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Remote Sensing Applications to Climate Change

Xander Wang 1,2

1 Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island,
St. Peter’s Bay, PE C0A 2A0, Canada; xxwang@upei.ca
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1. Introduction

Climate change research remains a challenging task, as it requires vast quantities of
long-term data to investigate the past, present, and future scenarios of Earth’s climate
system and other biophysical systems at global to local scales. Both traditional ground-
based observation methods and remote-sensing technologies are available options for
gathering data for climate change research. Observations from weather stations have been
widely used to study climate change over long periods of time. However, due to the scarcity
of point-based weather observations, our understanding of the Earth’s changing climate
is very limited. This impedes the advancement of our knowledge of the Earth’s climate
system and our ability to develop well-suited climate models to simulate future climate
change, which further results in considerable uncertainties associated with future climate
projections. Thus, the determination of a method for quantifying and minimizing these
uncertainties is quickly becoming one of the most challenging issues yet to be addressed
by climate change impact assessment and adaptation studies. Remote sensing offers a
new method for observing the Earth’s climate system with continuous and high-resolution
spatial coverage through satellite-based, aircraft-based, or drone-based sensor technologies.
This can significantly improve our understanding of climate change and its potential
impacts at global, regional, and local scales. The data collected with remote-sensing
technologies can also be used to validate our climate models, improve our knowledge
of the physical and dynamic processes of the climate system, and help us project future
climate change and its impacts with minimized uncertainties.

This Special Issue intends to capture the latest research advances regarding remote-
sensing technologies and their applications in climate change research. Sixteen original
research articles authored by one hundred and five researchers were published in this
Special Issue, presenting recent advances in remote-sensing technologies (two articles) and
the application of remote-sensing technologies to climate change modelling (five articles),
monitoring (six articles), and impact assessment (three articles). While the articles span
multidisciplinary perspectives and methodologies, they are clustered into four themes.

2. The Advances in Remote-Sensing Technologies

The continuous development of remote-sensing technologies, including advanced
satellites and new procedures for large scale data processing, is essential for increasing
the accuracy and reliability of climate change research based on remote-sensing data.
Meftah et al. [1] present the technological development of Ultraviolet and Infrared Sensors
at high Quantum efficiency onboard a small Satellite (UVSQSAT). They also present the
findings of the first in-orbit observations of the mapping of solar radiation reflected by the
Earth and of the outgoing longwave radiation at the top of the atmosphere throughout
February 2021. Their study shows the feasibility of using a miniaturized satellite to measure
the Earth’s energy imbalance (EEI) over a short period.

Remote Sens. 2023, 15, 747. https://doi.org/10.3390/rs15030747 https://www.mdpi.com/journal/remotesensing1
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While satellite technologies are improving, the performance of remote-sensing data
analysis techniques remains of great concern. Basheer et al. [2] evaluate the land-use land-
cover (LULC) classification performance of two commonly used platforms (i.e., ArcGIS
Pro and Google Earth Engine) with different satellite datasets (i.e., Landsat, Sentinel, and
Planet) through a case study concerning the city of Charlottetown, Canada, over the period
of 2017 to 2021. The study provides the scientific basis for the selection of remote-sensing
classifiers and satellite imagery with which to develop accurate LULC maps.

3. Climate Change Modelling

The application of remote sensing to climate change modelling constitutes a crucial
domain in climate research. This Special Issue includes five articles presenting regional-
level climate change-modelling studies using different applications of remote-sensing data.
Yan et al. [3] explore potential changes in future extreme precipitation events in China
based on Coupled Model Intercomparison Project Phase 6 (CMIP6) (under SSP2-4.5 sce-
nario), using a machine learning approach to integrate and fit multiple models. The study
estimates the distribution and trends in the precipitation amount (PRCPTOT), very heavy
precipitation days (R20mm), extreme precipitation intensity (SDII95), extreme precipitation
amount (R95pTOT), maximum consecutive 5-day precipitation (Rx5day), and precipitation
intensity (SDII) for the early 21st century (2023–2050), mid-21st century (2051–2075), and
late 21st century (2076–2100). Gnitou et al. [4] adopt a two-way approach to CORDEX-
CORE RegCM4-7 seasonal precipitation simulations’ Added Value (AV) analysis over
Africa with the aim of quantifying the potential improvements introduced by a down-
scaling approach at high- and low-resolution using satellite-based observational products.
Zhou et al. [5] use Regional Climatic Model (RegCM) simulations to downscale the bound-
ary conditions of Geophysical Fluid Dynamics Laboratory Earth System Model Version
2M (GFDL-ESM2M) over the Prairie Provinces, and extract the daily mean, maximum,
and minimum temperatures from the historical and future climate simulations. The study
investigates temperature variations in two future periods (i.e., 2036 to 2065 and 2065 to
2095) compared to the baseline period (i.e., 1985 to 2004). Lu et al. [6] explore the long-term
spatial and seasonal variations of three dominant variables with respect to the water cycle
(i.e., precipitation, evapotranspiration, and runoff) in China using the Regional Climate
Model system (RegCM) developed by the International Centre for Theoretical Physics. The
research compares the simulation results with remote-sensing data and gridded observa-
tions to validate the model’s performance. Ahmad et al. [7] present a two-dimensional (2D)
hydrodynamic model combined with remote sensing (RS) and a geographic information
system (GIS)-based approach to generate additional flood characteristic maps (e.g., flood
velocity, duration, arrival time, and recession time) for the transboundary river Deg Nullah
in Pakistan. The study simulates the extreme flood event that occurred in the study area in
2014 to evaluate the performance of the approach.

4. Monitoring Climate Change

Remote-sensing technologies are now being extensively applied to climate change
monitoring at the global, regional, and local scales at an unprecedented rate, especially
where ground observation data are scarce. Accordingly, six articles published in this Special
Issue demonstrate the remote-sensing-based, long-term monitoring of climate parameters
(e.g., precipitation, temperature, etc.) and glaciers. Lu et al. [8] explore possible causes
for the interdecadal shift in the interannual variability in summertime precipitation (IVSP)
over South China (SC) following the mid-2000s. The study uses climate datasets such as the
Precipitation Reconstruction dataset (from NOAA), monthly atmospheric circulation (from
NCEP/NCAR), a daily outgoing longwave radiation (OLR) dataset (from NOAA), and the
NOAA OI SST V2 High-Resolution Dataset to analyze summertime precipitation variability
over South China. Ran et al. [9] present a deep-learning algorithm for fog detection at
dawn and dusk under terrain restrictions and an enhanced channel domain attention
mechanism (DDF-Net) using advanced Himawari-8 imager data (H8/AHI). Satellite- and
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ground-based observational climate data concerning northern China, including the Inner
Mongolia Plateau and the Loess Plateau, during the winter months (November to Decem-
ber) of 2015 to 2017 were used in this study. Fan et al. [10] employ downscaled climate
data using machine learning algorithms and develop a Batch Gradient Descent Linear
Regression model to calculate the contributions of temperature and precipitation to runoff
in data-scarce high mountains. A case study of six mountainous basins originating from the
Tianshan Mountains in Northwest China are used to demonstrate the application of this
novel approach. Li et al. [11] demonstrate the use of ERA5-Land, a reanalysis dataset with
high spatial and temporal resolution, to quantify the trends and variations in Frost-Free Pe-
riods (FFP) and Frost Days (FD) across China from 1950 to 2020. Zhou et al. [12] investigate
glacier velocity changes and glacier flow patterns in the Himalayas over the period from
1999 to 2018 using 220 scenes of Landsat-7 panchromatic images taken between 1999 and
2000 and Sentinel-2 panchromatic images taken between 2017 and 2018. Wang et al. [13]
analyze the spatial and temporal variations in the glaciers in the Ebi Lake basin during
the period from 1964 to 2019 based on the first and second Chinese Glacier Inventories
(CGI) and remote-sensing data. The study also investigates the response of glaciers to the
warming climate by analyzing digital elevation modeling and meteorology.

5. Climate Change Impact Assessment

The assessment of climate change’s impacts on biophysical systems is a highly com-
plex area of research wherein remote-sensing technologies are widely used to evaluate
the changes in these systems over time. In this Special Issue, three articles present case
studies demonstrating integrated impact assessments with the aid of remote-sensing data.
Wang et al. [14] investigate the changes in vegetation across the Three-Rivers Headwaters
Region (TRHR) (the Yangtze, the Yellow, and the Lancang (Mekong) rivers) by mapping
the normalized difference vegetation index (NDVI) over the growing season from 1982
to 2015. Moreover, the study examines how the vegetation cover has changed with the
changing temperature and precipitation at different altitudes of the TRHR region through-
out the past few decades. Guild et al. [15] estimate forest loss within Kutai National Park
(KNP) in Indonesia precipitated by illegal logging and wildfires over various time periods
since 1997 using an extensive catalogue and the processing power of the Google Earth
Engine. Comparing time-series estimates of precipitation, the ENSO index, burned area,
and forest loss, the paper demonstrates that the risk of fire within KNP mainly depends on
drought severity, and that the rates of non-fire- (gradual) and fire-related (extreme) forest
loss threaten the remaining forests of this National Park. Chen et al. [16] investigate the
relative importance of plant nutrient traits and soil nutrient availability with respect to
mediating the climatic sensitivity of desert scrub biomes in the Tibetan Plateau. This study
analyzes the vegetation sensitivity index (VSI) of desert scrub for the period from 2000 to
2015 and field measurements of the nutrients in the soil and plant leaves from research
conducted in 2016 for seven types of desert scrub communities in the Qaidam Basin (NE
Tibetan Plateau). Multiple linear and structural equation models were used to reveal how
leaf and soil nutrient regimes affect desert scrubs’ sensitivity to climate variability.

This collection of articles addresses some of the knowledge gaps in the field of ‘remote
sensing applied to climate change.’ I hope this will encourage further investigation in this
area and thus improve the performance of remote-sensing technologies and data analysis
techniques as well as widen applications in research related to climate change modelling,
monitoring, and impact assessment.

Funding: This research was funded by the Natural Science and Engineering Research Council of
Canada, the New Frontiers in Research Fund, and the Government of Prince Edward Island.

Acknowledgments: I would like to thank all the authors for their contributions and all the reviewers
for their valuable comments and feedback.
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Abstract: Recent studies offer more evidence that the rate of warming is amplified with elevation,
indicating thereby that high-elevation ecosystems tend to be exposed to more accelerated changes in
temperature than ecosystems at lower elevations. The phenomenon of elevation-dependent warming
(EDW), as one of the regional climate-change impacts, has been observed across the Tibetan Plateau.
Studies have often found large-scale greening trends, but the drivers of vegetation dynamics are
still not fully understood in this region, such that the local implications of vegetation change have
been infrequently discussed. This study was designed to quantify and characterize the seasonal
changes in vegetation across the Three Rivers Headwaters Region (TRHR), where the land cradles
the headwaters of the Yangtze, the Yellow, and the Lancang (Mekong). By mapping the normalized
difference vegetation index (NDVI) over the growing season from 1982 to 2015, we were able to
evaluate seasonal changes in vegetation cover over time. The results show a slightly increased
tendency in green vegetation cover, which could possibly be attributed to sustained warming in
this region over the past three decades, whereas a decline in the green-up rate with elevation was
found, indicating an inconsistent trend of vegetation greening with EDW. The cause of the green-up
rate decline at high elevations could be linked to the reduced soil water availability induced by
the fast increase in warming rates associated with EDW. The findings of this study have important
implications for devising adaptation strategies for alpine ecosystems in a changing climate.

Keywords: elevation-dependent warming; climate change; vegetation greening; NDVI; Three Rivers
Headwaters Region

1. Introduction

Climate change has become a recognized cause of major alterations to natural ecosys-
tems, with many climate-driven changes already being observed in biotic community
structure and plant species composition [1,2]. Growing evidence suggests that the rate of
warming is amplified with elevation, such that high-elevation ecosystems tend to be ex-
posed to more accelerated changes in temperature than ecosystems at lower elevations [3–5].
The phenomenon of elevation-dependent warming (EDW), as one of the regional climate-
change impacts, has been observed and recognized as a contributing cause of shifts in
species distribution, hydrological regimes, and biochemical cycles in high-elevation re-
gions [6]. Alpine ecosystems are known to be particularly susceptible to climate change
because of their unique thermodynamic properties [7]. In light of the vulnerability of
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ecosystem services in alpine regions, e.g., biodiversity, water cycling, and carbon sequestra-
tion, shifts in ecosystem composition, structure, and function are likely to have far-reaching
social and economic implications for local and regional areas [8]. Vegetation is a vital part
of healthy, functioning ecosystems, and serves as a foundation for terrestrial food webs and
habitat for animals [9,10]. It helps to cycle energy and nutrients throughout an ecosystem as
well as improving water quality and reducing soil erosion [11–13]. Therefore, monitoring
vegetation change across remote regions and quantifying ecosystem feedbacks to climate
change has become a topic of increasing interest among academics in recent years [14,15].
Rapid technological advancement has accelerated the growth of remote sensing and en-
abled a more comprehensive assessment of vegetation change across a variety of spatial
and temporal scales [16–20]. The normalized difference vegetation index (NDVI) is a stan-
dardized metric that describes the difference between visible and near-infrared reflectance
of vegetation cover, allowing for more detailed information that links vegetation greening
patterns to drivers [21]. Moreover, because of its simple estimation, high availability, and
noise elimination, the NDVI has been widely used for regional-to-global-scale vegetation
monitoring and assessment [22–26].

It has been successfully used by many researchers to measure trends in greening
at northern latitudes and high elevations [27–30]. In general, the interactions between
different climatic variables, such as precipitation, temperature, and solar-radiation-driven
evapotranspiration, could affect vegetation greenness [31]. It is reported that high warming
rates are recognized as the essential driver of vegetation growth [32]. However, differ-
ent results may be obtained for different terrestrial characteristics and regional climate
environments. For instance, Angert et al. found drought-induced reduction in photosyn-
thesis throughout the growing season at both middle and high latitudes, indicating that
the relationship between temperature changes and vegetation growth may change with
elevation [33]. Trujillo et al. demonstrated that vegetation greening trends varied with ele-
vation and maximum greenness could be observed in mid-latitude mountain regions [34].
Piao et al. suggested that vegetation growth was generally positively correlated with
high warming rates but the correlation could change over time following alternations in
other environmental factors, particularly in areas above a latitude of 30 degrees north [35].
Kumari et al. indicated that vegetation growth was more related to evapotranspiration
than precipitation in the UKR Basin in the Himalayas [25]. These findings indicate that
the driving mechanism of the correlation between elevation-dependent warming (EDW)
and vegetation greening is not yet fully understood and that there are large uncertainties
regarding climate change impacts at higher elevations. Given the knowledge gaps in the
current understanding of EDW and high-elevation vegetation change, expanded efforts
to shed further light on this research topic could advance the understanding of the exact
driving mechanism.

The Three Rivers Headwaters Region (TRHR) lies in the hinterland of the Tibetan
Plateau, and its 363,000 km2 of land cradles the headwaters of the Yangtze, the Yellow,
and the Lancang (Mekong). This region is also known as China’s water tower, providing
runoff for these three rivers as well as for several hundred million people downstream.
Specifically, The TRHR provides 25% of the annual runoff of the Yangtze, 49% of the
Yellow, and 15% of the Lancang [36]. The alpine ecosystem of the TRHR is characterized
by high biodiversity, including endemic species not found anywhere else, and a high-
plateau climate, meaning large diurnal and monthly temperature variations across the
region. The phenomenon of EDW, as one of the regional climate-change impacts, has
been commonly observed here, possibly owing to the warming rate in this region, which
is twice as high as the global average [37]. The increased rate of warming could have a
profound effect on the biosphere processes in the TRHR, with many and diverse impacts
on local biological resources, e.g., common vegetation and habitat types. In addition,
the distinctive landform and geologic characteristics have also made the TRHR highly
vulnerable to climate change; for example, soils in this region are thin and coarse-textured,
making them more susceptible to soil erosion [38]. The TRHR is of significant value to
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nature conservation and ecological services within regional and national contexts, and has
become a hotspot of regional climate concerns due to the escalating number of droughts,
vegetation degradation, and extreme-climate-related conditions. Additionally, further
research on this region can also improve the understanding of ecosystem dynamics and
vegetation change at high altitudes [8,39–41]. However, some studies within this region
also find positive ecological feedbacks associated with the local anthropogenic and climatic
changes. For example, grassland productivity has been found to be significantly improved,
possibly as a result of successful efforts to implement alpine conservation and ecological
restoration programs as well as consistent increases in temperature [42,43] Given the spatial
heterogeneity of vegetation change in high-elevation regions, researchers often focus their
attention on ecological and environmental impacts with regard to specific factors, e.g.,
climate change, grazing activities, water-use patterns, and environmental conservation
programs [43–45]. However, another factor in vegetation change, also driven by EDW, has
not been studied adequately in the TRHR. As aforementioned, many studies have found
that EDW plays a potentially important role in altering vegetation growth patterns at higher
elevation. Therefore, there is a need to ensure adequate analysis and interpretation of EDW
in this hotspot region. In addition, the TRHR is composed of a variety of vegetation cover
types, including grasslands, barren lands, forests, croplands, wetlands, etc. In light of the
diverse vegetation cover types, the vegetation patterns and dynamics within the TRHR may
also be altered fundamentally by warmer temperatures, but few researchers have discussed
the potential impacts of vegetation composition on vegetation change in this region. It is
therefore imperative that researchers make new efforts to advance the understanding of the
internal vegetation variability across vegetation types and the external drivers associated
with spatial heterogeneity.

This study was designed to quantify and characterize the seasonal changes in vegeta-
tion using more than 30 years of remote sensing data across the TRHR so as to help further
the understanding of the role of EDW in changing alpine vegetation growth patterns in
this region. Specifically, our research steps included: (i) investigating the interannual
variability in the growing-season NDVI (NDVIgs) from May to September across the TRHR
between 1982 and 2015; (ii) examining the correlation between NDVIgs and elevation as
well as driving forces behind changes in NDVIgs using multiple statistical approaches; (iii)
assessing the effects of temperature and precipitation changes on vegetation over time
so as to identify the climate variables that most affect vegetation productivity; and (iv)
exploring the linkages between vegetation composition and greening trends to help further
the understanding of NDVIgs change across vegetation types. Results from this study
will be beneficial for advancing the understanding of EDW in high-elevation regions, e.g.,
the TRHR, and of particular value to the local authorities in evaluating ecological and
environmental conservation programs.

2. Materials and Methods

2.1. Study Area

The TRHR (31◦39′–37◦10′ N, 89◦24′–102◦27′ E) is located in the northeastern part
of the Qinghai–Tibet Plateau, with a total area of about 363,000 km2. The elevation in
the TRHR ranges from about 2000 m in the northeastern corners to above 6800 m in the
ridges of the western mountains, and the average elevation of the region is nearly 4500 m
(Figure 1). This region has a typical continental climate with warm, humid summers and
cold, arid winters [46]. Additionally, there is significant temporal variability in precipitation
and temperature across the TRHR. For instance, about 60% of the region’s annual rainfall
occurs in the summer months, and the monthly average temperature is above 0 ◦C only
during the growing season, from May to September [47]. Over the past decades, the TRHR
has experienced a striking change in local climate and been confronted with a series of
climate-related issues, such as grassland degradation, soil erosion, glacier retreat, and lake
and wetland decline [48]. Therefore, central and local governments have long undertaken
ecological interventions to reverse the degradation of local ecosystems and to help them
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regain their ecological functionality in a changing climate. The central government has also
set aside protected land for the Three-Rivers Nature Reserve in this region to preserve the
natural heritage of the Tibetan Plateau.

Figure 1. Location of study area in the Qinghai–Tibet Plateau, China. The TRHR cradles the
headwaters of the Yangtze, the Yellow, and the Lancang, and is known as China’s water tower. The
elevation in the area ranges from 1961 m to 6876 m. The average elevation is 4484 m, but most of the
area is above 4500 m.

2.2. Remote Sensing Data
2.2.1. Land Cover Data

The land cover data were derived from the Finer Resolution Observation and Monitor-
ing of Global Land Cover dataset (FROM-GLC 2017v1, http://data.ess.tsinghua.edu.cn/
(accessed on 1 December 2021)). The FROM-GLC dataset is the first 30 m resolution global
land cover product generated using Landsat Thematic Mapper (TM) and Enhanced The-
matic Mapper Plus (ETM+) data, and is publicly accessible from Tsinghua University. As
shown in Figure 2, the categories of grassland and barren land are the most prevalent in
the TRHR and the most common types of land cover, accounting for about 94% coverage of
the region (Figure 2b). The other categories account for the remaining 6%.

2.2.2. NDVI Data

We used the Global Inventory Monitoring and Modeling Studies (GIMMS) NDVI3g
dataset in this study. This dataset was generated from several advanced very high reso-
lution radiometer (AVHRR) sensors onboard the U.S. National Oceanic and Atmospheric
Administration (NOAA) series satellites at 0.083◦ over the years 1982 through 2015. The
GIMMS-NDVI3g dataset has been calibrated for sensor degradation, inter-sensor differ-
ences, cloud cover, solar zenith angle, etc., and has also been widely proved to be suitable
for assessing temporal changes in vegetation [49,50]. The monthly NDVI data were calcu-
lated using the semi-monthly values and synthesized using the maximum-value composite
method. This method can help greatly reduce the impact of clouds and aerosols on the
vegetation index retrieval algorithm [51]. The mean growing-season NDVI (NDVIgs) was
used to map the vegetation greenness changes across the TRHR (Figure 2a).
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Figure 2. (a) The 34-year average growing-season NDVI greenness map for the TRHR (the pixels
with NDVIgs values smaller than 0.01 were deemed to be non-vegetation areas and displayed as
blank); (b) the land cover map for the TRHR, represented by nine land cover categories.

2.2.3. Climatic Data

The monthly precipitation data were obtained from the Climate Hazards Group
InfraRed Precipitation with Stations (CHIRPS) dataset at 0.05◦ resolution for 1982 to 2015.
The monthly temperature data were derived from the European Centre for Medium-Range
Weather Forecasts (ECMWF) dataset at 0.125◦ resolution for 1982 to 2015. In order to allow
for a finer resolution of data analysis, the climatic datasets were interpolated to a higher
resolution, 0.0833◦, to ensure the compliance of the climate data’s resolution with that of
the NDVI data.

2.2.4. Evapotranspiration Estimation from GLEAM

The monthly evapotranspiration (ET) and potential ET (PET) data were obtained from
the Global Land Evaporation Amsterdam Model (GLEAM) dataset at 0.25◦ resolution for
1982 to 2015, which can reasonably capture the evaporation variability in all vegetation
types and climate conditions [52,53]. GLEAM-ET is estimated by using reanalysis net
radiation and air temperature, satellite-, reanalysis-, and gauge-based precipitation, satellite-
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based vegetation optical depth, and snow water equivalents. The ET modeling algorithm
is defined by Martens et al. [52] as follows:

ET = EpS + Ei (1)

where Ep is the potential evapotranspiration, estimated using the Priestley and Taylor
equation driven by observations of surface net radiation and near-surface air temperature;
S is the evaporative stress factor, calculated from the observations of microwave vegetation
optical depth (VOD) and estimates of root-zone soil moisture; Ei is the interception loss,
calculated using a Gash analytical model.

The general information of data used in this study has been summarized in Table 1.

Table 1. Summary of data sources used for this study.

Data Types Data Sources Temporal Resolution Spatial Resolution Temporal Coverage

NDVI GIMMS NDVI3g 15 days 0.083◦ 1982 to 2015

Precipitation CHIRPS Month 0.05◦ 1982 to 2015

Temperature ERA-Interim Month 0.125◦ 1982 to 2015

Evapotranspiration/Potential
evapotranspiration GLEAM Month 0.25◦ 1982 to 2015

2.2.5. Methods

Multiple analysis methods were used in this study to reflect the characteristics of NDVI
trends at different elevations. Firstly, the non-parametric Mann–Kendall (MK) test was used
to evaluate long-term changes in vegetation cover and to identify greening patterns across
the TRHR. Previous studies indicated that serial correlation in hydrological or climatic
series may result in larger standard errors and lead to misleading trend estimates [54–56]
Thus, the trend-free pre-whitening (TFPW) procedure was integrated with the MK test to
improve the reliability of trend analysis [55]. After application of the TFPW-MK test, the
trend slope was estimated as follows:

b = Median
( xj − xi

j − i

)
, ∀i < j (2)

where b is the trend slope; xi denotes the ith datum.
Next, by using both average-data and pixel-based methods, the trend changes in

the NDVI across the region were linked to drivers such as elevation. This allows for
a better understanding of the role of elevation in driving vegetation changes across
elevational gradients.

The relationships between trends in the NDVI and climatic variables were investigated
using the following linear least-squares regression model:

yi= axi+b + εi, i = 1, . . . , n (3)

where yi denotes the dependent variable; x denotes the independent variable; n is the
sample size; a is the slope; b is the intercept; and εi is the random error.

The correlations between the trend changes in the NDVI and elevation as well as
relevant climatic variables could be evaluated with Spearman rank correlation analysis:

r = ∑i(xi − x)(yi − y)√
∑i(xi − x)2 ∑i(yi − y)2

, i = 1, . . . , n (4)

where x and y are the variables; n is the sample size. Student’s t-test was applied to evaluate
the statistical significance in a trend analysis.
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With regard to the roles of climatic factors in vegetation growth, their effects on
elevation-dependent changes in NDVI trends can be understood through partial correlation
analysis. Partial correlation analysis is an effective way to investigate the net effect of one
independent variable when multiple independent variables act on a dependent variable
simultaneously [57,58]. The partial correlation coefficient is defined as follows:

Rxy|z =
rxy − rxzryz√

(1 − r xz
2)(1 − r yz

2
) (5)

where x and y denote the independent variables; z denotes the dependent variable; r
denotes the correlation coefficient between different variables; and R represents the degree
of correlation. The null hypothesis assumed that there was no linear correlation between
the two independent variables, and the significance level of the hypothesis test was set at
α = 0.05 in this study.

3. Results

3.1. Spatiotemporal Variations in NDVIgs and Climatic Variables

According to Figure 2a, the 34-year average growing-season NDVI greenness map
demonstrated clear spatial delineations of vegetation changes in greenness. The southeast
part of the TRHR was mostly covered in grassland with NDVIgs values spanning from
0.5 to 0.7, whereas barren land was prevalent in the northwest part with NDVIgs values
of less than 0.2. To further investigate the spatiotemporal variations in vegetation and
climatic variables across the TRHR, we applied trend analysis to the NDVI and related
climatic variables in this study. Comparisons of trend patterns among long-term vegetation
and climate records across the study region showed similar yet statistically divergent
results with respect to the temporal changes in NDVIgs and climatic variables. First, there
was a slight upward trend in NDVIgs at an average rate of 0.003 per decade during the
period 1982–2015 (Figure 3a), although this overall trend (p > 0.05) was not sufficiently
statistically significant to indicate that greening trends across the region became more
prominent over time. However, expansive changes in NDVIgs over space showed that
over 70% of the region experienced greening between 1982 and 2015, and the greening
pattern was spatially fragmented (Figure 3b). Negative NDVIgs trends were found mainly
in the southeastern corners of the region, whereas positive NDVIgs trends were more
prevalent in the western and northeastern parts. Second, there was a clear uptrend in the
growing-season temperature (Tgs) over time, as evident from the statistically significant
p value (p < 0.01). The average increase rate was about 0.39 ◦C per decade during the
period 1982–2015 (Figure 3c). Although the overall warming trend was evident across
the TRHR, the northeastern corners of the region, near Qinghai Lake, had flat changes or
declining trends in temperature; interestingly, the eastern half of the region also experienced
the highest warming rate, whereas the most widespread warming was seen in the mostly
higher-elevation western half (Figure 3d). The phenomenon of EDW appears to exist within
the TRHR as well. Third, the growing-season precipitation (Pgs) also showed a statistically
significant uptrend at an average rate of 31 mm per decade during the period 1982–2015
(Figure 3e). The westernmost parts of the TRHR had experienced greater increases in
precipitation than others, while a few mountainous areas in the southern and southeastern
corners had seen minimal and insignificant increases in precipitation (Figure 3f). We
conducted correlation analysis to assess the association between NDVIgs and the two
climatic variables (i.e., Tgs and Pgs). We found that there was a weak positive correlation
between NDVIgs and Tgs (r = 0.43, p < 0.05), while no statistically significant correlation
was found between NDVIgs and Pgs (r = 0.18, p > 0.05). These findings indicate that
the vegetation change could be mainly attributed to the growing-season warming across
the TRHR.
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Figure 3. The average trends in (a) NDVI, (c) temperature, and (e) precipitation during the growing
season from 1982 to 2015; the decadal changes in (b) NDVI, (d) temperature, and (f) precipita-
tion across the TRHR. The pixels with significant changes at the 95% confidence level are marked
by crosses.

3.2. Elevation-Dependent Responses of Climatic Variables to NDVIgs

We used multi-year averages of the indicators to account for effects of the elevational
gradient on spatial disparity in temperature and precipitation, and to investigate link-
ages between elevation-dependent changes in temperature and precipitation and trends
in NDVIgs. Spatially, the TRHR showed a gradual increase in the average temperature
from 0.24 ◦C in the westernmost parts to 11.8 ◦C in the northeastern corners, indicating a
strong correlation between temperature and elevation; temperature gradually increased as
elevation decreased (Figure 4a). Mountainous areas in the southern and southeastern parts
received much more annual rainfall than the flat-lying areas in the west and northeast,
indicating that variations in precipitation are closely tied to landscapes rather than eleva-
tions (Figure 4b). The NDVIgs values show an inverted V-shape trend across elevational
gradients, peaking at around 3900 m (Figure 4c). By comparing both NDVIgs and Tgs trends
at different elevations, we noticed a negative correlation between NDVIgs and Tgs in low-
elevation areas, which gradually turned positive with increases in elevation. In contrast,
there was a stronger correlation between NDVIgs and Pgs over elevational gradients as a
similar inverted V-shape trend was observed for the two indicators (Figure 4d).
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Figure 4. The growing-season (a) temperature and (b) precipitation patterns across the TRHR from
1982 to 2015; comparisons of elevational trends in (c) temperature and NDVIgs, and (d) precipitation
and NDVIgs.

3.3. Elevation-Dependent Changes in Climatic and NDVIgs Trends

In order to better understand the rate trends in temperature, precipitation, and vegeta-
tion over elevation within the study region, we used both average-data and pixel-based
methods to conduct a trend analysis. The average NDVIgs values showed a statistically
significant declining trend with elevation, indicating that the green-up rate was slower
at high elevations (Figure 5a). However, this type of trend analysis failed to factor in
differences in the landscapes throughout the TRHR, so the statistical significance could
be more or less over-stated. After re-analyzing the NDVIgs value across each pixel grid
within the region, we found that the declining trend was confirmed but less statistically
significant (Figure 5d). The phenomenon of EDW was highlighted in the results from both
analysis methods, suggesting that the rate of warming was amplified at high elevations
(Figure 5b,e). In fact, this regional manifestation of global warming had also been observed
in other high-elevation regions across the Tibetan Plateau. In addition, the high-elevation
areas within the TRHR experienced much greater yearly precipitation increments than
the low-elevation areas between 1982 and 2015, and the widespread changes in precipi-
tation exhibited a statistically significant dependency on elevation (Figure 5c,f). Overall,
elevation-dependent changes in temperature and precipitation appeared to be happening
faster at high elevations, whereas changes in the green-up rate were relatively insignificant.

3.4. Correlations between Changing Climatic Conditions and NDVIgs Trends

We also used both average-data and pixel-based methods to conduct a correlation
analysis to improve our understanding of greening trends and drivers in an altered local
climate. Both methods showed a statistically significant correlation between Tgs changes
and NDVIgs trends (Figure 6a,c), and this correlation was overall negative (i.e., decreasing
NDVIgs with warming). The average-data method found a weak positive correlation be-
tween Pgs changes and NDVIgs trends (i.e., increasing NDVIgs with higher precipitation
increments), but this finding shows limited statistical significance (Figure 6b). After re-
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analyzing the multi-year average Pgs value across each pixel grid within the region, this
weak positive correlation was confirmed statistically (Figure 6d). Despite the identified sta-
tistical significance of both climatic variables for the NDVIgs trends, temperature appeared
to be a more explicit driver of vegetation change as warming resulted in more variability in
NDVIgs across the study region.

Figure 5. The elevational trends in (a) NDVIgs, (b) temperature, and (c) precipitation using the
average-data method; the elevational trends in (d) NDVIgs, (e) temperature, and (f) precipitation
using the pixel-based method.

Figure 6. Correlation analysis between trends in temperature and precipitation and trend in NDVIgs.
(a,b) Correlations from the average-data method, and (c,d) correlations from the pixel-based method.
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3.5. Spearman’s Rank Correlation and Partial Correlation Analysis

Spearman’s rank correlation and partial correlation coefficients were calculated to
allow for more detailed statistical information that accounts for the elevation dependency
of temperature, precipitation, and NDVIgs changes as well as the relationships between
temperature and precipitation changes and NDVIgs trends (Figure 7). Both temperature
and precipitation changes were positively correlated with elevation, and these strong cor-
relations were of sufficient statistical significance. According to the Spearman correlation
coefficient, NDVIgs trends were significantly and negatively correlated with elevation; how-
ever, the partial correlation coefficient suggested that this negative correlation was much
less statistically significant if the confounding variables, i.e., temperature and precipitation,
were factored out. This implied that elevation was not a direct driver of NDVIgs trends.
In addition, NDVIgs trends were also negatively correlated with temperature changes,
indicating warming is an identified driver of vegetation change. In contrast, precipitation
changes exhibited no statistically significant correlation with NDVIgs trends.

Figure 7. Summary of Spearman correlation and partial correlation analysis. Bar opacity represents
statistical significance at the 95% confidence level.

3.6. Land-Cover-Based NDVIgs Quantitative Analysis

Land cover composition is an important explanatory factor when calculating NDVIgs
values and evaluating their associated trends. In order to refine our understanding of the
relationships between land coverage and NDVIgs values and trends, we used the pixel-
based quantitative method to evaluate different land cover types, including grassland,
barren land, cropland, developed land, forest and shrubland. The majority of the land
within the TRHR was covered in grassland and barren land, accounting for 94% of the total
land coverage. Thus, the two land cover types had more chances to have 100% coverage
in a pixel grid. As the coverage of grassland increased, the NDVIgs values increased
significantly (Figure 8a). In contrast, more coverage in barren land resulted in decreased
NDVIgs values (Figure 8b). Furthermore, forest and shrubland, in addition to grassland,
were the land cover types most positively related to the NDVIgs values (Figure 8e,f). The
results from the pixel-based quantitative analysis also allowed for detection of the spatial
patterns of land cover distributions. For example, cropland was mainly distributed in
densely vegetated areas (Figure 8c), while developed land was evenly distributed between
densely and sparsely vegetated areas (Figure 8d).
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Figure 8. Correlations between NDVIgs and per-pixel land cover percentage (a–f); correlations
between NDVIgs trend and per-pixel land cover percentage (g–i).

We also evaluated the decadal average NDVIgs changes for land cover types to improve
the understanding of the trends of land cover changes within the TRHR between 1982
and 2015. There was a slight declining trend in the positive changes in NDVIgs with an
increasing coverage rate of grassland within each pixel grid, indicating that the greening
trends in grassland were likely to be slower than those in other land cover types between
1982 and 2015 (Figure 8g). The reason for this decline could be linked to the continued rise
in livestock population and the adverse effects of grazing activities. In contrast, more areas
covered in barren land appeared to experience slight positive changes in NDVIgs, indicating
a growing trend of barren land greening within the TRHR (Figure 8h). This implied that
the significant changes in temperature and precipitation across the TRHR could probably
have facilitated the process of vegetation rehabilitation in barren areas, while the warmer
temperature and increased precipitation during the growing season could also have greatly
slowed down the progress of grassland degradation. Both cropland and developed land
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had lower coverage rates within each pixel grid; however, more pronounced changes in
greening were found in areas partially covered by these two land cover types (Figure 8i,j).
This implies that the local government’s long-term efforts to deliver targeted interventions
for ecological restoration, e.g., the Grain for Green program, have brought positive results
in areas where human activities are concentrated. Forest showed no specific trend that
was of statistical significance (Figure 8k), while shrubland seemed to experience a negative
decline in NDVIgs changes (Figure 8l).

4. Discussion

It is now accepted that continued climate warming could further boost vegetation
growth at high elevations as warmer temperatures and increased rainfalls might potentially
create more favorable growing environments in local areas. Our results show that since
1982, most parts of the TRHR have experienced a sustained warming trend, and are getting
wetter during the growing season (Figure 3). This is consistent with findings from other
studies in this region [37,59,60]. Moreover, the interannual variability in NDVIgs was found
to be positively correlated with Tgs at a high significance level based on the correlation
analysis results, suggesting a driving effect of temperature on vegetation greening.

Both our study and previous studies show that temperature appears to be a dominant
driver of vegetation change within the TRHR; therefore, there do seem to be reasons to
suppose that the change in the vegetation green-up rate would be consistent with the
trend in warming. However, Figure 5a,d show that there was a slight downward trend in
the vegetation green-up rate as elevation increased, which appears to be contradictory to
the amplified effect of EDW at high elevations. This result indicates that, despite being a
dominant driver of interannual vegetation greening, temperature may play a different role
in the vegetation dynamics altering the green-up rate.

Water availability is critical for vegetation growth and is usually deemed to be closely
related to precipitation. Our results show that high-elevation areas tend to experience
greater increases in precipitation than other areas, and this tendency is statistically signifi-
cant (Figure 5c,f). However, the decreased NDVIgs trend at high elevations indicates that
precipitation plays a limited role in regulating the green-up rate. In fact, Figure 6b,d also
presents a relatively weak correlation between Pgs and NDVIgs trends. Notwithstanding a
few studies reporting a strong dependency of water availability on precipitation [30,35,48],
the TRHR has seen no sign of an evident growth in water availability.

As we know, water availability on land is not only related to precipitation but may
also be directly affected by increased evapotranspiration (ET). Previous studies suggest
that the ratio of evapotranspiration to potential evapotranspiration (PET), i.e., ET/PET, is
a useful indicator of soil moisture conditions, which can also be used to assess the water
availability conditions for vegetation growth during the growing season [61]. To discern
the roles of temperature and precipitation changes in altering the vegetation green-up rate,
we further investigated the pattern of the growing-season ET/PET ratio (ET/PETgs) with
elevation. We observed that most areas had increased decadal ETgs, particularly in the
western TRHR, which is covered mostly by barren land (Figure 9a). The increased decadal
ratios of ET/PETgs were mainly found in the western and northeastern parts, while the
decreased ET/PETgs ratios were observed in the central and southeastern areas (Figure 9b).
The ETgs values showed a V-shape trend across elevational gradients, suggesting that ET
tended to increase sharply at high elevations (Figure 9c). The ET/PETgs ratios showed
a statistically significant declining trend with elevation (p < 0.01), which was broadly
consistent with the NDVIgs trend (Figure 9d). Moreover, we found that the vegetation
green-up rate was positively correlated to the ET/PETgs ratio at a higher significance level
(r = 0.52, p < 0.01) and the correlation between ET and the green-up rate was less significant
(p > 0.05). Therefore, the increased ET within the TRHR could mainly be attributed to the
overall increase in temperature.
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Figure 9. The growing-season (a) ETgs and (b) ET/PETgs patterns across the TRHR from 1982 to 2015;
comparisons of elevational trends in (c) ETgs and NDVIgs, and (d) ET/PETgs and NDVIgs.

Overall, the reductions in water availability brought about by climate warming could
greatly slow the vegetation green-up rate at high elevations, although EDW appears to
create a warmer environment for vegetation growth. In addition, the negative correlation
between Tgs and NDVIgs shown in Figure 6 also highlights the adverse effect of warming
on vegetation greening within high-elevation areas. Thus, the decline in the vegetation
green-up rate with elevation could be attributed to the sustained reductions in water
availability for vegetation growth at high elevations.

5. Conclusions

In this study, we quantified and characterized the seasonal changes in vegetation across
the Three Rivers Headwaters Region (TRHR) to advance the understanding of linkages
between elevation-dependent changes in temperature and precipitation and vegetation
greening trends over this region. By mapping the growing-season normalized difference
vegetation index (NDVIgs) from 1982 to 2015, we were able to evaluate vegetation changes
across different years and detect greening trends over time. The results provide evidence
that the rate and magnitude of elevation-dependent changes in temperature and precipita-
tion may vary across elevation and vegetation types in alpine regions. The major findings
of this study can be summarized as follows:

(i) For NDVIgs across the TRHR, a more or less gradual greening trend from west to
east was observed, whereas an uneven yet consistent greening trend was noticed in
decadal-scale NDVIgs, indicating that about 70% of the land within the TRHR had
undergone positive shifts in vegetation between 1982 and 2015.

(ii) The trends in vegetation greening were negatively correlated with the warming rates
across the region, whereas the precipitation changes generally exhibited no strong
correlation with greening trends.

(iii) The statistical results demonstrate a consistent declining trend in the growing-season
green-up rate with increasing elevation within the TRHR. This trend was possibly at-
tributed to the reduced soil water availability induced by the fast increase in warming
rates associated with EDW.
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(iv) The implementation of alpine conservation and ecological restoration programs within
the TRHR appear to be effective in driving barren land greening. However, the
presence of anthropogenic activities could also adversely affect local alpine ecosystems,
and in some cases was also deemed the primary cause of environmental degradation,
e.g., via loss of productivity in grasslands with overgrazing.
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Abstract: The dry lowland and mangrove forests of Kutai National Park (KNP) in Indonesia provide
invaluable ecosystem services to local human populations (>200,000 in number), serve as immense
carbon sinks to recapture anthropogenic emissions, and safeguard habitats for thousands of wildlife
species including the critically endangered Northeast Bornean orangutan (Pongo pygmaeus morio).
With recent reports of ongoing illegal logging and large-scale wildfires within this National Park,
we sought to leverage the extensive catalogue and processing power of Google Earth Engine to
track the rates and influences of forest loss within KNP over various time periods since 1997. We
present estimates of forest loss from the Hansen Global Forest Change v1.9 dataset (2000–2021) which
detected a loss of 15% (272 km2) of forest cover within KNP since 2000, half of which (137 km2)
coincided with the El Niño-induced wildfires of 2015–2016. Using the MCD64A1 C6.1 MODIS dataset,
we found significant spatial overlap between burned area and forest loss detections during the
2015–2016 period but identified considerable omissions in the burned area dataset over smallholder
farms within KNP. We discuss the implications of deforestation in areas of primary orangutan habitat
and how patterns of forest loss have influenced drought and fire dynamics within KNP. Finally,
we compare time-series estimates of precipitation, the ENSO index, burned area, and forest loss to
demonstrate that fire risk within KNP depends largely—but not exclusively—on drought severity,
and that rates of non-fire (gradual) and fire-related (extreme) forest loss threaten the remaining forests
of this National Park.

Keywords: deforestation; wildfire; drought; satellite; Kutai National Park; Google Earth Engine

1. Introduction

Kutai National Park (KNP) represents one of the last relatively intact areas of protected
lowland and mangrove forest of Indonesian Borneo (Kalimantan) [1]. This protected area
is home to over 300 species of birds, a significant population of the critically endangered
Northeast Bornean orangutan (Pongo pygmaeus morio), and some of the last tracts of eco-
logically significant and commercially valuable Bornean ironwood trees in the region [1,2].
In addition to catastrophic wildfires reported during the extreme El Niño droughts of
1983–1984, 1997–1998 and 2015–2016 [3,4], KNP has continuously experienced illegal log-
ging from nearby human populations for timber, expanding agricultural fields, and land
speculation which the National Park authority struggles to address [5,6].

The use of high resolution (<30 m) multiband satellite imagery in such fields for
ecosystem monitoring and biodiversity conservation has kept pace with gradual improve-
ments in its access and availability [7]; today, it represents the primary resource by which
researchers track changes in forest cover over time. Yet only two studies have attempted
to track the extent of forest loss within KNP using satellite imagery. [5] first used visual
inspection of Landsat imagery to detect areas of loss between 1990 and 2007 over KNP,
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while [8] used supervised classification of Landsat imagery to detect forest loss in the
eastern (populated) region of the park between 2006 and 2009. The latter study estimated
an annual deforestation rate of 2.15% in the park’s eastern region and attributed much of it
to conversion to settlements and agricultural land. At this rate, complete loss of forest in the
eastern half of KNP would occur by the mid-century; however, plans to relocate the capital
city of Indonesia from Java to East Kalimantan by 2024 are likely to intensify pressures on
KNP’s forests and accelerate this time frame. This would represent a substantial loss to both
the morio orangutan habitat within Indonesia and to the ecosystem services upon which
local residents—more than 200,000 people within and immediately surrounding KNP—rely
for fresh water, forest resources, and tourism (see [9]). Thus, an updated analysis of the
rates, extents, and causes of forest loss within KNP using modern sensing and processing
technologies is imperative.

The objective of this study is to track forest loss, drought, and fires over the past
two decades in KNP using historical collections of thermal and spectral satellite imagery
mostly sourced from Google Earth Engine (GEE). Specifically, we utilize the Hansen Global
Forest Change (v1.9) dataset to track annual forest loss (2000–2021); the MODIS MCD64A1
C6.1 product to track fire-affected areas (2002–2021); and the CHIRPS (Climate Hazard
InfraRed Precipitation with Stations) Pentad dataset to track drought patterns within KNP
(1997–2021). We attempt to validate each of these using the appropriate data and methods.
The data presented here provide information to researchers and governments to demarcate
vulnerable areas of protected forests and to devise strategies to avert future forest loss in
this National Park.

2. Data and Methods

2.1. Study Area

KNP covers 1927 km2 along the eastern coast of Borneo in the Indonesian province of
East Kalimantan (Figure 1) [9]. The ecology of the region comprises inland areas of primary
and secondary lowland forests (<250 m above sea level) dominated by Dipterocarpaceae
and Lauraceae family trees and coastal areas featuring mangrove forests and brackish es-
tuaries [9]. KNP is bounded by two cities at its southeastern (Bontang) and northeastern
(Sangatta) corners (Figure 1) that have each seen considerable population expansion since
the park’s formal declaration in 1995, which has prompted the excision of several illegally
settled areas from KNP’s formal boundaries [10]. The Sangatta River forms part of KNP’s
eastern and northern boundaries, while the remaining northern, western, and southern
perimeters abut a contiguous series of industrial concessions, including an open-pit coal
mine, plus wood fibre, timber, and oil palm plantations (Figure 1). Several small villages
of a few thousand people remain within the bounds of KNP in the eastern and coastal
areas [9] where many active and abandoned smallholder farms dominate the landscape
(pers. obs.). Oil palm monocultures represent a large portion of planted agriculture within
KNP primarily because of the high returns on land and labour afforded by the crop [11].
Encouragement by the Indonesian government to cultivate oil palms as a poverty-reduction
strategy and growing contracts offered by palm oil companies in the region [12,13] have fur-
ther incentivized farmers to illegally establish and enlarge oil palm plantations throughout
eastern KNP.

In an intact old-growth state prior to 1970, the forests of KNP rarely experienced
wildfires due to low combinations of fire hazards (i.e., dryness and fuel loads) and fire
risks (i.e., prevalence of ignition sources) [14]. While ignition sources including lightning,
swidden agriculture, and burning coal seam have existed in this region for millenia, neither
naturally nor human-induced fires are believed to have driven large-scale deforestation here
prior to 1970 [14,15]. However, fire hazards in this region have since increased from more
frequent extreme droughts and unprecedented amounts of logging-related fuel loads, as
have fire risks from the proliferation of croplands that use fire for various purposes (see [6]).
Over the past 40 years, three super El Niño droughts have facilitated the spread of wildfires
throughout KNP’s forests. In 1982/83, around half of the park’s forests burned [16] and
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high mortality rates were reported for canopy trees, figs, and lianas [17], while in 1997/98,
a much larger extent of the park burned and most of its forests were reset to a secondary
successional stage [4,18]. The mixed-dipterocarp forests of this region can recover their
structure when left undisturbed for a period of 10–20 years [19,20]. Most recently, during
the super El Niño drought of 2015/16, island-wide studies revealed a significant number of
fire detections over KNP [3,21], but the extent of—and damage caused by—burning during
this event is yet unknown.

Figure 1. Land use designations and population density within and around Kutai National Park of
East Kalimantan, Indonesia. Density displayed as estimated number of people per 250 m × 250 m grid
cell [22] Southeastern and northeastern population centers represent the respective cities of Bontang
and Sangatta.

2.2. Datasets
2.2.1. Hansen Global Forest Change (HGFC)

The HGFC v1.9 dataset is a global gridded (30 m) forest loss product available on
GEE that uses a time-series change detection analysis of multispectral Landsat TM (L4
and L5), ETM+ (L7), and OLI/TIRS (L8) scenes to track annual changes in global forest
cover between 2000 and 2021 [23,24]. The first release of the dataset (2000–2012) reported a
producer’s accuracy of 83.1% (overall accuracy 99.5%) over tropical domains [23]. The most
recent version (v1.9) reports an improved detection accuracy since 2013 due to the inclusion
of L8 data; thus, we only discretize post-2013 years annually in our analyses. Forest loss in
HGFC is defined as a stand-replacement disturbance [of tree canopy cover] via removals
or mortality and it uses a detection algorithm described by [24,25]. This dataset does not
account for potential regrowth after a pixel has been assigned as ‘lost’, which prevents
discernment of outcomes of canopy loss (i.e., regrowth, further degradation, conversion to
other land uses) in our study area. Although high-resolution satellite imagery indicates that
conversion to settlements and croplands predominate these outcomes over the frontline
[loss] areas of eastern KNP, additional data and analysis is required to quantify the capacity
for—and extents of—regrowth following canopy loss in our study area.
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The ‘treecover2000′ and ‘lossYear’ bands of HGFC v1.9 contain classified pixels of
(1) global tree canopy cover (vegetation >5 m in height) in the year 2000 (baseline) and
(2) annual canopy loss between this baseline and 2021, respectively. We clipped these bands
to the boundary of KNP, reduced them to area estimates using GEE functions, and exported
them for colour rendering in QGIS. The full script (see Data Availability Statement) used to
generate the raster images of annual forest loss in KNP was co-opted from a Google-based
Earth Engine tutorial (https://developers.google.com/earth-engine/tutorials/tutorial_
forest_02, accessed on 1 September 2022).

We employ two additional datasets to validate HGFC-detected areas of forest canopy loss
over two sample regions within KNP between 2017–2020. First, we utilize the novel GEE-based
Forest Canopy Disturbance Monitoring (FCDM) Tool using the developer-recommended pa-
rameter values to detect annual canopy loss within the sample regions. The FCDM Tool detects
new canopy openings from L8 scenes across user-defined time periods and reports an overall
accuracy of 77.8% within tropical evergreen rainforests [26]. Second, we visually inspected
high-resolution (5 m) cloud-free composite images (June–November) via Planet/NICFI on
GEE to manually delineate canopy loss over the sample regions for each year of the validation
period. For this “reference” dataset (as referred to in this study), we first traced the extent of
non-forest areas in the 2016 composite over both sample regions, then overlayed composites
from each subsequent year to trace additional areas of canopy loss. Since each dataset uses a
different temporal approach to detect canopy loss between years (see Figure A1), we focus our
comparison on the total—rather than annual-extent(s) of detected forest loss between datasets.

2.2.2. MCD64A1 Burned Area

The MCD64A1 C6.1 burned area (BA) product (500 m) contains estimates of global
monthly BA based on a time-series detection analysis of daily MODIS C6.1 observations
between 07/2000 to 02/2022 [27]. Its most recent version (C6.1) reports an improved
detection accuracy of BA (63% producer’s; 97% overall), yet it still performs poorly over
croplands due to spectral confusion between burnt and harvested land and a limited ability
to detect small-burning fires [27–29]. We first generated annual mosaics of BA detections
within KNP between 2002–2021 in GEE (see Data Availability and Source Code), and then
colour-rendered and reduced each mosaic to area estimates (using the GRASS r.series
algorithm) in QGIS. Using active fire (AF) observations from NASA’s VIIRS (Variable
Infrared Imaging Radiometer Suite) product (375 m) we graphed annual aggregates of daily
fire counts within KNP (2012–2021) and compared the location of AF and BA detections
during the wildfire years of 2015–2016. While the two datasets detect different signals
of fire activity—thermal (AF) vs. post-fire burn scars (BA)—the AF (VIIRS) product can
detect relatively smaller fires and is less susceptible to harvest-related confusion, making it
valuable to compare against BA detections over cropland regions [30,31].

We attempted to validate the MCD64A1 dataset for the 2015 wildfires within KNP
following the burn severity mapping approach developed by UN-SPIDER (United Nations
Space-based Information for Disaster Management and Emergency Response). We first
selected two sample areas of detected BA and determined the estimated date(s) of burning
for each according to MCD64A1 and VIIRS datasets. We also selected one ‘unburned’
sample area (without BA detections) over SW KNP where numerous AF were detected in
2015. In GEE, we (1) generated cloud-free pre- and post-fire composite images over each
sample region using L8 scenes, (2) calculated the normalized burn ratio (NBR) of each
composite, and (3) produced a differenced normalized burn ratio (dNBR) image to classify
burn severity for each of the three sample regions (see Data Availability Statement). We
classified dNBR images using the burn severity thresholds and colour coding developed by
the USGS (United States Geological Survey) and UN-SPIDER, respectively, and compared
the classified images against the MCD64A1-detected burned areas over each sample region.

We chose to generate cloud-masked composite scenes of pre- and post-fire conditions
to address the challenge of year-round high cloud cover that obscures most satellite scenes
over KNP. This approach is not recommended given the potential for signal interference
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over the composited time-period (e.g., through changes in vegetation greenness, agricul-
tural harvests, etc.). However, our approach detected signals of browned (i.e., burnt) areas
that are uncommon in scenes or composites from non-wildfire years over this region, and
thus this offers value to our analysis of BA in KNP.

2.2.3. Climate Hazard InfraRed Precipitation and Station (CHIRPS)

The CHIRPS Pentad reanalysis gridded rainfall dataset combines infrared measurements
of Cold Cloud Duration taken every 5 days (from the Tropical Rainfall Measuring Mission
Multisatellite Precipitation Analysis) with in situ weather station data sourced from the World
Meteorological Organization’s Global Telecommunication System [32]. This global dataset
has a spatial resolution of 5.5 km and is available from January 1981 to present.

To generate a time series of monthly rainfall estimates, we first used a GEE mapping
function to calculate total monthly precipitation (mm) per pixel across KNP for each year
between 2002–2021 (date range of MCD64A1 data), then averaged the pixel estimates across
KNP for each month using a reducer function (see Data Availability Statement). Monthly
estimates were exported from GEE as csv files and transformed into rolling three-monthly
total precipitation (e.g., DJF, JFM, FMA, etc.) to reduce monthly variation and to better
reflect medium-term drought conditions (cf. [33]). To evaluate spatial variations in rainfall
patterns, we also mapped the 25-year (1997–2021) average of total fire-season (Aug–Nov)
rainfall for each pixel across KNP using the GRASS r.series algorithm in QGIS.

CHIRPS-based rainfall estimates were compared with daily observations from the only
available rainfall gauge within KNP, located at the Bendili research station (est. July 2010;
0.56◦N, 117.4◦E; founded and operated by the Orangutan Kutai Project) in the NE corner
of the park (Figure A2). It is important to note that this comparison serves to visualize
conformity between datasets at a single location within KNP and that a standard validation
analysis could not be performed without access to additional rainfall observations.

3. Results and Discussion

3.1. Forest Loss within KNP

Figure 2 depicts areas of baseline tree canopy cover (>30% coverage in 2000) and
canopy loss throughout KNP between 2001–2021, as detected by the HGFC v1.9 dataset.
Baseline canopy cover is shown in green and canopy loss is presented as an aggregate
between 2001–2012 but annually thereafter (2013–2021) to reflect the greater detection
accuracy of the post-2013 period (Figure 2). Much of the forest loss detected since 2000
is located along the trans-provincial highway that runs north-south through the eastern
region of KNP (est. 1991) where illegal settlements and agricultural fields have proliferated
over time. Outside of this highway region, notable patches of recent (dark blue) forest
loss were also detected along the park’s southern border (Figure 2A). The southwest patch
borders an industrial tree plantation (oil palm and acacia) [34,35] while the easternmost
patch borders an industrial open-pit coal mine [36].

To assess the validity of the HGFC estimates over KNP, we compared them with
estimates from two other datasets for the years 2017–2020 over two sample areas of NE
KNP (Figure 3). The three datasets conformed well in terms of the spatial pattern and
area of canopy loss they detected over the two validation areas (Figure 3). Only two
estimates by the reference dataset (in 2018 and 2020 over validation area B) were markedly
different from those of the detection datasets (Figure 3)—perhaps an artifact of the different
approaches that each use in the temporal detection of canopy loss (Figure A1). Overall, our
validation supports the detection performance of the HGFC v1.9 dataset over this region,
yet a standard validation analysis is warranted to quantify its accuracy over KNP.

The significant spike of canopy loss detected in 2016 (Figure 2C) coincides with the
super El Niño drought of 2015–2016 that sparked major wildfires throughout the region
according to Russon AE (pers. obs.) and [3,21]. Although this spike was detected in 2016,
more than twice as many active fires and seven-times as much burned area were detected
throughout KNP in 2015 than in 2016 (Figure 4). Since the HGFC dataset relies on clear-sky
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observations for accurate detection, it is plausible that wildfire smoke and high cloud cover
obscured most Landsat scenes during the 2015 fire season (August–November) so that most
of the fire-related forest loss from 2015 could not be detected until the following year. This
is one known caveat of the HGFC dataset, making it more useful in detecting multi-year
trends in forest canopy loss than deriving definitive area estimates per year. Overall, the
HGFC dataset detected 272 km2 of total forest canopy loss between 2001–2021 (15% of the
2000 baseline canopy cover), half of which (137 km2) was detected between 2015–2016. On
average, the annual rate of loss within KNP during non-wildfire years between 2013–2021
was 5.6 km2 (±1.3) per year, or a loss of 0.3% of baseline forest cover each year.

Figure 2. Classified areas of forest loss within Kutai National Park (A) and the Greater Mentoko
Area [GMA] (B) between 2001–2021 and corresponding area estimates (C) as detected by the Hansen
Global Forest Change (v1.9) dataset. Only years post-2013 are discretized annually due to higher
detection accuracy of the 2013–2021 period. Tree cover with >70% canopy closure in year 2000 are
depicted in green. Images of an illegal logging site (D) and the resultant canopy opening (E) in the
GMA from 2018 by RG.

The only area of KNP for which accounts of pre-disturbance forest conditions are
available is the Greater Mentoko Area (GMA) of NE KNP (Figure 2B). As the site of the first
orangutan research in Indonesia in 1970 [37], its forests were described as “near-pristine”,
free of major logging activities, and only affected by natural disturbances such as wind-
throws, droughts, and recurrent river flooding [38,39]. Since 2000, nearly half of its original
forest cover has been lost (Figure 2B) to both fire- and non-fire disturbances, the latter of
which include illegal logging, settlements, and agricultural expansion to support the local

28



Remote Sens. 2022, 14, 5630

population (Sangatta) that has grown 500-fold over the past five decades [6]. Attributing
precise contributions of fire- and non-fire disturbances to annual forest loss within KNP,
however, requires further analysis beyond the scope of this study.

The forest loss detected in the GMA has replaced primary habitat for the resident
orangutans in this area (est. 1000 individuals) [9] and placed their home ranges in closer
proximity to humans and their livelihoods—exacerbating the record-setting rates of human-
orangutan conflict reported within KNP [40,41]. Further loss in this region along a west-
ward trajectory will also have negative implications for the local human population by
weakening crucial forest-related ecosystem services (e.g., flood management, water quality,
climate regulation, availability of non-timber forest products, etc.) and by compromising
park tourism that relies in large part on the forested orangutan habitats around the Prevab
research station (Figure 2B).

Figure 3. Validation of the Hansen Global Forest Change (HGFC; v1.9) product for the years 2017–
2020 over two sample regions (A,B) in northeastern KNP using (1) high-resolution Planet/NICFI
satellite imagery (Reference dataset) and (2) the Forest Canopy Disturbance Monitoring Tool (FCDM
Tool) developed by [26].

3.2. Hotspot Mapping within KNP

Between 2002–2021, a significant amount of BA was detected throughout KNP in 2004,
2015, and 2016 by the MCD64A1 dataset (Figure 4). The BA from 2015 cover settlement
areas and agricultural fields in NE KNP and coincides with recently disturbed forests
in SW KNP that had lost canopy cover only a year prior (Figures 2A and 4A). Date-of-
burning estimates suggest that fires (2015) in the latter region spread from the neighbouring
industrial plantation into the recently disturbed area, resulting in a footprint of burning
that dwarfs the patches of earlier (2014) forest loss (Figures 2A and 4A). The effect of recent
canopy openings facilitating the spread and development of wildfires that cause further
deforestation has been well documented in past studies in this region [42,43].

AF observations (VIIRS) revealed a significant footprint of fires in eastern KNP be-
tween 2015–2016 that coincide with detected forest loss over this period (Figure 2) but
not with BA (Figure 4D). This is perhaps because relative to BA datasets, AF products are
known to detect more small-scale fires [28], such as those originating from the individual
smallholder farms that predominate eastern KNP. Lower detection accuracy over croplands
and other areas of predominantly small fires is a known limitation of the MCD64A1 dataset,
owing largely to its coarse resolution (500 m) [27,28,44].
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Figure 4. MCD64A1 (left): location (A) and annual estimates (B) of detected burned area (BA) within
KNP between 2002–2021. VIIRS (right): active fire detections within and outside the perimeters of
detected BA in KNP between 2015–2016 (C) and cumulative active fire detections across days of the
year (DOY) between 2012–2021 within KNP (D).

To further assess the validity of MCD64A1-detected BA over KNP, we followed a
validation approach defined by UN-SPIDER that maps burn severity using the difference of
normalized burn ratios (dNBR) between pre- and post-fire satellite images (Figure 5). We
chose to validate BA from the 2015 wildfires using L8 cloud-free composite images over three
sample areas of KNP, covering both burned (regions A and C) and non-burned (region B)
land according to MCD64A1 (Figure 5; see caveats in Section 2.2.2). The MCD64A1 dataset
performed well over the SW region of KNP where croplands are absent, but poorly over the
other sampled areas where croplands predominate; it missed all of the moderate- to severe-
burn scars over SE KNP (Figure 5) despite a large number of active fire detections over
this region in 2015 (Figure 4). Despite its poor performance over croplands, the MCD64A1
dataset still provides a good indicator of years of high BA within KNP (Figure 4), but
alternative BA datasets and/or mapping methods are required to estimate the contributions
of fire to forest loss in this region.

3.3. Climatic Influences of Fire and Forest Loss within KNP

According to estimates of total “fire season” (Aug–Nov) rainfall over the past 25 years,
the deforested eastern region of the park receives the least amount of rainfall, as low as
5.5 mm/day (500 mm/3 mo.) on average around the bounds of Sangatta city (Figure 6A).
Previous research over Borneo and other tropical regions has found patterns of lower
rainfall and higher ambient temperatures over deforested areas (compared to unlogged),
with the most pronounced effects observed during the dry season and El Niño-related
droughts [45,46]. Deforested areas are also more accessible to humans, experience higher
temperature extremes, and contain relatively higher fuel loads from logging debris and
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woody successional plants, all of which contribute to an elevated fire hazard/risk in such
areas [43,47]. These implications are supported by studies that have connected rampant
deforestation patterns throughout eastern Borneo with stronger El Niño droughts [45,47]
and more severe and widespread wildfires [42].

During the 2015 fire season, rainfall estimates (<2.5 mm/day) and single-point obser-
vations (<0.75 mm/day) reveal extreme drought conditions over much of the burned area
(Figure 6B), well below the reported 4–5 mm/day fire risk threshold for this region [3,45].
These severe drought conditions—driven by a 20-year peak of El Niño strength—combined
with a prevalence of potential ignition sources (see [6]) and widespread degradation to facil-
itate large-scale wildfires within KNP (Figure 7). It is likely that such wildfires contributed
both directly (i.e., drought- and fire-related mortality) and indirectly (i.e., facilitating clear-
ing/conversion) to the spike in detected forest loss over this period (Figure 7), but further
analysis is necessary to confirm this interpretation.

Rainfall estimates also suggest that most—but not all—of the six El Niño events
over the past 20 years have induced drought conditions below the fire risk threshold for
this region (Figure 7). Spikes in BA were only detected during one weak (2004–2005)
and one strong (2015–2016) EN event, but none were detected during several moderate-
strength EN events that induced comparable rainfall deficits (Figure 7). Assuming that
the MCD64A1 dataset is a sufficient indicator of large-scale fire occurrences within KNP,
we posit that other factors, such as temperature and the incidental presence of ignition
sources, have regulated the intensity and spread of fire throughout KNP during severe
droughts. However, ongoing deforestation in KNP and predictions of more frequent and
extreme super El Niño events [48–51] will worsen the fire hazard of this reserve during
future droughts.

Figure 5. Validation of MCD64A1 burned area in 2015 over northwestern (A), southeastern (B), and
southwestern (C) sample regions of Kutai National Park using differenced normalized burn ratio
(dNBR) of pre- and post-fire Landsat 8 composite imagery. In the bottom right chart, the spatial
extent of the MCD64A1-detected burned areas is compared against the top three classes of dNBR
burn severity over each sample region.
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Figure 6. Per-pixel averages (1997–2021) of total rainfall (A) and daily average rainfall vs. burned
area in 2015 (B) during the standard fire season (August–November) within Kutai National Park.
Rainfall estimates from CHIRPS Pentad; burned area estimates from MCD64A1.

Figure 7. Estimates of monthly burned area (MCD64A1) and three-monthly total precipitation (CHIRPS)
within Kutai National Park, as well as the Oceanic Niño Index (ONI) between 2002–2021, with phases
of El Niño in orange and La Niña in green. Green bubbles (top) represent annual estimates of forest
loss within KNP (HGFC v1.9) between 2013–2021 in square kilometers (aligned to Jan 1 of the detection
year). The reported fire risk threshold for this region of 4–5 mm/day (360–450 mm/3 month period) is
denoted by the grey band.

4. Conclusions

In this study, we leveraged the extensive collection of historical satellite data and
the processing power of Google Earth Engine to investigate trends in and influences on
forest loss within Indonesia’s Kutai National Park over various time frames since 1997. We
found a gradual yet considerable westward progression of forest loss across the eastern
(settled/farmed) region of KNP since 2000 and patches of fire-related forest loss along the
park’s southern border associated with the El Niño-related drought and fires of 2015–2016.
In total, the HGFC v1.9 dataset detected 272 km2 of forest loss (or 15% of baseline forest
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cover) since 2000, half of which (137 km2) occurred between 2015–2016 with significant
overlap of detected burn scars. Our validation analyses support the detection performance
of the HGFC v1.9 over NE KNP but they caution the use of the MCD64A1 burned area
dataset over eastern KNP where considerable croplands compromise its accuracy. Our
analysis of rainfall estimates also suggests that most El Niño events since 2000 have
induced prolonged droughts over KNP below the fire risk threshold (4–5 mm/day) for this
region. However, we found that drought severity alone cannot explain fire intensity within
KNP, indicating the influences of other modulating factors (e.g., anomalous temperatures,
incidental presence of fire sources, recent logging) in this phenomenon. Unlike all other
areas of KNP, its eastern settled/farmed region receives average rainfall amounts that
approach the fire risk threshold during the standard fire season (August–November),
which is potentially (in part) attributable to widespread deforestation as demonstrated
elsewhere in Borneo (Chapman et al. 2020; McAlpine et al. 2018). Lastly, we found that
the most intense wildfire event of the past two decades—in 2015—coincided with rainfall
estimates of <2.5 mm/day over the most fire-affected areas of the park.

Limitations of our analyses include the use of composite imaging in our validation
assessments to address the obstacle of high-cloud cover over KNP. With this approach,
we were still able to detect clear signals of canopy openings and burn scars in our vali-
dation analyses, thus adding confidence to our discussion of forest loss and its relative
contributions over our study area. However, precise contributions of fire- and non-fire
disturbances to annual forest loss within KNP could not be estimated with our approach,
which along with standard validation assessments of the datasets used, should be the
subject of future studies within KNP. Future studies of fire dynamics over KNP should
also examine mechanisms of fire spread during wildfire years to identify targets of fire
management efforts in this region.

