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Editorial

Methodologies Used in Remote Sensing Data Analysis and
Remote Sensors for Precision Agriculture

Sigfredo Fuentes 1 and Jiyul Chang 2,*
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Science, The University of Melbourne, Parkville, VIC 3010, Australia

2 Department of Agronomy, Horticulture & Plant Science, South Dakota State University,
Brookings, SD 57007, USA

* Correspondence: jiyul.chang@sdstate.edu

When adopting remote sensing techniques in precision agriculture, there are two
main areas to consider: data acquisition and data analysis methodologies. Imagery and
remote sensor data collected using different platforms provide a variety of information
volumes and formats. For example, recent research in precision agriculture has used multi-
spectral images from different platforms, such as satellites, airborne, and, most recently,
drones. These images have been used for various analyses, from the detection of pests
and diseases, growth and water status of crops, to yield estimations. However, accurately
detecting specific biotic or abiotic stresses requires a narrow range of spectral information
to be analyzed for each application. In data analysis, the volume and complexity of data
formats obtained using the latest technologies in remote sensing (e.g., a cube of data for
hyperspectral imagery) demands complex data processing systems and data analysis using
multiple inputs to estimate specific categorical or numerical targets. New and emerging
methodologies within artificial intelligence, such as machine learning and deep learning,
have enabled us to deal with these increasing data volumes and complex analyses.

This Special Issue (SI) mainly focused on (i) advanced methodologies for remotely
sensed data collected by different types of sensors and platforms for precision agriculture
and (ii) the implementation of various sensors for specific targets in precision agriculture.
High-quality research was published in this SI from researchers from various countries,
including China, the USA, Slovenia, Spain, Germany, Brazil, Australia, and Singapore. The
SI’s studies have been ordered following the application within the soil–plant–atmosphere
continuum starting with the soil salinity precision monitoring using unmanned aerial
vehicles (UAV) and multispectral imagery [1]; the evaluation of optical sensors for the
diagnosis of nitrogen content for wheat plants [2]; the detection of root-knot nematode
infestation in potato plants using hyperspectral imagery [3]; detection of powdery mildew
using hyperspectral, thermal, and RGB imagery [4]; leaf area index estimations for wheat
using hyperspectral reflectance data [5]; vineyard canopy characteristics and vigor assess-
ment using UAV and satellite imagery [6]; estimation of crop vegetation parameters using
satellite and UAV spectral remote sensing [7]; above-ground biomass estimation of oat
plants using UAV remote sensing and machine learning [8]; wheat lodging estimation using
multispectral UAV imagery and deep learning [9]; yield estimation for guinea grass using
UAV remote sensing [10]; and wheat yield prediction from satellite imagery, meteorological
data, and machine learning modeling [11].

Different sensor technologies, such as SPAD, Dualex 4, and RapidSCAN, were imple-
mented to assess the accuracy of estimating nitrogen levels in winter wheat, with Dualex 4
being the sensor with the best performance [2].

Different machine and deep learning analytical methods were employed to analyze
imagery and the numerical data from various research studies. For soils, among the
methodologies used were partial least square (PLS) back propagation neural networks
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(BPNN), support vector machines (SVM), and random forests (RF) to construct retrieval
models to estimate soil salinity using regression models [1]. The latter was the most
accurate method resulting in determination coefficients of R2 = 0.724 for the modeling
stage and 0.745 for validation. For roots and disease estimation, hyperspectral imagery
for disease detection on potato tubers (diseased and non-diseased), and machine learning
modeling using SVM classifiers plus dimensionality reduction methods with accuracies
over 60% [3]. Other multisource vegetation indices extracted from hyperspectral, thermal,
and RGB imaging have been used coupled with RF and SVM regression algorithms to
target a powdery mildew index on wheat. The former machine learning methodology
resulted in higher and more stable performances and R2 > 0.86 [4].

In terms of canopy architecture, hyperspectral reflectance data from winter wheat was
used as inputs for a combination of algorithms at different phenological stages to estimate
LAI as targets. The best performance was obtained in flowering and filling stages with
0.87 < R2 < 0.71 for modeling and 0.84 < R2 < 0.77 for validation, respectively [5]. Other
canopy-related parameters for vineyards, such as the normalized differential vegetation
index (NDVI) obtained from UAV and satellite multispectral data using simple linear
regression from individual plants and clusters of plants according to the spatial footprint
of imagery. The NDVI was then related to the tree row volume resulting in moderate R2

for vigor estimation [6]. Other multispectral/hyperspectral parameters from satellite–UAV
data comparisons were performed to estimate crop vegetation parameters, such as LAI, leaf
chlorophyll concentration, and canopy water content, with no clear superiority for either
remote-sensed data on the estimations [2]. For above-ground biomass estimation of oats,
UAV-based remote sensing multispectral imagery and derived vegetation indices (VIs) were
coupled with PLS, SVM, and artificial neural networks (ANN) and RF algorithms. These
studies’ results showed various low to moderate accuracies in predicting above-ground
biomass [8]. The highest accuracy was obtained by combining RGB + digital surface model
(DSM) with 89% [9]. Deep learning based on convolutional neural networks (CNN) with
different architectures to analyze RGB from a UAV platform was used to estimate dry
matter yield for guinea grass resulting in correlation coefficients of 0.79 < R < 0.62 [10].
Furthermore, RF algorithms were also used for wheat yield prediction based on satellite-
based NDVI combined with meteorological data in Australia, resulting in 0.89 < R2 < 0.42
for different locations [11].

After climatic anomalies, plants can suffer from lodging, such as wheat, and the
damage estimation can be helpful in decision-making. Multispectral imagery from a UAV
platform was used to estimate lodging in wheat coupled with a lightweight network model
method based on RGB-DSM with 89% accuracy in the lodging estimation.

It has been shown in this SI that remote sensing coupled with artificial intelligence and
machine learning are powerful tools to estimate parameters from soil salinity, plant biotic
and abiotic stresses/damage, canopy architecture characteristics, and yield estimation.
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Precise Monitoring of Soil Salinity in China’s Yellow River
Delta Using UAV-Borne Multispectral Imagery and a Soil
Salinity Retrieval Index
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ailingwang@sdau.edu.cn (A.W.)

2 Tropical Research and Education Center/Department of Agricultural and Biological Engineering, Institute of
Food and Agricultural Sciences, University of Florida, Homestead, FL 33031, USA

* Correspondence: zhugeyp@sdau.edu.cn

Abstract: Monitoring salinity information of salinized soil efficiently and precisely using the un-
manned aerial vehicle (UAV) is critical for the rational use and sustainable development of arable
land resources. The sensitive parameter and a precise retrieval method of soil salinity, however,
remain unknown. This study strived to explore the sensitive parameter and construct an optimal
method for retrieving soil salinity. The UAV-borne multispectral image in China’s Yellow River
Delta was acquired to extract band reflectance, compute vegetation indexes and soil salinity indexes.
Soil samples collected from 120 different study sites were used for laboratory salt content measure-
ments. Grey correlation analysis and Pearson correlation coefficient methods were employed to
screen sensitive band reflectance and indexes. A new soil salinity retrieval index (SSRI) was then
proposed based on the screened sensitive reflectance. The Partial Least Squares Regression (PLSR),
Multivariable Linear Regression (MLR), Back Propagation Neural Network (BPNN), Support Vector
Machine (SVM), and Random Forest (RF) methods were employed to construct retrieval models
based on the sensitive indexes. The results found that green, red, and near-infrared (NIR) bands were
sensitive to soil salinity, which can be used to build SSRI. The SSRI-based RF method was the optimal
method for accurately retrieving the soil salinity. Its modeling determination coefficient (R2) and
Root Mean Square Error (RMSE) were 0.724 and 1.764, respectively; and the validation R2, RMSE,
and Residual Predictive Deviation (RPD) were 0.745, 1.879, and 2.211.

Keywords: soil salinity sensitive parameter; random forest; support vector machine; optimal retrieval
model; remote sensing

1. Introduction

Soil is a vital component of the ecosystem. It plays a crucial role in the structure
and operation of the land ecosystem [1,2]. However, the degradation of soil resources
has emerged as one of the world’s most pressing ecological concerns. Soil salinization
has already become a significant symptom of soil degradation that affects 10% of the
world’s agricultural land [3,4]. The search for a reliable monitoring index and precise
regression method for soil salinity is essential to globally assess soil salinization and its
severe implications for agriculture and food security.

Ecological parameter measurement and airborne/satellite remote sensing (RS) moni-
toring technologies are two commonly utilized soil salinity assessment methods. Traditional
methods rely on field surveys and electrical conductivity measurements, which are accurate
but time and labor-intensive [5,6], and do not allow for monitoring of the spatial distribu-
tion pattern of soil salinity content. Multi- and hyperspectral satellite RS technology has
been used in soil salinity monitoring since the 1990s [7,8]. Azabdaftari et al. (2016), for
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instance, computed vegetation indexes in the Adana region of Turkey using Landsat multi-
spectral images from four different times [9]. Morgan et al. (2018) forecasted soil salinity in
Cairo, Egypt using Sentinel-2 multispectral data [10]. Hyperspectral images such as EO-1
and HJ-1A were also employed as data sources to accurately detect soil salinity [11,12].
Different from the satellite RS means, the Unmanned Aerial Vehicle (UAV)-borne spectral
sensors are highly maneuverable and have been used to monitor soil salinity since the 2010s.
Hu et al. (2019) used electromagnetic induction equipment and a hyperspectral camera
mounted on a UAV platform to evaluate and estimate field-scale soil salinity [13]. Ivushkin
(2019) looked into the use of UAVs to measure salt stress in quinoa plants [14]. Wang et al.
(2019) extracted the salt content of extremely salty soil in China’s Yellow River Estuary and
compared the retrieval findings with the inverse distance weighted interpolation results to
achieve more accurate saline soil extraction [15]. To boost the spectral resolution to retrieve
soil salinity, Ma (2020) combined Sentinel-2A and UAV multispectral images to increase
the spectral resolution to inverse regional soil salinity [16]. Satellite RS imagery-based
soil salinity studies have indicated that the index in the visible to infrared spectrum may
better measure soil salinity, which can increase the accuracy of soil salinity retrieval [17–19].
The majority of vegetation indexes can indirectly indicate soil salinity [20]. However, few
studies focused on the detection of UAV band information sensitive to soil salinity, which
is essential for the construction of a reliable soil salinity monitoring index to help efficiently
predict the soil salinity conditions.

For the soil salinity regression method, several approaches such as partial least square
(PLS), BP Neural Network (BPNN), Support Vector Machines (SVM), and random forest
(RF) were introduced and applied [15,21]. For instance, Ma (2018) increased the accuracy
of soil salinization retrieval by combining numerous mathematical changes on soil surface
reflectance with regression analysis of collected soil data [12]. Machine learning algorithms
were used by Yao et al. (2019) to infer agriculture soil salt concentration from UAV mul-
tispectral RS images [22]. The determination coefficients for validation were more than
0.69. To improve regional retrieval precision, Chen et al. (2021) presented a differentiated
fusion method for calculating satellite and ground spectral variables of soil salinity based
on sample differences [23]. Spectral parameters and correlation salinity indexes have been
converted and filtered to retrieve soil salinity. In resource management and allocation,
the river delta region has a high degree of social-ecological interdependence and competi-
tion. In China, the Yellow River Delta (YRD) features shallow groundwater levels (0–2 m),
significant salinity, and surface salinity. Soil salinization affects over 70% of YRD’s land,
making the region’s biological ecosystem severely vulnerable [24]. Soil salinization has
long been a major source of soil degradation in the YRD, limiting local agricultural produc-
tivity. Precise monitoring of soil salinity is essential to assess soil salinization. However,
screening and design of sensitive parameters, as well as a suitable retrieval method, is,
nevertheless, unknown.

This study thus strived to explore the sensitive parameter and construct an optimal
method for soil salinity retrieval. The Yellow River Delta (YRD) in China was selected as
the study area to experiment. UAV RS image and ground truth data collected during the
spring season were used as the data source. Sensitive bands and spectral parameters of soil
salinity were identified using grey correlation analysis and Pearson correlation coefficient
approaches. PLSR, MLR, BPNN, SVM, and RF modeling methods were used to create
soil salt retrieval models based on reflectance, vegetation index, and salinity index. The
accuracies were evaluated quantitatively to find the optimal retrieval model. This study is
expected to serve as a guide for the selection of sensitive criteria and the optimal soil salinity
prediction algorithms, which can be used in other regions to retrieve soil salinity efficiently.

2. Materials and Methods

2.1. Study Area

The study was conducted in a representative arable region of Kenli District, YRD
(37◦35′6”~37◦35′14′ N, 118◦20′31”~118◦20′46” E). The climate of the study area is a tem-
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perate continental monsoon climate, which is dry and windy in spring. With a potential
evapotranspiration–precipitation ratio of 7.6, potential evapotranspiration considerably
outnumbers precipitation in spring, resulting in limited vegetation covering in the study
area and severe salt deposition in the soil. The groundwater table is also shallow and
mineralized. Arable and abandoned lands are the most common land uses, and coastal
(tidal) salty soil with a light texture and high capillary action is the most common soil type.
Hydrogeological conditions in the study area may contribute to soil salinization [25].

2.2. Image Acquisition and Preprocessing

The spring season in the study area is the period of high evapotranspiration and
accumulation of soil salinity, which is crucial for the development of winter wheat. On 19
March 2021, a field survey was conducted to collect soil samples and obtain UAV images
(Figure 1). The DJI Matrice 600 Pro (SZ DJI Technology Co., Ltd. Shenzhen, China) and
the Parrot Sequoia agriculture multispectral camera, which includes Green (G), Red (R),
Red Edge (REG), and Near-infrared (NIR) bands, are part of the UAV image acquisition
system (Table 1). During the UAV image acquisition period, the UAV’s flying height was
set to 50 m, and the spatial resolution was set to 5 cm. Each flight trace had a 60% overlap
ratio. After that, the UAV image and the associated GPS data were loaded into the Pix4D
Mapper for preprocessing, which included geometric correction, radiometric calibration,
and orthorectification.

Figure 1. Location of the study area. (a) Location of the Kenli District in China; (b) test area in the
Kenli district; (c) UAV image covering the test area.

Table 1. Band information of multispectral camera sensor.

ID Band Abbreviation Center Wavelength (nm) Bandwidth (nm)

1 Green G 550 40
2 Red R 660 40
3 Red edge REG 735 10
4 Near-infrared NIR 790 40

2.3. Soil Sampling and Laboratory Procedures

One hundred and twenty sample sites and 40 ground control points were evenly
distributed in the test area. An EC110 portable salinity meter equipped with a 2225FST
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series probe (in which the temperature correction for the electrical conductivity had already
been completed) (Spectrum Technologies Inc., Dallas/Fort Worth, TX, USA) was used
to make five measurements at and near each sampling site, with a range of no more
than 5 cm × 5 cm. Using the five-point sampling approach, samples from 0–10 cm soil
surface layer were taken at each survey location and put into separate sealed plastic bags.
Meanwhile, the hand-held differential GPS (Trimble GEO 7X, Trimble Inc., Sunnyvale, CA,
USA) was used to record the longitude and latitude coordinates of each sampling location,
while the camera captured and recorded the surrounding environmental information.

Soil samples were treated in the laboratory for natural air drying at room temperature.
Coarse fragments such as stones were discarded. All the soil samples were then physically
milled, thoroughly mixed, sieved to obtain the fraction less than 2 mm (fine earth fraction),
and packaged in separate bags for salt content analysis. The soil samples were processed
into the soil solution at a soil-to-water ratio of 1:5 [26,27]. The soil conductivity value was
measured using an EC110 conductivity meter, and 30 extracts were chosen at random to
compute the matching soil total salt concentration [28]. Equation (1) depicts the conversion
connection between soil total salt concentration and extraction solution conductivity in the
studied region [4].

St = 2.180 × EC1:5 + 0.727 (1)

where St is the total salt content of the soil (g/kg), and EC1:5 is the conductivity of soil
extract (mS/cm) with a soil–water ratio of 1:5. EC1:5 is used to calculate the total salt content
of different soil samples without measuring the ion composition, as shown in Equation (1).
For each treatment, the measurement was performed five times.

2.4. Construction of Soil Salinity Retrieval Index

The sensitive reflectance will be used to build a new soil salinity retrieval index. Before
that, the correlation coefficient technique and grey correlation analysis between band
reflectance and soil salinity content were primarily computed to screen sensitive band
reflectance. The grey correlation analysis technique is a statistical analysis approach using
several factors. It is used to calculate the degree of correlation among components based
on the similarity or dissimilarity of development patterns among factors, i.e., the grey
correlation degree [29]. The Pearson correlation coefficient measures the degree of linear
association between two distance variables. The Pearson correlation analysis is a type of
factor correlation analysis that is appropriate for continuous variables [30]. Besides, the
band diagnostic index (Pi) was employed in this study to further improve the accuracy
and reliability of screening sensitive band reflectance. The calculation equation of the band
diagnostic index is shown below.

Pi = Ri × σi (2)

where Ri is the correlation coefficient between the reflectance value on each band and the
soil salinity, and σi is the standard deviation of reflectance value of band i [31].

2.5. Validation

To examine the performance of the new proposed index, six vegetation indexes, six
salinity indexes, and one brightness index were used as comparisons to conduct screening,
model construction, and validation process. The vegetation index is calculated using the
standard multispectral RS bands R and NIR, and it includes the Normalized Difference
Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation
Index (SAVI), and Ratio Vegetation Index (RVI). Based on the band operation of the NDVI,
the Green Normalized Difference Vegetation Index (GNDVI) and the Red Normalized
Difference Vegetation Index (NDVIREG) were calculated and classed as VI indexes. The
salinity index stands for the soil salinity index. It is represented by six algebras (SI-T, SI1,
SI2, SI3, NDSI, and SRSI), with Soil Remote Sensing Index (SRSI) being the transformation
and synthesis index of the Soil Salinity Index SI1 and the vegetation index NDVI (Table 2).
The brightness index (BI) is determined using the R and NIR bands.
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Table 2. Spectral indexes and equations. G represents the reflectance of the green band, R denotes the
reflectance of the red band, REG is the reflectance of the red edge band, and NIR is the reflectance of
the near-infrared band.

Index Type Spectral Index Equation Reference

VI

Normalized Difference Vegetation Index (NDVI) NIR−R
NIR+R [19]

Difference Vegetation Index (DVI) NIR − R [19]
Soil Adjusted Vegetation Index (SAVI) (1+L)×(NIR−R)

NIR+R+L , L = 0.5 [32]
Ratio Vegetation Index (RVI) NIR

R [32]
Green Normalized Difference Vegetation Index (GNDVI) NIR−G

NIR+G [33]
Red Normalized Vegetation Difference Index (NDVIREG) NIR−REG

NIR−REG [33]

SI

Salinity Index (SI-T) R
NIR×100 [34]

Salinity Index 1 (SI1)
√

G × R [34]

Salinity Index 2 (SI2)
√

G2+R2+NIR2 [35]

Salinity Index 3 (SI3)
√

G2+R2 [35]

Normalized Difference Salinity Index (NDSI) R−NIR
R+NIR [36]

Soil Remote Sensing Index (SRSI)
√
(NDVI − 1)2+SI12 [32]

BI Brightness index (BI)
√

R2+NIR2 [36]

The soil salinity retrieval model and comparison techniques were constructed using
QGIS, SPSS, and Matlab. Based on the newly constructed index and sensitive VI and SI,
the retrieval models of soil salinity were built using the Partial Least Squares Regression
(PLSR [37]), Multivariable Linear Regression (MLR [38]), Back Propagation Neural Network
(BPNN [39]), Support Vector Machine (SVM [40]), and Random Forest (RF [41]) methods.
The determination coefficient (R2), root mean square error (RMSE), and residual predictive
deviation (RPD) were employed to evaluate the regression results. R2 represents the
consistency with which the model was established and validated. If R2 is near to one, the
model is more robust and has a better fitting degree. The RMSE is used to evaluate the
model’s prediction performance. The lower the RMSE, the better the model’s prediction
ability. The RPD is the ratio of the measured value’s standard deviation to the predicted
error. When RPD is less than 1.4, the model cannot predict measured values; 1.4 ≤ RPD < 2
indicates that the model can roughly predict those values, and RPD more than or equal to
2.0 shows that the model has exceptional prediction ability. Models with high R2 and RPD
values perform better in terms of prediction and stability [42].

3. Results

3.1. Statistical Analysis of Soil Samples

The soil salt concentration varied from 0.264 to 20.651 g/kg throughout the test area,
with an average of 7.583 g/kg and a standard deviation of 5.766 g/kg (Table 3). The
salinity of the soil in the test area was typically high. Modeling set’s soil salinity varied
from 0.277 to 20.675 g/kg, with an average of 7.575 g/kg and a standard deviation of
5.735 g/kg. Validation set’s soil salinity varied from 0.258 to 20.250 g/kg, with an average
of 7.627 g/kg and a standard deviation of 5.864 g/kg. The mean and standard deviation of
the modeling and validation sets are comparable to the statistical findings of all sample
sets, which may decrease model creation and validation deviation in the latter stage and
has modeling reliability.

3.2. Selection of Sensitive Bands

The correlation findings of UAV image reflectance showed that grey correlation coeffi-
cients have larger absolute values than Pearson correlation coefficients for the four-band
reflectance and soil salinity content. Grey correlation coefficients between G, R, NIR, and
salinity content were 0.567, 0.569, and 0.612, respectively, and were all significant at the
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0.01 level (Table 4). Relative correlation coefficients were 0.532 (p < 0.01), 0.522 (p < 0.01), and
0.557 (p < 0.01) for G, R, NIR, and salinity content, which showed the same pattern as that
of the grey correlation. Among the four bands, NIR had the greatest correlation coefficient.

Table 3. Statistics of soil salinity content.

Sample Set
Minimum

(g/kg)
Maximum

(g/kg)
Average
(g/kg)

SD
(g/kg)

Sample Size

All 0.264 20.651 7.583 5.766 120
Modeling set 0.277 20.675 7.575 5.735 90
Validation set 0.258 20.250 7.627 5.864 30

Table 4. Correlation analysis of sensitive reflectance with soil salinity.

Reflectance Grey Correlation Coefficient Pearson Correlation Coefficient

G 0.567 ** 0.532 **
R 0.569 ** 0.522 **

REG 0.550 * S0.509 *
NIR 0.612 ** 0.557 **

* Significant at 0.05 level, ** significant at 0.01 level.

To further improve the accuracy and reliability of screening sensitive band reflectance,
the diagnostic index Pi of G, R, REG, and NIR were computed. We can find that G, B,
and NIR bands were higher than that of REG (Table 5), which further indicated that the
soil reflectance of green, red, and near-infrared bands of UAV multispectral image were
sensitive to soil salt information, which can be used to construct a sensitive soil salinity
retrieval index.

Table 5. Diagnostic index of UAV image reflectance.

G R REG NIR

Ri 0.567 ** 0.569 ** 0.550 * 0.612 **
σi 0.791 0.761 0.470 0.732
Pi 0.472 0.456 0.273 0.435

* Significant at 0.05 level, ** significant at 0.01 level.

3.3. Construction of Soil Salinity Retrieval Model

This study compared various combinations of the three-soil salinity sensitive bands (R,
G, and NIR), e.g., addition, subtraction, and division (Table 6), and analyzed the relationship
between these transformation indexes and soil salinity information. Finally, we devised
a new index, namely the Soil Salinity Retrieval Index (SSRI, Equation (3)) to detect soil
salinity by relying on the three sensitive bands.

SSRI =
NIR√
R ∗ G

(3)

where G, R, and NIR is the green, red, and near-infrared band reflectance of the UAV
image, respectively.

Table 6. Equation combinations of the G, R, NIR.

ID Algebra Operation

1 R+G+NIR
2 R-G-NIR, G-R-NIR, NIR-R-G
3 3

√
R ∗ G ∗ NIR

4 R√
G∗NIR

, G√
R∗NIR

, NIR√
R∗G
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3.4. Correlation Analysis

The correlations of proposed SSRI, VIs, and SIs with soil salinity content were shown
in Table 7. Among the 14 indexes, SSRI showed the higher grey correlation and Pearson
correlation coefficients, 0.689 and 0.632, respectively. NDVI and DVI were the only two VIs
that demonstrated a significant association (p < 0.01), with NDVI having the strongest
correlation (0.619, 0.602). SI, SI-T, SI3, NDSI, and SRSI had a significant association with soil
salinity (p < 0.01), with SRSI having the highest value of correlation (Table 7). Therefore,
NDVI, SRSI, and SSRI were utilized to build soil salinity retrieval models.

Table 7. Correlation analysis of sensitive spectral index with soil salinity.

Spectral Index Grey Correlation Coefficient Pearson Correlation Coefficient

SSRI 0.689 ** 0.632 **

NDVI 0.619 ** 0.602 **
DVI 0.601 ** 0.557 **
SRVI 0.512 * 0.476 *
RVI 0.517 * 0.458 *

GNDVI 0.557 ** 0.514 *
NDVIREG 0.507 * 0.454

Salinity Index (SI-T) 0.607 ** 0.559 **
Salinity Index 1 (SI1) 0.556 ** 0.514 *
Salinity Index 2 (SI2) −0.390 −0.200
Salinity Index 3 (SI3) 0.637 ** 0.601**

NDSI 0.535 * 0.474*
SRSI 0.677 ** 0.615**

Brightness Index (BI) 0.235 0.229
* Significant at 0.05 level, ** significant at 0.01 level.

3.5. Retrieval Accuracy

The RF, BPNN, SVM, PLSR, and MLR were used to create retrieval models of soil
salinity based on the NDVI image. The results showed that the NDVI-based RF model
showed the highest modeling and validation accuracies (R2 = 0.625 and 0.633) among
the five methods and then was BPNN, SVM, PLSR, and MLR in order of modeling and
validation accuracies (Table 8). However, only the RPD of the RF model topped 1.4, which
is the rough sample prediction threshold. Therefore, in the test area, NDVI is not suited for
accurate soil salinity retrieval.

Table 8. Accuracy statistics of the NDVI based retrieval model.

Modeling Method
Modeling Accuracy Validation Accuracy

R2 RMSE R2 RMSE RPD

RF 0.625 2.977 0.633 2.789 1.425
BPNN 0.601 3.375 0.610 3.090 1.397
SVM 0.584 3.547 0.591 3.274 1.363
PLSR 0.557 3.645 0.566 3.455 1.321
MLR 0.492 3.988 0.488 4.714 0.670

Table 9 displayed the statistically accurate findings of the five modeling approaches
using SRSI. According to the statistical data, the accuracy of modeling and validation of
the five modeling approaches is in the following order: RF > BPNN > PLSR > SVM > MLR.
Except for the MLR model, the modeling and validation accuracy of the other four models
are all more than 0.6. The vegetation index has the potential to extract soil salinity with
acceptable accuracies.

In the test area, the R2 values of RF, BPNN, SVM, PLSR, and MLR based on SSRI
(Table 10) showed stronger fitting impacts than the retrieval model based on NDVI and
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SRSI (Tables 8 and 9). Furthermore, the modeling and validation accuracies of the five
techniques (RF, BPNN, SVM, PLSR, and MLR) were all higher than 0.6, and the RPD of the
RF model is more than 2.2 (Table 10), which indicates that the RF has adequate soil salinity
retrieval capacity.

Table 9. Accuracy statistical results of SRSI retrieval model.

Modeling Method
Modeling Accuracy Validation Accuracy

R2 RMSE R2 RMSE RPD

RF 0.667 2.554 0.679 2.443 1.878
BPNN 0.641 2.631 0.653 2.781 1.750
SVM 0.619 3.205 0.621 3.029 1.549
PLSR 0.633 2.980 0.639 2.991 1.583
MLR 0.537 3.652 0.526 3.631 0.998

Table 10. Accuracy statistical results of soil salinity index retrieval model based on SSRI.

Modeling Method
Modeling Accuracy Validation Accuracy

R2 RMSE R2 RMSE RPD

RF 0.724 1.764 0.745 1.879 2.211
BPNN 0.699 1.989 0.682 2.376 2.043
SVM 0.665 2.554 0.658 3.002 1.675
PLSR 0.671 2.275 0.689 2.897 1.748
MLR 0.639 3.091 0.622 2.994 1.464

The comparison of the modeling and validation accuracies (Tables 8–10) indicated that
the retrieval models based on the proposed SSRI were more accurate than those based on
vegetation index and soil salinity index. The soil salt retrieval modeling and validation
accuracy were all greater than 0.638, and the RPD values were all greater than 1.463. Besides,
among the five prediction modeling approaches, the order of modeling and validation
accuracy was RF, BPNN, PLSR, SVM, and MLR. The modeling and validation accuracies of
the RF modeling approach in various models were all greater than 0.6, and RPD values were
above 1.424 (Tables 8–10). Among them, the R2 and RMSE of the modeling set using the
SSRI-based RF method were 0.724 and 1.746; and the R2, RMSE, and RPD of the validation
set were 0.745, 1.879, and 2.211 (Figure 2), which were the highest. The optimal retrieval
model of soil salinity in the test area is the SSRI-based RF method.

Figure 2. Scatter plot of the optimal retrieval model (SSRI-based RF method) of soil salinity based on
UAV imagery.
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4. Discussions

The sensitive parameter and optimal retrieval method for soil salinity monitoring
using UAV multispectral imagery were investigated in this study. The proposed soil salinity
retrieval index (SSRI) based RF method was found to show the best accuracy in predicting
soil salinity. The modeling R2 and RMSE were 0.724 and 1.764, respectively; and the
validation R2, RMSE, and RPD were 0.745, 1.879, and 2.211, respectively, which were the
highest among all the models built using the five prediction approaches based on SSRI,
vegetation index, and salinity index.

Compared to existing soil salinity retrieval studies using UAV imagery, this study
screened sensitive band information and combined them to form a feasible index to help
retrieve soil salinity. The retrieval values of soil salinity in the whole test area using the
SSRI-based RF model (Figure 3) ranged from 0.323 to 21.210 g/kg, with an average value
of 6.871 g/kg, which was close to the descriptive statistical results of the soil samples
(Table 3). The test area can be divided into five grades based on the saline soil grad-
ing standard (Wang et al., 2019), namely extremely saline soil (salt content greater than
10.0 g/kg), severely saline soil (salt content 6.0–10.0 g/kg), moderately saline soil (salt
content 4.0–6.0 g/kg), slightly saline soil (salt content 2.0–4.0 g/kg), and non-saline soil
(Figure 3). According to the area statistical figures, the extremely saline soil occupied the
lowest share of 5.3 percent of the five grades. Severely and moderately saline soil zones
accounted for 15.5 and 13.6 percent of the overall test area, respectively. The proposal of
slightly saline soil was 65.4 percent, the highest of the five categories. This pattern of soil
salinity distribution is consistent with the observation in Figure 2, i.e., more than half of the
sample locations were in the slightly saline region. The non-saline region encompassed
10.2 percent of the left test area. The geographical analysis demonstrated that soil saliniza-
tion is widespread in the test area, with the majority of test sites belonging to the saline
soil grade.

Figure 3. Retrieval map of soil salinity using the SRSI based RF method.
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Visible and NIR bands displayed significant correlation links with soil salinity accord-
ing to the results of two spectral screening analysis methodologies. The main minerals
involved in the salinization of the soil of the YRD are rock salt and gypsum, with the
main anions being Cl− and SO4

2− and the main cations being Na+ and Ca2+ [11,43]. Previ-
ous research found that although NaCl has no spectral characteristics in the visible and
near-infrared bands, NaCl is correlated with gypsum [44]. Gypsum possesses absorption
qualities in the visible and near-infrared bands, which can help reveal soil salinity spec-
tral information. Xu et al. (2018) found that gypsum has molecular vibration absorption
spectrum features in the NIR band, visible and NIR band can collect SO4

2− spectral infor-
mation [45]. Furthermore, studies have shown that salinized soil has higher reflectance
in the visible and NIR bands than non-salinized soil [15,46]. Hence, spectral information
of salinized soil retrieved from RS data can be used to estimate soil salinity in visible and
near-infrared bands.

This study explored the sensitive parameters and optimal method to retrieve soil
salinity, while soil samples were collected in the surface layer of soil (0–10 cm). For agri-
culture and food security, more attention should be paid to the indirect approach to a
salinization assessment of root-zone (0–100 cm) [47]. Besides, the soil sample collection
and measurement were conducted in one site. The proposed SSRI and the findings need
more examination to test the reliability in further research. Furthermore, UAV multispectral
image and the SSRI-based RF method can efficiently predict soil salinity with acceptable
accuracy, whereas the UAV’s battery duration time prevents it from being used in large
regional-scale soil salinity assessment. Recently, studies have fused satellite RS data with
UAV images to derive regional-scale soil salinity, which is useful for estimating soil salinity
across wide areas. However, it should be noted the variations in band wavelengths, meteo-
rological conditions at the time of acquisition, and sensor compatibility between aviation
and aerospace platforms are distinctly different. How to eliminate these uncertainties is a
direction where further endeavors should be made in.

5. Conclusions

This study explored the sensitive parameter and optimal method for the accurate
retrieval and spatial distribution of soil salinity. The sensitive band of soil salinity was
discovered to be the band G, R, and NIR, a soil salinity retrieval index (SSRI) was proposed
accordingly to retrieve soil salinity. SSRI-based RF method was the optimal combination
that can accurately retrieve the soil salinity. Further study will be conducted in other
salinized regions to examine the findings of this study.
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Abstract: The accurate estimation and timely diagnosis of crop nitrogen (N) status can facilitate
in-season fertilizer management. In order to evaluate the performance of three leaf and canopy
optical sensors in non-destructively diagnosing winter wheat N status, three experiments using seven
wheat cultivars and multi-N-treatments (0–360 kg N ha−1) were conducted in the Jiangsu province
of China from 2015 to 2018. Two leaf sensors (SPAD 502, Dualex 4 Scientific+) and one canopy sensor
(RapidSCAN CS-45) were used to obtain leaf and canopy spectral data, respectively, during the main
growth period. Five N indicators (leaf N concentration (LNC), leaf N accumulation (LNA), plant N
concentration (PNC), plant N accumulation (PNA), and N nutrition index (NNI)) were measured
synchronously. The relationships between the six sensor-based indices (leaf level: SPAD, Chl, Flav,
NBI, canopy level: NDRE, NDVI) and five N parameters were established at each growth stages.
The results showed that the Dualex-based NBI performed relatively well among four leaf-sensor
indices, while NDRE of RS sensor achieved a best performance due to larger sampling area of canopy
sensor for five N indicators estimation across different growth stages. The areal agreement of the
NNI diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for
NDRE, and the kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to
0.75 for NDRE across all growth stages. Overall, these results reveal the potential of sensor-based
diagnosis models for the rapid and non-destructive diagnosis of N status.

