

0
Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

dλ2dλ1

⊇ 1
4

∫ 1

0

∫ 1

0
[Ω(p + λ1η1(q, p), r + λ2η2(s, r)) + Ω(p + λ1η1(q, p), r + (1− λ2)η2(s, r))

+ Ω(p + (1− λ1)η1(q, p), r + λ2η2(s, r)) + Ω(p + (1− λ1)η1(q, p), r + (1− λ2)η2(s, r))]dλ2dλ1.

This implies

Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)
⊇ 1

η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu. (6)

From (4) and (6), we get the desired result.

Theorem 7. Let X1 × X2 be an invex set with respect to η1 and η2. If Ω : [p, p + η1(q, p)]×
[r, r + η2(s, r)]→ R+

I is an interval-valued coordinated preinvex function with respect to η1 and
η2 such that Ω = [Ω, Ω] and p < p + η1(q, p), r < r + η2(s, r), where p, q ∈ X1 and r, s ∈ X2.
If η1, η2 satisfy Condition C, then we have

1
η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du +
1

η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv

⊇ 2
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
2

[
1

η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r) + Ω(u, r + η2(s, r)))du

+
1

η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v) + Ω(p + η1(q, p), v))dv

]
. (7)

Proof. Since Ω is an interval-valued preinvex function on coordinates [p, p + η1(q, p)]×
[r, r + η2(s, r)], then Ωu : [r, r + η2(s, r)] → R+

I , Ωu(v) = Ω(u, v) is an interval-valued
preinvex function on [r, r + η2(s, r)] for all u ∈ [p, p + η1(q, p)]. From Corollary 1, we have

Ωu

(
r +

1
2

η2(s, r))
)
⊇ 1

η2(s, r)

∫ r+η2(s,r)

r
Ωu(v)dv ⊇ Ωu(r) + Ωu(r + η2(s, r))

2
.

This implies

Ω
(

u, r +
1
2

η2(s, r))
)
⊇ 1

η2(s, r)

∫ r+η2(s,r)

r
Ω(u, v)dv ⊇ Ω(u, r) + Ω(u, r + η2(s, r))

2
. (8)
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Integrating (8) over [p, p + η1(q, p)] with respect to u, then dividing by η1(q, p), we get

1
η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
2η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r) + Ω(u, r + η2(s, r)))du. (9)

Similarly, Ωv : [p, p + η1(p, q)] → R+
I , Ωv(u) = Ω(u, v) is interval-valued preinvex

function on [p, p + η1(p, q)] for all v ∈ [r, r + η2(s, r)]. Then, we have

1
η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
2η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v) + Ω(p + η1(q, p), v))dv. (10)

By adding (9) and (10), we have

1
η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du +
1

η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv

⊇ 2
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
2

[
1

η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r) + Ω(u, r + η2(s, r)))du

+
1

η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v) + Ω(p + η1(q, p), v))dv

]
.

This completes the proof.

Example 2. Let [p, p + η1(q, p)] = [ 1
4 , 1

2 ], [r, r + η2(s, r)] = [ 1
4 , 1

2 ] and η1(q, p) = q − 2p,
η2(s, r) = s − 2r. Let Ω : [ 1

4 , 1
2 ] × [ 1

4 , 1
2 ] → R+

I be defined by Ω(u, v) = [uv, (1− u)(1−
v)] ∀ u ∈ [ 1

4 , 1
2 ] and v ∈ [ 1

4 , 1
2 ]. Then all assumptions of Theorem 7 are satisfied.

Theorem 8. Let X1 × X2 be an invex set with respect to η1 and η2. If Ω : [p, p + η1(q, p)]×
[r, r + η2(s, r)]→ R+

I is an interval-valued coordinated preinvex function with respect to η1 and
η2 such that Ω = [Ω, Ω] and p < p + η1(q, p), r < r + η2(s, r), where p, q ∈ X1 and r, s ∈ X2.
If η1, η2 satisfy Condition C, then we have
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Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r))
)

⊇ 1
2

[
1

η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du +
1

η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv
]

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)dvdu

⊇ 1
4

[
1

η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r) + Ω(u, r + η2(s, r)))du

+
1

η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v) + Ω(p + η1(q, p), v))dv

]

⊇ 1
4
[Ω(p, r) + Ω(p + η1(q, p), r) + Ω(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))]

⊇ 1
4
[Ω(p, r) + Ω(q, r) + Ω(p, s) + Ω(q, s)].

Proof. Since Ω is an interval-valued preinvex function on coordinates [p, p + η1(q, p)]×
[r, r + η2(s, r)], then from Corollary 1 we get

Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r))
)
⊇ 1

η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du, (11)

Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r))
)
⊇ 1

η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv. (12)

Adding (11) and (12), we have

Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r))
)

⊇ 1
2

[
1

η1(q, p)

∫ p+η1(q,p)

p
Ω
(

u, r +
1
2

η2(s, r))
)

du +
1

η2(s, r)

∫ r+η2(s,r)

r
Ω
(

p +
1
2

η1(q, p), v
)

dv
]

. (13)

Again from Corollary 1, we get

1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r)du ⊇ Ω(p, r) + Ω(p + η1(q, p), r)

2
, (14)

1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r + η2(s, r))du ⊇ Ω(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))

2
, (15)

1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p, v)dv ⊇ Ω(p, r) + Ω(p, r + η2(s, r))

2
, (16)

1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p + η1(q, p), v)dv ⊇ Ω(p + η1(q, p), r) + Ω(p + η1(q, p), r + η2(s, r))

2
. (17)
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Adding (14)–(17), we get

1
η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r) + Ω(u, r + η2(s, r)))du

+
1

η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v) + Ω(p + η1(q, p), v))dv

⊇ Ω(p, r) + Ω(p + η1(q, p), r) + Ω(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r)). (18)

By Corollary 1, we also have

Ω(p, r) + Ω(p + η1(q, p), r) + Ω(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))

⊇ Ω(p, r) + Ω(q, r) + Ω(p, s) + Ω(q, s). (19)

From (7), (13), (18), and (19), we get the desired result.

Remark 4. If we put η1(q, p) = q− p and η2(s, r) = s− r in Theorem 8, we obtain Theorem 7
of [34].

Next, we prove H-H type inclusions for the product of two interval-valued coordinated
preinvex functions.

Theorem 9. Let X1 × X2 be an invex set with respect to η1 and η2. If Ω, Υ : [p, p + η1(q, p)]×
[r, r + η2(s, r)]→ R+

I are interval-valued coordinated preinvex functions with respect to η1 and η2
such that Ω = [Ω, Ω], Υ = [Υ, Υ] and p < p + η1(q, p), r < r + η2(s, r), where p, q ∈ X1 and
r, s ∈ X2. If η1, η2 satisfy Condition C, then

1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

⊇ 1
9

N1(p, q, r, s) +
1
18

N2(p, q, r, s) +
1

18
N3(p, q, r, s) +

1
36

N4(p, q, r, s),

where
N1(p, q, r, s) = Ω(p, r)Υ(p, r) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r) + Ω(p, r + η2(s, r))
Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r)),

N2(p, q, r, s) = Ω(p, r)Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r)Υ(p, r) + Ω(p, r + η2(s, r))
Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r + η2(s, r)),

N3(p, q, r, s) = Ω(p, r)Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r + η2(s, r)) +
Ω(p, r + η2(s, r))Υ(p, r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r),

N4(p, q, r, s) = Ω(p, r)Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p, r + η2(s, r)) +
Ω(p, r + η2(s, r))Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r).

Proof. Since Ω and Υ are interval-valued coordinated preinvex functions on [p, p+ η1(q, p)]×
[r, r + η2(s, r)], we have

Ωu(v) : [r, r + η2(s, r)]→ R+
I , Ωu(v) = Ω(u, v)

and

Υu(v) : [r, r + η2(s, r)]→ R+
I , Υu(v) = Υ(u, v)
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are interval-valued preinvex functions on [r, r + η2(s, r)] for all u ∈ [p, p + η1(q, p)]. Similarly,

Ωv(u) : [p, p + η1(q, p)]→ R+
I , Ωv(u) = Ω(u, v)

and

Υv(u) : [p, p + η1(q, p)]→ R+
I , Υv(u) = Υ(u, v)

are interval-valued preinvex functions on [p, p + η1(q, p)] for all v ∈ [r, r + η2(s, r)].

From Corollary 2, we get

1
η2(s, r)

∫ r+η2(s,r)

r
Ωu(v)Υu(v)dv

⊇ 1
3
[Ωu(r)Υu(r) + Ωu(r + η2(s, r))Υu(r + η2(s, r))] +

1
6
[Ωu(r)Υu(r + η2(s, r)) + Ωu(r + η2(s, r))Υu(r)].

This implies

1
η2(s, r)

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dv

⊇ 1
3
[Ω(u, r)Υ(u, r) + Ω(u, r + η2(s, r))Υ(u, r + η2(s, r))]

+
1
6
[Ω(u, r)Υ(u, r + η2(s, r)) + Ω(u, r + η2(s, r))Υ(u, r)]. (20)

Integrating (20) with respect to u over [p, p + η1(q, p)] and after then dividing by
η1(q, p), we find

1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

⊇ 1
3η1(q, p)

∫ p+η1(q,p)

p
[Ω(u, r)Υ(u, r) + Ω(u, r + η2(s, r))Υ(u, r + η2(s, r))]du

+
1

6η1(q, p)

∫ p+η1(q,p)

p
[Ω(u, r)Υ(u, r + η2(s, r)) + Ω(u, r + η2(s, r))Υ(u, r)]du. (21)

Again from Corollary 2, we have

1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r)Υ(u, r)du

⊇ 1
3
[Ω(p, r)Υ(p, r) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r]

+
1
6
[Ω(p, r)Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r)Υ(p, r)], (22)

1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r + η2(s, r))Υ(u, r + η2(s, r))du

⊇ 1
3
[Ω(p, r + η2(s, r))Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r))]

+
1
6
[Ω(p, r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r + η2(s, r))], (23)
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1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r)Υ(u, r + η2(s, r))du

⊇ 1
3
[Ω(p, r))Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r + η2(s, r))]

+
1
6
[Ω(p, r)Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p, r + η2(s, r))], (24)

1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r + η2(s, r))Υ(u, r)du

⊇ 1
3
[Ω(p, r + η2(s, r))Υ(p, r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r]

+
1
6
[Ω(p, r + η2(s, r))Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r)]. (25)

Substituting (22)–(25) into (21), we obtain the desired result. Similarly, we can obtain
the same result by using Corollary 2 for the product Ωv(u)Υv(u) on [p, p + η1(q, p)] .

Remark 5. If we put η1(q, p) = q− p and η2(s, r) = s− r in Theorem 9, we obtain Theorem 8
of [34].

Theorem 10. Let X1 × X2 be an invex set with respect to η1 and η2. If Ω, Υ : [p, p + η1(q, p)]×
[r, r + η2(s, r)]→ R+

I are interval-valued coordinated preinvex functions with respect to η1 and η2
such that Ω = [Ω, Ω], Υ = [Υ, Υ] and p < p + η1(q, p), r < r + η2(s, r), where p, q ∈ X1 and
r, s ∈ X2. If η1, η2 satisfy Condition C, then we have

4Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

+
5

36
N1(p, q, r, s) +

7
36

N2(p, q, r, s) +
7

36
N3(p, q, r, s) +

2
9

N4(p, q, r, s),

where N1(p, q, r, s), N2(p, q, r, s), N3(p, q, r, s), and N4(p, q, r, s) are defined as previous.

Proof. Since Ω and Υ are interval-valued coordinated preinvex functions, therefore from
Corollary 3, we have

2Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r +

1
2

η2(s, r))Υ(u, r +
1
2

η2(s, r))du

+
1
6

[
Ω(p, r +

1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))

+Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))
]

+
1
3

[
Ω(p, r +

1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))

+Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))
]

(26)
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and

2Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 1
η2(s, r)

∫ r+η2(s,r)

r
Ω(r +

1
2

η2(s, r), v)Υ(p +
1
2

η1(q, p), v)dv

+
1
6

[
Ω(p +

1
2

η1(q, p), r)Υ(p +
1
2

η1(q, p), r)

+Ω(p +
1
2

η1(q, p), r + η2(s, r))Υ(p +
1
2

η1(q, p), r + η2(s, r))
]

+
1
3

[
Ω(p +

1
2

η1(q, p), r)Υ(p +
1
2

η1(q, p), r + η2(s, r))

+Ω(p +
1
2

η1(q, p), r + η2(s, r))Υ(p +
1
2

η1(q, p), r)
]

. (27)

Adding (26) and (27), then multiplying both sides of the resultant one by 2, we find

8Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 2
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r +

1
2

η2(s, r))Υ(u, r +
1
2

η2(s, r))du

+
2

η2(s, r)

∫ r+η2(s,r)

r
Ω(r +

1
2

η2(s, r), v)Υ(p +
1
2

η1(q, p), v)dv

+
1
6

[
2Ω(p, r +

1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))

+2Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))

+2Ω(p +
1
2

η1(q, p), r)Υ(p +
1
2

η1(q, p), r)

+2Ω(p +
1
2

η1(q, p), r + η2(s, r))Υ(p +
1
2

η1(q, p), r + η2(s, r))
]

+
1
3

[
2Ω(p, r +

1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))

+2Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))

+2Ω(p +
1
2

η1(q, p), r)Υ(p +
1
2

η1(q, p), r + η2(s, r))

+2Ω(p +
1
2

η1(q, p), r + η2(s, r))Υ(p +
1
2

η1(q, p), r)
]

. (28)

Now, from Corollary 3, we have

2Ω(p, r +
1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))

⊇ 1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p, v)Υ(p, v)dv

+
1
6
[Ω(p, r)Υ(p, r) + Ω(p, r + η2(s, r))Υ(p, r + η2(s, r))]

+
1
3
[Ω(p, r)Υ(p, r + η2(s, r)) + Ω(p, r + η2(s, r))Υ(p, r)], (29)
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2Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))

⊇ 1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p + η1(q, p), v)Υ(p + η1(q, p), v)dv

+
1
6
[Ω(p + η1(q, p), r)Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r))]

+
1
3
[Ω(p + η1(q, p), r)Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r)], (30)

2Ω
(

p +
1
2

η1(q, p), r
)

Υ

(
p +

1
2

η1(q, p), r
)

⊇ 1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r)Υ(u, r)du

+
1
6
[Ω(p, r)Υ(p, r) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r)]

+
1
3
[Ω(p, r)Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r)Υ(p, r)], (31)

2Ω
(

p +
1
2

η1(q, p), r + η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r + η2(s, r)
)

⊇ 1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r + η2(s, r))Υ(u, r + η2(s, r))du

+
1
6
[Ω(p, r + η2(s, r))Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r))]

+
1
3
[Ω(p, r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r + η2(s, r))], (32)

2Ω(p, r +
1
2

η2(s, r))Υ(p + η1(q, p), r +
1
2

η2(s, r))

⊇ 1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p, v)Υ(p + η1(q, p), v)dv

+
1
6
[Ω(p, r)Υ(p + η1(q, p), r) + Ω(p, r + η2(s, r))Υ(p + η1(q, p), r + η2(s, r))]

+
1
3
[Ω(p, r)Υ(p + η1(q, p), r + η2(s, r)) + Ω(p, r + η2(s, r))Υ(p + η1(q, p), r)], (33)

2Ω(p + η1(q, p), r +
1
2

η2(s, r))Υ(p, r +
1
2

η2(s, r))

⊇ 1
η2(s, r)

∫ r+η2(s,r)

r
Ω(p + η1(q, p), v)Υ(p, v)dv

+
1
6
[Ω(p + η1(q, p), r)Υ(p, r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r + η2(s, r))]

+
1
3
[Ω(p + η1(q, p), r)Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r)], (34)

116



Symmetry 2022, 14, 771

2Ω
(

p +
1
2

η1(q, p), r
)

Υ

(
p +

1
2

η1(q, p), r + η2(s, r)
)

⊇ 1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r)Υ(u, r + η2(s, r))du

+
1
6
[Ω(p, r)Υ(p, r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p + η1(q, p), r + η2(s, r))]

+
1
3
[Ω(p, r)Υ(p + η1(q, p), r + η2(s, r)) + Ω(p + η1(q, p), r)Υ(p, r + η2(s, r))], (35)

2Ω
(

p +
1
2

η1(q, p), r + η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r
)

⊇ 1
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r + η2(s, r))Υ(u, r)du

+
1
6
[Ω(p, r + η2(s, r))Υ(p, r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p + η1(q, p), r)]

+
1
3
[Ω(p, r + η2(s, r))Υ(p + η1(q, p), r) + Ω(p + η1(q, p), r + η2(s, r))Υ(p, r)]. (36)

Using (29)–(36) in (28), we get

8Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 2
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r +

1
2

η2(s, r))Υ(u, r +
1
2

η2(s, r))du

+
2

η2(s, r)

∫ r+η2(s,r)

r
Ω(r +

1
2

η2(s, r), v)Υ(p +
1
2

η1(q, p), v)dv

+
1

6η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v)Υ(p, v) + Ω(p + η1(q, p), v)Υ(p + η1(q, p), v))dv

+
1

3η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v)Υ(p + η1(q, p), v) + Ω(p + η1(q, p), v)Υ(p, v))dv

+
1

6η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r)Υ(u, r) + Ω(u, r + η2(s, r))Υ(u, r + η2(s, r)))du

+
1

3η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r)Υ(u, r + η2(s, r)) + Ω(u, r + η2(s, r))Υ(u, r))du

+
1
18

N1(p, q, r, s) +
1
9

N2(p, q, r, s) +
1
9

N3(p, q, r, s) +
2
9

N4(p, q, r, s). (37)

Again from Corollary 3, we have

2
η2(s, r)

∫ r+η2(s,r)

r
Ω(p +

1
2

η1(q, p), v)Υ(p +
1
2

η1(q, p), v)dv

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

+
1

6η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v)Υ(p, v) + Ω(p + η1(q, p), v)Υ(p + η1(q, p), v))dv

+
1

3η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v)Υ(p + η1(q, p), v) + Ω(p + η1(q, p), v)Υ(p, v))dv, (38)
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2
η1(q, p)

∫ p+η1(q,p)

p
Ω(u, r +

1
2

η2(s, r))Υ(u, r +
1
2

η2(s, r))du

⊇ 1
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

+
1

6η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r)Υ(u, r) + Ω(u, r + η2(s, r))Υ(u, r + η2(s, r)))du

+
1

3η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r)Υ(u, r + η2(s, r)) + Ω(u, r + η2(s, r))Υ(u, r))du. (39)

Using (38) and (39) in (37), we get

8Ω
(

p +
1
2

η1(q, p), r +
1
2

η2(s, r)
)

Υ

(
p +

1
2

η1(q, p), r +
1
2

η2(s, r)
)

⊇ 2
η1(q, p)η2(s, r)

∫ p+η1(q,p)

p

∫ r+η2(s,r)

r
Ω(u, v)Υ(u, v)dvdu

+
1

3η2(s, r)

∫ r+η2(s,r)

r
(Ω(p, v)Υ(p, v) + Ω(p + η1(q, p), v)Υ(p + η1(q, p), v)

+ 2Ω(p, v)Υ(p + η1(q, p), v) + 2Ω(p + η1(q, p), v)Υ(p, v))dv

+
1

3η1(q, p)

∫ p+η1(q,p)

p
(Ω(u, r)Υ(u, r) + Ω(u, r + η2(s, r))Υ(u, r + η2(s, r))

+ 2Ω(u, r)Υ(u, r + η2(s, r)) + 2Ω(u, r + η2(s, r))Υ(u, r))du

+
1

18
N1(p, q, r, s) +

1
9

N2(p, q, r, s) +
1
9

N3(p, q, r, s) +
2
9

N4(p, q, r, s). (40)

Applying Corollary 3 for each integral in right side of (40), we obtain our desired
result.

Remark 6. If we put η1(q, p) = q− p and η2(s, r) = s− r in Theorem 10, we obtain Theorem 9
of [34].

4. Conclusions

In this article, we have introduced the concept of interval-valued preinvex functions on
coordinates as a generalization of the convex interval-valued functions on coordinates. We
have established H-H type inclusions for coordinated preinvex interval-valued functions.
Moreover, some new H-H type inclusions for the product of two coordinated preinvex
interval-valued functions are investigated. The results obtained in this paper may be
extended for other kinds of interval-valued preinvex functions on the coordinates. In the
future, we can investigate H-H type and H–H–Fejér type inclusions for interval-valued
coordinated preinvex functions via interval-valued fractional integrals on coordinates. We
hope that the ideas and results obtained in this article will encourage the readers towards
further investigation.
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3. Khan, M.B.; Zaini, H.G.; Treant, ă, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville fractional integral inequalities for

generalized preinvex functions of interval-valued settings based upon pseudo order relation. Mathematics 2022, 10, 204. [CrossRef]
4. Sharma, N.; Mishra, S.K.; Hamdi, A. A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex

functions. Int. J. Adv. Appl. Sci. 2020, 7, 113–118.
5. Zhao, D.; An, T.; Ye, G.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions.

Math. Inequal. Appl. 2020, 23, 95–105.
6. Sharma, N.; Bisht, J.; Mishra, S.K. Hermite-Hadamard type inequalities for functions whose derivatives are strongly η−convex

via fractional integrals. In Indo-French Seminar on Optimization, Variational Analysis and Applications; Springer: Berlin, Germany,
2020; pp. 83–102.

7. Hanson, M.A. On sufficiency of the kuhn-tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [CrossRef]
8. Craven, B.D.; Glover, B.M. Invex functions and duality. J. Aust. Math. Soc. 1985, 39, 1–20. [CrossRef]
9. Ben-Israel, A.; Mond, B. What is invexity? ANZIAM J. 1986, 28, 1–9. [CrossRef]
10. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [CrossRef]
11. Weir, T.; Jeyakumar, V. A class of nonconvex functions and mathematical programming. Bull. Aust. Math. Soc. 1988, 38, 177–189.

[CrossRef]
12. Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [CrossRef]
13. Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131.
14. Dragomir, S.S. On the Hadamard’s inequlality for convex functions on the coordinates in a rectangle from the plane. Taiwan J.

Math. 2001, 5, 775–788. [CrossRef]
15. Latif, M.A.; Dragomir, S.S. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value

are preinvex on the cooordinates. Facta Univ. Math. Inform. 2013, 28, 257–270.
16. Matłoka, M. On some Hadamard type inequalities for (h1, h2)-preinvex functions on the coordinates. J. Inequal. Appl. 2013, 2013,

1–12. [CrossRef]
17. Matłoka, M. On Some new inequalities for differentiable (h1, h2)-preinvex functions on the coordinates. Math. Stat. 2014, 2, 6–14.