The rates and influences of forest loss reported here contribute to undermining tourism-
related revenue, degrading essential ecosystem services, heightening fire risk and severity in the
region, and threatening the considerable biodiversity that resides within the park, including
a stronghold population of the critically endangered Northeast Bornean orangutan. With
the relocation of the Indonesian government capital to East Kalimantan scheduled for 2024,
unprecedented new human migration into East Kalimantan and subsequent land and building
requirements are soon likely to exert added pressures on KNP’s forests. Wildfires and illegal
logging within KNP must therefore be the priority subject of future conservation, management,
and research programs to avoid further loss of forest cover in this protected area.
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Appendix A

Figure A1. Differences in detection methodology between the three forest loss datasets used in this
study, including the reference dataset (Planet/NICFI imagery), FCDM Tool [26], and the Hansen
Global Forest Change product [23].
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Figure A2. Comparison of rainfall estimates (CHIRPS) and rain gauge observations (RG) at the
Bendili research station in Kutai National Park for annual, September, and October time periods
between 2010–2018. Bendili RG observations are courtesy of the Orangutan Kutai Project.
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Abstract: The current study concentrates on the interdecadal shift in the interannual variability of
summertime precipitation (IVSP) over South China (SC). Possible causes for the interdecadal shift are
explored. The IVSP on a decadal time scale presents a significant weakening after the mid-2000s. The
results show that the variances of the interannual precipitation variability over the SC region between
1993 and 2004 (hereafter S1) and 2005 and 2020 (hereafter S2) are 1.40 mm d−1 and 0.58 mm d−1,
respectively. The variance of the IVSP has decreased by 58.6% since the mid-2000s. The current
study reveals that the reduction in the IVSP over SC after the mid-2000s is prominently attributed
to the weakened impact of the East Asia-Pacific (EAP) teleconnection. Before the mid-2000s, the
interannual variation of the east-west movement of the western Pacific subtropical high was more
significant. The warming over the tropical central-eastern Pacific (CEP) and cooling over the western
Pacific (WP) suppress the Walker cell in the tropical Pacific and induce anomalous Hadley cell
with its descending branch over the WP in the wet years. The anomalies of SST and atmospheric
circulation show opposite phases in the dry years. This SSTA pattern enhances the northward
propagation of the EAP teleconnection through a Rossby-wave-type response, which triggers an
ascending/descending branch with active/suppressed convection over the northwestern Pacific
in the wet/dry years. Therefore, the cooling WP and El Niño in its developing phase provide an
ideal condition for more precipitation over SC. However, the above ocean–atmosphere interactions
changed after the mid-2000s. The significant SST changes in the tropical CEP and the WP weaken
the EAP teleconnection and atmospheric circulation anomalies over SC, leading to a significant
interdecadal reduction in the IVSP over SC after the mid-2000s.

Keywords: summertime precipitation; interannual variability; interdecadal shift; South China

1. Introduction

East Asian summer monsoon (EASM) exhibits significant interannual and interdecadal
variabilities, which have a great influence on summertime precipitation in East Asia [1].
Huang et al. gave a comprehensive and systematic summary of the spatiotemporal features,
processes, and causes of the EASM variability and pointed out that the EASM has signif-
icant variabilities on interannual and interdecadal time scales [2]. Moreover, the EASM
experienced an interdecadal weakening around the late 1970s, while summertime precipi-
tation increased in the Yangtze-Huai River Basin (YHRB) and decreased in North China
correspondingly. Summertime precipitation in South China (SC) increased after 1992 and
decreased in YHRB after 1999 [3]. Correspondingly, the correlation between interannual
variations of the EASM and ENSO became unstable [4]. South China (SC) is located at
the east of the Qinghai-Tibet Plateau and south of YHRB. Due to the interactions between
tropical and middle- to high-latitude weather systems, the weather and climate in SC are
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complicated and diverse. SC is the area with the amplest precipitation and the longest rainy
season in China. Severe drought and flood disasters associated with abnormal precipitation
cause huge losses of lives and properties and greatly influence local economies [5–8].

Influenced by the EASM, summertime precipitation over eastern China shows multi-
scale variability, including seasonal and intraseasonal variability, as well as interannual
and interdecadal variability [2,9–15]. Previous studies have shown that there were three
interdecadal variations of summertime precipitation that occurred in the mid-1970s and
the early and late 1990s [16]. The interdecadal decrease of summertime precipitation in SC
in the 1970s [17,18] is attributed to the weakening of the EASM [19] and the warming of
the tropical Indian Ocean (IO) and the tropical central-eastern Pacific (CEP) [20,21].

Summertime precipitation in SC exhibited an interdecadal intensification after the
early 1990s [22] and a weakening after the late 1990s [23,24]. Most studies pointed out that
uninterrupted warming in the tropical IO and CEP in summertime can cause anomalous
Walker Cell and Hadley Cell circulations [25,26]. The interdecadal intensification of precipi-
tation over SC in the early 1990s is attributed to joint effects of the Walker Cell and Hadley
Cell anomalies and the reduction in spring snowfall in northern Eurasia [25,27]. Due to
the strengthening of the western Pacific subtropical high (WPSH) caused by the tropical
Pacific SSTA [23] and the significant reduction in tropical cyclone activity in the western
Pacific [28], summertime precipitation in SC decreased in the late 1990s.

Previous studies have shown that there is a link between the East Asian climate and
the Northwest Pacific climate, which can be established through atmospheric teleconnec-
tion [29]. On the basis of previous studies, Nitta found that there is a seesaw pattern in the
atmospheric circulations between regions near Japan and the Philippine Sea and proposed
the Pacific-Japan (PJ) teleconnection mode for the first time [30]. Based on the analysis of
observations, Huang and Li also found that there is a tele-connected wave train similar
to the “tripole” structure of PJ in the atmosphere extending from the Philippines to the
Sea of Okhotsk, which is named East Asia-Pacific (EAP) teleconnection type [31]. Many
studies focused on the formation mechanism of this teleconnection type. Based on numer-
ical experiments using a barotropic model, Kurihara and Tsuyuki found that convective
activities near the Philippines can trigger two-dimensional northward propagating Rossby
waves with a horizontal structure similar to the observed PJ/EAP teleconnection [32].
Wakabayashi and Kawamura defined the PJ index based on the decomposition of the
orthogonal function through the distribution position of the central node of the graph [33].
Later, the PJ index was widely applied to find the connection between the Northwest
Pacific climate anomalies and the East Asian climate anomalies. It is also used in climate
forecast, especially the prediction of summertime precipitation anomalies in eastern China.
Similar to summertime precipitation in South China, the position and intensity of the EAP
teleconnection also underwent significant interdecadal variations. After the late 1970s, the
position of the EAP teleconnection pattern changed significantly with an obvious shift to
the west and south [34]. Yin et al. pointed out that rainfall anomalies over YHRB associated
with the EAP teleconnection were weaker and less evident after the 1980s [35]. Xu et al.
revealed that the PJ/EAP (hereafter EAP) teleconnection shifted to the east after the late
1990s, and its intensity weakened significantly [36].

The above studies are helpful for understanding the interdecadal change in the mean
state of summertime precipitation over SC. However, less attention has been paid to the
study of the interdecadal change of the IVSP in SC [37]. Many studies revealed that the
factors which influence the interannual variation of the East Asian summertime climate
have changed a lot on the interdecadal time scale in the past decades [38–42]. Therefore,
the IVSP could have enormous contributions to the occurrence of extreme precipitation
events and should be further investigated. Moreover, interannual changes in various
meteorological elements could improve the precision of seasonal prediction by statistical
climate prediction models [43]. Therefore, it is necessary to study the interdecadal shift of
the IVSP over SC and explore the possible mechanisms behind.
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2. Materials and Methods

The precipitation data used in this study are the Precipitation Reconstruction dataset
on 2.5 × 2.5◦ grids provided by NOAA [44–46]. The monthly atmospheric circulation
data are derived from the NCEP/NCAR Reanalysis on a 2.5 × 2.5◦ resolution [47]. The
daily outgoing longwave radiation (OLR) dataset produced based on NOAA polar-orbiting
satellite remote sensing data with a horizontal resolution of 2.5 × 2.5◦ grids is used in this
study [48]. In addition, the NOAA OI SST V2 High Resolution Dataset on a 0.25 × 0.25◦
resolution is put to use [49].

The time span of this study is the summertime season (JAS, the second rainy season
in SC, which usually has a strong relationship with tropical systems) from 1979 to 2020.
A 10-year running F-test is performed on the time series of summertime precipitation to
assess the interdecadal change. The Student’s t test is used to examine the confidence
level of the composites. The wave activity flux (WAF) is applied to describe the energy
propagation of wave trains [50]. The conversion of local kinetic energy (CK) is calculated
to depict the conversion of kinetic energy from mean flow to turbulence [51].

3. Results

3.1. Weakened Interannual Variability of Summer Precipitation over SC since the Mid-2000s

To describe the interdecadal shift of the IVSP in the mid-2000s, Figure 1 shows the
regional mean time series, interannual difference, and 10-year running F-test values of
summertime precipitation over SC (20–35◦N, 100–125◦E) from 1979 to 2020. The time
series and interannual difference both reveal a significant weakening of the interannual
variability after the mid-2000s. To describe the interdecadal shift of the IVSP over SC in
the mid-2000s and determine the interdecadal turning point, the 10-year running F-test
and 11-year running standard deviation of summertime precipitation over SC are analyzed
(Figure 1b). The results suggest that the IVSP over SC experienced a significant weakening
around2004/05. Hence, the year 2004 is taken as the shift point and the stage (1993–
2004/2005–2020) with strong/weak IVSP is defined as S1/S2. It is found that the variance
in S1 is 1.40 mm d−1 and that in S2 is 0.58 mm d−1, and the mean values of the interannual
difference in summertime precipitation are 1.82 mm d−1 in S1 and 0.81 mm d−1 in S2.
Furthermore, the mean value of the 11-year running standard deviation is 1.33 mm d−1 in
S1 and the value reduces to 0.64 mm d−1 in S2. All the above results support the conclusion
that the interdecadal shift occurred around2004/05.

The time series of summertime precipitation with the linear trends in S1 and S2 being
removed is shown in Figure 2. It is found that the variance in S1 is 1.32 mm d−1 and
the value reduces to 0.37 mm d−1 in S2. The variance of the detrended time series in
S2 decreases by 72.0% compared to that in S1, which is larger than the value of 58.6%
for the original time series that includes the linear trend. Based on the detrended time
series, the years with detrended summertime main precipitation larger (smaller) than 0 are
determined to be wet (dry) years. The wet and dry years during S1 and S2 are listed in
Table 1. Then the differences between the wet and dry years are composited to explore the
reasons for the interdecadal shift of the IVSP over SC. Linear trends are eliminated for all
environmental variables before the composite analysis is conducted.

The composite differences in summertime precipitation between wet and dry years
during S1 and S2 are shown in Figure 3b,d, respectively. It is found that summertime
precipitation over SC shows positive anomalies for the two periods but presents different
spatial distributions and intensities. In S1, the positive anomalies center is located at
(26◦N, 113◦E), and the maximum intensity of anomaly reaches 3.2–3.4 mm d−1 (Figure 3b).
In S2, the two centers of positive anomalies are located at (29◦N, 113◦E) and (23◦N, 115◦E),
which are to the north and south of the positive center in S1, respectively. The maximum
value at the two positive centers in S2 is around 1.2–1.8 mm d−1, weaker than that in S1
(Figure 3d). Consistent with the composite differences of summertime precipitation, the
center of the maximum standard deviation is located at (26◦N, 113◦E) in S1 but it splits into
two centers, which shift to the north and south respectively in S2. The values of standard
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deviation at the two positive anomaly centers also decrease in S2 compared to that in S1,
which agrees with the interdecadal weakening of the IVSP over SC (Figure 3a,c).

Figure 1. (a) Time series (black solid line) and interannual difference (blue bars) of summertime
precipitation over SC. (b) F-test values (red solid line) and 11-year running standard deviations
(blue solid lines) of summertime precipitation over SC (black dashed lines in (a) are averaged values
of interannual variability in S1 and S2, respectively; blue dashed lines in (b) are averaged values
of running standard deviation in S1 and S2, respectively; the red dashed line in (b) denotes the
significant value exceeding the 95% confidence level; unit: mm d−1).

Figure 2. Time series of detrended summertime precipitation over SC during S1 and S2.

Table 1. Wet and dry years picked out in S1 and S2 based on the detrended summertime main
precipitation larger and smaller than 0, respectively.

S1 S2

Wet years 1994, 1996, 1997, 1999, 2002, 2004 2006, 2008, 2010, 2013, 2015, 2016, 2018, 2020
Dry years 1993, 1995, 1998, 2000, 2001, 2003 2005, 2007, 2009, 2011, 2012, 2014, 2017, 2019
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Figure 3. Composite differences in summertime precipitation between wet years and dry years (unit:
mm d−1; (b,d) for S1 and S2, respectively; dots indicate the regions exceeding 95% confidence level.)
and the standard deviation of summertime precipitation (unit: mm d−1; (a,c) for S1 and S2).

3.2. Atmospheric Circulation Anomalies Responsible for the Interdecadal Shift of Summertime
Precipitation over SC

To find out the reasons why there are large differences in the IVSP between S1 and
S2, atmospheric circulation characteristics are analyzed in this section. Figure 4 shows
composite differences of 200 and 500 hPa geopotential height as well as 200 hPa zonal wind
between wet and dry years. The center of positive geopotential height anomalies occurs at
45◦N in both S1 and S2, but the center in S2 is located at the east of that in S1. The negative
geopotential height anomalies are smaller in S2 compared to that in S1 (Figure 4a,b,d,e).
Composites of the western Pacific subtropical high (WPSH) feature line (5880 gpm contour)
in wet and dry years are displayed in Figure 4b,e, respectively. In S1, west extension of the
WPSH is significant in dry years; in contrast, it retreats to the east in wet years (Figure 4b).
In S2, the location and intensity of the WPSH show little difference between wet and dry
years (Figure 4e). This suggests that the interannual variability of the WPSH significantly
weakened in S2 compared to that in S1, which is similar to the variation in summertime
precipitation. Consistent with geopotential height anomalies, the positive and negative
anomalies centers of zonal wind at 200 hPa are located more eastward in S1 and more
westward in S2. The intensity of positive and negative anomalies centers of zonal wind is
weaker in S2 than in S1 (Figure 4c,f).

The influence of atmospheric circulation anomalies on the IVSP is analyzed from
the perspective of large-scale circulation above. To explore the impact of water vapor
transport and local convection on the IVSP, composite differences in moisture flux and
its divergence in the middle and lower levels, OLR, and omega in the middle and lower
levels, 850 hPa relative vorticity and horizontal wind between wet years and dry years are
analyzed. Results are displayed in Figure 5. In S1, negative OLR and omega anomalies are
centered over SC (Figure 5a); in S2, however, the centers of the negative OLR and omega
anomalies are located more eastward and become weak (Figure 5d). This result indicates
that the intensity of convection is weaker in S2 than in S1. From the perspective of moisture
transport, strong easterly anomalies pulled lots of moisture from the Northwestern Pacific
(NWP) to SC in S1, resulting in significant moisture convergence over SC (Figure 5b). In
S2, however, no significant convergence and divergence of moisture flux anomalies can
be found over SC (Figure 5e). Positive relative vorticity anomalies are centered over SC
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in S1 with strong easterly anomalies (Figure 5c). The meridionally distributed centers
of anomalies of positive and negative relative vorticity resemble the EAP teleconnection.
Compared to that in S1, the EAP teleconnection moves eastward and becomes weak in S2
(Figure 5f). The changes in the location and intensity of the EAP teleconnection could be a
key factor that affects the interdecadal shift of the IVSP over SC.

Figure 4. Composite differences of (a,d) 200 hPa geopotential height (unit: gpm), (b,e) 500 hPa
geopotential height (unit: gpm), and (c,f) 200 hPa zonal wind (unit: m s−1) between wet years
and dry years. (a–c) for S1 and (d–f) for S2; dots indicate the regions exceeding 95% confidence
level; red and black lines in (b,e) indicate composites of the WPSH feature line for wet and dry
years, respectively).

Figure 5. Composite differences of (a,d) vertically integrated omega from 850 to 500 hPa (contours
with the interval of 2, unit : kg (m s)−3) and OLR (shading, unit : W m−2); (b,e) vertically inte-
grated moisture flux from 1000 to 500 hPa (vectors, unit : kg m−1 s−1) and its divergence (shading,
unit : 10−6 kg m−2 s−1); and (c,f) 850 hPa wind (vectors, unit: m s−1) and relative vorticity (shading,
unit : 10−6 s−1) between wet years and dry years. ((a–c) for S1; (d–f) for S2; significant values ex-
ceeding the 95% confidence level are displayed; the dashed/solid lines suggest values larger/smaller
than zero in (a,d)).

It is found that the composite differences of summertime precipitation between wet
and dry years and standard deviations in the corresponding years over the SC show highly
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consistent spatial distribution characteristics (Figure 3). To inspect the consistency of the
composite differences in moisture transport and local convection between dry and wet
years and their standard deviations in the corresponding years, Figure 6 shows the standard
deviations of moisture flux divergence, vertically integrated omega from 850 to 500 hPa
and OLR in S1 and S2, and the respective differences. Consistent with the results shown
in Figure 5, moisture flux divergence, omega, and OLR have larger standard deviations
over SC in S1 (Figure 6a–c) than in S2 (Figure 6d–f). Moreover, the differences in moisture
flux divergence, omega, and OLR between S1 and S2 (Figure 6g–i) display a similar spatial
distribution pattern to that of the standard deviation of summertime precipitation over SC
in S1.

Figure 6. Standard deviations of vertically integrated moisture flux divergence from 1000 to
500 hPa ((a,d,g); unit : 10−6 kg m−2 s−1), vertically integrated omega from 850 to 500 hPa ((b,e,h);
unit : kg (m s)−3), OLR ((c,f,i); unit : W m−2) in S1 (a–c); and S2 (d–f) and the respective difference
between S2 and S1 (g–i).

3.3. Weakened Impacts of the EAP Teleconnection on Summertime Precipitation over SC since the
Mid-2000s

As referred to in Section 3.2, the EAP teleconnection is of vital importance for the
interdecadal shift of the IVSP over SC. This section explores the possible mechanisms of
the interdecadal shift of the EAP teleconnection impact on summertime precipitation over
SC around the mid-2000s. The composite differences of OLR and 850 hPa relative vorticity
between wet and dry years are shown in Figure 5, which can reflect some features of the
EAP teleconnection. In S1, negative differences of OLR (Figure 5a) and positive differences
of vorticity (Figure 5c) are centered over SC, while the positive OLR difference center and
negative vorticity difference center are distributed to the north and south, respectively. In
S2, the centers of negative OLR (Figure 5b) and positive vorticity (Figure 5d) anomalies both
move eastward and their intensity weakens. These results suggest the EAP teleconnection
may have experienced an interdecadal weakening process after the mid-2000s.
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Since the EAP teleconnection is characterized by meridionally distributed centers of
relative vorticity anomalies with alternating signs [36], the 200 and 850 hPa relative vorticity
anomalies connected with the EAP teleconnection in wet years during S1 and S2 are shown
in Figure 7. In S1, the centers of positive and negative relative vorticity anomalies are
meridionally distributed along 105–120◦E with the maximum positive center in lower
levels located over SC (Figure 7b). In S2, the centers of positive and negative relative
vorticity anomalies move eastward and are meridionally distributed along 115–130◦E with
the intensity weakened in lower levels (Figure 7d). Following the approach proposed by
Huang to define the EAP index using 500 hPa geopotential height anomalies [52], the EAP
index is defined in the present study using 850 hPa relative vorticity anomalies. The EAP
index can be expressed as:

IPJ = −0.25Vor
′
(R1) + 0.5Vor

′
(R2)− 0.25Vor

′
(R3) (1)

where Vor
′
(R1), Vor

′
(R2), and Vor

′
(R3) represent averaged 850 hPa relative vorticity

anomalies over (30–36◦N, 105–120◦E), (16–29◦N, 105–120◦E), and (8–15◦N, 105–120◦E),
respectively. The above three areas are denoted by the red boxes in Figure 7b,d. The
EAP index is 1.187 in S1 and −0.002 in S2, respectively. The large difference in the EAP
index between S1 and S2 suggests that the intensity of the EAP teleconnection experienced
a significant weakening since the mid-2000s. Furthermore, the weakening of the EAP
teleconnection is partly attributed to the weakening of its intensity and partly attributed to
its eastward shift.

Figure 7. Composite anomalies of relative vorticity (shading, unit : 10−6 s−1) and associated WAF
(vectors, unit : m2 s−2) at (a,c) 200 and (b,d) 850 hPa in wet years of S1 (a,b) and S2 (c,d) (significant
values exceeding the 95% confidence level are displayed).

In order to illustrate the propagation of Rossby waves, the wave activity flux (WAF) is
also composited. In S1, the WAF connected with the EAP teleconnection emanates from the
tropical WP, propagates to the north, and reaches and converges SC and the adjacent sea to
its east in the lower levels (Figure 7b). In the higher levels, EAP of the WAF predominantly
propagates along the westerly jet stream at the middle- to high- latitudes (Figure 7a). In S2,
the propagation paths of WAF in lower (Figure 7d) and higher levels (Figure 7c) both are
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similar to that in S1, but the intensity of WAF is weaker than that in S1. A previous study
indicated that the energy of the EAP teleconnection in the wet years of S1 predominantly
hails from a Rossby-wave-type response [53].

Traditional studies regard the EAP teleconnection as a free Rossby wave train propa-
gating from the subtropics to the mid latitudes in the lower troposphere [29,31]. To explain
in a clearer way the interdecadal variation of the EAP teleconnection from the perspective
of energy, the composite differences in CK vertically integrated from 1000 to 100 hPa be-
tween wet years and dry years are displayed in Figure 8. Note that positive CK indicates
that fluctuations are easier to develop by extracting kinetic energy from basic flow. In S1,
positive CK is centered at 150–160◦E, 35–40◦N and 105–115◦E, 15–20◦N (Figure 8a). In S2,
the positive CK shift to the east and are centered at 170–180◦E, 35–45◦N and 125–135◦E,
25–35◦N (Figure 8b). Traditional studies regard the EAP teleconnection as a free Rossby
wave train propagating from the subtropics to the mid latitudes in the lower tropo-
sphere [29,31]. Therefore, it is obvious that the CK shift to the east in S2 contributes
significantly to the eastward shift of the EAP teleconnection.

Figure 8. Composite differences of the conversion of local kinetic energy (CK) vertically integrated
from 1000 to 100 hPa between wet and dry years in (a) S1 and (b) S2 (dots indicate the regions
exceeding 95% confidence level; black curves in (a,b) represent the EAP teleconnection).

It has been found that the eastward shift of EAP teleconnection is mainly forced by
the shift of related SSTA [54,55]. Figure 9 shows the composite differences of SSTA (unit:
K) between wet and dry years from the prior winter (DJF) to the subsequent summertime
(JAS). In S1, the EAP teleconnection is connected with the transitional phase from La
Niña to El Niño and from “North-warm-South-cold” to “North-cold-South-warm” in the
Indian Ocean (IO), as well as a significant cooling phase over the western Pacific (WP)
(Figure 9a–c). In S2, the EAP teleconnection is connected with the El Niño Modoki [56]
decaying and a cooling phase in the IO, as well as a warming phase over WP (Figure 9d–f).
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Figure 9. Composite differences of SSTA (unit: K) between wet and dry years (a,d)/(b,e)/(c,f) for
pre-winter (DJF)/spring (MAM)/summer (JAS); (a–c)/(d–f) for S1/S2; dots indicate the regions
exceeding 95% confidence level).

The patterns of composite SSTA in S1 and S2 are significantly different, which is
at least partly responsible for the interdecadal shift of the EAP teleconnection. Looking
at the situation in the summertime during S2, it is clear that the cooling in the tropical
central-eastern Pacific (CEP) and the warming in the WP (Figure 9f) are favorable for
the development of convective activity over WP [57,58]. Strong convective activities in
the WP strengthen the WPSH by affecting the Hadley cell due to the weakening of EAP
teleconnection. Since the enhancement of the IVSP in S1 attracts more attention, the present
study focuses on the mechanism for the strengthening of summertime precipitation in S1.

It is found that the CEP warming can induce anomalous convection activities in the
NWP by a Rossby-wave-type response and simultaneously destabilize the atmosphere
in lower levels [59–61]. To further explore the influence of SSTA pattern on atmospheric
circulation anomalies in S1, we analyze the composite differences (shown in Figure 10) in
the Walker cell (Figure 10a) and Hadley cell (Figure 10b) between wet and dry years. In
the summertime of S1, the updraft in the tropical CEP and downdraft in the tropical WP
are significantly enhanced (Figure 10a) due to the warming in the CEP and the cooling in
the WP (Figure 9c). This kind of Walker Cell induces an anomalous Hadley cell over the
northern WP (Figure 10b). Descending branches appear in the WP around 10S–10N and
North China around 35N. An ascending branch occurs near 25◦N, which is located at the
center of the largest IVSP area (Figure 3a,b). The updraft there suppresses the development
of the WPSH (Figure 4b) and promotes more summertime precipitation in the wet years
of S1. The Walker Cell and Hadley Cell accompanied by SSTA have opposite impacts
on summertime precipitation in SC in the dry years of S1. These two distinctly different
processes are responsible for the more significant IVSP in S1.

In a nutshell, the enhanced EAP teleconnection is a Rossby-wave-type response to
the warming in the CEP and the cooling in the WP, which result in anomalous Walker
Cell and Hadley Cell in the wet years of S1. The northward propagation of Rossby wave
energy promotes convective activities and suppresses the WPSH in the NWP, providing an
advantageous condition for the increase of summertime precipitation over SC.
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Figure 10. Composite differences of (a) Walker cell (averaged over 10◦S~10◦N) and (b) Hadley cell
(averaged over 100~120◦E) between wet and dry years in S1 (shading regions suggest composite
differences of vertical velocity (unit: 10−3 m s−1) between wet and dry years. Significant values
exceeding the 95% confidence level are displayed).

4. Conclusions

Many studies revealed that the factors that influence the interannual variation of
the East Asian summertime climate have changed a lot on interdecadal time scale in the
past decades [38–42]. This study reveals that the IVSP over SC experienced a significant
weakening after the mid-2000s. Taking 2004 as the shift point, the periods 1993–2004 and
2005–2020 are defined as S1 and S2, respectively. By composite differences of various
atmospheric elements between wet and dry years in S1 and S2, the reasons why the
interdecadal shift of the IVSP over SC occured are explored.

The composite differences of summertime precipitation between wet and dry years
in S1 and S2 are compared. It is found that summertime precipitation over SC shows
positive anomalies for both periods but presents distinctly different spatial distributions
and intensities. In S1, the center of positive anomalies is located at (26◦N, 113◦E) and the
intensity of the anomalies reaches 3.2–3.4 mm d−1. In S2, two centers of positive anomalies
are distributed to the north and south of the positive center in S1. The two centers are
respectively located at (29◦N, 113◦E) and (23◦N, 115◦E). The intensity of summertime
precipitation anomalies in S2 is 1.2–1.8 mm d−1 at the two positive centers, weaker than
that in S1. Consistent with the composite differences of summertime precipitation, the
center of the standard deviation is located at (26◦N, 113◦E) in S1 but it splits into two centers
that shift to the north and south respectively in S2. The magnitude of standard deviation
at the positive anomaly centers also decreases in S2 compared to that in S1, which agrees
well with the interdecadal weakening of the IVSP over SC. Consistent with summertime
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precipitation, local moisture flux divergence, omega, and OLR all have larger standard
deviations over SC in S1 than in S2.

To find out the reasons for the enormous differences of the IVSP between S1 and S2,
atmospheric circulation characteristics are analyzed. From the perspective of large-scale
circulation, the center of positive geopotential height anomalies is located at 45N for both
S1 and S2, yet the center in S2 is located further westward compared to that in S1. The
local negative geopotential height anomalies are weakening from S1 to S2. Moreover,
the WPSH elongates to the west in dry years and moves back to the east in wet years
during S1. The location and intensity of the WPSH have little difference between wet and
dry years during S2. This suggests that the WPSH interannual variability significantly
weakens in S2 compared to that in S1, which is similar to the variation in summertime
precipitation. Consistent with geopotential height anomalies, the centers of positive and
negative anomalies of zonal wind at 200 hPa are located relatively eastward in S1 and
westward in S2. The intensity at centers of positive and negative anomalies of zonal wind
is weaker in S2 than in S1. From the perspective of moisture transport and local convection,
negative OLR and omega anomalies are centered over SC in S1, while the centers of
negative anomalies are located eastward and become weak in S2. This result indicates
that the intensity of convection weakens from S1 to S2. Moreover, there are strong easterly
anomalies that pull huge amounts of moisture from the Northwestern Pacific (NWP) in S1,
resulting in significant moisture convergence over SC. However, no significant convergence
and/or divergence of moisture flux anomalies can be found over SC in S2. Positive relative
vorticity anomalies are centered over SC in S1 accompanied by strong easterly anomalies.
The meridional centers of positive and negative relative vorticity anomalies resemble the
EAP teleconnection, which moves eastward and becomes weak from S1 to S2.

Since the EAP teleconnection is of vital importance for the interdecadal shift of the
IVSP over SC, the reasons for the interdecadal shift of the EAP teleconnection impact on
summertime precipitation over SC around the mid-2000s are investigated. The weakening
of the EAP teleconnection is partly attributed to the weakening of its intensity and partly
attributed to its eastward shift. It was found that the eastward shift of EAP teleconnection is
mainly forced by the shift of related SSTA [54,56]. In S1, the EAP teleconnection is connected
with the transitional phase from La Niña to El Niño, from the “North-warm-South-cold”
pattern to “North-cold-South-warm” pattern in the IO and a significant cooling phase in the
WP. In S2, the EAP teleconnection is connected with the Central Pacific El Niño decaying
and a cooling phase in the IO, as well as a warming phase over the western Pacific. The
patterns of composite SSTA are significantly different between S1 and S2, which is at least
partly responsible for the interdecadal shift of the EAP teleconnection. Looking at the
situation in the summertime of S2, the cooling in the tropical CEP and the warming in the
western Pacific are favorable for the development of convective activity over WP [57,58].
Strong convective activities in the WP strengthen the WPSH by affecting the Hadley cell
due to the weakening of EAP teleconnection. In the summertime of S1, the enhanced EAP
teleconnection is a Rossby-wave-type response to the warming in the CEP and the cooling
in the WP, which results in anomalous Walker Cell and Hadley Cell in the wet years of S1.
The northward propagation of Rossby wave energy promotes convective activities and
suppresses the WPSH in the NWP, providing an advantageous condition for the increase of
summertime precipitation over SC.

The present study concentrates on the interdecadal shift of the IVSP over SC and
the possible mechanisms behind it. However, the present study mainly performs some
dynamic and statistical analysis on observational datasets. In the following work, it would
be better to do numerical experiments to verify the reliability of the results. This study
reveals that the interdecadal shift of the EAP teleconnection is significant around the mid-
2000s, which is caused by the interdecadal shift of the SSTA patterns in the CEP and the
western Pacific. However, there may exist multiple factors responsible for the interdecadal
shift of the EAP teleconnection. It is found that the interdecadal change of the PDO phase in
the late-2000s could result in the interdecadal shift of the EAP teleconnection and variations
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of summertime precipitation in eastern China [61]. Further studies are necessary to explore
the complex feedback loops that affect summertime precipitation in China.
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Abstract: Accurate land use land cover (LULC) classification is vital for the sustainable management
of natural resources and to learn how the landscape is changing due to climate. For accurate and
efficient LULC classification, high-quality datasets and robust classification methods are required.
With the increasing availability of satellite data, geospatial analysis tools, and classification methods,
it is essential to systematically assess the performance of different combinations of satellite data
and classification methods to help select the best approach for LULC classification. Therefore, this
study aims to evaluate the LULC classification performance of two commonly used platforms (i.e.,
ArcGIS Pro and Google Earth Engine) with different satellite datasets (i.e., Landsat, Sentinel, and
Planet) through a case study for the city of Charlottetown in Canada. Specifically, three classifiers
in ArcGIS Pro, including support vector machine (SVM), maximum likelihood (ML), and random
forest/random tree (RF/RT), are utilized to develop LULC maps over the period of 2017–2021.
Whereas four classifiers in Google Earth Engine, including SVM, RF/RT, minimum distance (MD),
and classification and regression tree (CART), are used to develop LULC maps for the same period. To
identify the most efficient and accurate classifier, the overall accuracy and kappa coefficient for each
classifier is calculated throughout the study period for all combinations of satellite data, classification
platforms, and methods. Change detection is then conducted using the best classifier to quantify the
LULC changes over the study period. Results show that the SVM classifier in both ArcGIS Pro and
Google Earth Engine presents the best performance compared to other classifiers. In particular, the
SVM in ArcGIS Pro shows an overall accuracy of 89% with Landsat, 91% with Sentinel, and 94% with
Planet. Similarly, in Google Earth Engine, the SVM shows an accuracy of 87% with Landsat 8 and
92% with Sentinel 2. Furthermore, change detection results show that 13.80% and 14.10% of forest
areas have been turned into bare land and urban class, respectively, and 3.90% of the land has been
converted into the urban area from 2017 to 2021, suggesting the intensive urbanization. The results
of this study will provide the scientific basis for selecting the remote sensing classifier and satellite
imagery to develop accurate LULC maps.

Keywords: remote sensing; LULC classification; ArcGIS Pro; Google Earth Engine; machine learning;
change detection

1. Introduction

Accurate information on land use land cover (LULC) can facilitate various research
activities related to floods, droughts, migration, and climate change at several scales. The
constant and precise investigation of LULC is a vital aspect of any region’s sustainability
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and development. LULC changes (i.e., deforestation and urbanization, etc.) are one the
prominent drivers of climate change around the globe [1]. Furthermore, climate change
has significant impacts on water balance [2,3], geomorphology [4], water quality and
groundwater management [5–8], resources management and their impacts on humans and
their surroundings [9], and land monitoring [10–12], all of which require detailed LULC
maps as an essential input [13,14]. LULC maps can assist in identifying which types of
land are suitable for agriculture practices and watershed management or useful for urban
planning. The most frequent method for this purpose is mapping the LULC and analyzing
change over time [15–18].

The severity of extreme events is mainly modulated by the LULC changes. The extreme
events of heat waves in 2003 and 2010 in Western Europe and Russia inspired researchers to
investigate extreme events by looking at the LULC of the area [19–21]. Therefore, it is crucial
to identify the best methodology to analyze the change in LULC to address the growing
demands of the population to overcome the issues related to agriculture management,
natural resource management, and energy generation. Generating more accurate LULC
maps for dense regions requires vast quantities of data. As a result, enormous storage
capacities, significant computing power, and the ability to employ various strategies are
required [22]. Classification of LULC is the foundation of research on LULC change
detection. Traditional visual interpretation and mathematical statistics no longer match
the criteria for the accuracy of LULC classification [23]. Training samples, classifiers,
and supplementary datasets are the most influential components in supervised LULC
classification [24]. However, modern state-of-the-art tools (i.e., ArcGIS Pro and Google
Earth Engine) enable us to develop more accurate LULC maps using different LULC
classification algorithms.

Analysis of different LULC categories, using machine learning approaches, can be
performed in a geographic information system platform (i.e., ArcGIS Pro) or Google Earth
Engine using remote sensing datasets. The geographic information system can be used for
a better understanding of spatial and temporal analysis related to LULC classification [25].
These analyses can help us to understand the trend of change in LULC. Google Earth
Engine is a platform that combines remote sensing data (i.e., satellite imagery from different
sources) with high-performance computer service, making satellite imagery processing
quicker and simple [26–29]. Google Earth Engine contains satellite imagery from various
sources, including Landsat 8, Sentinel 2, MODIS, and many other sources of datasets that
are freely accessible. JavaScript is used in Google Earth Engine to develop client libraries,
while Python handles code modification [30–34]. Google Earth Engine uses the method of
MapReduce architecture for parallel processing, which is used for dividing huge volumes
of data into smaller sets and proceeding them across several tools. Then, the data were
compiled for output datasets after processing them as several individual components.

Recently, state-of-the-art machine learning algorithms (i.e., random forest/random
tree (RF/RT), classification and regression tree (CART), support vector machine (SVM),
maximum likelihood (ML), and minimum distance (MD)) have captured the researchers’
attention [35,36]. Nowadays, most available research focuses on these LULC classifiers
comparisons using different machine learning models. Machine learning has the potential
to deal with big historical and present datasets using different algorithms for LULC analysis.
In the last few decades, many researchers focused on LULC classification using different
remote sensing data with machine learning techniques for different types of study areas
to analyze the LULC classification at different platforms [24,30,31]. However, only a
few studies focus on using the different platforms for LULC classification and mapping,
utilizing different LULC classifiers or approaches to compare LULC maps derived from
various multispectral satellite images. On the other hand, the stress for accurate LULC
data from satellite imagery around the globe increases. Therefore, it is more critical to
compare different classification algorithms and their effectiveness in ArcGIS Pro and
Google Earth Engine platforms. The objective of this study is to check the performance
evaluation of different algorithms or classifiers for LULC categorization utilizing Landsat
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8 surface reflectance Tier 1, Sentinel 2 Level-1C, and Planet imagery data with 30 m, 10 m,
and 3–5 m resolutions, respectively, with two different platforms (ArcGIS and Google
Earth Engine). Moreover, the accuracy of classifiers, i.e., RF/RT, CART, SVM, ML, and
MD [37–39] for both platforms, was determined. Furthermore, the changes in LULC for the
city of Charlottetown from 2017 to 2021 were also analyzed utilizing the accurate classifier
on the selected platform. The results of this study will provide insights for future studies
by identifying the most suitable classifier and platform for the remotely sensed images.

2. Data and Methods

2.1. Study Area

This study focuses on Charlottetown, the capital of Prince Edward Island (PEI), com-
monly known as the Island, a province of Canada located in the Maritimes (Figure 1).
PEI has been facing the adverse effects of climate change in the past few decades [40].
Charlottetown is Prince Edward Island’s capital. In the past few years, the population
of Charlottetown has increased significantly. As a result, the city is facing deforestation
and urbanization. The study area has different land cover types (e.g., forest vegetation,
water bodies, and urban areas), and its changing due to human interference. Therefore,
it is important to analyze the LULC changes with maximum accuracy using the best ma-
chine learning approach. Charlottetown has a total size of 44.29 km2 [41]. It is located on
the province’s southern coast and has a population of 80,347. Charlottetown is situated
on its namesake harbor. By the convergence of three rivers, this harbor was created on
the island’s south coast. The entrance to the harbor is the Northumberland Strait. The
downtown area of Charlottetown consists of the city’s five hundred ancient lots and the
waterfront area facing the Hillsborough River. Initially, the downtown area was bordered
by four villages (Parkdale, Spring Park, Brighton, and Sherwood). The districts to all sides
of downtown except the south area have been developed in recent decades with many
commercial developments and an increase in residential areas, while the city’s outside
areas are still primarily farmland.

Figure 1. The location of the study area (city of Charlottetown).
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2.2. Satellite Data

This project will employ three types of datasets to perform LULC categorization. These
datasets include low (Landsat 8), median (Sentinel 2), and high (Planet) resolution satellite
images. In this research, all visible and infrared bands (the thermal infrared band was
excluded) were used for the LULC analysis [42].

• Landsat 8: the Landsat program is a component of the USGS National Land Imaging
(NLI) Program, which has ensured continuity, reliability, and comparability of data
since 1974. Landsat has a spatial resolution of 30 m [43].

• Sentinel 2: Sentinel 2 is a high-resolution (10 m), wide-swath, and multispectral imag-
ing system. This aids Copernicus land monitoring studies, such as the examination of
water cover and water bodies, vegetation, soil, and the observation related to coastal
areas and inland water cover. Sentinel 2 contains thirteen spectral bands [44].

• Planet: since 2016, Planet has captured multispectral photography for consumer use.
Planet imagery has high-resolution (3–5 m) imagery that is becoming an essential
resource for earth imaging [45]. Planet Scope has more than 150 nanosatellites with a
unique combination (coverage of the area, frequency, and high resolution) that can
take daily images at a 3 m resolution [25]. These datasets are much more helpful for a
better understanding of LULC changes.

2.3. Methodological Framework for LULC Classification

Currently, geospatial Big Data are garnering an abundance of attention and are em-
phasized globally. ArcGIS Pro and Google Earth Engine are the most popular platforms for
large data processing and LULC classification. Several approaches have been established
and employed to measure changes in different LULC changes. However, there is currently
no research that uses both platforms and includes different input datasets to examine the
accurate LULC changes through time in Charlottetown, PEI. In this study, a framework
was developed to compare and analyze the performance and viability of different classifi-
cation methods in ArcGIS Pro and Google Earth Engine, using different datasets. Table 1
shows the major LULC classes scheme for the study area. We use five major classes, e.g.,
water bodies, urban, forest, bare land, and vegetation, that represent the overall land cover
of the city of Charlottetown. Figure 2 shows the methodological frameworks for LULC
classification using different classifiers (see Section 2.4) in ArcGIS Pro and Google Earth
Engine using Landsat 8, Sentinel 2, and Planet imagery from 2017 to 2021. Image treatment
is entirely independent in ArcGIS Pro than in Google Earth Engine. Some data processing
factors can affect the outputs, including the algorithms for image selection, cloud masking,
and filling the missing pixels. Overall accuracy and kappa coefficient were also calculated
to evaluate the performance of each classifier with different input datasets. Maps and
graphs were used to display the entire analysis.

Table 1. Name and description of LULC classes scheme.

Class Name Description of Class

Water Bodies Lakes, bays, oceans, and estuaries.

Urban Residential, commercial, industrial, roads and transportation, communications,
and utilities.

Forest Deciduous forest area, evergreen forest, mixed forest, residential forest.

Bare Land Beaches, sandy areas, open fields without vegetation, exposed rock, gravel pits,
transitional areas, and mixed barren land.

Vegetation Cropland, shrubland, grass.
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Figure 2. Methodology of LULC classification using (a) ArcGIS Pro and (b) Google Earth Engine.

2.4. Classification Methods

To perform a pixel-based supervised classification, a set of training samples specific to
each year was obtained. Every training sample pixel was assigned to a LULC class on the
basis of supplementary data, such as Google Street View and orthophoto images from each
year of the study [46]. We use SVM, ML, and RT classier in ArcGIS Pro and CART, SVM,
RF, and MD classifiers in the Google Earth Engine platform. In this study, the following
classifiers were used for LULC classification:

• Classification and regression tree (CART) is a decision classification tree that facilitates
straightforward decision-making and regression analyses [47]. Based on a predeter-
mined threshold, CART runs by separating nodes until it reaches the terminal nodes.
This method divides input data into further group sets, and trees are generated using
all but one of those group sets. The “classifier.smileCart” approach, which is part of
the Google Earth Engine library, was used in this project.

• Random forest/random tree (RF/RT) RF/RT constructs an ensemble classifier and is
one of the commonly used classifiers [48] by mixing many CART. RF/RT generates
many decision trees using a random selection of training datasets and factors. The two
most essential input criteria for this classifier are the size of the training dataset, and
the number of trees generated [49,50].

• Support vector machine (SVM). One of the supervised learning techniques is SVM
which is used to resolve different problems related to regression and classifications.
In the training phase, SVM classifiers generate an ideal hyperplane that splits several
classes with the less misclassified pixels from input datasets. The kernel functions,
cost parameters, and gamma [51] are key parameters for determining support vectors.

• Minimum distance classifier (MD). The MD classifier classifies imagery datasets into
classes that reduce the distance between the class in multi-feature space and image
data. This distance between the image data is expressed as a similarity index, such
that the minimal distance and highest similarity are equivalent. The main idea behind
this process is to calculate the spectral distance between the measurement vector for
the candidate pixel and the mean vector for each signature [52].
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• Maximum likelihood classifier (ML). Maximum likelihood classifier is a supervised
classification method that describes every band by a normal distribution. This super-
vised classification method is based on the Byes theorem [53].

2.5. Data Processing

In Google Earth Engine, LULC classification maps were generated using Landsat 8
and Sentinel 2 imagery. We use SVM, RF, MD, and CART classifiers in Google Earth Engine.
Contaminated pixels caused by cloud cover were eliminated from all images using the
cloud mask method provided on the Google Earth Engine [11]. Temporal aggregation
approaches such as mean, first, and median was employed to fill the gaps in foggy images.

Using SVM, RT, and ML classifiers, LULC maps were created in ArcGIS Pro. As the
major input for classification, images with the least or zero cloud cover were employed.
Atmospherically and geometrically corrected images from the three sources (Landsat 8,
Sentinel 2, and Planet) with zero cloud cover were utilized as the primary input. The
source of data was USGS and Planet Scope sites. Images from the Planet Scope site were
mosaiced to cover the whole study area in ArcGIS Pro. Then, all images from all three
data sources were clipped to the city of Charlottetown boundary using ArcGIS Pro for
LULC classification. Image treatment is entirely independent in ArcGIS Pro than in Google
Earth Engine.

A total of 354 training samples were used for LULC classification, from which 284
were used as training samples, and 145 were used as testing samples. Google Earth Pro was
used to visually evaluate high-resolution orthophoto images from 2017 to 2021. Training
and validation samples were generated with Google Earth Pro. They were then loaded into
ArcGIS Pro and the Google Earth Engine platform as shape files to train classifiers. As a
rule [54], every classification class should have a minimum of 50 training samples. Training
and validation data used for LULC classification was the same in both platforms (ArcGIS
Pro and Google Earth Engine). LULC was divided into five broad classes: forest, urban,
bare land, water bodies, and vegetation.

For the CART classifier: the optimal cross-validation factor was estimated to be
ten based on the research of Kohavi [44] and utilized as an input. For the RT classifier:
more trees within the range of 50–100 demonstrated greater classification accuracy and
performance [55]. In the present investigation, 100 trees produced positive outcomes. For
the SVM classifier: cost, kernel type, and gamma are crucial parameters. The linear kernel is
suitable for large datasets [56]. The gamma value is unnecessary for linear kernels. The cost
parameter establishes the degree of the punishment for misclassified data, if the C value is
greater, it means fewer data misclassifications. For SVM classification, the C-SVC method
with a value of 10 as a cost parameter and a linear kernel is also utilized. After LULC
classification using post-change detection methodologies, the result of each categorization
for the study period was estimated, and a change detection analysis from 2017 to 2021 was
also conducted.

2.6. Accuracy Assessment

Methods, procedures, time, and space affected the classification’s precision [57–59].
Several research [42,60] found slight to significant variations in the classification accuracy
of LULC using different LULC classifiers. The efficacy of various classifiers was evaluated
based on their accuracy. The most frequent indicator for measuring the accuracy and also
efficiency of all classifiers is overall accuracy, which indicates the percentage of correctly
classified testing data. The accuracy evaluation in this investigation reveals a modest
discrepancy between the outputs of the classifiers utilized in this instance. The precision of
a LULC classification varies not just by classifier but also by location and time. This might
be caused by atmospheric, surface, and light fluctuations [61]. Using stratified random
sampling, a dataset was generated [62]. Stratified sampling is to divide the dataset or
strata according to the characteristics of its attribute. After randomly selecting samples
from the types or strata through stratification, these samples in each stratum have a certain
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commonality. The main purpose of the stratified sampling method is to obtain the sample
data with high efficiency. It is generally believed that stratified sampling makes it easy to
extract representative samples [63]. These sampling datasets were separated into validation
and training sets. Seventy percent of the entire datasets were used for training, while thirty
percent were used as validation datasets [64]. Some auxiliary datasets such as Google Street
view were used as a reference to collect the sampling datasets. ArcGIS Pro and Google Earth
Engine offer different methods to check the accuracy of many LULC classifiers, and some
of these accuracy evaluations were utilized to determine the accuracy of each categorized
map from 2017 to 2021.

Overall Accuracy =
TC.P
TS.P

× 100 (1)

Whereas TC.P is the total number of correctly classified pixels and TS.P is the total
number of sample pixels.

kappa coe f f icient =
O.A − C.A

1 − C.A
(2)

Whereas O.A is the overall accuracy and C.A is chance agreement. Equations (1) and (2)
show the calculation method of overall accuracy and kappa coefficient. The validation data
gathered for each year was compared to each map to generate an error matrix. In addition,
the kappa coefficient was determined to evaluate the accuracy of each used classifier for
every year throughout the study period in ArcGIS pro and Google Earth Engine platforms
for their respective classifiers [65]. We tested all classified results from ArcGIS pro on the
ArcGIS Pro platform and tested all Google Earth Engine classified results on the Google
Earth Engine platform by the same methods (overall accuracy, kappa coefficient) to check
the accuracy. A higher value of the kappa coefficient shows the perfect arrangement of the
raster data [66], e.g., 0.8 to 1.0 value shows higher efficiency of LULC classification.

2.7. Change Detection

Numerous techniques exist to identify the LULC change from different imagery
datasets [67], but this process is not always convenient or straightforward. Comparing
other datasets from different satellites obtained on many dates is relatively straightforward
yet effective for change detection in the LULC of any area. Some techniques based on
this methodology [68,69] calculate descriptive statistics for the vegetation index difference
between two different time points. A threshold of the spectral difference is utilized to
distinguish between pixels with and without change. In this study, after the classification
and accuracy assessment of all three datasets, we choose the dataset and the classifier with
the higher value of overall accuracy and also the kappa coefficient value to analyze the
change in LULC using ArcGIS Pro. After that, area change in every class throughout the
study period was calculated.

3. Results and Discussion

3.1. LULC Classification Maps
3.1.1. LULC Classification of Landsat 8 Imagery in ArcGIS Pro

From Figure 3, we can observe that the LULC classification of Landsat 8 resulted in
most of the forest area being misclassified as an urban class or bare land in the years 2020
and 2021 for RT. Vegetation class was misclassified as bare land as water bodies in 2018
for RT. For the SVM classifier, forest and vegetation were misclassified as urban in 2020
to some extent. Vegetation was also misclassified as bare land or forest in 2018 and 2019.
For 2020, SVM classified the image well except for bare land and some urban areas. For all
Landsat 8 images from all five years, the SVM classifier performed well in comparison to
the other two classifiers in terms of overall accuracy. For 2017 and 2019, the ML classifier
misclassified vegetation as a forest. This may be because of identical reflectance, the same
as forests [65].
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Figure 3. LULC classification maps of Landsat 8 images using SVM, RT, and ML classifiers for the
years 2017 to 2021 in ArcGIS Pro.

3.1.2. LULC Classification of Sentinel 2 Imagery in ArcGIS Pro

Figure 4 shows the LULC classification maps using SVM, RT, and ML classifiers for
the years 2017 to 2021. From Figure 4, we can see that classification of Sentinel 2 using an
SVM classifier resulted in more accuracy as compared to the other two classifiers [11]. For
SVM, forest and vegetation were misclassified as urban in 2017 and 2018. For 2021, SVM
classified the input imagery data well except for forest and urban classes. For 2020, the RT
classifier misclassified the urban and bare land as forest and vegetation in the years 2020
and 2021. Forest was misclassified as urban and, to a lesser extent, as water bodies in 2021
for ML. Vegetation was misclassified as bare land to some extent or forest in 2018 and 2019
using the ML classifier. For 2017 and 2020, the ML classifier misclassified vegetation as
bare land and forest, respectively.

Figure 4. LULC classification maps of Sentinel 2 images using SVM, RT, and ML classifiers for the
years 2017 to 2021 in ArcGIS Pro.
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3.1.3. LULC Classification of Planet Imagery in ArcGIS Pro

Results show that the classification output of Planet imagery resulted in most of the
LULC classes being well classified for the study area with the SVM classifier (Figure 5). For
SVM, vegetation was slightly misclassified as bare land and urban in 2020 and 2021. For
2017, the RT classifier misclassified the bare land as vegetation. Forest was misclassified
as vegetation and, to some extent, as urban in 2020 and 2021, respectively. For all years,
Sentinel 2 images throughout the study period, the ML classifier misclassified the forest
and urban areas as bare land in some areas.

Figure 5. LULC classification maps of Planet images using SVM, RT, and ML classifiers for the years
2017 to 2021 in ArcGIS Pro.

3.1.4. LULC Classification of Landsat 8 Imagery in Google Earth Engine

Figure 6 shows the LULC classification maps using Landsat 8 imagery. In most of the
forest area, this class was misclassified as vegetation for the study area with the SVM and
CART classifiers in 2020 and 2021. For the SVM classifier, bare land was misclassified as
vegetation and urban for 2017 and 2021. For 2017, the RF classifier misclassified the bare
land as vegetation. In 2021, vegetation was classified as bare land in some areas. Urban
was misclassified as forest in 2017, 2018, and 2019 in the MD classifier. Throughout the
study period, the CART classifier misclassified the forest as urban areas. Overall, the SVM
classifier performs better than the other three classifiers using Landsat 8 imagery in the
Google Earth Engine.

3.1.5. LULC Classification of Sentinel 2 Imagery in Google Earth Engine

Figure 7 shows the classification output of Sentinel 2 imagery, which shows that SVM
classifiers perform well as compared to CART, MD, and RF classifiers. For SVM, the forest
was misclassified as vegetation and bare land for 2019 and 2020, respectively. For 2017,
the RF classifier misclassified the bare land and forest area as urban. In 2020, vegetation
was classified as water bodies in some areas. Urban was misclassified as a forest for all
five years in the MD classifier [51]. Throughout the study period, the CART classifier
misclassified most classes as urban areas [70]. Overall SVM classifier performs better than
the other three classifiers as urban and vegetation areas are well classified in the Google
Earth Engine using Sentinel 2 imagery.
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Figure 6. LULC classification maps of Landsat 8 images using SVM, RF, MD, and CART classifiers
for the years 2017 to 2021 in Google Earth Engine.

Figure 7. LULC classification maps of Sentinel 2 images using SVM, RF, MD, and CART classifiers
for the years 2017 to 2021 in Google Earth Engine.

3.2. Accuracy Assessment

In this research, to check the accuracy of each classifier, we used a validation dataset
that was different from the training datasets. By stratified random sampling, we distributed
these points over the study area [64] to ensure that all LULC classes accurately and uni-
formly were represented. After LULC classification using all classifiers, overall accuracy
and kappa coefficient were calculated to check the accuracy of these LULC classified maps
in the ArcGIS Pro and Google Earth Engine. Tables 2 and 3 show the overall accuracy
of different classifiers in ArcGIS Pro and Google Earth Engine platform using Landsat 8,
Sentinel 2, and Planet imagery. From Table 2, we can observe the overall accuracy of the
SVM classifier with Planet imagery was higher than the other classifiers. The SVM classifier
performs higher accuracy with an overall accuracy of 96% in 2017 and 2019 using Planet
imagery in ArcGIS Pro. For Sentinel 2 dataset, the higher value of overall accuracy was for
the year 2018, with a value of 87%. The lowest value of overall accuracy (74%) for Sentinel
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2 imagery was for the year 2019 using the RT classifier. Landsat 8 shows the lowest overall
accuracy for all tree classifiers using the ArcGIS Pro platform throughout the study period
compared to the other two datasets. Using Landsat 8 imagery, the SVM classifier shows a
higher overall accuracy throughout the study period, with the highest value of 85% in 2021.

Table 2. Kappa coefficient and overall accuracy of Landsat 8, Sentinel 2, and Planet imagery for SVM,
RT, and ML classifiers using ArcGIS Pro.

Year Classifier

Landsat 8 Sentinel 2 Planet

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

2017
SVM 84 0.79 86 0.82 96 0.95
ML 82 0.76 85 0.81 89 0.87
RT 76 0.72 81 0.75 88 0.85

2018
SVM 83 0.78 87 0.83 90 0.87
ML 81 0.75 84 0.79 88 0.85
RT 78 0.71 81 0.77 84 0.84

2019
SVM 80 0.82 85 0.87 96 0.95
ML 82 0.77 76 0.71 95 0.94
RT 71 0.65 74 0.67 94 0.92

2020
SVM 83 0.78 84 0.81 94 0.92
ML 82 0.75 83 0.81 92 0.90
RT 81 0.72 80 0.77 90 0.87

2021
SVM 85 0.81 86 0.83 93 0.91
ML 81 0.76 83 0.79 92 0.90
RT 80 0.73 82 0.77 92 0.90

Table 3. Kappa coefficient and overall accuracy of Landsat 8, Sentinel 2 imagery for SVM, RF, MD,
and CART classifiers.

Year Classifier

Landsat 8 Sentinel 2

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

2017

CART 85 0.59 91 0.72
SVM 88 0.67 92 0.78
MD 83 0.54 90 0.68
RF 84 0.55 91 0.73

2018

CART 85 0.64 92 0.80
SVM 87 0.67 93 0.83
MD 83 0.53 90 0.68
RF 84 0.56 91 0.79

2019

CART 88 0.68 91 0.75
SVM 90 0.80 92 0.82
MD 86 0.62 89 0.64
RF 87 0.64 90 0.80

2020

CART 81 0.55 90 0.81
SVM 83 0.57 92 0.89
MD 77 0.47 85 0.65
RF 78 0.49 91 0.83

2021

CART 87 0.70 89 0.72
SVM 90 0.76 91 0.86
MD 81 0.64 87 0.74
RF 85 0.69 88 0.80
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Using the Google Earth Engine, the SVM classifier performed the highest overall
accuracy of 92% and 90% with Sentinel 2 and Landsat 8 imagery, respectively, in the year
2019 compared with the other three classifiers [71]. In 2021, the MD classifier showed
the lowest overall accuracy value, 87%, with Sentinel 2 imagery. Throughout the study,
the SVM classifier performs well compared to the other classifiers with Sentinel 2 data.
Using Landsat 8 data, the SVM classifier shows the highest overall accuracy of 90% in 2019
and 2021. The lowest overall accuracy of 77% was observed for the MD classifier in 2018.
Throughout the study period, the MD classifier showed the lowest overall accuracy with
both datasets in the Google Earth Engine platform.

Figure 8a shows the kappa coefficient values for all tested classifiers using three
different imagery (Landsat 8, Sentinel 2, and Planet) at the ArcGIS Pro platform. Values of
the kappa coefficient from Figure 8a show that Planet imagery shows the highest accuracy
with the SVM classifier compared to the other two datasets throughout the study period.
Figure 8b shows the values of the kappa coefficient for all tested classifiers using Landsat 8
and Sentinel 2 imagery at the Google Earth Engine platform. The Sentinel 2 dataset shows
a higher value of the kappa coefficient as compared to the Landsat 8 dataset from 2017 to
2021 with the SVM classifier. Results show that SVM performs well as compared to CRAT
and other classifiers on both platforms. Similar results are reported in the literature [47,72].
At the same time, the lowest value for the kappa coefficient was observed for Landsat 8
data using the RF classifier.

Figure 8. Kappa coefficient (a) using SVM, ML, and RT classifiers in ArcGIS Pro, (b) using SVM, MD,
RF, and CART classifiers in Google Earth Engine.

The average overall accuracy for the SVM, ML, and RT classifiers was 94%, 91%, and
89%, respectively, using Planet imagery. While using Sentinel 2 and Landsat imagery, the
overall accuracy for SVM, ML, and RT classifiers was 85%, 82%, 82.2% and 83%, 81%, and
77%, respectively, at the ArcGIS Pro platform. In ArcGIS Pro, the average value of the
kappa coefficient from 2017 to 2021 was 0.92 for the SVM classifier using Planet imagery
(Table 4), which was higher than the other classifiers. The lowest value for the average
kappa coefficient value was observed for the RT classifier using Landsat 8 data, which
was 0.70, respectively. In Google Earth Engine, the average value of overall accuracy for
the SVM classifier was 0.83 with Sentinel 2 (Table 5), which was higher than the other
classifiers for the Sentinel 2 dataset. Using Landsat 8 data, the highest value of average
overall accuracy and kappa coefficient with a value of 83% and 0.79 was for the SVM
classifier. MD and RF classifiers show almost close values of average overall accuracy and
kappa coefficient in the Google Earth Engine platform.
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Table 4. Average overall accuracy and average kappa coefficient of Landsat 8, Sentinel 2, and Planet
imagery for SVM, RT, and ML classifiers using ArcGIS Pro.

Classifier

Landsat 8 Sentinel 2 Planet

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

SVM 83 0.79 85 0.83 94 0.92
ML 81 0.75 82 0.78 91 0.89
RT 77 0.70 79 0.74 89 0.87

Table 5. Average overall accuracy and average kappa coefficient of Landsat 8, Sentinel 2 imagery for
SVM, RF, MD, and CART classifiers using Google Earth Engine.

Classifier
Landsat 8 Sentinel 2

Overall Accuracy (%) Kappa Coefficient Overall Accuracy (%) Kappa Coefficient

CART 83 0.63 90 0.76
SVM 87 0.69 92 0.83
MD 84 0.56 88 0.68
RF 82 0.56 89 0.79

3.3. Change Detection

There are a variety of approaches for detecting LULC changes using different satellite
image data [68], but this process is not always simple. Comparing remotely sensed data
obtained on multiple dates is a simple yet efficient method for change detection [73].
Figure 9 shows the significant changes in the LULC of Charlottetown from 2017 to 2021 in
all LULC classes in the city of Charlottetown. A significant change was observed in forest
and vegetation classes, which were converted into other LULC classes during the study
period. Bare land areas were also converted to urban areas due to rapid urbanization in the
study area.

Figure 9. Change in LULC over study area from 2017 to 2019.
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The LULC changes can also be determined by using a transition matrix. The transition
matrix can explain the change in every LULC class over a specific period [74]. This matrix
describes the changed and unchanged amount of area of each LULC class [75]. Change
in every class can be observed by a transition matrix in Table 6 from 2017 to 2021 in
percentage and km2. The bare land class changed to the urban class with an increase of
38.81%, showing an urban area expansion from bare land, forest, and vegetation areas as
per the literature review. At the same time, another significant change was observed in
the vegetation class, which had a decrease of 32.24% in the bare land class and 1.63% in
the urban class. Overall, 3.9% of the total study area was converted to an urban area from
2017 to 2021, which shows rapid urbanization in the study area. Forest areas changed into
vegetation by 21.3%. Forest area was also converted into bare land by 13.80% due to growth
in the lumber industry and into urban by 14.10%, whereas the urban class and water bodies
class shows minor changes in their respective area of interest.

Table 6. Transition matrix for area change in different LULC classes from 2017 to 2021 in km2.

Bare Land Forest Urban Vegetation Water Bodies Area Changes Area Unchanged Total Area

Bare Land
0.15 0.33 1.25 0.49 0.00

+2.07 1.15 3.22
4.65% 10.24% 38.81% 15.21% 0%

Forest
1.38 5.18 1.41 2.13 0.00

−4.92 5.18 10.10
13.80% 51.80% 14.10% 21.30% 0%

Urban
1.29 0.24 9.00 0.014 0.00

+1.54 9.00 10.54
12.23% 2.29% 86.12% 0.13% 0%

Vegetation
7.50 0.59 0.33 11.74 0.00

−7.42 12.74 20.16
37.20% 7.80% 1.63% 58.23% 0%

Water Bodies
0.01 0.00 0.01 0.00 0.44

−0.011 0.44 0.46
1.08% 0% 1.30% 0% 95.65%

4. Conclusions

The climate around the globe has been modified by human activities through the
LULC changes. The LULC changes (i.e., deforestation, urbanization, etc.) played an
important role in climate change since the pre-industrial era [76]. There are many studies
conducted to measure the LULC changes. However, there is no study, to the best of the
authors’ knowledge, which compares the performance of different approaches available
on other platforms. In this study, the performance of different classifiers was observed on
two different platforms (ArcGIS Pro and Google Earth Engine) using different datasets,
e.g., Landsat 8, Sentinel 2, and Planet imagery. This study aimed to identify the best-
performing classifier with different input data. To check the accuracy of different classifiers,
the accuracy assessment was performed for every classifier using the error matrix and
kappa coefficient for all three satellite imageries from 2017 to 2021. The SVM showed
higher accuracy as compared to other classifiers within both platforms. The SVM classifier
performs the highest overall accuracy using the Planet imagery on ArcGIS Pro and using
Sentinel 2 imagery in the Google Earth Engine. Due to the high resolution of Planet data, it
performs well with an average overall accuracy of 94% compared to Sentinel 2 with 85%
and Landsat 8 with 83% in the ArcGIS Pro platform. On the Google Earth Engine platform,
the SVM classifier performs well with Sentinel 2 imagery with an average overall accuracy
of 92% compared to Landsat 8 imagery, which shows 87% accuracy. For this type of study
area, which includes different LULC types, e.g., the forest, vegetation, urban, and water
bodies, the SVM classifier shows promising results [11].

Change detection analysis shows deforestation and rapid urbanization as 18.80% of
forest area was converted to bare land, and 38.81% of bare land was converted to urban
area throughout the study period. In addition, some classes may be categorized using
expert knowledge and supplementary data [46]. The most accurate and suitable classifier
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can also affect by the region of interest, number, and quality of training samples. Similarly,
identical reflectance of satellite imagery was another limitation for LULC classification.
Some pixels in the LULC maps represent different classes after the LULC classification
from the training due to the fact that some of the pixels correspond to different spectral
responses. These LULC classifications may be modified based on the study area, data, etc.
Furthermore, many studies suggested that the different classifiers show different results
in different climatic and geographic situations. Therefore, there is a dire need to further
explore the LULC classification accuracy by adding more detailed LULC classes and more
training samples with high-resolution input datasets.
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Highlights:

What are the main findings?

• Principal component regressions revealed the climate sensitivity of Tibetan arid desert scrubs.
• Plant nutrient traits and soil nutrient availability regulate desert scrubs’ climate sensitivity.

What is the implication of the main finding?

• Scrubs’ sensitivity to temperature is mainly regulated by the nitrogen contents of soils and leaves.
• Scrubs’ sensitivity to precipitation is affected by the leaf carbon content of dominant species.
• Neither soil nor plant nutritional properties alone can well explain scrubs’ sensitivity to droughts.

Abstract: Climate models predict the further intensification of global warming in the future. Drylands,
as one of the most fragile ecosystems, are vulnerable to changes in temperature, precipitation, and
drought extremes. However, it is still unclear how plant traits interact with soil properties to regulate
drylands’ responses to seasonal and interannual climate change. The vegetation sensitivity index (VSI)
of desert scrubs in the Qaidam Basin (NE Tibetan Plateau) was assessed by summarizing the relative
contributions of temperature (SGST), precipitation (SGSP), and drought (temperature vegetation
dryness index, STVDI) to the dynamics of the normalized difference vegetation index (NDVI) during
plant growing months yearly from 2000 to 2015. Nutrient contents, including carbon, nitrogen,
phosphorus, and potassium in topsoils and leaves of plants, were measured for seven types of desert
scrub communities at 22 sites in the summer of 2016. Multiple linear and structural equation models
were used to reveal how leaf and soil nutrient regimes affect desert scrubs’ sensitivity to climate
variability. The results showed that total soil nitrogen (STN) and leaf carbon content (LC), respectively,
explained 25.9% and 17.0% of the VSI variance across different scrub communities. Structural
equation modeling (SEM) revealed that STN and total soil potassium (STK) mediated desert scrub’s
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VSI indirectly via SGST (with standardized path strength of −0.35 and +0.32, respectively) while
LC indirectly via SGST and SGSP (with standardized path strength of −0.31 and −0.19, respectively).
Neither soil nor leave nutrient contents alone could explain the VSI variance across different sites,
except for the indirect influences of STN and STK via STVDI (−0.18 and 0.16, respectively). Overall,
this study disentangled the relative importance of plant nutrient traits and soil nutrient availability
in mediating the climatic sensitivity of desert scrubs in the Tibetan Plateau. Integrating soil nutrient
availability with plant functional traits together is recommended to better understand the mechanisms
behind dryland dynamics under global climate change.

Keywords: climate change; dryland ecosystem; leaf nutrient traits; Qaidam Basin; soil nutrient
availability; vegetation sensitivity index

1. Introduction

Drylands cover approximately 41% of the Earth’s land surface [1] and support more
than 38% of the global population [2], although they are sparsely vegetated and with
limited productivity. Recently, drylands have been degraded due to ongoing climate
change and intensifying human disturbance [3,4]. For example, increased droughts mainly
caused by warming are predicted to accelerate the degradation of the Mediterranean
drylands under human overexploitation [5]. More than 75% of drylands in developing
countries are also likely to expand due to further global warming [6]. Consequently, poverty
alleviation will become more challenging in arid undeveloped countries [7]. Therefore, a
better understanding of how drylands respond to changes in climate and other potential
regulators is urgently needed.

Climate change drives dryland dynamics across different spatial scales, including
warming, shifting precipitation regimes, and intensifying droughts. Warming can limit
plant growth and survival via increasing evapotranspiration and intensifying water deficit
in soils [8,9]. Experimental studies have reported that increased precipitation can improve
nutrient availability and facilitate plant growth, development, and reproduction in drylands
via enhancing moisture content in topsoils and vice versa [10,11]. Meanwhile, remote-
sensing-related technologies help monitor large-scale vegetation dynamics [12]. However,
current studies on ecosystem responses to climate change are mainly based on average
climate states but usually ignore the effects of climate variability and extremes [13].

