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Abstract: Mangrove forest coastal ecosystems contain significant amount of carbon stocks and
contribute to approximately 15% of the total carbon sequestered in ocean sediments. The present
study aims at exploring the ability of Earth Observation EO-1 Hyperion hyperspectral sensor in
estimating aboveground carbon stocks in mangrove forests. Bhitarkanika mangrove forest has
been used as case study, where field measurements of the biomass and carbon were acquired
simultaneously with the satellite data. The spatial distribution of most dominant mangrove species
was identified using the Spectral Angle Mapper (SAM) classifier, which was implemented using the
spectral profiles extracted from the hyperspectral data. SAM performed well, identifying the total area
that each of the major species covers (overall kappa = 0.81). From the hyperspectral images, the NDVI
(Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) were applied to assess
the carbon stocks of the various species using machine learning (Linear, Polynomial, Logarithmic,
Radial Basis Function (RBF), and Sigmoidal Function) models. NDVI and EVI is generated using
covariance matrix based band selection algorithm. All the five machine learning models were tested
between the carbon measured in the field sampling and the carbon estimated by the vegetation
indices NDVI and EVI was satisfactory (Pearson correlation coefficient, R, of 86.98% for EVI and
of 84.1% for NDVI), with the RBF model showing the best results in comparison to other models.
As such, the aboveground carbon stocks for species-wise mangrove for the study area was estimated.
Our study findings confirm that hyperspectral images such as those from Hyperion can be used to
perform species-wise mangrove analysis and assess the carbon stocks with satisfactory accuracy.

Keywords: blue carbon; hyperspectral data; mangrove forest; carbon stock; Bhitarkanika Forest
Reserve; regression models; machine learning

1. Introduction

Mangrove forest coastal ecosystems provide several beneficial functions, both to terrestrial and
marine resources [1,2]. Mangrove forests contain significant amount of carbon stocks and are one of
the sources of carbon emissions [3]. Coastal habitat contributes more than half of the total carbon

Remote Sens. 2020, 12, 597; doi:10.3390/rs12040597 www.mdpi.com/journal/remotesensing
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sequestrated in ocean sediments, only 2% of the total carbon is sequestered by coastal habitat [4].
Mangroves provide essential support to the ecosystem, thus, their decline also results in socio-economic
loss. Previous studies demonstrated the existence of mangrove forests in several countries (about 120
in total) including tropical as well as sub-tropical ones, with coverage of 137,760 km2 across the
earth [5]. Recently, Hamilton and Casey (2016) provided key information concerning mangrove forest
distribution worldwide. The total mangrove area in India is 4921 km2, which comprises about 3.3% of
global mangroves [6]. Due to their valuable contribution in biomass, carbon sinks as well as numerous
other benefits for biodiversity of mangrove forests ecosystem are considered as a valuable ecological
and economic resources worldwide [7,8].

Resources are declining and continuously limiting in its spatial extent due to human induced as well
as natural factors which is putting pressure with every passing time [9], thus, the rapid altering of the
composition, structure, and behavior of the ecosystem and their capability to deliver ecosystem services
is declining [10–12]. This decline happens at a fast rate by 0.16% to 0.39% annually at global level [13].
It is estimated that mangroves store 1.23± 0.06 Pg of carbon globally sequestered from coastal ecosystem
is one of the integral parts of the global carbon circulation [14]. Annually, around 131–639 km2 of
mangrove forests are being destroyed; in terms of overall carbon loss, it goes up to 2.0-75 TgCYr−1 [13].

Valiela et al. [15] demonstrated that mangrove forests in tropical countries are the most threatened
ecosystems. The major threat is the conversion of mangrove forests in other land use types
and categories, such as aquaculture, coastal development, construction of channels, agriculture,
urbanization, coastal landfills, and harbors, or deterioration due to indirect effects of pollution [1,16].
Allen et al. [17] described about the impact of natural threats on mangrove forest which includes sea
level rise, tropical storm, insects, lightning, tsunami affected [18], and climate change. Yet, those are
considered as minor threats, as the mangrove forest degradation rate is much less because of natural
causes than anthropogenic factors. Several studies have provided evidence of the decline of mangroves
population, which are already critically endangered [15] or approaching the state or verge of extinction
in some of countries where these eco-sensitive fragile ecosystems exist (data demonstrated that
approximately 26 are listed where mangrove are in grave situation out of a total 120 countries) [12,19].
It is therefore imperative to monitor mangrove forests for their biodiversity, biomass, and carbon stocks
at regular time intervals to provide suitable database and help in conservation strategies. There are
critical studies [20–22] the mangrove forest ecosystem and its biodiversity in India [23], where authors
stressed on the importance of mangrove forests [24] and conservation priorities [21]. Some authors
also demonstrated the degradation of mangrove and their impact [20,23–25]. There have been several
published studies that focused on assessing the blue carbon stored in the mangroves around the world
and in India; yet, a species-wise blue carbon analysis with significant accuracy is missing. Species-wise
blue carbon analysis can be used to evaluate the impact of global climate change on different types of
mangrove species and can also help in ecosystem services and policy makers to accurately evaluate the
ecological as well as economical trade off associated with the management of mangroves ecosystem.

Blue carbon is nothing but the carbon stored and captured in coastal and marine ecosystems
in different forms globally, such as biomass and sediments from mangrove forest, tidal marshes,
and seagrasses. About 83% of global carbon is circulated through oceans. A major contribution is
through coastal ecosystems [4] such as mangrove forests in form of biomass and carbon stocks [26].
Thus, blue carbon stock assessment of tropical regions, especially mangrove forests, is an issue for
global change research [27], in order to effectively manage such ecosystems to reduce loss of biomass
and carbon stock. Therefore, these ecosystems provide an exceptional candidate for research such as
carbon change mitigation program such as REDD+ (Reducing Emissions from Deforestation and Forest
Degradation) in third world countries or developing countries [28–30] and Blue Carbon studies around
the coastal regions in the world [31,32]. The coastal line covers a large area, which can be surveyed at
a high temporal resolution with a very cost-effective way through remote sensing approach and is
able to generate databases for each of the mangrove forest sites. Use of technologies such as Remote
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Sensing is crucial as a tool for assessing and monitoring mangrove forests, primarily because many
mangrove swamps are inaccessible or difficult to field survey [33].

Previous work by the authors as well as other researchers has allowed assessing the biomass
of the several mangrove plant species and has provided the biomass of species individually.
Chaube et al. [34] employed AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer Next
Generation) hyperspectral data to map mangrove species using a SAM (Spectral Angle Mapper)
classifier. Authors identified 15 mangrove species over Bhitarkanika mangrove forest, reporting an
overall accuracy (OA) of 0.78 (R2). They also concluded that the hyperspectral images are very useful
in discriminating mangrove wetlands, and having a finer spectral and spatial resolution can be crucial
in investigating fine details of ground features. Kumar et al. [35] used the five most dominant classes
of mangrove species present in Bhitarkanika as training sets to classify using SAM on Hyperion
hyperspectral images, and archived an OA of 0.64. Ashokkumar and Shanmugam [36] demonstrated
the influence of band selection in data fusion technique; they performed classification using support
vector machine and observed that factor based ranking approach shown better results (R2 of 0.85)
in discriminating mangrove species than other statistical approaches. In another study, Padma and
Sanjeevi [37] used an identical algorithm by integrating Jeffries-Matusita distance and SAM to map the
mangrove species within the Bhitarkanika using Hyperion Image with an OA of 0.86 (R2 value).

Presently, the spatial distribution maps of mangroves are generated using Earth Observation
(EO) Hyperion datasets [26]. Table 1 illustrates the wetland research, which employed several
algorithms for the assessment using various data types. Identifying different species in a mangrove
forest is a fundamental yet difficult task, as it requires a high spatial and spectral resolution satellite
images. To identify different species within the study area, EO-1 Hyperion hyperspectral data is
currently acquired and field-sampling points are taken to generate the endmember spectra. This study
demonstrated the use of vegetation indices (in this paper NDVI (Normalized Difference Vegetation
Index) and EVI (Enhanced Vegetation Index)) for estimating carbon stock within an area with a
significant accuracy. Presently, the field inventory data were incorporated with the hyperspectral
image to derive the carbon stock. Three different NDVI and EVI based models were used to determine
the total blue carbon sequestered by each species within the study area.

In purview of the above, this study aimed at evaluating the net above ground carbon stocks
present at Bhitarkanika mangrove forest ecosystem, particularly with relevant field inventory and
remote sensing approaches.

Table 1. Showing the recent studies in mangrove classification and mapping using different techniques.

Technique Used Datasets Study Location Ref. Year

Maximum Likelihood
Classifier (MLC) Aerial Photographs Texas, USA [38] 2010

MLC and The Iterative
Self-Organizing Data
Analysis Technique

(ISODATA) algorithm

Landsat, Radar Satellite
(RADARSAT), Satellite Pour l

Observation de la Terre (SPOT)
Vietnam [39] 2011

MLC IKONOS Sri Lanka [40] 2011

Unsupervised Landsat and The Linear Imaging
Self Scanning Sensor (LISS-III)

Eastern coast of
India [41] 2011

Sub-Pixel Moderate Resolution Imaging
Spectroradiometer (MODIS) Indonesia [42] 2013

Spectral Angle Mapper
(SAM) Hyperion Florida [34,

43] 2013

Neural Network Landsat Global [44] 2014

Object based Landsat Vietnam [45] 2014

3
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Table 1. Cont.

Technique Used Datasets Study Location Ref. Year

Object based

Advanced Land Observing
Satellite (ALOS) Phased Array

type L-band Synthetic Aperture
Radar (PALSAR)/ Japanese Earth

Resources Satellite 1 (JERS-1)
Synethetic Aperture Radar (SAR)

Brazil and Australia [46] 2015

Hierarchical clustering
Hyperspectral Imager for the

Coastal Ocean (HICO) and
HyMap

Australia [47] 2015

Tasseled cap transformation Landsat Vietnam [48] 2016

NDVI Landsat Vietnam [49] 2016

MLC IKONOS, QuickBird, Worldview-2 Indonesia [50] 2016

Object based Support Vector
Machine SPOT-5 Vietnam [36,

51] 2017

Iso-cluster Landsat Madagascar [52] 2017

Random Forest Landsat Vietnam [53] 2017

K-means Landsat West Africa [54] 2018

Decision Tree Landsat China [55] 2018

Data Fusion
ALOS PALSAR & Rapid Eye Egypt [56] 2018

Compact Airborne Spectrographic
Imager (CASI) and Bathymetric

Light Detection and Ranging
(LiDAR)

Mexico [57] 2016

Structure from Motion (SfM)
Multi-View Stereo (MVS)

Algorithm
Unmanned Aerial Vehicle (UAV) Australia [58] 2019

Hybrid decision tree/
Support Vector Machine

(SVM)
Hyperspectral Galapagos Islands [33] 2011

Hierarchical cluster analysis Compact Airborne Spectrographic
Imager (CASI)

South Caicos, United
Kingdom [59] 1998

Feature Selection Algorithm CASI Galeta Island,
Panama [60] 2009

SAM Airborne Imaging Spectrometer
for Applications (AISA)

South Padre Island,
Texas [61] 2009

SVM Earth EO-1 (Earth Observation)
Hyperion

Bhit arkanika
National Park, India [35] 2013

MLC & Hierarchical neural
network CASI Daintree river

estuary, Australia [62] 2003

Object based Classification UAV based Hyperspectral Image Qi’ao Island, China [63] 2018

SAM Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS)

Everglades National
Park, Florida, USA [64] 2003

SAM EO-1 Hyperion Talumpuk cape,
Thailand [65] 2013

Pixel based and Object based
classification CASI-2 (CASI-2) Brisbane River,

Australia [66] 2011

SAM
Airborne Visible/Infrared Imaging
Spectrometer—Next Generation

(AVIRIS-NG)

Lothian Island and
Bhitarkanika

National Park, India
[34] 2019
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2. Materials and Methods

2.1. Study Area

Our study site is located in the Kendrapara district of Odisha, India, which lies between
20◦41′36.70” and 24◦45′28” N latitude and 86◦54′17.29” and 86◦92′8.96” E longitude (as shown in
Figure 1). Geographically, it covers an area of around 41.05 Km2 of which mostly low-lying (10–25 m
above mean sea level) covered with dense mangrove forests. The Bhitarkanika Forest Reserve is a
protected forest reserve with a unique habitat and ecosystem. About two-third of the Bhitarkanika
Forest Reserve is covered by the Bay of Bengal, and this estuarial region (lies within Bramhani-Baitarni)
is a predominant inter tidal zone. Bhitarkanika Forest Reserve is home to a diverse types flora and
fauna including some endangered species; it is the second largest mangrove forest in India formed by
the estuarial formation of Brahmani-Baitarni, Dhamra, and Mahanadi rivers [67].

 
Figure 1. Location map of the Bhitarkanika Forest Reserve, Odisha India.

The study area comes under the humid sun-tropical climatic region broadly having three seasons
namely, summer in which the temperature reaches up to 43 ◦C, winter in which the temperature goes
down to as low as 10 ◦C, and the rainy season in which this region faces flash floods and frequent
cyclones between the months of June to October. The Bhitarkanika Forest Reserve was chosen for the
present study because it contains variety of heterogeneous species. In our work, the 10 most dominant
mangrove species (as shown in Table 2) were identified and used for further analysis.

5



Remote Sens. 2020, 12, 597

T
a

b
le

2
.

In
-s

it
u

m
ea

su
re

m
en

ts
of

di
ff

er
en

tm
an

gr
ov

e
sp

ec
ie

s
in

th
e

Bh
it

ar
ka

ni
ka

fo
re

st
re

se
rv

e.

S
p

e
ci

e
s

T
re

e
H

e
ig

h
t

(m
)

D
ia

m
e

te
r

a
t

B
re

a
st

H
e

ig
h

t
(D

B
H

)
(c

m
)

N
o

o
f

T
re

e
s

W
o

o
d

D
e

n
si

ty
(g
/c

m
3
)

S
te

m
v

o
lu

m
e

(m
3
)

B
io

m
a

ss
(t

.
h

a
1
)

C
a

rb
o

n
st

o
ck

(t
.

C
h

a
1
)

1
Ex

co
ec

ar
ia

ag
al

lo
ch

a
L.

18
.4

5
±2

.1
1

20
.1

4
±2

.5
6

11
0.

49
6.

46
22

2.
74
±1

1.
17

10
4.

68
±5

.2
4

2
C

yn
om

et
ra

ir
ip

a
K

os
te

l
17

.2
3
±1

.6
2

16
.5

4
±4

.3
9

10
0.

81
3.

70
23

1.
43
±2

9.
09

10
8.

77
±1

3.
67

3
A

eg
ic

er
as

co
rn

ic
ul

at
um

(L
.)

15
.0

3
±1

.8
2

22
.1

7
±2

.8
1

9
0.

59
5.

22
26

2.
44
±1

3.
84

12
3.

34
±6

.5
0

4
H

er
iti

er
a

lit
to

ra
lis

D
ry

an
d

ex
A

it.
18

.1
7
±2

.1
7

17
.2

1
±2

.5
6

10
1.

06
4.

22
33

9.
13
±2

3.
85

15
9.

39
±1

1.
21

5
H

er
iti

er
a

fo
m

es
Bu

ch
.-H

am
.

12
.3

5
±1

.0
3

18
.8

3
±2

.9
4

12
0.

88
4.

13
28

7.
66
±1

2.
81

13
5.

20
±6

.0
2

6
X

yl
oc

ar
pu

s
gr

an
at

um
K

oe
ni

g
14

.1
3
±2

.0
1

27
.5

2
±4

.2
8

5
0.

67
4.

20
37

9.
64
±3

8.
10

17
8.

43
±1

7.
90

7
X

yl
oc

ar
pu

s
m

ek
on

ge
ns

is
Pi

er
re

15
.3

8
±1

.9
8

20
.2

8
±3

.4
0

8
0.

73
3.

97
16

2.
13
±2

6.
30

76
.2

0
±1

2.
36

8
In

ts
ia

bi
ju

ga
(C

ol
eb

r.)
K

un
tz

e
12

.2
9
±1

.3
8

26
.6

9
±4

.9
0

9
0.

84
6.

18
19

6.
92
±3

2.
78

92
.5

5
±1

5.
40

9
C

er
be

ra
od

ol
la

m
G

ae
rt

n.
12

.2
4
±1

.8
6

28
.5

6
±5

.0
5

6
0.

33
4.

70
35

5.
36
±2

4.
69

16
7.

01
±1

1.
60

10
So

nn
er

at
ia

ap
et

al
a

Bu
ch

.-H
am

.
11

.2
5
±1

.6
7

21
.8

5
±4

.0
6

10
0.

53
4.

22
35

1.
14
±2

3.
14

16
5.

03
±1

0.
87

A
ve

ra
ge

27
8.

86
±2

3.
57

13
1.

06
±1

1.
08

6



Remote Sens. 2020, 12, 597

2.2. EO Data Acquisition

EO-Hyperion images (L1Gst) were obtained over the study area from the United States Geological
Survey (USGS). The specifications of Hyperion sensor are illustrated in Table 3. Hyperion has a spatial
resolution of 30 m and 242 spectral bands covering 356 nm to 2577 nm wavelengths. The Hyperion
data strip passing over Bhitarkanika Forest Reserve is shown in Figure 2. Out of the 242 spectral bands,
46 bands are considered as bad bands (including 1–7, 58–78, 120–132, 165–182, 185–187, and 221–242
bands), and thus, these were not considered in further analysis. Bad bands have a high amount of
noise caused by the water absorption in atmosphere, band overlaps, and lack of proper illumination.
The performed image pre-processing includes noise removal and cross track illumination correction.
In addition, atmospheric correction has been applied to remove atmospheric noises using the FLAASH
(Fast Line-of-sight Atmospheric Analysis of Hyper Spectral-cubes) module in ENVI (v. 5.2) software [68].
After completing this step, endmember extraction was performed for each of the targeted species using
the final Hyperion reflectance image and the in-situ GPS (Global Positioning System) locations.

Table 3. Hyperion Data Description

Satellite Data EO-Hyperion

Path/Row 139/45
Spatial Resolution 30 meters

Flight Date 31 December 2015
Inclination 97.97 degree

Cloud Cover <5%

 

Figure 2. Footprint of Hyperion data available for the Bhitarkanika Forest reserve; it illustrates the
region covered for Hyperion data for conducting the present study.
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2.3. Field-Inventory Based Biomass Measurement

Field sampling was undertaken during 2015 for the study site. The foremost steps are the prior
knowledge of the mangrove plant species; their location and its structure were essential for collecting
the sample data for geospatial analysis. Random and the most homogenous patches within the
Bhitarkanika Forest Reserve were selected for the field survey to measure tree height, number of
samples (trees), Diameter at Breast Height (DBH), and total number of species within the plot.

As the study site selected is 36.42 km2 falling within the range of Hyperion data strip (Figure 2).
Hyperion image has limited coverage over the Bhitarkanika forest range, and for this reason, a region
was selected that falls within the area covered by the Hyperion field of view. The samples were
collected by making a 90 × 90 m2 grid and it is further divided into nine equal 30 × 30 m2 sub-grids, i.e.,
90 sub-grids were examined. The most homogenous grid was taken into consideration. This process
was then repeated to identify the 10 most homogenous mangrove plant species within the study
area and samples were collected using GPS and Clinometer. The field data records the vegetation
parameters using GPS in multiple directions. The number of tree species was counted within the plot
in random sampling design in the Bhitarkanika Forest Reserve [69]. An overview of the methodology
implemented is available in Figure 3. These major species were identified for the study site and their
spectral profile was extracted using EO-1 Hyperion dataset. Total area covered by these species was
36.42 km2 (see Figure 2). Non-vegetative regions were masked out from the study region.

Figure 3. Flowchart providing an overview of the methodology implemented where NDVI stands for
Normalized Difference Vegetation Index, EVI stands for Enhanced Vegetation Index and RBF forRadial
Basis Function.
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The Spectral Angle Mapper (SAM) supervised classification algorithm was used for the land
use/cover classification using ENVI software [70,71]. SAM is a physically-based spectral classification
algorithm, according to [72] that calculates the spectral similarity between a pixel spectrum and a
reference spectrum as “the angle between their vectors in a space with dimensionality equal to the
number of bands” [72]. SAM uses the calibrated reflectance data for classification and thus relatively
insensitive to illumination and albedo effects. End-member reference spectra used in SAM were
collected directly from acquired hyperspectral images. SAM compares the angle between reference
spectrum and each pixel of an image in n-D space [72–74]. This ‘spectral angle’ (α) is calculated as:

α = cos−1 ( t.r )
( ‖t‖ ‖r‖ ) (1)

where α is the angle between reference spectra and endmember spectra, t is the endmember spectra,
and r is the reference spectra.

A thorough and detailed investigation was performed to develop a criterion to estimate different
species and determine variety of communities present in that ecosystem. To perform the sampling,
firstly, the area is sub-divided into homogeneous patches or units, and furthermore, the samples were
taken within these homogenous patches. The total number of transect sampling units to determine the
allowable error was calculated using (Chacko, 1965) as follows:

N =
t(CV)2

E2 . (2)

where N is the total number of samples, t is the Student’s (t-statistics) value at a 95% significance level,
CV is the coefficient of variation (in %), and E is the confidence interval (in mean %).

While performing the field sampling, a transect of 30 m × 30 m plot was laid on the most dominant
patch for each species inside the protected area of Bhitarkanika forest reserve. The collected field
sampling points were further distributed, and 2/3 of the samples were used for generating the models,
whereas 1/3 of the samples were used for validation purpose. Table 2 has shown the field measurements
of each species, e.g., scientific name, tree height, DBH, total number of trees within the sample plot,
wood density of each species, biomass, and carbon stock. The trees whose girth height was below
1.32 m and DBH < 10 cm were not taken under consideration. The geographical location (latitude and
longitude) was recorded using hand-held GPS. There were several mathematical equations developed
and used by researchers for biomass estimation of trees [75–81]. These equations are species specific,
particularly in the tropics. The general equation has been developed in modified form. It is more
general in nature ([78,82,83]) and applicable in field. It is not possible to cut all the trees to estimate
their biomass. Considering the mathematical terms, the models were developed by [76,77,83,84].
The model developed by [75] (1989) to estimate above ground biomass has been used in the present
investigation. The literature revealed that this method is non-destructive and is the most suitable
method. The biomass for each tree is calculated using the following allometric equation [76,83,85]:

Y = exp
[
−2.4090 + 0.9522 ln

(
D2 × H × S

)]
. (3)

where Y is above ground biomass (t. ha1), D is the diameter at breast height, H is the tree height,
and S is the wood density. The average wood density (S) for each species is taken from the wood
density database provided by the International Council for Research in Agroforestry (ICRAF). From the
acquired wood density, it was found that the wood density of Cerbera odollam Gaertn. was lowest
(0.3349 gcm3), followed by Excoecaria agallocha L. (0.49 gcm3) among all. Heritiera littoralis Dryland ex
Ait. had the highest (0.848 gcm3) wood density. The above ground carbon was calculated using the
following formula to estimate biomass [83,85,86]:

Y = B ∗ 0.47 (4)
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where Y is the above ground carbon stock (t. ha1) and B is the above ground biomass per hectare (t. C ha1).
The precise location of the in-situ ground control points of each species were further used to

generate the spectral profile using Hyperion hyperspectral data as shown in Figure 4. The generated
spectra of each species were given as an input to the SAM classifier. It is observed that Intsia bijuga
(Colebr.) Kuntze is showing the highest reflectance among other observed species, whereas Aegiceras
corniculatum (L.) has the lowest reflectance.

 
Figure 4. Spectral reflectance curve of the observed mangrove species.

2.4. Covariance Matrix Based Band Selection

Hyperspectral data are a set of hundreds of narrow bands at different wavelengths posing problems
related to computational complexity, high data volume, bad bands, etc. Therefore, dimensionality
reduction of hyperspectral data is considered as one of the solutions for the aforementioned issue.
The dimensionality reduction technique is further classified into two groups, namely, feature extraction
and feature selection. In the present study, an approach has been made to select the best band for
calculation of different vegetation indices. Band selection generally involves two major steps, which are
selection of criterion function and optimum band searching. The selection criterion applied in this
study is the one proposed by [87], which was named Maximum ellipsoid volume criterion (MEV).

Mathematically it can be formulated as:

J(s) = det
( 1

M − 1

)
STS

10
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where M is the number of pixels and S is the selected bands with S = [x1, x2, . . . , xn] and ST is the
column vector with ST = [x1, x2, . . . , xm]T. Here, n and m are the number of bands and m is the number
of number of pixels.

Additionally, for the band searching purpose, sequential forward search was implemented,
which basically works on the principle of “down to top”. Here, the first band is defined as the band
with maximum variance and the remaining band is compared one by one. While selecting the optimum
band, the constant value

(
1

M − 1

)
. is neglected. Thus, Equation (4) can also be written as:

Bk = ST
kSk (5)

where Bk is the covariance matrix and Sk = [x1, x2, . . . , xk]. Therefore, we have:

Bk = ST
kSk (6)

= [x1, x2, . . . , xk]T [x1, x2, . . . , xk]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xT

1 x1 xT
1 x2 . . . xT

1 xk

xT
2 x1 xT

2 x2 . . . xT
2 xk

. . . . . . . . . . . .
xT

kx1 xT
kx2 . . . xT

kxk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
According to the rule of determination, the relation between Bk and Bk+1 is described as:

det(Bk+1) = det(Bk)
(
ak − dT

kB−1
k dk

)
(7)

Equation (7) was further used for determining the optimum band; the band that maximizes the
value of det(Bk+1) was termed as the optimum band. This band selection method was applied at blue,
red, and near infrared bands to further calculate the NDVI and EVI indices.

2.5. NDVI and EVI

In our study, the vegetation indices of NDVI and EVI were employed, which were computed from
the Hyperion hyperspectral data to assess the total above ground carbon stock using different allometric
regression models [26]. The covariance matrix based band selection algorithm as per described in
Section 2.4 determines the specific band for the calculation of vegetation indices. It was observed that
the optimum band in NIR (Near-Infrared) region is R793.13 (surface reflectance at 793.13 nm), in Red
region, it is R691.37 (surface reflectance at 691.37 nm), and in Blue region the optimum band is observed
at R447.17 (surface reflectance at 447.17 nm). The NIR and Red bands were used to calculate the NDVI;
as shown in Equation (5), its value ranges from −1 to +1. The negative NDVI values shows waterbody
and bare soil, whereas positive values are the green vegetation. The higher the NDVI value, the higher
will the density of forest or vegetation be because of the high NIR reflectance and low Red reflectance
coming from dense vegetation [88,89]. NDVI has been widely used to monitor vegetation health,
density, changes, amount and condition of vegetation:

NDVI =
(R793.13 −R691.37)

(R793.13 + R691.37)
(8)

EVI (Enhanced Vegetation Index) was originally developed as an improvement over NDVI; EVI
is basically an optimized vegetation index that is used to enhance the sensitivity of high biomass
region and it decouples the background variables as well as the atmospheric influences [90,91]. EVI is
calculated as follows:

EVI = 2.5∗ (R793.13 −R691.37)

(R793.13 + 6∗R691.37 − 7.5∗R447.17 + L)
(9)

where L is the adjustment factor, generally 1.
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In the present study, both NDVI and EVI were employed to correlate the carbon stock of the
Bhitarkanika mangrove forest. EVI is considered as more robust proxy of biomass and carbon stock
estimation, as it has better resilience to saturation and resistant to atmospheric contamination and
soil [90,92].

Five different models, linear, polynomial, logarithmic, Radial Basis Function (RBF), and sigmoidal
function, were utilized for assessing carbon using hyperspectral data derived from NDVI and EVI
indices. The relationship of field measured above ground carbon with the NDVI and EVI vegetation
indices for all the five models were calculated. The field measured above ground carbon was trained
with NDVI and EVI values retrieved from hyperspectral image in each of the five models. The 2/3 of
the in-situ measurements were used for training the data, while 1/3 of the remaining data were used
for testing the models.

3. Results

This section provides a concise and precise description of the experimental results for blue carbon
for a mangrove forest.

3.1. Spatial Distribution of Species

This section demonstrates the species-wise carbon stock spatial distribution and overall
carbon stock of the Bhitarkanika forest reserve and delivers a brief analysis on the overall results.
SAM classification (Figure 5) achieved an OA of 84% and a kappa coefficient (k) of 0.81. These results
indicate that SAM classification algorithm performed very well in determining the major plant species.
These outputs were further taken into account and were used to derive the estimated carbon stock for
each species using NDVI and EVI models and illustrating the species-wise carbon stock.

As per Table 4, it has been observed that the total aboveground carbon from EVI and NDVI
derived aboveground carbon are 459.82 kt. C and 514.47 kt. C, respectively. The NDVI derived carbon
is showing higher value than the EVI derived carbon because NDVI values can be influenced by the
atmospheric contaminants, topography, soil, and dense biomass. These can lead to the increase in
the irradiance of the NIR band and result in bias. It should also be noted that NDVI saturates in
dense vegetation so that the accuracy of NDVI values differ by land use, topography, and atmospheric
conditions [90,93–95]. Santin-Janin et al. [96] used non-linear model coupled with NDVI and EVI
estimates to estimate the biomass and carbon stock. Wicaksono et al. [97] employed 13 vegetation
indices to assess the above ground carbon of mangrove forest and concluded that the best fitted above
ground carbon model for mangrove species derived from vegetation indices was EVI1 (R2=0.688),
whereas for below ground carbon GEMI (R2=0.567) showed the best fit. Similarly, Adam et al. [95]
utilized the narrow band vegetation indices with all possible band combinations using hyperspectral
data for above ground biomass and concluded EVI is more robust for the assessment. Different band
selections were used by them to enhance the predictive accuracy, the best three combinations for
estimating EVI are (a) 445 nm, 682 nm, and 829 nm, (b) 497 nm, 676 nm, and 1091 nm, and (c) 495 nm,
678 nm, and 1120 nm.
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Figure 5. Distribution map of major species-wise mangrove analysis in the study site using
EO-1 Hyperion.

3.2. Estimation of Carbon Stock Using Spectral Derived Indices

This section presents the carbon stock assessment for mangrove forest using different models
namely, linear, logarithmic, polynomial (second degree), RBF, and sigmoidal function. All the models
were trained with the EVI and NDVI generated relations with the ground measured data as well as
tested with the modeled biomass and observed carbon stock as shown in Figure 6. The latter figure
illustrates the performance of each model for EVI and NDVI based estimations; it can be observed that
the RBF model performed better than the others.

Figure 6. Cont.
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Figure 6. (a) Performance analysis of different models with EVI based carbon estimation and in-situ
measurements (b) Performance analysis of different models with NDVI based carbon estimation and
in-situ measurements. In both cases, the index-derived carbon estimation shows good agreement
between measured and estimated carbon stock and either index could provide a good estimation.
From the results EVI (R2 = 86.98%) seems to perform slightly better than NDVI (R2 = 84.1%). However,
since the sample size is small (10 observations) the results are too close to say with statistical confidence
that this hypothesis is true. However, the literature (see Section 3.1) indicates that this is indeed the
case. The EVI and NDVI based carbon stock for each species (identified in the present study) is shown
in Table 4.

According to the distributed EVI value, it has been concluded that a good amount of area is under
dense coverage of forest species; moreover, it has shown higher estimation of carbon stock than NDVI.
EVI varies from 0.35 to 6.9 and it is more sensitive to branches and other non-photosynthetic parts of
the vegetation (parts different from leaves). EVI is more sensitive to plant parameters, as it avoids
the atmospheric effects as well as the soil background. The results illustrate that EVI derived carbon
varies from 27.22 to 215.35 t. C ha−1 for linear, 85.39 to 236.66 t. C ha−1 for log, 104.72 to 306.70 t.
C ha−1 for polynomial, 55.281 to 253.4 t. C ha−1 for RBF and 54.068 to 363.7 t. C ha−1 for sigmoidal
function models (See Figure 7A–E). NDVI derived carbon varies from 111.11 to 184.14 t. C ha−1 for
linear, 112.53 to 187.50 t. C ha−1 for log, and 109.85 to 181.57 t. C ha−1 for polynomial, 55.281 to 258.84 t.
C ha−1 for RBF, and 46.5 to 357.17 t. C ha−1 for sigmoidal function models (See Figure 7F–J). Estimated
carbon is highest for EVI derived sigmoidal function model with highest carbon content up to 363.7 t.
C ha−1 and lowest for linear regression models reaching up to only 27.22 t. C ha−1. Lowest estimated
carbon for NDVI derived carbon stocks comes to be 46.5 t. C ha−1 for the sigmoidal function model
and highest values was observed as 357.17 t. C ha−1 for the sigmoidal function model.
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The carbon stock values from the satellite-derived indices fall within the expected ranges for
mangrove carbon stocks. NDVI values range from 0.5 to 0.65; the latter shows a healthy, dense mangrove
forest in Bhitarkanika. The final interpretation result reveals that the middle northern part of the study
area is showing higher biomass values (~250 t. C ha−1). Thus, it is concluded that these regions are
highly dense and stores an ample amount of blue carbon in it.

The polynomial regression model using EVI is found to be suitable for the estimation of carbon
stock at the study site, with an R2 of 0.87. EVI has shown high amount of estimated carbon ranges as it
is more sensitive to biomass, and ultimately affecting the carbon estimation as compared to the NDVI
and can be seen from Figure 7 and Table 4 whereas, NDVI has shown more consistent outcomes in the
case of minimum and maximum estimated carbon stocks.

3.3. Species-Wise Carbon Stock Assessment

The classification results generated from SAM classifier and the covariance matrix based optimum
band selection for generating vegetation indices were further used to extract the species-wise carbon
stock as well as the area covered by each species in the Bhitarkanika forest reserve (see Figures 8 and 9).
Figure 9 illustrates the NDVI derived carbon distribution map for each major species, while Figure 8
demonstrates the EVI derived carbon distribution map for each major species. It is also important to
notice that the carbon stock of each species shows some variance, which is investigated and presented
in Figures 10 and 11. Furthermore, the outcome of species-wise carbon stocks depends upon the
species classification accuracies for species distribution classification maps.

 

Figure 8. Species-wise estimated carbon map of the study area derived from the EVI indices.
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Figure 9. Species-wise estimated carbon map of the study area derived from the NDVI indices.

Figure 10. Box plot showing species-wise above ground carbon stock derived from NDVI.
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Figure 11. Box plot showing species-wise above ground carbon stock derived from EVI.

Total area covered by the major mangrove species was around 36.42 km2. Cerbera odollam Gaertn
covers the largest part of the forest, approximately 22.90% of the total area. Total estimated carbon for
the EVI derived indices is 49.82 kt. C. and total carbon estimated for the Bhitarkanika forest derived
from NDVI indices is 514.47 kt. C. Using EVI-derived carbon stocks, the highest contribution of
carbon stock is the Intsia bijuga (Colebr.) Kuntze species with 53.10 kt. C (11.54%). From the NDVI
derived carbon stocks, Cerbera odollam Gaertn seems to contribute the most with 56.36 kt. C (10.95%).
Field measured carbon was recorded lowest for the species Xylocarpus mekongensis Pierre, which was
76.20 t. C ha−1. Figure 8 shows the spatial distribution of carbon derived from EVI for each species.
Intsia bijuga (Colebr.) Kuntze shows highest carbon content up to 253.4 t. C ha−1. The highest carbon
stocks as derived from NDVI were displayed for Xylocarpus mekongensis Pierre at 258.84 t. C ha−1.

As such, while Cerbera odollam Gaertn covers most of the area (22.9%), differences in carbon per
hectare (Carbon area density) promote Intsia bijuga (Colebr.) Kuntze as the highest contributing species
in the Bhitarkanika forest with EVI-derived carbon stocks. This is due to the large difference between
EVI and NDVI derived carbon area density for Cerbera odollam Gaertn (average 128.78 ± 15.702 t. C
ha−1 and 150.498 ± 15.51 t. C ha−1). Cross-referencing with the measured values presented in Table 2
(165.03 ± 10.87167.02 t. C ha−1), leads to the conclusion that the NDVI derived carbon stocks for Cerbera
odollam Gaertn are more accurate. This conclusion is not reflective of all the species. Out of the 10
species examined, the average Carbon area density of EVI is closer to the measured value in six of them,
while NDVI derived Carbon area density is more accurate in the other four. The greatest divergence
between EVI and NDVI estimated carbon area densities is for Cerbera odollam Gaertn. Significant
differences are also shown for Intsia bijuga (Colebr.) Kuntze and Xylocarpus mekongensis Pierre.

A species-wise box-plot is generated to assess the variation in different species-wise carbon stock
estimated using EVI and NDVI, which is shown in Figures 10 and 11, with the minima, maxima,
median, 25% quartile, and 75% quartile. The average carbon stock measured from field sampling is
131.07 t. C ha−1. Average EVI derived carbon stock ranges from 77.86 t. C ha−1 to 135.28 t. C ha−1 and
for NDVI derived carbon stock 116.57 t. C ha−1 to 145.82 t. C ha−1 for the Bhitarkanika mangrove
forest. As such, both EVI and NDVI estimated averages are in agreement with the average carbon
stock measured from the field.
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4. Conclusions

Mangrove forests store a large quantity of blue carbon in plants, both in the form of biomass and
as sediment in the soil. Anthropogenic activities threaten these forests nowadays due to conversion
to other land use types. Such transition of forest areas is a major source of carbon emissions to the
atmosphere. As such, carbon stock assessment is essential to reduce the loss of biomass in such
ecosystems. Species-wise blue carbon analysis can be used to assess the impact of global climate change
on different mangrove species as well as to help policy makers to accurately evaluate the ecological
and economical trade off associated with the management of mangroves ecosystem. The present
study aimed at demonstrating the use of hyperspectral EO data for species identification in a highly
diversified mangrove ecosystem and for calculating total carbon stored. The Bhitarkanika forest in
India was chosen as a study site and Hyperion hyperspectral images were used.

There have been several studies on the blue carbon stored in mangroves, however, thus far, a
species wide blue carbon analysis with significant accuracy was missing. This study attempts to
mitigate that gap of knowledge by estimating the above-ground carbon stocks for each of the 10 major
species that were identified and found dominant in the study area.

Hyperspectral data from EO-1 Hyperion were collected and processed to extract the biophysical
parameters of interest. Near co-orbital field measurements of biomass and carbon measurements were
acquired for validation. The in-situ locations of mangrove species were used to generate spectral profile.
The spatial distribution of the major mangrove species was identified using the SAM classification
algorithm, which performed reliably well (e.g., kappa coefficient κ = 0.81). NDVI and EVI radiometric
indices were calculated from the optimum bands, obtained by covariance matrix based band selection
algorithm. Several models were tested to relate NDVI and EVI with carbon stocks. The RBF model
performed best (R2 = 86.98% for EVI and R2 = 84.1% for NDVI) and was subsequently used in this
study to estimate carbon stocks for the 10 dominant species and the entire study area.

Despite the significance of mangrove ecosystem and blue carbon for local as well as global
climate, the drastic transformation of mangrove forests into other land use types is directly affecting
the livelihood around it, which can be seen through the shortage of firewood, regular soil erosion,
and decrease in fishing zones. Therefore, there should be adequate digital information about the
coverage, biomass, and carbon content of the mangrove forest for quick management and planning.
The present study provides evidence that NDVI and EVI indices have a very promising potential to
be applied in classifying the dominant species of mangrove forests and coastal ecosystems according
to their carbon content. These indices can provide adequate estimates of maximum, minimum,
and average carbon content for a large area and show the spatial distribution of carbon, and thus,
biomass. The above-ground carbon stocks for each species were estimated and presented in this study.
For the whole study area, the carbon stocks were estimated 459.82 kt. C. from EVI and 514.47 kt. C.
from NDVI.

The only limitation faced in this study was the limited availability of Hyperion data and that
too covering a part of Bhitarkanika as shown in Figure 2. Using the same methodology with spectral
images from different satellites could provide better coverage, and thus carbon stock estimations of
different areas. Future studies could focus on different ecosystems to assess the effectiveness for this
method and estimate carbon stock for different areas and ecosystems in order to provide the tools for a
better evaluation of biomass and global carbon stocks; this remains to be seen.
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Abstract: Information on phenological metrics of individual plant species is meager. Phenological
metrics generation for a specific plant species can prove beneficial if the species is ecologically or
economically important. Teak, a dominating tree in most regions of the world has been focused on
in the present study due to its multiple benefits. Forecasts on such species can attain a substantial
improvement in their productivity. MODIS NDVI time series when subjected to statistical smoothing
techniques exhibited good output with Tukey’s smoothing (TS) with a low RMSE of 0.042 compared
to single exponential (SE) and double exponential (DE). Phenological metrics, namely, the start
of the season (SOS), end of the season (EOS), maximum of the season (MAX), and length of the
season (LOS) were generated using Tukey-smoothed MODIS NDVI data for the years 2003–2004 and
2013–2014. Post shifts in SOS and EOS by 14 and 37 days respectively with a preshift of 28 days in
MAX were observed in the year 2013–2014. Preshift in MAX was accompanied by an increase in
greenness exhibiting increased NDVI value.LOS increased by 24 days in the year 2013–2014, showing
an increase in the duration of the season of teak. Dates of these satellite-retrieved phenological
occurrences were validated with ground phenological data calculated using crown cover assessment.
The present study demonstrated the potential of a spatial approach in the generation of phenometrics
for an individual plant species, which is significant in determining productivity or a crucial trophic
link for a given region.

Keywords: phenology; NDVI; smoothing; MODIS

1. Introduction

The occurrence dates of phenophases such as blooming, full leaf expansion, leaf
coloration, or senescence are keys for the determination of phenological metrics, viz., start
of the season (SOS), end of the season (EOS), and maximum of the season (MAX) of any
tree [1]. These metrics can prove to be of crucial importance in the tree’s productivity
assessment. They can also prove significant in modeling and monitoring climate change [2],
explaining the seasonal changes, determining net terrestrial carbon dioxide flux [3–6], and
assessing leaf cycle functioning.

Information is meager on phenological data of individual plant species in many
parts of the world [7]. More focus is placed on generating phenological metrics of forest
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types [8–11] rather than on a particular natural species [12,13]. Hence, evaluating the
capability of satellite data for effective and reliable phenological metrics generation for
one individual forest species, namely, Tectona grandis L. (teak) will be of great importance.
Teak, a deciduous tree of the Verbenaceae family, is considered a valuable timber and has
been widely used in India for more than 200 years due to its elegance and durability. In
addition, it is an economically important tree as it has a tight grain and high oil content
and tensile strength and can also be grown under various climatic regimes. Moreover,
this tree occupies major worldwide areas and is also a dominant tree of tropical dry
deciduous forests (DDF) of the Narmada district. Due to a paucity of ground data on
this system, there is a great need to develop remote sensing techniques to characterize its
biology. Phenological metrics generation of teak growing in the DDF can provide useful
information about both spatial and temporal patterns of its productivity. Such forecasts
can attain a substantial improvement in its productivity.

Appraisal of phenophases of any plant species mainly involves two approaches;
ground-based phenology measurements and satellite-based phenology monitoring [14].
Ground-based measurements entail direct traditional insitu visual recordings of phenologi-
cal events [15–19], manual periodic photography, or fixed-position camera-based digital
repeated photography [20–22]. These methods, though they provide good outputs, have
their limitations concerning lack of synoptic coverage and time [23]. An alternative space
approach overcomes such limitations both with respect to time and coverage. Recent
studies, therefore, are based on using the potential of spatial data in understanding plant
phenology [24–31]. Specifically, time series normalized difference vegetation index (NDVI)
data derived from moderate resolution imaging spectroradiometer (MODIS) [32–38] and
advanced very high resolution radiometer (AVHRR) [39–44] are largely used for the gen-
eration of phenological metrics. This satellite-based vegetation index is recognized as an
effective tool in the quantification of vegetation greenness [45–47], canopy carbon [48–52],
and water fluxes [53–55]. It has proved its utility in monitoring the phenological changes
in vegetation across large spatial scales and over long time periods. Many researchers
have used NDVI and enhanced vegetation index (EVI) time series in the identification
of different phenological parameters at both single pixel scale and large spatial scales by
developing various methodologies [25,56–61]. Studies are also available wherein Landsat
time series data have been used for retrieving phenological metrics [62–64]. Some have
built statistical relationships between NDVI or EVI and climatic parameters for monitoring
the entire growing season [65–68]. The phenological parameters derived from vegetation
indices may not correspond directly to conventional ground-based phenological events
but do provide indications for understanding these phenophases which now have become
pertinent in climate change analysis [69,70]. In addition, differences among biomes and
their drivers of phenology (e.g., dry deciduous vs. cold deciduous) may necessitate dif-
ferent interpretations of image-derived phenophases. As such, detailed comparisons of
these satellite measures and ground-based phenological events are needed across a range
of biomes with different ecological drivers.

The time series NDVI or EVI data when subjected to smoothing techniques remove the
outliers [71] occurring due to cloud contamination, atmospheric perturbations, variable il-
lumination, and viewing geometry. These include methods like moving average time series
(MATS) [72], a weighted least-squares linear regression approach [73]. Fourier harmonics-
based methods (classical and discrete) [74–78], threshold-based methods [79–81], curve
fitting methods or fitting of polynomial functions [82,83], point of inflection methods [81,84],
simple sliding windows [85], piecewise linear regression [86,87], single exponential [88],
double exponential [89], Tukey smoothing [88], etc.