Keywords: nitrogen indicator; nitrogen nutrition diagnosis; optical sensor; spectral index

1. Introduction

Nitrogen (N) is an essential nutrient that improves crop growth and grain yield.
The excessive application of N fertilizers can lead to low N use efficiency, resulting in
environmental pollution and a loss of grain quality [1,2]. Precision N management could
be used to optimize N application by considering the temporal and spatial variability of
crop N status in practical production [3,4]. However, this promising strategy requires the
development and application of real-time and non-destructive technologies for in-season
crop N nutrition diagnosis.

Leaf and plant N concentrations (LNC, PNC) have been used as vital parameters of
crop N status [5]. However, N concentrations are dependent on the plant biomass, such
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that two different plants with the same N concentration but differ in plant biomass. The
critical N concentration dilution curve (CNDC) reflects the power–function relationship
between crop critical N concentrations and plant biomass [6]. Based on the CNDC, the N
nutrition index (NNI) could be calculated to effectively diagnose crop N nutrition status [7].
For example, NNI values greater than one indicate excessive N status, while values less
than one correspond to N deficiency. Previous studies indicated that the NNI diagnosis
model has been successfully used for characterizing corn (R2 = 0.33–0.68), wheat (R2 =
0.73–0.86), and pepper (R2 = 0.19–0.84) N status throughout crop growth stages [8–10].
However, the calculation of NNI requires complicated chemical analysis to determine PNC.
Plant biomass measurements using destructive sampling are also time-consuming and
unsuitable for in-season N management [11,12].

The application of proximal and remote sensing technology can provide an efficient
method for real time crop N status estimations [13]. Optical transmission measurements
with a handheld SPAD-502 chlorophyll meter (SPAD meter) have been widely used for crop
N nutrition assessments due to their portability, fast responses, and affordable cost [14,15].
However, SPAD are easily influenced by the crop growth stage and cultivar leaf structure,
with over-fertilized plants being challenging to detect due to chlorophyll saturation. The
Dualex 4 Scientific+ sensor (Dualex) is a portable leaf fluorescence sensor that measures
Chl values through leaf transmittance at 710 and 850 nm and epidermal flavonoid (Flav)
levels through the assessment of chlorophyll fluorescence induced by ultra-violet (UV)
excitation at 375 nm, and further providing a Chl/Flav ratio, which is termed the N balance
index (NBI) [16]. Many studies have demonstrated a prominent relationship between
Dualex-based indices and different N parameters. For example, Dualex-based Chl (R2 =
0.49–0.90) were found to correlate with leaf chlorophyll concentrations in rice, wheat, corn,
and soybean [17,18]. Zhang et al. [17] indicated a significant relationship between Flav
measured by Dualex and rice LNC (R2 = 0.52–0.83), PNC (R2 = 0.56–0.76), and NNI (R2 =
0.68–0.82) across different growth periods. Dualex-based NBI was also successfully used
to monitor N nutrition status in corn, wheat, and other crops [19–21]. Gabriel et al. [22]
compared two different leaf-clip sensors (SPAD meter and Dualex) to estimate corn LNC
and indicated similar performances, with R2 = 0.43–0.62 for the SPAD meter and R2 =
0.42–0.68 for Dualex. Lejealle et al. [23] indicated that N balance index (NBI), the ratio
of chlorophyll to flavonols that measured through by Multiplex, had an improved and
more stable correlation with turfgrass LNC than Chl readings alone. Consequently, it is
necessary to assess the performance of spectral indices collected from two leaf-sensors for
winter wheat N status assessments.

Canopy optical sensors can collect spectral data at the canopy level compared to
leaf sensor measurements at the leaf scale. Passive canopy optical sensors, including
ASD Fieldspec and Cropscan, have been successfully used to monitor crop growth and
to assess N status [24,25]; however, their correct function requires strict environmental
conditions, such as light intensity and measurement times [26]. Active sensors, such
as RapidScan CS-45 (RS sensor), possess an internal lights source that ensures effective
measurements in suboptimal environmental conditions. This can be used to collect crop
canopy spectrum values at 670, 730, and 780 nm wavelengths, with two default vegetation
indices (normalized difference red edge (NDRE) and normalized difference vegetation
index (NDVI)) synchronously. The relationship between the vegetation indices derived
from the RS sensor and crop growth status has been extensively studied for various crops,
including wheat and soybean [27–29].

While the SPAD meter, Dualex, and RS sensor have been widely used for estimations
of crop growth and N status, the comparative assessment of these three portable sensors
to real-timely diagnose winter wheat N nutrition have not been studied. The aims of this
study were: (a) to evaluate the performance of the six sensor-based indices (leaf level:
SPAD, Chl, Flav, and NBI; canopy level: NDRE, NDVI) for non-destructive estimates of
N status of winter wheat; (b) to establish winter wheat N diagnostic models based on
optimum leaf and canopy sensor-based indices, respectively; and (c) to plot N diagnosis
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maps temporally and spatially across all growth stages. These results can improve the
non-destructive diagnosis of crop N nutrition, and could be used to guide appropriate N
management strategies.

2. Materials and Methods

2.1. Experimental Design

Experiment 1 (2015–2016), 2 (2016–2017), and 3 (2017–2018) were performed at the
Sihong (Figure 1; 33.37◦ N, 118.26◦ E), Rugao (Figure 1; 32.27◦ N, 120.75◦ E), and Xinghua
(Figure 1; 33.08◦ N, 119.98◦ E) Experimental Stations, respectively, in the Jiangsu province of
China. All experiments were performed using different wheat cultivars and N application
rates with three replicates in a randomized complete block design. Plants density was 225
seedlings per square meter. The N fertilizer (granular urea with 46% N) was applied in two
batches: 50% prior to sowing and 50% at the stem elongation stage. Additionally, 105 kg
ha−1 P2O5 and 135 kg ha−1 K2O were applied to all experiment plots. Detailed information
is shown in Table 1.

Figure 1. Three study sites in the Jiangsu province of China.

Table 1. Basic information about the three field experiments.

Experiment No. Year Location Plot Size (m2) Cultivar N Rate (kg ha−1) Sampling Stage (Date)

1
2015–2016

Sihong
(33.37◦ N,118.26◦ E)

42
(6 m × 7 m)

Xumai30 (XM30)
Huaimai20 (HM20)

0
90
180
270
360

Jointing (5 April)
Booting (15 April)
Heading (22 April)
Flowering (26 April)
Filling (4 May)

2
2016–2017

Rugao
(32.27◦ N, 120.75◦ E)

30
(5 m × 6 m)

Yangmai15 (YM15)
Yangmai16 (YM16)

0
150
300

Jointing (27 March)
Booting (11 April)
Flowering (22 April)
Filling (7 May)

3
2017–2018

Xinghua
(33.08◦ N, 119.98◦ E)

63
(7 m × 9 m)

Zhenmai12 (ZM12)
Yangmai23 (YM23)
Ningmai13 (NM13)

0
90
180
270
360

Jointing (9 April)
Booting (15 April)
Flowering (24 April)
Filling (9 May)

2.2. Spectral Data Collection

Three different optical sensors were used to collect wheat leaf and canopy spectral data
at jointing, booting, flowering, and filling stages, respectively. The SPAD meter (Figure 2a;
Minolta Camera Co., Osaka, Japan) and Dualex (Figure 2b; Dualex Scientific, Force-A Co.,
Orsay, France) were used to measure wheat leaf spectral parameters. The canopy sensor
(Figure 2c; Holland Scientific Inc., Lincoln, NE, USA) was used to obtain wheat canopy
spectral data. Detailed information of the three optical sensors is shown in Table 2.
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Figure 2. Images of the (a) SPAD-502 meter, (b) Dualex 4 Scientific+ sensor, and (c) RapidSCAN CS-45 sensor.

Table 2. Characteristics of the three optical sensors.

Sensor Information Chlorophyll Meter Fluorescence Sensor Reflectance Sensor

Sensor name SPAD-502 Dualex 4 Scientific+ RapidScan CS-45

Manufacturer Minolta Camera Co. (Osaka,
Japan)

Force-A
(Orsay, France)

Holland Scientific
(Lincoln, NE, USA)

Measurement scale Leaf Leaf Canopy
Field of view - - 10◦–45◦

Working height - - 0.3–3.0 m

Measurement area 6 mm2 20 mm2 Dependent on measurement
height

Measuring Principle Transmittance Fluorescence Reflectance

Spectral band Red (650 nm) and near
infrared (940 nm)

UV (375 nm), red (655 nm),
red-edge (710 nm), and near

infrared (850 nm)

Red (670 nm), red-edge (730 nm),
and near infrared (780 nm)

Output parameter SPAD value Chl, Flav, NBI Reflectance (670, 730, 780 nm);
NDRE, NDVI

Abbreviation SPAD meter Dualex RS sensor

The first, second, and third fully expanded leaves (measurement location: 1/3, 1/2,
and 2/3 of the distance from the leaves base) from the top of the plant were used for SPAD
meter and Dualex measurements, and ten representative plants were randomly selected
in each plot. All measurements were averaged to represent the leaf sensor data of each
plot. The RS active sensor was held manually approximately 0.80 m above the canopy
and at a constant speed in each plot (about 0.5 m s−1). The RS sensor measurement path
was parallel to the plant row. Three rows of wheat were randomly selected to obtain the
two default vegetation indices of NDRE ((NIR − RE)/(NIR + RE)) [30] and NDVI ((NIR −
R)/(NIR + R)) [31], with average vegetation indices collected to represent the spectral data
of each plot.

2.3. Plant Sampling and Measurements

The plots in the field experiments are often small (42, 30 and 63 m2 in Experiments 1,
2, and 3, respectively) and grown evenly; therefore, it is conventional to take representative
samples and optical sensor measurements at different locations in each experimental
plot [8,32]. Plant sampling was synchronously performed upon the completion of spectral
measurements. Twenty wheat plants were randomly sampled and destructively separated
into stems, leaves, and spikes. Each sub-sample was oven-dried at 105 ◦C for 30 min to
stop all metabolic processes and samples were dried at 80 ◦C until reaching a constant
weight. Samples were weighed and the leaf dry matter (LDM), stem dry matter (SDM),
and spike dry matter (SpDM) were determined. The leaf N concentration (LNC), stem N
concentration (SNC), and spike N concentration (SpNC) were measured using the standard
Kjeldahl method [33].
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LNA (kg ha−1) was used to measure N accumulation in the leaves (Equation (1)). PNA
(kg ha−1) was calculated as the sum of leaf, stem, and spike N accumulation (Equation (2)).
Plant N content (PNC (%); Equation (3)) was determined as the ratio of PNA (kg ha−1) and
plant biomass (kg ha−1):

LNA = LDM × LNC (1)

PNA = LDM × LNC + SDM × SNC + SpDM × SpNC (2)

PNC =
PNA

LDM + SDM + SpDM
(3)

The Nc curve was employed as described by Jiang et al. [27]. The NNI could be
calculated based on Equation (5):

Nc = 4.17 × W−0.39 (4)

NNI = Na/Nc (5)

where W is the weight of the plant (Mg ha−1), Na is the actual plant N concentration, and
Nc is the critical plant N concentration.

2.4. Data Analysis

Data obtained from experiments 1, 2, and 3 were used for the analysis of variance
between the six sensor-based indices and N status parameters using SPSS 24 software. The
exponential relationship between six sensor-based indices and LNC, LNA, PNC, PNA, and
NNI were calibrated and validated with 10-fold cross-validation procedure based on the
data from experiments 1–3. Model performance was evaluated using the coefficients of
determination (R2), root mean square error (RMSE), and the relative error (RE (%)). The
GraphPad Prism 8 software was used to plot the diagrams.

RMSE =

√
1
n
× ∑n

i=1(Pi − Oi)
2 (6)

RE(%)= 100×
√

1
n
× ∑n

i=1

(
Pi − Oi

Oi

)2
(7)

where n is the number of samples, Oi is the measured value, and Pi is the predicted value.
N deficiency (NNI < 0.95), N optimal (0.95 ≤ NNI ≤ 1.05), and N excessive (NNI >

1.05) were used for diagnostic analysis [8,34]. The diagnostic category of predicted NNI
using NBI and NDRE models was compared to those of observed NNI by areal agreement
and the Kappa coefficient [35]. The areal agreement means the percentage of the two groups
having same diagnostic category. The Kappa coefficient range of 0.21–0.40, 0.41–0.60, and
0.61–0.80 indicates fair, moderate, and substantial strength, respectively, of the diagnostic
agreement [36]. N diagnostic maps were plotted using ArcGIS 10.3 software.

Kappa Coefficent =
Observed Accuracy − Chance Agreement

1 − Chance Agreement
(8)

3. Results and Analysis

3.1. Variability of Nitrogen Status Indicators

Agronomic data from experiments 1, 2, and 3 were used for statistical analysis. The
results showed that LNC, LNA, PNC, PNA, and NNI varied across growth stages, N levels,
cultivars, and site-years (Table 3). LNA (coefficient of variation (CV) = 61.04%) was most
variable across all growth stages, followed by PNA (CV = 50.16%), NNI (CV = 40.45%),
and PNC (CV = 37.23%). LNC had a minimal CV of 26.44%. The analysis also indicated
that the CV of the five N parameters were variable across growth stages. For example, the
LNC was most variable at the jointing stage (CV = 30.10%), and had similar CV values
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(23.35–23.94%) to the other three growth stages. In contrast, the CV of PNC (27.59–34.36%),
PNA (42.66–59.98%), and NNI (33.10–46.37%) gradually decreased as the growth stage
progressed. The great variability of those N indicators will help to assess the ability of the
optical sensors when monitoring and diagnosing wheat N status.

Table 3. Descriptive statistics of leaf N concentration (LNC), leaf N accumulation (LNA), plant N con-
centration (PNC), plant N accumulation (PNA), and N nutrition index (NNI) across all growth stages.

Parameter Growth Stage N Min. Max. SD a CV b (%)

LNC
(%)

Jointing 93 1.78 5.22 1.03 30.10
Booting 93 2.14 5.39 0.84 23.35

Flowering 93 2.01 5.32 0.86 23.90
Filling 93 1.59 4.31 0.72 23.94

All 372 1.59 5.39 0.90 26.44

LNA
(kg ha−1)

Jointing 93 8.64 158.33 40.01 64.23
Booting 93 11.04 156.86 36.02 57.39

Flowering 93 11.55 123.44 26.75 50.93
Filling 93 5.51 90.58 22.23 55.39

All 372 5.51 144.86 33.22 61.04

PNC
(%)

Jointing 93 1.06 3.50 0.71 34.36
Booting 93 0.85 3.17 0.62 32.23

Flowering 93 0.71 2.61 0.50 31.34
Filling 93 0.68 2.04 0.36 27.59

All 372 0.68 3.50 0.64 37.23

PNA
(kg ha−1)

Jointing 93 15.39 257.46 61.75 59.98
Booting 93 21.27 274.88 58.92 51.29

Flowering 93 28.63 276.51 57.71 46.14
Filling 93 33.48 268.35 57.07 42.66

All 372 15.39 276.51 59.77 50.16

NNI

Jointing 93 0.34 1.92 0.45 46.37
Booting 93 0.30 1.84 0.40 40.89

Flowering 93 0.33 1.65 0.34 37.20
Filling 93 0.34 1.41 0.28 33.10

All 372 0.30 1.92 0.38 40.45
a SD indicates the standard deviation of the mean. b CV indicates the coefficient of variation (%).

3.2. Dynamic Changes of Six Sensor-Based Indices under Different N Treatments

The dynamic changes in the six sensor-based indices with days after sowing (DAS)
across all growth periods of XM30 in Experiment 1 are shown in Figure 3. All six sensor-
based indices, excluding Flav, exhibited similar trends as the wheat growth progressed.
These spectral indices treated with high N application rates generally exceeded these
treated with low N. The SPAD initially increased and then gradually decreased under low
N treatments (0, 90 and 180 kg N ha−1) as each growth stage progressed. Under conditions
of high N application (270 and 360 kg N ha−1), the SPAD value rapidly increased and
remained high before declining, indicating the SPAD values reached saturation. For
Dualex, the values of Chl and NBI increased gradually, reached peak values at 186 DAS,
and then decreased during plant aging. Trends for the Flav were the opposite of that for
the Chl and NBI, where the Flav initially decreased and then increased after 186 DAS.
For the RS sensor, the default vegetation indices of NDRE and NDVI increased slowly
and then gradually declined. Curves at 270 and 360 kg N ha−1 applications were close to
overlapping, indicating that the plant growth achieved a non-N limited status.
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Figure 3. Dynamic variation in (a) SPAD, (b) chl, (c) Flav, (d) NBI, (e) NDRE, and (f) NDVI at the indicated days after
sowing (DAS). Data were obtained from Experiment 1 using the XM30 cultivar. Vertical bars at each growth stage represent
the standard error.

3.3. Relationship between the Six Sensors-Based Indices and Four N Indicators

Nitrogen indicators, such as LNC, LNA, PNC, and PNA, were collected in four spectral
sensing stages: jointing, booting, flowering, and filling. Based on the data obtained from
experiments 1–3, the quantitative exponential relationship between the six sensor-based
indices and four N indicators were systematically analyzed, and the 10-fold cross-validation
results were showed in Table 4. The results showed SPAD had R2 values of 0.25–0.60, 0.29–
0.54, 0.28–0.57, and 0.23–0.54, RMSE values of 0.46–0.78, 17.69–29.85 kg ha−1, 0.24–0.55,
and 41.29–52.96 kg ha−1, and RE values of 16.25–25.08%, 53.04–80.50%, 18.22–33.85%, and
56.56–82.88% for LNC, LNA, PNC, and PNA estimation, respectively, at single and all
growth stages. The Chl index of Dualex had a similar performance to the SPAD value,
with R2 values of 0.25–0.68, 0.27–0.52, 0.29–0.69, and 0.24–0.53, RMSE values of 0.44–0.79,
15.40–28.81 kg ha−1, 0.21–0.54, and 38.86–50.07 kg ha−1, and RE values of 17.20–22.44%,
54.64–81.25%, 17.93–32.28%, and 39.77–77.54% for LNC, LNA, PNC, and PNA estimation,
respectively, at single and all growth stages. The NBI index performed relatively better
than the other two Dualex-based indices (Chl and Flav) for estimating LNC (R2 = 0.36–0.79,
RMSE = 0.39–0.67, RE = 13.43–20.02%), LNA (R2 = 0.49–0.70, RMSE = 14.35–23.50 kg ha−1,
RE = 48.33–67.38%), PNC (R2 = 0.49–0.76, RMSE = 0.19–0.46, RE = 15.63–27.44%), and PNA
(R2 = 0.53–0.72, RMSE = 34.63–39.32 kg ha−1, RE = 35.46–65.43%) at the single growth stage
and across all growth stages. For the RS active canopy sensor, the default vegetation index
of NDRE was more closely associated with LNC (R2 = 0.61–0.79, RMSE = 0.39–0.53, RE
= 11.84–15.79%), LNA (R2 = 0.66–0.87, RMSE = 12.39–19.79 kg ha−1, RE = 24.72–42.12%),
PNC (R2 = 0.51–0.74, RMSE = 0.18–0.45, RE = 14.81–27.34%), and PNA (R2 = 0.64–0.87,
RMSE = 24.09–36.39 kg ha−1, RE = 20.56–36.21%) than NDVI at single growth stage and
across all growth stages.
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3.4. Relationship between the Optimal Index of Each Sensor and N Nutrition Index

The NBI index performed consistently well for the assessment of leaf (LNC and
LNA) and plant (PNC and PNA) N status across three Dualex-based indices during all
growth stages, and the default vegetation index NDRE of the RS sensor also displayed a
consistently high correlation with LNC, LNA, PNC, and PNA. Hence, the optimal index
(SPAD, NBI, and NDRE) of the SPAD meter, Dualex, and RS sensor were selected for
establishing the relationship with NNI. Based on the data collected from experiments 1–3,
the quantitative exponential relationship between the SPAD, NBI, NDRE, and NNI were
systematically analyzed, and the 10-fold cross-validation results were showed in Table 5.
The NDRE of the RS sensor performed best for monitoring NNI across different cultivars
at jointing (R2 = 0.75–0.96, RMSE = 0.14–0.19, RE = 13.72–29.27%), booting (R2 = 0.73–0.97,
RMSE = 0.09–0.24, RE = 10.04–24.18%), flowering (R2 = 0.76–0.86, RMSE = 0.12–0.20, RE
= 12.19–24.69%), filling (R2 = 0.74–0.96, RMSE = 0.07–0.21, RE = 10.18–28.02%), and all
(R2 = 0.67–0.87, RMSE = 0.12–0.26, RE = 18.53–24.39%) growth stages, followed by the
Dualex-based index of NBI, with R2 of 0.53–0.88, 0.59–0.87, 0.33–0.87, 0.72–0.84, and 0.56–
0.75, RMSE of 0.13–0.29, 0.11–0.33, 0.15–0.33, 0.13–0.19, and 0.16–0.29, RE of 19.33–36.40,
16.53–48.32, 16.74–52.83, 12.78–23.49, and 21.25–43.45 for NNI estimation across seven
cultivars at jointing, booting, flowering, filling, and all growth stage, respectively. The
SPAD had a slightly worse performance for estimating NNI at jointing (R2 = 0.29–0.81,
RMSE = 0.16–0.48, RE = 19.65–77.65%), booting (R2 = 0.38–0.84, RMSE = 0.18–0.37, RE =
18.51–63.60%), flowering (R2 = 0.26–0.81, RMSE = 0.23–0.39, RE = 24.47–62.99%), filling
(R2 = 0.48–0.87, RMSE = 0.13–0.28, RE = 15.45–45.56%), and all (R2 = 0.37–0.73, RMSE =
0.18–0.37, RE = 27.28–59.45%) growth stages. The seven cultivars performed differently
at different growth stages, the XM30 had a consistent well validation results based on
SPAD (R2 = 0.64–0.81, RMSE = 0.20–0.24, RE = 21.74–34.38%), NBI (R2 = 0.73–0.87, RMSE
= 0.15–0.19, RE = 16.68–23.04%), and NDRE (R2 = 0.83–0.96, RMSE = 0.13–0.16, RE =
13.89–22.62%) at single and all growth stages. The YM15 performed poorly at jointing stage
(R2 = 0.29–0.75, RMSE = 0.13–0.16, RE = 22.62–27.51%), while it achieved a relatively good
performance at booting (R2 = 0.72–0.89, RMSE = 0.10–0.18, RE = 10.75–18.54%), flowering
(R2 = 0.81–0.87, RMSE = 0.13–0.23, RE = 21.56–45.14%), and filling (R2 = 0.72–0.77, RMSE =
0.12–0.15, RE = 15.92–23.49%) stages among three optimal sensor indices. Therefore, the
exponential relationship between the SPAD, NBI, NDRE, and NNI across seven cultivars
using data from experiments 1–3 was constructed and shown in Figure 4, which had an R2

value of 0.41–0.65 for SPAD, 0.66–0.85 for NBI, and 0.76–0.87 for NDRE at single and all
growth stages.

3.5. N Diagnosis of Winter Wheat Based on the SPAD, NBI, and NDRE at Different
Growth Stages

To evaluate the diagnosis accuracy of the SPAD, NBI, and NDRE models, experimental
plots in Experiment 1–3 were divided into three categories: N deficient (NNI < 0.95), N
optimal (0.95 ≤ NNI ≤ 1.05), and N excessive (NNI > 1.05) based on the diagnosis threshold
values. The results in Table 6 indicated that the diagnosis accuracy ranged from 0.54 to 0.71
for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for NDRE. The kappa coefficient ranged
from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to 0.75 for NDRE across all growth
stages. Based on the evaluation criteria, the NBI and NDRE models performed moderately
well for the diagnosis of N status during each growth stage; the SPAD model performed
moderately well at the jointing and booting stages, but had fair diagnosis agreement at the
flowering and filling stages.
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Table 6. Areal agreement and kappa coefficient for SPAD, NBI, and NDRE at different growth stages.

Index
Areal Agreement Kappa Coefficient

Jointing Booting Flowering Filling Jointing Booting Flowering Filling

SPAD 0.71 0.70 0.54 0.61 0.52 0.50 0.30 0.34
NBI 0.84 0.77 0.66 0.71 0.72 0.61 0.42 0.49

NDRE 0.86 0.84 0.80 0.72 0.75 0.69 0.65 0.53

The N diagnosis maps based on the SPAD, NBI, and NDRE models at each of the
growth stages during 2016 are shown in Figure 5. The N diagnosis data of each field
plot were variable across the growth stages, with a large variation in winter wheat N
status observed at differing values of N application. The N diagnosis map based on NBI
and NDRE had similar performance, which showed that experimental plots with 270 or
360 kg N ha−1 were well- or over-fertilized, which fall into the N optimal or N excessive
categories, respectively, across different growth stages. In contrast, experimental plots with
0 or 90 kg N ha−1 showed deficient fertilization, falling into the N deficient category at each
growth stage. The N diagnosis map based on SPAD showed a relatively worse diagnosis
results, which classified several low N treatments (90 kg N ha−1) as N excessive category at
the jointing and flowering stages, and classified several high N treatments (360 kg N ha−1)
in the N-deficient category at the filling stage. Overall, the sensor values at each of the
experimental plot showed varying crop growth and N status performance due to variable
N rates.

Figure 5. N diagnosis maps (experiment 1) based on the SPAD at the (a) jointing, (b) booting, (c) flowering, and (d) filling
stage. N diagnosis maps based on the NBI at (e) jointing, (f) booting, (g) flowering, and (h) filling stage. N diagnosis maps
based on the NDRE at (i) jointing, (j) booting, (k) flowering, and (l) filling stage. V1 and V2 in (a) represent XM30 and HM20
cultivars. N1, N2, N3, and N4 in (a) represent 0, 90, 180, 270, and 360 kg N ha−1 treatments, respectively, in Experiment 1.
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4. Discussion

4.1. Wheat N Status Assessments Based on the Leaf and Canopy Sensors

The SPAD meter consists of a single leaf spectrometer and uses a red spectrum at
650 nm to estimate the chlorophyll concentration in the leaves, which significantly correlates
with crop N status [13]. In Figure 3a, the SPAD value increased as wheat growth progressed,
then remained high under high N levels (270 and 360 kg N ha−1), which may have a
saturated or near-saturated status in conditions of high N supply. Yue et al. [14] indicated
that the response of the SPAD readings to wheat PNC showed a saturated phenomenon
with an N supply that gradually increased to excessive amounts, i.e., to 420 kg N ha−1,
consistent with our study. The Dualex uses two near-infrared (710 and 850 nm) bands to
estimate the chlorophyll content. Chlorophyll fluorescence (375 nm) of the sensor can be
used to monitor leaf flavonoid content [37]. Zhang et al. [17]. showed that the Dualex (R2 =
0.87) outperformed the SPAD meter for estimations of rice chlorophyll (R2 = 0.77), and could
mitigate the influence of saturating conditions under high N concentrations. Figure 3c
showed wheat crops under N deficiency accumulate higher levels of Flav, the response
of which contrasts Chl (Figure 3b). Gabriel et al. [22]. indicated that complementary
polyphenol information (as Flav) can improve maize N deficiency predictions. The NBI
index performed relatively better than the other two Dualex-based indices (Chl and Flav)
for LNC (Table 4: R2 = 0.36–0.79, RMSE = 0.39–0.67, RE = 13.43–20.02%), LNA (Table 4: R2

= 0.49–0.70, RMSE = 14.35–23.50 kg ha−1, RE = 48.33–67.38%), PNC (Table 4: R2 = 0.49–0.76,
RMSE = 0.19–0.46, RE = 15.63–27.44%), and PNA (Table 4: R2 = 0.53–0.72, RMSE = 34.63–
39.32 kg ha−1, RE = 35.46–65.43%) estimation across single and all growth stages. The NBI
can partially alleviate the influence of gradients along the plant leaf, and can accentuate the
difference amongst the levels of plant N deficit due to the inverse dependence between Chl
and Flav on the plant N nutritional status [38]. Previous studies have also shown that the
NBI performed well for the assessment of N status and growth in muskmelon, consistent
with this study [39].

The measured area of the SPAD meter was 6 mm2 and the sampling area of each
plot was 540 mm2 based on our measurement method (90 individual measurements in
each experiment plot). For Dualex, the sampling area was 1800 mm2 (the measured area
was 20 mm2). The smaller sampling area for the SPAD meter was susceptible to factors
such as blade veins and internal variation of the field. Accordingly, the SPAD values were
less accurate for the estimation of crop N nutrition. The field of view of the RS sensor
is 45◦ by 10◦ and the scan width of sensor perpendicular to the flight direction is 0.66 m
(measurement height of 0.80 m). As a result, the scan area was a minimum of 5.94 square
meters for each plot (e.g., Experiment 3). The larger sampling area in each plot was more
representative of crop growth status. The NDRE derived from the RS sensor was closely
associated with LNC (Table 4: R2 = 0.61–0.79, RMSE = 0.39–0.53, RE = 11.84–15.79%), LNA
(Table 4: R2 = 0.66–0.87, RMSE = 12.39–19.79 kg ha−1, RE = 24.72–42.12%), PNC (Table 4: R2

= 0.51–0.74, RMSE = 0.18–0.45, RE = 14.81–27.34%), and PNA (Table 4: R2 = 0.64–0.87, RMSE
= 24.09–36.39 kg ha−1, RE = 20.56–36.21%) at single growth stage and across all growth
stages. Other studies indicated that the active canopy sensor (r = 0.73–0.86) displayed a
higher accuracy in predicting the grapevine biomass and yield compared to the chlorophyll
meter (r = 0.62–0.76) [40], which is consistent with this study.

4.2. Wheat N Nutrition Diagnosis Based on the Optimal Indices (SPAD, NBI, and NDRE) of
Three Sensors

The estimation and diagnosis of N nutrition is a key consideration in precision wheat
management [41]. NNI acts as an optimal N diagnostic indicator, with the development of
remote sensing technologies making real-time estimations of NNI possible. In this study,
the NNI diagnosis models based on the optimal indices (SPAD: R2 = 0.41–0.65; NBI: R2

= 0.66–0.85; NDRE: R2 = 0.76–0.87) of three sensors were conducted during each growth
stage, permitting the N diagnosis at all stages of wheat growth development. During
the construction of the model, the R2 of the relationship between NNI and NDRE at the
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flowering (Figure 4: R2 = 0.83) and filling (Figure 4: R2 = 0.76) stages were slightly lower
than during the jointing (Figure 4: R2 = 0.87) and booting (Figure 4: R2 = 0.87) stages, which
may be due to the emergence of a spike that influenced the estimated performance of the
NDRE models at the late growth period. Similar results have also been shown in studies of
rice and wheat [28,42]. The 10-fold cross-validation results of the relationship between three
optimal indices and NNI across seven wheat cultivars showed that the Dualex-based NBI
performed better than SPAD, and NDRE of RS canopy sensor performed better than two
leaf-sensor indices at single and all growth stages. The seven wheat cultivars performed
differently at different stage, which may be due to the difference of variety characteristics
and climatic condition among different years [43,44]. The XM30 had a consistent good
performance at each growth stage, the seedling of XM30 half creep flat on the ground
with dark green and board leaves, which had a strong tilling ability and relative loose
plant type. Winter wheat N status can be diagnosed based on NNI predictions using
established diagnostic models and NNI threshold values. The NBI model (Table 6) had an
areal agreement of 0.66 to 0.84 and a kappa coefficient of 0.42 to 0.72 across different growth
stages. Similar studies have shown that the NBI measured using a Multiplex 3 sensor
performs well for the diagnosis of rice N status during stem elongation (areal agreement =
75%, kappa coefficient = 0.595) and heading (areal agreement = 80%, kappa coefficient =
0.590) stages [45]. The NDRE model (Table 6: areal agreement = 0.72–0.86, kappa coefficient
= 0.53–0.75) based on the RS sensor performed to a relatively higher level than the SPAD
and NBI model, which also indicated that the larger sampling area by the canopy optical
sensor was considerably more representative for wheat growth status [39]. Other studies
have shown that the NDRE model based on the RS sensor can accurately measure rice N
status at the panicle initiation and jointing stage (areal agreement = 0.55, kappa coefficient
= 0.30) and heading growth stage (areal agreement = 0.76, kappa coefficient = 0.54) [46].