Recently, Seddon et al. [14] have proposed a framework to assess the vegetation
sensitivity index (VSI) to short-term variability in temperature, precipitation, and radi-
ation (cloud mask) from a global perspective. Such an algorithm has been increasingly
applied to reveal the relative importance of different climatic variables in driving the dy-
namics in vegetation coverage, productivity, and phenology within and across various
ecosystems [15–18]. For example, Li et al. [15] assessed the variability of VSI with altitude
gradient in alpine grasslands on the Tibetan Plateau and found that vegetation in higher
altitude regions is more sensitive to climate variability than that in lower altitudes. In
another study, Yuan et al. [18] found that vegetation in Central Asia was more sensitive
to climate variability in spring than other three seasons. These studies have mapped the
differential spatiotemporal patterns of alpine and arid vegetation in response to climate
variability and greatly enhanced our understanding of the vegetation–climate relation-
ship. However, they failed to provide mechanistic explanations for these patterns from the
perspective of plant and soil nutrient properties. Many in situ manipulative experiments
have reported that the vegetation response to climate change can be largely influenced by
plant functional traits and soil nutrient availability. For example, in a climate simulation
study of alpine grasslands, Henn et al. [19] found that alpine plants can adapt to climate
change by shaping leaf traits. In a recent meta-analysis, soil nitrogen availability was found
to be a determinant of terrestrial ecosystem productivity under changing climates [20].
However, the findings from local in situ experiments are always hard to be directly applied
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to large-scale ecosystem management. Therefore, it is necessary to combine remote sensing
technologies and field observations to gain insights into the mechanisms of how vegetation
adapts to changing climate via plant and soil nutritional properties.

Plants can respond specifically and actively to environmental changes rather than only
passively withstand external stresses [21]. According to the community functional ecology
theories [22–24], plant seed germination, seedling growth, and individual development
and survival, along with environmental gradients, are mainly regulated by functional traits
at species and community levels [25–30]. Plant individuals can modify their water require-
ments by reducing leaf size, stomatal conductance, and photosynthetic rates in response
to droughts [3,31,32]. At the community level, plants can alter the C:N:P stoichiometry
among organs above- and belowground to offset physical inhibitions caused by warming
or cooling [33,34], declined moisture [35–37], and changed nutrient availability [38]. For
example, Jiang et al. [39] found that warming could substantially enhance N and P min-
eralization and consequently improve nutrient provision to plants in the Arctic tundra.
Recently, Delgado-Baquerizo et al. [40] and Jiao et al. [41] also found that increased aridity,
mainly due to warming, could reduce the concentrations of C and N but increase that of
P in drylands. Fiedler et al. [42] also found that climate change could indirectly affect the
trade-offs and synergies among different ecosystem functions by affecting soil nutrients
and plant traits. These studies indicated that ecosystem responses to climate change are
complicated and depend on abiotic and biotic factors [43]. Network analyses that include
plant functional traits and physical environments together may improve our prediction
of ecosystem functional changes across space and over time [44–46]. However, our under-
standing of the interactions of plant functional traits with soil nutrients of high-elevated
drylands in response to climate variability is still limited.

In this study, we aimed to improve our understanding of how plant nutrient traits
interact with low soil nutrient availability to regulate the sensitivity of desert scrubs in the
Qaidam Basin, northeastern Qinghai-Tibetan Plateau, in response to climate variability.
Specifically, we have (i) explored the patterns and trends of climate change and desert
scrub coverage in the last decade, (ii) examined the differences in climatic sensitivity and
its components for different desert scrub communities, and finally, (iii) investigated the
networking paths of interactions between plant nutrient traits and soil nutrient availability
to the components of desert scrubs’ sensitivity to climate variability across the entire
Qaidam Basin.

2. Materials and Methods

2.1. Study Area

The Qaidam Basin, with elevations ranging from 2640 m to 6000 m, is surrounded by
the Kunlun, Qilian, and Altun Mountains and located in the northeastern Qinghai-Tibetan
Plateau (90◦16′E~99◦16′E, 35◦00′N~39◦20′N, Figure 1). The area is characterized by an
alpine arid continental climate, where the mean annual temperature (MAT) is generally
below 5 ◦C and mean annual precipitation (MAP) is less than 200 mm [47]. The air relative
humidity is between 30% and 40% throughout the year, while the average yearly sunshine
duration can reach 3000 h in the Qaidam Basin. The annual average evaporation in the
basin is between 1900 mm and 2600 mm [48]. Soil nutrients and moisture availability
are low in desert scrublands in this area [49]. The vegetation has co-evolved with harsh
physical conditions and is dominated by scrubs and semi-scrubs, such as Kalidium foliatum,
Salsola abrotanoides, and Ephedra sinica [50]. Desert plants sprout in May and defoliate in
early October; therefore, this period was usually defined as the plant growing season in
recent studies [51].
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Figure 1. Vegetation (A), elevation and major meteorological stations (B), climate (C), and site
locations (black dots) in the Qaidam Basin, Qinghai-Tibetan Plateau. In Panel C, GST and GSP refer to
the average temperature and sum precipitation during the plant growing season, respectively, from
May to October during 2000–2015. TVDI means the temperature vegetation dryness index.

2.2. Remote Sensing Data Collection and Processing

It is the key to choosing a suitable vegetation index for accurately examining and
assessing vegetation dynamics under climate change. Recently, Zhang et al. [50] have
evaluated the correlation between different vegetation indices and vegetation cover ob-
served with UAV in the Qaidam Basin. They found that the Normalized Difference
Vegetation Index (NDVI) performed much better than other indices such as ratio veg-
etation index (RVI), difference vegetation index (DVI), modified vegetation index (MVI),
modified soil-adjusted vegetation index (MSAVI), and normalized difference greenness
index (NDGI)) and normalized difference greenness index (NDGI) in assessing vege-
tation cover. Therefore, in this study, the NDVI of the Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD13Q1 Products was used as a proxy for vegetation pro-
ductivity of desert scrubs. We downloaded the NDVI data with a temporal resolution of
16 days and spatial one of 250 m for the Qaidam Basin for the period from 2000 to 2015
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 1 October 2021). As NDVI is
sensitive to soil background information, therefore, we used the Savitzky–Golay filter [52]
to smooth the time-series NVDI and eliminate the contaminations caused by clouds, snow,
and ice cover, following Li et al. [15]. The pixels whose peak NDVI value was less than 0.05
were classified as extremely sparse vegetation or barren lands. Those pixels were manually
excluded from further analyses following the recent study of Yuan et al. [18] in Central Asia.
Finally, the peak monthly NDVI generated by maximum value composites [53] was used to
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describe the sensitivity and its components of desert scrub vegetation in the Qaidam Basin,
Qinghai-Tibetan Plateau, to the variability of different climate variables.

2.3. Weather Data Collection and Processing

The monthly data of temperature and precipitation of the main meteorological stations
within the Qaidam Basin (Figure 1B) yearly from May to September were downloaded
and mapped for the period of 2000 to 2015. Seasonal and inter-annual fluctuations in
temperature and precipitation, as well as their extreme values, were clearly shown in
the supplementary Figure S1. It makes sense that the weather data from 2000–2015 are
sufficient to reflect the climate fluctuations in the region. Therefore, we downloaded
monthly temperature and precipitation of 200 meteorological stations located within and
around the Qinghai-Tibetan Plateau from the China Meteorological Data Service Centre
(http://data.cma.cn/en, accessed on 5 October 2021) for the plant growing seasons (yearly
from May to October) between 2000 and 2015. First, the average temperature and sum
precipitation during the plant growing seasons (termed as GST and GSP, respectively) were
calculated for each station. In addition to monthly weather records, we interpolated GSP
and GST into rasters with ANUSPLIN (The software is developed by Australian National
University in Australia and the version is 4.3) [54] at a spatial resolution of 250 m to match
the remote sensing data (see details below). A digital elevation model (DEM) with a 30 m
resolution was used as the covariate, following Li et al. [55], who also confirmed that
the interpolated climate rasters matched well the field observations across the northern
Tibetan Plateau.

In this study, we used the temperature vegetation dryness index (TVDI) to explore the
vegetation-drought relationship as recommended by Sandholt et al. [56] because it combines
vegetation greenness (MODIS MOD13A2) and land surface temperature (MOD11A2). TVDI
ranges from 0 to 1, with higher values indicating drier soils. We downloaded monthly
TVDI data from the National Earth System Science Data Center (http://www.geodata.cn,
accessed on 12 October 2021) and resampled it to match the spatial-temporal resolutions
of climate and NDVI data. Finally, we used the Mann–Kendall tests [57,58] to examine
the trends of GST, GSP, NDVI, and TVDI at the pixel scale between 2000 and 2015 (see
more details in Figures S2–S5). The MK test outputs Z-values and slope, with positive and
negative slope values representing increasing and decreasing trends. |Z| > 1.96 reaches a
significant level (α = 0.05).

2.4. Climatic Sensitivity Index of Desert-Scrubs

In this study, we used NDVI as an agent of desert-scrub coverage to explore its
sensitivity to changes in GST, GSP, and TVDI. First, we transformed the time-series NDVI
and climate variables into z-score anomalies using each variable’s mean and standard
deviation (Equation (1)).

Z =
X − X

σ
(1)

where Z is the standard score, X is the raw data, −X is the mean value of data, and σ is
the standard deviation of data. Then, we used a principal component regression (PCR) to
determine the relative importance of each climate variable in driving the monthly NDVI
dynamic at the pixel scale. Principal components with significant relationships to climatic
variables (p < 0.1) were retained for the subsequent VSI calculations.

The climate weights (Wi) were obtained by multiplying the loading scores of each
variable with the corresponding PCR coefficients. Here, the weight of each climate variable
was also rescaled to be between 0 and 1. Then we detrended each time-series variable
and extracted its weight variance. The residuals of the mean-variance relationship be-
tween NDVI and climate variables were fitted using a linear-quadratic model, following
Seddon et al. [14]. The residuals were normalized between 0 and 100. We take the log10-
transformed ratios between NDVI variability and climate variables as the sensitivity metrics
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(Si). The NDVI logged for one month was used as the fourth variable to explore the time-lag
effect of vegetation response to climate variability, following Seddon et al. [14].

VSI = ∑3
i=1 Wi × Si (2)

where VSI is the sum of the product of the weights of each climate variable (Wi) and its
sensitivity metrics (Si). We rescaled the VSI between 0 and 100 (unitless), and the larger
the value, the more sensitive to climate variability. We constructed a 500 m buffer centered
on each sample point. Thus, it makes sense that the specific VSI values of the pixels
in the buffer area can serve as repeats for multiple comparisons among different scrub
communities. Moreover, we calculated the VSI average of the pixels in the buffer area for
each site and used it in multiple linear regressions and structural equation modeling across
sites within the study area.

2.5. Plant Nutrient Traits and Soil Nutrient Availability

According to the 1:1,000,000 China Vegetation Atlas, which is available at the Resource
and Environmental Science Data Center, Chinese Academy of Sciences (http://www.resdc.
cn/data.aspx?DATAID=122, accessed on 1 May 2016), our field observations in 2016 at
22 sites covered seven main types of desert scrubs within the Qaidam Basin (Table 1).
Plant nutrient traits and soil nutrient properties were measured to examine their potential
regulating effects on the desert scrubs’ sensitivity to climate variability.

We laid five 5 m × 5 m sample squares evenly along the diagonal in a relatively
homogeneous area of 250 m × 250 m at each site, where the plant community was intact
and undisturbed by human activities while the proportion of desert scrub plants was
higher than 90% in the total vegetation cover. Healthy leaves were collected from at least
five mature individuals for each scrub/semi-scrub species in each quadrat. Plant leaves
were stored in a separate bag for each species during the field campaign and then dried at
70 ◦C for 48 h in the lab to a constant weight. Before chemical analyses, all dried leaves
were grounded into fine powder through a 0.15 mm sieve and kept in brown glass bottles.
Leaf total P (LTP, g kg−1) and K (LTK, g kg−1), respectively, were determined by Mo-Sb
colorimetric method and flame spectrophotometer [59].

We randomly sampled three profiles of the 0–50 cm depth at each site, about a half
kilogram for each sample. Soil samples were air-dried and sieved through a 100-mesh
sieve to remove root fractions and gravel. Then, soils were grounded into fine powders
and stored in brown glasses before chemical analyses [60]. Total soil and leaf nitrogen (STN
and LTN, g kg−1) were determined by Kjeldahl method. Total soil and leaf phosphorus
(STP and LTP, g kg−1) were measured with the Mo-Sb anti-spectrophotometry method,
while total soil and leaf Kalium (STK and LTK, g kg−1) with the flame photometry method.
Soil organic carbon (SOC, g kg−1) and leaf carbon (LC, g kg−1) were determined by the
potassium dichromate oxidation–ferrous sulfate titrimetric method.
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2.6. Plant Functional Trait Diversity

Our plant nutrient traits referred to the contents of N, P, K, and C in leaves (LTN,
LTP, LTK, and LC) for all species sampled (Table 1). We calculated community-weighted
means (CWMs) to describe the regulating effects of plant nutrient trait diversity on desert
scrubs’ sensitivity to climate variability (see Equations (2) and (3)). CWMs are essential for
understanding community reorganization in response to environmental filtering [61] and
are widely recommended and used in plant functional ecology research [62].

CWMj = ∑n
i=1 PijTij (3)

where Pij is the relative cover of species i in sample site j; Tij is the mean of trait values of
species i in sample site j; CWMj is the community-weighted mean of traits of each species
in sample site j.

2.7. Statistical Analyses

First, with the Mann–Kendall test [57,58], we examined the trends of GST, GSP, TVDI,
and NDVI between 2000 and 2015 at the pixel scale. Moreover, we extracted the yearly
value and trends of GST, GSP, TVDI, and NDVI based on each site’s geographical coordinate
records at the pixels where we performed field surveys. Thus, we compared the medians
of climate and vegetation variables and their trends among the seven types of desert scrubs
(see more details in Figures S2–S5).

Second, we calculated the VSI of 2000–2015 based on principal component regressions
and used a red–green–blue (RGB) composition map to show the relative contribution of
GST, GSP, and TVDI to the climatic sensitivity of desert scrubs at the pixel scale. We also
extracted the VSI and its components to each site and examined the difference in them at
the community level with the Wilcoxon test [63].

Next, we divided the data into three groups: VSI as the response variable and leaf
traits (LTN, LTP, LTK, LC) and soil attributes (STN, STP, STK, SOC) as potential explanatory
variables. We examined the normality of the data containing response and predictor
variables and normalized these data in R using a scale function (see Equation (1)). Moreover,
we examined the correlation between the responders and predictors using the corrplot
package (version 0.92) [64] in R. The multivariate linear model was applied to investigate
the main effects of leaf and soil nutrient attributes on the variation of VSI. In this step, we
also determined the multicollinearity of each factor based on the variance inflation factor
(VIF) [65]. Thus, the relative importance of each explanatory can be disentangled as the
fraction of the variance VSI explained in the best-fitted model.

Finally, structural equation modeling (SEM) [66] was used to explore how vegetation
traits and soil nutrients drive changes in VSI using the lavaan package (version 0.6.1) [67].
Stepwise backward selections were used to remove the least significant term until the best-
fitted model was picked out. All statistical analyses were performed in R (The software
is developed by R Core Team in Austria and the version is 4.1.1) [68], and maps were
generated with ArcGIS (The software is developed by the Environment System Research
Institute in America and the version is 10.2) [69].

3. Results

3.1. Vegetation Sensitivity Index and Its Contributors

The overall VSI of desert scrubs is low (15.0) and distributed unevenly across the
Qaidam Basin. The VSI was greater than 30 at only 1.18% pixels scattered near the foothills
and riverbanks (Figures 1A and 2A, Table 2). The relative contribution of each climatic vari-
able also varies heterogeneously across space. Specifically, in the western and northeastern
areas, vegetation is more sensitive to changes in GSP. However, the desert scrubs in the
southern and northern areas were mainly affected by temperature dynamics. In the eastern
part, desert scrubs were jointly controlled by GSP and TVDI (Figure 2B). Moreover, the
desert scrubs in the central region were driven by GST and TVDI together.
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Figure 2. Vegetation Sensitivity Index (VSI, (A)) and its contributions (B) from the temperature and
precipitation during the plant growing season (GST and GSP, respectively, in red and blue) and
temperature vegetation dryness index (TVDI, in green).

Table 2. Vegetation Sensitivity Index (VSI) among different desert scrub communities across the
Qaidam Basin.

Haloxylon
ammodendron

(%)

Tamarix
chinensis

(%)

Krascheninnikovia
ceratoides

(%)

Sympegma
regelii

(%)

Ephedra
sinica

(%)

Salsola
abrotanoides

(%)

Kalidium
foliatum

(%)

Others
(%)

Total
(%)

VSI ≤ 10 3.24 1.10 4.57 0.32 0.69 4.07 0.83 2.45 17.32
10 < VSI ≤ 20 8.00 6.96 16.64 1.39 2.88 20.70 5.46 7.88 70.27
20 < VSI ≤ 30 0.96 1.28 2.78 0.16 0.41 3.64 0.80 1.09 11.23

VSI > 30 0.09 0.10 0.36 0.01 0.04 0.40 0.06 0.11 1.18

Communities dominated by Haloxylon ammodendron and Tamarix chinensis were more
sensitive to climate variability than others (Figure 3A). The climatic weights vary among
desert-scrub types. Communities dominated by Tamarix chinensis were more sensitive to
GST than others (Figure 3B), while communities dominated by Haloxylon ammodendron
were more vulnerable to GSP (Figure 3C). In response to changes in TVDI, communities
dominated by Tamarix chinensis were slightly more vulnerable than those dominated by
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Haloxylon ammodendron. However, both communities were more sensitive than other desert
scrub communities across the Qaidam Basin (Figure 3D).

Figure 3. Comparisons of VSI (A) and its climatic weights among desert scrub communities. Panels
(B–D) displayed the weights of mean temperature and sum precipitation during the plant growing
season (noted as SGST and SGSP, respectively) as well as the temperature vegetation dryness index
(STVDI). Different lowercase letters indicate significant differences among species.

3.2. Effects of Soil and Plant Properties on VSI

We found that VSI strongly correlated with the weights of GST (SGST, r = 0.81) and
droughts (STVDI, r = 0.65, Figure S6). SGST was negatively correlated with STN (r = −0.53)
and LTN (r = −0.51). The weight of GSP (SGSP) was negatively correlated with LC
(r = −0.49). Moreover, SOC had strong correlations with SGST (r = −0.53), STK (r = 0.74),
LTK (r = 0.59), and STN (r = −0.48), respectively. Across different dominant species of the
22 sites surveyed in this study, we only found that SGST declined linearly with increasing
STN and LTN (Figures 4 and 5) while SGSP declined linearly with increasing STP and LC
(Figures 4 and 5).
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Figure 4. Trends of vegetation sensitivity index and its contributions with soil nutrients.
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Figure 5. Trends of vegetation sensitivity index and its contributions with leaf nutrients.

However, we also found differential responses, linear, U-shaped, and unimodal, for dif-
ferent top-dominant species along the soil and foliar nutrient gradients (Figures S7 and S8).
When examining the relationships of sensitivity components with soil nutrients, we only
found that the SGST of Kalidium foliatum and STVDI of Sympegma regelii had unimodal rela-
tionships with SOC and STP, respectively, at a marginal significance level (p < 0.1, Figure S7).
When examining the relationships of sensitivity components with foliar nutrimental traits,
we found a significant unimodal relationship between STVDI and LC for Sympegma Regeli
(p < 0.05, Figure S8), a marginally positive linear relationship between SGSP and LTK for
Kalidium foliatum (p < 0.1, Figure S8), a significant unimodal relationship between SGSP and
LTN for Kalidium foliatum, and a marginally positive linear relationship between SGST and
LTP for Krascheninnikovia ceratoides (p < 0.1, Figure S8).

STN and LC explained 42.9% of the variance in VSI across different desert scrubs
(p < 0.05, Table 3). SGST was significantly affected by STN and LC, which accounted for
49.0% of the variance in SGST (p < 0.01, Table 3). In addition to STN and LC, LTN and STK
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affected SGST marginally, respectively, to explain 9.11% and 7.62% of the variance in SGST
(p = 0.053 and 0.073, respectively, Table 3). SGSP was affected by LC and STP marginally,
with 14.0% and 18.9% of its variance explained by LC and STP (p < 0.1, Table 3). Neither
soil nutrients nor plant leaf traits influenced STVDI in this study (p > 0.05, Table 3).

Table 3. Main effects of soil nutrient availability and plant nutrient traits on vegetation sensitivity
index (VSI) of desert scrubs across the Qaidam Basin. Abbreviations were the same as in Table 1.
d.f., the degree of freedom; F, variance ratio; p, significance level; η2, Eta squared, the percentage
of sum squares explained. The difference significant at the 0.01 and 0.05 levels were labeled with
** and *, respectively.

Predictor d.f. VSI, R2 = 0.57 SGST, R2 = 0.74 SGSP, R2 = 0.45 STVDI, R2 = 0.21

F p η2 (%) F p η2 (%) F p η2 (%) F p η2 (%)
SOC 1 0.29 0.597 0.98 0.89 0.362 1.80 0.00 0.970 0.01 0.01 0.910 0.07
STN 1 7.74 0.016 * 25.88 14.87 0.002 ** 29.90 0.07 0.795 0.30 1.54 0.236 8.34
STP 1 0.14 0.710 0.48 2.01 0.180 4.04 4.43 0.055 18.88 0.09 0.764 0.51
STK 1 1.31 0.273 4.39 3.79 0.073 7.62 1.94 0.188 8.25 1.82 0.200 9.83
LTN 1 1.35 0.266 4.53 4.53 0.053 9.11 0.04 0.850 0.16 0.00 0.963 0.01
LTP 1 0.00 0.946 0.02 1.11 0.311 2.23 0.08 0.788 0.32 0.45 0.516 2.41
LTK 1 0.96 0.345 3.22 0.05 0.831 0.10 0.63 0.443 2.67 1.57 0.232 8.50
LC 1 5.09 0.042 * 17.02 9.48 0.009 ** 19.06 3.27 0.094 13.96 0.02 0.903 0.08

3.3. Causal Network of Plant Traits and Soil Nutrients to VSI under Climate Variability

Structural equation modeling revealed the causal networking paths among plant and
soil nutrient traits and climate weights to the sensitivity of desert scrubs across the Qaidam
Basin (Figure 6). STN, LC, and LTN had direct adverse effects on SGST. In contrast, STK
had a significant positive effect on SGST. LC had direct adverse effects on SGSP, accounting
for about 24% of its total variance. STN had direct adverse effects on STVDI, while STK had
a significant positive effect on STVDI. However, STN and STK accounted for only 16% of
the variance in STVDI.

Figure 6. Structural equation modeling reveals the direct and indirect effects of leaf traits and soil
properties on VSI and its components of desert scrubs across the Qaidam Basin. Notes are the same as
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in Table 1. The orange and dark-green lines represent the positive and negative influences, respectively.
The difference significant at the 0.001 and 0.01 levels were indicated with *** and **, respectively.

4. Discussion

4.1. Climate Sensitivity among Different Desert Scrubs

In this study, we mapped the climate sensitivity of desert scrubs in the Qaidam Basin
using principal component regressions (Figure 2). We found that the climatic sensitivity of
desert scrubs in this study was not high as expected. However, this finding is consistent
with Seddon et al. [14] and Yuan et al. [18], and they found that arid deserts across the
globe and Central Asia, respectively, were not as sensitive to climate dynamics. This
phenomenon may have resulted from the strong memory effect of desert plants (Figure S9).
The vegetation memory effect generally refers to the fact that previous environmental
conditions can strongly influence the current ecosystem [70]. Ogle et al. [71] quantified
ecological memory in vegetation and ecosystem processes in arid and semi-arid regions and
found when the vegetation’s memory effects were considered, 18–28% more of the variance
in a given responsible variable could be explained. Seddon et al. [14] also found such a
strong memory effect in global drylands’ sensitivity to climate change. Moreover, the low
climatic sensitivity of desert scrubs in the Qaidam Basin was also likely due to the relatively
slow warming during the last decade (Figure S2), a rate of only 0.06 ◦C per decade. This
finding was also confirmed by Easterling and Wehner [72] that at the beginning of the
21st century, there would be a 10- to 20-year warming hiatus. Overall, the stable climatic
conditions may be another explanation for the low climate sensitivity of desert scrubs in
the Qaidam Basin.

Although the desert scrubs were not sensitive as expected to climate change, we also
found high species-dependency for the seven community types involved in this study.
Specifically, we found that scrub communities with tall plant individuals, such as Tamarix
chinensis communities and Haloxylon ammodendron communities, were more sensitive to
climate change (Figure 3). Similarly, Zhu et al. [73] have found that northern China’s trees
and tall shrubs are more vulnerable to climate change. This is because taller plants have
predictably wider water-conducting conduits, so they are more vulnerable to conduction-
blocking embolisms [74]. Therefore, the response of different plant communities to climate
change is influenced by the functional traits evolved to adapt to long-term environmen-
tal changes. However, vegetation also reacts and adjusts positively to environmental
stresses [21]. Environmental-vegetation interactions have shaped scrub communities with
different tolerance, and the response of these scrub communities to climate variability
varies widely in the Qaidam Basin. The environmental filtering hypothesis predicts that,
excluding biotic interactions, only the species that have already evolved with specific func-
tional or phenotypic traits for survival, such as tolerance or avoidance of dryland plants to
extreme water deficits [21,75]. This might be the reason for the differences in the relative
weight of temperature (SGST), precipitation (SGSP), and drought (STVDI) found among the
top-dominant species (Figure 3).

4.2. Desert-Scrubs’ VSI Correlated with Soil and Leaf Nutrients

Warming is one of the important drivers for community structural and functional
changes in drylands. Here, we found that STN, STK, LTN, and LC were closely related to
the SGST of vegetation (Table 3) and together explained more than 65% of the variance in
SGST (Table 3). This might be because warming can enhance soil microorganism activities,
promote SOM decomposition and N mineralization, and thereby increase the supply and
availability of soil nutrients [76–78]. In addition to STN and STK, warming can also enhance
the activity and supply of K ions in soil solution [79].

In addition to soil nutrients, we also found that SGST generally declined with increasing
LTN and LC (Figure 5), indicating a high photosynthetic rate with high LTN and LC can
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mitigate the negative effects of warming. LTN and LC are usually used to descript the
photosynthetic activity under manipulated stresses in experimental studies [80,81]. Our
findings were partly consistent with Li et al. [15] that high-elevated grasslands have greater
SGST than those in low-elevations on the Tibetan Plateau. Dryland plants can increase leaf
photosynthetic enzymes by enhancing LTN to promote photosynthetic rate and water use
efficiency [82–84]. Moreover, our findings confirmed that the relationships of sensitivity
climatic components with soil and foliar nutrients varied among different top-dominant
species (Figures S7 and S8), likely due to species niche overlapping and differentiation.

Water availability is the main limiting factor for desert vegetation, and we found that
STP and LC were the main factors affecting vegetation SGSP, explaining 18.8% and 13.96%
of the variation in SGSP, respectively. P is an important element that affects vegetation
growth, development, and metabolism; however, it can be readily combined with Ca2+

in arid soils and then is hard to be uptaken by plants. Pulsed precipitation in drylands
can influence P transport, transformation, and availability through biochemical processes
that control organophosphorus mineralization [85,86]. This might be the reason for the
declining SGSP with increasing STP (Figure 4) in our study.

LC is closely related to the photosynthesis of vegetation. Under drought conditions,
vegetation reduces its water loss by decreasing leaf area and lowering light saturation
point, which results in impaired ATP synthesis and reduced carboxylase activity, resulting
in impaired leaf photosynthesis and thus reduced LC fixation [87]. Pulsed precipitation
can briefly mitigate vegetation drought conditions and provide good moisture conditions
for vegetation photosynthesis, thus increasing LC accumulation. This is why we also
found that SGSP declined with increasing LC content across different species (Figure S8). In
addition, we also found that the LC of the seven arid scrub species was concentrated in
the 300–400 g kg−1 interval, which may imply the coexistence of species has evolved with
overlapped niches to successfully survive in the Qaidam Basin, Qinghai-Tibetan Plateau.

It is worthy to note that neither soil nor plant nutritional properties alone can well
explain the variance in STVDI, which describes the availability of soil moisture, in other
words, the combining effects of temperature and precipitation. In this study, we found
that STVDI could be associated with STN and STK at the same time (Figure 6). Both
STN and STK could explain 16% of the variance in STVDI across different species and
sites. Soil water deficit caused by decoupling temperature and precipitation can limit
soil microbial activity and slow down soil N mineralization [88]. Moreover, a drying
environment with high temperatures and limited precipitation can also exacerbate the
volatilization of gaseous N and lead to high evaporative demand [89], which in turn reduces
the availability of STN [90]. Dry conditions can enhance soil inorganic N content [91];
however, they are hardly taken up by plants due to diffusion limitations [92]. The uptake
of potassium by vegetation is dependent on soil moisture [93]; soil water deficit reduces
soil potassium release capacity and availability [94] and inhibits soil potassium mobility,
limiting potassium uptake by vegetation.

4.3. The Networks of Direct and Indirect Environmental Influences on VSI

The response of vegetation to climate change is characterized by the integrated effect
of multiple factors and processes, forming complex and specific climate-species relation-
ships [95,96]. In this study, we found that soil and foliar nutrient properties affect the scrub
communities’ climate sensitivity by regulating different climate sensitivity components.
Even more, such regulating effects are dependent on the spatial scale, across sites, or for
a given species. Finally, we found that the effect of soil nutrient effectiveness on VSI was
greater compared to leaf nutrient effectiveness. The path strength of STK and STN on
SGST were greater than that of LC and LTN (Figure 6), and the explanatory power of STK
and STN on the variance in SGST (37.52%) was greater than that of LC and LTN (28.17%,
Table 3). Soil nutrients provide indispensable nutrients for the growth and development
of vegetation, and the decoupling of soil nutrient cycles due to climate warming may
negatively affect dryland ecosystem services [40]. We should pay attention to the role of
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soil nutrients in drylands to maintain ecosystem stability. Therefore, in the future, the
dependent and combining effects of biotic and abiotic factors on vegetation’s sensitivity
and vulnerability should be well examined and disentangled.

4.4. Limitations and Future Work

In this study, we integrated remote sensing data and field measurements together
to investigate the mechanisms behind desert scrub’s sensitivity to climate change in the
Qaidam Basin, Qinghai-Plateau. However, there are still several uncertainties in this study.
First, there might be a scaling-mismatch problem between remote sensing data and field
measurements. Indeed, NDVI can be used to reflect the information on all vegetation in
the whole region. Limited by budgets, only dominant desert scrub plants were sampled
and measured for functional traits. Herbaceous plants were not fully considered in field
observations. This may affect the accuracy of CWMs of plant functional traits and lead to
some bias in the interpretation of community climate sensitivity. In further studies, both
scrubs and herbaceous plants should be well considered because they have differential
strategies to adapt to changes in physical circumstances.

In addition, this study only considered several soil nutrients and failed to take into
account the effects of microorganisms and trace elements in soils. A recent review suggests
that soil microbes dominate soil life activities by mediating nutrient cycling, decomposing
organic matter, inhibiting plant diseases, influencing soil structure, and maintaining vege-
tation productivity, are major drivers of soil ecosystem change, and have game-changing
potential in restoring soil function [97]. Moreover, soil trace elements are directly involved
in the metabolic activities of organisms and influence the growth and development of
vegetation, and have received increasing attention globally [98]. Therefore, future stud-
ies should also integrate the effects of multiple factors to obtain a more comprehensive
understanding of the vegetation–climate relationship.

5. Conclusions

This study assessed and disentangled the sensitivity and its components of desert
scrubs to climate variability with the time series of NDVI and weather data at the large
scale crossing the Qaidam Basin. The regulatory mechanisms of plant and soil func-
tional/nutrimental traits behind the desert scrub’s climate sensitivity were investigated
and compared among multiple communities dominated by different plant species. The
results confirmed that the sensitivity of vegetation to temperature change was mainly
regulated by the contents of leaf carbon and nitrogen as well as soil nitrogen and potas-
sium. In contrast, the sensitivity of vegetation to precipitation change was regulated by
the contents of leaf carbon and soil total nitrogen. Neither soil nutrients nor plant foliar
traits alone can well explain scrubs’ sensitivity to droughts. Plant foliar traits and soil
nutrient properties indirectly regulate the different components of vegetation’s climate
sensitivity. Due to harsh physical circumstances in the Qaidam Basin and limited available
funds, a scaling-mismatch problem might still exist between remote-sensing data and
field measurements in this study. Anyway, this study combined soil and plant functional
traits together to provide a new perspective to investigate the mechanisms behind desert
vegetation dynamics under climate change when assessed with large-scale remote-sensing
data. These findings also highlighted the necessity to make management and conservation
strategies specifically according to the different factors that regulate the vegetation–climate
relationship among different plant communities.
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Abstract: Fog generally forms at dawn and dusk, which exerts serious impacts on public traffic
and human health. Terrain strongly affects fog formation, which provides a useful clue for fog
detection from satellite observation. With the aid of the advanced Himawari-8 imager data (H8/AHI),
this study develops a deep learning algorithm for fog detection at dawn and dusk under terrain-
restriction and enhanced channel domain attention mechanism (DDF-Net). The DDF-Net is based
on the traditional U-Net model, with the digital elevation model (DEM) data acting as the auxiliary
information to separate fog from the low stratus. Furthermore, the squeeze-and-excitation networks
(SE-Net) is integrated to optimize the information extraction for eliminating the influence of solar
zenith angles (SZA) on the spectral characteristics over a large region. Results show acceptable
accuracy of the DDF-Net. The overall probability of detection (POD) is 84.0% at dawn and 83.7% at
dusk. In addition, the terrain-restriction strategy improves the results at the edges of foggy regions
and reduces the false alarm rate (FAR) for low stratus. The accuracy is expected to be improved when
training at a season or month scale, rather than at a longer temporal scale. Results of our study help
to improve the accuracy of fog detection, which could further support the relevant traffic planning or
healthy travel.

Keywords: H8/AHI; fog detection at dawn and dusk; DEM; U-Net; SE-Net

1. Introduction

Fog refers to the suspension of microscopic water droplets in the atmosphere [1].
Besides during the night, solar radiation is also weak during the dawn and dusk, resulting
in a relatively high probability of fog formation because of the low surface air temperature
and high vapor saturation [2]. The dense fog seriously reduces horizontal visibility, which
adversely affects public traffic and human health (particularly in rush hours at dawn and
dusk) [3]. In addition, anthropogenically generated chemicals dissolve in the foggy water,
which would strongly worsen air pollution [4]. Therefore, fog detection at dawn and dusk
is crucial to effectively support traffic planning and to provide information and bulletins
for reducing risks to human health [5].

Traditional terrestrial fog detection mainly relies on meteorological observation sta-
tions. However, it is difficult to be applied at a large-scale due to the limited spatial and
temporal resolutions. With the high temporal resolution and spatial continuity observation,
satellite remote sensing shows great potential for fog detection on a large scale [6]. Phys-
ically, the satellite fog detection algorithm follows the fact that the emissivity of opaque
water clouds is lower in the mid-infrared (MIR) band than that in the thermal infrared
(TIR) band [7]. Based on this theory, Eyre et al. [8] used the 3.7 μm and 11 μm brightness
temperature (BT) of the Advanced Very High-Resolution Radiometer (AVHRR) to identify
the nighttime fog and low stratus. Considering the great difference of the dual-channel
brightness temperature difference (BTD) between fog, surface and clouds, the BTD is
widely used in nighttime fog detection [9–14]. However, the method is only suitable for
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fog detection at nighttime, for which it is difficult to isolate the fog and low stratus (FLS)
simultaneously [15]. The MIR band is affected by the solar radiation reflection of the target
in the daytime, which causes the dual-channel differential separation detection threshold
to vary with the solar zenith angle (SZA) [2]. At dawn and dusk, the MIR reflection is
relatively weak due to the high SZA. In regions near to the terminator, the BTD between
the fog and surface is similar or consistent, resulting in large uncertainty in fog detection.
Gurka et al. [16] analyzed the fog dissipation process and its correlation with the thickness
of the fog layer based on the visible light (VIS) band of the Synchronous Meteorological
Satellite (SMS-1). Rao et al. [17] discussed the feasibility of identifying FLS in the VIS
band of 0.64 μm. At present, the daytime fog detection algorithms are mainly based on the
threshold of the spectral and textural differences between cloud, fog, and surface in the
0.67 μm, 3.7 μm, and 11 μm bands [18,19]. However, the MIR and VIS bands are affected by
the high SZA at dawn and dusk and the spectral characteristics difference is weak between
fog and surface, leaving low confidence in fog detection at dawn and dusk. Using the dif-
ference of BTD and reflectivity at 0.67 μm, Yoo et al. [5] proposed a FLS detection algorithm
at dawn based on the Communication, Ocean and Meteorological Satellite (COMS) and
Fengyun-2D (FY-2D) satellite. However, the method is difficult to monitor fog areas in
real-time due to the low temporal resolution of the polar-orbiting satellites. Yang et al. [20]
used the geostationary Fengyun-4A (FY-4A) and Himawari-8 (H8) with a higher temporal
resolution to retrieve the probability index of Japan/surrounding FLS at dawn, which
provides a methodological reference for fog detection at dawn and dusk.

The algorithms mentioned above mainly rely on the spectral difference between fog
and other ground objects. Surface environments (particularly the terrain) also strongly affect
fog formation and detection [21], which are lacking in most previous algorithms. In general,
fog forms near the ground, while clouds form at high altitudes [22]. Furthermore, the edge
of fog is restricted by terrain [13], which presents unique spatial variation, vertical structure,
and optical properties. By adding terrain information to the fog detection algorithm, it is
expected to further improve the accuracy of fog detection. For example, Shang et al. [22]
combined DEM with traditional cloud/haze detection indicators to improve the accuracy of
cloud, haze, and clear recognition. However, the terrain features of fog classification are the
same as the edge elevation of objects, while the spectral features of remote sensing images
are mainly at pixel scale. Therefore, it is difficult to fuse the two features in traditional fog
detection methods.

The deep learning approach realizes the mapping of input data to detection target
results (that is, the detection of fog) through a series of data transformations (layers), replac-
ing the complex multi-stage process with a simple, end-to-end learning model. By using a
series of nonlinear functions, the deep learning model describes and classifies the character-
istics of the targets [23], which provides a potentially efficient way for fog detection at dawn
or dusk. Based on the U-Net model, Jacob et al. [24] proposed an RS-Net cloud detection al-
gorithm that effectively improved the efficiency of cloud detection. Wu et al. [25] proposed
a geographic information-driven network (GeoInfo-Net) for cloud and snow detection. In
addition to using remote sensing data, the network would encode the auxiliary data sets
of the elevation, latitude, and longitude information for network training, which helps
to improve the accuracy significantly. However, fog detection is sensitive to the remote
sensing bands under different terrain conditions and SZA, resulting in various weight
values of each band during deep learning. Meanwhile, fog is a small probability event.
The model training strategy needs to be adjusted to speed up the convergence process of
model training and avoid overfitting. The problems above leave great uncertainty for the
application of deep learning in satellite fog detection. These problems can be optimized
by improving the application of the deep learning model. For example, the sensitivity of
different SZA and terrain conditions to fog detection can be effectively alleviated by intro-
ducing the Squeeze-and-Excitation Networks (SE-Net), which could automatically obtain
the weights of the contributions of the parameters [26]. Uneven distribution of training
data samples can be solved through the batch normalization of input data. Additionally,
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the training process could be optimized by designing the independent adaptive learning
rates for different parameters and by using efficient optimization algorithms [27]. However,
the relevant research is still rare, thus further investigation is warranted.

This study aims to develop a deep learning-based algorithm for satellite fog detection
under the terrain-restriction. The DEM data is added into the information input layer to
distinguish fog and low cloud. Furthermore, the Squeeze-and-Excitation Networks (SE-Net)
is integrated to optimize the model’s information extraction to eliminate the influence
of different SZA over a large region. Finally, a deep learning fog detection algorithm
under terrain constraints and enhanced channel domain attention mechanism (DDF-Net) is
developed for fog detection at dawn and dusk. This study is organized as follows: Section 2
describes the study area, data, details regarding pre-processing methodologies, and the
realization of the algorithm. Section 3 includes the results of quantitative and qualitative
validation. Finally, the performance and limitation of the DDF-Net are concluded and
discussed in Section 4.

2. Materials and Methods

2.1. Study Area and Data Sources

Figure 1 shows an overview of the study area, which is located in northern China
(104◦30′E~136◦00′E and 33◦00′N~47◦30′N). The western part of the study area includes the
Inner Mongolia Plateau and Loess Plateau, with an average altitude of more than 1500 m.
The eastern of the study area is located in the third step of the flat terrain of the Chinese
topographic demarcation line, where the average altitude drops to 500–1000 m. The study
area is located in the eastern of the Henhe-Tengchong Line and has a developed economy
and large population. The climate is characterized by a rich source of water vapor from
the Western Pacific, which helps to form fog for more than 30 days per year [28]. The
frequent fog at dawn and dusk exerts a serious impact on local traffic, especially aviation
and highways, and also the economic development and people’s physical and mental
health [29].

 

Figure 1. The study area.

(1) Satellite data

We adopt the Advanced Himawari-8 Imager (AHI) data with a temporal resolution of
10 min for the investigation. The data set has 16 channels ranging from 0.47 μm to 13.3 μm,
with the details could be seen in ref [30]. By referencing the previous studies [22,31–33], we
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select the data sets of bands 3, 5, 6, 7, 11, 13, and 14 for model training and validation. AHI
data in foggy days from November to December during 2015~2017 are selected to build
3122 fog mask images (size: 256 × 256) and then divided into 70% for training and 30% for
validating.

(2) Ground observation data

The ground observation data was used to execute and validate the algorithm, these
data were available from the China Meteorological Administration ground observation
stations. The data include observations 8 times per day: 02:00 local time (LT), 05:00 LT,
08:00 LT, 11:00 LT, 14:00 LT, 17:00 LT, 20:00 LT, and 23:00 LT. Among them, the data at
8:00 and 17:00 are used to evaluate the accuracy of the algorithm. The climate would be
marked as foggy when the “visibility” is less than 1 km in most criteria. In this study,
we followed the criteria and classified the fog as strong, dense and hazy as visibility
ranges between 0~200, 200~500 and 500~1000 m, respectively. Meanwhile, the China
Meteorological Administration (CMA) promulgated the national standard of Grade of
fog forecast (GB/T 27964-2011GB/T) [34], which also defined haze when the horizontal
visibility ranges from 1.0 to 10.0 km. Furthermore, it is less harmful to traffic when the
visibility is greater than 3 km. Therefore, we defined the haze as visibility ranges from
500~3000 m.

(3) Terrain data

The terrain data used in this study came from the SRTM1-DEM data with a spatial
resolution of 30 m released by the United States Geological Survey (USGS). To match the
spatial resolution of the H8/AHI data, the DEM data was resampled to 2 km.

2.2. Deep Learning Algorithm

Deep learning realizes the mapping of input data to target results through a series
of data transformations (layers) (Figure 2). The basic principle is to output the image as
a target result according to the mapping function f of the initial network model [23]. The
model compares the prediction with the truth, and then adjusts the parameters and weights
through an iterative method to capture the optimal prediction result. The components of the
deep learning model generally include the mapping function f, convolutional layers (CL)
and pooling layers (PL) [23]. Specifically, f defines the functional relationship between the
input x and the target mask classification map y; CL uses a specified number of convolution
kernels in each layer to extract the feature information of each pixel of x. The shallow layer
includes the textural and spectral features that are used as the basis classification, and
the deeper layer represents the higher-level semantics, which is the feature information
obtained after several convolutions (feature extraction) [35]. The PL is implemented to
sample the channel feature information downward, which divides the input image into
several rectangular areas to get the maximum value of each sub-area. Through this way, it
will continuously reduce the spatial size of the data, which could reduce the parameters
and improve the computation speed [23]. Furthermore, the PL can ensure that the network
continuously extracts and utilizes the information through the multi-layer structure of
biological neurons. The activation function (Relu) is located between the CL and the PL,
which is used to achieve nonlinear transformation. The sigmoid function maps the output
of the last CL to values from 0 and 1, and then realizes the classification of the input x for
each pixel by setting an appropriate threshold.

In the execution of the deep learning model, the target probability is generated ac-
cording to the last CL and the sigmoid function. It is defined as the target pixel when
the probability is greater than a certain threshold. The deviation between the actual fog
coverage and the predicted target mask is calculated using a binary cross-entropy loss
function, and the parameter gradient of the mapping function f is calculated and updated
by the Backpropagation algorithm (BP) [36] until the optimal parameters of the model are
obtained. Specifically, the actual fog coverage is generated by the combination of visual
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interpretation and ground observation, which is used as the label data for training or
validating the algorithm.

Figure 2. The Schematic diagram of the deep learning model. Relu is used to achieve non-linear
transformation between the CL and PL layers.

2.3. The SE-Net Module

The output of the CL does not consider the dependencies of each channel. SE-Net
allows the network to selectively enhance features and suppress useless features. We choose
to adopt this approach in our study. The SE-Net module contains 1 global average pooling
operation (GP), 2 small fully connected layers (FC), 1 Sigmoid function and 1 channel
weighted operation, with the details could be seen in ref [26]. Specifically, the Global
pooling (GP) refers to the average of all the pixels of the feature map on each channel.
The FC includes two sub-modes of FC1 and FC2. FC1 consists of fully-connected layers
with C/16 filters, which is calculated by the weighted summation to reduce the number
of parameters and improve the calculation efficiency. The activation function (Relu) is
located between the FC1 and the FC2, which is used to achieve nonlinear transformation.
FC2 consists of fully-connected layers with C filters, which assure the same numbers of
outputs and channels. Finally, the sigmoid normalizes these learned weights to be between
0–1 for dimensionless processing of different features.

Execution steps of the SE-Net module are as follows:
(1) Obtaining the global information from the feature channels. The information of

the DEM-AHI fog image at dawn and dusk is extracted through the CL formed by C
convolution kernels, and image X with a characteristic channel number of C is formed. Cp
is calculated by GP in each feature channel of the image X (Equation (1)):

Cp =
1

W × H

W

∑
i=1

H

∑
j=1

xp(i, j) (1)

where Cp is the global information of the feature channel p after GP, W and H are the length
and width of the image X, respectively, xp (i,j) represents the pixel value of X at point (i,j) in
channel p.

(2) Calculating the correlation between each feature channel. According to the cal-
culated correlation results, the weight of the feature channel that improves the accuracy
is increased, while the suppressed or ineffective feature channel’s weight is decreased
(Equation (2)):
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FP_F1 = ReLU(FC1(CP)) (2)

where F_P_F1 is the feature of output channel p after FC1 and Relu activation function, the
FC1 is the first fully connected layer [23,26], the size of F_P_F1 is C/16 × 1 × 1.

(3) Calculate the weight of each feature channel. The Sigmoid function is used to
calculate the weight factor Wp of the channel p (Equation (3)):

WP = Sigmoid
(

FC2
(

FP_F1

))
(3)

where the FC2 is the second fully connected layer. Wp represents the weight factor of
channel p after function calculation of FC2 and Sigmoid function.

(4) Attention learning of channels. The weighted attention feature x′P is acquired
through the weight factor Wp and the pixel value xp of X at channel p (Equation (4)):

x′P = Wp · xp (4)

The x′P represents the attention feature of channel p learned by SE-Net.

2.4. Deep Learning-Based Algorithm of Fog Detection under Terrain Restriction

The spatio-spectral characteristics of fog, medium/high clouds and surfaces provide
the physical basis for the algorithm of fog detection, while the weak solar radiation severely
hinders the separation of fog from the surface and clouds at dawn and dusk. The U-net
model had been proven to be a robust and effective method due to its excellent performance
and transferability in image segmentation [24,37], which is used as the basic model in our
algorithm. Furthermore, terrain strongly affects the formation and movement of fog [21],
which should be taken into consideration in the algorithm of fog detection. To overcome
these challenges above, this study develops a deep learning-based algorithm for satellite
fog detection at dawn and dusk under terrain constraints. The improvement of our method
refers to the adaptive algorithm under different SZA and terrain conditions by introducing
channel attention mechanisms and adding DEM data to remote sensing images. Specifically,
our method extracts fog from the AHI-DEM datasets by integrating the SE-Net module
in the CL of the U-net model. Figure 3 depicts the flowchart of the algorithm. The inputs
include the ground observation data, satellite data of H8/AHI (bands 3, 5, 6, 7, 11, 13, and
14) and the terrain data (DEM), while the outputs refer to spatial coverage of fog detection
under different times.

The main structure of the DDF-Net is shown in Figure 4. The input side includes 5 CL,
4 PL and 3 SE-Net modules. The CL can extract the feature information of fog, cloud and
surface at dawn or dusk through designing different numbers of 3 × 3 convolution kernel.
The BN operation is executed to normalize the input data and the Relu function acts by
increasing the model’s ability to fit nonlinear relationships. The PL selects the maximum
value of the 4 pixels to reduce the dimension of the feature information and complete the
down-sampling of the feature map, which can reduce the parameters and accelerate the
training process of the model. The output side includes 4 CL and 4 up-sampling layers.
The up-sampling layer restores the dimension of the feature map by duplicating each
pixel in the feature map as 4 pixels, which generates less local information in the feature
map. Alternatively, the skip connection fuses the feature map to establish a contextual
feature information connection and compensate local information, which helps to obtain
the semantic space context information of the model [37]. The DDF-Net model composed
of these multi-layer structures can approximately fit all complex functions. This is very
beneficial to our research, because the state of fog is quite different under different terrains
and SZA.
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Figure 3. Flow chart of the methodology.

Figure 4. The DDF-Net’s architecture. The top/bottom numbers of the rectangle represent the
channels of the feature map, and the right numbers are the size of the feature map.

2.4.1. Building the H8/AHI-DEM-Fm Fog Mask Dataset

Based on the H8/AHI data, this study firstly builds the training data set (Figure 5).
The DEM data was added to the AHI data to refine the model’s detection accuracy at the
edge of the foggy area. Fog pixels are labeled by the spectral, textural and movement
characteristics of fog, surface and cloud.
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Figure 5. The process of making the H8/AHI-DEM-Fm dataset.

(1) Building the AHI-DEM dataset at dawn and dusk.

The remote sensing images including dawn and dusk are screened according to the
SZA. Meanwhile, band clipping and sea-land mask clipping are performed. The DEM is
combined with AHI data as a channel to construct the AHI-DEM dataset containing the
time of dawn and dusk.

(2) Building the fog mask dataset Fm.

The fog pixels marked on the AHI-DEM data are used to build the fog mask data Fm.
The pixels are marked as daytime, nighttime and twilight fog through the textural and
spectral difference (TSD), bright temperature difference (BTD) and visual interpretation
(VI). TSD refers to the differences in the texture spectrum of daytime fog, clouds, and
surfaces. The BTD of fog is lower than surfaces and medium/clouds at nighttime. The
criterion of VI is that the fog has the characteristics of spatial and temporal consistency
within the adjacent 30 min. According to the labeling of the image at the previous moment,
it is determined whether there are fog pixels at the current moment. VI is mainly used
to identify fog that is similar or consistent with surface spectral information at dawn and
dusk. Meanwhile, the ground observation data is used to strictly calibrate the Fm.

(3) Building the H8/AHI-DEM-Fm fog mask dataset.

AHI-DEM and Fm are simultaneously cropped into sub-images of 256 × 256 sizes
with 30% overlap to improve the training efficiency of the model and the ability to capture
edge information. Finally, H8/AHI-DEM-Fm is produced through the above process.

2.4.2. Integration of the SE-Net Module

SZA strongly affects the fog spectral characteristics, even with the same remote sensing
band. For example, the VIS band has a strong effect on the low SZA regions (due to fog
being more reflective than the surface and less reflective than clouds), while it is ineffective
in the nighttime regions. Therefore, the influence of each band on fog detection under
different SZA should be taken into account, which is very important for large-scale dawn
and dusk fog detection. Meanwhile, the terrain strongly affects the fog formation and
development, which would act as one of the key parameters of fog detection [21]. The
SE-Net module can automatically learn the weight of each band in the fog detection task
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at different conditions of SZA terrain in a data-driven manner, which shows the great
potential for fog detection under different SZA.

Assuming that X is the feature map of the c channel output by the Relu function of a
certain layer in the encoder, then X can be expressed as:

X = {x1, x2, . . . , xc} (5)

SE-Net automatically learns the weights W of feature maps on each channel by training:

W = {w1, w2, . . . , wc} (6)

Finally, the feature map X′ output by SE-net can be expressed as:

X′ = X · W = {x1 × w1, x2 × w2, . . . , xc × wc} (7)

The SE-Net module is embedded after the first three Relu (rather than after each Relu
in the encoder) to further improve the extraction of fog information under different terrain
and SZA conditions, and also avoids the introduction of too many parameters to slow
down the model training.

2.4.3. Adjust the Training Strategy of the Model

To optimize the network model, the Adam gradient descent algorithm (Adam) [27,38,39]
and BN [40] are introduced to adjust the training strategy. The Adam is introduced to
speed up the training process of the model by automatically obtaining the direction of
optimized parameters [27,38,39]. The BN is embedded after each CL to normalize the input
data to overcome the sudden change in the distribution of a certain batch of training data
(Figure 4). In addition, it can also improve the training speed and shortens the training
time [38]. The configuration parameters (such as software, graphics card, programming
framework, etc.) are shown in Table 1.

Table 1. Training platform and parameter configuration information.

Parameter Configuration Platform and Version

GPU NVIDIA GeForce RTX 2080Ti (NVIDIA
Corporation, Santa Clara, CA, United States)

Memory 11GB
Operating system Windows 10

Programming language Python3.6.6
Framework PyTorch1.5.1

Cuda 10.0
Batch size 8

Epoch 1500
Decaying Epoch 1440

αinitial 0.0035

(1) By setting the initial parameters of the model (Table 1), the encoder extracts the
feature map of the input image. Batch size represents the number of images inputted to
the network during model training. Epoch represents the maximum number of rounds of
model iteration. αinitial indicates the initial learning rate. Decaying Epoch indicates that
the model adjusts the learning rate dynamically according to formula (8) after the studies
number of Epoch minus Decaying Epoch.

α = αLast−round ×
(

Decaying Epoch
Epoch

)0.9
(8)

(2) The decoder combines high-level semantic and low-level spatial information to
complete the initial classification of pixels. The model finally outputs the binary result of
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0 (non-fog) and 1 (fog). Then, the error between the predicted result and the actual fog
coverage is calculated (Equations (9)–(11)). BP assigns the error to each parameter and the
Adam is used to update the parameters by using the learning rate provided by the model.

(3) Processes 1–2 are iterated until the indicators are no longer significantly changing
and fluctuate around a certain value.

(4) The new remote sensing data are input to the trained DDF-Net model to realize
fog detection over the whole study area. The performance of the algorithm could be finally
evaluated with the aid of ground observation.

2.5. Evaluation Metrics

This study adopts several metrics to evaluate the accuracy of the training model and
the performance accuracy of our algorithm, which are described as follows:

(1) Model Evaluation Metrics

We use the metric of semantic segmentation [33,37], namely Accuracy (Acc), F1-Score
(F1) and Intersection-over-Union (IoU) to evaluate the accuracy of the training model. Each
indicator is defined as follows:

Acc =
Ncorrect

Ntotal
(9)

F1 =
2p · r
p + r

(10)

IoU =
Ncorrect

Nground−truth ∪ Nf alse
(11)

where Acc is the ratio of the number of correctly classified pixels (Ncorrect) to the total
number of pixels in the scene (Ntotal). p represents the proportion of the Ncorrect to the sum
of Ncorrect and the number of falsely classified pixels (Nfalse), r represents the proportion of
the Ncorrect to the total number of pixels that are foggy in the corresponding label of the
images (Nground-truth). IoU represents the ratio of fog pixels in the image predicted by the
model to the sum of total number of pixels that are foggy in the corresponding label of the
images (Nground-truth) and Nfalse. All indicators are scaled from 0 to 1, the larger the IoU, the
higher the segmentation accuracy.

(2) Quantitative evaluation metrics of fog detection accuracy

The probability of detection (POD), false alarm ratio (FAR) and critical success index
(CSI) [11] are used for the validation of fog detection, which are described as follows:

POD =
NH

NH + NM
, (12)

FAR =
NF

NH + NF
, (13)

CSI =
NH

NH + NM + NF
, (14)

where NH, NM and NF are the pixel numbers of hitting, missing and false fog detections.
All indicators are scaled from 0 to 1, with high POD and CSI and low FAR indicating great
performance of the algorithm.

3. Results

The fog is detected at dawn (7:00–8:30) and dusk (15:30–17:00) on 18 November 2016
over northern China (Figures 6 and 7) through our algorithm, and ground observation
sites at 8:00 or 17:00 are shown in Figures 6c and 7d. The detection results show that the
fog area increases from 7:00 to 7:30 and gradually decreases from 7:30–8:30. Comparing
the position of the terminator line, it can be seen that the fog gradually dissipated after
sunrise. With the aid of our algorithm, large areas of fog are detected in the central and
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western parts of the study area. Furthermore, the detection results of satellite data can
capture the generation and disappearance of fog, which is highly consistent with the
ground observations. Figure 6a shows that the fog was in the formation stage. The fog
area was fragmented because it was interspersed with low cloud, resulting in incomplete
fog detection results. Figure 6b shows that a relatively stable fog zone has formed, with
fog covering the largest region before sunrise. As the terminator line continues to move
westwards, the surface temperature in the eastern portion of the figure increases rapidly
due to solar radiation, which causes fog to dissipate gradually (Figure 6c,d). The ground
observation data show a high spatial consistence with the results of satellite fog detection
(Figure 6c). The rectangular box in Figure 6c is located in the Chinese topographic transition
zone according to the terrain of the study area (Figure 1), whose foggy area’s boundary is
defined well because of the application of terrain data. The missing detection is primarily
located in the eastern portion of the figure (circular box in Figure 6c). The main reason
for this missing detection might originate from the influence of low clouds. Influenced
by the characteristics of the passive sensor images, it is relatively difficult to detect the
under-cloud fog for the algorithm.

Figure 6. The fog detection results at (a) 7:00, (b) 7:30, (c) 8:00 and (d) 8:30 on 18 November 2016. The
triangle, star, circle, and cross symbols represent haze, dense fog, strong fog, and non-fog stations,
respectively. The square symbol indicates that there is no observation data because of the limit
monitoring frequency. The blue area is the fog detected by our algorithm. All the times are at
the Beijing Time (8 h later than the Universal Time Coordinated (UTC)) and the green line is the
terminator line.

Figure 7 shows the fog detection results at dusk from 15:30 to 17:00. The ground
observation data show large areas of haze at 17:00. It also shows a high spatial consistence
with the results of satellite fog detection (Figure 7d), which supports the performance of our
fog detection approach (Figure 7d). Satellite detection results show that the area of fog takes
on a relatively stable trend from 15:30 to 17:00 (Figure 7a–d). The false detection occurred to
the left of the terminator line at 16:30 (circular box in Figure 7c), which is characterized by
high topographic undulations and low cloud coverage. Overall, our algorithm successfully
detected more than 80% of fog in the study area.

We validate the algorithm with the aid of 10 fog cases randomly selected from 18th
November in 2016 to 3 January in 2017. The statistical evaluation shows that the overall
POD, FAR and CSI of the algorithm are 84.0%, 16.4% and 72.0% at dawn (Table 2), respec-
tively. The highest FAR and lowest CSI occurred on January 3, 2017. The main reason
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is attributed to the low clouds in the Inner Mongolia autonomous region and Northeast
Plain, which are difficult to be isolated by infrared remote sensing at nighttime. Table 3
shows the accuracy at dusk, with the mean POD, FAR and CSI values are 83.7%, 15.8% and
72.6%, respectively. Overall, our algorithm demonstrates the broad potential of using deep
learning for fog detection at dawn and dusk. We sum all the fog categories to validate the
algorithm. It is very useful to evaluate the accuracies under different fog types. However,
the observation points are insufficient to be divided into so many sub-datasets. Therefore,
a small disturbance of the ground samples would generate great uncertainty on the valida-
tion. We will continue the collection of ground observation to validation the performance
of our algorithm in our future research.

Figure 7. The fog detection results at (a) 15:30, (b) 16:00, (c) 16:30 and (d) 17:00 on 18 November
2016. The triangle, star, circle, and cross symbols represent haze, dense fog, strong fog, and non-fog
stations, respectively. The square symbol indicates that there is no observation data because of the
limit monitoring frequency. The blue area is the fog detected by our algorithm. All the times are
at the Beijing Time (8 h later than the Universal Time Coordinated (UTC)) and the green line is the
terminator line.

Table 2. Fog detection accuracy at 08:00 (BT).

Date
Satellite

Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

18 November 2016 Fog
Nonfog

34
12

7
210 0.739 0.171 0.642

12 December 2016 Fog
Nonfog

44
3

6
255 0.936 0.120 0.830

18 December 2016 Fog
Nonfog

16
3

3
276 0.842 0.158 0.727

20 December 2016 Fog
Nonfog

19
4

2
322 0.826 0.095 0.760

3 January 2017 Fog
Nonfog

18
3

7
381 0.857 0.280 0.643

mean 0.840 0.164 0.720
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Table 3. Fog detection accuracy at 17:00 (BT).

Date
Satellite

Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

17 November 2016 Fog
Nonfog

11
2

2
209 0.846 0.154 0.733

18 November 2016 Fog
Nonfog

42
3

3
238 0.933 0.067 0.875

11 December 2016 Fog
Nonfog

44
8

10
372 0.846 0.185 0.710

18 December 2016 Fog
Nonfog

12
3

4
277 0.800 0.250 0.632

28 December 2016 Fog
Nonfog

19
6

3
307 0.760 0.136 0.679

mean 0.837 0.158 0.726

To evaluate the seasonal adaptability of the algorithm, eight dawn fog cases and
five dusk fog cases were randomly selected from February to October 2017 (few fogs
occur at dusk from April to July). Ground observations in 08:00 (February to March) and
05:00 (May to September) are adopted for the evaluation at dawn and dusk. Results are
shown in Tables 4 and 5. Overall, the POD, FAR and CSI are 66.8%, 45.1% and 43.6% at
dawn, and 68.0%, 32.3% and 49.8% at dusk, which show the acceptable accuracy over
different seasons. On the other hand, the detection accuracy in summer and autumn was
significantly influenced by cloudiness. In summer, the algorithm’s performance is robust
due to the apparent spectral and textural difference of the surface and fog/cloud. However,
low clouds (liquid water clouds) in summer are more likely to be misclassified as fog. The
FAR also increased due to the frequent cloud covering in autumn.

Table 4. Fog detection accuracy at dawn over different seasons.

Ground
Observation

Time
Cases

Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

8:00 5 February 2017,
8:00

Fog
Nonfog

21
3

9
402 0.875 0.300 0.636

8:00 17 March 2017,
7:00

Fog
Nonfog

5
2

4
413 0.714 0.444 0.455

5:00 5 May 2017, 6:00 Fog
Nonfog

8
5

15
409 0.615 0.652 0.286

5:00 27 June 2017, 6:00 Fog
Nonfog

24
11

13
392 0.686 0.351 0.500

5:00 29 July 2017, 6:00 Fog
Nonfog

6
5

13
426 0.545 0.684 0.250

5:00 31 August 2017,
5:00

Fog
Nonfog

12
9

14
399 0.571 0.538 0.343

5:00 17 September 2017,
5:00

Fog
Nonfog

5
3

3
377 0.625 0.375 0.455

5:00 12 October 2017,
6:00

Fog
Nonfog

22
9

8
415 0.710 0.267 0.564

mean 0.668 0.451 0.436
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Table 5. Fog detection accuracy at dusk over different seasons.

Ground
Observation

Time
Cases

Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

17:00 21 February 2017,
17:00

Fog
Nonfog

12
14

3
395 0.462 0.200 0.414

17:00 13 March 2017,
17:00

Fog
Nonfog

24
7

11
417 0.774 0.314 0.571

20:00 22 August 2017,
19:00

Fog
Nonfog

0
7

0
487 – – –

17:00 15 September 2017,
18:00

Fog
Nonfog

19
8

12
377 0.704 0.387 0.487

17:00 5 October 2017,
18:00

Fog
Nonfog

14
4

9
437 0.778 0.391 0.519

mean 0.680 0.323 0.498

4. Discussion

We further compare the performances of our algorithm with those of the previous
studies. Specifically, fog detection results from the U-Net and DDF-Net are compared at
08:00 on 18 in November and 12 December in 2016, and at 17:00 on 18 November and
11 December in 2016. The comparisons are shown in Figures 8 and 9. The ground obser-
vation indicates that fog area exceeding 85% has been successfully detected in the study
area (Figure 8c,d and Figure 9a,b). Specifically, both algorithms detected fog more accu-
rately at dawn (Figure 8c,d), and haze is detected more accurately by both algorithms at
dusk (Figure 9a,b). On the other hand, both algorithms have missed detections due to
medium and low cloud contamination (circular box in Figure 8a,b and Figure 9c,d). The
false detection occurred at 8:00 (rectangular box in Figure 8c,d), which are mainly due to
the interference of the low liquid water cloud. Compared with the U-Net, the DDF-Net
shows more accurate detection accuracy. For example, the circular box in Figure 8a,b shows
that fog edges of the U-Net are slightly coarse with a small proportion of low stratus being
misclassified as fog, but the edge detection results of DDF-Net are more refined and the
boundary of the foggy area is clearer. Secondly, U-Net detects low cloud as fog mistakenly
in the daytime area with high SZA (rectangular box in Figure 8a,c), while the misclassified
medium/high clouds are smaller in the DDF-Net (rectangular box in Figure 8b,d).

Figure 8. The fog detection results of U-Net and DDF-Net at 08:00 (18 November 2016 (a,b) and 12
December 2016 (c,d)). The triangle, star, circle, and cross symbols represent haze, dense fog, strong fog,
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and non-fog stations, respectively. The green area is the fog detected by U-Net. The blue area is the
fog detected by DDF-Net. All the times are at the Beijing Time (8 h later than the Universal Time
Coordinated (UTC)).

Figure 9. The fog detection results of U-Net and DDF-Net at 17:00 (18 November 2016 (a,b) and 11
December 2016 (c,d)). The triangle, star, circle, and cross symbols represent haze, dense fog, strong
fog, and non-fog stations, respectively. The green area is the fog detected by U-Net. The blue area is
the fog detected by DDF-Net. All the times are at the Beijing Time (8 h later than the Universal Time
Coordinated (UTC)).

5. Conclusions

In this study, we developed a novel algorithm for fog detection at dawn and dusk,
which is based on the U-Net model and incorporates a channel attention mechanism
under-restriction. Several conclusions could be drawn after the execution and validation of
the algorithm:

(1) The DDF-Net could detect large-scale fog and has a more refined identification of the
edge of the fog area. Both the DDF-Net and U-net are challenged in detecting fog
during the periods of time when the fog is dissipating and when there are clouds,
while the FAR of DDF-Net is lower than the latter.

(2) The fog near the terminator line can be effectively separated from the surface, which
is effective for identifying fog from the surface at dawn and dusk. Specially, the
DDF-Net can effectively improve the misdetection of medium/low clouds near and
far from the terminator line. The fog detection results are relatively stable with fewer
false detections.

(3) The algorithm is simple and efficient, with little human intervention. As a result,
the fog detection results can be obtained in near real time and are well suited to the
requirements for real-time detection of dawn and dusk fog over large areas of land.

Overall, this study provides a new deep learning-based approach for fog detection
at dawn and dusk. Our algorithm shows great advantages and potential for overcoming
the limitations of minor spectral differences for fog detection at dawn and dusk, which
would significantly improve the satellite application in climate forecast. The limitation
refers to the low performance of fog formation and dissipation in mountainous areas with
highly complex terrain. Two issues would be addressed in our future research. Firstly, other
geographical parameters (i.e., latitude and surface temperature, etc.) would also affect the
fog formation, which should be addressed in the algorithm to improve the accuracy of
satellite fog detection. Secondly, a public fog dataset for each season would be developed
and published for supporting the management of traffic and public health.
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Abstract: In recent years, China has suffered from frequent extreme precipitation events, and pre-
dicting their future trends has become an essential part of the current research on this issue. Because
of the inevitable uncertainties associated with individual models for climate prediction, this study
uses a machine learning approach to integrate and fit multiple models. The results show that the use
of several evaluation metrics provides better results than the traditional ensemble median method.
The correlation coefficients with the actual observations were found to improve from about 0.8 to 0.9,
while the correlation coefficients of the precipitation amount (PRCPTOT), very heavy precipitation
days (R20mm), and extreme precipitation intensity (SDII95) reached 0.95. Based on this, the pre-
cipitation simulations of moderate forced scenario for sharing socio-economic path (SSP2-4.5) from
27 coupled models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to
explore potential changes in future extreme precipitation events in China and to calculate the distri-
bution and trends of the PRCPTOT, extreme precipitation amount (R95pTOT), maximum consecutive
5-day precipitation (Rx5day), precipitation intensity (SDII), SDII95, and R20mm for the early 21st
century (2023–2050), mid-21st century (2051–2075), and late 21st century (2076–2100), respectively.
The results showed that the most significant increase in extreme precipitation indices is expected
to occur by the end of the century, with the R95pTOT, Rx5day, and SDII95 increasing by 13.73%,
9.43%, and 9.34%, respectively, from the base period. The remaining three precipitation indexes,
the PRCPTOT, SDII, and R20mm, also showed increases of 8.77%, 6.84%, and 4.02%, respectively.
Additionally, there were apparent differences in the spatial variation of extreme precipitation. There
were significant increasing trends of extreme precipitation indexes in central China and northeast
China in the three periods, among which the total annual precipitation showed an increasing trend in
central and northern China and a decreasing trend in western and south China. An increasing trend
of annual precipitation intensity was found to be mainly concentrated in central China and south
China, and the annual precipitation frequency showed a larger increasing trend at the beginning of
this century. The annual precipitation frequency showed an increasing trend in the early part of this
century. In general, all the indices showed an overall increasing trend in the future period, with the
PRCPTOT, Rx5day, and SDII95 showing the most significant overall increasing trends.