The objective of the present work is to: (1) investigate three statistical smoothing tech-
niques, viz., single exponential (SE), double exponential (DE), and Tukey’s Smoothing (TS)
for diminishing noise effects and removing outliers in MODIS NDVI time series; (2) use the
best reconstructed time series NDVI MODIS data to generate different phenological metrics,
namely, SOS, EOS, MAX, and LOS of teak growing in Narmada forests, Gujarat, India.
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2. Materials and Methods

2.1. In Situ Phenological Data Collection

The study area selected for the present study is DDF of Narmada district, Gujarat, India
(21.86 N, 73.56 E) (Figure 1). This area exhibits the dominance of teak trees. Occurrence
dates of different phenophase events for the year 2003–2004 were obtained from Sardar
Sarovar Narmada Limited (SSNL) report [90]. The data for the year 2013–2014 were
generated by monitoring ten 30 m × 30 m (900 m2) homogenous teak patches at regular
intervals of 20–25 days from May 2013 till April 2014. Analysis of within-population
phenophase frequency at every sampling date was performed based on the modified
qualitative method of Ohshan [91]. The population was randomly selected and labeled
before the beginning of the sampling for ten healthy adult teak trees. During each field visit,
the degree of incidence was determined for the different phenophases of teak, viz., leaf
initiation, maximum greenness, and leaf fall, for which each tree was examined precisely.
A frequency index was assigned for particular phenophases at the time of their presence
on a tree, depending on the percentage of the crown where it occurred: 1 = presence less
than 5% (leaf fall), 2 = presence between 5–25% (leaf initiation), and 3 = presence over
25% of the crown (maximum greenness).The average of the ten sampled plants’ frequency
indicesrepresents the calculation of the incidence of a phenophase in the whole population
for each date. These ground-based phenological observations were then compared to
phenological metrics derived using time series satellite data for the validation purpose.

Figure 1. A location map showing the study area, Narmada district, Gujarat, India; image used in the study area map is a
Landsat 11 RGB composite.

2.2. Satellite Data

Annual spatiotemporal MODIS vegetation indices-terra (MOD13A1)’s NDVI product
of the year 2003–2004 and 2013–2014 with repetivity of 16 days, and 500 m spatial resolution
was used to extract the phenological metrics of teak. Before the extraction of these metrics,
NDVI time series data were subjected to different smoothing techniques.
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2.2.1. Application of Smoothing Techniques

Different smoothing algorithms were applied to the time series NDVI MODIS data
to diminish noise effects: single exponential (SE), double exponential (DE), and Tukey’s
smoothing (TS). All three techniques are in ascending order in terms of sophistication.

Single Exponential Smoothing (SE)

SE is a simple and accessible tool for smoothing time series data. A simple average
calculation is used to assign exponentially decreasing weights, starting with the most recent
observations. New observations are weighted more in the average calculation than earlier
observations. This method is for univariate data and does not include trend or seasonality.
It uses only one parameter named alpha (α), even known as smoothing factor or smoothing
coefficient. This smoothing technique is widely employed due to its simplicity and success.
The notation for the same is as given below:

St+1 = αyt + (1 − α)St (1)

where Si is the smoothed value of time series at time i, yi is the actual value of time series
at time i, and α is the smoothing constant and 0.0 < α < 1.0.

Double Exponential Smoothing (DE)

DE is used on data sets involving seasonality and for handling trend analysis. It is an
extension to exponential smoothing, adding explicit support for trends in the univariate
time series. It is used when there is a linear trend in the data. This involves an additional
smoothing factor along with alpha (α) parameter. This is to control the decay of the
influence of the change in a trend called beta (β).

For data exhibiting linear trend as:

yt = b0 + b1t + et (2)

where b0 and b1 can change with time at a slow pace. The basic equations named Holt’s
method are as below:

μt = αyt + (1 − α)(μt−1 + Tt−1) (3)

Tt = β(μt − μt−1) + (1 − β)Tt−1 (4)

where μt is the exponentially smoothed value of time series at time t, yt is the actual
observation of time series at time t, Tt is the trend estimate, α is the exponential smoothing
constant for the data, and β is the smoothing constant for the trend.

Tukey’s Smoothing (TS)

TS uses running medians to provide flexible but straightforward curves and is a robust
smoother. Median smoothing methods were introduced by Tukey in 1977 for extracting
smooth patterns which tend to hide due to non-linear spikes in time series data [92]. Such
filtering smooths any existing volatile behavior that occurs in trends or seasonal behavior.
This method smooths out the data acquired from equally spaced, linearly ordered intervals
such as every year, every month, every quarter, etc.

NDVI data reconstructed using all three types of smoothing techniques were compared
based on their potential in removing outliers.

Performance assessment of the smoothing techniques was also carried out by calcu-
lating root mean squared error (RMSE). RMSE between observed raw NDVI time series
data and predicted smoothed NDVI time series data was used for evaluating the perfor-
mance of each smoothing technique. The best optimal technique that would reconstruct
the best denoised data sets was considered to be the one generating the least RMSE. The
best-reconstructed data was used further for extracting phenological metrics of teak by
detecting the inflection point (i.e., date) when the NDVI time series begins to ascend or
descend for the specific year. Occurrence dates obtained using these smoothed NDVI time
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series were compared to the ground-based phenological observation and these along with
RMSE were considered for selecting the optimum smoothing technique.

2.2.2. Determination of Phenological Metrics from NDVI Time Series Data

The intra-annual variations in the NDVI time series were used as the base for deter-
mining SOS, MAX, EOS, and LOS, using the NDVI ratio. This is the derivative method
where the maximum value of NDVI ratio corresponds to the greatest change of NDVI time
series. Equation (5) is given as:

NDVI ratio(t) =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(5)

where NDVI(t) is the NDVI value at time t, and NDVI ratio (t) is the calculated relative
change at time t. SOS was determined as the time t or the day with the maximum NDVI
ratio [93]. Likewise, EOS date was determined as the time t or the day having the minimum
NDVI ratio. The time or duration between SOS and EOS with NDVI ratio closest to zero
was identified as MAX date. Furthermore, the LOS was obtained by defining the period
between SOS and EOS in each grid point.

3. Results and Discussion

RMSEs generated to check the potential of SE, DE, and TS are 0.072, 0.097, and 0.048,
respectively. Comparison of reconstructed NDVI time series using SE, DE, and TS tech-
niques showed that both SE and DE smoothed higher values but could not encompass all
the outliers (Figures 2 and 3). These methods are comparatively less effective in accounting
for missing values or correcting outliers. TS smoothing approach is identified as a more
effective and robust smoothing method, bringing out high-quality NDVI time series as
it fairly handled the outliers (Figure 4). The scatterplot diagram distinctly highlights the
presence of outliers that needed to be removed to generate precise output. Statistically, the
smoothing techniques are supposed to remove these outliers. At this point, the selection of
Tukey’s technique is performed in comparison to the other two smoothing techniques as it
is considered to be a resistant smoothing technique which uses running medians. Despite
the fact that it lacks mathematical generalization, the main purpose of the smoothing tech-
nique is to provide a general idea of relatively slow changes in values with little attention
to the close matching of data values. Phenological attributes exhibit such characteristics.
Further, running medians are thought to be fast exploratory tools to allow a quick view
of data components. On comparing with ground data, TS again exhibited the greatest
effectiveness over SE and DE (Figure 5, Table 1). The Tukey-smoothed NDVI data pro-
vided greater vegetation phenology information, i.e., even minor changes in phenological
dates which cannot be correctly identified from raw NDVI data can be obtained from
Tukey-smoothed NDVI data. TS retrieved phenological data and ground phenological data
showed very close values, thereby validating the TS results. Thus, TS potentially proved
to be the optimal technique to best reconstruct the NDVI time series data and hence TS
reconstructed NDVI time series is used for delineating shifts in SOS, EOS, MAX, and LOS
of teak.

Table 1. Phenological metrics derived using different data at different time periods.

Phenophases SOS EOS MAX

Ground data
2003–2004 22 July 10 February 15 September
2013–2014 30 July 6 March 31 August
2015–2016 1 August 23 March 27 August

Tukey-smoothed NDVI 2003–2004 28 July 13 February 26 September
2013–2014 11 August 22 March 29 August

MODIS data analyzed for the monitoring of the phenological metrics of teak for the
years 2003–2004 and 2013–2014 showed significant patterns despite their coarse resolution.
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Annual time series of NDVI data generated for teak enabled the differentiation of various
phenological metrics such as the SOS (Figures 6 and 7), EOS (Figures 8 and 9), MAX
(Figures 10 and 11), and LOS (Figures 12 and 13). Such data applications have proven to be
useful in several studies on global environmental change [94–98].

 

Figure 2. NDVI time series for year 2013–2014 reconstructed using single exponential smoothing.

 
Figure 3. NDVI time series for year 2013–2014 reconstructed using double exponential smoothing.

Differences in phenological patterns are notable. SOS and EOS in DDF teak were
delayed by 14 and 37 days, respectively, in the year 2013–2014 (SOS date—11 August 2013;
EOS date—22 March 2014) when compared to 2003–2004 (SOS date—28 July 2003; EOS
date—13 February 2004). The SOS in the year 2003–2004 was observed in late July which
shifted to mid-August in 2013–2014. The EOS was observed in mid-February in 2003–2004
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while in 2013–2014, the season ended in the end of March. Advancement of 28 days in
MAX of teak was observed in the year 2013–2014 compared to 2003–2004. Greenness in
teak in the district during the year 2003–2004 reaches its peak at the end of September,
while in 2013–2014, teak reached its maximum greenness at the end of August. Results
highlighted the fact that teak reached its MAX early in 2013–2014, indicating the shift in
the phenology of the tree. LOS increased by 24 days in the year 2013–2014 (LOS—224 days)
(Figure 14) compared to the year 2003–2004 (LOS—200 days) (Figure 13). Except for MAX,
the year 2003–2004 showed earlier dates than the year 2013–2014 for the occurrence of all
phenological metrics.

 

Figure 4. NDVI time series for the year 2013–2014 reconstructed using Tukey’s smoothing.

 

Figure 5. Different smoothing techniques’ utility in derivation of maximum of the season.
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Figure 6. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2003–2004 for
derivation of start of the season in Tectona grandis indicated by green arrow.

 

Figure 7. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2013–2014 for
derivation of start of the season in Tectona grandis indicated by green arrow.
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Figure 8. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2003–2004 for
derivation of end of the season in Tectona grandis indicated by orange arrow.

 

Figure 9. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2013–2014 for
derivation ofend of the season in Tectona grandis indicated by orange arrow.
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Figure 10. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2003–2004
for derivation of maximum of the season in Tectona grandis indicated by orange arrow.

 

Figure 11. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2013–2014
for derivation of maximum of the season in Tectona grandis indicated by orange arrow.
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Figure 12. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2003–2004
for derivation of length of the season in Tectona grandis indicated between green and orange arrows.
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Figure 13. Raw MODIS NDVI and TS-smoothed reconstructed NDVI time series of year 2013–2014
for derivation oflength of the season in Tectona grandis indicated between green and orange arrows.

 

Figure 14. Crown cover in percentage during in situ sampling period.

For the validation of the phenological metrics generated from MODIS TS NDVI time
series, the dates of different phenological occurrences are compared to ground measured
crown cover. In situ crown cover assessment of 2013–2014 provides the information on
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different phenophases (Table 1). A plot of crown cover versus sampling dates matches
the NDVI curve of the period (Figure 14). Results of the crown cover assessment can be
used for the validation of the results generated through MODIS data. Average crown cover
between 5 and 25% that corresponds to leaf initiation on ground and SOS on satellite data
was observed on 30 July 2013. Maximum greenness or MAX that corresponds to crown
cover over 25% was noted on 27 August 2013 and leaf fall on the ground, i.e., less than 5%
crown cover that corresponds to EOS was recorded on 6 March 2014. These ground-based
phenological observations are comparable to phenological metrics derived using time
series data, thereby validating our results. Results of in situ observations also show that
teak trees considered for the present study shifted their phenophases between the years
2003–2004 and 2013–2014. Leaf initiation on the ground showed post shift of 8 days. In situ
leaf fall recorded showed a delay of 24 days. Maximum greenness noted on the ground
also compliments satellite-retrieved MAX results which showed a preshift of 15 days.
The results highlight that phenological metrics from satellite data such as SOS, EOS, and
MAX with temporal dynamics similar to those of ground phenology measurements such
as leaf initiation, leaf fall, and maximum greenness through crown cover assessment
can be generated.

Substantial interannual variability in the start and end of the growing season of
the teak of DDF forests can be explained by studying many factors such as year-to-year
variability in weather, especially climatic factors including rainfall, temperature, elevated
CO2, altered precipitation regimes, etc. Such types of variability may be responsible for the
observed shifts in phenology which ultimately can be robust indicators of the impacts of
climate change. This makes derivation of phenological metrics imperative as they can serve
as important inputs for better understanding of the climatic drivers controlling phenology.
These alterations or shifts in phenophases can influence the climate system at both global
and regional levels through feedback mechanisms of surface albedo, CO2 fluxes, and
evaporation [99]. Improved inputs of phenological measurements into global biosphere
models conducted via satellite data will also enhance the understanding of temporal and
spatial global carbon dynamics. This will be more useful for the areas where there exists a
lack of ground phenological observations due to inaccessibility [38].

4. Conclusions

The present study tested the potential of three statistical techniques, viz., single expo-
nential, double exponential, and Tukey smoothing. Comparison of these three techniques
demonstrates the effectiveness of the Tukey smoothing technique in denoising the NDVI
time series and removing the outliers. Statistical Tukey smoothing enhances the visibility of
unique patterns present in the data and thereby aids in identifying distinct decadal shifts in
the phenological metrics. Significant shifts in the growing seasons of DDF teak of Narmada
district from the years 2003–2004 to 2013–2014 are identified on the basis of changes in SOS,
EOS, LOS, and MAX delineated using Tukey-smoothed MODIS NDVI time series data.
These shifts are validated by ground phenology measurements that are calculated using
crown cover assessment. Earlier studies using remote sensing more commonly focused on
phenological studies of forest types but the present study highlights the fact that satellite
data has great capability and can be used for generating phenological metrics of individual
plant species as well.

Author Contributions: Conceptualization, G.S.K. and R.K.M.M.; methodology, R.K.M.M., M.N.S.
and P.A.T.; software, N.V.M., V.H.B. and R.K.M.M.; validation, N.V.M., V.H.B., R.K.M.M., S.M.;
N.V.M., V.H.B. and R.K.M.M.; investigation, R.K.M.M., N.V.M., V.H.B. and G.S.K.; data curation,
G.S.K.; writing—original draft preparation, R.K.M.M. and G.S.K.; writing—review and editing,
G.S.K., P.A.T. and S.M.; visualization, S.M.; supervision, C.P.S. and B.K.B.; project administration,
G.S.K.; funding acquisition, G.S.K. and M.N.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by ISRO RESPOND, project id OGP134” and we give thanks to
MoEFCC for their added support.

39



Remote Sens. 2021, 13, 3343

Institutional Review Board Statement: Ethical review and approval were waived for this study.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: In this section, I acknowledge the funds received from ISRO RESPOND for
carrying out the present work. I also extend my thanks to MoEF&CC for data and field work support.

Conflicts of Interest: Authors declare no conflict of interest.

References

1. Prabakaran, C.; Singh, C.; Panigrahy, S.; Parihar, J. Retrieval of forest phenological parameters from remote sensing-based NDVI
time-series data. Curr. Sci. 2013, 105, 795–802.

2. Kaduk, J.; Heimann, M. A prognostic phenology scheme for global terrestrial carbon cycle models. Clim. Res. 1996, 6, 1–19.
[CrossRef]

3. Hall, C.A.; Ekdahl, C.A.; Wartenberg, D.E. A fifteen-year record of biotic metabolism in the Northern Hemisphere. Nature 1975,
255, 136. [CrossRef]

4. Keeling, C.D.; Chin, J.; Whorf, T. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature
1996, 382, 146. [CrossRef]

5. D’Arrigo, R.; Jacoby, G.C.; Fung, I.Y. Boreal forests and atmosphere—Biosphere exchange of carbon dioxide. Nature 1987, 329, 321.
[CrossRef]

6. White, M.; Running, S.W.; Thornton, P.E. The impact of growing-season length variability on carbon assimilation and evapotran-
spiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 1999, 42, 139–145. [CrossRef] [PubMed]

7. Chmielewski, F.-M.; Müller, A.; Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany,
1961–2000. Agric. For. Meteorol. 2004, 121, 69–78. [CrossRef]

8. Lee, B.; Kim, E.; Lim, J.-H.; Seo, B.; Chung, J.-M. Detecting Vegetation Phenology in Various Forest Types Using Long-Term
MODIS Vegetation Indices. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 5243–5246.

9. Mohanta, M.R.; Suresh, H.; Sahu, S.C. A Review on Plant Phenology Study in Different Forest Types of India. Indian For. 2020,
146, 1137–1148.

10. Klosterman, S.; Hufkens, K.; Gray, J.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.; Richardson, A.
Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014,
11, 4305–4320. [CrossRef]

11. Prasad, V.K.; Badarinath, K.; Eaturu, A. Spatial patterns of vegetation phenology metrics and related climatic controls of eight
contrasting forest types in India—Analysis from remote sensing datasets. Theor. Appl. Climatol. 2007, 89, 95–107. [CrossRef]

12. Shukla, R.; Ramakrishnan, P. Phenology of trees in a sub-tropical humid forest in north-eastern India. Vegetatio 1982, 49, 103–109.
[CrossRef]

13. Nanda, A.; Suresh, H.S.; Krishnamurthy, Y.L. Phenology of a tropical dry deciduous forest of Bhadra wildlife sanctuary, southern
India. Ecol. Process. 2014, 3, 1–12. [CrossRef]

14. Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.;
Henebry, G.M.; Hanes, J.M. Tracking the rhythm of the seasons in the face of global change: Phenological research in the
21st century. Front. Ecol. Environ. 2009, 7, 253–260. [CrossRef]

15. Schnelle, F.; Volkert, E. Internationale phänologische gärten Stationen eines grundnetzes für internationale phänologische
beobachtungen. Agric. Meteorol. 1964, 1, 22–29. [CrossRef]

16. Newman, G.; Wiggins, A.; Crall, A.; Graham, E.; Newman, S.; Crowston, K. The future of citizen science: Emerging technologies
and shifting paradigms. Front. Ecol. Environ. 2012, 10, 298–304. [CrossRef]

17. Schwartz, M.D.; Betancourt, J.L.; Weltzin, J.F. From Caprio’s lilacs to the USA National Phenology Network. Front. Ecol. Environ.
2012, 10, 324–327. [CrossRef]

18. van Vliet, A.J.; Bron, W.A.; Mulder, S.; van der Slikke, W.; Odé, B. Observed climate-induced changes in plant phenology in the
Netherlands. Reg. Environ. Chang. 2014, 14, 997–1008. [CrossRef]

19. Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.; O’Connor, B.; Paganini, M.
Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sens. Environ. 2018, 215, 517–529.
[CrossRef]

20. Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal
variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [CrossRef]

21. Ide, R.; Oguma, H. Use of digital cameras for phenological observations. Ecol. Inform. 2010, 5, 339–347. [CrossRef]
22. Nagai, S.; Maeda, T.; Gamo, M.; Muraoka, H.; Suzuki, R.; Nasahara, K.N. Using digital camera images to detect canopy condition

of deciduous broad-leaved trees. Plant Ecol. Divers. 2011, 4, 79–89. [CrossRef]
23. Jeganathan, C.; Dash, J.; Atkinson, P.M. Characterising the spatial pattern of phenology for the tropical vegetation of India using

multi-temporal MERIS chlorophyll data. Landsc. Ecol. 2010, 25, 1125–1141. [CrossRef]

40



Remote Sens. 2021, 13, 3343

24. Justice, C.O.; Townshend, J.; Holben, B.; Tucker, E.C. Analysis of the phenology of global vegetation using meteorological satellite
data. Int. J. Remote Sens. 1985, 6, 1271–1318. [CrossRef]

25. Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from
satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]

26. White, M.A.; Hoffman, F.; Hargrove, W.W.; Nemani, R.R. A global framework for monitoring phenological responses to climate
change. Geophys. Res. Lett. 2005, 32, 1–4. [CrossRef]

27. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series
data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [CrossRef]

28. Jiang, N.; Zhu, W.; Zheng, Z.; Chen, G.; Fan, D. A comparative analysis between GIMSS NDVIg and NDVI3g for monitoring
vegetation activity change in the northern hemisphere during 1982–2008. Remote Sens. 2013, 5, 4031–4044. [CrossRef]

29. Shen, M.; Tang, Y.; Desai, A.R.; Gough, C.; Chen, J. Can EVI-derived land-surface phenology be used as a surrogate for phenology
of canopy photosynthesis? Int. J. Remote Sens. 2014, 35, 1162–1174. [CrossRef]

30. Löw, M.; Koukal, T. Phenology Modelling and Forest Disturbance Mapping with Sentinel-2 Time Series in Austria. Remote Sens.
2020, 12, 4191. [CrossRef]

31. Dixon, D.J.; Callow, J.N.; Duncan, J.M.; Setterfield, S.A.; Pauli, N. Satellite prediction of forest flowering phenology. Remote Sens.
Environ. 2021, 255, 112197. [CrossRef]

32. Clerici, N.; Weissteiner, C.J.; Gerard, F. Exploring the use of MODIS NDVI-based phenology indicators for classifying forest
general habitat categories. Remote Sens. 2012, 4, 1781–1803. [CrossRef]

33. Rankine, C.; Sánchez-Azofeifa, G.; Guzmán, J.A.; Espirito-Santo, M.; Sharp, I. Comparing MODIS and near-surface vegetation
indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers. Environ. Res.
Lett. 2017, 12, 105007. [CrossRef]

34. Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation index time series for dryland
vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. [CrossRef]

35. Böttcher, K.; Aurela, M.; Kervinen, M.; Markkanen, T.; Mattila, O.-P.; Kolari, P.; Metsämäki, S.; Aalto, T.; Arslan, A.N.; Pulliainen,
J. MODIS time-series-derived indicators for the beginning of the growing season in boreal coniferous forest—A comparison with
CO2 flux measurements and phenological observations in Finland. Remote Sens. Environ. 2014, 140, 625–638. [CrossRef]

36. St Peter, J.; Hogland, J.; Hebblewhite, M.; Hurley, M.; Hupp, N.; Proffitt, K. Linking phenological indices from digital cameras in
Idaho and Montana to MODIS NDVI. Remote Sens. 2018, 10, 1612. [CrossRef]

37. Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in North American forests using
seasonal mean vegetation indices from MODIS. Remote Sens. Environ. 2014, 147, 79–88. [CrossRef]

38. Hamunyela, E.; Verbesselt, J.; Roerink, G.; Herold, M. Trends in spring phenology of western European deciduous forests. Remote
Sens. 2013, 5, 6159–6179. [CrossRef]

39. Goward, S.N.; Tucker, C.J.; Dye, D.G. North American vegetation patterns observed with the NOAA-7 advanced very high
resolution radiometer. Vegetatio 1985, 64, 3–14. [CrossRef]

40. Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends
Ecol. Evol. 2007, 22, 357–365. [CrossRef]

41. Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.-L. Use of digital webcam images to track
spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [CrossRef]

42. Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A. Net carbon
dioxide losses of northern ecosystems in response to autumn warming. Nature 2008, 451, 49. [CrossRef] [PubMed]

43. Atzberger, C.; Klisch, A.; Mattiuzzi, M.; Vuolo, F. Phenological metrics derived over the European continent from NDVI3g data
and MODIS time series. Remote Sens. 2014, 6, 257–284. [CrossRef]

44. Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.-J. Leaf onset in the northern
hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [CrossRef]

45. Huete, A.; Didan, K.; van Leeuwen, W.; Miura, T.; Glenn, E. MODIS vegetation indices. In Land Remote Sensing and Global
Environmental Change; Springer: Berlin/Heidelberg, Germany, 2010; pp. 579–602.

46. Miura, T.; Smith, C.Z.; Yoshioka, H. Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under
zero vegetation conditions: A case study using Railroad Valley Playa. Remote Sens. Environ. 2021, 257, 112344. [CrossRef]

47. Albarakat, R.; Lakshmi, V. Comparison of normalized difference vegetation index derived from Landsat, MODIS, and AVHRR
for the Mesopotamian marshes between 2002 and 2018. Remote Sens. 2019, 11, 1245. [CrossRef]

48. Situmorang, J.P.; Sugianto, S.; Darusman, D. Estimation of Carbon Stock Stands using EVI and NDVI vegetation index in
production forest of lembah Seulawah sub-district, Aceh Indonesia. Aceh Int. J. Sci. Technol. 2016, 5, 126–139.

49. Le Maire, G.; Marsden, C.; Nouvellon, Y.; Grinand, C.; Hakamada, R.; Stape, J.-L.; Laclau, J.-P. MODIS NDVI time-series allow the
monitoring of Eucalyptus plantation biomass. Remote Sens. Environ. 2011, 115, 2613–2625. [CrossRef]

50. Habib, S.; Al-Ghamdi, S.G. Estimation of Above-Ground Carbon-Stocks for Urban Greeneries in Arid Areas: Case Study for
Doha and FIFA World Cup Qatar 2022. Front. Environ. Sci. 2021, 9, 186. [CrossRef]

51. Gang, B.; Bao, Y. Remotely sensed estimate of biomass carbon stocks in Xilingol grassland using MODIS NDVI data. In
Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang,
China, 20–22 December 2013; pp. 676–679.

41



Remote Sens. 2021, 13, 3343

52. Anand, A.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Sharma, J.K.; Malhi, R.K.M. Use of hyperion for
mangrove forest carbon stock assessment in Bhitarkanika forest reserve: A contribution towards blue carbon initiative. Remote
Sens. 2020, 12, 597. [CrossRef]

53. Che, X.; Feng, M.; Jiang, H.; Song, J.; Jia, B. Downscaling MODIS surface reflectance to improve water body extraction. Adv.
Meteorol. 2015, 2015, 424291. [CrossRef]

54. Xie, F.; Fan, H. Deriving drought indices from MODIS vegetation indices (NDVI/EVI) and Land Surface Temperature (LST): Is
data reconstruction necessary? Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102352. [CrossRef]

55. Mo, X.; Liu, S.; Lin, Z.; Wang, S.; Hu, S. Trends in land surface evapotranspiration across China with remotely sensed NDVI and
climatological data for 1981–2010. Hydrol. Sci. J. 2015, 60, 2163–2177. [CrossRef]

56. Testa, S.; Soudani, K.; Boschetti, L.; Mondino, E.B. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological
metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [CrossRef]

57. Peng, D.; Wu, C.; Li, C.; Zhang, X.; Liu, Z.; Ye, H.; Luo, S.; Liu, X.; Hu, Y.; Fang, B. Spring green-up phenology products derived
from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux
observations. Ecol. Indic. 2017, 77, 323–336. [CrossRef]

58. Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend
analysis of the Northern Hemisphere boreal zone. Remote Sens. 2017, 9, 485. [CrossRef]

59. Wang, C.; Li, J.; Liu, Q.; Zhong, B.; Wu, S.; Xia, C. Analysis of differences in phenology extracted from the enhanced vegetation
index and the leaf area index. Sensors 2017, 17, 1982. [CrossRef]

60. Verhegghen, A.; Bontemps, S.; Defourny, P. A global NDVI and EVI reference data set for land-surface phenology using 13 years
of daily SPOT-VEGETATION observations. Int. J. Remote Sens. 2014, 35, 2440–2471. [CrossRef]

61. Osunmadewa, B.A.; Gebrehiwot, W.Z.; Csaplovics, E.; Adeofun, O.C. Spatio-temporal monitoring of vegetation phenology in
the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets. Open Geosci. 2018, 10, 1–11.
[CrossRef]

62. Melaas, E.K.; Sulla-Menashe, D.; Gray, J.M.; Black, T.A.; Morin, T.H.; Richardson, A.D.; Friedl, M.A. Multisite analysis of land
surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 2016, 186,
452–464. [CrossRef]

63. Snyder, K.A.; Huntington, J.L.; Wehan, B.L.; Morton, C.G.; Stringham, T.K. Comparison of Landsat and Land-Based Phenology
Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin. Sensors 2019,
19, 1139. [CrossRef] [PubMed]

64. White, K.; Pontius, J.; Schaberg, P. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field
metrics and sources of uncertainty. Remote Sens. Environ. 2014, 148, 97–107. [CrossRef]

65. Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity
inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [CrossRef]

66. Yang, L.; Wylie, B.K.; Tieszen, L.L.; Reed, B.C. An analysis of relationships among climate forcing and time-integrated NDVI of
grasslands over the US northern and central Great Plains. Remote Sens. Environ. 1998, 65, 25–37. [CrossRef]

67. Yang, W.; Yang, L.; Merchant, J. An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. Int. J. Remote
Sens. 1997, 18, 2161–2180. [CrossRef]

68. Suepa, T.; Qi, J.; Lawawirojwong, S.; Messina, J.P. Understanding spatio-temporal variation of vegetation phenology and rainfall
seasonality in the monsoon Southeast Asia. Environ. Res. 2016, 147, 621–629. [CrossRef] [PubMed]

69. Fu, C.; Wen, G. Variation of ecosystems over East Asia in association with seasonal, interannual and decadal monsoon climate
variability. Clim. Chang. 1999, 43, 477–494. [CrossRef]

70. Justice, C.; Holben, B.; Gwynne, M. Monitoring East African vegetation using AVHRR data. Int. J. Remote Sens. 1986, 7, 1453–1474.
[CrossRef]

71. Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote.
Sens. 1990, 11, 2269–2279. [CrossRef]

72. Chen, X.; Xu, C.; Tan, Z. An analysis of relationships among plant community phenology and seasonal metrics of Normalized
Difference Vegetation Index in the northern part of the monsoon region of China. Int. J. Biometeorol. 2001, 45, 170–177. [CrossRef]

73. Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating
vegetation phenology from MODIS data. Remote Sens. 2017, 9, 1271. [CrossRef]

74. Hermance, J.F.; Jacob, R.W.; Bradley, B.A.; Mustard, J.F. Extracting phenological signals from multiyear AVHRR NDVI time series:
Framework for applying high-order annual splines with roughness damping. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3264–3276.
[CrossRef]

75. Moody, A.; Johnson, D.M. Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens. Environ.
2001, 75, 305–323. [CrossRef]

76. Roerink, G.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J.
Remote Sens. 2000, 21, 1911–1917. [CrossRef]

77. Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote
Sens. 2001, 67, 461–470.

42



Remote Sens. 2021, 13, 3343

78. Wagenseil, H.; Samimi, C. Assessing spatio-temporal variations in plant phenology using Fourier analysis on NDVI time series:
Results from a dry savannah environment in Namibia. Int. J. Remote Sens. 2006, 27, 3455–3471. [CrossRef]

79. Atzberger, C.; Eilers, P.H. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements.
Int. J. Remote Sens. 2011, 32, 3689–3709. [CrossRef]

80. Verger, A.; Filella, I.; Baret, F.; Peñuelas, J. Vegetation baseline phenology from kilometric global LAI satellite products. Remote
Sens. Environ. 2016, 178, 1–14. [CrossRef]

81. Ma, Y.; Niu, X.; Liu, J. A comparison of different methods for studying vegetation phenology in Central Asia. In Geo-Informatics in
Resource Management and Sustainable Ecosystem; Springer: Berlin/Heidelberg, Germany, 2015; pp. 301–307.

82. De Beurs, K.M.; Henebry, G.M. Land surface phenology and temperature variation in the International Geosphere–Biosphere
Program high-latitude transects. Glob. Chang. Biol. 2005, 11, 779–790. [CrossRef]

83. Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote
Sens. 2002, 40, 1824–1832. [CrossRef]

84. Yu, B.; Shang, S. Multi-year mapping of maize and sunflower in Hetao irrigation district of China with high spatial and temporal
resolution vegetation index series. Remote Sens. 2017, 9, 855. [CrossRef]

85. Xu, X.; Conrad, C.; Doktor, D. Optimising phenological metrics extraction for different crop types in Germany using the moderate
resolution imaging spectrometer (MODIS). Remote Sens. 2017, 9, 254. [CrossRef]

86. Klisch, A.; Royer, A.; Lazar, C.; Baruth, B.; Genovese, G. Extraction of phenological parameters from temporally smoothed
vegetation indices. Methods 2006, 3, 5.

87. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology
using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [CrossRef]

88. Goodman, M.L. A new look at higher-order exponential smoothing for forecasting. Oper. Res. 1974, 22, 880–888. [CrossRef]
89. Carreño-Conde, F.; Sipols, A.E.; de Blas, C.S.; Mostaza-Colado, D. A forecast model applied to monitor crops dynamics using

vegetation indices (Ndvi). Appl. Sci. 2021, 11, 1859. [CrossRef]
90. Sabnis, S.; Amin, J. Eco-Environmental Studies of Sardar Sarovar Environs; Report of Eco-Environment and Wildlife Management

Studies Project; M.S. University of Baroda Press: Baroda, India, 1992.
91. Pilar, C.-D.; Gabriel, M.-M. Phenological pattern of fifteen Mediterranean phanaerophytes from shape Quercus ilex communities

of NE-Spain. Plant Ecol. 1998, 139, 103–112. [CrossRef]
92. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Publishing Company: Reading, MA, USA; Menlo Park, CA, USA, 1977;

Volume 2.
93. Jeong, S.J.; HO, C.H.; GIM, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the

Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [CrossRef]
94. Schucknecht, A.; Erasmi, S.; Niemeyer, I.; Matschullat, J. Assessing vegetation variability and trends in north-eastern Brazil using

AVHRR and MODIS NDVI time series. Eur. J. Remote Sens. 2013, 46, 40–59. [CrossRef]
95. Hentze, K.; Thonfeld, F.; Menz, G. Evaluating crop area mapping from MODIS time-series as an assessment tool for Zimbabwe’s

“fast track land reform programme”. PLoS ONE 2016, 11, e0156630. [CrossRef]
96. Reddy, G.P.O.; Kumar, N.; Sahu, N.; Srivastava, R.; Singh, S.K.; Naidu, L.G.K.; Chary, G.R.; Biradar, C.M.; Gumma, M.K.; Reddy,

B.S. Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation
indices. Arab. J. Geosci. 2020, 13, 1–13. [CrossRef]

97. Pervez, S.; McNally, A.; Arsenault, K.; Budde, M.; Rowland, J. Vegetation Monitoring Optimization With Normalized Difference
Vegetation Index and Evapotranspiration Using Remote Sensing Measurements and Land Surface Models Over East Africa. Front.
Clim. 2021, 3, 589981. [CrossRef]

98. Dagnachew, M.; Kebede, A.; Moges, A.; Abebe, A. Effects of climate variability on normalized difference vegetation index (NDVI)
in the Gojeb river catchment, omo-gibe basin, Ethiopia. Adv. Meteorol. 2020, 2020, 8263246. [CrossRef]

99. Menzel, A. Phenology: Its importance to the global change community. Clim. Chang. 2002, 54, 379–385. [CrossRef]

43





remote sensing 

Article

Satellite Based Fraction of Absorbed Photosynthetically Active
Radiation Is Congruent with Plant Diversity in India

Swapna Mahanand 1, Mukunda Dev Behera 1,2,*, Partha Sarathi Roy 3, Priyankar Kumar 2, Saroj Kanta Barik 4 and

Prashant Kumar Srivastava 5

Citation: Mahanand, S.; Behera, M.D.;

Roy, P.S.; Kumar, P.; Barik, S.K.;

Srivastava, P.K. Satellite Based

Fraction of Absorbed

Photosynthetically Active Radiation

is Congruent with Plant Diversity in

India. Remote Sens. 2021, 13, 159.

https://doi.org/10.3390/rs13020159

Received: 16 November 2020

Accepted: 30 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Water Resources, IIT Kharagpur, Kharagpur 721302, India; swapna.mahanand@atree.org
2 SAM Lab, Centre for Oceans, Rivers, Atmosphere and Land Sciences, IIT Kharagpur,

Kharagpur 721302, India; priyankar7200@iitkgp.ac.in
3 World Resources Institute, New Delhi 110016, India; Parth.roy@wri.org
4 CSIR-National Botanical Research Institute, Lucknow 226001, India; skbarik@nbri.res.in
5 Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India;

prashant.iesd@bhu.ac.in
* Correspondence: mdbehera@coral.iitkgp.ac.in

Abstract: A dynamic habitat index (DHI) based on satellite derived biophysical proxy (fraction of
absorbed photosynthetically active radiation, FAPAR) was used to evaluate the vegetation greenness
pattern across deserts to alpine ecosystems in India that account to different biodiversity. The
cumulative (DHI-cum), minimum (DHI-min), and seasonal (DHI-sea) DHI were generated using
Moderate Resolution Imaging Spectroradiometer (MODIS)-based FAPAR. The higher DHI-cum
and DHI-min represented the biodiversity hotspots of India, whereas the DHI-sea was higher in
the semi-arid, the Gangetic plain, and the Deccan peninsula. The arid and the trans-Himalaya are
dominated with grassland or barren land exhibit very high DHI-sea. The inter-year correlation
demonstrated an increase in vegetation greenness in the semi-arid region, and continuous reduction
in greenness in the Northeastern region. The DHI components validated using field-measured plant
richness data from four biogeographic regions (semi-arid, eastern Ghats, the Western Ghats, and
Northeast) demonstrated good congruence. DHI-cum that represents the annual greenness strongly
correlated with the plant richness (R2 = 0.90, p-value < 0.001), thereby emerging as a suitable indicator
for assessing plant richness in large-scale biogeographic studies. Overall, the FAPAR-based DHI
components across Indian biogeographic regions provided understanding of natural variability of
the greenness pattern and its congruence with plant diversity.

Keywords: dynamic habitat index; moderate resolution imaging spectroradiometer; plant richness;
Indian biogeographic region

1. Introduction

Biodiversity has a powerful influence on ecosystem dynamics and functions at various
geographical scales [1,2]. Global biodiversity observations are needed to provide a better
understanding of the distribution of biodiversity, to better identify high priority areas for
conservation, and to maintain essential ecosystem goods and services [3]. The gradual
decline in biodiversity endangers essential ecosystem services and risks unacceptable
environmental consequences [4]. The traditional in situ biodiversity monitoring practice is
insufficient to solve the problems associated with biodiversity conservation [5].

Remote sensing technology has provided an effective and evident way to address
biodiversity patterns at different geographical scales [6]. Space-borne platforms operate
different earth observation satellites, which presents the potential to prepare conserva-
tion responses that are commensurate with the scale of conservation [7]. Satellite sensors
measure the reflected solar energy emitted from the ground that determines the radiation-
interception characteristics of plant canopies linked to photosynthesis [8]. The difference
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between the carbon assimilated by plant leaves during photosynthesis is a quantitative
measure of plant growth and carbon uptake, which represents the vegetation productiv-
ity [9,10]. Due to dynamic environmental conditions, vegetation productivity varies with
time and space [11,12].

Satellite-derived biophysical proxies provide clues about diversity patterns as they
are used for productivity estimation and quantification of spatial heterogeneity of vegeta-
tion [13]. Plant richness is a straight forward indicator of plant diversity, which is directly
associated with habitat heterogeneity [14,15]. Forest type and species composition plays a
vital role to correlate between satellite-derived biophysical proxy and plant richness [16].
Comparison of temporal scales exhibit that the annual pattern of correlation faired more
than seasonal (i.e., monsoon) between satellite-derived biophysical proxy and plant rich-
ness in the Western Ghats, India [17]. Chitale et al. [18] obtained a high correlation between
satellite-derived biophysical proxies and plant richness for open canopy vegetation classes
with low species richness (grasslands, scrubs, and dry deciduous forests) followed by
vegetation classes with moderately dense canopy in the Western Ghats, Indo-Burma and
Himalayan regions in India.

Satellite observations have captured an increase in vegetation growth and productivity
mostly in Asia, Africa, and Europe due to agricultural intensification and other human
activities [19–21]. In India, the vegetation greenness has increased much more due to
agriculture (82%) compared with forests (4.4%) [22]. Also, it has been reported that the
crop production has improved up to six times in the past five decades [23]. Agricultural
intensification has increased the vegetation greenness in the Western Himalaya, while
reduced pre-monsoon moisture levels has resulted a decrease in the greenness pattern
in the eastern Himalaya [24]. A study analyzed the seasonal NDVI trend from 2000 to
2014, which reported greening-up due to the rain-fed cultivated area in the lower elevation,
while browning-up trend has been consistent along the elevational range that holds closed
needle-leaved forests and alpine scrublands in the Uttarakhand Himalaya [25]. A reduction
in vegetation greenness with warmer temperatures was reported for trans-Himalayan
and western Indian regions [26,27]. Chakraborty et al. [28] analyzed seasonal greenness
trends in different forest types of India and found changes in protected areas across
India (Simlipal Wildlife Sanctuary, Rajaji National Park, Achanakmar Wildlife Sanctuary,
Sundarbans Biosphere Reserve).

The satellite proxies (fraction of absorbed photosynthetically active radiation (FAPAR),
leaf area index (LAI), etc.) derived using multiple bands have been found to be better
estimators compared to other satellite-derived biophysical proxies (normalized difference
vegetation index—NDVI, enhanced vegetation index—EVI, etc.) of habitat conditions
and therefore used to explain greenness [29]. The dynamic habitat index (DHI) based on
satellite-derived biophysical proxies has been found to provide a good approximation
of the habitat conditions [30,31]. The DHI has three components, and each of these is
relevant to an hypothesis: (1) DHI-cumulative (DHI-cum) is used to evaluate the available
energy hypothesis, according to which greater energy availability is associated with higher
productivity and hence with greater biodiversity [32–34]. (2) DHI-minimum (DHI-min)
is a proxy for the environmental stress hypothesis, according to which the biodiversity is
greater where there is a higher minimum productivity throughout the year [35–37]. (3) DHI-
seasonal (DHI-sea) is used to evaluate the environmental stability hypothesis, according
to which the biodiversity is greater where the intra-annual variability in productivity is
lower [38]. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor has
been used widely to derive the DHI components that are of significance in explaining
biodiversity. MODIS-FAPAR data have been used to calculate the DHI to evaluate the
relationships between habitat heterogeneity and faunal diversity in the Canadian province
of Ontario, United States and Australia [30,39,40]. FAPAR DHI-min characterized 70%
of the arid region of the Australian continent as having low greenness cover [41]. Areas
under agricultural crops had moderate annual FAPAR levels, large variations in greenness
and low annual minimum cover. With increasing annual FAPAR, the greenness cover

46



Remote Sens. 2021, 13, 159

and the plant diversity increased [42]. In contrast, high annual FAPAR was found in
the Western Ghats with low annual variation [17]. Further, the DHI can be integrated
with the basic ecological drivers, i.e., environmental heterogeneity (climatic, geophysical
variables), habitat productivity, and land cover change, to map and monitor changes
in biodiversity [43,44]. However, DHI-min and DHI-sea represented the climatic and
anthropogenic induced changes, hence can be useful in addressing land degradation and
development [4].

Though the remote sensing proxy-derived DHI explains vegetation productivity
ranges and greenness patterns, the validation and pattern analysis need to be performed
using sampled plant data. A dynamic habitat index (DHI) based on a satellite derived
biophysical proxy (fraction of absorbed photosynthetically active radiation, FAPAR) was
used to evaluate the vegetation greenness pattern across deserts to alpine ecosystems
in India. Further, the cumulative (DHI-cum), seasonal (DHI-sea), and minimum (DHI-
min) DHI were used to establish correlation with biodiversity in varied biogeographic
regions of India during 2001–2015. This study outcome would demonstrate the variability
in greenness cover across the Indian biogeographic regions, providing valuable insights
towards the conservation and management plan.

2. Materials and Methods

2.1. Study Area

The entire Indian nation that consists of the mainland with islands on either side,
i.e., the Andaman & Nicobar Islands (in the east) and the Lakshadweep Islands (in the west)
was selected as the study area. The Indian mainland has the largest peninsula, extending
3219 km from north to south and 2977 km from east to west, with a geographic extent of
3,287,263 km2 [45]. Across the 10 biogeographic regions (Figure 1a), India accommodates a
wide range of vegetation with grassland and pastureland in arid and semi-arid regions
to the broadleaved and alpine forest in Himalaya and Northeast regions. The climatic
profile varies from temperate in the north to monsoonal in the south with large variation
in precipitation pattern across its length and breadth. The country accommodates diverse
topography, soil, and climate.

Figure 1. (a) Biogeographic regions of India where, 1-trans-Himalaya, 2-Himalaya, 3-semi-arid, 4-arid, 5-Gangetic plain,
6-Northeast, 7-Deccan peninsula, 8-Western Ghats, 9-Coasts, 10-Islands; and Protected Areas; (b) Spatial distribution
of plant richness from 0.04 ha nested quadrats that ranged from 1 to 50 in four selected biogeographic regions of India
(semi-arid, eastern Ghats, Western Ghats, and Northeast) for this study.
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2.2. Satellite Data

National Aeronautics and Space Administration (NASA) launched the TERRA (1999)
and AQUA (2001) satellites, which aboard the MODIS sensors for global carbon cycle
monitoring [46]. The MODIS instruments have 36 spectral bands (0.4 μm to 14.4 μm)
at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m, and 29 bands at
1 km) [47]. NASA provides a suite of atmospherically, geo-registered, data products of
MODIS on a routine basis, including FAPAR [48]. The geo-rectified and atmospherically
corrected MODIS-FAPAR (MOD15A2H) data were downloaded for the period of 2001–2015
(https://earthdata.nasa.gov/), with spatial resolution of 500 m and temporal resolution
of 8 days. All the image-processing tasks such as mosaicking, projections, masking, and
normalization were performed using the MRT and ArcGIS (10.5 version) tools, and the
temporal resolution was brought to a monthly time frame.