The N diagnosis plot maps based on the spectral indices directly reflected the N
status of each plot (Figure 5), which may assist farmer for precise crop N management.
As an example, the N diagnosis map and NNI diagnosis model could be coupled with
the fertilization topdressing model to consider both temporal and spatial variability of
crop growth and N nutrition [47,48], after which the N management decisions could be
optimized to improve N use efficiency and increase economic benefits [49]. The spectral
sensing method could non-destructively quantify and visualize the real time crop growth
status compared to traditional leaf color-based diagnosis and chemical diagnosis, such as
Kjeldahl digestion, which required laborious and time-consuming preparation [37]. The
handheld spectral sensing used in this study was relatively limited when used for data
collection in a large area compared to drone- and tractor-based sensing; the tractor-based
Yara N-sensor was successfully used to estimate maize aboveground N uptake (R2 =
0.57–0.84) and dry matter yields (R2 = 0.67–0.91) at different growth stages [50]. Argento
et al. [51] used the spectral index of NDRE derived from a UAV-mounted multispectral
camera to guide N fertilizer application for winter wheat in a 2-hectare area, and to evaluate
the sensitivity of NDRE with wheat dry matter (R2 = 0.72), NNI (R2 = 0.75) across different
growth stages. In addition, the combination of ground and areal remote sensing data may
be a promising method in crop growth monitoring, Zheng et al. [52] demonstrated the
integration (R2 = 0.72–0.75) of ground-based narrow band vegetation indices with UAV-
based textural information exhibited a significant improvement for rice PNC estimation
compared to individual UAV data (R2 = 0.59–0.70). Due to the time and labor required for
synchronous sensor data and agronomic indicators, this study analyzed growth stages that
were initiated at the jointing stage. Monitoring frequency prior to the jointing stage can be
increased in future research to improve these diagnosis models. In addition, similar studies
should be performed for different wheat cultivars in other eco-sites, further enhancing the
practicability of the optical sensors during field production.
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5. Conclusions

Our results demonstrate that three portable optical sensors (SPAD meter, Dualex, and
RS sensor) could be used to estimate and diagnose the N status of wheat. The Dualex-based
NBI had a relatively well performance among four leaf-sensor indices, while NDRE of RS
sensor performed best for LNC, LNA, PNC, and PNA estimation across different growth
stages due to larger sampling area of canopy sensor. The areal agreement of the NNI
diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86
for NDRE, and kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and
0.53 to 0.75 for NDRE across all growth stages. We conclude that the use of sensor-based
diagnostic models is appropriate for the rapid and non-destructive diagnosis of N nutrition
of winter wheat.
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Abstract: Hyperspectral imaging is a popular tool used for non-invasive plant disease detection.
Data acquired with it usually consist of many correlated features; hence most of the acquired
information is redundant. Dimensionality reduction methods are used to transform the data sets
from high-dimensional, to low-dimensional (in this study to one or a few features). We have chosen
six dimensionality reduction methods (partial least squares, linear discriminant analysis, principal
component analysis, RandomForest, ReliefF, and Extreme gradient boosting) and tested their efficacy
on a hyperspectral data set of potato tubers. The extracted or selected features were pipelined to
support vector machine classifier and evaluated. Tubers were divided into two groups, healthy and
infested with Meloidogyne luci. The results show that all dimensionality reduction methods enabled
successful identification of inoculated tubers. The best and most consistent results were obtained
using linear discriminant analysis, with 100% accuracy in both potato tuber inside and outside images.
Classification success was generally higher in the outside data set, than in the inside. Nevertheless,
accuracy was in all cases above 0.6.

Keywords: hyperspectral imaging; dimensionality reduction; LDA; PLS; PCA; RandomForest;
ReliefF; XGB; Meloidogyne; Solanum tuberosum

1. Introduction

Quarantine pests are of major importance for agriculture and the food industry, and
are being officially monitored and controlled [1]. Among these, root-knot nematodes
(RKN) of the genus Meloidogyne present the most destructive group of plant-parasitic
nematodes. They can infest a broad range of host plants, and are alone responsible for
approximately 5% of global crop losses. These are soil-borne parasites, where they infest the
host plants’ root system and cause non-specific symptoms on above-ground parts of plants.
Furthermore, they can cause latent (asymptomatic) infestations in potato tubers [2], which
pose an additional threat in seeding material, as they could be spread over larger areas
quite quickly. The parasite M. luci has been originally described by Carneiro et al. from
samples from Brazil, Chile, and Iran [3], and has since been found several times in Europe
as well [4]. Even though M. luci belongs to the group of tropical RKNs, it can survive winter
in fields under temperate and Mediterranean climates [5]. It is therefore considered an
emerging pest in Europe and was included in the alert list of harmful organisms in 2017 [6].

Since RKNs cause non-specific symptoms, laboratory diagnoses are required for
accurate identification. Traditionally RKN species are identified morphometrically, and by
analysing dehydrogenase and esterase isozyme phenotypes [7]. These methods require the
isolation of mature females from plant tissue, making them unsuitable for a large number
of samples. First visible symptoms are presented as reduced plant growth. Infections
start in small areas of the crop, but can over the years become full field infestations if
not appropriately handled. Particularly latent infestations of potato seed tubers have the
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potential to facilitate this process and lead to infestations over larger areas in just one or
two seasons. These characteristic of RKN infestations show a clear need for detection of
infestations in early stages [8].

Precision agriculture helps reduce the spread of diseases, and includes well-established
practices to mitigate losses [9]. The plant immune system reacts to stressors by changing
their biophysical and biochemical makeup, which in turn affects their spectral proper-
ties [10]. Currently the most common remote sensing method, used for plant diseases
detection, is hyperspectral imaging (HSI) [1]. Nowadays, HSI is used in various applica-
tions, such as biotechnology, agriculture, environmental monitoring, and chemistry [11]. In
HSI, reflected light is captured and data stored in several spectral bands, with a high spec-
tral resolution (bandwidths are typically around 4–5 nm). Consequently, a large number
of spectral bands are acquired at each capture, for the entire spectrum the sensors record
(typically between 400 and 2500 nm).

Hyperspectral imaging has been used extensively for assessing plant root and tuber
quality. The published research can generally be divided into three interlinked groups,
according to the investigated properties: (1) physical properties (e.g., colour and texture),
(2) chemical constituents (e.g., proteins and polysaccharides), and (3) pest and disease
detection. Research into the latter is mostly focused on early detection of infections and
infestations in above-ground parts of plants [12]. Biotic and abiotic stressors can cause
changes in spectral signatures, by triggering various defense mechanisms, such as produc-
tion of specific metabolites, induction of hypersensitive reactions, and changes in plant
tissues [7]. The most extensive use of remote sensing of potato tubers has been for quality
assessment, e.g., detection of defects [13] and bruises [14], and chemometric analyses, such
as sugar [15], cellulose and starch content [16]. On the other hand, only a handful of studies
deal with pest and disease detection in potato tubers. For example, Dacal-Nieto et al. and
Huang et al. used hyperspectral imaging and support vector machines to detect hollow
heart disease [17,18], and Zhou et al. used partial least squares as a pre-processing step in
linear discriminant analysis to detect blackheart [19]. A partial least squares discriminant
analysis approach was used by Garhwal et al. to detect zebra chip disease [20], and Al Riza
et al. used a combination of genetic algorithms for feature selection and partial least squares
to detect common scab [21]. But results aren’t always so clear-cut, as Zhao et al. found
that infrared and thermal imaging did not distinguish between healthy and Liberibacter
solanacearum infected tubers in storage [22].

Hyperspectral data shows a high level of collinearity between spectral bands, leading
to high redundancy and decreases the signal-to-noise ratio. Furthermore, the data sets are
of high dimensionality, which increases the difficulty of knowledge discovery and pattern
recognition. Dimensionality reduction is therefore an obligatory and crucial step in HSI
data pre-processing [10].

With dimensionality reduction (DR) methods we retain the descriptive power of the
data, but reduce the number of dimensions. This process removes some patterns in the
data, but the features of interest remain. The large number of spectral bands can cause
reduced discriminating ability of the HSI features. This problem is especially severe when
the available training set consists of a small amount of samples (referred as the curse of
dimensionality). Dimensionality reduction is therefore a crucial step that transforms the
data to lower dimensional space, while preserving relevant information [23]. Generally,
DR methods can be grouped into two sets: (1) feature extraction, and (2) feature selection.
Feature extraction methods transform the whole feature space to a lower dimensional one,
while feature selection approach picks out the most significant features from the whole
feature space. Furthermore, contrary to feature extraction, feature selection preserves
physical characteristics of the original feature space. But, feature selection information is
lost, as features are removed from further analysis. Furthermore, feature extraction is less
prone to overfitting and often results in better classification accuracy [23,24]. However,
there is no standard approach which would yield the best possible result for any specific
dataset [25].
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In recent years researchers have shown big interest in developing new methods and
tools for processing of hyperspectral data. Trends show that many authors decide to
choose feature selection over feature extraction DR algorithms. However conventional
feature extraction algorithms are still present, due to a better performance in some cases.
Moghimi et al. tested the performance of NaCl treated wheat with different feature se-
lection methods [11]. They aggregated all with ensemble method to increase robustness
and accuracy. The transformed data were classified using quadratic discriminants analysis
(QDA) and validated using 5-fold cross-validation. Similarly, AlSuwaidi et al. also used
feature selection method for crop disease detection [26]. As classification method they used
support vector machines (SVM). Moghadam et al. showed that SVM is one of the best
classification algorithms used for plant disease detection due to its generalization ability [1].
Their feature extraction method is used based on probabilistic topic modelling. Collected
features with reduced dimensionality were pipelined to Latent Dirichlet Allocation model
for plant leaves disease detection. On the other hand, Jin et al. directly used convolu-
tional neural networks (CNN) for classification, without any dimensionality reduction [27].
Feature extraction problems for HSI are oftentimes solved by using convolutional neural
networks [28,29]. However, CNNs usually need more training data in comparison with
conventional methods [28,30], limiting their applicability.

This study was motivated by the need to find a dimensionality reduction method for
detection of M. luci-infested potato tubers using hyperspectral imaging. The DR method ses
were twofold: (1) DR methods can achieve good classification accuracy even with should
enable accurate identification in combination with support vector machines (SVM), with
only one extracted feature, or a very limited number thereof. Our hypothesis only one
feature, and (2) data from the outside of tubers will achieve better classification success.
Since only a limited amount of information is available about spectral and chemical ef-
fects of nematode infestations on potato tubers, we tested two tuber processing methods.
We selected six dimensionality reduction methods, three from each group: Partial least
squares (PLS), Linear discriminant analysis (LDA), Principal component analysis (PCA),
RandomForest (RF), ReliefF (RFF), and Extreme gradient boosting (XGB). Of these, LDA
provided the best results, as it achieved the highest classification accuracy in both external
and internal images of potato tubers. All DR methods achieved better success with data
from outside of tubers, except for LDA, where the results were equal.

2. Materials and Methods

2.1. Tuber Cultivation and Preparation

The tubers were obtained from an experiment on potato (Solanum tuberosum cv., variety
Desiree) infestation with M. luci, which was established from June to September 2018 in
a glasshouse at the Agricultural Institute of Slovenia. A total of 20 day-old plants were
transplanted to 13 cm-diameter pots (V = 1 L) and supported with 1 m plastic-coated stakes.
The substrate of 10 randomly selected plants was inoculated with M. luci at the beginning
of the experiment [31]. Roots of tomato plants, infested by M. luci (i.e., egg-masses were
visible on the root surface; the parasites were from the collection at the Agricultural
institute of Slovenia) were cut into pieces and mixed. A subset of infested roots was then
weighed and nematode eggs were collected in suspension, in accordance with Hussey
& Barker [32]. The number of eggs was determined visually under a stereomicroscope
(Nikon SMZ800). Infested roots were introduced to the substrate to a final concentration of
250 × 103 eggs/plant. The presence of M. luci was confirmed with isoenzyme analysis [4].
The microplot experiment was completed at the end of the growing season at 97 days
after inoculation.

Potato tubers were harvested at the end of the growing season in 2018 and stored
in boxes in a dark storage room with ventilation and a temperature of 18 ± 2 ◦C for the
incubation period, until further processing. Tubers from infested pots were visually checked
for signs of infection (surface galls) (Figure 1). Visibly decaying tubers were excluded from
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further analysis. The tubers were divided into two groups, inoculated and healthy, of
5 tubers each.

Figure 1. Inoculated and healthy potato tuber. (a) inoculated tubers, and (b) healthy tubers. Note the
galls on the surface of the infested tubers. The difference in size is not necessarily symptomatic.

2.2. Hyperspectral Image Acquisition

For hyperspectral imaging tubers were sliced in half and placed on a black background.
This way both the outside and inside of tubers could be imaged simultaneously. Reflectance
spectra in 448 bands in the VNIR (visible to near infrared) and SWIR (short-wave infrared)
regions were acquired using two Norsk Elektro Optikk AS (Oslo, Norway) pushbroom
hyspex cameras, VNIR-1600 (400–988 nm, 160 bands, bandwidth 3.6 nm, spatial resolution
at 1 m distance 0.1 mm) and SWIR-384 (950–2500 nm, 288 bands, bandwidth 5.4 nm, spatial
resolution 0.25 mm), mounted vertically above the samples at a distance of 1 m. The
samples were illuminated with two calibrated halogen lamps with homogeneous light
intensity between 400 and 2500 nm, placed above the samples next to the cameras. The
lamps were switched on 15 min before image acquisition to stabilize the light source’s tem-
perature drift and establish spatial uniformity of illumination [33]. A calibrated diffuse grey
reference plate with 20% reflectance (SphereOptics, Herrsching, Germany) was included in
each image and used to calculate reflectance. The signal-to-noise ratio was increased by
scanning each line three times and calculating the average. Hyperspectral images were
radiometrically calibrated to radiance units (W sr−1m−2).

2.3. Pre-Processing and Analysis

The data analysis workflow consisted of five stages (Figure 2). First, radiometrically
corrected images were loaded into working memory. Second, images were segmented
and these segments were then used to calculate reflectance values and mean spectra of
each sample. The segmented image of each tuber was then divided into six equal parts.
Reflectance values and mean spectra for each of these sub-segments were extracted. Then,
data was split into training (4 potatoes) and test sets (1 potato). This process was repeated
5 times. In the next stage, we applied dimensionality reduction algorithms to extract the
most relevant, features. In addition to DR methods, we also included a data set without
any dimensionality reduction (labelled “None”). In the last stage, the chosen features were
tested using support vector machine classification.
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Figure 2. Analysis flowchart for proposed procedure. Data load: Image acquisition. Pre-processing:
Image segmentation and feature preparation techniques. Step 1: Separation of training and validation
dataset with cross-validation. Step 2: Dimensionality reduction with LDA, PCA, RF, RFF, XGB or
PLS. Step 3: Classification with the use of SVM and 5-fold cross-validation.

2.3.1. Segmentation

Image segmentation was performed using spectral information divergence (SID). It
uses a divergence measure to match HSI image pixels to reference pixels [34]. In HSI each
pixel consists of multiple values which form a discrete signal. For j-th pixel we can write:

x(j) = (x1, x2, . . . , xD)
T (1)

where xi represents the value of spectral band Bi acquired at wavelength λi. Index D
represents a number of spectral bands. Probabilistic measure pi can be calculated for each
element xi. Probabilities for all elements are then written into vector of probabilities p:

pi = p(xi) =
xi

∑D
i=1 xi

p
(

x(j)
)

= (p1, p2, . . . , pD)
T (2)

Relative entropy can be calculated between p and q probability vectors with Kullback–
Leibler information measure:

KL
(

p
(

x(j)
)
| | q

(
r(Ck)

))
=

D

∑
i=1

pi·log
pi
qi

(3)

where q
(

r(Ck)
)

represents probability measure for reference vector r of k-th segmen-
tation class. In our case, possible segmentation classes are included in a set: Ck ∈
{potato tuber, background, reference panel}. Reference vectors for each segmentation class
separately are constructed from manually selected area of pixels. An area for segmentation
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class Ck is defined as: Sk =
(

x(1), x(2), . . . , x(N)
)

where N represents number of pixel
vectors included in area corresponding to segmentation class k. Reference values can be
calculated from pixels for each spectral band:

ri =
1
N

N

∑
j=1

xiji = (1, 2, . . . , D) (4)

Reference vector is then defined as:

r(Ck) = (r1, r2, . . . , rD)
T (5)

Probability vector q
(

r(Ck)
)

= (q1, q2, . . . , qD) can then be calculated by (3) for all
segmentation classes. When reference vectors are known, SID values can be calculated [35]:

SID
(

p
(

x(j)
)

, q
(

r(Ck)
))

= KL
(

p
(

x(j)
)
| | q

(
r(Ck)

))
+ KL

(
q
(

r(Ck)
)
| | p

(
x(j)

) )
(6)

Equation (6) assigns divergence value to each pixel constructing the HSI image. Pixels
from an HSI image are classified to segmentation class Ck with smallest divergence value.
The greater the similarity of pixel to reference signal, the smaller the value of divergence.
With the use of additional thresholding it is possible to fully separate predefined segmenta-
tion classes. Thresholding values were chosen with trial-and-error approach. Segmentation
masks for each class can then be built based on calculated divergence values (Figure 3).

Figure 3. Hyperspectral image of tubers prior to segmentation. (a) With labelled segmentation class
which construct the image. (b) Same image with applied segmentation masks of potato tubers and
labelled consecutive sample number.

2.3.2. Preparation of Features

Feature vectors can be created from segmentation masks. Pixels that correspond to
the same segmentation class Ck define observing object o(z) =

(
x(1), x(2), x(j), . . . , x(N)

)
T ,

where N represents number of connected pixels located within the segmentation mask.
Feature vector O is calculated from defined objects with arithmetic mean for D spectral
bands. For z-th object it can be calculated using following equations:

O(z)
i = 1

N

N
∑

j=1
x(z)ij i = (1, 2, . . . , D)

O(z) = (O1, O2, . . . , OD)
T

(7)
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Spectral reflectance was calculated for tuber data, using a 50% grey reference panel.
For each HSI image we calculate feature vector O(0), which represents the reference panel.
Reflectance values of reference panel were provided by the manufacturer (SphereOptics,
Germany). We assigned those values to vector R(0). For arbitrary object z, in the same
image where O(0) was calculated, converted feature vector R(z) can be calculated as:

R(z)
i = R(0)

i /O(0)
i · O(z)

i i = (1, 2, . . . , D)

R(z) = (R1, R2, . . . , RD)
T (8)

An important note to add is that object of reference panel o(0) is filtered before usage
in Equation (8). The reason is to remove outliers for more accurate calculation of feature
vector O(0). Outliers are filtered with median absolute deviation (MAD). Values outside
±2MAD were removed before further calculation. MAD can be calculated by Equation (9),
for each spectral band: i = (1, 2, . . . , D). In equation x(i) represents vector of all pixels at

i-th spectral band. Value labeled as
∼
x
(i)

represents median value of this vector. With I raw
vector of ones is labelled.

x(i) =
{

o(0)ij

∣∣∣i ∈ D, 1 ≤ j ≤ N
}

1×N
∼
x
(i)

= median
(

x(i)
)

MAD(i) = median
(∣∣∣∣x(i) − ∼

x
(i)

I

∣∣∣∣
) (9)

The feature vector R(z) was then smoothed using a Savitzky–Golay filter to emphasize
small spectral variations the same way as in Schafer [36]. Savitzky–Golay filter is based on
local least squares polynomial approximation. It was shown that it reduces noise while
maintaining shape and important information in a feature vector [26]. In this study the filter
window length was 15, polynomial order was 2 and second order derivatives were used.
Parameters were chosen with regard to the highest exhibition of performance evaluated
with classification accuracy.

Dimensionality Reduction

In this paper three feature extraction methods (Principal component analysis, Linear
discriminant analysis, and Partial least squares), and three feature selection methods
(RandomForest, Extreme Gradient Boosting, and ReliefF) are taken into consideration.
Main reason for pre-processing the data with the use of stated algorithms is to reduce the
number of dimensions in initial space. From all algorithms we extracted only the most
prominent features.

Principal Component Analysis

Principal component analysis is an unsupervised linear transformation technique
used in machine learning applications and multivariate statistics. It is widely used across
different fields, most prominently for feature extraction, dimensionality reduction and
visualization. It helps identify patterns in data based on the correlation between features.
PCA aims to find the directions of maximum variance in high-dimensional data and projects
it onto a new subspace with equal or fewer dimensions than the original one [37]. This
is achieved based on a covariance matrix formulation of centered and normalized data.
Axes of original coordinate system are transformed so that newly created axes describe
maximal covariance of the data. Each axis is described by an eigenvector, whose variance
corresponds to its eigenvalue. Eigenvectors and eigenvalues of covariance matrix Σ can be
calculated using Singular value decomposition (SVD), which can be written as:

Σ =
1

n − 1
XTX = PΛPT =

m

∑
j=1

λjpjp
T
j (10)
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In Equation (10) data instances are included in matrix X ∈ R
n×m, where n represents

number of data instances and m number of attributes in each instance. Matrix P ∈ R
m×m

represents m orthogonal basis vectors pj, j = 1, . . . , m and Λ diagonal matrics composed
of eigenvalues λj, j = 1, . . . , m. To each eigenvalue λj belongs particular basis vector pj.
Matrix of eigenvectors P is organized so that column vectors are sorted by decreasing
magnitude of eigenvalues λ1 < λ2 < · · · < λm. In other words, eigenvectors are sorted by
decreasing amount of information they provide.

Since HIS data contains many correlated features (i.e., spectral bands), the data set
can be fully described by using only a subset of eigenvectors of covariance matrix Σ. The
general assumption is that part of the information can be explained with k eigenvectors,
which we call principal components. Various criteria can be used to determine the number
of principal components, e.g., percentage of explained variance in the data. Mathematically
we can write:

∑s
j=1 λj

∑m
j=1 λj

≥ ε (11)

where ε represents predefined threshold. Usually it is set to 0.95 to keep 95% of initial
variance of the data. Another option is to directly choose desired number of principal
component. The covariance matrix can then be approximated by neglecting eigenvectors
with small corresponding eigenvalues. In other words, we neglect pj, where j = s+ 1, . . . , m.
Approximated covariance matrix can then be calculated as:

Σs =
s

∑
j=1

λjpjp
T
j (12)

where vectors pj, j = 1, . . . , s define principal directions in which the data extends and is
weighted by corresponding eigenvalues.

Linear Discriminant Analysis

Linear discriminant analysis is a robust classification method, but can also be used
for dimension reduction and data visualization. Unlike PCA, which tries to maximize
variance, it is a supervised machine learning method that computes decision boundaries
which enhance the separation between multiple classes used.

It tries to separate different classes by maximizing distances between projected means
and minimizing projected variance. Both optimization problems are incorporated in one
single criterion function which can be, for binary classification, written as:

max
w

J(w) =
(m1 − m2)

2

s2
1 + s2

2
(13)

where (m1 − m2)
2 represents the difference in means between the two classes and s2

1 + s2
2

the total scatter (standard deviations) of the two classes. The goal of LDA is to find the
vector w that maximizes criterion function J(w).

In LDA it is assumed that all K classes have equal covariance. Following this assump-
tion we can obtain the following discriminant function for k-th class:

δk(x) = xTΣ−1μk − 1
2

μT
k Σ−1μk + log πk (14)

Which predicts the class with the highest value of δk(x) given an input x ∈ R
p×1.

In Equation (14) Σ ∈ R
p×p represents common covariance matrix, μk ∈ R

p×1 the mean
of inputs for class k and πk prior distribution of class k. Symbol p represents number of
attributes in each data instance.

Features are transformed so that classes are as separate as possible from each other
and that features within a class are as close as possible. Transformed dimensions are ranked
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based on the separation ability. Maximal number of components must be at least one fewer
than the number of classes used for classification. Therefore, since we performed binary
classification in this study, only the first and only linear discriminant was used [38].

Partial Least Squares

Partial least squares is a technique that transforms the initial dataset to a reduced set of
uncorrelated features using a technique similar to principal component analysis. It extracts
features that describe maximum correlation with target variables; i.e., they provide the
greatest predictive ability. This method is especially useful when features in initial dataset
are highly collinear [39].

The underlying core equations of PLS could be written as:

X = TPT + E (15)

Y = UQT + F (16)

where X ∈ R
n×m is the matrix of independent variables (with hyperspectral data spectral

bands) and Y ∈ R
n×p is the matrix of dependant variables (these can be measured variables

or dummy coded nominal variables). Symbol n represents number of data instances, m
number of attributes in each independent variable and p number of attributes in each
dependent variable. Matrices T, U ∈ R

n×l respectively represent projections (scores) of
X and Y. Matrices P ∈ R

m×l and Q ∈ R
p×l respectively represent orthogonal loadings

matrices of X and Y. Symbol l represents a user-defined number of latent factors used in
for regression. Model is optimized in such a way that the first score in X has maximum
covariance with the first score in Y. Therefore, we can predict the first score in Y from the
first score in X.

Partial least squares has some advantages over basic ordinary least square (OLS)
solution. It is able to dispose correlated variables and model their shared and underlying
information. In contrast to many machine learning methods, it can directly model multiple
dependent variables at the same time. Several variants of PLS exist; we used Partial least
squares discriminant analysis, which is an extension of PLS regression, the foundation for
other variants.

ReliefF

ReliefF is an extension of the basic Relief algorithm, and is a generally well-performing
attribute selector. It can provide a combined view of relevance and conditional dependen-
cies between attributes. The algorithm prescribes a separate weight (wj) to each attribute,
where higher values correspond to more important attributes. The basic idea of the al-
gorithm is that is penalizes attributes which provide different result of the same class in
comparison with its nearest neighbours [40].

At the beginning, ReliefF sets all attribute weights wj
i to zero, these are then iteratively

adapted. Then, it selects a random observation xr and k-nearest observations for each class.
All the weights are updated for each nearest neighbours xq by equations:

wi
j = wi−1

j − Δj
(
xr, xq

)
m

·drq (17)

wi
j = wi−1

j +
pyq

1 − pyr
·Δj

(
xr, xq

)
m

·drq (18)

where wi
j represents the weight of the j-th attribute at iteration i, m is the total number of

iterations, pyq and pyr are prior probabilities of classes where xq and xr respectively belong,
and drq is the distance function, which is subject to scaling. Symbol Δj

(
xr, xq

)
represents
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the difference between prediction values of observations xr and xq for j-th attribute Fj. For
continuous attributes it is calculated as:

Δj
(
xr, xq

)
=

∣∣xrj − xqj
∣∣

max
(
Fj
)− min(Fj)

(19)

RandomForest

Random forest is an ensemble technique that combines multiple de-correlated decision
trees. Decision trees are fitted on various randomly chosen subsets of a given dataset.
Overall performance of the model is increased by aggregating predictions from all trees
and performing a majority vote for each class in classification problems.

In the training phase of Random forest a technique called bootstrap aggregation or
bagging is used.

Given training data instances in a matrix X ∈ R
n×m and corresponding labels y ∈ R

n×1

(where n represents number of data instances and m number of attributes in each instance),
bagging repeatedly selects random data instances with replacement and fits B decision trees
f to these instances. Unseen data instances x′ are predicted by averaging all predictions
made by individual decision trees:

ŷ =
1
B

B

∑
b=1

fb
(
x′
)

(20)

where ŷ represents approximated predicted output. Bagging decreases variance without
increase of bias. This leads to more accurate performance even if each individual decision
tree is highly sensitive to noise. Furthermore, Random forest also includes feature bagging,
i.e. selection of a random subset of the attributes in the training set. A small number of
attributes may have a very strong prediction power for the response variable. Consequently,
these attributes would be selected many times causing decision trees to become correlated.
We used the Gini index as split criterion and for assessing variable importance. For each
Random forest 100 trees were constructed [41].

Extreme Gradient Boosting

Gradient boosting is one of the most powerful and flexible machine learning meth-
ods, which can be applied to various machine learning problems. It refers to a class of
ensemble methods used for predictive modelling problems. Similarly to Random forests,
it is constructed from decision tree models (weak learners). Unlike Random forest, weak
learners are added one at a time to correct errors produced by prior decision trees. This type
of error correction is called boosting, where models are iteratively trained with gradient
descent optimization of any differentiable loss function. For instance, a squared error may
be used for regression problems and logarithmic loss for classification problems. New
decision trees are trained on error residuals produced by initial learner. Intuitively, newly
trained models are influenced more by misclassified observations or by areas where they
are performing poorly. The contribution from all decision trees are aggregated to make the
final prediction [42].

Simplified optimization could be mathematically written as follows. First model is
initialized with a constant value with minimization of loss function L(xi, yi, θ):

f̂(0)(X) = argmin
θ

n

∑
i=1

L(xi, yi, θ) (21)

where X ∈ R
n×m is a matrix of input data instances with corresponding labels y ∈ R

n×1.
Symbols n and m represent number of data instances and number of attributes in each
instance, respectively. Based on the weak learner from the previous iteration, gradients and
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hessians are calculated and then a new weak learner is fitted using optimization problems.
At the end of iteration, the model transfer function is updated as:

f̂(m)(X) = f̂(m−1)(X) + f̂(m)(X) (22)

where m = (1, 2, . . . , M), where M is the total number of weak learners. Unseen data
instances x′ are then predicted by summation of all predictions made by individual deci-
sion trees:

ŷ = f̂
(
x′
)
= f̂(M)

(
x′
)
=

M

∑
m=0

f̂(m)

(
x′
)

(23)

2.4. Support Vector Machines

Extracted or selected features from dimensionality reduction were pipelined to support
vector machine classificator. Classification models were therefore built on reduced data
sets, consisting of only the most prominent feature. In this study performance is tested on
radial-basis kernel function for data transformation [43]. Hyperparameter tuning (gamma
and C) was performed using a grid search, whereupon combinations yielding the best
accuracy were retained.

Trained SVM classifier was evaluated using mean accuracy. It was iteratively trained
and tested 5 times for each DR algorithm. Accuracies from all iterations were then averaged.
For this reason an objective criteria is devised for comparison between all DR methods:

c(m) = 1
F

1
P

F
∑

f=1

P
∑

p=1
Γ
(

yp, ŷ(m)
p

)

Γ
(
yp, ŷp

)
=

{
1; if yp = ŷ(m)

p
0; else

yp, ŷ(m)
p ∈ {Healthy, Inoculated}

(24)

In Equation (24) mean accuracy is labelled as c(m). Superscript represents m-th DR
method belonging to a set Mm ∈ {PCA, LDA, PLS, RF, RFF, XGB}. Mean accuracy is
calculated from comparison between predicted ŷp and known yp labels of potato tuber,
which can be either healthy or inoculated. It is calculated on test feature vectors for P
predictions and F folds. In our case F = 5 and P = 12. Precision, recall and F1-score were
calculated using equations in [44]. All analyses were performed in Python, using libraries
scikit-learn [45] and XGBoost [46].

3. Results and Discussion

The first extracted features, or limited set of selected features, proved to be sufficient
for accurate detection of infested potato tubers. Spectral differences between inoculated
and healthy tubers were more pronounced in images of their outside (Figure 4). Spectral
signatures of the outside of tubers show a larger variability in infested tubers, than in
healthy ones. These differences are more pronounces in the SWIR region, where inoculated
tubers uniformly exhibited higher reflectance than healthy tubers. In contrast, data from
inside tubers shows comparatively little variability, regardless of inoculation status. The
high variability in outside images could be a consequence of tuber surface characteristics.
Healthy tubers are comparatively smooth, while galls cover the surface of inoculated tubers.
This leads to a more varied viewing geometry, which was accounted for in pre-processing
of the images.

We used the first two principal components for data visualization in a generated
feature space. Feature vectors were separated into 5 cross-validation folds, and PCA
performed on each fold of the training data, and applied to both train and test sets. The
generated features from all folds were pooled to generate scatter plots of the first two
PCA components (Figure 5). The first two components explain more than 80% of the
variance in the data (93% for outside, and 84% for inside tubers). These scatter plots show
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a better distinction between healthy and inoculated tubers for data from the outside of
tubers. Yet any linear separability does not appear to be present, at least not in the first two
PCA components.

Figure 4. Reflectance feature vectors for (a) inside and (b) outside of potato tuber. Green colour refers
to healthy and red to inoculated specimens. Separation between VNIR and SWIR cameras is marked
with violet colour.

Females of root-knot nematodes reside within a few millimeters below tuber skin, in
the vascular ring, where they form comparatively large egg-sacs [47]. When these grow
enough, they form galls on tuber surface. Even though some evidence exists that RKNs
change the chemistry of the entire tuber, i.e., also the starchy insides [2], we expected
classification success to be higher in outside data. This hypothesis was confirmed for all DR
methods (Figure 6). All methods achieved a mean accuracy of at least 0.6 (Tables 1 and 2).
LDA showed the most consistent results, as it achieved a mean accuracy of 1.0 in both inside
and outside tuber data. Overall RF came second, with XGB yielding very similar accuracies.
PLS came next, followed by PCA, and lastly ReliefF achieved the worst results. Data was
also analysed without any DR. Even though this method was capable of achieving good
accuracy, a mean of 0.9 from both data sets, it is computationally much more burdensome.
With SVMs solving the quadratic problem involves inverting the kernel matrix, with a
complexity of up to n3, where n is the feature space [43]. RandomForest, XGB and ReliefF
suffer from the same problem, as they only select features, i.e. they generate a subset of the
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original feature space. Furthermore, even though all three feature selection methods are
robust, they can suffer from overfitting and should be optimized accordingly [48]. In this
regard feature extraction methods are beneficial, since they generate a new feature space,
with lower dimensionality.

Increasing the number of features has an expected effect, of increasing classification
accuracies (Figure 7). The most profound effect is observable in PCA and RFF, while RF
shows the smallest change. Unlike the other five methods, only one feature gets extracted
by LDA in binary classification. Interestingly, PCA on inside data decreases accuracy with
the first three components. Accuracy then increases with more features, but still remains
bellow PLS and LDA accuracies. With more features extracted, only PLS and XGB achieve
a 100% accuracy in both inside and outside tuber data. Our results indicate that even with
an extreme reduction, to just one feature, identification accuracies are still acceptable to
excellent (mean accuracy between 0.8 and 1.0).

Figure 5. Scatter plot of first two principal components for (a) inside and (b) outside of potato tubers.
Yellow colour refers to healthy and purple colour to inoculated specimens.

Figure 6. Mean accuracy for several dimensional reduction algorithms. Accuracy of classifier trained
on data from: outer side of potato (orange columns), inner side of potato (blue columns).
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Table 1. Comparison of classification results with only one feature for selected DR methods for
outside tuber data.