Keywords: machine learning; extreme precipitation indices; climate change; CMIP6; China

1. Introduction

In recent years, the impacts of extreme weather events such as continuous heat waves,
extreme precipitation events and droughts [1,2] have become more prominent and more
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widespread [3]. Extreme precipitation, in addition to its severe impact and related sec-
ondary disasters such as floods, landslides, debris flows, and other natural disasters [4],
also brings a great challenge to people’s lives as well as to economic development [5,6]. The
Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6), led
by the United Nations, notes that continued warming has intensified water cycle processes
in the context of widespread global warming, resulting in an increase in atmospheric water
content, which, in turn, will lead to enhanced precipitation and the chance of intense precip-
itation events over most of the globe [7,8]. The scale and frequency of extreme precipitation
events will be larger and more frequent in the future as temperatures continue to rise,
raising concerns about the changing features of extreme precipitation events [9,10].

China has diverse climatic conditions and complex geography, and is subject to a
perennial monsoon climate with frequent extreme precipitation events [11,12]. From the
late 1970s to the present, economic losses due to extreme precipitation events in Chinese
regions have increased nearly tenfold. Historically, there have also been multiple floods
caused by extreme precipitation, such as the 1998 Yangtze River basin-wide mega-flood
caused by a multi-day extreme precipitation event [13,14]; in 2012, Beijing was hit by the
heaviest rainfall in nearly 61 years, resulting in massive property damage and casualties;
the August 2020 Sichuan flood that was a rare event in China’s climate history; and the
2012 Sichuan flood that resulted in the loss of life. However, current studies on extreme
precipitation have focused more on small regional scales, such as precipitation distribution
in urban and watershed areas [15] and trends or changes in extreme precipitation in typical
areas [16,17], while there are fewer studies on extreme precipitation at large regional scales.

Since the 1990s, the Coupled Model Intercomparison Project (CMIP) has promoted
the simulation of hundreds of climate models from dozens of institutes around the world
so as to improve the simulation capability of climate models and enhance a more compre-
hensive scientific knowledge of weather processes. Most past work on the assessment and
prediction of temperature and precipitation in China through CMIP Phase 5 (CMIP5) [18].
Jiang et al. [19] analyzed extreme precipitation using the CMIP5. Simulations show mois-
ture bias in northwestern China as well as in the north, accompanied by a dry tendency in
southeastern China. Future projections for the CMIP5 show that the increase in extreme
global precipitation may be faster than the increase in total precipitation on rainy days [20].
In addition, China is expected to experience more frequent regional heavy precipitation
events while being more destructive [19,21]. With the improvement of the model’s sim-
ulation performance, the current research focus has gradually shifted to research on the
new-generation CMIP6 model [22]. The experimental output of the CMIP6 model con-
tains parameterized settings for more complex dynamic climate processes [23] and more
different emission scenarios designed to improve prediction accuracy [24]. Chinese schol-
ars have paid more attention to its performance in China and the new CMIP6 scenarios
(i.e., Shared Socio-Economic Pathways, SSPs) regarding how China’s climate will change.
Recent studies have also begun using CMIP6 data to evaluate and predict the East Asian
monsoon climate [25]. They have also shown that the CMIP6 model is compatible with
the CMIP5 model. Models simulating precipitation and climate extremes have generally
improved [26,27], and there are more models and larger simulation ensembles.

Current predictions of China’s climate mainly utilize multi-model ensemble ap-
proaches, with some studies exploring the best individual models and using the multi-
model ensemble medians approaches [14], and, although these approaches provide some
improvements to prediction accuracy, they are still affected by the limitations of individual
models. The fields of artificial intelligence (AI) and machine learning (ML) are currently
evolving, allowing meteorological researchers to integrate machine learning knowledge
into related fields. The biggest advantage of machine learning (ML) methods is that more
useful information can be extracted from multi-model data to achieve a closer match with
real observations. Numerous studies have shown that machine learning can be better used
in weather forecasting, long-term future climate prediction, and supplementing missing
climate elements, and significant progress has been made [28]. Since machine learning has
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greater advantages in solving nonlinear and high-dimensional problems, it allows for the
extraction of dynamics and physical processes present in the climate, among other reliable
information [28,29].

Based on this, we used ML to integrate the simulation results of multiple models
in the next-generation Coupled Model Intercomparison Project Phase 6 (CMIP6) while
establishing the nonlinear relationship between them with the objective of real observational
data. To better represent the integration effect, we compared ML with the ensemble median
model to explore whether ML can effectively improve the ability to simulate observed data
and further establish reliable future climate prediction results based on it. The remainder
of this study is organized as follows: Section 2 introduces the research area, research data,
evaluation indices, and research methods. Section 3 presents the main findings of current
and future climate prediction methodology assessments. Finally, Section 4 summarizes and
discusses the spatial distribution and temporal variation trend of extreme precipitation in
China in the future.

2. Datasets and Methodology

2.1. Study Area

China is located in eastern Asia, with significant differences in winter and summer
precipitation, most of which is concentrated in summer [30,31]. China’s geographical
environment is changeable with regional differences in topography. Due to the role of the
East Asian monsoon, the eastern summer rainfall is sufficient. Northwest China is mainly
influenced by a westerly, dry climate. Due to the vast size of China, its complex topography
and strong monsoon characteristics [32], and the existence of many different climate types,
precipitation varies among regions, decreasing from southeast to northwest [33].

In order to further study the future trends of precipitation and to quantify the regional
differences, in this study, we divided the Chinese regions into eight climatic zones [34],
specifically, the western arid (semiarid) zone (A), the Qinghai–Tibet Plateau (B), the eastern
arid zone (C), southwest China (D), northeast China (E), north China (F), central China (G),
and south China (H). The specific divisions are shown in Figure 1.

Figure 1. Research area and climate zoning. Among them (A) western arid (semiarid) zone,
(B) Qinghai–Tibet Plateau, (C) eastern arid zone, (D) southwest China, (E) northeast China, (F) north
China, (G) central China, (H) south China.
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2.2. Data

The daily precipitation observations CN05.1 used in the study are from the grid point
dataset provided by the China Meteorological Administration. This dataset was obtained
by Wu et al. [35] using 2416 national meteorological stations from 1961 to 2014 in the
National Meteorological Information Center, and the daily observation data of precipitation
with a spatial resolution of 0.25◦ × 0.25◦ were obtained by interpolation and superposition
of a thin-disk spline function (ANUSPLIN) and the angular distance weighting method
(ADW), respectively. Additionally, these data have been used extensively in numerous
climate change studies in China [36,37]. The dataset was used as the “true value” for
training and verification to verify and evaluate the established model.

We used daily precipitation simulations from 27 CMIP6 global climate models. The
numerical simulation experiments available for study in CMIP6 consist of two main parts:
(1) historical climate simulation experiments (Historica); and (2) 23 Model Comparison
Sub-Plans (MIPs) for future prognosis. Both provide a variety of meteorological variables
including precipitation, where the former is based on a large number of observations,
including historical climate simulation experiments driven by external forcing of data from
ground-based observations and remote sensing observations, and also serves as a reference
benchmark experiment, mainly to assess the model’s ability to simulate climate change.
Secondly, among the many MIPs, we selected the Scenario Model Comparison Program
(ScenarioMIP), the most recently included in CMIP6, whose experimental results were used
as the initial data for the future prediction part of this study. The study uses historical
simulation data from 1961–2014 and future projection data for 2023–2100 from SSP2-4.5 in
the Shared Socioeconomic Pathway. SSP2-4.5 was used as the updated RCP4.5 scenario
representing the medium socio-economic development path and the medium forcing
scenario, which simulates medium land use and aerosol paths [38,39], which can reflect the
development scenario under normal development conditions. Before the analysis, all the
data were unified to a 1◦ × 1◦ resolution using a bilinear interpolation scheme [19].

2.3. Methods
2.3.1. Climate Indices

The six precipitation indices used in the study were defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI, Table 1) [40]. They were used to quantify
the characteristics of future precipitation characteristics [33,41]. The metrics included
the following precipitation indices: total precipitation on rainy days (daily precipitation
>1 mm) (PRCPTOT), annual extreme precipitation total above the 95th percentile threshold
(R95pTOT), and 5-day maximum precipitation (Rx5day); and the following precipitation
intensity indices: precipitation intensity (SDII), extreme precipitation intensity above the
95th percentile threshold (SDII95), and daily precipitation >20 mm of heavy rainfall days
(R20 mm). These indices are widely used to identify and monitor climate extremes [42]. In
this study, we first calculated the indices of all models and observations and then performed
machine learning multi-model integration and calculated the median of the multi-model
ensemble on this basis.

Table 1. Precipitation indices and definitions (recommended by the ETCCDI).

Index Description Definition Unit

PRCPTOT Precipitation amount Annual total precipitation of daily precipitation >1 mm mm

R95pTOT Extreme precipitation amount Annual total precipitation with daily precipitation >95% threshold mm

Rx5day Maximum consecutive 5-day
precipitation Annual maximum consecutive 5-day precipitation mm

SDII Precipitation intensity Precipitation intensity of days with daily precipitation >1 mm mm/day

SDII95 Extreme precipitation
intensity

Precipitation intensity of days with daily precipitation >95%
threshold of the entire time series for the grid point mm/day
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Table 1. Cont.

Index Description Definition Unit

R20mm Very heavy precipitation days Days of annual daily precipitation >20 mm day

2.3.2. Artificial Neural Networks

The back propagation (BP) learning algorithm is a multilayer feedforward network,
an artificial neural network algorithm based on error back propagation with forwarding
multilayer feedback. Using the gradient descent method, the error squared minima of the
actual output value and the target value were searched for so that the threshold value of
the network as well as the connection weights could be adjusted without interruption so as
to achieve the desired output for each set of inputs in the adjusted network model [43].

The operation of the BP neural network consists of three main parts, namely, the
forward propagation process from the input layer pathway hidden layer to the output
layer; the reverse correction process from the output layer to the input layer is determined
by the error between the predicted output of the network before the actual observed data;
and the training process in which the forward and backward processes are alternated. The
BP neural network topology includes an input layer, a hidden layer, and an output layer;
x1, x2, . . . , xm are the input data; y1, y2, . . . , yn are the output data; and w is the network
weights, as shown in Figure 2.

Figure 2. BP neural network topology diagram.

2.3.3. Multi-Model Integrated

The overall flow chart of the multi-model integration processing method is shown
in Figure 3. The model data and observed data for the historical period (1961–2014) were
divided into two parts: the training set representing 1961–1998 (38 years) and the test
set representing 1999–2014 (16 years). Among these, the test set mainly served as an
assessment of whether the results of the evaluation after multi-model integration were
closer to the observed data. In this study, we integrated six indices separately with the
overall goal of integrating the advantages of the individual models’ simulation capabilities
in different regions to the greatest extent possible so as to obtain the best simulation results
for the actual observed data in the Chinese regions. The scheme was eventually applied
to the prediction of future periods as a way to achieve the best precipitation forecast. A
large number of previous works have used the multi-model ensemble median for future
precipitation predictions [26,44]. The CMIP6 multi-model ensemble median method has
generally improved the simulation of precipitation and precipitation extremes trends on a
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global scale compared to its predecessor (CMIP5) [27], so it was used as a reference for the
machine learning fitting results.

Figure 3. ML model flow chart.

2.3.4. Evaluation Method

In this study, the Taylor diagram was used to evaluate the simulation results of
27 climate models, the multi-model ensemble median, and the integrated multi-model ML
in CMIP6; the spatial distribution of each index of model simulation results before and after
processing can be compared more intuitively with the consistency of the observed data.
Taylor diagrams can integrate multiple evaluation metrics for presentation at the same time,
indicating the accuracy of the model matching, the observed data in terms of standard
deviation, central root mean squared error (RMSE), and the correlation coefficient [45].

The standard deviation of the observation data and the model is calculated as follows:

σobs =

√√√√ 1
N

N

∑
n=1

(
Xobsn − Xobs

)2 (1)

σmodel =

√√√√ 1
N

N

∑
n=1

(
Xn − X

)2 (2)

Among them, Xobs and X respectively is the average of the observed data and model
data.

The central root mean square error, RMSE, is defined as:

RMSE =

√√√√ 1
N

N

∑
n=1

[(
Xn − X

)− (
Xobsn − Xobs

)]2 (3)
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The correlation coefficient r of the observed data and the model data is defined as:

r = [
1
N

N

∑
n=1

(
Xn − X

)− (
Xobsn − Xobs

)
]/(σmodelσobs) (4)

The key to the Taylor diagram is that the standard deviation, correlation coefficient,
and central root mean square error of the simulated and observed data satisfy the following
relationships:

RMSE2 = σobs
2 + σmodel

2 − 2σobsσmodelr (5)

Because of the large uncertainty in future precipitation predictions, We also applied
the relative root mean square error (RMSE′) for a more accurate quantitative assessment of
individual models, integrated models, and median multi-model integration to re-validate
the correlation with the observed data results [46,47].

The RMSE′ for the assessment of the climate simulation capabilities of the CMIP6
models is defined as follows [48]: first, the RMSE of each model relative to the observed
data needs to be calculated as in Equation (6), and, second, using the calculated RMSE for
each mode in turn, the RMSE′ for each mode is calculated as follows:

RMSE′ = RMSE − RMSEMedian
RMSEMedian

(6)

where RMSEMedian is the set median of the RMSE of all the models. In general, a negative
(positive) value of RMSE’ is better (worse) than half (50%) of all model results for the
model.

3. Results and Discussion

3.1. Evaluations

We obtained the PRCPTOT, R95pTOT, Rx5day, SDII, SDII95, and R20mm for each grid
point by calculating the actual observations, 27 pattern data, the multi-model ensemble median
data, and the ML output data for the validation of the dataset (1999–2014), respectively. On
this basis, the central root mean square error (RMSE) and the ratio of the spatial correlation
coefficient (R) to the standard deviation (STD) of the above and the observed values were
calculated, and the Taylor diagram for a summary of the statistics was obtained. The results
are shown in Figure 4. According to the calculation principles of the three indexes, the higher
the spatial correlation coefficient, the closer the standard deviation ratio to 1, and the closer
the central root mean square error to 0, the better the data simulation effect (the smaller
the distance between the simulated data points and observation points, as expressed in the
Taylor diagram). It can be seen from the Taylor diagram of each index that for 27 different
models, there are great differences between them. For the four precipitation indices, PRCPTOT,
R95pTOT, and Rx5day, most of the patterns had correlation coefficients between 0.6 and 0.85,
while the RMSE values was mostly between 0.5 and 1.0. The correlation coefficient of the
precipitation frequency index R20mm was between 0.3 and 0.85, while the RMSE values
were between 0.75 and 1.5. The two intensity indices, SDII and SDII95, performed better
with correlation coefficients between 0.7 and 0.9 and the RMSE values between 0.5 and 1.0.
In contrast, the effect of the multi-model ensemble medians on all the indices was slightly
better than the 27-model data. The ML performed much better than the 27 patterns and the
multi-model ensemble medians, which also reflects the ability of machine learning methods
to better integrate the advantages of different models. A further analysis showed that the
correlation coefficients of the PRCPTOT, R20rmm, and SDII95 all reached about 0.95, while
the R95pTOT Rx5day and SDII were slightly different, with correlation coefficients of 0.86,
0.85, and 0.92. The central root mean square errors were all around 0.5, and the final standard
deviation ratio was between 0.75 and 1.0 for all the evaluations. The best performance was
obtained for the PRCPTOT, R20mm, and SDII95. It was found that ML has the smallest
distance between each index and the observed values, indicating that the simulation effect is
closest to the observed values.
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Figure 4. Taylor diagram of PRCPTOT (a), R95pTOT (b), Rx5day (c), SDII (d), SDII95 (e), and R20mm
(f). In the figure, the circle’s angle corresponds to the spatial correlation coefficient; the black arc
represents the standard deviation ratio; the green arc represents the central root mean square error;
and the purple dot is the observation representing the observed data.
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Figure 5 visualizes the distribution of the RMSE′ magnitude for each model simu-
lating extreme precipitation indices as compared to the real observations. A larger value
indicates a worse simulation performance, while a lower value indicates a better simulation
performance.

Figure 5. Heat map of the relative RMSE (RMSE′) of the precipitation extremes index simulated by
the CMIP6 model versus observed data for the period 1999–2014. The colors range from red to blue.
The deeper the blue, the better the simulation ability. The deeper the red, the worse the simulation
ability.

The results show that the ability of each model to simulate each index of precipitation
varies greatly, among which EC-Earth3, EC-Earth3-Veg-LR, and EC-Earth3-Veg performed
better, and the RMSE′ of the different indices was mainly negative, indicating that the three
models can simulate the study area well. CAS-FGOALS-g3, CMCC-ESM2, and CMCC-
CM2-SR5 performed poorly, while EC-Earth3, EC-Earth3-Veg-LR, and EC-Earth3-Veg were
found to be able to better simulate the interannual variability of extreme precipitation
events in the Asian region [49]. Since the models exhibited large uncertainties in different
metrics, this also reaffirms the importance of model integration through machine learning
when studying climate simulations and predictions. The last two columns of Figure 5
show the ensemble median approach and the machine learning model fit, respectively, and
it can be analyzed that, for each precipitation index, the integrated median multi-model
approach performs better overall than the results of the 27 models simulated individually,
but the ML in the last column was even more comprehensive, far outperforming all the
models including the multi-model ensemble median approach according to the six extreme
precipitation metrics. The results also showed that for all indices, the RMSE′ of ML was the
minimum, and the results were better than those of any individual model, which largely
eliminates the uncertainty of the structural model, and thus the model can be considered to
be reasonably well established for predictive simulations of future climate change.

Based on the above evaluation results, that is, the performance of ML fitting being
significantly better than that of a single model, we finally decided to evaluate the spatial
simulation capability of ML for each of the six precipitation indices and to better understand
the regional climate bias of the model. Figure 6 shows the deviation and relative deviation
distribution of the ML fitted values relative to the observed precipitation indices, where
a relative deviation greater than 100% indicates a multiplicative overestimation of the
ML model mean for the simulated values of the indices. From the figure, we can see
that the simulations of the six precipitation indices by the future climate model were
underestimated in most areas of central and southern China and the Qinghai–Tibet Plateau,
and overestimated in some areas of the western and eastern arid regions, which may be
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due to the limitations of the climate model itself and its simulation of complex terrain [50].
Some scholars have previously found that the CMIP6 model output for western China
had a low agreement for observed precipitation [51], and the use of ML is thus effective in
improving the error in this part of the region. Specifically from the spatial point of view, ML
was found to have over 50% overestimation for the three extreme precipitation indices in
southern Xinjiang and parts of Inner Mongolia; 10%–40% underestimation in parts of Tibet,
southwest, central, and southern China; and over 40% underestimation in parts of Qinghai
and Xinjiang. ML is relatively good for the simulation of the two extreme precipitation
frequency indexes; for SDII especially, the relative deviation was found to not be more than
40%, and for SDII95, a deviation of more than 40% was found to be mainly distributed
in parts of Xinjiang. ML overestimated the frequency index R20mm by more than 40%
in Xinjiang, Tibet, Qinghai, and parts of Inner Mongolia, and underestimated by more
than 40% in Xinjiang and Tibet. In general, ML simulation is relatively accurate for most
parts of China, and the biggest deviation was mainly around Xinjiang and the Qinghai–
Tibet Plateau, where the resolution of the climate model was relatively low, and it was
difficult to completely reproduce the local circulation of complex terrain. In addition, these
regions usually lack climate stations, including gridded precipitation data obtained from
climate stations, making it hard to accurately simulate precipitation features in complex
terrain [52]. Secondly, the simulated precipitation was only slightly underestimated (<10%)
in the vast majority of South China compared to the observed data, and comparable results
were obtained by Sun et al. [53]; it is also consistent with the underestimation of extreme
precipitation in southern China [54]. However, the overall distribution was approximately
the same as the previously assessed distribution compared to the multi-model ensemble
median used in previous studies, but the simulation effect was greatly improved [55]. The
results of this study also differ from some previous studies, and part of the reason for
the difference may be that this study is a comparison of climate model ML with gridded
precipitation data, rather than the station data typically used in the past. Most regions
in China were found to have better performance with the ML model. The uncertainty in
northwest China was the smallest. The uncertainty in northeast China was greater than
that in northwest China, and the uncertainty in south China was small. The uncertainty in
northwest China was low, likely because it is a particularly arid region.

3.2. Projected Changes
3.2.1. Future Changes in Spatial Distribution and Boxplot

Due to the long time projection range of the model by which to facilitate analysis, we
divided the future projection time into three periods starting from 2023: 2023–2050 (early
21st century), 2051–2075 (mid-21st century), and 2076–2100 (late 21st century), while the
precipitation observation data from 1990 to 2014 were used as the reference period to facilitate
the analysis of the distribution of the six precipitation indices in eight climate zones of China
in different future periods compared with the base period and the change trends.

As shown in Figures 7 and 8, the spatial distribution of the relative changes of the
three precipitation indices (PRCPTOT, R95pTOT, and Rx5day) and the box line plot of the
absolute changes under the SSP2-4.5 scenario are shown. It can be seen that all precipitation,
in general, showed an increasing trend in this century, and each precipitation index also
increased with time. Relative to the base period, the changes in the three indices are more
dramatic at the end of the 21st century, with the change rates of 5.69%, 7.47%, and 7.89%,
respectively. Therefore, in the context of future climate change, precipitation in China will not
increase significantly. Among these findings, 30.85% to 37.68% of the study area is expected
to experience a significant increase (>15%) in R95pTOT by the end of the century, mainly in
northern China and the southern part of the western arid zone, while the maximum rate of
change will reach 40% in some parts of northern China. The largest absolute changes also
occur in north China, with weaker sub-increases in northeast China and southwest China.
For example, the absolute change in R95pTOT is expected to increase by an average of about
100 mm in north China by the end of the century, while the increase in the southern part of
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the western arid zone is expected to be about 1 mm. However, the relative rates of change are
inversely distributed, with larger percentages of change occurring in the southern part of the
western arid zone as well as in the eastern arid zone. This is because the total precipitation in
arid and semi-arid regions is quite low, and small changes in precipitation can cause large
differences in these regions [56]. In contrast, in central China and southern China, even though
there is abundant rainfall and large absolute variability in some areas, its relative variability is
not significant. In general, the box line plots of the absolute variation and relative variation
distribution of PRCPTOT, R95pTOT, and Rx5day are generally similar, while the relative
variation rates of PRCPTOT and Rx5day are more significant in south China than those of
R95pTOT.

Figure 6. Absolute and relative deviations (%) of ML from observations for PRCPTOT (a,d), R95pTOT
(b,e), Rx5day (c,f), SDII (g,j), SDII95 (h,k), and R20mm (i,l) for the period 1999–2014.
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Figure 7. Relative change maps (%) of PRCPTOT (a1–a3), R95pTOT (b1–b3), Rx5day (c1–c3), SDII
(d1–d3), and SDII95 (e1–e3) and absolute change maps of R20mm (f1–f3) for the three periods of
2023–2100 compared to the base period of 1990–2014.
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Figure 8. Boxplots of absolute changes from the base period.

Figure 7(d1,e3) and Figure 8d,e show the two precipitation intensity indices SDII
and SDII95. It can be seen that there were some differences in their distributions, but the
rate of change in the three phases increased gradually with time, as did the amount of
precipitation. By the end of the century, SDII and SDII95 are expected to change by about
3.78% and 7.30%, respectively, compared to the base period, it is not difficult to find a more
significant increasing trend in the extreme index SDII95. Precipitation intensity over about
14.9–17.5% of China, with significant variation (>15%) over the forecast period, and the
areas with small changes (−5–5%) accounted for 37.06% of the total area, indicating that the
extreme precipitation intensity increase is concentrated in the local areas of eastern China
with a maximum change rate of about 30%, while the remaining areas are not expected
to have large changes. Among these, as shown in Figure 8d,e, the main regions that were
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found to have an impact on the values were central China and north China, and the largest
absolute changes were found to occur in central China, for which the SDII and SDII95
were 3.521 mm/day and 13.31 mm/day, respectively, followed by southwest China and
south China, while the relative change rates of the western arid zone and the Qinghai–Tibet
Plateau regions with less perennial precipitation and absolute changes were not obvious.

Figure 7(f1–f3) and Figure 8f show the distribution and box plots of the annual number
of days of intense rainfall (R20mm). Since torrential rain is not common in western China
and the probability of occurrence is very low, small changes will all result in high relative
rates of change and will also affect the analysis of other regional characteristics. After
weighting, we choose to show the absolute change distribution. The R20mm mainly
showed a continuous increase in north China and central China, and most of the regions
showed an increase as compared with the base period. In contrast, parts of south China
experienced a significant decrease in the middle of the 21st century, and even the number
of rainstorm days was below the base period until it increased at the end of the century.

In conclusion, all the indices were found to increase with time during the forecast
period, and by the end of the 21st century, PRCPTOT is expected to increase steadily in
most parts of the country, with changes in heavy precipitation concentrated in north China
as well as northeast China. In particular, the three extreme precipitation indices, R95pTOT,
Rx5day, and SDII95, all showed more prominent and significant changes. Additionally, the
projected percentage increase in northern China was higher than that in southern China,
with the largest increases mainly in north China and northeast China. The increase of
PRCPTOT in north China is greater than that in south China, but this did not change
the distribution in that precipitation in southern China remains higher than in northern
China [57]. Due to the perennially dry climate in the northern and northwestern regions,
the largest relative increase is expected in the western arid zone with a large relative change,
a phenomenon consistent with CMIP5 projections [58].

3.2.2. Future Trend Distribution

Figure 9 shows the spatial distribution of the annual trend changes of the six indices in
the three early, middle and end periods in the future. Among these, all the indices passed
the 95% MK reliability test of the trend significance level.

Figure 9. Cont.
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Figure 9. Spatial distribution of trend changes in each phase for PRCPTOT (a1–a3), R95pTOT (b1–b3),
Rx5day (c1–c3), SDII (d1–d3), SDII95 (e1–e3), and R20mm (f1–f3). The columns from left to right are
the three predicted periods before, during, and at the end of the future period, respectively. The gray
dots are marked as the grid points where the trend significance level passed the 95% MK confidence
test.

As shown in Figure 9(a1–c3) for the trend distribution of the three precipitation indices
PRCPTOT, R95pTOT, and Rx5day, it can be seen that most of the regional grid points
were significant nationwide except for south China and some parts of central China. For
PRCPTOT, the largest trend of most regions in the three stages was in the early 21st century,
except for a few western regions and south China. Among these, southwest China, as
well as north China, reached the trend of 0.512 mm/year and 0.491 mm/year in the early
stage, respectively, and this trend slowed down in the middle and at the end of the period,
but was still in an upward trend. In particular, south China showed a decreasing trend
of −0.219 mm/year in the early 21st century, and then showed a significant increasing
trend in some areas in the middle and late stages, but, according to the overall trend, there
was still a slight decline of 0.056 mm/year. Finally, most of the western regions of China
showed an upward trend at all stages, with a significant one in the Qinghai–Tibet Plateau
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where the overall trend was found to reach 0.354 mm/year. Secondly, the two extreme
precipitation indices R95pTOT and Rx5day differed from the former in that the upward
trend was most significant in the middle or late stages across China. In the mid-century,
R95pTOT in central China reached the maximum trend value of 0.803 mm/year nationwide,
while Rx5day in north China also reached the maximum trend of 0.116 mm/year, followed
by northeast China and southwest China, which did not have a trend as obvious as that
in the abovementioned regions, but still showed a strong upward trend of change. The
R95pTOT in south China had a brief upward trend in the middle term, but the overall trend
did not fluctuate much.

For the precipitation intensity indexes SDII and SDII95 (Figure 9(d1–e3)), they have
different spatial trend distributions. The trend of SDII was more drastic at all stages, but
the grid point of SDII95 passing the 95% confidence test was much larger than that of
SDII. It is expected that, except for south China, most of the areas on the central map
will still show an upward trend in general, especially north China, which has a relatively
obvious trend of change where the two indices reached a peak of 0.018 mm/day/year and
0.014 mm/day/year, respectively. In contrast, SDII in north China, the eastern arid zone,
and parts of western China showed almost no significant fluctuations. SDII in southwest
China showed a slight downward trend in the middle and late 21st century, but SDII95
showed a continuous upward trend. About R20mm generation frequency is shown in
Figure 9(f1–f3). Combining the grid points with trend significance using MK95, it can be
clearly observed that the maximum trend occurs in southwest China in all three periods,
while the maximum decreasing trend is concentrated in parts of central China and south
China. It is not difficult to find that the area with an increasing trend in the southwest
region increased in the middle and late 21st century, and only a few areas in the region
showed a decreasing trend in the later period. The same phenomenon was also observed
in north China, where the majority of the areas remained unchanged and decreased at the
beginning, and the majority of the areas with increasing trends occurred at the end, which
indicates that R20mm in southwest China and north China will increase significantly with
time, and the precipitation in this region will also increase.

From this, it can be seen that the area with an increasing trend in the southwest region
increased in the middle and late 21st century, and only a few areas in the region showed a
decreasing trend in the later period.

In general, the trend distribution of these indices is not consistent, and the value of
PRCPTOT is expected to continue to rise in most regions of China in the future, but a
decreasing trend will be observed in some parts of south China.

3.2.3. Future Interannual Variation

Figure 10 shows the evolution characteristics of five precipitation indexes over time in
the forecast period of 2023–2100 compared with the reference period of 1990–2014. Table 2
shows the statistical data on the change in the time trend of the indicators in Figure 10.
Among the grid point statistics, we kept only the grid points whose trend significance
levels passed the 95% MK confidence test as statistical objects.

Table 2. Proportion of different intensity echoes of two radars.

Year
PRCPTOT
(%/Year)

R95pTOT
(%/Year)

Rx5day
(%/Year)

SDII
(%/Year)

SDII95
(%/Year)

R20mm
(%/Year)

2023–2100 0.110 0.219 0.129 0.108 0.087 0.102
2023–2050 0.1666 0.083 0.130 0.112 0.084 0.066
2051–2075 0.0577 0.259 0.145 0.196 0.050 0.161
2076–2100 0.0610 0.387 0.182 0.177 0.049 0.177
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Figure 10. Annual average changes in six national precipitation indices: PRCPTOT (a), R95pTOT (b),
Rx5day (c), SDII (d), SDII95 (e), and R20mm (f), all calculated from the base period 1990–2014. The
colored dotted lines represent the trend for the three future periods, and the gray lines represent the
overall trend.

Compared with the baseline period, the evolution trends of PRCPTOT, R95pTOT,
Rx5day, SDII, SDII95, and R20mm in 2023–2100 can all be seen to show an overall increasing
trend, and the rate of change of future precipitation for each index was found to mostly
increase with time in the middle and end of this century.

Figure 10a–c show the temporal evolution characteristics of three precipitation indices.
PRCPTOT (Figure 10a) showed the flattest trend of the three indices, reaching a maximum
trend of 0.17%/year at the beginning of this century, and then maintaining a relatively
stable trend around 0.06%/year. Throughout the study time period, the average trend
of PRCPTOT, compared to the base period, reached 0.11%/year. Similarly, as shown in
Figure 10b, the trend of the rate of change of R95pTOT in the future 2023–2100 period
showed a clear trend and increased gradually over the period, reaching an average trend of
0.39%/year at the end of this century. In Figure 10c, the curve of Rx5day steadily increases,
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and its change rate is relatively stable in the future period, with the overall average trend
reaching 0.182%/year.

Figure 10d,e show the temporal changes in the rate of change of the two intensity
indices. The values of SDII and SDII95 are expected to rise in this century, with SDII
showing a more pronounced trend. As shown in Figure 10d, the average trend of SDII
reached a maximum of 0.20%/year in the middle of the century and decreased towards the
end of the century, but still maintained an increase, with an average trend of 0.11%/year
throughout the study period. Finally, the change of SDII95 was the most gentle, showing
almost no obvious change trend, with an average trend of 0.09%/year, indicating that
China’s future extreme precipitation intensity will not change much as a whole, and, from
the above, we can see that SDII changes mostly exist in local areas. Figure 10f shows the
evolution of the annual change rate of heavy rainfall frequency (R20mm). The evolution
trend of the R20mm in the three periods of the 21st century was seen to continue to increase;
the frequency of extreme precipitation was found to maintain an increasing trend, and the
trend gradually expanded, reaching 0.177%/year in the late 21st century.

4. Discussion

The total amount and intensity of heavy rainfall is expected to increase across the
country in the future, which also implies that continuous flooding will be a major problem
in China’s development. Future changes in precipitation in China are mainly influenced
by temperature in addition to the general humidification of the atmosphere, and many
studies have shown that precipitation in China is highly susceptible to climate warming,
and rising temperatures lead to changes in precipitation levels in China [59]. On the other
hand, potential changes in future large-scale monsoon circulation systems also play a key
role in the frequency and intensity of precipitation in China, with some studies suggesting
a strong influence of the East Asian summer circulation in eastern China and the westerly
circulation in northwestern China and the northern Qinghai–Tibet Plateau. Precipitation
in eastern China is more frequent in summer and is easily influenced by the East Asian
summer winds, leading to changes in future precipitation and spatial distribution [60,61].
Studies have also shown that the expected future intensification of the East Asian summer
winds [29,62] may lead to larger increases in precipitation in north China and smaller
increases (or even decreases) in southeastern China, especially in the middle and lower
reaches of the Yangtze River Basin, and may also affect the timing of precipitation [63]. In
addition, the winter northwest wind will also strengthen in the future [64,65], which is
also the cause of the projected increase in precipitation in the northwest territories. The
above has focused on two factors, namely, thermal and dynamic factors, to explore some
possibilities regarding future increases in precipitation intensity.

We used ML to integrate the CMIP6 multi-model, effectively reducing its uncertainty
and improving its prediction ability, and revealing the future temporal and spatial changes
of precipitation in China, which will allow us to improve our knowledge of the precipitation
evolution in China, and the world, in the future. In addition, in the future, we will
explore more advanced machine learning techniques to retrieve more information from
multiple perspectives and large amounts of data, thereby improving the reliability of future
predictions. Additionally, the significant increases in severe extreme precipitation events
may have a strong impact on human society and ecosystems. We will also further explore
the contribution and impact of extreme precipitation events on future precipitation. The
results of this study bring important guidance to the development and design of future
remote sensing equipment, as well as guiding directions for the planning and layout of
future multi-source observation networks.

5. Conclusions

In this study, we used a machine learning approach to integrate the CMIP6 multi-
models to better capture the nonlinear and complex relationships among climate models
compared with the traditional ensemble median approach and achieved a more accurate
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model-based prediction of future precipitation. On this basis, the temporal changes and
spatial distribution of indices of eight climate zones in China during three periods of the
21st century, from 2023 to 2100, were analyzed. The study findings are as follows:

(a) In the validation assessment period (1999–2014), the ML integration treatment per-
formed well, and the correlation coefficients of all the indices improved from the
multi-model ensemble median to above 0.9 in general, with some reaching 0.95. In
general, all the ML-treated indices improved the accuracy of the spatial pattern of
precipitation in most regions of China. The improvement was more significant in
areas with complex topography, such as around the Qinghai–Tibet Plateau. Due to the
uncertainty of the climate model, there were still some errors in some areas, including
the western arid zone and eastern arid zone, which were overestimated, while the
negative deviations were mainly concentrated in some regions in southern China. The
prediction performance of ML for the precipitation intensity index was better than
that of the precipitation index, especially for SDII95.

(b) In the SSP2-4.5 scenario, the PRCPTOT, R95pTOT, Rx5day, SDII, SDII95, and R20mm
precipitation indices continued to increase in mainland China, and by the end of the
21st century, will increase 8.77%, 13.73%, 9.43%, 6.84%, 9.34%, and 4.02%, respectively.
Changes in extreme precipitation indices were the most prominent, with extreme
precipitation reaching more than half of the total precipitation at the end of the period.
China may experience more frequent and intense extreme precipitation events in the
future, and the risk of future flooding throughout China will be greater.

(c) The increase in precipitation in southern China is not apparent. Even in the middle of
the 21st century, precipitation in central and south China has decreased. In contrast,
there are certain differences in the spatial distribution, especially precipitation likely
to increase more in northern China, with the most significant precipitation change
occurring at the end of the 21st century when PRCPTOT, R95pTOT, and Rx5day
increase significantly in northern China. Additionally, the frequency and intensity of
precipitation are expected to increase more sharply mainly in north China and central
China, and slightly in western and southern China. The increase in precipitation
intensity is expected to be greater in north China than in south China. This change
may alleviate droughts and water shortages in some parts of northern China to some
extent, but this pattern will not change for more rainfall in the south and less rainfall
in the north [19].

(d) The temporal evolution of all the indices showed an increasing trend, with precipi-
tation increasing more rapidly at the end of this century and SDII having a greater
rate of increase in the first and middle of the century. The contribution of R95pTOT to
PRCPTOT also increased with time, reaching 0.387%/year at the end of the century,
while Rx5day also increased at a rate of 0.182%/year.
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Abstract: In alpine areas in Northwest China, such as the Tianshan Mountains, the lack of climate
data (because of scarce meteorological stations) makes it difficult to assess the impact of climate
change on runoff. The main contribution of this study was to develop an integrated method to assess
the impact of climate change on runoff in data-scarce high mountains. Based on reanalysis products,
this study firstly downscaled climate data using machine learning algorithms, then developed a Batch
Gradient Descent Linear Regression to calculate the contributions of temperature and precipitation to
runoff. Applying this method to six mountainous basins originating from the Tianshan Mountains,
we found that climate changes in high mountains are more significant than in lowlands. In high
mountains, the runoff changes are mainly affected by temperature, whereas in lowlands, precipitation
contributes more than temperature to runoff. The contributions of precipitation and temperature to
runoff changes were 20% and 80%, respectively, in the Kumarik River. The insights gained in this
study can guide other studies on climate and hydrology in high mountain basins.

Keywords: runoff changes; climate downscaling; data-scarce mountainous basins; quantitative
assessment

1. Introduction

Global warming has exacerbated the uncertainty of runoff in mountainous rivers [1,2].
Mountainous rivers provide water for people and support lowland industries and agri-
culture [3–5]. However, in the alpine areas of Northwest China, such as the Tianshan
mountains, limited climate data is available (because of the scarcity of meteorological sta-
tions), which makes it difficult to calculate the contribution of climate change to runoff [6,7].
New methods need to be developed in order to address this knowledge gap [8].

In recent years, various methods have been applied to calculate the contribution of cli-
mate change to runoff, including correlation analysis [9], sensitivity analysis [10], nonpara-
metric Mann–Kendall tests [11], water–energy balance equations [12,13], two-parameter
climate elasticity [14], weight connections [15], multiple linear regression (MLR) [16],
Budyko curves [17], intelligent water drop algorithms [18], and hydrological models, such
as VIC [19] and SWAT [20,21]. Using weight connections and artificial neural networks,
Wang et al. [15] calculated the contributions of precipitation and temperature to runoff,
which were 48% and 52% in the Toshkan River and 36% and 64% in the Kumarik River.
Climate and streamflow processes have non-linear characteristics [22]. Improved, complete
ensemble empirical mode decomposition, with adaptive noise (ICEEMDAN), can effec-
tively decompose signals [23], and can be applied to analyze the impacts of climate change
on runoff at different scales [14]. However, existing methods are mostly based on observed
data [24], so they cannot be easily applied to data-scarce mountainous basins.
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Precipitation and temperature are the main variables affecting runoff changes in
mountainous basins [25,26]. Various studies have shown that precipitation changes have
led to runoff changes in many rivers around the world [27,28]. Increasing temperatures
can accelerate the melting of snow and glaciers [29], providing large amounts of runoff to
mountainous rivers [30]. For data-scarce areas, reanalysis products spatially distributed
climate data [31]. The ERA5 precipitation (ERAP) and ERA-interim temperature (ERAT)
show climate change at the regional scale and are strongly correlated with empirical
observations in China [32–36]. However, when applied to basins, the reanalysis products
need to be downscaled, in order to improve spatial resolution [37,38].

The purpose of this study is to develop a method to calculate the contributions of
temperature and precipitation to runoff in data-scarce mountainous rivers. Selecting six
mountainous basins originating from the Tianshan Mountains, we first downscaled temper-
ature and precipitation using machine learning algorithms, and we then developed a Batch
Gradient Descent Linear Regression (BGDLR) model to calculate the contributions of tem-
perature and precipitation to runoff. This research can provide references for hydrological
forecasts in mountainous areas.

2. Materials and Methods

2.1. Study Area

To calculate the contributions of temperature and precipitation to runoff changes in
mountainous rivers, we selected as study areas the Manas River basin (MRB) (84◦96′E–
86◦31′E; 43◦07′N–43◦98′N) and Urumqi River basin (URB) (86◦80′E–87◦29′E; 43◦02′N–
43◦38′N) originating from the northern slope of the Tianshan Mountains, and Kashgar
River basin (KaRB) (83◦00′E–85◦00′E; 43◦21′N–44◦06′N), Toxkan River basin (TRB) (75◦54′E–
78◦62′E; 40◦28′N–41◦50′N), Kumaric River basin (KuRB) (78◦07′E–80◦33′E; 41◦39′N–42◦48′N),
and Kaidu River basin (KRB) (82◦57′E–86◦06′E; 42◦06′N–43◦21′N), originating from the
southern slope of the Tianshan Mountains (Figure 1). There is only one meteorological
station in the KRB and TRB, and no meteorological station in the KuRB, KaRB, MRB, or
URB (Figure 1). Therefore, the above basins are typical data-scarce mountainous areas.

The Kashgar River is the main tributary of the Yili River, with a mean elevation of
3100 m [39]. In KaRB, the terrain is open to the west, and the westerly airflow brings
abundant water vapor [40]. Among the rivers on the northern slope of the Tianshan
Mountains, the Manas River has the most abundant runoff [41]. The Aksu River and KRB
provide more than 80% of runoff for the Tarim River in Northwestern China [42]. The
Toshkan River and Kumarik River are the main sources of the Aksu River [43]. The mean
elevations are 3737 m and 3550 m, respectively, and the basin areas in the KuRB and TRB
are 13,557 km and 18,835 km2, respectively. The Kaidu River originates in the Sarming
Mountains, with an average elevation of 2990 m and an area of 18,727 km2. Snow and
glaciers are widely distributed above the mountainous basins, which are an important
supply of runoff [44]. There is a hydrological station in the mountain pass of each basin,
the observed data of which can reflect runoff changes.

2.2. Datasets

The data used in this study included observed data and reanalysis data. We first
downscaled temperature and precipitation based on reanalysis products and verified the
accuracy of the downscaled results by observed data from meteorological stations. Then,
based on the downscaled climate data and observed runoff, we calculated the contributions
of temperature and precipitation to runoff change.
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Figure 1. The study area. (a) Tianshan Mountains, (b) Toxkan River basin, (c) Kashgar River basin,
(d) Manas River basin, (e) Urumqi River basin, (f) Kumaric River basin, and (g) Kaidu River basin.

The reanalysis products include ERAP, ERAT, and the Digital Elevation Model (DEM).
The United States Geological Survey provided the DEM (http://srtm.csi.cgiar.org, accessed
on 4 July 2022), with a resolution of 90 m × 90 m. The ERAT and ERAP are the third-
and fifth-generation products of ECMWF, respectively. The spatial resolution of ERAT is
0.125◦ × 0.125◦, and that of ERAP is 0.25◦ × 0.25◦ (https://apps.ecmwf.int/datasets/data/,
accessed on 4 July 2022). The period of ERAT is from January 1979 to August 2019,
and that of ERAP is from January 1979 to December 2020. To analyze the mechanism
of climate change driving runoff, this study used a long-time series data set of snow

135



Remote Sens. 2022, 14, 4015

depth in China, with a time resolution of one day, and a spatial resolution of 25 km.
The data were provided by the National Glacier-Permafrost Desert Science Data Center
(http://www.ncdc.ac.cn/portal/, accessed on 10 July 2022), from 1979 to 2016 [45].

To verify the accuracy of downscaled results, we used the observed monthly tem-
perature and precipitation from 17 meteorological stations located near the six basins
(http://data.cma.cn/, accessed on 17 June 2022). The data were downloaded from the
National Meteorological Information Center, from 1979 to 2020. The monthly runoff was
provided by the Hydrological Bureau of Xinjiang Uygur Autonomous Region. The runoff
data for URB, MRB, and KaRB are from 1980 to 1987 and 2006 to 2011, and for KRB, TRB,
and KuRB are from 1979 to 2015.

2.3. Methods

To calculate the contribution of climate change to runoff in data-scarce mountain-
ous rivers, we integrated climate downscaling, the Mann–Kendall test, ICEEMDAN, and
BGDLR. We first downscaled temperature and precipitation using machine learning algo-
rithms, then developed a BGDLR model to calculate the contributions of temperature and
precipitation to runoff change.

2.3.1. Climate Downscaling

Topography and geographical location are the main factors affecting precipitation and
temperature distribution in mountainous areas [46,47]. Introducing terrain and geographic
location to the downscaling of precipitation and temperature is useful [48]. This research
fitted nonlinear models for temperature and precipitation, then trained the models using a
gradient descent algorithm [49]. The downscaling models can be expressed as follows:

T = F1 (A, B, C, D, E) + ΔT, (1)

P = F2 (A, B, C, D, E) + ΔP, (2)

where ΔT and ΔP are residuals; A, B, C, D, and E are elevation, latitude, longitude, aspect,
and slope, respectively. The steps build on Fan et al. [50,51].

2.3.2. Climate and Hydrological Process Analysis

The Mann–Kendall test [52,53] is an effective tool for analyzing trends in time series [22,54].
We applied this method to explore the changes in climate and runoff. In addition, we used
Sen’s slope [55] to verify trends in the Mann–Kendall test. For the steps of the Mann–Kendall
test and Sen’s slope, please see Wang et al. [15].

Runoff and climate have non-linear changes [56,57]. ICEEMDAN can effectively
decompose signals [58–60]. In this research, ICEEMDAN was used to extract the multi-
scale changes in runoff and climate. For the steps of ICEEMDAN, please see Ali and
Prasad [61].

2.3.3. Contributions of Climate Change to Runoff

Precipitation and temperature are the main climatic variables affecting runoff changes
in mountainous basins. Affected by factors such as geographic environment and altitude,
the contribution of climate change to runoff varies in different basins and seasons. Linear re-
gressions can clarify the relationship between dependent and independent variables [62,63];
the regression may be applied to calculate the contributions of independent variables to a
dependent variable [64]. In this study, we developed a multi-linear model of runoff with
temperature and precipitation and solved the model using a batch gradient descent (BGD)
algorithm [49]. Before applying this method, normalization of temperature, precipitation,
and runoff was performed with the equation as follows:

Xis = (xi − xmin)/(xmax − xmin), (3)
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where xi is the sequential data and Xis is the normalized variable.
To avoid collinearity in the model, multicollinearity among the explanatory variables

was evaluated, using the tolerance and variance inflation factor [65]. We also used partial
correlation analysis to remove the effect between explanatory variables. According to
Hair et al. [65], when the tolerance of independent variables is >0.1, the variance inflation
coefficient is <10, indicating that there is no collinearity between independent variables.
The resulting beta coefficients (partial regression coefficients) for the explanatory variables
represent the independent contributions of each explanatory variable [66]. The regression
model was as follows:

R = c1T + c2P + a, (4)

where R, T, and P, are normalized runoff, temperature, and precipitation, respectively; c1
is the regression coefficient of T; c2 is the regression coefficient of P; and a is the regres-
sion constant.

In the model, the cost function for regression is:

J(θ) =
1

2m ∑m
i=1

(
hθ

(
x(i)

)
− y(i)

)2
, (5)

where m is the number of samples; x(i) represents the characteristics of the sample; and y(i)

is the target.
Then, we used the BGD algorithm to train the dataset to minimize J(θ) and find the

optimal solution of θ, which are as follows:

∂

∂θj
J(θ) =

1
m ∑m

i=1

(
hθ

(
x(i)

)
− y(i)

)
x(i)j , (6)

The correction function for θ is:

θj = θj − α
1
m ∑m

i=1

(
hθ

(
x(i)

)
− y(i)

)
x(i)j , (7)

where α is the learning rate.
Based on the regression coefficients, the contributions of precipitation and temperature

to runoff are calculated as:
η1 = |c1|/(|c1|+ |c2|), (8)

η2 = |c2|/(|c1|+ |c2|), (9)

where η1 is the contribution of temperature to runoff and η2 is the contribution of precipita-
tion to runoff.

3. Results

3.1. Accuracy of Downscaled Climate Data

After climate downscaling, we spatially distributed precipitation and temperature
in six basins. The resolution of downscaled data is 90 m × 90 m. The observations
from 17 meteorological stations distributed in and near the basins were used to verify the
accuracy of the downscaling results. Tables S1 and S2 indicated the robust performance of
the developed method. At 17 meteorological stations, the slope between the downscaled
and observed data was close to 1, and the NSE was higher than 0.5. At most stations, the
MAE and RMSE between downscaled temperature and observations were <3 ◦C (Table S1),
and that between downscaled precipitation and observations were <10 mm (Table S2). At
11 stations, the NSE of downscaled temperature and the observed temperature was >0.9
(Table S1). The downscaled data accounted for scarce observations and reveal climate
change in mountainous basins.
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3.2. Climate Change

The mean and slope of downscaled grid data showed the characteristics of temperature
and precipitation change. According to Figure 2, the temperature is <0 ◦C and annual
precipitation is <600 mm in six basins. In valleys and plains, the annual precipitation is
<300 mm, and the temperature is >0 ◦C. In mountainous areas, the annual precipitation is
>300 mm, and the temperature is <0 ◦C.

 

Figure 2. (a–d), spatial patterns and trends of precipitation and temperature from 1979 to 2020 in
KRB; (e–h) KuRB; (i–l) KaRB; (m–p) TRB; (q–t) MRB; and (u–x) URB; (a,e,i,m,q,u) are annual average
temperature; (b,f,j,n,r,v) are temperature trend; (c,g,k,o,s,w) are annual precipitation; (d,h,l,p,t,x) are
precipitation trend.

There are significant differences in the temperature and precipitation changes in
different basins (Figure 2). In the past 40 years, KRB has experienced wetting, with a
humidification rate of 9 mm/10a (Figure 2b,d). At the same time, KaRB became increasingly
dry at 40 mm/10a (Figure 2l). Different from the above basins, TRB, KuRB, MRB, and
URB have experienced warming and wetting. In TRB and KuRB, the rate of warming and
humidification gradually slowed from west to east. In TRB, the temperature increased
0.29 ◦C/10a in the west and 0.20 ◦C/10a in the east (Figure 2n); the precipitation increased
50 mm/10a in the west and 7.42 mm/10a in the east (Figure 2p). In KuRB, the temperature
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increased 0.21 ◦C/10a in the west and 0.18 ◦C/10a in the east (Figure 2f); the precipitation
increased 30 mm/10a in the west and 27 mm/10a in the east (Figure 2h). On the whole,
compared with valleys and plains, the high mountains have more dramatic changes in
temperature and precipitation.

3.3. Impact of Climatic Variables on Runoff
3.3.1. Correlation of Runoff with Temperature and Precipitation

Figure 3 displays the correlation coefficients of runoff with climate on a monthly scale.
In KaRB, the runoff has a stronger correlation with temperature, whereas in MRB, URB,
KuRB, and KRB, the runoff has a stronger correlation with precipitation (Figure 3). Studies
have shown that the correlations between runoff and climate varies in different seasons.
Therefore, on a monthly scale, temperature and precipitation are the main driving factors
for the runoff changes in mountainous watersheds. The difference is that, in KaRB, the
temperature has a greater effect on runoff than precipitation, whereas, in MRB, URB, KuRB,
and KRB, precipitation dominates the monthly runoff changes.

 

Figure 3. Correlation coefficients between climate and runoff on a monthly scale. * indicates the
significance of a < 0.01.

The seasonal correlation coefficients between runoff and climate are shown in Table 1.
In URB, a positive correlation between runoff and precipitation is only shown in summer,
which indicates that the runoff in URB is mainly supplied by summer precipitation. In MRB,
the runoff has significant positive correlations with both temperature and precipitation
in summer, indicating that the runoff is mainly replenished by summer precipitation and
glacier meltwater. In KaRB and KRB, a significant positive correlation is shown between
runoff and precipitation in spring and summer, so the runoff in KaRB and KRB is mainly
replenished by spring and summer precipitation. In TRB, the correlation is positive between
precipitation and runoff in spring and autumn, indicating that the runoff in TRB is mainly
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replenished by spring and autumn precipitation. In KuRB, the correlation between runoff
and temperature is significant and positive in spring, summer, and autumn, which indicates
that the snowmelt water in spring and autumn, and melted ice water in summer, are the
main replenishments for the runoff in KuRB (Table 1). There are obvious differences in the
correlations between runoff and climate in different seasons. Overall, the changes in spring
and autumn temperature, and summer precipitation, have an important impact on runoff.

Table 1. Seasonal correlation coefficients between climate and runoff.

Basin Season Streamflow vs. Temperature Streamflow vs. Precipitation

MRB

Spring 0.05 0.37 *
Summer 0.69 * 0.54 *
Autumn 0.32 0.21
Winter 0.22 0.37 *

URB

Spring −0.29 * 0.08
Summer −0.13 0.65 **
Autumn −0.12 −0.09
Winter 0.14 0.12

KaRB

Spring 0.09 0.54 *
Summer −0.02 0.74 *
Autumn −0.02 0.07
Winter 0.28 0.12

TRB

Spring −0.17 0.46 *
Summer 0.02 0.24
Autumn 0.30 0.44 *
Winter 0.13 0.09

KuRB

Spring 0.38 * 0.05
Summer 0.67 * 0.09
Autumn 0.58 * 0.12
Winter −0.01 0.02

KRB

Spring −0.02 0.32 *
Summer 0.06 0.55 *
Autumn −0.01 0.24
Winter −0.06 0.10

Table note: * indicates the significance of a < 0.05 and ** indicates the significance of a ≤ 0.01.

ICEEMDAN was used to explore the multi-scale variations of climate and runoff.
Table S3 shows that the runoff has similar cycles with temperature and precipitation. In
MRB, URB, and KaRB, five intrinsic mode functions (IMF) and one residual component
(RES) were obtained after the decomposition of runoff, temperature, and precipitation.
While in other basins, six IMF and one RES were obtained after the decompositions. We
reconstructed the precipitation, temperature, and runoff on inter-seasonal, inter-annual,
and inter-decadal scales [67], then calculated the correlation coefficients between runoff and
climate on different scales (Table 2). In MRB, URB, and KaRB, the inter-decadal variations
of runoff are not shown because of the short period of runoff data. On the seasonal scale,
the runoff has a stronger correlation with temperature in the KaRB and KuRB, and has
a stronger correlation with precipitation in other basins; on the inter-annual scale, the
correlation between runoff and temperature is stronger than that of precipitation; on the
inter-decadal scale, the runoff has a stronger correlation with temperature in TRB and
KRB, and has a stronger correlation with precipitation in KuRB (Table 2). It is worth
noting that the runoff and temperature in KRB are significantly negatively correlated on
the inter-decadal scale, and the specific mechanism(s) needs to be further studied.
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Table 2. Multi-scale correlation coefficients between runoff and climate.

Basin Scale Streamflow vs. Temperature Streamflow vs. Precipitation

MRB
Seasonal 0.7548 * 0.1586 *

Inter-annual 0.4392 * 0.7284 *

URB
Seasonal 0.7915 * 0.1678 *

Inter-annual 0.1214 * 0.6550 *

KaRB
Seasonal 0.0156 0.1681 *

Inter-annual 0.2283 * 0.5309 *

TRB

Seasonal 0.7467 * 0.3494 *
Inter-annual 0.2812 * 0.3866 *

Inter-
decadal 0.1837 * 0.9174 *

KuRB

Seasonal 0.1431 * 0.2772 *
Inter-annual 0.6746 * 0.7185 *

Inter-
decadal 0.3832 * 0.2023 *

KRB

Seasonal 0.1458 * −0.0136
Inter-annual 0.2524 * 0.8536 *

Inter-
decadal 0.2008 * −0.2041 *

Table note: * indicates the significance of a < 0.05.

3.3.2. Contributions of Climate Change to Runoff

Table S4 shows the collinearity tests for regression models. In the six basins, the
tolerances were all > 0.8, and VIF were all < 2, indicating that the models did not have
collinearity. According to partial regression coefficients, the contributions of temperature
and precipitation to runoff can be calculated (Figure 4). Statistical results indicate significant
differences in the contribution ratios among different basins. In KuRB, the temperature
dominates annual runoff changes, whereas precipitation contributes more than temperature
to runoff changes in other basins. Among the six watersheds, the KuRB has the highest
elevation, and glaciers and permanent snow are widely distributed. Therefore, in high
mountainous areas, the temperature contributed more than precipitation to runoff changes.

Across the seasons, there are obvious differences in the contribution of temperature
and precipitation change to runoff (Figure 4). Generally, summer runoff accounts for
the highest proportion of annual runoff in alpine basins [68]. Therefore, the relative
contribution of temperature and precipitation to summer runoff changes can reflect the
replenishment of runoff. In MRB, the contribution of precipitation change to runoff is 97%
in spring, whereas the temperature change has a higher contribution than precipitation
to runoff in summer and autumn, indicating that the glacier and snow melt water in
summer is the main replenishment for runoff in MRB, followed by spring and summer
precipitation. In URB, in spring, the contribution of temperature changes to runoff is higher
than precipitation, indicating that glacier and snowmelt water are important replenishments
for runoff; in summer, the runoff is mainly affected by precipitation change, and in autumn
and winter, temperature and precipitation contribute equally to runoff. In KaRB, the relative
contribution of precipitation changes to runoff is 72%, 88%, and 99% in spring, summer,
and winter, respectively. Located in the Ili River Valley, KaRB is affected by warm and
humid water vapor from the Atlantic Ocean; therefore, the runoff changes in KaRB are
mainly affected by precipitation.
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Figure 4. Contributions of precipitation and temperature change to runoff.

In TRB, precipitation contributed more than temperature to runoff in spring, summer,
and autumn, whereas temperature has a higher contribution than precipitation to runoff
in winter. This indicates that summer precipitation is the main replenishment of runoff in
TRB, followed by spring and autumn precipitation. Different from other basins, in KuRB
the temperature changes have a higher contribution than precipitation to runoff; therefore,
glacier and snow melt water in summer is the main recharge of the runoff. In KRB, the
contribution of precipitation changes to runoff is higher than temperature in each season,
indicating that summer precipitation is the most important replenishment for runoff in
KRB. In MRB and KuRB, glacier and snow melt water in summer is the main recharge of
runoff, and runoff is mainly affected by temperature changes, whereas in other watersheds,
summer precipitation is the main recharge of runoff, and runoff is mainly affected by
precipitation changes.
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4. Discussion

4.1. Climate Downscaling

Almost all previous studies have calculated the contribution of climate change to
runoff using observed precipitation and temperature [11,16]. Generally, observed data only
reflect climate change at immediate locations [51]. For data scarce areas, reanalysis products
spatially distributed temperature and precipitation [31,32], whereas the low resolution
eliminates the climate heterogeneity in basins [69]. Based on climate downscaling, this
research obtained high-resolution temperature and precipitation data. We extracted the
downscaled temperature (September 2017) and compared it with ERAT and observations
at the corresponding time (Figure 5). There is only one meteorological station in KRB and
TRB, and there is no meteorological station in KuRB, KaRB, MRB, and URB. Compared with
observations and ERAT, downscaled data more accurately showed temperature changes in
data-scarce mountain basins (Figure 5).

 

Figure 5. (a–c), comparison of downscaled temperature (90 m × 90 m), ERAT (0.125◦ × 0.125◦),
and observations in the KRB; (d–f) KuRB; (g–i) KaRB; (j–l) TRB; (m–o) MRB; and (p–r) URB;
(a,d,g,j,m,p) are downscaled temperature; (b,e,h,k,n,q) are ERAT; (c,f,i,l,o,r) are observations.
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4.2. Climate and Runoff Processes in Mountainous Rivers

In high mountainous watersheds, runoff is mainly supplied by precipitation and
glacial snowmelt water, among which precipitation mainly supplies runoff in the form
of rainfall and snowfall [44,70]. Above the snow line, snow transforms into glaciers and
snow, which melts as temperatures increase, thereby replenishing runoff [71]. Studies
have shown that glacier meltwater accounts for about 20% to 40% of total runoff in the
Tianshan Mountains [72]. In the context of climate warming, the precipitation form in
mountainous areas has changed, which has caused changes in the runoff process [73,74].
In rivers dominated by snowmelt runoff, a decrease in snowfall rates will lead to a shift
to precipitation [75], thereby altering the seasonal distribution of runoff and leading to
earlier flood peaks [76]. Studies have shown that the contributions of precipitation and
temperature to runoff were 36% and 64% in KuRB, 52% and 48% in TRB [70], and 56% and
44% in KRB [15], which is consistent with our results.

To further understand the mechanisms of climate change driving runoff in the Tian-
shan Mountains, selecting KRB as an example, this section first compared the changes of
temperature, precipitation, and runoff, then analyzed glacier and snow changes. Figure 6a
shows that runoff has an annual distribution consistent with temperature and precipita-
tion. In summer, temperature is the highest, precipitation is abundant, and runoff is the
most abundant. Interannual variation shows that runoff is consistent with the changes in
temperature and precipitation, and runoff increases (decreases) when the temperature and
precipitation increase (decrease) (Figure 6).

 

Figure 6. Changes in the temperature, precipitation, and runoff in KRB from 1979 to 2015: (a) annual
distribution of temperature, precipitation, and runoff; (b) changes in precipitation and runoff; and
(c) changes in temperature and runoff.
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In the context of global warming, glacier and snow areas in KRB have changed.
Bai [77] extracted the glacier area of KRB based on the cataloging data of two glaciers
periods. Compared with the first statistical period (1956–1983), the glacier area in the
second statistical period (2005–2010) decreased by 45.27% (Figure 7a). Warming is not only
causing glaciers to retreat, but also accelerating snow melt. In the past few decades, the
snow depth of KRB decreased; downward trends were most obvious in central and eastern
regions. Relative to January 1980, snow depth in the northeastern mountains decreased by
10 cm (Figure 7b). Previous studies have shown that the correlation coefficients between
temperature and snow cover in KRB are −0.81, −0.48, −0.80, and −0.82 in spring, summer,
autumn, and winter, respectively. The above results confirmed that temperature has an
important impact on the runoff change in high mountainous areas.

 

Figure 7. Glacier and snow changes in KRB: (a) changes in the glacier areas; and (b) changes in snow
depth (January 2015 vs. January 1980). The data in (a) refers to Bai [75].

This research indicates that high mountains have more sensitive responses than plains
to global climate changes. In mountainous areas, glaciers and snow are widely distributed,
and plant diversity is abundant [78]. In valleys and plains, topography, latitude, and
ecosystem stability may cause a buffering effect [79], with slower increases in temperature
and precipitation than in mountains. The increase of precipitation is faster in mountainous
areas than in plains, which is consistent with results from other studies [80]. In mountainous
areas, increasing temperature accelerated the melting of snow and glaciers, leading to
increased water vapor. Moreover, low saturated water vapor pressure in mountainous
areas is conducive to the formation of precipitation [81].

Driven by climate change, runoff decreased in the KaRB in the past 40 years, which
was mainly caused by decreasing precipitation. The KaRB is located near the Ili River
Valley, and the decrease in precipitation may be related to the North Atlantic Drift [82].
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At the same time, runoff increased in MRB, URB, KuRB, TRB, and KRB, but there are
significant differences in the increase rate among different basins, and previous studies [70]
have supported this.

4.3. Limitations

This study simulated high-resolution temperature and precipitation by downscaling
reanalysis products. For alpine mountain areas, reanalysis products spatially distributed
climate data. However, there is a deviation between the simulations of reanalyzed products
and observed data, and the accuracy of products needs to be further improved. In addition,
vegetation impacts climate change in mountainous areas, especially precipitation [83]. Due
to the short time series and low spatial resolution of existing vegetation data, this study
only introduced geographical and terrain factors in climate downscaling. In future research,
the accuracy of downscaling results can be further improved if vegetation data with high
temporal and spatial resolution are obtained.

This study mainly analyzed the impact on runoff of two main climate variables,
temperature, and precipitation. In high mountainous basins, glaciers and snow melt are
the main supplies of runoff. In future research, it is necessary to quantify the contributions
of glaciers and snow to runoff change, to more clearly understand the mechanisms of
climate change driving runoff. In addition, this study did not analyze the impact of alpine
permafrost thawing on runoff change.

This study used beta coefficients (partial regression coefficients) of regression models
to calculate the contributions of temperature and precipitation to runoff change. The
bias of precipitation and temperature will lead to uncertainty in the calculation results of
contribution ratio. In addition, as a component of the regression model, the contribution of
regression constants to runoff were not calculated in this study. In future research, we will
make improvements to the model to enhance its applicability.

5. Conclusions

Based on reanalysis products, this study developed an integrated method to calculate
the contributions of climate change on runoff, in data scarce high mountains. Applying
this method to six mountainous basins originating from the high Tianshan Mountains, this
study found that, in high mountains, runoff changes are mainly affected by temperature,
whereas in lowlands, precipitation contributes more than temperature to runoff changes.
The contributions of precipitation and temperature change to runoff were 20% and 80%,
respectively, in the Kumarik River. This study also found that climate changes are more
significant in high mountains than in lowlands.

The present study lays the groundwork for future research using runoff simulations,
which is of great significance to hydrological forecasting and water resource management in
mountainous basins. This study highlights the impact of glaciers and snow on mountainous
runoff. Thus, introducing the distribution of glaciers and snow into a hydrological modeling
framework could better characterize runoff. Based on future climate scenarios, water
management planning should be oriented to generate new strategies to cope with possible
future changes in the strength of seasonality, and other variables.
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collinearity tests for regression models.
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Abstract: Understanding the spatio-temporal variations in the frost-free period (FFP) and the number
of frost days (FD) is beneficial to reduce the harmful effects of climate change on agricultural
production and enhancing agricultural adaptation. However, the spatio-temporal variations in FFP
and FD and their response to climate change remain unclear across China. To investigate the impact
of climate change on FFP and FD, the trends and variations in FFP and FD across China from 1950 to
2020 were quantified using ERA5-Land, a reanalysis dataset with high spatial and temporal resolution.
The results showed that ERA5-Land has good applicability in quantifying the trends and variations
in FFP and FD across China under climate change. The spatial distribution of multi-year average
FFP and FD across China showed significant latitudinal zonality and altitude dependence, i.e., FFP
decreased with increasing latitude and altitude, while FD increased with increasing latitude and
altitude. As a result of climate warming across China, the FFP showed an increasing trend with
an increase rate of 1.25 d/10a and the maximum increasing rate of FFP in the individual region
was 6.2 d/10a, while the FD showed a decreasing trend with a decrease rate of 1.41 d/10a and the
maximum decreasing rate of FD in the individual region was −6.7 d/10a. Among the five major
climate zones in China, the subtropical monsoon climate zone (SUMZ) with the greatest increasing
rate of 1.73 d/10a in FFP, while the temperate monsoon climate zone (TEMZ) with the greatest
decreasing rate of −1.72 d/10a in FD. In addition, the coefficient of variation (Cv) of FFP showed
greater variability at higher altitudes, while the Cv of FD showed greater variability at lower latitudes
in southern China. Without considering the adaptation to temperature of crops, a general increase in
FFP and a general decrease in FD were both beneficial to agricultural production in terms of FFP and
FD promoting a longer growing period and reducing frost damage on crops. This study provides
a comprehensive understanding of the trends and variations in FFP and FD under climate change,
which is of great scientific significance for the adjustment of the agricultural production layout to
adapt to climate change in China.

Keywords: frost-free period; frost days; ERA5-Land; climate change; agricultural production

1. Introduction

The frost-free period (FFP) is the period of the year after the last frost day (LFD) and
before the first frost day (FFD), during which no hoarfrost occurs [1–3]. The FFP is closely
related to the growing period of crops, as a long FFP is associated with a long growing
period of crops, and the length of the FFP is a very important heat index in agriculture [1,2].
The number of frost days (FD) is the total number of days in a year that frost occurs [4,5].
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Frost is a relatively common extreme agro-meteorological disaster that occurs in winter
and spring [6–8], primarily caused by the sharp drop in temperature below 0 ◦C in a short
time due to the southward movement of the cold wave, or by strong radiation cooling at
ground level on the night of the day when the weather changes from cloudy to clear sky
condition after being affected by a cold wave [6,9–12].