[CrossRef]
18. Mehmood, S.; Zafar, F.; Yasmin, N. Hermite-Hadamard-Fejér type inequalities for preinvex functions using fractional integrals.

Mathematics 2019, 7, 467. [CrossRef]
19. Noor, M.A.; Noor, K.I.; Rashid, S. Some new classes of preinvex functions and inequalities. Mathematics 2019, 7, 29. [CrossRef]
20. Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for a kth order

differentiable functions. Symmetry 2019, 11, 1448. [CrossRef]
21. Sharma, N.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via preinvex

functions. Int. J. Nonlinear Anal. Appl. 2022, 13, 3333–3345.
22. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966.
23. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979.
24. Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions.

Opsearch 2015, 52, 156–167. [CrossRef]
25. Zhang, J.; Liu, S.; Li, L.; Feng, Q. The KKT optimality conditions in a class of generalized convex optimization problems with an

interval-valued objective function. Optim. Lett. 2014, 8, 607–631. [CrossRef]
26. Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101.

[CrossRef]
27. Guo, Y.; Ye, G.; Zhao, D.; Liu, W. gH-symmetrically derivative of interval-valued functions and applications in interval-valued

optimization. Symmetry 2019, 11, 1203. [CrossRef]
28. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009.
29. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [CrossRef]
30. Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and

Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130.

119



Symmetry 2022, 14, 771

31. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for
interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [CrossRef]

32. Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard type inequalities for interval-valued functions. Proc. Amer. Math.
Soc. 2020, 148, 705–718. [CrossRef]

33. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via
Riemann–Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [CrossRef]

34. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex
functions. Adv. Differ. Equ. 2020, 2020, 1–14. [CrossRef]

35. Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite-Hadamard type inequalities for coordinated h-convex interval-
valued functions. Mathematics 2021, 9, 2352. [CrossRef]

36. Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued coordinated
convex functions. Open Math. 2021, 19, 1081–1097. [CrossRef]

37. Kara, H.; Budak, H.; Ali, M.A.; Sarikaya, M.Z.; Chu, Y.M. Weighted Hermite–Hadamard type inclusions for products of
coordinated convex interval-valued functions. Adv. Differ. Equ. 2021, 2021, 104. [CrossRef]

38. Kara, H.; Ali, M.A.; Budak, H. Hermite-Hadamard type inequalities for interval-valued coordinated convex functions involving
generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 104–123. [CrossRef]

39. Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard type fractional inclusions for interval-valued preinvex functions.
Mathematics 2022, 10, 264. [CrossRef]

40. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval-valued coordinated functions.
Adv. Differ. Equ. 2021, 2021, 32. [CrossRef]

41. Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite-Hadamard inclusions for coordinated interval-valued functions via
post-quantum calculus. Symmetry 2021, 13, 1216. [CrossRef]

42. Du, T.; Zhou, T. On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated
convex mappings. Chaos Solitons Fractals 2022, 156, 111846. [CrossRef]
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Abstract: In this paper, we discuss the Riemann–Liouville fractional integral operator for left and
right convex interval-valued functions (left and right convex I·V-F), as well as various related notions
and concepts. First, the authors used the Riemann–Liouville fractional integral to prove Hermite–
Hadamard type (H–H type) inequality. Furthermore,H–H type inequalities for the product of two
left and right convex I·V-Fs have been established. Finally, for left and right convex I·V-Fs, we
found the Riemann–Liouville fractional integral Hermite–Hadamard type inequality (H–H Fejér
type inequality). The findings of this research show that this methodology may be applied directly
and is computationally simple and precise.

Keywords: left and right convex interval-valued function; fractional integral operator; Hermite–
Hadamard type inequality; Hermite–Hadamard Fejér type inequality

1. Introduction

Mathematical inequality, finance, engineering, statistics, and probability all use convex
functions in some way. Convex and symmetric convex functions have strong relationships
with inequalities. Because of their intriguing features in the mathematical sciences, there are
expansive properties and strong links between the symmetric function and different fields of
convexity, including convex functions, probability theory, and convex geometry on convex
sets. Convex functions have a long and illustrious history in science, and they have been
a hot focus of study for more than a century. Several researchers have proposed different
convex function guesses, expansions, and variants. Many inequalities or equalities, such as the
Ostrowski-type inequality, Hardy-type inequality, Opial-type inequality, Simpson inequality,
Fejér-type inequality, and Cebysev-type inequalities, have been established using convex
functions. Among these inequalities, theH–H inequality [1,2], on which many publications
have been published, is likely the one that attracts the most attention from scholars. H–H
inequality has been regarded as the most useful inequality in mathematical analysis since
its discovery in 1883. It is also known as the conventional H–H Inequality equation. The
expansions and generalizations of theH–H inequality have piqued the curiosity of a number
of mathematicians. For various classes of convex functions and mappings, a number of
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mathematicians in the fields of pure and applied mathematics have worked to expand,
generalize, counterpart, and enhance theH–H inequality (references [3–13] are a good place
to start for interested readers).

Historically, Leibnitz and L’Hospital (1695) are credited with the invention of fractional
calculus; however, Riemann, Liouville, and Grunwald–Letnikov, among others, made
significant contributions to the field later on. The way that fractional operator speculation
deciphers nature’s existence in a grand and intentional fashion [14–19] has piqued the
curiosity of researchers. By offering an enhanced form of an integral representation for the
Appell k-series, Mubeen and Iqbal [20] have contributed to the present research.

Moreover, Khan et al. [21] exploited fuzzy order relations to introduce a new class
of convex fuzzy-interval-valued functions (convex F-I·V-Fs), known as (h1, h2)-convex
F-I·V-Fs, as well as a novel version of theH–H type inequality for (h1, h2)-convex F-I·V-Fs
that incorporates the fuzzy interval Riemann integral. Khan et al. went a step further by
providing new convex and extended convex I·V-F classes, as well as new fractionalH–H
type andH–H type inequalities for left and right (h1, h2)-preinvex I·V-F [22], left and right
p-convex I·V-Fs [23], left and right log-h-convex I·V-Fs [24], and the references therein. For
further analysis of the literature on the applications and properties of fuzzy Riemannian
integrals, inequalities, and generalized convex fuzzy mappings, we refer the readers to
cited works [25–56] and the references therein.

Motivated and inspired by the fascinating features of symmetry, convexity, and the
fractional operator, we study the newH–H and relatedH–H type inequalities for left and
right convex I·V-Fs, based upon the pseudo order relation and the Riemann–Liouville
fractional integral operator.

2. Preliminaries

First, we offer some background information on interval-valued functions, the theory
of convexity, interval-valued integration, and interval-valued fractional integration, which
will be utilized throughout the article.

We offer some fundamental arithmetic regarding interval analysis in this paragraph,
which will be quite useful throughout the article.

Y = [Y∗, Y∗], Q = [Q∗, Q∗] (Y∗ ≤ ω ≤ Y∗ and Q∗ ≤ z ≤ Q∗ ω, z ∈ R)

Y + Q = [Y∗, Y∗] + [Q∗, Q∗] = [Y∗ + Q∗, Y∗ + Q∗],
Y−Q = [Y∗, Y∗]− [Q∗, Q∗] = [Y∗ −Q∗, Y∗ −Q∗],

Y×Q = [Y∗, Y∗]× [Q∗, Q∗] = [minK, maxK]
minK = min{Y∗Q∗, Y∗Q∗, Y∗Q∗, Y∗Q∗}, maxK = max{Y∗Q∗, Y∗Q∗, Y∗Q∗, Y∗Q∗}

ν.[Y∗, Y∗]=





[νY∗, νY∗] if ν > 0,
{0} if ν = 0,

[νY∗, νY∗] if ν < 0.

Let XI , X+
I , X−I be the set of all closed intervals of R, the set of all closed positive

intervals of R, and the set of all closed negative intervals of R, respectively.
For [Y∗, Y∗], [Q∗, Q∗] ∈ XI , the inclusion “ ⊆ ” is defined by [Y∗, Y∗] ⊆ [Q∗, Q∗], if

and only if, Q∗ ≤ Y∗, Y∗ ≤ Q∗.

Remark 1. [21] The left and right relation “ ≤p ”, defined on XI by [Y∗, Y∗] ≤p [Q∗, Q∗].
, if and only if, Y∗ ≤ Q∗, Y∗ ≤ Q∗, for all [Y∗, Y∗], [Q∗, Q∗] ∈ XI , it is a pseudo order
relation. For a given [Y∗, Y∗], [Q∗, Q∗] ∈ XI , we say that [Y∗, Y∗] ≤p [Q∗, Q∗], if and only if,
Y∗ ≤ Q∗, Y∗ ≤ Q∗ or Y∗ ≤ Q∗, Y∗ < Q∗.

Theorem 1. [33] If Y : [t, s] ⊂ R→ XI is an I·V-F on such that Y(ω) = [Y∗(ω), Y∗(ω)], then
Y is Riemann integrable over [t, s], if and only if, Y∗and Y∗ are both Riemann integrable over [t, s],
such that

(IR)
∫ s

t
Y(ω)dω =

[
(R)

∫ s

t
Y∗(ω)dω, (R)

∫ s

t
Y∗(ω)dω

]
.
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Definition 1. [28,30] Let Y ∈ L
(
[t, s],X+

I
)
. Then, interval fractional integrals, Iat+ and Ias− , of

order a > 0 are defined by

Iat+ Y(ω) =
1

Γ(a)

∫ ω

t
(ω− ν)a−1Y(ν)dν, (ω > t), (1)

and
Ias− Y(ω) =

1
Γ(a)

∫ s

ω
(ν−ω)a−1Y(ν)dν, (ω < s), (2)

respectively, where Γ(ω) =
∫ ∞

0 νω−1e−νdν is the Euler gamma function.

Definition 2. [31] The I·V-F Y : K → X+
I is named as the left and right convex-I·V- F on convex

set K if the coming inequality,

Y(νω + (1− ν)z ) ≤p νY(ω) + (1− νζ)Y(z), (3)

holds for all ω, z ∈ K and ν ∈ [0, 1] we have. If inequality (3) is reversed, then Y is named as the
left and right concave on K. Y is affine, if and only if, it is both left and right convex and left and
right concave.

Theorem 2. [31] Let Y : K → X+
I be an I·V-F, such that

Y(ω) = [Y∗(ω), Y∗(ω)], ∀ ω ∈ K (4)

for all ω ∈ K. Then, Y is a left and right convex I·V-F on K, if and only if, Y∗(ω) and Y∗(ω) both
are convex functions.

3. Interval Fractional Hermite–Hadamard Inequalities

The major goal, and the main purpose of this section, is to develop a novel version of
theH–H inequalities in the mode of interval-valued left and right convex functions.

Theorem 3. Let Y : [s, t]→ X+
I be a left and right convex I·V-F on [s, t] and provided by

Y(ω) = [Y∗(ω), Y∗(ω)] for all ω ∈ [s, t]. If Y ∈ L
(
[s, t],X+

I
)
, then

Y
(

s + t
2

)
≤p

Γ(a+ 1)
2(t− s)a

[
Ias+ Y(t) + Iat− Y(s)

]
≤p

Y(s) + Y(t)
2

. (5)

If Y(ω) is a left and right concave I·V-F, then

Y
(

s + t
2

)
≥p

Γ(a+ 1)
2(t− s)a

[
Ias+ Y(t) + Iat− Y(s)

]
≥p

Y(s) + Y(t)
2

. (6)

Proof. Let Y : [s, t]→ X+
I be a left and right convex I·V-F. Then, by hypothesis, we have:

2Y
(

s + t
2

)
≤p Y(νs + (1− ν)t) + Y((1− ν)s + νt).

Therefore, we have

2Y∗
( s+t

2
)
≤ Y∗(νs + (1− ν)t) + Y∗((1− ν)s + νt),

2Y∗
( s+t

2
)
≤ Y∗(νs + (1− ν)t) + Y∗((1− ν)s + νt).
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Multiplying both sides by νa−1 and integrating the obtained result, with respect to ν
over (0, 1), we have

2
∫ 1

0 νa−1Y∗
( s+t

2
)
dν

≤
∫ 1

0 νa−1Y∗(νs + (1− ν)t)dν +
∫ 1

0 νa−1Y∗((1− ν)s + νt)dν,
2
∫ 1

0 νa−1Y∗
( s+t

2
)
dν

≤
∫ 1

0 νa−1Y∗(νs + (1− ν)t)dν +
∫ 1

0 νa−1Y∗((1− ν)s + νt)dν.

Let ω = νs + (1− ν)t and z = (1− ν)s + νt. Then, we have

2
aY∗

( s+t
2
)
≤ 1

(t−s)a
t∫

s
(t− z)a−1Y∗(z)dz + 1

(t−s)a
t∫

s
(ω− s)a−1Y∗(ω)dω

2
aY∗

( s+t
2
)
≤ 1

(t−s)a
t∫

s
(t− z)a−1Y∗(z)dz + 1

(t−s)a
t∫

s
(ω− s)a−1Y∗(ω)dω,

≤ Γ(a)
(t−s)a

[
Ias+ Y∗(t) + Iat− Y∗(s)

]

≤ Γ(a)
(t−s)a

[
Ias+ Y∗(t) + Iat− Y∗(s)

]
,

That is,

2
a

[
Y∗

(
s + t

2

)
, Y∗

(
s + t

2

)]
≤p

Γ(a)
(t− s)a

[[
Ias+ Y∗(t) + Iat− Y∗(s)

]
,
[
Ias+ Y∗(t) + Iat− Y∗(s)

]]

Thus:
2
a

Y
(

s + t
2

)
≤p

Γ(a)
(t− s)a

[
Ias+ Y(t) + Iat− Y(s)

]
(7)

Similar to the above, we have

Γ(a)
(t− s)a

[
Ias+ Y(t) + Iat− Y(s)

]
≤p

Y(s) + Y(t)
2

(8)

Combining (7) and (8), we have

Y
(

s + t
2

)
≤p

Γ(a+ 1)
2(t− s)a

[
Ias+ Y(t) + Iat− Y(s)

]
≤p

Y(s) + Y(t)
2

Hence, we achieve the required result. �

Remark 2. We may observe from Theorem 3 that:
Let one take α = 1. Then, from Theorem 1 and (5), we achieve the coming inequality (see [23]):

Y
(

s + t
2

)
≤p

1
t− s

∫ t

s
Y(ω)dω ≤p

Y(s) + Y(t)
2

If we take Y∗(ω) = Y∗(ω), then from Theorem 3 and (5), we acquire the coming inequality
(see [32]):

Y
(

s + t
2

)
≤ Γ(a+ 1)

2(t− s)a
[
Ias+ Y(t) + Iat− Y(s)

]
≤ Y(s) + Y(t)

2

Let one take a = 1 and Y∗(ω) = Y∗(ω). Then, from Theorem 1 and (5), we achieve classical
H–H type inequality.

Example 1. Let a = 1
2 , ω ∈ [2, 3], and the I·V-F Y : [s, t] = [2, 3]→ X+

I , provided by

Y(ω) = [1, 2]
(

2−ω
1
2

)
. Since the left and right endpoint functions, Y∗(ω) = 2−ω

1
2 , Y∗(ω) =

124



Symmetry 2022, 14, 341

2
(

2−ω
1
2

)
, are left and right convex functions, then Y(ω) is a left and right convex I·V-F. We

clearly see that Y ∈ L
(
[s, t],X+

I
)
, and

Y∗
( s+t

2
)
= Y∗

( 5
2
)
= 4−

√
10

2
Y∗
( s+t

2
)
= Y∗

( 5
2
)
= 4−

√
10

Y∗(s)+Y∗(t)
2 = 4−

√
2−
√

3
2

Y∗(s)+Y∗(t)
2 = 4−

√
2−
√

3

Note that
Γ(a+1)
2(t−s)a

[
Ias+ Y∗(t) + Iat− Y∗(s)

]

=
Γ( 3

2 )
2

1√
π

3∫
2
(3−ω)

−1
2 .
(

2−ω
1
2

)
dω

+
Γ( 3

2 )
2

1√
π

3∫
2
(ω− 2)

−1
2 .
(

2−ω
1
2

)
dω

= 1
4

[
7393

10,000 + 9501
10,000

]

= 8447
20,000 .

Γ(a+1)
2(t−s)a

[
Ias+ Y∗(t) + Iat− Y∗(s)

]

=
Γ( 3

2 )
2

1√
π

3∫
2
(3−ω)

−1
2 . 2

(
2−ω

1
2

)
dω

+
Γ( 3

2 )
2

1√
π

3∫
2
(ω− 2)

−1
2 . 2

(
2−ω

1
2

)
dω

= 1
2

[
7393

10,000 + 9501
10,000

]

= 8447
10,000

Therefore,
[

4−
√

10
2

, 4−
√

10

]
≤p

[
8447

20, 000
,

8447
10, 000

]
≤p

[
4−
√

2−
√

3
2

, 4−
√

2−
√

3

]

and Theorem 3 is verified.
The upcoming two results acquire the fractional inequalities for the product of left

and right convex I·V-Fs.

Theorem 4. Let Y,G : [s, t]→ X+
I be two left and right convex I·V-Fs on [s, t], provided by

Y(ω) = [Y∗(ω), Y∗(ω)] and G(ω) = [G∗(ω), G∗(ω)] for all ω ∈ [s, t]. If Y × G ∈ L(
[s, t],X+

I
)
, then

Γ(a)
2(t−s)a

[
Ias+ Y(t)×G(t) + Iat−Y(s)×G(s)

]

≤p

(
1
2 − a

(a+1)(a+2)

)
ϕ(s, t) +

(
a

(a+1)(a+2)

)
∇(s, t)

where ϕ(s, t) = Y(s) × G(s) + Y(t) × G(t), ∇(s, t) = Y(s) × G(t) + Y(t) × G(s), and
ϕ(s, t) = [ϕ∗(s, t), ϕ∗(s, t)] and ∇(s, t) = [∇∗(s, t), ∇∗(s, t)].

Proof. Since Y, G are both left and right convex I·V-Fs, then we have

Y∗(νs + (1− ν)t) ≤ νY∗(s) + (1− ν)Y∗(t),

Y∗(νs + (1− ν)t) ≤ νY∗(s) + (1− ν)Y∗(t).
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and

G∗(νs + (1− ν)t) ≤ νG∗(s) + (1− ν)G∗(t),

G∗(νs + (1− ν)t) ≤ νG∗(s) + (1− ν)G∗(t).

From the definition of left and right convex I·V-Fs, it follows that 0 ≤p Y(ω) and
0 ≤p G(ω), so

Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
≤ (νY∗(s) + (1− ν)Y∗(t))(νG∗(s) + (1− ν)G∗(t))
= ν2Y∗(s)×G∗(s) + (1− ν)2Y∗(t)×G∗(t)
+ν(1− ν)Y∗(s)×G∗(t) + ν(1− ν)Y∗(t)×G∗(s)

Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
≤ (νY∗(s) + (1− ν)Y∗(t))(νG∗(s) + (1− ν)G∗(t))
= ν2Y∗(s)×G∗(s) + (1− ν)2Y∗(t)×G∗(t)
+ν(1− ν)Y∗(s)×G∗(t) + ν(1− ν)Y∗(t)×G∗(s),

(9)

Analogously, we have

Y∗((1− ν)s + νt)G∗((1− ν)s + νt)
≤ (1− ν)2Y∗(s)×G∗(s) + ν2Y∗(t)×G∗(t)
+ν(1− ν)Y∗(s)×G∗(t) + ν(1− ν)Y∗(t)×G∗(s)

Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)
≤ (1− ν)2Y∗(s)×G∗(s) + ν2Y∗(t)×G∗(t)
+ν(1− ν)Y∗(s)×G∗(t) + ν(1− ν)Y∗(t)×G∗(s).

(10)

Adding (9) and (10), we have

Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)
≤
[
ν2 + (1− ν)2

]
[Y∗(s)×G∗(s) + Y∗(t)×G∗(t)]

+2ν(1− ν)[Y∗(t)×G∗(s) + Y∗(s)×G∗(t)]
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)

+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)
≤
[
ν2 + (1− ν)2

]
[Y∗(s)×G∗(s) + Y∗(t)×G∗(t)]

+2ν(1− ν)[Y∗(t)×G∗(s) + Y∗(s)×G∗(t)].

(11)

Taking the multiplication of (11) by νa−1 and integrating the obtained result, with
respect to ν over (0, 1), we have

∫ 1
0 νa−1Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)

+νa−1Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)dν

≤ ϕ∗(s, t)
∫ 1

0 νa−1
[
ν2 + (1− ν)2

]
dν + 2∇∗(s, t)

∫ 1
0 νa−1ν(1− ν)dν

∫ 1
0 νa−1Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)

+νa−1Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)dν

≤ ϕ∗(s, t)
∫ 1

0 νa−1
[
ν2 + (1− ν)2

]
dν + 2∇∗(s, t)

∫ 1
0 νa−1ν(1− ν)dν.
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It follows that

Γ(a)
(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

≤ 2
a

(
1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) + 2

a

(
a

(a+1)(a+2)

)
∇∗(s, t)

Γ(a)
(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

≤ 2
a

(
1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) + 2

a

(
a

(a+1)(a+2)

)
∇∗(s, t),

Γ(a)
(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

≤ 2
a

(
1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) + 2

a

(
a

(a+1)(a+2)

)
∇∗(s, t)

Γ(a)
(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

≤ 2
a

(
1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) + 2

a

(
a

(a+1)(a+2)

)
∇∗(s, t),

That is,

Γ(a)
(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s), Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

≤p
2
a

(
1
2 − a

(a+1)(a+2)

)
[ϕ∗(s, t), ϕ∗(s, t)] + 2

a

(
a

(a+1)(a+2)

)
[∇∗(s, t), ∇∗(s, t)]

Thus,

Γ(a)
2(t−s)a

[
Ias+ Y(t)×G(t) + Iat−Y(s)×G(s)

]

≤p

(
1
2 − a

(a+1)(a+2)

)
ϕ(s, t) +

(
a

(a+1)(a+2)

)
∇(s, t)

and the theorem has been established. �

Example 2. Let [s, t] = [0, 2 ], a = 1
2 , Y(ω) =

[
ω
2 , 3ω

2
]
, and G(ω) = [ω, 3ω]. Since the left and

right endpoint functions, Y∗(ω) = ω
2 , Y∗(ω) = 3ω

2 , G∗(ω) = ω and G∗(ω) = 3ω, are left and
right convex functions, then Y(ω) and G(ω) are both left and right convex I·V-Fs. We clearly see
that Y(ω)×G(ω) ∈ L

(
[s, t],X+

I
)
, and

Γ(1+a)
2(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

=
Γ( 3

2 )
2
√

2
1√
π

2∫
0
(2−ω)

−1
2
(

1
2 .ω2

)
dω +

Γ( 3
2 )

2
√

2
1√
π

2∫
0
(ω)

−1
2
(

1
2 .ω2

)
dω ≈ 0.7333,

Γ(1+a)
2(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

=
Γ( 3

2 )
2
√

2
1√
π

2∫
0
(2−ω)

−1
2 . 9

2 ω2dω +
Γ( 3

2 )
2
√

2
1√
π

2∫
0
(ω)

−1
2 . 9

2 ω2dω ≈ 6.5997,

Note that
(

1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) = [Y∗(s)×G∗(s) + Y∗(t)×G∗(t)] = 11

15 ,(
1
2 − a

(a+1)(a+2)

)
ϕ∗(s, t) = [Y∗(s)×G∗(s) + Y∗(t)×G∗(t)] = 33

5 ,(
a

(a+1)(a+2)

)
∇∗(s, t) = [Y∗(s)×G∗(t) + Y∗(t)×G∗(s)] = 2

15 (0),(
a

(a+1)(a+2)

)
∇∗(s, t) = [Y∗(s)×G∗(t) + Y∗(t)×G∗(s)] = 2

15 (0).