Outer Side of Potato Tuber

Method Class Precision Recall F1-Score Accuracy

LDA
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

PLS
Healthy 0.88 0.77 0.82

0.83Inoculated 0.79 0.90 0.84

PCA
Healthy 0.86 0.60 0.71

0.75Inoculated 0.69 0.90 0.78

RF
Healthy 0.93 0.83 0.88

0.88Inoculated 0.85 0.93 0.89

RFF
Healthy 0.88 0.77 0.82

0.83Inoculated 0.79 0.90 0.84

XGB
Healthy 0.81 0.83 0.82

0.82Inoculated 0.83 0.80 0.81

None
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

Table 2. Comparison of classification results with only one feature for selected DR methods for inside
tuber data.

Outer Side of Potato Tuber

Method Class Precision Recall F1-Score Accuracy

LDA
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

PLS
Healthy 0.75 0.80 0.77

0.77Inoculated 0.79 0.73 0.76

PCA
Healthy 0.70 0.77 0.73

0.72Inoculated 0.74 0.67 0.70

RF
Healthy 0.89 0.80 0.84

0.85Inoculated 0.82 0.90 0.86

RFF
Healthy 0.64 0.47 0.54

0.60Inoculated 0.58 0.73 0.65

XGB
Healthy 0.89 0.80 0.84

0.85Inoculated 0.82 0.90 0.86

None
Healthy 0.94 1.00 0.97

0.97Inoculated 1.00 0.93 0.97

Compared to no DR, dimensionality reduction using PLS and PCA on outside data
reduced detection accuracy (Table 2). On the other hand, in a data set with less pronounced
patterns, such as tuber insides, classification accuracy was increased by using PLS. One
of the purposes of dimensionality reduction is to generate or retain only those features,
which are informative for the problem under study. This way the signal-to-noise ratio can
be improved, leading to better model performance.

Dimensionality reduction algorithms use different metrics to asses feature importance.
For example, principal components analysis uses a correlation matrix between generated
components and original features. Correlations above or below 0.7 or −0.7, respectively, are
considered as relevant. In PLS correlations can also be considered, but a more accurate as-
sessment of feature importance is possible using variable importance in projection analysis
(VIP) [49]. VIP coefficients reflect the relative importance of each variable for each variate
in the prediction model. Variable importance in LDA was calculated as LDA scalings, i.e.,
the eigenvectors of the components. Important to note here is that LDA is a discriminant
analysis method and as such it maximizes the between-group variance. The eigenvectors of
the comparison matrix of between and within group’s sum of squares and cross-products
describe how much the original variables contribute to the new component(s). Gini im-
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portance, used with RandomForests and Extreme gradient boosting, provides a relative
ranking of the original features, and is a by-product of the training of the classifier [50].
Lastly, ReliefF assigns feature relevance depending on the difference between this feature
and two neighbours of the same and opposite classes [51]. Each of these methods provides
their own metric of variable importance. In order to directly compare all methods, we
normalized their values to a range of 0 to 1.

Figure 7. Influence of increasing number of features on classification error rates for both inside and
outside tuber data. Since LDA generates only one feature in binary classification it wasn’t included in
this figure. (a) Principal component analysis, (b) Partial least squares, (c) Random forest, (d) ReliefF,
and (e) Extreme gradient boosting.

RandomForest and XGB identified several relevant wavelengths, distributed compara-
tively evenly throughout the spectrum, in both data sets. Similarly, LDA also identified a
large number of relevant wavelengths, but unlike RF, these were not evenly distributed in
the outside data set. In this set the importance of variable shifted towards the SWIR region.
Only ReliefF showed a different pattern, compared to the other five methods. Interestingly,
while PLS, LDA, RF, and XGB show a similar grouping of relevant wavelengths in the
same SWIR regions (1500–1600 nm, 1850–2000 nm, and 2300–2450 nm), PCA found relevant
regions between these groups (1600–1800 nm, and 2100–2200 nm). On the other hand,
ReliefF found relevant wavelengths in the range 1000–1400 nm, i.e., in shorter wavelengths
than the other methods. With inside data, only PCA found relevant regions in the SWIR
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part of the spectrum, above 1500 nm (1600–1850 nm), while the remaining methods found
a strong grouping of relevant wavelengths closer to the VNIR region, between 1000 and
1200 nm (Figure 8). This spectral region is linked to various hydrocarbons, both aliphatic
and aromatic [52]. The region identified by PCA is also linked to different hydrocarbons
(aliphatic, aromatic, and methyl), but also alcohols, amines and proteins. In the outside
data set, regions linked to water, polysaccharides, aromatic amines (1850–2000 nm), and
lipids and glucose (2300–2450 nm) were identified as relevant. In order to fully test the
accuracy of the different variable importance measures, employed by the dimensionality
reduction methods, more detailed chemometric analyses of potato tubers are needed.

Figure 8. Importance of individual wavelengths, as determined by the different DR methods. (a) in-
side, and (b) outside of potato tuber. Brighter colours represent higher importance. Separation
between VNIR and SWIR cameras is marked with red color.

Differences on the inside of tubers are most likely of a chemical nature, while the
outside is influenced by both differences in chemistry as well as surface texture. While
surface texture effects can be reduced using normalization and Savitzky–Golay derivatives,
they can still affect the classifications. The infested tubers used in this study had visible
symptoms (bulges on the outside, approximately 3–5 mm in diameter), covering at most
50% of the surface. In our case, they added another distinguishing dimension, leading to
better classification accuracy with data from tuber surfaces. Nevertheless, the feasibility of
hyperspectral imaging for detection of latent (i.e., without visible symptoms) infestations
with nematodes in potatoes has been shown by Žibrat et al. [2]. In that case surface texture
didn’t influence spectral signatures; therefore the observed differences are exclusively
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due to differences in chemistry between healthy and infested tubers. From a practical
application standpoint, even if tubers in production spot checks would have to be halved
and imaged, the throughput of such a method would be much higher than with molecular
analyses (e.g., real–time PCR). So the benefit of using hyperspectral imaging for detecting
infestations, even with processed tubers, is evident.

Molecular spectra are the result of motions of atomic nuclei. They can rotate, vibrate,
wag and move together or apart along a straight line (this type of movement is called
stretching). Vibrations follow a functional description, i.e. the type of vibration determines
the frequency at which it absorbs energy. The amplitude of absorption is determined by
absorptivity and the number of molecules in the beam path of a particular sensor. Changes
in spectral responses follow Beer’s Law, which states that the absorbance is equal to product
of absorptivity of a molecule and the concentration of molecules. The above means that
the light absorbed by plant tissue depends on the chemical composition of that tissue, the
concentration of individual molecule species, and their interactions [52]. We’ve identified
several groups of molecules, which account for the differences between healthy and infested
potato tubers (such as aliphatic and aromatic hydrocarbons). The two spectral regions,
VNIR and SWIR, are generally linked to different characteristics of plants, but there is some
overlap. In the VNIR region we mostly get information about pigments and structure,
e.g., morphological structure of plant leaves. In addition, in wavelengths above 700 nm
there is also information related to hydrocarbons (mostly aliphatic) and alcohols, these
are generally the third and fourth overtones of the C-H stretch. The SWIR region carries
information on plant biophysical properties (e.g., hydrocarbons and proteins). Changes in
chemistry can therefore be measured in both. Since we do not know how exactly nematode
infestations change the chemistry of potato tubers, we decided to use both systems. The
wider spectral range of the combined system enables us to better search for the effects of
nematode infestations. With the currently available information we can only speculate
which exact compounds account for the observed differences between inoculated and
healthy potato tubers.

We identified several relevant wavelengths from each DR method. The latter use
different methods for deciding, which wavelength is relevant, so we would recommend
to look for overlaps between the methods. Those wavelengths which were identified as
relevant by different methods are good candidates for a multispectral sensor. Different
bandpass filters are commercially available, with different spectral ranges and bandwidths.
So it might not be necessarily needed to develop new filters. Using these filters we would
effectively get a multispectral data set. New classification models would then have to be
developed using this reduced data. Using this procedure we could assess the importance
of each new wide band and determine which ones significantly increase classification
success. Potentially this would mean that by reducing a hyperspectral dataset to a few-
band (~5 bands) multispectral one we would still get acceptable classification accuracy.
Production of such a dedicated multispectral system would be much cheaper, than a
hyperspectral one, with similar classification success.

4. Conclusions

In this study we have shown that discrimination between healthy and inoculated
potatoes with quarantine pests is possible based on hyperspectral image analysis. We
successfully reduced the initial hyper-dimensional feature space to one–dimensional (or
few–dimensional) with the use of dimensionality reduction algorithms, and still obtained
high classification accuracies. These results suggest that a comparatively low–cost imaging
system utilizing band–pass filters could be designed for the specific purpose of identifying
tubers infested by root–knot nematodes. But the study was performed on a very small data
set and further analyses are needed to fully test this idea.
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Abstract: Powdery mildew severely affects wheat growth and yield; therefore, its effective monitoring
is essential for the prevention and control of the disease and global food security. In the present study,
a spectroradiometer and thermal infrared cameras were used to obtain hyperspectral signature and
thermal infrared images data, and thermal infrared temperature parameters (TP) and texture features
(TF) were extracted from the thermal infrared images and RGB images of wheat with powdery
mildew, during the wheat flowering and filling periods. Based on the ten vegetation indices from the
hyperspectral data (VI), TF and TP were integrated, and partial least square regression, random forest
regression (RFR), and support vector machine regression (SVR) algorithms were used to construct a
prediction model for a wheat powdery mildew disease index. According to the results, the prediction
accuracy of RFR was higher than in other models, under both single data source modeling and multi-
source data modeling; among the three data sources, VI was the most suitable for powdery mildew
monitoring, followed by TP, and finally TF. The RFR model had stable performance in multi-source
data fusion modeling (VI&TP&TF), and had the optimal estimation performance with 0.872 and 0.862
of R2 for calibration and validation, respectively. The application of multi-source data collaborative
modeling could improve the accuracy of remote sensing monitoring of wheat powdery mildew, and
facilitate the achievement of high-precision remote sensing monitoring of crop disease status.

Keywords: wheat powdery mildew; machine learning; information fusion; remote sensing monitoring

1. Introduction

In recent years, multiple crop diseases and insect pests have emerged, with consid-
erable impacts on yield and productivity following local outbreaks. According to the
United Nations Food and Agriculture Organization (FAO), 20%–40% of crops globally are
damaged by disease and insect pests annually [1]. Powdery mildew is the major wheat
disease; it causes considerable yield reductions or even no harvest, posing a major threat to
wheat production and global food security. Conventional methods of monitoring wheat
disease are time-consuming and laborious, and are associated with mechanical damage to
crops. Therefore, it is essential to identify and develop approaches of carrying out rapid
and damage-free wheat disease monitoring.

Plant disease and insect pest infestations lead to biomass reductions, leaf structure
destruction, and chlorophyll and water content reductions. Shifts in chlorophyll, water, and
other biochemical components in plant tissues would inevitably yield diverse absorption
and reflectance characteristics on the plant reflectance spectrum curve, which provides a
theoretical basis and facilitates the real-time monitoring of wheat diseases using remote
sensing technologies [2]. In recent years, with continuous advancements in remote sensing
technologies, numerous scholars have applied technologies to monitor wheat diseases. Gen-
erally, different crops, varieties, and diseases exhibit diverse spectral characteristics, which
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leads to varying reflectance sensitivities at different bands following disease infestation [3].
Consequently, the identification of crop diseases and crop disease incidence estimation can
be achieved based on changes in spectral responses and reflectance characteristics [4–6].
Researchers have previously developed disease monitoring indices following the extraction
of disease-sensitive bands for monitoring the infestation of crops by bacterial diseases,
such as powdery mildew index (PMI) [7], double green vegetation index [8], and red edge
vegetation stress index (RVSI) [9].

The modeling algorithms applied in remote sensing influence the accuracy of remote
sensing technologies. Today, the algorithms applied in disease and pest monitoring with
remote sensing technologies are mainly empirical models and machine learning algo-
rithms [10,11]. Among them, the empirical models are relatively simple; however, the
data are easily influenced by external conditions and have poor universality. In recent
years, machine learning methods have emerged, with rapid development. Crop disease
monitoring models established based on machine learning methods consider training error
and generalization ability, and address the challenges associated with slight changes in
reflection coefficient during crop disease detection [12,13]. Gu et al. [14] used hyperspectral
imaging technologies to monitor tobacco infected by tomato spotted wilt virus and reported
that the combination of a successive projections algorithm (SPA) and boosted regression
tree was the optimal modeling approach. In addition, Liu et al. [15] established a wheat wilt
monitoring model using an improved backward propagation neural network. Wheat is a
crop planted in dense rows; if only a single spectral data type is applied in disease monitor-
ing activities, the model is often insensitive to changes in canopy spectrum reflectance, and
the reflectance data can be saturated, leading to significant model prediction errors [16,17].

Texture information obtained using imaging spectroscopy tools can reflect disease
spot sizes and infestation levels of bacterial diseases [18], in addition to integrating plant
morphology and canopy structure information in the spectral data, which enhances the
accuracy of remote sensing tools in crop disease monitoring activities [19]. Many researchers
have exploited the complementary advantages of spectrum and texture information, which
has significantly improved crop growth parameters and the inversion effect of disease
severity [20,21]. For example, Guo et al. [22] used vegetation index (VI) and texture features
(TF) data obtained using an unmanned aerial vehicle (UAV) platform to establish a wheat
stripe rust monitoring model based on partial least squares regression (PLSR). TF can
provide plant morphology data that could be applied in the monitoring of crop growth
based on remote sensing technologies, which can address the saturation and low accuracy
shortcomings associated with single spectral information source-based monitoring, and in
turn enhance the robustness of a model and model inversion performance.

Infrared thermal imaging technologies have high sensitivity and early warning ca-
pacity. Wheat plants are infected by powdery mildew fungus, and the early symptoms
are mostly manifested by changes in internal physiological reactions. Thermal infrared
images can reveal temperature changes infected regions that cannot be discerned by visible
light images [23]. Mahlein et al. [24] used an infrared thermal instrument (IRT) to measure
wheat canopy temperature (CT) and found that the temperature of diseased spikelets was
significantly higher than that of healthy spikelets. Therefore, infrared thermal imaging
technologies can be used to monitor crop stress during growth and physiological condi-
tions. Many researchers have begun to combine IRT with other remote sensing data sources
in plant disease monitoring activities. For example, Zarco-Tejada et al. [25] confirmed
that the combination of VI, sun induced fluorescence (SIF), and crop water stress index
(CWSI) could be used to effectively monitor diseased trees, and the identification accuracy
rate exceeds 80%. In addition, Poblete et al. [26] combined the spectrum, SIF and CWSI,
which could effectively distinguish diseased and non-diseased olive trees, whereas Zhang
et al. [27] used UAV multi-spectral VI in combination with CT information to estimate
disease severity in disease-stressed chickpea, with significantly enhanced detection accu-
racy. The results of the above studies indicate that thermal infrared data can reliably reflect
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abnormal conditions in the CT of stressed crops, and can facilitate disease identification
and disease classification when combined with other remote sensing data sources.

In the wake of rapid advancements in modern electronic information science, numer-
ous sensors are available for application in the detection of crop morphology and canopy
structure, such as reflectance spectrometers, chlorophyll fluorescence meters, and IRT and
RGB cameras, which detect crop morphology and growth status based on different factors
and principles [28]. However, crop information associated with a single information source
is often potentially biased and has certain limitations. Data from different sensor types can
be deployed synergistically to enhance target detection and recognition capabilities [29].
Compared to a single sensor data source, multi-sensor data sources can enhance the reli-
ability and robustness of real-time detection [30]. At present, few studies have reported
on the monitoring of wheat powdery mildew disease based on a synergy of spectral data
and thermal infrared temperature data; in particular, there is a dearth of studies on disease
monitoring using approaches that synergize VI, TF and temperature parameters (TP).

To further explore the synergistic effects of multimodal data obtained from different
sensors in disease monitoring, in the present study, multimodal data on the incidence
of wheat powdery mildew was obtained using hyperspectral surface spectrometer and
thermal infrared camera, and compared with ground disease investigations. Multimodal
data were obtained using modern modeling and inversion algorithms, such as PLSR,
support vector machine regression (SVR), and random forest regression (RFR). The results
of the present study could provide a technical basis for the rapid and large-scale monitoring
of wheat powdery mildew, and facilitate the prevention and precise control of wheat
powdery mildew, in addition to the improvement of pesticide efficiency and food safety.

2. Materials and Methods

2.1. Experimental Design

Experiment 1 (EXP.1): The experiment was conducted in the 2020–2021 wheat growing
season at the Science and Education Demonstration Park (34◦51′ N, 113◦35′ E) of Henan
Agricultural University, Zhengzhou, China. The tested varieties were varieties susceptible
to wheat powdery mildew: Aikang 58 and Yumai 49–198. The first crop was corn, and
the stalks were crushed and returned to the field. The soil was loam, the 0~30-cm soil
contained 0.99–1.18 g kg−1 of total nitrogen (N), 0.023–0.034 g kg−1 of available phosphorus,
0.114–0.116 g kg−1 of available potassium, and 11.4–15.3 g kg−1 of organic matter. In the
experiments, relatively high water and N fertilizer amounts were used to create favorable
conditions for powdery mildew. The amount of N applied was 270 kg·hm−2, and the
irrigation amount during the wintering period-jointing stage was 900 m3·hm−2. Powdery
mildew fungus was inoculated at the jointing stage, and the wheat was infected from the
flowering stage, and the canopy spectrum data were obtained at the flowering and filling
stages. Other field management approaches were similar to those applied locally.

Experiment 2 (EXP.2): Carried out simultaneously with experiment 1, experiment 2
was a variety comparison experiment in the field, involving Yanzhan 4110, Nongmai 18,
Zhoumai 27, Jinfeng 205, Zhengmai 1342, Xumai 318, Bainong 207, and Xinmai 26. The
amount of N applied was 225 kg·hm−2, and the irrigation amount during the wintering
period-jointing stage was 675 m3·hm−2. The experimental area was close to fences and
pig farms, and the terrain was low-lying. Due to the terrain, air humidity, rainfall, and
diseases in previous years, the wheat growth environment was suitable for the occurrence
and spread of wheat powdery mildew, without field inoculation. Disease emergence was
natural and more severe. Other field management approaches were similar to those applied
in EXP.1.

2.2. Ground Data Collection
2.2.1. Investigation of Powdery Mildew

During the wheat flowering and filling periods, wheat powdery mildew incidence
was investigated manually, and 77 and 37 samples were collected in EXP.1 and EXP.2,
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respectively. About 0.2 m2 of the experimental area was investigated at each point, and
20 representative wheat plants were selected to test for powdery mildew infection. The
survey was conducted in strict accordance with the technical specifications for crop disease
monitoring (Chinese Standard: NY/T 2738.2-2015) [31]. The ratio of the leaf area covered
by the diseased mycelium layer on the diseased leaf to the total leaf area was expressed
based on a grading method, with eight levels representing 1%, 5%, 10%, 20%, 40%, 60%,
80%, and 100% coverage. The grid method was used to calculate the ratio of the diseased
spot area to the leaf area. The operation involved using grids to cover the leaves, recording
the total number of grids with disease spots, to facilitate the calculation of the ratio of the
diseased spot area to leaf area. The closest value between grades was selected as the actual
level. For example, at onset with a severity of less than 1%, the coverage was considered
1%. The average severity of diseased leaves was calculated as follows (1):

D =
∑ (Di × Li)

L
× 100 (1)

where, D is the average disease severity in leaves, and the unit is percentage (%); Di is each
severity value; Li is the number of diseased leaves corresponding to each severity value,
and the unit is slice; and L is the total number of leaves under investigation, and the unit
is slice.

On the basis of the severity of disease in leaves, the disease index (DI) is calculated to
represent the average level of disease occurrence (Equation (2)).

DI = F × D × 100 (2)

where, DI is the disease index; F is the diseased leaf rate; D is the average severity of disease
in leaves.

2.2.2. Canopy Spectrum Data Measurement

From 10:00 to 14:00 (Beijing local time) with little wind and clear weather, a FieldSpec
handheld spectrometer (FieldSpec Handheld 2, Analytical Spectral Devices, Boulder, CO,
USA) was used to obtain wheat canopy spectrum data, and the probe was 1.0 m from the
top of the wheat crop. The field of view of the spectrometer was 25◦, in the 325–1075 nm
band, the spectral sampling interval was 1.4 nm, and the spectral resolution was 3.0 nm. A
0.4-m × 0.4-m BaSO4 calibration plate was used to calculate black and baseline reflectance.
Ten spectral reflectance values were recorded at each sampling point as samples, and the
average value was considered the spectral reflectance of the sampling area.

2.2.3. Thermal Infrared Image and RGB Image Acquisition

An FLIR T650sc thermal infrared camera (FLIR Systems, Inc., Wilsonville, OR, USA)
was used to obtain the wheat canopy temperature (CT) and RGB images. The device has
dual thermal infrared and visible light sensors, and the image resolution is 640 × 480 pixels.
Synchronous with the spectral reflectance measurement, the lens was 1.0 m from the top
of the wheat crop, and the thermal infrared and RGB images were obtained vertically
(Figure 1).
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Figure 1. Wheat canopy RGB image (a) and thermal infrared image (b) obtained using thermal
infrared camera.

2.3. Data Processing Methods
2.3.1. Spectral Vegetation Index (VI)

Before extracting the VIs, the bands with high noise before 400 nm and after 1000 nm
were removed, and then the Savitzky-Golay function was used to smoothen the spectra
in MATLAB 7.0 (The MathWorks Inc., Natick, MA, USA). VIs associated with the disease
were pre-selected by consulting relevant literatures (Table 1). Considering the potential
existence of the collinearity problem among VIs, SPA was used to optimize VIs and reduce
their multicollinearity. SPA is a forward variable selection method that selects characteristic
variables by calculating the sizes of the projection vector of the remaining variables and
the selected variables, which can ensure that the linear relationship between the selected
variables is minimized, so as to eliminate redundant information between variables and
reduce multicollinearity, to achieve the purpose of selecting sensitive variables [32].

Table 1. Spectral vegetation indices.

Vegetation Index Formula References

Modified simple ration (MSR) MSR = (R800/R670 − 1)/(R800/R670 + 1)0.5 [33]
Photochemical reflectance index (PRI) PRI = (R531 − R570)/(R531 + R570) [34]
Physiological reflectance index (PHRI) PhRI = (R550 − R531)/(R550 + R531) [35]

Transformed chlorophyll absorption in reflectance
index (TCARI) TCARI = 3(R700 − R650)− 0.2(R700/R500)/(R700/R670) [36]

Red-edge vegetation stress index (RVSI) RVSI = ((R712 + R752)/2)− R732 [37]
Structural independent pigment index (SIPI) SIPI = (R800 − R445)/(R800 − R680) [38]

Visible atmospherically resistant index (VARI) VARI = (R550 − R670)/(R550 + R670 − R480) [39]
Renormalized difference vegetation index (RDVI) RDVI = (R800 − R670)/(R800 + R670)

0.5 [40]
Anthocyanin reflectance index (ARI) ARI = (R550)

−1/(R700)
−1 [41]

Damage sensitive spectral index 2 (DSSI2) DSSI2 = (R747 − R901 − R537 − R572)/(R747 − R901 + R537 − R572) [42]
Greenness index (GI) GI = R554/R677 [43]

Plant senescence reflectance index (PSRI) PSRI = (R680 − R500)/R750 [44]
Normalized pigment chlorophyll

Index (NPCI) NPCI = (R680 − R430)/(R680 − R430) [43]

Nitrogen reflectance index (NRI) NRI = (R570 − R670)/(R570 − R670) [45]
Healthy index (HI) HI = (R534 − R698)/(R534 + R698)− 0.5R704 [7]

Powdery mildew index (PMI) PMI = (R520 − R584)/(R520 + R584)− R724 [7]
Triangular vegetation index (TVI) TVI = 0.5[120(R750 − R550)− 200(R670 − R550)] [46]

Green normalized difference vegetation index (GNDVI) GNDVI = (R800 − R550)/(R800 + R550) [47]
Nir shoulder region index (NSRI) NSRI = R890/R780 [48]

Soil-adjusted vegetation index (SAVI) SAVI = 1.5(R800 − R670)/(R800 + R670 + 0.5) [49]
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2.3.2. RGB Image Texture Features (TF)

The gray level co-occurrence matrix (GLCM) method, proposed by Haralick in 1973 [50]
is one of the most widely used texture extraction methods. The method has the advantages
of rotation invariance, multi-scale characteristics, and low computational complexity, and
is widely used in image processing, pattern recognition, and remote sensing monitor-
ing [51,52]. In ENVI (Harris, Bloomfield, CO, USA), the gray level image of the RGB image
was subjected to 3 × 3 sliding filtering using GLCM. Eight texture feature maps in the
directions of 0◦, 45◦, 90◦ and 135◦ were extracted (Figure 2, Table 2), and the average of
four directions was taken as the final texture feature map. To ensure that the extracted
texture features are all based on canopy vegetation, a K-means clustering algorithm is used
for bare soil rejection. The soil and vegetation mask is shown in Figure 3.

 

Figure 2. Eight texture feature maps of gray-level co-occurrence matrix from RGB image of wheat
canopy in the 0◦ direction.

Table 2. Texture feature calculation formula.

Texture Equation Description

Mean, MEA MEA =
G
∑

i,j=1
(iP(i, j)) Reflects the average of the greyscale

Variance, VAR VAR =
G
∑

i=1

G
∑

J=1
(i − u)2P(i, j) Reflects the magnitude of grey scale variation

Homogeneity, HOM HOM =
G
∑

i=1

G
∑

J=1

P(i,j)
1+(i−j)2

Reflects the roughness of image texture

Contrast, CON CON =
G
∑

i=1

G
∑

J=1
(i − j)2P(i, j)

Reflects the local variations in the gray-level
co-occurrence matrix

Dissimilarity, DIS DIS =
G
∑

i=1

G
∑

J=1
P(i, j)|i − j| Same as contrast, used to detect similarity

Entropy, ENT ENT = − G
∑

i=1

G
∑

J=1
P(i, j)logP(i, j)

Reflects the degree of the gray distribution
and the thickness of the texture

Second moment, SEM SEC =
G
∑

i=1

G
∑

J=1
P2(i, j)

Reflects the homogeneity of an image’s
distribution of greyscale

Correlation, COR COR =
G
∑

i=1

G
∑

J=1

(i−MEAj)(j−MEAj)P(i,j)√
VARi

√
VARj

Reflects the length of the extension of a
certain grey value in a certain direction

Note: i and j indicate the row and column number of the images, respectively; P(i, j) is the relative frequency of
two neighboring pixels.
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Figure 3. A workflow diagram of feature extraction and modeling.

2.3.3. Thermal Infrared Temperature Parameters (TP)

The thermal infrared image was annotated and combined with K-means clustering
segmentation results (Figure 3) using FLIR Tools (FLIR Systems Inc., Wilsonville, OR,
US), and the temperature parameters were extracted. Considering that CT changes with
the daily change in atmospheric temperature, the canopy temperature difference (CTD),
canopy temperature ratio (CTR), and normalized relative canopy temperature (NRCT) were
extracted to eliminate the influence of atmospheric temperature on CT. The temperature
parameter formula was as follows:

CTD = CTi − AT (3)

CTR =
CTi
AT

(4)

NRCT =
CTi − CTmin

CTmax − CTmin
(5)

where, AT is the atmospheric temperature, CTi is the CT of the i-th pixel in the image,
CTmax is the highest temperature measured in the entire experimental field, and CTmin is
the lowest temperature measured in the entire experimental field.
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2.3.4. Estimation Model

(1) PLSR

PLSR is a classic modeling method, which includes the characteristics of principal
component analysis (PCA), canonical correlation analysis, and multiple linear regression
analysis, and is often used for quantitative analysis in remote sensing [53]. PLSR transforms
the original variables with high data redundancy into a few variables by selecting the
optimal latent variables, to describe the linear model of the relationship between the
predicted value and the true value.

(2) SVR

The basic idea of SVR is to use training samples to establish a regression hyperplane,
and to approximate the samples to the hyperplane to minimize the total deviation from the
sample point to the plane [54]. The commonly used kernel functions of the SVR algorithm
include the linear kernel function, radial basis function (RBF) kernel function, polynomial
kernel function, and Sigmoid kernel function. Among them, the RBF kernel function
can handle the complex nonlinear problem between the independent variable and the
dependent variable.

(3) RFR

RFR is a machine learning algorithm based on a classification regression tree [55].
RFR uses the bootstrap resampling method to extract multiple samples from the original
sample, models each bootstrap sample into a decision tree, combines them into multiple
decision trees for prediction, and then applies the majority voting method to determine
the final classification result of the joint prediction model. The advantage of the method
is that the training speed is relatively fast and it does not require cross-validation. In
addition, the randomness of sampling and feature selection make the random forest averts
overfitting [56]. It is widely used in classification and prediction in remote sensing-based
monitoring activities.

2.3.5. Model Validation

With VI, TP and TF as independent variables, and DI as the dependent variable, a
monitoring model for wheat powdery mildew disease index was established based on
the three algorithms above. The workflow from feature extraction to model building and
evaluation was demonstrated in Figure 3. To make the model evaluation results more
objective, EXP.1 test data were used as the modeling set, and EXP.2 test data were used as
the verification set. The accuracy of the wheat powdery mildew disease index monitoring
model was evaluated based on three indicators: coefficient of determination (R2), root mean
square error (RMSE), and relative error (RE). The closer R2 is to 1, the lower the RMSE,
and the lower the RE, the higher the accuracy of the monitoring model. The formula was
as follows:

R2 =
∑n

i=1(xi − x)2 × (yi − y)2

∑n
i=1(xi − x)2 × ∑n

i=1(yi − y)2
(6)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(7)

RE (%) =

√√√√ 1

n
×

n

∑
i=1

(
yi − xi

xi

)2

× 100 (8)

where, xi, x, yi, and y are the measured DI, average DI, predicted DI, and average DI,
respectively; n is the number of samples.
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3. Results

3.1. Changes in Wheat Canopy Spectra under Different Powdery Mildew Severity Levels

With an increase in DI, the spectral reflectance of the visible light band from 400 to
780 nm increased gradually, and the discrimination of DI was better (Figure 4a). The
spectral reflectance of the near-infrared bands region across 780 nm–1000 nm was less
distinguishable when the disease was mild; when the disease was more than moderate, the
spectral reflectance increased gradually; and when the disease was severe (such as DI = 80),
the spectral reflectance rose sharply due to severe damage to the canopy structure, even
higher than the spectral reflectance of healthy wheat. From the perspective of the correlation
between disease severity and reflectance (Figure 4b), there was a positive correlation in the
visible light band from 400 to 730 nm, and a negative correlation in the near-infrared region
from 730 to 1000 nm, especially at 600–700 nm (r = 0.373–0.431, probability value, p < 0.01)
and 780–960 nm (r=−0.355–−0.294, p < 0.01), which can be considered as disease-sensitive
bands for the real-time monitoring of disease progression.

Figure 4. Spectral reflectance changes (a) of wheat canopy and its correlation (b) with disease index.

3.2. Selection of Vegetation Index

Based on the reported VIs related to plant disease, the correlations between 20 VIs and
DI were analyzed. The VI with the highest correlation was NSRI (r = 0.743) (Figure 5a),
followed by GI and NPCI. Because VI is a combination of bands, and there is a certain
degree of information duplication between bands, there is considerable multicollinearity
among the spectral parameters. Therefore, the SPA algorithm is used to optimize the VI.
The minimum number of sensitive variables extracted was two, and the maximum number
of sensitive variables was twenty. RMSE decreased with an increase in the number of
variables. RMSE was the minimum (RMSE = 15.575) when the number of variables was
10; however, with an increase in the number of variables, the RMSE increased gradually
(Figure 5b). After SPA screening, there were 10 VIs, namely NSRI, NPCI, PSRI, PRI, ARI,
SIPI, PMI, MSR, RVSI, and GNDVI. According to the results, when a single VI was used to
estimate the DI, the linear R2 was low (R2 < 0.56), and the error in monitoring powdery
mildew disease was relatively large (Figure 6).
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Figure 5. Root mean square error (a) in the optimal variables selected using successive projections
algorithm (SPA) and correlation (b) between vegetation index (VI) and disease index (DI).

Figure 6. Linear relationship of the optimal vegetation indices with wheat disease index (DI).

3.3. Selection of Texture Feature Parameters

Analysis of the correlation between TF parameters of canopy RGB images and DI
showed that the correlation coefficients were all positive. Excluding the correlation co-
efficient between the correlation and DI, which was not significant, all the others were
significant, among which entropy was the highest (r = 0.486, p < 0.01) (Figure 7a). The eight
extracted TFs were all calculated from grayscale images, and considering the potential
multicollinearity among TFs, the SPA algorithm was used to optimize the variables. The
RMSE was the lowest (RMSE = 18.043) when the number of TF variables was five. Five TF
parameters, mean, variance, homogeneity, entropy, and second moment, were selected as
the input variables in the estimation model (Figure 7b).
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Figure 7. Correlation (a) between texture feature parameter and disease index (DI) and the root mean
square error (b) for the optimal variables selected using SPA.

3.4. Selection of Thermal Infrared Temperature Parameters

The TP parameters from thermal infrared images were extracted to analyze their
correlation with DI, and the results showed that the correlation coefficient between CT and
DI was 0.382, and was significant (p < 0.01) (Figure 8). Considering CT changes with daily
atmospheric temperature changes, the CTD, CTR and NRCT were extracted to eliminate the
influence of atmospheric temperature on CT. After eliminating the influence of atmospheric
temperature, the significant level of correlation of TP was further improved, with a very
significant level (p < 0.01) observed. Combining the principle of strong correlation and
eliminating duplicate information, two TPs, CTD, and NRCT, were selected as input
variables for the subsequent steps of modeling and analysis.

Figure 8. Correlation coefficient between temperature parameters and DI.