Climate change has become a common concern for scientists and the public, with the
global surface temperature rising by 1.09 ◦C from 2011 to 2020 compared to the industrial
revolution [13]. The trend of surface temperature in China is basically the same as the
global one in the last hundred years, but the warming in the last 50 years is more significant
than the global average [14]. Under climate warming, the frequency of cold events and the
dates of frost have changed significantly in many regions of the world [15–17]. Climate
warming has resulted in an earlier LFD, a later FFD, an increase in FFP and a decrease in
FD [7,18–23], and variations in FFP and FD have had a significant positive effect on agri-
cultural production [16,17,24–29]. This not only affected seasonal agricultural planting
planning, but also the growth and development of crops [2,18,30–33]. Consequently, deter-
mining the trends and variations in FFP and FD under climate change is important for the
planning and management of agricultural production, such as agricultural zoning planning,
agricultural production restructuring, optimization of agricultural production structures
and regional layout [2,18,30,31,34].

Research on the trends and variations in FFP and FD are generally based on sur-
face and air temperatures observed by ground-based meteorological stations [1,22,24,35].
Although the research on trends and variations in FFP and FD based on ground-based
meteorological stations is relatively effective, there are certain disadvantages to the quantifi-
cation of trends and variations in FFP and FD [22,29]. This is due to the uneven distribution
of meteorological stations in China and the limited number of meteorological stations,
especially in the vast regions of northwest China and the Qinghai–Tibet Plateau, where the
meteorological stations are very sparse [36–38]. Even the above studies extrapolated the
results to space using algorithms such as inverse distance interpolation based on station
observed data, which creates large spatial uncertainties in regions with sparse station
distribution and complex topography [39]. The uneven distribution, complex topography
and limited number of meteorological stations results in the less accurate assessment of
many climatic and meteorological conditions [38,40–42], including FFP and FD.

With the development of satellite remote sensing and data assimilation techniques
as well as land surface and atmospheric models, the spatial and temporal resolution of
reanalysis dataset has gradually increased and is widely used for the analysis of meteoro-
logical and hydrological processes applications [43–48]. Reanalysis dataset is the result of
reprocessing and analysis of historical meteorological observations to reproduce past atmo-
spheric conditions using well-established numerical prediction models and assimilation
analysis [49,50]. Reanalysis dataset is generally gridded to improve the estimation of the
meteorological elements with higher spatial and temporal resolution relative to meteoro-
logical stations, and is particularly useful in the study of meteorological and hydrological
processes in regions where meteorological stations are sparse and unavailable [43,51,52].

Although many studies have investigated the FFP and FD in single or multiple
provinces [9,18,22,29,35,53–55], the spatial and temporal variations in FFP and FD, as
well as their response to climate change remain unclear across China. China covers a vast
region and a variety of climate zones [56,57], and the geographical distribution of FFP and
FD is zonal with evident spatial differences [6,10,22]. The layout of agricultural production
is closely related to climatic conditions [58], and FFP and FD are also influenced by climatic
conditions. Therefore, based on the quantification of FFP and FD at a national level, it
is more beneficial to understand the relationship between FFP and FD and agricultural
production by further quantifying the trends and variations in FFP and FD in different
climate zones.

In the current study, the daily minimum skin temperature (Ts) and daily minimum
2 m temperature (Ta) from the ERA5-Land reanalysis dataset [50,59,60] were selected as
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data sources for quantifying the trends and variations in FFP and FD across China, and the
data sources were validated using observed daily minimum ground surface temperature
(GST) and daily minimum air temperature (TEM) from the Daily Meteorological Dataset
of basic meteorological elements of China National Surface Weather Stations (DMDC)
(V3.0) [61]. The main objectives of this study are (1) to analyze the spatial pattern of FFP
and FD across China, (2) to quantify the trends and variations in FFP and FD across China
during 1950~2020 and (3) to explore the effect of variations in FFP and FD on agricultural
production in China.

2. Materials and Methods

2.1. Study Area

The vast size of China, the long distances between east and west, north and south,
and the very different topographical and climatic characteristics of the various provinces
and regions have resulted in a great difference in FFP and FD across China. In general,
China can be divided into five main climate zones: the alpine climate zone (ALCZ), the
temperate continental climate zone (TECZ), the temperate monsoon climate zone (TMCZ),
the subtropical monsoon climate zone (SUMZ) and the tropical monsoon climate zone
(TRMZ) [57] (Figure 1). There is consistency in the trends and changes in FFP and FD for
each climate zone, while there is wide variability in the trends and variations in FFP and
FD between climate zones. In addition, China contains 34 provinces, and the trends and
variations in FFP and FD for each province are highly variable. Therefore, an integrated
quantitative analysis of trends and variations in FFP and FD from a national perspective and
in different climatic zones is of great scientific significance to adjust agricultural production
to climate change. In this study, observed daily minimum surface and air temperatures
from 822 national surface weather stations (including 620 national basic synoptic stations
and 202 national reference climatological stations) (Figure 1) with longer time series were
selected to evaluate the applicability of ERA5-Land reanalysis dataset.

Figure 1. China’s five main climate zones: the alpine climate zone (ALCZ), the temperate continental
climate zone (TECZ), the temperate monsoon climate zone (TMCZ), the subtropical monsoon climate
zone (SUMZ) and the tropical monsoon climate zone (TRMZ), and the distribution of 822 national
surface weather stations in China.

153



Remote Sens. 2022, 14, 2400

2.2. Data Collection
2.2.1. Reanalysis Dataset of ERA5-Land

In this study, the daily minimum skin temperature (Ts) and daily minimum 2 m
temperature (Ta) from the ERA5-Land reanalysis dataset were selected as the data source
for quantifying the trends and variations of FFP and FD across China. ERA5-Land is
a reanalysis dataset providing a consistent view of the evolution of land variables over
several decades at an enhanced resolution, and ERA5-Land has been produced by replaying
the land component of the ECMWF ERA5 climate reanalysis [50,59,60]. ERA5-Land has a
high spatial resolution of 0.1 degree (approximately 10 km), a temporal resolution of one
hour and a time of 1950 to the present. Because the temporal resolution of skin and air
temperatures from ERA5-Land is one hour, the daily minimum Ts and daily minimum
Ta selected in this study are the minimum values of 24 skin temperatures and 24 air
temperatures in a day, respectively. Although the original dataset covers the 1950 to the
present, we selected 1950 to 2020 as the study period. The high spatial and temporal
resolution of ERA5-Land makes this dataset very useful for all kinds of land surface
applications [50], such as FFP and FD quantification.

2.2.2. Dataset for ERA5-Land Evaluation

For the evaluation of daily minimum Ts and Ta from ERA5-Land, the observed daily
minimum ground surface temperature (GST) and daily minimum air temperature (TEM)
used to validate these land variables were collected from 822 national surface weather
stations in China (Figure 1) during the 1951–2015 period and were provided by the China
Meteorological Administration. Data from these observations are stored in the dataset of
Daily Meteorological Dataset of basic meteorological elements of China National Surface
Weather Stations (DMDC)(V3.0), which includes the daily minimum GST and daily mini-
mum TEM [61]. Due to the early and late construction of each weather station, the time
series of the observations is not consistent across weather stations. Only a few weather
station observations had time series from 1951 to 2015, and most weather station observa-
tions had time series between 1951 and 2015. In particular, the time series of some weather
station observations in the Qinghai–Tibet Plateau do not exceed 30 years. Therefore, the
daily minimum Ts and Ta from ERA5-Land were validated by the corresponding daily
minimum GST and TEM, respectively.

2.3. Methods
2.3.1. Quantitative Criteria

The FFP is the period between the LFD and the FFD, but there is no uniform definition
of the LFD and FFD [22,53]. Generally, the last time the minimum surface temperature
lower than 0 ◦C in the first half of the year is defined as the LFD, the first time the minimum
surface temperature lower than 0 ◦C in the second half of the year is usually defined as the
FFD and the period between the LFD and the FFD is defined as the FFP [53,62]. Therefore,
the daily minimum Ts from ERA5-Land was used to calculate the LFD and FFD, and thus
the FFP in this study.

The FD is different from the FFP, which is a period of continuity, whereas the FD
is the total number of days in a year that hoarfrost occurs. The FD is one of the 27 core
extreme climate change indices revisited by the joint CCl/CLIVAR/JCOMM Expert Team
(ET) on Climate Change Detection and Indices (ETCCDI) [4,5], and the definition of FD is
the annual count of days when the daily minimum temperature is lower than 0 ◦C. In view
of the above definition, the daily minimum Ta from ERA5-Land was used to calculate the
FD in this study.
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2.3.2. Data Evaluation

Statistical indices were used for quantitative analysis of the performance of
ERA5-Land in estimating the daily minimum Ts and daily minimum Ta, and four sta-
tistical indices were used in this study as follows:

R2 =

[
cov(R, O)

σRσO

]2

(1)

NSE = 1 − ∑n
i=1 (Ri − Oi)

2

∑n
i=1 (Oi − O)

2 (2)

MBE =
1
n

n

∑
i=1

(Ri − Oi) (3)

RMSE =

√
1
n

n

∑
i=1

(Ri − Oi)
2 (4)

where R2, NSE, MBE and RMSE are the coefficient of determination, Nash–Sutcliffe ef-
ficiency coefficient, mean bias error and root mean square error, respectively. Ri and Oi
represent the estimated (reanalysis) and observed data at time i, respectively. n is the total
number of time steps. cov(R,O) is the covariance of estimated (reanalysis) and observed
data and σR and σO are the standard deviations of estimated (reanalysis) and observed
data, respectively.

2.3.3. Trend Analysis

In this study, the non-parametric Mann–Kendall (MK) test [63–66] was used to analyze
the trend and significance level of the Ts, Ta, FFP and FD.

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (5)

sgn(xj − xi) =

⎧⎨
⎩

1
0
−1

(xj − xi) > 0
(xj − xi) = 0
(xj − xi) < 0

(6)

var(S) =
n(n − 1)(2n + 5)− ∑m

k=1 tk(tk − 1)(2tk + 5)
18

(7)

Zc =

⎧⎨
⎩

(S − 1)/
√

var(S)
0

(S + 1)/
√

var(S)

S > 0
S = 0
S < 0

(8)

where S is the statistic of the dataset, n is the length of the dataset, xi and xj are the sequential
data values in time series i and j, m is the number of tied groups and tk denotes the number
of ties of extent k and a tied group is a set of sample data having the same value. Zc is the
standardized statistics of the dataset and the positive and negative values of Zc indicate
increasing and decreasing trends, respectively. If |Zc| > Z1−α/2, the trend is statistically
significant, otherwise, the trend is not statistically significant. Testing trends was carried
out at a specific α significance level, and the significance level of α = 0.05 (95% confidence
level) was applied in this study.

For the measurement of the trend in variation, the Sen’s slope method [65–67] was
used to analyze the slope of the variation, and the slope is expressed as follows:

β = Median(
xj − xi

j − i
)1 < i < j < n (9)
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where β is the slope of the data variation, a positive β denotes an increasing trend, while a
negative β means a decreasing trend.

3. Results

3.1. Performance of ERA5-Land

The daily minimum GST from DMDC (V3.0) was used to validate the daily minimum
Ts from ERA5-Land, and the daily minimum TEM from DMDC (V3.0) was used to validate
the daily minimum Ta from ERA5-Land. Figures 2 and 3 show the statistical indices
between the daily minimum Ts and Ta from ERA5-Land and the daily minimum GST and
TEM from DMDC (V3.0) at 822 national surface weather stations in China, respectively.

Figure 2. Statistical indices of the daily minimum Ts from ERA5-Land against observed daily
minimum GST from CMCD (V3.0) at 822 national surface weather stations in China. (a) R2, coefficient
of determination; (b) NSE, Nash–Sutcliffe efficiency coefficient; (c) MBE, mean bias error; (d) RMSE,
root mean square error.

As can be seen from Figures 2a and 3a, the correlation between ERA5-Land simulated
and meteorological stations observed daily minimum surface temperature and air tem-
peratures is pretty good, with an R2 greater than 0.6 at all 822 national surface weather
stations across China. Overall, the performance of ERA5-Land for daily minimum Ts
and Ta simulation is better in East China than in West China, and better in flat regions
than in high-altitude regions, and the performance of ERA5-Land for daily minimum Ts
simulations is better than that for daily minimum Ta simulations. Meanwhile, it can be
seen from Figures 2 and 3 that there is a significant underestimation of daily minimum Ts
and Ta simulated by ERA5-Land, and this underestimation shows a regional pattern, with
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the underestimation of daily minimum Ts and Ta mainly concentrated in regions with high
altitude and complex terrain, such as the southeastern Qinghai–Tibet Plateau. The regional
underestimation of daily minimum Ts and Ta from ERA5-Land may have a negative impact
on the quantification of local trends and variations in FFP and FD.

Figure 3. Statistical indices of the daily minimum Ta from ERA5-Land against observed daily
minimum TEM from CMCD (V3.0) at 822 national surface weather stations in China. (a) R2, coefficient
of determination; (b) NSE, Nash–Sutcliffe efficiency coefficient; (c) MBE, mean bias error; (d) RMSE,
root mean square error.

3.2. Spatial and Temporal Variation of Annual Mean Minimum Ts and Ta

3.2.1. Annual Mean Minimum Ts

To quantify the trends and variations in daily minimum Ts and Ta across China from
1950 to 2020, statistics and trend tests were conducted on the annual mean minimum Ts
and Ta, as shown in Figure 4. From Figure 4a, the spatial distribution of the annual mean
minimum Ts has significant latitudinal zonality and altitudinal dependence. The annual
mean minimum Ts decreases with increasing altitude in high-altitude regions such as the
Qinghai–Tibet Plateau, the Tianshan Mountains and the Altai Mountains, while the annual
minimum Ts decreases with increasing latitude in East China and other regions.

Based on the MK trend test (Figure 4b), it shows that the annual mean minimum Ts
generally shows a significant increasing trend in other regions of China, except for the
borderlands in West China, the eastern Qinghai–Tibet Plateau and the Yunnan–Kweichow
Plateau, where there is no significant increasing or decreasing trend of annual mean
minimum Ts, but the degree of increase in annual mean minimum Ts varies greatly between
regions. As can be seen from Figure 4c, Northeast China, northern Xinjiang, North China
and the central and southeastern Qinghai–Tibet Plateau were the regions with the largest
rates of increase in annual mean minimum Ts in China. In particular, the rate of increase
in annual mean minimum Ts in Northeast China exceeded 0.2 ◦C/10a, with most regions
experiencing increases of between 0.2 ◦C/10a and 0.53 ◦C/10a, indicating that Northeast

157



Remote Sens. 2022, 14, 2400

China was the region with the most significant increase in annual mean minimum Ts in
China. In addition, as can also be seen from Figure 4c, individual regions, such as the
eastern and southern margins of the Tianshan Mountains, parts of the eastern Qinghai–
Tibet Plateau and parts of northwest Yunnan Province showed decreasing trends in annual
mean minimum Ts, but for the whole country, the annual mean minimum Ts was generally
increasing rapidly.

Figure 4. Spatial distribution of annual mean minimum Ts and Ta. (a) Trends of annual mean
minimum Ts based on the Mann–Kendall trend test (95% confidence level), (b) Sen’s slope of the
annual mean minimum Ts, (c) annual mean minimum Ta, (d) trends of annual mean minimum Ta

based on the Mann–Kendall trend test (95% confidence level), (e) Sen’s slope of the annual mean
minimum Ta (f) across China during the 1950~2020.

3.2.2. Annual Mean Minimum Ta

Similar to the spatial distribution pattern of the multi-year average annual mean
minimum Ts, the spatial distribution of the annual mean minimum Ta also has obvious
latitudinal zonality and altitudinal dependence (Figure 4d). Except for high-altitude regions
such as the Qinghai–Tibet Plateau, the Tianshan Mountains and the Altai Mountains, the
annual mean minimum Ta in East China decreases with increasing latitude, and the Tarim
Basin is the region with the highest annual mean minimum Ta in Northwest China due to
its relatively closed geographical environment and geological conditions.

Except for the periphery of the Qinghai–Tibet Plateau and parts of the central Tarim
Basin, where there is no significant trend in annual mean minimum Ta, the rest of China
shows a significant increasing trend (Figure 4e). Most regions of China show a significant
increasing trend in annual mean minimum Ta, but the degree of increase in annual mean
minimum Ta varies considerably from place to place. As can be seen from Figure 4f, North-
east China, northern Xinjiang, North China and the eastern and central Qinghai–Tibet
Plateau were the regions with the greatest rate of increase in annual mean minimum Ta
across China, especially Northeast China, where the rate of increase in annual mean mini-
mum Ta greater than 0.2 ◦C/10a, with most regions experiencing increases ranging from
0.2 ◦C/10a to 0.53 ◦C/10a, indicating that Northeast China was the region with the most
significant increase in annual mean minimum Ta across China. Although very few regions
in the Sichuan Province and Turpan Basins showed a decreasing trend in annual mean
minimum Ta, nationally, the annual mean minimum Ta was generally increasing rapidly.
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In addition, as can be seen from Figure 4c,f, there was considerable spatial consistency in
the variability of the annual mean minimum Ts and Ta across China.

3.3. Spatial and Temporal Variation of FFP
3.3.1. Spatial Distribution

Figure 5a shows the spatial distribution pattern of the multi-year average FFP across
China from 1950 to 2020, from which the spatial distribution of FFP across China was
characterized by obvious latitudinal zonality and altitude dependence. It is obvious that
the high-altitude mountainous regions of the Qinghai–Tibet Plateau, the Qilian Mountains,
the Tianshan Mountains and the Altai Mountains were the regions with the smallest FFP,
especially in the northern Tibetan Plateau and the Kunlun Mountains in the northwestern
part of the Qinghai–Tibet Plateau, where FFP was even less than 10 days and there was
almost no FFP throughout the year. Despite the high altitude of the Tsaidam Basin in
the northeastern Qinghai–Tibet Plateau, its relatively enclosed geography has resulted in
a much higher FFP in the basin than in the rest of the Qinghai–Tibet Plateau, making it
an extremely special region on the Qinghai–Tibet Plateau. Except for the high-altitude
regions, FFP in East and Northwest China largely showed a trend of decreasing with
increasing latitude. Provinces in the tropical monsoon climate zone, such as Yunnan,
Guangxi, Guangdong, Taiwan and Hainan, have very high FFP, all greater than 350 days.
The Sichuan Basin was also a region with very high FFP, with most regions exceeding
300 days. Overall, the spatial distribution of FFP was consistent with the spatial variation
of multi-year average surface temperatures in China.

Figure 5. Spatial distribution of multi-year average FFP, (a) standard deviation of FFP, (b) trends of
FFP based on the Mann–Kendall trend test (c) and Sen’s slope of FFP (d) across China during the
1950~2020.

The standard deviation of FFP from 1950 to 2020 in Figure 5b shows that the spatial
distribution of FFP varies significantly across China, with the eastern and southern parts of
the Qinghai–Tibet Plateau, the regions around the Tsaidam Basin and the Sichuan Basin,
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as well as the southern edge of the subtropical monsoon climate zone, being regions of
high interannual variability in FFP in China. Especially in the eastern and southern parts of
the Qinghai–Tibet Plateau, where the standard deviation of FFP was greater than 20 days,
indicating that the annual mean surface temperature in these regions was more variable
indirectly. The standard deviation of FFP in other regions of China was not very variable
and did not show a clear latitudinal zonality.

3.3.2. Temporal Variations

Interannual trends in FFP across China from 1950 to 2020 were quantified at the
95% confidence level based on the MK trend test and Sen’s slope method, as shown in
Figure 5c,d. As can be seen from Figure 5c, there were significant regional differences
in the interannual trends of FFP across China. Overall, North China, Northeast China
and Zhejiang Province were the regions where the significant increase in FFP was more
concentrated. The outer Tarim Basin, the Junggar Basin and the Turpan Basin were also
regions with a relatively high concentration of significant increases in FFP. In addition,
the FFP in some regions of the Qinghai–Tibet Plateau and South China also showed a
significant increasing trend, but did not show a clear regional pattern. Only a very few
regions showed a significant decreasing trend in FFP, such as parts of the southern Sichuan
Province and parts of the northern Yunnan Province. A comparison of Figure 5c,b shows
that the interannual trends in FFP and the annual mean minimum Ts across China were
not entirely consistent.

From the decadal rates of variation in FFP in Figure 5d, there were large differences in
the degree of interannual variability in FFP across China. Most regions of China showed
increasing trends in FFP, with rates of variation in FFP ranging from 0 to 6.2 d/10a, except
for parts of western Inner Mongolia, northern Gansu Province, the Kunlun Mountains, the
central and eastern Qinghai–Tibet Plateau and northern Yunnan Province. Overall, the
rapid increase in FFP was the main feature of the variations in FFP across China during
1950~2020.

3.4. Spatial and Temporal Variation of FD
3.4.1. Spatial Distribution

Similar to the spatial distribution of FFP, the spatial distribution of FD also showed
a clear latitudinal zonality and altitudinal dependence (Figure 6a). Figure 6a shows the
spatial pattern of the multi-year average FD across China from 1950 to 2020. The FD
was greatest in the high-altitude mountainous regions of the Qinghai–Tibet Plateau, the
Qilian Mountains, the Tianshan Mountains and the Altai Mountains, especially in the
Kunlun Mountains in the northwestern part of the Qinghai–Tibet Plateau, where the FD
even greater than 350 days. Despite its high altitude, the relatively enclosed geography
of the Tsaidam Basin results in much lower FD in the basin than in other parts of the
Tibetan Plateau, making the Tsaidam Basin a relatively special region on the Qinghai–Tibet
Plateau. Apart from the high-altitude mountains, the FD in East China and Northwest
China basically showed an increasing trend with increasing latitude. Provinces in the
tropical monsoon climate zone, such as Yunnan, Guangxi, Guangdong, Taiwan and Hainan,
have very low FD, all less than 10 days. The Sichuan Basin was also a region with very few
FD, with most regions having less than 10 days. Overall, the spatial distribution of FD was
consistent with the spatial variation of the annual mean minimum air temperature and was
the opposite of the spatial distribution of FFP in China.

The standard deviation of FD from 1950 to 2020 (Figure 6b) shows that there were
significant differences in the spatial variation of FD across China, with the central Qinghai–
Tibet Plateau, the region around the Tsaidam Basin and the region around the Sichuan
Basin being regions with large interannual variability in FD in China, indicating greater
variability in air temperature in these regions indirectly. The standard deviation of FD in
the rest of China varied little and was similar to the spatial variation of FPP, showing no
clear latitudinal zonality.
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Figure 6. Spatial distribution of multi-year average annual FD, (a) standard deviation of FD, (b) trends
of FD based on the Mann–Kendall trend test (c) and Sen’s slope of the FD (d) across China during the
1950~2020.

3.4.2. Temporal Variations

Interannual trends in FD across China from 1950 to 2020 were quantified at the 95%
confidence level based on the MK trend test and Sen’s slope method, as shown in Figure 6c,d.
As can be seen from Figure 6c, the trends of FD across China showed obvious regional
differences. Overall, the FD in the peripheral alpine regions of the Qinghai–Tibet Plateau,
Sichuan Basin, most of Yunnan Province, southern Guangxi Province, southern Guangdong
Province, Taiwan Province and Hainan Province did not show a significant decreasing
or increasing trend from 1950 to 2020. Except for the above-mentioned regions, all other
regions in China showed a significant decreasing trend in FD, and only a very few regions
showed a significant increasing trend in FD, indicating that the trends in FD across China
were dominated by significant increasing trends, which was consistent with the trends in
air temperature across China in the past decades.

Despite the clear regionalization of FD trends, the degree of increase or decrease in
FD varied widely across China. Except for some alpine regions on the periphery of the
Qinghai–Tibet Plateau, where an increasing trend in FD is seen, most regions in China
showed a decreasing trend in FD, with rates of variation in FD ranging from 0 to −6.7/10a.
The central and western parts of the Qinghai–Tibet Plateau, the middle and lower reaches of
the Yangtze River, the Huaihe River Basin, northern Inner Mongolia and northern Xinjiang
were the regions with the largest FD reduction rates.

3.5. Regional Interannual Trends and Variations in FFP and FD

The interannual trends and variations in FFP and FD for different climate zones were
calculated by averaging the data for all gridded annual FFP and annual FD within each
climate zone. Figure 7 shows the interannual trends and variations in FFP and FD across
China and different climate zones from 1950 to 2020. As can be from Figure 7a, the annual
FFP of China and different climate type zones showed a significant increasing trend, among
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which, the increase in FFP of SUMZ was the largest and the increase in FFP of TRMZ was
the smallest. The national average rate of increase in FFP was 1.25 d/10a, and the rate
of increase in FFP in SUMZ was 1.73 d/10a. The increase in annual FFP of China and
different climate type zones was SUMZ > TEMZ > China > TECZ > ALCZ > TRMZ in order.
Although the annual FFP showed an increasing trend across China and different climate
zones, the process of increase was simultaneously phased. It was clear from Figure 7a that
the FFP experienced a decreasing process for both China and the different climate zones
from 1950 to the 1970s and 1980s, and then maintained a continuous fluctuating increasing
trend from the 1970s and 1980s to the present. The phased variations in annual FFP across
China were consistent with the phased variations in surface temperature across China,
which was also consistent with the apparent warming of China from the 1970s and 1980s
onwards [68,69].

Figure 7. Interannual trends and variations of FFP and FD for China and different climate type
zones in China during the 1950~2020. k represents the degree of variation in annual FFP and FD,
respectively, i.e., the slope of the data variation. (a1–a6) Annual FFP; (b1–b6) Annual FD.

162



Remote Sens. 2022, 14, 2400

Contrary to the trends and variations of annual FFP across China and different climate
zones, except for the TRMZ, the annual FD showed a clear decreasing trend across China
and other climate zones, where the TEMZ was the climate zone with the greatest decrease
in FD. Despite the large interannual fluctuations in the FD of the TRMZ, the FD of the
TRMZ from 1950 to 2020 did not show a significant decreasing trend. The national average
rate of decrease in FD was −1.41 d/10a, and the rate of decrease in FD in SUMZ was
−1.72 d/10a. The degree of decrease in annual FD across China and different climate
zones was TEMZ > TECZ > SUMZ > China > ALCZ > TRMZ in order. Similarly, while
there was a general decreasing trend in FD across China and in different climate zones, the
decrease has been phased. It is clear from Figure 7b that the FD experienced an increasing
process for both China and the different climate zones from 1950 to the 1970s and 1980s,
and then maintained a continuous, fluctuating, decreasing trend from the 1970s and 1980s
to the present. The phased variations in FD across China were consistent with the phased
variations in air temperature across China, which was also consistent with the marked
warming of China from the 1970s and 1980s onwards.

Among the different climate zones in China, the SUMZ was the zone with the most
significant increase in FFP, while the TEMZ was the zone with the most significant decrease
in FD, indicating that the increase in FFP and the decrease in FD was not consistent
across China.

3.6. Regional Variation Differences in FFP and FD

In order to explore the degree of difference in the interannual variations of FFP and FD
across China, the coefficient of variation (Cv) of FFP and FD across China was calculated.
As can be seen from Figure 8, there were significant regional differences in the Cv of FFP
and FD across China. It was obvious that, except for the Tarim Basin, high-altitude regions
such as the Qinghai–Tibet Plateau, the Tianshan Mountains and the Altai Mountains were
the regions with the largest Cv in FFP, with Cv ranging from 0.3 to 8.4. In particular, the Cv
of FFP was even greater than 1 in the Kunlun Mountains in the northwestern part of the
Qinghai–Tibet Plateau, while the Cv of FFP in the rest of China was not very variable, with
Cv ranging from 0 to 0.3. Similarly, the Cv of FD across China also has obvious regional
differences, with the Sichuan Basin, South China and southern Tibet being the regions with
the largest Cv of FD, with a Cv of FD ranging from 0.3 to 8.4. In particular, the regions
near the Tropic of Cancer were the regions with the largest Cv of FD, with Cv of FD greater
than 1.

Figure 8. Comparison of the coefficient of variation (Cv) of FFP and FD across China from 1950~2020.
(a) Cv of FFP; (b) Cv of FD.

The obvious regional differences in the Cv of FFP and FD across China indicating that
the higher the altitude and lower the temperature, the greater the interannual variability
of FFP, while the higher the temperature, the greater the interannual variability of FD. In
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addition, since there was little FD in the tropical monsoon climate zone in China, the Cv of
FD in this region can be ignored.

Although the large regional variability exhibited by FFP and FD is related to regional
climatic characteristics, the variability in FFP and FD differs from the latitudinal zonality
and altitudinal dependence of climate. In particular, the spatial characteristics of FD
variability are hardly latitudinally zoned, and the large regional variability of FFP and
FD may have important implications for regional agricultural production, e.g., in the
subtropical monsoon region of southern China, an increase in FD may cause damage to
spring crops, which in turn may lead to reduced crop yields. Therefore, the large regional
variability of FFP and FD may indicate the instability of regional climatic characteristics
and regions where agrometeorological disasters occur more frequently to a certain extent.

4. Discussion

4.1. Uncertainty of ERA5-Land on the Quantification of FFP and FD

As can be seen from Figures 2a and 3a, the daily minimum Ts and Ta from ERA5-
Land correlate reasonably well with the daily minimum GST and TEM from DMDC
(V3.0). However, as can also be seen from Figures 2b–d and 3b–d, there is a clear regional
underestimation of the daily minimum Ts and Ta from ERA5-Land. Based on the four
evaluation indices, including the R2, NSE, MBE and RMSE, ERA5-Land is generally more
applicable to surface and air temperatures simulation in East China than in West China
and the Qinghai–Tibet Plateau, more applicable in flatter regions than in regions with high
altitude and complex terrain, and more applicable in regions with dense weather stations
than in regions with sparse weather stations. In particular, the southeast Qinghai–Tibet
Plateau is the region where the ERA5-Land underestimates daily minimum Ts and Ta most
significantly (Figures 2 and 3).

Studies have shown that the applicability of reanalysis dataset is poor in regions with
sparse meteorological stations and complex terrain, such as Northwest China and the
Qinghai–Tibet Plateau [43,70–73]. Reanalysis dataset is an important product of numerical
modelling, obtained by assimilating quality-controlled observations (including ground,
sounding, satellite, radar, buoy, aircraft, ships and other observations) into global or regional
numerical model calculations [74,75]. Therefore, the accuracy of the reanalysis dataset for
the simulation of land variables is reduced when ground-based or airborne observations
are scarce. In addition, considering the complex terrain of the southeastern Qinghai–Tibet
Plateau, the terrain height of the reanalysis dataset may differ from the actual altitude,
leading to a deviation in the surface and air temperatures between the reanalysis and the
in situ observed data [43]. In regions with complex terrain, the meteorological stations
are generally constructed at lower elevations in flatter river valleys [36], and the terrain
around the stations is highly undulating, with average elevations much higher than the
elevations of the meteorological stations, making the average surface and air temperatures
over a larger region much lower than those at lower elevations due to the temperature
lapse rate [43].

The underestimation of daily minimum surface and air temperatures in a reanalysis
dataset such as ERA5-Land is inevitable due to the scarcity of meteorological stations at
high altitudes on the southeastern Qinghai–Tibet Plateau. Consequently, it is inevitable
that the lack of ground-based meteorological stations on the southeastern Qinghai–Tibet
Plateau leads to a reduction in the simulation accuracy of the ERA5-Land reanalysis dataset,
which in turn leads to a reduction in the quantification accuracy of FFP and FD in this
region. In fact, high-altitude mountainous regions such as the southeastern Qinghai–Tibet
Plateau are not major crop production regions in China, so the uncertainty in the trends
and variations in FFP and FD in this region based on the ERA5-Land does not affect the
accuracy of quantifying the trends and variations in FFP and FD in China as a whole.

164



Remote Sens. 2022, 14, 2400

4.2. Effect of Variations in FFP and FD on Agriculture Production

As an important characteristic quantity of agro-climatic heat conditions, the FFP plays
a crucial role in agricultural production, especially in North China [31]. Generally, the
longer the FFP, the longer the growth period of crops, and the more conducive to the
development of agricultural production [30,31]. Under climate warming, the increase in
FFP leads to an increase in heat resources, and the increase in heat resources can prolong the
growth period of crops or increase agricultural biological yields per unit region [22,31,32,76].
Frost is a meteorological disaster that can cause serious damage to crop growth [34,77].
The decrease in FD reduces the risk of frost damage to crops and is extremely beneficial
to agricultural production [34,55]. The decrease in FD in North China has also led to a
further expansion of wheat cultivation northwards [78,79]. In summary, the increase in FFP
and the decrease in FD have had three main effects on agricultural production: firstly, the
increase in FFP has contributed to a longer crop growing period; secondly, the decrease
in FD has reduced the risk of extreme frost damage to crops; and thirdly, the increase in
FFP and the decrease in FD have contributed to an adjustment in the layout of agricultural
production to adapt to climate change.

However, the increase in FFP and the decrease in FD across China are the result of
climate warming [16] which is not entirely positive for agricultural production. Generally,
crops are divided into thermophilic crops such as rice and maize and chimonophilous crops
such as wheat and barley [80–82], where climate warming is beneficial to the growth of
thermophilic crops but detrimental to the growth of chimonophilous crops [81–84]. Studies
have shown that climate warming leads to a reduction in the yields of chimonophilous
crops such as barley on the Qinghai–Tibet Plateau, as it leads to a greater difference in
saturated water vapor pressure, which in turn reduces the stomatal conductivity of plant
leaves, reduces photosynthesis and ultimately leads to lower crop yields [85]. Climate
warming has led to a longer growing season for thermophilic crops, but also to a shorter
growing season for chimonophilous crops [81,82]. Therefore, when planning the layout of
agricultural production, it is necessary to expand the cultivation of thermophilic crops in
accordance with the increase in FFP and the decrease in FD, while shifting the cultivation
of chimonophilous crops to regions with lower temperatures, thus adjusting the layout of
agricultural production more scientifically in order to better adapt to climate change.

5. Conclusions

To investigate the trends and variations in FFP and FD across China under climate
change, this study conducted a quantitative statistics and trend test of the FFP and FD
across China from 1950 to 2020 based on the ERA5-Land reanalysis dataset. Although
the ERA5-Land simulations of daily minimum Ts and Ta are significantly underestimated
regionally in regions such as the southeastern Qinghai–Tibet Plateau with high altitude
and complex terrain, from a national perspective, the ERA5-Land has good applicability
for quantifying the trends and variations in FFP and FD.

The study revealed that both the annual mean minimum Ts and Ta showed a significant
increasing trend from 1950 to 2020, with particularly pronounced warming in Northeast
China, North China and northern Xinjiang, which has a lasting impact on the variations in
FFP and FD. Quantitative statistics and trend test of FFP and FD across China from 1950
to 2020 found that both FFP and FD showed significant latitudinal zonality and altitude
dependence, i.e., FFP decreased with increasing latitude and altitude, while FD increased
with increasing latitude and altitude; at the 95% confidence level, FFP generally showed an
increasing trend, while FD generally showed a decreasing trend across China, but there
were large spatial differences in the increase in FFP and decrease in FD between regions,
suggesting that the increase in FFP and decrease in FD was not entirely consistent in space.

For China as a whole, FFP showed a significant increasing trend with average in-
creasing rate of 1.25 d/10a, the maximum increasing rate of FFP in individual regions was
6.2 d/10a, while FD showed a significant decreasing trend with an average decreasing rate
of −1.41 d/10a, the maximum decreasing rate of FD in individual regions was −6.7 d/10a.
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Among the five major climate zones in China, the SUMZ was the region with the largest
increase in FFP, with a rate of 1.73/10a, while the TEMZ was the region with the largest
decrease in FD, with a rate of −1.72 d/10a. The variations in FFP and FD across China and
in different climate zones were phased, which was consistent with the phased variations of
surface and air temperatures across China over the past 70 years.

There is no denying that the variations in FFP and FD across China have a positive
impact on agricultural production, but the adaptability of different crop species to climate
change should also be considered when adjusting the layout of agricultural production to
make it better and more scientifically adapted to climate change.
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Abstract: One-dimensional (1D) hydraulic models have been extensively used to conduct flood
simulations for investigating flood depth and extent maps. However, the 1D models cannot simulate
many other flood characteristics, such as flood velocity, duration, arrival time and recession time
when the flow is not restricted within the channel. These flood characteristics cannot be disregarded
as they play an important role in developing flood mitigation and evacuation strategies. This study
formulates a two-dimensional (2D) hydrodynamic model combined with remote sensing (RS) and
geographic information system (GIS) approach to generate additional flood characteristic maps that
cannot be produced with 1D models. The model was applied to a transboundary river of Deg Nullah
in Pakistan to simulate an extreme flood event experience in 2014. The flood extent images from
the moderate resolution imaging spectroradiometer (MODIS) and observed flood extents were used
to evaluate the model performance. Moreover, an entropy distance-based approach was proposed
to facilitate the integrated multivariate flood vulnerability classification. The simulated 2D flood
modeling results showed a good agreement with the flood extents registered by MODIS and the
observed ones. The northwest parts of Deg Nullah near Seowal, Dullam Kahalwan and Zafarwal
were the most vulnerable areas due to high flood depths and prolonged flooding duration. Whereas
high flood velocities, short flood arrival time, prolonged flood duration and recession times were
observed in the upper reach of Deg Nullah thereby making it the most susceptible, critical and
vulnerable region to flooding events.

Keywords: HEC-RAS 2D model; flood characterization; flood vulnerability; flood hazard maps;
Deg Nullah

1. Introduction

Floods are considered the most devastating hazard all over the world. Floods claim
more loss of life than any other hydrometeorological disasters [1], and negatively affect
the socioeconomic development of many countries [2]. Moreover, the frequency and
intensity of these flood events are increasing in many regions around the world, making
it a problem of major concern in the sustainable development of countries vulnerable to
flooding events [3]. The main reason behind these unprecedented flood events is the rise in
temperature and precipitation since the 1950s due to anthropogenic activities and increased
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rates of greenhouse gas emission [4]. Moreover, the increase in population growth rate and
urbanization led to increased impervious areas and increased runoff due to the reduced
infiltration [5]. Recent flood events are becoming more frequent and severe in Pakistan due
to the population growth and increasing anthropogenic activities in the floodplains [6].

Pakistan faces almost one major flood event every three years [7] and drought-like
conditions every six years [8], which is one of the main challenges to the country’s sus-
tainable economic development. Pakistan faced the worst flood event of its history in
2010 [9]. Scientists from the World Climate Research Program and World Meteorological
Organization (WMO) stated that climate change was one of the main reasons behind this
unprecedented sequence of weather events in Pakistan [10]. Moreover, a United Nations
(UN) based scientific body stated that the hot extremes, heat waves and heavy precipitation
events are expected to be more frequent and intense in the future in this country [11]. WMO
also qualified the assessments that the flood event of 2010 fit the sequence as predicted by
climate experts and stated that these events match the projections of more frequent and
intense climatic events due to global warming [12].

In recent years, remote sensing (RS) and geographic information systems (GIS) played
an important role in presenting and validating the flood risk and hazard mapping re-
sults [13,14]. RS and GIS are considered effective geospatial tools assisting in preparing
the flood characteristic maps and their impacts on the environmental, social and economic
aspects [15]. These geospatial tools have been extensively used to map the results of sim-
ulation models of past flood events such as flood inundation extents, flood levels and
to identify the critical facilities at risk [16,17]. These tools also support developing the
flood forecasting and early warning systems in flood-prone areas, which are helpful in
flood hazard management and preparedness planning [18,19]. RS is an important tool in
acquiring the data required to formulate and validate the flood model result, flood risk
assessment and to identify the infrastructure at risk (e.g., health and education facilities,
transportation infrastructure, urban and commercial areas, etc.). Whereas, use of GIS helps
in developing automated flood models and flood risk investigations (identification of urban
areas, settlements and agricultural lands to different stages of floods), to generate flood
inundation maps and to conduct other statistical analyses that may be useful in developing
the flood disaster management strategies at various levels of flood events [20]. For instance,
the analytical hierarchy process (AHP) method and a geographical information system
(GIS) were utilized to create the flood hazard assessment map in the burned and urban
areas of central Greece [21].

Assessment of flood risk and management practices is important in identifying the
flood hazards, flood-prone areas and future mitigation strategies [22]. Understanding the
characteristics of floods is essential in developing flood management action plans and
analyzing the impact of various proposed management measures. In situ observations of
flood events are the simplest ways to interpret the flood risk [23]. However, in situ obser-
vations of the floods are not available in many cases in developing countries. Moreover,
flood analysis based on these observations is limited to specific flood events. Therefore,
one of the other ways to conduct flood risk modeling studies is to use the RS data [24,25].
However, flood events usually occur under cloudy conditions, limiting the application
of remotely sensed data in the visible and infrared spectrum due to visibility issues [26].
Therefore, these observation maps cannot be used directly to predict future flood events
and to analyze the efficacy of various structural measures in developing flood mitigation
strategies. The numerical models are considered more suitable for the simulation and pre-
diction of flood events. Moreover, in many previous studies, numerical models have been
efficiently applied to simulate flood events and investigate the flood hazards to develop
management strategies [27–29].
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Both one-dimensional (1D) and two-dimensional (2D) numerical hydrodynamic mod-
els combined with RS and GIS approaches have been extensively used in numerous studies
for simulating flood events and risk assessment [4,25,30]. Although 1D flood models can
be used for simulating the water levels and discharges when the flow is restricted within
the channels [31,32], these models present many limitations when applied for simulating
the overflow conditions. Moreover, methodologies used by 1D flood models are limited to
generating flood hazard and depth maps. Flood depth maps are considered the primary
input in evaluating flood impacts. However, additional flood characteristic maps, i.e., flood
velocities, flood arrival times, flood duration and flood recession times, cannot be disre-
garded as they play an important role in the detailed design and analysis stages of flood
mitigation studies [20]. For instance, high flood velocities with a longer flood duration can
damage the flood mitigation structures and result in erosion and water pollution, which
may cause environmental degradation, economic and life losses [33]. Awadallah et al. [34]
used the LiDAR datasets in the HEC-RAS 2D model for comparing the flood inundations
maps using the bathymetric and topographic terrain models in Norway. Therefore, the use
of 2D models becomes indispensable to address the above-mentioned issues.

In previous studies, several researchers have used the 2D hydrodynamic models to
assess flood risks and develop flood mitigation strategies. For instance, Santillan et al. [20]
applied an integrated RS, GIS and 2D hydrodynamic modeling approach to generate flood
characteristic maps, i.e., flood velocity, arrival time, flood duration and recession time, for
improved flood disaster management in the Philippines. Quiroga et al. [31] used a 2D
numerical model to perform the unsteady flow analysis and compared the model results
with the satellite imagery in the floodplains of Bolivian Amazonia, Brazil. In another study,
an integrated 1D/2D hydrodynamic model was applied to generate the flood hazard maps
and velocities in the floodplains of the Musi river basin of Indonesia [35]. Bhandari et al. [4]
employed the 2D hydrodynamic modeling approach to perform the unsteady flow analysis
and flood inundation mapping to outline the flood-prone areas in the lower reaches of the
Brazos river basin, USA. Elkhrachy [36] used the remote sensing images as independent
variables in the HEC-RAS 2D simulation model to estimate the post-flash flood event
depths of 24–26 April 2018 in New Cairo, Egypt. Moreover, 2D hydrodynamic modeling
approaches combined with RS and GIS have been applied since the release of the HEC-RAS
2D model in different regions of the world to investigate the flood events and to develop
mitigation strategies [37–42].

Even with the extensive flood simulations using the hydrodynamic models to generate
the flood hazard and depth maps, it is almost impossible for the decision-makers to
develop flood mitigation and management strategies without analyzing the vulnerability of
different elements at risk in the floodplains [43]. The concept of vulnerability has changed
drastically in various disaster management studies based on their objectives. Consequently,
several attempts were made to define the term vulnerability. For instance, Cutter [44]
defined vulnerability as a hazard that includes natural risks and human response to these
risks. However, Mitchell [45] stated that vulnerability is the degree of loss to a given
element at risk (or set of elements) resulting from a given hazard at a given severity
level. Moreover, Merz et al. [46] and Salami et al. [47] stated that it is a function of the
vulnerability definition to elements at risk, exposure and susceptibility. The vulnerability of
different elements (e.g., road networks, bridges, urban areas/settlements, etc.) at risk in the
floodplains largely depends on water depth, flood velocities and duration of flooding [48].
Santillan et al. [20] categorized the levels of the flood hazard based on maximum depths into
three classes, i.e., low (<0.5 m depth), medium (0.5–1.5 m depth) and high (>1.5 m depth) for
the residential buildings. However, in most of the previous studies, flood extents and water
depth were considered; whereas the flood variables such as flow velocities, flood duration
and recession times were discussed only in a few studies [31,49]. For instance, Balijepalli
and Oppong [50] suggested that the flood velocities of less than 2–3 m/s do not affect
the physical infrastructure (e.g., road networks, bridges and urban areas/settlements) in
floodplains. However, to the best of the author’s knowledge, no study has been conducted
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that performs the multivariate flood vulnerability analysis by using a 2D hydrodynamic
flood modeling approach. Moreover, no flood research has been carried out by using an
integrated RS-GIS and 2D hydrodynamic modeling approach together with vulnerability
analysis in Pakistan to generate flood characteristics other than depth for developing flood
management strategies.

Therefore, this study aims to simulate an extreme flood event with a return period of
200 years in Deg Nullah of Pakistan using an integrated RS-GIS and a 2D hydrodynamic
modeling approach to generate the additional flood characteristic maps, i.e., flood velocities,
arrival times, duration and flood recession times. The study area is subjected to frequent
floods and result in disruption of socio-economic activities. Moreover, flood vulnerability
analysis was performed to investigate the sensitivity of roads, railway tracks and urban
areas/settlements at risk to different flood variables such as flood depths, velocities, arrival
times, duration and recession times in the study area. Therefore, it is believed that the
results of the present study would help develop improved flood management strategies.

2. Study Area

Deg Nullah, a natural drain in Rachna Doab of Punjab province, was analyzed to
simulate the 2014 major flood event. Two streams, Divak and Basenter join together in the
Indian Administered Kashmir to form Deg Nullah before diverting into Pakistan near Lehri
check post, located in the northeast of Narowal district. Deg Nullah is a straight twisted
channel with wide and shallow cross-sections and uneven slopes. Flows of Deg Nullah
often overspill during the monsoon season as its banks are not high enough to pass the large
discharges. There is a reach of 75 km from Kingra-more to the Bambanwala-Ravi-Bedian
(BRB) canal, as shown in Figure 1. Deg Nullah mostly remains dry, but carries a large
volume of flows during monsoon season. The catchment of Deg Nullah receives most of
the precipitation in summer (July to September) [51]. This heavy precipitation resulted
from the combined effects of the monsoon precipitation regime from the Arabian Sea and
Bay of Bengal, making it a meteorological complex region. Precipitation over the catchment
of Deg Nullah causes high flow peaks during the monsoon season and the deteriorated
condition of shallow banks intensifies the flooding problem and affects the road networks,
urban areas, settlements, agricultural lands, etc.

 

Figure 1. Location of the study area.
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In 2014, Deg Nullah experienced one of the worst flood events of its history and
caused severe damage to its surrounding areas. A peak flood of 2050 m3/s with a return
level of 200 years was observed in Deg Nullah on 6 September 2014 [52]. Therefore, water
overflowed from the banks of the Nullah and caused submergence in Zafarwal city, Qila
Ahmedabad town and 55 villages around Deg Nullah. This flood event caused the displace-
ment of a vast population from urban areas/settlements, road networks were damaged
due to submergence and negatively affected the standing crops over a large area. Moreover,
more than 25 health centers and 104 government schools were submerged [53]. Residents
of this area blamed the Deg Nullah authorities for not providing accurate information
regarding the flood events. Therefore, accurate evaluations of the flood extents, depth, ve-
locity, arrival and recession times are essential for developing improved flood management
strategies in this region.

3. Materials and Methods

3.1. Numerical Model

This study used a 2D hydrodynamic model (HEC-RASv5) due to its various advan-
tages over 1D models. For instance, 1D flood models are considered suitable when the
flow is restricted within the channel. However, when the overflow conditions prevail, it
limits the applicability of 1D flood models in simulating flood characteristics and defining
the flood flow directions. It is not always realistic to define the flow paths or directions
in the floodplains, e.g., in flat areas with large variations in water levels, 1D models do
not provide any information regarding the velocity distribution when the water leaves the
main channel to the floodplains. However, these limitations can be efficiently addressed
by 2D hydrodynamic flood modeling. These flood models can simulate additional flood
characteristics such as flood arrival times, flood velocities, flood duration and flood reces-
sion times [54]. Moreover, remotely sensed datasets have been extensively used with the
HEC-RAS 2D model to simulate, validate and forecast flood events in different regions of
the world [16,20,34,36].

Therefore, a 2D hydrodynamic model (HEC-RAS 2D) developed by the USACE, was
used to simulate the selected flood events in the Deg Nullah catchment area. This model
solved either the full 2D Saint-Venant equations or 2D diffusive equation as given below:
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where represents the surface elevation (m); p and q represent the specific flows in the x and
y directions (m2/s); h depicts the depth of water (m); g is the acceleration due to gravity
(m/s2); n is the Manning roughness coefficient, q represents the density of water (kg/m3);
sxx, syy and sxy are the components of the effective shear stress and f is the Coriolis (s−1) [31].

3.2. Overall View of the Research Approach

Numerical simulations of physical processes are considered efficient through an itera-
tive development of the model. The accuracy of the numerical models depends upon the
quality of the available data and hydrologic understanding of the problem being investi-
gated. A brief description of the study approach being adopted to achieve the objectives is
presented in the flowchart (Figure 2) and described in the subsequent paragraphs.
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Figure 2. Overall summary of steps of methodology in the form of a flowchart.

The flow hydrographs of Deg Nullah at Kingra bridge station were collected from the
Punjab Irrigation Department for the monsoon periods from 2014–2017 (Figure 3). The
hydrograph data comprises an interval of one day. Among the collected hydrographs, the
2014 flood was the severest and was considered for flood analysis. The flow hydrograph of
the Kingra bridge was used as the upstream boundary condition in the model.

The Shuttle Radar Topography Mission (SRTM) data are considered efficient in model-
ing the hydrological and hydraulic processes because of their free availability, homogeneity
and consistency [55]. Therefore, the present study explores the hydrological modeling with
the SRTM digital elevation model (DEM). The DEM with a resolution of 12.5 × 12.5 m
was used. River cross-sections were considered the major input in both the 1D and 2D
hydraulic modeling. The DEM was integrated with the observed cross-sections collected
from the Punjab Irrigation Department at 53 locations across the Deg Nullah (Figure 4).
The accuracy of the 2D hydrodynamic flood model, to analyze the water flow within the
channel and floodplains (overflow conditions) was improved by integrating the DEM with
the field observed cross-sections [20] and after that the study area was clipped from the
DEM for further analysis. The DEM was then converted to a triangular irregular network
(TIN) surface model whose surface does not deviate from the input raster. The DEM of the
study area, along with the river cross-sections, is presented in Figure 4.

HEC-GeoRAS is a GIS extension designed to process geospatial data, allowing users
to create an HEC-RAS import file containing geometric data. The results of the water

176



Remote Sens. 2022, 14, 2138

surface profiles can be interpreted to examine the flood depths and extents. In this study,
preprocessing was conducted in HEC-GeoRAS to generate the model files. Afterward, the
HEC-GeoRAS file consisting of geometric data was imported to HEC-RAS to perform the
hydraulic computations.

 
Figure 3. Observed flow hydrographs at Kingra bridge during monsoon periods of 2014–2017.

HEC-RAS model can either be used as an integrated 1D–2D model or as a fully 2D
model to simulate the main rivers and floodplains, respectively. Although an integrated
1D–2D model might be faster compared to only the 2D modeling engine, it is necessary
to define the connections of overflow locations between the 1D and 2D modules. In this
study, a fully hydrodynamic 2D model was used, as the connections of overflow locations
were unknown. The computational model domain (2D flow area) area was approximately
888 km2. This area was discretized into 100 × 100 m size cells/grids. The model was run
from 1 July 2014 to 7 October 2014 at a time step of 1 min, whereas output results were
generated at 1-h intervals. Moreover, two types of boundary conditions were used in the
2D hydraulic model, i.e., inflow hydrograph as an upstream boundary condition at Kingra
bridge of Deg Nullah and average riverbed slope was considered as the downstream
boundary condition.

To compare the model-generated flood map with the observed flood extents (Table 1),
the MODIS extent images were downloaded from https://modis.gsfc.nasa.gov/data/
(accessed on 28 March 2019) for the monsoon period of 2014. In addition, two field visits
were also conducted on 30 April 2019 and 15 May 2019 to collect the flood extents data at a
few locations to verify the model simulated flood maps, ground-truthing of settlements
and riverbed elevations by using GPS, and interviewing the locals and personnel from the
irrigation department. A total of 32 imageries were downloaded from MODIS and a map
showing the maximum extent was selected for the comparison of results.

Table 1. Observed flood extent locations.

Location No. Longitude (E) Latitude (N)

1 74◦53′12.97′ ′ 32◦18′39.65′ ′
2 74◦51′55.39′ ′ 32◦14′15.79′ ′
3 74◦48′1.75′ ′ 32◦22′22.1′ ′
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Figure 4. Observed river cross-sections, location of Deg Nullah and DEM of the study area.

3.3. Flood Vulnerability Analysis

In this study, first, we digitized all the road networks, railway tracks and urban
areas/settlements within the study area by using the satellite imageries (Google Earth Pro)
and further verified their locations during the field visits, as shown in Figure 5. Secondly,
various flood characteristic maps, i.e., flood depths, velocities, arrival times, duration
and recession times, were superimposed on the digitized maps of the road networks and
urban areas/settlements to investigate the flood risks at different locations in the study
area. The details regarding the flood hazard classification based on flood depth, velocity,
arrival time and duration are presented in Table 2 [31,50,56,57]. Moreover, the details
regarding important urban areas (cities, villages, etc.) and road networks in the study area
are presented in Table 3.

Table 2. Flood hazard classification based on maximum depth, velocity, duration and arrival
time [26,44,51,52].

Hazard Level Depth (m) Velocity (m/s) Duration (h) Arrival Time (h)

Very low <0.50 <1 <20 <14
Low 0.50–1.0 1–2 20–40 14–28

Medium 1.0–2.0 2–3.8 40–60 28–42
High 2.0–5.0 3.8–5.8 60–80 42–56

Extreme >5.0 >5.8 >80 56–70
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Table 3. Detaild of important locations (cities, villages, etc.) and road networks in the study area.

Sr. No.

Important Locations Road Networks

ID on Map Name of Location ID on Map Name of Road
Length of
Road (km)

1 1 Kamalpur Bajwa A Pasrur road 29.0
2 2 Seowal B Chawinda road 28.5
3 3 Dullam Kahalwan C Gujranwala-Pasrur 19.1
4 4 Shahzada D Pasrur-Zafarwal 16.6
5 5 Kotli Haji Pur E Narowal road 20.3
6 6 Ahmad Abad F Kalasawala road 16.3
7 7 Dodha G Muridke road 12.1
8 8 Talwandi Bhindran H MirakPur road 16.2
9 9 Satrah Sandhuan I Nonar road 6.5
10 10 Pasrur J Daska road 10.2
11 11 Chawinda
12 12 Zafarwal

Figure 5. Digitized locations of the road networks and urban areas/settlements.

3.4. Multivariate Flood Vulnerability Classification

Once the standard values of the flood hazard level, i.e., very low, low, medium, high
and extreme, of different flood variables, i.e., depth, velocity, arrival time and duration, were
selected along with all the related information (Table 2), the entropy distance-based multi-
variate flood vulnerability classification was performed by using the following approach.

Let Sij be the standard value of hazard level i of the jth flood variable, and Pjk is the
value of the jth flood variable at location k.

Where i = ith hazard level = 1, 2, . . . , 5; j = jth flood variable = 1, 2, . . . , 4 and k = kth
location = 1, 2, . . . , 383.

Normalization of Sij and Pjk was performed to avoid any dimension-related issues by
using Equations (4) and (5), respectively.

Nij =
abs

(
Sij

)
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179



Remote Sens. 2022, 14, 2138

After that, difference of the normalized values and entropy-based weights were
calculated by using the following equations

djk = Mjk − Nij (6)

wj =
ej

∑4
j=1 ej

(7)

in which

ej = 1 −
[ −1

ln(N)∑
n=383
k=1 Mjk ln

(
Mjk

)]
(8)

Finally, the entropy-based distance is calculated by using the following equation.
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)2
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where wj is the entropy-based weight assigned to individual flood variables. Dk is the
weighted Euclidean distance between the standard value of flood hazard level and the
value obtained at different locations. A minimum value of the entropy-based distance of
flood hazard level at a selected location represents the hazard level.

4. Results

4.1. Model Performance Evaluation

The performance of the HEC-RAS 2D model was evaluated by comparing the model
simulated flood extents with the satellite image registered by MODIS on 6 September
2014. Moreover, two field visits were also conducted to identify the flood extents at three
locations in the study area as shown in Figure 6 and summarized in Table 1. The image from
6 September 2014 was selected based on its maximum flood extents for calibration. Flood
extents registered by MODIS and the simulated flood extents by the HEC-RASv5 model,
along with the observed flood extents, are presented in Figure 6. It is clear from Figure 6
that the model simulated flood extents were consistent with the MODIS registered flood
extents and the observed ones. The simulated flood extent was found 6% less compared to
the flood extents obtained from the satellite image, which is considered acceptable due to
the complexity of the system.

Figure 6. Comparison of model results with MODIS extents and observed flood marks.

4.2. Model Performance Evaluation

After successfully comparing the model results with the satellite imageries and ob-
served flood extents, the HEC-RAS model was simulated to generate the flood characteristic
maps of flood depths, velocities, arrival times, duration and recessions times. These flood
characteristic maps are briefly discussed in the subsequent sections.
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4.2.1. Maximum Flood Depths

The maximum flood depth map was generated using the 2D hydraulic model, as
shown in Figure 7. This map was generated by considering the maximum depth of water in
each cell during the simulation period regardless of the time when this depth was achieved.
It was observed that the majority of the flooded areas north of the Deg Nullah have water
depths of less than 1 m. Whereas the lower parts of the Deg Nullah have depths ranging
from 0.5 m to 2 m. The most extreme flood depths were observed in the northeast part of
the study area. However, these cells represent a small portion of the area compared to the
rest of the wet cells. This map of flood depths can be useful in flood preparedness strategies
and in developing evacuation plans when a flood of the same magnitude is expected to
occur. This map can also help identify the areas required to be alerted or need emergency
evacuation before future flood events. Moreover, the map of the maximum flood depths
(Figure 7) can also be evaluated based on the various flood hazard levels. For instance,
upstream reaches of the Deg Nullah experienced extreme flood hazards compared to the
lower reaches as the flooded water overflowing from the channel spread over vast areas.

 

Figure 7. Map of the flood based on the maximum flood depths.

4.2.2. Maximum Flood Velocities

In addition to flood extent and depth maps, the HEC-RAS 2D model has the capability
to generate velocity maps to depict the flood velocity at various locations in the study area
as shown in Figure 8. The map of flood velocities would explain how fast the flood water
will reach a particular location and thereby helps in developing flood mitigation strategies
and evacuation planning. In most of the areas above the Deg Nullah, flood velocities vary
between 0 to 1 m/s; whereas, in the western parts of the study area, the flood velocities
were less than 0.5 m/s. Therefore, these areas are not expected to face severe flood risks
due to flood velocities. However, flood velocities in the south of Deg Nullah vary from
0.5 to 1.5 m/s. At the upper reaches of Deg Nullah near Kingra bridge, flood velocities
of more than 1.5 m/s were also observed. Such high flood velocities cause more water
overflows from this point. Moreover, the areas with flood velocities of about 1 m/s or
higher may pose additional hazards and evacuation will be more problematic due to the
flash nature of flooding. These maps of flood velocities indicate the level of harm to which
a community is exposed; therefore, they play an important role in developing flood risk
management strategies.
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Figure 8. Map of the maximum flood velocities.

4.2.3. Flood Arrival Times

The maps of flood arrival times represent the model computed time from a speci-
fied simulation time when the water depth at a location reaches a specified inundation
depth [54]. In this study, a flood arrival time map was generated in hours when a location is
inundated at maximum depth (Figure 9). Most of the areas in the upper reaches of Deg Nul-
lah achieved the maximum inundation depths within the first fourteen (14) hours. Whereas
the lower reaches of the study area become flooded after 28 h from initiation of the flood
event and so on. This implies that the areas in the upper reaches of the Deg Nullah are more
vulnerable to floods and require a swifter evacuation response to flooding. These maps of
flood arrival times are helpful in developing flood management and evacuation strategies.

 

Figure 9. Map showing flood arrival times from the start of the simulation period at different locations
of the study area.

4.2.4. Flood Duration

Figure 10 showed the flood duration map for the study. This map helps to understand
the flood propagation in the areas that remain flooded for an extended duration. These
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maps are considered very useful in estimating the time required for a flood-affected com-
munity to return to their respective areas and in assessing the flood damages to crops, road
networks and other critical facilities located in the area. Figure 10 showed that most of the
areas in the upper reaches remain flooded for more than 80 h. However, flood durations
decreased in the areas of lower reaches of Deg Nullah.

 

Figure 10. Map of flood duration at different locations of the study area.

4.2.5. Flood Recession Times

The map of flood recession times is presented in Figure 11. This map represents
the number of hours that floodwater required to recede from different locations in the
study area. The map of flood recession time generated showed that the flood-affected area
required about 99 h to completely recede the inundation area generated due to the flood
event of 2014. However, this duration decreased at locations far from the mainstream of
Deg Nullah. This map has the same importance as flood duration in developing flood
mitigation and management strategies.

 

Figure 11. Map of flood recession times at different locations in the study area.
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4.3. Flood Vulnerability Analysis

Physical infrastructure (e.g., road networks, railway tracks and urban areas/settlements)
in the floodplains was considered to determine their vulnerability to flooding. The road
networks and urban areas/settlements were digitized using the satellite imageries (Google
Earth Pro) and later verified during the field visits. A total of 381 polygons of urban
areas/settlements were marked in the study area. These polygons cover a total urban
area/settlements of 47 km2, which is about 6% of the entire study area. Whereas the
total length of road networks in the study area was about 175 km connecting these ur-
ban areas/settlements and other major cities. The spatial flood characteristic maps, such
as flood depths, velocities, arrival time, duration and recession time generated from the
model for the flood event of September 2014, were superimposed on the maps of urban
areas/settlements and road networks for vulnerability analysis. The results of the flood
vulnerabilities to urban areas/settlements and road networks for various flood charac-
teristic maps are presented in Figure 12. The flood vulnerability map is self-explanatory;
however, flood hazard levels to maximum water depths and velocities are explained in
the subsequent paragraph based on the water depths and velocities around the urban
areas/settlements and road networks. Different flood hazard levels based on maximum
depths are presented in Table 2.

 

Figure 12. Multivariate flood hazard classification map along with the urban areas/settlements and
road networks.

5. Discussion

Flooding events can significantly impact economic conditions and even threaten human
life. These events are considered as the most disastrous among the hydro-meteorological
hazards [58]. Hence, investigation of these events is highly important in developing mitiga-
tion strategies to reduce their negative impacts on human life and infrastructure. Flood
simulation through hydraulic models has been extensively used for this purpose. The
present research used the HEC-RAS 2D model for simulating an extreme flood event ob-
served in a transboundary Deg Nullah which often experiences floods during the monsoon
season and results in economic and human life loss. However, before the application
of the model to generate flood characteristic maps, such as flood depth, velocity, arrival
time, duration and recession time, the model simulated flood extents were compared with
the extents registered by MODIS and later verified during the field visits. The model
simulated flood showed good performance when compared with a satellite image of the
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flood event [31]. The flood extent area simulated by the model was about 6% less than
that as registered by MODIS extents. However, during the field visits, maximum flooding
extents were verified by observations and discussions with locals at three different locations
(Figure 6). Moreover, previous studies [27,59,60] confirmed the acceptability of the present
study results in which the model simulated flood areas were found to be less compared to
that of the satellite imageries. This reduction in the model simulated areas compared to
satellite imageries may be due to the courser DEM resolution [61] and due to the limitations
of the HEC-RAS sub-grid configuration to produce a continuous inundation pattern that
restricts the calculation of flood extent and the distribution of local water depth values [61].
Therefore, further studies may be carried out using the high-resolution DEM for improved
model performance.

The maps of various flood characteristics such as flood depths, velocities, arrival times,
duration and recession times were prepared to evaluate their distribution in the study area
for an extreme flood event of 2050 m3/s [52]. The flood depth allows identifying areas
exposed to different hazard levels. In most of the areas located in the northern part of
Deg Nullah, the flood depths are less than 1 m whereas in its southern parts depth varies
between 0.5–2 m, thereby posing low and low medium threats, respectively [56]. However,
results have demonstrated that most of the settlements are constructed in the flood prone
areas, which necessitates proactive planning and selection of the proper construction rules
for the prevention and mitigation of the consequences of flood hazards. Over most of
the flooded area, the water velocity was less than 0.1 m/s. However, water velocity in
the south of Deg Nullah varies between 1–1.5 m/s, whereas at Kingra bridge it exceeds
1.5 m/s (Figure 8). The evacuation process may become difficult in areas with floodwater
velocities of more than 1 m/s [57]. Flood arrival times at particular locations are one of
the major variables along with velocity, depth, safe locations, etc., used to prepare the
evacuation strategies [62]. The floodwater in the upper reaches of Deg Nullah attains the
maximum depth within the first 14 h after the overflow condition, whereas in lower parts
of the study area, it took more than 28 h and thereby, hazard levels are classified as low to
medium [47]. The north part of the study area is the most exposed to the flood; it showed a
larger flood extent, longer flood duration and deeper water depth. The flood that threatens
the Seowal and Dullam-Kahalwan towns originates from the Kingra bridge, where the safe
carrying capacity of the channel is only 280 m3/s [53]. The flood from the north gets close
to Seowal hours after it begins to overflow, while it takes one day for the flood to reach the
southern parts of the study area when the channel begins to overflow. Moreover, the flood
in the north region is deeper than the flood in the south, the flood from the north begins
to flood before the south. Therefore, flood hazard levels are higher in the northern region
compared to the south and required efficient flood mitigation strategies. The study showed
the applicability and the value of the 2D capabilities of the new HEC-RAS for flood studies.

Flood vulnerability of settlements and road networks to maximum water depths is
presented in Figure 12. It is recorded that the vast majority of road networks are vulnerable
to medium to high flood risks and may reduce the accessibility to certain parts of the areas or
in the extreme, they may remain completely cut off from the rest until the affected links are
revived [21]. Therefore, the vulnerability of road networks along with the urban areas and
settlements to flood events was investigated by superimposing their digitized maps over
the flood characteristic maps. The settlements in the upper reaches experienced medium to
extreme flood hazard levels based on the water depths. However, these hazards decreased
gradually as the flood water arrived in the lower reaches of Deg Nullah. Moreover,
Balijepalli and Oppong [50] stated that the physical infrastructure (roads, bridges and
buildings) is not subjected to severe damage for velocities below 2–3 m/s. In most areas,
flood velocities are lower than 3 m/s and only a few locations in the upper reaches of Deg
Nullah are experiencing flood velocities of more than 3 m/s as shown in Figure 8. However,
the vulnerability of different infrastructures needs to be evaluated by considering the flood
depths and velocities together. Therefore, multivariate flood vulnerability classification
was performed to assess the combined effect of different flood variables (i.e., flood depth,
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velocity, arrival time and duration and recession times) at various locations in the study
area. Most of the study area lies within the medium hazard levels; however, upper and
middle reaches near the channel pose high to extreme threats (Figure 12). Therefore,
detailed studies related to the level of extreme events and the vulnerability of the exposed
elements at risk (i.e., urban areas/settlements) will help propose the proper protection
measures [63]. Moreover, the appropriate mitigation or hazard reduction approaches can
be more effectively designed and applied. Furthermore, the awareness of the non-safe
regions related to flood hazards might be helpful in emergency preparedness planning.

Therefore, scientists, engineers, stakeholders, planners and decision-makers may
utilize the proposed approach in forthcoming spatial planning projects [64,65]. Additionally,
the local authorities may use the produced map to guide the adoption of measures and
strategies aiming toward flood hazard mitigation and post-fire management. The present
study was limited to simulating the flood event of 2014 with return levels of 200 years.
Further studies may be carried out for the floods of different return periods to develop
flood mitigation strategies. Moreover, sediment and riverbed morphology may be included
in the simulation for detailed investigation in future studies.

6. Conclusions

In this study, the extreme flood event of 6 September 2014 of Deg Nullah was simulated
using a 2D HEC-RAS hydrodynamic model. The model simulated results showed a good
agreement with flood extents registered by satellite images (MODIS) and observed flood
extents. Moreover, flood characteristics, including depth, velocity, arrival time, duration
and recession time, were generated by the HEC-RAS 2D model. Model simulated flood
extents were found consistent with the flood extents registered by MODIS along with the
field observed flood extents. Model simulated flood extent area was found 6% less than the
flood extents obtained from the satellite image, which is considered acceptable.