2.3. Generation of DHI Components and Their Composite

Monthly maximum of MODIS FAPAR values was the basic input data set to compute
the three relevant annual indices for the DHI analysis. DHI-cum that represents the
cumulative annual productivity of a year, was derived as the arithmetic summation of
the monthly FAPAR data and the index vary from 0 to 12 [49]. DHI-min that represents
the lowest monthly productivity in a year was derived as the arithmetic minima of the
monthly FAPAR data and the index varies from 0 to 1. Similarly, DHI-sea that represents
the seasonal variability in greenness, was computed by dividing the standard deviation and
mean of the monthly FAPAR data for a year and the index vary from −∞ to +∞ [49]. A DHI
composite image was derived by assigning DHI-cum, DHI-min and DHI-sea to green, blue,
red color plains respectively for visualization and indication on the greenness cover and
productivity. Further, the inter-annual variability (2001–2015) of the three DHI components
were adjudged by estimating the correlation, regression and standard deviation [4].

Correlation coefficient:

∑(x − x) (y − y)√
∑((x − x)2

√
∑(y − y)2

(1)

where x represents number of year and y represents the pixel values corresponding to DHI
components (DHI-cum or DHI-min or DHI-sea).

Regression coefficient:

N×∑N
n=1 n × DHIi − (∑N

n=1 n) (∑N
n=1 DHIi)

(N× ∑N
n=1 n2 − (∑N

n=1 n)
2
)

(2)

where N and n represents the total number of years and individual year from 2001 to 2015,
respectively and DHIi represents the pixel values correspond to DHI-cum or DHI-min or
DHI-sea.

Standard deviation (SD): √
∑(DHIi − μ)2

N
(3)

where DHIi represents the yearly pixel values correspond to DHI-cum or DHI-min or
DHI-sea, μ represents the mean of those pixel values from 2001 to 2015, and N represents
the total number of years evaluated.

2.4. DHI Components and Plant Richness

The plant data for the study sites was procured from a national project entitled
‘Biodiversity Characterization at Landscape Level (BCLL)’ that was carried out during
1997–2012 [50]. The stratified random sampling was considered to lay nested quadrats
of size 20 × 20 m2 for trees (>15 cm, circumference at breast height-cbh) and lianas,
two 5 × 5 m2 plots for shrubs and saplings (>5 cm and <10 cm cbh), and four 1 × 1 m2
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plots for herbs and seedlings. The database has a record of 15,656 geo-tagged field plots
and 6222 unique species from 10 biogeographic regions of India.

Four biogeographic regions (semi-arid, eastern Ghats, Western Ghats, and Northeast)
having varied moisture level, plant richness and environmental heterogeneity were chosen
for analysis of pattern between the plant richness and the DHI components. These regions
encompass 7365 geo-tagged nested quadrats from the BCLL database. The unique species
count from each nested quadrat represented the plant richness for the respective quadrat.
The pixel values of averaged DHI components were linked using corresponding plant
richness data from 7365 nested quadrat locations for the four biogeographic regions using
ArcGIS platform [51]. Firstly, the yearly variations in DHIs from 2001 to 2015 in the four
biogeographic regions were visualized using 3-D scatter plots. It was generated by utilizing
the mean of each DHI components for each year that calculated the Euclidean distance for
the selected biogeographic regions of India. Secondly, the distribution of plant richness
from 7365 quadrats were plotted in box diagram along the average of DHIs. In the box plot,
mean values denote the level of accuracy, whereas R2 and p-values indicate the significance
of the plant richness distribution for each DHI component. The standard deviation of three
DHI components were randomly chosen to demonstrate the variation in greenness cover
at a test site (93.84◦E, 27.49◦N) in the Northeastern region.

3. Results

3.1. Visualizing Greenness Pattern Using DHI Components along Indian Biogeographic Regions

The DHI-cum that represents the annual cumulative greenness, varied from 4 to 8,
2 to 8, and 2 to 6 along the western Himalaya, eastern Ghats, and the Gangetic plain
regions respectively, during 2001–2015 (Figure 2). However, the DHI-cum range was less
for the semi-arid and Deccan peninsula (0 to 4), and more for the Himalayan (0 to 11),
Northeast (0 to 11), and Western Ghats (2 to 11) regions. Interestingly, the eastern part
of the Deccan peninsula demonstrated DHI-cum variation between 0 to 6 and 0 to 12 in
alternate years during 2001–2015 (Figure 2). The grasslands or scrublands on very fertile
lands across the riverbeds demonstrated annual greenness of 2 to 6, which are mostly
seasonal contributions. The DHI-cum reflected between 0 and 2 for non-vegetated classes
as snow cover, rivers, and deserts. Thus, Indian heterogeneous biogeographic regions
clearly demonstrated DHI-cum variation between 0 and 12 with varied greenness.

The DHI-min exhibits the status for minimum greenness sustained throughout a
particular year. The DHI-min ranged from 0.4 to 1.0 found across the highly diverse
regions, i.e., western Himalaya, Western Ghats and eastern Ghats and Northeast during
2001–2015 (Figure 3). In contrast, the lower range (0 to 0.2) of DHI-min recorded along
the Deccan peninsula, arid, semi-arid and trans-Himalaya. The variation in DHI-min
for the two largest river basins were also observed less, i.e., Brahmaputra basin (0.2–0.3),
Gangetic plain (0.1–0.2) (Figure 3). The Terai region showed an increase in greenness
cover between 0.1 and 0.3 during 2001 to 2015 (Figure 3). The semi-arid, arid and trans-
Himalaya region showed a minimum greenness cover of 0 to 0.2. The DHI-min indicates
the natural forest that sustains throughout a year including the evergreen, alpine and
tundra forest observed in the Himalaya, Western Ghats, eastern Ghats, and Northeast.
On the other hand, the grassland, agricultural land or barren land showed lower green
cover, which is significantly low for snow, water and desert (Figure 3). This indicates that
DHI-min is useful in demonstrating the proportion of various forest types ranging from
grassland/agricultural to evergreen/alpine forests in different biogeographic zones.

The DHI-sea varied between 1.0 and 3.5 in the trans-Himalaya, while 0.3 and 1.0
for the Deccan peninsula and Gangetic plain (Figure 4). On the contrary, lower DHI-sea
(between 0.2 and 0.3) is observed for riverbeds of Ganges, Brahmaputra, and Mahanadi
Rivers. Interestingly, the DHI-sea is observed very less (0.01–0.2) for the eastern Ghats,
Western Ghats, Northeast, and western Himalaya (Figure 4). The higher range of DHI-sea is
observed for biogeographic regions with a higher proportion of grasslands, scrublands, pas-
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ture, and cultivated lands, while lower values were observed for the regions encompassing
more natural forests.

Figure 2. Cumulative dynamic habitat index (DHI-cum) derived from the monthly sum of FAPAR for a particular year is
utilized to map the variation in annual greenness from 2001 to 2015 in India.
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Figure 3. Minimum dynamic habitat index (DHI-min) represents the minimum monthly FAPAR value in a particular year
and is utilized to map the variation of minimum greenness cover from 2001 to 2015 in India.
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Figure 4. Seasonal dynamic habitat index (DHI-sea) is the ratio between mean and standard deviation of monthly FAPAR
for a particular year was utilized to map the seasonal greenness variability from 2001 to 2015.

The DHIs composite illustrate the relative importance of each component at pixel level
during 2001–2015. The pallet assigned to cyan color observed across Northeast, Western
Ghats, and western Himalaya represents higher DHI-cum and DHI-min values and lower
DHI-sea (Figure 5). The DHIs composite with reddish-brown color in the arid and semi-
arid exhibits high DHI-Cum and DHI-sea, while low DHI-min. The greenish brown pallet
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in the Deccan peninsula and semi-arid region indicates high DHI-cum, low DHI-min, and
moderate DHI-sea. The Gangetic plain along the river channel exhibits yellowish orange
to greenish brown pallet, while the composite seems to be varied from light cyan to light
green along the Terai region (Figure 5). The reddish-brown (i.e., high DHI-sea) gradually
changed to greenish brown pallet (i.e., high DHI-cum) during the period 2001–2015 for the
semi-arid, Deccan peninsula and Gangetic plain (Figure 5). On the other hand, he cyan
pallet extant was found replaced with the greenish pallet is indicating gradual decline in
natural forest cover along the Himalaya, eastern Ghats, and Northeast during 2001–2015
(Figure 5).

Figure 5. The composite image of three DHI components were mapped from 2001 to 2015, where, DHI-cum was assigned
with the green band, DHI-min was assigned with the blue band, and DHI-sea was assigned with the red band.
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3.2. Significance of Greenness Variability from 2001 to 2015 Using DHI Components

The inter-year correlation (2001–2015) of DHI-cum found to be positive that varied
between 0.8 and 1.0 for the semi-arid and Deccan peninsula (Figure 6a, (i)). On the other
hand, a negative correlation of DHI-cum ranged between −0.6 and −1.0 observed for
the trans-Himalayan region. The areas with zero/negative correlation of DHI-cum from
2001 to 2015 mostly belong to the Northeast, Gangetic plain and Deccan peninsula regions
(Figure 6a, (i)). The DHI-min exhibited a negative correlation (−0.01 to −1.0) in the majority
of Indian landscapes, indicating a reduction in minimum greenness cover from 2001 to
2015. The arid and trans-Himalaya were characterized by highly negative correlation
values (−0.7 to −1.0) for DHI-min (Figure 6a, (ii)). Importantly, the negative correlation of
DHI-min (0 to −0.4) for Northeast has raised an alarming concern indicating the loss of
natural forests (Figure 6a (ii)). Similarly, a negative correlation (0 to −0.4) of DHI-min was
observed in a few areas of the Gangetic plain and Deccan peninsula regions. The DHI-sea
exhibited a positive correlation range between 0.4 and 0.8 for the semi-arid, Northeast,
Gangetic plain, and Deccan peninsula during 2001 to 2015 (Figure 6a, (ii)). However,
the DHI-sea demonstrated a negative correlation (−0.1 to −0.6) for the eastern Ghats,
Western Ghats, western Himalaya, and Deccan peninsula, which could be attributed to
insignificant alteration in the vegetation greenness in these regions (Figure 6a, (iii)).

 

Figure 6. The inter-year (2001–2015) correlation coefficient and regression coefficient calculated for each DHI components
are shown as: (i) DHI-cum (a,b); (ii) DHI-min (a,b); (iii) DHI-sea (a,b), respectively.

The regression coefficient of DHI-cum that indicated the slope of annual greenness
during 2001 to 2015 found positive and ranged between 0.02 and 0.53 for the semi-arid
and Deccan peninsula regions (Figure 6b, (i)). Similarly, the eastern Ghats and western
Himalayan region exhibited a positive slope (0.02–0.05). However, a negative slope (−0.45
to −0.01) for DHI-cum was observed for the Gangetic plain and Northeastern regions.
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The regression coefficient of DHI-min was found negative for the majority of the Indian
landscapes (Figure 6b, (ii)). Importantly, the negative slope across the Northeast represents
a gradual decline in the minimum greenness. The slopes of the arid and the trans-Himalaya
were also found negative (−0.002). On the other hand, a steady slope towards increasing
minimum greenness (0 to 0.01) recorded for the semi-arid, Western Ghats, and Deccan
peninsula regions. Moreover, the higher range of positive regression coefficient of DHI-min
(0.01 to 0.06) recorded among the protected areas mostly occurs within highly diverse
zones. For DHI-sea, the positive regression coefficient ranging from 0.004 to 0.02 indicates a
consistent increase in the vegetation greenness of the semi-arid, Deccan peninsula, Gangetic
plain and Northeast (Figure 6b, (iii)). In contrast, the regression coefficient of DHI-sea varies
from −0.12 to −0.002 for the Western Ghats, Deccan peninsula, semi-arid, and Gangetic
plain regions indicating lower variability in the vegetation greenness (Figure 6b, (iii)).

The standard deviation of the three DHI components (DHI-cum SD, DHI-min SD,
DHI-sea SD) summarizes their variability from the mean during 2001–2015 (Figure 7).
For DHI-Cum SD, the majority of the coverage in Indian Biogeographic regions showed
a range of 0.25–0.5. The DHI-cum SD ranged between 0.5 and 0.75 recorded from the
Northeast, Western Ghats, semi-arid, and Deccan peninsula. The DHI-cum SD varies
between 0.75 and 1.0 found in small patches across the semi-arid and Deccan peninsula
(Figure 7a). The DHI-cum SD with higher range subjected to occurrence of more variability
in the annual vegetation greenness during the analyzed time period. The DHI-min SD,
which indicates the variation in minimum greenness cover during 2001 to 2015 found to be
ranging from 0.03 to 0.06 for most of the biogeographic regions (Figure 7b). The grasslands
and scrublands dominated the semi-arid region, representing low range up to 0.03 for
DHI-min SD. The natural forested regions such as the Western Ghats and Northeast regions
comparably shared a higher variability that ranged from 0.12 to 0.15 for the DHI-min SD
(Figure 7b). For DHI-sea SD, the majority of the Indian landscape exhibited variability
in vegetation greenness between the range of 0 and 0.1. Comparatively, the higher range
of DHI-sea SD (0.05 to 0.15) for the semi-arid and Northeast express more variation in
vegetation greenness of these regions (Figure 7c).

 
Figure 7. Representing the standard deviation map of the three DHI components from 2001 to 2015 in India, where: (a)
DHI-cum SD; (b) DHI-min SD and (c) DHI-sea SD.

3.3. Validation of DHI Components Using Plant Richness Data

There were substantial differences between changes in the DHI components of the
four biogeographic regions, i.e., the semi-arid, the eastern Ghats, the Western Ghats,
and the Northeastern regions over the period 2001–2015 (Figure 8, Table 1). The lowest
and the highest value for DHI-min and DHI-cum were demonstrated by semi-arid and the
Northeastern regions respectively. The 3-D schematic of the semi-arid showed that it had
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a higher range of seasonality (DHI-sea > 0.4) and a lower range of greenness (DHI-cum
< 4) compared with the other three biogeographic regions (Table 1). The higher range of
DHI-cum and DHI-min indicate the dense canopy and vegetation greenness in the Western
Ghats and Northeast, whereas high seasonality in the semi-arid and eastern Ghats indicates
the dominance of scrubland, grassland, or deciduous forests. As per the forest type and
canopy cover of the Northeastern region, DHI-sea was slightly high, and thereby it refers
towards human activities intervening natural forest ecosystem.

 
Figure 8. Schematic representation of three DHI components using the 3-D scatter plots (DHI-cum in x-axis, DHI-min in
y-axis, DHI-sea in z-axis) during 2001–2015 for the four biogeographic regions of India, where: (a) semi-arid; (b) eastern
Ghats; (c) Western Ghats; (d) Northeastern region.

Table 1. Distribution of DHI values of all components in four biogeographic regions.

BG Regions DHI-Cum DHI-Min DHI-Sea

Semi-Arid 2.15–3.54 0.15–0.27 0.27–0.44
Eastern Ghats 3.43–4.9 0.28–0.48 0.2–0.31
Western Ghats 3.83–5.1 0.31–0.52 0.21–0.27

Northeast 4.5–6.0 0.33–0.61 0.21–0.32

The DHI components validated using the plant richness data showed DHI-cum,
0–10.11; DHI-min, 0–0.7; and DHI-sea, 0.07–3.32 (Figure 9a, (i–iii)). The pattern of plant
richness along each DHI components showed a positive trend with skewed distribu-
tion, such as DHI-cum, R2 = 0.90; DHI-min, R2 = 0.71; and for DHI-sea, R2 = 0.74 at
p-value < 0.001 (Figure 9b, (i–iii)).
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Figure 9. The three DHI components (i) DHI-cum; (ii) DHI-min, and (iii) DHI-sea were used: (a) to map the greenness
variation for India, and (b) the box plots against the field-measured plant richness data from the four Biogeographic regions
of India.
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4. Discussion

Among the existing satellite-derived biophysical proxies, FAPAR has the advantage of
multiple bands and the physically processed algorithm, and has the capability to address
the greenness variability of habitats [29]. Initial approaches utilizing FAPAR-based DHI
have evaluated the congruence of habitat heterogeneity and faunal diversity in Canada,
United Sites and Australia and China [30,39,40]. DHI-min highlights the vegetation pro-
ductivity and proportions of evergreen and deciduous vegetation cover [52], while DHI-sea
is sensitive to the seasonal variations in greenness and is useful in distinguishing among
major forest types. Overall, DHI components provide insights upon species composition,
change, and diversity within a given area may be quantitatively produced over large areas
and over-time [31].

The varied forest types and biogeographical regions offered a suitable test site to
evaluate and validate the significance of the satellite-derived DHI. The DHI is different
from other remote sensing indices because it is well grounded in the ecological theory
of biodiversity patterns [53]. The satellite proxy-based DHI has three major components,
and each of them share a key feature about the habitat conditions. For example, status
of annual greenness by DHI-cum, minimum greens cover over a year by DHI-min and
variation in greenness cover by DHI-Sea. The three DHI components calculated from 2001
to 2015 show distinct variation in greenness across all the Indian biogeographic regions.
This infers that from grassland to the alpine forest has been subjected to hold the variability
in the greenness pattern, which may be due to the direct or indirect influence of climatic
alteration and human activities [4,54].

Indian biogeographic regions include a number of global biodiversity hotspots (the Hi-
malaya, Sundaland, the Northeast, and the Western Ghats) lie partly or entirely within India
and have forest cover with evergreen, semi-evergreen, and deciduous species, the DHI-cum
and DHI-min values of these regions are greater. Importantly, because of the permanent
foliage of evergreen forests, the greenness and productivity are high throughout the year.
Thus, the annual greenness of evergreen forests is high, and there is little seasonality [31,52].
The trans-Himalaya has highly variable climate and forest types, ranging from sub-tropical
evergreen to dense conifer forests, as well as grasslands. The DHI-cum and DHI-min
ranges of the region are intermediate and that the DHI-sea value is high. Human activities,
i.e., urbanization and agriculture intensification from lower to middle elevation could be
the major cause for the high seasonality and annual variability in greenness [55]. In ad-
dition, the warming climate and reduced monsoon affect variability in greenness in the
Himalaya region [24].

Although, diversity of the Northeastern region is rich, there were patches representing
high DHI-sea values due to the human activities that include deforestation, shifting culti-
vation, agriculture, and settlement. Also, the availability of moisture before the monsoon
and average rainfall in the Northeastern region are reported to be low [24]. In contrast,
semi-arid, Deccan peninsula and the Gangetic plain regions with more settlements, agricul-
tural land and less forest cover, demonstrated moderate DHI-cum, DHI-min, and DHI-sea
values during 2001–2015. The intensity of agriculture in most of the Indian biogeographic
regions is the reason for the abrupt greening and enhanced plant productivity followed by
the consistent browning noted [56]. However, the arid and trans-Himalayan biogeographic
regions are mostly covered by scrubland, snow and barren stretches and have low to mod-
erate DHI-cum, DHI-min, and high DHI-sea values (Figures 2–4). In biogeographic regions
at higher latitudes and altitudes, which are covered by snow in winter, the FAPAR value
approaches 0, while locations that have no significant snow cover showed FAPAR > 0.

Composite map of the three DHI components rightly explained the behavior of each
component at pixel level (Figure 5). Very diverse and forested regions, such as the western
Himalaya, Northeastern, Western Ghats, and eastern Ghats regions, are very distinct
(high DHI-cum and DHI-min values and low DHI-sea values). The low seasonality is the
indicative for more diversity and dense canopy dominated by the evergreen and semi-
evergreen species. The areas with high seasonal variability are mostly irrigated pastures,
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barren land or grasslands. So, biogeographic regions, such as semi-arid, arid, Deccan
peninsula, and trans-Himalaya, with thin forest cover demonstrated moderate annual and
minimum greenness cover, while high seasonality (Figure 5). The seasonal variation of
each pixel indicates the integrated influence of climate, topography, and land use on the
status of the vegetation greenness [49].

The inter-year positive correlation of DHI-cum is very distinct for the Deccan penin-
sula and semi-arid region. This may be explained by increased productivity resulting from
increased agricultural activities and climatic variability [27]. The western Himalaya and
Western Ghats exhibited mixed representation of high to low positive correlation. The
increase in the DHI-min values in the Western Ghats and western Himalaya may be due
to afforestation and conservation measures. The weak yet positive correlation of annual
cumulative greenness, whereas weak negative correlation of minimum greenness indicate
that the agricultural activities may be the source for increasing vegetation in the eastern
Himalaya and Northeast region. On the other hand, the gradual decline in natural forests
is clearly visible through these variability in vegetation greenness, and this information
will be crucial for the conservation and management team to avoid severe environmental
consequences [57]. The increasing minimum cover in the semi-arid region may be due to
agriculture practices that brought abrupt greenness. The negative correlation of DHI-sea
in Northeast is because the region is experiencing a continuous decrease in greenness
subjected to various human activities [58]. Additionally, the reduction in pre-monsoon
moisture availability and precipitation results in reduced greenness [24]. Increasing tem-
peratures have reduced the greenness of the arid region and the trans-Himalaya.

The regression coefficient confirms that the intensity of change in greenness is different
for each DHI component. The higher regression coefficient of DHI-cum in the semi-arid and
the Deccan peninsular region can be explained by expansion of agricultural activity with
increased soil water availability [59]. However, in the Northeastern region with random
deforestation and shifting cultivation, the forested areas were continuously exploited as
per the negative regression coefficient of DHI-cum. A test site of Northeastern India
had also recorded with reduced forest cover and natural vegetation [60], while DHI-
sea showed variability in greenness (Supplementary Figure S1). The semi-arid and the
Northeastern region demonstrated higher DHI-sea values because of the patchy landscape,
environmental conditions and anthropogenic activities [61].

The standard deviation of the three DHI components (2001–2015) was greater for
less forested regions in the semi-arid, arid, Deccan peninsula and the trans-Himalayan
regions. Moreover, the standard deviation of three DHI components was the maximum
in the Northeast, where deforestation and shifting cultivation have affected the greenness
and subsequent FAPAR as observed in the past 15 years. Overall, plant richness best
correlates with annual greenness represented as DHI-cum. Further, it infers that the habitat
productivity is well correlated with plant richness, as observed by Connell and Orias [35].
Moreover, the MODIS-FAPAR-based DHI-cum also exhibit a positive correlation with the
richness of birds and other animals [4,49]. Therefore, DHI-cum is observed to be the most
important univariate predictor out of the three DHIs in explaining the richness of plant
species as exemplified in this study for India. The biogeographic regions with dominant
forest cover generally have high productivity, assuring the cumulative DHI as a good
indicator of plant diversity.

5. Conclusions

The present study demonstrated the capability of the DHI, based on a satellite-derived
biophysical proxy (i.e., FAPAR), to identify changes in the vegetation greenness. The semi-
arid, the Deccan peninsula, and the Gangetic plain may be experiencing much variability
in greenness cover. The study also showed that biodiversity hotspots could be distin-
guished using DHI components. Hence, the results of the present study could be useful in
prioritizing and planning conservation measures for the biogeographic regions of India.
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This study was a maiden attempt to correlate the DHI components with field sampled
plant richness that highlighted the importance of DHI-cum in explaining plant richness.
Thus, DHI-cum can be used as a rapid indicator to evaluate the plant richness pattern
in large-scale biogeographic studies. As various natural and anthropogenic disturbances
threaten biodiversity due to a loss of habitats, which has led to growing interest in the
search for rapid proxies for large-scale use in conservation, management, and monitoring.
This study provides baseline information for stakeholders seeking to monitor biodiversity
in large areas. Future studies should focus on causal analysis of the decrease in vegetation
greenness at a local scale, particularly partitioning climatic and anthropogenic influences.

6. Highlights

• Characterized spatiotemporal variability of FAPAR-based DHI components (2001–
2015) for India.

• Individual as well as composites of DHI components very well differentiated the
biogeographic regions of India with high/low biodiversity levels.

• The inter-year correlation and regression of DHIs exhibited gradual decrease in vege-
tation greenness for Northeastern region, while the semi-arid and Deccan peninsular
regions showed abrupt increase in vegetation greenness and seasonality.

• DHI-cum representing the annual greenness was strongly correlated with the plant
richness thereby emerging as a suitable indicator to monitor the plant diversity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/2/159/s1, Figure S1: A test site (93.84◦E, 27.49◦N) in Northeastern region demonstrated
the variation in greenness cover through the standard deviation of three DHI components during
2001–2015, i.e., (a) DHI-cum SD; (b) DHI-min SD; (c) DHI-sea SD.
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Abstract: Spaceborne and airborne polarimetric synthetic-aperture radar interferometry (PolInSAR)
data have been extensively used for forest parameter retrieval. The PolInSAR models have proven
their potential in the accurate measurement of forest vegetation height. Spaceborne monostatic
multifrequency data of different SAR missions and the Global Ecosystem Dynamics Investigation
(GEDI)-derived forest canopy height map were used in this study for vegetation height retrieval.
This study tested the performance of PolInSAR complex coherence-based inversion models
for estimating the vegetation height of the forest ranges of Doon Valley, Uttarakhand, India.
The inversion-based forest height obtained from the three-stage inversion (TSI) model had higher
accuracy than the coherence amplitude inversion (CAI) model-based estimates. The vegetation
height values of GEDI-derived canopy height map did not show good relation with field-measured
forest height values. It was found that, at several locations, GEDI-derived forest height values
underestimated the vegetation height. The statistical analysis of the GEDI-derived estimates
with field-measured height showed a high root mean square error (RMSE; 5.82 m) and standard
error (SE; 5.33 m) with a very low coefficient of determination (R2; 0.0022). An analysis of the
spaceborne-mission-based forest height values suggested that the L-band SAR has great potential in
forest height retrieval. TSI-model-based forest height values showed lower p-values, which indicates
the significant relation between modelled and field-measured forest height values. A comparison of
the results obtained from different SAR systems is discussed, and it is observed that the L-band-based
PolInSAR inversion gives the most reliable result with low RMSE (2.87 m) and relatively higher
R2 (0.53) for the linear regression analysis between the modelled tree height and the field data.
These results indicate that higher wavelength PolInSAR datasets are more suitable for tree canopy
height estimation using the PolInSAR inversion technique.

Keywords: spaceborne SAR; multifrequency; GEDI; PolInSAR inversion; forest height

1. Introduction

Spaceborne remote sensing technique is an important tool to measure different parameters of
forest vegetation to understand the forest carbon fluxes for the modelling of gross primary production
and net ecosystem production [1]. The carbon cycle of the Earth is the most important parameter,
which regulates the optimum climatic conditions suitable for all life forms on the Earth [2–5]. However,
the recent loss of equilibrium of the Earth’s carbon cycle, mainly caused due to human activity,
has likely triggered recent climate changes which could be harmful to the biosphere of the Earth [6–8].

Remote Sens. 2020, 12, 4042; doi:10.3390/rs12244042 www.mdpi.com/journal/remotesensing

63



Remote Sens. 2020, 12, 4042

Because of these reasons, accurate tracking and measures to achieve a better understanding of the
Earth’s carbon cycle are very important for sustaining life. The spaceborne synthetic-aperture radar
(SAR) systems can provide high-resolution information of the Earth objects with large coverage in one
scene. Earth-observation-based active and passive sensors have also been used as a tool to retrieve
forest parameters for inaccessible areas [9–13]. Nowadays, remote sensing is used as a primary source
to do forest mapping and monitoring at regular intervals [14]. Among these technologies, SAR remote
sensing has an advantage of forest canopy and cloud penetration capability due to the long-wavelength
range of electromagnetic (EM) waves compared to optical remote sensing and the active nature of the
SAR system, which allows for night operation. The SAR systems can be operated in different imaging
modes to acquire the data according to the requirement of the application to retrieve structural and
biophysical parameters of a forest area [15]. Several studies have shown the potential of SAR remote
sensing for forest mapping and monitoring [16–19]. Polarimetric SAR modelling for retrieval of forest
parameters has become a successful tool to retrieve scattering contributed by different scatterers within
small forest patches for structural and biophysical characterization of the forest [20–23]. Forest tree
height is directly related to biomass (AGB) and carbon stock [24–27]. The height of the forest trees needs
to be measured at regular intervals to understand the spatiotemporal changes in the aboveground
biomass and carbon stock.

The interferometric technique of SAR-based sensing has shown great potential to retrieve forest
height with reliable accuracy [28–30]. The potential of SAR tomography has also been investigated
successfully for forest height retrieval and scattering power retrieval at different height levels [31–34].
The requirement of a large number of interferometric pairs is a major limitation of the SAR tomography
and sometimes it becomes difficult to implement this technology for forest height retrieval in the
absence of several repeat passes of the data. Polarimetric SAR interferometry (PolInSAR) involves all
of the possible polarimetric combinations and is hence better than SAR interferometry in resolving the
coherence optimization problem to obtain the optimum scattering mechanisms related to different
scattering mechanisms from the canopy [35].

Polarimetric acquisitions of an interferometric pair provide the capability to improve the
interferogram quality for optimum coherence estimates with highly accurate phase information [36].
Several studies have been carried in the last few years to establish the capability of PolInSAR for
forest height measurement [37–40]. The development of inversion models with PolInSAR data
can provide a useful approach to retrieve forest height from SAR-based remote sensing [41–44].
The polarimetric SAR interferometry-based modelling approach for vegetation height of a forest area
has been successfully implemented with airborne SAR data [42,43,45–47]. Fewer studies have been
carried out to retrieve forest tree height from PolInSAR inversion using spaceborne SAR data [48].
The normal baseline component of the interferometric acquisition plays a significant role in vertical
wavenumber generation for inversion-based models of PolInSAR data [49,50]. For a spaceborne bistatic
or airborne SAR system, the system parameters could be easily planned with higher accuracy to
derive vertical baseline components However, in monostatic SAR systems, the large spatial baseline of
interferometric acquisition over a forest area results in very low coherence. The InSAR data, with small
baseline components, provide a solution to obtain reliable coherence from the forest. The PolInSAR
data acquisition, with a small baseline, gives a very high altitude of ambiguity that is not suitable
for the forest stand height of 30–40 m tall trees. To overcome this problem, coherence amplitude
inversion (CAI) and three-stage inversion (TSI) were performed with a vertical wavenumber file
that was generated by the altitude of ambiguity equal to twice the forest height. The main objective
of this present study is to retrieve forest tree height with the help of multifrequency spaceborne
PolInSAR data. PolInSAR-based vegetation height estimation has been studied by many using various
algorithms and models [51–55]. The potential of spaceborne PolInSAR data is evaluated in this study
using TSI and CAI modelling approaches. Three-stage inversion is extensively used in the PolInSAR
model, which uses a random volume over the ground (RVoG) model for height estimation of forest
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vegetation [56,57]. This study utilizes monostatic multifrequency (L-, C-, and X-band) spaceborne
PolInSAR data for inversion modelling to retrieve forest height.

2. Study Area and Dataset

The two forest ranges (Barkot and Thano) in Doon Valley, Uttarakhand, India were selected for
spaceborne multifrequency-based inversion modeling. These forest ranges lie between the Shivalik
Hills and the Himalayan Mountains. Figure 1 shows the standard false-color composite (FCC) of the
Sentinel-2B optical multispectral data that was acquired on 16 December 2018. The three spectral bands
(842 nm, 665 nm, and 560 nm) of 10 m spatial resolution were used to generate the FCC (Figure 1),
which enhances the forest and vegetation cover in red. The vegetation cover of both the forest ranges of
the Doon Valley is visible in the red color as shown in Figure 1. Nearby features, such as the agricultural
area, the urban settlement of Rishikesh City, and the waters of the Ganges River, are clearly visible in
various bands of the FCC according to their surface reflectance.

 

Figure 1. Sentinel-2 False Color Composite (FCC) image of the study area.

The vegetation type map of the two forest ranges is shown in Figure 2a. The topography of the
terrain for these study sites is flat, which is advantageous to retrieve actual PolSAR-based parameters
without rigor geometric correction. Sal (Shorea robusta) trees (Figure 2b,c)) are the main species of
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both the forest ranges. The other vegetation species are Teak (Tectona grandis) plantation, Sisham
(Dalbergia sissoo), and Khair (Acacia catechu).

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) Vegetation type map of the forest ranges, (b) Terrestrial Lase Scanner (TLS)-based forest
height measurement, (c) Sal trees, and (d) sample plot design.

Figure 2a shows the location of the field-measurement in the Barkot and Thano forest ranges of
Doon Valley. The Barkot and Thano Forests are covered by dense Sal (Shorea robusta), Khair-Sissoo/Sisham
(Acacia catechu-Dalbergia sissoo), and mixed miscellaneous forests. Field-collected forest tree heights from 100
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locations in the Barkot and Thano Forests [48,58] were used for validation of the PolInSAR-based modelled
vegetation height map. Square plots of 12.5 m2 size were made for the field-based forest height measurement.
The field data collection for tree height measurement was done using the Nikon Forestry Pro Laser Range
Finder and Laser Dendrometer (Criterion RD1000). The position of the plot locations was measured with
the Trimble Juno handheld GPS. The field data were collected in the accessible region of the forest ranges
and the distribution of plots is shown in Figure 2a. Figure 2b shows tree height measurements using the
Terrestrial Lase Scanner (TLS) in the forest plot. In a separate research work, TLS-based measurement
for forest parameter retrieval were carried out between November 2014 to February 2015 for limited plot
locations [59]. It was found that the maximum difference between field-based forest height using handheld
equipment and TLS data-based estimates was 0.81 m [59]. Figure 2d shows a sample plot design that was
made in the field for tree height measurement. The forest ranges of Doon Valley predominantly dominate
Sal trees, which can also be seen for both these forest ranges as shown in Figure 2a. Considering that most
of the area is covered by Sal forest, we planned to collect a good number of data from this vegetation type,
according to which plots were made in the field. Table 1 shows the number of plots of the field-collected
data for forest height measurement in different vegetation species of the forest ranges.

Table 1. Number of plots of the field-collected data for forest height measurement.

Forest Vegetation Type No. of Plots

Khair-Sisham Forest 5
Mixed Miscellaneous Forest 18

Sal Forest 77

Plot-wise average forest height of the field-measured data for the 100 locations in the Barkot and
Thano forest ranges are shown in Figure 3. Error bars with a standard deviation of average forest
height for all the 100 field-measured forest plots are shown in Figure 3. It is observed that, for most of
the locations, the average forest height was more than 20 m.

 

Figure 3. Field-measured plot-wise average forest height with error bars.
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2.1. Global Forest Canopy Height Map

The global forest canopy height map was developed by integrating the lidar-based structural
measurement for forest vegetation of the Global Ecosystem Dynamics Investigation (GEDI) data and
Landsat multitemporal surface reflectance data [60,61]. The product id Forest_height_2019_NASIA of
30 m spatial resolution global forest canopy height map was used to prepare a forest height map of the
Uttarakhand state of India. Most of the forest cover shows vegetation height with a difference of less
than 35 m from the forest height values. Three more values, 101, 102, and 103, were also obtained from
the data, representing water, snow/ice, and no data, respectively [60]. The Barkot and Thano forest
ranges of Doon Valley, Uttarakhand, India, are shown in the red circle in Figure 4. A subset was taken
from the Uttarakhand forest height map, which is shown in Figure 5 to show the vegetation height in
the two forest ranges.

Figure 5 shows a subset of 30 m spatial resolution of the global forest canopy height that was
generated by the integration of GEDI-based forest height metrics with Landsat multitemporal data.

 

Figure 4. The 30 m spatial resolution global forest canopy height map of Uttarakhand, India.
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Figure 5. A subset of global forest canopy height map for the Barkot and Thano forest ranges.

2.2. Polarimetric SAR Interferometry (PolInSAR) Data

Polarimetric SAR Interferometry (PolInSAR) combines interferograms obtained at different
polarizations [62]. Generally, all of the spaceborne SAR are monostatic SAR systems in which a single
antenna is used to transmit and receive EM waves. Figure 6 shows the PolInSAR geometry in which
PolSAR data were acquired by maintaining a temporal gap between two acquisitions to generate an
interferometric pair. The two acquisitions provide two scattering matrices (Figure 6) represented by
Equation (1).

The scattering matrix of the first acquisition is represented by S1 and the second acquisition or
slave data is represented by S2. The matrix elements are represented as polarimetric combinations of
horizontal and vertical polarizations of the electric field vector of the EM wave. To get an interferometric
pass, the platform positions between two acquisitions must be separated by a baseline.
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The multifrequency data used in this study were acquired from spaceborne SAR systems, ALOS-2
PALSAR-2, RADARSAT-2, and TerraSAR-X. A detailed description of the multifrequency polarimetric
interferometric data is given in Table 2.

 

Figure 6. Polarimetric synthetic-aperture radar interferometry (PolInSAR) geometry.

Table 2. Description of the multifrequency polarimetric interferometric data.

PolInSAR Data TerraSAR-X RADARSAT-2 ALOS-2 PALSAR-2

Acquisition Reference Secondary Reference Secondary Reference Secondary
Date of acquisition 21 January 2015 12 February 2015 27 January 2014 20 February 2014 9 August 2015 23 August 2015

Polarisation Quad-pol (HH+HV+VH+VV)
Wavelength (cm)/frequency (GHz) 3.10/9.64 5.55/5.4 24.25/1.236
Resolution (m), range & azimuth 1.36 & 2.86 4.7 & 9.5 2.86 & 3.236

Absolute orbit 42159 42493 32291 31948 6545 6752
Near range incidence angle 24.59 24.54 33.45 33.45 21.56 21.55
Far range incidence angle 26.73 26.79 35.07 35.07 25.93 25.93

Perpendicular baseline (m) 105 67.92 84.37
Temporal baseline (days) 22 24 14
Altitude of ambiguity (m) 35.85 215.05 455.16

Figure 7 shows the color composite of model-based polarimetric decomposition of L-band, C-band,
and X-band SAR data. Yamaguchi’s four components decomposition model was used to generate
scattering elements from the polarization orientation angle (POA)-compensated PolSAR coherency
matrix [63]. Forest vegetation is a dominant source of volume scattering of the incident EM wave.
In the polarimetric decomposition-based output of the multifrequency SAR data, this can be easily
seen in green. The double-bounce scatterers and single-bounce scatterers are represented in red and
blue, respectively. It is visible in the PolSAR data that the dry river channels of the Doon Valley
showed surface scattering (blue color). The urban structures showed the dominance of double-bounce
scattering, and these features are highlighted in red/pink in the false color composite image of the
SAR data. The polarimetric decomposed image of L-band ALOS-2 PALSAR-2 showed high volume
scattering in comparison to the TerraSAR-X and RADARSAT-2 C-band datasets. The long-wavelength
of L-band ALOS-2 can penetrate the top canopy surface to provide scattering information contributed
due to the entire volume of the tree. Due to the deep penetration of microwave signals into the forest
vegetation and multiple scattering from the entire structure of the vegetation cover, the degree of
volume scattering in L-band observations was higher than C- and X-band SAR data.
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(a) (b) 

 
(c) 

Figure 7. Polarimetric decomposition-based scattering representation of (a) ALOS-2 PALSAR-2 L-band,
(b) TerraSAR-X band, and (c) RADARSAT-2 C-band SAR data.

3. Methodology

The present work utilized L-, C-, and X-band PolInSAR data-based TSI modelling for forest stand
height estimation. The methodological steps are shown in Figure 8. The single-look complex data
was initially corrected from slant range ambiguity to provide actual ground information in the range
direction. Radiometric calibration was performed to calculate scattering matrix on multifrequency

71



Remote Sens. 2020, 12, 4042

polarimetric interferometric pairs of SAR data. The scattering matrix was generated with four
polarimetric combinations of first and second acquisitions of interferometric pairs of complex SAR data.

[S1] =

[
S1

HH S1
HV

S1
VH S1

VV

]
and [S2] =

[
S2

HH S2
HV

S2
VH S2

VV

]
. (1)

The scattering matrices were coregistered with subpixel accuracy for accurate phase estimation at
interferometric processing. The coregistered PolInSAR pairs were orthorectified with the help of the
Range Doppler Terrain Correction tool in SNAP v 6.0 [64].

The Pauli feature vector [65], which is a first-order polarimetric representation of the scattering
matrix, was generated from the coregistered orthorectified product for all of the SAR data. The Pauli
feature vectors of reference and secondary images were multiplied with their transconjugate to generate
a 6 × 6 coherency matrix as shown in Equation (2) [41].

[T6] := 〈
[

k1
k2

][
k∗T1 k∗T2

]
〉 =
[
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(2)

where [T11] and [T22] are 3 × 3 coherency matrices of reference and secondary images and these
matrices follow the characteristics of Hermitian matrices, while [Ω12] is derived from the interferometric
Hermitian product of Pauli feature vectors k1 and k2 of PolInSAR pairs.

The Interferometric coherence of PolSAR data was estimated with the help of a 6 × 6 coherency
matrix that represents the complex correlation coefficients of a feature in the SAR data during the two
acquisitions. The interferometric acquisition of PolSAR data is capable to retrieve coherence due to
different scatterers in a SAR resolution cell.

When an EM wave hits the target, the coherence of an object changes with polarization due
to different scattering behavior in different polarimetry channels. The PolInSAR coherence (γ) is
represented in Equation (3) with the help of elements of the 6 × 6 coherency matrix [36,41].

γ =

〈
ω∗T1 [Ω12]ω2

〉
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〉〈
ω∗T2 [T22]ω2

〉 (3)

where ω1 and ω2 represent the two scattering mechanisms and * indicates the complex conjugate.
The spatial averaging is also shown in Equation (3) as an angular bracket and 6 × 6 coherency matrix
elements are calculated using Equations (4)–(6).
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Figure 8. Methodology for PolInSAR inversion modelling for forest height retrieval.
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3.1. Three-Stage Inversion (TSI) Modelling

The TSI model is an extension of the fully polarimetric SAR data-based expression of a two-layer
model [66] to estimate the vertical structure of tree species [41]. The PolInSAR-based TSI model is
very popular for forest height retrieval [49,58,67–70]. The TSI model includes the identification of
the ground phase and volumetric coherence of the effective scattering center of forest vegetation for
inversion-based forest height retrieval. PolInSAR-based TSI uses the complex coherences of all the
polarimetric combinations to identify the ground phase and volumetric coherence with minimum
ambiguity. A best-fit line is determined in the complex plane to find the optimum ground phase
and volumetric coherence. The point on the best-fit line with the lowest value of ground to volume
scattering ratio will be the most suitable input for volumetric coherence [41,71,72].

The complex coherence, γ, of the PolInSAR data for forest vegetation is shown in Equation (7) [41].

γ =

ω∗T
(
eiφ1 IV

2 + e
−2σhv
cosθ0 Tgeiφ1

)
ω

ω∗T
(
IV
1 + e

−2σhv
cosθ0 Tg

)
ω

(7)

where

IV
1 = e

−2σhv
cosθ
∫ hv

0 e
2σz′

cosθ0 TVdz′ and IV
2 = e

−2σhv
cosθ
∫ hv

0 e
2σz′

cosθ0 eikzz′TVdz′

TV = mv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 μ 0
0 0 μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦0 ≤ μ ≤ 0.5

Tg = mg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 t12 0

t∗12 t22 0
0 0 t33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.
The complex coherence is polarization-dependent and can be represented as a straight line in the

complex plane of PolInSAR coherence:

γ(ω) = eiφ1(γv + L(ω)(1− γv)) 0 ≤ L(ω) ≤ 1 (8)

where
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where, ω is a unitary complex vector, γ, is interferometric complex coherence that is dependent on
the choice of polarization of the SAR data, ϕ is the interferometric phase of the ground topography,
μ(ω) shows ground to volume scattering ratio, θ0 is the angle of incidence of the incident EM waves
of the SAR system, and attenuation of the EM waves through vegetation canopy is represented
by σ. In Equations (8) and (10) γv is polarization independent and is expressed as an integral of
vertical wavenumber (kz), angle of incidence, and wave extinction coefficient. The effective vertical
interferometric wavenumber (kz) is determined by the SAR imaging parameters. Baseline during the
interferometric acquisition of SAR data and spaceborne platform to target range distance is used to
derive kz, as in
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kz=
4πBn

λRsinθ
. (11)

where Bn is the normal component of the baseline, λ is the wavelength of the SAR system, and R is
the platform to the target distance. The value of R is retrieved from metadata by multiplying the
speed of the electromagnetic wave and half of the total time taken by the wave to track the target.
The interferometric wavenumber (kz) depends on the SAR parameter and it is a crucial parameter that
affects the PolInSAR inversion-based forest height [50]. The normal baseline component (Bn) plays an
important role in deriving the vertical wavenumber [49]. This work utilized the vertical interferometric
wavenumber that was generated from the spaceborne SAR parameters of multifrequency data and a
derived normal baseline component. The normal baseline component was calculated according to the
altitude of ambiguity greater than (approximately double) the forest height of the study area.

3.2. Coherence Amplitude Inversion (CAI) Modelling

Electromagnetic waves transmitted by a SAR system mainly interact with the top canopy surface
of the forest vegetation. The top canopy surface contributes an amount of the backscattered signal,
and twigs and branches of the forest vegetation contribute to the remaining portion. The top canopy
surface is an unstable structure in nature, which shows very low interferometric coherence. If the SAR
waves are able to interact with stable structures of the forest vegetation like big branches, then the
interferometric coherence will become high for these features. Generally, in SAR interferometry,
the height of an object is measured from the difference of the interferometric phases of the top and
bottom of the surface. It is very difficult to retrieve interferometric phases of ground and forest
vegetation for the locations having low interferometric coherence [44]. To overcome the problem of the
interferometric phase coherence, an amplitude-based approach was proposed in which the ground
is identified with polarimetric channels that have a low surface-to-volume ratio [71] The PolInSAR
coherence amplitude-based inversion model for forest height retrieval is shown in Equation (12):

min
hv

{
F = ‖|γ̃wv | − |

p
p1

ep1hv − 1
ephv − 1

|‖
}

where
{

p = 2σ
cosθ

p1 = p + ikz
. (12)

Here, the function F is minimized for the inversion-based modelling [72], hv represents the height
of the vegetation, and σ represents the attenuation of an electromagnetic wave due to vegetation and
volume only coherence is represented by γ̃wv .