3.5. Comparison of Different Model Algorithms Based on Single Data Sources

With a single data source as an independent variable, three methods, including, PLSR,
SVR and RFR, were used to invert the DI of wheat powdery mildew (Table 3, Figure 9).
Comprehensive comparison revealed that the RFR model performed optimally, followed
by the SVR and PLSR models. Based on the performance results of the three data sources,
regardless of which method was used to estimate wheat DI, the performance of the VI
was the best, followed by TP and TF. Based on combinations modeling methods and
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independent variable data type, the RFR method with VI as the independent variable
was the best combination, with R2, RMSE, and RE values of 0.690, 14.488, and 18.42%,
respectively, in the calibration set, and R2, RMSE, and RE values of 0.680, 14.298, and
18.16%, respectively, in the validation set. The SVR method with VI as an independent
variable was the second best combination, with R2, RMSE and RE values of 0.670, 14.757,
and 18.69%, respectively, in the calibration set, and R2, RMSE, and RE values of 0.666,
15.578, and 18.16%, respectively, in the validation set.

Table 3. Estimation performance of single data source model based on different algorithms.

Independent
Variable Type

Number of
Variables

Modeling
Method

Calibration Set Validation Set

R2 RMSE RE R2 RMSE RE

VI 10
PLSR 0.666 15.014 19.24% 0.650 16.425 19.86%
SVR 0.670 14.757 18.69% 0.666 15.578 19.28%
RFR 0.690 14.488 18.42% 0.680 14.298 18.16%

TF 5
PLSR 0.509 17.852 32.03% 0.486 18.367 32.05%
SVR 0.517 18.616 30.70% 0.514 17.489 30.23%
RFR 0.537 17.621 29.18% 0.537 17.799 27.95%

TP 2
PLSR 0.553 17.420 29.27% 0.546 17.673 29.66%
SVR 0.567 17.347 28.96% 0.571 17.094 27.13%
RFR 0.575 16.470 27.83% 0.577 16.791 27.79%

Figure 9. Prediction performance of different models with various input feature types.

3.6. Comparison of Different Model Algorithms Based on Multi-Source Data Combination

To fully exploit the information obtained from different data sources, TP, TF, and VI
were combined to carry out a comparative analysis of three modeling methods (Table 4,
Figure 9). After fusing TF on the basis of VI data, the average R2, RMSE, and RE values in
the calibration set were 0.743, 12.91, and 17.57%, respectively, with the R2 value representing
an average increase of 10% when compared with the R2 of single VI data source. The mean
R2, RMSE, and RE values in the validation set were 0.742, 12.849, and 17.71%, respectively,
and the R2 value represented a 11.6% increase when compared to the R2 of the single VI
data source. The addition of TP based on VI data enhanced the accuracy of the combined
model. The average R2 values in the validation and calibration sets were 0.779 and 0.772,
respectively, the RMSE values were 12.823 and 12.467, respectively, and the RE values were
15.56% and 15.62%, respectively. The R2 values were 15.4% and 16% higher, respectively,
than the R2 values based on the single VI data source. In addition, in the combined TP
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and TF modelling, the estimation performance was superior to those of the single data
sources, both TP or TF; however, the model was inferior to VI based on both the calibration
and validation sets. The results indicate that when using single data source-based VI
as a benchmark, TF has a minor positive effect on model accuracy when performing
multi-data collaboration modeling, whereas TP has a relatively high positive effect on
model improvement.

Table 4. Estimation performance of multi-source collaboration models based on different algorithms.

Independent
Variable Type

Number of
Variables

Modeling
Method

Calibration Set Validation Set

R2 RMSE RE R2 RMSE RE

TP&TF 7
PLSR 0.624 16.265 21.67% 0.623 16.151 22.67%
SVR 0.641 15.413 20.39% 0.637 15.900 20.91%
RFR 0.646 15.328 20.29% 0.641 15.687 20.77%

VI&TF 15
PLSR 0.723 13.417 18.37% 0.728 13.236 18.15%
SVR 0.744 13.211 17.33% 0.738 13.107 17.27%
RFR 0.762 12.102 17.02% 0.761 12.203 17.71%

VI&TP 12
PLSR 0.763 13.385 16.08% 0.746 13.375 16.20%
SVR 0.784 12.554 15.43% 0.776 12.221 15.59%
RFR 0.791 12.531 15.51% 0.794 11.804 15.07%

VI&TP&TF 17
PLSR 0.840 11.606 14.07% 0.831 10.947 14.09%
SVR 0.857 11.277 13.66% 0.854 10.200 13.07%
RFR 0.872 10.108 12.54% 0.862 10.049 12.31%

Three modeling methods were used to synergize three data sources, VI, TF, and TP.
The R2 values of the calibration and validation sets were further improved compared with
the R2 value following combination of the two data sources. The average R2 values of the
calibration and validation sets in the model with the three data sources combined were
0.856 and 0.849, respectively, the RMSE values were 10.997 and 10.399, respectively, and
the RE values were 13.42% and 13.16%, respectively. The R2 values were 26.8% and 27.6%
higher, respectively, than the R2 values of the single VI data source model. Comparison of
the modeling algorithm results showed that the RFR model had the highest R2, the lowest
RMSE and RE, and the greatest DI predictive capacity, followed by the SVR model and PLSR
models (Figure 10). The R2 values of the RFR fusion model of the three data sources were
0.872 and 0.862 in the calibration and validation sets, respectively, the RMSE values were
10.108 and 10.049, respectively, and the RE values were 12.54% and 12.31%, respectively. The
above results indicate that collaborative modeling with multiple data sources is superior to
single data source-based modeling, with the combined model exhibiting better fit, accuracy,
and predictive ability (Figure 9).

Figure 10. Comparison of three data source fusion models based on (a) PLSR, (b) SVR and
(c) RFR algorithm.
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4. Discussion

4.1. Combining VI and TF to Monitor Crop Diseases

Previous literature has confirmed the importance of reflectance spectrum data in crop
disease monitoring and its application prospects. The visible light and near-infrared regions
are the sensitive bands for spectral identification of different crop diseases and insect pests;
furthermore, the spectral sensitivity bands of different crops and different diseases vary.
The sensitive bands of wheat powdery mildew are located at 490–780 nm [57], and wheat
powdery mildew monitoring is mainly based on the sensitive band [58,59], and different
forms of disease VI can be established according to the reflection characteristics of the
disease [7–9]. Disease emergence involves gradual development that alters internal tissue
physiology and biochemistry, and, in turn, the external morphological structure, and then
manifests externally as disease that can be detected by remote sensing. Due to the combined
effects of internal and external factors, such as mesophyll cells, water, chlorophyll, and
leaf yellowing and dryness, the ability to extract disease information from a single band is
often limited. The VIs with good performance in the present study were NSRI, NPCI, and
CVI. Among them, NSRI performed optimally, with a linear R2 of only 0.552, which hardly
meets the information requirements for accurate crop protection.

The onset of powdery mildew disease has a significant bottom-up characteristic. In the
early and middle stages of the disease, the disease is mainly concentrated in the middle and
lower levels of the plant. However, the canopy reflectance spectra data mainly originate
from the upper level, which leads to lack of consistency between the collected canopy
spectra data and disease characteristics, and increases the challenge of monitoring powdery
mildew using canopy spectrum data only. Therefore, the use of multivariate analysis
methods to identify and monitor disease has become a hotspot in quantitative remote
sensing research.

In the present study, multiple VIs were used as independent variables, and three
algorithms PLSR, SVR, and RFR were used to predict DI. The results showed that the RFR
model had the highest monitoring accuracy; however, R2 was still lower than 0.7. From
the perspective of precise crop protection and disease prevention and control, the spectral
data could not be used to monitor wheat powdery mildew reliably. Some scholars have
attempted to incorporate fluorescence data in modeling when using hyperspectral data for
disease monitoring, and achieved good monitoring results [60]. When a pathogen infects
plants, the canopy structure changes following physiological and biochemical responses,
and the TF can reflect the change in canopy structure caused by pathogen infestation to
a certain degree [61,62]. Researchers have used hyperspectral VI in combination with
TF to monitor wheat stripe rust, and reported that the estimation results of the two com-
bined data sources were significantly better than that of the single data source [22]. In
the present study, the VI and TF were modeled together, and model accuracy improved
when compared with when the VI from a single data source was used. However, the
highest accuracy of the combined model in the validation set was only 0.761, the opti-
mization effect was limited, and it did not satisfy the requirements of accurate monitoring,
which could be due to the gradual senescence of wheat leaves after the flowering pe-
riod, and the increased background complexity of withered plants. Furthermore, multiple
factors in some plots, such as disease, drought, senescence, and atmospheric tempera-
ture, which make it impossible to accurately distinguish whether the withered leaves and
structural changes are attributed to disease stress, could have adversely influenced the
modelling findings.

4.2. Combining VI and TP to Monitor Crop Disease

Thermal infrared imaging technologies have great application potential in remote
sensing monitoring activities [63–65]. After crops are infected by fungi and pathogens,
cell membrane permeability increases, water is lost, and plants exhibit dehydration and
wilting. In addition, stomata are closed and heat loss on the leaf surface changes, which
leads to leaf surface temperature response. At the onset of crop disease, changes in heat
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radiation energy caused by plant water loss, stomata closure, and increased respiration
can be intuitively reflected in infrared heat maps; however, most studies have focused
on disease classification and disease identification. Calderón et al. [66] demonstrated the
capacity of using canopy temperature information and hyperspectral VI to identify olive
trees with yellow dwarf disease; however, they did not estimate disease severity. In the
previous monitoring research on wheat powdery mildew, no studies have reported the
combination of VI and TP. The correlation analyses carried out in the present study showed
that the thermal infrared temperature was sensitive to disease, and it was more effective to
convert CT into CTD, CTR, and NRCT. Compared to canopy TF, temperature information
had a greater role in disease monitoring. The RFR model performed best (R2 = 0.577)
and was slightly more accurate than the TF-RFR model; however, it was significantly less
accurate than the VI-RFR model. VI as a single data source was more suitable for monitoring
wheat powdery mildew, followed by canopy TP and canopy TF. To further improve the
information limitations of single data sources, VI and canopy TP were modeled together
(VI&TP). Model accuracies of different algorithms were higher than that of VI&TF on the
whole, indicating that canopy temperature information has great application potential in
disease monitoring.

Previous studies have also demonstrated that spectral information, texture informa-
tion, and thermal infrared information have the ability to monitor crop diseases [22,24,26];
however, no study has reported their joint application in wheat powdery mildew moni-
toring. To that end, the present study conducted fusion modeling based on VI, TF, and
TP (VI&TF&TP). According to the results, the combination of the three data sources had
obvious advantages over single data sources or two combined data sources. Among them,
the R2 values of the three data source models based on the RFR algorithm was 0.862, which
provides technical support and a reference method for the prevention and precise control
of wheat powdery mildew.

4.3. Machine Learning Algorithms in Disease Monitoring

In the wake of rapid advancements in computer modeling science, machine learning
technology has been applied extensively in crop disease monitoring, with the achievement
of remarkable results [67,68]. Jiang et al. [69] demonstrated the high estimation capacity
of the RFR model in the monitoring of mangrove disease and insect pests. In addition,
Zhang et al. [70] demonstrated the good classification performance of the RFR model
in the identification of wheat grains infected with Fusarium. In the present study, three
modeling methods (PLSR, SVR, RFR) were used to monitor wheat powdery mildew DI.
The RFR model performed best, regardless of whether it was based on single data source
modeling or multi-source data modeling. This is mainly because the RFR algorithm has
good anti-noise ability and does not easily exhibit over-fitting [71]. In the present study,
SVR was used to integrate information from three data sources, and the average accuracy
that the model achieved was 0.77. Considering the operation efficiency and prediction
accuracy of the model, the method is effective for monitoring the disease. In contrast, the
performance of the PLSR model was slightly worse, which might be because PLSR was
better at addressing multicollinearity between parameters [72], and the parameters used in
the present study were optimized by the SPA algorithm, which eliminated the influence of
multicollinearity, resulting in an inability to maximize the performance of the PLSR model.

Although the overall performance of the RFR model in the present study was the
best, the estimated value was lower than the actual value under more severe disease
conditions, which was also observed in the other model algorithms. Generally, the greater
the population density of wheat powdery mildew, the worse the air permeability, and the
more severe the disease, which decreases the sensitivity of spectral and thermal imaging
data to disease severity. Under the condition of multi-source data fusion, the saturation
of the model was alleviated, which also demonstrates the effectiveness of multi-data
source fusion.
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When applying different model algorithms to monitor wheat powdery mildew in
collaboration with VI, TF, and TP, the present study did not consider the contribution
rates of different data source parameters to the model. How to use different algorithms to
determine the weights of different data source parameters to further improve the accuracy
of the model remains to be further studied. The occurrence and characteristics of powdery
mildew are certainly associated with crop variety, growth period, and other diverse factors.
Using targeted information extraction algorithms to clarify the effects and contribution
levels of each influencing factor could facilitate the integration multiple effect factors to
accurately monitor disease occurrence, and provide a theoretical basis for crop protection
and precise operations.

5. Conclusions

Based on multi-source data fusion and machine learning, the present study explores
the application potential of canopy spectral vegetation index, thermal infrared information,
and texture feature information obtained using different sensors in wheat powdery mildew
monitoring. In the case of wheat disease index prediction based on single data source, spec-
tral information is better than thermal infrared information and texture features. Regardless
of the modeling method, the results obtained following the fusion of data from multiple
sources are more reliable than the data obtained from a single data source. When using
the combination of vegetation index, thermal infrared information and texture features,
higher prediction precision can be achieved. Regardless of whether single data source or
multi-source data is used, the monitoring accuracy of the RFR model is higher than that of
other algorithm models. Therefore, the combination of multi-source data fusion and the
RFR model have broad application prospects in wheat powdery mildew monitoring, which
could not only promote disease prevention and control but also reduce pesticide use and
enhance the efficiency of disease prevention and control activities. However, the models
identified should be tested under different crop types, growth stages, and environmental
conditions, to further evaluate the robustness of the models.
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Abstract: Leaf area index (LAI) is highly related to crop growth, and the traditional LAI measurement
methods are field destructive and unable to be acquired by large-scale, continuous, and real-time
means. In this study, fractional order differential and continuous wavelet transform were used to
process the canopy hyperspectral reflectance data of winter wheat, the fractional order differential
spectral bands and wavelet energy coefficients with more sensitive to LAI changes were screened
by correlation analysis, and the optimal subset regression and support vector machine were used to
construct the LAI estimation models for different growth stages. The precision evaluation results
showed that the LAI estimation models constructed by using wavelet energy coefficients combined
with a support vector machine at the jointing stage, fractional order differential combined with
support vector machine at the booting stage, and wavelet energy coefficients combined with optimal
subset regression at the flowering and filling stages had the best prediction performance. Among
these, both flowering and filling stages could be used as the best growth stages for LAI estimation
with modeling and validation R2 of 0.87 and 0.71, 0.84 and 0.77, respectively. This study can provide
technical reference for LAI estimation of crops based on remote sensing technology.

Keywords: winter wheat; leaf area index; fractional order differential; continuous wavelet transform;
optimal subset regression; support vector machine

1. Introduction

Leaf area index (LAI) is one of the important community structure parameters in
ecosystem research, directly related to many ecological processes such as evapotranspira-
tion, soil water balance, and net productivity. In addition, it is also an important spatial
variable measuring wheat photosynthetic effective radiation, transmission, and an eco-
environmental process model [1]. In addition, LAI is an important characteristic parameter
describing the geometric structure of the wheat canopy. It can be used to quantitatively
express the initial energy exchange on the canopy surface, directly reflect the energy, carbon
dioxide, and physical environment of growth in the canopy diversification scale space,
and reflect the dynamic characteristics and health status of wheat in the process of growth
and development. Therefore, LAI estimation is essential for wheat growth monitoring and
yield estimation. In the traditional LAI acquisition method, measurement was conducted
on the field, which turns out to be destructive, time-consuming, and laborious, and not able
to obtain LAI continuously in real time and on a large scale. Remote sensing has the factors
of high temporal and spatial resolution and can be used to monitor a region quickly, widely,
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and periodically, which has now become the main means to estimate surface parameters
and extract crop phenotypic parameters.

At present, many scholars have conducted research on crop LAI estimation using remote
sensing technology and made some achievements. For example, Huang Jingfeng et al.,
Su Wei et al., and Fieuzal R et al. [2–4] calculated the position, amplitude, and amplitude of
the red edge, respectively, by using the C HH and L HH band data of canopy red light band
(680~760 nm), extracted lidar, and SAR parameters such as red edge area and vertical structure
parameters, analyzed their correlation with LAI, and constructed LAI estimation models of
rape, corn, and wheat. Liu Jun et al., Li Shumin et al., and Wang Laigang et al. [5–7] established
LAI estimation models of maize and wheat at different growth stages by constructing a
vegetation index and a spectral index, combining with measured LAI data and satellite
remote sensing data, such as environmental satellite, MODIS, aster, and SPOT5, using
mathematical statistics or the crop growth model PROSAIL, so as to realize LAI dynamic
monitoring. By analyzing the current research situation, it could be seen that most of the
existing studies are based on the original spectrum. They used the original spectrum to
construct the correlation index, analyzed its relationship with crop LAI, and constructed the
crop LAI remote sensing estimation model. Spectral differentiation technique can reflect
the essential characteristics of crops by partially eliminating the influence of environment,
such as atmospheric effect, vegetation shadow, and soil. In recent years, more and more
attention has been paid to the monitoring of crop growth by spectral derivative technique
and some research results have been obtained. For example, Wang Dengwei et al. [8]
found that the first-order differential spectrum value of 750 nm is highly correlated with
chlorophyll content. Chen Junying et al. [9] analyzed the characteristics of chlorophyll
content and spectrum of rice and found that the first-order differential parameter of
spectral reflectance of rice leaves has a strong correlation with chlorophyll content. Jiang
Jinbao et al. [10–12] analyzed the correlation between different order spectral derivative
indexes and wheat stripe rust and canopy chlorophyll content, optimized the spectral
derivative indexes with a strong correlation, and constructed a wheat stripe rust monitoring
model and canopy chlorophyll content estimation model, which achieved good results.
Smith K L et al. [13] showed that the first-order differential ratio at 725 and 702 nm can
be used to monitor the vegetation growth under gas leakage stress. Fractional order
differentiation, as the generalization of integer order differentiation, was first proposed by
Leibniz at the end of the 17th century and laid some theoretical foundation for its future
development [14]. Fractional order differential techniques have unique advantages in signal
analysis and processing and have been widely used recently in biological fields, physics,
and engineering, among others [15,16]. In order to make full use of the spectral information
acquired by the remote sensing platform, enhance the effectiveness of spectral response,
and improve the accuracy of spectral modeling, it is necessary to preprocess the raw
spectral data. Most previous studies have used integer-order differential transformations
to process spectral data, which may cause partial loss of spectral information. The use of
fractional order differential transform can realize the refinement of spectral information,
which can effectively eliminate the influence of environmental background and deeply
explore the potential information in the spectrum [17,18]. Jiang Ming et al. [19] studied the
correlation between 0~2 order (interval 0.2 order) fractional differential spectral reflectance
and heavy metal content in soil, obtained the correlation coefficients of each order fractional
differential and soil heavy metals at each spectral sampling interval, and compared and
analyzed the curve change law of correlation coefficients. Zhang Wenwen et al. [20]
processed the spectral reflectance with the 11-order differential of 0~1 order (with an
interval of 0.1 order) and analyzed the correlation between the differential value of each
order and the measured Cu~(2+) content in corn leaves. The results showed that, compared
with the common first-order differentiation, the fractional differentiation can highlight
the correlation between the spectral reflectance of some bands and the Cu~(2+) content in
leaves and expand the selection space of the characteristic band. Wang Jingzhe et al. [21]
discussed the possibility of fractional differentiation technology in estimating the content
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of heavy metal chromium and organic carbon in desert soil using hyperspectral data.
The research results showed that the accuracy and robustness of the model after fractional
preprocessing are higher than that of integer differentiation. Li Changchun et al. [22]
processed hyperspectral remote sensing data by factional differentiation, analyzed the
correlation between fractional differentiation spectrum and wheat chlorophyll content,
and constructed a chlorophyll content estimation model by using stepwise regression
analysis, SVM, and artificial neural network. Spectral signal transformation can improve
its sensitivity to crop LAI. Continuous wavelet transform (CWT) can effectively reduce
noise, decompose spectral data, and extract more spectral positions and characteristic
parameters [23]. At present, the wavelet coefficients extracted by CWT are effective in the
inversion of heavy metals and phenotypic parameters in the crop canopy. For example,
Chen Haoyu et al. [24] performed CWT on hyperspectral data to generate wavelet energy
coefficient and established a BP neural network and SVM inversion model of soil organic
matter content. Li Bao et al. [25] and Tan Xianming et al. [26] used univariate linear
regression, SVM, and the partial least square method to construct the chlorophyll content
estimation model for fresh peach leaves and maize canopy after continuous wavelet
transform of spectral information, which was better than the traditional methods. Wang
Yancang et al. [27] carried out CWT on hyperspectral data and constructed a quantitative
inversion model of winter wheat leaf water content by using partial least square method.

This paper aims to construct and screen the best estimation models of LAI for different
growth stages, with winter wheat as the research object. This study, firstly, preprocessed
the canopy hyperspectral data by fractional order differential transform and continuous
wavelet decomposition. Then, the fractional order differential spectral bands and wavelet
energy coefficients with stronger correlation with the LAI based on correlation analysis were
screened. Finally, the LAI estimation models for jointing, booting, flowering, and filling
stages were constructed and evaluated by support vector machine and optimal subset
regression, respectively. This study can provide theoretical and technical references for
remote sensing estimation of crop LAI.

2. Materials and Methods

2.1. Overview of the Study Area and Experimental Design Scheme

The research area is located in the National Precision Agriculture Research and Demon-
stration Base in Xiaotangshan Town, Changping District, Beijing. It is flat and fertile tidal
soil. The average altitude is approximately 36 m. The climate is mild with four distinct sea-
sons, the average annual temperature is approximately 13 ◦C, the average annual rainfall is
approximately 510 mm, and precipitation is mostly concentrated in summer, characterizing
a typical warm temperate continental monsoon climate. Figure 1 shows the specific location
of the study area.

The experimental area was 84 m in length from east to west and 32 m in length from
north to south, with each plot measuring 6 × 8 m. There were 48 plots, 16 treatments,
and 3 replications. The orthogonal experiment was conducted with different amounts of
nitrogen fertilizer, different moisture contents, and different crop varieties. Four levels
of N fertilizer were set: 0, 195, 390, and 585 kg/hm2, respectively; three levels of water
irrigation were set: rainfed (W1, no irrigation), normal water (W2, irrigation water 192 mm),
and twice normal water (W3, irrigation water 384 mm); there are two crop varieties: Jing
9843 (J9843) and Zhong Mai 175 (ZM175). The sowing time was 7 October 2014, the planting
density was 3.75 million plants/hm2, the harvest date was on 11 June 2015, and the crops
before sowing were corn.
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Figure 1. Schematic diagram of the study area and experimental design.

2.2. Data Acquisition

Canopy hyperspectral data and LAI data were measured at the jointing stage, booting
stage, flowering stage, and filling stage of winter wheat in 2018 and 2019, respectively.

2.2.1. Canopy Hyperspectral Data Measurement

The canopy hyperspectral data were measured using an ASD Field SpecFR Pro 2500
spectrometer. The data collection was conducted during 10:00–14:00 BST on a clear day,
with a sensor probe field of view of 25◦, and placed vertically downward at approximately
1.0 m above the canopy. To eliminate the effect of environmental changes on the spectral
measurements, the spectrometer was calibrated with a whiteboard before and after each
measurement, and dark currents were collected every 5 min. Measurements were repeated
10 times on each plot and the average value was taken as the spectral reflectance of the
canopy on the plot. Since the spectrometer has different spectral sampling intervals in
different bands, after the spectral data acquisition, the spectral resampling interval was
first set to 1 nm, and then the spectrum was smoothed using the Savitzky–Golay filter [28]
of ViewSpec Pro software (Malvern Panalytical, Malvern, UK) to reduce the spectral noise
and improve the signal-to-noise ratio of the spectral data.

2.2.2. LAI Data Measurement

LAI was measured using the LAI 2200 plant canopy analyzer. For wheat LAI mea-
surement, three sample points were randomly selected for each plot. The LAI 2200 first
performed backlit measurement in an open area to ensure that all LAI data obtained were
accurate and valid. The LAI 2200 was then placed at the sample point parallel to the ridge
and perpendicular to the ridge, respectively, with the probe placed close to the wheat plant.
LAI values were measured 4 times, and the arithmetic mean value was taken as the LAI of
the sample point and then the average of the LAI values at the three sample points was
taken as the LAI value of the plot.

2.3. Data Processing Methods
2.3.1. Fractional Order Derivative Processing

Fractional order derivative is a fundamental mathematical operation with a wide range of
applications in fields such as image enhancement processing and signal analysis [29,30]. Tradi-
tional integer order derivative will ignore some information related to crop physiological
and biochemical parameters, which affects the accuracy, while fractional order derivative
can effectively denoise and refine the local information of hyperspectral data to obtain more
detailed information. The commonly used fractional order derivative includes three types
as follows: Riemann–Liouville, Caputo, and Grünwald–Letnikov [31]. The paper uses the
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Grünwald–Letnikov differentiation to process canopy hyperspectral data. The differential
formula is as shown in Equation (1):

dα f (λ)
dλα

= f (λ) + (−α) f (λ − 1) +
(−α)(−α + 1)

2
f (λ − 2) + · · ·+ Γ(−α + 1)

m!Γ(−α + 1)
f (λ − m) (1)

In the formula, Γ(·) is the Gamma function, λ is the corresponding wavelength, m rep-
resents the difference between the upper and lower limits of the differential, α represents
any order.

2.3.2. Continuous Wavelet Transform

Wavelet transform is called “mathematical microscope”, which can decompose com-
plex signals into wavelet signals of different scales (frequencies), with rich basis functions,
good time-frequency localization, and multi-scale characteristics. There are two main types
of wavelet transforms, that is, continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). The paper used CWT to decompose the hyperspectral data in order to
obtain a series of wavelet energy coefficients at different scales. The wavelet coefficients
contain two dimensions of decomposition scale and band. Therefore, the 1D hyperspectral
data are converted to 2D wavelet energy coefficients by continuous wavelet transform.
The calculation is shown in Equation (2):

Wf (a, b) =
∫ +∞

−∞
f (λ)Ψa,b(λ)dλ (2)

Ψa,b(λ) =
1√
a

Ψ(
λ − b

a
) (3)

where f (λ) is the hyperspectral reflectance, λ is the spectral band in the range of 350–1350 nm,
Ψa,b denotes the wavelet basis function, a denotes the scale factor, b is the translation factor.

2.4. Modeling Methods
2.4.1. Optimal Subset Regression

Optimal subset regression is a method combining all alternative independent variables
as a subset of the model for regression modeling. For a model with independent variables,
the optimal subset can be used to build 2n−1 subset models, and the selection is performed
to determine the best combination of independent variables for the model by using the
maximum adjusted R2 (Adj · R2) as the principle of independent variable selection [32].

Adj · R2 = 1 − RSS/(n − k − 1)
TSS/(n − 1)

(4)

RSS = ∑n
i=1 (yi −�

y i)
2

(5)

TSS = ∑n
i=1 (yi − yi)

2 (6)

where RSS denotes the residual sum of squares, TSS denotes total sum of square difference,
yi is the measured value,

�
y i is the estimated value, yi is the estimated value of the measured

value, n is the number of samples, k is the number of independent variables, and i is the
sample identifier.

2.4.2. Support Vector Machines

Support vector machine (SVM) is a machine learning algorithm based on supervised
learning and the principle of structural risk minimization. By projecting data into a
high-dimensional space through a kernel function and finding the optimal hyperplane in
the high-dimensional space, it better solves the dimensional catastrophe and overfitting
problems, with good generalization ability and robustness. Therefore, it is usually used

79



Sensors 2021, 21, 8497

for pattern recognition, classification, and small sample regression analysis [33]. Support
vector machines are more stable in training and are capable of obtaining more accurate
results when used for small sample regression analysis. So, it can be used to find the
optimum directly in the learning performance and complexity of the model based on
limited data information, with a view to obtaining the best generalization capability.

2.5. Model Accuracy Evaluation

In the paper, 75% of the sample data was selected for model construction and the rest
was used for model accuracy validation. The coefficient of determination (R2), root mean
squared error (RMSE), and standard root mean squared error (nRMSE) are selected as
model accuracy evaluation indexes, and each evaluation indexes are calculated as follows.

R2 =

(
n
∑

i=1
yi − y)2

(
n
∑

i=1
xi − y)2

(7)

RMSE =

√√√√√
n
∑

i=1,j=1
(xi − yi)

2

n
(8)

nRMSE =

√√√√√
n
∑

i=1,j=1
(xi − yi)

2

n

/
y (9)

where xi is the measured value, yi is the estimated value, y is the mean value, i is the
sample identifier, and n is the number of samples.

In general, a larger R2 and a smaller RMSE indicate better modeling results. In ad-
dition, nRMSE ≤ 10% indicates that the consistency between measured and estimated
values is excellent, 10% < nRMSE ≤ 20% indicates that the consistency between mea-
sured and estimated values is good, 20% < nRMSE ≤ 30% indicates that the consistency
between measured and estimated values is moderate, and nRMSE > 30% indicates that
the consistency between measured and estimated values is poor.

3. Results

3.1. Estimation of Wheat LAI Based on Fractional Order Differential Spectra
3.1.1. Correlation Analysis of Raw Spectra and Fractional Order Differential Spectra with
Wheat LAI

The fractional order differentiation of the original hyperspectral data was performed
using the Grünwald–Letnikov differentiation with order range 0–2 and step size 0.1, when
the original spectrum, the first order differentiation spectrum, and the second order differ-
entiation spectrum are represented. Twenty fractional order differential transformations
were applied to the canopy raw spectra at the jointing stage, booting stage, flowering stage,
and filling stage, respectively. The correlations between the raw spectra and differential
spectra of each order and LAI were plotted for different fertility periods, and the results are
shown in Figures 2 and 3. Meanwhile, the 10 differential spectra with a strong correlation
were selected and plotted with the LAI correlation matrix, and the results are shown in
Figure 4.
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(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 2. Correlation analysis of original spectrum and LAI at different growth stages.

  
(a) Jointing stage (b) Booting stage 

Figure 3. Cont.
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(c) Flowering stage (d) Filling stage 

Figure 3. Correlation analysis of fractional differentiation spectrum and leaf area index at different
growth stages.

  
(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 4. Correlation matrix diagram of selected fractional differentiation spectrum and leaf area
index at different growth stages.

At the jointing stage, Figure 2a, using raw spectral reflectance with LAI to analyze
correlatively, showed that it was significantly negatively correlated with LAI at the 0.01 level
in the band range of 350–716 nm and significantly positively correlated with LAI at the
0.01 level in the band range of 733–1318 nm, with a maximum absolute value of the
correlation coefficient |ρ| = 0.72. Correlation analysis using fractional order differential
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spectra and LAI and analysis of Figure 3a showed that the maximum value of the absolute
value of the correlation coefficient |ρ| between each order of differential spectra and LAI
was above 0.72 and, when the order was 1, the maximum value of |ρ| was up to 0.77.
The number of spectral bands passing the 0.01 highly significant level test was above
946 except for the integer orders (1st and 2nd orders) and was up to 977 when the order
was 1.1. The orders and bands where the 10 differential spectra with high correlation
coefficients were located were, respectively, 1st order, 1281 nm, 2nd order, 708 nm, 1st order,
757 nm, 1st order, 956 nm, 1.1 order, 708 nm, 1st order, 492 nm, 1.2 order, 702 nm, 1.3 order,
700 nm, 1.9 order, 696 nm, 1.4 order, 697 nm, and their correlation with the correlation
matrix of LAI was shown in Figure 4a.

At the booting stage, Figure 2b, using raw spectral reflectance with LAI to analyze
correlatively, indicated it was significantly negatively correlated with LAI at the 0.01 level
in the band range of 350–723 nm and significantly positively correlated with LAI at the
0.01 level in the band range of 741–1141 nm, with the maximum absolute value of the
correlation coefficient |ρ| = 0.78. The correlation between fractional order differential
spectra and LAI was analyzed. Figure 3b showed that the maximum absolute value of
the correlation coefficient |ρ| between each order of differential spectra and LAI was
above 0.78 and, when the order was 1, the maximum value of |ρ| could reach 0.83.
Except for the integer order (1st and 2nd order), the number of spectral bands passing the
0.01 highly significant level test was above 738, and when the order was 0, 0.1, 0.2, 0.3,
0.4, and 0.5, the maximum number of bands was up to 775. The orders and bands where
the 10 differential spectra with high correlation coefficients were located were as follows:
1st order, 756 nm, 1st order, 1140 nm, 2nd order, 752 nm, 1st order, 499 nm, 1.9 order,
654 nm, 1.1 order, 711 nm, 1.8 order, 654 nm, 1.2 order, 654 nm, 1.7 order, 654 nm, 0.9 order,
621 nm, and their correlation with the correlation matrix of LAI was shown in Figure 4b.

At the flowering stage, Figure 2c, using raw spectral reflectance with LAI to analyze
correlatively, said that it was significantly negatively correlated with LAI at the 0.01 level
in the band range of 350–723 nm and significantly positively correlated with LAI at the
0.01 level in the band range of 736–1154 nm, with the maximum absolute value of the
correlation coefficient |ρ| = 0.79. The correlation between the fractional order differential
spectra and LAI was analyzed. It was showed in Figure 3c that the maximum value of the
absolute value of the correlation coefficient |ρ| between each order of differential spectra
and LAI was above 0.79 and, when the order was 1, the maximum value of |ρ| could
reach 0.88. Except for the integer order (1st and 2nd order), the number of spectral bands
passing the 0.01 highly significant level test was above 757 and when the order was 0, 0.1,
0.2, 0.3, 0.4, the maximum number of bands could be 793. The orders and bands where the
10 differential spectra with high correlation coefficients were located were as follows: 1st
order, 754 nm, 1st order, 1127 nm, 1st order, 1309 nm, 2nd order, 762 nm, 1.1 order, 904 nm,
1.9 order, 867 nm, 1.2 order, 903 nm, 1.8 order, 903 nm, 0.9 order, 866 nm, 1.8 order, 820 nm,
and their correlation matrix with LAI was shown in Figure 4c.