The results of this study showed that the northwest parts of Deg Nullah near Seowal
(ID-2), Dullam Kahalwan (ID-3) and Zafarwal (ID-12) were found most hazardous due to
high flood depths and longer flood duration. Therefore, these areas are considered the
most critical for evacuation. The flood velocities were found to be less than 1.5 m/s at
most of the study area locations, thereby posing no serious threats due to the low velocity
of the floodwater. However, in the upper reaches of Deg Nullah, floodwater velocities of
greater than 2 m/s were observed. Moreover, flood duration in this region was also the
longest among the rest of the areas. Therefore, high flood depths, flood velocities, longer
flood duration and recession times and less flood arrival times make it the most critical and
sensitive region to future flood events.

The present study analyzes the flood vulnerability of residential areas and road
networks in the floodplains of Deg Nullah. Based on the hydrodynamic flood modeling
results, it is noticeable that most of the residential areas and transportation infrastructure
currently exists in medium to high flood risk zones and are likely to be exposed to future
flood hazards of the same or more magnitudes. However, it was observed that the areas
lying in the upper reaches of Deg Nullah were exposed to severe flood hazards due to high
flood depths and velocities, faster flood arrival times, longer flood duration and recession
times. Moreover, most of the urban areas/settlements in the middle and lower reaches
of Deg Nullah were categorized in the range of low to medium hazard levels and the
population may be considered safe inside their homes. Similarly, the road networks in the
upper reaches were subjected to high flood depths and velocities which may influence the
evacuation. The study showed that the HEC-RAS 2D model is an effective tool for studying
and assessing the risk of flood events by coupling it with MODIS and other RS data in
areas with little or no post-flood event information available. Future applications of the
HEC-RAS 2D model with high-resolution DEM and other observed high floodwater marks
may help analyze possible flood management strategies.
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Abstract: This study adopts a two-way approach to CORDEX-CORE RegCM4-7 seasonal precipitation
simulations’ Added Value (AV) analysis over Africa, which aims to quantify potential improvements
introduced by the downscaling approach at high and low resolution, using satellite-based obser-
vational products. The results show that RegCM4-7 does add value to its driving Global Climate
Models (GCMs) with a positive Added Value Coverage (AVC) ranging between 20 and 60% at high
resolution, depending on the season and the boundary conditions. At low resolution, the results
indicate an increase in the positive AVC by up to 20% compared to the high-resolution results, with
an up to 8% decrease for instances where an increase is not observed. Typical climate zones such as
West Africa, Central Africa, and Southern East Africa, where improvements by Regional Climate
Models (RCMs) are expected due to strong dependence on mesoscale and fine-scale features, show
positive AVC greater than 20%, regardless of the season and the driving GCM. These findings provide
more evidence for confirming the hypothesis that the RCMs AV is influenced by their internal physics
rather than being the product of a mere disaggregation of large-scale features provided by GCMs.
Although the results show some dependencies to the driving GCMs relating to their equilibrium
climate sensitivity nature, the findings at low resolutions similar to the native GCM resolutions make
the influence of internal physics more important. The findings also feature the CORDEX-CORE
RegCM4-7 precipitation simulations’ potential in bridging the quality and resolution gap between
coarse GCMs and high-resolution remote sensing datasets. Even if further post-processing activities,
such as bias correction, may still be needed to remove persistent biases at high resolution, using
upscaled RCMs as an alternative to GCMs for large-scale precipitation studies over Africa can be
insightful if the AV and other performance statistics are satisfactory for the intended application.

Keywords: regional climate models; global climate models; precipitation; Africa; added value;
satellite-based observations

1. Introduction

The distillation of regional climate information is crucial for anticipating the potential
threats of regional-to-local climate change and formulating actionable adaptation and
mitigation plans [1]. Carrying out these activities with primary climate models, known as
Global Climate Models (GCMs), has been prohibitive due to the relatively coarse resolutions
at which they are produced and the subsequent computational burden that could arise from
increasing such resolutions. Moreover, the regional nature of decision-making expected

Remote Sens. 2022, 14, 2102. https://doi.org/10.3390/rs14092102 https://www.mdpi.com/journal/remotesensing191



Remote Sens. 2022, 14, 2102

from these activities demands the accountability of fine-scale atmospheric phenomena and
heterogeneity of surface properties not explicitly resolved by GCMs [2].

To address this central issue, limited-area nested Regional Climate Models (RCMs)
are used as a tool to downscale large-scale boundary conditions from GCMs or reanalysis
data. The expectation from the RCMs is to serve as a “magnifying glass” to reveal fine-scale
details that are hampered by the impossibility of running the GCMs at the desired high
resolution [3]. This one-way nesting approach to dynamical downscaling has been the
backbone of the three decade’s worth of researching and developing RCMs, with substantial
applications and use cases for various scientific problems worldwide [4,5]. Although
limited-area two-way nesting models have been introduced for understanding feedback
from a regional to a global scale, which one-way models do not consider, their results
remained inconclusive and sometimes difficult to obtain due to their computationally
demanding nature [4].

The large adoption of the one-way nesting methods for the production of RCMs
also contributed to a paradigm shift in climate model evaluation and validation methods.
Unlike traditional validation methods where the skill of the climate model output is directly
assessed by comparison with observations, the one-way nesting method has triggered the
need to quantify the improvement by the downscaling process, known as Added Value (AV)
methods [6]. Since then, the AV concept has undergone many refinements and precondition
relaxation to accommodate various validation scenarios. These scenarios range from a
conjectural and subjective expectation of an AV to a more objective quantification based
on observations [7].

Sticking with the principal aim of RCMs, which is to produce reliable high-resolution
data for regional to local decision-making, AV studies remained mostly observational, with
a one-way perspective of quantifying improvements by downscaling models from the
coarse resolution GCMs to the high-resolution RCM outputs. Consequently, less interest
was shown in a second type of observational AV, which could complementarily quantify in
a two-way manner the AV feedback from a regional to a global scale [6]. Such a secondary
metric could constitute a reliable way of quantifying the resolution-sensitivity of the AV
results and disentangling results due to the RCMs’ internal physics from the ones due to a
mere disaggregation of the boundary condition [8].

The availability of RCM data in the public domain has served as a good playground
for exploring the AV by one-way nested high-resolution RCMs [9]. This was made possible
thanks to the World Research Climate Program (WRCP) under the Coordinated Regional
Downscaling Experiment (CORDEX) [10–12], which made available a series of reanalysis
and GCM-driven RCM outputs at approximately 50 km resolution in its first phase, while
giving the highest priority to the African continent. Recently, the second phase, which aims
at guaranteeing the availability of a homogeneous set of simulations over all the regions of
the world, called the Common Regional Experiment Framework (CORDEX-CORE) [13–16],
was launched by making available for its first experiments a set of simulations at an un-
precedented resolution of 25 km and, thus, reaching common satellite-based observational
products scale.

For Africa, which is a priority region in the context of CORDEX, the production of
highly resolved simulations has not been followed by an increase in the resolution of local or
global ground-based observational datasets. This situation is detrimental to observational
AV studies. In practice, one has to rely on satellite-based observational datasets produced
at similar resolutions by keeping in mind that they might also have some biases. Moreover,
RCMs AV studies over Africa [17–21] were conducted under the one-way paradigm, except
for the recent work by Dosio et al. [19], where a two-way approach is adopted in the context
of precipitation climate change projections. These studies show that the evaluated RCMs
add value to their boundary conditions over Africa. Still, the extent to which such an AV
could be sensitive to the resolution is usually not analyzed.
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Beyond the valuable information that could be obtained using a two-way approach
to AV analysis over Africa, the use of satellite-based observational products as a reference
for such analysis offers the opportunity to explore the potential of dynamical downscal-
ing to bridge the resolution and quality gap between GCMs and observational products
based on remote sensing technology. These newly emerging needs are highly relevant
for both the climate modelling and the remote sensing communities, especially for the
precipitation variable over Africa, where a consensual and unified characterization
is needed [22–24].

In this context, the AV metrics can represent reliable quantitative metrics for estimating
how the downscaling approach improves the driving GCMs towards reproducing observed
features by remotely sensed datasets. Such applications of the AV analysis could be valuable
for climate data distillation [1] and for exploring the possibility of using highly resolved
RCMs as proxies for satellite-based observations in climate projections, where observations
are not available. Additionally, the AV analysis could be instrumental in choosing post-
processing methods such as bias correction if the RCMs’ performances are inadequate for
the intended application [21,25].

In this study, we propose an analysis of the CORDEX-CORE RegCM4-7 past precipita-
tion simulations over Africa, with a perspective on the contribution of the resolution to AV
results. The AV by the RCM simulations over the driving GCMs is computed and analyzed
at fine- and large-scale resolutions to represent an improvement at a regional and global
scale and to further understand AV sensitivity to resolution. The study results are also
used to distinguish the role of the resolution from the role of the physics parameterizations
used for the downscaling experiment of CORDEX-CORE RegCM4-7 over Africa and quan-
tify its contribution to bridging the gap between GCMs and satellite-based observational
precipitation products.

2. Study Area, Data, and Methods

2.1. Study Area

The African continent was designated as the highest priority region in the context of
the CORDEX framework, owing to its vulnerability to global warming and its deficit of
infrastructural resources needed to carry out climate projection modeling activities [13].
Africa represents a key domain of the 9 out of 14 continental CORDEX domains considered
for the resolution doubling CORDEX-CORE simulations [16], and an undeniable testbed
region for typical improvement expected from highly resolved RCMs, especially for fine
scale-dependent variables such as precipitation [7,9,13]. This is particularly true concerning
Africa’s complex topographic structure, and its unique and homogeneous climate zones
such as the Sahara (SAH), West Africa (WAF), Central Africa (CAF), Northern East Africa
(NEAF), Southern East Africa, Eastern South Africa (ESAF) and Western South Africa
(WSAF) (see Figure 1).

Moreover, Africa is a hotspot for large-scale precipitation patterns, which are still
not adequately reproduced by state-of-the-art GCMs [26,27]. Although the AV by RCMs
is usually expected at a finer scale, the extent to which such improvements can cumula-
tively enhance large-scale precipitation patterns and represent a large-scale AV at GCMs
resolutions is an open question [6,7,28]. Addressing such a question for Africa is critical,
especially from the model users’ perspective, given the increasing availability of various
climate models over the continent and the possible risk of data misuse [1]. Additionally,
such a distinction between AVs at large- and fine-scale can be resourceful in disentangling
the role of resolution from the RCMs internal physics and reveal how sensitive the AV is
to resolution.
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Last but not least, the production of precipitation estimates complementing existing
ones, such as satellite-based products, reanalysis data and traditional climate model data,
has been recommended as a prerequisite toward unifying and further understanding
rainfall over Africa [29]. This alternative to rainfall stations observation data is becoming
unavoidable given the serious decline in the very few stations that have been operating
for the past few decades [22]. The presence of an AV by CORDEX-CORE RegCM4-7 could
be instrumental, not only to address the need for a consensus on rainfall over Africa,
but also for a process-based understanding of decades of satellite-based climate data
records available over the continent [24,30]. Another opportunity for the African modeling
community could be the potential collaborations with the remote sensing community in
order to leverage the gigantesque amount of literature available on data processing [31]
and use it to enhance RCMs quality.

 
Figure 1. Topographical features of the African domain and its key climate zones.
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2.2. Data and Method

The resolution-sensitive analysis of the AV by RCMs output, proposed in the
present study, is mainly based on the CORDEX-CORE RegCM4-7 past precipitation
simulations over the African domain. The RegCM4-7 RCM [32] is developed by the
Abdus Salam International Center for Theoretical Physics (ITCP), located in Trieste,
Italy. As part of the CORDEX-CORE’s first experiment, the RegCM4-7 was used
to downscale the ERA-Interim (ERA-INT) reanalysis data [33] for evaluation runs
and 3 GCMs of the Coupled Model Intercomparison Project, phase 5 (CMIP5) [34]
for the historical runs. HadGEM2-ES [35], MPI-ESM-MR [36], and NorESM1-M [37]
GCMs, respectively, corresponding to high, medium and low equilibrium climate
sensitivity, were used for the historical runs to capture the sensitivity range of the
CMIP5 ensemble given the computational limitations related to downscaling a larger
ensemble of simulations [38]. The AV sensitivity analysis is carried out using the 25 km
resolution satellite-based product of the Climate Hazard Group InfraRed Precipitation
with Station data version 2 (CHIRPS-2.0) [39] to represent fine-scale observations
and its upscaled version at 250 km resolution to represent large-scale observation.
The 250 km resolution used for the upscaling process is obtained from the Global
Precipitation Climatology Project monthly data version 2.3(GPCPv2.3) [40,41], which
is widely used for large-scale climate analysis. Although not directly presented in the
results, GPCPv2.3 is used as a supplement to show potential uncertainty implications
that may prevail at low resolutions in the context of resolution-sensitive AV studies.
Further details about the different datasets used are provided in Table 1.

Table 1. List of multi-source datasets used in this study.

Data Type Name Institution Resolution

Ground and
satellite-blended observations CHIRPSv2.0 Climate Hazard Group of the University

of California, Sancta Barbara 0.25◦ × 0.25◦

Ground, satellite, and
sounding-blended observations GPCPv2.3 University of Maryland 2.5◦ × 2.5◦

Global Climate Model (GCM) HadGEM2-ES Met Office Hadley Centre (MOHC) 1.25◦ × 1.85◦

Global Climate Model (GCM) MPI-ESM-MR Max Plank Institute for
Meteorology (MPI-M) 1.8653◦ × 1.875◦

Global Climate Model (GCM) NorESM1-M Norwegian Climate Centre (NCC) 1.8947◦ × 2.5◦

Reanalysis ERA-Interim European Centre for Medium-Range
Weather Forecasts (ECMWF) 0.75◦ × 0.75◦

Regional Climate Model (RCM) RegCM4-7 Abdus Salam International Center for
Theoretical Physics (ITCP) 0.22◦ × 0.22◦

Both the climate simulations and observations datasets are acquired from 1981 to 2005.
The driving GCMs datasets and the RegCM4-7 outputs are first interpolated at CHIRPS’
25 km grid resolution for high-resolution analysis and then upscaled to 250 km resolution to
match CHIRPS’ upscaled grids for large-scale analysis. The analysis focuses on the seasonal
mean bias pattern of the GCM-driven RegCM4-7 precipitation outputs and their consistency
with observations and structural biases from ERA-INT driven simulations, considering both
high resolution (25 km) and coarse resolution (250 km). The analysis is carried out for the
December–January–February (DJF), the March–April–May (MAM), the June–July–August
(JJA), and the September–October–November (SON) seasons. The potential improvement
of the RegCM4-7 outputs as compared to the driving GCMs at higher and coarser resolution
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is also analyzed, using the AV metric proposed by Dosio et al., [17], for which the formula
is given as follows:

AV =
(XGCM − XOBS)

2 − (XRCM − XOBS)
2

Max
(
(XGCM − XOBS)

2, (XRCM − XOBS)
2
) (1)

where XGCM, XRCM, XOBS represent, respectively, the GCM, the RCM and the observation’s
statistics for which the AV is evaluated. The AV values vary between −1 and 1 to capture
possible improvement or degradation of the RCM over the GCM.

The seasonal precipitation bias patterns of the GCMs and RegCM4-7 outputs and the
subsequent AV outcomes are aggregated using the different climate zones over Africa (see
Figure 1). Specifically, the Added Value Coverage (AVC), representing the percentage of
grid cells showing a positive, negative, or non-significant AV is computed for each climate
zone. The AVC provides a general figure of the improvement by the RegCM4-7 RCM, and
allows adequate comparison among different zones, seasons and resolutions. The AVC
formula is given as follows:

AVCpos/neg/ns =
Npos/neg/ns

Ntot
× 100 (2)

where AVCpos/neg/ns represents the positive, negative, or non-significant AV coverage,
Npos/neg/ns, the number of pixels with a positive, negative, or non-significant AV and Ntot,
the total number of pixels over the region considered.

Following previous use of the AVC [20,21], we use a threshold of 0.1 for significant
positive AV and −0.1 for significant negative AV. This means that any pixel with an
AV > 0.1 is considered a pixel with significant positive AV, and any pixel with an AV < −0.1
is considered a pixel with significant negative AV. Any pixel with an AV between −0.1 and
0.1 is considered non-significant.

3. Results

3.1. Evaluation Results for DJF Season

Figures 2 and S1 depict the DJF season’s mean bias results by the driving GCMs and
their RegCM4-7 dynamically downscaled outputs at a high resolution (25 km) and coarse
resolution (250 km), using CHIRPS observations. Rain-abundant areas such as the southern
CAF, SEAF, northern WSAF, and ESAF show similar patterns at high and coarse resolutions
(Figures 2a and S1a). The driving GCMs (Figures 2c–f and S1c–f) tend to show wet biases
of 1 to 10 mm/day over WSAF, ESAF, and parts of CAF with pronounced quantities of
more than 6 mm/day in NorESM1-M (Figures 2d and S1d). Over northern CAF and NEAF,
a dominance of dry biases ranging from 0 to −4 mm/day is observed with HadGEM2-ES
(Figures 2c and S1c) and MPI-ESM-MR (Figures 2d and S1d), while wet biases of 0 to
8 mm/day are depicted by NorESM1-M (Figures 2d and S1d).

In accordance with RegCM4-7 evaluation runs by ERA-INT (Figures 2b and 3b), the
dynamically downscaled outputs (Figures 2g–j and S1g–j) show persisting wet biases of
about 1 to 8 mm/day, both at high and coarse resolution over Southern Africa (SAF),
resulting in degraded AV for most simulations such as HadGEM2-ES (Figures 2k and S1k)
and MPI-ESM-MR (Figures 2l and S1l) driven RegCM4-7 outputs. The presence of generally
wet biases in the dynamically downscaled outputs compared to mainly dry biases in the
driving GCMs is confirmed by the spatially averaged bias results reported in Table 2.
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Figure 2. Performance of African precipitation in DJF season at high resolution compared to
(a) CHIRPS, for (b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM HadGEM2-
ES, (d) driving GCM MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of the driving
GCMs, (g) RegCM4-7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical run driven
by MPI-ESM-MR, (i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7 historical runs’
ensemble mean, (k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value by RegCM4-7 to
MPI-ESM-MR, (m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value by RegCM4-7 to the
ensemble mean of the driving GCMs.
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Figure 3. Performance of African precipitation in MAM season at high resolution compared to
(a) CHIRPS, for (b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM HadGEM2-ES,
(d) driving GCM MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of the driving
GCMs, (g) RegCM4-7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical run driven
by MPI-ESM-MR, (i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7 historical runs’
ensemble mean, (k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value by RegCM4-7 to
MPI-ESM-MR, (m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value by RegCM4-7 to the
ensemble mean of the driving GCMs.

Over CAF, SEAF, and NEAF, reduced intensity of the dry biases by HadGEM2-ES and
MPI-ESM-MR is observed in the downscaled outputs, with a sign shift from wet biases
to slightly dry biases in NorESM1-M downscaled output. Consequently, a positive AV is
observed for all simulations and their ensemble mean (Figures 2k–n and S1k–n) over CAF.
The positive AV is extended to other dry areas such as WAF, NEAF and SAH. The relatively
similar AV patterns at high and low resolutions are further confirmed by the AVC results
(see Table 3), which report an increase/decrease of roughly 8%. Other differences are also
observed in the error amplitude, which tends to show a systematic reduction from high- to
low-resolution (see Table 2).
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Table 3. Added Value Coverage results of RegCM4-7 simulations over continental Africa at high
resolution (HR) and low resolution (LR).

Negative AVC Non-Significant AVC Positive AVC

HR LR HR LR HR LR

DJF

RegCM4-7(HadGEM2-ES) 65.22% 52.08% 5.67% 26.36% 29.1% 21.56%
RegCM4-7(MPI-ESM-MR) 52.26% 53.73% 4.24% 7.45% 43.5% 38.82%
RegCM4-7(NorESM1-M) 46.41% 43.4% 5.05% 0% 48.55% 56.6%

RegCM4-7(ENSEMBLE_GCM) 62.05% 60.55% 2.32% 2.77% 35.63% 35.68%

MAM

RegCM4-7(HadGEM2-ES) 68.16% 75.43% 3.66% 0% 28.18% 24.57%
RegCM4-7(MPI-ESM-MR) 63.86% 56.28% 5.26% 5% 30.89% 38.72%
RegCM4-7(NorESM1-M) 52.4% 41.18% 3.96% 0.37% 43.65% 58.45%

RegCM4-7(ENSEMBLE_GCM) 54.7% 51.6% 5.05% 1.23% 40.25% 47.17%

JJA

RegCM4-7(HadGEM2-ES) 64.47% 53.52% 1.6% 1.16% 33.94% 45.32%
RegCM4-7(MPI-ESM-MR) 48.32% 32.3% 4.35% 0% 47.33% 67.7%
RegCM4-7(NorESM1-M) 30.37% 26.66% 9.65% 14.25% 59.98% 59.09%

RegCM4-7(ENSEMBLE_GCM) 49.65% 41.04% 4.36% 0.42% 45.99% 58.53%

SON

RegCM4-7(HadGEM2-ES) 61.52% 49.14% 2.52% 4.3% 35.96% 46.56%
RegCM4-7(MPI-ESM-MR) 73.86% 77.47% 3.44% 0% 22.71% 22.53%
RegCM4-7(NorESM1-M) 37.98% 37.2% 3.09% 0.13% 58.93% 62.67%

RegCM4-7(ENSEMBLE_GCM) 57.48% 55.54% 2.32% 0.09% 40.19% 44.37%

3.2. Evaluation Results for MAM Season

In the MAM season, the performances of the RegCM4-7 outputs and their boundary
forcing at downscaled and upscaled resolutions are shown in Figures 3 and S2. At high
and low resolution, CHIRPS (Figures 3a and S2a) show similar rain belt expansion patterns
over both WAF and NEAF in addition to rain-abundant areas such as CAF.

An underestimation of rainfall quantities of 0 to −4 mm/day is mostly found over
NEAF and SEAF in all the driving GCMs (Figures 3c–f and S2c–f) and their dynamically
downscaled outputs (Figures 3g–j and S2g–j). These biases tend to be identical except for
MPI-ESM-MR (Figures 3h and S2h) driven RegCM4-7 output, which shows a reduction
and a subsequent positive AV (Figures 3m and S2m). Although the biases in the driving
GCMs (Figures 3c–f and S2c–f) over WAF and CAF show unique patterns based on
the model used, their dynamically downscaled simulations (Figures 3g–j and S2g–j)
share unique features that are highly similar to the evaluation runs driven by ERA-INT
(Figures 3b and S2b).

An intensification of HadGEM2-ES’s (Figures 3c and S2c) slightly wet biases (0–1 mm/day)
in its downscaled output (Figures 3g and S2g) is observed over SAF, leading to negative
AV (Figures 3k and S2k). A general dominance of dry biases for the driving GCMs and
slightly wet biases for RegCM4-7 outputs are observed as reported in Table 2, which is
similar to the DJF season results. The positive AVC results in Table 3 show an increase from
high- to low-resolution results for MPI-ESM-MR, NorESM1-M and the ensemble mean
downscaled outputs. At the same time, the HadGEM2-ES-based RegCM4-7 simulations
report a decrease. Compared to the DJF season results, the results during MAM season are
still within the 8% increase/decrease range, except for the downscaled NorESM1-M results,
which show an increase of nearly 15%. The systematic reduction in the averaged error from
high to low resolution remains the same as in DJF, even if the error amplitudes are lower
(see Table 2).
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3.3. Evaluation Results for JJA Season

In the JJA season, the mean biases of RegCM4-7 simulations and their driving GCMs
at high and low resolutions are summarized in Figures 4 and S3. The results show dry
and wet bias signals in all the climate simulations along the rain belt depicted over WAF,
northern CAF and NEAF by CHIRPS (Figures 4a and S3a) at both resolutions. Dry biases
of about 0–4 mm/day are observed over CAF and southern SAH, and wet biases of about
1–8 mm/day are observed along the remaining part of the rain belt over NEAF, SEAF and
ESAF, in both the driving GCMs (Figures 4c–f and S3c–f) and the RegCM4-7 downscaled
simulations (Figures 4g–j and S3g–j).

Figure 4. Performance of African precipitation in JJA season at high resolution compared to
(a) CHIRPS, for (b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM HadGEM2-
ES, (d) driving GCM MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of the driving
GCMs, (g) RegCM4-7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical run driven
by MPI-ESM-MR, (i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7 historical runs’
ensemble mean, (k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value by RegCM4-7 to
MPI-ESM-MR, (m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value by RegCM4-7 to the
ensemble mean of the driving GCMs.
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The spatially averaged bias results (Table 2) show a systematic reduction in the
RegCM4-7 averaged bias, regardless of the driving GCM, with the ensemble mean re-
porting improvement over some parts of CAF for all the GCM-based downscaled outputs
(Figures 4g–j and S3g–j), compared to individual simulations. A positive AV is observed
over parts of WAF for RegCM4-7 simulations driven by HadGEM2-ES and MPI-ESM-MR,
while NorESM1-M-driven RegCM4-7 simulation depicts a positive AV over SAH, NEAF,
SEAF and parts of ESAF and WSAF.

At a high resolution, RegCM4-7 reports a positive AVC of 33.94% for the simulation
driven by HadGEM2-ES, 47.33% for the simulation driven by MPI-ESM-MR and 59.98% for
NorESM1-M-driven simulation. The change from high to low resolution ranges between
roughly 12 and 20% for all RegCM4-7 simulations, except the one driven by NorESM1-
M, which decreases by 0.89% (Table 3). The error amplitude reduction from high to low
resolution is also observed in the JJA season, as shown in Table 2.

3.4. Evaluation Results for SON Season

The evaluation and historical runs of RegCM4-7 and their driving GCMs results
for SON season over Africa at high and low resolution are given in Figures 5 and S4.
High resolution and upscaled CHIRPS observations (Figures 5a and S4a) show a retreat
of the monsoonal belt toward coastal WAF and CAF with lightweight rain quantities
over NEAF.

The driving GCMs (Figures 5c–f and S4c–f) exhibit wet biases ranging from 1 to 8
mm/day, mostly over CAF, with an extension to NEAF, SEAF and SAF in NorESM1-
M results. Dry biases of −4 to 0 mm/day are observed, especially over WAF in the
HadGEM2-ES results. The historical runs of RegCM4-7 (Figures 5g–j and S4g–j) depict wet
biases, which tend to represent substantial reduction compared to the driving GCM results
(Figures 5c–f and S4c–f) over parts of CAF and some parts of NEAF and SEAF. However,
the downscaled simulations also show a second type of wet biases over most parts of WAF,
ESAF and WSAF, particularly in the HadGEM2-ES- and MPI-ESM-MR-driven RegCM4-7
results, which tend to degrade the driving GCMs’ results.

The spatially averaged bias results from Table 2 show a dominance of wet and relatively
high biases in the RegCM4-7 simulations compared to dry and relatively low biases for
the driving GCMs, when HadGEM2-ES and MPI-ESM-MR are considered. For NorESM1-
M-based results, a systematic reduction in the driving GCM dry biases in the downscaled
outputs is observed. These findings are reflected in the AV results (Figures 5k–n and
S4k–n), with positive AV pixels observed mostly over CAF and SEAF for all RegCM4-7
simulations and their ensemble mean, and a higher positive AVC for NorESM1-M at both
high and low resolution. The positive AVC of the simulations (see Table 3) indicates an
increasing tendency from high- to low-resolution results of, at most, 11%, except MPI-ESM-
MR, which demonstrates a dynamically downscaled output with a 22.71% positive AVC
at high resolution and a 22.53% positive AVC at low resolution. Similar to the previous
seasons’ results, the SON season spatially averaged results (see Table 2) indicate a decrease
in the error amplitude from high to low resolution.
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Figure 5. Performance of African precipitation in SON season at high resolution compared to
(a) CHIRPS, for (b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM HadGEM2-ES,
(d) driving GCM MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of the driving
GCMs, (g) RegCM4-7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical run driven
by MPI-ESM-MR, (i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7 historical runs’
ensemble mean, (k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value by RegCM4-7 to
MPI-ESM-MR, (m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value by RegCM4-7 to the
ensemble mean of the driving GCMs.

3.5. Unified Season, Sub-Area and Resolution-Based Results

The seasonal performances of the RegCM4-7 historical runs over continental Africa in-
dicate a clear similarity pattern between the results at low and high resolution, even if a wide
range of differences in terms of AVC and error amplitude are reported in Tables 2 and 3.
Due to the heterogeneous nature of the results over continental Africa, climate zones and
seasons-based partition of the overall AVC findings are further presented in Figure 6. Over-
all, the AVC results show various outcomes based on the season, sub-area, and driving
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GCM. NorESM1-M-dynamically downscaled RegCM4-7 output tends to show the highest
positive AVC for all sub-regions and seasons, with few exceptions such as WAF in DJF
(Figure 6e) and JJA (Figure 6g), and NEAF in MAM (Figure 6n).

 

Figure 6. Added Value Coverage results for all seasons over (a–d) SAH region, (e–h) WAF region,
(i–l) CAF region, (m–p) NEAF region, (q–t) SEAF region, (u–x) WSAF region, and (y-ab) ESAF region.
“_HR” and “_LR”, respectively refer to high-resolution and low-resolution results using CHIRPS
observational data.
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The positive AVC changes from high to low resolution are mostly in line with the
overall seasonal results from Table 3. CAF (Figure 6i–l), NEAF (Figure 6m–p) and SEAF
(Figure 6q–t) represent areas with the most consistent positive AVC (mostly >50%), re-
gardless of the driving GCMs, especially in DJF and MAM seasons. RegCM4-7 ensemble
mean provides an acceptable performance tradeoff but can be less satisfactory in terms
of positive AVC in some specific regions and seasons. Typical examples are the SAH and
WSAF regions in SON season (Figure 6d,x), where the positive AVC is less than 10%. In
general, sub-regions such as WAF (Figure 6e–h), CAF (Figure 6i–l), and SEAF (Figure 6q–t)
show a positive AVC greater than 20%, regardless of the season and driving GCMs.

4. Discussion

The potential applicability of climate models in different climate studies is highly
constrained by model resolution. Beyond the ability of RCMs to integrate fine-scale
features, their relatively high resolution compared to GCMs often influences data user
preferences [7,9]. The expectation of an AV by RCMs at high resolution owing to their
fundamental design choices constitutes another incentive for RCM data use. AV issues
have been central to the past few decades of research and development of RCMs [4,5]. Still,
their discussions were tailored using the one-way paradigm, where the information flow
from the driving GCMs to the RCM is prioritized.

Although sufficient to prove the presence of improvement in a statistical sense, this
perspective of the AV gives fewer insights into the attribution of such improvements [7].
Moreover, GCMs are still useful for large-scale studies, but using RCMs as alternatives is
still an active research question, especially for data-scarce parts of the world such as Africa.
The methodological choices of the present study were mainly motivated by these mentioned
issues and the need to provide valuable information towards a better understanding of the
resolution-sensitivity of AV by RCMs over Africa, and their potential to bridge resolution
and quality gaps between the GCMs and the high-resolution satellite-based products.

The results mainly indicate AV by RegCM4-7 simulations at their native resolution,
with a typical dependence on the driving GCM, the season, and the sub-area. Similar
results have been highlighted by Gnitou et al., [21] in the context of other CORDEX-
CORE precipitation simulations. Moreover, other challenges related to CORDEX-CORE
precipitation simulations over Africa, such as the persistence of dry and wet biases at
noticeably high amplitudes along the seasonal rain belt, were also found in the RegCM4-7
results. The historical run biases have shown clear consistency with the evaluation run
driven by ERA-INT, thus suggesting that the RCM internal model physics might have more
influence than the driving GCMs, particularly along the seasonal rain belt. Reasons for such
deficiencies may be similar to previously known ones, including missing or misrepresented
processes and regional model transferability issues [42,43].

Although the influence of RegCM4-7 internal model physics appears to be consistent
with the dynamically downscaled outputs, typical dependencies to the driving GCMs are
found in terms of AV. For instance, the NorESM1-M dynamically downscaled output shows
significantly higher positive AVC coverage as compared to other driving GCMs. These
performances may be due to the high, medium and low equilibrium climate sensitivity
criteria under which the driving GCMs were chosen [16,38]. The typically low equilibrium
climate sensitivity nature of the NorESM1-M driving GCM may explain the higher positive
AVC performances. Since the low sensitivity relates to relatively low performances and
high error, the downscaled NorESM1-M results reinforce early conclusions by Diaconescu
and Laprise [28] on the fact that RCMs can bring substantial error reduction when the
driving lateral boundary condition contains errors.

Beyond considerations related to the AV by regional climate models seen from a
one-way perspective, adopting a second type of AV based on upscaled results from high
resolution yielded supplementary results and insights. At low resolution, a typical increase
in the positive AVC is observed with some exceptions. These exceptions are related to
cases with a decrease in the positive AVC from high to low resolution. In the worst case,
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however, these exceptions represent a reduction of 8% and therefore indicate that RegCM4-
7 simulations could be used for large-scale precipitation applications over Africa when
sufficient AV is observed or considered enough for the intended application. These results
make the RCMs influential contribution hypothesis to the AV more plausible than the idea
of an AV due to a mere disaggregation of the driving GCMs. Previous findings by Gnitou
et al. [21] and Sørland et al. [8] led to similar conclusions.

The resolution-sensitivity results also revealed that the improvement of the positive
AVC from high to low resolution occurs in a climate zone where consistent and uniformly
distributed spatial positive AV patterns are observed at high resolution. This general
tendency is also true for areas with large negative AVC. Therefore, the AV at fine scale
probably represents a precondition to the expectation of improved large-scale features by
RCM outputs. In the context of climate change projection over Africa, some studies [19,44]
documented such major differences between GCMs and RCMs known under the concept
of potential or conjectural AV [6,7] since observations are not available to confirm it. The
findings from the present study bring more arguments to the possibility that at least part
of such GCM-RCM differences is due to salient positive AV of the RCMs that could not,
however, be measured in the context of future projections.

The influential impact of the RCMs internal physics as compared to the driving GCMs
is further confirmed by the regional results, which feature the WAF, CAF and SEAF for all
seasons, and NEAF for DJF and MAM seasons, as the best performing sub-region with a
positive AVC greater than 20%. For instance, the WAF and CAF sub-regions are known
for mesoscale activities and land-atmosphere interactions, and the SEAF and NEAF for
their topographic influence on rainfall quantities [19]. The significant positive AVC over
these sub-areas represents additional evidence for the hypothesis that the observed AV
originates from mesoscale and fine-scale features resolved by RCMs [2,4].

Despite the encouraging results obtained at low resolution and their dependence
on the AV at high resolution considering CHIRPS data, cautionary considerations of the
present study results are still needed regarding observational uncertainties. Although the
availability of CHIRPS data produced at a resolution similar to CORDEX-CORE simulations
motivated the present resolution-sensitivity study, alternative datasets widely used at low
resolutions may provide different estimates compared to CHIRPS upscaled results and
therefore represent a source of uncertainty for AV results at such resolutions. For instance,
as shown in Table S1, the AVC values at low resolution using GPCP data show some
differences compared to upscaled CHIRPS estimates used in this study. The upscaling of
CHIRPS at the GPCP grid for the present study is motivated by these reasons. This implies
that more due diligence is needed from users in their data choices to avoid misuses, as
suggested by Giorgi [1].

Overall, the AV results by the CORDEX-CORE RegCM4-7 precipitation simulations
and their highly likely attribution to internal RCM physics opens a wide range of opportu-
nities for both the climate modeling and the satellite remote sensing communities. For the
former community, these results will be instrumental for improving RCMs simulations, and
therefore, continuously bridging the resolution and quality gap between traditional climate
models and high-resolution satellite-based precipitation products. For the latter, these
results expand the remote sensing data applications spectrum, emphasizing on climate
change applications and opening new avenues toward a process-based understanding of
remotely sensed earth observations [30,31].

5. Conclusions

This study evaluates the AV by CORDEX-CORE RegCM4-7 seasonal precipitation
simulations over Africa, using both high- and low-resolution satellite-based observations,
with the aim of quantifying large- and fine-scale improvements by the downscaled outputs
in comparison to their driving GCMs. The study yielded substantial results, which can be
summarized as follows:
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1. At high-resolution, pixels with at least 10% improvement by the CORDEX-CORE
RegCM4-7 downscaling approach represent 20 to 60% of the overall African domain
depending on the driving GCM and the season.

2. The results obtained at low resolution mostly show an increase in the improvement
coverage, with at most 8% spatial coverage reduction for cases where a decrease is
observed as compared to high-resolution findings.

3. A relatively high improvement coverage of NorESM1-M downscaled results is found
for nearly all seasons and climate zones, with West Africa, Central Africa, and
Southern East Africa showing the overall best performances for all seasons and
driving GCMs.

4. The results appear to be mostly influenced by the RCMs internal physics, with a
typical highlight over sub-regions where fine-scale features-driven AV is expected.
A better or nearly similar AV pattern is also observed at low resolution, suggest-
ing an enhancement of the driving GCMs by sub-grid processes resolved by the
RCM physics.

5. Observational uncertainty is found to have a significant influence, as one should have
expected, given observational data scarcity over Africa.

6. For the first attempt to produce RCM data at a resolution similar to common satellite-
based products resolution, the AV results are relatively good. They feature the poten-
tial of dynamical downscaling tools in filling resolution and quality gaps between
GCMs and remotely sensed technology-based datasets.

In comparison with the 60 years of research and development of earth observation
satellites [31], it is fair to say that the present study’s results represent a remarkable achieve-
ment of the RCM community, which is only 30 years old [4,5]. For instance, the AV results
from this study bring new pieces of evidence on the ability of dynamical downscaling to
bridge the resolution and quality gap between coarse GCMs and high-resolution satellite-
based precipitation products. For Africa, the opportunities ahead are enormous in the
context of unifying multi-source precipitation estimates and undertaking process-based
climate assessments and projections, especially for applications where high-resolution data
is needed [24].

Overall, RegCM4-7 outputs will still need further processing, such as bias cor-
rection, by leveraging available historical high-resolution satellite-based products for
more plausible future projection analysis due to the persistent biases observed in the
present study [21,25], until new developments and improvements become available.
This is true for alternative tools such as Empirical Statistical Downscaling (ESD) [45]
and convection-permitting simulations [46], which constitute the next step toward fur-
ther understanding regional climates. The second component of the CORDEX phase II
framework, named Flagship Pilot Studies (FPSs), will provide a coordinated setting for
testing these emerging tools [13]. Upcoming studies looking at Vulnerability, Impacts
and Adaptation (VIA) assessments are to be expected in the near future to explore other
CORDEX-CORE data applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092102/s1, Figure S1 Performance of African precipita-
tion in DJF season at low resolution compared to (a) CHIRPS, for (b) RegCM4-7 evaluation run
driven by ERA-INT, (c) driving GCM HadGEM2-ES, (d) driving GCM MPI-ESM-MR, (e) driving
GCM NorESM1-M, (f) ensemble mean of the driving GCMs, (g) RegCM4-7 historical run driven by
HadGEM2-ES, (h) RegCM4-7 historical run driven by MPI-ESM-MR, (i) RegCM4-7 historical run
driven by NorESM1-M, (j) RegCM4-7 historical runs’ ensemble mean, (k) Added Value by RegCM4-7
to HadGEM2-ES, (l) Added Value by RegCM4-7 to MPI-ESM-MR, (m) Added Value by RegCM4-7 to
NorESM1-M, (n) Added Value by RegCM4-7 to the ensemble mean of the driving GCMs. Figure S2
Performance of African precipitation in MAM season at low resolution compared to (a) CHIRPS, for
(b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM HadGEM2-ES, (d) driving GCM
MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of the driving GCMs, (g) RegCM4-
7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical run driven by MPI-ESM-MR,
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(i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7 historical runs’ ensemble mean,
(k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value by RegCM4-7 to MPI-ESM-MR,
(m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value by RegCM4-7 to ensemble mean of
the driving GCMs. Figure S3 Performance of African precipitation in JJA season at low resolution
compared to (a) CHIRPS, for (b) RegCM4-7 evaluation run driven by ERA-INT, (c) driving GCM
HadGEM2-ES, (d) driving GCM MPI-ESM-MR, (e) driving GCM NorESM1-M, (f) ensemble mean of
the driving GCMs, (g) RegCM4-7 historical run driven by HadGEM2-ES, (h) RegCM4-7 historical
run driven by MPI-ESM-MR, (i) RegCM4-7 historical run driven by NorESM1-M, (j) RegCM4-7
historical runs’ ensemble mean, (k) Added Value by RegCM4-7 to HadGEM2-ES, (l) Added Value
by RegCM4-7 to MPI-ESM-MR, (m) Added Value by RegCM4-7 to NorESM1-M, (n) Added Value
by RegCM4-7 to ensemble mean of the driving GCMs. Figure S4 Performance of African precipi-
tation in SON season at low resolution compared to (a) CHIRPS, for (b) RegCM4-7 evaluation run
driven by ERA-INT, (c) driving GCM HadGEM2-ES, (d) driving GCM MPI-ESM-MR, (e) driving
GCM NorESM1-M, (f) ensemble mean of the driving GCMs, (g) RegCM4-7 historical run driven by
HadGEM2-ES, (h) RegCM4-7 historical run driven by MPI-ESM-MR, (i) RegCM4-7 historical run
driven by NorESM1-M, (j) RegCM4-7 historical runs’ ensemble mean, (k) Added Value by RegCM4-7
to HadGEM2-ES, (l) Added Value by RegCM4-7 to MPI-ESM-MR, (m) Added Value by RegCM4-7
to NorESM1-M, (n) Added Value by RegCM4-7 to ensemble mean of the driving GCMs. Table S1
Added Value Coverage results of RegCM4-7 simulations over continental Africa at low resolution for
CHIRPS data (LR_C) and GPCP data (LR_G).
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Abstract: In this study, variations of daily mean, maximum, and minimum temperature (expressed
as Tmean, Tmax, and Tmin) over the Canadian Prairie Provinces were dynamically downscaled through
regional climate simulations. How the regional climate would increase in response to global warming
was subsequently revealed. Specifically, the Regional Climatic Model (RegCM) was undertaken to
downscale the boundary conditions of Geophysical Fluid Dynamics Laboratory Earth System Model
Version 2M (GFDL-ESM2M) over the Prairie Provinces. Daily temperatures (i.e., Tmean, Tmax, and
Tmin) were subsequently extracted from the historical and future climate simulations. Temperature
variations in the two future periods (i.e., 2036 to 2065 and 2065 to 2095) are then investigated
relative to the baseline period (i.e., 1985 to 2004). The spatial distributions of temperatures were
analyzed to reveal the regional impacts of global warming on the provinces. The results indicated
that the projected changes in the annual averages of daily temperatures would be amplified from the
southwest in the Rocky Mountain area to the northeast in the prairie region. It was also suggested that
the projected temperature averages would be significantly intensified under RCP8.5. The projected
temperature variations could provide scientific bases for adaptation and mitigation initiatives on
multiple sectors, such as agriculture and economic sectors over the Canadian Prairies.

Keywords: dynamical downscaling; projected variations; Canadian Prairies; global warming

1. Introduction

Climate warming is one of the most significant challenges currently facing the globe
and humanity. Consequently, assessment of climate change impacts is needed to support
adaptation and mitigation strategies [1–9]. Such impacts are commonly investigated based
on future climate projections simulated by global climate models (GCMs) under multiple
scenarios [10–13]. However, the mechanisms and processes of climate change at regional
scales cannot be comprehensively reflected by these coarse-resolution projections [14–18].
Therefore, the development of fine-resolution climate projections is needed to explore the
climate change impacts within a regional context.

Climate projections of GCMs have been primarily employed in previous studies to
examine climate variations over the Canadian region in response to global warming [19–30].
More recently, several studies [31–34] have attempted to dynamically downscale GCMs
over the Canadian prairies based on regional climate models (RCMs). For example,
PaiMazumder et al. [33] projected changes in short- and long-term drought character-
istics over the Canadian Prairies by using an ensemble of ten Canadian RCM (CRCM)
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simulations. These previous studies have demonstrated that RCMs have advantages in re-
flecting the climatology processes at local scales as compared to GCMs [9,35]. For instance,
Zhou et al. [9] developed a dynamical-coupled downscaling approach and demonstrated
its advantages in capturing the regional details.

RCMs can resolve more detailed features such as mountain ranges, coastal zones, and
soil properties, which are consistent with physical mechanisms in GCMs. As a consequence,
dynamical downscaling can provide climate variables at a fine spatio-temporal resolution
in order to support a better understanding of climate change impacts within the global
warming context [36]. However, there have been few reports of dynamic downscaling of
daily temperatures over the Canadian Prairie Provinces at a high spatial resolution (e.g.,
25 km) under the representative concentration pathways (RCPs).

In addition, the Canadian Prairie Provinces are affected by the Rocky Mountains and
undulating prairies. Such complex topography will have a significant impact on the local
climate conditions in this region. The observations in the Rocky Mountain region are
sparse due to the complex topography. Initiatives of regional climate downscaling can
provide gridded climatic information with a fine spatio-temporal resolution, supporting
mitigation and adaptation of the severe impacts of climatic changes. The development of a
fine-resolution climate fluctuations is thus essential to comprehensively reveal the potential
impacts of climate change on the Prairie Provinces.

Therefore, the objective of this study is to examine how the regional climate over
the Canadian Prairie Provinces will increase in response to global warming through the
development of climate projections based on RCM. In detail, the Regional Climatic Model
(RegCM) will be undertaken to downscale the boundary conditions of Geophysical Fluid
Dynamics Laboratory Earth System Model Version 2M (GFDL-ESM2M). Daily mean,
maximum, and minimum temperature are subsequently extracted from the historical and
future climate simulations. Temperature variations in the two future periods (i.e., 2036 to
2065 and 2065 to 2095) are then investigated relative to the baseline period (i.e., 1985 to
2004). The spatial temperature distributions will be analyzed to reveal the impacts of global
warming on the Canadian Prairie Provinces. It is expected that the projected temperature
variations would provide scientific bases for adaptation and mitigation initiatives on
multiple sectors, such as agriculture and economic sectors.

2. Model Setup, Study Area, and Data Sets

In this study, physically-based climate downscaling is based on the 4.6.0 version of
RegCM, which is developed by the International Center for Theoretical Physics [37–40].
The RegCM4.6 model is employed to dynamically downscale the GFDL-ESM2M simu-
lations [41–44], which are derived from the historical (1950–2005) and future (2006–2099)
experiments under RCPs [35]. Specifically, the intermediate (i.e., RCP4.5) and heavy (i.e.,
RCP8.5) emission scenarios are chosen to reveal the range of possible future climate varia-
tions. Such emission scenarios are mainly distinctive from each other after the year 2050.
More specific information for the scenarios is illustrated in the previous studies [9,35].

The study area is within the context of the Canadian Prairie Provinces, which include
the Provinces of Manitoba, Saskatchewan, and Alberta. As shown in Figure 1, the topogra-
phy in the study area is varied and complicated. The highest and lowest elevation is 3434
and 1 m, respectively. The Prairie Provinces have a total surface area of over 1,960,000 km2,
accounting for 19.6% of the entire area of Canada [9]. Moreover, the climatic patterns of the
Arctic and the Rocky Mountain have significant impacts on the climate of the Canadian
Prairie Provinces [35,45].

A spatial experiment domain of 108 longitude × 128 latitude grid points with a
horizontal resolution of 0.22◦ × 0.22◦ (i.e., approximately 25 km) is set up to cover the
Prairie Provinces [9]. The land surface scheme is the 4.5 version of the Community Land
Model (CLM4.5), while the multiple-phase cloud microphysics scheme is selected as
the moisture scheme in RegCM4.6 [46]. The microphysics scheme is employed as the
moisture scheme, while the lateral boundary condition scheme is the relaxation exponential
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technique [47,48]. The Holtslag PBL [49] is chosen as the boundary layer scheme and the
cumulus convective scheme is the Emanuel scheme [50].

Figure 1. Topography of the study area.

The annual average of daily maximum temperature over the Canadian Prairies in the
period of 1960 to 2005 ranged from −4.0 to 12.6 ◦C, whereas daily minimum temperature
varied from −12.2 to 0.6 ◦C. From 1960 to 2005, the maximum and minimum temperature
increased by 1.5 and 2.3 ◦C, respectively. The spatial average of daily mean temperature
for the period of 1960 to 2005 fluctuated from 3.7 to 7.3 ◦C, which increased by 1.6 ◦C since
1895 [9].

Intensified greenhouse-gas impacts and aggravated land-cover changes have con-
tributed to increases in annual averages of daily maximum and minimum temperature [51].
It is expected that such increases would be amplified in the future, which can significantly
affect the agriculture sector in the Canadian Prairies. Therefore, a higher spatial resolution
of climate projections is needed to reveal the impacts of climate changes on the Canadian
Prairies, and thus facilitate proper mitigative and adaptive strategies.

The historical climate observations over the Canadian Prairies were derived from
a 10 km gridded climate dataset, which was produced by the National Land and Water
Information Service (NLWIS), Agriculture and Agri-Food, Canada [52]. In this study, daily
maximum and minimum temperatures in the period of 1985 to 2004 were extracted to
analyze the annual averages within the study area. The elevation of the Canadian Prairie
Provinces with a horizontal resolution of 30 arc-seconds was acquired from the Canadian
Digital Elevation Data, which is developed by the Canadian Forestry Service, Ontario
region [53].

The RegCM4.6 model is undertaken to dynamically downscale daily mean, maximum,
and minimum temperature (expressed as Tmean, Tmax, and Tmin) over the Canadian Prairies.
Annual averages of the daily temperatures for future periods of both 2036 to 2065 and 2066
to 2095 are calculated. The changes in temperature relative to the baseline period (i.e., 1985
to 2004) are then analyzed. Particularly, the changes in temperature (i.e., Vmean, Vmax, and
Vmin) can be calculated as follows:

Vmean = T f
mean − Th

mean (1)

Vmax = T f
max − Th

max (2)

Vmin = T f
min − Th

min (3)
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where T f
mean, T f

max, and T f
min represent the annual average of daily mean, maximum, and

minimum temperature in the future periods, respectively; whereas Th
mean, Th

max, and Th
min

indicate the annual average of daily mean, maximum, and minimum temperature for the
historical period (i.e., 1985 to 2004). Detailed steps for projecting temperature variations
through the RegCM4.6 model are summarized in Figure 2.

GFDL-ESM2M 
(Historical, RCP4.5, 

and RCP8.5)

Regional Climatic 
Model (RegCM)

Figure 2. Methodological framework for projecting temperature variations.

3. Projected Variations of Temperature

Previous studies have illustrated that RCMs are capable of capturing regional terres-
trial and atmospheric processes as compared with GCMs [9,35]. The performance of RCMs
in reproducing the historical temperature observations has been evaluated in previous
studies [9,35,45,54–60]. Therefore, the development of fine-resolution temperature projec-
tions is the focus of this study. To comprehensively reveal how future temperature would
be changed over the Canadian Prairies, temperature variations (i.e., Vmean, Vmax, and Vmin)
in two future periods of both 2036 to 2065 and 2066 to 2095 under RCPs are analyzed with
respective to the baseline period of 1985 to 2004.

Figure 3 presents the projected variations of annual averages of Tmean, Tmax, and
Tmin for the period of 2036 to 2065 under RCP45 relative to the baseline period. The
figures in columns one and two show the spatial distribution of projected averages of daily
temperatures for the historical and future period, respectively, whereas column three shows
the calculated variations (i.e., Vmean, Vmax, and Vmin); rows one to three present Tmean, Tmax,
and Tmin, respectively. For Tmean, the simulated spatial average and standard deviation
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over the entire area for the historical period are −0.4 and 2.1 ◦C, respectively (Figure 3a). It
can be found that there is a decreasing pattern of the annual average from north to south.
The spatial distribution from the future experiment in the period of 2036 to 2065 under
RCP4.5 (Figure 3b) is closed to the historical one (Figure 3a), with an obviously increased
magnitude. The result also indicates that the spatial average of Tmean over the provinces
is projected to be 1.0 ◦C in the period of 2036 to 2065, where maximum and minimum
values in the map reach −7.3 ◦C in the southwest and 5.8 ◦C in the southeast, respectively.
However, a smaller standard deviation of 1.9 ◦C is projected for the period of 2036 to 2065,
which indicates that the spatial variation would be reduced due to the increased magnitude
of negative values under climate change. As shown in Figure 3c, the average of Tmean
increases over the entire of the Prairie Provinces, with a northeastward-intensified pattern
of projected changes. In addition, the RegCM model also simulates the largest increase at
56.60◦ N and 96.73◦ W in the northeast of Manitoba, and the smallest one at 51.47◦ N and
112.66◦ W in the southwest of Alberta.

 
Figure 3. Projected variations of annual averages of Tmean, Tmax, and Tmin for the period of 2036 to 2065 under RCP45.
(a,d,g) show the historical distributions of Tmean, Tmax, and Tmin, respectively; (b,e,h) show the future distributions of Tmean,
Tmax, and Tmin, respectively; (c,f,i) show the projected variations of Vmean, Vmax, and Vmin, respectively.

Compared with Tmean, most of the spatial averages of Tmax are generally simulated
to be above zero degrees, with the magnitude varying from −5.7 to 8.2 ◦C. The results
derived from the RegCM model also show that Tmax has a spatial average of 4.3 ◦C and a
standard deviation of 2.1 ◦C over the entire area for the historical period of 1985 to 2004
(Figure 3d). For the projected average of Tmax, generally the future (Figure 3e) and the
historical (Figure 3d) experiments have a similar gradient pattern, but amplified values
are revealed in the future period of 2036 to 2065. In particular, a spatial average of 5.6 ◦C
over the Canadian Prairies is projected, with a standard deviation of 2.1 ◦C in the future
period under RCP4.5. Figure 3f presents the projected variations of annual averages of
Tmax for the future period relative to the baseline period. It can be observed that the entire
Prairie Provinces would experience increases in Tmax, with a gradient intensified pattern
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from southwest to northeast. Likewise, the spatial average of Tmax would increase from 0.6
to 2.1 ◦C, while the most significant increase is found at the grid of 58.13◦ N and 94.91◦ W
in the northeastern part.

In contrast, Tmin over the Prairie Provinces is almost below zero degrees, with a spatial
average of −4.6 ◦C and a standard deviation of 2.4 ◦C (Figure 3g). It also indicated that
greater spatial variations are presented in Tmin as compared with Tmax. The spatial pattern
of both simulated historical and projected future average of Tmin matches each other quite
well (Figure 3g,h), but with much greater values. A spatial average of −3.1 ◦C over the
Canadian Prairies is projected, with a standard deviation of 2.2 ◦C in the period of 2036
to 2065 under RCP4.5. The greatest and smallest average are projected to be 3.4 ◦C in
the southeast and −11.0 ◦C in the Rocky Mountain area, respectively. However, smaller
spatial variations in the future might be caused by increased values of negative Tmin under
climate change. The projected variations of annual averages of Tmin for the future period
are presented in Figure 3i. Similar to Tmax during the future period, the annual averages of
Tmin increase from 0.8 to 2.3 ◦C. It also can be observed that there is a gradient intensified
pattern from southwest to northeast. Similarly, the most significant increase is located
at 56.86◦ N and 88.97◦ W in the northeast, whereas the smallest one is at 51.47◦ N and
112.66◦ W in the southwest.

Moreover, Figure 4 depicts the annual averages of Tmean, Tmax, and Tmin for the period
of 2066 to 2095 under RCP4.5, as well as their changes with respect to the baseline. Similarly,
the spatial distributions of projected averages of daily temperatures for the historical and
future period are shown in columns one and two, respectively. Column three depicts the
computed changes in the projected values relative to the baseline period. In addition, the
Tmean, Tmax, and Tmin respectively are presented in rows one to three. In general, there is
a similar spatial distribution pattern of projected variations among Tmean, Tmax, and Tmin
for the historical and future period. Similar to the revelations during the period of 2036
to 2065, the spatial average of Tmean, Tmax, and Tmin for the period of 2066 to 2095 increase
by 1.7, 1.6, and 1.8 ◦C, respectively (Figure 4c,f,i). However, such increases are projected
as slightly greater than those in the period 2036 to 2065 under RCP4.5. Moreover, the
projected changes in the annual averages of Tmean, Tmax, and Tmin would be amplified from
the southwest in the Rocky Mountain area to the northeast in the prairie region.

In order to further analyze the projected variations of Tmean, Tmax, and Tmin, the spatial
distributions of their annual averages over the entire domain for the period of 2036 to 2065
and 2066 to 2095 under RCP4.5 are compared to those for the baseline period (Figure 5).
In general, the shape of the distribution of Tmean, Tmax, and Tmin among three different
periods matches each other. However, intensification of daily temperatures in the future is
evident as shown from the changes of mean values, which is consistent with the previous
revelations (Figures 3 and 4). It can be observed that there is no significant difference in
the projected changes between the period of 2036 to 2065 and the period of 2066 to 2095 in
terms of the mean and standard deviation. For example, the mean and standard deviation
of projections for Tmin in the period of 2036 to 2065 are projected to be −2.8 and 2.3 ◦C,
respectively. Nevertheless, during the period of 2066 to 2095, the mean of projections is
−3.1 ◦C with a standard deviation of 2.2 ◦C.

Figure 6 displays the projected annual averages of Tmean, Tmax, and Tmin for the period
of 2036 to 2065 under RCP8.5. In the same way, the figures in columns one to three
respectively present the simulated averages of daily temperatures for the historical and
future periods, as well as their differences. The figures in rows one to three show Tmean,
Tmax, and Tmin, respectively. Overall, the results show that the projections in the period
of 2036 to 2065 under RCP8.5 are similar to those under RCP4.5. Moreover, there is an
apparent warming pattern during the period of 2036 to 2065 under RCP8.5. For example,
the RegCM model simulates the spatial averages of −4.6 and −2.5 ◦C for Tmin during the
period 1985 to 2004 and 2036 to 2065, respectively. The largest average over the map during
the future period of 2036 to 2065 is located at 50.20◦ N and 98.04◦ W in the southeast,
nevertheless, the smallest one is at 52.19◦ N and 117.24◦ W in the southwest (Figure 6b).
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Moreover, significant increases under RCP8.5 are observed in the calculated differences
between two periods. There is a similar intensified pattern from southwest to northeast,
which is consistent with the results under RCP4.5.

 

Figure 4. Projected variations of annual averages of Tmean, Tmax, and Tmin for the period of 2066 to 2095 under RCP45.
(a,d,g) show the historical distributions of Tmean, Tmax, and Tmin, respectively; (b,e,h) show the future distributions of Tmean,
Tmax, and Tmin, respectively; (c,f,i) show the projected variations of Vmean, Vmax, and Vmin, respectively.

To further analyze the temperature changes, Figure 7 presents the projected averages
of Tmean, Tmax, and Tmin for the period of 2066 to 2095 under RCP8.5. Similar to the pattern
during the period of 2036 to 2065 under RCP8.5, the increase in the averages would be
reduced from the northeastern Prairie to the southeastern Rocky Mountain. However, it can
be found that the projected increases during the period of 2066 to 2095 under RCP4.5 and
RCP8.5 are significantly different from each other. For example, the maximum increases in
annual averages of daily maximum temperature during the period of 2066 to 2095 under
RCP4.5 and RCP8.5 are 2.5 and 4.5 ◦C, respectively. Such increases are amplified under
RCP8.5 as caused by heavy GHG emissions.

The spatial distribution of annual averages over the entire Prairie Provinces for
two future periods under RCP8.5 are in comparison with those for the baseline period
(Figure 8). It is indicated that the distribution of Tmean, Tmax, and Tmin generally maintain
the same shape among three different periods. Such revelations are also consistent with
the results under RCP4.5. Nevertheless, the projected averages of daily temperatures are
significantly intensified as seen from the shifted mean values. For example, the mean value
of Tmax in the period of 2066 to 2095 is projected to be 6.0 ◦C under RCP4.5, whereas it is
enlarged to 7.8 ◦C under RCP8.5.
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Figure 5. Spatial distribution of annual averages for the historical and future periods under RCP45. (a) Tmean, (b) Tmax, and
(c) Tmin.

 

Figure 6. Projected variations of annual averages of Tmean, Tmax, and Tmin for the period of 2036 to 2065 under RCP85.
(a,d,g) show the historical distributions of Tmean, Tmax, and Tmin, respectively; (b,e,h) show the future distributions of Tmean,
Tmax, and Tmin, respectively; (c,f,i) show the projected variations of Vmean, Vmax, and Vmin, respectively.
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Figure 7. Projected variations of annual averages of Tmean, Tmax, and Tmin for the period of 2066 to 2095 under RCP85.
(a,d,g) show the historical distributions of Tmean, Tmax, and Tmin, respectively; (b,e,h) show the future distributions of Tmean,
Tmax, and Tmin, respectively; (c,f,i) show the projected variations of Vmean, Vmax, and Vmin, respectively.

Figure 8. Spatial distribution of annual averages for the historical and future periods under RCP85. (a) Tmean, (b) Tmax, and
(c) Tmin.
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4. Projected Trends of Temperature

In order to further explore the impacts of climate change on the Prairie Provinces, the
Mann–Kendall (MK) test [61,62] and the non-parametric Theil–Sen (TS) estimator [63,64]
were performed to reveal the temporal trends in annual averages of Tmean, Tmax, and Tmin
at multiple stations under RCPs. In this study, sixteen spatially distributed stations are
chosen, while more details can be referred to in Zhou et al. [9]. The probability of the MK
test statistics and the magnitude of the TS estimator are examined for demonstrating how
the Prairie Provinces are affected within the context of global warming.

Figure 9 shows the time series and temporal trends of annual averages of Tmean at
the 16 stations for two future periods under RCPs. It can be observed that the p-values
of the MK test statistics at the majority of stations for future periods under RCP8.5 are
less than the significance level (α = 0.05), indicating that there are significant trends in
the annual averages of Tmean. Particularly, Tmean at all the stations in the period of 2066 to
2095 under RCP4.5 shows insignificant trends, ranging from −0.029 to 0.020 ◦C/year. This
might be attributable to the stabilization of the population growth, land-use conversions,
and greenhouse gas (GHG) emissions under RCP4.5 after the year 2050.

Figure 9. Temporal trends in annual averages of Tmean at the 16 stations. The value of p and trend is derived from the MK
test and the Theil–Sen estimator, respectively. The straight line represents the linear trend derived from the Theil–Sen
estimator. (a) Edmonton, (b) Calgary, (c) Fort Mcmurray, (d) Red Deer, (e) Medicine Hat, (f) Grande Prairie, (g) Key Lake,
(h) Saskatoon, (i) Regina, (j) Waseca, (k) Pelly, (l) Winnipeg, (m) Gillam, (n) Thompson, (o) Brandon, and (p) The Pas.
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In addition, temporal trends are investigated for annual averages of Tmax and Tmin for
future periods under RCPs, which are presented in Figures 10 and 11, respectively. It can be
noticed that similar warming trends are detected for the annual averages at all the stations
under RCP8.5. However, the magnitude of positive trends in Tmean for most stations is
generally smaller than Tmin, while larger than Tmax. This is also consistent with the results
of projected variations, where larger increases are reported in Tmin. It is also evident that
the trends in Tmax and Tmin at all the stations in the period of 2066 to 2095 under RCP4.5
are insignificant, as seen from the p-values of the MK test statistics.

Figure 10. Temporal trends in annual averages of Tmax at the 16 stations. The value of p and trend is derived from the
MK test and the Theil–Sen estimator, respectively. The straight line represents the linear trend derived from the Theil–Sen
estimator. (a) Edmonton, (b) Calgary, (c) Fort Mcmurray, (d) Red Deer, (e) Medicine Hat, (f) Grande Prairie, (g) Key Lake,
(h) Saskatoon, (i) Regina, (j) Waseca, (k) Pelly, (l) Winnipeg, (m) Gillam, (n) Thompson, (o) Brandon, and (p) The Pas.
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Figure 11. Temporal trends in annual averages of Tmin at the 16 stations. The value of p and trend is derived from the
MK test and the Theil–Sen estimator, respectively. The straight line represents the linear trend derived from the Theil–Sen
estimator. (a) Edmonton, (b) Calgary, (c) Fort Mcmurray, (d) Red Deer, (e) Medicine Hat, (f) Grande Prairie, (g) Key Lake,
(h) Saskatoon, (i) Regina, (j) Waseca, (k) Pelly, (l) Winnipeg, (m) Gillam, (n) Thompson, (o) Brandon, and (p) The Pas.

5. Discussion

In this study, the Canadian Prairies shows a larger increase in the annual averages
of Tmin than those of Tmax (Figure 12). This also implies that projected increases in annual
averages of Tmax (Figure 12b) make a smaller contribution than Tmin (Figure 12c) to the
increase in annual averages of Tmean (Figure 12a). The downscaling experiments also reveal
that the trends in Tmean, Tmax, and Tmin at all the stations in the 2080s under RCP4.5 are
insignificant. This might be attributable to the stabilization of population growth, land-
use conversions, and greenhouse gas (GHG) emissions under RCP4.5 after the year 2050.
Moreover, we found that greater increases in annual averages of daily temperatures are
projected under RCP8.5 than those under RCP4.5, indicating that a higher emission scenario
will initiate a more significant increase in temperatures due to greenhouse gas effects.

The projected results of temperature variations reveal that increases in the annual
averages of daily temperatures would be intensified from the southwest in the Rocky
Mountain area to the northeast in the prairie region. This is most likely due to the dynamic
effects of a strong positive ice-snow albedo feedback, amplifying climate change as a result
of decreasing ice-snow cover in the prairie region. The contribution of ice-snow albedo
feedback to larger increases in the annual averages of Tmin in the northeast region would
be more significant than Tmax due to a similar amplification effect. This is also consistent
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with the previous studies, which indicate that the high-latitude ice-snow albedo feedback
is a primary element in projected increases in temperatures under the global warming
scenarios [65–67].

Figure 12. Spatial averages of projected changes for the future periods under RCPs. (a) Tmean, (b) Tmax,
and (c) Tmin.

6. Conclusions

In this study, dynamically downscaled variations of daily mean, maximum, and
minimum temperature over the Canadian Prairies were developed through regional climate
simulations. How the regional climate will increase in response to global warming in
the future was thus analyzed. Specifically, RegCM was undertaken to downscale the
boundary conditions of GFDL-ESM2M. Daily temperatures were subsequently extracted
from the historical and future simulations. Temperature variations in the future periods
(i.e., 2036 to 2065 and 2065 to 2095) are then investigated relative to the baseline period (i.e.,
1985 to 2004). The spatial temperature distributions were analyzed to reveal the regional
impacts of global warming on the Prairie Provinces.

The results suggested that the spatial distribution from the future experiment in the
period of 2036 to 2065 under RCP4.5 is closed to the historical one, with an obviously
increased magnitude. Moreover, it could be observed that there is no significant difference
in the projected changes in temperatures between the period of 2036 to 2065 and the period
of 2066 to 2095 in terms of their mean and standard deviation. The results further indicated
that the projected changes would be amplified from the southwest in the Rocky Mountain
area to the northeast in the prairie region. It was also suggested that the projected changes
would be significantly intensified under RCP8.5. The projected variations of daily mean,
minimum, and maximum temperature could provide scientific bases for adaptation and
mitigation initiatives on multiple sectors, such as agriculture and economic sectors.

Significant increases in temperatures over the Canadian Prairies have been revealed
through a comprehensive analysis of the projected variations. Such revealed increases can
provide scientific bases for identifying appropriate adaptation and mitigation initiatives
on multiple sectors. This study is limited since the RegCM model is merely driven by one
GCM, which has difficulty in reflecting the uncertainties of boundary conditions. However,
such boundary data provided by GCM outputs could significantly affect the projected
temperature variations. Therefore, future research efforts can be extended to investigate
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the full potential ranges of temperature increases through dynamical downscaling of
multiple GCMs.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z.; software, X.Z.; validation, X.Z.;
formal analysis, X.Z.; investigation, X.Z.; resources, X.Z., G.H. and Y.L.; data curation, X.Z., Q.L., D.Y.
and X.H.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z; visualization,
X.Z.; supervision, G.H. and Y.L.; funding acquisition, Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is supported by the Natural Science Foundation of China (51779008, U2040212)
and the Fundamental Research Funds for the Central Universities.