Therefore, we have
(

1
2 − a

(a+1)(a+2)

)
ϕ(s, t) +

(
a

(a+1)(a+2)

)
∇(s, t)

=
[

11
15 , 33

5

]
+ 2

15 [0, 0] =
[

11
15 , 33

5

]

127



Symmetry 2022, 14, 341

It follows that

[0.7333, 6.5997] ≤p

[
11
15

,
33
5

]

and Theorem 4 has been demonstrated.

Theorem 5. Let Y,G : [s, t]→ X+
I be two left and right convex I·V-Fs, provided by Y(ω) =

[Y∗(ω), Y∗(ω)] and G(ω) = [G∗(ω), G∗(ω)] for all ω ∈ [s, t]. If Y ×G ∈ L
(
[s, t],X+

I
)
,

then

1
a Y
( s+t

2
)
×G

( s+t
2
)
≤p

Γ(a+1)
4(t−s)a

[
Ias+ Y(t)×G(t) + Iat− Y(s)×G(s)

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ(s, t)

where ϕ(s, t) = Y(s)×G(s) + Y(t)×G(t), ∇(s, t) = Y(s)×G(t) + Y(t)×G(s), ϕ(s, t) =
[ϕ∗(s, t), ϕ∗(s, t)], and ∇(s, t) = [∇∗(s, t), ∇∗(s, t)].

Proof. Consider that Y,G : [s, t]→ X+
I are left and right convex I·V-Fs. Then, by hypoth-

esis, we have
Y∗
( s+t

2
)
×G∗

( s+t
2
)

Y∗
( s+t

2
)
×G∗

( s+t
2
)

≤ 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗(νs + (1− ν)t)×G∗((1− ν)s + νt)

]

+ 1
4

[
Y∗((1− ν)s + νt)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]

≤ 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗(νs + (1− ν)t)×G∗((1− ν)s + νt)

]

+ 1
4

[
Y∗((1− ν)s + νt)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]
,

≤ 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]

+ 1
4




(νY∗(s) + (1− ν)Y∗(t))
×((1− ν)G∗(s) + νG∗(t))
+((1− ν)Y∗(s) + νY∗(t))
×(νG∗(s) + (1− ν)G∗(t))




≤ 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]

+ 1
4




(νY∗(s) + (1− ν)Y∗(t))
×((1− ν)G∗(s) + νG∗(t))
+((1− ν)Y∗(s) + νY∗(t))
×(νG∗(s) + (1− ν)G∗(t))


,

= 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]

+ 1
4

[ {
ν2 + (1− ν)2

}
∇∗(s, t)

+{ν(1− ν) + (1− ν)ν}ϕ∗(s, t)

]

= 1
4

[
Y∗(νs + (1− ν)t)×G∗(νs + (1− ν)t)
+Y∗((1− ν)s + νt)×G∗((1− ν)s + νt)

]

+ 1
4

[ {
ν2 + (1− ν)2

}
∇∗(s, t)

+{ν(1− ν) + (1− ν)ν}ϕ∗(s, t)

]
.

(12)
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Taking the multiplication of (12) with νa−1 and integrating over (0, 1), we get

1
a Y∗

( s+t
2
)
×G∗

( s+t
2
)

≤ 1
4(t−s)a

[ ∫ t
s (t−ω)a−1Y∗(ω)×G∗(ω)dω

+
∫ t

s (z− s)a−1Y∗(z)×G∗(z)dz

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇∗(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ∗(s, t)

= Γ(a+1)
4(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇∗(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ∗(s, t)

1
a Y∗

( s+t
2
)
×G∗

( s+t
2
)

≤ 1
4(t−s)a

[ ∫ t
s (t−ω)a−1Y∗(ω)×G∗(ω)dω

+
∫ t

s (z− s)a−1Y∗(z)×G∗(z)dz

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇∗(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ∗(s, t)

= Γ(a+1)
4(t−s)a

[
Ias+ Y∗(t)×G∗(t) + Iat− Y∗(s)×G∗(s)

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇∗(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ∗(s, t),

That is,

1
a Y
( s+t

2
)
×G

( s+t
2
)
≤p

Γ(a+1)
4(t−s)a

[
Ias+ Y(t)×G(t) + Iat− Y(s)×G(s)

]

+ 1
2a

(
1
2 − a

(a+1)(a+2)

)
∇(s, t) + 1

2a

(
a

(a+1)(a+2)

)
ϕ(s, t).

Hence, the required result is achieved. �

The upcoming results discuss the H–H Fejér type inequality left and right convex
I·V-F. Firstly, we achieve secondH–H Fejér type inequality.

Theorem 6. Let Y : [s, t]→ X+
I be a left and right convex I·V-F, with s < t, provided by Y(ω) =

[Y∗(ω), Y∗(ω)] for all ω ∈ [s, t]. Let Y ∈ L
(
[s, t],X+

I
)

and C : [s, t]→ R, C(ω) ≥ 0, be
symmetric with respect to s+t

2 .Then,

[
Ias+ YC(t) + Iat− YC(s)

]
≤p

Y(s) + Y(t)
2

[
Ias+ C(t) + Iat− C(s)

]
(13)

If Y is a concave I·V-F, then inequality (13) is reversed.

Proof. Let Y be a left and right convex I·V-F and νa−1C(νs + (1− ν)t) ≥ 0. Then, we have

νa−1Y∗(νs + (1− ν)t)C(νs + (1− ν)t)
≤ νa−1(νY∗(s) + (1− ν)Y∗(t))C(νs + (1− ν)t)

νa−1Y∗(νs + (1− ν)t)C(νs + (1− ν)t)
≤ νa−1(νY∗(s) + (1− ν)Y∗(t))C(νs + (1− ν)t).

(14)

and
νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)

≤ νa−1((1− ν)Y∗(s) + νY∗(t))C((1− ν)s + νt)
νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)

≤ νa−1((1− ν)Y∗(s) + νY∗(t))C((1− ν)s + νt).

(15)
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After adding (14) and (15), and integrating over [0, 1], we get

∫ 1
0 νa−1Y∗(νs + (1− ν)t)C(νs + (1− ν)t)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

≤
∫ 1

0

[
νa−1Y∗(s){νC(νs + (1− ν)t) + (1− ν)C((1− ν)s + νt)}
+νa−1Y∗(t){(1− ν)C(νs + (1− ν)t) + νC((1− ν)s + νt)}

]
dν,

∫ 1
0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗(νs + (1− ν)t)C(νs + (1− ν)t)dν

≤
∫ 1

0

[
νa−1Y∗(s){νC(νs + (1− ν)t) + (1− ν)C((1− ν)s + νt)}
+νa−1Y∗(t){(1− ν)C(νs + (1− ν)t) + νC((1− ν)s + νt)}

]
dν,

= Y∗(s)
∫ 1

0 νa−1C(νs + (1− ν)t)dν + Y∗(t)
∫ 1

0 νa−1C((1− ν)s + νt)dν,
= Y∗(s)

∫ 1
0 νa−1C(νs + (1− ν)t)dν + Y∗(t)

∫ 1
0 νa−1C((1− ν)s + νt)dν.

Since C is symmetric, then

= [Y∗(s) + Y∗(t)]
∫ 1

0 νa−1C((1− ν)s + νt) dν

= [Y∗(s) + Y∗(t)]
∫ 1

0 νa−1C((1− ν)s + νt) dν.

= Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]
,

= Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]
.

(16)

Since
∫ 1

0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

= 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(s + t−ω)C(ω)dω

+ 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(ω)dω

= 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(s + t−ω)dω

+ 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(ω)dω

= Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
,

∫ 1
0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

= Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
.

(17)

then, from (16), we have

Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]

≤ Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]

≤ Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]
,

Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]

≤ Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]

≤ Y∗(s)+Y∗(t)
2

Γ(a)
(t−s)a

[
Ias+ C(t) + Iat− C(s)

]
,

That is,

Γ(a)
(t− s)a

[[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
, Ias+ Y∗C(t) + Iat− Y∗C(s)

]
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≤p
Γ(a)

(t− s)a

[
Y∗(s) + Y∗(t)

2
,

Y∗(s) + Y∗(t)
2

][
Ias+ C(t) + Iat− C(s)

]

≤p
Γ(a)

(t− s)a

[
Y∗(s) + Y∗(t)

2
,

Y∗(s) + Y∗(t)
2

][
Ias+ C(t) + Iat− C(s)

]
,

Hence,

[
Ias+ YC(t) ≤p Iat− YC(s)

]
≤p

Y(s) + Y(t)
2

[
Ias+ C(t) + Iat− C(s)

]

≤p
Y(s) + Y(t)

2
[
Ias+ C(t) + Iat− C(s)

]
.

Now, we first obtain theH–H Fejér type inequality for the left and right convex I·V-F. �

Theorem 7. Let Y : [s, t]→ X+
I be a left and right convex I·V-F, with s < t, and defined by

Y(ω) = [Y∗(ω), Y∗(ω)] for all ω ∈ [s, t]. If Y ∈ L
(
[s, t],X+

I
)

and C : [s, t]→ R, C(ω) ≥ 0
are symmetric with respect to s+t

2 , then

Y
(

s + t
2

)[
Ias+ C(t) + Iat− C(s)

]
≤p

[
Ias+ YC(t) + Iat− YC(s)

]
(18)

If Y is a concave I·V-F, then inequality (18) is reversed.

Proof. Since Y is a left and right convex I·V-F, then we have

Y∗
( s+t

2
)
≤ 1

2 (Y∗(νs + (1− ν)t) + Y∗((1− ν)s + νt))
Y∗
( s+t

2
)
≤ 1

2 (Y
∗(νs + (1− ν)t) + Y∗((1− ν)s + νt)),

(19)

Since C(νs + (1− ν)t) = C((1− ν)s + νt), then by multiplying (19) by νa−1C

((1− ν)s + νt) and integrating it, with respect to ν over [0, 1], we obtain

Y∗
( s+t

2
) ∫ 1

0 νa−1C((1− ν)s + νt)dν

≤ 1
2

( ∫ 1
0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

)
,

Y∗
( s+t

2
) ∫ 1

0 C((1− ν)s + νt)dν

≤ 1
2

( ∫ 1
0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

)
(20)

Let ω = (1− ν)s + νt. Then, we have

∫ 1
0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

= 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(s + t−ω)C(ω)dω

+ 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(ω)dω

= 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(s + t−ω)dω

+ 1
(t−s)a

∫ t
s (ω− s)a−1Y∗(ω)C(ω)dω

= Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
,

∫ 1
0 νa−1Y∗(νs + (1− ν)t)C((1− ν)s + νt)dν

+
∫ 1

0 νa−1Y∗((1− ν)s + νt)C((1− ν)s + νt)dν

= Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
.

(21)
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Then, from (21), we have

Γ(a)
(t−s)a Y∗

( s+t
2
)[
Ias+ C(t) + Iat− C(s)

]

≤ Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]

Γ(a)
(t−s)a Y∗

( s+t
2
)[
Ias+ C(t) + Iat− C(s)

]

≤ Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]

from which, we have

Γ(a)
(t−s)a

[
Y∗
( s+t

2
)
, Y∗

( s+t
2
)][
Ias+ C(t) + Iat− C(s)

]

≤ p
Γ(a)
(t−s)a

[
Ias+ Y∗C(t) + Iat− Y∗C(s), Ias+ Y∗C(t) + Iat− Y∗C(s)

]
,

That is,
Γ(a)

(t− s)a
Y
(

s + t
2

)[
Ias+ C(t) + Iat− C(s)

]

≤p
Γ(a)

(t− s)a
[
Ias+ YC(t) + Iat− YC(s)

]
.

This completes the proof. �

Example 3. We consider the I·V-F Y : [0, 2]→ X+
I , defined by Y(ω) =

[(
2−√ω

)
, 2
(
2−√ω

)]
.

Since endpoint functions Y∗(ω), Y∗(ω) are convex functions, then Y(ω) is a left and right convex
I·V-F. If

C(ω) =

{ √
ω, ω ∈ [0, 1],√

2−ω, ω ∈ (1, 2],

then C(2−ω) = C(ω) ≥ 0 for all ω ∈ [0, 2]. Since Y∗(ω) = 2 − √ω and Y∗(ω) =
2
(
2−√ω

)
, if a = 1

2 , then we compute the following:

[
Ias+ YC(t)+̃Iat− YC(s)

]
≤p

Y(s) + Y(t)
2

[
Ias+ C(t) + Iat− C(s)

]

Y∗(s)+Y∗(t)
2

[
Ias+ C(t) + Iat− C(s)

]
= π√

2

(
4−
√

2
2

)

Y∗(s)+̃Y∗(t)
2

[
Ias+ C(t) + Iat− C(s)

]
= π√

2

(
4−
√

2
)

,
(22)

Y∗(s)+Y∗(t)
2

[
Ias+ C(t) + Iat− C(s)

]
= π√

2

(
4−
√

2
2

)

Y∗(s)+̃Y∗(t)
2

[
Ias+ C(t) + Iat− C(s)

]
= π√

2

(
4−
√

2
)

,
(23)

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
= 1√

π

(
2π + 4−8

√
2

3

)
,

[
Ias+ Y∗C(t) + Iat− Y∗C(s)

]
= 2√

π

(
2π + 4−8

√
2

3

)
.

(24)

From (22)–(24), (13) we have

1√
π

[(
2π +

4− 8
√

2
3

)
, 2

(
2π +

4− 8
√

2
3

)]
≤ p

π√
2

[
4−
√

2
2

, 4−
√

2

]
=

π√
2

[
4−
√

2
2

, 4−
√

2

]
.

Hence, Theorem 6 is verified.
For Theorem 7, we have

Y∗
( s+t

2
)[
Ias+ C(t) + Iat− C(s)

]
=
√

π,
Y∗
( s+t

2
)[
Ias+ C(t) + Iat− C(s)

]
= 2
√

π.
(25)
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From (24) and (25), we have

√
π[1, 2] ≤ p

1√
π

[
2π +

4− 8
√

2
3

, 2

(
2π +

4− 8
√

2
3

)]

Hence, (18) has been verified.

Remark 3. If one takes C(ω) = 1, then, from (13) and (18), we acquire (5).
Let us take a = 1. Then, we achieve the coming inequality (see [22]).

Y
(

s + t
2

)
≤p

1∫ t
s C(ω)dω

∫ t

s
Y(ω)C(ω)dω ≤p

Y(s) + Y(t)
2

If we take Y∗(ω) = Y∗(ω), then from (13) and (18), we acquire the coming inequality
(see [33]).

Y
(

s + t
2

)[
Ias+ C(t) + Iat− C(s)

]
≤p

[
Ias+ YC(t) + Iat− YC(s)

]

≤p
Y(s) + Y(t)

2
[
Ias+ C(t) + Iat− C(s)

]

If one takes Y∗(ω) = Y∗(ω) with a = 1, then from (13) and (18), we achieve the classical
H–H Fejér inequality (see [26]).

4. Conclusions

In applied sciences, convex functions and fractional calculus are essential. The new
interval-valued left and right convex functions are presented in this article. Some novel
Riemann–Liouville fractional integralH–H and Fejér-type inequalities are provided, utiliz-
ing the idea of interval-valued left and right convex functions and some supplementary
interval analysis findings. Our results are a generalization of a number of previously pub-
lished findings. In the future, we will use generalized interval and fuzzy Riemann–Liouville
fractional operators to investigate this concept for generalized left and right convex I·V-Fs
and F-I·V-Fs by using interval Katugampola fractional integrals and fuzzy Katugampola
fractional integrals. For applications, see [53–56].
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Abstract: The main objective of this study is to introduce new versions of fractional integral inequal-
ities in fuzzy fractional calculus utilizing the introduced preinvexity. Due to the behavior of its
definition, the idea of preinvexity plays a significant role in the subject of inequalities. The concepts
of preinvexity and symmetry have a tight connection thanks to the significant correlation that has
developed between both in recent years. In this study, we attain the Hermite-Hadamard (H·H) and
Hermite-Hadamard-Fejér (H·H Fejér) type inequalities for preinvex fuzzy-interval-valued functions
(preinvex F·I·V·Fs) via Condition C and fuzzy Riemann–Liouville fractional integrals. Furthermore,
we establish some refinements of fuzzy fractional H·H type inequality. There are also some specific
examples of the reported results for various preinvex functions deduced. To support the newly intro-
duced ideal, we have provided some nontrivial and logical examples. The results presented in this
research are a significant improvement over earlier results. This paper’s awe-inspiring notions and
formidable tools may energize and revitalize future research on this worthwhile and fascinating topic.

Keywords: preinvex fuzzy interval-valued function; fuzzy fractional integral operator; Hermite-
Hadamard type inequality; Hermite-Hadamard Fejér type inequality

1. Introduction

Convex function theory has a wide range of potential applications in a variety of
unique and fascinating disciplines of study. Furthermore, this theory is useful in a variety
of fields, including physics, information theory, coding theory, engineering, optimization,
and inequality theory. This theory is currently making a significant contribution to the
extensions and improvements of a wide range of mathematical and practical fields. Many
authors analyzed, celebrated, and executed their work on the concept of convexity, and
used fruitful methodologies and novel ideas to extend its many variations in helpful ways.
In the literature, several new families of classical convex functions have been proposed.
The references [1–5] are provided for the benefit of the readers. Many authors and scientists
have always attempted to contribute to the theory of inequality by producing high-quality
work. Integral inequalities on convex functions, both derivative and integration, have
likewise been a hot and engaging area of study in recent years. The theory of inequalities
has significant applications in the field of applied analysis, such as geometric function
theory, impulsive diffusion equations, coding theory, numerical analysis, and fractional
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calculus, to name a few. Sun [6] and co-workers [7] recently used the local fractional
integral operator to generalize the Hermite-Hadamard condition for harmonically convex
and s-preinvex functions. The references [8–13] are provided for the benefit of the readers.

Several writers have recently proposed novel inequalities for various types of convex-
ities, preinvexities, statistical theory, and other topics. Several discussions show a tight
connection between inequality theory and convex functions. Hanson examined the invex
function in the context of bi-function ϕ(., .) for the first time in 1981 (see [14]). Following
Hanson’s work, Ben-Israel and Mond attempted to delve deeper into linked invexity, intro-
ducing the concepts of invex sets and preinvex functions for the first time (see [15]). Under
certain conditions, the preinvex and invex functions in the form of differentiability are
comparable, according to Mohan and Neogy [16]. Antczak [17] discovered and analyzed
the features of preinvex functions for the first time in 2005.

Note that fuzzy mappings (F·Ms) are fuzzy-interval-valued functions. On the other
hand, the concept of convex F·Ms from Rn to the set of fuzzy numbers was introduced
by Nanda and Kar [18], Syau [19], and Furukawa [20]. They also explored Lipschitz
continuity of fuzzy valued mappings and created other types of convex F·Ms, such as
logarithmic convex F·Ms and quasi-convex F·Ms. Based on Goetschel and Voxman’s concept
of ordering [21], Yan and Xu [22] introduced the conceptions of epigraphs and convexity of
F·Ms, as well as the properties of convex F·Ms and quasi-convex F·Ms. Khan et al. [23–26]
extended the class of convex F·Ms and defined h-convex and (h1, h2)-convex F·I·V·Fs using
fuzzy partial order relation. Moreover, they introduced H·H, H·H Fejér, H·H fractional,
H·H fractional Fejér for h-convex and (h1, h2)-convex F·I·V·Fs via fuzzy Riemannian and
fuzzy Riemann–Liouville fractional integrals. Noor [27] proposed and investigated the
notion of fuzzy preinvex mapping on the invex set. He also showed how to express the
fuzzy optimality conditions of differentiable preinvex fuzzy mappings using variational
inequalities. Recently Khan et al. [28] generalized the concept of preinvex fuzzy mappings
in terms of (h1, h2)-preinvex F·I·V·Fs. Moreover, they established relation between H·H
inequalities and (h1, h2)-preinvex F·I·V·Fs by using fuzzy Riemannian integrals. Recently
Khan et al. [29–33] proposed the concepts of strongly preinvex F·I·V·Fs, higher strongly
preinvex F·I·V·Fs, generalized strongly preinvex F·I·V·Fs and characterized their optimality
conditions by introducing different variational like inequalities. Moreover, they proposed
H·H inequalities for strongly preinvex F·I·V·Fs by utilizing fuzzy Riemannian.

At one step forward, Khan et al. introduced new classes of convex and generalized
convex F·I·V·Fs, and derived new H·H type inequalities for log-s-convex F·I·V·Fs in the
second sense [34], log-h-convex F·I·V·Fs [35] and the references therein. We refer to the
readers for further analysis of literature on the applications and properties of fuzzy-interval,
and inequalities and generalized convex F·Ms, see [36–56] and the references therein.

The goal of this study is to complete the fuzzy Riemann–Liouville fractional integrals
for F·I·V·Fs and use these integrals to get the H·H inequalities. These integrals are also
used to derive H·H type inequalities for preinvex F·I·V·Fs.