At the filling stage, Figure 2d, using raw spectral reflectance with LAI to analyze
correlatively, showed that it is significantly negatively correlated with LAI at the 0.01 level
in the 350–727 and 1320–1350 nm band ranges and significantly positively correlated with
LAI at the 0.01 level in the 736–1144 nm band range, with the maximum absolute value of
the correlation coefficient |ρ| = 0.83. The correlation between fractional order differential
spectra and LAI was analyzed. Figure 2d showed that the maximum value of the absolute
value of the correlation coefficient |ρ| between each order differential spectrum and LAI
was above 0.72. When the order was 1, |ρ| can reach up to 0.82. The number of spectral
bands passing the 0.01 highly significant level test was above 766, except for integer orders
(1st and 2nd orders), and up to 794 when the order was 0 and 0.1. The 10 differential
spectra with high correlation coefficients were located in the order and band were as
follows: 1st order, 498 nm, 1st order, 687 nm, 1st order, 538 nm, 1st order, 752 nm, 1st order,
1152 nm, 2nd order, 753 nm, 1st order, 730 nm, 1st order, 367 nm, 1st order, 558 nm, 1st order,
584 nm, and their correlation with LAI correlation matrix was shown in Figure 4d.
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3.1.2. Construction of LAI Estimation Model Based on Optimal Subset Regression

During the construction of the LAI estimation model, it can be seen from the results of
the optimal subset analysis (shown in Figure 5) that, at the jointing stage, five fractional
order differential spectra, J2.0R708, J1.0R956, J1.1R708, J1.0R492, and J1.9R696, were se-
lected as independent variables to construct the optimal subset regression model. the
results of the subset analysis are shown in Figure 5a. At the booting stage, nine fractional
order differential spectra, J1R756, J1R1140, J2R752, J1R499, J1.9 R654, J1.1R711, J1.8R654,
J1.2R654, and J1.7R654, were selected as independent variables to construct the optimal
subset regression model and the results of subset analysis are shown in Figure 5b. At the
flowering stage, five fractional order differential spectra, J1R754, J1R1127, J1R1309, J1.9R867,
and J1.8R820, were selected as independent variables to construct the optimal subset re-
gression model and the results of the subset analysis are shown in Figure 5c. At the filling
stage, three fractional order differential spectra, J1R687, J1R538, and J1R752, were selected
as independent variables to construct the optimal subset regression model and the results
of the subset analysis are shown in Figure 5d.

  
(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 5. Optimal subset analysis of selected fractional differentiation spectrum for estimating LAI.

According to the optimal fractional order differential spectra preferentially selected in
different growth stages, the models for LAI estimation at the jointing, booting, flowering,
and filling stages were constructed using 75% of sample data based on the optimal subset
regression method and 25% of sample data was used for model accuracy validation.
The results of R2, RMSE, and nRMSE in the modeling and validation of LAI estimation
models are shown in Table 1.
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Table 1. Optimal subset regression modeling results of LAI estimation based on fractional differenti-
ation spectrum at different growth stages.

Growth Stages

Modeling Accuracy Verification Accuracy

R2 RMSE
(μg/cm2)

nRMSE
(%)

R2 RMSE
(μg/cm2)

nRMSE
(%)

Jointing stage 0.72 0.47 12.65% 0.40 0.90 26.30%
Booting stage 0.67 1.75 61.86% 0.56 2.06 87.55%

Flowering stage 0.86 0.45 13.43% 0.63 0.74 21.61%
Filling stage 0.84 0.31 19.78% 0.70 0.62 41.69%

As shown in Table 1, the fractional order differential spectrum combined with opti-
mal subset regression for LAI estimation had the best estimation effect at the flowering
stage and the worst estimation effect at the booting stage, with nRMSE reaching 87.55%.
The consistency between the estimated value and the measured value is particularly poor.

3.1.3. Construction of LAI Estimation Model Based on the Support Vector Machine

Select the first 10 fractional differential spectra with a strong correlation with LAI in
each growth period as the independent variable, LAI as the dependent variable, and use
75% of the sample data to construct LAI estimation models during the jointing stage,
booting stage, flowering stage, and filling stage under the method of SVM. Then, 25% of
the sample data was used for accuracy verification. The results of modeling and verification
R2, RMSE, and nRMSE are shown in Table 2.

Table 2. Estimation of leaf area index based on fractional differentiation spectrum at different growth
stages and modeling results of support vector machine.

Growth Stages

Modeling Accuracy Verification Accuracy

R2 RMSE
(μg/cm2)

nRMSE
(%)

R2 RMSE
(μg/cm2)

nRMSE
(%)

Jointing stage 0.65 0.56 15.12% 0.65 0.60 17.09%
Booting stage 0.80 0.83 20.01% 0.76 0.82 23.32%

Flowering stage 0.87 0.47 13.94% 0.57 0.80 28.37%
Filling stage 0.83 0.38 21.24% 0.63 0.51 36.76%

As shown in Table 2, when combining fractional order differential spectra with SVM
to estimate LAI, the accuracy of LAI estimation at the booting stage and flowering stage
was comparable and the estimation at the flowering stage was slightly better than that at
the booting stage.

It could be noticed from the comprehensive analysis of LAI estimation results for
different growth stages, acquired by using fractional order differential spectra based on
optimal subset regression and SVM methods, that at the jointing stage, the overall estima-
tion effect was poor. Although the modeling R2 of the optimal subset regression model
reached 0.72, the R2 of the model validation was only 0.40, which was a poor estimation
effect, while the SVM model had a relatively good estimation effect with R2 values of 0.65
and 0.60 in the modeling and validation of LAI estimation models, respectively. Overall,
the LAI estimation performance at the booting stage was better than that at the jointing
stage, the performance of the SVM model estimation was better compared with the optimal
subset regression model, and the R2 in the modeling and validation of the model reached
0.80 and 0.76, respectively. The LAI estimation performance at the flowering stage was
the best overall. The estimation performances of optimal subset regression model and
the SVM model were comparable and values of R2 in the modeling and validation of the
model reached 0.86, 0.63 and 0.87, 0.57, respectively. Compared with that at the flowering
stage, the LAI estimation accuracy was slightly worse at the filling stage. The estimation
results of the same optimal subset regression model and SVM model were comparable,
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with the values R2 in the modeling and validation of the model reaching 0.84, 0.70 and 0.83,
0.63, respectively.

3.2. Estimation of Wheat LAI Based on Continuous Wavelet Transform
3.2.1. Analysis of Correlation between Wavelet Energy Coefficients and LAI

By using the second-order derivative of Gaussian function Mexican Hat as the wavelet
basis of the continuous wavelet transform and applying the continuous wavelet transform
to the canopy hyperspectral data of wheat at each growth stage, respectively, the wavelet
energy coefficients at different scales is obtained. The correlation between LAI and wavelet
energy coefficients at different growth periods was analyzed. The correlation graphs
and correlation matrices between wavelet energy coefficients and LAI at different fertility
periods were plotted, as shown in Figures 6 and 7.

  
(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 6. Correlation analysis of wavelet energy coefficient and leaf area index at different
growth stages.

The results of the analysis of Figures 6 and 7 are as follows:
At the jointing stage, the correlation analysis was carried out by using the wavelet

energy coefficient and LAI. As shown in Figure 6a, with the increase in the decomposition
scale, there is first a rise on the absolute value of the correlation coefficient between
wavelet energy coefficient and LAI |ρ|, then a drop. When the decomposition scale was
10, the maximum value of |ρ| was above 0.70, and when the decomposition scale was
7, the maximum value of |ρ| was up to 0.77. With the increase in the decomposition
scale, the number of spectral bands passing the 0.01 highly significant level test gradually
increased, and when the decomposition scale was 10, the number of bands was up to
1001. The decomposition scale and band where the 10 wavelet energy coefficients with
high correlation coefficients were located were C7R725, C2R762, C3R600, C3R417, C6R722,
C2R1150, C2R949, C3R766, C3R1276, C5R719, and their correlation matrix with LAI was
shown in Figure 7a.
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(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 7. Correlation analysis of selected wavelet energy coefficient and leaf area index at different
growth stages.

At the booting stage, the correlation analysis was carried out by using the wavelet
energy coefficient and LAI. As shown in Figure 6b, with the increase in the decomposition
scale, the absolute value of the correlation coefficient between wavelet energy coefficient
and LAI |ρ| decreased gradually. When the decomposition scale was 10, the maximum
value of |ρ| was above 0.72, and when the decomposition scale was 1, the maximum
value of |ρ| could reach 0.83. With the increase in the decomposition scale, the number of
spectral bands passing the 0.01 highly significant level test gradually increases; when the
decomposition scale was 10, the number of bands can reach up to 1001 bands. The decom-
position scales and bands where the 10 wavelet energy coefficients with high correlation
coefficients are located are C1R729, C2R727, C3R726, C4R723, C3R1143, C4R1052, C2R755,
C3R1055, C5R971, C1R752, and their correlation matrix with LAI is shown in Figure 7b.

At the flowering stage, the correlation analysis was carried out by using the wavelet
energy coefficient and LAI. As shown in Figure 6c, with the increase in the decomposition
scale, the absolute value of the correlation coefficient between wavelet energy coefficient
and LAI |ρ| increased first and then decreased. When the decomposition scale was 10,
the maximum value of |ρ| was above 0.70, and when the decomposition scale was 4,
the maximum value of |ρ| could reach 0.89. With the increase in the decomposition
scale, the number of spectral bands passing the 0.01 highly significant level test gradually
increased, and when the decomposition scale was 10, the number of bands could reach
1001. The decomposition scales and bands where the 10 wavelet energy coefficients with
high correlation coefficients were located were C4R978, C3R913, C5R985, C4R926, C5R904,
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C5R990, C6R881, C5R1098, C1R728, C3R1153, and their correlation matrix with LAI was
shown in Figure 7c.

At the filling stage, the correlation analysis was carried out by using the wavelet energy
coefficient and LAI. As shown in Figure 6d, with the increase in the decomposition scale,
the absolute value of the correlation coefficient |ρ| between wavelet energy coefficients
and LAI gradually decreased. When the decomposition scale was 10, the maximum value
of |ρ| was above 0.80, and when the decomposition scale was 2, the maximum value of
|ρ| could reach 0.89. With the increase in the decomposition scale, the number of spectral
bands passing the 0.01 highly significant level test gradually increased, and when the
decomposition scale was 6, the number of bands was up to 951. The decomposition scales
and bands where the 10 wavelet energy coefficients with high correlation coefficients are
located are C2R755, C4R782, C1R750, C4R777, C4R790, C3R773, C3R755, C4R768, C5R804,
C5R799, and their correlation matrix with LAI was shown in Figure 7d.

3.2.2. Construction and Analysis of LAI Estimation Model Based on Optimal Subset Regression

The results of the optimal subset analysis (shown in Figure 8) in the construction of the
LAI estimation model showed that, at the jointing stage, four wavelet energy coefficients,
C3R600, C3R417, C6R722, and C5R719, were selected as independent variables to construct
the optimal subset regression model, and the results of the subset analysis are shown
in Figure 8a. At the booting stage, five wavelet energy coefficients, C1R729, C2R727,
C3R726, C4R723, and C1R752, were selected as independent variables to construct the
optimal subset regression model, and the results of the subset analysis are shown in
Figure 8b. At the flowering stage, seven wavelet energy coefficients, C4R978, C4R926,
C5R904, C5R990, C5R1098, C1R728, and C3R1153, were selected as independent variables
to construct the optimal subset regression model, and the results of the subset analysis are
shown in Figure 8c. At filling stage, the wavelet energy coefficient C2R755 was selected as
the independent variable to construct the optimal subset regression model, and the results
of the subset analysis are shown in Figure 8d.

According to the optimal fractional differential spectrum selected in different growth
stages, the models for LAI estimation at the jointing, booting, flowering, and filling stages
were constructed using 75% of sample data based on the optimal subset regression method
and 25% of sample data were used for model accuracy validation. The results of R2, RMSE,
and nRMSE in the modeling and validation of LAI estimation models are shown in Table 3.

Table 3. Optimal subset regression modeling results of leaf area index estimation based on wavelet
energy coefficient at different growth stages.

Growth Period

Modeling Accuracy Verification Accuracy

R2 RMSE
(μg/cm2)

nRMSE
(%)

R2 RMSE
(μg/cm2)

nRMSE
(%)

Jointing stage 0.73 0.46 12.40% 0.59 0.71 19.47%
Booting stage 0.81 0.78 18.46% 0.56 0.95 23.64%

Flowering stage 0.87 0.43 12.84% 0.71 0.66 19.15%
Filling stage 0.84 0.31 19.91% 0.77 0.58 38.55%

As shown in Table 3, when combining wavelet energy coefficients with optimal
subset regression to estimate LAI, the accuracy at the flowering stage was the highest;
its modeling accuracy was (R2 = 0.87, RMSE = 0.43μg/cm2, nRMSE = 12.84%) and the
verification accuracy was (R2 = 0.71, RMSE = 0.66μg/cm2, nRMSE = 19.15%).

88



Sensors 2021, 21, 8497

  
(a) Jointing stage (b) Booting stage 

  
(c) Flowering stage (d) Filling stage 

Figure 8. Optimal subset analysis of wavelet energy coefficient for estimating leaf area index at
different growth stages.

3.2.3. Construction and Analysis of LAI Estimation Model Based on the Support Vector Machine

Select the first 10 fractional differential spectra with a strong correlation with LAI in
each growth period as the independent variable, LAI as the dependent variable, and use
75% of the sample data to construct LAI estimation models during the jointing stage,
booting stage, flowering stage, and filling stage under the method of SVM. Then, 25% of
the sample data was used for accuracy verification. The results of modeling and verification
R2, RMSE, and nRMSE are shown in Table 4.

Table 4. Estimation of leaf area index based on wavelet energy coefficient at different growth stages
and modeling results of support vector machine.

Growth Period

Modeling Accuracy Verification Accuracy

R2 RMSE
(μg/cm2)

nRMSE
(%)

R2 RMSE
(μg/cm2)

nRMSE
(%)

Jointing stage 0.69 0.52 14.37% 0.74 0.58 16.83%
Booting stage 0.76 0.88 20.80% 0.63 0.87 23.40%

Flowering stage 0.87 0.42 15.47% 0.65 0.73 29.93%
Filling stage 0.90 0.39 11.47% 0.63 0.76 26.91%

Table 4 showed that, when combining wavelet energy coefficients with SVM to esti-
mate the LAI number, the accuracy at the flowering stage and filling stage were comparable
and their estimation effect was better than that at the jointing stage and booting stage.
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In addition, their modeling R2 was above 0.85, validation R2 was greater than 0.60, and the
modeled nRMSE was less than 20%.

It could be noticed from the comprehensive analysis of LAI estimation results for
different growth stages, acquired by using wavelet energy coefficient based on optimal
subset regression and SVM methods, that, compared with other growth stages, the over-
all estimation effect of LAI at the jointing stage was poor, and the estimation effect of
optimal subset regression model and SVM model was equivalent, with the modeling
and verification R2 reaching 0.73, 0.59 and 0.69, 0.74, respectively. At the booting stage,
the LAI estimation effect was better than that in jointing stage. Compared with SVM model,
the optimal subset regression model had better estimation effect, with the modeling and
verification R2 of the model reaching 0.81 and 0.56, respectively. At the flowering and
filling stages, LAI estimation effect was equivalent and the estimation effect of optimal
subset regression model and SVM model was also equivalent; the modeling R2 of the
model reached 0.87, 0.84 and 0.87, 0.90, respectively, and the verification R2 reached 0.71,
0.77 and 0.65, 0.63, respectively.

4. Discussion

By comprehensively analyzing the estimation results of wheat LAI at four growth
stages using fractional differential spectrum and wavelet energy coefficient based on
optimal subset regression and SVM method, it was noticed that the maximum values of
R2 in modeling and verification of the estimation model were 0.90 and 0.77, respectively,
and the average values of R2 in modeling and verification were 0.79 and 0.64, respectively,
indicating generally that the LAI estimation performance was good, which is mainly due
to the following reasons. First, the data source is hyperspectral data, which have the
advantages of high spectral resolution and rich spectral information of features, able to be
used to analyze the spectral characteristics of features from multiple angles and directions
and comprehensively express the detailed information of crops, and are suitable for remote
sensing estimation of crop phenotype parameters. Second, the difficulty of crop LAI
estimation using hyperspectral data lies in the accurate extraction of LAI-sensitive spectral
information from hyperspectral data; however, the data acquisition process was affected by
factors such as environment and background, resulting in noise in the original spectral data
that affected the extraction of sensitive information. After fractional order differentiation
and wavelet transform processing, the noise effect can be effectively eliminated, the spectral
information can be refined, and the crop LAI estimation effect can be effectively improved,
which is consistent with the conclusions of research by Li Changchun et al. [22], Fang
Shenghui et al. [34], and Yao Shengnan et al. [35].

The result of comprehensive analysis on the effect of LAI estimation at different
growth stages showed that, at the jointing stage, the maximum values of R2 in modeling
and verification were only 0.73 and 0.74, which was relatively poor compared with that at
other growth stages. The values of R2 in the modeling and validation of the LAI estimation
model at the flowering stage and the filling stage were slightly different, with the average
values of 0.87, 0.85 and 0.64, 0.68, respectively. The modeled nRMSE was slightly different,
with the average values of 13.92 and 18.10%, respectively, both of which were less than
20%; however, at the filling stage, the maximum value of verified nRMSE was 41.69%
and the average value was 35.98%, while at the flowering stage, the maximum value of
verified nRMSE was only 29.93% and the average value was 24.66%, indicating that the
LAI estimation effect at the flowering stage was slightly better than that at the filling stage,
which is mainly because wheat growth reaches its peak at the flowering stage and then
LAI starts to decrease. In addition, LAI is relatively sensitive to the canopy spectrum.

The result of comprehensive analysis on the LAI estimation effects of different methods
at different growth stages showed that, at the jointing stage, the estimation effect of the
optimal subset regression model based on wavelet energy coefficient was equivalent to
that of the SVM model, and the R2 values in modeling and verification were 0.73, 0.59
and 0.69, 0.74, respectively. At the booting stage, the LAI estimation accuracy of the SVM
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model based on fractional differential spectrum was the highest, and the R2 values in
modeling and verification reached 0.80 and 0.76, respectively. At the flowering stage,
the LAI estimation accuracy of the optimal subset regression model based on wavelet
energy coefficient was the highest, and the R2 values in the modeling and verification were
0.87 and 0.71, respectively. At the filling stage, the LAI estimation accuracy of the optimal
subset regression model based on wavelet energy coefficient was the highest, and the
R2 values in the modeling and verification reached 0.84 and 0.77, respectively. It provided
the best scheme for wheat LAI estimation at different growth stages.

For four growth periods, the effect of LAI estimation by optimal subset regression
models and SVM models based on fractional order differential spectra and wavelet energy
coefficients was analyzed. Compared with fractional differential spectrum, the optimal
subset regression model and SVM model based on wavelet energy coefficient have better
LAI estimation effect; the maximum values of R2 in modeling and verification were 0.90
and 0.77, respectively, and the average values were 0.81 and 0.66, respectively. This was
mainly because, as a new spectral processing method, wavelet transform can effectively
reduce noise and decompose spectral data, mine spectral hidden information, extract more
sensitive information, and effectively improve the accuracy and generalization ability of
the model, which was consistent with the research conclusions of Ebrahimi et al. [23] and
Cheng et al. [36].

5. Conclusions

In this paper, the collected hyperspectral data of wheat canopy at different growth
stages were processed by fractional order differentiation and continuous wavelet transform.
According to the correlation analysis results, the fractional order differential spectrum
and wavelet energy coefficients with strong correlation were selected. Combined with the
optimal subset regression and SVM method, LAI estimation models of wheat at differ-
ent growth stages were constructed, respectively. Based on the results of modeling and
validation accuracy assessment to screen the optimal estimation model of LAI at each
growth stage and the fertility period with the best LAI estimation, this study can provide a
theoretical and technical reference for LAI estimation of crops based on remote sensing
technology. However, the LAI estimation methods used in the paper have some limitations
and need to be further improved in the following two aspects.

The optimal subset regression and support vector machine algorithms used in the
paper are both empirical regression models, which ignore the radiative transfer processes
of vegetation canopy and atmosphere. The next study needs to parameterize the remote
sensing radiative transfer processes to further improve the stability of the model.

Due to the limitation of the experimental conditions, only the sample data of one
experimental area were used in this study, and the influence of experimental data by locality
was not considered. The subsequent study can verify the prediction effect of the model by
increasing the sample size, crop species, and sample years, which is very meaningful for
the further transfer of the model to practical applications.
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Abstract: Canopy characterisation is a key factor for the success and efficiency of the pesticide
application process in vineyards. Canopy measurements to determine the optimal volume rate are
currently conducted manually, which is time-consuming and limits the adoption of precise methods
for volume rate selection. Therefore, automated methods for canopy characterisation must be
established using a rapid and reliable technology capable of providing precise information about crop
structure. This research providedregression models for obtaining canopy characteristics of vineyards
from unmanned aerial vehicle (UAV) and satellite images collected in three significant growth stages.
Between 2018 and 2019, a total of 1400 vines were characterised manually and remotely using a UAV
and a satellite-based technology. The information collected from the sampled vines was analysed by
two different procedures. First, a linear relationship between the manual and remote sensing data
was investigated considering every single vine as a data point. Second, the vines were clustered
based on three vigour levels in the parcel, and regression models were fitted to the average values of
the ground-based and remote sensing-estimated canopy parameters. Remote sensing could detect the
changes in canopy characteristics associated with vegetation growth. The combination of normalised
differential vegetation index (NDVI) and projected area extracted from the UAV images is correlated
with the tree row volume (TRV) when raw point data were used. This relationship was improved and
extended to canopy height, width, leaf wall area, and TRV when the data were clustered. Similarly,
satellite-based NDVI yielded moderate coefficients of determination for canopy width with raw
point data, and for canopy width, height, and TRV when the vines were clustered according to the
vigour. The proposed approach should facilitate the estimation of canopy characteristics in each area
of a field using a cost-effective, simple, and reliable technology, allowing variable rate application in
vineyards.

Keywords: vineyard; pesticide application; variable rate application; unmanned aerial vehicle;
satellite; nanosatellite

1. Introduction

The European Green Deal, recently launched by the European Commission [1], is de-
signed to deal with climate and environment-related challenges, attempting to develop
sustainable responses. Among the several topics included in the Green Deal, agricul-
tural activities and all aspects related to food production are addressed in the European
Farm to Fork Strategy to ensure a reasonable, healthy, and environment-friendly food
system. This strategy includes the impacting measures linked with the use of a plant pro-
tection product (PPP), given its negative effects on air and water quality, soil degradation,
food safety, and human health.

One of the most important challenges considered in the Farm to Fork strategy is the
objective to reduce the overall use and risk of chemical pesticides by 50% and the use of
more hazardous pesticides by 50% by 2030. This objective is particularly important for
orchard fruits and vineyards. Vineyards, while accounting for only 7% of the agricultural
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land area in the European Union consume 48% of the total active ingredients [2]. The crops
at fruit orchards and vineyards, similar to all ’three-dimensional’ (3D) crops, are charac-
terised by the variation in their canopy characteristics and the heterogeneity in a parcel [3],
making it difficult to achieve safe and optimal pesticide application.

The latest improvements in the available technology and its adaptation to these
types of crops have resulted in remarkable achievements in both the reduction in the
total amount of PPP and an increased control of the losses and, consequently, in the
reduction in environmental contamination. These advancements involved the use of
an accurate method to identify, characterise, and quantify the amount of pesticide to
be sprayed, which is considered as the most important factor related to the success of
the pesticide application process. Miranda-Fuentes et al. [4] demonstrated the effects of
different methods for crown characterisation in isolated olive trees on the obtained results,
concluding that irrespective of the selected method for canopy evaluation, some minimum
requirements in terms of accuracy must be ensured to apply the most suitable amount of
pesticide. Pesticide dose and dose expression were demonstrated as two factors affected by
the canopy characteristics of citrus plantations [5], showing that a large vegetation implies
major differences in the canopy deposition and coverage. Drift values in spray application
in apple plantations were also directly related to crop foliage characteristics [6], with a fully
foliated canopy resulting in a 25-times less drift than the one obtained in a dormant canopy
stage. A similar conclusion was drawn by Grella et al. [7], who showed that the crop
canopy structure plays a role in determining the drift values at both apple and vineyard
plantations, particularly focusing on the crop type, training system, and growth stage.

Canopy characterisation at fruit and vineyard plantations has been commonly dis-
cussed in recent years, with numerous proposed methodologies ranging from simple
manual processes [8,9] to those using sophisticated devices, such as LiDAR [4,10,11], ul-
trasonic sensors [12–14], unmanned aerial vehicles (UAVs) [15–17], and satellites [18–20].
The advantages and disadvantages of all methodologies have been probed, making it
difficult to select the most accurate one.

UAVs and satellite imagery, classified as remote sensing methodologies, have been
promoted in the last few years [21,22] as remarkable techniques for canopy characterisa-
tion. Differences in their management, accuracy, economical cost, and other important
factors have been extensively discussed, yielding various advantages and disadvantages—
directly related to the targeted crop and conditions—of both methods. Although satellite
image acquisition of large areas saves considerable time, it has a low and inadequate
resolution for precision viticulture [23,24]. The effectiveness of Sentinel-2 imagery and
high-resolution UAV aerial images was evaluated [25], concluding that the resolution of
the satellite imagery was insufficient for their direct use for describing vineyard variability.
In contrast, Di Gennaro et al. [26] demonstrated the effectiveness and high resolution of
Sentinel-2 imagery in the canopy characterisation process at vineyard plantations. Recent
advancements in UAV-related research have led to a wide range of UAV applications for
monitoring vineyard performance, such as rate of canopy development, canopy struc-
ture spatial variability, and disease incidence [27–31]. Similar to manned aircraft and
satellite-based remote sensing, UAVs are convenient in terms of simple flight preparation
and flexible operations [25], independently of their technical specifications (fixed-wing or
multirotor); however, they are more effective for small and medium-sized vineyards [32,33].
According to Ouyang et al. [34], the operational flexibility of UAVs allows the timely as-
sessment of canopy management outcomes, compared with manned aircraft and satellite
remote sensing.

The variable rate application (VRA) of a PPP in 3D crops represents an important
step forward in the sustainable use of pesticides, allowing accurate spray deposition and
reduction in the drift loss by adjusting the optimal amount of the PPP applied to the
canopy structure. This technology can be implemented using two different methods.
The first one is adjusting the working parameters of the spray process based on the canopy
characteristics measured ‘on the go’ using electronic devices [35–38]. The second is using
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previously generated canopy maps by manual or remote sensing measurements and their
transformation into prescription maps using dedicated tools [39–41]. The second option
based on canopy maps requires the implementation of an accurate process for canopy
characterisation, and its extension and implementation on a large scale in commercial
parcels are directly related to the degree of automation and ease of the process [42], being the
development of canopy maps the most influencing process.

There is a need to develop an automated method for canopy characterisation that
can consequently promote the implementation of the VRA process for sustainable PPP
management in vineyards. Other studies on canopy characterisation in orchards and fruit
crops have been conducted based on the use of the normalised differential vegetation
index (NDVI) as the main parameter obtained utilising remote sensing platforms and its
relationship with principal canopy dimensions [43].

The general objective of this research was to investigate the potential relationships
among manual field measurements and remote-sensing-based methods (UAVs and satellite
imagery) for canopy characterisation at commercial vineyard parcels. The following specific
objectives were addressed:

• To compare the fitting results of linear regression models between manual canopy charac-
terisation and both aerial platforms, considering different spatial and spectral resolutions.

• To investigate the effect of plant-by-plant versus clustered data on the precision and
accuracy of canopy characteristics determination.

• To propose the most successful method for obtaining reliable prescription maps to be
implemented in the VRA process.

2. Materials and Methods

2.1. Study Site

The research was conducted in the Alt Penedès region, one of the most impor-
tant wine production areas in Catalonia, Spain. A total of five commercial vineyards
(Table 1 and Figure 1) of four different varieties (Chardonnay, Merlot, Cabernet Sauvignon,
and Macabeu) were included in the study. Four plots (A–D) were located in Torrelavit
(Barcelona, Spain), and experiments were conducted in 2018 and 2019; the fifth plot (E) was
located in El Plà del Penedès (Barcelona, Spain) and was only used for data collection in
2018. All selected vineyards were trained in a double cordon spur pruning system with
green pruning when the shoot length exceeded 10 cm. All vines were in full production,
non-irrigated, and with ages ranging from 21 to 31 years. The terrain slope was 5–10%
for plots A–D and 0% for plot E. Furthermore, the soil was regularly harrowed to control
weeds in rows and under vines.

Table 1. Main characteristics of selected vineyard plots.

Plot Variety
Row

Spacing (m)
Vine

Spacing (m)
Area (ha) X Coord. (m) Y Coord. (m) Ref. System

A Chardonnay 2.2 1.2 2.35 392,194 4,587,999

ETRS 89
UTM31

B Merlot 2.2 1.2 2.97 392,234 4,587,843
C C. Sauvignon 2.2 1.2 1.53 391,856 4,588,055
D C. Sauvignon 2.2 1.2 3.14 391,744 4,588,107
E Macabeu 2.8 1.2 4.90 391,265 4,584,841
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Figure 1. Orthophotomaps of studied vineyard plots.

2.2. Field Sampling Design

To select a representative and unbiased subset of vines and conduct the field measure-
ments (sampling vines), a multi-stage (nested) systematic uniform random (SUR) sampling
design was established. This type of sampling is more efficient than simple random sam-
pling (with or without replacement), easy to implement, and particularly appropriate when
the population is heterogeneous [44,45]. SUR sampling allows distributing the sampling
locations uniformly over the entire surface of a plot, thus ensuring a known probability
of selection for the entire population [46,47]. To implement multi-stage SUR sampling
in each vineyard, a predefined set of sampling periods (m) was used to divide the entire
population based on its structure. In this study, vine period refers to the number of plants
between sampling vines, and row period is defined as the number of plants between the
rows sampled. At each level, every m-th unit in the population is selected, and the position
of the first sampling vine is chosen with a random start [44,46]. A random start is an integer
between 1 and m (Figure 2). The number of sampling vines per plot was selected based on
the characteristics of the plot (shape, area, length, orientation of rows, and vine spacing).
The characteristics of the SUR sampling for each plot are listed in Table 2.

Table 2. Characteristics of SUR sampling for each vineyard plot in 2018 and 2019.

Plot

2018 2019

Rnd.
Starting

Row

Rnd.
Starting

Vine

Row
Period

Vine
Period

Total
Samp.
Vines

Rnd.
Starting

Row

Rnd.
Starting

Vine

Row
Period

Vine
Period

Total
Samp.
Vines

A 3 6 5 30 70 2 10 5 30 72
B 2 17 7 35 50 3 7 7 35 52
C 3 6 4 35 34 2 10 5 30 32
D 5 20 7 25 56 3 4 7 25 58
E 3 8 9 23 68 - - - - -
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Figure 2. Scheme of SUR sampling used in plot A in 2018. Identification system for sampling vines in field.

Each sampling location consisted of a single vine (1.2 m canopy row assigned) and
was appropriately identified in each plot with a coloured tape to allow easy identification
in the field during the various seasons to maintain the sampling vines at the different
measurement dates. Furthermore, to identify the sampling locations subsequently from
aerial images, the selected vines were physically marked on the ground (between crop rows)
with two white lime marks (Figure 2) to identify the start and end of each sampled vine.

2.3. Manual Canopy Characterisation

Manual field measurements were conducted coincident with three different canopy
stages—beginning of flowering (BBCH 59), berries pea size (BBCH 75), and beginning of ripen-
ing (BBCH 81)—according to the BBCH monograph. The BBCH scale is a system for a
uniform coding of phenologically similar growth stages of all mono- and dicotyledonous
plant species [48].

Canopy characterisation for each of the sampling vines consisted of measuring the
most representative parameters (canopy height and width). Manual measurements were
conducted using a regular measuring tape following the EPPO standard [49]. Each measure-
ment included 95% of the canopy, excluding protruding branches [50]. In each sampling
vine, three measurements were performed by two different surveyors. The final value
was calculated from the average of the corresponding six measurements per vine. Subse-
quently, the leaf wall area (LWA) [51] and tree row volume (TRV) [50,52,53] were calculated,
being the officially recognised parameters for pesticide dose expression [49].

2.4. Aerial Platforms and Multispectral Sensors Used
2.4.1. UAV-Based Image Acquisition

This section presents the methodology for collecting and processing the images cap-
tured using a UAV as proposed by Campos et al. [17,42]. A UAV hexacopter (model:
CondorBeta, Dronetools SL, Sevilla, Spain) loaded with a multispectral camera (model:
RedEdge, Micasense, Seattle, WA, USA) flew over the vineyards. The camera was equipped
with five spectral bands: red (R) centred at 668 nm with a bandwidth of 10 nm, green (G)
centred at 560 nm with a bandwidth of 20 nm, blue (B) centred at 475 nm with a bandwidth
of 20 nm, red edge (RE) centred at 717 nm with a bandwidth of 10 nm, and near-infrared
(NIR) centred at 840 nm with a bandwidth of 40 nm. Focal length was 5.5 mm and sensor
resolution 1280 × 960 pixels (width × height).

Flights were conducted 95 m above ground level at a cruise flight speed of 6 m s−1.
Overlapping zones were adjusted to 80% in the flight sense and 60% in the transverse
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sense. Flights were executed on the same dates and crop stages as described for manual
canopy characterisation.