4. Results

This section describes the results of PolInSAR-based inversion modelling for forest height
estimation using multifrequency spaceborne SAR data.

Multifrequency PolInSAR Data for Forest Height Estimation

Polarimetric SAR interferometry-based inversion modelling was implemented to generate the
forest height. Forest height retrieval was performed with all the possible coherence combinations and
interferometric vertical wavenumber file. The CAI technique assumes that volume scattering is at the
top of the canopy and generally, cross-polarimetric channels are selected as input in the modelling
approach for inversion-based height retrieval.

The PolInSAR data has the capability to generate complex coherence in several polarimetric
combinations, but the combination having the lowest ground-to-volume ratio is the most suitable
for inversion-based forest height retrieval. Figure 9a,b show the TSI-based and CAI-based forest
height maps that were generated from the PolInSAR pair of ALOS-2 PALSAR-2 data. Forest heights
generated from RADARSAT-2 and TerraSAR-X are shown in Figure 10a,b and Figure 11a,b, respectively.
The modelled outputs of the forest heights were validated with field-measured values using the
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coefficient of determination (R2), root mean square error (RMSE), standard error of the estimate
(SE), and p-value. To validate the modelled output of the forest height of PolInSAR inversion-based
modelling, field data were used for 100 locations in the study area.

 
(a) (b) 

Figure 9. ALOS-2 PALSAR-2 inversion-based forest height for the Barkot and Thano forest ranges
using (a) the TSI model and (b) the CAI model.

  
(a) (b) 

Figure 10. RADARSAT-2 inversion-based forest height for the Barkot and Thano forest ranges using
(a) the TSI model and (b) the CAI model.
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(a) (b) 

Figure 11. TerraSAR-X inversion-based forest height for the Barkot and Thano forest ranges using
(a) the TSI model and (b) the CAI model.

Figure 12a shows the TSI-based forest height generated from the PolInSAR pair of ALOS-2
PALSAR-2 data. Forest heights generated from RADARSAT-2 and TerraSAR-X are shown in Figure 12b,c,
respectively. In addition to the best-fit regression, the line confidence interval (CI) and prediction
interval (PI) were also drawn. The CI is marked with a broken line in yellow, the PI is marked with
a solid line in black, and the best-fit regression line is shown in blue. The CI with a 95% confidence
interval ensures that it has a 95% probability of being the best-fit line between the upper and lower limits
that are marked as the broken line in yellow in Figure 12. The CI with 95% still has a probability of 5% in
which the true best-fit linear regression line may fall outside the confidence interval limits/boundaries.
It is evident in Figure 12 that the best-fit regression line for all the modelled output for forest height
retrieval did not go outside of the upper and lower limits of the CI.

The 95% prediction interval (PI) indicates the area where 95% of the datapoints will fall and
predicts a range in which a future observation will fall. Figure 12 shows that one datapoint fell outside
the prediction interval boundary for the linear regression with ALOS-2 PALSAR-2 and RADARSAT-2
data. The linear regression with TerraSAR-X data shows that four datapoints fell outside the boundary
of the prediction interval.

The linear regression between the field data and modelled output of multifrequency PolInSAR
data (Figure 12) shows that the coefficients of determination (R2) of TSI-based forest height for ALOS-2
PALSAR-2, RADARSAT-2, and TerraSAR-X were 0.53, 0.32, and 0.43, respectively, with RMSE values of
2.87 m, 3.74 m, and 4.53 m. The standard error of the estimate (SE) for TSI-based approach for L-band,
C-band, and X-band data were 1.56 m, 1.73 m, and 2.17 m, respectively (Table 3). The relationship
between field-measured forest height and TSI-based modelled height shows the highest R2 from
ALOS-2 PALSAR-2 data. The lowest R2 (0.32) was obtained from RADARSAT-2 data. RMSE obtained
from the multifrequency SAR data shows that the error value of PolInSAR inversion-based height
retrieval was 2.87 m for ALOS-2 PALSAR-2, 3.74 m for RADARSAT-2, and 4.53 m for TerraSAR-X data.
From Figure 12 and Table 3, it is obvious that the highest R2 and lowest RMSE was obtained from the
long-wavelength L-band PolInSAR pair of ALOS-2 PALSAR-2. The reason for the accuracy of L-band
likely lies in the canopy penetration capability of L-band SAR for the detection of ground coherence,
phase, and identification of the volume scattering center at the top of the canopy. A moderate accuracy
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in forest height retrieval was obtained from X-band SAR data due to the high spatial resolution of
TerraSAR-X, which enables the retrieval of ground information through canopy gaps.

 
(a) 

 
(b) 

Figure 12. Cont.
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(c) 

Figure 12. Linear regression with 95% confidence interval for TSI-based inversion modelling of
(a) L-band SAR data, (b) C-band SAR data, and (c) X-band SAR data.

CAI-based forest height maps of multifrequency PolInSAR data are shown in Figure 13. The forest
height values of modelled output varied from 0 m to 30 m in the TSI-based inversion. CAI-based
PolInSAR vegetation height values ranged from 0 m to 33 m. The best-fit regression line of CAI-based
forest height for ALOS-2 PALSAR-2, RADARSAT-2, and TerraSAR-X data fell between the upper
and lower limits of the 95% confidence interval. Four datapoints of the linear regression with CAI
modelling for ALOS-2 PALSAR-2 fell outside of the prediction interval boundary with the 95%
confidence interval. Two datapoints for RADARSAT-2 and three for TerraSAR-X fell outside of the
prediction interval boundary.

Figure 13 shows the relation between the field-based forest height and CAI-based modelled
height. A very low coefficient of determination was obtained from CAI-based height retrieval for all
the PolInSAR data. CAI-based PolInSAR inversion for forest height retrieval from ALOS-2 PALSAR-2
showed an R2 of 0.04. No correlation was obtained between modelled forest height of RADARSAT-2
data and field-measured forest height. The relationship between field-measured forest height and
CAI-based forest height of TerraSAR-X data showed an R2 of 0.05. A comparison of CAI-based
PolInSAR inversion with field-measured forest height gave an RMSE of 4.48 m for ALOS-2 PALSAR-2,
3.88 m for RADARSAT-2 and 4.90 m for TerraSAR-X data. The standard error of the estimate (SE) were
2.53 m for ALOS-2 PALSAR-2, 2.09 m for RADARSAT-2, and 3.91 m for TerraSAR-X data.

Global forest canopy height map-based vegetation height values for the field-measured plot locations
were retrieved to make a comparison as shown in Figure 14. For the 100 plot locations, a comparison of
vegetation height values of field-measured forest heights, global forest canopy height-based measurements,
and PolInSAR-based height values of TSI and CAI models for multifrequency spaceborne SAR is shown
in Figure 15. Figure 14 shows that the best-fit regression line for global forest canopy height map-based
vegetation height was between the 95% confidence interval boundaries, and three points fell outside of the
prediction interval boundaries. Figure 15 shows that the vegetation height for plot numbers 45, 71, and 94
were underestimated in the global forest canopy height map. The field-based measurements for the forest
height for plots 45, 71, and 94 were 24 m, 25 m, and 26 m, respectively, and their corresponding values in the
global forest canopy height map were 0 m, 5 m, and 8 m. The linear regression between field-measured and
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global forest canopy height-based forest height shows a very low coefficient of determination (0.0022) with
5.82 m RMSE and 5.33 m SE.

Table 3. Comparison of forest height values obtained from different spaceborne earth observation missions.

Mission Approach
Coefficient of

Determination (R2)
Root Mean Square

Error (RMSE)
Standard Error

(SE)
p-Value with 95%
Confidence Level

ALOS-2
PALSAR-2

TSI 0.53 2.87 m 1.56 m 1.73 × 10−17

CAI 0.04 4.48 m 2.53 m 0.040

RADARSAT-2
TSI 0.32 3.74 m 1.73 m 1.22 × 10−9

CAI 0.00 3.88 m 2.09 m 0.906

TerraSAR-X
TSI 0.43 4.53 m 2.17 m 2.08 × 10−13

CAI 0.05 4.90 m 3.91 m 0.019

GEDI

Integration of
GEDI-derived canopy
height with Landsat

timeseries data

0.0022 5.82 m 5.33 m 0.644

(a) 

Figure 13. Cont.
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(b) 

 

(c) 

Figure 13. Linear regression with 95% confidence interval for CAI-based inversion modelling of
(a) L-band SAR data, (b) C-band SAR data, and (c) X-band SAR data.
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Figure 14. Linear regression with 95% confidence interval between field-measured and global forest
canopy height map-based forest height.

Figure 15. A comparison of forest height values of field-measured, PolInSAR-derived, and global
canopy height map.
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A comparison of forest height estimates of different spaceborne missions is shown in Table 3.
The model-estimated forest heights were statistically tested for their significance using p-values,
which indicate the probability of a result being observed. For a statistically significant observation,
the p-value should be smaller than the significance level. The smaller p-value shows that there was a
significant relation between field-measured and model-estimated forest height values. Higher p-values
(near to 1) indicate observations by chance [73]. In Table 3, a very low p-value was shown by most
of the forest height observations except for the GEDI mission and RADARSAT-2-based CAI model.
The p-value with a 95% confidence level for the GEDI mission and RADARSAT-2-based CAI model
was greater than the significance level (0.05). It is visible in Figure 13 and Table 3 that the R2 between
CAI-based forest height and field-measured forest height was very low for L-, C-, and X-band PolInSAR
data. The RMSE of ALOS-2 PALSAR-2, RADARSAT-2, and TerraSAR-X were 4.48 m, 3.88 m, and 4.90 m,
respectively. The standard errors of CAI model estimates with L-, C-, and X- band data were 2.53 m,
2.09 m, and 3.91 m, respectively. It is evident from Table 3, Figure 12, and Figure 13 that TSI-based
PolInSAR inversion provided better R2, RMSE, SE, and p-values in forest height retrieval in comparison
to the CAI-based modelling approach

5. Discussion

Nowadays, polarimetric SAR data acquisition in interferometric mode shows a great potential
in modelling to estimate forest parameters [74–76]. Several studies have been carried out for SAR
image-based forest height estimation and most successfully demonstrated airborne systems [42,77,78].
Very few studies have studied spaceborne SAR for forest height retrieval compared to aerial SAR
systems [48,55,58]. An automated framework was proposed by Lie et al. (2021) to retrieve the
vegetation height of a tropical forest using spaceborne TanDEM-X SAR interferometry with 2–3 m
accuracy [79]. Lee and Fatoyinbo (2015) performed the PolInSAR inversion technique and retrieved
mangrove height using X-band TanDEM-X data with a good correlation coefficient (0.851–0.919) and
low RMSE values (1.069–1.727 m) [80]. An investigation was done by Kugler et al. (2014) to find
the suitability of X-band TanDEM-X data for PolInSAR inversion-based vegetation height retrieval
of a boreal, a temperate, and a tropical site [81]. In the investigation, it was found that the modelled
vegetation height for boreal forest showed a very good result with 0.91 coefficient of determination
and a low RMSE (1.58 m). Linear regression between the lidar-based and PolInSAR-model-based
vegetation height for the temperate and tropical forest showed a 0.89 coefficient of determination with
2.3 m RMSE and a 0.98 coefficient of determination with 2.1 m RMSE [81]. Several other studies were
also conducted in which highly accurate results were reported by the researchers [68,82–85].

In this study, field data were collected for 100 plot locations and used to validate the forest height
values of multifrequency spaceborne SAR data and GEDI-derived canopy height. The field data
acquisition was done in 2014 and 2015. Spaceborne SAR-system-based L-band ALOS-2 PALSAR-2 and
X-band TerraSAR-X data were acquired in 2015 and RADARSAT-2 data were acquired in 2014. Due
to the deep penetration capacity of L-band SAR, it was easily possible to detect PolInSAR complex
coherences contributed by ground and volume scatterers. The lowest RMSE and SE and highest
coefficient of determination were obtained from TSI model-based forest height of ALOS-2 PALSAR-2
data. RADARSAT-2 data also showed reasonable results with its limitation of less penetration capability
of the SAR system. The reason behind the reasonably good result of the C-band RADARSAT-2 is
the interferometric coherence, which was preserved for the study area due to interferometric data
acquisition with a very short baseline. The very short baseline data may be good to preserve
interferometric coherence, but the altitude of ambiguity was very high. To resolve this issue, the vertical
wavenumber was simulated with an appropriate altitude of ambiguity according to the maximum
forest height of the study area. Due to precise complex coherence and simulated vertical baseline, it
became possible to obtain reasonably good results from the C-band SAR data. A comparison of results
of all the sensors shows that a high RMSE and SE and a reasonably good coefficient of determination
with a significant p-value was obtained from the X-band TerraSAR-X SAR system. The reason behind
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the reasonably acceptable results for the X-band SAR is its spatial resolution, which was highest among
all the spaceborne SAR sensors used in this study. The PolInSAR TerraSAR-X data was acquired with
a range resolution of 1.36 m and Azimuth resolution of 2.86 m, which enables the sensor to detect
ground information through canopy gaps. The analysis of forest height values of spaceborne missions
suggests that vegetation height values from the TSI-based model have greater significance for this
forest area than other approaches. The complex coherence optimization process of the TSI approach to
find ground and top of the vegetation coherence is more rigorous and authentic in comparison to the
CAI method as shown in Equations (10) and (11).

The integrated GEDI-derived canopy height with Landsat timeseries data showed a very low
coefficient of determination (0.0022) with a high RMSE (5.81 m) and SE (5.33 m). The p-value was also
very high, which does not indicate a significant relationship between the vegetation height values of
field-measured and GEDI-derived estimates. The main reason behind this may be a large temporal
gap (approximately 4 years) between the field data collection and GEDI product. The field data was
acquired in 2014 and the GEDI-derived canopy height map was generated in 2019. The error was
highest at three plot locations, which were plot numbers 45, 71, and 94. The field-measured values for
these locations were 24 m for plot number 45, 25 m for plot number 71, and 26 m for plot number 94,
and their respective values in GEDI-derived product were 0 m, 5 m, and 8 m. To understand the reason
why the error was high, high-resolution timeseries images of Google Earth were used to visualize the
point locations. It is visible in the Google Earth image (Figure 16) of the study area that plot number 45,
for which the vegetation height value in GEDI-derived global forest map was assigned as zero, lies in
the dense forest with a height of 24 m in the field-measured data.

Figure 16. Google Earth view of plot numbers 45, 71, and 94.

6. Conclusions

The prime focus of the study was to evaluate the PolInSAR data for forest height retrieval. ALOS-2
PALSAR-2, RADARSAT-2, and TerraSAR-X acquired multifrequency spaceborne PolInSAR data in
L-, C-, and X-band. It was found that the PolInSAR coherence has the capability to characterize the
features based on the coherence contribution due to different types of scatters in the acquired area.
The Polarimetric Interferometric SAR (PolInSAR) technique provides interferometric dataset pairs with
multiple polarizations, which have the potential to accurately estimate the forest height. In contrast to
the normal interferometric SAR datasets, the availability of multiple polarizations in the PolInSAR
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datasets helps to optimize the interferometric coherence using the combination of different polarization
channels for accurate scattering mechanism retrieval from the ground targets. The optimization of the
interferometric coherence maximizes the quality of interferograms and phase information required
for accurate forest height retrieval. The multifrequency PolInSAR datasets were analyzed in this
research to assess the potential of these datasets for accurate forest height retrieval. GEDI-derived
global forest canopy map-based vegetation height values were also tested against the field-measured
height values. The vegetation height values of GEDI-derived product showed mismatches with field
measurement at several locations, and consequently, a high RMSE (5.82 m) and SE (5.33 m) and a very
low R2 (0.0022) were obtained through the linear regression. In the field-measured vegetation height
and GEDI-derived estimates, there was a gap of approximately 4–5 years. Due to this large temporal
gap and the mismatch in height values at several locations, the p-value, with a 95% confidence level,
had not shown a significant relation with the field data. The TSI and CAI modelling approaches were
implemented on monostatic PolInSAR data to generate forest height maps. The statistical analysis
of the modelled vegetation height showed the supremacy of the TSI approach over other techniques.
By performing the Three-Stage Inversion (TSI) technique for forest height estimation using the L-band,
C-band, and X-band PolInSAR datasets, it was found that the ALOS-2 PALSAR-2 L-band dataset
was able to provide a better tree height estimate with an R2 value of 0.53 for the linear regression
between the modelled tree height and field data. The R2 values obtained for the TSI model with
C-band and X-band datasets were 0.32 and 0.43, respectively. The mean error analysis of the tree
height estimated from the TSI modelling and field data showed that, for the L-band ALOS-2 PALSAR-2
dataset, the error was 2.87 m; for the C-band RADARSAT-2 dataset, the error was 3.74 m; and for
the X-band TerraSAR-X dataset, the mean error was 4.53 m. The L-band TSI model-based forest
height showed the most reliable result with low RMSE (2.87 m), relatively higher R2 (0.53), and a
significant p-value (1.73 × 10-17). The CAI-based PolInSAR inversion showed a very low coefficient of
determination between model-derived forest height and field-measured forest height. The p-value
analysis of the CAI model-based vegetation height showed marginal significant relation between
field-measured and model-estimated forest height values for L- and X-band SAR data. No significant
relationships between field-measured and CAI model-estimated forest height were obtained for C-band
SAR data. The p-value of CAI model-based vegetation height for RADARSAT-2 data was greater than
the significance level. This trend indicates that the TSI model is best suited to correctly assess forest
height. Whereas the study area of the Doon Valley forest ranges was mainly dominated by saline trees,
future research could include a variety of vegetation and forest types for PolInSAR-model-based forest
elevation retrieval under different geographic and climatic conditions.
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Abstract: Precise stand species classification and volume estimation are key research topics for
automated forest inventory. This study aims to explore the feasibility of light detection and ranging
(lidar) height, intensity, and ratio parameters for discriminating dominant species (Pinus densiflora,
Larix kaempferi, and Quercus spp.) and estimating volume at plot scale. To achieve these objectives,
multiple linear discriminant and regression analyses were utilized after a separate selection of
explanatory variables from extracted 38 lidar height, intensity, and ratio parameters. A kappa
accuracy of 0.75 was achieved in discriminating the plot-dominant species from three different species
by adopting a combination of nine selected explanatory variables. Further investigation found that
dispersion and mean of lidar intensity within a plot are key classifiers of identifying three species.
Species-specific optimal plot volume models for Pinus densiflora, Larix kaempferi, and Quercus spp. were
evaluated by coefficients of determination of 0.71, 0.74, and 0.56, respectively. Compared to species
classification, height-related lidar variables play a key role in modeling forest plot volume. Several
explanatory variables for each modeling practice were correlated to canopy vertical and horizontal
structures and were enough to represent species-specific characteristics in both approaches for species
classification and plot volume estimation. Additionally, observed different variable combinations for
two important applications imply that future studies should use proper variable combinations for
each purpose.

Keywords: lidar; remote sensing; forest structure; stand volume; stand dominant species

1. Introduction

Precise and quantitative information of forests is essential for forest management and
planning [1–3]. Forest stand volume is one of the most important structural variables characterizing
economic and environmental value of the forest stand. As it can estimate stand biomass and carbon
content, accurate stand volume estimation is critical for understanding forest carbon dynamics. Field
surveying can provide accurate and extensive forest inventories nationwide; however, it is not only
labor-intensive and time-consuming, but also difficult to seamlessly cover large forested area. Together
with increasing needs of high quality and large-scale forest information, in this context, remote sensing
has become a more powerful tool in forest management [4–7].
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Laser surveying techniques known as light detection and ranging (lidar) have been widely used
to characterize a large-scale three-dimensional forest structure and its dynamics [1,7–9]. Studies have
proven the potential of lidar for estimating forest stand volume [10–12]. Approaches for estimating stand
volume using lidar data can be categorized into (a) individual tree detection-based approaches [1,9,13]
and (b) height distributional approaches at the stand or plot level [13,14]. The individual tree detection
based approaches for estimating forest stand volume, tree height, and diameter at breast height (DBH)
are required for calculating volume using an allometric function [1]. However, direct estimation of
DBH is problematic due to stem concealment by obstructive upper canopy structures. To obtain more
accurate DBH estimates, several studies have suggested ways to apply the statistical relationship
between measured DBH and crown width derived from lidar data [13]. Although stand volume
could be estimated by using height and DBH derived from lidar data, modeling procedures for DBH
estimates and the necessity of accurately isolating individual trees tend to increase the uncertainty of
stand volume estimates.

To avoid the complications and limitations of approaches based on individual tree detection, stand
volume has been estimated directly using height distribution parameters of large- and small-footprint
lidar systems at the stand or plot level [10,15,16]. This approach assumes that stand volume is
closely related to actual vertical and horizontal forest structures and that lidar height distributions can
represent the forest structures [15]. In other words, the forest structure from tree top to ground can be
explained by structurally arranged large- and small-footprint lidar data [17]. In practice, large-footprint
full-waveform lidar can provide height distribution data depending on the time-varying intensity of
the returned energy within the laser pulse; however, this system is not appropriate for demonstrating
finer scale forest attributes, including volume and biomass [18]. Small-footprint discrete lidar can
produce a height distribution of forest vertical structures by accumulating all returns per sampling unit.
This distribution then can be employed to estimate fine-scale and stand-level forest volume [15,19].

Tree species information is also critical for correctly valuing forests in terms of economic, ecological,
and technical perspectives. Inaccurate species identification can result in prominent bias in the estimates
of stem volume and biomass as allometric dependencies are species-specific [1,20]. The approach
using height distribution data for volume estimation has been used to discriminate tree species at
the individual tree and plot or stand level [21–23]. These species discrimination analyses have been
successfully used to differentiate forest species between coniferous and broadleaf forests [24]. Both
height and intensity data from lidar clearly show the potential to classify individual or stand dominant
species by characterizing spectral, vertical, and horizontal profiles of canopy structure.

Reviewing the literature for related research reveals an opportunity to develop a sequential
analytic framework that identify stand-dominant species and estimate stand volume. This study
thus aims to achieve these two main objectives using height, intensity, and ratio parameters derived
from airborne lidar data. Both objectives focused on the relationship between forest attributes and
various lidar distributional characteristics at the plot scale, thus this study can provide insight of how
different sets of lidar height, intensity, and ratio variables play a role in species classification and
plot volume estimation. The detailed first objective is to identify explanatory parameters and their
combination for classifying plot-dominant species between homogeneously distributed Korean red
pine (Pinus densiflora), Japanese Larch (Larix kaempferi), and oaks (Quercus spp.) with determining
statistical criteria. The second objective is to examine the appropriate parameters for estimating
species-specific plot volume based on classification results under critical statistical criteria and select
an optimal volume model for each plot-dominant species. Following results and possible limitations
are compared and discussed.
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2. Materials

2.1. Study Area

The study sites are located in Obin-ri (Coordinates: upper left 127◦27′04.08′′E, 37◦31′15.80”N and
lower right 127◦29′22.89”E, 37◦30′15.45”N) and at the Korea University Yangpyeong Experimental
Forest (upper left 127◦40′45.77′′E, 37◦30′56.22”N and lower right 127◦43′19.11”E, 37◦29′36.76”N),
Yangpyeong-gun, central South Korea (Figure 1). The forests of the study region range from 21 m to
220 m above sea level. The main tree species in these sites are Pinus densiflora, Larix kaempferi, and
Quercus spp. For this study, a total of 90 plots (30 plots for each species) were surveyed and investigated.
Each 30 plots for each species were split into 20 training and 10 testing sites. The training sites were
used for developing stand dominant species classification and volume estimation model, then the
testing sites were used for verifying the developed models.

Figure 1. Geographical location of study area with digital aerial photographs. (a) Obin-ri; (b) Korea
University Yangpyeong Experimental Forest.

2.2. Lidar Data Acquisition

A small-footprint lidar system (ALTM 3070 developed by Optech, Inc.) was used to acquire the
lidar data. The flight took place on 4 May 2009, and LiDAR data acquisition was performed at an
altitude of 1400 m and with a point density of 5–8 points per square meter. Each point return provides
the x, y, z position and intensity information derived from a near-infrared (1064 nm) laser pulse. The
radiometric resolution, scan frequency, and scan width of the recorded lidar data were 12 bits, 70 Hz,
and ±20◦, respectively. This study only used lidar data within a ±10◦ scanning angle to reduce the scan
angle effect on tree height and volume estimation [25]. Prior to extracting parameters from the lidar
data, every lidar return was classified by the automatic procedure of the TerraScam Program [26]. The
lidar returns were first classified into two groups, ground returns and above-ground returns. Ground
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returns were determined to be reflected from the ground within the plots, and above-ground returns
included all returns other than ground returns. Then, every return of the lidar data recorded as height
above sea level was converted to local height measure using a digital terrain model (DTM) generated
from ground returns.

2.3. Ground Data Acquisition

A field survey was performed on 25–27 September 2010 across two study regions, i.e., the Obin-ri
and the Korea University Yangpyeong Experimental Forest. Training and testing plots are 20 and
10 square plots (0.04 ha or 400 m2, 20 m sides) of each plot-dominant species, respectively [27]. For
the survey, species, DBH, height, and age of every individual trees > 5 cm DBH were measured and
tree density within each plot was recorded (Table S1). The dominant tree species, which accounts for
more than 75% of the total tree species within the plot, was determined by counting every individual
tree species [28]. The volume of each individual tree was calculated using species-specific allometric
equations from the field-measured DBH and tree height; thereafter, plot volume was summed from
every individual trees within each plot [28]. The species-specific allometric equations for volume
estimation were developed by Korea Forest Research Institute [29]. The survey followed a standard
procedure guided by the 5th National Forest Inventory [28].

The position of the center of each sample and test plot was acquired using the GPS Pathfinder
Pro XR, which is manufactured by Trimble. This position information was used to spatially join and
geo-match field surveying data with lidar data. The acquired GPS data were processed by a differential
correction method using supplementary information received from a continuous GPS station near the
study area. The corrected positions of the geo-referenced plots were obtained with position errors of
less than 1 m. This process aimed to correct some errors that could be related to differences between
the satellites and receivers, the atmosphere, satellite orbits, and reflective surfaces near the receiver
when surveying with a single GPS receiver [30].

3. Methods

This study utilized multiple linear discriminant and regression analysis for plot-level species
classification and volume estimation, respectively. Each process used the LiDAR height, intensity,
ratio parameters, and field measurements of the plot-dominant species and volume as independent
and dependent variables, respectively (Figure 2). Multiple linear discriminant analysis was adopted
to classify plot-dominant species using the independent dataset, and the results were then verified
by a cross-validation procedure with separate testing data. Thereafter, multiple linear regression
analysis was performed on the LiDAR dataset, with the results of each plot-dominant species then
evaluated using a corrected Akaike’s Information Criterion (AICc) [31] for selecting the optimal
equation candidates. The candidate models showing the best performance were then verified and
selected as an optimal volume model using testing datasets.
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Figure 2. Flowchart of plot dominant species classification and plot volume estimation.

3.1. Extraction of Lidar Height, Intensity, and Ratio Parameters

I extracted lidar height, intensity, and ratio parameters for constructing independent variables
from two separate LiDAR return types, i.e., canopy and total returns. Canopy LiDAR returns are
defined as returns that are higher than 1.0 m normalized height from DTM, while total returns include
every return falling in the target plot [8,16]. According to Chen et al. [13], the height threshold for
discriminating canopy returns from total returns might vary due to various forest stand conditions.
This study set the threshold at 1.0 m as it effectively differentiates canopy crowns (i.e., lower than
minimum crown base heights) and ground (Table S1). Then, 38 variables for the modeling process
were extracted based on a dataset classified into canopy and total returns.

The lidar variables include percentile, mean, maximum, minimum, median, mode, standard
deviation, coefficient of variation, kurtosis, skewness, and range of height and intensity data as those
are closely related to volume and species information [32] (Table 1). These height and intensity variables
were extracted from only canopy returns. The intensity variables can be significant descriptors of tree
specifications, however, the intensity values might be affected by variations in laser path length and
target reflectivity [33]. Thus, for intensity variables, I calibrated and normalized it by following an
approach suggested by Kwak et al. [34].
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Table 1. Definition of lidar height, intensity, and ratio metrics.

Independent Variables

Height Parameters Based on Canopy
Returns

Intensity Parameters Based on Canopy
Returns

Ratio Parameters Based on Integrated
Canopy and Ground Returns

HEI,i, I = 10, 20, . . . , 100
percentile height INT,mean, mean of intensity NumT, number of total returns

HEI,mean, mean of height INT,max, maximum of intensity NumC, number of canopy returns
HEI,max, maximum of height INT,min, minimum of intensity CRR, canopy return ratio
HEI,min, minimum of height INT,med, median of intensity INT,TSum, sum of total intensity

HEI,med, median of height INT,mode, mode of intensity INT,CSum, sum of canopy intensity
HEI,mode, mode of height INT,std, standard deviation of intensity CIR, canopy intensity ratio

HEI,std, standard deviation of height INT,cv, coefficient of variation of intensity
HEI,cv, coefficient of variation of height INT,se, standard error of mean of intensity
HEI,se, standard error of mean of height INT,kurt, kurtosis of intensity distribution

HEI,kurt, kurtosis of height distribution INT,skew, skewness of intensity
distribution

HEI,skew, skewness of height distribution INT,range, range of intensity
HEI,range, range of height

To consider return transmission from the canopy to ground, this study added not only the number
of returns from the canopy and total, but also the canopy return ratio (CRR, Equation (1)) and canopy
intensity ratio (CIR, Equation (2)) (Table 1).

Canopy Return Ratio =
number o f canopy returns

number o f total returns
(1)

Canopy Intensity Ratio =
sum o f intensities o f canopy returns

um o f intensities o f total returns
(2)

3.2. Plot-Dominant Species Classification

3.2.1. Selection of Explanatory Variables

Multiple linear discriminant analysis is a multivariate technique for separating distinct sets of
observations and allocating new observations into predefined classes, i.e., plot-dominant species in
this study [35]. This analysis is fundamentally based on minimizing the expected misclassification cost.
Fisher’s linear discriminant analysis, a widely used discriminant analysis function [35], was used to
classify three plot-dominant species (Pinus densiflora, Larix kaempferi, and Quercus spp.) in this study.

Thirty-eight independent variables were first extracted to discriminate plot-dominant species.
However, the use of all of the candidate variables to separate plot-dominant species would be inefficient
due to the need for intensive, time-consuming collection and management of all of the data. In addition,
the use of too many variables is referred to as overfitting, a condition in which the results are dependent
on sampling errors [35]. Therefore, a reduced discriminant analysis, with essential explanatory
variables, need to be performed using a stepwise selection method based on the Wilks’ λ criteria
approach (0.05 significance level used in this study). The Wilks’ λ, also known as the ratio of generalized
variance, is a test statistic used in multivariate analysis of variance to test whether differences exist
between the means of specified groups, i.e., plot-dominant-species groups in this study [35]. Further,
reduced parameters from the stepwise technique were also evaluated for their discriminant ability by
using both box-whisker plots and Tukey’s honestly significant difference (HSD) test. From the 38 lidar
height, intensity, and ratio parameters, several parameters were selected as explanatory variables for
plot-dominant species discrimination by stepwise selection. The discriminating power of each variable
was then evaluated.

3.2.2. Development and Assessment of Linear Discriminant Analysis

Fisher’s linear discriminant analysis is a linear dimensionality reduction technique using canonical
discriminant functions [36]. The procedure constructs a discriminant function by maximizing the ratio
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between the groups’ and within the groups’ variances [35]. Fisher’s method yields a linear function
that divides the variable space into two dimensions by developing a canonical discriminant function.
This canonical discriminant function is commonly written as Equation (3):

D = b1X1 + b2X2 + · · ·+ bnXn (3)

where D is the discriminant score, bi is the discriminant coefficient of the ith independent variable,
and Xi is the ith independent variable. Canonical discriminant functions can be used to calculate
the discriminant score of each plot for determining the centroid of scores related with species group
separation. The centroid of each species group was calculated by averaging discriminant scores
derived from these functions. These canonical functions might be evaluated by explanation degree
for discriminant score variations referred from canonical correlation coefficients [35]. In addition,
standardized canonical discriminant function coefficients are used to evaluate which variable has
higher discriminating power in each developed canonical discriminant function [35].

A cross-validation approach (leave-one-out method) was used to assess the accuracy of the
discriminant analysis [37]. The classification result was evaluated based on an originally grouped—and
cross-validated—accuracy assessment process by hit ratio explaining the correctly corresponding
discrimination performance. Additionally, Cohen’s kappa coefficients were calculated to measure
the agreement between the classifications of the best performance combination case. The Kappa
class value was used to rate the agreement as poor (0.40), fair (0.40–0.55), good (0.55–0.70), very
good (0.70–0.85), and excellent (>0.85) [38]. Among manifold variable combinations, the variable
combination showing the best performance was applied to determine plot-dominant species and this
information was sequentially used to develop the species-specific volume model. In addition to such
evaluation procedures, this study verified the variable combinations showing the best performance in
the training plots by applying these to the 30 separate testing plots.

3.3. Plot Volume Estimation

3.3.1. Selection of Explanatory Variables

To estimate the plot volume dominated by different species, multiple linear regression modeling
was separately performed. The 38 independent variables from the lidar height, intensity, and ratio
metrics were first utilized for regression modeling of the plot volume. The use of the fully developed
model using all candidate variables would be inefficient due to the same reason as in the discriminant
analysis; thus, this study reduced the model using stepwise selection methods at the 0.05 significance
level [13]. However, such selected variables under stepwise selection might have linear dependency
relationships, i.e., a problem referred to as multicollinearity. The multicollinearity can disturb the
estimation of a least square estimator in the regression procedure, so that the estimated value may be
unreliable due to increased variation. O’Brien [39] suggested a variance inflation factor (VIF) that can
evaluate the multicollinearity between selected independent variables. Moreover, Kutner et al. [40]
mentioned that a VIF below 10 is suitable for selecting independent variables, but values above 10
indicate a multicollinearity problem. Therefore, I only selected independent variables that have VIF
lower than 10. Then, highly correlated independent variables were further eliminated (Pearson’s
correlation coefficients over 0.5) [18].

3.3.2. Development and Assessment of Linear Volume Models

In this study, multiple linear regression analysis was performed using combinations of selected
variables for each species with 10 or fewer regressed functions selected, as shown in Equation (4):

y = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn + ε (4)
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where y is the plot volume measured in the field survey; x1, x2, x3, . . . , xn are the selected variables
derived from lidar height, intensity, and ratio parameters; α, β1, β2, β3, . . . , βn are the estimated
regression parameters; and ε is its residuals.

This study utilized Akaike’s information criterion (AIC) to select an optimal plot volume model for
each dominant species. To remedy potential bias introduced by the size of sample, AIC was substituted
into the corrected AIC (AICc) in this study (Equation (5)),

AICc = n
[
ln
(∑

(y− ŷ)2

n

)]
+ 2k +

2k(k + 1)
n− k− 1

(5)

where k is the number of parameters in the model and n the number of observations. y and ŷ stand
for the plot volume and its estimate from the model. The smaller AICc is, the more closely the model
approaches reality. When comparing different regression models, the estimated AICc values are
generally normalized by subtracting the minimum AICc values, according to Equation (6):

Δi = AICci −AICcmin (6)

where AICci is the AICc value of the ith model and AICcmin is the minimum AICci value. The results
of this transformation allow the following criteria. Regression models with Δi ≥ 2 were rejected and
models with Δi ≤ 2 were selected because only models with Δi ≤ 2 are accepted as providing substantial
support. With these AIC criteria, other supplementary statistics including R2, adjusted R2, RMSE, and
SSE of the models were also considered and compared when selecting the optimal plot volume model.

4. Results

4.1. Plot-Dominant Species

4.1.1. Explanatory Variables for Plot-Dominant Species Classification

Explanatory variables of the LiDAR height, intensity, and ratio parameters for plot-dominant
species classification were chosen through the stepwise selection method based on Wilks’ λ criteria at a
significance level of 0.05. The selected metrics were the 80th and 90th percentiles and the standard
deviation of height (HEI,80, HEI,90, and HEI,std), the mean, mode, standard deviation, coefficient of
variation, and skewness of intensity (INT,mean, INT,mode, INT,std, INT,cv, and INT,skew), and the canopy
return ratio (CRR). In order to determine the statistical significance of the differences in the three
plot-dominant species, the Wilks’ λ statistic, F-value, and Tukey’s HSD test were examined (Table 2).

The Wilks’ λ and F-value are generalized tests for determining the probability level of equality
of population centroids, assuming equality of dispersion. The variables including lower λ statistics
and higher F statistics at a high level of significance indicated high discrimination ability in
plot-dominant-species classification. According to these statistics, HEI,80, HEI,90, and INT,std were the
most effective discrimination parameters among the nine selected explanatory variables. The results
of multiple species comparisons by Tukey’s HSD test showed which parameter was the distinctively
meaningful factor for differentiating between two particular species. Tukey’s HSD tests revealed
significant differences between Larix kaempferi and other species for three variables (HEI,80, HEI,90, and
INT,mode). In the case of Pinus densiflora and Quercus spp., four (HEI,80, HEI,90, INT,mode, and INT,cv)
and two (HEI,80 and HEI,90) variables showed differences with other species under critical statistical
criteria (p < 0.001). Similar patterns can be found in the box–whisker plots (Figure S1).
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Table 2. Results of stepwise selection and Tukey’s HSD test for plot dominant species discrimination
(both under 0.05 significant level).

Significantly Different Species by Tukey’s HSD Test

Selected
Variable

Larix kaempferi
(LK)

Pinus densiflors
(PD)

Quercus spp.
(Qs)

Wilks λ F p-Value

HEI,80 PD, Qs LK, Qs LK, PD 0.467 32.56 <0.001
HEI,90 PD, Qs LK, Qs LK, PD 0.409 41.10 <0.001
HEI,std Qs · LK 0.893 3.42 <0.039

INT,mean Qs LK LK 0.892 3.46 <0.038
INT,mode PD, Qs LK LK 0.715 11.34 <0.001
INT,std PD LK, Qs PD 0.534 24.87 <0.001
INT,cv PD LK, Qs PD 0.665 14.34 <0.001

INT,skew PD LK · 0.724 10.86 <0.001
CRR Qs · · 0.836 5.58 <0.006

4.1.2. Evaluation of Plot-Dominant-Species Discrimination

A set of explanatory variables was used to differentiate three plot-dominant species using the
linear discriminant analysis. The 9 selected lidar height, intensity, and ratio parameters generated 511
combinations (29 − 1) of independent variables for discriminant analysis. Every possible combination
classified plot-dominant species of the 60 sampled plots and was evaluated by original grouped and
cross-validated accuracy assessments. The best performance in species discrimination was obtained
from a combination of all explanatory variables, including HEI,80, HEI,90, HEI,std, INT,mean, INT,mode,
INT,std, INT,cv, INT,skew, and CRR. Original grouped and cross-validated accuracy of this model were
95.0 and 93.3%, respectively. On the other hand, using only one variable, INT,mean, produced the
lowest classification accuracies of 46.7% (original grouped accuracy) and 45.0% (cross-validated
accuracy). Among the 511 possible combinations, Table 3 shows 10 variable combinations in order of
cross-validated results. The cross-validated results of the 10 combinations range from 88.3 to 93.3%
and most combinations have more than six variables showing that a general tendency between number
of variables and model accuracy (Figure S2).

The all of the combinations generated canonical discriminant functions to calculate discriminant
scores and classify plot-dominant species. In particular, the highest accuracy was achieved by the
combination with all variables (93.3%). This combination had first and second canonical discriminant
functions that could explain 86.3 and 67.4% of the discriminant score variance, respectively, refers from
canonical correlation coefficient. According to the result of the x2 test, both functions had a p-value
that was lower than 0.05, which meant that this function significantly discriminated Pinus densiflora,
Larix kaempferi, and Quercus spp. groups. The discriminant score centroid and distribution calculated
by canonical discriminant functions is shown in Figure S3. The classification agreement was excellent
as indicated by a kappa value greater than 0.90 [38] (Table S3).
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4.2. Plot Volume

4.2.1. Explanatory Variables for Plot Volume

In the case of the plots dominated by Larix kaempferi, five variables were selected using the stepwise
selection method at a significance level of 0.05: 90th percentile height (HEI,90), standard deviation of
height (HEI,std), mode of the intensity (INT,mode), standard error of the mean of the intensity (INT,se),
and the sum of the intensity (INT,TSum). These variables were shown to have low multicollinearity
by a VIF of approximately 1 (Table 4). Then, the selected variables were examined by comparing
Pearson’s correlation coefficients derived from correlation analysis between candidate variables. From
the results, HEI,std was highly correlated with HEI,90 with a coefficient higher than 0.5, so this variable
was eliminated to reduce multicollinearity (Table 5). Therefore, the explanatory variables to regress the
plot volume model for Larix kaempferi were HEI,90, INT,mode, INT,se, and INT,TSum.

Table 4. Results of variable selection to each species by variance inflation.

Species Variable DF
Parameter
Estimate

Standard
Error

t Value pr > |t|
Variance
Inflation

Larix
kaempferi

Intercept 1 −11.2321 1.91114 −5.88 <0.0001 0.0000
HEI,90 1 1.44559 0.28551 5.06 0.0002 4.07915
HEI,std 1 −2.24028 0.62636 −3.58 0.0030 4.03682

INT,mode 1 −0.65035 0.19885 −3.27 0.0056 1.00719
INT,se 1 63.19259 20.10955 3.14 0.0072 1.48727

INT,TSum 1 0.00112 0.000192 5.83 <0.0001 1.37517

P. densiflora

Intercept 1 1.19921 2.42319 0.49 0.6279 0.00000
HEI,mean 1 0.38271 0.11826 3.24 0.0055 1.48927
HEI,mode 1 0.07408 0.04048 1.83 0.0872 1.20480
INT,std 1 2.54207 1.37647 1.85 0.0846 1.52052

INT,range 1 −0.85953 0.24021 −3.58 0.0027 1.86565

Quercus
spp.

Intercept 1 −0.55562 1.09140 −0.51 0.6181 0.00000
HEI,80 1 −0.47026 0.19574 −2.40 0.0297 8.50554
HEI,90 1 0.72066 0.18835 3.83 0.0017 8.57314

INT,mode 1 0.06646 0.02167 3.07 0.0078 1.24328
INT,kurt 1 0.84446 0.42291 2.00 0.0643 1.22767

Table 5. Results of variable selection to each species by correlation coefficient.

Species Variables HEI,90 HEI,std INT,mode INT,se INT,TSum

Larix
kaempferi

HEI,90 1.00000 0.98055 −0.0341 0.18118 −0.15654
HEI,std 0.98055 1.00000 −0.03256 0.26466 −0.07958

INT,mode −0.0341 −0.03256 1.00000 −0.04156 −0.03433
INT,se 0.18118 0.26466 −0.04156 1.00000 −0.14369

INT,TSum −0.15654 −0.07958 −0.03433 −0.14369 1.00000

Pinus
densiflora

Variables HEI,mean HEI,mode INT,std INT,range

HEI,mean 1.00000 0.20974 −0.47106 −0.43012
HEI,mode 0.20974 1.00000 −0.20509 −0.41167
INT,std −0.47106 −0.20509 1.00000 0.44358

INT,range −0.43012 −0.41167 0.44358 1.00000

Quercus spp.

Variables HEI,80 HEI,90 INT,mode INT,kurt

HEI,80 1.00000 0.93215 0.15998 −0.07099
HEI,90 0.93215 1.00000 0.25939 0.14843

INT,mode 0.15998 0.25939 1.00000 0.45776
INT,kurt −0.07099 0.14843 0.45776 1.00000

101



Remote Sens. 2020, 12, 3266

In the case of Pinus densiflora, the mean of the height (HEI,mean), the mode of the height (HEI,mode),
the standard deviation of intensity (INT,std), and the range of intensity (INT,range) were selected. The
multicollinearity between the selected variables was low compared to their VIFs (below 10), as shown
in Table 4. An assessment of the one-to-one correlations between candidate variables was completed;
however, all four variables were included in the regression analysis due their relatively low correlation
coefficients (below 0.5) (Table 5).

To extract explanatory variables, acquired LiDAR parameters for Quercus spp. plots were reduced
by the same procedure. Consequently, the candidate independent variables, shown in Table 4, are
the 80th percentile of height (HEI,80), the 90th percentile of height (HEI,90), the mode of the intensity
(INT,mode), and the kurtosis of the intensity distribution (INT,kurt). The multicollinearity between the
selected variables was weak, as each VIF had a value below 10 (Table 4). Furthermore, as a result of the
correlation analysis between the selected variables, HEI,80 and HEI,90 were highly correlated (r > 0.5)
(Table 5). Therefore, HEI,90 was rejected as an explanatory independent variable for regressing the
plot volume model because both the probability value from a t-test and the VIF of HEI,80 were lower
than those for HEI,90. Eventually, HEI,80, INT,mode, and INT,kurt were adopted for the multiple linear
regression analysis for predicting the plot volume.

4.2.2. Evaluation of Plot-Volume Models

The four independent variables selected for Larix kaempferi were used in developing regression
models. The predictable equation was estimated by adopting the optimal regression model for
estimating the plot volume represented by ΔAICc less than 2 (Table S4). The two optimal regression
models found with ΔAICc ≤ 2 were model no. 1, which estimates the plot volume using HEI,90, INT,mode,
and IT, and model no. 2, in which the explanatory variables were HEI,90, INT,mode, INT,se, and INT,
when AICc was employed as the first criterion for selecting the best model. In addition, models 3 to 7
were rejected because their ΔAICc values were higher than 2, and the significance of their statistics was
reduced with increasing ΔAICc. Among these two models, I chose the model no. 2 as it shows a better
performance in RMSE, SEE, R2, and adjusted R2.