2. Preliminaries

Let KC be the space of all closed and bounded intervals of R and η ∈ KC be defined
by

η = [η∗, η∗] = {ω ∈ R| η∗ ≤ ω ≤ η∗} , (η∗, η∗ ∈ R)

if η∗ = η∗ then, η is said to be degenerate. In this article, all intervals will be non-degenerate
intervals. If η∗ ≥ 0, then [η∗, η∗] is called positive interval. The set of all positive interval is
denoted by K+

C and defined as K+
C = {[η∗, η∗] : [η∗, η∗] ∈ KC and η∗ ≥ 0} .

Let ς ∈ R and ςη be defined by

ς·η =

{
[ςη∗, ςη∗] if ς ≥ 0,
[ςη∗, ςη∗] if ς < 0.

(1)
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Then the Minkowski difference ξ − η, addition η + ξ and η × ξ for η, ξ ∈ KC are
defined by

[ξ∗, ξ∗] − [η∗, η∗] = [ξ∗ − η∗, ξ∗ − η∗] ,
[ξ∗, ξ∗] + [η∗, η∗] = [ξ∗ + η∗, ξ∗ + η∗] ,

(2)

and

[ξ∗, ξ∗] × [η∗, η∗] = [min{ξ∗η∗, ξ∗η∗, ξ∗η∗, ξ∗η∗} , max{ξ∗η∗, ξ∗η∗, ξ∗η∗, ξ∗η∗}]

The inclusion “⊆” means that

ξ ⊆ η if and only if, [ξ∗, ξ∗] ⊆ [η∗, η∗], if and only if η∗ ≤ ξ∗, ξ∗ ≤ η∗ (3)

Remark 2.1. [38] The relation ” ≤I ” defined on KC by

[∇∗, ∇∗] ≤I [η∗, η∗] if and only if ∇∗ ≤ η∗,∇∗ ≤ η∗, (4)

for all [∇∗, ∇∗] , [η∗, η∗] ∈ KC, it is an order relation. For given [∇∗, ∇∗] , [η∗, η∗] ∈ KC,
we say that [∇∗, ∇∗] ≤I [η∗, η∗] if and only if ∇∗ ≤ η∗, ∇∗ ≤ η∗ or ∇∗ ≤ η∗, ∇∗ < η∗.

A fuzzy subset A of R is characterize by a mapping ζ : R→ [0, 1] called the mem-
bership function, for each fuzzy set and θ ∈ (0, 1], then θ-level sets of ζ is denoted and
defined as follows ζθ = {u ∈ R| ζ(u) ≥ θ}. If θ = 0, then supp(ζ) = {ω ∈ R | ζ(ω)〉0}
is called support of ζ. By [ζ]0 we define the closure of supp(ψ).

Let F(R) be the family of all fuzzy sets and ζ ∈ F(R) denote the family of all nonempty
sets. ζ ∈ F(R) be a fuzzy set. Then we define the following:

(1) ζ is said to be normal if there exists ω ∈ R and ζ(ω) = 1;
(2) ζ is said to be upper semi continuous on R if for given ω ∈ R, there exist ε > 0 there

exist δ > 0 such that ζ(ω) − ζ(y) < ε for all y ∈ R with |ω− y| < δ;
(3) ζ is said to be fuzzy convex if ζθ is convex for every θ ∈ [0, 1];
(4) ζ is compactly supported if supp(ζ) is compact.

A fuzzy set is called a fuzzy number or fuzzy interval if it has properties (1), (2), (3)
and (4). We denote by F0 the family of all intervals.

Let ζ ∈ F0 be a fuzzy-interval, if and only if, θ-levels [ζ]θ is a nonempty compact
convex set of R. From these definitions, we have

[ζ]θ = [ζ∗(θ) , ζ∗(θ)] ,

where
ζ∗(θ) = in f {ω ∈ R| ζ(ω) ≥ θ} ,ζ∗(θ) = sup{ω ∈ R| ζ(ω) ≥ θ} . (5)

Proposition 2.2. [47] If ζ, η ∈ F0 then relation “ 4 ” defined on F0 by

ζ 4 η if and only if, [ζ]θ ≤I [η]
θ , for all θ ∈ [0, 1] , (6)

this relation is known as partial order relation.
For ζ, η ∈ F0 and ς ∈ R, the sum ζ+̃η, product ζ×̃η, scalar product ς.ζ and sum with

scalar are defined by:
Then, for all θ ∈ [0, 1] , we have

[
ζ+̃η

]θ
= [ζ]θ + [η]θ , (7)

[
ζ×̃η

]θ
= [ζ]θ × [ η]θ , (8)

[ς.ζ]θ = ς.[ζ]θ . (9)
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[
ς+̃ ζ

]θ
= ς + [ζ]θ . (10)

For ψ ∈ F0 such that ζ = η+̃ψ, then by this result we have existence of Hukuhara
difference of ζ and η, and we say that ψ is the H-difference of ζ and η, and denoted by ζ−̃η.
If H-difference exists, then

(ψ)∗(θ) =
(
ζ−̃η

)∗
(θ) = ζ∗(θ) − η∗(θ), (ψ)∗(θ) =

(
ζ−̃η

)
∗(θ) = ζ∗(θ) − η∗(θ)

Definition 2.3. [36] A fuzzy map Ψ : [u, ν] ⊂ R→ F0 is called F·I·V·F. For each θ ∈ [0, 1] ,
whose θ-levels define the family of I·V·F Ψθ : [u, ν] ⊂ R→ KC are given by Ψθ(ω) =
[Ψ∗(ω, θ) , Ψ∗(ω, θ)] for all ω ∈ [u, ν] . Here, for each θ ∈ [0, 1] , the left and right
real valued functions Ψ∗(ω, θ) , Ψ∗(ω, θ) : [u, ν] → R are also called lower and upper
functions of Ψ.

Remark 2.4. If Ψ : [u, ν] ⊂ R→ F0 is a F·I·V·F, then Ψ(ω) is called continuous function
at ω ∈ [u, ν] , if for each θ ∈ [0, 1] , both left and right real valued functions Ψ∗(ω, θ) and
Ψ∗(ω, θ) are continuous at ω ∈ [u, ν] .

The following FI Riemann–Liouville fractional integral operators were introduced by
Allahviranloo et al. [40]:

Definition 2.5. Let β > 0 and L([µ, υ] ,F0) be the collection of all Lebesgue measurable
F·I·V·Fs on [µ, υ]. Then the fuzzy left and right Riemann–Liouville fractional integral of
Ψ ∈ L([µ, υ] ,F0) with order β > 0 are defined by

Iβ
µ+ Ψ(ω) =

1
Γ(β)

∫ ω

µ
(ω− ς)β−1Ψ(ς)dς, (ω > µ) (11)

and
Iβ

υ− Ψ(ω) =
1

Γ(β)

∫ υ

ω
(ς−ω)β−1Ψ(ς)dς, (ω < υ), (12)

respectively, where Γ(ω) =
∫ ∞

0 ςω−1e−ςdς is the Euler gamma function. The fuzzy left and
right Riemann–Liouville fractional integral ω based on left and right end point functions
can be defined, that is

[
Iβ

µ+ Ψ(ω)
]θ

= 1
Γ(β)

∫ ω
µ (ω− ς)β−1Ψθ(ς)dς

= 1
Γ(β)

∫ ω
µ (ω− ς)β−1[Ψ∗(ς, θ) , Ψ∗(ς, θ)]dς, (ω > µ)

(13)

where
Iβ

µ+ Ψ∗(ω, θ) =
1

Γ(β)

∫ ω

µ
(ω− ς)β−1Ψ∗(ς, θ)dς, (ω > µ) , (14)

and
Iβ

µ+ Ψ∗(ω, θ) =
1

Γ(β)

∫ ω

µ
(ω− ς)β−1Ψ∗(ς, θ)dς, (ω > µ) , (15)

Similarly, the left and right end point functions can be used to define the right Riemann–
Liouville fractional integral Ψ of ω.

Definition 2.6. [18]. The F·I·V·F Ψ : [u, ν] → F0 is called convex F·I·V·F on [u, ν] if

Ψ(ςω + (1− ς)y ) 4 ςΨ(ω)+̃(1− ς)Ψ(y) , (16)
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for all ω, y ∈ [u, ν] , ς ∈ [0, 1] , where for all Ψ(ω) < 0̃ for all ω ∈ [u, ν] . If (16) is
reversed, then Ψ is called concave F·I·V·F on [u, ν]. Ψ is affine if and only if, it is both
convex and concave F·I·V·F.

Definition 2.7. [27]. The F·I·V·F Ψ : [u, ν] → F0 is called preinvex F·I·V·F on invex inter-
val [u, ν] if

Ψ(ω + (1− ς)ϕ(ω, y)) 4 ςΨ(ω)+̃(1− ς)Ψ(y) , (17)

for all ω, y ∈ [u, ν] , ς ∈ [0, 1] , where Ψ(ω) < 0̃ for all ω ∈ [u, ν] and ϕ : [u, ν] ×
[u, ν]→ R. If (17) is reversed then, Ψ is called preconcave F·I·V·F on [u, ν]. Ψ is affine if
and only if, it is both preinvex and preconcave F·I·V·F.

We need the following assumption regarding the function ϕ : [u, ν] × [u, ν] → R,
which plays an important role in upcoming main results.

Condition C. [16]
ϕ(y, ω + τϕ(y, ω)) = (1− τ)ϕ(y, ω) ,

ϕ(ω, ω + τϕ(y, ω)) = −τϕ(y, ω)

Note that ∀ ω, y ∈ [u, ν] and ς ∈ [0, 1], then from Condition C we have

ϕ(ω + τ2 ϕ(y, ω) , ω + τ1 ϕ(y, ω)) = (τ2 − τ1)ϕ(y, ω)

Clearly for τ = 0, we have ξ(y, ω) = 0 if and only if y = ω, for all ω, y ∈ [u, ν]. For
the application of Condition C, see [27–33].

Theorem 2.8. [28] Let [u, ν] be an invex set with resoect to bifunvtion ϕ and Ψ : [u, ν] → FC(R)
be a F·I·V·F with Ψ(ω) < 0̃, whose θ-levels define the family of I·V·Fs Ψθ : [u, ν] ⊂ R→ KC

+

are given by
Ψθ(ω) = [Ψ∗(ω, θ) , Ψ∗(ω, θ)] , ∀ ω ∈ [u, ν] (18)

for all ω ∈ [u, ν] and for all θ ∈ [0, 1]. Then, Ψ is preinvex F·I·V·F on [u, ν] , if and only if, for
all θ ∈ [0, 1] , Ψ∗(ω, θ) and Ψ∗(ω, θ) both are preinvex functions.

Remark 2.9. If ϕ(ω, y) = ω− y, then we obtain inequality (16).
If Ψ∗(ω, θ) = Ψ∗(ω, θ) with θ = 1, then from (17), we obtain the definition of classical

preinvex function, see [16].
If Ψ∗(ω, θ) = Ψ∗(ω, θ) with ϕ(ω, y) = ω − y and θ = 1, then from (17), we obtain

the definition of classical convex function.

3. Fuzzy-Interval Fractional Hermite-Hadamard Inequalities

The major goal of this section is to build a new version of fractional H·H and H·H Fejér
type inequality in the mode of preinvex F·I·V·Fs, which is a classical studied topic. We also
study some related inequalities. In what follows, we denote by L([u, u + ϕ(ν, u)] ,F0) the
family of Lebesgue measureable F·I·V·Fs.

Theorem 3.1. Let Ψ : [u, u + ϕ(ν, u)] → F0 be a preinvex F·I·V·F on [u, u + ϕ(ν, u)] , whose
θ-levels define the family of I·V·Fs Ψθ : [u, u + ϕ(ν, u)] ⊂ R→ KC

+ are given by Ψθ(ω) =
[Ψ∗(ω, θ) , Ψ∗(ω, θ)] for all ω ∈ [u, u + ϕ(ν, u)] and for all θ ∈ [0, 1]. If ϕ satisfies Condition
C and Ψ ∈ L([u, u + ϕ(ν, u)] ,F0), then

Ψ
(

2u + ϕ(ν, u)
2

)
4 Γ(β + 1)

2(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)

]
4 Ψ(u)+̃Ψ(u + ϕ(ν, u))

2
4 Ψ(u)+̃Ψ(ν)

2
(19)

If Ψ(ω) is preconcave F·I·V·F then
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Ψ
(

2u + ϕ(ν, u)
2

)
< Γ(β + 1)

2(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)

]
< Ψ(u)+̃Ψ(u + ϕ(ν, u))

2
< Ψ(u)+̃Ψ(ν)

2
(20)

Proof. Let Ψ : [u, u + ϕ(ν, u)] → F0 be a preinvex F·I·V·F. If Condition C holds then, by
hypothesis, we have that

2Ψ
(

2u + ϕ(ν, u)
2

)
4 Ψ(u + (1− ς)ϕ(ν, u))+̃Ψ(u + ςϕ(ν, u))

Therefore, for every θ [0, 1], we have

2Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
≤ Ψ∗(u + (1− ς)ϕ(ν, u) , θ) + Ψ∗(u + ςϕ(ν, u) , θ) ,

2Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
≤ Ψ∗(u + (1− ς)ϕ(ν, u) , θ) + Ψ∗(u + ςϕ(ν, u) , θ) .

Multiplying both sides by ςβ−1 and integrating the obtained result with respect to ς
over (0, 1), we have

2
∫ 1

0 ςβ−1Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
dς

≤
∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)dς +
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)dς,

2
∫ 1

0 ςβ−1Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
dς

≤
∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)dς +
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)dς.

Let ω = u + (1− ς)ϕ(ν, u) and y = u + ςϕ(ν, u) . Then we have

2
β Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)
≤ 1

(ϕ(ν,u))β

u+ϕ(ν,u)∫
u

(u + ϕ(ν, u) − y)β−1Ψ∗(y, θ)dy

+ 1
(ϕ(ν,u))β

u+ϕ(ν,u)∫
u

(ω− u)β−1Ψ∗(ω, θ)dω

2
β Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)
≤ 1

(ϕ(ν,u))β

u+ϕ(ν,u)∫
u

(u + ϕ(ν, u) − y)β−1Ψ∗(y, θ)dy

+ 1
(ϕ(ν,u))β

u+ϕ(ν,u)∫
u

(ω− u)β−1Ψ∗(ω, θ)dω,

≤ Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ)

]

≤ Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ)

]
,

That is

2
β

[
Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
, Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)]

≤I
Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ) , Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ
ν− Ψ∗(u + ϕ(ν, u) , θ)

]
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Thus,

2
β

Ψ
(

2u + ϕ(ν, u)
2

)
4 Γ(β)

(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)

]
(21)

In a similar way as above, we have

Γ(β)

(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)

]
4 Ψ(u)+̃Ψ(u + ϕ(ν, u))

2
4 Ψ(u)+̃Ψ(ν)

2
. (22)

Combining (21) and (22), we have

Ψ
(

2u + ϕ(ν, u)
2

)
4 Γ(β + 1)

2(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)

]
4 Ψ(u)+̃Ψ(u + ϕ(ν, u))

2
4 Ψ(u)+̃Ψ(ν)

2

Hence, the required result. �

Remark 3.2. From Theorem 3.1 we clearly see that
If ϕ(ω, y) = ω− y, then from Theorem 3.1, we get following result in fuzzy fractional

calculus, see [23].

Ψ
(

u + ν

2

)
4 Γ(β + 1)

2(ν− u)β

[
Iβ

u+ Ψ(ν)+̃Iβ
ν− Ψ(u)

]
4 Ψ(u)+̃Ψ(ν)

2

Let β = 1. Then Theorem 3.1 reduces to the result for preinvex F·I·V·F given in [28]:

Ψ
(

2u + ϕ(ν, u)
2

)
4 1

ϕ(ν, u)

∫ u+ϕ(ν,u)

u
Ψ(ω)dω 4 Ψ(u) +̃ Ψ(ν)

2
.

Let β = 1 and ϕ(ω, y) = ω − y. Then Theorem 3.1 reduces to the result for convex
F·I·V·F given in [26]:

Ψ
(

u + ν

2

)
4 1

ν− u

∫ ν

u
Ψ(ω)dω 4 Ψ(u) +̃ Ψ(ν)

2

Let β = 1 = θ and Ψ∗(ω, θ) = Ψ∗(ω, θ) with ϕ(ω, y) = ω− y. Then from Theorem
3.1 we obtain classical H·H Fejér type inequality.

Example 3.3. Let β = 1
2 , ω ∈ [2, 2 + ϕ(3, 2)], and the F·I·V·F Ψ : [u, u + ϕ(ν, u)] =

[2, 2 + ϕ(3, 2)] → F0, defined by

Ψ(ω)(θ) =





θ

2−ω
1
2

θ ∈
[
0, 2−ω

1
2

]

2
(

2−ω
1
2

)
−θ

2−ω
1
2

θ ∈
(

2−ω
1
2 , 2

(
2−ω

1
2

)]

0 otherwise,

Then, for each θ ∈ [0, 1] , we have Ψθ(ω) =
[
θ
(

2−ω
1
2

)
, (2− θ)

(
2−ω

1
2

)]
. Since

left and right end point functions Ψ∗(ω, θ) = θ
(

2−ω
1
2

)
, Ψ∗(ω, θ) = (2− θ)

(
2−ω

1
2

)
,

are preinvex functions with respect to ϕ(ν, u) = ν− u, for each θ ∈ [0, 1], then Ψ(ω) is
preinvex F·I·V·F. We clearly see that Ψ ∈ L([u, u + ϕ(ν, u)] ,F0) and

Ψ∗

(
2u + ϕ(ν, u)

2
, θ

)
= Ψ∗

(
5
2

, θ

)
= θ

4−
√

10
2
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Ψ∗
(

2u + ϕ(ν, u)
2

, θ

)
= Ψ∗

(
5
2

, θ

)
= (2− θ)

4−
√

10
2

Ψ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ)

2
= θ

(
4−
√

2−
√

3
2

)

Ψ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ)

2
= (2− θ)

(
4−
√

2−
√

3
2

)

Note that

Γ(β + 1)

2(ϕ(ν, u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ)

]

=
Γ
( 3

2
)

2
1√
π

2+ϕ(3,2)∫

2

(3−ω)
−1
2 . θ

(
2−ω

1
2

)
dω

+
Γ
( 3

2
)

2
1√
π

2+ϕ(3,2)∫

2

(ω− 2)
−1
2 . θ

(
2−ω

1
2

)
dω

=
1
4

θ

[
7393

10, 000
+

9501
10, 000

]

= θ
8447

20, 000

Γ(β + 1)

2(ϕ(ν, u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ)

]

=
Γ
( 3

2
)

2
1√
π

2+ϕ(3,2)∫

2

(3−ω)
−1
2 . (2− θ)

(
2−ω

1
2

)
dω

+
Γ
( 3

2
)

2
1√
π

2+ϕ(3,2)∫

2

(ω− 2)
−1
2 . (2− θ)

(
2−ω

1
2

)
dω

=
1
4
(2− θ)

[
7393

10, 000
+

9501
10, 000

]

= (2− θ)
8447

20, 000

Therefore

[
θ

4−
√

10
2

, (2− θ)
4−
√

10
2

]
≤I

[
θ

8447
20, 000

, (2− θ)
8447

20, 000

]
≤I

[
θ

(
4−
√

2−
√

3
2

)
, (2− θ)

(
4−
√

2 +
√

3
2

)]

and Theorem 3.1 is verified.
It is well known fact that H·H Fejér type inequality is a generalization of H·H type

inequality. In Theorem 3.4 and Theorem 3.5, we obtain second and first fuzzy fractional
H·H Fejér type inequalities for introduced preinvex F·I·V·F.

Theorem 3.4. Let Ψ : [u, u + ϕ(ν, u)] → F0 be a preinvex F·I·V·F with u < ν, whose θ-
levels define the family of I·V·F Ψθ : [u, u + ϕ(ν, u)] ⊂ R→ KC

+ are given by Ψθ(ω) =
[Ψ∗(ω, θ), Ψ∗(ω, θ)] for all ω ∈ [u, u + ϕ(ν, u)] and for all θ ∈ [0, 1]. Let Ψ ∈
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L([u, u + ϕ(ν, u)],F0) and Ω : [u, u + ϕ(ν, u)] → R, Ω(ω) ≥ 0, symmetric with respect
to 2u+ϕ(ν,u)

2 . If ϕ satisfies Condition C, then
[
Iβ

u+ ΨΩ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
ΨΩ(u)

]

4 Ψ(u)+̃Ψ(u+ϕ(ν,u))
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

4 Ψ(u)+̃Ψ(ν)
2

[
Iβ

u+ Ω(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ω(u)

]

(23)

If Ψ is preconcave F·I·V·F, then inequality (23) is reversed.

Proof. Let Ψ be a preinvex F·I·V·F and ςβ−1Ω(u + (1− ς)ϕ(ν, u)) ≥ 0. Then, for each
θ ∈ [0, 1] , we have

ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + (1− ς)ϕ(ν, u))

≤ ςβ−1(ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))Ω(u + (1− ς)ϕ(u + ϕ(ν, u) , u))

ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + (1− ς)ϕ(ν, u))

≤ ςβ−1(ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))Ω(u + (1− ς)ϕ(u + ϕ(ν, u) , u)) .

(24)

and
ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))

≤ ςβ−1((1− ς)Ψ∗(u, θ) + ςΨ∗(u + ϕ(ν, u) , θ))Ω(u + ςϕ(ν, u))

ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))

≤ ςβ−1((1− ς)Ψ∗(u, θ) + ςΨ∗(u + ϕ(ν, u) , θ))Ω(u + ςϕ(ν, u))

(25)

After adding (24) and (25), and integrating over [0, 1] , we get

∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + (1− ς)ϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

≤
∫ 1

0




ςβ−1Ψ∗(u, θ){ςΩ(u + (1− ς)ϕ(ν, u)) + (1− ς)Ω(u + ςϕ(ν, u))}

+ςβ−1Ψ∗(u + ϕ(ν, u) , θ){(1− ς)Ω(u + (1− ς)ϕ(ν, u)) + ςΩ(u + ςϕ(ν, u))}


dς,

∫ 1
0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + (1− ς)ϕ(ν, u))dς

≤
∫ 1

0




ςβ−1Ψ∗(u, θ){ςΩ(u + (1− ς)ϕ(ν, u)) + (1− ς)Ω(u + ςϕ(ν, u))}

+ςβ−1Ψ∗(u + ϕ(ν, u) , θ){(1− ς)Ω(u + (1− ς)ϕ(ν, u)) + ςΩ(u + ςϕ(ν, u))}


dς,

= Ψ∗(u, θ)
∫ 1

0
ςβ−1Ω(u + (1− ς)ϕ(ν, u)) dς + Ψ∗(u + ϕ(ν, u) , θ)

∫ 1
0 ςβ−1Ω(u + ςϕ(ν, u)) dς,

= Ψ∗(u, θ)
∫ 1

0 ςβ−1Ω(u + (1− ς)ϕ(ν, u)) dς + Ψ∗(u + ϕ(ν, u) , θ)
∫ 1

0 ςβ−1Ω(u + ςϕ(ν, u)) dς.
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Since Ω is symmetric, then

= [Ψ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ)]
∫ 1

0 ςβ−1Ω(u + ςϕ(ν, u)) dς

= [Ψ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ)]
∫ 1

0 ςβ−1Ω(u + ςϕ(ν, u)) dς.

= Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
,

= Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
.

(26)

Since
∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

= 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(2u + ϕ(ν, u) −ω, θ)Ω(ω)dω

+ 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(ω)dω

= 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(2u + ϕ(ν, u) −ω)dω

+ 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(ω)dω

= Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(ν) + Iβ
ν− Ψ∗Ω(u)

]
,

∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

= Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
.

(27)

Then from (26), we have

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]

≤ Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤ Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
,

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]

≤ Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤ Ψ∗(u, θ) +Ψ∗(u+ϕ(ν) , θ)
2

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
,

that is
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Γ(β)

(ϕ(ν,u))β

[[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
, Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]

≤I
Γ(β)

(ϕ(ν,u))β

[
Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)

2 , Ψ∗(u, θ) +Ψ∗(u+ϕ(ν,u) , θ)
2

][
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤I
Γ(β)

(ϕ(ν,u))β

[
Ψ∗(u, θ) +Ψ∗(ν, θ)

2 , Ψ∗(u, θ) +Ψ∗(ν, θ)
2

][
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

hence
[
Iβ

u+ ΨΩ(u + ϕ(ν, u)) +̃ Iβ

u+ϕ(ν,u)−
ΨΩ(u)

]

4 Ψ(u)+̃Ψ(u+ϕ(ν,u))
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

4 Ψ(u)+̃Ψ(ν)
2

[
Iβ

u+ Ω(u + ϕ(ν, u))+̃ Iβ

u+ϕ(ν,u)−
Ω(u)

]

�

Theorem 3.5. Let Ψ : [u, u + ϕ(ν, u)] → F0 be a preinvex F·I·V·F with u < ν, whose θ-
levels define the family of I·V·Fs Ψθ : [u, u + ϕ(ν, u)] ⊂ R→ KC

+ are given by Ψθ(ω) =
[Ψ∗(ω, θ) , Ψ∗(ω, θ)] for all ω ∈ [u, u + ϕ(ν, u)] and for all θ ∈ [0, 1]. If Ψ ∈ L
([u, u + ϕ(ν, u)],F0) and Ω : [u, u + ϕ(ν, u)] → R, Ω(ω) ≥ 0, symmetric with respect to
2u+ϕ(ν,u)

2 . If ϕ satisfies Condition C and then

Ψ
(

2u+ϕ(ν,u)
2

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

4
[
Iβ

u+ ΨΩ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
ΨΩ(u)

]
.

(28)

If Ψ is preconcave F·I·V·F, then inequality (28) is reversed.

Proof. Since Ψ is a preinvex F·I·V·F, then for θ ∈ [0, 1] , we have

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
≤ 1

2 (Ψ∗(u + (1− ς)ϕ(ν, u) , θ) + Ψ∗(u + ςϕ(ν, u) , θ))

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
≤ 1

2 (Ψ
∗(u + (1− ς)ϕ(ν, u) , θ) + Ψ∗(u + ςϕ(ν, u) , θ)) ,

(29)

Since Ω(u + (1− ς)ϕ(ν, u)) = Ω(u + ςϕ(ν, u)), then by multiplying (29) by
ςβ−1Ω(u + ςϕ(ν, u)) and integrate it with respect to ς over [0, 1] , we obtain

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

) ∫ 1
0 ςβ−1Ω(u + ςϕ(ν, u))dς

≤ 1
2




∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς


 ,

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

) ∫ 1
0 Ω(u + ςϕ(ν, u))dς

≤ 1
2



∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς


 .

(30)
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Let ω = u + ςϕ(ν, u). Then we have

∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

= 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(2u + ϕ(ν, u) −ω, θ)Ω(ω)dω

+ 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(ω)dω

= 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(2u + ϕ(ν, u) −ω)dω

+ 1
(ϕ(ν,u))β

∫ u+ϕ(ν,u)
u (ω− u)β−1Ψ∗(ω, θ)Ω(ω)dω

= Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
,

∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

+
∫ 1

0 ςβ−1Ψ∗(u + ςϕ(ν, u) , θ)Ω(u + ςϕ(ν, u))dς

= Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
.

(31)

Then from (31), we have

Γ(β)

(ϕ(ν,u))β Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤ Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]

Γ(β)

(ϕ(ν,u))β Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤ Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
,

from which, we have

Γ(β)

(ϕ(ν,u))β

[
Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
, Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)][
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

≤ I
Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u) , Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
,

that is
Γ(β)

(ϕ(ν,u))β Ψ
(

2u+ϕ(ν,u)
2

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

4 Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ ΨΩ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
ΨΩ(u)

]

This completes the proof. �
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Example 3.6. We consider the F·I·V·F Ψ : [0, 2] → F0 defined by,

Ψ(ω)(σ) =





σ
2−√ω

, σ ∈
[
0, 2−√ω

]
,

2(2−√ω) −σ

2−√ω
, σ ∈

(
2−√ω, 2

(
2−√ω

)]
,

0, otherwise.

Then, for each θ ∈ [0, 1] , we have Ψθ(ω) =
[
θ
(
2−√ω

)
, (2− θ)

(
2−√ω

)]
. Since

end point functions Ψ∗(ω, θ) , Ψ∗(ω, θ) are preinvex functions with respect to ϕ(ν, u) =
ν− u for each θ ∈ [0, 1], then Ψ(ω) is preinvex F·I·V·F. If

Ω(ω) =

{ √
ω, σ ∈ [0, 1] ,√

2−ω, σ ∈ (1, 2] ,

then Ω(2−ω) = Ω(ω) ≥ 0, for all ω ∈ [0, 2]. Since Ψ∗(ω, θ) = θ
(
2−√ω

)
and

Ψ∗(ω, θ) = (2− θ)
(
2−√ω

)
. If β = 1

2 , then we compute the following:

[
Iβ

u+ ΨΩ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
ΨΩ(u)

]
4 Ψ(u)+̃Ψ(u+ϕ(ν,u))

2


 I

β
u+ Ω(u + ϕ(ν, u))
+Iβ

u+ϕ(ν,u)−
Ω(u)




4 Ψ(u)+̃Ψ(ν)
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]

Ψ∗(u) +Ψ∗(u+ϕ(ν,u))
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= π√

2
θ
(

4−
√

2
2

)

Ψ∗(u)+̃Ψ∗(u+ϕ(ν,u))
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= π√

2
(2− θ)

(
4−
√

2
2

)
,

(32)

Ψ∗(u) +Ψ∗(ν)
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= π√

2
θ
(

4−
√

2
2

)

Ψ∗(u)+̃Ψ∗(ν)
2

[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= π√

2
(2− θ)

(
4−
√

2
2

)
,

(33)

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
= 1√

π
θ
(

2π + 4−8
√

2
3

)
,

[
Iβ

u+ Ψ∗Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗Ω(u)

]
= 1√

π
(2− θ)

(
2π + 4−8

√
2

3

)
.

(34)

From (32), (33) and (34), we have

1√
π

[
θ
(

2π + 4−8
√

2
3

)
, (2− θ)

(
2π + 4−8

√
2

3

)]
≤ I

π√
2

[
θ
(

4−
√

2
2

)
, (2− θ)

(
4−
√

2
2

)]

= π√
2

[
θ
(

4−
√

2
2

)
, (2− θ)

(
4−
√

2
2

)]

for each θ ∈ [0, 1] . Hence, Theorem 10 is verified.
For Theorem 11, we have

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= θ
√

π,

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)[
Iβ

u+ Ω(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ω(u)

]
= (2− θ)

√
π.

(35)
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From (34) and (35), we have
√

π[θ, (2− θ)] ≤I
1√
π
[θ(2π + 4−8

√
2

3 ), (2− θ)(2π + 4−8
√

2
3 )] ,

for each θ ∈ [0, 1] .

Remark 3.7. If Ω(ω) = 1. Then from Theorem 3.4 and Theorem 3.5, we get Theorem 3.1.

Let β = 1. Then we obtain following H·H Fejér type inequality for preinvex F·I·V·F,
see [28].

Ψ
(

2u + ϕ(ν, u)
2

)
4 1
∫ u+ϕ(ν,u)

u Ω(ω)dω
(FR)

∫ u+ϕ(ν,u)

u
Ψ(ω)Ω(ω)dω 4 Ψ(u) + Ψ(ν)

2

If Ψ∗(ω, θ) = Ψ∗(ω, θ) with ϕ(ω, y) = ω − y and Ω(ω) = β = 1 = θ. Then from
Theorem 3.4 and Theorem 3.5, we get the classical H·H inequality.

If Ψ∗(ω, θ) = Ψ∗(ω, θ) with ϕ(ω, y) = ω − y and β = 1, then from Theorem 3.4
and Theorem 3.5, we obtain the classical H·H Fejér inequality, see [46].

From Theorems 3.8 and 3.9, now we get several fuzzy-interval fractional integral
inequalities linked to fuzzy-interval fractional H·H type inequality for the product of
preinvex F·I·V·Fs.

Theorem 3.8. Let Ψ, Φ : [u, u + ϕ(ν, u)] → F0 be two preinvex F·I·V·Fs on [u, u + ϕ(ν, u)] ,
whose θ-levels Ψθ , Φθ : [u, u + ϕ(ν, u)] ⊂ R→ KC

+ are defined by Ψθ(ω) =
[Ψ∗(ω, θ) , Ψ∗(ω, θ)] and Φθ(ω) = [Φ∗(ω, θ) , Φ∗(ω, θ)] for all ω ∈ [u, u + ϕ(ν, u)] and
for all θ ∈ [0, 1]. If Ψ×̃Φ ∈ L([u, u + ϕ(ν, u)] ,F0) and ϕ satisfies Condition C, then

Γ(β)

2(ϕ(ν,u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)×̃Φ(u)

]

4
(

1
2 −

β
(β+1)(β+2)

)
∆ (u, u + ϕ(ν, u))+̃

(
β

(β+1)(β+2)

)
∇ (u, u + ϕ(ν, u))

where ∆ (u, u + ϕ(ν, u)) = Ψ(u)×̃Φ(u) +̃ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u)) , ∇ (u, u+
ϕ(ν, u)) = Ψ(u)×̃Φ(u + ϕ(ν, u)) +̃ Ψ(u + ϕ(ν, u))×̃Φ(u) , and ∆θ(u, u + ϕ(ν, u)) =
[∆∗((u, u + ϕ(ν, u)) , θ) , ∆∗((u, u + ϕ(ν, u)) , θ)] and ∇θ(u, ν) =
[∇∗((u, u + ϕ(ν, u)), θ),∇∗((u, u + ϕ(ν, u)) , θ)].

Proof. Since Ψ, Φ both are preinvex F·I·V·Fs and Condition C holds ϕ for then, for each
θ ∈ [0, 1] we have

Ψ∗(u + (1− ς)ϕ(ν, u) , θ) = Ψ∗(u + ϕ(ν, u) + ςϕ(u, u + ϕ(ν, u)) , θ)

≤ ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ)

Ψ∗(u + (1− ς)ϕ(ν, u) , θ) = Ψ∗(u + ϕ(ν, u) + ςϕ(u, u + ϕ(ν, u)) , θ)

≤ ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ) .

and

Φ∗(u + (1− ς)ϕ(ν, u) , θ) = Φ∗(u + ϕ(ν, u) + ςϕ(u, u + ϕ(ν, u)) , θ)

≤ ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ)

Φ∗(u + (1− ς)ϕ(ν, u) , θ) = Φ∗(u + ϕ(ν, u) + ςϕ(u, u + ϕ(ν, u)) , θ)

≤ ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ) .

From the definition of preinvex F·I·V·Fs it follows that 0̃ 4 Ψ(ω) and 0̃ 4 Φ(ω), so
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Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

≤ (ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))(ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ))

= ς2Ψ∗(u, θ) ×Φ∗(u, θ) + (1− ς)2Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)

+ς(1− ς)Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ) + ς(1− ς)Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ)

Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

≤ (ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))(ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ))

= ς2Ψ∗(u, θ) ×Φ∗(u, θ) + (1− ς)2Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)

+ς(1− ς)Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ) + ς(1− ς)Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ) ,

(36)

Analogously, we have

Ψ∗(u + ςϕ(ν, u) , θ)Φ∗(u + ςϕ(ν, u) , θ)

≤ (1− ς)2Ψ∗(u, θ) ×Φ∗(u, θ) + ς2Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)

+ς(1− ς)Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ) + ς(1− ς)Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ)

Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

≤ (1− ς)2Ψ∗(u, θ) ×Φ∗(u, θ) + ς2Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)

+ς(1− ς)Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ) + ς(1− ς)Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ) .

(37)

Adding (36) and (37), we have

Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

≤
[
ς2 + (1− ς)2

]
[Ψ∗(u, θ) ×Φ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)]

+2ς(1− ς)[Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ) + Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ)]

Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

≤
[
ς2 + (1− ς)2

]
[Ψ∗(u, θ) ×Φ∗(u, θ) + Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ)]

+2ς(1− ς)[Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u, θ) + Ψ∗(u, θ) ×Φ∗(u + ϕ(ν, u) , θ)] .

(38)

Taking multiplication of (38) by ςβ−1 and integrating the obtained result with respect
to ς over (0,1), we have

∫ 1
0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+ςβ−1Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)dς

≤ ∆∗((u, u + ϕ(ν, u)) , θ)
∫ 1

0 ςβ−1
[
ς2 + (1− ς)2

]
dς

+2∇∗((u, u + ϕ(ν, u)) , θ)
∫ 1

0 ςβ−1ς(1− ς)dς
∫ 1

0 ςβ−1Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+ςβ−1Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)dς

≤ ∆∗((u, u + ϕ(ν, u)) , θ)
∫ 1

0 ςβ−1
[
ς2 + (1− ς)2

]
dς

+2∇∗((u, u + ϕ(ν, u)) , θ)
∫ 1

0 ςβ−1ς(1− ς)dς.
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It follows that,

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ) ×Φ∗(u, θ)

]

≤ 2
β

(
1
2 −

β
(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ) + 2

β

(
β

(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ)

Γ(β)

(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ) ×Φ∗(u, θ)

]

≤ 2
β

(
1
2 −

β
(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ) + 2

β

(
β

(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ) ,

that is

Γ(β)

(ϕ(ν,u))β [Iβ
u+ Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ) ×Φ∗(u, θ) ,

Iβ
u+ Ψ∗(u + ϕ(ν, u) , θ) ×Φ∗(u + ϕ(ν, u) , θ) + Iβ

u+ϕ(ν,u)−
Ψ∗(u, θ) ×Φ∗(u, θ)]

≤I
2
β

(
1
2 −

β
(β+1)(β+2)

)
[∆∗((u, u + ϕ(ν, u)) , θ) , ∆∗((u, u + ϕ(ν, u)) , θ)]

+ 2
β

(
β

(β+1)(β+2)

)
[∇∗((u, u + ϕ(ν, u)) , θ) , ∇∗((u, u + ϕ(ν, u)) , θ)]

Thus,

Γ(β)

2(ϕ(ν,u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)×̃Φ(u)

]

4
(

1
2 −

β
(β+1)(β+2)

)
∆ (u, u + ϕ(ν, u))+̃

(
β

(β+1)(β+2)

)
∇ (u, u + ϕ(ν, u))

and the theorem has been established. �

Theorem 3.9. Let Ψ, Φ : [u, u + ϕ(ν, u)] → F0 be two preinvex F·I·V·Fs, whose θ-levels
define the family of I·V·Fs Ψθ , Φθ : [u, u + ϕ(ν, u)] ⊂ R→ KC

+ are given by Ψθ(ω) =
[Ψ∗(ω, θ) , Ψ∗(ω, θ)] and Φθ(ω) = [Φ∗(ω, θ) , Φ∗(ω, θ)] for all ω ∈ [u, u + ϕ(ν, u)] and
for all θ ∈ [0, 1]. If Ψ×̃Φ ∈ L([u, u + ϕ(ν, u)] ,F0) and ϕ satisfies Condition C, then

1
β

Ψ
(

2u + ϕ(ν, u)
2

)
×̃Φ

(
2u + ϕ(ν, u)

2

)

4 Γ(β + 1)

4(ϕ(ν, u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)×̃Φ(u)

]

+̃
1

2β

(
1
2
− β

(β + 1)(β + 2)

)
∇ (u, u + ϕ(ν, u))+̃

1
2β

(
β

(β + 1)(β + 2)

)
∆ (u, u + ϕ(ν, u)) .

where ∆ (u, u + ϕ(ν, u)) = Ψ(u)×̃Φ(u) +̃ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u)) , ∇ (u, ν) =
Ψ(u)×̃Φ(u + ϕ(ν, u)) +̃ Ψ(u + ϕ(ν, u))×̃Φ(u) , and ∆θ(u, u + ϕ(ν, u)) =
[∆∗((u, u + ϕ(u + ϕ(ν, u))) , θ) , ∆∗((u, u + ϕ(ν, u)) , θ)] and ∇θ(u, u + ϕ(ν, u)) =
[∇∗((u, u + ϕ(ν, u)) , θ) , ∇∗((u, u + ϕ(ν, u)) , θ)] .

Proof. Consider Ψ, Φ : [u, u + ϕ(ν, u)] → F0 are preinvex F·I·V·Fs. Then by hypothesis,
for each θ ∈ [0, 1] , we have
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Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
×Φ∗

(
2u+ϕ(ν,u)

2 , θ
)

Ψ∗
(

2u+ϕ(ν,u)
2 , θ

)
×Φ∗

(
2u+ϕ(ν,u)

2 , θ
)

≤ 1
4

[
Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

]

+ 1
4

[
Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

]

≤ 1
4

[
Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

]

+ 1
4




Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)


 ,

≤ 1
4

[
Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

]

+ 1
4




(ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))

× ((1− ς)Φ∗(u, θ) + ςΦ∗(u + ϕ(ν, u) , θ))

+ ((1− ς)Ψ∗(u, θ) + ςΨ∗(u + ϕ(ν, u) , θ))

× (ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ))




≤ 1
4

[
Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)

]

+ 1
4




(ςΨ∗(u, θ) + (1− ς)Ψ∗(u + ϕ(ν, u) , θ))

× ((1− ς)Φ∗(u, θ) + ςΦ∗(u + ϕ(ν, u) , θ))

+ ((1− ς)Ψ∗(u, θ) + ςΨ∗(u + ϕ(ν, u) , θ))

× (ςΦ∗(u, θ) + (1− ς)Φ∗(u + ϕ(ν, u) , θ))




,

= 1
4




Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)




+ 1
4




{
ς2 + (1− ς)2

}
∇∗((u, u + ϕ(ν, u)) , θ)

+ {ς(1− ς) + (1− ς)ς}∆∗((u, u + ϕ(ν, u)) , θ)




= 1
4




Ψ∗(u + (1− ς)ϕ(ν, u) , θ) ×Φ∗(u + (1− ς)ϕ(ν, u) , θ)

+Ψ∗(u + ςϕ(ν, u) , θ) ×Φ∗(u + ςϕ(ν, u) , θ)




+ 1
4




{
ς2 + (1− ς)2

}
∇∗((u, u + ϕ(ν, u)) , θ)

+ {ς(1− ς) + (1− ς)ς}∆∗((u, u + ϕ(ν, u)) , θ)


 .

(39)
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Taking multiplication of (39) with ςβ−1 and integrating over (0, 1) , we get

1
β Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)
×Φ∗

(
2u+ϕ(ν,u)

2 , θ
)

≤ 1
4(ϕ(ν,u))β




∫ u+ϕ(ν,u)
u (u + ϕ(ν, u) −ω)β−1Ψ∗(ω, θ) ×Φ∗(ω, θ)dω

+
∫ u+ϕ(ν,u)

u (y− u)β−1Ψ∗(y, θ) ×Φ∗(y, θ)dy




+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ) + 1

2β

(
β

(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ)

= Γ(β+1)
4(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗(u) ×Φ∗(u)

]

+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ) + 1

2β

(
β

(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ)

1
β Ψ∗

(
2u+ϕ(ν,u)

2 , θ
)
×Φ∗

(
2u+ϕ(ν,u)

2 , θ
)

≤ 1
4(ϕ(ν,u))β




∫ u+ϕ(ν,u)
u (u + ϕ(ν, u) −ω)β−1Ψ∗(ω, θ) ×Φ∗(ω, θ)dω

+
∫ u+ϕ(ν,u)

u (y− u)β−1Ψ∗(y, θ) ×Φ∗(y, θ)dy




+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ) + 1

2β

(
β

(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ)

= Γ(β+1)
4(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗(u) ×Φ∗(u)

]

+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
∇∗((u, u + ϕ(ν, u)) , θ) + 1

2β

(
β

(β+1)(β+2)

)
∆∗((u, u + ϕ(ν, u)) , θ) ,

that is

1
β Ψ
(

2u+ϕ(ν,u)
2

)
×̃Φ

(
2u+ϕ(ν,u)

2

)

4 Γ(β+1)
4(ϕ(ν,u))β

[
Iβ

u+ Ψ(u + ϕ(ν, u))×̃Φ(u + ϕ(ν, u))+̃Iβ

u+ϕ(ν,u)−
Ψ(u)×̃Φ(u)

]

+̃ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
∇ (u, u + ϕ(ν, u))+̃ 1

2β

(
β

(β+1)(β+2)

)
∆ (u, u + ϕ(ν, u))

Hence, the required result. �

Example 3.10. Let [u, u + ϕ(ν, u)] = [0, ϕ(2, 0)], β = 1
2 , Ψ(ω) = [ω, 2ω], and Φ(ω) =

[ω, 3ω].

Ψ(ω)(θ) =





θ
ω θ ∈ [0, ω]

2ω−θ
ω θ ∈ (ω, 2ω]

0 otherwise,

Φ(ω)(θ) =





θ
2ω θ ∈ [0, 2ω]

4ω−θ
2ω θ ∈ (2ω, 4ω]

0 otherwise.