Acknowledgments: We are very grateful for the helpful inputs and suggestions from the editor and
anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stern, P.C.; Perkins, J.H.; Sparks, R.E.; Knox, R.A. The challenge of climate-change neoskepticism. Science 2016, 353, 653–654.
[CrossRef]

2. McCreath, M. Report of the Conference on Climate Change and the Law of the Sea: Adapting the Law of the Sea to Address the
Challenges of Climate Change, Centre for International Law, National University of Singapore, Singapore, 13–14 March 2018. Int.
J. Mar. Coast. Law 2018, 33, 836–846. [CrossRef]

3. Lewandowsky, S. Future Global Change and Cognition. Top. Cogn. Sci. 2016, 8, 7–18. [CrossRef] [PubMed]
4. Lawson, E. Debrief: Meeting the climate change challenge. Br. J. Gen. Pract. 2019, 69, 343. [CrossRef]
5. Kipling, R.; Topp, C.; Bannink, A.; Bartley, D.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.;

Graux, A.-I.; et al. To what extent is climate change adaptation a novel challenge for agricultural modellers? Environ. Model.
Softw. 2019, 120. [CrossRef]

6. Balasubramanian, M. Climate change, famine, and low-income communities challenge Sustainable Development Goals. Lancet
Planet. Health 2018, 2, e421–e422. [CrossRef]

7. Argo, E.E. Migration Mismatch: Bird Migration and Phenological Mismatching. Am. Biol. Teach. 2018, 80, 540–543. [CrossRef]
8. Abdulai, A. The challenges and adaptation to climate change by farmers in Sub-Saharan Africa. Agrekon 2018, 57, 28–39.

[CrossRef]
9. Zhou, X.; Huang, G.; Wang, X.; Fan, Y.; Cheng, G. A coupled dynamical-copula downscaling approach for temperature projections

over the Canadian Prairies. Clim. Dyn. 2017, 51, 2413–2431. [CrossRef]
10. Peel, M.C.; Srikanthan, R.; McMahon, T.A.; Karoly, D.J. Approximating uncertainty of annual runoff and reservoir yield using

stochastic replicates of global climate model data. Hydrol. Earth Syst. Sci. 2015, 19, 1615–1639. [CrossRef]
11. Nover, D.M.; Witt, J.W.; Butcher, J.; Johnson, T.E.; Weaver, C.P. The Effects of Downscaling Method on the Variability of Simulated

Watershed Response to Climate Change in Five U.S. Basins. Earth Interact. 2016, 20, 1–27. [CrossRef] [PubMed]
12. Lee, S.; Wallace, C.W.; Sadeghi, A.M.; Mccarty, G.W.; Zhong, H.; Yeo, I.-Y. Impacts of Global Circulation Model (GCM) bias and

WXGEN on Modeling Hydrologic Variables. Water 2018, 10, 764. [CrossRef]
13. Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How

many model runs do we need? Int. J. Clim. 2017, 37, 1105–1117. [CrossRef]
14. Zhang, W.; Zhang, X.; Li, W.; Hou, N.; Wei, Y.; Jia, K.; Yao, Y.; Cheng, J. Evaluation of Bayesian Multimodel Estimation in Surface

Incident Shortwave Radiation Simulation over High Latitude Areas. Remote Sens. 2019, 11, 1776. [CrossRef]
15. Qiu, R.; Han, G.; Ma, X.; Xu, H.; Shi, T.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross

Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [CrossRef]
16. Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban

Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [CrossRef]
17. Ahn, J.; Hong, S.; Cho, J.; Lee, Y.-W.; Lee, H. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate

Reanalysis Data in the Barents and Kara Seas, 1979–2012. Remote Sens. 2014, 6, 5520–5540. [CrossRef]
18. Addo, K.A.; Larbi, L.; Amisigo, B.; Ofori-Danson, P.K. Impacts of Coastal Inundation Due to Climate Change in a CLUSTER of

Urban Coastal Communities in Ghana, West Africa. Remote Sens. 2011, 3, 2029–2050. [CrossRef]
19. Mika, A.M.; Weiss, R.M.; Olfert, O.; Hallett, R.H.; Newman, J. Will climate change be beneficial or detrimental to the invasive

swede midge in North America? Contrasting predictions using climate projections from different general circulation models.
Glob. Chang. Biol. 2008, 14, 1721–1733. [CrossRef]

20. McGinn, S.M.; Shepherd, A. Impact of climate change scenarios on the agroclimate of the Canadian prairies. Can. J. Soil Sci. 2003,
83, 623–630. [CrossRef]

21. Thorpe, J.; Wolfe, S.A.; Houston, B. Potential impacts of climate change on grazing capacity of native grasslands in the Canadian
prairies. Can. J. Soil Sci. 2008, 88, 595–609. [CrossRef]

224



Remote Sens. 2021, 13, 4350

22. Bonsal, B.; Liu, Z.; Wheaton, E.; Stewart, R. Historical and Projected Changes to the Stages and Other Characteristics of Severe
Canadian Prairie Droughts. Water 2020, 12, 3370. [CrossRef]

23. Wotton, B.M.; Martell, D.L.; Logan, K.A. Climate Change and People-Caused Forest Fire Occurrence in Ontario. Clim. Chang.
2003, 60, 275–295. [CrossRef]

24. Thorne, R. Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin.
Hydrol. Earth Syst. Sci. 2011, 15, 1483–1492. [CrossRef]

25. Sultana, Z.; Coulibaly, P. Distributed modelling of future changes in hydrological processes of Spencer Creek watershed. Hydrol.
Process. 2010, 25, 1254–1270. [CrossRef]

26. Shrestha, R.R.; Schnorbus, M.A.; Werner, A.T.; Zwiers, F.W. Evaluating Hydroclimatic Change Signals from Statistically and
Dynamically Downscaled GCMs and Hydrologic Models. J. Hydrometeorol. 2014, 15, 844–860. [CrossRef]

27. Schertzer, W.M.; Croley, T.E. Climate change impact on hydrology and lake thermal structure. In Proceedings of the 27th Congress
of the International-Association-for-Hydraulic-Research, San Francisco, CA, USA, 10–15 August 1997; pp. 919–924.

28. Mahat, V.; Anderson, A. Impacts of climate and catastrophic forest changes on streamflow and water balance in a mountainous
headwater stream in Southern Alberta. Hydrol. Earth Syst. Sci. 2013, 17, 4941–4956. [CrossRef]

29. Cheng, C.S.; Lopes, E.; Fu, C.; Huang, Z. Possible Impacts of Climate Change on Wind Gusts under Downscaled Future Climate
Conditions: Updated for Canada. J. Clim. 2014, 27, 1255–1270. [CrossRef]

30. Bonsal, B.R.; Prowse, T.D.; Pietroniro, A. An assessment of global climate model-simulated climate for the western cordillera of
Canada (1961–90). Hydrol. Process. 2003, 17, 3703–3716. [CrossRef]

31. St-Jacques, J.-M.; Andreichuk, Y.; Sauchyn, D.J.; Barrow, E. Projecting Canadian Prairie Runoff for 2041-2070 with North American
Regional Climate Change Assessment Program (NARCCAP) Data. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 660–675.
[CrossRef]

32. Qian, B.; Wang, H.; He, Y.; Liu, J.; De Jong, R. Projecting spring wheat yield changes on the Canadian Prairies: Effects of
resolutions of a regional climate model and statistical processing. Int. J. Clim. 2015, 36, 3492–3506. [CrossRef]

33. PaiMazumder, D.; Sushama, L.; Laprise, R.; Khaliq, M.N.; Sauchyn, D. Canadian RCM projected changes to short- and long-term
drought characteristics over the Canadian Prairies. Int. J. Clim. 2012, 33, 1409–1423. [CrossRef]

34. Kerr, S.A.; Andreichuk, Y.; Sauchyn, D.J. Re-Evaluating the Climate Factor in Agricultural Land Assessment in a Changing
Climate—Saskatchewan, Canada. Land 2019, 8, 49. [CrossRef]

35. Zhou, X.; Huang, G.; Piwowar, J.; Fan, Y.; Wang, X.; Li, Z.; Cheng, G. Hydrologic Impacts of Ensemble-RCM-Projected Climate
Changes in the Athabasca River Basin, Canada. J. Hydrometeorol. 2018, 19, 1953–1971. [CrossRef]

36. Schumacher, V.; Fernández, A.; Justino, F.; Comin, A. WRF High Resolution Dynamical Downscaling of Precipitation for the
Central Andes of Chile and Argentina. Front. Earth Sci. 2020, 8, 328. [CrossRef]

37. Shalaby, A.; Zakey, A.S.; Tawfik, A.B.; Solmon, F.; Giorgi, F.; Stordal, F.; Sillman, S.; Zaveri, R.A.; Steiner, A.L. Implementation and
evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev. 2012, 5, 741–760.
[CrossRef]

38. Sylla, M.; Giorgi, F.; Stordal, F. Large-Scale origins of rainfall and temperature bias in high-resolution simulations over southern
Africa. Clim. Res. 2012, 52, 193–211. [CrossRef]

39. Zampieri, M.; Lionello, P. Anthropic land use causes summer cooling in Central Europe. Clim. Res. 2011, 46, 255–268. [CrossRef]
40. Maurya, R.K.S.; Mohanty, M.R.; Sinha, P.; Mohanty, U.C. Performance of hydrostatic and non-hydrostatic dynamical cores in

RegCM4.6 for Indian summer monsoon simulation. Meteorol. Appl. 2020, 27, e1915. [CrossRef]
41. Balov, M.N.; Altunkaynak, A. Trend Analyses of Extreme Precipitation Indices Based on Downscaled Outputs of Global

Circulation Models in Western Black Sea Basin, Turkey. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 821–834. [CrossRef]
42. Kohyama, T.; Hartmann, D.L.; Battisti, D.S. La Niña–like Mean-State Response to Global Warming and Potential Oceanic Roles. J.

Clim. 2017, 30, 4207–4225. [CrossRef]
43. Matveeva, T.A.; Gushchina, D.Y.; Zolina, O.G. Large-Scale indicators of extreme precipitation in coastal natural-economic zones

of the European part of Russia. Russ. Meteorol. Hydrol. 2015, 40, 722–730. [CrossRef]
44. Ng, B.; Cai, W.; Walsh, K. Nonlinear Feedbacks Associated with the Indian Ocean Dipole and Their Response to Global Warming

in the GFDL-ESM2M Coupled Climate Model. J. Clim. 2014, 27, 3904–3919. [CrossRef]
45. Zhou, X.; Huang, G.; Wang, X.; Cheng, G. Dynamically-Downscaled temperature and precipitation changes over Saskatchewan

using the PRECIS model. Clim. Dyn. 2017, 50, 1321–1334. [CrossRef]
46. Fisher, R.A.; Muszala, S.; Verteinstein, M.; Lawrence, P.; Xu, C.; McDowell, N.G.; Knox, R.G.; Koven, C.; Holm, J.;

Rogers, B.M.; et al. Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes,
CLM4.5(ED). Geosci. Model Dev. 2015, 8, 3593–3619. [CrossRef]

47. Adeniyi, M.O. Sensitivity of different convection schemes in RegCM4. 0 for simulation of precipitation during the Septembers of
1989 and 1998 over West Africa. Theor. Appl. Climatol. 2014, 115, 305–322. [CrossRef]

48. Davies, H.C. A lateral boundary formulation for multi-level prediction models. Q. J. R. Meteorol. Soc. 1976, 102, 405–418.
[CrossRef]

49. Holtslag, A.; De Bruijn, E.; Pan, H.L. A high resolution air mass transformation model for short-range weather forecasting. Mon.
Weather Rev. 1990, 118, 1561–1575. [CrossRef]

225



Remote Sens. 2021, 13, 4350
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Abstract: The global water cycle is becoming more intense in a warming climate, leading to extreme
rainstorms and floods. In addition, the delicate balance of precipitation, evapotranspiration, and
runoff affects the variations in soil moisture, which is of vital importance to agriculture. A systematic
examination of climate change impacts on these variables may help provide scientific foundations for
the design of relevant adaptation and mitigation measures. In this study, long-term variations in the
water cycle over China are explored using the Regional Climate Model system (RegCM) developed by
the International Centre for Theoretical Physics. Model performance is validated through comparing
the simulation results with remote sensing data and gridded observations. The results show that
RegCM can reasonably capture the spatial and seasonal variations in three dominant variables for
the water cycle (i.e., precipitation, evapotranspiration, and runoff). Long-term projections of these
three variables are developed by driving RegCM with boundary conditions of the Geophysical Fluid
Dynamics Laboratory Earth System Model under the Representative Concentration Pathways (RCPs).
The results show that increased annual average precipitation and evapotranspiration can be found
in most parts of the domain, while a smaller part of the domain is projected with increased runoff.
Statistically significant increasing trends (at a significant level of 0.05) can be detected for annual
precipitation and evapotranspiration, which are 0.02 and 0.01 mm/day per decade, respectively,
under RCP4.5 and are both 0.03 mm/day per decade under RCP8.5. There is no significant trend
in future annual runoff anomalies. The variations in the three variables mainly occur in the wet
season, in which precipitation and evapotranspiration increase and runoff decreases. The projected
changes in precipitation minus evapotranspiration are larger than those in runoff, implying a possible
decrease in soil moisture.

Keywords: climate change; China; water cycle; precipitation; evapotranspiration; runoff; projection

1. Introduction

The global water cycle is becoming more intense in a warming climate; increases in
precipitation, evapotranspiration, and runoff can be widely observed over the world [1,2].
The resulting extreme rainstorms and heavy runoff can themselves lead to losses of life and
damage to infrastructure (such as urban drainage systems), not to mention that they may
also cause flood events that are of more devastating consequences [3]. On the other hand,
the delicate balance of the three variables also deserves attention, as, according to the sur-
face water budget equation dS/dt = P − E − R (where S denotes the subsurface storage of
water substances, P is precipitation, E is evapotranspiration, and R is runoff) [2,4], they are
closely associated with variations in soil moisture. In cases where meteorological drought
occurs (i.e., long-term rainfall deficit), the interactions among the water cycle components
could affect how the meteorological drought is propagated to hydrological drought (i.e.,
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long-term runoff deficit) and agriculture drought (i.e., long-term soil moisture deficit),
which can have significant influences on regional water availability and agriculture [5]. In
addition, variations in the water cycle can have profound long-term environmental [6–8]
and ecological [9,10] implications. In China, disasters caused by variations in water cycle
components have been recorded. For example, a series of flood events that occurred in the
Yangtze River Basin in 2020, in which the inflow to the Three Gorges Dam once reached
75,000 m3/s during the fifth flood, caused the death/disappearance of 219 people and an
economic loss of 178.96 billion yuan by 13 August [11,12]. In order to avoid losses such as
above, studies of future variations in the water cycle are needed to help provide scientific
foundations for the design of relevant adaptation and mitigation measures.

Previous attempts have been made in projecting future changes in individual water
cycle components. For example, Li et al. [13] applied a self-organizing map to study the
future changes in summer precipitation in eastern China using global climate model (GCM)
data of climate model intercomparison project phase 5 (CMIP5). Dong et al. [14] examined
the climate change impacts on reference evapotranspiration in Xinjiang, China based on
CMIP5 GCM projections. Yan et al. [15] projected future runoff in the Yellow River Basin
using CMIP5 GCM data through global Bayesian model averaging. Fewer studies can be
found focusing on more than one water-cycle-related variable. One example is the study of
Gu et al. [16] on future precipitation and runoff changes and the resultant drought events
over China using GCM and hydrological model ensembles. In another study conducted
by Zhang et al. [2], future changes in the three water cycle components over global land
monsoon regions were systematically examined using the GMIP5 GCM ensemble.

In general, most of the previous studies that simultaneously involve the projection of
more than one water cycle component are based on GCM data. However, precipitation,
evapotranspiration, and runoff are closely related to land surface processes that are largely
dependent on topographic and land-use information, which is not adequately depicted
in GCMs due to their coarse resolution [17,18]. Climate downscaling, including statistical
and dynamical approaches, is commonly undertaken to derive regional- and/or local-
scale information [18]. While both techniques have been demonstrated to be capable of
correcting biases in GCM outputs, studies have shown that statistical simulations can
inherit unphysical signals from the driving data, and thus fail to generate physically
consistent regional climate projections as regional climate models (RCMs) used in the
dynamical approach do [19]. The applicability of RCMs to the simulation of temperature
and precipitation over China has been tested by various previous studies, which suggest
that RCMs can refine large-scale climate information in complex terrains, correct certain
biases in the boundary conditions, and provide results that correspond better with the
observations [17,20]. Among all RCMs, RegCM has been noted to perform well over
China [21,22]. For example, Pan et al. [23] conducted climate projections over Northwest
China, and suggested that RegCM can reproduce the spatial patterns of temperature,
precipitation, and climate extremes over this region. Gao [24] simulated climate over China
using RegCM and WRF, and noticed that RegCM shows better skills in simulating the
temperature and precipitation pattern and magnitude in dry regions. Jiang et al. [25]
compared the performance of RegCM and PRECIS in modeling precipitation over China,
and indicated that the former outperforms the latter in capturing annual precipitation and
wet days in eastern China.

Therefore, as an extension of previous studies, the objective of this study is to examine,
through the application of an RCM, climate change impacts on the water cycle components
over China. Specifically, regional climate simulations over China are undertaken using
RegCM. Model performance is evaluated via the comparison of the simulated climate
against the remote sensing and gridded observation data. Then, high-resolution long-term
projections of precipitation, evapotranspiration, and runoff under two emission scenarios
are developed, and the changes and trends of these variables are subsequently evaluated.
The results of this research could be beneficial to the forecast and control of flood and
drought events in China.
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2. Methodology and Data

Dynamical downscaling of water cycle components over China is developed using
RegCM, which is a regional climate model developed by the International Center for
Theoretical Physics [26]. The Community Land Model version 4.5 (CLM4.5) coupling
is enabled in RegCM simulations to provide an improved description of land surface
processes (e.g., carbon cycle, vegetation dynamics, and river routing) [27,28]. The detailed
representation of water vapor fluxes for both non-vegetated and vegetated surfaces in
CLM is expected to help with the simulation of evapotranspiration. In addition, CLM is
embedded with SIMTOP (simple TOPMODEL-based runoff model) [29], which can take
into account the influence of topological information in runoff generation. The simulated
total runoff is then routed to active ocean or marginal seas through a river transport
model [30]. More details about RegCM parameterization scheme configuration can be
found in Lu et al. [22].

Two rounds of RegCM hindcast simulations are conducted for model validation
purposes; one of them is driven by the ERA-Interim reanalysis data developed by the
European Centre for Medium-Range Weather Forecasts [31], which provide the realistic
historical climate over China; the other one is driven by the historical climate scenario
of the Earth System Model developed by the Geophysical Fluid Dynamics Laboratory
(GFDL) [32,33], which is used to provide the baseline for projections. The baseline period
is 1986 to 2005.

The RegCM performance is validated through comparisons of the annual and sea-
sonal averages of model results with those of the observations, remote sensing data, and
reconstructed data. The months included in each season are as follows: December (of the
previous year), January, and February for winter; March, April, and May for spring; June,
July, and August for summer; September, October, and November for autumn. Spatial
correlation is employed as a quantitative metric to reflect the similarity between the an-
nual and seasonal averaged observation/remote sensing data/reconstructed data and the
simulation results.

In this study, version 4 of the high-resolution gridded observation dataset from the
Climate Research Unit (CRU) [34] is used for verifying the model-generated temperature
and precipitation. This dataset is generated through the interpolation of extensive networks
of gauge station observations into a 0.5◦ regular grid [34], and is widely applied for the
calibration/validation of global and regional climate models [35].

For evapotranspiration, two sets of remote sensing data are employed, specifically,
version 6 of the Resolution Imaging Spectroradiometer (MODIS) terrestrial evapotran-
spiration product (MOD16A2GF v006) [36], and the latest version of the Global Land
Evapotranspiration Amsterdam Model (GLEAM, v3.5b) [37,38]. The MOD16A2GF dataset
is created from remotely sensed data products of MODIS (e.g., land cover and albedo)
based on the Penman–Monteith equation [39]. On the other hand, GLEAM assembles
various satellite-based observations (e.g., radiation from GERES, precipitation from TMPA
and MSWEP, air temperature from AIRS, soil moisture from SMOS and ERA CCI SM) and
derives global evaporation variables with the Priestley and Taylor model [37]. Both datasets
were demonstrated to be able to reasonably represent the actual evapotranspiration over
China [40,41]. The evapotranspiration from MOD16A2GF and the actual evaporation from
GLEAM are used for validating the RegCM-generated evapotranspiration. It is worth not-
ing that the start years of these two remote sensing datasets are 2000 and 2003, respectively;
therefore, RegCM results averaged over the same periods (i.e., 2000 to 2005 and 2003 to
2005) are used for comparison. To assist the validation for evapotranspiration over the
entire baseline period, station-based observed tank evaporation from the National Meteo-
rological Information Center of China (NIMC) is also used (data available at data.cma.cn;
accessed on 9 April 2019). The locations of the stations are shown in Figure S1 in the
Supplementary Materials.

For runoff, the validation was undertaken through the comparison of the model
outputs with the Global Runoff Reconstruction (GRUN), which is constructed through
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machine learning techniques based on runoff and meteorological observations [42]. This
dataset is widely used in weather and climate research and is shown to have a reasonable
performance over China [43–45].

For future climate, GFDL projections of two representative concentration pathways
(RCPs) are employed, which are RCP4.5 and RCP8.5, respectively, for intermediate and
heavy emissions. Simulations are conducted for the entire twenty-first century. Three
time-slices are considered in result analysis: 2020 to 2039 (or 2030s), 2040 to 2069 (or 2050s),
and 2070 to 2099 (or 2080s); time averages and trends are calculated with respect to these
periods. In addition, since the water cycle components are closely related to atmospheric
moisture contents, and the saturation vapor pressure is related to the temperature following
the Clausius–Clapeyron equation [46], different warming periods are also considered in
this study. The warming periods are defined as twenty-year periods in which the domain
average temperature increases by 1, 1.5, 2, 3, and 4 ◦C compared with the baseline average.
Table 1 lists the respective periods for each warming level under the two emission scenarios.
The numerical values of future trends are obtained based on Sen’s slope estimator, and
their statistical significance is examined by Mann–Kendall tests [47–50].

Table 1. Future periods in which warming over China reaches 1, 1.5, 2, 3, and 4 ◦C under RCP4.5
and RCP8.5.

Warming Level RCP4.5 RCP8.5

1 ◦C 2021~2040 2008~2027
1.5 ◦C 2027~2046 2030~2049
2 ◦C 2067~2086 2046~2065
3 ◦C - 2056~2075
4 ◦C - 2069~2088

3. Results

3.1. Model Validation

Validation results for near-surface temperature, precipitation, evapotranspiration, and
runoff are shown in Figures 1–4, respectively. The columns of each figure are for different
datasets (i.e., CRU, MODIS, GLEAM, GRUN, RegCM driven by ERA-Interim, and RegCM
driven by GFDL); the rows are for annual and seasonal averages. It can be observed
that RegCM can reasonably reproduce the spatial distribution and seasonal variations
of temperature over China. As shown by the CRU observations (Figure 1a), above-zero
baseline-average temperature can be found in most parts of the domain, except for the
Tibetan Plateau and a small part of northeastern China. This spatial feature is realistically
generated in the two sets of RegCM results, although with underestimations of various
degrees (Figure 1b,c). Such underestimations, as discussed by Lu et al. [22], are partly
caused by the model setup and partly due to the driving GCM data. Temperature over
China demonstrates clear seasonality, i.e., hot summer, cold winter, and mild spring and
autumn. RegCM is able to capture the seasonal variations, although underestimations can
still be observed. The spatial correlation between the observed and modeled temperature
can be found in Table S1 in the Supplementary Materials. The high correlation (ranges
between 0.94 and 0.98) indicates RegCM’s good performance in temperature. In addition,
the results of RegCM driven by GFDL have higher correlations with the observations than
those of the raw GCM data (please refer to Table S2 in the Supplementary Materials), which
suggests that RegCM is able to correct some biases in GFDL’s temperature results.
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Figure 1. Observed and RegCM-simulated near-surface temperature over China. The annual and
seasonal averages are calculated with respect to the baseline period of 1986 to 2005.

The performance of RegCM with respect to precipitation is less satisfactory than for
temperature. Although it is able to generate the observed wet-in-the-southeast and dry-in-
the-northwest precipitation pattern, underestimations can be found over the southeastern
part of the domain and overestimations over the northwestern part (Figure 2a–c). This over-
and underestimation pair was shown to be related to the simulation bias in vapor pressure
by Lu et al. [22], who further argued that the bias in vapor pressure could be associated
with the bias in temperature. There is also an apparent dry bias near the Sichuan Basin and
a wet bias near the southeastern edge of the Tibetan Plateau, which could be related to the
configuration of the cumulus convective scheme [22]. The spatial correlation (Table S1) is
lower for precipitation than for temperature, which is consistent with the above results.
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The seasonal precipitation over China shows clear monsoon features (more precipitation in
summer and less in winter), which is shared by the two sets of RegCM results.

Figure 2. Observed and RegCM-simulated precipitation over China. The annual and seasonal
averages are calculated with respect to the baseline period of 1986 to 2005.
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Figure 3. Remotely sensed and RegCM-simulated evapotranspiration over China. The annual and seasonal averages are
calculated with respect to the period of 2000 to 2005 for MODIS and 2003 to 2005 for GLEAM.

The spatial pattern of actual evapotranspiration from MODIS and GLEAM (Figure 3a,d)
shows more regional details than the observed precipitation pattern from CRU, which
is in part due to the higher resolution of remote sensing data than that of the gridded
observation, and in part due to evapotranspiration’s closer relationship with the geo-
physical characteristics of the domain than precipitation. The two sets of remote sensing
data show similar annual patterns; subtle differences exist sporadically over the domain,
which could be explained by the different skills of the two datasets over different land-use
types [51]. RegCM shows better skills in simulating evapotranspiration than precipitation
(Figure 3b,c,e,f), although minor overestimations can be noticed. As shown in Table S1,
for annual average evapotranspiration, the spatial correlations between RegCM results
and GLEAM are higher than 0.8, and those for MODIS are higher than 0.6, indicating a
reasonable performance for RegCM in evapotranspiration. The spatial correlation between
RegCM results and the observed tank evaporation from NIMC is 0.50 and 0.42, respectively,
for the two rounds of hindcast simulations. The lower correlation between RegCM and
NIMC could be related to the difference between tank evaporation and actual evapotran-
spiration. In terms of the seasonal variations, RegCM demonstrates overestimations in
spring and winter, and underestimations in summer and autumn.
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Figure 4. Reconstructed and RegCM-simulated runoff over China. The annual and seasonal averages
are calculated with respect to the baseline period of 1986 to 2005.

The RegCM-generated spatial patterns for runoff show considerably larger biases than
for other variables. Apparent overestimations can be spotted near the southeastern corner
of the Tibetan Plateau, which is likely to be related to the wet bias in precipitation that
occurs at the same location. Slight underestimations in runoff can be found over the entire
Tibetan Plateau, where overestimations in evapotranspiration can be identified; the latter is
likely to be the cause of the former. The spatial correlations between the annual average
runoff of the two sets of RegCM results and GRUN are 0.67 and 0.66, respectively (Table S1).
From the seasonal perspective, the GRUN reconstructed runoff is high in summer and
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low in winter. This monsoon feature is well captured by RegCM. As shown by the spatial
correlation, for runoff, RegCM shows better skills in summer/autumn (ranges between
0.65 and 0.69) than in winter/spring (between 0.37 and 0.53).

The RegCM-simulated domain average annual cycles for precipitation, evapotranspi-
ration, and runoff are also examined (shown in Figure 5). The two sets of RegCM results
present similar features (please refer to Figure S2 in the Supplementary Materials for a
direct comparison of the two sets of simulation results). All three variables show a peak in
their annual cycles during the monsoon period (May to September), which is consistent
with previous results. On domain average, a considerable part of the precipitation is
balanced by evapotranspiration, and a smaller portion is attributed to the runoff. The
difference between the simulated precipitation and evapotranspiration is also plotted in
Figure 5. As indicated by the surface water budget equation, the amount of precipitation
that is not balanced by the other two variables contributes to the moisture storage in soil. It
can be observed that the difference between precipitation and evapotranspiration is larger
than runoff in early spring, and this relationship reverses in autumn, which indicates water
storage in spring and dissipation in autumn.

m
m
/d
ay

m
m
/d
ay

Figure 5. Simulated annual cycles for precipitation, evapotranspiration, runoff, and the difference between precipitation
and evapotranspiration in the baseline period.
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3.2. Future Changes in Precipitation, Evapotranspiration, and Runoff
3.2.1. Precipitation

Having reasonable skills in reproducing the historical climate over China, RegCM
is subsequently used to project future changes in water cycle components. The projected
changes in precipitation over China in three future periods and under two emission
scenarios are shown in Figure 6. The left three columns are for RCP4.5 and the right three
for RCP8.5; for each scenario, the three columns, respectively, indicate 2030s, 2050s, and
2080s. The rows in the figure are the annual and seasonal averages. On annual average,
increases in precipitation can be found in most parts of the domain. Precipitation changes
of the two RCPs show certain similarities. For example, in the 2080s, precipitation increases
of larger than 0.3 mm/day are expected in parts of the Tibetan Plateau, Yellow River
Basin, Haihe River Basins, Yangtze Plain, and southern coastal hilly regions under both
scenarios. In general, the area experiencing increased precipitation is larger under RCP8.5,
especially in the Tibetan Plateau, where more pronounced increases (over 0.9 mm/day in
the southeastern corner) can be observed as well.

Figure 6. Projected changes in precipitation over China.

Precipitation changes demonstrate apparent seasonal variations. In winter, precipita-
tion decreases of over 0.3 mm/day can be found in parts of the Yunnan–Guizhou Plateau
in the 2050s and 2080s under RCP4.5 and in the 2030s and 2050s under RCP8.5. In the 2080s
under RCP8.5, more severe changes over larger areas can be noticed; parts of the Pearl
River Basin are projected with precipitation decreases of over 0.3 mm/day and parts of the
Yunnan–Guizhou Plateau of over 0.6 mm/day. Summer precipitation exhibits similar pat-
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terns of changes in the 2050s under the two scenarios, where decreases of over 0.3 mm/day
are to be found in the middle and lower reaches of the Yangtze River Basin, and increases of
over 0.9 mm/day are expected near the Hengduan Mountains located in the southeastern
corner of the Tibetan Plateau. In the 2080s, the spatial distributions of summer precipitation
change under the two scenarios are quite different. Under RCP4.5, precipitation decreases
of over 0.3 mm/day are likely to occur in the very north of northeastern China, parts of
the Yangtze Plain, and parts of the Pearl River Basin, while increases of over 0.9 mm/day
are projected in the Hengduan Mountains and the southeastern coastal hilly regions. In
comparison, under RCP8.5, decreases in summer precipitation mainly occur in the middle
and lower reaches of the Yangtze River Basin (over 0.3 mm/day), while increases of over
0.9 mm/day are to be found in the southern parts of the Tibetan Plateau, Hengduan Moun-
tains, and parts of the Haihe River Basin. The changes in summer precipitation may be
related to variations in its major moisture transport branches, which are the transportations
by the Indian monsoon, Southeast Asian monsoon, and midlatitude westerlies, as shown
by Simmonds [52]. The increases in summer precipitation in southeastern China and
decreases in central south and southeastern China under both scenarios could indicate an
enhanced Indian summer monsoon and a subsided Southeast Asian summer monsoon. In
spring and autumn, precipitation increases are to be seen in the Yangtze Plain (can reach
over 1.8 mm/day) and the Yellow River Basin (over 0.9 mm/day), respectively.

The annual series of domain average precipitation under both RCPs are shown in
Figure 7. For both scenarios, precipitation demonstrates an evident increasing trend
(although a decreasing trend can be observed between 2050 and 2060 under RCP4.5). The
Mann–Kendall test confirms the statistical significance of the trends at an α level of 0.05
(when the period of 2010 to 2100 is considered as a whole). The magnitudes of trends, given
by Sen’s slope estimator, are 0.02 and 0.03 mm/day per decade under RCP4.5 and RCP8.5,
respectively (as shown in Table 2). Some seasonal trends are also statistically significant;
summer precipitation shows increasing trends of 0.02 and 0.05 mm/day per decade under
the two scenarios, and autumn precipitation increases at a rate of 0.02 mm/day per decade
under RCP8.5.

Table 2. Future trends (mm/day per decade) of domain average precipitation, evapotranspiration, and runoff (P, E, and R
denote precipitation, evapotranspiration, and runoff, respectively).

Period Annual Winter Spring Summer Autumn

P

RCP4.5

2030s 0.02 −0.04 0.02 0.15 −0.05
2050s −0.05 0.02 −0.09 −0.06 −0.03
2080s 0.01 −0.01 0 −0.01 0.02

2010~2100 0.02 0.01 0.02 0.02 0.01

RCP8.5

2030s 0.04 −0.01 0.06 0.05 0.05
2050s 0.07 0 0.01 0.15 0.07
2080s −0.02 −0.02 0.02 0.03 −0.06

2010~2100 0.03 0.01 0.02 0.05 0.02

E

RCP4.5

2030s 0.03 0.01 0.02 0.05 0.02
2050s 0.01 0 0.02 0.03 0
2080s 0 0 0.01 0 −0.01

2010~2100 0.01 0.01 0.02 0.01 0.01

RCP8.5

2030s 0.03 0 0.03 0.05 0.02
2050s 0.03 0.01 0.03 0.04 0.05
2080s 0.02 0 0.02 0.04 0

2010~2100 0.03 0.01 0.03 0.04 0.02

R

RCP4.5

2030s 0 0 −0.02 0.02 −0.01
2050s −0.04 0 −0.01 −0.09 −0.04
2080s 0.01 0.01 0.03 −0.02 0.01

2010~2100 0.01 0.01 0.01 0.01 0.01

RCP8.5

2030s 0.02 0 0.01 0.04 0.05
2050s 0.04 0.01 0.02 0.07 0.04
2080s −0.02 0 0.02 −0.06 −0.01

2010~2100 0.01 0.01 0 0 0.01

Notes: Numbers in bold font indicate trends that are statistically significant at α = 0.05.
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Figure 7. Projected domain average anomalies of precipitation, evapotranspiration, and runoff. The time series are smoothed
with a 20-year moving average filter.

Precipitation changes (with respect to the baseline period) in the three future periods
under both scenarios are listed in Table 3. Under RCP4.5, the annual average precipitation
is projected to increase by 0.06, 0.08, and 0.16 mm/day, respectively, in the three future
periods (statistically significant at an α level of 0.05). Under RCP8.5, precipitation change
in the 2030s is not statistically significant, and the increases in the 2050s and 2080s are 0.12
and 0.2 mm/day, respectively. Spring and summer precipitation is expected to undergo
larger increases than that in winter and autumn. These numbers are consistent with
the changes in the annual cycles of precipitation as shown in Figure 8, in which large
precipitation increases can be found from April to September in the 2050s and 2080s under
both scenarios.
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Table 3. Projected changes (mm/day) in precipitation, evapotranspiration, and runoff at different future periods (P, E, and
R denote precipitation, evapotranspiration, and runoff, respectively).

Periods Annual Winter Spring Summer Autumn

P

RCP4.5
2030s 0.06 0.02 0.11 0 0.1
2050s 0.08 0.02 0.15 0.11 0.04
2080s 0.16 0.06 0.2 0.2 0.17

RCP8.5
2030s 0.07 0 0.16 0.01 0.12
2050s 0.12 0.07 0.18 0.15 0.08
2080s 0.2 0.03 0.26 0.32 0.16

E

RCP4.5
2030s 0.06 0.01 0.07 0.1 0.06
2050s 0.1 0.04 0.11 0.16 0.08
2080s 0.12 0.05 0.16 0.18 0.11

RCP8.5
2030s 0.08 0.02 0.07 0.14 0.07
2050s 0.14 0.06 0.15 0.23 0.11
2080s 0.22 0.08 0.25 0.38 0.18

R

RCP4.5
2030s 0.01 0.01 0.05 −0.08 0.06
2050s 0 0.01 0.04 −0.09 0.06
2080s 0.05 0.03 0.06 0 0.12

RCP8.5
2030s 0 0.01 0.06 −0.12 0.07
2050s 0 0.03 0.05 −0.13 0.07
2080s 0 0.03 0.04 −0.16 0.1

Notes: Numbers in bold font indicate trends that are statistically significant at α = 0.05.
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Figure 8. Projected changes in the annual cycles of precipitation, evapotranspiration, and runoff.
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Precipitation changes with respect to different warming levels under the two scenarios
are shown in Table 4. The magnitudes of changes under the same warming level are
similar under different scenarios. For example, with a domain average warming of 2 ◦C,
the annual average precipitation is likely to increase by 0.12 and 0.13 mm/day under
RCP4.5 and RCP8.5, respectively. This phenomenon is reasonable because, according
to the Clausius–Clapeyron equation, the increase in the water holding capacity of the
atmosphere is the same given the same temperature increase. The change in precipitation is
not necessarily the same since the actual amount of water vapor available can be different.
At a warming level of 2 ◦C, spring and summer precipitation is also projected to increase by
0.15 and 0.17 mm/day under RCP4.5, and by 0.21 and 0.17 mm/day under RCP8.5. When
domain average warming reaches 4 ◦C under RCP8.5, the annual, spring, and summer
precipitation are projected to increase by 0.19, 0.24, and 0.27 mm/day, respectively.

Table 4. Projected changes (mm/day) in precipitation, evapotranspiration, and runoff at different warming levels (P, E, and
R denote precipitation, evapotranspiration, and runoff, respectively).

Warming Level Annual Winter Spring Summer Autumn

P

RCP4.5
1 ◦C 0.06 0.02 0.13 −0.01 0.08

1.5 ◦C 0.08 0 0.15 0.1 0.08
2 ◦C 0.12 0.07 0.15 0.17 0.1

RCP8.5

1 ◦C 0.03 −0.02 0.1 0.03 0
1.5 ◦C 0.05 0.02 0.14 0.01 0.04
2 ◦C 0.13 0.06 0.21 0.17 0.08
3 ◦C 0.2 0.04 0.22 0.34 0.19
4 ◦C 0.19 0.05 0.24 0.27 0.2

E

RCP4.5
1 ◦C 0.06 0.01 0.07 0.1 0.06

1.5 ◦C 0.07 0.02 0.08 0.13 0.06
2 ◦C 0.12 0.05 0.16 0.19 0.09

RCP8.5

1 ◦C 0.04 0.02 0.04 0.09 0.03
1.5 ◦C 0.09 0.03 0.1 0.18 0.07
2 ◦C 0.14 0.06 0.14 0.22 0.12
3 ◦C 0.18 0.06 0.2 0.29 0.17
4 ◦C 0.21 0.08 0.23 0.36 0.18

R

RCP4.5
1 ◦C 0.01 0.01 0.06 −0.08 0.06

1.5 ◦C 0.02 0.01 0.06 −0.05 0.06
2 ◦C 0.02 0.02 0.04 −0.06 0.08

RCP8.5

1 ◦C −0.03 −0.01 0.03 −0.14 0.01
1.5 ◦C −0.02 0.01 0.03 −0.16 0.05
2 ◦C 0.01 0.03 0.06 −0.11 0.08
3 ◦C 0.04 0.03 0.04 −0.06 0.13
4 ◦C 0 0.03 0.03 −0.15 0.1

Notes: Numbers in bold font indicate trends that are statistically significant at α = 0.05.

3.2.2. Evapotranspiration

The projected changes in evapotranspiration over China are shown in Figure 9. Similar
to the spatial pattern of precipitation changes, the annual average evapotranspiration
is likely to increase over most parts of the domain. The area experiencing increased
evapotranspiration is larger than that for precipitation, but the magnitude of the increase is
smaller when compared with precipitation. Annual average evapotranspiration changes
are within ±0.3 mm/day for most of the time under both scenarios, except that increases
of over 0.3 mm/day are projected in the Hengduan Mountains, Yunnan–Guizhou Plateau,
and southeastern coastal hilly regions in the 2080s under RCP8.5. Intra-annual variations
can also be observed for evapotranspiration changes. The most pronounced changes are
to occur in summer, in which evapotranspiration increases of over 0.3 mm/day can be
found over the entire domain except parts in northern and northeastern China in the
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2080s under RCP8.5, and increases of over 0.6 mm/day are to be seen in the Hengduan
Mountains. In spring, evaporation increases of over 0.3 mm/day are projected in areas
between the Yangtze River and Pearl River Basins in the 2080s under RCP4.5, and in
most of the southern parts of the domain in the same period under RCP8.5. In autumn,
evapotranspiration increases of over 0.3 mm/day can be found in the Hengduan Mountains.
Evapotranspiration changes in winter are within ±0.3 mm/day for all future periods under
both scenarios.

 
Figure 9. Projected changes in evapotranspiration over China.

The annual average evapotranspiration time series is shown in Figure 7, which ap-
pears to be less fluctuating than those of the other two variables. Evident increasing trends
can be observed under both scenarios, the magnitudes of which are 0.01 and 0.03 mm/day
per decade (statistically significant at an α level of 0.05), respectively (Table 2). All seasonal
trends are exclusively statistically significant, which are 0.01, 0.02, 0.01, and 0.01 mm/day
per decade, respectively, for winter, spring, summer, and autumn under RCP4.5 and 0.01,
0.03, 0.04, and 0.02 mm/day per decade under RCP8.5. Annual and seasonal evapotran-
spiration changes in the three future periods under both scenarios are all statistically
significant, except for winter in the 2030s under RCP4.5 (Table 3). Under RCP4.5, annual
average evapotranspiration is projected to increase by 0.06, 0.1, and 0.12 mm/day, re-
spectively, for the 2030s, 2050s, and 2080s, while, under RCP8.5, the increases are 0.08,
0.14, and 0.22 mm/day. Such increases in evapotranspiration can also be observed in
Figure 8, in which evapotranspiration changes are always above zero and larger increases
can be found in the monsoon months. At a domain average warming of 2 ◦C, annual
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average evapotranspiration is projected to increase by 0.12 and 0.14 mm/day under the
two scenarios (Table 4), which are close to the amount of precipitation increases. For the
4 ◦C warming period under RCP8.5, annual evapotranspiration is likely to increase by
0.21 mm/day, and seasonal evapotranspiration by 0.08, 0.23, 0.36, and 0.18 mm/day for
winter, spring, summer, and autumn, respectively.

3.2.3. Runoff

Figure 10 shows the projected changes in future runoff. In general, the annual and
seasonal variations in runoff share a certain resemblance with those in precipitation, and
only the area experiencing increased runoff is considerably smaller. Runoff changes in
most parts of the domain are within ±0.3 mm/day in the three future periods under both
scenarios. Under RCP4.5, runoff increases of over 0.3 mm/day can be found in the Yangtze
Plain in the 2080s. Under RCP8.5, over 0.3 mm/day decreases in runoff are likely to occur
in parts of the Yunnan–Guizhou Plateau in the 2050s and also in parts of the Yangtze
River Basin in the 2080s. Seasonal changes in future runoff also demonstrate distinct
characteristics. Among all seasons, runoff changes in summer are most severe. For example,
under RCP4.5, runoff increases of over 1.2 mm/day are projected in the southeastern coastal
hilly regions in the 2080s, which can be related to the increased precipitation in this area.
Under RCP8.5, a considerable part of the Yangtze River Basin is projected to experience
a runoff reduction of over 0.6 mm/day in the 2080s, which is likely to be caused by the
simultaneous decrease in precipitation and increase in evapotranspiration. In winter,
changes in runoff are within ±0.3 mm/day in most parts of the domain, with decreases
in the central and southwestern parts and increases elsewhere. Spring runoff is projected
to increase in the Yangtze Plain by at least over 0.3 mm/day in the future. In autumn,
parts of the Yellow River and Haihe River Basins are to receive runoff increases of over
0.3 mm/day. The observed changes in runoff are closely related to the corresponding
changes in precipitation.

As shown in Figure 7, the interannual variation in runoff is highly correlated with
those in precipitation and precipitation minus evapotranspiration (hereafter as P − E). In
addition, the changes in P − E are slightly larger than those in runoff, which are consistent
with the observations of Zhang et al. [2]. They offered two possible explanations: problems
with model spinup or water balance closure, and changes in terrestrial water storage as a
result of global warming [2]. The latter case indicates a reduction in future soil moisture,
which may bring a negative influence on agriculture. The time series of annual average
runoff do not exhibit apparent trends, which is consistent with the lack of a significant
trend as shown in Table 2. Previous studies also noticed that the annual runoff series does
not demonstrate a trend in the historical period; for example, no statistically significant
trend can be detected in the Huaihe River Basin, according to Yu et al. [53]. Significant weak
trends of 0.01 mm/day per decade are projected in autumn under RCP4.5 and in winter
and autumn under RCP8.5. In comparison with precipitation and evapotranspiration, there
is no statistically significant change in annual average runoff except for the 2080s under
RCP4.5 (0.05 mm/day). Statistically significant runoff reductions are projected in summer,
which are −0.08 and −0.09 mm/day in the 2030s and 2050s under RCP4.5 and −0.12, −0.13,
and −0.16 mm/day in the three future periods under RCP8.5. Such a runoff reduction in
summer is also evident in Figure 8. These observations are partially consistent with those of
Zhang et al. [2], who noticed that changes in precipitation, evapotranspiration, runoff, and
P − E mainly occur in the wet season with simultaneous increases in all variables. In this
study, the most pronounced changes also occur in the wet season. The projected reduction
in runoff and P − E could be related to the difference in the domain selection between
this and Zhang et al.’s studies. There is no significant change in annual average runoff
under all warming levels and emission scenarios, except that an increase of 0.04 mm/day
is projected at a warming level of 3 ◦C under RCP8.5. At a warming level of 2 ◦C, runoff
changes of 0.02 and 0.08 mm/day are likely to occur in winter and autumn under RCP4.5,
and 0.03, −0.11, and 0.08 mm/day in winter, summer, and autumn under RCP8.5. With a
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domain average warming of 4 ◦C, runoff in winter, summer, and autumn is to change by
0.03, −0.15, and 0.01 mm/day under RCP8.5.

 
Figure 10. Projected changes in runoff over China.

4. Discussions and Conclusions

In this study, the long-term variations in the water cycle over China are studied using
RegCM. The performance of RegCM in terms of temperature, precipitation, evapotran-
spiration, and runoff is validated through comparisons of the model-generated results
with gridded observations, remote sensing data, and reconstructed data. The results show
that RegCM can reasonably capture the spatial and seasonal variations in these variables,
although certain biases exist, such as a cold bias in the entire domain, a dry and wet bias
pair in the southeastern and northwestern parts of the domain, some over- and underesti-
mations of evapotranspiration, respectively, in winter/spring and summer/autumn, and
some over- and underestimations of runoff near the Tibetan Plateau.

Long-term projections of precipitation, evapotranspiration, and runoff under two
emission scenarios are then developed. The results show that increased annual average
precipitation and evapotranspiration can be found in most parts of the domain, while a
smaller part of the domain is projected with increased runoff.

For precipitation, the regions most affected by global warming are the Yangtze Plain,
Yellow River and Haihe River Basins, and southeastern parts of the Tibetan Plateau,
where over 0.3 mm/day increases are expected in the 2080s under both scenarios. The
projected increase in precipitation in the Yellow River and Haihe River Basins can also be
observed in a CMIP6 GCM ensemble according to Tian et al. [54]. It is worth noting that
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although the projected precipitation increase in the Tarim Basin is within 0.3 mm/day, the
percentage change could be large considering its low annual average total precipitation,
which is why several studies (e.g., [55,56]) identified it as an area vulnerable to climate
change. Precipitation increase has been shown to be among the driving factors for the
increased flood frequency in the Tarim River Basin since the 1980s [57]; the increase in
future precipitation as projected by this and the previous studies may indicate increased
flood risks in this area, which suggests the need for relevant flood prevention measures.

For evapotranspiration, areas experiencing evident increases are the Hengduan Moun-
tains, Yunnan–Guizhou Plateau, and southeastern coastal hilly regions; the magnitude
of change is 0.3 mm/day in the 2080s under RCP8.5. The apparent evapotranspiration
increase in southeastern coastal hilly regions is also noted by Su et al. [58]. In terms of sea-
sonal variations, summer and spring are likely to see larger increases in evapotranspiration;
this feature is consistent with Ma et al.’s observation [59]. The developed projections in
evapotranspiration can be used to evaluate climate change impacts on drought conditions
through the calculation of evapotranspiration deficit; this index, compared with those
that are based on precipitation and soil moisture, could more effectively reflect moisture
deficiency in ecosystems [60].

For runoff, the regions most affected are the Yangtze Delta, Yunnan–Guizhou Plateau,
and parts of the Yangtze River Basin, with increases of 0.3 mm/day for the first region
in the 2080s under RCP4.5 and decreases of over 0.3 mm/day for the latter two regions
in the 2080s under RCP8.5. The projected decrease in runoff in the middle reaches of the
Yangtze River Basin is consistent with the results from Xing et al.’s study [61]. In addition,
the runoff reduction in the Yunnan–Guizhou Plateau and the upper reaches of the Yangtze
River Basin is also noticed by Zhai et al. in their ensemble projection of runoff [62]. Extreme
high and low runoff are often related to flood and drought hazards [63], and the runoff
projection developed in this study could help identify regions vulnerable to increased flood
and drought risks, and thus support flood mitigation and water resource management [64].

In summary, future precipitation and evapotranspiration are likely to increase over
China in the wet season, while runoff decreases. The projected changes in precipitation
minus evapotranspiration are larger than those in runoff, implying a possible decrease
in soil moisture. It is important that future variations in the water cycle components be
considered when designing flood and drought mitigation measures.

Extensions of this study can be conducted with respect to the current limitations.
For example, more sophisticated bias correction techniques can be applied to the model
results. In addition, more GCMs can be used to drive RegCM so that an ensemble can be
constructed for more robust projections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13193832/s1, Figure S1: Location of NIMC weather stations. Note: Red dots indicate selected
stations for evapotranspiration data. The NIMC tank evaporation data contains a large number of
missing data; the stations are selected if the percentage of missing data is less than 50% for each
season. Figure S2: Simulated annual cycles for precipitation, evapotranspiration, runoff, and the
difference between precipitation and evapotranspiration in the baseline period. The R2’s for the two
sets of RegCM results are 0.88, 0.92, 0.83, and 0.82, respectively for precipitation, evapotranspiration,
runoff, and the difference between precipitation and evapotranspiration. Table S1: Spatial correlation
between RegCM-generated results and observations, remote sensing data, and reconstructed data.
Table S2: Spatial correlation between raw GFDL data and observations.
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Abstract: Glacier evolution with time provides important information about climate variability. Here,
we investigated glacier velocity changes in the Himalayas and analysed the patterns of glacier flow.
We collected 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2
panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during
these two periods. We then derived velocity changes between 1999 and 2018 for the early winter
period, based on which we performed a detailed analysis of motion of each individual glacier, and
noted that the changes are spatially heterogeneous. Of all the glaciers, 32% have sped up, 24.5%
have slowed down, and the rest 43.5% have remained stable. The amplitude of glacier slowdown,
as a result of glacier mass loss, is significantly larger than that of speedup. At regional scales, we
found that glacier surface velocity in winter has uniformly decreased in the western part of the
Himalayas between 1999 and 2018, while increased in the eastern part; this contrasting difference
may be associated with decadal changes in accumulation and/or melting under different climatic
regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer
velocity changes are positively correlated with mass loss, i.e., velocity increases with increasing mass
loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier
velocity changes in the Himalayas are spatially and temporally heterogeneous, in agreement with
studies that previously highlighted this trend, emphasising complex interactions between glacier
dynamics and environmental forcing.

Keywords: glacier velocity changes; Himalayas; Landsat-7; Sentinel-2; ice mass balance

1. Introduction

Glaciers are sensitive to climate variability and are a major contributor to global sea
level rise [1–7]. It is of great importance to understand glacier evolution with time because
it provides direct evidence for climate change [2,8,9]. The Himalayas host the largest
volume of glaciers outside the polar regions, which also contribute importantly to water
resources for the Indus and Ganges basins [10–12]. Due to the difficult accessibility of
high mountain areas, remote sensing has been a powerful tool for studying the Himalayan
glaciers. Researchers have used satellite altimetry (e.g., [2,13,14]) and optical satellite stereo
imagery (e.g., [7,15,16]) to quantify glacier mass balance in the Himalayas. Although
the estimates derived from different techniques vary, they consistently show that the
Himalayan glaciers are experiencing significant thinning and mass loss, thereby affecting
ice fluxes and river discharge. The thinning rate is also suggested to have accelerated in
the past 40 years, which is possibly driven by atmospheric warming and associated energy
fluxes [15–17]. Recently, Dehecq et al. [9] investigated the response of glacier flow to mass
changes at regional scales. They estimated time-series glacier velocities from 2000 to 2016,
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using Landsat-7 optical satellite images [18], and found that the variability in velocity
changes within a large region can be explained solely by changes in ice thickness, i.e., ice
mass balance [9]. Their study provides a novel way for estimating ice mass balance in the
Himalayas as glacier velocity changes can be easily measured with satellite images.

Glacier surface velocity in summer has been heavily exploited, e.g., [9,18]. Velocity
estimates in [9] show that glaciers in the Himalayas have experienced significant slowdown
in the past two decades. However, seasonal variability of regional glacier motion remains
unclear. The aim of this study is to explore the long-term winter velocity and its changes.
We first derived glacier velocities for two periods, early winter in 1999–2000 and 2017–2018,
using Landsat-7 and Sentinel-2 image pairs, respectively. High-resolution satellites provide
a powerful tool for monitoring ice and snow [19,20]. We chose Sentinel-2 over Landsat-
7 for mapping the present glacier motion because it has been tested to have a better
geometric and radiometric quality [21]. By differencing the Landsat-7 and Sentinel-2
derived velocities, we map velocity changes over nearly two decades, and, combining
the data with glacier mass balance, we show the complex patterns of glacier flow in
the Himalayas.

2. Study Area

The Himalaya front (Figure 1) stretches over 3000 km from the west to the east,
containing more than 36,000 glaciers of different sizes (Randolph Glacier Inventory, RGI
6.0). The topography increases rapidly across the front, from 200 m in the south to over
5000 m in the north, entering the Tibetan Plateau. Evolution of glaciers in different parts
of the Himalayas is affected by different climatic regimes. In the western part, snow
accumulation is controlled by westerly atmospheric circulations, so Hindu Kush, Spiti
Lahaul and Karakoram receive most accumulation during winter. In the eastern part,
the Indian summer monsoon dominates the accumulation in West Nepal, East Nepal,
Bhutan and Nyainqentanglha [2,12,22–24]. The extreme topography creates additional
complexity; precipitation at high-altitude regions has been suggested to be 2–10 times
higher than that at low-altitude regions [25,26]. As a result, glaciers in the Himalayan
front exhibit contrasting variabilities in evolution and mass balance [2,7,9]. Shaded relief of
the Himalaya region generated from the 3 arc second Shuttle Radar Topography Mission
(SRTM) DEM [27] is shown in Figure 1.

3. Data and Methods

In this study, we focused primarily on surface velocity changes of the Himalayan
glaciers at decadal scales. Satellite optical images were used to generate glacier velocity
maps at different times. We collected 40 pairs of Landsat-7 Level-1T data between 1999
and 2000 to calculate glacier velocity during this period. Each panchromatic Landsat-7
Level-1T image covers an area of 185 km × 170 km, with a spatial resolution of 15 m. A
total of 70 panchromatic Sentinel-2A/B Level-1C image pairs were obtained to calculate
glacier velocity between 2017 and 2018. Each Sentinel-2 Level-1C image has a footprint
of 100 km × 100 km and a spatial resolution of 10 m. Dehecq et al. [9] analysed velocity
changes in summer. We are interested to explore whether glacier velocities exhibit seasonal
variations, so all the 110 pairs of Landsat-7 and Sentinel-2 images used in this study were
acquired during winter, centred around December. We also collected glacier geometry
data including length, area, slope and thickness from RGI 6.0 and [28], along with satellite-
derived glacier elevation changes from [7], for a comprehensive analysis of glacier velocity
changes and the possible driving factors.

We estimated glacier velocities by applying cross-correlation using the COSI-Corr
software package. Optical correlation is implemented in the frequency domain with
an accuracy ∼1/10 of the input pixel size [29,30]. We used a correlation window of
64 pixels × 64 pixels as a first step, followed by 32 pixels × 32 pixels for a second run, with
a step of 16 pixels × 16 pixels (160 m) for Sentinel-2A/B data and 10 pixels × 10 pixels
(150 m) for Landsat-7 data. The resulting east-west and north-south components of the
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displacement were filtered using the non-local means algorithm [30]. The purpose of
filtering is to use the correlation to excluded snow-covered regions where the correlation is
relatively low. We then used RGI 6.0 to mask out the non-glacial areas and generated two
annual velocity fields for 1999–2000 and 2017–2018, for all the 36,722 glaciers within the
Himalayas, as shown in Figure 2.

The velocity uncertainty was estimated from the overlapping areas between adjacent
pairs. As shown in Figure 3, the Landsat-7 and Sentinel-2 derived velocities have a
measurement error of −3.4 ± 11.6 m yr−1 and 0.4 ± 4.6 m yr−1, respectively. Since all
the image pairs are centred around December with little interannual fluctuations, the
uncertainty depends largely on radiometric quality and image resolution, indicating that
Sentinel-2 imagery has a better radiometric quality than Landsat-7 imagery [21], and higher
resolution improves pixel matching [20], hence yielding more consistent results.

Figure 1. Glaciers are highlighted in light blue. The total number of glaciers in each subregion is labelled. Black box marks
the location of Figure 2. We calculated the mean value of velocity changes of each subregion and compared our estimates
to [9]. (a–g) shows examples of velocity changes in subregions. See Table 1 for details.
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To calculate velocity changes, we re-sampled the Landsat-7 and Sentinel-2 derived
velocity maps onto the same grid with a spacing of 160 m, and then differenced the two
velocities on a pixel basis (Figure 1). Unlike [9], who based their analysis of glacier velocity
changes mainly on regions, we conducted our analysis based on individual glacier. For
each glacier, we computed its velocity and the associated change by averaging all the pixel
values that cover the glacier.

Figure 2. Deriving glacier surface velocity using optical correlation. The Sentinel-2 optical data were provided by the
European Space Agency (ESA). See Figure 1 for location.
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Figure 3. Velocity uncertainties. The Landsat-7 and Sentinel-2 derived velocities have a measurement error of
−3.4 ± 11.6 m yr−1 and 0.4 ± 4.6 m yr−1, respectively.

4. Results

A total of 36,722 glaciers were included in our study (from the RGI 6.0 database). As
shown in Table 1, 43.5% of the glaciers had a stable velocity during 1999–2018 (the difference
between Landsat-7 and Sentinel-2 velocities is no more than 3 m yr−1), 32.0% sped up
(velocity changes > 3 m yr−1) and 24.5% slowed down (velocity changes < − 3 m yr−1).
Although speedup glaciers outnumber slowdown glaciers, the average amplitude of glacier
speedup (6.3 m yr−1) is much smaller than slowdown (−12.3 m yr−1). At regional scale,
more glaciers in the east of the Himalayas, i.e., West Nepal (33.4%), East Nepal (56.2%),
Bhutan (34.1%) and Nyainqentanglha (41.3%), have experienced speedup than the west in
Hindu Kush (22.6%), Spiti Lahaul (19.6%) and Karakoram (17.3%). Karakoram has seen the
largest proportion of glacier slowdown (31.5%), followed by West Nepal (29.1%), Hindu
Kush (28.3%), Bhutan (22.1%), Nyainqentanglha (21.9%), East Nepal (19.6%) and Spiti
Lahaul (18.7%). The greatest speedup (about 130 m yr−1 in RGI60-14.04875) and slowdown
(about −250 m yr−1 in RGI60-14.0300) also occurred in Karakoram.

We analysed glacier surface velocity in combination with glacier geometry data includ-
ing area, length, slope and thickness. We used Sentinel-2 derived velocities in the analysis,
given the smaller measurement uncertainties. The results (Figure 4) showed that small
glaciers (area < 20 km2), regardless of non-surge and surge types, exhibit complex flow
velocities, which are poorly correlated with area (R = 0.13 for non-surge type and R = 0.22
for surge type), length (R = 0.12 and R = 0.21), slope (R = −0.08 and R = 0.02) and thick-
ness (R = −0.01 and R = 0.09). Flow velocities of large (area ≥ 20 km2), non-surge-type
glaciers show a positive correlation with both area (R = 0.69) and length (R = 0.78), i.e.,
the size of glaciers, suggesting faster motion with increasing sizes, as glacier flow laws
would predict. Surge-type glaciers do not show an evident correlation with any of the
factors. We also noted that glacier velocities appear to be independent of, or at least not
linearly correlated with, both slope and thickness. Similarly, we analysed the relationship
between glacier velocity changes and glacier size and thickness. As shown in Figure 4,
velocity changes of both non-surge- and surge-type glaciers are completely independent of
glacier geometry, indicated by the very low correlation (R ≈ 0).
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Table 1. Statistics of glacier velocity changes in the Himalayas. Stable glaciers are defined as the amplitude of differences
between Landsat-7 and Sentinel-2 velocities, i.e., velocity changes between 1999 and 2018, ≤3 m yr−1. Velocity changes
>3 m yr−1 are regarded as speedup and <−3 m yr−1 as slowdown. The overall changes were calculated by averaging all
the glaciers within each subregion, in order to be comparable with the results in [9].

Number of Glaciers Speedup Slowdown Stable
Speedup (m yr−1) Slowdown (m yr−1) Overall (m yr−1 dec−1)

Average Maximum Average Maximum This Study [9]

Hindu Kush 4206 22.6% 28.3% 49.1% 5.2 29.6 (RGI60-14.24088) −11.5 −186.0 (RGI60-14.22312) −1.0 −1.4

Karakoram 12,822 17.3% 31.5% 51.2% 6.6 127.7 (RGI60-14.04875) −13.7 −256.7 (RGI60-14.03000) −1.6 0.8

Spiti Lahaul 7796 19.6% 18.7% 61.7% 6.4 81.5 (RGI60-14.19261) −12.1 −179.0 (RGI60-14.17193) −0.4 −4.6

West Nepal 3906 33.4% 29.1% 37.5% 5.5 27.2 (RGI60-14.12426) −9.7 −51.4 (RGI60-15.05231) −0.5 −2.2

East Nepal 3563 56.2% 19.6% 24.2% 6.3 55.8 (RGI60-15.09859) −12.3 −62.0 (RGI60-15.09861) 0.7 −1.8

Bhutan 1547 34.1% 22.1% 43.8% 6.6 39.5 (RGI60-15.02102) −8.5 −61.3 (RGI60-15.01907) 0.2 −2.1

Nyainqentanglha 2882 41.3% 21.9% 36.8% 6.9 95.9 (RGI60-15.12714) −12.4 −135.6 (RGI60-15.12081) 0.2 −6.4

Total 36,722 32.0% 24.5% 43.5% 6.3 127.7 (Karakoram) −12.3 −256.7 (Karakoram) −0.3 /

Figure 4. Glacier velocity and velocity changes versus area, length, slope and thickness. Dots and triangles stand for glaciers
with an area of smaller than 20 km2 and over 20 km2, respectively. Non-surge- and surge-type glaciers are separated by
blue and red. Lines show the linear regression analysis of the corresponding group of data.

5. Discussion

5.1. Regional Patterns of Surface Velocity Changes

Dehecq et al. [9] calculated time-series velocity anomalies for 11 subregions in the Hi-
malayas. An analysis of glacier changes at regional scales allows us to explore cryospheric
responses to climatic forcing. Here, we followed their line of analysis and focused on the 7
subregions that stretch along the range front. In order to compare our estimates to theirs,
we averaged the velocity differences of all glaciers in each subregion and calculated the
rate of change (velocity differences divided by 1.8 decades). Velocity changes (Table 1)
show that, on average, glaciers in Hindu Kush (−1.0 m yr−1 decade−1 for 4206 glaciers),
Karakoram (−1.6 m yr−1 decade−1 for 12,822 glaciers), Spiti Lahaul (−0.4 m yr−1 decade−1

for 7796 glaciers) and West Nepal (−0.5 m yr−1 decade−1 for 3906 glaciers) have slowed
down from 1999 to 2018, whereas a slight acceleration has occurred in the east: East Nepal
(0.7 m yr−1 decade−1 for 3563 glaciers), Bhutan (0.2 m yr−1 decade−1 for 1547 glaciers)
and Nyainqentanglha (0.2 m yr−1 decade−1 for 2882 glaciers). Our results differ from [9]’s,
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who found that all subregions have experienced a slowdown between 2000 and 2017, with
a changing rate varying from −6.4 m yr−1 decade−1 in Nyainqentanglha to −1.4 m yr−1

decade−1 in Hindu Kush, except for Karakoram, which experienced a small speedup (0.8
m yr−1 decade−1). The inconsistency is likely to be resulted from seasonal changes in
glacier flow. The images used in our study were collected in December, so our estimates
are velocities during winter, while [9]’s velocity estimates are centred around June. Past
studies (e.g., [31–33]) have shown that, during summer, when melting occurs, glaciers
flow much faster with stronger temporal and spatial variations. Velocity changes during
winter (0∼1 m yr−1 decade−1) are considerably smaller than the changes during summer
(1∼6 m yr−1 decade−1) (see Figure 1 and Table 1), possibly due to strong spatio-temporal
variations in melting in the Himalayas. From the winter velocity changes, we also observed
a contrasting difference between the western (slowdown) and eastern (speedup) parts of
the Himalayan front, indicating heterogeneous changes in accumulation and/or melting
under different climatic regimes.

5.2. Linking Surface Velocity Changes with Glacier Mass Balance

To further investigate the driving factors of glacier velocity changes, we use the empirical
power law relation between glacier surface velocity V and driving stress τ [34–37]:

V = Aτm (1)

where A and m are positive constants, related to ice rheology, bed topography and flow
mechanisms (ice deformation and basal sliding) [34,35]. m has been estimated to vary
from 1 (flow over soft sediments, [38]) to 4 (high subglacial pressure, [9]) under different
circumstances.

Taking the derivative of V with respect to τ, we have:

dV = Amτ(m−1)dτ (2)

Combining Equations (1) and (2), we have:

dV
V

= m
dτ

τ
(3)

Assuming that changes in the driving stress (dτ) are induced by mass balance (dM)
and ignoring other factors, as proposed by [9], i.e., dτ = C1dM + C2, we have:

dV
V

=
m
τ

C1dM +
m
τ

C2 (4)

where C1 and C2 are assumed constant, relating the driving stress and mass balance.
Dehecq et al. [9] analysed velocity changes and mass balance data and found that, at
regional scales, summer velocity changes are positively correlated with mass balance:
dV
V ∼ 1.25dM (see Figure 5).

To test whether velocity changes exhibit any seasonal variability, we applied Equation (4)
to analyse the winter velocity estimates. We calculated the average values of velocity V
and its change dV for each of the glaciers, based on which we determined the overall dV
and V for each subregion. The measurements of glacier mass balance (dM) were taken
from [7]. Although estimates of glacier mass balance in Brun et al. [7] did not take seasonal
variability into account, an earlier study in [2] has shown that the long-term trend of
dM is consistent between seasons (the amplitude differs slightly). Therefore, using the
average long-term trend of dM should not affect the linear relationship between dV and
dM. As shown in Figure 5, glacier velocity changes dV

V are negatively correlated with
mass balance ( dV

V ∼ −0.96dM), suggesting that ice mass loss promotes glacier motion in
winter. This is in contrasting difference with summer velocity changes in the study by [9],
which states that mass loss drives glacier slowdown. Such seasonal variability indicates
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different mechanisms of glacier mass loss in the Himalayas. Increased melt conditions
in the early winter period, November and December, could enhance velocity, as noted
by Bocchiola et al. [39], Pelto et al. [40] in the eastern Himalaya. During summer, mass
losses are more likely to be resulted from increased ablation zone melting, given that
precipitation has not been significant [41,42]. The result suggests that velocity changes in
the Himalayas are temperature driven, rather than accumulation process driven.

Figure 5. Glacier surface velocity changes versus mass balance. Mass balance data were taken from [7]. Shaded bands
indicate 68% confidence interval. Winter velocity changes (filled circles, in this study) are negatively correlated with mass
balance, with a correlation of R = −0.87. Summer velocity changes (filled triangles, [9]) are positively correlated with
mass balance.

6. Conclusions

In this study, we used Landsat-7 and Sentinel-2 optical imagery to investigate glacier
surface velocity and the associated changes in the Himalayas. We analysed flow patterns
of individual glacier along the Himalayan mountain front and found that glacier velocity
changes exhibit an evident heterogeneity at different spatial scales. Of all the 36,722 glaciers,
32% have experienced speedup, 24.5% have slowed down, and the rest, 43.5%, have
remained stable. At regional scales, the amplitude of velocity changes is significantly
larger in summer [9] than that in winter (this study). The decreasing velocities in winter
between 1999 and 2018 in the western part of the Himalayas, in contrast to the increasing
velocities in the eastern part, may be caused by changes in accumulation and/or melting
under different climatic regimes. Accelerated flow in Eastern Nepal may be impacted by
melting conditions, where more melting has been observed. We also observed that glacier
velocity changes in winter are controlled by mass balance, as suggested by [9]; however,
unlike summer velocity changes that are positively correlated with mass balance, winter
velocity changes show a negative correlation. Our study suggests that glacier velocity
changes in the Himalayas are more spatially and temporally heterogeneous than what
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was previously thought, emphasising complex interactions between glacier dynamics and
environmental forcing.
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Abstract: UltraViolet & infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-
SAT) is a small satellite at the CubeSat standard, whose development began as one of the missions in
the International Satellite Program in Research and Education (INSPIRE) consortium in 2017. UVSQ-
SAT is an educational, technological and scientific pathfinder CubeSat mission dedicated to the
observation of the Earth and the Sun. It was imagined, designed, produced and tested by LATMOS
in collaboration with its academic and industrial partners, and the French-speaking radioamateur
community. About the size of a Rubik’s Cube and weighing about 2 kg, this satellite was put in orbit
in January 2021 by the SpaceX Falcon 9 launch vehicle. After briefly introducing the UVSQ-SAT
mission, this paper will present the importance of measuring the Earth’s radiation budget and its
energy imbalance and the scientific objectives related to its various components. Finally, the first
in-orbit observations will be shown (maps of the solar radiation reflected by the Earth and of the
outgoing longwave radiation at the top of the atmosphere during February 2021). UVSQ-SAT is
one of the few CubeSats worldwide with a scientific goal related to climate studies. It represents a
research in remote sensing technologies for Climate observation and monitoring.