For Pinus densiflora plots, the combinable regression model was estimated with optimal regression
models having ΔAICc less than 2 (Table S5). However, the best model and the only one with
ΔAICc ≤ 2 was model no. 1, by which the plot volume could be estimated using HEI,mean, HEI,mode,
INT,std, and INT,range. Models 2 to 7 were eliminated as candidate regression models because their
ΔAICc was higher than 2 and because they lacked statistical significance with increasing ΔAICc.

In the case of Quercus spp. plots, three explanatory variables (HEI,80, HEI,mode, and INT,kurt) were
selected and applied to the regression analysis. As a result of the regression procedure, one regression
model, no. 1, with ΔAICc ≤ 2 was recommended. Models 2 to 7 were eliminated as candidate regression
models for estimating plot volume of Quercus spp. stands because their ΔAICc was greater than 2 and
because they lacked statistical significance with increasing ΔAICc (Table S6).

The developed plot volume models for each species were evaluated by implementing the models
to independent 30 testing plots (10 plots for each dominant species) (Table 6; Figure S4). The model for
Larix kaempferi shows high performance (R2 = 0.71, RMSE = 2.8 m3). In the case of Pinus densiflora,
validation results showed that R2 and RMSE values of the model were 0.74 and 2.59 m3, respectively.
When compared with plot volume predictions for Larix kaempferi, the best model of Pinus densiflora
showed slightly better validation performance. Prediction by the model for Pinus densiflora was slightly
overestimated, while estimation by the model for Larix kaempferi was underestimated. For Quercus spp.,
the developed model predicted plot volume with relatively a lower accuracy of R2 (0.56) and RMSE
(3.01 m3) than those of other species (Figure S4d). The best plot-volume model of Quercus spp.
produced overestimated plot volume predictions. The significance of the t-test for the developed and
selected optimal plot volume models for each dominant species was statistically satisfactory.
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Table 6. Selected optimal regression models for each species.

Species
Optimal Plot Volume

Equation R2 RMSE (m3)
t-test (α = 0.05)

Pr > | t |

Larix kaempferi

PV = 0.43730·HEI,90 −
0.68725·INT,mode + 24.2152 ·
INT,se − 0.000782 · INT,TSum

− 5.85002

0.7075 2.772 0.966

Pinus densiflora

PV = 0.38271·HEI,mean +
0.07408·HEI,mode + 2.54207 ·

INT,std − 0.85953 · INT,range +
1.19921

0.7368 2.590 0.852

Quercus.
spp.

PV = 0.28685·HEI,80 +
0.07623 · INT,mode + 0.31517 ·

INT,kurt − 0.71001
0.5641 3.010 0.925

5. Discussion

5.1. Plot-Dominant Species Classification

The stepwise technique selected nine explanatory variables: the 80th and 90th percentiles and
standard deviation of height (HEI,80, HEI,90, and HEI,std), the mean, mode, standard deviation,
coefficient of variation, skewness of intensity (INT,mean, INT,mode, INT,std, INT,cv, and INT,skew), and
the canopy return ratio (CRR) (Table 2). For the three plot-dominant species, each species showed
significant differences in height percentile parameters (such as HEI,80 and HEI,90) (Figure S5). Næsset
and Bjerknes [41] and Holmgren and Persson [23] showed that the 90 percentile statistic could be used
as a determining factor for species identification according to the close relationship between the height
of the dominant trees in the plot and crown shape. This study determined that the HEI,80 and HEI,90
parameters could represent the dominant height of trees within a plot and showed high potential for
being powerful discriminant variables. The height standard deviation of lidar returns which shows
how much variation or dispersion exists from the average of returns was closely related with crown
depth and corresponded to crown base height. The standard deviation of height was usually higher
for Larix kaempferi than Quercus spp. and Pinus densiflora because Larix kaempferi usually has deeper
tree crowns than those of the other species. This distinct aspect of standard deviation of height could
be a potential indicator for differentiating plot-dominant species [23].

Descriptive statistics of lidar near infrared intensity returns provide useful discriminators for
species identification through recording the different characteristics of the near-infrared radiation
reflected from forest canopies (Figure S6). In this study, five intensity statistics were effectively used
to classify plot-dominant species. The mean of intensity showed the highest value among the three
dominant species for Quercus spp. because reflectivity characteristics of broadleaf and dense foliage
produce higher intensity values than needle-like leaves and sparse foliage [42]. Coniferous trees
generally show significantly lower reflection values than broadleaf trees [43], so our result supports
his finding of species-specific intensity differences (Figure S6). In addition, due to densely covered
leaves or other components, this study also found that the mean of intensity of Pinus densiflora was
higher than that of Larix kaempferi. This is likely due to higher reflectivity of Pinus densiflora and denser
canopy structure (Figure S1) [44].

The statistics related to dispersion of lidar intensity, such as standard deviation and coefficient of
variation, were considered to be explanatory variables for identifying individual trees or dominant
species in previous studies [20,24,42]. The coefficient of variation of intensity, a normalized measure
of dispersion, was closely related to the standard deviation of intensity. Generally, intensity was
affected not only by canopy closure, but also by specific reflectivity characteristics that depend on
species. Consequently, dense forest canopies were associated with low lidar penetration rates and
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therefore such forests had low coefficients of variation and standard deviation [33]. When this study
examined intensity dispersion and the influences of canopy closure, Pinus densiflora showed the lowest
standard deviation and coefficient of variation. These lowest values originated from its permeability,
which is determined by the densely covered canopy. The intensity dispersion of Quercus spp. showed
higher standard deviation and higher variability of normalized standard deviation. Considering the
variability of field measured tree density, the intensity dispersions of Quercus spp. might be crucially
influenced by the intermingled effects of tree density and degree of canopy closure.

The mode of intensity might be expected to describe the concentrativeness of the returned
intensity distribution. The mode could be strongly influenced by the shape and structure of the
canopy and the degree of canopy closure. Species-specific reflective characteristics were shown in
three plot-dominant species; however, the dense canopy closure of Pinus densiflora and variability of
tree density of Quercus spp. affected those distributions. Highly dense needle-like leaves increased the
returned intensity value, and the severe variation of tree density in Quercus spp. dispersed its mode
of the intensity distribution. The skewness of intensity is related to the asymmetry of the recorded
intensity distribution. Positive skewness of intensity would be associated with a minimally skewed
distribution and negative skewness would be relevant to a highly skewed distribution. INT,skew
shown in box-whisker plots indicated that larger laser pulses were reflected from branches or bark in
plots of Larix kaempferi, while highly recorded intensities were from leaves in plots of Pinus densiflora
considering the structural and canopy closure characteristics of each species. Because Roberts et al. [45]
found that intensities from branch and bark had lower spectral reflectance than that of leaves, this
skewness of intensity suggested that the asymmetry of intensity might be an explainable indicator of
reflective objects.

The canopy return ratio was generally used to measure the degree of laser penetration (i.e., gap
probability) against canopy components such as leaves, branches, and stem. The canopy return ratio
showed a different pattern compared to other lidar height and intensity parameters revealing its
potential for describing canopy structures (Figures S5 and S6). This is because the canopy return ratio
was derived from calculating the ratio between the number of total returns and the number canopy
returns while the other parameters were calculated from only canopy returns. Higher ratio value
means that laser pulses are dominantly interrupted by dense canopy components. To the contrary,
lower canopy return ratios can be considered as open canopy forests. Comparing these ratios between
species, Quecus spp. showed the densest canopy cover with the highest canopy return ratio. This ratio
based variable can be an important explanatory indicator for differentiating stand species.

5.2. Plot-Volume Estimation

For the plot volume model, this study identified different sets of explanatory variables for different
plot-dominant species. This is likely because of different canopy structural conditions such as canopy
cover ratio, crown depth, tree density, and others of the plot-dominant species. Across all cases, HEI,90,
HEI,80, HEI,mean, HEI,mode, and HEI,kurt variables were chosen for plot volume estimation. These key
structural parameters were corroborated by findings of previous studies that were able to estimate plot
or stand volume using only canopy height distributional parameters [13,14]. The characteristics of
these parameters were closely related to volumetric canopy structures [14,19]. The higher percentiles of
height (80th and 90th) and mean of height were highly correlated with actual canopy height which has
been used to calculate volume based on allometric relationships. In addition, the mode of height and
kurtosis of the height distribution might help explain crown geometric volume [9,13]. Because crown
geometric volume correlated with stem volume and was derived from 3-dimensional crown structures,
these crown structures might be represented by variables based on their meanings. Therefore, these two
variables also have a meaningful explanatory ability for plot volume estimation through expanding
the linear relationship [9,13].

Intensity data were also included in plot volume estimation. The intensity parameters used here
were INT,mode, INT,se, INT,TSum, INT,std, INT,range, INT,mode, and INT,kurt. According to van Aardt et al. [18],
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various statistics of lidar intensity data, such as median, standard deviation, minimum, and others,
were adopted to predict stand volume under specified species information. As described in Section 5.1,
lidar intensity at the near-infrared region contains canopy structure and reflectivity information which
may improve the volume estimation model [46].

In multiple linear regression analysis, this study could distinguish the explanatory ability of each
variable for plot volume estimation. For the case of Larix kaempferi, HEI,90 and INT,TSum acted as key
explanatory variables at the highest significance. The plot volume dominated by Pinus densiflora took
HEI,mean and INT,range as highly significant variables among the selected four variables. In the case
of the Quercus spp., INT,mode largely explained plot volume of this species along with the HEI,80 and
INT,kurt parameters. Different key explanatory variables could be attributed by the characteristics of
canopy structures of each species. In general, Larix kaempferi showed a fat corn shape crown with
deeper crown depth, whereas the other two species had a horizontally flattened and rounded shape
in the study area. Particularly, the canopy depth of Quercus spp. was relatively deeper than that of
Pinus densiflora.

Canopy structural characteristics of each species may determine performance of lidar based
volume estimation model. Several studies have reported that plot- or stand-volume estimation
using lidar data is highly feasible but most of them examined over coniferous forests. For instance,
Næsset noted a range of the coefficient of determination of 0.80–0.93 for stand volume estimation in
coniferous forest and age and site-quality classes. Means et al. [16] conducted volume modeling for
coniferous forest with R2 values of 0.95 (including mature plots) and 0.97 (not including mature plots).
By including coniferous, mixed and broadleaf forests, van Aardt et al. [18] attempted to develop a
species-specific stand volume model and showed a limited performance ranging from R2 of 0.40–0.70.
The performance of this study is relatively better, at 0.71, 0.74, and 0.56 for Pinus densiflora, L. kaempferi,
and Quercus spp., respectively. Most studies including this study confirms that lidar based volume
estimation performs better in coniferous forest than broadleaf or mixed forests. In this study, the plots
dominated by Quercus spp. had especially large variability from the forest condition, so its plot volume
model suffered. These accuracy shortcomings can be also attributed to unexplainable variability in the
forest condition, such as stand density, species mixed ratio, etc. Therefore, further study is required to
consider various forest conditions (age, density, ratio of mixture, site quality, etc.) and to precisely
survey unbiased samples.

6. Conclusions

This study shows that lidar height, intensity, and ratio parameters are applicable for discriminating
plot-dominant species (Pinus densiflora, Larix kaempferi, and Quercus spp.) and for estimating plot
volume sequentially. A kappa accuracy of 0.75 was achieved in plot-dominant species classification,
and species-specific optimal plot volume models were developed and evaluated by coefficients of
determination of 0.71, 0.74, and 0.56, respectively. Further investigation found that dispersion and
mean of lidar intensity within a plot are key classifiers of identifying three species while height related
lidar variables play a key role in modeling forest plot volume. Selected explanatory variables are closely
correlated to vertical and horizontal canopy structures and are enough to represent species-specific
characteristics in both discriminative analysis and volume estimation. Additionally, observed different
variable combinations for two important applications imply that future studies should use proper
variable combinations for each purpose. This study only investigated over homogeneous forest
stands without considering characteristics of mixed forest stands, such as species mixture, age class
mixture, etc. Considering the characteristics of mixed forest stands can help provide an unbiased
implementation for discriminating species and estimating volume.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3266/s1,
Figure S1. Box-whisker plots for visualizing the distributional characteristics of selected parameters by three
plot dominant species. Figure S2. Original grouped- and Cross validated-accuracy of discriminant analysis by
number of selected variables in combinations. Figure S3. Distribution of discriminant score and its centroid by

105



Remote Sens. 2020, 12, 3266

first and second canonical discriminant function. Figure S4. Evaluation of the developed plot volume models
using independent testing data. Figure S5. Three dimensional view of the lidar height distribution of each
species. X and Y axes are a spatial coordinate of the plot (meter scale). Figure S6. Three dimensional view of
the lidar intensity distribution of each species. X and Y axes are a spatial coordinate of the plot (meter scale).
Table S1. Descriptive statistics of the field measurements. Table S2. Sorted the highest accuracy results of linear
discriminant analysis by number of variables. Table S3. Error matrix of plot dominant species classification results
by discriminant analysis (case on the highest performance of 93.3%). Table S4. Result of plot volume parameters
estimated multiple regression analysis to Larix kaempferi. Table S5. Result of plot volume parameters estimated
multiple regression analysis to Pinus densiflora. Table S6. Result of plot volume parameters estimated multiple
regression analysis to Quercus spp.
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Abstract: The information on biophysical parameters—such as height, crown area, and vegetation
indices such as the normalized difference vegetation index (NDVI) and normalized difference red
edge index (NDRE)—are useful to monitor health conditions and the growth of oil palm trees in
precision agriculture practices. The use of multispectral sensors mounted on unmanned aerial vehicles
(UAV) provides high spatio-temporal resolution data to study plant health. However, the influence of
UAV altitude when extracting biophysical parameters of oil palm from a multispectral sensor has not
yet been well explored. Therefore, this study utilized the MicaSense RedEdge sensor mounted on a
DJI Phantom–4 UAV platform for aerial photogrammetry. Three different close-range multispectral
aerial images were acquired at a flight altitude of 20 m, 60 m, and 80 m above ground level (AGL) over
the young oil palm plantation area in Malaysia. The images were processed using the structure from
motion (SfM) technique in Pix4DMapper software and produced multispectral orthomosaic aerial
images, digital surface model (DSM), and point clouds. Meanwhile, canopy height models (CHM)
were generated by subtracting DSM and digital elevation models (DEM). Oil palm tree heights and
crown projected area (CPA) were extracted from CHM and the orthomosaic. NDVI and NDRE were
calculated using the red, red-edge, and near-infrared spectral bands of orthomosaic data. The accuracy
of the extracted height and CPA were evaluated by assessing accuracy from a different altitude of
UAV data with ground measured CPA and height. Correlations, root mean square deviation (RMSD),
and central tendency were used to compare UAV extracted biophysical parameters with ground
data. Based on our results, flying at an altitude of 60 m is the best and optimal flight altitude for
estimating biophysical parameters followed by 80 m altitude. The 20 m UAV altitude showed a
tendency of overestimation in biophysical parameters of young oil palm and is less consistent when
extracting parameters among the others. The methodology and results are a step toward precision
agriculture in the oil palm plantation area.

Keywords: UAV; different altitudes; multispectral; biophysical parameters; young oil palm

1. Introduction

The oil palm (Elaeis guineensis) is an important industrial cash crop for major producer countries
such as Indonesia, Malaysia, and Thailand, which provide sizeable economic benefits both from
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employment and income through exports [1]. Malaysia is the second-largest producer of oil palm and
employs more than 600,000 high- and low -skilled laborers. In the next few years, ove 66,000 new jobs
are expected to be created through continued research and innovation [2]. According to the Department
of Statistics in Malaysia, oil palm is a significant contributor to the gross domestic product (GDP) of the
agriculture sector by 46% in 2017 [3]. Oil palm is the most significant source of vegetable oil because
of its high yield and extended productivity with a lifespan up to 25 years [4]. Currently, 4.49 million
hectares of land in Malaysia is planted with oil palm, which produced 17.73 million tons of oil palm [5].
More land areas for expansion of oil palm plantations are controversial and not sustainable; hence,
there is a need to optimize and maximize oil palm yield and production [6]. Moreover, the yield of oil
palm plantation depends mostly on plant health. In addition, the corresponding market price depends
heavily on the quality of oil palm [1]. However, oil palm growth is susceptible to the effects of climate
change through a range of expected biotic (e.g., pests, diseases, pollinators, associated crops) and
abiotic (e.g., temperature, rainfall, soil moisture, soil pH) stresses [7].

Information on oil palm plantation health conditions provides valuable inputs for the oil palm
companies for planning, decisions, and management strategies. Information technology plays a vital role
in increasing the cost-effectiveness of agriculture practices in precision agriculture. Precision agriculture
implements management activities, both spatially and temporally. These include pre-planting, planting,
fertilizing, crop protection, harvesting, and irrigation [8]. Remote sensing is one of the main tools
that supports precision agriculture as the spatial data provider with its spectral capability to detect
some variables, including soil properties, plant health, and crop yields [9]. In the case of oil palm
plantations, plant health detection at an early stage is crucial to curb future losses from underperforming
trees. There could be several reasons for low yields, such as diseases, pest attacks, weak quality
seedlings, fertilizers, climatic, and edaphic factors that require further investigations. Previous studies
reported that early monitoring of oil palm health not only promotes appropriate and effective remedial
measures but also extends oil palm lifespan and increases productivity [10]. The health of oil palm
can be monitored by studying the biophysical parameters such as height, crown size, and vegetation
vigor. Spectral reflectance-based vegetation indices are effective in monitoring vegetation vigor
and phenological parameters [11]. Several biophysical parameters such as leaf area index (LAI),
crown diameter, crown projection area (CPA), vigor, and tree height are positively correlated with
the plant growth stage [12]. Real-time quantification of these parameters can be useful for detecting
the health of a tree, which allows the selection of appropriate remedial measures such as the use of
fertilizer, insecticides, and irrigation to improve tree health. Meng et al. studied real-time detection of
ground objects using unmanned aerial vehicle (UAV) and deep learning methods in China [13].

The recent development in UAV techniques made it possible to apply low altitude photogrammetric
techniques in precision agriculture due to their flexibility and low cost [14]. In the oil palm industry,
UAV-based imaging provides low cost flexible data acquisition with less weather constraints and
higher spatial/temporal resolution, as compared to high-resolution satellite data [15]. There are
various applications of UAV, such as monitoring canopy structure and condition, mapping biomass,
and precision agriculture [16,17]. There are ground-based sensors available for precision agriculture
applications, but UAV-based monitoring is advantageous in generating smaller ground sample
distances, instantaneous calibration to reflectance, and point cloud construction [18]. The structure
from motion (SfM) technique is useful to characterize individual trees [17]. Díaz-Varela et al. and
Zarco-Tejada et al. used the SfM technique to estimate olive tree height and crown diameter in
Spain [19,20]. Previous studies showed that UAV-based SfM derived canopy cover of oil palm showed
20-50% overestimation as compared to ground-based measurement [21]. Usually, before conducting
aerial surveys, several parameters need to be optimized. These include flight altitude, image overlap,
speed, resolution, and area of coverage [22]. Logically, higher flight altitude captures a smaller number
of images with lower ground sample distance (GSD) because of the broad field of view of the camera
sensors onboard the UAV. High flight altitude can influence the accuracy of information derived for
an object due to the decline of the image detail [23]. Hence, lower altitude UAV flight (15–30 m) can
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provide more accurate and detailed image information [22]. However, it has been reported that there
is no significant difference in the normalized difference vegetation index (NDVI) value between two
objects (weed and crop) in images taken from 60 m, 80 m, and 100 m above ground level [24]. Moreover,
the reconstruction of 3D point clouds is sensitive to the movement of twigs and leaves induced by
wind [22]. As the UAV flies lower, the camera captures more images so that the possibility of the
object movement becomes greater. In addition, more images require more storage capacity and more
computing power for processing.

Oil palm plantations generally cover a large area. However, UAV data collected at low flight
altitudes can only cover a small area in a given time. There is a trade-off between flight altitude and area
covered during the flight [22]. Some aerial surveys conducted over oil palm considered using 80 m,
100 m, and 150 m flight height [1,23,25]. See et al. found that 80 m altitude aerial images produced
a fair amount of accuracy in individual tree identification and tree crown delineation in matured
oil palm plantations [1]. A previous study on the comparison between fixed-wing and multi-rotor
UAVs suggests that flying altitude below 150 m is suitable for environmental mapping for better
representation of vegetation features. Multi-rotor UAV systems are more accurate and better suited
for small areas than fixed-wing drones [22]. The flight altitude can directly influence the details and
quality of the derived biophysical vegetation parameters. There is a lack of studies about the influence
of low flight altitude on the extraction of biophysical parameters of young oil palm. Only a few
studies noticed the impact of flight altitude on data acquisition and processing time [26]. Furthermore,
Torres-Sanchez et al. investigated the influence of UAV collected image overlap on computation
and DSM accuracy in olive orchards in Calancha, Spain [27]. Therefore, it is necessary to understand
the influence of flight altitude on derived biophysical parameters of young oil palm for precision
agriculture studies. This study attempts to compare the influence of different flight altitudes to derive
biophysical parameters of young oil palm using the SfM technique.

2. Study Area

The study site lies between latitude 5◦8′8.368”N to 5◦8′4.852”N and longitude 118◦24′26.299”E to
118◦24′35.717”E in the Lahad Datu district of the Eastern coast of Sabah, Malaysia. The area of interest
(AOI) covers 5.2 acres of young oil palm planted trees (Figure 1). In total, 241 young oil palm trees
with the age of 3 to 4 years were present in the study area. All the oil palm trees were planted with a
fixed tree spacing of approximately 8 × 8 m. The climate of the study area is tropical, with an average
annual temperature of 26.9 ◦C and an average rainfall of 2063 mm [28]. Figure 1 shows the location of
the study area and individual oil palm trees in the inset aerial images of the AOI.

Besides oil palm trees, the ground area is covered with Mucuna Bracteata, a type of land cover crop
purposely planted to protect the soil from weeds. Mucuna Bracteata in oil palm plantations also helps
to maintain soil moisture content, supply organic matter, and protect from soil erosion [29]. Some of
the trees were affected by Rhinoceros beetle (Oryctes rhinoceros L.) and other pests in the study area.
Hence, some of the trees were showing damaged fronts and dying leaves. Rhinoceros beetles (RB)
destroy the young oil palm trees by burrowing into the shoots and young fronts. Figure 2a,b show a
healthy and diseased oil palm tree, respectively. Figure 2c shows a variety of damages caused by RB
and other pests. Overall, the affected oil palm trees show biological and physical damages such as
dying leaves, stunted growth, and irregular crowns. Therefore, the detection of these diseased trees is
essential to follow up treatment and control over the spreading to other healthy oil palm trees.
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Figure 1. Location of the study area in Lahad Datu, Sabah, Malaysian Borneo.

 

  

Figure 2. Field photographs of Oil palm: (a) Healthy tree, (b) diseased tree, and (c) damaged tree due
to the rhinoceros beetle (Oryctes Rhinoceros L.) and other pests.
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3. Materials and Methods

3.1. Aerial Imaging Tools and Data Collections

For the aerial surveys, DJI Phantom–4 mounted with a MicaSense RedEdge multispectral sensor
at downward-facing/nadir was used. A multi-rotor UAV platform was chosen for this study because
it is capable of capturing images at low altitudes for close-range photogrammetry. Phantom–4 is a
quadcopter, which enables vertical take-off and landing, as well as slow flight speed to provide a
stable platform for the multispectral camera. The MicaSense RedEdge camera was mounted with a
GPS device to acquire geotagged images with 2–3 m accuracy [30]. It captures information in five
spectral bands within the visible to red-edge and infrared spectrum. A downwelling light sensor
(DLS) and calibrated reflectance panel were used to calibrate the images according to ambient light
(Figure 3a). The MicaSense RedEdge Multispectral sensor was calibrated on-site before each flight
using the reference panel for accurate ground reflectance calibration (Figure 3a). Tables 1 and 2 show
the specifications of MicaSense RedEdge sensor and details about the spectral bands with wavelength
and bandwidth, respectively. Ground control points (GCPs) were collected using Leica GS20 real-time
differential GPS base and rover system with sub-meter accuracy (Figure 3b). Handheld Garmin
GPSMAP 60CSx and GoPro Hero-6 Action Camera were used to record location points and capture
images of oil palm tree conditions. Oil palm tree height and crown diameter samples were also
measured at the ground using the measuring tape and a height stick.

  

Figure 3. Equipment: (a) flight preparation and sensor calibration; and (b) ground control points
(GCPs) collection.

Table 1. Specifications of MicaSense RedEdge sensor.

Parameter Specification

Spectral bands Blue, green, red, red edge, near-infrared
Ground sample distance 8.2 cm/Pixel (per band) at 120 m above ground level

Capture speed Programmable by seconds interval for all bands
Format RAW 12–bit camera

Foal length / field of view (FOV) 5.5 cm/47.2 degrees (FOV)
Image resolution 1280 × 960 pixels
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Table 2. MicaSense RedEdge spectral bands with respective wavelength and bandwidth values.

Band Center Wavelength (nm) Bandwidth (nm)

Blue (B) 475 32
Green (G) 560 27

Red (R) 668 16
Red edge (R–Edge) 717 12
Near-infrared (NIR) 842 57

The UAV surveys were conducted on 29 and 30 August 2018 between 10–12 a.m. The weather
conditions during the data acquisitions were adequate with enough solar illumination, calm wind
with a slight breeze, and no clouds. The flight missions were planned using the DJI flight planner and
executed by Pix4DCapture apps. A single grid type flight plan was deployed in an automatic mode
at three different flight altitudes of 20 m, 60 m, and 80 m above ground level (AGL). The UAV flight
speed of each flight altitude was at 5 m/s. The MicaSense RedEdge camera was programmed using
Bluetooth connection to capture every 2 seconds and preview the initial test images every time before
take-off. This was to ensure image capturing was started with the right exposure setting, which was
calibrated before every flight missions. Images were captured with a flight path setting of 80% front
overlap and 75% side lap. The ground sampling distance (GSD) varies with the flight altitude. The time
required for the processing of aerial images at different flight altitudes with the same workstation was
also recorded and summarized in Section 4.1.

3.2. Data Processing

The flowchart of the proposed method is summarized in Figure 4. The overall aim is to investigate
the influence of UAV altitude using MicaSense RedEdge Multispectral sensor on the extracted oil
palm’s biophysical parameters. Therefore, a suitable spatial scale of data collection could be determined,
which will be useful for precision agriculture applications. The collected multispectral images at altitude
20 m, 60 m, and 80 m were processed using the structure from motion (SfM) technique in PiX4D mapper
software running in a workstation with an Intel Core i7–(9700) processor and with 16 GB random
access memory (RAM). Standard image processing steps in the Pix4Dmapper software were followed.
In the initial processing, the individual bands (B, G, R, R-Edge, and NIR) of the aerial images were
radiometrically corrected using reference images of the calibration panel, which were also collected in
the field before every flight. Then, followed by key point extraction, matching, camera optimization,
and geolocations of GCPs occurred. The coordinate system used in this study is the local coordinate
system of a Borneo rectified skew orthomorphic (BRSO) Timbalai 1948 in meters measurement unit.
The processing was then followed by steps of creating point clouds with scale constraint defined
setting and meshing in Pix4Dmapper with settings selected at high resolution. The final steps of the
processing were the generation of outputs of multispectral orthomosaic (B, G, R, R-Edge, and NIR) in
GeoTIFF format, point clouds in LAS format, and digital surface model (DSM) in GeoTIFF format.

The point clouds were used to produce DEM and to subtract the DSM for canopy height models
(CHM) production and subsequently to delineate individual oil palm tree crowns for generating the
CPA (details in Sections 3.2.1–3.2.3). The orthomosaics were used for the transformations to vegetation
indices of NDVI and normalized difference red edge index (NDRE). Figure 5 shows the images in
true color composite with the orthomosaics combination of RGB bands at a flight altitude of 20 m,
60 m, and 80 m. Figures A1 and A2 illustrate the output of 3D point clouds and 3D DSM for the
three flights altitude, respectively. Statistical information of the biophysical parameters of CPA, height,
including vegetation indices (NDVI and NDRE) of individual oil palm trees, were extracted and
analyzed. The statistical analysis was performed with the help of central tendencies and histogram of
difference to see the deviation of biophysical parameters at different flight altitudes.
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Figure 4. Flowchart of the methodology.

(a) 

 

(b) 

 
(c) 

 

Figure 5. Multispectral orthomosaic aerial images in (RGB) true color composites at a flight altitude of
(a) 20 m, (b) 60 m, and (c) 80 m with AOI overlay.

3.2.1. Classifications of Point Clouds and Production of DSM and DEM

The point clouds were classified to separate oil palm trees (off-ground points) and ground
elevations (ground points) using automatic cloth simulation filter (CSF) in CloudCompare software.
However, automatic CSF classification was not sufficient; some remaining off-ground points in
the ground class were cleaned manually. It was observed that CSF was unable to totally clean off
ground point clouds because of the inability to detect independent non-grouped off ground points.
Cleaned ground point clouds were used to produce the digital elevation model (DEM) of the study
area while the original was for productions of DSM directly. The term DEM was employed because
the ground points did not indicate real bare ground. The ground was covered by the legume crop
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Mucuna Bracteata at a height of approximately less than 25 cm. Figure 6a,b illustrate the original point
clouds and classification operations to extract ground elevation, respectively.

 
(a)

 
(b)

Figure 6. Point clouds: (a) original and (b) ground elevation after classification.

3.2.2. Production of Canopy Height Model (CHM)

The canopy height model (CHM) was derived by simple subtraction of the DEM from the DSM
(i.e., CHM = DSM − DEM) computed in ArcMap using the Raster Calculator tools. The CHM process
is illustrated in Figure 7, with all DEM, DSM, and CHM showed from 3D perspectives. It can be
observed in the CHM that individual oil palm tree canopies with crown and height were depicted in
black to white color height gradient.

 

Figure 7. 3D view of (a) DSM subtracted using (b) DEM to produce (c) CHM.

3.2.3. Height, Crown Area, and Crown Projection Area (CPA)

The crown area of individual trees were extracted into vector format by generating contours
at a specified height of crown edges of CHM for each altitude in Global Mapper software. In CHM,
the pixels with high values represent the presence of the oil palm trees, as compared to the surrounding
CHM, which has zero value after the terrain was completely removed (Figure 7c). The extracted
individual tree crown area vectors were filtered to remove small polygons that did not represent
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oil palm trees. Subsequently, information of individual oil palm tree height was derived from the
CHM-based on crown area maximum height using zonal statistics in ArcMap software. As a result,
individual oil palm tree height was stored in a tabular format. Additionally, the CPA was generated
using “minimum bounding geometry” in a circle that represents the generalized size of the area
covered by the crown. Figure 8 represents the biophysical parameters of individual oil palm trees.
Height, crown area, and CPA information were combined into the attribute table of individual trees.

Figure 8. Illustration of height, crown area, and CPA.

3.2.4. Vegetation Indices (NDVI and NDRE) Transformations

The land use and land cover in the study site are mainly oil palm trees, Mucuna Bracteata,
and exposed soil. Previous studies have used various vegetation indices based on UAV acquired data
to delineate information about various vegetation parameters [31–33]. These vegetation indices have
been widely used to identify vegetation and soil properties. Basically, plants interact with incident
solar radiation by absorbing, transmitting, and/or reflecting electromagnetic radiation. The reflected
radiation contained information about the plants’ biophysical composition and physiological status
and is measured with multispectral sensors [34]. In this study, NDVI and NDRE were computed
using ArcMap software. NDVI is a standard spectral transformation technique used for monitoring
vegetation health [35,36]. NDVI shows a strong sensitivity to the vegetation as compared to the
background soil. The equation for calculation of NDVI is given below:

NDVI =
NIR−Red
NIR + Red

(1)

where red represents reflectance in red band and NIR is the reflectance in the near-infrared band of the
acquired data.

Meanwhile, NDRE is used to measure the stress and chlorophyll content in leaves [37]. It is more
suitable to detect early stress as compared to NDVI [38]. NDRE is the ratio measurement between the
near-infrared band with the red edge band. The equation to calculate NDRE is given below:

NDRE =
NIR−Red Edge
NIR + Red Edge

(2)

Both NDVI and NDRE were computed using the multispectral orthomosaic aerial images in
ArcMap software for the 20 m, 60 m, and 80 m flight altitudes. Figures A3 and A4 show the NDVI and
NDRE images of the study area at UAV altitude 20 m, 60 m, and 80 m, respectively. NDVI and NDRE
show a variation in the vegetative and soil areas. The NDVI and NDRE values of individual oil palm
trees were extracted using the vector file of the crown area in ArcMap.
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3.3. Data Analysis

The biophysical parameters (CPA diameter, tree height, including vegetation indices of NDVI,
and NDRE) were statistically analyzed to evaluate the influence of flight altitudes. Firstly, we compared
biophysical parameters extracted from different flight altitudes using central tendencies from histogram
analysis. Histograms were used to see the tendency of value differences resulting from the deviation
of each parameter between different flight altitudes. The central tendency of subtraction values was
assessed by calculating mean and median values. Ground measured CPA diameter and tree height were
used to validate UAV derived parameters. Standard error of estimation (SE) with a 95% confidence
level was used to assess the accuracy of UAV extracted CPA diameter and tree height with the ground
information [39,40]. For NDVI and NDRE, root mean squared deviation (RMSD) was calculated to
determine the absolute difference between each UAV altitude [41]. The formula of RMSD is given
as follows:

RMSD =

√∑N
i=1(y1i− y2i)2

N
(3)

where y1 denotes the value of parameter obtained from “1” UAV altitude, while y2 from “2” UAV
altitude. N represents the total number of samples and i represents a specific tree sample.

4. Results

UAV collected data were processed to extract various biophysical parameters and transformations
of vegetation indices from oil palm trees. Table 3 summarized the areal coverage, duration,
ground sampling distance (GSD), and processing time (total and per acres) of images for different UAV
flight altitude acquisition. Higher altitude flight of 60 m and 80 m yielded much larger areal coverage
(12 and 22 acres) in just one flight as compared to the 20 m altitude, which required 4 flight missions to
cover just 5.7 Acres. This is mainly because it was not possible to perform the whole flight mission
with only one battery.

Table 3. Summary of flight parameters and details of collected images. GSD: ground sampling distance.

Flight
Altitude

Area Covered
(Acres)

Number
of Flights

Planned
GSD

Processed
GSD

Number
of Images

Total Processing
Time

Processing
Time per Acres

20 m 5.7 4 1.39 cm 1.37 cm 8800 4h and 22 m 46 m
60 m 12.2 1 4.17 cm 5.16 cm 2350 56 m 5 m
80 m 22.0 1 5.56 cm 5.68 cm 2195 1h and 6 m 3 m

On the other hand, a lower altitude (20 m) gathered more than three times the number of aerial
images (8800) compared to 60 m (2350) and 80 m (2195). The processing time required for 20 m, 60 m,
and 80 m altitude flight missions was about 4 hours 22 minutes, 56 minutes, and 1 hour 6 minutes,
respectively (Table 3). The 60 m altitude required less processing time compared to the 80 m because
the areal coverage was only about half of that obtained during the 80 m altitude flights. Nevertheless,
the image acquired at 20 m flight altitude produced GSD of 1.37 cm, whereas 60 m and 80 m flight
resulted in 5.16 cm and 5.68 cm GSD, respectively. A lower GSD (higher resolutions) implies that
more ground details and, therefore, dense point clouds are available for the subsequent SfM analysis
and DSM generation. There is a positive relationship between dense point cloud reconstruction and
processing time, which agrees with the studies that reported the relationship between flight altitude
and point cloud density [42]. In general, a higher flight altitude causes a decrease in processing time [27].
The results of the biophysical parameters extracted from different flight altitude missions are discussed
in the following sections.

4.1. Crown Projection Area (CPA) Diameter

The crown area of individual oil palm trees was generated from the canopy height model (CHM);
subsequently, the crown projection area (CPA) was generated using the “minimum bounding geometry”
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of the crown area (see Figure 8). The CPA is indeed a generalization representing the crown rather
than the crown area itself, which has complex-shaped morphometry. It is worth noting that there
are certain difficulties in obtaining uniform diameter measurements from the complex shaped crown.
Estimating crown diameter based on CPA may result in under- or overestimation. Yet, CPA size
variations within a uniform age oil palm plantation may provide insight into underlying health issues
when combined with vegetation indices [43]. Therefore, deriving tree diameter from the CPA is suitable
for this study.

The derived CPA diameters were statistically analyzed for the three different flight altitudes.
The CPA diameter values were plotted on the x and y-axis (Figure 9a–c). From the results, it can be
observed that the scatterplots exhibit normal distributions with all CPA values are clustered around the
1:1 line. Despite the difference in the altitudes, the derived CPA values have a strong linear relationship
indicated by the high correlations with the value of the coefficient of determination (R2) more than 0.61.
The CPA derived from 20 m and 60 m altitudes show a weaker relationship (R2 = 0.616), while CPA
derived from 60 m and 80 m show a high correlation (R2 = 0.649).

 

Figure 9. Scatterplot to compare crown projected area (CPA) diameter measured from different altitudes:
(a) 20 m and 60 m, (b) 20 m and 80 m, and (c) 60 m and 80 m. A plot between ground measured CPA
and UAV estimated CPA at flight altitude of (d) 20 m, (e) 60 m, and (f) 80 m.

Figure 10 shows the histogram of the difference for CPA to see the tendency at different altitudes.
Difference values are the result of subtraction between the compared flight altitudes. It can be observed
in the graphs that the CPA values derived from 80 m flight are generally less than 20 m and 60 m
flight altitudes (see Figure 10b,c). CPA values at 60 m UAV altitude are higher among the others as the
central tendency of histograms (Figure 10a,b) skewing towards 60 m altitudes.

Validation of CPA Diameter

The UAV derived CPA diameters were validated with the ground measured CPA diameters
collected randomly in the field. The comparison of UAV derived CPA diameters with field data is
given in Figure 9d–f, as well as Table 4. As shown in Table 4, all three flights show high correlations to
the ground data, but the strongest correlation is observed from the 60 m altitude data (0.938). A high
correlation indicates that the UAV derived CPA diameter has a good agreement with the ground data.
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In addition, to assess the accuracy, SE for three UAV altitude were also calculated. The 60 m flight
altitude produced the highest accuracy of 92.47%, among other altitudes (Table 4).

   
(a) (b) (c) 

Figure 10. Histogram of difference for CPA diameter between different flight altitudes: (a) 60 m and
20 m, (b) 80 m and 20 m, and (c) 80 m and 60 m.

Table 4. Correlation and accuracy value of CPA diameter.

Flight Altitude Correlation Coefficient (r) Accuracy (%)

20 m 0.903 90.35
60 m 0.938 92.47
80 m 0.912 89.69

4.2. Tree Height Model

Unlike the tree crown relationships, the tree height scatterplots yielded a low correlation coefficient
between different altitudes. As shown in Figure 11a–c, only the scatterplots of 60 m: 80 m had a good
correlation (R2 = 0.568). A lower coefficient obtained for 20 m: 60 m and 20 m:80 m suggest that the
tree height measured from 20 m flight produced a large difference in tree height values compared
to 60 m and 80 m flight. Histograms of difference also show that the tree heights at 20 m flight are
generally higher than 60 m and 80 m, and that of 60 m is higher than 80 m flight (Figure 12).

Figure 11. Scatterplot to compare tree height measured from different altitudes. Comparison between
(a) 20 m and 60 m, (b) 20 and 80 m, and (c) 60 m and 80 m. Plots between ground measured tree height
and UAV estimated tree height at flight altitude of (d) 20 m, (e) 60 m, and (f) 80 m.
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(a) (b) (c) 

Figure 12. Histogram of difference for tree height between different flight altitudes: (a) 60 m and 20 m,
(b) 80 m and 20 m, and (c) 80 m and 60 m.

Validation of Tree Height Model

Similar to CPA diameter, the tree heights derived from UAV were validated with ground measured
tree heights as shown in Figure 11d–f. Based on the correlation and accuracy value (Table 5), our results
showed that 20 m flight data has the lowest accuracy, reaching 78.10%. The 60 m UAV altitude had the
highest accuracy (86.52%) among all three flight altitude missions (Table 5).

Table 5. Correlation and accuracy value of tree height.

Flight Altitude Correlation Coefficient (r) Accuracy (%)

20 m 0.765 78.10
60 m 0.875 86.52
80 m 0.883 85.70

4.3. Vegetation Indices (NDVI and NDRE) Comparison

Figure 13 illustrates the scatterplots to compare extracted NDVI and NDRE values from different
flight altitudes. Only for the scatterplot of 60 m: 80 m were close to the 1:1 line for NDVI and NDRE
(Figure 13c,f). The 60 m: 80 m also had the highest correlations for NDVI (r = 0.774) and NDRE
(r = 0.696). The second highest correlation is observed for 20 m: 60 m with (r = 0.507) and (r = 0.402),
respectively. The flight comparison of NDVI value at 20 m: 80 m shows the least correlation with
a value of 0.435. The correlation value of NDRE at 20 m: 80 m is very low, reaching only 0.273
(p-value = 0.000018). Although having the same pattern, the relationship of each flight comparison on
NDVI is stronger than that of NDRE. Similarly, the RMSD follows the same results as the scatterplots
(Figure 14). Observation of scatterplots and RMSD reveals that numerous tree plots extracted from 20 m
have a big difference in vegetation indices value when compared to 60 m and 80 m flight. Least RMSD
value was observed between 60 m and 80 m flight altitudes.

Since the scatterplots are similar between NDVI and NDRE, the histograms of difference value
provide the same pattern (Figure 15). The histograms in Figure 15c,f show that the small deviations were
observed between measurements made at 60 m and 80 m, suggesting a better match between them.

4.4. Evaluation of Flight Altitude

We analyzed the optimal flight height by assessing the accuracy of CPA diameter and tree
height, as well as RMSD value of NDVI and NDRE, as discussed in Sections 4.1–4.3. Furthermore,
we also assessed the consistency of biophysical parameter extraction for each flight. With the growth
of oil palm trees, there is growth in biophysical parameters such as crown diameter, tree height,
etc. [43–45]. Hence, crown diameter and tree height should grow linearly. Since both parameters were
generated from point clouds, we examined the relationship and observed whether flight altitude affects
consistency. Table 6 shows a strong relationship between CPA diameter and tree height with a value
of correlation coefficient is 0.568 and 0.583 at 60 m and 80 m flight altitude, respectively. The flight
altitude at 20 m shows a low correlation of 0.277. Similarly, the relationship between vegetation indices
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(NDVI and NDRE) was also assessed. All flight altitudes showed a strong relationship between NDVI
and NDRE, with correlations of more than 0.85. The 20 m flight maintained produces the weakest
relationship for both comparisons, which means having the lowest consistency. On the contrary, 60 m
and 80 m were highly consistent for extracting the biophysical parameter.

 

Figure 13. Scatterplot to compare NDVI and NDRE measured from different altitudes. Comparison
between 20 m and 60 m (a,d), 20 m and 80 m (b,e), and 60 m and 80 m (c,f).

 

 
Figure 14. RMSD value of NDVI (blue) and NDRE (green) for each compared flight altitude.

Table 6. Correlation analysis between crown diameter and height, and NDVI and NDRE at different
flight heights.

Variables of Comparison Flight Altitude Correlation Coefficient (r)

CPA Diameter Height
20 m 0.277
60 m 0.568
80 m 0.583

NDVI NDRE
20 m 0.863
60 m 0.910
80 m 0.924
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Figure 15. Histogram of difference for NDVI and NDRE between different flight altitudes: (a,d) between
60 m and 20 m, (b,e) between 80 m and 20 m, and (c,f) between 80 m and 60 m.

5. Discussion

This study demonstrates a systematic analysis of the influence of different UAV altitudes to extract
biophysical parameters of the young oil palm plantation area in Malaysia. It provides a methodological
approach to extract various biophysical parameters from UAV data. These parameters can be useful
indicators to monitor plant growth and health. The objective of this study was to evaluate the suitable
flying height to extract crown diameter and height using UAV-based aerial images. Obtaining the
tree heights and crown diameter from satellite-based surface models have limitations due to their
low spatial resolution. Further, obtaining tree height values with a GNSS device is difficult in denser
forest areas [19,43]. Terrestrial light detection and ranging (LiDARs) and UAV-LiDARs, on the other
hand, produce accurate results, but long processing time and heavier payload limit the gathering of
base data [44]. Therefore, a low-weight DJI Phantom–4 UAV device mounted with the MicaSense
RedEdge Multispectral sensor were used for obtaining the tree height and crown diameter at 20 m,
60 m, and 80 m flight altitudes. Since the RedEdge camera has the capability to obtain information in
the NIR and RedEdge spectrum, we also calculated NDVI and NDRE in this study.

The important finding of this was that flight altitude at 60 m can provide more accurate results as
compared to 20 m and 80 m. The highest accuracy to extract CPA diameter and height was produced
at 60 m altitudes. UAV data at low altitude (20 m) with an increased number of point clouds can
provide better height estimation, but it was not true in this study. The findings of this study is in
contrast to Whitehead et al. [23] and Seifert et al. [22]. Whitehead et al. reported that the probability of
detection of objects is better with higher point clouds data [23]. However, a higher spatial resolution is
not necessary to obtain the desired accuracy, as noticed in this study. Seifert et al. [22] reported that
low flight altitude could produce more details in forest areas. The reason might be that the authors
also used high forward overlaps, which is not explored in this study. Even though 20 m flight altitude
produced more point clouds than 60 m and 80 m, the systematic error propagation may also be higher
while employing denser point clouds. However, this condition is not correct to extract CPA diameter.
In this study, flights at all altitudes produced high accuracy for CPA measurements. This is mainly
because the extraction of CPA diameter is not as sensitive as tree height, which relies on the maximum
height value of the point clouds. According to Section 4.2, many errors (overestimations) are produced
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at 20 m flight altitudes, which makes the accuracy lower than tree height estimated at 60 m and 80 m
flight altitudes.