Then, for each θ ∈ [0, 1] , we have Ψθ(ω) = [θω, (2− θ)ω] and Φθ(ω) =
[2θω, 2(2− θ)ω] . Since left and right end point functions Ψ∗(ω, θ) = θω, Ψ∗(ω, θ) =
(2− θ)ω, Φ∗(ω, θ) = 2θω and Φ∗(ω, θ) = 2(2− θ)ω are preinvex functions with respect
to ϕ(ν, u) = ν− u and for each θ ∈ [0, 1], then Ψ(ω) and Φ(ω) both are preinvex F·I·V·F.
We clearly see that Ψ(ω)×̃Φ(ω) ∈ L([u, u + ϕ(ν, u)] ,F0) and
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Γ(1+β)

2(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗(u) ×Φ∗(u)

]

=
Γ( 3

2 )
2
√

2
1√
π

ϕ(2,0)∫
0

(2−ω)
−1
2
(

2θ2ω2)dω +
Γ( 3

2 )
2
√

2
1√
π

ϕ(2,0)∫
0

(ω)
−1
2
(
2θ2ω2)dω ≈ 2.9332θ2,

Γ(1+β)

2(ϕ(ν,u))β

[
Iβ

u+ Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u)) + Iβ

u+ϕ(ν,u)−
Ψ∗(u) ×Φ∗(u)

]

=
Γ( 3

2 )
2
√

2
1√
π

ϕ(2,0)∫
0

(2−ω)
−1
2 .2(2− θ)2ω2dω +

Γ( 3
2 )

2
√

2
1√
π

ϕ(2,0)∫
0

(ω)
−1
2 .2(2− θ)2ω2dω

≈ 2.9332(2− θ)2,

Note that

(
1
2 −

β
(β+1)(β+2)

)
∆∗(u, u + ϕ(ν, u)) = [Ψ∗(u) ×Φ∗(u) + Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u))]

= 11
30 .8θ2,

(
1
2 −

β
(β+1)(β+2)

)
∆∗(u, u + ϕ(ν, u))

= [Ψ∗(u) ×Φ∗(u) + Ψ∗(u + ϕ(ν, u)) ×Φ∗(u + ϕ(ν, u))] = 11
30 .8(2− θ)2,

(
β

(β+1)(β+2)

)
∇∗(u, u + ϕ(ν, u)) = [Ψ∗(u) ×Φ∗(u + ϕ(ν, u)) + Ψ∗(u + ϕ(ν, u)) ×Φ∗(u)]

= 2
15 (0) ,

(
β

(β+1)(β+2)

)
∇∗(u, u + ϕ(ν, u)) = [Ψ∗(u) ×Φ∗(u + ϕ(ν, u)) + Ψ∗(u + ϕ(ν, u)) ×Φ∗(u)]

= 2
15 (0) .

Therefore, we have

(
1
2 −

β
(β+1)(β+2)

)
∆θ((u, u + ϕ(ν, u)) , θ) +

(
β

(β+1)(β+2)

)
∇θ((u, u + ϕ(ν, u)) , θ)

= 11
30

[
8θ2, 8(2− θ)2

]
+ 2

15 [0, 0] ≈
[
2.9332θ2, 2.9332(2− θ)2

]
.

It follows that
[
2.9332θ2, 2.9332(2− θ)2] ≤I [2.9332θ2, 2.9332(2− θ)2

]
,

and Theorem 3.7. has been demonstrated.

4. Conclusions and Future Plan

In this article, we established relation between integral inequalities and preinvex
F·I·V·Fs using fuzzy Riemann–Liouville fractional integrals and Condition C. We addressed
H·H type inequalities and H·H Fejér type inequalities for introduced preinvex F·I·V·F.
Moreover, some related fuzzy fractional inequalities were also obtained. We gave useful
examples to verify the validity of presented results. In future, we will try to explore this
concept for generalized preinvex F·I·V·Fs and using fuzzy Riemann–Liouville fractional
integrals, we will try to get new inequalities for preinvex F·I·V·Fs. We believe that the
implications and methodologies presented in this article will energize and encourage
scholars to pursue a more intriguing follow-up in this field. Finally, we think that our
findings may be applied to other fractional calculus models having Mittag-Liffler functions
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in their kernels, such as Atangana-Baleanue and Prabhakar fractional operators. This
consideration has been kept as an open problem for academics interested in this topic.
Researchers that are interested might follow the steps outlined in references [52,53].
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Abstract: In this paper, we consider convex multiobjective optimization problems with equality and
inequality constraints in real Banach space. We establish saddle point necessary and sufficient Pareto
optimality conditions for considered problems under some constraint qualifications. These results are
motivated by the symmetric results obtained in the recent article by Cobos Sánchez et al. in 2021 on Pareto
optimality for multiobjective optimization problems of continuous linear operators. The discussions in
this paper are also related to second order symmetric duality for nonlinear multiobjective mixed integer
programs for arbitrary cones due to Mishra and Wang in 2005. Further, we establish Karush–Kuhn–
Tucker optimality conditions using saddle point optimality conditions for the differentiable cases and
present some examples to illustrate our results. The study in this article can also be seen and extended
as symmetric results of necessary and sufficient optimality conditions for vector equilibrium problems
on Hadamard manifolds by Ruiz-Garzón et al. in 2019.

Keywords: multiobjective programming; nonlinear programming; convex optimization; saddle point

1. Introduction

Consider the general multiobjective optimization problem

(MOP) min f (x) = ( f1(x), · · · , fp(x)), subject to g(x) 5 0, h(x) = 0, (1)

where the functions f : X → Rp, g : X → Rq, and h : X → Rr are real vector valued
functions and X is real Banach space.

Multiobjective optimization problem (MOP) arises when two or more objective func-
tions are simultaneously optimized over a feasible region. The multiobjective optimization
has been considerably analyzed and studied by many researchers, see for instance [1–6].
Multiobjective optimization problems play a crucial role in various fields like economics,
engineering, management sciences [2,7–11], and many more places in daily life.

To deal with the multiobjective optimization problems, we have to find Pareto optimal
solutions. These solutions are non-dominated by one another. A solution is called non-
dominated or Pareto optimal if none of the objective functions can be improved in value
without reducing one or more objective values. One of the best techniques to deal with
multiobjective optimization problems is scalarization. Wendell and Lee [12] developed the
scalarization technique to deal with multiobjective optimization problems. Wendell and
Lee [12] generalized the results on efficient points for multiobjective optimization problems
to nonlinear optimization problems. The multiobjective problem is converted into a single
objective problem in the scalarization technique.

The saddle point optimality conditions are briefly explained in [13], Rooyen et al. [14]
constructed a Langrangian function for the convex multiobjective problem and established
a relationship between saddle point optimality conditions and Pareto optimal solutions.
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Cobos-Sànchez et al. [15] proposed Pareto optimality conditions for multiobjective opti-
mization problems of continuous linear operators. Recently, Treanta [16] studied robust
saddle point criterion in second order partial differential equations and partial differen-
tial inequations.

Rooyen et al. [14] discussed necessary and sufficient optimality conditions for (MOP)
without any constraint qualification in Euclidean space. Recently, Antczak and Abdu-
laleem [17] studied optimality and duality results for E-differentiable functions. Barbu
and Precupanu [18] studied the saddle point optimality conditions of convex optimization
problem for real Banach space. Valyi [19] proposed the concept of approximate saddle point
condition for convex multiobjective optimization problems. Further Rong and Wu [20]
generalized the results of Valyi [19] with set valued maps.

Karush–Kuhn–Tucker (KKT) optimality conditions [21] play a pivotal role to solve
scalar optimization problem as well as multiobjective optimization problems. Recently
Lai et al. [3] discussed unconstrained multiobjective optimization problems. Further,
Guu et al. [22] studied strong KKT type sufficient optimality conditions for semi-infinite
programming problems.

Motivated by the work of Barbu and Precupanu [18], Rooyen et al. [14] and Wendell
and Lee [12], we extend the results related to saddle point optimality conditions and
Karush–Kuhn–Tucker optimality conditions from single objective function to multiobjective
function with the help of Slater’s constraint qualifications [13]. We also present some
illustrative examples to support the theory.

The organization of this paper is as follows: In Section 2, we recall some preliminaries
and basic results. In Section 3, results on saddle point and Karush–Kuhn–Tucker necessary
optimality conditions for multiobjective optimization problems are extended. Further, we
establish the relationship between the Pareto solution and the saddle point for the Lagrange
function using Slater’s constraint qualification. The last section is dedicated to conclusions
and future remarks.

2. Preliminaries

In this section, we recall some notions and preliminary results which will be used in
this paper. R denotes the set of real numbers. Let X be real Banach Space and X∗ be its
dual space. Let x, y ∈ Rn, then following inequalities represent their meaning as follows:

x = y =⇒ xi = yi

x ≥ y =⇒ xi = yi, x 6= y,

x > y =⇒ xi > yi,

x = y =⇒ xi = yi.

We denote the feasible region as

S = {x ∈ X : g(x) 5 0, h(x) = 0}.

To deal with the multiobjective optimization problems (MOP), we require some
basic definitions.

Definition 1 (Ref. [2]). A decision vector x̄ ∈ S is global Pareto optimal solution (global efficient
solution) if there does not exist another decision vector x ∈ S such that

f (x) ≤ f (x̄).
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Consider the following scalarized multiobjective optimization problem (SMOP) corre-
sponding to (MOP):

(SMOP) min
p

∑
i=1

fi(x)

subject to f (x) 5 f (x̄), g(x) 5 0, h(x) = 0, where x̄ is any feasible point of (MOP).

Now, we recall the result from [2], which relate the solution of (MOP) and (SMOP).

Theorem 1 (Ref. [7]). A feasible point x̄ ∈ S is a Pareto optimal solution of the (MOP) if and
only if x̄ is an optimal solution of the (SMOP).

Definition 2 (Ref. [13]). A subset of the linear space X is said to be convex if for every distinct
pair x and y of subset, it contains λx + (1− λ)y, ∀ λ ∈ [0, 1].

Definition 3 (Ref. [13]). A function f is said to be convex on X if the inequality

f (λx + (1− λ)y) 5 λ f (x) + (1− λ) f (y)

holds for all x, y ∈ X and for every λ ∈ [0, 1].

Definition 4 (Ref. [18]). The function f : X → R = [−∞,+∞] is said to be proper convex if
f (x) > −∞ ∀ x ∈ X and if f is not the constant function then +∞ (that is, f 6≡ +∞).
If f is a convex function, Dom( f ) denotes the effective domain of f , which is as follows:

Dom( f ) = {x ∈ X : f (x) < +∞}.

If f is proper, then Dom( f ) is finite. Conversely, if A is a nonempty convex subset of X and f is
a finite and convex function on A, then one can obtain a proper convex function on X by setting
f (x) = +∞ if x ∈ X \ A.

Definition 5 (Ref. [18]). The function f : X → R is called lower semi continuous at x̄ if

f (x̄) = lim
x→x̄

in f f (x).

Corollary 1 (Ref. [18]). If A1 and A2 are two non-empty disjoint convex sets of Rn, there exist a
non zero element c = (c1, · · · , cn) ∈ Rn \ {0} such that

n

∑
i=1

ciui 5
n

∑
i=1

civ1, ∀ u = (ui) ∈ A1, ∀ v = (vi) ∈ A2.

Definition 6 (Ref. [18]). Given the proper convex function f : X →]−∞,+∞], the subdifferen-
tial of such a function is the mapping ∂ f : X → X∗ defined by

∂ f (x) = {x∗ ∈ X∗ : f (u)− f (x) = (u− x, x∗), ∀ u ∈ X},

where X∗ is dual of X and (., .) denote the canonical pairing between X and X∗. The element
x∗ ∈ ∂ f (x) called subgradient of f at x.

Corollary 2 (Ref. [18]). If f is a proper convex function on X, then the minimum (global) of f over
X is attained at the point x̄ ∈ X if and only if 0 ∈ ∂ f (x̄).

Theorem 2 (Ref. [18]). If the functions f1 and f2 are finite at a point in which at least one is
continuous then

∂( f1 + f2)(x) = ∂ f1(x) + ∂ f2(x) ∀ x ∈ X.
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Definition 7. Slater’s constraint qualification

1. There exists a point x̄ ∈ S such that gj(x̄) < 0, ∀ j = 1, . . . , q, and
2. The equality constraints satisfy interiority conditions, if

0 ∈ {(h1(x), h2(x), · · · , hr(x)); x ∈ X0}.

3. Saddle Point and Karush–Kuhn–Tucker Optimality Conditions

In this section, we established saddle point and Karush–Kuhn–Tucker type optimality
conditions for considered (MOP) in Banach space.

Theorem 3. Let f1, · · · , fp, g1, · · · , gq be proper convex functions and h1, · · · , hr be affine

functions. If x̄ is a Pareto optimal solution of the (MOP). Then, there exist real numbers λ
f
1 , . . . , λ

f
p,

λ
g
1 , · · · , λ

g
q , λh

1, · · · , λh
r not all zero and have the properties:

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x), ∀ x ∈ X0,

λ
f
i = 0, ∀ i = 1, . . . , p, λ

g
j = 0, ∀ j = 1, . . . , q, λ

g
j gj(x̄) = 0, (2)

where X0 =
p⋂

i=1

Dom( fi) ∩
q⋂

j=1

Dom(gj).

Proof. Let x̄ be an Pareto optimal solution of the consistent problem (MOP). Then, from
Theorem 1 x̄ is an optimal solution of the problem

(SMOP) min
p

∑
i=1

fi(x)

subject to fi(x) 5 fi(x̄) ∀ i = 1, · · · , p,

gj(x) 5 0 (j = 1, · · · , q), hk(x) = 0 (k = 1, · · · , r).

Now, we consider the subset

B =

{
p

∑
i=1

fi(x)−
p

∑
i=1

fi(x̄) + α
f
0 , f1(x)− f1(x̄) + α

f
1 , · · · , fp(x)− fp(x̄) + α

f
p,

g1(x) + α
g
1 , · · · , gq(x) + α

g
q , h1(x), · · · , hr(x); x ∈ X0, α

f
i > 0 ∀ i, α

g
j > 0 ∀ j

}
. (3)

It is easy to see that the set B does not contain origin as well as it is a non-void convex
subset of R1+p+q+r. Since origin is a nonempty convex set, then from Corollary 1 there
exist a homogeneous hyperplane, that is there exist 1 + p + q + r real numbers not all zero
λ̂

f
0 , λ̂

f
1 , . . . , λ̂

f
p, λ

g
1 , . . . , λ

g
q , λh

1, . . . , λh
r , such that

λ̂
f
0

{
p

∑
i=1

fi(x)−
p

∑
i=1

fi(x̄) + α
f
0

}
+

p

∑
i=1

λ̂
f
i

{
fi(x)− fi(x̄) + α

f
i

}

+
q

∑
j=1

λ
g
j

{
gj(x) + α

g
j

}
+

r

∑
k=1

λh
k hk(x) = 0, (4)
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∀ x ∈ X0, α
f
i > 0 (i = 0, 1, . . . , p), α

g
j > 0 (j = 1, . . . , q), taking x = x̄, α

g
j ↓

0 (∀ j), α
f
i ↓ 0 for i 6= l and α

f
l ↑ ∞. Again taking x = x̄, α

f
i ↓ 0 (∀ i), α

g
j ↓ 0 for j 6=

l and α
g
l ↑ ∞, we get

λ̂
f
0 = 0, λ̂

f
i = 0 and λ

g
i = 0.

Thus, relation (4) becomes

λ̂
f
0

{
p

∑
i=1

fi(x) −
p

∑
i=1

fi(x̄)

}
+

p

∑
i=1

λ̂
f
i { fi(x) − fi(x̄)} +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x) = 0,

=⇒
p

∑
i=1

fi(x)
{

λ̂
f
0 + λ̂

f
i

}
+

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x) =

p

∑
i=1

fi(x̄)
{

λ̂
f
0 + λ̂

f
i

}
,

=⇒
p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x) =

p

∑
i=1

λ
f
i fi(x̄), (5)

where λ
f
i = λ̂

f
0 + λ̂

f
i . Since x̄ is feasible, therefore

λ
g
j gj(x̄) 5 0, ∀ j, (6)

substituting x = x̄ in inequality (5), we get

q

∑
j=1

λ
g
j gj(x̄) = 0. (7)

Now, from (6) and (7) we have λ
g
j gj(x̄) = 0, ∀ j = 1, . . . , q, which completes

the proof.

Example 1. Consider the problem

min f (x) = ( f1(x), f2(x)), subject to g(x) 5 0,

where f1(x) =

{
x2

1, if− 3 5 x1, x2 5 3,
+∞, otherwise

, f2(x) =

{
x2

2, if− 3 5 x1, x2 5 3,
+∞, otherwise

,

and g(x) =

{
(x1 − 1)2 + (x2 − 1)2 − 1, if − 3 5 x1, x2 5 3,
+∞, otherwise

.

Therefore, feasible region S = {(x1, x2) ∈ R2 : (x1 − 1)2 + (x2 − 1)2 5 1} and common
effective domain X0 =

⋂2
i=1 Dom( fi) ∩ Dom(g) = {(x1, x2) ∈ Rn : −1 5 x1, x2 5 1}.

Since, x̄ = (1, 0) is a Pareto optimal solution, then for λ
f
1 = 0, λ

f
2 > 0, λg = 0, the following

inequality satisfies

λ
f
1 f1(x̄) + λ

f
2 f2(x̄) = 0 5 λ

f
1 x2

1 + λ
f
2 x2

2 + λg[(x1 − 1)2 + (x2 − 1)2 − 1]

= λ
f
1 f1(x) + λ

f
2 f2(x) + λgg(x), ∀ x ∈ X0.

Hence, result is verified.

Thus, it is natural to call the function

L(x, λ f , λg, λh) =
p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x), (8)

λ f = (λ
f
i ) ∈ Rp, λg = (λ

g
j ) ∈ Rq and λh = (λh

k) ∈ Rr.
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Remark 1. The necessary conditions (2) with x̄ ∈ S are equivalent to the fact that the point
(x̄, λ f , λg, λh) is a saddle point for the Lagrange function (8) on X0 × Rp × Rq × Rr, with
respect to minimization on X0 and maximization on Rp ×Rq ×Rr, that is,

p

∑
i=1

λ
f
i fi(x̄) +

q

∑
j=1

λ
g
j gj(x̄) +

r

∑
k=1

λh
k hk(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x)

=⇒ L(x̄, λ f , λg, λh) 5 L(x, λ f , λg, λh), ∀ x̄ ∈ X0, (9)

and for every (x, λ f , λg, λh) ∈ X×Rp ×Rq ×Rr.

Remark 2. The necessary optimality conditions (2) with λ f 6= 0, and x̄ ∈ S are also sufficient
for x̄ to be a Pareto optimal solution to (MOP). If λ f = 0, then optimality conditions concern
only the constraints functions, without giving any piece of information from the function which
is minimized.

Theorem 4. Let f1, · · · , fp, g1, · · · , gq be proper convex functions and let h1, · · · , hr be affine
functions such that Slater’s constraint qualification satisfied at a feasible point x̄ of (MOP). Then,
the point x̄ is a Pareto optimal solution for (MOP) if and only if there exist p + q + r real numbers
λ

f
1 , · · · , λ

f
p, λ

g
1 , · · · , λ

g
q , λh

1, · · · , λh
r , such that

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x), (10)

and λ f = 0, λ f 6= 0, λg = 0, λ
g
j gj(x̄) = 0 ∀ j = 1, · · · , q.

Proof. Let x̄ be a Pareto optimal solution of (MOP). Then, from above Theorem 3, there exist
λ

f
1 , · · · , λ

f
p, λ

g
1 , · · · , λ

g
q , λh

1, · · · , λh
r not all zero such that (2) hold. If we suppose λ f = 0,

taking x = x̄ ∈ S, then from (2) we get
q
∑

j=1
λ

g
j gj(x̄) = 0. Since λ

f
i = 0 and gj(x̄) < 0 (∀ j),

we must have λ
g
j = 0 (∀j), therefore from (2) we have

r

∑
k=1

λh
k hk(x) = 0 ∀ x ∈ X0,

and all components of λh are not zero, which is contradiction of the interiority conditions
of Slater’s constraint qualification. Hence λ f 6= 0, that is, we can take some components of
λ f are greater than zero.

Conversely, suppose x̄ is not Pareto optimal solution of (MOP), then there exist
x∗( 6= x̄) ∈ S, which is a Pareto optimal solution for (MOP), that is

f (x∗) ≤ f (x̄). (11)

Now, from relation (10) for x∗ ∈ S, we have

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x∗),

which is contradiction of inequality (11). Hence, x̄ is a Pareto optimal solution for (MOP).
Since f (x) is a proper convex function, then f (x) is necessarily finite.

Theorem 5. Under the assumptions of Theorem 4, x̄ ∈ X is a Pareto optimal solution of (MOP)
if and only if there exist λ f = (λ

f
1 , · · · , λ

f
p) ∈ Rp, λg = (λ

g
1 , · · · , λ

g
q) ∈ Rq and λh =
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(λh
1, · · · , λh

r ) ∈ Rr such that (x̄, λ f , λg, λh) is a saddle point for the Lagrange function on X0 ×
Rp ×Rq ×Rr, that is

p

∑
i=1

λ
f
i fi(x̄) +

q

∑
j=1

λ
g
j gj(x̄) +

r

∑
k=1

λh
k hk(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x)

for all (x, λ f , λg, λh) ∈ X0 ×Rp ×Rq ×Rr.

Proof. Thus, the proof is obvious from Theorem 4.

Now, we establish optimality conditions where differentiability of all functions is
essential. The following result extends the Karush–Kuhn–Tucker theorem for the lower-
semicontinuous multiobjective functions.

Theorem 6. Under the hypothesis of Theorem 4, if we suppose that the function fi is lower-
semicontinuous and gj, hk are continuous real functions, then the optimality conditions for x̄ ∈ S
is equivalent to the conditions

0 ∈
p

∑
i=1

λ
f
i ∂ fi(x̄) +

q

∑
j=1

λ
g
j ∂gj(x̄) +

r

∑
k=1

λh
k∇hk(x̄). (12)

Proof. From Equation (10), if x̄ ∈ S is the minimum point of the function, then

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x). (13)

Since gj(x̄) 5 0, hk(x̄) = 0. Then, inequality (13) takes the form

p

∑
i=1

λ
f
i fi(x̄) +

q

∑
j=1

λ
g
j gj(x̄) +

r

∑
k=1

λh
k hk(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x) +

r

∑
k=1

λh
k hk(x).