Keywords: climate observation and monitoring; earth radiation budget; nanosatellite; IPCC

1. Introduction

UVSQ-SAT is a nanosatellite designed to observe the Sun and the Earth, mainly for
observing essential climate variables. It allows, among other things, measurements of
the solar radiation reflected by the Earth or outgoing shortwave radiation (OSR) and of
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the outgoing longwave radiation (OLR) at the top of the atmosphere (TOA). A detailed
description of the UVSQ-SAT mission and its satellite is given by Meftah et al. (2020) [1].
The main technical and scientific goal is to implement an agile demonstrator allowing
to perform measurements of the Earth’s radiation balance at the TOA. The UVSQ-SAT
mission will allow to validate the principle of several miniaturized technologies as a first
step to accurately measure the Earth’s energy imbalance (EEI) with a constellation of small
satellites. Regarding the educational objectives, the UVSQ-SAT program seeks to promote
the transmission and valorization of scientific and technical knowledge through the inno-
vation. This one feeds the creation of value and allows the implementation of technological
breakthroughs and the associated risk-taking, the “NewSpace”, and technology transfer.

Developed from 2017, UVSQ-SAT is based on a CubeSat architecture [2,3], which
represents a satellite format defined in 1999 by the California Polytechnic State University
and Stanford University (USA). UVSQ-SAT was developed and implemented by LATMOS
and its INSPIRE international partners. The INSPIRE consortium was formed in 2015,
with the objectives of developing small satellites to perform science missions, building
a project-based learning curriculum for space science and engineering, and establishing
a supporting network of ground stations. UVSQ-SAT/INSPIRESat-5 fully meets these
objectives. A representative mockup of the UVSQ-SAT satellite is provided in Figure 1 left.

Figure 1. (Left) Representative mockup of the UVSQ-SAT satellite. (Right) Transporter 1 mission (SpaceX) with 143
commercial and government satellites on-board, including UVSQ-SAT. Credits: SpaceX.

Before being launched into space, a test campaign of the UVSQ-SAT CubeSat was
carried out from August to October 2020. It typically involves several mechanical tests,
electromagnetic compatibility (EMC) tests, calibration and performance tests, thermal vac-
uum and thermal balance tests, magnetic tests, and end to end tests. The satellite has been
fully tested with French facilities (Figure 2) at LATMOS, at the Plateforme d’Intégration
et de Tests (PIT) of the Observatoire de Versailles Saint-Quentin-en-Yvelines (OVSQ), at
French space agency (CNES), and at the Office National d’Etudes et de Recherches Aérospa-
tiales (ONERA). A successful mechanical testing campaign of the UVSQ-SAT CubeSat was
mandatory to get a launch clearance. It involved quasi-static testing (test carried out with
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a static load of 15 g to simulate the acceleration of the launch vehicle), shock testing, as
well as random vibration (test levels are shown in Figure 3 left). Random vibration was
carried out to simulate the loads of the upper stages of the SpaceX Falcon 9 launcher and
is the most severe test. Before and after each random axis test run, a resonance search
(Figure 3 right) was done with a frequency sweep of low-level sinusoidal vibrations to
characterize main resonant modes of the UVSQ-SAT CubeSat, to determine if the tests
loads have changed the mechanical properties of the CubeSat (first eigenmode close to
418 Hz), and to show possible deficiencies. Thermal bakeout was mandatory (+60 ◦C) for
outgassing volatile materials of the CubeSat. A thermal vacuum cycling test (temperatures
profile given in Figure 4) was also carried out to simulate the temperature conditions in
orbit and to demonstrate that the CubeSat is able to survive, without loss of integrity or
functionality. After performing all performances and environmental tests with success and
confirmation of frequency coordination, UVSQ-SAT was ready to go in space.

Figure 2. UVSQ-SAT environmental tests and calibrations carried out during the year 2020. (a) Vibration. (b) EMC
tests. (c) Calibration with a Xenon lamp and a black body. (d) Thermal vacuum and thermal balance tests. (e) Magnetic
cleanliness verification of the satellite. (f) End to end tests with the UHF/VHF LATMOS ground-based station (telemetry at
437.020 MHz, telecommand at 145.905 MHz).

UVSQ-SAT was launched on 24, January 2021 by the Falcon 9 rocket in the frame of the
“Transporter 1” mission (Figure 1 right). Since then, the satellite is on a sun-synchronous
orbit around the Earth at an altitude of about 533 km (515 km at perigee), an inclination of
97.5010◦, an eccentricity of 0.0014455, a right ascension at the ascending node of 128.4244◦,
and an argument at perigee of 94.1573◦. The duration of an orbit is about 95.18 min.
The selected orbit presents eclipses, which allow to realize calibrations with observations
towards the deep space or only towards the Earth.

This manuscript presents first UVSQ-SAT in-orbit measurements of the Earth’s out-
going radiation. Section 2 presents the objectives of the UVSQ-SAT mission and the
importance of measuring the Earth’s radiation budget. The expected scientific require-
ments on the measurement of the Earth’s energy imbalance will be presented. They are
given for the UVSQ-SAT demonstrator and the future constellation (Terra-F) which must be
disruptive. Section 3 presents the methods used to reconstruct the maps of the albedo and
the OLR at the TOA. They are applicable to the observations by the UVSQ-SAT’s instru-
ments and the model used. Section 4 shows the first observations made by the UVSQ-SAT
mission and the preliminary results. Section 5 highlights the perspectives related to this
study and finally in Section 6, the conclusions are presented.
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Figure 3. (Left) Random vibration profile was run in three orthogonal axes, referred as X, Y, Z. (Right) Resonance search
carried out on UVSQ-SAT before and after each random run (September 2020).

Figure 4. Profile of the UVSQ-SAT thermal vacuum cycling tests carried out in September 2020.

2. Scientific Objectives and Requirements

2.1. Scientific Objectives

One of the objectives of the UVSQ-SAT mission is the study of the Earth’s energy
budget (ERB) and its energy imbalance [1]. Climate is largely determined by its energy
balance at the top of the atmosphere, which regulates the overall energy content of the
Earth system, i.e., the atmosphere and ocean (IPCC, 2013). The system is heated by the
absorption of incoming solar energy (shortwave) and is cooled by terrestrial infrared
emission (longwave) to space. Almost 30% of the incoming solar energy is not absorbed
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but reflected back to space. Human activities have led to increased levels of heat-trapping
greenhouse gases (GHGs) in the atmosphere, with a decrease in the amount of terrestrial
radiation that can escape, resulting in an Earth energy imbalance. As a result, the Earth
system is heating up. The most obvious sign of this is the long-term increase in global
surface temperatures, which increases outgoing terrestrial infrared emission and thus
tends to restore the Earth’s energy balance. However, as illustrated by the apparent
slowdown in global surface warming observed between 1998 and 2012 (“climate hiatus”),
global average surface temperature, with its large decadal internal variability, is certainly
not the most appropriate indicator of the EEI and associated energy accumulation in
the Earth system [4]. Since the EEI drives climate change, its continuous monitoring
has been identified as a fundamental diagnostic for analyzing climate variability and
anticipating future changes. Closing the Earth’s energy balance is considered a key step to
further improve our understanding of global climate change [5]. Ideally, the EEI should be
measured continuously from space. To date, existing satellite instruments have not been
able to measure solar and terrestrial radiative fluxes with sufficient accuracy to directly
determine the absolute value of the EEI on their own, although measurements of relative
changes in the EEI are much more reliable [6–8]. Note that determining EEI requires very
accurate global radiative measurements because EEI results from the difference of several
terms (incoming solar energy, reflected incoming solar energy, outgoing terrestrial infrared
energy) that are two orders of magnitude higher than EEI. For this reason, satellite radiative
flux data are often anchored in some way to ocean heat content data, as most of the excess
energy does not accumulate at the surface or in the atmosphere, but is absorbed by the
oceans [5,8]. Although ocean heat content is considered a better indicator of EEI, its global
assessment remains challenging, mainly due to insufficient and inconsistent data coverage,
and uncertainties in global scale extension [9,10]. Overall, this lack of accurate satellite
measurements of EEI is a major problem because climate change is primarily a perturbation
of the Earth’s energy balance. In addition, satellite measurements of solar and terrestrial
energy fluxes also represent critical constraints and benchmarks for the evaluation and
improvement of climate models, including their representations of the radiative effects
of clouds and aerosols (IPCC, 2013). Earth’s radiation budget data are therefore a key
source of information for distinguishing external from internal climate variability and for
assessing the sensitivity of climate to different forcings (including volcanic eruptions, solar
variability, and anthropogenic aerosols).

EEI determination represents a complex problem where the first relatively detailed
balances of the energy exchanges of our planet and its atmosphere were published in 1997
by Kiehl and Trenberth [11]. An update of the ERB was completed by Stephens et al. [12] in
2012. Figure 5 illustrates the flow of energy through Earth’s atmosphere. Table 1 provides
ERB main contributions and EEI during the 2000–2010 period. Figure 5 shows how solar
radiation warms our planet, and how this energy becomes temporarily trapped as it fluxes
away from Earth’s surface as longwave infrared radiation. This energy trap produces the
greenhouse effect, which represents the main driver of global warming [13].

EEI is the difference between the total solar irradiance (TSI) and the OSR com-
bined with the OLR thermally emitted. At the TOA, the EEI was +0.58 ± 0.15 Wm−2

for the period 2005–2010 according to Hansen et al. (2011) [14]. It was estimated at
+0.60 ± 0.40 Wm−2 between 2000 and 2010 by Stephens et al. (2012) [12]. A recently pub-
lished study by Von Schuckmann et al. (2020) [15] shows that the EEI is currently estimated
to be +0.87 ± 0.12 Wm−2 over the period 2010–2018 compared to +0.47 ± 0.10 Wm−2 over
the period 1971–2018. This positive EEI describes the excess of heat in the Earth system,
mainly due to human activity.
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Figure 5. Radiation budget diagram of the Earth’s atmosphere from Stephens et al. (2012) [12]. ERB
for the period 2000–2010, where all flows are expressed in Wm−2.

Table 1. ERB main contributions and EEI during the period 2000–2010 from Stephens et al. (2012) [12].

Contributor/Imbalance Acronym Flux

Incoming solar radiation TSI/4 340.2 ± 0.1 Wm−2

Outgoing shortwave radiation OSR 100.0 ± 2.0 Wm−2

Outgoing longwave radiation OLR 239.7 ± 3.3 Wm−2

TOA Earth energy imbalance EEI at TOA +0.6 ± 0.4 Wm−2

Surface Earth energy imbalance EEI at surface +0.6 ± 17.0 Wm−2

Figure 6 shows the evolution of the OLR and the EEI (12-month rolling averages) over
the last four decades. Changes in sea surface temperature (SST) during different phases
of the El Niño Southern Oscillation (ENSO) and in cloud properties are often reflected in
changes in OLR. The EEI strong variations correspond to volcanic eruptions that deposit
aerosols in the stratosphere, thus cooling Earth by reflecting sunlight back to space. In
1982, El Chichón ejected million metric tons of sulfur dioxide into the stratosphere. In 1991,
Mount Pinatubo represents the largest stratospheric disturbance since Krakatoa eruption
in 1883, dropping global temperatures and increasing ozone depletion. Then, the global
energy imbalance of the Earth is not constant over time. It depends on natural variability
and the complexity of different climate forcings. The time series of measurements from
the Clouds and the Earth’s Radiant Energy System (CERES) instrument is compared to the
ERA 5 model, which represents the fifth generation of atmospheric reanalyses of global
climate from the European Centre for Medium-Range Weather Forecasts (ECMWF). These
results highlight the impact of anthropogenic radiative forcing during a period where
the TSI has decreased since 1980 and where solar cycle 24 (24th cycle since 1755) is much
weaker than the previous two cycles. The various studies [12,14,15] conclusively show the
dominant role of the human-created greenhouse effect in driving global climate change.
The EEI represents the most critical measure of the state of the Earth’s climate. It sets
expectations for future climate change (taking into account the Earth’s inertia).
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Figure 6. Time evolution of the OLR and the EEI from CERES measurements and the ERA 5 model.

The EEI represents the best approach to characterize global warming compared to
other commonly used parameters (CO2 concentration and Earth surface temperature).
This highlights the importance of space-based missions that perform such measurements,
including the UVSQ-SAT pathfinder mission associated with its possible small satellites
constellation [1] named Terra-F. Further efforts to implement new space-based observing
systems are more than necessary, as the EEI represents additional global warming that will
occur without additional changes in radiative forcings. Direct measurements of changes in
the EEI are of paramount importance in determining the rate of climate change on regional
and global scales.

2.2. Scientific Requirements and Uncertainties on EEI Measurements

Accurately measuring the absolute value of the EEI at the TOA and its variability
over time is still a scientific and technological challenge. The relevant scientific objective is
to be able to detect any long-term global trend with a high accuracy (stability of at least
±0.2 Wm−2 per decade), but also to be able to obtain fine spatial (a few tens of km) and
high temporal resolutions (three hours as for weather forecasting) with an accuracy of
a few Wm−2. With current technologies, we do not know if all these requirements are
achievable with instruments on board satellites, but they are very important to better
determine the changes.

To date, the best estimate of the EEI is obtained from the change in heat stored in
the ocean, commonly referred as ocean heat content (OHC). However, the absorption
of heat by the ocean acts as a “buffer”. This causes the rate of surface warming to slow
down. The OHC measurements made by the Argo automated floats are excellent, but
do not provide answers to the “short term” dynamics. To solve this issue, we need fine
spatial and temporal resolutions as previously stated. For this, we need a constellation of
satellites with instruments that combine measurements with a narrow field of view (FOV)
and a wide FOV. The key to solve this problem is related to the resolution of the diurnal
variation, which depends on the physical parameterization of the models. The “long term”
is associated with the convolution of quick processes and dynamic phenomena at longer
temporal and spatial scales of the atmosphere-ocean system. Thus, the best strategy for
measuring the EEI is to track the “long term” temporal evolution of the OHC since most of
the excess heat (89% over 1970–2018) is absorbed by the ocean [15]. These measurements
must be combined with observations at the TOA using satellite-based instruments to
provide “short term” information. Measurements with good spatio-temporal resolutions
are crucial for advancing our understanding of climate change, as the radiative balance is
driven in part by the radiative impacts of aerosols and clouds, which are highly spatially
and temporally variable and are still relatively poorly quantified [16]. Currently, we do
not know whether cloud-related changes will amplify, mitigate, or perhaps have only
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a small effect on the increase in the Earth’s global temperature due to anthropogenic
radiative forcings. Furthermore, we do not know the impact of radiative forcing related to
anthropogenic aerosols that alter cloud properties. Global climate models have limitations
with respect to these two issues. This highlights the importance of space-based missions to
make accurate measurements with excellent spatio-temporal resolutions.

Observations are important to validate climate models and the magnitude of the
energy imbalance at the TOA. Incident solar flux is an input to the model. The solar
radiation reflected from the Earth or OSR and the OLR are calculated at the model level and
must be compared to those measured. Table 2 summaries the expected science requirements
for disruptive measurements of the energy imbalance components. In addition, some
objectives of the UVSQ-SAT mission are presented. UVSQ-SAT is a science and technology
demonstrator, one of whose objectives is to obtain an accurate short-term measurement
of the EEI with a relative uncertainty that must be less than ±1.0 Wm−2 over the course
of a year. The expected spatial resolution of the UVSQ-SAT measurements is in the order
of 1000 km. Forward, the method of Gristey et al. (2017) [17] will be used to improve the
accuracy of the measurements thanks to a spherical harmonic analysis.

Table 2. Scientific requirements for the components of the Earth’s radiation budget. High scientific relevance for a satellites
constellation (Terra-F) and UVSQ-SAT expected performances.

Requirements Scientific Relevance

– Absolute uncertainty Stability per decade Spatial resolution Time resolution

TSI ±0.54 Wm−2 at 1σ ±0.14 Wm−2 at 1σ – 24 h
OSR ±1.00 Wm−2 at 1σ ±0.10 Wm−2 at 1σ 10–100 km Diurnal cycle
OLR ±1.00 Wm−2 at 1σ ±0.10 Wm−2 at 1σ 10–100 km Diurnal cycle

Requirements UVSQ-SAT Performances

– Absolute uncertainty Stability per year Spatial resolution Time resolution

TSI – – – –
OSR ±10 Wm−2 at 1σ ±5 Wm−2 at 1σ 1000 km 15 days
OLR ±10 Wm−2 at 1σ ±1 Wm−2 at 1σ 1000 km 15 days

3. UVSQ-SAT Data Method and Map Reconstruction of the Variables (Observations
and Model)

3.1. UVSQ-SAT Data Processing to Obtain Observation Time Series

3.1.1. Instrumental Equations of the Earth’s Radiative Sensors

The UVSQ-SAT scientific payload [1] consists of twelve miniaturized Earth’s radiative
sensors (ERS) based on thermopiles for monitoring the incoming solar radiation and
the outgoing terrestrial radiation. Each face of the UVSQ-SAT satellite has two ERS
sensors, which have different optical coatings (carbon nanotubes or optical solar reflector).
The properties of the coatings were characterized in lab (solar absorption, hemispherical
emissivity, bidirectional reflectance distribution function (BRDF)). The principle of these
ERS sensors with their associated coatings is to convert thermal energy into electrical
energy. The output voltage (V) is passively induced from the thermopile proportional
to the heat flux (Wm−2) through the sensor or similarly the temperature gradient across
the thin-film substrate and number of thermocouple junction pairs. The output voltage is
conditioned by an electronic unit and converted into analog-to-digital units (ADU) and is
read by the UVSQ-SAT onboard computer (OBC) thanks to a serial peripheral interface
(SPI) bus, and stored by the OBC. Once data are retrieved, the ADU signals SADU are
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converted into physical units to express the incident flux measurements Φin on an ERS
sensor using the transfer function (Equation (1)):

Φin =

(
SADU(Ts, Tb)− Vre f

ADU(Tb)

Nsamp
+ C1(Ts, Tb)

)
× 1

G(Tb)
× 1

Sens(Ts)
+ C2(Ts) (1)

where Vre f
ADU is a reference voltage, Nsamp is the number of samples for a measurement,

G(Tb) is the gain of the electronic unit, Sens is the sensitivity of the sensor (calibration in
lab), C1 and C2 are corrective offsets, which depend on the temperature of the sensor. In
the case of thermopiles, C2 = −εσT4

s . ε is the hemispherical emissivity of the thermopile
coating and Ts is the ERS sensor temperature. Tb represents the temperature of the sensors
electronic board.

The total incident flux (Φin) on each ERS sensor is the sum of the solar incident flux, the
planetary incident flux (Φpin), and the albedo incident flux (Φain). The incident solar flux is
considered to be known (TSI is measured precisely elsewhere). By combining information
from two ERS sensors on the same face (sensor with carbon nanotubes (solar absorption
close to 1) and sensor with optical solar reflector (solar absorption less that 0.1)), we get
the albedo (a) of the planet and the outgoing longwave radiation (OLR) at a measurement
point located in latitude and longitude on the world map (Equations (2) and (3) are given
as example if a satellite face observes at the nadir):

Φpin = ε × OLR ×
(

R
R + zsat

)2
(2)

Φain = α × a ×
(

R
R + zsat

)2
× cos(ξ)× TSI ×

(
1 au
ds

)2
(3)

where R is Earth’s radius, zsat is the satellite altitude, α is the ERS (coating) solar ab-
sorption, ξ is the solar zenith angle, 1 au is one astronomical unit, and ds is the distance
UVSQ-SAT—Sun.

During satellite eclipse periods, two ERS sensors on the same face measure only OLR,
which allow to obtain direct measurements and inter-calibration of the sensors.

3.1.2. Instrumental Equations of the Optical Sensors Based on Photodiodes

The UVSQ-SAT scientific payload has also six photodiodes to measure the total solar
irradiance and the outgoing shortwave radiation, and four additional photodiodes for
observing the Sun (three measure the total solar irradiance and one measures the UV solar
spectral irradiance in the Herzberg continuum). Each face of the satellite has at least one
photodiode who observes external fluxes. A photodiode is a semiconductor p-n junction
device that converts light into an electrical current. The resulting current is converted into
ADU and stored by the UVSQ-SAT onboard computer. Once data are retrieved, the ADU
signals SpADU are converted into physical units to express the measurements Φpho using
the transfer function (Equation (4)):

Φpho =

⎛
⎝SpADU(Tpho, Tb)− Vre f

ADU(Tb)

Npsamp
+ Cp1(Tpho, Tb)

⎞
⎠× 1

Gpho(Tb)
× 1

Spho(Tpho)
(4)

where Npsamp is the number of samples for a measurement, Gpho is the gain of the electronic
unit, Spho(Tpho) is the responsivity of the photodiode (calibration done by the manufac-
turer), Cp1 is a corrective offset, which depends on the temperature of the photodiode. Tpho
is the satellite structure temperature close to the photodiode.
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For the six photodiodes that measure the total solar irradiance and the outgoing
shortwave radiation, the albedo of the Earth can be obtained using an equation similar to
that proposed in Equation (3).

3.1.3. Methodology for Obtaining UVSQ-SAT Attitude and Position Time Series

UVSQ-SAT has a new 3-axis accelerometer/gyroscope/compass (Teach’ Wear (TW))
for providing satellite attitude estimation [1]. Using the TW observations, it is possible to
achieve sufficient attitude estimation accuracy for a satellite using regular Kalman filter
algorithm. Another way is to use a new method based on a multilayer perceptron network
to determine the UVSQ-SAT satellite attitude [18].

Otherwise, we have a good knowledge of the UVSQ-SAT CubeSat position (latitude,
longitude, altitude) according to the Two-Line Element sets (TLE) that are generally used to
predict the position of a satellite. For each measurement carried-out by the instruments, we
have its location on the world map. Figure 7 shows an example of ground track measure-
ments location of the UVSQ-SAT satellite during February 2021, which represents the path
on the surface of the Earth directly below the satellite’s trajectory. The knowledge of the
satellite position allows to calculate notably the solar zenith angle (from latitude, longitude,
solar declination, Universal Time) and to rigorously locate the measurements area.

Figure 7. Location (latitude and longitude) of UVSQ-SAT observations (red colored dots on the world
map) during the month of February 2021.

3.2. Map Reconstruction Method from UVSQ-SAT Observation Time Series

Time series of the albedo and the OLR at the TOA are obtained from the observations
made by the dedicated sensors on-board UVSQ-SAT.

Physically, each measurement of these time series represents the integral of the signal
of interest (OLR, albedo) and depends in practice on a large number of parameters among
which the bidirectional reflectance distribution function of the Earth’s surface, the opacity
of the atmosphere, the spectral and angular sensitivities of the sensors and their FOV.
In particular, concerning the opacity, it depends on factors such as aerosol composition,
clouds, temperature or pressure.

In a first approach, we consider that each measurement results from the contribution of
a Gaussian distribution G(θi,j) of points located at the surface of the Earth. Let the surface
of the Earth modeled by a regular grid whose coordinates are expressed with latitude
and longitude. Each pixel (i, j) of the grid is defined by its longitude λi and latitude φj
coordinates and by its area Sij (Equation (5)):

Sij = R2 × cos(φj) Δλi Δφj (5)

where Δλi, Δφj are size in radians of the pixel at longitude λi and latitude φj.
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The satellite has a location λsat, φsat and an altitude zsat. The angle θi,j at the center
of the Earth (nadir) between the satellite and the pixel (i, j) is given by Equation (6). The
angle αi,j between the nadir of the satellite and the pixel (i, j) is given by Equation (7).
The satellite elevation βi,j (complement of zenith angle) seen by the pixel (i, j) is given by
Equation (8).

θi,j = acos[cos(φj) cos(φsat) cos(λi − λsat) + sin(φj) sin(φsat)] (6)

αi,j = atan

(
R sin(θi,j)

zsat + R (1 − acos(θi,j))

)
(7)

βi,j =
π

2
− αi,j − θi,j (8)

The view angle Ωi,j under which the pixel (i, j) is seen by the satellite is given by
Equations (9) and (10).

Ωi,j = Sij z2 cos(αi,j) sin(βi,j) if βi,j ≥ 0 (9)

Ωi,j = 0 if βi,j < 0 (10)

Figure 8 represents the different angles between the satellite, the nadir, and the
observation location. This latter location is seen by the satellite according to a Gaussian
distribution G(θi,j), which is defined by Equation (11):

G(θi,j) = exp
(
− α2

2σ2

)
(11)

with σ, the variance of the Gaussian. σ is related to the FOV via σ = FOV/2. For example,
for an average altitude of 540 km and a FOV of 135◦, which are the characteristics of
UVSQ-SAT, the diameter of the ground track is about 2600 km.

Figure 8. Visualization of the satellite in orbit, characteristic angles and pixel seen by the satellite.
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The observed flux by UVSQ-SAT Fsat(λsat, φsat) is given by (Equation (12)):

Fsat(λsat, φsat) =
∑i,j Ωi,j Gi,j Fi,j

∑i,j Ωi,j Gi,j
(12)

Finally, to reconstruct the map of what was measured by UVSQ-SAT, i.e., Fsat(λsat, φsat),
we calculate the functions Ωi,j, Gi,j for the satellite track to find the flux Fi,j associated with
each pixel.

3.3. Reconstruction Method of the ERA 5 Maps to Compare with the UVSQ-SAT Maps

To compare the UVSQ-SAT measurements and a model (ERA 5), it is necessary to have
similar inputs that means, i.e., to have the same observations time series (temporal) and
similar FOV (spatial) at TOA.

Figure 9 shows the monthly averaged maps of the albedo and the OLR in February
2021 (for the ERA 5 model). All data of the ERA 5 model were used to obtain these maps
(temporal resolution of 1 h and a pixel resolution of 721 × 1440).

Figure 9. (Top) Albedo from ERA 5 during the month of February 2021. (Bottom) OLR from ERA 5
during the month of February 2021.
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Albedo is computed by the ratio of the difference of the incident shortwave radiation
and the net shortwave radiation by the incident shortwave radiation. Surfaces that reflect a
lot of the light falling on them have a high albedo. Surfaces that don’t reflect much light
have a low albedo. Albedo values vary across the globe with latitude. At the poles, it can
be greater than 0.7 in some areas. This is a result of the lower solar angle present at the
poles but also the higher presence of fresh snow, ice, and smooth open water. In the tropics
(23.5◦N to 23.5◦S), albedo is between 0.1 to 0.4. OLR values vary also across the globe
with latitude, and is primarily sensitive to near-surface and atmospheric temperatures, the
air humidity, and the presence of clouds, which are related to the intensity of convective
activity as well as the latitude and altitude dependence of the variability. Low OLR values
(<200 Wm−2) associated with deep atmospheric convection are found over the equatorial
land masses, Amazon basin, and in the western equatorial Pacific. These maps highlight
the finesse of the observations (notably in equatorial Atlantic ocean). These details will
disappear when increasing the FOV, and consequently degrade the spatial resolution.
Considering the ground track of UVSQ-SAT in February 2021 (with same spatio-temporal
observations), it is possible to reconstruct new albedo and OLR maps from the ERA 5 model.
The impact of the FOV (related to σ) also has a significant effect on the map reconstructions.
Figure 10 shows the reconstructed map of the albedo for the ERA 5 model for σ = 1◦ and
σ = 180◦. Figure 11 shows the reconstructed map of the OLR for the ERA 5 model for
σ = 1◦ and σ = 180◦.

Figure 10. (Top) Albedo (ERA 5) during the month of February 2021 from same observation than
UVSQ-SAT (σ = 1◦). (Bottom) Albedo (ERA 5) from same observation than UVSQ-SAT (σ = 180◦).
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These reconstructed maps are slightly different from the ERA 5 monthly averaged data
(Figure 9). The selected data (same spatio-temporal resolution than UVSQ-SAT) related
to the ground track of the satellite (Figure 7) have an impact on the reconstructed maps
(clearly visible for albedo when increasing σ). Low OLR values in the equatorial Atlantic
ocean disappear (Figure 11 Bottom) due to the lack of data and low spatial resolution.

Figure 11. (Top) OLR (ERA 5) during the month of February 2021 from same observation than
UVSQ-SAT (σ = 1◦). (Bottom) OLR (ERA 5) from same observation than UVSQ-SAT (σ = 180◦).

These simulations show the importance for doing the right comparisons between
model and observations (same spatio temporal resolution). That’s why, other methods
are under investigation to improve the finesse of the details to be restored (albedo and
OLR maps). In a second approach, it is planned to use the spherical harmonics method
developed by Gristey et al. (2017) [17] to reconstruct the maps of the quantities of interest.
The value measured by the satellite Fsat is expressed as follows (Equation (13)):

Fsat(λ, θ) =
L

∑
l=0

l

∑
m=0

[ClmYC
lm(θ, λ) + SlmYS

lm(θ, λ)] + e (13)

with θ, λ, the colatitude and longitude of the point considered, YC
lm and YS

lm, the spatially
integrated spherical harmonics, Clm, Slm, the coefficients that we seek to determine and e,
the error on the measurements. The coefficients Clm and Slm are then estimated by the least
squares method.
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4. UVSQ-SAT First Observations

Since February 2021, UVSQ-SAT has been measuring, among other things, solar
radiation reflected from the Earth and OLR. UVSQ-SAT does not have an active attitude
control system. Therefore, it is equipped with several photodiodes and ERS sensors on
all sides to perform scientific measurements. Six photodiodes allow to measure both the
TSI and the OSR. The albedo is obtained from these measurements considering the TSI as
known and measured with other space-based instruments. Twelve ERS sensors allow to
measure the TSI, the OSR and the OLR with a wide FOV in a complete hemisphere. The
whole absorbed radiations generate temperature gradients on the ERS thermopile which
delivers a voltage proportional to the absorbed flux (Equation (1)). Six of the twelve ERS
thermopiles are coated with carbon nanotubes in order to absorb all incident radiation from
short to long wavelengths (absorption very close to 1). The BRDF of the carbon nanotubes
coating was measured with a goniophotometer. The optical coating shows a weak angular
dependence. During eclipses, these detectors measure only the OLR. Out of eclipses, the
carbon nanotube-based thermopiles measure the TSI, the OSR, and the OLR. There are
also six ERS thermopiles, which are coated with optical solar reflectors to mainly measure
the OLR.

4.1. UVSQ-SAT Time Series

From the measurements made by the different sensors of UVSQ-SAT and using the
instrumental equations described in Sections 3.1.1 and 3.1.2, we obtain the evolution of
the albedo and the OLR. Figure 12a shows the evolution of the signal measured by the
six photodiodes over time (example given for about 2 observation orbits). The eclipse
periods are clearly identifiable by the absence of signal. Figure 12b shows a good agreement
between the calculated albedo and thus modeled from the ERA 5 data using different FOV
(referred as σ values). On Figure 12c, the satellite temperatures evolve in accordance
with the UVSQ-SAT thermal qualification (Figure 4). These temperature and the signal
measured by the ERS sensors allow to retrieve the OLR (Figure 12d), which is directly
observed during eclipse periods. Once again, the measured OLR fluxes show a good
agreement with the modeled ones from the ERA 5 data.
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Figure 12. (a) Evolution of the measured flux by the six photodiodes during a given period. (b) Evolution of the albedo modeled from
the ERA 5 data and for UVSQ-SAT observations. (c) Evolution of the satellite temperatures. (d) Evolution of the OLR.
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The accumulation of OLR measurement points over time for the Earth’s location points
will provide averages to characterize the evolution of the OLR over time. It is important
to have new record of the OLR to bring new lights and to continue historical records
(Figure 6). A long term continuous record is possible using a new disruptive space obser-
vational system based on UVSQ-SAT pathfinder.

4.2. UVSQ-SAT Maps Reconstruction

UVSQ-SAT maps reconstruction (albedo and OLR) are based on UVSQ-SAT time
series. Currently, the reconstruction of each map is based on a Gaussian function whose
parameters are defined by the satellite altitude and its FOV. In addition, a method based
on a deep learning (DL) algorithm has been developed to obtain the satellite attitude in
order to better determine the Earth’s albedo and OLR [18]. The satellite attitude can also be
reconstructed from the measurements of an inertial measurement unit (IMU). UVSQ-SAT
is equipped with a gyrometer to measure angular velocity, an accelerometer to measure
gravity and linear acceleration, and a magnetometer to measure the Earth’s magnetic
field. The magnetometer allows to measure the direction and the intensity of the magnetic
field. The objective is to gather these inertial and magnetic data in order to reconstruct
the attitude of the satellite. Figure 13 shows the intensity of the Earth’s magnetic field
measured by UVSQ-SAT thanks to its different sensors.

Figure 13. Earth’s magnetic field intensity measured by UVSQ-SAT instruments. The calibrations are
being validated to consolidate the absolute measurement bias.

Regarding the albedo and OLR, preliminary results have been obtained by applying
the methods described in this study and in Meftah et al. (2020) [1]. Figure 14 shows
a reconstructed map of the Earth’s albedo (February 2021) obtained from UVSQ-SAT
instruments. The albedo due to the atmosphere comes from Rayleigh backscattering in the
short wavelength range and from clouds, which contribute about two thirds of the total
albedo. The effect of the TSI at the TOA is stronger in the tropics. The high albedo at polar
latitudes due to the presence of snow and ice on the ground has an important effect. This is
of interest to follow this evolution over time. There are also local differences due to the
albedo of cloudy regions (intertropical zone of convergence) or the ground (Sahara). The
albedo of the ground depends strongly on its nature, it can be very high for fresh snow
(about 0.75) and low for vegetation (below 0.2). The albedo of the ocean remains very low
and of the order of 0.1. It depends on the distribution of waves.
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Figure 14. Earth’s albedo at TOA measured by UVSQ-SAT instruments. The dark blue areas
correspond to regions without data.

The OLR at the TOA (Figure 15) also has a latitude dependence. The high latitudes
are cooler and emit less infrared radiation. The humid tropical regions are clearly visible.
In tropical and equatorial regions, the weak radiation emerging at the TOA at long wave-
lengths is due to the presence of clouds at high altitudes. These clouds absorb the radiation
emitted by the Earth’s surface. Therefore, as they are cold, they emit a weak outgoing
radiation in space.

Figure 15. OLR at the TOA measured by UVSQ-SAT instruments.

UVSQ-SAT maps (Figures 14 and 15) look identical to the maps obtained with the
ERA 5 model using the same observations time series (Figures 10 and 11). The UVSQ-SAT
sensors used have wide fields of view. The reconstructions maps are associated with wide
fields of view.

5. Perspectives—Toward a Satellites Constellation for Climate Studies

The objective of the UVSQ-SAT mission is to validate the principle of several miniatur-
ized technologies at the highest level of technological maturity (TRL 9) in order to be able
to accurately measure the EEI using a constellation (homogeneous and or heterogeneous)
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of small satellites. It will be necessary to combine simple instruments (wide FOV and
wide wavelength band) with more complex instruments (narrow FOV and using on-board
calibration sources to follow the evolution of the degradation of the instruments in orbit).
The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat
mission [19] develops a similar approach to demonstrate technologies for the measurement
of Earth’s radiation budget in order to implement a satellites constellation.

Gristey et al. (2017) [17] showed how a constellation of satellites with broadband
radiometers can provide both spatial and temporal information to accurately measure the
ERB. Wiscombe and Chiu (2013) [20] proposed a constellation of space-based instruments,
capable of overcoming sampling limitations and providing global and diurnal measure-
ments of the Earth’s outgoing radiation with accuracy. With advances in technology and
miniaturization of instruments, it is possible to envision a constellation of small satellites
capable of measuring outgoing and variable terrestrial radiation from the Earth. The
“UVSQ-SAT” concept is fully integrated in this approach and shows a way.

With a single low-orbiting satellite (UVSQ-SAT), it is possible to obtain “satisfactory”
mappings of the OSR and the OLR at the TOA only every month (with a loss of short
time-scale information). Meftah et al. (2020) [1] show that a constellation of at least 50
satellites is necessary to have at least a daily mapping. Indeed, a constellation of at least
50 satellites is a prerequisite to capture spatio-temporal variations (every three hours and
ideally a resolution of a few km). This would be fundamental data to validate climate
models. These data are used to validate models and the magnitude of energy imbalances
at the TOA. The model mesh size is about 100–200 km. The Baseline Surface Radiation
Network (BSRN) and Atmospheric Radiation Measurements Program network (ARM) can
be used on local and regional scale models. They are mainly used in the calibration and
use of spatial data. These data are of primary importance to help validate spatial data and
numerical model simulations.

UVSQ-SAT and its future constellation (Figure 16) address the same scientific theme
as Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM), but from
a completely different angle. FORUM will be put into orbit in 2026. It will measure the
Earth’s infrared emission spectrum at high spectral resolution. Libera (named for the
daughter of agricultural goddess Ceres in ancient Roman mythology) represents another
important mission to measure the Earth’s outgoing radiative energy. The Libera instrument
will fly on National Oceanic and Atmospheric Administration (NOAA) operational Joint
Polar Satellite System-3 (JPSS-3) satellite, which is scheduled to launch by December 2027.

Figure 16. UVSQ-SAT and its potential future satellites constellation named Terra-F.

6. Conclusions

The UVSQ-SAT mission was launched in January 2021. Since February 2021, the
satellite has been observing the Earth and the Sun. The first results were obtained using
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the methods described by Meftah et al. (2020) [1]. These results are very encouraging
and clearly show that small satellites represent a fast method to answer key scientific
questions. In the era of NewSpace, i.e., an era benefiting from technological advances in
miniaturization and reasonable costs to access space, this mission clearly shows that a
constellation of small satellites dedicated to the measurement of the EEI is feasible.

At a time when the climate emergency is obvious and the signals of global warming
of the Earth are largely above the level of natural variability, one of the greatest challenges
remains the difficulty of obtaining adequate funding for research and especially for mis-
sions dedicated to the study of climate (EEI at the TOA, spectral solar irradiance, vertical
temperature profile, ozone, aerosols, etc.). These missions must rely on the implementation
of satellites constellation to ensure sufficient spatial and temporal coverage. Satellites
constellation dedicated to the study of climate and science are now a matter of course [21].
The UVSQ-SAT prototype opens the way to a potential Terra-F constellation composed of
50 small satellites with the necessary performance to meet the scientific need.

Other solutions to measure the EEI are possible with two “traditional” satellites placed
at the L1 and L2 Lagrange points in order to make measurements of our planet on the
illuminated and non-illuminated portions. The main goal is to make measurements of the
EEI at the TOA and its variability in time in order to detect any long-term global trend
with a stability of at least ±0.2 Wm−2 per decade but also to be able to obtain spatial
resolutions of a few tens of km and temporal resolutions of three hours with an accuracy of
a few Wm−2. These measurements must be performed on wide wavelength bands.

Today, it is becoming increasingly clear that small satellites are not only a fast way to
answer key scientific questions but also contribute qualitatively to scientific research.
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Abstract: This work analyzed the spatial and temporal variations of the glaciers in the Ebi Lake
basin during the period 1964 to 2019, based on the 1st and 2nd Chinese Glacier Inventories (CGI)
and remote sensing data; this is believed to be the first long-term comprehensive remote sensing
investigation on the glacier change in this area, and it also diagnosed the response of the glaciers to
the warming climate by analyzing digital elevation modeling and meteorology. The results show that
there are 988 glaciers in total in the basin, with a total area of 560 km2 and average area of 0.57 km2

for a single glacier. The area and number of the glaciers oriented north and northeast are 205 km2

(327 glaciers) and 180 km2 (265 glaciers), respectively. The glaciers are categorized into eight classes
as per their area, which are less than 0.1, 0.1–0.5, 0.5–1.0, 1.0–2.0, 2.0–5.0, 5.0–10.0, 10.0–20.0, and
greater than 20.0 km2, respectively. The smaller glaciers between 0.1 km2 and 10.0 km2 account for
509 km2 or 91% in total area, and, in particular, the glaciers smaller than 0.5 km2 account for 74%
in the total number. The glacial area is concentrated at 3500–4000 m in altitude (512 km2 or 91.4%
in total). The number of glaciers in the basin decreased by 10.5% or 116, and their area decreased
by 263.29 km2 (−4.79 km2 a−1) or 32% (−0.58% a−1) from 1964 to 2019; the glaciers with an area
between 2.0 km2 and 5.0 km2 decreased by the largest, −82.60 km2 or −40.67% in the total area at
−1.50 km2 a−1 or −0.74% a−1), and the largest decrease in number (i.e., 126 glaciers) occurs between
0.1 km2 and 0.5 km2. The total ice storage in the basin decreased by 97.84–153.22 km3 from 1964 to
2019, equivalent to 88.06–137.90 km3 water (taking 0.9 g cm−3 as ice mass density). The temperature
increase rate in the basin was +0.37 ◦C decade−1, while the precipitation was +13.61 mm decade−1

during the last fifty-five years. This analysis shows that the increase in precipitation in the basin was
not sufficient to compensate the mass loss of glaciers caused by the warming during the same period.
The increase in temperature was the dominant factor exceeding precipitation mass supply for ruling
the retreat of the glaciers in the entire basin.

Keywords: Ebi Lake basin; decelerated-melting glaciers; climate change; climate response

1. Introduction

The cryosphere consists of snow, ice, and permafrost on and below the Earth’s land
and ocean surfaces, and it is one of the major components in the climate system [1]. The
accelerated shrinkage of the cryosphere in the context of global warming and the subse-
quent impacts on the sustainability of the Anthroposphere have attracted unprecedented
attention and raised deep concern, because the High-Asian mountain glaciers are crucial for
buffering against drought [2] and protecting life from drought [3]. These mountain glaciers
are an essential part of the global cryosphere and have shown generally varying degrees of
continuous retreat in recent decades [4–6]. As projected by the Intergovernmental Panel on
Climate Change (IPCC), even in the mild emission scenario (RCP4.5), the Asian glaciers
would disappear by ~50% by the end of the century [7].
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China has the most developed mountain glaciers in low and middle latitudes [8], and
these glaciers are a vital water resource in arid northwest China and High Asia [9]. As
global temperatures increase, China’s glacial covers are generally in negative mass balance
and showing a retreating and thinning trend [10–12]. The Xinjiang region is an arid and
semi-arid area of China rich in mountain glaciers. The Tianshan and Altai Mountains
are two main mountains developing concentrated mountain glaciers. The glaciers in the
Tianshan Mountains had experienced rapid mass loss (averaged from −24.6 mm w.e. a−1

in 1957–1970 to −444.6 mm w.e. a−1 in 1971–2009) during the second half of the 20th
century [13]; while in Altai, over a quarter of mountain glaciers were projected to shrink in
RCP4.5 by 2100 [14].

The Ebi Lake basin is located in the northwestern Xinjiang region, China (Figure 1).
The increasingly irrigated area and population in the basin over the last 60 years have
led to increased water consumption in the basin, increasing tension between supply and
demand, and the ecological degradation [15–17]. This lake had shrunk by 50% from 1955
to 2013, as reported by NASA in 2014 [18]. Another study stated that the water area
of the Ebi Lake showed a significantly decreasing trend, although the precipitation was
increasing from 2001 to 2016 [19]. Therefore, it is essential to assess the regional glaciers
change in a timely manner to monitor glacier water resources and assess their impact on
the water resource supply in the basin. This aspect’s research has conceptual and practical
significances for water security, especially for industrial and agricultural production and
economic development in this ecologically vulnerable area.

Figure 1. Study area with the Ebi Lake basin (5Y74) and related river and lake basins, where Kuitun River, Sikeshu River,
Jinghe River, Daheyanzi River, Sayram Lake, and Bortala River sub-basins are annotated with their CGI codes of 5Y741,
5Y742, 5Y743, 5Y744, 5Y746, and 5Y746, respectively.

In recent years, numerous studies used the topographic maps and remote sensing data
of the Tianshan Mountains, regional watersheds, and typical reference glaciers and revealed
that the regional glaciers show retreating and thinning [20–26]. So far, very few studies on
the glacier change status have been carried out in the Ebi Lake Basin. For example, Wang
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et al. used remote sensing data to partially reveal that there were around 450 glaciers in the
Ebi Lake Basin, Tianshan, undergoing significant mass loss glacier changes from 1964 to
2004 [27]; Zhang et al. estimated the change of the Haxilegen 51 glacier in the basin from
1964 to 2006 and its response to climate [28]. To some extent, these studies explored the
changes of an individual glacier or several glaciers in the basin. Still, the holistic and more
detailed picture of these glaciers’ change is not complete and update.

Dramatic change has had been with these glaciers in number, area, and ice volumes
from 1964 to 2009. According to the 1st CGI, there were 1104 glaciers with the total glacial
area of 823 km2 and the ice storage of 47.54 km3 by 1964; while to the 2nd CGI, the
number of glaciers here decreased to 1000, the glacier area to 598 km2, and the ice storage
to 32.45 km3 by 2009 [8]. However, the update status of the varying glaciers and their
association with the regional climate change during the most recent decade (2009–2019) is
little known, which are crucial for policy-makers to take proper measures to adapt climate
change and mitigate the impact of the change. Therefore, based on the first and second
Chinese Glacier Inventories (CGIs) and the most updated glacier vector data released in
2019, this work assesses the glaciers’ change in the Ebi Lake Basin over the last 55 years
(1964–2019), more systematically and accurately. Furthermore, we will discuss the response
of glaciers in the basin to the warming climate and suggest the measures of how to use the
regional water resource for sustainability rationally.

2. Materials and Methods

2.1. Study Area

The Ebi Lake Basin (43◦38’~45◦52’N, 79◦53’~85◦02’E) is this study area and located at
the hinterland of Asia and Europe (Figure 1). The basin lies to the northern foothills of the
western Tianshan Mountains and in the southwest of the Junggar Basin. It is surrounded
by mountains from three sides—the north, west, and south—and in the east is China’s
second largest desert, Gurbantunggut Desert. The basin is concurrently in the northern
hemispheric temperate zone with the significantly continental arid climate, mostly windy
weather. The annual average temperature in the basin moderates between 6.6 and 7.8 ◦C,
the annual precipitation between 116.0 and 169.2 mm, and the potential evapotranspiration
from 1500 to 2000 mm [29,30]. The Ebi Lake is the largest lake in the basin and is the largest
saltwater lake with about 500 km2 in Xinjiang. The plains in the basin are accompanied
with little precipitation and runoff, and mountain precipitation and snowmelt water from
the peripheral alpine glaciers are the main sources of river runoff. The Ebinur Lake Basin
(code 5Y74 in the CGIs) consists of six sub-basins, the Quitun River Basin (5Y741), the
Sikeshu River Basin (5Y742), the Jing River Basin (5Y743), the Daheyanzi River Basin
(5Y744), the Sailimu Lake Basin (5Y745), and the Bortala River Basin (5Y746) (Figure 1). The
glaciers around the basin are typically continental glaciers developing along the valleys.

2.2. Data
2.2.1. Remote Sensing Images

At present, the publicly accessible high spatial resolution remote sensing images
mainly include

• Landsat-8 OLI remote sensing images (30 m),
• Aster remote sensing images (15 m), and
• Sentinel-2 MSI remote sensing images (10 m).

Here, we use the Sentinel-2 MSI remote sensing images to retrieve the most accurate
interpretation of the glacier boundaries. The image data have a revisit spanning time of
five days and were acquired from June to September of 2019, which was the melting season
of the glaciers. We use the Google Earth Engine (GEE) platform, a cloud-based geospatial
processing platform, to quickly and efficiently filter high-quality, cloud-free Sentinel-2 MSI
remote sensing images (referring to the work in [31]) and avoid laborious data collection,
storage, organization, and preprocessing work.
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2.2.2. The 1st and 2nd CGIs Data

The first CGI data, completed in 2002, are mainly derived from the 1960s’ aerial-
photographed topographic maps, and the watershed of the Ebi Lake basin includes
13 sheets of 1:50,000 topographic maps. Moreover, the second CGI data, released in 2014,
integrate remote-sensing data, topographic maps, and digital elevation model data. Both
times of CGI data are available on the National Tibetan Plateau Third Pole Environment
Data Center (http://westdc.westgis.ac.cn/).

2.2.3. Digital Elevation Data

The digital elevation model is derived from the SRTM (Shuttle Radar Topography
Mission), measured jointly by the NASA and the National Mapping Agency (NIMA),
USA. This work uses the revised version 4.1 data with a spatial resolution of 90 m [32].
This version of SRTM data is provided by the CIAT (International Center for Tropical
Agriculture) with a new interpolation algorithm. The nominal absolute elevation and
planimetric accuracy of the data are ±16 m and ±20 m [33], respectively.

2.2.4. Meteorology

The meteorological data were obtained from the China Meteorological Data Service.
(CMDS). The service provides the daily meteorological dataset collected from nearly
700 ground baseline stations in nationwide China. It can be accessed freely by registered
educational and academic users, and here is the direct web link http://data.cma.cn/data/
cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html. In this work, the monthly
temperature and precipitation data were retrieved from the CMDS dataset recorded by the
five meteorological stations in the lower Ebi Lake Basin during 1964–2017 (Table 1).

Table 1. The locations of the five meteorological stations in the Ebi Lake Basin.

Code by CMDS Name Latitude (N) Longitude (E) Elevation (m)

51232 Alashankou 45◦11′ 82◦35′ 284.8
51238 Bole 44◦54′ 82◦04′ 531.9
51330 Wenquan 44◦58′ 81◦01′ 1354.6
51334 Jinghe 44◦37′ 82◦54′ 320.1
51346 Wusu 44◦26′ 84◦40′ 478.8

2.3. Methods
2.3.1. Confining Glacial Boundaries

Automatic interpretation methods applied to remotely sensed images for retrieving
glacier boundaries are popular at present for simplifying and expediting the process [34];
however, the presence of snow, shadows, moraines, and water bodies makes it difficult
to guarantee the accuracy of the automatic-interpretation methods in obtaining glacier
boundaries. Visual interpretation is to obtain glacier-boundary information with remote
sensing images based on existing glaciological knowledge, and this method is the most
credible method to retrieve glacier boundaries [35]. Taking into account that the relatively
small study area and accuracy, this study adopts visual interpretation for the latest remote
sensing images to manually delineate glacier boundaries. With the ArcGIS version 10.5
software [36] and the first and second CGI cataloguing data, the glacier boundaries around
the Ebi Lake Basin were vectorized and corrected by artificially visual interpretation in
the Google Earth images, and the derived glacier boundaries were further amended with
expert opinions.
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2.3.2. Calculating Glacier Area and Volume

Changes in glacier area can be reflected by the difference in glacier area between the
two periods, indicated by the rate of change in the glacier area and the relative rate of
change in glacier area, using the following equation,

AC = (A1 − A0)/(t1 − t0), (1)

and AAC = (A1 − A0)/[A0 × (t1 − t0)] × 100%, (2)

where AC is the varying rate of glacier area (km2/a), AAC is the relative varying rate of
glacier area (%/a), A is glacier area (km2), t indicates the year, and the subscript 0 and 1
indicate the starting and ending years for the specific glacial areas, respectively.

The glacier ice volume is not a directly approachable measurement here, because there
were no direct measurements of ice thickness in most glaciers. This research used the
volume–area empirical relationship by Gärtner-Roer et al. [37]:

V = c × Ae, (3)

where V is glacier ice storage (km3), A is glacier area (km2), and c and e are the empirical
coefficients by Gärtner-Roer et al. [37], respectively.

2.3.3. Assessing the Uncertainty

The accuracy evaluation of glacier boundaries obtained from remote sensing images
is important but difficult to determine. In processing remote sensing images, errors mainly
come from glacier boundary extraction uncertainties and image resolution and alignment
errors. Glacier boundary extraction uncertainties can be reduced through field validation
and glaciological experience, and the uncertainty in remotely sensed images can be calcu-
lated through the following formulas (4 [38] and 5 [20]) to calculate their error, based on
the formula for calculating the uncertainty of glacier length and area variation [39–41].

UT =
√

Σλ2 +
√

Σε2 (4)

and UA = 2UT

√
Σλ2 +

√
Σε2 (5)

where UT is the uncertainty of glacier length, λ is the impact resolution, ε is the alignment
error of satellite images and the boundary layers, and UA is the uncertainty of glacier area.
In this study, λ equals 10 m for the Sentinel-2 images, and ε equals 1

4 pixel. The calculated
length and area uncertainties in this study are ±12.5 m and ±0.00025 km2, respectively.

3. Results

3.1. Updated Status of Glaciers in the Ebi Lake Basin in 2019

Overall, the number of glaciers in the Ebi Lake Basin investigated in 2019 was 988,
with an area of ~560 km2, and the averaged area of a single glacier is 0.57 km2. The glaciers
with the area between 1.0 and 5.0 km2 account for the largest share (40%) of the total
glacier area in the study area, followed by those with areas of <0.5 km2 (21%), 5.0–10.0 km2

(17%), 0.5–1.0 km2 (16%), and >10.0 km2 (6%). The Sikeshu River Basin (5Y742) has the
most extensively developed glaciers among the six sub-basins on all scales, while the
Sayram Lake and Daheyanzi River basins have barely visible glaciers in Figure 1. The only
two glaciers larger than 10 km2 are both located in the Sikeshu River Basin (Figure 2a).
74% of the glaciers in number have areas smaller than 0.5 km2 and are majorly located
in the Kuitun, Sikeshu, and Bortala River sub-basins. The larger glaciers are much fewer
distributed (Figure 2b). The glacial resources in the Ebi Lake basin are concentrated in four
sub-basins (5Y741, 5Y742, 5Y743, and 5Y746), with the number of 974 (98.6%) and the area
of ~557 km2 (99.6%), respectively.
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Figure 2. The glacial areas (a) and numbers of glaciers (b) in each sub-basin categorized into <0.5, 0.5–1.0, 1.0–5.0, 5.0–10.0,
and >10.0 km2, respectively, as of 2019. KT, SK, JH, DH, BT, and SY denote the Kuitun (5Y741), Sikeshu (5Y742), Jinghe
(5Y743), Daheyanzi (5Y744), Bortala (5Y746) Rivers, and the Sayram Lake (5Y745) sub-basin, respectively. The percent
shares of the glaciers in area and number are shown in the respective pie charts.

In the Ebi Lake Basin, there is around 400 km2 of glaciers, accounting for 72% in a
total spread from 3500 to 4000 m in elevation; 11% and 17% in area developed under 3500
m and between 4000 and 4500 m, respectively; and only 1% glacial area developed above
4500 m as of 2019 (Figure 3a). Most glaciers developed in the north (75% in area and 65% in
number) and the east (15% in area and 22% in number) orientations (Figure 3b), implicated
by the developing conditions of mountain glaciers if the north orientation indicates colder
air masses, and the east implies richer water vapor sources in the Tianshan Mountains.

Figure 3. (a) The distribution of glacier areas in elevation, and (b) that of glacier areas and numbers in orientation in the Ebi
Lake basin investigated in 2019.

3.2. Changes of the Glaciers Relative to the 1st and 2nd CGIs

Table 2 present the glaciers in area and number investigated by the first and second
CGIs (1964 and 2009, respectively) and this work up to 2019. The glaciers in the Ebi Lake
Basin have changed a lot since the first and second CGIs either in area or in number. Almost
all measures had decreased from the first CGI investigation to this work in 2019, except
that the glacier number increased from 281 by the second CGI to 285 by this work. The
sole exception was probably because of some separated glacier branches resulting from the
shrinking area.
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Table 2. Glaciers in area and number in the six drainage sub-basins as per three inventories.

Drainage Basin 1st CGI (by 1964) 2nd CGI (by 2009) This Work (in 2019)

Name Code Area (km2) Number Area (km2) Number Area (km2) Number

Kuitun River 5Y741 201.12 309 147.67 281 133.11 285

Sikeshu River 5Y742 336.25 364 259.66 342 249.54 337

Jinghe River 5Y743 96.20 129 74.81 118 69.70 118

Daheyanzi River 5Y744 4.17 34 0.38 7 0.15 5

Sayram Lake 5Y745 4.28 13 2.17 9 2.25 9

Bortala River 5Y746 181.04 255 113.75 243 105.02 234

Ebi Lake 5Y74 823.06 1104 598.44 1000 559.77 988

Note: The red underlined number indicates the increasing count.

In more detail, the number of the Ebi Lake Basin’s glaciers decreased from 1104 to 998
(−2 a−1 or −2% a−1), and the area decreased by 263 km2 (−4.79 km2 a−1 or −0.58% a−1)
during the period 1964–2019. The overall rate of glacier area decreasing during 1964–2019
was −4.79 km2 a−1, and the rate during 2009–2019 (−3.87 km2 a−1) was slower than that
during 1964–2009 (−4.99 km2 a−1) (Figure 4). The shrinking rate of the glaciers in the Ebi
Lake Basin was slowed by 22% or 1.12 km2 a−1 in the last decade, comparing with the
period 1964–2009. Figure 5 shows some typical glacier boundaries in the basin defined by
the second CGI and 2019 investigations, respectively. Compared with the boundary by
2009, the glacial area showed a general shrinkage in 2019.

Figure 4. The area changing rates of the glaciers in the Ebi Lake basin during 1964–2009, 2009–2019, and 1964–2019,
respectively.
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Figure 5. The land cover images with two typical ice bodies of the Ebi Lake Basin, defined by (a) the second CGI and
(b) 2019 investigations (retrieved from the Sentinel-2 satellite with the Google Earth Engine in 2019), where the greenish
colors indicate the ice.

4. Discussion

4.1. Spatial and Volume Variations of Glaciers in the Ebi Lake Basin since the 1st and 2nd CGIs

To understand the spatial variations of the Ebi Lake Basin’s glaciers, we show their
varying rates in a geographic map (Figure 6). The area and number of glaciers in the
individual sub-basin of the Ebi Lake basin showed a decreasing trend from 1964 to 2019.
The Bortala River Basin (5Y746) had the largest decrease in glacier area (111.80 km2) with a
rate of change of −2.03 km2 a−1, followed by the Sikeshu River Basin (5Y742) (−101.90 km2,
or −1.85 km2 a−1) and the Quitun River Basin (5Y741) (−94.62 km2, −1.72 km2 a−1);
the largest number of glaciers disappeared in the Sikeshu River Basin (5Y742) and the
Daheyanzi River Basin (5Y744), losing 27 and 28 glaciers, respectively. From the analysis of
the relative rate of glacier area change, the glaciers in the Daheyanzi River Basin (5Y744)
were retreating fastest (−1.81 % a−1), followed by the Selimu Lake Basin (5Y745) with a
retreating rate of −1.23 % a−1, and the glacier resources in the two sub-basins are on the
verge of extinction. During 1964–2009, the vanished glaciers spread from west to east,
while they concentrated in the west during 2009–2019.

This work used various methods to calculate the ice storages derived from different
investigations and their variations in the basin (Table 3). The results show that the basin
glacier ice reservation decreased by 97.84–153.22 km3 between 1964 and 2019, the equivalent
water equivalent was 88.06–137.90 km3, taking 0.9 g cm−3 as ice density. The ice reservation
decreased by 39.18%–41.23%, or −1.78~−2.79 km3 a−1. Compared with the glacier area
reduction rate, the reduction rate of ice is greater, indicating that ice storage is more
sensitive to regional warming. The glaciers in the basin are experiencing dramatic retreating
and thinning.
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Figure 6. Area changes of glaciers at drainage scale in the Ebinur Lake Basin.

Table 3. The glacier volumes in the Ebi Lake Basin estimated with different empirical approaches.

Method Ice Volume of Glaciers (km3)
Glacier Volume Change

(2019s—FCGI)
Source

FCGI SCGI 2019s

A = 823.06 km2 A = 598.44 km2 A = 559.77 km2 km3 km3 a−1 % a−1

V = 0.0285 * A1.357 257.68 167.21 152.72 −104.96 −1.91 −0.74 [42]
V = 0.0298 * A1.379 312.32 201.25 183.54 −128.78 −2.34 −0.75 [43]
V = 0.0365 * A1.375 372.40 240.29 219.18 −153.22 −2.79 −0.75 [44]
V = 0.037 * A1.314 250.66 164.89 151.04 −99.62 −1.81 −0.72 [38]
V = 0.04 * A1.35 345.06 224.41 205.06 −140.00 −2.55 −0.74 [45]

V = 0.0433 * A1.29 249.69 165.52 151.85 −97.84 −1.78 −0.71 [46]
Average 297.97 193.93 177.23 −120.74 −2.20 −0.74 This work

4.2. Retreat of Glaciers in the Ebi Lake Basin Compared with the Greater Tianshan Region

In recent years, high-resolution satellite image data have been widely used in the
dynamic monitoring of glaciers, and it has become possible to study glacier changes in
large regions. To study the change of the glaciers in the Ebi Lake Basin in the greater
Tianshan, this study compares the glacier changes here with those in the other typical
mountains and watersheds of the Tianshan (Table 4). It is found that the trend of glaciers
change in the Ebi Lake is consistent with the trends in other regions, that is, smaller-size
glaciers have less reduction. In general, the glacial retreat rates in the greater Tianshan
region were varying. The glaciers in the Ebi Lake basin retreated at a rate of 0.58% a−1,
making the Ebi Lake Basin one of the fastest retreating areas in the Tianshan region. The
glacier retreat rate in the western section of the Tianshan is larger, followed by the middle
section and the smallest in the eastern section, and the glacier retreat rate on the northern
slope is higher than on the southern slope. Regional climate variation (temperature and
precipitation) and the individual glaciers’ sizes are the main influencing factors on glacier
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area in the Ebi Lake Basin. The number of glaciers in the region is dominated by those with
an area of smaller than 0.5 km2 (730 glaciers, or 73.9% of the total number of glaciers).

Table 4. Comparison of the area change of the glaciers in the greater Tianshan range.

Study Area Study Period
Area Change

(km2)
Rate of Change in

Area
Data Source

Tianshan 1960–2010 — −0.22% a−1 (−11.50%) — [24]
Tailan River Basin 1972–2011 −50.06 −0.22% a−1 (−11.50%) Topographic map, ETM+ [47]
Gaizi River Basin 1960–1999 −188.1 −0.26% a−1 (−10.00%) Topographic map, TM, ETM+ [21]
Harlik mountains 1959–2001 −13.4 −0.27% a−1 (−11.40%) Topographic map, TM, ETM+ [48]
Kaidu River Basin 1963–2000 −38.5 −0.31% a−1 (−11.60%) Topographic map, TM, ETM+ [21]
Middle Tianshan

Mountains 1963–2000 −7 −0.35% a−1 (−13.00%) MSS, SPOT, ETM+ [49]

Jinghe River Basin 1964–2004 −13.9 −0.38% a−1 (−15.20%) Topographic map, ASTER [50]
Urumqi River

Basin 1962–1992 −6.65 −0.45% a−1 (−13.80%)
Topographic map, Aerial

photograph [51]

Kukesu River
Basin 1963–2004 −50.06 −0.46% a−1 (−18.99%) Topographic map, ASTER [52]

Bogda peak area 1972–2005 −31.2 −0.49% a−1 (−21.60%) Topographic map, ASTER, SPOT [26]
Manas River Basin 1972–2013 −159.02 −0.60% a−1 (−24.61%) TM, ETM+ [53]
Alatau Mountains 1990–2011 −137.77 −0.92% a−1 (−20.24%) TM, ETM+ [54]

Ebinur Lake Basin 1964–2019 −263.29 −0.58% a−1 (−31.90%) Topographic map, Sentinel2 MSI This
study

4.3. Factors and Their Roles in the Change of Glaciers in the Ebi Lake Basin

Precipitation and temperature are the main factors affecting glacier development.
The interannual changes of these two factors together determine the nature, development
and evolution of glaciers. Temperature determines ablation, and precipitation affects
accumulation. Therefore, it is prerequisite to study the climate in the watershed to project
the glaciers’ evolution. As per the geography of the study area, this work selected five
meteorological stations, i.e., Alashankou (51232), Bole (51238), Wenquan (51330), Jinghe
(51334), and Wusu (51346), as the climatic reference for the study area (Figure 1).

The yearly average temperature and precipitation, and their anomalies at the five
meteorological stations in winter and summer from 1964–2017, are shown in Figure 7. The
temperature averaged from the five stations shows an increasing trend of 0.37 ◦C (10a)−1

(0.001 confidence level) from 1964 through 2017, 2.6 times as high as the global mean rate,
i.e., 0.14 ◦C (10a)−1 from 1951 to 2012 [4]. The temperatures of the watershed in summer
and winter both show increasing trends (0.51 ◦C (10a)−1 in winter and 0.21 ◦C (10a) −1 in
summer, respectively), and the temperature increase in winter is 2.5 times faster than the
summer. Similar to the temperature, precipitation records at all five weather stations show
an average increasing trend (13.61 mm (10a)−1 at 0.001 confidence level); both summer
and winter precipitation in the watershed show increasing, greater in summer (4.78 mm
(10a)−1) than in winter (2.63 mm (10a)−1). The increasing temperature and precipitation
trends in the Ebi Lake Basin are consistent with the climate shift theory from warm dry to
warm wet in northwest China [55]. The mass loss of global mountain glaciers induced by a
one degree increase in temperature needs 25–35% increase in precipitation to compensate
for the loss [56]. In the context of this combined hydrothermal climate change in the Ebi
Lake Basin, precipitation has increased, but temperature also increases to melt the glaciers,
and the increased precipitation does not add enough mass to the glaciers and compensate
for their mass loss. With increasing mass deficiency, glacier mass loss accelerates, and mass
balance lines rise, leading to the widespread glacier retreat.
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Figure 7. The interannual variations (a,c) and winter–summer anomalies (b,d) of temperature and precipitation in the Ebi
Lake basin.

5. Conclusions

The number of glaciers in the Ebi Lake Basin in the 2019 ablation season was 988
with the total area of 559.77 km2. The glaciers in the basin are mainly characterized by
individuals with the area between 0.1 and 10.0 km2 summed 509.05 km2, ~91% of the total
glacial area in the basin. There are 730 glaciers smaller than 0.5 km2, accounting for 74% of
the total number of glaciers in the basin. The glaciers are concentrated between 3500 m
and 4000 m in elevation, with a total area of 512 km2, ~91% of the total.

During 1964–2019, the number and area of the Ebi Lake Basin’s glaciers had decreased
by 116 (10.5%) and 263 km2 (32%) at the rate of −4.79 km2 a−1 or −0.58% a−1, respectively.
Glaciers with an area between 2.0 and 5.0 km2 had the largest reduction of −82.60 km2

(~41%) with the rate of −1.5 km2 a−1 or −0.74% a−1. The glaciers in the basin were all in
retreat from 1964 through 2019, and the glaciers lower than 3200 m disappeared in 2019,
and those between 3500 m and 4000 m dominated the total glacial area. Those north- and
northeast-oriented glaciers in the basin had the largest area and number. The glaciers
in each sub-basin of the Ebi Lake basin showed a decreasing trend from 1964 to 2019;
noticeably, these glaciers in the recent decade (2009–2019) showed a slower retreating trend,
compared with the investigations by the first and second CGIs. The Bortala River Basin
(5Y746) has the largest decrease in glacier area (111.80 km2) with a rate of −2.03 km2 a−1,
followed by the Sikeshu River Basin (5Y742) (−101.90 km2 or −1.85 km2 a−1) and the
Quitun River Basin (5Y741) (−94.62 km2 or −1.72 km2 a−1). The ice storage in the basin dur-
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ing the last 55 years had decreased by 97.84–153.22 km3. The equivalent water equivalent
was 88.06–137.90 km3 with −1.78~−2.79 km3 a−1 or −0.71~−0.75 % a−1.

The temperature in the basin had increased by 0.36 ◦C (10a)−1 during 1964–2017,
much faster than the global mean, and the annual precipitation in the basin also showed
an increasing trend of 12.06 mm (10a)−1. The temperature and precipitation trends in the
basin are consistent with the climate shift from warm-dry to warm-wet in northwest China.
Although the precipitation in the basin has increased, the increase in precipitation was not
sufficient to compensate for the mass loss of the glaciers by the increased temperatures,
leading widespread retreating of the glaciers in the basin. This work may be the first
report on the status of the glaciers in the Ebi Lake Basin and revealed their most recent
change since the second China Glacier Investigation. The main points can be helpful for
policymakers to take measures to mitigate the impact of climate change on the region.
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