To produce accurate point clouds, capturing UAV aerial images closer to objects is not always
necessary. At a low flight altitude, the UAV captures many images because of the smaller field of
view of the sensor. However, even though producing more point clouds, the images-alignment from
many images at lower altitudes can result in an additional error. Tree structures (twigs and leaf) may
change due to wind-induced movement. This shifts the relative position of objects between images,
which causes mismatching in image alignment [22]. Therefore, more images captured may lead to
more errors in image alignment. An additional consideration when capturing aerial images is the
height of objects in the area of interest. For example, the maximum oil palm height in our study area
was around 5 m and therefore only 15 m difference from the sensor. Moreover, the topography was not
flat, which meant some trees would be captured less than 15 m from the UAV. These conditions also
make the less consistent for biophysical parameters extraction was observed at 20 m height.

Based on our results, we determined that the NDVI and NDRE are best extracted from 60 m
followed by 80 m flight altitudes. Mesas-Carrascosa et al. reported that the NDVI value is not
significantly affected by the different flight altitudes [24]. Contrary to their observation, we found that
the low flight altitude (20 m) produced larger RMSD values than 60 m and 80 m flight. This is probably
because, at the highest pixel size (1.37 cm), more noise may also be captured when compared to the
coarser pixel sizes. The higher altitude can maintain the spectral accuracy as it is observed that NDVI
and NDRE values of 60 m and 80 m flight are well correlated. During field measurement, the UAV
speed for all altitudes were at 5 m/s. Therefore, the closer sensor to the objects, the faster its relative
speed to the object even the drone speed remains the same. As a result, some images were not clear and
had to be eliminated. To overcome the limitations of the distance between objects and sensors, the use
of a GNSS onboard system like Phantom4 RTK is useful. It can provide real-time, centimeter-level
positioning data for improved absolute accuracy on image metadata. The use of real-time detection
of young oil palm biophysical parameters using UAV is advantageous because at the young stage,
there is a rapid growth of biophysical parameters and it can be helpful to monitor the health of oil
palm in case of pest infestation [13].

This study examined different flight altitudes, but all flights were lower than 100 m above the
ground. To cover a larger area, flights at higher altitudes are needed for higher efficiency, and, in this
case, 60 m altitude and 80 m altitude flights will be more efficient than flights at 20 m altitudes. It is
challenging to provide an optimum value of UAV and sensors parameters since each combination of
sensors and drone parameters produce different results. Nonetheless, we attempted to consider only a
few parameters in this study. Thus, we need to optimize these combinations based on our requirement
by considering various trade-offs such as: altitudes, sensors resolution, point clouds, processing time,
side and forward overlaps, etc. A further investigation of the effects of sensors and overlaps would be
desirable to better understand their impact.

This study is focused on young oil palm plantation areas with limited coverage, while the old oil
palm plantation area was not considered. Fawcett et al. reported that 100 m UAV altitude is the best
for estimating the height of seven-year old oil palm trees [25]. Therefore, we can suggest that flight
altitude should be increased in tall trees to minimize the high relative speed, as mentioned earlier.
Moreover, the crowns of young oil palm plantations are still in the growing stage, which makes the
gaps between individual trees are apparent in this study. Therefore, the estimation of crown size at the
young stage is more accurate as compared to the old stage because at the old stage, there is a possibility
of overlaps between the crowns of old trees. This challenge can be further explored to determine
optimal flight altitudes for different growth stages of oil palm in the future.

6. Conclusions

This research was undertaken to evaluate the influence of UAV flight altitude on the extraction
of biophysical parameters of oil palm plantations. Multispectral UAV aerial images over oil palm
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plantations were processed to produce multispectral orthomosaic, DSM, and point clouds. The study
involved (i) detection of individual oil palm trees and extraction of biophysical parameters;
(ii) comparison of biophysical parameters with ground data; and (iii) evaluation of UAV altitude for
obtaining the most accurate biophysical parameters. CHM was generated by subtraction of DSM with
DEM. Individual oil palm trees were segmented from the CHM, which was used for extractions of
biophysical parameters such as tree height, crown diameter also vegetation indices of NDVI, and NDRE.
Statistical methods were used for comparison of biophysical parameters at different UAV altitudes.
The results of the statistical analysis show that 60 m altitude is best for measuring CPA diameter and
extracting oil palm height. Moreover, NDVI and NDRE show good vigor at 60 m and followed by
80 m UAV altitudes. Based on the results presented in this study, flying at 60 m altitudes is suitable for
extracting biophysical parameters of oil palm. However, 20 m UAV altitude tends to overestimate the
biophysical parameters even though visually, it shows the best visual detail. The 60 m followed by 80 m
altitudes are suitable for UAV aerial images collection, since biophysical parameters can be accurately
measured at these altitudes and larger areas can be covered more efficiently. This is also important
for commercial applications. The findings of this study can be useful for future research because the
generation of DSMs from UAV is rapidly increasing. This study can contribute to finding optimal flight
altitudes to extract biophysical parameters accurately and efficiently. In the future, real-time processing
of UAV data can help in plant disease detection and fast response to support timely remediation.
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Appendix A

  

 
Figure A1. Point Clouds of the AOI at UAV altitude of (a) 20 m, (b) 60 m and (c) 80 m.
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Figure A2. Digital Surface Model (DSM) of the AOI at UAV altitude of (a) 20 m, (b) 60 m and (c) 80 m.

 
Figure A3. Normalized Difference Vegetation Index (NDVI) for (a) 20 m, (b) 60 m and (c) 80 m altitude.

 

Figure A4. Normalized Difference Red Edge (NDRE) for (a) 20 m, (b) 60 m and (c) 80 m altitude.
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Abstract: As a continuation of Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1),
the ICESat-2/Advanced Topographic Laser Altimeter System (ATLAS) employs a micro-pulse
multi-beam photon counting approach to produce photon data for measuring global terrain. Few
studies have assessed the accuracy of different ATLAS channels in retrieving ground topography in
forested terrain. This study aims to assess the accuracy of measuring ground topography in forested
terrain using different ATLAS channels and the correlation between laser intensity parameters, laser
pointing angle parameters, and elevation error. The accuracy of ground topography measured by the
ATLAS footprints is evaluated by comparing the derived Digital Terrain Model (DTM) from the ATL03
(Global Geolocated Photon Data) and ATL08 (Land and Vegetation Height) products with that from
the airborne Light Detection And Ranging (LiDAR). Results show that the ATLAS product performed
well in the study area at all laser intensities and laser pointing angles, and correlations were found
between the ATLAS DTM and airborne LiDAR DTM (coefficient of determination—-R2 = 1.00, root
mean squared error—-RMSE = 0.75 m). Considering different laser intensities, there is a significant
correlation between the tx_pulse_energy parameter and elevation error. With different laser pointing
angles, there is no significant correlation between the tx_pulse_skew_est, tx_pulse_width_lower,
tx_pulse_width_upper parameters and the elevation error.

Keywords: ATLAS; ground topography in forested terrain; laser intensity; laser pointing angle

1. Introduction

The spatial structure of forested terrain is listed as an important indicator for monitoring
carbon stocks by the International Union of Forest Research Organizations (IUFRO) [1,2]. Assessing
ground topography in forested terrain is a prerequisite to accurately determine the forest spatial
structure; therefore, high spatial resolution modeling is necessary to characterize forest ecosystems [3,4].
Most optical remote sensing systems can measure ground topography in forested terrain; however,
they have poor measurement accuracy (elevation difference = 2.9 m to 4.9 m) [5,6]. Spaceborne [7],
airborne [8,9], and terrestrial [10,11] Light Detection And Ranging (LiDAR) systems have shown great
potential for acquiring accurate topographic information in this field. Although airborne and terrestrial
LiDAR can accurately quantify ground topography in forested terrain, these methods remain largely
impractical at large spatial scales due to high data acquisition costs [8,12–14]. Spaceborne LiDAR
is unique since it comes with low acquisition costs and provides a synoptic perspective of certain
plot-level details from orbit [15].

The Ice, Cloud, and land Elevation satellite-1 (ICESat-1) [16], the Global Ecosystem Dynamics
Investigation (GEDI) [17], and the Ice, Cloud, and land Elevation satellite-2 (ICESat-2) [18] are typical
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spaceborne LiDAR systems. ICESat-1 and GEDI carry large-footprint and waveform LiDAR systems.
The Geoscience Laser Altimeter System (GLAS) instrument aboard ICESat-1 was launched in 2003
and decommissioned in 2009 [19]. GLAS is the first spaceborne LiDAR instrument designed to make
global observations. GLAS operates a single laser beam from a ~600 km orbit at 40 Hz and has a 70 m
diameter footprint and a ~170 m sampling rate along track.

GLAS waveform data has been successfully used to estimate the vertical structure of forest
terrain, including ground topography and canopy heights [19–21]. Harding et al. [20] found that the
waveform was an accurate representation of the canopy height distribution within a GLAS footprint.
Lefsky et al. [21] observed that the models combing GLAS waveforms and Shuttle Radar Topography
Mission (SRTM) could explain ~59%–68% of the variance in the field-measured forest canopy height
(root mean squared error—-RMSE = 4.85–12.66 m); however, sloped ground in forested terrain reduced
the canopy height accuracy by using waveform data. Chen [22] found that the ground topography
in forested terrain was the critical factor affecting the accurate measurement of canopy height using
waveform data, and with increasing forest terrain complexity, the accuracy of estimating forest canopy
height decreased. Fang et al. [23] found that in forested terrain with complex ground topography, the
GLAS waveform was characterized by multiple energy peaks, in which the ground topography might
be broadened and mixed, making the extraction of canopy height difficult. In order to quantify the
influence of ground topography on canopy height estimation using GLAS waveform data, Lee et al. [24]
found that without slope correction, the canopy height could be overestimated by 3 m over a 15 degree
slope. Removing the ground topography in forested terrain from large LiDAR footprint could improve
the accuracy of canopy height estimates. Claudia et al. [25] revealed that GLAS height estimates were
accurate for areas with a slope up to 10 degrees, whereas the waveform results for areas above 15
degrees were problematic. Ten-to-fifteen degree slopes have been found to be a critical crossover point.
The aforementioned studies demonstrated that it was feasible to extract ground topography in forested
terrain and canopy height from spaceborne waveform data at stand level; however, the accuracy of
canopy height estimation was largely determined by the ground topography, and extracting canopy
height across a large LiDAR footprint using waveform data over hilly or mountainous regions is a
great challenge. The GEDI was launched on 5 December 2018; however, the GEDI spaceborne data has
just recently been released, and no related study was found [26].

The Advanced Topographic Laser Altimeter System (ATLAS) instrument aboard ICESat-2 was
launched on 15 September 2018, and data was released on 30 May 2019. ATLAS is the first spaceborne
photon-counting LiDAR instrument designed for continuous global observation of Earth [27–29].
Different from the GLAS waveform-digitizing LiDAR system, ATLAS only responds to the presence of
return signals and records the time tags with an output of 0 or 1; however, it does not record the return
waveform [30–32]. ATLAS operates six laser beams from a ~600 km orbit at 10 kHz and has a footprint
(17 m in diameter) sampling rate of ~0.7 m along-track [33,34]. The center-to-center spacing along a
track for ATLAS is narrower than that of GLAS (170 m). The high repetition rate enables ATLAS to
obtain nearly continuous tracking information, which is necessary to measure the ground topography
in forested terrain. While the GLAS LiDAR system uses a laser beam, the ATLAS configuration uses
a diffractive optical element to split the laser into six beams arranged as three beam pairs, each of
which consists of a strong and weak energy beam at a 4:1 ratio, allowing for local slope determination
between each beam pair as well as compensation for varying surface reflectance [27,33,34]. The travel
time of each detected photon is used to determine a unique XYZ location on the Earth’s surface [35,36].
After ATLAS data was released, Neuenschwander found good correlations between matching Digital
Terrain Model (DTM) from airborne LiDAR data and ATLAS data (R2 = 0.99, RMSE = 0.85 m) [37].
Wang et al. found that the overall mean difference and RMSE values between the ground elevations
retrieved from the ICESat-2 data and the airborne LiDAR-derived ground elevations are −0.61 m and
1.96 m, respectively [38]. However, he primarily examined the retrieved canopy height accuracy from
the ICESat-2 strong beam and did not analyze the accuracy of the ICESat-2 weak beam. Under the
same orbital conditions, ATLAS can acquire more continuous photon cloud data using the six-beam
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instrument with different laser pointing angles and laser intensities. The measurement accuracy of
the different ATLAS channels remains to be quantified [39]. To the authors’ knowledge, only a few
studies have been carried out to analyze the multi-beam geometrical features for measuring ground
topography in forested terrain from photon-counting data onboard ICESat-2. Therefore, the effective
quantifying of the ground topography in forested terrain using the six-beam photon-counting data is
essential to quantify the performance of the unique photon-counting instrument onboard ICESat-2.

The objective of this study is to assess the performance of the ICESat-2/ATLAS multi-channel
photon data for estimating ground topography in forested terrain by comparing the derived ground
topography from different ATLAS beam photon-counting data with that from Goddard’s LiDAR,
Hyperspectral and Thermal imager (G-LiHT) data. The paper also analyzes the correlation between
laser intensity parameters, laser pointing angle parameters, and estimated ground topography error in
forested terrain.

2. Materials and Methods

2.1. Study Area

The study area (33.564◦N, 81◦684′W) is a forested area within the City of Aiken, South Carolina,
USA (Figure 1). Vegetation footprint types in the study area include cultivated land (0.04%), forest
(88.52%), shrubland (0.51%), wetland (6.97%), and artificial surfaces (3.95%) [39]. The upland forest
has many tree species, including sand post oak (Quercus margaretta), loblolly pine, water oak (Quercus
nigra), hickory (Carya), and turkey oak (Quercus laevis) [40]. The elevation of the study area ranges
from 91 m to 164 m. Vegetation coverage in the study area ranges from 25% to 66%.

Figure 1. Location of the study area at the national and state levels. Figure 1 shows a part of the study
site using an image of a USA map. The left part of the image shows the location of the study area in the
USA, the right part shows it relative to South Carolina.

2.2. Data

The ICESat-2 mission produces along-track ground topography in forested terrain that includes
telemetry data (ATL00), reformatted telemetry (ATL01), science unit converted telemetry (ATL02),
global geolocated photon data (ATL03), land vegetation elevation (ATL08), and a land/canopy grid
(ATL18) [37–41]. ATL00, ATL01, and ATL02 are original photon data sets without scientific algorithms.
ATL03 is the geolocated photon cloud and serves as the input data for each of the higher-level data
products such as ATL08 and ATL18. The ATL08 algorithm was developed specifically for the extraction
of terrain and canopy heights from the ATL03 photon cloud data, and the ATL08 geophysical data
product has a 100 m step size in the along-track direction [33]. The ATL03 product not only includes
latitude, longitude, height, and signal photon confidence level of each received photon, but also includes
tx_pulse_energy, tx_pulse_skew_est, tx_pulse_width_lower, and tx_pulse_width_upper parameters,
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which may be related to laser intensity and laser pointing angle [37]. All ICESat-2 data products were
acquired from https://search.earthdata.nasa.gov.

Here the ATL03 product parameters were used, including lat_ph, lon_ph, h_ph, geoid,
delta_time, signal_conf_ph, sc_orient, tx_pulse_energy, tx_pulse_skew_est, tx_pulse_width_lower, and
tx_pulse_width_upper. The names and corresponding descriptions of product parameters are listed in
Table 1 [37–39]. In order to reduce the influence of noise photons in forested terrain ground topography
measurement, a signal_conf_ph of 4 was used as the signal photon parameter evaluation standard.

Table 1. The statistical indicators of global geolocated photon (ATL03) data [39].

ATL03 Product Parameter Name Description

lat_ph Latitude of each received photon. Computed from the ECF Cartesian
coordinates of the bounce point.

lon_ph Longitude of each received photon. Computed from the ECF Cartesian
coordinates of the bounce point.

h_ph Height of each received photon, relative to the WGS-84 ellipsoid.
geoid Geoid height above WGS-84 reference ellipsoid (range −107 to 86 m).

delta_time Elapsed seconds from the ATLAS SDP GPS Epoch, corresponding to the
transmit time of the reference photon.

signal_conf_ph
Confidence level associated with each photon event selected as signal.

0 = noise. 1 = added to allow for buffer but algorithm classifies as
background; 2 = low; 3 =med; 4 = high).

sc_orient This parameter tracks the spacecraft orientation between forward,
backward and transitional flight modes.

tx_pulse_energy The average transmit pulse energy, measured by the internal laser
energy monitor, split into per-beam measurements.

tx_pulse_skew_est The difference between the averages of the lower and upper threshold
crossing times. This is an estimate of the transmit pulse skew.

tx_pulse_width_lower The average distance between the lower threshold crossing times
measured by the Start Pulse Detector.

tx_pulse_width_upper The average distance between the upper threshold crossing times
measured by the Start Pulse Detector.

A diagram of ICESat-2 for estimating ground topography in forested terrain is illustrated in
Figure 2. The forward orientation (sc_orient=1) corresponds to ATLAS traveling along the +x direction
in the ATLAS instrument reference frame [41–43]. The ATLAS signal photon shown in the yellow
square represents the photons detected from the gt3r laser channel. The ATLAS footprint shown in the
red square represents the photons detected from the gt3l laser channel. The number of photons in the
gt3l channel is less than in the gt3r channel, which is due to the backward orientation of ATLAS [43].
The photon level in the along-track direction was selected to calculate the ground topography in
forested terrain. In the right figures, the two laser beams are 90 m apart. The ground topography
measured by the two laser beams is similar, and the terrain elevation ranges from 130 m–145 m.

Due to the influence of sunlight as well as atmospheric and system noise, a large number of noise
photons are present in the ATLAS data, which seriously reduce the ground elevation measurement
accuracy. In order to improve the estimation accuracy of ATLAS photon data, NASA proposed a
Differential, Regressive, and Gaussian Adaptive Nearest Neighbor (DRAGANN) method and ATL08
data classified algorithm to filter out noise photon data and classify ground photons [41–43]. In order
to explore the estimation accuracy of forested terrain from ATLAS data, this contribution chose to
associate the ATL08 classified label with the ATL03 photon data and used the ground signal photons
flag mentioned in ATL08 as ground photons to establish an ATLAS-based DTM (Table 2) [37].
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Figure 2. (a) The location of gt3r and gt3l data in site 1, City of Aiken, USA. gt3r photons (yellow) and
gt3l photons (red) show the location of the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) track in
Google Earth for context [43]. This illustration only includes signal photons (signal_conf_ph=4) and is
located in City of Aiken, USA. (b): Profile of ATL03 photons from the weak beam (gt3l). This data
was collected on 26 December 2018 at 05:31. (c): Profile of ATL03 photons from the strong beam (gt3r),
which has a greater number of signal photons above the surface than in gt3l.

Table 2. The statistical indicators of land vegetation elevation (ATL08) product [42].

ATL08 Product Parameter Name Description

classed_pc_flag Land Vegetation ATBD classification flag for each photon as either noise, ground,
canopy, and top of canopy. 0 = noise, 1 = ground, 2 = canopy, or 3 = top of canopy.

classed_pc_indx The unique identifier for tracing each ATL08 signal photon to the corresponding
photon record on ATL03 is the segment_id, orbit, cycle, and classed_pc_indx.

ph_segment_id

Segment ID of photons tracing back to specific 20 m segment_id on ATL03. The unique
identifier for tracing each ATL08 signal photon to the photon on ATL03 is the

segment_id, orbit, and classed_pc_indx. The unique identifier for tracing each ATL08
signal photon to the corresponding photon record on ATL03 is the segment_id, orbit,

cycle, and classed_pc_indx.

To assess the accuracy of the six beam-ATLAS DTM, the DTM obtained from the ATLAS data was
compared with airborne discrete-return LiDAR data, collected for the same longitude and latitude
using the multi-sensor instrument G-LiHT [44]. G-LiHT provides distributed laser pulses for measuring
ground topography and canopy heights (Table 3) [45].

Table 3. The Goddard’s LiDAR, Hyperspectral and Thermal imager (G-LiHT) product levels [44].

G-LiHT Product Product Level

Trajectory data Level 1
Classified return data Level 2

Above Ground Level (AGL) height Level 2
LiDAR returns Level 3

DTM Level 3
Canopy Height Model (CHM) Level 3

Both Level 2 and Level 3 products along the flight transects were generated from airborne
LiDAR data from the G-LiHT science team. The DTM has a 1 m-resolution and was
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released as a Tag Image File Format (TIFF) profile. The DTM was assessed to validate
the ground topography accuracy [44,45]. The trajectory of the G-LiHT KML (Keyhole
Markup Language) data (blue line) and ATLAS data (green line) illustrates the location of
the study area of the NASA EARTHDATA (Figure 3). This illustration also includes two
G-LiHT DTM profiles used in the study, AMIGACarb_Augusta_FIA_Sep2011_l16s597_DTM.tif and
AMIGACarb_Augusta_FIA_ Sep2011_ l40s557_DTM.tif, respectively.

Figure 3. (a): Trajectories of Advanced Topographic Laser Altimeter (ATLAS) data (green) and G-LiHT
data (blue) depict the location of the study area NASA EARTHDATA. (b): G-LiHT data named
AMIGACarb_Augusta_FIA_Sep2011_l16s597_DTM.tif as reference airborne data. (c): G-LiHT data
named AMIGACarb_Augusta_FIA_Sep2011_l40s557_DTM.tif as reference airborne data.

2.3. Methodology

The primary challenge of this contribution centers on reducing the influence of noise photons
on the ground elevation data derived from ICESat-2 data, distinguishing canopy signal photons and
ground signal photons, and matching the ATL03, ATL08, and G-LIHT data. Although ATLAS data has
more noise photons, the NASA official team used the DRAGANN and an algorithm for determining
Land Vegetation along-track to provide classification labels (classed_pc_flag) for the photon data [43].
In this contribution, the ground signal photon classification label ATL08 is used for ground photons,
and the DTMATLAS will be established based on ATL03 data and ATL08 label. This contribution
presents a quantitative assessment of the ground topography in forested terrain using ATL03 and
ATL08 data compared to airborne G-LiHT LiDAR data.

The geolocation between the ATLAS and G-LiHT data is not completely along orbit; therefore,
this paper proposes an approach based on the ATL03 profile to match these two datasets (Figure 3).
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To clearly illustrate the proposed methodology, an overview of the major steps is exhibited in Figure 4
and described as follows:

 

Figure 4. The flowchart of the analysis process.

(1) Identifying study site. In this step, we combine ATL03 lat_ph, lon_ph, and G-LiHT KML
profile and identify the study site.

(2) Obtain parameters from the ATL03 and ATL08 data by matching different channels under
the same orbit conditions using time tags (delta_time in ATL03 HDF5 profile). To extract the
photon’s height (h_ph which is relative to the WGS-84 ellipsoid), latitude (lat_ph) and longitude
(lon_ph), signal_conf_ph, sc_orient, tx_pulse_energy, tx_pulse_skew_est, tx_pulse_width_lower, and
tx_pulse_width_upper parameters from the ATL03 HDF5 profile, combine the geoid and h_ph by
interpolating. Extract the photon classification parameters (classed_pc_flag), classed_pc_indx, and
ph_segment_id parameters from the ATL08 HDF5 profile.

(3) Establishing the relationship between ATL03 and ATL08 data photon classification parameters
by classed_pc_indx, ph_segment_id and applying each photon classification label from ATL08 to each
photon data from ATL03.

(4) Establishing the DTMATLAS. The photons with a signal confidence flag from high confidence
(signal_confidence = 4 in ATL03 HDF5 profile) and photon classification parameter (classed_pc_flag=1
in ATL08 HDF5 profile) were used to establish the DTMATL03.

(5) Obtaining the DTMG-LiHT. In this step, we extract the latitude-longitude information from
DTMATL03 to match the DTMG-LiHT profile corresponding position generated from G-LiHT and
generated DTMG-LiHT with the corresponding ATLAS footprint latitude-longitude. If the absolute
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difference between the elevation of ATLAS ground photons and the corresponding elevation of the
DTMG-LiHT is more than 20 m, this photon was classified as an invalid ground photon.

(6) Assessing the performance of ICESat-2/ATLAS multiple channels photon data. In this final
step, we compare the DTMATL03 profile with the corresponding DTMG-LiHT profile, compute and
analyze the evaluating indicator from different channels. In order to quantify the influence of
different laser intensity parameters and laser pointing angle parameters on the estimation accuracy
of ground elevation, corresponding four parameters as follow: tx_pulse_energy, tx_pulse_skew_est,
tx_pulse_width_lower and tx_pulse_width_upper are extracted and analyzed the relationship between
the four parameters and elevation errors.

The Figure 5 shows the DTM files of G-LiHT and ATLAS photon data corresponding to the two
tracks in the study area. The green dots are ATLAS footprints.

Figure 5. Two experimental data (a,b) sets in study area. The green dots on this figure are ATLAS
footprints. The gray block is the G-LiHT Digital Terrain Model (DTM).

2.4. Accuracy Evaluation

DTM data derived from airborne G-LiHT LiDAR data were utilized to assess the accuracy of
the ATLAS-derived ground elevations. The ground elevation errors in the ATLAS data mentioned in
this contribution are calculated by subtracting the G-LiHT elevations from the ATLAS elevations [38].
Seven statistical variables, including root mean squared error (RMSE), mean absolute error (MAE),
coefficient of determination (R2), mean error (ME), Pearson correlation coefficient, Spearman correlation
coefficient, and Kendall correlation coefficient between the ground elevations and the corresponding
G-LiHT’s DTM values were calculated to quantitatively evaluate the accuracy of the ATLAS-derived
ground elevations. Three statistical variables, Pearson correlation coefficient, Spearman correlation
coefficient, and Kendall correlation coefficient between the elevation errors and the corresponding laser
intensity parameter and laser pointing angle parameters were calculated to quantitatively evaluate the
correlation of laser intensities and laser pointing angles with the elevation error in estimating ground
topography in forested terrain.
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3. Results

Result Comparisons

The G-LiHT data in the study was acquired in 2011 and are not temporally coincident with
ICESat-2/ATLAS. However, the availability of aerial-based LiDAR data for the study area makes it
feasible to validate the ground topography from ATL03. The ATL03 gt3l channel photon data and
gt3r channel photon data over the study are plotted with the G-LiHT data shown in Figures 6 and 7,
respectively. The scatterplots of the ATL03 (gt3l and gt3r) ground elevations versus the G-LiHT ground
elevations are shown in Figures 8 and 9. The statistical indicators, namely the RMSE, MAE, R2, ME,
Pearson correlation coefficient, Spearman correlation coefficient, and Kendall correlation coefficient are
listed in Table 4.

Figure 6. A subset of the forested terrain ATL03 (gt3l) ground topography validation results from track
ATL03_20181226053112_13530106_001_01. ATLAS photon data are shown as red dots. The ATLAS
DTM (blue line) and the G-LiHT DTM (red line) are also shown.

Figure 7. A subset of the forested terrain ATL03 (gt3r) ground topography validation results from track
ATL03_20181226053112_13530106_001_01. The ATLAS photon data are shown as red dots. The ATLAS
DTM (blue line) and the G-LiHT DTM (red line) are also shown.
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Figure 8. Scatterplot of ATL03 (gt3l) ground topography compared to G-LiHT DTM.

 

Figure 9. Scatterplot of ATL03 (gt3r) ground topography compared to G-LiHT DTM.
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Table 4. The statistical indicators of the various laser channels.

Different Laser Channels RMSE (m) MAE (m) R2 ME (m) Pearson Spearman Kendall

gt1l 0.69 0.35 1.00 −0.05 1.00 0.99 0.92
gt1r 0.55 0.45 1.00 0.27 1.00 0.99 0.92
gt2l 0.80 0.67 1.00 0.59 1.00 0.96 0.84
gt2r 1.03 0.58 0.99 0.04 1.00 0.99 0.93
gt3l 0.78 0.60 1.00 0.45 1.00 0.99 0.93
gt3r 0.64 0.52 1.00 0.49 1.00 0.99 0.94

Mean of channel 0.75 0.53 1.00 0.30 1.00 0.98 0.91

Note: RMSE—-root mean squared error; MAE—-mean absolute error; R2—-coefficient of determination;
ME—-mean error.

Figures 6 and 7 show the comparisons of elevations from the ATLAS DTM and G-LiHT DTM
for multiple channels, and both are referenced to the WGS84 geoid. The ATLAS DTM (blue line) and
G-LiHT’s DTM (red line) had a similar performance (Figures 6 and 7). The ATLAS gt3l channel (weak
beam) photon cloud contains fewer signal photons than the gt3r channel (strong beam). The photons
near the blue line and red line denote the ground topography photons. A t-test showed that no
significant difference exists between these two regression lines in Figures 8 and 9 at a 95% confidence
level. The ATLAS gt3r channel (Figures 7 and 9) signal photons show a clearer depiction of the ground
topography than the ATLAS gt3l channel (Figures 6 and 8).

The R2 of the all experiments are higher than 0.99 (Table 4). The mean ME and RMSE values of
all ground photons are 0.3 m and 0.75 m, respectively. For gt1l, gt1r, gt2l, gt2r, gt3l, and gt3r, the ME
values are −0.05 m, 0.27 m, 0.59 m, 0.04 m, 0.45 m, and 0.49 m, and the RMSE values are 0.69 m, 0.55 m,
0.80 m, 1.03 m, 0.78 m, and 0.64 m, respectively. In general, the statistical indicators for pointing right
(namely strong beam) perform better than those for pointing left (namely weak beam) for all data
sets. A possible reason is that the signal photon density from the strong beam channels is significantly
higher than that of the weak beam channels.

All laser intensities and laser pointing angles from the ATL03 product performed well in the study
site (Table 4, Figures 8 and 9). The ATL03 data have good ground elevation estimation accuracy, and
the ATL08 algorithm can effectively filter out noise photon and classify ground photons in the forested
terrain ground topography estimation process.

4. Discussion

In order to study the influence of laser intensity and laser pointing angle on ground elevation
estimation accuracy, the ATLAS data errors under different laser intensities and laser pointing angles are
analyzed respectively, and the correlation between elevation errors and corresponding laser parameters
is examined.

4.1. Retrieved Ground Topography in Forested Terrain for Different Laser Intensities

The mean statistical indicators of the different laser intensities are listed in Table 5 and the
correlation coefficient statistics between tx_pulse_energy parameters and the ATLAS data elevation
errors are listed in Table 6.

Table 5. Statistical indicators for different laser intensities.

Different Laser Intensities Types RMSE (m) MAE(m) R2 ME (m) Pearson Spearman Kendall

Weak beam 0.76 0.54 1.00 0.33 1.00 0.98 0.89
Strong beam 0.74 0.51 1.00 0.27 1.00 0.99 0.93
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Table 6. Correlation coefficient statistics between tx_pulse_energy parameters and ATLAS data. error.

Different Laser Intensities Types Pearson Spearman Kendall

Weak beam 0.58 0.76 0.54
Strong beam 0.59 0.74 0.51

Mean of different laser intensities Types 0.59 0.75 0.53

The estimated ground topography for different intensity beams shows significant agreement with
the reference DTM elevations. For the weak beam and strong beam, the mean R2 values are 1, the ME
values are 0.33 m and 0.27 m, and the RMSE values are 0.76 m and 0.74 m, respectively. The correlation
coefficient of all types is greater than 0.89.

For the varying laser intensities in this data set, the statistical indicators for the strong beam
performed better than that of weak beam with the lower RMSE (RMSEstrong beam = 0.74 m and
RMSEweak beam = 0.76 m), lower MAE (MAEstrong beam = 0.51 m and MAEweak beam = 0.54 m), lower
ME (ME strong beam = 0.33 m and ME weak beam = 0.27 m), and higher correlation coefficient. A possible
reason is that the weak beam channel has fewer signal photons compared to the strong channel, making
measuring ground topography in forested terrain using the weak beam more difficult. Using a strong
beam, ATLAS could produce more signal photons than under the weak beam. The laser intensity
ratio of strong beam to weak beam is 4:1. Depending upon the surface reflectance and atmospheric
conditions, up to 16 photons per outgoing shot could be detected for the strong beam, while the weak
beam could detect only 4 photons. However, the strong and weak beams can both provide useable
data for measuring ground topography in forested terrain.

To further explore the influence of laser intensities on elevation errors, we calculated three
correlation coefficients between tx_pulse_energy parameters and elevation errors (Table 6). For all
the data, the correlation coefficients for the elevation errors and tx_pulse_energy parameters are
greater than 0.5. In addition, the Spearman correlation coefficient values for the various laser
intensities are greater than 0.74, indicating there is a significant correlation between the tx_pulse_energy
parameters and elevation error. However, this contribution only explores the correlation between
tx_pulse_energy and elevation error for a laser intensity ranging from 0.02 mJ to 0.09 mJ. Future studies
with the tx_pulse_energy parameters will need to perform a more detailed analysis on the effect of
tx_pulse_energy on elevation error.

Compared to the forested terrain ground topography estimation method in proposed by
Neuenschwander et al. [37], higher R2 values and lower RMSE values were observed in the strong
beam mode and weak beam mode. However, this study proposes a photon level which is different to
the Neuenschwander et al. method [37], which notes that the result of a photon subset using a strong
beam and a weak beam can reasonably explain the ground topography in the forest study area.

4.2. Retrieved Ground Topography in Forested Terrain Elevation with Different Laser Pointing Angles

The mean statistical indicators for the different laser pointing angles are listed in Table 7
and the correlation coefficient statistics between tx_pulse_skew_est, tx_pulse_width_lower,
tx_pulse_width_upper parameters and the elevation errors of ATLAS data are listed in Table 8.

Table 7. The statistical indicators for different laser pointing angles.

Different Laser Channels RMSE (m) MAE(m) R2 ME (m) Pearson Spearman Kendall

gt1 0.62 0.40 1.00 0.11 1.00 0.99 0.92
gt2 0.92 0.62 1.00 0.31 1.00 0.97 0.88
gt3 0.71 0.56 1.00 0.47 1.00 0.99 0.93
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Table 8. The correlation coefficient statistics between tx_pulse_skew_est, tx_pulse_width_lower,
tx_pulse_width_upper parameters and the elevation errors of ATLAS data.

Statistical
Indicators

Different Laser Pointing Angles Pearson Spearman Kendall

tx_pulse_skew_est

gt1 0.12 0.05 0.04
gt2 0.11 0.21 0.12
gt3 0.15 0.15 0.11

Mean of different pointings 0.13 0.14 0.09

tx_pulse_width_lower

gt1 0.20 0.10 0.07
gt2 0.10 0.07 0.05
gt3 0.20 0.21 0.14

Mean of different pointings 0.17 0.13 0.09

tx_pulse_width_upper

gt1 0.24 0.31 0.23
gt2 0.09 0.12 0.09
gt3 0.11 0.13 0.09

Mean of different pointings 0.15 0.19 0.14

The estimated ground topography in forested terrain using different laser pointing angles shows
strong agreement with the reference DTMG-LiHT elevations, as demonstrated by the R2 values equaling
1.00 and the RMSE values less than 0.92 m.

Results indicated that the gt1 channel pointing (R2
gt1 channel = 1.00, RMSEgt1 channel=0.62 m, MAE

gt1 channel = 0.4m) performed better than gt2 channel pointing (R2
gt2 channel = 1.00, RMSEgt2 channel =

0.92 m, MAE gt2 channel = 0.62m) and gt3 channel pointing (R2
gt3 channel = 1.00, RMSEgt3 channel = 0.71 m,

MAE gt3 channel = 0.56m), which was due to several hardware reasons. On one hand, the gt1 channel
could achieve more effective forested terrain signal photons than other channels in the study area.
More signal photons can give a clearer depiction of ground topography in forested terrain. On the
other hand, the photon rates of the gt1 and gt3 channels are higher than the gt2 channel, which is
consistent with the description of the different laser pointing angles [46].

To further explore the influence of laser pointing angles on elevation error, we calculated three
correlation coefficients between tx_pulse_skew_est, tx_pulse_width_lower, tx_pulse_width_upper
parameters and elevation error. In the ATL03 Algorithm Theoretical Basis Document (ATBD), these
parameters may be related to the laser pointing angles. The quantitative results of the correlation
coefficients are summarized in Table 8. For all the data, the mean correlation coefficients for the
elevation errors are less than 0.20. There is no significant correlation between the tx_pulse_skew_est,
tx_pulse_width_lower, tx_pulse_width_upper parameters and the elevation error. However, this
contribution only explores the correlation between tx_pulse_skew_est, tx_pulse_width_lower,
tx_pulse_width_upper and the elevation error. Future studies needed to analyze other laser pointing
angles parameters’ relative elevation errors.

The results of this contribution performed better than that proposed by Neuenschwander et
al. [37] (R2 = 0.99, RMSE = 0.85), which notes that the result of a photon subset using different laser
pointing angles can reasonably explain the ground topography in the study area.

4.3. Retrieved Ground Topography in Forested Terrain Elevation with ATLAS

Most optical remote sensing systems could provide images of the horizontal distribution of ground
topography, and the product generally follows the uppermost surface elevation (i.e., representing a
digital surface model, DSM). However, the optical remote sensing images do not provide detailed
information on the vertical distribution of ground topography in forested terrain, without regard to
whether the surface is comprised of forest or not [5,6,47]. In contrast, the LiDAR photon counting
signature from ICESat-2/ATLAS could provide a direct depiction for ground topography in forested
terrain. In this contribution, the close correspondence between the ATLAS and G-LiHT (R2 = 1.00,
RMSE = 0.75 m) confirms that the received photon data are an accurate representation of the ground
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topography forested terrain elevation within the ATLAS footprints. As a comparison, in areas of
low relief (slope ≤ 5◦) and middle dense tree cover (tree cover = 20%–40%), the mean and standard
deviation of elevation differences between the ICESat/GLAS centroid and SRTM are −2.48 ± 4.04 m [48].
Thus, the estimation of ground topography for forest-covered areas is able to be accomplished with
ICESat-2/ATLAS.

The results from this contribution indicate that the ground topography in forested terrain elevation
can be estimated using photon data from ICESat-2/ATLAS multi-channel. We were able to retrieve
terrain elevation successfully in forest-covered areas. Prior work showing the correlation between
spaceborne LiDAR-measured canopy height and ground topography in forested terrain [21–23], which
provide confidence that ICESat-2/ATLAS photon data in combination with GEDI data can substantially
contribute to a global inventory of forest biomass. The work also provides insights for future work to
improve the accuracy of the canopy height estimations.

5. Conclusions

In this contribution, ICESat-2 data is used to measure ground topography in forested terrain using
different channels. The retrieved ground topography was validated by experiments with G-LiHT
airborne data at different laser pointing angles and laser intensity types on the same route. Based on
the results, the following conclusions can be drawn:

(1) Both qualitative and quantitative results indicate that at all laser intensities and laser pointing
types resulted in a mean R2 = 1.00 and mean RMSE = 0.75 m, highlighting the ability of the ATL03 and
ATL08 data to retrieve ground elevations.

(2) A significant correlation exists between the tx_pulse_energy parameters and elevation
error. There is no significant correlation between tx_pulse_skew_est, tx_pulse_width_lower,
tx_pulse_width_upper parameters and elevation error.

These conclusions give valuable insight into the ground topography in forested terrain using
different ATLAS channels. Nevertheless, there are still many issues to be addressed in the future.
Since ATLAS data is still in the research stage, we only considered the effects of laser pointing angles
and laser intensity on retrieving ground topography. Other factors (e.g., canopy height, canopy
cover, etc.) influencing the results were not considered. Therefore, the effects of other factors on
retrieving ground topography over forested terrain using ATLAS data should be thoroughly examined
in the future.
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Abstract: Canopy height serves as a good indicator of forest carbon content. Remote sensing-based
direct estimations of canopy height are usually based on Light Detection and Ranging (LiDAR)
or Synthetic Aperture Radar (SAR) interferometric data. LiDAR data is scarcely available for the
Indian tropics, while Interferometric SAR data from commercial satellites are costly. High temporal
decorrelation makes freely available Sentinel-1 interferometric data mostly unsuitable for tropical
forests. Alternatively, other remote sensing and biophysical parameters have shown good correlation
with forest canopy height. The study objective was to establish and validate a methodology by which
forest canopy height can be estimated from SAR and optical remote sensing data using machine
learning models i.e., Random Forest (RF) and Symbolic Regression (SR). Here, we analysed the
potential of Sentinel-1 interferometric coherence and Sentinel-2 biophysical parameters to propose a
new method for estimating canopy height in the study site of the Bhitarkanika wildlife sanctuary,
which has mangrove forests. The results showed that interferometric coherence, and biophysical
variables (Leaf Area Index (LAI) and Fraction of Vegetation Cover (FVC)) have reasonable correlation
with canopy height. The RF model showed a Root Mean Squared Error (RMSE) of 1.57 m and R2

value of 0.60 between observed and predicted canopy heights; whereas, the SR model through genetic
programming demonstrated better RMSE and R2 values of 1.48 and 0.62 m, respectively. The SR also
established an interpretable model, which is not possible via any other machine learning algorithms.
The FVC was found to be an essential variable for predicting forest canopy height. The canopy height
maps correlated with ICESat-2 estimated canopy height, albeit modestly. The study demonstrated
the effectiveness of Sentinel series data and the machine learning models in predicting canopy height.
Therefore, in the absence of commercial and rare data sources, the methodology demonstrated here
offers a plausible alternative for forest canopy height estimation.

Keywords: symbolic regression; random forest; Sentinel-1; Sentinel-2; ICESat; Bhitarkanika

1. Introduction

Understanding the role of forest carbon emissions and sequestration is needed to build a
robust framework for international agreements to limit the concentration of greenhouse gases in the
atmosphere [1]. The function of tropical forests is critical in the global carbon cycle because they are
carbon-dense and highly productive [2]. Above-Ground Biomass (AGB) is the best indicator of the
carbon content of tropical forests [3]. AGB estimation models for tropical forests generally ignore
canopy height as a factor [4]. However, studies have shown that the inclusion of canopy height
in the allometric models tends to improve the estimation accuracy of AGB in tropical forests [4–6].
Therefore, the tree canopy height of tropical forests is an essential factor in estimating its biomass,
and an inaccurate estimate of canopy height can result in over- or underestimation of AGB [7].
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The ground-based canopy height measurement instruments exploit the planimetric distance and
the angle between the device to the base and the top of the tree, to estimate canopy height using a
trigonometric relationship [8]. The laser rangefinder is quite a standard instrument that uses this
method in field-based canopy height measurements [9,10]. Apart from that, instruments like altimeter
and clinometer are used in some studies [11–13]. However, in dense tropical forests, it is often difficult
to identify the top and base of the tree due to lack of direct line of sight to the canopy top, limited
accessibility in rough terrains, blockage of the crown top by adjacent trees, and presence of understorey
vegetation [8,14]. Therefore, the field estimated height and actual tree height often show a wide
variation in the tropics [15].

The digital photogrammetry method has been used to measure canopy height in earlier remote
sensing-based studies. The data used in those studies varied from aerial photogrammetry in historical
cases to multispectral satellite data [16–18]. The advancement of LiDAR technologies was found
to be more useful in measuring the tree height [19,20]. However, most of the studies were based
on airborne LiDAR data, which has limited area coverage and which is costly to acquire in tropical
regions [21,22]. Till now, only NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-1) mission has
provided world-wide spaceborne LiDAR data, obtained through Geoscience Laser Altimeter System
(GLAS), which has been extensively used for vegetation mapping [23]. Many studies found that the
GLAS data can be used efficiently for vegetation height monitoring of different types of forests [24–28].
Therefore, GLAS data alongside other remote sensing and ancillary data has been used broadly in
AGB estimation [29–32]. In 2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) became
operational [33]. Data obtained through its Advanced Topographic Laser Altimeter System (ATLAS)
sensor was made available recently. Preliminary studies with simulated ICESat-2 data have shown
its effectiveness in canopy height estimation [34]. Despite having many advantages, LiDAR data,
mainly spaceborne data, usually has limited spatial and temporal coverage [35]. LiDAR data is also
not suitable for the wall to wall mapping as this data is usually acquired for specific footprints [36].

One of the ways by which spatially continuous height mapping can be done is by using the
Synthetic Aperture Radar (SAR) interferometry (InSAR) method [37,38]. InSAR measures the surface
topography and height of the surface features by using the phase information of the radar signal [39].
Coherence is measured as the magnitude of the complex cross-correlation between the constituent
images of an interferometric pair [40]. Decorrelation or reduction in coherence values occurs with
changes in the ground condition between the two acquisitions of the interferometric pair; thereby,
reducing its ability to measure height correctly using interferrometric information. Shorter wavelength
SARs have a greater tendency for greater temporal decorrelation, even for a time gap as short as one
day [39]. The interferometric data with global spatial coverage became freely available with the launch
of the European Space Agency’s Sentinel-1 mission. However, the Sentinel-1 mission has a maximum
temporal resolution of six days [41]. There can be significant decorrelation between images while
mapping dense tropical forests using Sentinel-1 repeat-pass interferometry, which may result in loss of
coherence, thereby severely affecting the interferometric height measurement results.

In recent years researchers have found newer ways to estimate mean canopy height (Table 1).
It was suggested that rather than using phase information of SAR images, interferometric coherence can
be used to model tree height [42]. Tree height inversion from coherence data also showed improvement
in biomass estimation accuracy [43]. Apart from coherence values, field-measured tree height can
be correlated with SAR backscatter of different polarization to establish a canopy height model [44].
In addition to SAR, multispectral band values were also used in establishing relationship with tree
canopy height. Multispectral bands of Landsat-7 and 8 showed good promise while measuring tree
heights in the range of 5–20 m [45].