From the spectral images obtained using the Micasense RedEdge, an orthophotomap
with a ground sample distance of 6.48 cm pixel−1 was obtained. Agisoft Metashape
(Agisoft LLC, St. Petersburg, Russia) was the software used for photogrammetric processes.
Each orthophotomap was radiometrically calibrated using calibration plates as greyscale
standards (22%, 32%, 44%, and 51% reflectance), which were placed close to the area
where the UAV took off and landed. These plates were placed on the ground inside the
vineyard with the objective of ensuring several frames in which the both the vine canopy
and the reflectance standards are present together as the UAV flies over the defined area.
From each spectral band, the 12-bit digital value in each calibration panel was extracted.
A power function was used to transform each pixel in the image to its corresponding
reflectance value for each of the orthophotomaps. Georeferencing of the five mosaics
resulting from each spectral band of the multispectral sensor was performed using fixed
ground control points in the study area. The position of the natural ground control points
was accurately recorded using a global navigation satellite system with real-time kinematic
(RTK) correction (model: GPS1200+, Leica Geosystems AG., Heerbrugg, Switzerland).
This georeferencing process was conducted only during the first flight (BBCH 65) in each
season. For the remaining flights (BBCH 75 and 81), the same ground control points were
maintained. The photogrammetric calculation process yielded an RMSE of 18.62 cm.

2.4.2. Satellite-Based Image Acquisition

Satellite-based images were obtained from PlanetScope (PS), a commercial constel-
lation of nanosatellites consisting of more than 130 triple CubeSat miniature satellites
(<5 kg) called as Dove (Planet Labs Inc., San Francisco, CA, USA). Although PS operates
under a commercial license, many of its products are open-access for research purposes.
Dove satellites are equipped with a line scanner imaging sensor with four spectral bands
in the blue (455–515 nm), green (500–590 nm), red (590–670 nm), and NIR (780–860 nm)
regions, providing high-resolution imagery (3 m spatial resolution) with an approximately
daily revisit time. Cloud-free, orthorectified, and scaled top of atmosphere radiance level
3B images [54] were acquired from the study areas in 2018 and 2019 to maximally match
the dates of manual canopy characterisation to allow comparison of the two methods.
Each image from PS covered approximately 192 km2, and one single frame captured the
entire study area on each acquisition date.

2.5. Image Analysis
2.5.1. Canopy Vigour Map Generation

For the UAV-based imagery, the process followed by Campos et al. was utilised [17,42].
The first step for image analysis was the calculation of a vegetation index that expresses
the vigour of the vines at each stage of the growth season. Several indices were considered,
but given its extensive knowledge among viticulturists, and the considerable literature
existing characterizing vineyards by the NDVI [17–19,22,25], it was finally chosen for this
research. The NDVI [55] has been proven to be closely correlated to biomass development
and crop stress [56–58]. The NDVI was calculated as a combination of the R and NIR bands
(Equation (1)) (Figure 3b):

NDVI =
NIR − R
NIR + R

(1)

As the vineyards were planted in rows, vineyard-only pixels were segmented from
an image by applying an NDVI threshold to eliminate the undesired elements, such as
weeds, shadows, and soil. In all flights, the NDVI threshold was changed and established
manually based on a visual inspection of the image. The pixels below and above the
selected threshold were considered noise and classified as a ‘0′ and considered vineyard
pixels and coded as ‘1’, respectively. The result was a binary mask image containing
vineyard-only pixels (Figure 3c).
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Combining the original NDVI images and the vineyard-only masks, the vineyard
rows were masked out. In the corresponding newly created images, the non-canopy pix-
els became ‘0‘, whereas the vineyard canopy pixels retained their original NDVI value
(Figure 3d). Subsequently, an inverse distance weighting interpolation was performed to
generate a continuous NDVI map (Figure 3e), which was finally classified into homoge-
neous vigour areas.

Figure 3. Analysis of workflow to obtain clustered vigour maps: (a) radiometrically calibrated multiband image, (b) NDVI
image, (c) binary mask of vineyard-only pixels, (d) NDVI vineyard-only pixels, (e) continuous NDVI map, (f) clustered
vigour map (red: low vigour, yellow: medium vigour, green: high vigour).

Finally, for classification purposes, the interpolated NDVI images were divided into
quintiles (P20, P40, P60, and P80). NDVI values lower than P20, between P20 and P80,
and higher than P80 were categorised as low, medium, and high vigour, respectively.
This resulted in a three-class vigour level (high, medium, and low) (Figure 3f). The above-
mentioned entire process is illustrated in Figure 3.

A similar approach was followed in the case of satellite imagery, where the NDVI
was calculated using bands 3 (red) and 4 (NIR) from the four-band product delivered
by PS (Equation (1)). Because of the low spatial resolution (pixel size was larger than
the distance between the vineyard rows), segmentation between the canopy and the
background elements (weeds, shadows, and soil) was not possible. The raw NDVI images
were classified into three vigour levels (high, medium, and low) following the quintile
rules previously explained.

2.5.2. Extraction of Information of Sampling Vines

The manually measured vines had to be identified in each orthophotomap. Therefore,
a multiband RGB image was generated for each plot and flying date to enhance the
visualisation of the white lime marks defining the beginning and ending of each sampling
vine. A rectangular polygon guided by both lime marks (Figure 4a) was manually generated
using QGIS software [59]. Combining the only-vineyard pixel mask (Figure 4b) with the
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polygon layer of each sampling vine, the mask was clipped, keeping only the pixels (logic
0 and 1) within the rectangles of interest (Figure 4c). Finally, a polygonisation process was
performed to obtain the sampling vine-only polygon contours (Figure 4d).

 

Figure 4. Overview of entire process from lime marks in ground to obtain sampling vine-only polygon contours: (a) polygons
defining sampling vines, (b) binary mask, (c) sampling vine binary mask, (d) sampling vine-only polygon contours.

From each sampling vine, the following information was obtained:

• Raw NDVI mean: It was calculated as the mean of all pixels contained inside the
sampling vine-only polygon contour. It was obtained for the UAV-based imagery
(NDVID) and satellite-based imagery (NDVIS).

• Clustered vigour: Each sampling vine was assigned to a vigour class (high, medium,
and low vigour) based on the three zones previously defined. This information
was obtained as a categorical variable. It was determined for UAV-based imagery
(C_vigourD) and satellite-based imagery (C_vigourS).

• Polygon-projected area (Prj_areaD): To calculate the projected area of each sampling
vine, the area of each polygon contour defining the vines was calculated using the field
calculator tool in QGIS software [59]. This variable was calculated only for UAV-based
imagery because the canopy and background in satellite-based imagery could not
be segmented.

• Sampling category (Edge_pnt): Based on the geographic coordinates (ETRS89 UTM31),
each sampling vine was classified as an edge point depending on its position in the
plot. The sampling vines located within the inner buffer of 3 m from the plot border
were considered as edge points. This information was obtained as a categorical
variable (YES/NO).

2.6. Data Management

To conduct the planned comparisons of the different methods, an organised database was
generated. Additionally, following Campos et al. [17], a new variable (NDVID × Prj_areaD)
was introduced in the database, which was obtained by combining the NDVID and the
Prj_areaD. Table 3 lists the variables included in the database.

102



Sensors 2021, 21, 2363

Table 3. Database fields.

Database Variables Units Type of Acquisition Type of Data Example of Data

Plot - Categorical A
Vineyard variety - Categorical Chardonnay

Year - Categorical 2019
BBCH - Categorical 75

Sampling vine - Numerical 35
NDVID UAV Numerical 0.72

C_vigorD UAV Categorical Medium
Prj_areaD m2 UAV Numerical 0.17

NDVID × Prj_areaD UAV Numerical 0.12
HM m Manual Numerical 0.78
WM m Manual Numerical 0.33

LWAM m2 ha−1 Manual Numerical 7090.91
TRVM m3 ha−1 Manual Numerical 1170.00
NDVIS Satellite Numerical 0.54

C_vigorS Satellite Categorical Medium
Edje_pnt Satellite Categorical NO

Following the database generation, Spearman’s rank correlation [60] analysis was
executed to determine the relationship between remote sensing-based information and
canopy structural measurements performed in the field. The remote-sensing-based variable
that correlated (higher Spearman’s ρ) the most with any of the canopy characteristics
manually obtained was further selected for a deeper analysis. It is important to note that
in the case of satellite imagery data, the statistical analysis was performed considering
two different scenarios. In the first scenario, all the points were included regardless of their
classification as edge points. The second scenario only considered data points that were
not at the edge of the field plots. In the case of UAV-based imagery, where single vines can
be clearly detected, the above process was not required.

The datasets of both remote sensing platforms were analysed following two different
scenarios: considering every single data point as an individual value and using an aggrega-
tion (clusters) mode. The first evaluation of the obtained data was conducted considering
the raw values for all single data points generated by the three different measurement
procedures (UAV, satellite, and manual measurements), hereafter referred as single point
data (SPD) analysis. For every single point identified, the ground-measured and remote-
sensing-estimated canopy parameters were evaluated, and the potential relationships were
analysed. This first proposed evaluation method allowed to a pixel-based conversion
of the NDVI to any canopy parameter measured for every evaluated canopy stage and
every single parcel. The remarkable discontinuity in the contiguous pixels in the maps
generated from the raw pixel values (Figure 3e) is a technical limitation for the VRA of the
inputs. A common technique used to solve this problem is to classify the raw values into a
determined number of zones or clusters, which are treated as homogeneous management
areas (Figure 3f). Furthermore, the main purpose of this research was the development
of practical and useful canopy maps for the VRA of pesticides. Considering the above,
the relationships among the averages of the canopy height, width, TRV, and LWA and
the average remote sensing-based vegetation indices for all three different zones in every
parcel classified as low, medium, and high canopy vigour zones were analysed (Figure 3f).
This analysis is referred as aggregated data (AD) analysis.

Statistical analysis of all involved parameters and both proposed methods was per-
formed to determine the potential application of linear regression. In all cases, a detailed
comparison of each pair of variables was performed to obtain the most suitable linear
regression model. To ensure the normality assumption, the variables were Ln-transformed.
If normality was not satisfied, the linear model was rejected. This process was executed
using the RStudio software [61].
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3. Results

3.1. General View of Measured Parameters

The main descriptive statistical parameters obtained in the canopy characterisation
are shown in Figures 5 and 6. The results obtained after the manual measurements (canopy
height and canopy width) and the corresponding calculated parameters (TRV and LWA)
present a logical development process of the canopy with the season variation (Figure 5).
Based on the data, compared to starting point BBCH 59, the canopy dimensions increased
by 1.5 times up to BBCH 75. This increase was due to the rapid growth rate of the
green structures occurring between bud burst and the end of flowering under normal
climatic conditions. After BBCH 75, stabilisation of the canopy development was observed,
and the main parameters were maintained at similar levels. The results obtained using
the two aerial platforms (UAV and satellite) exhibit differences (Figure 6). At all canopy
stages, the NDVI statistical ranges (difference between the maximum and minimum values)
obtained with the UAV were wider than those obtained using the satellites. Amplitudes
of 0.38, 0.35, and 0.61 were obtained using the UAV in the first, second, and third canopy
stages, respectively, whereas the corresponding amplitudes determined using the satellites
were 0.1, 0.34, and 0.27, respectively.

Figure 5. Box plots of principal descriptive statistical parameters for manual measurements. • mean values.
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Figure 6. Box plots of principal descriptive statistical parameters for remote sensing variables. • mean values.

3.2. Manual Data vs. UAV Variables
3.2.1. Data Correlation

To determine the spectral parameter with the most suitable correlation with any
vegetative parameter (canopy height, width, TRV, or LWA), Spearman rho values were
analysed. Table 4 summarises Spearman’s rho correlation matrix for the UAV variables.

Table 4. Spearman’s rho correlation matrix for variables obtained using UAV.

(1) (2) (3) (4) (5) (6) (7)

(1). NDVID 1
(2). Prj_areaD 0.44 1
(3). NDVID × Prj_areaD 0.66 0.95 1
(4). HM 0.47 0.84 0.82 1
(5). WM 0.45 0.83 0.81 0.81 1
(6). LWAM 0.62 0.75 0.79 0.96 0.71 1
(7). TRVM 0.53 0.86 0.86 0.95 0.92 0.91 1

The correlation values of the four canopy parameters and the NDVI ranged from 0.45
to 0.62, and those of the projected area were larger, ranging from 0.75 to 0.86. Additionally,
NDVID × Prj_AreaD was also compared with the canopy characteristics, and the obtained
values ranged from 0.79 to 0.86.

An in-depth analysis of only the best correlated parameters in Table 4 indicates that
the TRV is the most remarkable canopy parameter in terms of the correlation with the
information obtained using the UAV. The projected area (Prj_AreaD) and the combination
of the NDVI and the projected area (NDVID × Prj_AreaD) are the two most remarkable
parameters compared to the TRV, with a rho value of 0.86 in both cases, suggesting that both
are strong correlations [62]. Additionally, the UAV-based extraction of the projected area
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(Prj_AreaD) is very strongly correlated with the canopy width (rho value of 0.83). This can
be expected because the projected area varies owing to the changes in the vegetation
width while maintaining the canopy length equal to the plantation distance. However,
this parameter still presents a very strong correlation [62] with the canopy height (rho
value of 0.84). Similar results are obtained with NDVID × Prj_AreaD, exhibiting strong
correlations with the canopy height and width (rho values of 0.82 and 0.81, respectively).
The previous analysis and the main objective of this research, i.e., to determine the most
remarkable relationships among the spectral parameters obtained using aerial platforms
and canopy characterisation values, are considered. Accordingly, NDVID × Prj_AreaD is
found as the most remarkable parameter. Therefore, in the following sections, detailed
analysis and evaluation of this relationship are presented.

3.2.2. Linear Regression Model

Considering the SPD dataset, the linear regression models between NDVID × Prj_AreaD
and all manually measured parameters describing the canopy characteristics (canopy
height, canopy width, LWA, and TRV) were evaluated. The data were Ln-transformed
to ensure the normality assumption for the residues. The only variable that followed
this normality assumption and yielded suitable residual plots for the model (p > 0.05 in
the Kolmogorov–Smirnov test) was the TRV (Figure 7). Considering the results obtained
after normality evaluation, for the remainder evaluated variables (canopy height, canopy
width, and LWA), the intended linear regression models were rejected (p < 0.05 in the
Kolmogorov–Smirnov test).

Figure 7. Linear regression model (R2 = 0.77, p < 0.001) evaluating relationship between Ln TRVM and Ln NDVID ×
Prj_areaD. Grey band shows 95% confidence interval.

When the normality evaluation was performed using the AD dataset, all studied vari-
ables (canopy height, canopy width, LWA, and TRV) followed the normality assumption of
the residues (p > 0.05 in the Kolmogorov–Smirnov test). The linear regression models built
as combinations of NDVID × Prj_AreaD and all manually measured parameters describing
the canopy characteristics yielded high coefficients of determination: R2 of 0.93 for the
canopy height, 0.84 for the canopy width, 0.91 for the LWA, and 0.94 for the TRV (Figure 8).
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Figure 8. Linear regression models evaluating relationship among Ln NDVID x Prj_areaD and transformed canopy structural
parameters (Ln HM, Ln WM, Ln LWAM, and Ln TRVM). Grey bands present 95% confidence interval.

As shown in Figure 8, when the data are grouped by vigour zones, the correlation
values among all analysed variables are improved. Therefore, considering the potential
use of this technique for the implementation of the VRA process, the model shown in
Figure 8 seems the most appropriate for determining the optimal volume rate considering
the canopy characteristics [8,41].

3.3. Manual Data vs. Satellite Variables
3.3.1. Data Correlation

To evaluate the correlations between the NDVIS and all vegetative parameters manu-
ally obtained (canopy height, canopy width, LWA, or TRV), Spearman’s rho correlation
matrices were analysed in the case of the satellite dataset. The results of the Spearman’s
rho values of the satellite variables, considering or rejecting the edge points, are listed in
Table 5.

Table 5. Spearman’s rho values for variables obtained using satellite imagery considering and
rejecting edge points.

HM WM LWAM TRVM

NDVIS considering edge points 0.49 0.52 0.40 0.52
NDVIS rejecting edge points 0.66 0.67 0.57 0.68

Based on the results summarised in Table 5, the spectral values are affected by the
border effect. The pixels located close to the edge of a parcel seem to be contaminated
by adjacent elements (mainly roads), reducing the spectral value of the pixels. However,
the border effect did not impact the manually measured structural parameters of the canopy.
Consequently, the spectral values obtained using the satellite imagery present a certain
border effect; thus, an in-depth data analysis was conducted without edge points.
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Considering similar relationships among the NDVIS and the evaluated structural
parameters (Table 5), all variables were included in the following linear regression analysis.

3.3.2. Linear Regression Model

Considering the SPD dataset, the linear regression models between the NDVIS and
all manually measured parameters describing the canopy characteristics were evaluated.
The data were Ln-transformed to ensure the normality assumption of the residues. The only
variable that followed this normality assumption and showed suitable residual plots for
the model (p > 0.05 in the Kolmogorov–Smirnov test) was the canopy width (Figure 9).
Based on the results of the normality evaluation, for the remainder evaluated variables
(canopy height, LWA, and TRV), the planned linear regression models were excluded
(p < 0.05 in the Kolmogorov–Smirnov test).

Figure 9. Linear regression model (R2 = 0.46, p < 0.001) evaluating relationship between Ln WM and Ln NDVIS. Grey band
shows 95% confidence interval.

However, when the satellite data were clustered (i.e., ADA) and the same data anal-
ysis was performed, the variables following the normality assumption of the residues
(p > 0.05 in the Kolmogorov–Smirnov test) were the canopy height, canopy width, and TRV.
For the LWA, the regression model was rejected because the normality assumption was
not achieved (p < 0.05 in the Kolmogorov–Smirnov test). The linear regression models
built as combinations of the NDVIS and height, width, and TRV yielded coefficients of
determination R2 of 0.48 for the canopy height, 0.51 for the canopy width, and 0.50 for the
TRV (Figure 10).
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Figure 10. Linear regression models evaluating relationships among Ln NDVIS and transformed canopy structural
parameters (Ln HM, Ln WM, and Ln TRVM). Grey bands present 95% confidence interval.

4. Discussion

The three methods used to measure and characterise vine development during the
season are proven to detect the different patterns associated with the vegetation growth,
as observed in Figures 5 and 6. From BBCH 59 to BBCH 75, a relevant increase in the
parameters is detected, coinciding with the rapid shoot growth of the vines in the first
stages of development. This was also observed in other studies in various crops and using
different spectral sensors, such as Sentinel 2, Landsat, and RapidEye [58,63–66]. Around
BBCH 75, the vine structure and the canopy architecture are modified by several manage-
ment operations (i.e., shoot positioning, trimming, hedging, and leaf thinning) to maintain
vegetative and fruiting balance. Consequently, there are no observable differences between
BBCH 75 and BBCH 81 in the parameters assessing the canopy structure. This suggests
that an alternative time for data capture can be used to better describe the rapid changes
in the vegetation in the first stages after the first leaves unfold. Starting from BBCH 59,
a second measurement around the end of flowering (BBCH 69) can represent the evolution
of the canopy structure more realistically. In comparison, a single measurement after BBCH
75 is sufficient to point out the characteristics of the vegetation until harvesting. The latter
is also confirmed when the sample distribution around the regression lines is analysed
(Figures 7 and 8), with a clear cluster of data points corresponding to advanced develop-
ment stages (high values of the canopy height, width, LWA, and TRV). In comparison,
there is a lack of points in the lower end of the x and y axes in all plots. The effect of the
forcing canopy architecture in the vineyard was also observed in the temporal evolution of
the LWA obtained from the field measurements in BBCH 60, 61, 69, 75, 77, 79, and 81 [42].

Remote sensing data acquired using UAV and satellite platforms were used to expedite
the canopy characterisation process, which is a key procedure when determining rational
PPP doses and application volumes adapted to the canopy status. However, the accuracy
differed between the platforms as well as between the raw and clustered data point analysis.

First, when comparing the linear regression models, a better fitting (higher coefficient
of determination) was obtained with the UAV-based data than when using the satellite
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information. It is also remarkable to note that at least one of the four measured variables
(canopy height, canopy width, LWA, and TRV) showed significant linear regression with
the remotely sensed data of both aerial platforms. UAV-based NDVI × ProjAreaD yielded
considerably high coefficients of determination above 0.84, which presents a new area of
development for UAV technology as a tool for canopy characterisation to enable VRA prin-
ciples. Other studies using high-resolution NDVI maps have found significant differences
between vines belonging to different vigour classes [42,65,67]; however, none of them have
related or modelled the structural characteristics of vines and the NDVI values in viticul-
ture. Ampatzidis et al. [43] obtained a strong relationship (R2 = 0.65) between the canopy
height and the NDVI from a UAV survey of citrus groves, which have a more complex
structure than vertical shoot positioned-trained vines. Satellite-based results presented
significant relationships (p < 0.001) with the canopy height, canopy width, and TRV with
coefficients of determination of approximately 0.45, reflecting the importance of ensuring
sufficient spatial, spectral, and temporal resolution to reduce noise in the data. In line
with this, when comparing the NDVI values from both platforms, a clear difference be-
tween the NDVI statistical ranges (difference between the highest and lowest values) was
found when using UAV-based data (0.38, 0.35, and 0.61) and satellite-based data (0.1, 0.34,
and 0.27, respectively). These differences were caused by the differences in the sensor
spectral characteristics, spatial resolution (from a few centimetres to several meters per
pixel), and spectral mixing. UAV-based imagery allows canopy segmentation and partially
removes vegetation, soil, and shadow spectral mixing at the pixel level [33,58]. This dis-
crimination is impossible when using imagery at 3 m × pixel−1, causing a diminishing
effect on the NDVIs from vines as compared to the pure canopy spectral signals acquired
from the high-resolution UAV-based images. Matese et al. [33] and Gatti et al. [65] found
similar results using RapidEye satellite with a 5 m × pixel−1 spatial resolution (NDVI
statistical ranges of 0.15 and 0.13, respectively) due to the important spectral mixing effects.
Devaux et al. [66] used temporal NDVI information from Sentinel 2 satellite imagery to
track vineyard growth during the season, which provided a methodology to determine
the approximate dates for conducting vine structure management operations. Similarly,
some consistency is found with other published results when comparing the maximum
level reached by satellite-based NDVIs in the period of maximum vegetation development
(July in the Northern Hemisphere). Based on the data in Figure 6, the average NDVI value
for the satellite-based data is 0.27, with a maximum of 0.47. This is comparable with the
per plot average NDVI reported by Devaux et al. [66] (0.4) and Gatti et al. [65] (0.44) in
vineyards trained in vertical shoot positioning and grown without cover crop. Moreover,
using Sentinel 2 imagery at 10 m × pixel−1 spatial resolution, NDVI values of 0.5 were
reported by the above studies as well as by Johnson et al. [18,68]. Discrepancies between
the NDVI values can be attributed to the differences in the technical specifications of the
radiometric sensors used in the studies and the variation in the crop management and
geographic area considered. Another important effect related to the spatial resolution of
remote sensing platforms that must be considered is the ability to characterise crops in the
early stages of a season when the shoot length ranges from 10 to 30 cm but the canopy
density is minimal. Satellite-based imagery includes a higher proportion of unwanted
elements per pixel than the area occupied by the vine canopy and require a minimum shoot
and leaf development for remote assessment, as observed in the data point dispersion in
Figures 9 and 10. The border effect on the spectral images was detected as another factor
related to the spatial resolution of the platform. Pixels close to the border zones in a parcel
are considerably affected by the adjacent pixels belonging to the intended zone (mainly
roads), reducing the estimated NDVI values. This fact becomes more important as the
spatial resolution of the platform is increased and thus is much more important in the case
of satellites than in the case of UAVs [69].

Second, a comparison of the raw point data (SPD) and clustered data (AD) demon-
strated that, in general, an improvement was achieved when the samples were analysed in
terms of averages based on the vigour class in the field. Although this method limited the
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possibility of converting a grid image into a canopy characteristic grid map (cell-by-cell),
it was reliable for characterising classified maps into the three classes. From a practical
perspective, this is in alignment with the method by which remote sensing companies
offer canopy maps. Specifically, they perform post-processing of raw NDVI maps to yield
management maps with filtered and homogeneous areas, which facilitates prescription
management. Concurrently, when performing spraying applications in the variable rate
mode, the machine has to change the pressure and the nozzle flow rate depending on
the prescription area where it is located at each moment. Volume rate prescription areas
should ensure a minimum size to avoid continuous changes in the sprayer’s operational
parameters, and this is well achieved when prescription maps are clustered into two or
three categories.

5. Conclusions

This study focuses on the development of linear regression models to predict the
structural characteristics of vegetation in vineyards using aerial remote sensing. Using a
rapid and cost-effective technology to monitor a canopy on a high temporal and spatial
basis is key to estimate the changes in the canopy volume and density and to adapt the
PPP dose with increased rationality and sustainability.

The developed methodology achieved robust characterisation (R2 higher than 0.84
in all cases) of the TRV, LWA, canopy height, and canopy width using the vegetation
indices obtained from UAV images when the remote sensing data were classified into three
vigour classes. This enables a reliable determination of the canopy characteristics, allowing
the generation of PPP prescription maps defining the different vigour zones, which can
be completely adapted for implementation of the VRA process [17,42]. The practical
applicability of the proposed methodology is limited by the number of available maps
along the season, encountered difficulties and long time required to generate the canopy
vigour maps, and high price of UAV services in comparison with satellite-based options.

Satellite technology was investigated to overcome these limitations. Experiments
yielded statistically significant linear relationships (R2 > 0.48 in all cases) between the
NDVI and the canopy parameters (TRV, canopy height, and canopy width). These results,
together with the higher temporal resolution and lower prices compared to those of UAVs,
suggested the potential benefits of using satellite-based imagery for the VRA process based
on zonal vigour variability.

Irrespective of the aerial platform evaluated (UAV or satellite) and considering the
final objective of a practical implementation of the VRA of a PPP, the benefits of AD
management compared with SPD evaluation were demonstrated. Pesticide distribution
based on canopy vigour zones [17,70] will allow significant reduction in the use of a PPP,
which is in alignment with the recently published Farm to Fork strategy [71].

Thus, future studies should focus on improving canopy characterisation considering
the pixel size of satellite imagery, adaptation of field measurements for validation, and full
automation of the entire process.
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Abstract: Various remote sensing data have been successfully applied to monitor crop vegetation
parameters for different crop types. Those successful applications mostly focused on one sensor
system or a single crop type. This study compares how two different sensor data (spaceborne multi-
spectral vs unmanned aerial vehicle borne hyperspectral) can estimate crop vegetation parameters
from three monsoon crops in tropical regions: finger millet, maize, and lablab. The study was
conducted in two experimental field layouts (irrigated and rainfed) in Bengaluru, India, over the
primary agricultural season in 2018. Each experiment contained n = 4 replicates of three crops with
three different nitrogen fertiliser treatments. Two regression algorithms were employed to estimate
three crop vegetation parameters: leaf area index, leaf chlorophyll concentration, and canopy water
content. Overall, no clear pattern emerged of whether multispectral or hyperspectral data is superior
for crop vegetation parameter estimation: hyperspectral data showed better estimation accuracy for
finger millet vegetation parameters, while multispectral data indicated better results for maize and
lablab vegetation parameter estimation. This study’s outcome revealed the potential of two remote
sensing platforms and spectral data for monitoring monsoon crops also provide insight for future
studies in selecting the optimal remote sensing spectral data for monsoon crop parameter estimation.

Keywords: monsoon crops; leaf area index; leaf chlorophyll concentration; crop water content;
multispectral; hyperspectral

1. Introduction

The global cropland area is predicted to decline by 1.8–2.4% by 2030 due to conversion
of arable croplands to mostly built-up landcover, and 80% of this land cover change is
expected to occur in Asia and Africa [1]. Bengaluru is one of the megacities (over 10 million
population) in southern India [2], which has already lost 62% of the vegetated area, while
the urban area increased by 125% between 2001 and 2011 [3]. Agricultural production has
intensified (i.e., high nitrogen (N) fertiliser usage, drip irrigation), and the cropping pattern
has changed to meet the increasing food demand for the growing population. Between
2006 and 2012, the cropping pattern in Bengaluru changed from high water use paddy
cultivation to dry land cereals and pulses (e.g., maize, finger millet, lablab). According to
the state-level statistics, maize and finger millet crop yield increased by 4 to 6% annually,
while pulse yield (including lablab) soared by 15% [4].

Increasing crop production using available arable lands while sustainably managing
resources (e.g., water, soil) and reducing climate change is challenging [5]. Thus, near-
real-time crop status monitoring could be a way forward to manage available resources
and reduce inputs (i.e., precision agriculture). However, crop monitoring approaches
need to be adapted to distinct crop types, in different growth stages (phenology), and
under different agricultural practices. Remote sensing (RS) is one of the primary tools for
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crop monitoring [6]. RS facilitates contactless data collection over a given crop area using
reflected electromagnetic energy, enabling the characterisation of an area′s spatiotemporal
information. The development of RS data collection and analysis techniques helps to
achieve accurate models to estimate crop parameters.

Various sensor platforms (i.e., terrestrial, airborne, and spaceborne) have been em-
ployed to collect data about cropping areas and estimate crop growth and health parameters
through different modelling approaches [7]. Generally, the reflected electromagnetic en-
ergy from the plant changes according to the physiological and the structural condition
of crops and the surrounding environment [8]. Both multi- and hyperspectral sensors
have been utilised from different platforms to capture these varying reflected energies.
Hyperspectral sensors capture reflected energy at many narrow spectral bands (usually
more than 30 bands). In comparison, multispectral sensor data contains fewer spectral
bands with larger bandwidth [9]. Due to the higher spectral sensitivity of the hyperspectral
data, there is a significant potential to capture a wider variety of different physiological and
structural crop traits [8]. To make the clear comparison of the spectral resolution difference
of the RS data for crop trait estimation, it is necessary to obtain RS data with similar spatial
resolution. However, most studies which compared the spectral resolution sensitivity
(hyperspectral vs. multispectral) for crop trait estimation were based on different spatial
resolution; for example [10] employed field spectroscopy data as hyperspectral data with
point observation and satellite data as multispectral data with 10 m spatial resolution for
estimation of maize crop traits.

Empirical (statistical) models (both parametric and non-parametric) or physical mod-
els (e.g., radiative transfer model inversion) have been employed to estimate crop pa-
rameters using spectral data [11]. The empirical models inspect the association between
in-situ measured target crop vegetation parameter and spectral reflectance data collected
from RS. The reflectance data or their transformations (e.g., first derivative) or vegetation
index (VI) developed from many wavebands were the inputs for the empirical models. A
linear regression model is one of the standard parametric empirical modelling methods
which estimates crop traits by utilising single waveband reflectance data or VI data as
input [12]. In contrast, all—or only the essential—waveband reflectance data (original and
transformed) and a multitude of VI data can be used as inputs for non-parametric empirical
modelling with, e.g., machine learning methods (i.e., random forest, Gaussian process) [13].
Since both parametric and non-parametric models are data driven methods, a comparison
of these methods for estimation of crop traits using RS spectral data can always provide
capabilities of different modelling methods [14].

Many crop vegetation parameters that indicate growth and health status have been
estimated using RS spectral data, e.g., leaf area index (LAI), leaf chlorophyll content (LCC),
and canopy water content (CWC) [7]. LAI (m2/m2) is the leaf area per unit ground area,
an essential plant biophysical variable to understand growth, health, and yield [15]. When
considering other photosynthetically-active plant parts besides the leaves, it is called the
green area index or plant area index [8]. Crop LAI estimation using RS reflectance data
and empirical modelling approaches (both parametric and non-parametric) have shown
promising results, but also considerable variation in prediction quality (coefficient of
determination (R2) ranges from 0.36 to 0.97) [16].

The LCC (both chlorophyll a and b) is a crop biochemical indicator for photosynthetic
capacity, environmental stress, and N status of leaves [17,18]. LCC (μg/cm2) is referred to
as leaf-level quantification, while the multiplication of LCC with LAI is considered canopy
chlorophyll content (CCC-g/cm2). Spectral reflectance from the green to near-infrared
region shows a strong relationship with LCC values [8]. According to available literature,
LCC can be estimated with a maximum relative error of less than 20% from both multi-
and hyperspectral sensors [19,20].

Quantification of CWC (g/m2) attempts to identify crop water stress by estimating
the quantity of water per unit area of the ground surface [21]. Water absorption regions
(970 nm and 1200 nm) of the spectral reflectance data have been employed to estimate
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CWC using RS spectral data [21–23]. However, few studies were able to accurately es-
timate (R2 > 0.7) maize crop CWC using linear regression models with VI derived from
wavebands from the green, red-edge and near-infrared regions [24,25]. Conversely, the
crop CWC has not yet been estimated using full spectral data to uncover the full potential
of hyperspectral information.

Successful estimation of crop vegetation parameters with RS spectral data has been
demonstrated for various crop types such as wheat, rice, barley, and maize [7,26,27].
However, RS data application has not been examined for crops like finger millet and lablab,
which are major monsoon crops in the tropical region (e.g., Bengaluru, Southern India).
Furthermore, few studies have compared different remote sensing platforms (e.g., in-situ
vs airborne vs spaceborne) and sensors (multispectral vs hyperspectral) for crop vegetation
parameters estimation [16,28]. Thus, this study sought to fill the identified research and
knowledge gap for RS for monsoon crop monitoring. The primary objective of this study
is to evaluate two different RS spectral data types (420–970 nm) with a similar spatial
resolution (~1 m), namely spaceborne multispectral (WorldView3–8 bands) and unmanned
aerial vehicle (UAV) borne hyperspectral (Cubert–126 bands) for estimating three crop
vegetation parameters (LAI, LCC, and CWC) from three crop types (finger millet, maize,
and lablab) under different agricultural treatments (irrigation and fertiliser). The specific
sub-objectives of this study were:

• To build crop-specific parametric and non-parametric models to estimate crop vegeta-
tion parameters

• To evaluate the developed vegetation parameter estimation models against (a) the
spectral sensitivity of the RS data (multispectral vs hyperspectral), (b) modelling
method (parametric and non-parametric), and (c) crop type (finger millet, maize, and
lablab)

• To explore how crop-wise vegetation parameter estimation is affected by agricultural
treatment (irrigation and fertiliser)

2. Materials and Methods

2.1. Study Site and Experimental Design

This study was performed in an experimental station on the premises of the Uni-
versity of Agricultural Science (UAS), Bengaluru, Karnataka state, India (12◦58′20.79” N,
77◦34′50.31” E, 920 m.a.s.l). The climate of the study area is a tropical savanna climate with
29.2 ◦C mean annual temperature. The south-west monsoon rain between June to October
contributes substantially to the mean total annual rainfall of 923 mm. The dominant soil
types in the area are Kandic Paleustalfs and Dystric Nitisols.