Now, from Corollary 2, the minimum point of Lagrange function is solution of the
equation

0 ∈ ∂

(
p

∑
i=1

λ
f
i fi +

q

∑
j=1

λ
g
j gj +

r

∑
k=1

λh
k hk

)
(x̄).

Making use of previous results and additive property of subdifferential, we get

0 ∈
p

∑
i=1

λ
f
i ∂ fi(x̄) +

q

∑
j=1

λ
g
j ∂gj(x̄) +

r

∑
k=1

λh
k ∂hk(x̄).

We know that hk(x̄) be an affine function, then

∂hk(x̄) = ∇hk(x̄).

Hence, we get the required result.

Example 2. Consider the following problem

min f (x) = ( f1(x), f2(x)), subject to g(x) 5 0, at a feasible point x̄ = (0, 0).

where, f1(x) = |x1|, f2(x) = |x2|, and g(x) = |x1|+ |x2| − 1.
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Since, x̄ is a Pareto optimal solution for the considered problem as well as satisfy-
ing Slater’s constraints qualification because g(x̄) < 0, then λ f = (λ

f
1 , λ

f
2) 6= 0, λ f =

0 and λgg(x̄) = 0 =⇒ λg = 0. Now from the definition of subdifferential, we get

∂ f1(x̄) = {(ξ, 0) ∈ R2 : −1 5 ξ 5 1}, ∂ f2(x̄) = {(0, ξ) ∈ R2 : −1 5 ξ 5 1},

which implies that
0 ∈ λ

f
1 ∂ f1(x̄) + λ

f
2 ∂ f2(x̄) + λg∂g(x̄).

Hence, the result is verified.

Remark 3. Since hk are affine, then there exist a continuous linear functional x∗k ∈ X∗ and a real
number αk ∈ R such that hk = x∗k + αk, therefore we have ∇hk = x∗k and above condition becomes

0 ∈
p

∑
i=1

λ
f
i ∂ fi(x̄) +

q

∑
j=1

λ
g
j ∂gj(x̄) +

r

∑
k=1

λh
k x∗k (x̄). (14)

Now, if we consider only the case of the constraint given by inequalities, that is,

S1 = {x ∈ X : gj(x) 5 0, ∀ j = 1, · · · , q}.

Then, Slater’s constraints qualification is as follows:
There exist a point x̄ ∈ ⋂p

i=1 Dom( fi) such that gj(x̄) < 0, ∀ j = 1, · · · , q.

Theorem 7. Let f1, · · · , fp be a proper convex lower-semicontinuous function and g1, · · · , gq be
real convex continuous functions satisfying the Slater’s constraint qualification (7) at a feasible
point x̄. Then, the point x̄ ∈ S1 is a Pareto optimal solution for (MOP) if and only if there exists
λ f = (λ

f
1 , · · · , λ

f
p), λg = (λ

g
1 , · · · , λ

g
q) such that

0 ∈
p

∑
i=1

λ
f
i ∂ fi(x̄) +

q

∑
j=1

λ
g
j ∂gj(x̄), (15)

λ f = 0, λ f 6= 0, λ
g
j = 0, λ

g
j gj(x̄) = 0, ∀ j = 1, · · · , q. (16)

Proof. Suppose x̄ ∈ S is a Pareto optimal solution of problem (MOP) then, from equation

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x). (17)

By Slater’s constraint qualification there exists x̄ ∈ S, such that

p

∑
i=1

λ
f
i fi(x̄) +

q

∑
j=1

λ
g
j gj(x̄) 5

p

∑
i=1

λ
f
i fi(x) +

q

∑
j=1

λ
g
j gj(x).

Now from Corollary (2) the minimum point of the Langrange function is the solutuon
of the relation

0 ∈ ∂

(
p

∑
i=1

λ
f
i fi +

q

∑
j=1

λ
g
j gj +

r

∑
k=1

λh
k hk

)
(x̄).

Using the additive property of subdifferential, we get

0 ∈
p

∑
i=1

λ
f
i ∂ fi(x̄) +

q

∑
j=1

λ
g
j ∂gj(x̄) +

r

∑
k=1

λh
k ∂hk(x̄).
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λ f = 0, λ f 6= 0, λ
g
j = 0, λ

g
j gj(x̄) = 0, ∀ j = 1, · · · , q.

Conversely, suppose x̄ is not pareto optimal solution of (MOP), then there exists
x∗( 6= x̄) ∈ S which is Pareto optimal solution for MOP that is

f (x∗) ≤ f (x̄). (18)

Now, from relation (10) for x∗ ∈ S

p

∑
i=1

λ
f
i fi(x̄) 5

p

∑
i=1

λ
f
i fi(x∗),

which is contradiction to inequality (18). Hence x̄ is a pareto optimal solution for MOP.
Since f (x) is a proper convex function, therefore f (x) is necessarily finite.

Corollary 3. Let f1, · · · , fp, g1, · · · , gq be real convex and differentiable functions on X which
satisfy (1). Then, a feasible point x̄ is a Pareto solution of problem (MOP) with (1) given by (15) if
and only if there exist real numbers λ

f
1 , · · · , λ

f
p, λ

g
1 , · · · , λ

g
q such that

p

∑
i=1

λ
f
i ∇ fi(x̄) +

q

∑
j=1

λ
g
j∇gj(x̄) = 0, (19)

λ f = 0, λ f 6= 0, λ
g
j = 0, λ

g
j gj(x̄) = 0, ∀ j = 1, · · · , q.

4. Conclusions

In this paper, we have established saddle point optimality conditions for a convex
MOP in real Banach space. We recall Slater’s constraint qualification from [18] and de-
rive saddle point necessary and sufficient Pareto optimality condition for the considered
problem where multipliers of objective functions never vanished simultaneously. We have
deduced Karush–Kuhn–Tucker optimality conditions from saddle point optimality condi-
tions for the subdifferentiable case and present some examples to verify our results. We
have characterized saddle point optimality conditions for Pareto points to convex MOPs in
real Banach space which is more general as well as proofing technique is different from
Ehrgott and Wiecek [23]. Further, we have concluded Karush–Kuhn–Tucker optimality
conditions for smooth and nonsmooth cases from saddle point optimality conditions that
is a new thing as compared to Ehrgott and Wiecek. Our derived Karush–Kuhn–Tucker
optimality conditions are the same as in Miettinen [2] and Haeser and Ramos [24]. That
is why our paper includes novelty from Ehrgott and Wiecek [23] in some senses. Further,
these results can be extended for convex semi-infinite programming problems [25,26]. In
the future, we can extend these results to interval-valued optimality conditions and can
deduce some applications motivated by the recent article by Treanta [27]. Further, we
can extend these results on vector equilibrium on Hadamard manifolds motivated by
Ruiz-Garzòn et al. [28].
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16. Treanţă, S. Robust saddle-point criterion in second-order partial differential equation and partial differential inequation con-

strained control problems. Int. J. Robust Nonlinear Control 2021. [CrossRef]
17. Antczak, T.; Abdulaleem, N. Optimality and duality results for E-differentiable multiobjective fractional programming problems

under E-convexity. J. Ineq. Appl. 2019, 2019, 1–24. [CrossRef]
18. Barbu, V.; Precupanu, T. Convexity and Optimization in Banach Spaces; Springer: Dordrecht, The Netherlands; New York, NY, USA,

2012.
19. Valyi, I. Approximate saddle-point theorems in vector optimization. J. Optim. Theory Appl. 1987, 55, 435–448. [CrossRef]
20. Rong, W.D.; Wu, N.Y. ε- weak minimal solutions of vector optimization problems with set-valued maps. J. Optim. Theory Appl.

2000, 106, 569–579. [CrossRef]
21. Kuhn, H.W.; Tucker, A.W. Nonlinear Programming; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1951.
22. Guu, S.M.; Singh, Y.; Mishra, S.K. On strong KKT type sufficient optimality conditions for multiobjective semi-infinite program-

ming problems with vanishing constraints. J. Ineq. Appl. 2017, 2017, 1–9. [CrossRef]
23. Ehrgott, M.; Wiecek, M.M. Saddle points and Pareto points in multiple objective programming. J. Glob. Optim. 2005, 32, 11–33.

[CrossRef]
24. Haeser, G.; Ramos, A. Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization. J. Optim.

Theory Appl. 2020, 187, 469–487. [CrossRef]
25. Hettich, R.; Kortanek, K.O. Semi-Infinite Programming: Theory, Methods, and Applications. SIAM Rev. 1993, 35, 380–429.

[CrossRef]
26. Li, W.; Nahak, C.; Singer, I. Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 2000, 11,

31–52. [CrossRef]
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Abstract: This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equa-
tions. We built the results on the critical Besov spaces (θ, u) ∈ L∞

T (ḂN/p
p,1 )× L∞

T (ḂN/p−1
p,1 )

⋂
L1

T(Ḃ
N/p+1
p,1 )

with 1 < p < 2N. We proved the global existence of the solution when the initial velocity is small with
respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we
proved the uniqueness for 1 < p ≤ N. Our results can been seen as a version of symmetry in Besov space
for the Boussinesq equations.

Keywords: non homogenous boussinesq equations; global well-posedness; littlewood-paley decom-
position

1. Introduction

This paper discusses the global well-posedness of Boussinesq equations. We assume
that the viscosity and thermal conductivity are temperature dependent. The coupled
mass flow and heat flow of the viscous incompressible fluid are controlled by Boussinesq
approximation. The equations we study are as follows:





ut − div(ν(θ)∇u) + u · ∇u + αθg +∇p = 0,
div(u) = 0,
θt − div(κ(θ)∇θ) + u · ∇θ = 0.

(1)

Here u(t, x) denotes the velocity of the fluid , (t, x) ∈ R+ × RN , N ≥ 2 is the spatial
dimension; p(t, x) is the hydrostatic pressure; θ(t, x) is the temperature; g(t, x) is the exter-
nal force by a unit of mass; ν(θ) is the kinematic viscosity; κ(θ) is the thermal conductivity;
α is a positive constant which is dependent on the coefficient of volume expansion. The
Boussinesq system has important roles in the atmospheric sciences, for more details, one
could refer to [1,2].

The homogeneous Boussinesq equations corresponding to the special case where
coefficients ν and κ are positive constants:





ut − ν4u + u · ∇u + αθg +∇p = 0,
div(u) = 0,
θt − κ4θ + u · ∇θ = 0.

(2)

The global well-posedness of (2) with ν > 0, κ > 0 is well-known (see [3]). However, for the
case of ν = 0 and κ = 0 in (2), the global existence of solution is still an outstanding open
problem in the mathematical fluid mechanics (see [4–6]). Recently, some authors obtain the
global well-posedness of (2) with partial viscosity cases (i.e., either the zero diffusivity case:
κ = 0 and ν > 0, or the zero viscosity case: κ > 0 and ν = 0) (see [6–12]).

Some attentions have been paid to the nonhomogeneous case (1). In [13], the authors
investigated the initial-boundary problems of (1) and obtained the global well-posedness.
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In [14], they studied an optimum control problem of mathematical model describing steady
non-isothermal creep of incompressible fluid through local Lipschitz bounded region.
In [15], they studied an optimal control problem for the mathematical model that describes
steady non-isothermal creeping flows of an incompressible fluid through a locally Lipschitz
bounded domain. In [16], the initial-boundary value problem of completely incompressible
Navier-Stokes equations with viscosity coefficient ν and heat conductivity κ varying with
temperature by the power law of Chapman-Enskog are studied. When κ = 0, the method
used in [16] is not applicable. We must seek new methods to overcome the difficulty.

The purpose of this paper is to study the well-posedness of the Boussinesq system (1).
Equations (1) corresponds to the physical environment which we can’t ignore the variation
of fluid viscosity (and thermal conductivity) with temperature (for more details see [17]
and the references therein). The existing literature has more discussion on the constant
viscosity and less discussions on the viscosity of temperature. This paper will provide some
methods for studying other problems when viscosity relates to temperature. In the present
paper, we consider the system (1) without thermal conductivity, and with the viscosity ν
dependent on θ. The main difficulty is that we can not use the results obtained previously
for the constant viscosity. We firstly use the method of iteration, then we transform the
problem into a constant viscosity problem. This is the biggest innovation of this paper.
Since the Besov space is more meticulous than the traditional Sobolev space, the results
obtained in this paper are no longer correct in the Sobolev space. In the present paper, we
study the following equations:





ut − div(ν(θ)∇u) + u · ∇u + αθg +∇p = 0,
div(u) = 0,
θt + u · ∇θ = 0,
t = 0, u = u0, θ = θ0.

(3)

In order to have a clear idea of our purpose, we shall recall some research history for
the following Navier-Stokes equations:





∂tρ +∇ · (ρu) = 0,
∂t(ρu) +∇ · (ρu× u)− µ∆u = ρ f ,
∇ · u = 0.

(4)

In [18], Fujita & Kato proved the global existence and uniqueness of problem (4) in the
critical Sobolev space Ḣ

N
2 × (Ḣ

N
2 −1)N . Precisely, if (ρ, u) is a solution of (4), with initial

data (ρ0(x), u0(x)), then:

ρλ(t, x) = ρ(λ2t, λx), uλ(t, x) = λu(λ2t, λx)

is also the solution of (4) with initial data (ρ0,λ(x), u0,λ(x)) = (ρ0(λx), λu0(λx)).
Subsequently, in [19], Danchin generalized the results by Fujita & Kato [18] in Besov

space (Ḃ
N
2 −1

2,1 )N ; see also [20–24]. Some ideas of this paper came from [19,20]. Some new
results about the equations may be found in [25–30].

We suppose that the initial data θ0 > 0. In the present paper, we shall establish
the well-posedness of the non-homogeneous Bounssinesq Equation (3) in ḂN/p

p,1 (see the
definition in Section 2). Since the Besov spaces are symmetry, the results obtained in this
paper have the property of symmetry. We shall restrict our work to solutions such that the
temperature θ is a small perturbation of a constant temperature θ. As we know, there are
inevitable errors in the process of modeling or measurement. We are looking forward to
understanding the impact of these errors on the behavior of the solutions. This paper solves
this problem well. There are few relevant studies at present. Without loss of generality, in
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the following, we take θ = 1,ν ∈ C∞ and ν(θ) = ν(1) = ν. Therefore, Equation (3) can be
rewritten as:





ut − ν4u + u · ∇u +∇p = G,
div(u) = 0,
θt + u · ∇θ = 0,
t = 0, u = u0, θ = θ0,

(5)

where,
G = ∇ · [(ν(θ)− ν)∇u]− αθg. (6)

We write:

ν̃(θ + 1) = ν(θ) and ν̃(θ) = 1. (7)

Let us now state our main results.

Theorem 1. Let 1 < p < 2N, then for (θ0, u0) ∈ (ḂN/p
p,1 )× (ḂN/p−1

p,1 )N , g ∈ L1
T(ḂN/p−1

p,1 )
⋂

L2
T(ḂN/p

p,1 ) there exists T(θ0, u0) > 0, such that the problem (5) admits a solution (θ, u) with:

θ ∈ C([0, T), ḂN/p
p,1 )

⋂
L∞

T (ḂN/p
p,1 ),

u ∈ C([0, T), ḂN/p−1
p,1 )

⋂
L∞

T (ḂN/p−1
p,1 )

⋂
L1

T(ḂN/p+1
p,1 ).

Moreover, if there exist a small constant ε, such that:

‖u0‖L∞
T (ḂN/p−1

p,1 )
+ ‖g‖

L1
T(ḂN/p−1

p,1 )
≤ εµ,

then T = +∞. If 1 < p ≤ N, the solution is unique.

The present paper is structured as follows: in the next section, we show some prelimi-
naries. In Section 3, we show the existence of the solution. The uniqueness is presented in
Section 4. Some conclusions are included in Section 5.

Remark 1. Throughout this paper, C stands for a ’harmless’ uniform constant, and we sometimes
use the notation A . B as an equivalent of A ≤ CB. The notation A ≈ B means that A . B and
B . A.

2. Some Results on Besov Spaces
2.1. Littlewood-Paley Theory

At the beginning, we shall recall the Littlewood-Paley decomposition.
Take χ, φ ∈ C∞(RN) supported on B = {ξ ∈ RN , |ξ| ≤ 4/3} and Γ = {ξ ∈ RN , 3/4 ≤

|ξ| ≤ 8/3} respectively, such that:

∑
j∈Z

φ(2−jξ) = 1, χ = 1−∑
j≥0

φ(2−jξ), ∀ξ 6= 0. (8)

Denoting:

∆ju = F−1(φ(2−j · )û( · )) = 2Nj
∫

RN
ψ(2jy)u(x− y)dy, for j ∈ Z,

and:
Sju = ∑

k≤j−1
∆ku = 2Nj

∫

RN
ψ1(2jy)u(x− y)dy,
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where û = F (u) denote the Fourier transformation of u, ψ = F−1(φ( · )), and ψ1 =
F−1(χ( · )). The formal decomposition:

u =
∞

∑
j=−∞

∆ju, (9)

is called homogenous Littlewood-Paley decomposition. This dyadic decomposition has a
nice quasi-orthogonality, and we have:

∆i∆ju ≡ 0, if, |i− j| ≥ 2, and (10)

∆i(Sj−1u∆ju) ≡ 0, if, |i− j| ≥ 5. (11)

The details of Littlewood-Paley decomposition can be found in [31,32].

2.2. The Homogeneous Besov Spaces

In the following, we shall define the functional spaces in which we shall work in.

Definition 1. For s ∈ R, (p, r) ∈ [1,+∞]× [1,+∞], and u ∈ S ′(RN). Define:

Ḃs
p,r = {u ∈ S ′(RN), ‖u‖Ḃs

p,r
< +∞},

where:

‖u‖Ḃs
p,r

=





(
∑j∈Z 2rjs‖∆ju‖r

Lp
) 1

r , r < +∞,

supj 2js‖∆ju‖Lp , r = +∞.

Let us now recall some classical properties for these Besov spaces (see [23,24])

Proposition 1. The following properties hold:
(i) There exists a uniform constant C, such that,

C−1‖u‖Ḃs
p,r
≤ ‖∇u‖Ḃs−1

p,r
≤ C‖u‖Ḃs

p,r
, (12)

(ii) Sobolev embedding: for p1 ≤ p2 and r1 ≤ r2, then,

Ḃs
p1,r1

↪→ Ḃ
s−N( 1

p1
− 1

p2
)

p2,r2 , (13)

(iii) For s > 0, Ḃs
p,r
⋂

L∞ is an algebra. Moreover, for any p ∈ [1,+∞], then,

ḂN/p
p,1 ↪→ ḂN/p

p,∞
⋂

L∞. (14)

(iv) Interpolation: [Ḃs1
p,r, Ḃs2

p,r]θ,r′ = Ḃθs1+(1−θ)s2
p,r′ .

Through this paper, we shall use the product law in Besov spaces. These product laws
are proved in [20,33].

Proposition 2. Let (p, p1, p2) ∈ [1,+∞]3 such that:

1
p
≤ 1

p1
+

1
p2

,

We get:
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(i) If:

s1 + s2 + Nin f
(

0, 1− 1
p1
− 1

p2

)
> 0, s1 <

N
p1

and s2 <
N
p2

,

there holds,
‖uv‖

Ḃ
s1+s2−N( 1

p1
+ 1

p2
− 1

p )

p,r

. ‖u‖Ḃ
s1
p1,r
‖v‖Ḃs2

p2,∞
, (15)

furthermore, if s1 = N
p1

and s2 = N
p2

, we take r = 1.

(ii) If |s| < |Np | and p ≥ 2, then we get:

‖uv‖Ḃs
p,r

. ‖u‖Ḃs
p,r
‖v‖

ḂN/p
p,∞

⋂
L∞ . (16)

(iii) If s1 + s2 = 0, s1 ∈ (− N
p1

, N
p1
] and 1

p1
+ 1

p2
≤ 1, then:

‖uv‖
Ḃ
−N( 1

p1
+ 1

p2
− 1

p )

p,∞

. ‖u‖Ḃ
s1
p1,1
‖v‖Ḃs2

p2,∞
. (17)

Additionally, we need the definition of L̃α
T(Ḃs

p,r) introduced in [19,20,31].

Definition 2. Let (r, α, p) ∈ [1,+∞]3, T ∈ [0,+∞] and s ∈ R. We set:

‖u‖L̃α
T(Ḃs

p,r)
,
(

∑
j∈Z

2jrs
(∫ T

0
‖∆ju(t)‖α

Lp dt
)r/α

)1/r

.

By virtue of the Minkowski inequality, we get:

‖u‖L̃α
T(Ḃs

p,r)
≤ ‖u‖Lα

T(Ḃs
p,r)

, if α ≤ r. (18)

Thus,
‖u‖Lα

T(Ḃs
p,r)
≤ ‖u‖L̃α

T(Ḃs
p,r)

, if r ≤ α. (19)

Moreover, for θ ∈ (0, 1], we have:

‖u‖L̃α
T(Ḃs

p,r)
≤ ‖u‖θ

L̃
α1
T (Ḃ

s1
p,r)
‖u‖1−θ

L̃α2
T (Ḃs2

p,r)
, (20)

with,
1
α
=

θ

α1
+

1− θ

α2
, and s = θs1 + (1− θ)s2.

2.3. Estimates for Linear Transport Equation

In the following, we recall some estimates for the following linear transport equation:
{

∂tg +∇ · (vg) = F,
g(0, x) = g0.

(21)

The following results will hold, (see proof in [19,24,33]).

Proposition 3. Let (p, r) ∈ [1,+∞]2 and s be such that −1− Nin f ( 1
p′ ,

1
p ) < s < 1 + N

p where

p′ is the conjugate of p. Let v be a free divergence vector such that ∇v ∈ L1(0, T; ḂN/p
p,r

⋂
L∞).