Fraction of Vegetation Cover (FVC) has been used for vegetation height estimation. FVC is defined
as the percentage of a given area that is covered by vegetation canopy [46]. MODIS derived tree
cover showed a good correlation with tree height derived from GLAS data [47]. Recently, Sentinel-1
based FVC demonstrated its effectiveness in canopy height estimation [35]. LAI is measured as the
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total one-sided leaf area per unit ground surface area, demonstrating good correlation with tree
height [48,49]. LiDAR based studies found that canopy height has a good correlation with LAI [50,51]
and one could serve as proxy to other [52]. Canopy height estimation with/without a Digital Elevation
Model (DEM) has been benefitted from the Shuttle Radar Topography Mission (SRTM) [53,54].

Table 1. Compilation of canopy height estimation studies using different instruments and sensors.

Method Site Instrument/Sensor Main Predictor Variable Reference

Field-based Panama Rangefinder Not applicable [14]
Field-based Finland Clinometer Not applicable [13]

Field and RS-based USA Altimeter, Airborne LiDAR,
Airborne SAR, SRTM Digital Terrain Model values [12]

Field and RS-based Finland Terrestrial Laser Scanning, Airborne
LiDAR Digital Terrain Model values [8]

Field-based Global Not available Field height [52]
RS-based India ICESat-1 LiDAR waveform estimated height [25]
RS-based Tanzania Airborne LiDAR, TanDEM-X InSAR height [38]
RS-based Estonia Airborne LiDAR, TanDEM-X InSAR coherence [42]
RS-based Brazil RADARSAT-2 SAR backscatter [44]
RS-based China Sentinel-1, Sentinel-2 SAR backscatter, FVC [35]
RS-based Global MODIS, ICESat-1 LiDAR height, FVC [47]
RS-based Korea Airborne LiDAR, PALSAR, DEM Digital Terrain Model values [9]

RS-based Canada Airborne LiDAR, WorldView-2
Multispectral LAI, LiDAR height [50]

Modeling the relationship of forest parameters such as canopy height from field measured values,
and remote sensing derived variables can be done in several ways. The most common are parametric
regression methods [55–57] or machine learning models like Random Forest (RF) [58,59]. Due to their
simplicity, parametric regression-based methods are widely used for modeling biophysical parameters
and remote sensing variables. One major problem in parametric regression is that it assumes a standard
relationship before the analysis, which may not be true, in reality. RF is a decision tree-based machine
learning model used for estimation of biophysical parameters [60]. The RF model can capture the actual
non-linear relationship between the predictor and predicted variables. However, the interpretation of
an RF model is complicated as it consists of many trees and numerous sets of rules.

Symbolic Regression (SR) using genetic programming is a relatively modern technique that
estimates a straightforward best-fit model for a given dataset by minimizing error rates while searching
through all possible regression models [61,62]. Conventional machine learning algorithms work as
black-boxes; implying that the internal mechanisms of these algorithms are hard to comprehend
and difficult to reproduce desired results. The SR model works with the principle to determine the
input-output relationship and selection of variables, which are most effective in predicting outputs [63].
The SR model’s inclination towards finding correct solutions makes it distinct from other types of
regressions. SR is capable of constructing a robust and interpretable formula, which is not possible by
other linear and nonlinear regressions or machine learning models.

The main objective of this study was to establish a methodology by which forest canopy height can
be estimated using SAR and optical remote sensing data using machine learning models. The mangrove
forest in the Bhitarkanika Wildlife Sanctuary (BWS), Odisha, India, was chosen as the study area.
First, we attempted to establish canopy height models using SR and RF, and Sentinel-1 and Sentinel-2
derived parameters. Further, the canopy heights estimated using the two models were compared and
validated with field measured and ICESat-2 derived data.
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2. Materials and Methods

2.1. Study Area and Filed Measurement of Canopy Heights

The Bhitarkanika Wildlife Sanctuary (BWS), with 58 species, is considered as one of the vital
mangrove ecosystems in the world due to its genetic diversity [64]. Dense and moderately dense
mangroves cover an area of 165 km2 [65] of BWS. Some of the dominant species of BWS are Heritiera sp.,
Excoecaria sp., Avicennia sp., and Sonneratia sp. [66]. This area receives a high average annual rainfall of
about 1642 mm, and most of it is received during June to October. BWS experiences a typical warm
and humid tropical climate with temperature maxima in May and minima in January [67]. Multiple
field surveys were conducted during November–December 2018 for canopy height measurement.
Height measurement of all the trees in an inventory plot is time consuming, and redundant, especially
if it has to be correlated with satellite derived canopy height pixels. Sullivan et al. [68] have mentioned
that although an increase in the number of sampled trees results in better accuracy, the inclusion of the
ten largest trees is most important. Thus, we observed the sampling frequency of the 10 largest trees
per plot and measured tree height using a laser range finder instrument. The center locations were
obtained using a handheld GPS for all 185 plots (Figure 1).

Figure 1. Location of the Bhitarkanika Wildlife Sanctuary (Odisha state) on the eastern coast of India.
The false color composite image of BWS is shown with the boundary demarcated over which the
canopy height measured plot positions are overlaid with green markers.

2.2. Satellite Data and Processing

Sentinel-1 and Sentinel-2 data were downloaded from the European Space Agency’s (ESA)
Copernicus Hub. The Sentinel-1 mission consists of two satellites, Sentinel-1A and Sentinel-1B,
which image the earth in C-Band SAR with a six day revisit period between them. A total of six
images, three each for Sentinel-1A and Sentinel-1B, were in the Single Look Complex (SLC) format.
They were acquired in the interferometric wide-swath mode (IW), which contains both amplitude
and phase information of the backscattered SAR signal (Tables 2 and 3). Sentinel-1 uses the advanced
Terrain Observation by Progressive Scans (TOPS) SAR mode to capture images in three sub-swaths in
a total swath width of 250 km [69]. The study area falls in the second sub-swath of all the SLC images.
So, each image was split to subset only the second sub-swath. Each six day pair of Sentinel-1 SLC
images was co-registered in the ESA’s Sentinel Application Platform (SNAP) using orbital information
and SRTM 1-sec DEM. Only the VV polarisation band of the Sentinel-1 data were selected for the
study as the VH polarisation tends to lower the coherence value by introducing decorrelation due
to cross-polarization noise [70]. The Sentinel-2 mission also consists of two satellites, Sentinel-2A
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and Sentinel-2B, with a five day revisit period in combination. Seven cloud free Sentinel-2 data were
acquired in the L1C processing level, with the top of the atmosphere reflectance values. Sentinel-2
data were atmospherically corrected to the L2A processing level using the SEN2COR processor [71].
It adjusted the image to yield the bottom of the atmosphere-surface reflectance. The pre-processed
Sentinel-1 and Sentinel-2 data were further used for specific parameter extraction and canopy height
modeling (Figure 2).

Table 2. The acquisition details of the Sentinel dataset used in this study.

Data Type Platform Processing Level Acquisition Date

SAR
Sentinel-1A SLC 29 November; 11, 23 December 2018

Sentinel-1B SLC 5, 17, 29 December 2018

Optical
Sentinel-2A L1C 16, 26 November; 26 December 2018

Sentinel-2B L1C 21 November; 11, 31 December 2018

Table 3. Perpendicular baselines of all interferometric pairs used in the study.

DOP of Interferometric Pairs Perpendicular Baseline (in m)

29 November–5 December 122.4
5 December–11 December 76.26
11 December–17 December 27.92
17 December–23 December 79.34
23 December–29 December 28.49

Figure 2. Methodology flow diagram depicting the steps adopted for generating canopy height maps
and comparison of model outputs.

Launched in September 2018, ICESat-2 can measure the earth surface with a 17 m diameter
footprint and with 91 days temporal resolution. ICESat-2 has three pairs of beams. Each pair of beams
footprint is separated by about 3 km of cross-track with a pair spacing of 90 m [72]. The ICESat-2 data
were downloaded in hdf5 format from the National Snow and Ice Data Centre (NSIDC) [73]. The data
product selected was ALT08, which includes the height of the surface, including the canopy. An R
package was used to extract the canopy height information from the ALT08 data.
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2.3. Interferometric Coherence and Biophysical Parameters Extraction

Coherence for all co-registered SLC pairs was estimated using the SNAP tool. The coherence of an
image pair depends on the baseline length. A massive baseline results in low coherence and vice versa.
The longest baseline for which coherence becomes zero is known as the critical baseline [39]. It can
be expressed as a function of band chirp width, orbital height, and sensor operating frequency [74],
as shown in Equation (1).

Bcr = (b× h× sinθ)/
(

f × cos2θ
)

(1)

where, Bcr = critical baseline; b = chirp width; f = operating frequency; θ = incidence angle.
Sentinel-1 sensor characteristics vary according to observation mode [75]. The critical baseline,

obtained using optimal values of parameters stands at 3.65 Km. As all the pairs have a baseline length
significantly lower than the critical baseline, the coherence values fall within the acceptable range
(Table 3). Backscatter images were also generated from the SLC images by converting them from the
SLC image to Ground Range Detected (GRD) image.

Sentinel-2 L2A images were used to calculate LAI and FVC using the SNAP toolbox biophysical
variable processor. All Sentinel-2 images were resampled to 20 m pixel size. The biophysical processor
algorithm was implemented to generate biophysical products from a range of sensors [76]. An extensive
database was prepared to include the top of canopy reflectance and associated vegetation characteristics
in the biophysical processor algorithm. This database was used to train neural networks to estimate the
canopy characteristics from the top of canopy reflectance along with the observational configuration.
In SNAP, the prediction of the new variable was made based on the set of coefficients computed during
the training phase.

2.4. Canopy Height Modeling

After generating the necessary variables, the next step was to establish the relationship between
the variables and canopy height through regression. The values of coherence and other biophysical
parameters were extracted at field plot locations to build the dataset for regression. Non-linear
regression was implemented via two machine learning models, first, using the RF and then using
SR. Primarily, the whole canopy height dataset was divided randomly into two parts using data
partition function of CARET package. Seventy percent of it was used for model building, and the other
30 percent was used in model validation. The model building data was further divided into the model
training and testing datasets in accordance with the model characteristics. Therefore, for both the
models, we had separate model building, i.e., training and testing, and validation data.

2.4.1. Random Forest

The RF model was implemented via the CARET package in R [77]. In an RF model, hundreds of
trees are built based on a bootstrap sample of the original data [78]. Variables were chosen randomly
at each node for the split, and the final value was predicted by averaging the prediction of all the trees.
The importance of the variables in the RF model was measured to find the most influential variables.
As the first step of the importance measurement, the Mean Squared Error (MSE) was measured for each
tree using an Out Of the Bag (OOB) sample. Thereafter a new error rate was calculated using the same
procedure after permuting a variable. The difference between the two accuracies were averaged for all
trees, and normalized by the standard error. This value was termed as the importance of the permuted
variable to the model. The exclusion of a variable with positive importance increases the error rate of
the model, while it is opposite for the variables with negative importance. After the initial run of the
model, variables with negative importance were removed from the predictor list. The final model was
built only on the variables with positive importance. Here one more fold cross-validation was done to
reduce the chance of over-fitting. Initially, the field-measured canopy heights were correlated with the
remote sensing derived variables, followed by model prediction of canopy heights.
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2.4.2. Symbolic Regression

The use of SR, in retrieval of biophysical parameters has not been explored earlier. The success of
machine learning algorithms in the biophysical parameters’ retrieval problem showed the existence of
the non-linear relationship between remotely sensed variables and biophysical parameters. However,
the establishment of an interpretable model describing the relationship was not possible with machine
learning regression. The working principle of SR makes it a viable option for the establishment of such
a model.

SR was implemented through genetic programming, and it consisted of several steps. First was
the selection of the terminals, i.e., independent variables. Coherence, SRTM DEM, FVC, and LAI were
selected as terminals for prediction of canopy height. The second step was to identify a set of functions
that would be used to build the models. In this study, constant, addition, multiplication, subtraction,
division, exponents and natural logarithms were selected as the primitive functions. Each of these
functions has an associated complexity. The first four have a complexity of 1, division has a complexity
of 2, and exponents and natural logarithm have a complexity of 4 each. The total complexity of
the solution is the sum of the complexity of the functions used in the solution [79]. Each symbolic
expression proposed by the genetic programming was evaluated based on its fitness, which in this
case, was measured by the mean squared error between observed and predicted values. Probability
values were assigned to the initial models based on their fitness. After that, a new generation of
models were created by reproduction, i.e., copying an existing model to the new population and
genetic recombination, i.e., building a new model by recombining parts from existing models [61].
The trial version of Eureqa pro software was used for the SR model [80]. In the absence of specific
termination criteria in the software, the final model was chosen when the 50th generation was reached.
After getting the final canopy height model, the efficiency of the model was checked using the test
dataset. Further, canopy heights were predicted using the model for the study area.

One of the goals of the SR model was to identify the variables that provided the most significant
explanatory power for the dataset. Sensitivity analysis was used to identify the variables which have
the greatest contribution to the regression equation [81]. The partial derivative of the dependent
variable with respect to an independent variable was taken as the first step of sensitivity analysis.
The final sensitivity was obtained by multiplying the partial derivative with the ratio of the standard
deviation of the independent variable and the dependent variable [79]. The sensitivity of variable x for
the function y = f(x) is estimated as follows: ∣∣∣∣∣∂y

∂x

∣∣∣∣∣·σx

σy
(2)

where ∂y
∂x = partial derivative of y with respect to x; σx = standard deviation of the independent variable

x, and σy = standard deviation of the dependent variable y.
The sensitivity indicates the direction, either positive or negative, and the magnitude of the

correlation between input and output variables. A positive sensitivity suggests that an increase in
the input variable will increase the value of the output variable and vice versa. The magnitude of
the sensitivity determines the amount of increment or reduction of the output variable due to a unit
increase in the input variable. A higher magnitude of positive sensitivity denotes a high amount of
increase in the output variable value and vice versa for negative sensitivity.
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3. Results

3.1. Field Measured Canopy Height

The distribution of the field-measured canopy height showed that the height range of 8 to 10 m
has the largest number of plots (Figure 3). The tallest canopy heights observed during the field
measurement were in the range of 14–16 m and occurred in three plots, whereas the lowest measured
from 2 plots were in the range of 2–3 m.

Figure 3. Distribution of field-measured canopy heights displayed against their frequency of occurrence.

3.2. Isnterferometric Coherence and Biophysical Psarameters

The average values of SAR coherence and biophysical variable images were used as inputs to
reduce the effect of temporal variation. The spatial distribution of pixel values of all the variables
showed different patterns (Figure 4). The coherence values found higher and close to ‘1’ over fully
correlated areas, and near ‘0’, where there is no statistical relationship between the images [40].
As vegetation loss is a significant reason explaining loss of coherence, the coherence values remained
low in dense mangrove areas. The FVC and LAI images provided idea about presence and absence of
vegetation. Lower values of FVC and LAI indicated sparse or no vegetation. A comparison of the
coherence images with LAI and FVC images showed that areas (within yellow ellipse in Figure 4),
with lower FVC and LAI values, showed a relatively higher coherence corresponding to lower DEM
values. However, for some areas (under the red ellipse), FVC, and LAI showed higher values, but the
coherence of the region remained high, and DEM values remained on the lower range.

The frequency of pixel values in the coherence image almost shaped like a gaussian distribution
(Figure 5). Most of the pixel values fall between 0.3 and 0.5. The rest of the values were distributed
quite evenly on each side. Distribution of both LAI and FVC values followed a similar pattern. Due to
the dense nature of mangroves, FVC also showed higher values for most of the pixels, with a much
smaller number of pixels with values <0.4 and >0.6. However, LAI values remained low, between 1.5
and 2. The DEM image demonstrated flat topography with maxima of 16 m.
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Figure 4. (a) Coherence, (b) Fraction of Vegetation Cover (FVC), (c) Leaf Area Index (LAI) images and
(d) Digital Elevation Model (DEM), with a vegetated and non-vegetated patch shown under red and
yellow ellipses respectively.

Figure 5. Frequency distribution of the input images for the canopy height model: (a) coherence;
(b) FVC; (c) LAI; (d) DEM.
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3.3. Canopy Height Model Establishment Using SR

The progression of the SR showed how the mean squared error decreased by selecting different
relationships between the variables (Figure 6). The final regression model (Equation (3)) is a genetic
combination of seven primary relationships formed with the input data. The final model by the SR used
multiplication, addition, subtraction and division to build the relationships between the dependent
and independent variables.

Height = 147.7 ×Coh + 0.000924×DEM3 + 29.27× FVC×Coh×VH
+15.87×Coh× LAI2 − 10.82× FVC×VH − 21.98× FVC× LAI
−45.05

(3)

Figure 6. Progress of Symbolic Regression (SR) over time, for canopy height model establishment,
including the relationship assumed for the regression.

Considering the operators and constants used in the model, the total complexity of the model was
32. Equation (3) was used to predict canopy height for the test dataset.

The ‘variable sensitivity’ analysis gave an idea about the critical variables and their impacts on the
regression model (Table 4). FVC had the highest sensitivity that means among all the variables, a unit
increase in FVC caused the most significant change in estimated height. Additionally, the direction of
FVC sensitivity was negative for 100% of cases, which suggested negative correlation with canopy
height. A unit increase in FVC value caused a decrease of 1.122 m in estimated canopy height. LAI
was also highly sensitive, but it was positively correlated to the estimated canopy height for all the
cases. Thus, a unit increase in LAI increased the estimated canopy height by an amount of 1.108 m.
Coherence and DEM had relatively lower sensitivity. Coherence was negatively correlated with height
with a sensitivity of 0.57056. For DEM, the correlation was positive, with a sensitivity of 0.34082. VH
backscatter had very low sensitivity with the estimated canopy height.

Table 4. Variable sensitivity of the SR model that explained the relative impact a variable has on the
target variable within the model.

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude

FVC 1.122 0% 0 100% 1.122
LAI 1.108 100% 1.108 0% 0

COH 0.57056 0% 0 100% 0.57056
DEM 0.34082 100% 0.34082 0% 0
VH 0.02177 100% 0.02177 0% 0

The observed and predicted values of canopy height closely followed the identity line (Figure 7).
The R2 value between observed and predicted canopy height was 0.62, and RMSE value was 1.48 m.
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A trend of overestimation for lower height and underestimation for higher height can be observed in
the correlation plot. However, the magnitude of deviation from the identity line was pretty low, and the
number of overestimated and underestimated points was almost evenly distributed. The normalized
RMSE was 13.7% concerning the range of field measured canopy heights.

Figure 7. Correlation plot of canopy heights between field measurements and SR model
based predictions.

3.4. Canopy Height Model Establishment Using RF

RF regression was run for canopy height model establishment. The same set of training and the
test dataset were used. Coherence was the most critical variable in the RF model, followed by LAI
and FVC. DEM and VH backscatter acted as the variables with the lowest importance (Figure 8a).
The importance of VH backscatter found much less than other variables, similar to SR model (Table 4).
The correlation plot between field-measured canopy heights and model predicted canopy heights,
showed that the magnitude of over- and underestimation of canopy height was more or less similar,
like the SR model (Figure 8b). However, the result showed a lower R2 of 0.6, between field measured
and model predicted canopy height values, while the RMSE value of RF model was higher (1.57 m)
and the normalized RMSE was 14.54%.

Figure 8. (a) Variable importance of the RF model for canopy height estimation; (b) correlation plot of
canopy height between field measured and RF-based model prediction.
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3.5. Comparison of Canopy Height Maps Derived Using SR and RF Models

The predicted canopy height map using SR and RF models demonstrated a range between 0
to 18 m and 3 to 15 m respectively (Figure 9a,c). Areas showing the upper canopy height range
distribution was less in the RF model based predicted map, while for SR prediction, a larger area
was found with upper canopy height ranges. Overall, both the maps showed similar trends with the
medium range of canopy height values being the same for both. The difference in the canopy height as
per the two models were found largely in lower range values (Figure 9e,f).

 
Figure 9. (a,b) Canopy height map using the SR model and its histogram distribution; (c,d) canopy
height map using RF model and its histogram distribution; (e,f) canopy height difference map derived
using estimations from two models (SR–RF) and its histogram distribution.
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3.6. Comparison of Canopy Heights Derived from Model Predictions with ICESat-2 Estimates

The distribution of canopy heights from ICESat-2 showed a similar pattern with SR model
predictions (Figure 10a,b). However, canopy heights from ICESat-2, data demonstrated a peak at
10–12 m, whereas it was at 9–10 m for both model predictions. It can be observed that the ICESat-2
footprints lie mostly in the areas with higher canopy heights. Further, the canopy height distribution
was more similar to the SR-based predictions than RF.

Figure 10. (a) ICESat-2 footprints shown over the BWS on the canopy height map using SR prediction,
and (b) Frequency distribution of canopy height pixels from ICESat-2 data.

The canopy height values from SR prediction showed a better correlation with ICESat-2 estimated
canopy heights with an R2 value of 0.45 and RMSE of 2.24 m. The relationship with ICESat-2 based
canopy height was much weaker for the RF model predicted canopy height values, where the R2 value
between observed and predicted height was 0.34 with an RMSE of 2.69 m (Figure 11). There were
quite a high number of footprints with extreme values, for which over- and under-estimation can
be observed.

Figure 11. Correlation plots of canopy height values between ICESat-2 footprints and (a) RF model,
and (b) SR model predictions.
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4. Discussion

4.1. Comparison of SR and RF Model Based Canopy Height Estimates

Although, both SR and RF can be termed as a machine learning models, the fundamental working
principle is entirely different from one another. The variable importance of RF and variable sensitivity
of SR varied significantly for the canopy height models, as both methods had a different perception
regarding the importance of variables. The RF model determines variable importance by the change in
the regression error through variable permutation [82], i.e., the change in prediction accuracy due to the
presence and absence of a variable was used as a measure of importance [83]. The size of the increase
or decrease in regression error due to the absence of a predictor variable measured the magnitude of
importance in the RF model. A more significant increase means that the variable was more important
compared to other variables. There was no separate variable importance measurement procedure
in the SR model. In SR, the model undergoes through a continuous evolutionary process. Models
incorporating unimportant variables will perform worse than individuals using only relevant variables.
Those unimportant variables will in turn, have a lower chance of being chosen to produce highly
accurate symbolic expressions [84]. Therefore, the presence of irrelevant variables was discouraged
throughout the process. Hence, the presence of a variable in a sufficiently evolved population will
indicate the necessity of that variable in the model.

Stijven et al. [84] had argued that the variable selection method of SR is more reliable than in RF
regression. With the detailed analysis of four different datasets, they have listed several reasons for
which variable selection by RF may not always be reliable. As the first reason, they concluded that
when multiple variables had almost equal importance, the RF model struggles to differentiate between
them and assigns random variable importance. RF can also assign considerably less significance to
a variable than expected due to its correlation with other irrelevant variables present in the model.
Data distribution often can influence the variable importance. SR was found to be free from all these
obstacles, which were held back in the RF model. Thus, in the SR model, there was a lower chance
of omitting the vital variables. Chen et al. [85] also confirmed that SR was more efficient in variable
selection than RF.

4.2. Importance of Variables in the Canopy Height Models

While building the canopy height model using SR, it was found that FVC, LAI, and coherence
worked as the most sensitive variable for canopy height estimation. Although, FVC was an indicator
of the tree crown property, it had shown a good correlation with canopy height in some earlier
studies. Simrad et al. [86] concluded that while canopy cover shows a correlation with tree height,
it might not hold for tall mature tropical forests due to the saturation of canopy cover with tree
height. Wang et al. [47] also produced a global canopy height map using GLAS data and RF regression.
In their study, they confirmed that tree cover was closely related to canopy height. Liu et al. [35] also
showed the relationship between tree height and its predictors would be a non-linear one. Korhonen
et al. [87] in their study, found that on reaching a certain height, canopy height has a strong non-linear
relationship with canopy cover. One more reason for this kind of result can be the species distribution
in the study area. It was also observed from the results that FVC had a negative sensitivity with canopy
height, which means an increase in FVC will result in a decrease of canopy height. In BWS, it was
observed that trees with relatively lower height such as Excoecaria agallocha were densely packed than
other taller trees, like Avicennia officinalis, and Heritiera fomes. Thus, densely packed patches could have
lower canopy heights, leading to negative sensitivity of FVC to canopy height.

Several studies found that coherence showed reasonable correlation with canopy height. Olesk et
al. [42] used four different models to illustrate the relationship between coherence and canopy height
and found that all the models performed well in describing the relationships. In general, the coherence
of an interferometric pair decreases due to the volumetric effect, among other reasons [74]. As tree
height is a significant indicator of aboveground volume in forested areas, and the canopy height is
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highly correlated with aboveground volume, coherence must have a correlation with canopy height.
Therefore, coherence can be used to estimate canopy height. Schlund et al. [88] found that volume
decorrelation can be traced back to the canopy height. As a result, we found it as an essential variable
in both models. In the SR model, it is negatively correlated with the canopy height. It happened
so because, with the increase in height, the volume decorrelation increases leading to decrease in
coherence. Therefore, decrease in coherence could indicate increase in canopy height and vice versa.

The estimation of canopy height with the help of LAI was not largely explored. Some studies have
shown a possible relationship between them [52,89]. Pope and Treitz [50] showed that LiDAR predicted
height could be used for LAI estimation to an acceptable extent for boreal forests. Qu et al. [51] found
that even for a tropical forest site, height metrics derived from LiDAR data can estimate LAI quite
efficiently. They also showed that it even performs better than MODIS LAI. Thus, these studies showed
that there is a relationship that exists between canopy height and LAI. However, remote sensing based
studies have not tried to use the relationship to estimate canopy height from LAI. Here, LAI was found
as the second most important variable for both models, which showed good correlation of LAI with
canopy height.

4.3. Canopy Height Models and Maps

Both SR and RF models demonstrated capability in predicting canopy heights with the former
having better efficiency. The SR model established here is complicated with more functions and higher
complexity. A complex model is more likely to map the inherent non-linearity among the predictors,
while a simpler model is preferred for its easy interpretability. The relationship observed between
remotely sensed parameters, and biophysical variables were generally non-linear and complex [90].
Although different machine learning algorithms, including RF, can estimate biophysical parameters
efficiently, the lack of interpretability restricts the replication of their results; which can be overcome
with the use of SR based models.

Though the canopy height maps differ in values, they showed similar trends for most of the areas,
i.e., higher values in one map correspond to higher values in other maps, and vice versa. The difference
in canopy height map showed that the values were generally higher for SR model prediction than
the RF model prediction values. However, there could be exceptions (marked by a red ellipse in
Figure 3), due to mainly two reasons. First, the different variable importance in different models as the
RF and SR models used different set of essential variables leading to slightly different results. Second,
some differences occurred due to the extrapolation problem of the RF model [91]. RF regressions
cannot predict values outside the range of the training data as it is based on averaging the values of
multiple outputs. In RF regression, final predictions were derived by averaging the results of many
tree canopies. Additionally, each canopy output was derived as the mean values in each terminal node
of a tree. The average for a set of values must be well within the value range. Therefore, the highest
canopy height value remained below 14 m in the RF model predicted map (Figure 9c), whereas
field-measured data reported canopy height values beyond 14 m. The RF model training sample tend
to underestimate the higher canopy height values and overestimate the lower range values. The SR
model can extrapolate values beyond the range of training data, therefore, a large area observed with a
canopy height between 14 and 18 m for the SR model prediction (Figure 9a). Therefore, for the upper
and lower canopy height values that lie beyond the training data range, the SR model prediction could
be erroneous. Castillo et al. [92] also reported discouraging extrapolation with SR model.

The canopy height maps showed limited correlation with the ICESat-2 estimated canopy height.
The first release of the ALT08 data product has some known issues which may affect the estimated
canopy height [93]. ICESat-2 data is also found to have a vertical RMSE of 3.2 m for canopy height
retrieval [94]. So, these reasons may affect the correlation between model estimated canopy height and
ICESat-2 estimated height. In future, with the availability of an increased amount of more accurate
footprints, an improved relationship between the two can be expected. Additionally, the canopy
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height models were built on field measured inputs with a laser rangefinder, which may have some
instrumental error [8].

5. Conclusions

The mangroves are one of the critical storages of aboveground carbon, and they are experiencing
considerable alternations due to climate change. Accurate information about the carbon storage
proxies, such as canopy height, will help estimate AGB and carbon sequestration. Forest canopy height
models, especially for the mangroves, were generally prepared by using airborne LiDAR, high spatial
resolution stereo imagery, or SAR interferometry [20,56,95]. Nonetheless, most of these methods were
not always applicable to all the areas due to a lack of proper data availability. The current study
proposed a method that can be applied to anywhere else in the world as it is based on Sentinel series
data having global coverage.

In this study, we have analysed the potential of Sentinel-1 interferometric coherence, Sentinel-2
biophysical parameters in predicting the canopy height for mangroves. The interferometric coherence
and biophysical parameters act as good predictors due to their relationship with the canopy height.
Machine learning models were found to be an excellent method for canopy height modeling. Although
the RF model demonstrated its efficiency in canopy height estimation, the SR model through genetic
programming was found to be the most effective. The SR also established an interpretable model,
which is not possible via any other machine learning algorithms. The SR-based model outperforms
commonly used machine learning models like the RF. The fraction of vegetation cover (FVC) was found
to be an essential variable for predicting canopy height. It was also found that the canopy height map
correlates with ICESat-2 estimated canopy height, albeit modest. Overall, this study demonstrated the
effectiveness of Sentinel series data and the SR in predicting canopy height.
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Abstract: The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest
vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic
aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter
space (forest height, Gaussian mean representing the strongest backscattered power elevation,
and the corresponding standard deviation) to interpret the forest vertical structure. This paper
establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically,
the two-dimensional GVB model includes the following three cases: the Gaussian mean is located
at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a
constant volume profile. In the first two cases, only the forest height and the Gaussian standard
deviation are variable. The above approximation operation generates a two-dimensional volume
only coherence solution space on the complex plane. Based on the established two-dimensional GVB
model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption.
The proposed method improves the performance by 18.62% compared to the three-baseline Random
Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence
angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests
that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong
description ability.

Keywords: P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR); forest vertical
structure; Gaussian vertical backscatter (GVB) volume; multi-baseline optimization

1. Introduction

The essence of the model-based polarimetric interferometric synthetic aperture radar (Pol-InSAR)
parameter inversion is to solve the model equations established between the synthetic aperture radar
(SAR) observations and the theoretical forest vertical structure [1–7]. The Random Volume over Ground
(RVoG) model based on the assumption of vertical homogeneous random volume was widely verified
at relatively high frequencies (e.g., X-, C- and L-band) [5–14].

In the process of the Pol-InSAR model inversion, a non-negligible issue is whether the equations
has a unique solution. An effective precondition for single-baseline Quad-pol configuration to make
the RVoG model solution unique is the null ground-to-volume ratio assumption (commonly less than
−10 dB) [6]. Nevertheless, this assumption is no longer valid for P-band observations in which all
polarization channels generally contain significant ground responses [15–19].

Remote Sens. 2020, 12, 1319; doi:10.3390/rs12081319 www.mdpi.com/journal/remotesensing
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A common solution to this case is to fix the extinction coefficient in the RVoG model [15,16,20–22].
However, as the inversion performance depends heavily on the selection of extinction coefficient,
this technique is restricted in complex actual scene, in which it is unreasonable to apply only a
single extinction coefficient to the parameter estimation of whole scene. An alternative is to increase
the observation space through the multi-baseline configuration [8,17,23–26], and yet in this case,
the inversion based on RVoG model is still obviously underestimated, indicating that multi-baseline is
not enough to make up for the lack of the RVoG model [17,23]. Actually, when P-band SAR systems are
used to observe the low-density forest, the volume scattering layer exhibits a vertical heterogeneous
distribution, leading to the ineffectiveness of RVoG model [17].

To cope with this issue, the Gaussian vertical backscatter (GVB) model with a stronger expression
ability was proposed [27,28]. The GVB model is mainly used to describe the vertical heterogeneity
of volume scattering, which is often effective for the Pol-InSAR inversion where most backscatters
are concentrated in the middle or lower part of the canopy. Compared with the RVoG model which
has only two parameters (forest height and extinction coefficient), the GVB model describes the forest
vertical structure with three parameters (forest height, Gaussian mean and standard deviation), which
effectively improves the description ability of the model, yet brings serious inversion complexity
simultaneously [24,25].

In view of the characteristics of P-band Pol-InSAR observations and the limitations of the existing
methods, this paper proposes the two-dimensional GVB model and the corresponding multi-baseline
inversion. Concretely, in order to apply to the heterogeneity of the forest vertical volume under P-band
observations, the GVB model framework is used to interpret the forest vertical structure. Concurrently,
to alleviate the high complexity of the three-dimensional GVB model, the two-dimensional GVB model
is developed. As for the the model inversion, considering the assumption of null ground-to-volume
ratio is no longer tenable, the multi-baseline configuration is adoped to optimize the model equations.

The remaining part of the paper proceeds as follows. Section 2 retrospects the model-based
Pol-InSAR inversion theory. Section 3 presents the inversion based on the two-dimensional GVB model,
while Section 4 validates the proposed approach with the actual E-SAR data. Finally, the discussions
and conclusions are drawn in Section 5.

2. Model-Based Pol-InSAR Inversion Theory

Once temporal decorrelation and noise decorrelation are ignored, the interferometric coherence in
Pol-InSAR observation mainly includes the volume decorrelation [5–7,29,30]

γ =

∫ z0+hv
z0

F (z) ejkzzdz∫ z0+hv
z0

F (z) dz
(1)

where F (z) is the structure function related to the vertical coordinate z, hv and z0 refer to the forest
height and the ground starting coordinate respectively. The interferometric vertical wavenumber kz is
related to the radar wavelength λ, incidence angle θ and the incidence angle difference between two
interferometric antennas δθ [31]

kz =
4π

λ sin θ
δθ (2)

2.1. RVoG Model and Inversion

As shown in Figure 1, the vertical structure function based on the RVoG model is
given [6,7,29,30,32]
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F (z) = ρve(2σ(z−z0−hv)/ cos θ) + ρge(−2σhv/ cos θ)δ (z − z0) (3)

where σ indicates the extinction coefficient independent of polarization, δ (•) refers to the impulse
function, ρv and ρg related to the specific polarization state represent the backscatter intensities per
unit length corresponding to the volume and ground, respectively.

Figure 1. The profile of Random Volume over Ground model.

Substituting Equation (3) into Equation (1) gives the volume decorrelation under the assumption
of the RVoG model

γ (ω) = ejφ0
γv + μ (ω)

1 + μ (ω)
(4)

where φ0 = kzz0 is the ground interferometric phase, ω represents the unit vector characterizing
polarization, γv and μ (ω) indicate the volume only coherence and the ground-to-volume power
ratio [6,7,29,30,32]

γv (hv, σ) =

∫ hv
0 e(2σz/ cos θ)ejkzzdz∫ hv

0 e(2σz/ cos θ)dz
=

2σ

cos θ
(
e(2σhv/ cos θ) − 1

)
∫ hv

0
e(2σz/ cos θ)ejkzzdz (5)

μ (ω) =
2σ

cos θ
(
e(2σhv/ cos θ) − 1

) ρg

ρv
(6)

According to the random volume hypothesis, the extinction coefficient σ is independent of
polarization, while φ0 depends on the baseline. Therefore, once the baseline is determined, hv, σ and φ0

in Equations (4) and (5) remain unchanged, while only μ (ω) varies with polarization state. Since the
single-baseline Quad-pol provides three measured complex coherences corresponding to independent
polarization channels, the parameter inversion can be achieved by a six-dimensional optimization
process [5,6,15,17,19]

[
ĥv, σ̂, φ̂0, μ̂i

]T
= arg min

[hv ,σ,φ0,μi ]

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥∥

⎡
⎢⎣

γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

⎤
⎥⎦−

⎡
⎢⎣

γ (hv, σ, φ0, μ1)

γ (hv, σ, φ0, μ2)

γ (hv, σ, φ0, μ3)

⎤
⎥⎦
∥∥∥∥∥∥∥

⎫⎪⎬
⎪⎭ (7)
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where
[

ĥv, σ̂, φ̂0, μ̂i

]T
is the parameter estimation and subscript i = 1, 2, 3 represent any three

independent polarization channels. ‖•‖ denotes the matrix 2-norm operation, γ̂ and γ represent
the radar observation and the theoretical prediction respectively. Although the optimization process
consists of six unknowns and six independent equations, the inversion cannot get a unique solution
due to the nonlinear form of the equation [17].

One way to guarantee a unique solution to the single-baseline configuration is to assume that
there is at least one polarization channel with little ground response [6,7,17]. Under this assumption,
μ3 = 0 can be set directly, and the optimization expression at this time is as follows

[
ĥv, σ̂, φ̂0, μ̂i

]T
= arg min

[hv ,σ,φ0,μi ]

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥∥

⎡
⎢⎣

γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

⎤
⎥⎦−

⎡
⎢⎣

γ (hv, σ, φ0, μ1)

γ (hv, σ, φ0, μ2)

γ (hv, σ, φ0, μ3 = 0)

⎤
⎥⎦
∥∥∥∥∥∥∥

⎫⎪⎬
⎪⎭ (8)

As mentioned before, the null ground-to-volume ratio assumption is no longer effective for P-band
SAR observations. In this case, a common single-baseline inversion method for P-band observations is
to fix the extinction coefficient [15,16,20–22]

[
ĥv, φ̂0, μ̂i

]T
= arg min

[hv ,φ0,μi ]

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥∥

⎡
⎢⎣

γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

⎤
⎥⎦−

⎡
⎢⎣

γ
(
hv, σ = σpre, φ0, μ1

)
γ
(
hv, σ = σpre, φ0, μ2

)
γ
(
hv, σ = σpre, φ0, μ3

)
⎤
⎥⎦
∥∥∥∥∥∥∥

⎫⎪⎬
⎪⎭ (9)

where σpre represents the extinction coefficient that is determined by prior or empirical information.
Another method to ensure that the inversion has a unique solution while not requiring the null

ground-to-volume ratio assumption is the multi-baseline optimization [17,23]

[
ĥv, σ̂, φ̂

j
0, μ̂i

]T
= arg min[

hv ,σ,φj
0,μi

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̂1 (ω1)

γ̂1 (ω2)

γ̂1 (ω3)

...
γ̂n (ω1)

γ̂n (ω2)

γ̂n (ω3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 (hv, σ, φ1
0, μ1

)
γ1 (hv, σ, φ1

0, μ2
)

γ1 (hv, σ, φ1
0, μ3

)
...

γn (hv, σ, φn
0 , μ1

)
γn (hv, σ, φn

0 , μ2
)

γn (hv, σ, φn
0 , μ3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where the superscript j = 1, 2, ..., n represent different baselines, among which n is the total
number of baselines involved in the optimization. Under similar experimental environments (radar
system parameters, weather conditions, etc.), μi of different interferometric pairs are assumed to be
constant in the same polarization [24,25,33]. Consequently, for each additional interferometric pair,
the corresponding optimization increases three observational complex coherences and produces
an unknown variable φ0 simultaneously. In other words, when n interferometric pairs are
involved in inversion, the optimization process includes 6n independent equations and n + 5
unknowns concurrently.

2.2. GVB Model and Inversion

As presented in Figure 2, the GVB model can be divided into three situations in line with the
position of δ. The first case in Figure 2a is similar to the RVoG model, which assumes that the strongest
backscatter power is located at the top of the canopy, while Figure 2b,c are supplements of GVB model
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for the heterogeneity of the canopy under P-band observations [25]. The volume only coherence based
on the GVB model is [27,28]

γv (hv, δ, χ) =

∫ hv
0 e

− (z−δ)2

2χ2 +jkzz
dz
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0 e

− (z−δ)2

2χ2 dz
= e−

χ2k2
z

2 +jδkz
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(
1√
2
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δ
χ

))
− er f

(
1√
2

(
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χ

))

er f
(
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)
+ er f

(
δ√
2χ

) (11)

where δ and χ represent the backscatter mean elevation and the corresponding standard deviation
respectively, and erf (•) indicates the error function.

Figure 2. The profile of Gaussian vertical backscatter volume over ground. (a): δ ≥ hv; (b): δ ∈ (0, hv);
(c): δ ≤ 0.

When δ or χ is fixed, the corresponding solution spaces of GVB model are shown in Figure 3,
from which it can be found that there is an overlapping area between the two solution spaces.
It illustrates that once δ and χ both can take arbitrary values, there are some identical elements
in the corresponding three-dimensional volume only coherence solution space. This will lead to
multiple solutions [24,25].

Under the assumption of the two-layer volume over ground model, the interferometric coherence
based on the GVB model also conforms to Equation (4). As more model parameters are included as
well as the Gaussian form of vertical structure function (resulting in multiple solutions as presented in
Figure 3), the GVB model inversion theoretically requires multi-baseline observations to ensure that
the forest vertical structure with reasonable physical significance can be obtained [24,25]
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where
[

ĥv, δ̂, χ̂, φ̂
j
0, μ̂i

]T
is the the parameter estimation. Similarly, it is assumed that δ and χ

are independent of baseline and polarization. When n interferometric pairs are involved in inversion,
the optimization process will include 6n independent equations and n + 6 unknowns concurrently.
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In addition, in order to ensure the physical significance of parameter estimation, some prior or
empirical knowledge can be used to calibrate the initial values and constraints in the optimization
Equation (12) [24,25].

Figure 3. The solution space of Gaussian vertical backscatter model when δ or χ is fixed. Each blue
or red curve represents the volume only coherence for a given forest height at an interval of 1 m.
The terrain slope is set to 0.

3. Two-Dimensional GVB Model and Inversion

3.1. Two-Dimensional GVB Model

Corresponding to the three cases in Figure 2, the two-dimensional GVB model is constructed by
simplifying the original three-dimensional GVB model, as illustrated in Figure 4. Cases δ ≥ hv and
δ ≤ 0 are approximated to δ = hv and δ = 0 respectively, while case δ ∈ (0, hv) is approximated to a
constant volume profile. In these three cases, hv and χ are varied, while δ remains stationary. Since the
constant profile is equivalent to the case that χ is infinite when δ = hv or δ = 0, only the following two
cases are considered in the modeling of volume only coherence
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Figure 4. The profile of two-dimensional Gaussian vertical backscatter volume over ground. (a): δ = hv;
(b): constant volume profile; (c): δ = 0.

In line with Equations (13) and (14), the solution space of the two-dimensional GVB model
γv (hv, δ = 0/hv, χ) on the complex plane can be drawn, as shown in Figure 5. Although δ may be 0
or hv, the two cases correspond to two completely non-overlapping regions (blue and green solution
spaces in Figure 5, respectively) on the complex plane. According to the setting of volume simulation
parameters, with the same constant profile, the forest height corresponding to P1 is smaller than that
corresponding to P2. Simultaneously, it can be seen that the solution volume only coherence and P2

are on the same forest height curve. Hence, when the solution volume only coherence lies in the blue
solution space, the solution space containing only δ = hv will cause underestimation, which can be
ameliorated by δ = 0 solution space. Since the null extinction (the extinction coefficient is zero) in
RVoG model has the same solution space curve as the constant profile of the two-dimensional GVB
model, and considering that the vertical structure described in Figures 1 and 4a are similar, the solution
space of RVoG model can be approximately equivalent to the case of δ = hv in two-dimensional GVB
model. In a word, the added δ = 0 solution space is the reason the two-dimensional GVB model is
superior to the RVoG model [25].

In accordance with Figure 5, the solution space relying on the two-dimensional GVB model
is a two-dimensional complex space. Therefore, each element in the solution space can be
uniquely identified

γv (hv, δ = 0/hv, χ) = γv
re + jγv

im (15)

where γv
re and γv

im are the real part and the imaginary part of the homologous volume only
coherence, respectively.

In line with Figures 4 and 5 and Equations (13) and (14), the solution spaces of δ = hv and δ = 0 are
not overlapped, so (δ = 0/hv, χ) can be marked with a factor η (δ = 0/hv, χ). The physical meaning
of (hv, η) represents the vertical structure profile with a unique volume only coherence. In this case,
Equation (15) can be rewritten as

γv (hv, η) = γv
re + jγv

im (16)

where η can be any marking mode in engineering implementation.
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Figure 5. The solution space of two-dimensional Gaussian vertical backscatter model. Each blue or
green curve, or red dot represents the volume only coherence for a given forest height at an interval of
1 m. The terrain slope is set to 0. The blue dot refers to the solution volume only coherence, and the
minimum distance between it and the δ = hv solution space is indicated by the black dotted line. P1 is
the final solution in δ = hv solution space, while P2 corresponds to the solution forest height in δ = 0
solution space. Both P1 and P1 lie on the solution space curve of the constant profile.

3.2. Pol-InSAR Inversion Based on Two-Dimensional GVB Model

The inversion conditions of the two-dimensional GVB volume over ground model and the
two-parameter (hv and σ) RVoG model are the same, i.e., single-baseline Quad-pol configuration
constructs six independent equations and six unknowns simultaneously. Therefore, in order to
ensure a unique solution and avoid the null ground-to-volume ratio assumption, the multi-baseline
configuration is used to carry out the two-dimensional GVB model inversion
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(17)

where
[

ĥv, η̂, φ̂
j
0, μ̂i

]T
is the parameter estimation. Please note that since δ and χ are assumed

to be independent of baseline and polarization, the factor η is also independent of these two system
observation variables. In Equation (17), n baselines can provide 6n independent equations, while there
are n + 5 unknowns to be solved.

Figure 6 presents the flowchart of the proposed two-dimensional GVB modeling and
multi-baseline inversion. The flowchart begins by the conventional Pol-InSAR processing (including
imaging, coregistration, interferometry, flat earth removal, multilooking, filtering and coherence
estimation). It then goes on to the modeling of the two-dimensional GVB model and the corresponding
multi-baseline inversion, which is also the primary contribution made by this paper. First of all,
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the original three-dimensional GVB model is approximate to the two-dimensional GVB model.
Although δ in two-dimensional GVB model still exists two possible values (0 or hv), these two situations
constitute a two-dimensional solution space of the new model without overlapping. Therefore,
two parameters (hv and η in Equation (16)) can be used to mark every possible volume only coherence
in the solution space. In model inversion stage, the solution space corresponding to each baseline is
different, which is related to the interferometric vertical wavenumber kz, while (hv, δ = 0/hv, χ) is
independent of the baseline. Therefore, in line with the one-to-one mapping relationship between
(hv, η) and (hv, δ = 0/hv, χ), forest vertical structure estimates are ultimately available by using the
genetic algorithm to optimize the inversion consisting of no less than two baselines [17].

Figure 6. Flowchart of the proposed two-dimensional GVB modeling and multi-baseline inversion.

4. Validation with P-Band Pol-InSAR Data

4.1. BIOSAR 2008 Data Introduction

The data set applied in this paper is from European Space Agency (ESA) BIOSAR 2008 campaign,
under which the P-band Pol-InSAR experiment was conducted by German Aerospace Center (DLR)
E-SAR system. The experimental site is located in Krycklan catchment, Northern Sweden, mainly
covered by boreal forest (spruce, pine, and birch), and the Pauli-basis polarization composite map
is presented in Figure 7 [23]. On account of the significant topographic fluctuations in the test area,
the external Digital Elevation Model (DEM) data is used to generate terrain slope to compensate the
inversion model, without which there would be a certain degree of inversion error [23,26,29,30,34–37].
In addition, the LiDAR-measured forest height provided in the data set is used as the true value to
evaluate the inversion performance. To carry out the multi-baseline optimization, three interferometric
pairs with baseline lengths of 16 m, 24 m and 32 m are selected in this paper, and the corresponding
parameter information is illustrated in Table 1. Please note that the incidence angle range in Table 1 is
not corrected for terrain slope.
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Figure 7. Pauli-basis polarization composite map.

Table 1. Pol-InSAR data parameters.

Track Baseline (m) kz Range (rad/m) θ Range (rad) Band Polarization

Master Master Master 0.44–0.96 P Quad
Slave 16 0.014–0.135 Slave P Quad
Slave 24 0.021–0.181 Slave P Quad
Slave 32 0.026–0.245 Slave P Quad

4.2. Experimental Results and Analysis

In line with the flowchart in Figure 6, the Pol-InSAR process is first implemented to acquire the
multi-polarization coherences. In the process of coherence estimation, the coherence optimization is
used to suppress the influence of noise and other interferences [38]. The forest height inversion
is completed by inputting the estimated Pol-InSAR coherences into Equation (17), which is an
optimization process weighted by multi-baseline observations. In this paper, three P-band Quad-pol
interferometric pairs with uniform spatial baseline sampling are applied, as shown in Table 1.
200 verification stands are randomly selected to assess the inversion performance. The pixels in
the same stand have similar LiDAR forest heights.

Besides the two-dimensional GVB inversion (consisting of δ = hv and δ = 0), the two-dimensional
GVB with only δ = hv inversion and the RVoG inversion are carried out as well. Based on Equations (10)
and (17), all these three inversions use a three-baseline configuration to increase observation spaces,
thereby avoiding the assumption of null ground-to-volume ratio. In line with the previous analysis,
the advantage of two-dimensional GVB model over RVoG model is that the former not only has the
solution space corresponding to δ = hv (the green curves in Figure 5), but also has the solution space
corresponding to δ = 0 (the blue curves in Figure 5) which is actually a complement to the RVoG model.
Therefore, theoretically, the inversion performance of the two-dimensional GVB model with only δ = hv

should be very similar to that of the RVoG model, and the performance of these two inversions should
be inferior to that of the two-dimensional GVB model containing both δ = hv and δ = 0.

The inversions corresponding to the two-dimensional GVB model (Figure 8a), the two-dimensional
GVB model with only δ = hv (Figure 8b) and the RVoG model (Figure 8c) are presented in Figure 8.
The root mean square error (RMSE) of the three inversions is 3.19 m, 3.90 m, and 3.92 m in turn.
The homologous correlation coefficients R2 are 0.61, 0.62 and 0.62. Consistent with the theoretical
analysis, the performance of the two-dimensional GVB with only δ = hv inversion and the RVoG
inversion are very close. Simultaneously, it can be seen that these two inversions still present a
certain degree of underestimation, which cannot be compensated by a multi-baseline configuration.
After adding the case δ = 0 to the two-dimensional GVB solution space, the underestimation can
be alleviated. Compared with the two-dimensional GVB with only δ = hv inversion and the RVoG
inversion, the two-dimensional GVB inversion improves the performance by 18.21% and 18.62%
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respectively, which indicates the superiority of the proposed two-dimensional GVB model containing
both δ = hv and δ = 0. Since the three correlation coefficients R2 are very close, this indicator
cannot reflect the performance difference of different inversions. In addition, the statistical histogram
of the differences between the above three inversions and the LiDAR measurement is shown in
Figure 8d, which clearly reflects the underestimation of the two-dimensional GVB with only δ = hv

inversion and the RVoG inversion, and the improvement of the two-dimensional GVB inversion for
this underestimation.
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Figure 8. The forest height estimation of validation stands with (a) two-dimensional GVB model,
(b) two-dimensional GVB model with only δ = hv, and (c) RVoG model, compared with the LiDAR
measurement. The histogram (d) shows the differences between the Pol-InSAR inversion and the
LiDAR measurement with the two-dimensional GVB model, two-dimensional GVB model with only
δ = hv, and RVoG model, respectively. The stands that are counted in (d) correspond to the stands
in (a–c).

In line with the previous work [17,23,25], the multi-baseline RVoG inversion has a relatively
satisfactory performance in the region with a large incidence angle, while the underestimation mainly
exists in the region with a small incidence angle. As a result, the following analysis will focus on the
inversion performance in the small incidence angle region. The stands with an incidence angle less than
0.6 rad (the lower the threshold is set, the more significant the performance difference) in Figure 8 are
selected for quantitative evaluation, as shown in Figure 9. The RMSEs of the three inversions are 3.48 m,
5.31 m and 5.33 m, and the homologous correlation coefficients R2 are 0.41, 0.41 and 0.41. Compared
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with Figure 8a, the two-dimensional GVB inversion in Figure 9a maintains almost the same RMSE, which
indicates that the inversion has a stable performance over the entire incidence angle range. Nevertheless,
compared with Figure 8b,c, the two-dimensional GVB with only δ = hv inversion (Figure 9b) and
the RVoG inversion (Figure 9c) deteriorated in the region with a small incidence angle. Specifically,
the performance of these two inversions is reduced by 36.15% and 35.97%, respectively. This is because
the two-dimensional GVB model with only δ = hv and the RVoG model are more effective in the region
with a large incidence angle , while the two-dimensional GVB model with only δ = 0 mainly works
in the region with a small incidence angle. Therefore, the performance improvement of the proposed
two-dimensional GVB inversion is more obvious in the area of small incidence angle, whose accuracy is
improved by 34.46% and 34.71% compared to Figure 9b,c, respectively. Similarly, from the histogram
in Figure 9d, it is apparent that the two-dimensional GVB inversion has a significant performance
improvement over the two-dimensional GVB with only δ = hv inversion and the RVoG inversion.
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Figure 9. The forest height estimation of validation stands with (a) two-dimensional GVB model,
(b) two-dimensional GVB model with only δ = hv, and (c) RVoG model, compared with the LiDAR
measurement. These validation stands correspond to those in Figure 8 with an incidence angle less
than 0.6 rad. The histogram (d) shows the differences between the Pol-InSAR inversion and the LiDAR
measurement with the two-dimensional GVB model, two-dimensional GVB model with only δ = hv,
and RVoG model, respectively. The stands that are counted in (d) correspond to the stands in (a–c).
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5. Discussions and Conclusions

Since the research in this paper is based on P-band Pol-InSAR observations, the characteristics
of P-band SAR systems were consistently the focus of the entire research. This paper analyzes the
relationships between model parameters and observation spaces (observation baselines). To ensure
that the RVoG optimization has a unique solution, the single-baseline inversion must be combined with
certain rules (such as the null ground-to-volume ratio assumption or guessing a model parameter based
on prior knowledge in advance) [17]. The multi-baseline inversion becomes an effective choice when
the null ground-to-volume ratio assumption is no longer valid (such as the sparse boreal forest under
P-band observations) and a parameter in the model cannot be accurately predetermined. Furthermore,
under P-band observations, the forest canopy exhibits vertical structure heterogeneity, which makes it
necessary to adjust the traditional RVoG model that uses the exponential function to describe the forest
vertical structure. This paper approximates δ ≥ hv, δ ≤ 0 and δ ∈ (0, hv) in GVB model as δ = hv,
δ = 0 and a constant volume profile, thereby simplifying the three-dimensional GVB model into a
two-dimensional GVB model. The two-dimensional GVB model achieves dimensionality reduction
while retaining the advantage of the GVB model over the RVoG model (that is, increasing the solution
space corresponding to δ = 0 in the GVB model). Due to the same mathematical conditions as the RVoG
model, the two-dimensional GVB model optimization also requires a multi-baseline configuration.

The experimental results illustrate that there is clear dependence of the RVoG inversion accuracy
from the incidence angle. A possible reasonable explanation is that the penetration depth of the
electromagnetic wave into the canopy is negatively related to the incidence angle. Specifically,
the RVoG model presents an underestimation in the region with a small incidence angle, while
this underestimation can be improved by the proposed two-dimensional GVB model. The reason for
the underestimation improvement is that the vertical backscatter profile is closer to Figure 4c, which
cannot be expressed by the RVoG model. The corresponding solution space is represented by the blue
curves in Figure 5. When the solution volume only coherence is located in this supplementary solution
space (e.g., the blue dot in Figure 5), the inversion performance based on the two-dimensional GVB
model will be better than that based on the RVoG model.

Compared with the previous work [25], the proposed method achieves similar accuracy
while simplifies the inversion process. Furthermore, the regularity among the parameters used
in reference [25] depends on the specific experimental data, which may not be universal. In contrast,
the method proposed in this paper has more advantages in general adaptability.

Some limitations are also noteworthy. Compared to the single-baseline, the multi-baseline
configuration increases the complexity of the optimization process. In practice, since it may fall
into an optimization without physical significance, the multi-baseline inversion depends to some
extent on optimization initial values and constraints [24,25]. Therefore, a possible solution is to
substitute with the single-baseline configuration to optimize the two-dimensional GVB model to
avoid multi-baseline instability. According to the relationships between independent observation
equations and unknown parameters based on the single-baseline configuration, the realization of the
single-baseline inversion depends on certain prior knowledge, which may be feasible due to a large
number of data sources obtained by multi-sensor at present. Furthermore, the reason for simplifying
the three-dimensional GVB model is that it is too complicated and causes great difficulties in the
inversion process, and yet this simplification may introduce some errors. Although the appearance
of the errors may rely on specific experimental data, it is meaningful to carry out an analysis on the
errors introduced by the simplification operation, which may become a key aspect of future research.
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Abstract: The ratio between nitrogen and phosphorus (N/P) in plant leaves has been widely used to
assess the availability of nutrients. However, it is challenging to rapidly and accurately estimate the
leaf N/P ratio, especially for mixed forest. In this study, we collected 301 samples from nine typical
karst areas in Guangxi Province during the growing season of 2018 to 2020. We then utilized five
models (partial least squares regression (PLSR), backpropagation neural network (BPNN), general
regression neural network (GRNN), PLSR+BPNN, and PLSR+GRNN) to estimate the leaf N/P ratio
of plants based on these samples. We also applied the fractional differentiation to extract additional
information from the original spectra of each sample. The results showed that the average leaf N/P
ratio of plants was 17.97. Plant growth was primarily limited by phosphorus in these karst areas. The
sensitive spectra to estimate leaf N/P ratio had wavelengths ranging from 400–730 nm. The prediction
capabilities of these five models can be ranked in descending order as PLSR+GRNN, PLSR+BPNN,
PLSR, GRNN, and BPNN when considering both accuracy and robustness. The PLSR+GRNN model
yielded high R2 and performance to deviation (RPD), and low root mean squared error (RMSE) with
values of 0.91, 3.15, and 1.98, respectively, for the training test and 0.81, 2.25, and 2.46, respectively,
for validation test. Compared with the PLSR model, both PLSR+BPNN and PLSR+GRNN models
had higher accuracy and were more stable. Moreover, both PLSR+BPNN and PLSR+GRNN models
overcame the issue of overfitting, which occurs when a single model is used to predict leaf N/P ratio.
Therefore, both PLSR+BPNN and PLSR+GRNN models can be used to predict the leaf N/P ratio
of plants in karst areas. Fractional differentiation is a promising spectral preprocessing technique
that can improve the accuracy of models. We conclude that the leaf N/P ratio of mixed forest can be
effectively estimated using combined models based on field spectroradiometer data in karst areas.

Keywords: mixed forest in karst areas; leaf N/P ratio; fractional differentiation; combined model;
overcome overfitting; field spectroradiometer

1. Introduction

Nitrogen (N) and phosphorus (P) are crucial functional elements for organisms [1]
and play a vital role in plant physiological processes [2–4]. Changes of the N and P concen-
tration are essential for the growth of plants, as they are closely related to photosynthesis,
respiration, N2 fixation, and organic matter mineralization [5]. N and P are the primary
limiting nutrients for plant growth in most natural systems. An N/P ratio greater than
16 indicates that plant growth is limited by P, while an N/P ratio of less than 14 is limited
by N. Values between 14 and 16 suggest either N or P can be limited, or plant growth is
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co-limited by both N and P [6,7], although there is no general consensus about an N/P
ratio which is not limiting in either or both nutrients. Therefore, exploring the N and P stoi-
chiometry of leaves plays a critical role in better understanding the survival and adaptation
strategies of plants. However, current methods for monitoring N and P content mainly
rely on laboratory analysis. The precision of these traditional analytical methods is high,
but they are time-consuming, complex, and require difficult storage and transportation
logistics of field samples, which limits rapid on-site and non-destructive detection [8]. As a
real-time, fast, and non-destructive technology, spectral technology plays an increasingly
important role in detecting nutrient acquisition and growth of plants.

The mechanism and methods of estimating leaf biochemical parameters with remote
sensing techniques have been advanced in recent years, especially ground-based hyper-
spectral remote sensing. For example, Sonobe and Wang [9] used hyperspectral techniques
to estimate the chlorophyll content in leaves of a deciduous forest, and found that the nor-
malized difference spectral index using the first-order differentiation of reflectance at 522
and 728 nm was the best index. Zhao et al. [10] used a hyperspectral stepwise regression
analysis to estimate the water content of apple tree canopies and found that an equidistant
sampling method improved the prediction accuracy. Yamashita et al. found that machine
learning methods can predict chlorophyll and N content based on field spectroradiome-
ter [11]. However, most previous research has focused on estimating chlorophyll, water,
organic carbon (C), and N. Few studies have investigated N/P and other stoichiometric
ratios that are significant indicators of plant growth. The patterns found for N and P cannot
be directly applied to N/P. For example, Cui et al. [8] proposed that N and P display a
strong positive correlation with the spectral reflectance at 650 nm, while the N/P ratio
displays a strong negative correlation with the spectral reflectance at 650 nm. Therefore,
further studies of stoichiometric ratio estimation using field spectroradiometer are needed.

Previous studies on the spectral inversion of biochemical parameters focused on
single species, such as rice [12], wheat [13], tobacco [14], apple [10], and tea [15]. As many
species co-exist within natural habitats, results derived for single species or cropland is
not applicable to investigate patterns in complex mixed forests. Therefore, establishing a
database with multiple plants is critical to estimate plant biochemical parameters through
remote sensing methods. However, mixed species samples are usually more difficult
to collect, and it is more complex to predict biochemical parameters. In contrast, single
plant species are easier to predict with high accuracy. For example, the best coefficient
of determination (R2) for the estimation of leaf mass per area (LMA) in mixed-species by
Cheng et al. [16] was 0.74, while Inoue et al. [17] produced an R2 above 0.9 in rice. Further
research is required to improve model accuracy to estimate biochemical parameters in
mixed-species ecosystems.

In terms of the algorithm employed in previous studies, mainstream empirical meth-
ods can be summarized into three categories; spectral index methods [9], linear regression
methods [13], and machine learning methods [11]. Both the spectral index and the linear
regression methods focus on finding the linear relationship between spectral reflectance
and plant biochemical parameters. By contrast, machine learning methods can calculate
nonlinear relationships between spectral reflectance and plant biochemical parameters.
Each method has limitations and advantages. Linear models use simple principles, are
computationally efficient, and more robust in prediction accuracy, but are often inferior
to machine learning methods in terms of prediction capability. Theoretically, there will
be both linear and nonlinear relationships between spectral reflectance and biochemical
parameters of plant leaves. Therefore, the use of a combined model including both linear
and nonlinear methods may improve prediction capability.

Overfitting is a common problem in many empirical models, especially for machine
learning methods [18], and can cause deceptive diagnostic results and reduce the trans-
ferability of the model. A small number of samples, a large number of variables, and
high-dimensionality may lead to overfitting of the model [19]. Field spectroradiometer
data are characterized by high-dimensionality and a large number of bands (variables),
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meaning that overfitting is a critical issue that has to be considered in the estimation of bio-
chemical parameters. It has been proven that increasing data samples, cross-validation [20],
regularization [19], noise removal [21], and integration of multiple models [22] are effective
ways to overcome overfitting [23,24]. Therefore, combining linear and nonlinear models
may be a way to reduce overfitting.

Spectral differentiation transform methods play an essential role in estimating plant
parameters, and the most commonly used are spectral first-order and second-order dif-
ferentiation [25]. It has been demonstrated that differential transformation of spectra
can improve model performance for estimating plant water [10], chlorophyll [9], and N
content [17,26]. However, the application of integer-order differentiation is not always
sufficient, as the spectral curve shifts in shape from n-order to n + 1-order in a sharply fluc-
tuating way, and there is no smooth transition between the intermediate stages. Fractional
order transform methods allow differentiation from zero to arbitrary real numbers [27].
Using fractional order differentiation transforms spectra more continuously and produces
more detailed information about the spectra.

The prediction of leaf N/P ratio of a particular species by field spectroradiometer has
been reported [8,28], but directly estimating the leaf N/P ratio of all plants worldwide is
difficult to achieve with current methods. Therefore, improving model performance and
applying these methods to estimate leaf N/P ratio of regional mixed-species ecosystems
is a pressing issue. Karst landscapes are one of the most crucial landform types globally,
accounting for roughly 15% of the Earth’s total land area and inhabited by about 1 billion
people [29]. Southwestern China has the largest karst area on the planet [30] and is one
of 25 global biodiversity hotspots that contain many endemic and threatened species [31].
The karst areas of Guangxi Province are an important part of the southwest karst region,
containing diverse landscape types, a wide variety of plants, and representing a key area
for biodiversity conservation. However, anthropogenic disturbances have led to species
loss in karst areas [32]. Non-destructive and rapid estimation of leaf N/P ratio of plants is
required for ecological restoration and conservation in karst areas.

In this paper, we simulated the leaf N/P ratio of mixed forest in karst areas of Guangxi
Province using fractional spectral differentiation and multiple models, combined with
field spectroradiometer data. The primary objectives of this study are to (1) explore the
predictive capabilities of linear regression models (partial least squares regression, PLSR)
and nonlinear regression models (backpropagation neural network (BPNN), generalized
neural network (GRNN)) to estimate leaf N/P ratio of mixed species based on field spec-
troradiometer data, (2) evaluate the contribution of fractional differentiation in improving
these linear and nonlinear regression models’ performance, and (3) propose the best models
that can overcome the insufficient accuracy of the PLSR model and overfitting of the BPNN
and GRNN models to estimate leaf N/P ratio of plants in karst areas.

2. Materials and Methods

2.1. Study Area

The study area is located in Guangxi Province (20◦54′–26◦24′N, 104◦28′–112◦04′E) in
south China (Figure 1). The elevation of the study area ranges from 0 to 2141.50 m. This
area borders the South China Sea and has a tropical and subtropical climate. The average
annual temperature ranges from 17.30 to 23.80 ◦C, and annual precipitation ranges from
1024.60 to 2358.60 mm. Karst landforms are distributed widely throughout Guangxi and
cover about 97,000 km2, accounting for 41% of the total area of the province. There are
more than 4000 species of vascular plants, including more than 2000 species of medicinal
plants, in the karst areas of Guangxi Province [33]. Nine typical karst experimental plots
were selected, containing primary forests, secondary forests, and shrubs that represent the
vegetation succession in karst areas. The area of each plot was about 200 m2. Detailed
information on each plot is described in Table 1.
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Figure 1. Location of the nine study plots.

Table 1. Brief description of the experimental plots.

No.
Name of the

Experimental Plot
Successional Stages of
the Plant Community

Name of Dominant Species
Average Annual

Temperature
Average Annual

Rainfall

1 Jingxi Secondary forest

Cladrastis platycarpa (Maxim.)
Makino, Bruguiera gymnorhiza (L.)

Lam., Buddleja officinalis, Abelia
biflora Turcz.

21.68 1621.92

2 Longzhou Primary forest

Canthium dicoccum, Memecylon
scutellatum, Pistacia

weinmanniifolia, Boniodendron
minus, Excentrodendron hsienmu

23.28 1272.72

3 Pingguo Shrubs
Rhus chinensis Mill., Cipadessa

baccifera (Roth.) Miq., Vitex
negundo L., Alchornea trewioides

22.03 1328.63

4 Du’an Shrubs Psidium guajava, Vitis heyneana,
Buddleja officinalis, Serissa japonica 22.03 1733.37

5 Huanjiang Secondary forest

Solanum indicum L., Ficus tinctoria
Forst. F. subsp. gibbosa (Bl.) Corner,
Albizia lebbeck (Linn.) Benth., Vitex

negundo L.

22.50 1392.50

6 Liujiang Secondary forest
Alchornea trewioides, Litsea

glutinosa, Maclura cochinchinensis,
Vitex negundo L.

21.57 1433.62

7 Lingui Scrubs
Bauhinia championii, Zanthoxylum

bungeanum, Sageretia thea, Rosa
cymosa

21.56 1891.94

8 Quanzhou Scrubs
Paliurus ramosissimus, Ilex corallina
var. loeseneri, Bauhinia championii,

Sageretia thea
21.65 1529.96

9 Fuchuan Secondary forest
Albizia kalkora, Pistacia chinensis

Bunge, Sapium sebiferum (L.) Roxb.,
Vitex negundo L.

19.47 1685.97

2.2. Data Collection

The leaves were sampled from July 2018 to September 2020. In each experimental
plot, leaf samples from 8–15 plants of locally dominant species were collected. In total, the
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database includes 301 samples covering 37 families, 59 genera, and 70 species. As plants are
susceptible to light conditions [34], we collected leaves from three directions for each plant
(0–120◦, 120–240◦, and 240–360◦, with 0◦ due north) to reduce random errors in samples.

Leaf spectral reflectance was measured in attached leaves using a spectroradiome-
ter (Fieldspec 4, Analytical Spectral Devices, ASD, Boulder, CO, USA), with a spectral
resolution of 3 nm in the visible and near-infrared (NIR) (350–1000 nm) and 8 nm in
shortwave-infrared (SWIR, 1000–2500 nm) [14]. Reference plate (white reference) calibra-
tion was performed every 10 min during the measurement. Three branches of each tree
were selected for measurement. As the instrument battery only has a continuous operating
time of about 4 h in the field, only two mature and healthy leaves per branch were taken
for spectral scanning due to time limitations. Finally, the scanned spectral reflectance of all
leaves on each branch were arithmetically averaged, and the average value was taken as
the spectral sample of each tree.

After the spectral measurements, the healthy and mature leaves on the branches
were collected. It was then kept intact in a self-sealing bag and immediately placed in an
incubator (ICERSICE940). Leaf samples were transported back to the laboratory within
24 h and dried at 75 ◦C. The dry samples were entirely sieved through a 100 mesh sieve
for physicochemical analysis. Finally, the total nitrogen (TN) content of plant leaves was
measured using the Kjeldahl method [35], and the total phosphorus (TP) content of plant
leaves was measured by the phosphomolybdate blue spectrophotometry method [36]. The
ratio of TN to TP was determined as the leaf N/P ratio.

2.3. Methodology
2.3.1. Fractional Differentiation (FD)

Fractional differentiation is an extension of integer differentiation to arbitrary differen-
tiation [37] and is widely applied in electromagnetic field theory, control systems, nonlinear
dynamics, biomedicine, and digital signal processing [38]. The most common method of
fractional differentiation is mainly in the form of Riemann–Liouville, Grünwald-Letnikov,
and Caputo [25,35]. The Grünwald–Letnikov is a finite-difference expression:

dv f (x) = lim
h→∞

1
hv

t−a
h

∑
m=0

(−1)m Γ(v + 1)
m!Γ(v − m + 1)

f (x − mh) (1)

where v is the order of differentiation, h is the step size, and t and a are the upper and lower
limits of differentiation, respectively. Γ(·) is the Gamma function:

Γ(β) =
∫ ∞

0
e−ttβ−1dt = (β − 1)! (2)

where β is an arbitrary variable (we defined it as the order of differentiation in this study).
In this paper, the plant leaf spectra were differentiated in the range between 0 to 3 orders
(at an interval of 0.1 order). The integer order refers to zero, first, second, and third orders,
while the other values are fractional orders.

2.3.2. Partial Least Squares Regression (PLSR)

The Partial Least Squares Regression (PLSR) model (Höskuldsson 1988) combines the
merits of principal components, typical correlation, and multiple linear regression analysis.
This method is essentially based on the assumption that the sample size is n and the data
sets for the independent and dependent variables are Z = [z1, z2, · · · zk]n×k, Q = [q]n×1,
respectively. The first component f1 is extracted from Z. f1 is a linear combination with
z1, z2, · · · zk that carries the maximum variance information in Z and reaches the maximum
correlation with q. If the accuracy of the model is satisfied, the component extraction is
stopped. Otherwise, the next principal component is extracted until the requirement is
satisfied.

q = f1a1 + f2a2 + · · ·+ fkak (3)
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fm = wm1z1 + wm2z2 + · · ·+ wmkzk (4)

where m is the number of principal components, k is the number of independent variables,
a is the regression coefficients of y on f , and w is the linear coefficient of f on z. In this
study, the fractional differentiation spectral reflectance of each order that had a significant
correlation (p < 0.05) on the leaf N/P ratio of karst plants was used as the independent
variable Z. This method is the same as used for the BPNN and GRNN models described
later.

2.3.3. Back Propagation Neural Network (BPNN)

Back Propagation Neural Network (BPNN) is a multilayer feed-forward neural net-
work [39]. The key traits of this method are the forward transmission of signals and the
backpropagation of errors [39]. During forward transmission, the input signal is transferred
from the input layer through the hidden layer and is then output. The neuron state of each
layer only affects the neuron state of the next layer. If the output layer does not return
the expected results, it transfers to backpropagation. The weights and thresholds of the
network are adjusted according to the prediction error, resulting in the predicted output of
the BPNN continuously approximating the expected results.

In this study, a one-hidden layer with the tansig function and an output layer with
the purelin function neural network was built. The number of nodes in the hidden layer
significantly impacts the output result [40], so 5-fold cross-validation was used to select
the optimal number of hidden layer nodes (from 4–20). We used the arithmetic mean
value of 10 consecutive operations of the BPNN model as the final results to eliminate
fluctuations of the neural network operation. This threshold was also applied to the GRNN,
PLSR+BPNN, and PLSR+GRNN models.

2.3.4. Generalized Regression Neural Network (GRNN)

Generalized regression neural network (GRNN) is a radial basis function neural
network model proposed by Specht (1991) [41]. GRNN essentially derives the maximum
probability estimate from the training data, which can be considered as an arbitrary function
between input and output vectors. Unlike BPNN, GRNN does not require an iterative
training procedure, making it significantly faster than BPNN in terms of computational
efficiency [42]. This method displays greater prediction capability for nonlinear estimation.
The prediction function can be expressed as:

Ŷ(X) =

j
∑

i=1
Yi exp

[
− (X−Xi)

T(X−Xi)
2δ2

]

j
∑

i=1
exp

[
− (X−Xi)

T(X−Xi)
2δ2

] (5)

where j is the number of training samples, δ is the smoothing factor, X is the network input
variable, and Xi is the learning sample corresponding to the ith neuron. The weights factor
for each observation Yi is the squared Euclid distance between the corresponding sample
Xi and the input variable X. The smoothness factor δ has a significant effect on the model.
In this study, 5-fold cross-validation was used to identify the value of δ.

2.3.5. Combined Models, Sample Segmentation, and Accuracy Assessment

The principal components extracted from PLSR were used as input variables for
the BPNN and GRNN models to overcome the overfitting problem of artificial neural
network models. The purpose of extracting the principal components is to reduce the
dimensionality of the spectral data, thus reducing the complexity of the BPNN and GRNN
model. Therefore, the number of principal components should not be too large. The
number of input variables can influence the structure and performance of the BPNN and
GRNN models. We found that for most of the fractional differential spectra, it is able to
represent more than 60% of the variability when the number of principal components is
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six. To better compare the performance of different fractional differential spectra, we set
the number of extracted principal components as six. The combined PLSR+BPNN and
PLSR+GRNN models were used to compare their simulated performance against PLSR,
BPNN, and GRNN.

The field samples were randomly split into two datasets using the randperm function
in MATLAB R2020a, with the training dataset accounting for 3/4 of the validation datasets
and 1/4 of the total samples (Table 2).

Table 2. Descriptive statistics for data sets.

Samples Number Mean Standard Deviation
Coefficient of
Variation (%)

Total samples 301 17.97 6.05 33.68
Training sets 225 17.93 6.23 34.75

Validation sets 76 18.08 5.53 30.57

The accuracy of the model was assessed using the coefficient of determination (R2),
root mean squared error (RMSE), and the ratio of performance to deviation (RPD) [15].
An RPD greater than or equal to 2 indicates that the model has excellent predictability,
while less than 2 and greater than or equal to 1.4 indicates that the model can make a rough
estimate of the sample. An RPD of less than 1.4 indicates that the model cannot predict the
sample [43].

3. Results

3.1. Leaf N/P Ratio, Fractional Differentiation of Reflectance, and Their Correlation

The mean values of leaf TN, TP, and N/P ratio are 18.51 mg/g, 1.17 mg/g, and 17.97,
respectively (Figure 2). The TN content of our study is slightly lower than global and
continent levels, with values 20.1 mg/g [44] and 20.20 mg/g [45], respectively. This TP
content is significantly lower than the global average of 1.80 mg/g [44] or 1.99 mg/g [46].
The leaf N/P ratio from our study is similar to the results of Yang et al. [47]. The maximum
and minimum value of the N/P ratio is 1.34 and 36.94, respectively, with a variation
coefficient of 33.68%.

Figure 2. The leaf N/P ratio frequency distribution. TN-mean, TP-mean, and N/P-mean are the mean
values of total nitrogen, total phosphorus, and N/P ratio, respectively. N/P-minimum, N/P-maximum,
N/P-std, N/P-cv, and N/P-ks are the N/P ratio minimum, maximum, standard deviation, coefficient of
variation, and one-sample Kolmogorov–Smirnov test, respectively. n is the number of samples.
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Figure 3 shows the variation of the differential spectral reflectance from 0 to 3 orders.
The shape of spectral curves of different orders is smoothly transitional. Compared to
integer differentiation (FD (0.0), FD (1.0), FD (2.0), and FD (3.0)), fractional differenti-
ation methods produce more detailed information about the spectrum, and these data
subsequently allow for more complex leaf N/P ratio inversion training methods.

Figure 3. Fractional differential curves of plant leaf spectral reflectance (average of all the collected samples). If the curves
overlap, the former will be overwritten by the latter.

The leaf N/P ratio of plants displays a significant correlation with the fractional
differential spectra for wavelengths ranging from 400–730 nm (Figure 4). From FD (0) to
FD (3), the maximum absolute value of the correlation coefficient displays a unimodal
distribution as the fractional differentiation increases from FD (0) to FD (3) with a peak
value of 0.44 for FD (1.6).
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Figure 4. Distribution for the absolute values of correlation coefficients between fractional differenti-
ation spectra and N/P ratio (vertical axis on the left side) and the maximum absolute value of each
order fractional differentiation correlation coefficient (vertical axis on the right side). The color bar
indicates the magnitude of the correlation coefficient. The white areas of the graph show where the
spectral bands did not pass the 0.05 significance test.

3.2. Performance of a Single Model Using Fractional Differentiation of Reflectance

The accuracy of the PLSR model for predicting leaf N/P ratio of plants continuously
increases with increasing fractional order for training sets but displays a unimodal distribu-
tion for validation sets (Figure 5a), yielding the highest R2 values of 0.66 for FD (2.1). The
prediction capability of the PLSR model gradually improves with the increase in fractional
order from FD (0.6) to FD (2.1). However, the prediction capability of the PLSR model
displayed a higher accuracy in training sets than for validation sets, especially after FD
(2.1). This finding suggests that overfitting of the PLSR model is an issue for using this
method to predict the leaf N/P ratio of plants.

The accuracy of the BPNN model in predicting the leaf N/P ratio of plants increases
with increasing orders of fractional differentiation. The highest R2 value for this method is
0.48 for validation sets and 0.92 for training sets around FD (1.1), with values remaining
stable across higher fractional orders (Figure 5b). However, the overfitting problem is still
present in the BPNN model when predicting the leaf N/P ratio of plants, as shown by the
large differences in R2 between the training and validation sets.

The value of R2 of the GRNN model displays a general increasing trend as the frac-
tional differentiation orders increase between FD (0) and FD (1.2) for training sets and then
remain stable (Figure 5c). The R2 value for the validation set increases with increasing
fractional order from FD (0.0) to FD (1.7). However, similar to the BPNN model, the
overfitting problem still exists in the GRNN model, as shown by the differences in the
values of R2 between training and validation sets.
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Figure 5. Trends of single model ((a) is the PLSR model, (b) is the BPNN model, and (c) is the GRNN
model) methods from zero to third order of fractional differentiation R2. The error bars represent two
standard errors of each estimate, where available. The red vertical line indicates the position of the
optimal fractional differentiation.

3.3. Performance of Combined Models Using Fractional Differentiation of Reflectance

To overcome the overfitting problem of models in predicting the N/P ratio of plant
leaves, a combined model using PLSR+BPNN methods was applied. This PLSR+BPNN
model used the principal components extracted from the PLSR model as input variables.
The overfitting issue appears to be well-controlled by this method, as shown by the minor
differences in R2 between the training and validation sets (Figure 6a). The PLSR+BPNN
model displays the best performance in predicting the leaf N/P ratio of plants when
fractional differentiation was set to FD (2.3), yielding R2, RMSE, and RPD values of 0.90,
1.94, and 3.21, respectively, for training sets and 0.79, 2.71, and 2.04 for validation sets
(Figure 7).
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The combined PLSR+GRNN model also uses principal components extracted from
the PLSR model as input variables. When the fractional differential is larger than 1.7, the
differences in R2 values between the training and validation sets are minor (Figure 6b),
suggesting that the overfitting is well-controlled compared to using the PLSR or GRNN
models individually. The PLSR+GRNN performed well when the fractional differentiation
was set to FD (2.6), with R2, RMSE, and RPD values of 0.91, 1.98, and 3.15, respectively, for
the training sets, and 0.81, 2.46, and 2.25, respectively, for validation sets (Figure 7).

Figure 6. Trends of the differentiation coefficient (R2) for combined model ((a) is the PLSR+BPNN
model and (b) is the PLSR+GRNN model) methods. The error bars represent two standard errors of
each estimate. The red vertical line indicates the position of the optimal fractional differentiation.

3.4. Model Comparison and Optimal Model Selection

In this study, five models, namely PLSR, BPNN, GRNN, PLSR+BPNN, and PLSR+GRNN,
combined with fractional differentiation techniques, were used to predict the leaf N/P
ratio of plants in the karst area of Guangxi Province. The optimal fractional differentia-
tion prediction results of each model are shown in Figure 7. The prediction accuracy of
these five models can be ranked in descending order as GRNN, BPNN, PLSR+GRNN,
PLSR+BPNN, and PLSR according to the coefficient of determination (R2) of the training
sets, and PLSR+GRNN, PLSR+BPNN, PLSR, GRNN, and BPNN according to the coefficient
of determination (R2) of the validation sets.
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Figure 7. Leaf N/P ratio prediction accuracy of optimal fractional differentiation for each model
(p < 0.01).

The PLSR+BPNN and PLSR+GRNN are excellent models for predicting the leaf N/P
ratio of plants in karst area, as they display high prediction accuracy and successfully
control overfitting. The PLSR+GRNN model is slightly better than the PLSR+BPNN and is
selected as the optimal model in this study.

3.5. Advantages of Fractional Differentiation

Fractional differentiation of spectra can improve the performance of models in pre-
dicting the N/P ratio of plant leaves. The optimal differentiation for the five models used
in this study is fractional differentiation rather than integer differentiation (Table 3). For
example, the best fractional differentiation of the PLSR model is FD (2.1), with an RPD
of 2.45 for the training sets and an RPD of 1.57 for the validation sets. The PLSR model
with a fractional differentiation of 2.1 produced more accurate and robust values than
zero, first, second, and third orders differentiation. Additionally, the optimal fractional
differentiation of the PLSR+BPNN model and the PLSR+GRNN model is FD (2.3) and
FD (2.6), respectively, which both produce better values than zero, first, second, and third
orders differentiation. These results suggest that the fractional differential transform plays
a positive role in predicting the leaf N/P ratio of plants.

Table 3. Accuracy of optimal fractional differentiation versus integer differentiation.

Model Orders
Training
Sets R2

Training
Sets p

Training
Sets RMSE

Training
Sets RPD

Validation
Sets R2

Validation
Sets p

Validation
Sets RMSE

Validation
Sets RPD

PLSR

FD (0.0) 0.23 0.00 5.51 1.15 0.26 0.00 4.51 1.16
FD (1.0) 0.46 0.00 4.62 1.37 0.33 0.00 4.37 1.19
FD (2.0) 0.84 0.00 2.55 2.47 0.58 0.00 3.40 1.53
FD (3.0) 0.88 0.00 2.17 2.91 0.37 0.00 4.32 1.20
FD (2.1) 0.85 0.00 2.45 2.58 0.60 0.00 3.33 1.57

BPNN

FD (0.0) 0.39 0.00 5.96 1.05 0.13 0.00 8.12 0.68
FD (1.0) 0.88 0.00 2.25 2.77 0.30 0.00 5.33 1.04
FD (2.0) 0.95 0.00 1.59 3.91 0.44 0.00 5.03 1.10
FD (3.0) 0.94 0.00 1.63 3.83 0.46 0.00 4.32 1.28
FD (1.1) 0.92 0.00 1.78 3.49 0.48 0.00 4.70 1.18
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Table 3. Cont.

Model Orders
Training
Sets R2

Training
Sets p

Training
Sets RMSE

Training
Sets RPD

Validation
Sets R2

Validation
Sets p

Validation
Sets RMSE

Validation
Sets RPD

GRNN

FD (0.0) 0.60 0.00 4.43 1.41 0.09 0.01 5.38 1.03
FD (1.0) 0.86 0.00 3.27 1.91 0.40 0.00 4.37 1.26
FD (2.0) 0.99 0.00 0.86 7.20 0.50 0.00 4.33 1.28
FD (3.0) 0.99 0.00 0.83 7.54 0.57 0.00 3.69 1.50
FD (1.9) 0.99 0.00 0.71 8.83 0.59 0.00 3.61 1.53

PLSR+BPNN

FD (0.0) 0.56 0.00 4.13 1.51 0.12 0.00 5.67 0.98
FD (1.0) 0.68 0.00 3.54 1.76 0.26 0.00 5.08 1.09
FD (2.0) 0.90 0.00 2.00 3.11 0.76 0.00 2.78 1.99
FD (3.0) 0.90 0.00 2.03 3.07 0.75 0.00 3.01 1.84
FD (2.3) 0.90 0.00 1.94 3.21 0.79 0.00 2.71 2.04

PLSR+GRNN

FD (0.0) 0.68 0.00 3.95 1.58 0.80 0.00 5.08 1.09
FD (1.0) 0.68 0.00 3.87 1.61 0.80 0.00 4.49 1.23
FD (2.0) 0.87 0.00 2.44 2.56 0.80 0.00 2.86 1.93
FD (3.0) 0.88 0.00 2.36 2.64 0.80 0.00 2.67 2.07
FD (2.6) 0.91 0.00 1.98 3.15 0.81 0.00 2.46 2.25

4. Discussion

4.1. Distribution of Sensitive Wavelengths

The spectral reflectance from 400–730 nm, and especially 520–650 nm, are sensitive
wavelengths for predicting the leaf N/P ratio of plants. This result is consistent with previ-
ous studies, such as Cui et al. [8], who found that near 650 nm was the best wavelength for
estimating the N/P ratio. Hansen and Schjoerring [48] also showed that spectral reflectance
near 530 nm and 720 nm are important wavelengths for estimating the N concentration
of wheat. In addition, Xu et al. [49] found that spectral reflectance of 540–560 nm and
760–780 nm are sensitive wavelengths for the C/N ratio of wheat and barley leaves. There
are some differences in sensitive wavelengths related to the leaf N/P ratio between the
karst and non-karst plants, which may be caused by adaptions to survive in karst environ-
ments. For example, plants growing in karst areas have decreased stomatal conductance,
thickened palisade tissue, and increased keratinization due to thin soil layers and relatively
low air humidity [50]. These physiological differences can impact the radiative transfer
processes of plant leaves, leading to changes in the sensitive wavebands.

4.2. Control Overfitting

We reduced the noise in the spectral reflectance by fractional differentiation and
improved the representativeness of the feature variables for the model input. Moreover, we
applied the PLSR model to extract principal components to reduce the dimensionality of
the spectral data. The reduced-dimensional spectral data are used as input variables of the
BPNN and GRNN models. In this way, we proposed two composite models, PLSR+BPNN
and PLSR+GRNN. The prediction performance of PLSR+BPNN and PLSR+GRNN models
will be better than simple models such as spectral index and ordinary linear regression.
The simple model is more adapted to a single plant species [14,51,52] and very sensitive
to databases [16]. In contrast, our model is more adaptable to complex environments
as it is set up in a mixed forest database. On the other hand, this method decreases the
complexity of the model while ensuring minimal loss of spectral information and reducing
the occurrence of overfitting. These results are consistent with previous studies [53] that
show overfitting issues could be overcome by using non-negative principal component
analysis (NPCA) to extract principal components as input variables for machine learning.
Although combining PCA or PLSR models with machine learning methods does not help
improve the model prediction capability, it effectively minimizes the overfitting problem of
machine learning methods.

4.3. Application for Mixed Forest

Empirical models tend to be site-, time-, and species-specific and are therefore un-
suitable for large-scale analyses [54]. Previous studies investigating the inversion of plant
biochemical parameters are also biased towards specific regions, such as wetlands [24] or
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grasslands [28], or species such as wheat [55] or rice [17]. Although high accuracy can be
obtained from the inversion of biochemical parameters for a single species [15], plants are
more likely to co-exist in a mixed form in the natural environment, and studies on only one
species are not applicable to diverse ecosystems. Studies across various species need to be
conducted before these methods can be applied to mixed forest environments. However, it
is crucial to improve the model accuracy and robustness before the inversion of biochemical
parameters of mixed species. We applied five models to predict the leaf N/P ratio of plants
in a karst area. Among them, the PLSR+BPNN and PLSR+GRNN models have the best
performance, with high prediction accuracy and robustness. The performance of both
the PLSR+BPNN and PLSR+GRNN models was better than the models used by Cheng
et al. [16] in terms of the coefficient of determination (R2). This improved performance is
mainly due to the full consideration of both linear and nonlinear relationships between
leaf biochemical parameters and field spectroradiometer data in our study.

Sample composition also impacts the model performance. For example, there was
a significant difference in the performance of the BPNN model between our study and
Cui et al. [8] when comparing the coefficient of determination for validation tests, and no
overfitting was observed in the results of Cui et al. [8]. These differences in performance
were due to the large variability in sample composition, with leaf N/P ratio of plants in
this study ranging from 1.34 to 36.94 compared to that of phragmites communis N/P ratio
ranging from 6.7 to 15.9 in the Cui et al. study [8].

5. Conclusions

Estimating the N/P ratio of plant leaves using field spectroradiometer data is chal-
lenging. We estimated the variation of leaf N/P ratio of plants in a karst area of Guangxi
Province using five models, namely PLSR, BPNN, GRNN, PLSR+BPNN, and PLSR+GRNN.
The sensitivity wavelengths of the leaf N/P ratio of plants are mainly in the range of
400–730 nm. Applying a single model (such as PLSR, or BPNN, and or GRNN) can esti-
mate the leaf N/P ratio of plants, but all methods produce significant overfitting of the
data. In contrast, the combined models of PLSR+BPNN and PLSR+GRNN can avoid the
overfitting problem in predicting the leaf N/P ratio of plants, and have high accuracy
prediction capabilities. In addition, using fractional differentiation methods can effectively
improve the prediction capability of the model in estimating the leaf N/P ratio across
a variety of plant species. This study provides a valuable scientific basis for long-term
dynamic monitoring of plant biochemical parameters using field spectroradiometer data.
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