Suppose that g0 ∈ Ḃs
p,r and F ∈ L1(0, T, Ḃs

p,r), and g be a solution of (21) then holds:

‖g‖L̃∞
T (Ḃs

p,r)
≤ exp

(
C‖∇v‖

L̃1
T(ḂN/p

p,r
⋂

L∞)

)(
‖g0‖Ḃs

p,r
+
∫ T

0
‖F(t)‖Ḃs

p,r
dt
)

. (22)
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Proposition 4. Let p ∈ (1,+∞) and −1− Nin f ( 1
p , 1

p′ ) < s < N
p , where p′ is the conjugate

exponent of p. Let u0 ∈ Ḃs
p,r, F ∈ L̃1

T(Ḃs
p,r) and v be a free divergence vector such that ∇v ∈

L1(0, T; ḂN/p
p,r

⋂
L∞), then Let u be a solution of the following system:





∂tu + v · ∇u− ν∆u +∇P = F,
∇ · u = 0,
u(0, x) = u0,

(23)

where ν is a positive constant. Then there exists a constant C such that the following estimates hold:

‖u‖L̃∞
T (Ḃs

p,r)
+ ν‖u‖L̃1

T(Ḃs+2
p,r ) + ‖∇P‖L̃1

T(Ḃs
p,r)

≤ exp
(

C‖∇v‖
L̃1

T(ḂN/p
p,r

⋂
L∞)

)(
‖u0‖Ḃs

p,r
+ C‖F‖L̃1

T(Ḃs
p,r)

)
. (24)

3. The Existence of the Solution

In this section we shall prove the existence of the solution for (5). We state the results
as following.

Theorem 2. Let 1 < p < 2N, then for (θ0, u0) ∈ (ḂN/p
p,1 ) × (ḂN/p−1

p,1 )N ,g ∈ L1
T(ḂN/p−1

p,1 )
⋂

L2
T(ḂN/p

p,1 ) there exists T(θ0, u0) > 0, such that the problem (5) admits a solution (θ, u) with:

θ ∈ C([0, T), ḂN/p
p,1 )

⋂
L∞

T (ḂN/p
p,1 ),

u ∈ C([0, T), ḂN/p−1
p,1 )

⋂
L∞

T (ḂN/p−1
p,1 )

⋂
L1

T(ḂN/p+1
p,1 ).

Moreover, if there exist a small constant ε, such that:

‖u0‖L∞
T (ḂN/p−1

p,1 )
+ ‖g‖

L1
T ḂN/p−1

p,1
≤ εµ,

then T = +∞.

Proof. We shall prove this results by iteration. Denoting,

∑
j≤n

∆jθ = θn, ∑
j≤n

∆ju = un, ∑
j≤n

∆j p = pn.

We shall build an approximate smooth solution (θn, un, pn) of (5) satisfying,





∂tθ
n+1 + un · ∇θn+1 = 0,

∂tun+1 + un · ∇un+1 − ν∆un+1 +∇pn+1 = Gn,
∇ · un+1 = 0,
(θ1, u1) = S2(θ0, u0),
(τn+1, un+1)|t=0 = Sn+2(θ0, u0),

(25)

where,
Gn = ∇ · [(ν̃(θn + 1)− ν)∇un]− αθng. (26)

Obviously, from Propositions 3 and 4, we know that there exist a T such that (25)
admits a unique smooth solution in t ∈ [0, T]. Then, the proof of Theorem 2 is divided into
two steps:

(1) The uniform a priori estimates for (θn, un).
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(2) The proof of the convergence of the sequences.

We begin to obtain the uniform estimates for (θn, un)
Denoting:

I0 , ‖θ0‖ḂN/p
p,1

+ ‖u0‖ḂN/p−1
p,1

, (27)

and,
En

T = ‖θn‖
L̃∞

T (ḂN/p
p,1 )

+ ‖un‖
L̃∞

T (ḂN/p−1
p,1 )

+ µ‖un‖
L̃1

T(ḂN/p+1
p,1 )

.

Let:
χT = L̃∞

T (ḂN/p
p,1 )× (L̃∞

T (ḂN/p−1
p,1 )

⋂
L̃1

T(ḂN/p+1
p,1 ))N .

Now, we shall prove that {(θn, un)n∈Z} is uniformly bounded in χT . Moreover, ∀n ∈ Z,
we have the following conclusion:

claim: En
T ≤ 4I0. (28)

We shall prove these by induction. For n = 0, they are valid obviously. We assume
that for a fixed n, (θn, un) ∈ χT is valid and the claim holds, we shall show that for n + 1,
(θn+1, un+1) ∈ χT and the claim are also valid.

From (25), by Propositions 3 and 4, we have:

‖θn+1‖
L̃∞

T (ḂN/p
p,1 )
≤ e

∫ T
0 c‖∇un‖

ḂN/p
p,1

dt
‖θn+1

0 ‖
ḂN/p

p,1
, (29)

and:

‖un+1‖
L̃∞

T (ḂN/p−1
p,1 )

+ ν‖un+1‖
L̃1

T(ḂN/p+1
p,1 )

+ ‖∇pn‖
L̃1

T(ḂN/p−1
p,1 )

≤ e

∫ T
0 c‖∇un‖

ḂN/p
p,1

dt
(
∫ T

0
‖Gn‖

ḂN/p−1
p,1

dt + ‖u0‖ḂN/p−1
p,1

). (30)

By the induction hypothesis, taking T1 < T small enough, such that:

e
c‖un‖

L̃1
T1

(BN/p+1
p,1 ) ≤ 2, (31)

then, we obtain:
‖θn+1‖

L̃∞
T1
(ḂN/p

p,1 )
≤ 2‖θ0‖ḂN/p

p,1
. (32)

From (30) and (31), we have:

‖un+1‖
L̃∞

T1
(ḂN/p−1

p,1 )
+ ν‖un+1‖

L̃1
T1
(ḂN/p+1

p,1 )
+ ‖∇pn‖

L̃1
T1
(ḂN/p−1

p,1 )

≤ 2(
∫ T1

0
‖Gn‖

ḂN/p−1
p,1

dt + ‖u0‖ḂN/p−1
p,1

). (33)

We now want to deal with
∫ T1

0 ‖Gn‖
ḂN/p−1

p,1
dt. Owing to Taylor’s formula and Proposition 2,

for 1 < p < 2N, we obtain:

‖∇ · [(ν̃(θn + 1)− ν)∇un]‖
L̃1

T1
(ḂN/p−1

p,1 )
.

‖[(ν̃(θn + 1)− ν)∇un]‖
L̃1

T1
(ḂN/p

p,1 )

. (‖θn‖
L̃∞

T1
(ḂN/p

p,1 )
‖un‖

L̃1
T1
(ḂN/p+1

p,1 )
. (34)
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Combining (26) and (34), and using (15), we can get:

‖Gn‖
L̃1

T1
(ḂN/p−1

p,1 )
. ‖θn‖

L̃∞
T1
(ḂN/p

p,1 )
‖un‖

L̃1
T1
(ḂN/p+1

p,1 )
+ α‖θn‖

L̃∞
T1
(ḂN/p

p,1 )
‖g‖

L̃1
T1
(ḂN/p−1

p,1 )

. 4I0‖un‖
L̃1

T1
(ḂN/p+1

p,1 )
+ αI0‖g‖L̃1

T1
(ḂN/p−1

p,1 )
. (35)

Therefore, by the induction hypothesis, taking T1 small enough, such that:

4I0‖un‖
L̃1

T1
(ḂN/p+1

p,1 )
+ αI0‖g‖L̃1

T1
(ḂN/p−1

p,1 )
≤ I0, (36)

Then, from (32), (33), (35), and (36), we proved the claim that:

(τn+1, un+1) ∈ χT1 . (37)

Repeating the progress above, we see that if there exists a constant ε small enough
such that:

‖u0‖L∞
T (ḂN/p−1

p,1 )
+ ‖g‖

L̃1
T(ḂN/p−1

p,1 )
≤ εν,

then, the results presented above will be valid globally. (37) will be valid for all T. Thus,
we have proved the claim (28).

We begin to get the convergence of the sequences.
To verify the convergence of the sequences of (θn, un), we shall consider the time

derivative of the solution. We first show the following Lemma.

Lemma 1. Let 0 < η < in f (1, 2N
p ),1 < p < 2N, be such that 1 + η < 2N

p . Then ∇pn is

uniformly bounded in L
2

2−η

T (Ḃ
N
p −1−η

p,1 ).

Proof. Since g ∈ L1
T(ḂN/p−1

p,1 )
⋂

L2
T(ḂN/p

p,1 ),we can easily get g ∈ L
2

2−η

T (ḂN/p−1−η
p,1 ) by inter-

polation.
Applying ∇· on the second equation of (25), noting ∇ · un = 0, then we get:

∇ · (∇pn+1) = ∇ · [∇ · [ν̃(θn + 1)− ν)∇un]] +∇ · (ν4un+1)−∇ · [un · ∇un+1] + α∇ · [θng]. (38)

By the first step we have proved that:

un ∈ (L̃∞
T (ḂN/p−1

p,1 )
⋂

L̃1
T(ḂN/p+1

p,1 ))N ,

From (19) and (20), we get un ∈ L2
T(ḂN/p

p,1 ) by interpolation. Similarly, we also have:

un ∈ L
2

2−η

T (Ḃ
N
p +1−η

p,1 ); un ∈ L
2

1−η

T (Ḃ
N
p −η

p,1 ) with 0 < η < in f (1, 2N
p ).

By Taylor’s formula, we obtain that:

‖∇ · ∇ · [(ν̃(θn + 1)− ν)∇un]‖
L

2
2−η
T (Ḃ

N
p −2−η

p,1 )

. ‖∇ · [(ν̃(θn + 1)− ν)∇un‖
L

2
2−η
T (Ḃ

N
p −1−η

p,1 )

. ‖(ν̃(θn + 1)− ν)∇un‖
L

2
2−η
T (Ḃ

N
p −η

p,1 )

. ‖θn‖L∞
T
(Ḃ

N
p

p,∞)‖un‖
L

2
2−η
T (Ḃ

N
p +1−η

p,1 )

. ‖θn‖L∞
T
(Ḃ

N
p

p,1)‖un‖
L

2
2−η
T (Ḃ

N
p +1−η

p,1 )

. (39)
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in deriving (39), we have used (14) and (15).

Since un+1 ∈ L
2

2−η

T (Ḃ
N
p +1−η

p,1 ), we can easily obtain:

∆un+1 ∈ L
2

2−η

T (Ḃ
N
p −1−η

p,1 ). (40)

Using (14) and (15) we have:

‖un · ∇un+1‖
L

2
2−η
T (Ḃ

N
p −1−η

p,1 )

. ‖un ⊗ un+1‖
L

2
2−η
T (Ḃ

N
p −η

p,1 )

. ‖un‖
L

2
1−η
T (Ḃ

N
p −η

p,1 )

‖un+1‖
L2

T(Ḃ
N
p

p,1)
. (41)

We now begin to bound the last item ‖θng‖
L

2
2−η
T (Ḃ

N
p −1−η

p,1 )

.

Using (15), we have:

‖θng‖
L

2
2−η
T (Ḃ

N
p −1−η

p,1 )

. ‖θn‖
L∞

T (Ḃ
N
p

p,1)
‖g‖

L
2

2−η
T (Ḃ

N
p −1−η

p,1 )

. (42)

Combining (38) and (42), we obtain the desired result.

In order to use the Ascoli Theorem, it suffices to estimate the derivatives of θn and un.

Proposition 5. For the sequence (θn, un)n∈N

(i) The sequence (∂tθ
n)n∈N is uniformly bounded in L2

T(Ḃ
N
p −1

p,1 ).

(ii) The sequence (∂tun)n∈N is uniformly bounded in L
2

2−η

T (Ḃ
N
p −1−η

p,1 ), for:

0 < η < in f (1,
2N
p
− 1) and 1 < p < 2N.

Proof. From (25), we have:
∂tθ

n+1 = −un · ∇θn+1. (43)

Recall that (θn+1, un) ∈ L∞
T (ḂN/p

p,1 )× (L2
T(ḂN/p

p,1 ))N , from (43), we have:

∂tθ
n+1 ∈ L2

T(ḂN/p−1
p,1 ). (44)

Similarly, we get:

∂tun+1 = −un · ∇un+1 + ν∆un+1 −∇pn+1 + Gn. (45)

Then we get the desired result (ii) from Lemma 1.

Now we turn to the proof of the existence of the solution. According to Proposition 5,
Cauchy-Schwarz inequality and Hölder’s inequality, we deduce the following Corollary.

Corollary 1. For the sequence (θn, un):

(i) The sequence (θn)n∈N is uniformly bounded in C
1
2 ([0, T], Ḃ

N
p −1

p,1 ),

(ii) The sequence (un)n∈N is uniformly bounded in C
η
2 (Ḃ

N
p −1−η

p,1 )N , for,

0 < η < in f (1,
2N
p
− 1).
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According to Corollary 1, the sequence (θn, un)n∈N is uniformly bounded in C
1
2 ([0, T],

Ḃ
N
p −1

p,1 )×C
η
2 (Ḃ

N
p −1−η

p,1 )N , thus is uniformly bounded in C([0, T], Ḃ
N
p −1

p,1 )×C([0, T], Ḃ
N
p −1−η

p,1 )N .
We recall that the injection of Ḃs+ε

pq,loc in Ḃs
pq,loc is compact for all ε > 0. (See the proof in [34]).

Using the uniform estimates and applying the Ascoli’s Theorem, there exists a subsequence
(θn′ , un′), which converges to (θ, u). We gather that (θ, u) is a solution of (25) belongs to:

(C([0, T], ḂN/p
p,1 )

⋂
L∞

T (ḂN/p
p,1 )) × (C([0, T], ḂN/p−1

p,1 )
⋂

L∞
T (ḂN/p−1

p,1 )
⋂

L1
T(ḂN/p+1

p,1 )).

4. The Uniqueness of the Solution

In this section we shall prove the uniqueness of the solution for (5). We shall only
establish the uniqueness when p = N, the case when 1 < p < N follows by injection.

We state the results as following.

Theorem 3. Let (θi, ui, pi), (i = 1, 2) be two solutions solve (5) with the same initial data (θ0, u0).
Assume that:

g ∈ L1([0, T], Ḃ0
N,1),

θi ∈ C([0, T], Ḃ1
N,1)

⋂
L∞([0, T], Ḃ1

N,1), (46)

ui ∈ C([0, T], Ḃ0
N,1)

⋂
L∞([0, T], Ḃ0

N,1)
⋂

L1([0, T], Ḃ2
N,1), (47)

∇pi ∈ L1([0, T], Ḃ0
N,1), (48)

there exists a constant ε small enough, if we have:

‖θ1‖L∞
T (Ḃ1

N,1)
≤ ε, (49)

then (θ1, u1,∇p1) = (θ2, u2,∇p2).

Proof. Let (θi, ui,∇pi) (i = 1, 2) be two solutions to the system (5), we denote:

(δθ, δu, δ∇p) = (θ1 − θ2, u1 − u2,∇p1 −∇p2), (50)

then we have: 



∂tδθ + u2 · ∇δθ + δu∇θ1 = 0,
∂tδu + u1 · ∇δu− ν∆δu +∇δp = K,
∇ · (δu) = 0,
(δθ, δu)|t=0 = (0, 0),

(51)

where,

K = ∇ · [(ν(θ1) − ν)∇u1] − ∇ · [(ν(θ2) − ν)∇u2] + δu · ∇u2 + δθg. (52)

We shall prove the uniqueness in the space DT with:

DT = (C([0, T], Ḃ0
N,∞)

⋂
L∞([0, T], Ḃ0

N,∞))× (C([0, T], Ḃ−1
N,∞)

⋂
L∞([0, T], Ḃ−1

N,∞)
⋂

L1([0, T], Ḃ1
N,∞)× L1([0, T], Ḃ−1

N,∞)). (53)

Firstly,we have to state that (δθ, δu, δ∇p) ∈ DT .
According to our assumption on (θi, ui), the estimates of paraproduct yield ∂tθ

i ∈
L2

T(Ḃ0
N,1). Therefore θ̄i = θi − θ0 belongs to C

1
2 ([0, T], Ḃ0

N,1). Which clearly entails by
embedding:

δθ ∈ C([0, T], Ḃ0
N,1).

178



Symmetry 2021, 13, 2110

We now define:
ui = uL + ūi,∇pi = ∇pi

L +∇ p̄i.

The quantities uL and ∇pL are defined by the system below:




∂tuL − ν∆u +∇pL = 0,
∇ · uL = 0,
uL|t=0 = u0.

Thanks to Proposition 2.6 above and Proposition 2.1 in [32], we have:

uL ∈ C([0, T], Ḃ0
N,1)

⋂
L1([0, T], Ḃ2

N,1),

and,
∇pL ∈ L1([0, T], Ḃ0

N,1).

We obviously have ūi|t=0 = 0 and (ūi,∇ p̄i) verify:





∂tūi − ν∆ūi +∇ p̄i = K(θi, ui),
∇ · ūi = 0,
ūi|t=0 = u0,

where K(θi, ui) = −ui · ∇ui +∇ · [(ν̃(θn + 1)− ν)∇un]− αθng.
The product and composition laws in Besov Spaces insure that K(θi, ui) belongs to

L1
T(Ḃ−1

N,1), thus we can easily get K(θi, ui) belongs to L1
T(Ḃ−1

N,∞).
The Proposition 2.6 above and Proposition 2.1 in [32] yield:

ūi ∈ (C([0, T], Ḃ−1
N,∞)

⋂
L∞([0, T], Ḃ−1

N,∞)
⋂

L1([0, T], Ḃ1
N,∞),

and,
∇̄pi ∈ L1([0, T], Ḃ−1

N,∞).

Since

δθ = (θ2 − θ0)− (θ1 − θ0), δu = ū2 − ū1 and ∇δp = ∇ p̄2 −∇ p̄1,

on combining the above discussions, we can conclude:

(δθ, δu, δ∇p) ∈ DT .

To get the estimates of ‖(δθ, δu, δ∇p)‖DT , by Proposition 4, we have:

‖δu‖L̃∞
T (Ḃ−1

N,∞) + ν‖δu‖L̃1
T(Ḃ1

N,∞) + ‖δ∇p‖L̃1
T(Ḃ−1

N,∞) . exp
(∫ T

0
‖∇u1‖Ḃ1

N,∞
⋂

L∞ dt
) ∫ T

0
‖K‖Ḃ−1

N,∞
dt. (54)

Noting (53), and using Proposition 2, we have:

‖∇ · [(ν̃(θ1)− ν)∇u1]− ‖∇ · [(ν̃(θ2)− ν)∇u2]‖L̃1
T(Ḃ−1

N,∞)

. ‖∇ · [(ν̃(θ1)− ν)∇u1]−∇ · [(ν̃(θ1)− ν)∇u2]‖L̃1
T(Ḃ−1

N,∞)

+ ‖∇ · [(ν̃(θ1)− ν)∇u2]−∇ · [(ν̃(θ2)− ν)∇u2]‖L̃1
T(Ḃ−1

N,∞)

. ‖θ1‖L̃∞
T (Ḃ1

N,1)
‖δu‖L̃1

T(Ḃ1
N,∞) + ‖δθ‖L̃∞

T (Ḃ0
N,∞)‖u2‖L̃1

T(Ḃ2
N,1)

) (55)

and,

‖δu · ∇u2‖L̃1
T(Ḃ−1

N,∞) . ‖δu‖L̃∞
T (Ḃ−1

N,∞)‖u2‖L̃1
T(Ḃ2

N,1)
. (56)
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Now, we shall estimate the term δθ. By Proposition 3,

‖δθ‖L̃∞
T (Ḃ0

N,∞) ≤ exp
(∫ T

0
‖∇u2‖Ḃ1

N,∞
⋂

L∞ dt
) ∫ T

0
‖δu∇θ1‖Ḃ0

N,∞
dt, (57)

Using (51)3 and (13), we get:

∫ T

0
‖δu∇θ1‖Ḃ0

N,∞
dt =

∫ T

0
‖∇ · (δuθ1)‖Ḃ0

N,∞
dt

=
∫ T

0
‖δuθ1‖Ḃ1

N,∞
dt .

∫ T

0
‖δuθ1‖Ḃ1

N,1
dt (58)

If we choose s1 = 1, s2 = 1, p1 = p2 = p = N in (15), we obtain:

∫ T

0
‖δuθ1‖Ḃ1

N,1
dt .

∫ T

0
‖δu‖Ḃ1

N,∞
‖θ1‖Ḃ1

N,1
dt . ‖θ1‖L̃∞

T (Ḃ1
N,1)
‖δu‖L̃1

T(Ḃ1
N,∞). (59)

We now begin to bound
∫ T

0 α‖δθg‖L̃1
T(Ḃ−1

N,∞),

∫ T

0
α‖δθg‖L̃1

T(Ḃ−1
N,∞) . α‖δθ‖L̃∞

T (Ḃ0
N,∞)‖g‖L̃1

T(Ḃ0
N,1)

. (60)

in deriving (60), we have used (17).
Write:

γ(T) , ‖δθ‖L̃∞
T (Ḃ0

N,∞) + ‖δu‖L̃∞
T (Ḃ−1

N,∞) + µ‖δu‖L̃1
T(Ḃ1

N,∞) + ‖δ∇p‖L̃1
T(Ḃ−1

N,∞). (61)

Then from (54)–(60), we get:

γ(T) . ‖θ1‖L̃∞
T (Ḃ1

N,1)
‖δu‖L̃1

T(Ḃ1
N,∞) + ‖δθ‖L̃∞

T (Ḃ0
N,∞)‖u2‖L̃1

T(Ḃ2
N,1)

+ ‖δu‖L̃∞
T (Ḃ−1

N,∞)‖u2‖L̃1
T(Ḃ2

N,1)
+ α‖δθ‖L̃∞

T (Ḃ0
N,∞)‖g‖L̃1

T(Ḃ0
N,1)

. (62)

Taking T small enough, such that for any small positive constant ε0, we have:

‖∇u2‖L̃1
T(Ḃ1

N,1)
+ ‖g‖L1

T(Ḃ0
N,1)
≤ 1

2
ε0. (63)

Thus, we have:

γ(T) ≤ 1
2

γ(T). (64)

we get,
γ(T) ≡ 0,

which yields uniqueness of the solutions.

5. Conclusions

In this paper, we studied the Cauchy problem for non-homogeneous Boussinesq
equations. We proved the global existence of the solution when the initial velocity are
small with respect to the viscosity, as well as the initial temperature approaches a positive
constant on the critical Besov spaces (θ, u) ∈ L∞

T (ḂN/p
p,1 )× L∞

T (ḂN/p−1
p,1 )

⋂
L1

T(ḂN/p+1
p,1 ) with

1 < p < 2N. Furthermore, we proved the uniqueness for 1 < p ≤ N. When N ≤ p ≤ 2N,
the uniqueness is difficult. We can’t get any result following the method proposed in this
paper. We will consider the uniqueness for N ≤ p ≤ 2N in the future. We can also obtain
similar results for other fluid equations.
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