Two experimental layouts were established with two water treatments: drip irrigated
(I) (controlled according to available precipitation), and rainfed (R) (Figure 1). The experi-
ment was conducted in the 2018 Kharif season (July–October). In each experimental layout,
four repetitions of finger millet (Eleusine coracana L.) (cultivar ML-365), maize (Zea mays
L.) (cultivar NAH1137), and lablab (Lablab purpureus L.) (cultivar HA3) were cultivated
with three different N fertiliser treatments (low, medium, and high) (36 blocks within one
experimental layout). At the high fertiliser level, the recommended dosage of N fertiliser
(50 kg N ha−1, 150 kg N ha−1, and 25 kg N ha−1, respectively, for finger millet, maize and
lablab) was applied. A reduced amount was applied at medium fertiliser treatment (58%,
56%, and 53% of the recommended N dosage, respectively, for finger millet, maize, and
lablab). No N fertiliser was applied in the low-level fertiliser treatment for the three crop
types. Phosphorous (P) and potassium (K) fertiliser were applied at the time of sowing at
different levels following the recommended doses for the respective crop types [29].
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Figure 1. (a) Bengaluru, India; (b) Overview of the two experiment sites overlaid with Google satellite layer; (c) irrigated
experiment layout, and (d) rainfed experiment layout with true colour composite Cubert hyperspectral image (Red = 642 nm,
Green = 550 nm, Blue = 494 nm).

A single crop block was 6 m by 12 m, and the crop blocks were designed in a ran-
domised block design. Each block was divided into two parts for destructive sampling (i.e.,
CWC) and non-destructive sampling (i.e., LAI, LCC). Field-level data collection and RS
data collection campaigns were conducted between 29–31 October 2018. The phenological
stages of the crops at the time of the field campaign are summarised in Table 1.

Table 1. Phenological stages of the crops when the remote sensing and in-situ data were collected.
Based on Table A3 from [29].

Crop
Phenological Stage (Days after Sowing)

Irrigated Experiment Rainfed Experiment

Finger millet Inflorescence emergence (87) Inflorescence emergence (79)
Lablab Ripening (83) Development of fruit (78)
Maize Development of fruit (87) Development of fruit (79)

2.2. In-Situ Field Data

Block-level LAI and LCC data were collected as non-destructive measurements. LAI
was measured using an LI-COR LAI-2000 plant canopy analyser (LI-COR Inc., Lincoln,
NE, USA). One single LAI measurement consisted of a three-time repetition of one above-
canopy measurement followed by four below-canopy measurements between two crop
rows. [30]. All LAI measurements were performed after 16:00 when the sun was at the
horizon. LCC was measured using a handheld SPAD-502 Plus Chlorophyll meter (Konica
Minolta, Osaka, Japan). The device measures the absorbances of the leaf in red and near-
infrared regions. The device retrieves an arbitrary, unitless, numerical ‘SPAD’ value (SV)
based on absorbance values. Four plants were randomly selected in each block, and three
measurements per plant from the last fully developed leaf were taken. The block-level SV
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was computed as the average of all 12 measured SVs. According to [31], the consensus
regression Equation (1) was applied to convert the SV into LCC in μg/cm2:

LCC
(
μg cm−2

)
=

(99 × SV)

(144 − SV)
(1)

After LAI and LCC measurements, destructive biomass sampling was conducted.
From each block, two plants were removed, and above-ground fresh biomass weight
was recorded. A subsample was dried using a sun dryer (maximum temperature was
75 ◦C) until no further weight loss was found (approx. 3 days). Based on dried sample
weight, total dry biomass weight was computed. According to the sampled plant area,
fresh biomass content (kg/m2) and dry biomass content (kg/m2) were determined. The
canopy water content (CWC) was computed (Equation (2)) using fresh and dry biomass
contents [22]:

CWC
(

kg m−2
)
= f resh biomass content − dry biomass content (2)

2.3. Remote Sensing Data

RS datasets acquired from two platforms and sensor systems were utilised in this
study: (a) multispectral WorldView3 satellite data, and (b) hyperspectral Cubert UHD data
mounted on a UAV.

2.3.1. WorldView 3 Data

A WorldView-3 multispectral satellite scene from 26 October 2018 was used as satellite
RS data. The satellite image contained eight multispectral bands between 397 nm to
1039 nm, covering the visible and near-infrared regions of the electromagnetic spectrum
(Table 2). The image′s spatial resolution is 1.24 m [32,33].

Table 2. WorldView-3 multispectral image′s bands and their effective bandwidths [32].

Band Name Centre Wavelength (nm) Effective Bandwidth (nm)

Coastal blue (CB) 427.4 40.5
Blue (BL) 481.9 54.0

Green (GR) 547.1 61.8
Yellow (YE) 604.3 38.1

Red (RD) 660.1 58.5
Red-edge (RE) 722.7 38.7

Near-infrared 1 (N1) 824.0 100.4
Near-infrared 2 (N2) 913.6 88.9

The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) method
in ENVI 5.0 software (Harris Geospatial Solutions Inc., Broomfield, CO, USA) was applied
to pre-process the satellite image using the image′s metadata [34]. The pre-processed image
pixel contained atmospherically-corrected surface reflectance values. However, the coastal
blue (CB) band from WorldView3 data was not incorporated for the crop parameter vegeta-
tion modelling due to substantial influence from atmospheric scattering. Additionally, six
vegetation indices (VIs) were calculated (Table 3). These VIs were chosen from published
literature due to their proven potential to estimate LAI, LCC, and CWC [12,23,35] and
compatibility with WorldView3 wavebands.
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Table 3. Vegetation indices (VI) and their equations for WordView-3 (WV3) and Cubert (CUB) images. WV3 band names:
GR: green, RD: red, RE: red-edge, N1: near-infrared 1. CUB bands are indicated by wavelength (ρxxx) in nanometres. (NDVI:
normalised difference vegetation index, DATT4: The 4th VI introduced by [36], MTVI: modified triangular vegetation index,
REIP: red-edge inflexion point, and WI: water index)

VI Formula for WV3 Bands Formula for CUB Bands Reference

NDVI800,670
N1−RD
N1+RD

ρ800−ρ670
ρ800+ρ670

[37]

NDVI750,550
N1−GR
N1+GR

ρ750−ρ550
ρ750+ρ550

[38]
DATT4 RD

GR×RE
ρ670

ρ550×ρ706
[36]

MTVI 1.2 [1.2 (N1 − GR)− 2.5 (RD − GR)] 1.2 [1.2 (ρ802 − ρ550)− 2.5 (ρ670 − ρ550)] [39]

REIP 700 + 40
[
( RD+RE

2 )−RE
N1+RE

]
700 + 40

[(
ρ670+ρ782

2

)
−ρ702

ρ742+ρ702

]
[40]

WI N1
N2

ρ902
ρ970

[23]

2.3.2. Cubert Hyperspectral Data

A custom-made octocopter equipped with the Cubert Hyperspectral FireFleye S185
SE (Cubert GmbH, Ulm, Germany) snapshot camera was utilised as a UAV-borne imaging
system. The hyperspectral camera is a 2D imager with a multi-point spectrometer. The
camera has 450–998 nm spectral sensitivity and contains 138 spectral bands with a 4-nm
sampling interval. The bands′ full width at half maximum value is 4.8 nm at 450 nm and
25.6 nm at 850 nm. The spectral image is 50 by 50 pixels in size, and the camera focal length
is 12 mm. Additionally, the camera has a panchromatic sensor that provides images with
1000 by 990 pixels [41,42].

The UAV-borne hyperspectral images were acquired on 29–30 October 2018 in both
irrigated and rainfed experimental sites between 11:30–14:00 under clear sky conditions.
At each site, the UAV-borne dataset was collected at 100-m flying height. According to
the flying height, the ground sampling distance of the UAV dataset was 1.0 m. All flight
missions were configured to keep 80% overlap (forward and side), and the UAV was flown
with 2 ms−1 horizontal speed. Before each UAV flight, the camera was radiometrically
calibrated to obtain surface reflectance values using a white calibration panel [43,44]. For
georeferencing, the UAV images, 1-m2 ground control points (black and white wooden
crosses) were laid on the ground before the flights, and the positions of points were
measured using a Trimble global navigation satellite system.

A workflow described by [43] was applied to produce a digital ortho-mosaic from
single UAV-borne hyperspectral images using Agisoft PhotoScan Professional version
1.4.1 (64 bit) software (Agisoft LLC, St. Petersburg, Russia). Due to noise in the spectral
bands between 450–470 nm, the final ortho-mosaic contained only 126 spectral bands
(470–970 nm). Six VI images were computed in addition to the spectral band images (Table
3).

2.4. Model-Building Workflow for Crop Vegetation Parameter Estimation

From the WorldView-3 satellite dataset (WV3) and the UAV-borne hyperspectral
dataset (CUB), mean values were extracted from the non-destructively sampled portions
of the plots for (a) vegetation indices (VIs), and (b) all spectral wavebands (WBs). A
2-m internal buffer to the plot was applied to avoid edge effects. To estimate the crop
parameters (LAI, LCC, and FMY) for each crop type, (a) parametric modelling (linear
regression-LR) was conducted using VIs, and (b) non-parametric modelling (random forest
regression-RFR) was performed with selected WBs based on feature importance analysis.

The relationship between the estimator (e.g., VI) and the dependent variable (e.g.,
LAI) was built using a linear equation (straight line) in the LR models. Before the LR model
was built, a crop-wise Pearson correlation coefficient (r) was computed between the crop
vegetation parameter and the VIs. A single LR model using the highest correlated VI was
built to estimate crop-wise vegetation parameters.
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RFR is one of the most prominent non-parametric regression algorithms that has been
frequently applied for crop parameter modelling with RS data [13]. It is an ensemble
modelling approach that employs decision trees and bagging [45]. This ensemble tree-
based architecture supports the handling of a multitude of correlated variables [46]. The
most influential bands were identified using the Boruta feature selection algorithm to
reduce the computational intensity and overfitting. Boruta is an iterative process: in
each iteration, features with a lower contribution to the accuracy were removed, and new
random variables were introduced, thereby selecting essential variables for the model [47].
From the Boruta feature selection method, specific WBs from CUB and WV3 data were
selected for crop-wise vegetation parameters. The selected WBs were utilised to build RFR
models. Based on [48], one-third of the number of estimators was set as ′the number of
drawn candidate variables in each split-(mtry)′ hyperparameter value in each RFR model.
The other hyperparameter, ‘the number of trees in the forest’ and ‘the minimum number of
observations in a terminal node–(node size)’, were kept as 500 and 5, respectively, for all
RFR models.

Additionally, the importance of the selected wavelengths was determined using the
actual impurity reduction (AIR) importance value [49]. The AIR is a Gini importance
value that was corrected for bias. Based on AIR values, the most important waveband for
estimating each crop-wise vegetation parameter could be identified.

All the modelling procedures were executed using the ‘mlr3′ library and its extensions
in the R programming language [50,51]. The ‘ranger’ library was employed inside the
‘mlr3′ library to build RFR models [52], and the ‘Boruta’ library was utilised for the feature
selection step [47]. In total, 12 models for each crop vegetation parameter were developed
(i.e., 2 modelling methods [LR and RFR] × 2 RS datasets [CUB and WV3] × 3 crops [FM,
MZ, and LB]).

Due to limited data (24 data records per crop), cross-validation (CV) was applied in
the model-building workflow. In CV, 12 models were trained and validated as follows: one
data point from the irrigated site and one data point from the rainfed site were left out each
time for validation, and the remaining 22 points (11 from the irrigated site and 11 from the
rainfed site) were utilised for training the model. Based on the predicted vs actual values
in the validation phase, the root means squared error (RMSE) was computed Equation (3).
To standardise the RMSE values, normalised RMSE (nRMSE) was calculated by dividing
RMSE from the range of the corresponding crop parameter value (the difference between
the minimum and maximum values) Equation (4). The coefficient of determination (R2) [53]
was computed based on actual and predicted values Equation (5). Based on the distribution
of the nRMSE and R2 values, the crop-wise best model was identified for each crop
vegetation parameter. Moreover, each model′s predictive capability was examined using
normalised residual values Equation (6) against two water and three fertiliser treatments.
Positive or negative normalised residual values indicate overestimated or underestimated
values, respectively:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

nRMSE =
RMSE

(max(y)− min(y))
× 100 (4)

R2 =

[
1 − ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2

]
(5)

normalised residual value =
ŷ − y
ŷ + y

(6)

where y is the actual crop vegetation parameter, ŷ is the predicted parameter, y is the
average value of the actual parameter, and n is the number of samples.

121



Sensors 2021, 21, 2886

3. Results

3.1. Crop Vegetation Parameter Data

The descriptive statistics of the crop-wise parameter data are presented in Table A1.
The LAI values ranged between 0.4–3.2 m2/m2 for finger millet, 0.2–3.5 m2/m2 for lablab,
and 1.0–3.0 m2/m2 for maize in both the irrigated and rainfed sites. For all three crops,
the irrigated field always showed considerably higher LAI values than the rainfed site.
According to the crop-wise two-way analysis of variance (ANOVA) test for LAI values,
significant differences (p < 0.001) in LAI between irrigation treatments (I and R) were found
for all three crops. N fertiliser (low, medium, and high) did not significantly affect (p > 0.1)
LAI for any of the crops. However, there was a significant effect of interaction between
irrigation and N fertiliser for lablab LAI (p = 0.03), with the combinations of N fertiliser
and irrigation increasing average LAI.

The highest average LCC was found in irrigated maize (76.4 μg/cm2), while the
rainfed finger millet had the lowest average LCC (10.2 μg/cm2) (Table A1). Like LAI,
irrigation significantly positively affected (p < 0.001) LCC for all three crops. Fertilizer only
significantly affected maize LCC (p = 0.03) positively. In contrast, there was a significant
effect from the interaction between irrigation and N fertiliser for both finger millet (p = 0.01)
and maize (p = 0.05) for LCC, with N fertiliser combinations irrigation increasing.

The highest CWC was found for maize (average CWC = 1.5 and 0.9 kg/m2 for irrigated
and rainfed) (Table A1), whereas lablab had the lowest CWC (0.7 kg/m2 and 0.08 kg/m2 for
irrigated and rainfed experiments, respectively). According to the ANOVA test, CWC was
significantly affected by irrigation for finger millet, lablab, and maize (p < 0.001). Besides,
the CWC for finger millet revealed a significant positive effect of fertiliser (p = 0.05) and the
interaction between water and fertiliser (p = 0.01).

Crop-wise LAI was strongly correlated with CWC (r = 0.85, 0.78, and 0.74 for finger
millet, maize, and lablab, respectively). Similarly, crop-wise LCC was also positively
correlated with both LAI (r = 0.81, 0.64, and 0.60) and CWC (r = 0.60, 0.62 and 0.54) for
finger millet, maize, and lablab, respectively.

3.2. Spectral and Vegetation Index Data

The pattern of the spectral reflectance curves from the two experimental sites (I and R)
exhibited a substantial difference for both RS datasets (Figure 2). In the irrigated plots, both
CUB and WV3 spectral curves followed a typical healthy vegetation spectral reflectance
curve. However, in the rainfed data, both CUB and WV3 reflectance data deviated in the
visible region of the spectrum from healthy vegetation spectral curve due to higher soil
spectral signals (Figure 1c).
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Figure 2. Average spectral reflectance data for millet, lablab, and maize from Cubert (black) and WorldView3 (grey) data for
irrigated (solid line) and rainfed (dashed line) experiments.

The crop-wise VI significantly differed (p < 0.001) between the two RS data types (CUB
and WV3) as well as between the irrigation treatments (Figure 3). However, the WV3 water
index (WI) was the only index that did not show a substantial difference (p > 0.3) between
the irrigation treatments.

3.3. Crop Vegetation Parameter Estimation with Linear Regression

LR models with VI were employed to estimate crop-wise vegetation parameters using
two RS datasets. A total of six models were built separately (3 crops × 2 RS datasets). LAI
estimation from CUB and WV3 data showed similar results for all three crops (Table 4). All
six models obtained R2

cv ≥ 0.73. CUB VI for LAI estimation achieved nRMSEcv of 15.7%,
14.9%, and 15.6% for finger millet, maize, and lablab, respectively (Table 5). Likewise,
nRMSEcv of 16.1%, 15.9%, and 16.0% were obtained for finger millet, maize, and lablab LAI
estimation, respectively, using WV3 data. NDVI800_670 was the best VI for LAI estimation
using CUB data for all three crops. For WV3 data, NDVI800_670 was the best for maize LAI
estimation, while REIP was the best VI for finger millet and lablab LAI.

The VI-based LR models for estimating LCC showed lower R2
cv values (Table 4). For

finger millet, LCC estimation models with CUB VI data (nRMSEcv = 18.0%) performed
better than with WV3 VI data (nRMSEcv = 21.0%). Maize LCC estimation models resulted
in the highest normalised error and the lowest R2

cv values. From the two RS datasets,
WV3 VI performed better than CUB VI for maize LCC estimation. In contrast, lablab LCC
estimation models from both RS datasets showed similar performances (nRMSEcv = 23.3%
and R2

cv = 0.37). Of the tested VIs, NDVI (NDVI750_550, NDVI800_670) and DATT4 were the
most highly correlated with LCC for both RS datasets.
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Figure 3. Distribution of crop-wise vegetation indices (VI) for finger millet, lablab, and maize from Cubert (CUB) and
WorldView3 (WV3) data from irrigated (grey) and rainfed (black) experiments. (NDVI: normalised difference vegetation
index, DATT4: The 4th VI introduced by Datt (1998), MTVI: modified triangular vegetation index, REIP: red-edge inflexion
point, and WI: water index).

Crop-wise CWC estimation from VI from two RS datasets obtained less than 20% nRMSEcv (Table 4). The nRMSEcv
values for CWC estimation with CUB data were 19.5%, 19.9%, and 16.3% for finger millet, maize, and lablab, respectively,
while nRMSEcv values for finger millet, maize, and lablab were 19.9%, 17.0%, and 15.6%, respectively, for CWC estimation
with WV3 data. The NDVI indices from CUB resulted in the best CWC estimation for all three crop types, while
WV3-based NDVI750_550, REIP, and DATT4 were strongly correlated with CWC values, respectively, from finger millet,
lablab, and maize.
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Table 4. Summary of the crop parameter estimation model results from linear regression (LR) using
the best-correlated vegetation index (VI). Bold values indicate the lowest nRMSEcv values among
the two remote sensing datasets for each crop type. All the reported linear regression models with
the best vegetation index showed p-value less than 0.05. (LAI: leaf area index, LCC: leaf chlorophyll
content, CWC: canopy water content, CUB: Cubert, WV3: WorldView3, r: Pearson correlation
coefficient between VI and crop-wise vegetation parameter, R2

cv: coefficient of determination from
cross-validation, nRMSEcv: normalised root means squares error from cross-validation).

Parameter Crop RS Data
LR Model with VIs

Best
Vegetation

Index
r R2

cv
nRMSEcv

(%)

LAI
(m2/m2)

Finger
millet

CUB NDVI800_670 0.88 0.74 15.7
WV3 REIP 0.88 0.74 16.1

Lablab
CUB NDVI800_670 0.90 0.77 15.6
WV3 REIP 0.90 0.77 15.9

Maize
CUB NDVI800_670 0.90 0.77 14.9
WV3 NDVI800_670 0.89 0.73 16.0

LCC
(μg/cm2)

Finger
millet

CUB DATT4 0.83 0.63 18.0
WV3 NDVI750_550 0.76 0.50 21.0

Lablab
CUB NDVI750_550 0.67 0.37 23.3
WV3 NDVI750_550 0.66 0.36 23.4

Maize
CUB NDVI800_670 0.59 0.21 24.1
WV3 DATT4 0.61 0.26 23.3

CWC
(kg/m2)

Finger
millet

CUB NDVI750_550 0.73 0.44 19.5
WV3 NDVI750_550 0.73 0.43 19.9

Lablab
CUB NDVI800_670 0.77 0.53 16.3
WV3 REIP 0.81 0.58 15.6

Maize
CUB NDVI800_670 0.68 0.36 19.9
WV3 DATT4 0.76 0.51 17.0

Table 5. Selected wavebands from Boruta feature selection algorithms for each crop vegetation parameter (LAI: leaf area
index, LCC: leaf chlorophyll content, CWC: canopy water content) from two remote sensing datasets. Cubert bands are
indicated as the band wavelength (ρxxx) in nanometres.

Parameter Crop Selected Wavebands from Cubert Data Selected Wavebands from WorldView3 Data

LAI
(m2/m2)

Finger Millet ρ522, ρ526, ρ582, ρ642, ρ694, ρ702, ρ706, ρ722, ρ730,
ρ738, ρ750, ρ762, ρ946

Blue, Green, Yellow, Red, Red-edge,
Near-infrared 2

Lablab ρ690, ρ698, ρ706, ρ722, ρ726, ρ734, ρ750, ρ826, ρ918,
ρ930, ρ946, ρ950, ρ954, ρ958

Blue, Green, Yellow, Red, Red edge

Maize ρ474, ρ478, ρ674, ρ682, ρ690, ρ694, ρ794, ρ802, ρ806,
ρ822, ρ870, ρ874, ρ890, ρ898, ρ906, ρ930, ρ954

Blue, Green, Yellow, Red, Red edge,
Near-infrared 2

LCC
(μg/cm2)

Finger Millet ρ746, ρ750, ρ754, ρ758, ρ762, ρ766
Blue, Green, Yellow, Red, Red edge,

Near-infrared 1, Near-infrared 2
Lablab ρ574, ρ638, ρ718, ρ742, ρ750 Blue, Green, Yellow, Red, Red edge
Maize ρ682, ρ690, ρ698, ρ702 Blue, Green, Yellow, Red, Red edge

CWC
(kg/m2)

Finger Millet ρ470, ρ478, ρ522, ρ526, ρ694, ρ706, ρ710, ρ722, ρ742,
ρ746

Blue, Green, Yellow, Red, Red edge,
Near-infrared 2

Lablab ρ502, ρ606, ρ614, ρ618, ρ630, ρ666, ρ678, ρ682, ρ742,
ρ802, ρ834

Blue, Green, Yellow, Red, Red edge

Maize ρ866, ρ878, ρ886, ρ918, ρ966, ρ970 Blue, Green, Yellow, Red, Red edge
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3.4. Crop Vegetation Parameter Estimation with Random Forest Regression
3.4.1. Key Wavebands

Important WBs for crop vegetation parameter estimation were identified using Boruta
feature selection algorithms. Table 5 summarises the identified WBs from each RS datasets
(CUB or WV3) for each crop vegetation parameter.

3.4.2. Model Performance

RFR models were built to estimate crop-wise vegetation parameters using the iden-
tified best WBs. Irrespective of the RS datasets and crop type, the RFR models for LAI
estimation yielded less than 16.1% nRMSEcv and over 0.70 R2

cv (Table 6).

Table 6. Summary of the crop parameter estimation model results from random forest regression
(RFR) using selected wavebands. Bold values indicate the lowest nRMSEcv values among the two
remote sensing datasets for each crop type. (LAI: leaf area index, LCC: leaf chlorophyll content,
CWC: canopy water content, CUB: Cubert, WV3: WorldView3, R2

cv: coefficient of determination
from cross-validation, and nRMSEcv: normalised root means squares error from cross-validation).

Parameter Crop RS Data
RFR Model with Selected Wavebands

No. of
Wavebands

R2
cv

nRMSEcv

(%)

LAI (m2/m2)

Finger millet CUB 13 0.74 16.1
WV3 6 0.70 17.1

Lablab
CUB 14 0.84 12.9
WV3 5 0.87 12.0

Maize
CUB 18 0.79 13.9
WV3 6 0.80 13.9

LCC
(μg/cm2)

Finger millet CUB 6 0.45 22.1
WV3 7 0.51 20.8

Lablab
CUB 5 0.23 25.8
WV3 5 0.13 27.4

Maize
CUB 4 0.16 24.9
WV3 5 0.01 31.5

CWC
(kg/m2)

Finger millet CUB 10 0.43 19.9
WV3 6 0.23 22.9

Lablab
CUB 11 0.51 16.9
WV3 5 0.42 18.2

Maize
CUB 4 0.24 21.4
WV3 5 0.26 21.4

The LAI estimation for lablab resulted in the lowest error among the three crop types
(nRMSEcv =12.9% and 12.0%, respectively, from CUB and WV3 data). The LAI estimation
models for finger millet showed better performance for CUB data (nRMSEcv = 16.1%)
compare to WV3 data (nRMSEcv = 17.1%). In contrast, CUB data and WV3 data had similar
accuracy for maize LAI estimation (nRMSEcv = 13.9%).

LCC estimation based on CUB data was more accurate than WV3 data for maize
and lablab. For finger millet, the opposite was found (Table 6). The nRMSEcv for LCC
estimation with RFR was above 20.5% for all crops, regardless of the RS datatype. The
nRMSEcv values for LCC estimation from CUB data were 22.1%, 25.8% and 24.9%, and
from WV3 data were 20.8%, 27.4 and 31.5 %, respectively, for finger millet, lablab, and
maize. Based on the nRMSEcv, the RFR models were less accurate than the LR models for
LCC estimation irrespective of the RS data type and crop type.

The R2
cv was less than 0.5 for CWC estimation for all three crops (Table 6). For

finger millet (nRMSEcv = 19.9%) and lablab (nRMSEcv = 16.9%), CWC estimation with
CUB data performed better than models with WV3 data (nRMSEcv = 22.9% and 18.2%,
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respectively). Both RS datasets showed similar performance for maize CWC estimation
(nRMSEcv = 21.4%).

3.5. Best Models and Distribution of Residuals

The best models from two RS datasets (CUB vs. WV3) and two modelling methods (LR
vs. RFR) for each crop vegetation parameter were identified based on nRMSEcv. Observed
vs predicted values for crop-wise vegetation parameters from the best models are plotted
in Figure 4.

Figure 4. Observed vs predicted values of the best performing models for (a) leaf area index (LAI),
(b) leaf chlorophyll content (LCC), and (c) canopy water content (CWC). The remote sensing data
type (CUB or WV3) and modelling method (LR or RFR) for the best models are indicated as “RS
data type + modelling method” (e.g., CUB + LR). The blue line is the fitted regression line between
predicted and observed values, and the black line is the 1:1 line.

The normalised residual distribution values against irrigation and fertiliser treatments
are shown in Figure A3. The normalised residuals of LAI, LCC, and CWC were not
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significantly affected (p > 0.05) by irrigation for any of the crops. In comparison, only
the residuals from finger millet LAI and CWC prediction were significantly affected by
fertiliser, with residuals decreasing from low to medium to high N fertiliser treatments.

4. Discussion

The main objective of this study was to evaluate two different spectral RS datasets
(multispectral WV3 and hyperspectral CUB) for estimating three crop vegetation param-
eters (LAI, LCC, and CWC) of three major tropical crop types (finger millet, maize, and
lablab). Considering the modelling method, out of the best nine (three vegetation parame-
ters × three crop types) LR models based on VIs, CUB data provided six of the best models,
while WV3 data provided three of the best models (Table 4). In contrast, out of the best
nine RFR models with selected WBs, five of the best models were based on CUB data,
whereas the other four relied on WV3 data. Overall, these results did not show a definite
pattern between the RS datasets and the vegetation parameter estimation model′s accuracy.
Similarly, [10] reported that maize LAI estimation accuracy did not significantly differ
between data with two different spectral resolutions and two different modelling methods
(LR vs machine learning regression). In contrast, [54] detailed that narrow band VIs derived
from hyperspectral data models yielded 20% higher R2 values than multispectral data
models for wheat and barley LAI estimation.

4.1. Finger Millet Vegetation Parameter Estimation

According to the authors′ knowledge, only a few studies have utilised RS data to
estimate crop vegetation parameters of finger millet and lablab [29,55]. Finger millet is a
small-grained cereal (C4 type) with similar crop characteristics as pearl millet, sorghum,
and foxtail millet [56]. This study revealed that the hyperspectral CUB data clearly showed
the substantial potential to estimate finger millet vegetation parameters irrespective of
the modelling method. For finger millet LAI estimation, NDVI800_670 from CUB data
showed the minimum error, which confirmed that NDVI has a closer relationship with
LAI at lower LAI values (less than 3.2 m2/m2) [8]. Similar to these results, NDVI showed
the best estimation accuracy for sorghum LAI than other VIs (i.e., greenNDVI, EVI, and
MTVI2) [57].

DATT4 is a VI for leaf chlorophyll a and chlorophyll a+b content estimation [36]
and, when derived from CUB data, showed the strongest correlation with finger millet
LCC (Table 4). However, DATT4 from WV3 was the least correlated VI (Figure A1). The
central wavelengths of the WV3 bands do not match with the exact wavelengths of the
DATT4′s formula, which may have reduced the sensitivity of the index. In contrast, Two
NDVIs (NDVI800_670 and NDVI750_550) from CUB and WV3 data also showed a strong
correlation with finger millet LCC (Figure A1). However, sorghum′s LCC showed the
highest correlation with hyperspectral data NDVI [58] and indicated a lower correlation
with multispectral data NDVI [59].

Models with VIs showed better finger millet CWC estimation results for both RS
datasets. NDVI750_550 was the best correlated VI from both datasets, which predicts CWC
indirectly [25] and contained green and near-infrared bands. CWC estimation with VI
derived from green and near-infrared bands (CIgreen = (ρ750/ρ550)−1) also showed the
best results among other VIs that predict CWC indirectly (i.e., NDVI, NDVIrededge, and
CIrededge) [24]. When it comes to RFR modelling with selected WBs, WBs above 750 nm
were not selected for finger millet CWC estimation. Nevertheless, some of the identified
vital WBs were comparable with important WBs for finger millet fresh biomass estimation
using multi-temporal terrestrial CUB data (e.g., 694 nm) [29].

4.2. Lablab Vegetation Parameter Estimation

Lablab is a legume crop similar to pea, beans, and lentils [60]. The lablab LAI values
showed a strong correlation with NDVI values, but the LAI estimation error with NDVI
was higher than the error from RFR models with selected WBs. The higher LAI values
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(>3.0) from lablab may impede accurately estimating LAI with NDVI due to the saturation
effect, which also demonstrated by [39] with pea LAI values. In comparison to lablab
LAI estimation, LR models with VI showed improved results for lablab LCC estimation.
NDVI750_550, which contains the green band with the near-infrared band instead of the red
band, was the most highly correlated VI with lablab LCC. NDVI750_550 is also known as
‘Green NDVI’, and according to [38], shows a strong relationship with Chlorophyll a.

NDVI and REIP, respectively, from CUB and WV3 data, delivered the lowest error for
lablab CWC estimation. Even though these VI do not directly relate to the leaf water content,
they could determine CWC because they are linked to crop biomass [25]. Furthermore,
the identified best WBs from CUB data for lablab CWC estimation (Table 5 and Figure A2)
were similar to the critical WBs for lablab fresh biomass estimation [29].

4.3. Maize Crop Vegetation Parameter Estimation

As opposed to finger millet and lablab, maize has been frequently explored with
RS data for its vegetation parameter estimation. LR modelling with hyperspectral (CUB)
data to calculate NDVI showed a lower error than NDVI from multispectral (WV3) data
for maize LAI estimation. [10] also revealed the same pattern for maize LAI estimation
using VI from hyperspectral (field spectrometer) and multispectral (Sentinel-2) data. RFR
models with essential WBs showed similar relative errors for maize LAI estimation using
both RS datasets. Likewise, maize LAI estimation models from hyperspectral data and
multispectral data also demonstrated similar cross-validation error (nRMSEcv = 14.9%)
with a support vector machine algorithm [10].

VI derived from green, red-edge, and near-infrared bands were usually better for
LCC estimation [61,62] Logically, VI containing those bands (i.e., NDIV800_670, DATT4)
were strongly correlated with maize LCC values. However, RFR models with WV3 data
had > 31% relative error, although the centre wavelength of the red band from WV3 data
is 660.1 nm, which is the region absorbed by leaf chlorophyll a [63]. In comparison,
RFR models with CUB data obtained slightly lower error, but all the essential WBs were
between 682–702 nm (red-edge region) (Table 5 and Figure A2). This contrasts with results
from another study using the same hyperspectral sensor (CUB) data, which reported the
usefulness of WBs from blue, red, red-edge, and near-infrared regions for maize LCC
estimation [64].

Indirectly linked VIs could estimate maize CWC in this study, while WI, which is a
directly sensitive VI for CWC, showed the weakest relationship with CWC for all crops.
This could be because crop parameters were highly correlated, and the variation of CWC
somehow directly linked with the crop LAI and biomass values [25]. Nevertheless, water
absorption at 970 nm due to O-H bonds in liquid canopy water [65] was one of the key
WBs for maize CWC estimation by CUB data only (Table 5 and Figure A2).

4.4. Overall Discussion

This study could not conclude which RS data (spaceborne multispectral or UAV-borne
hyperspectral) is better for the evaluated crop parameters for three crop types. Nevertheless,
it is worth to mention the pros and cons of the two RS systems in terms of practical aspects
of general crop monitoring. The spaceborne multispectral WV3 data hugely affected by
cloud coverage in tropical regions, especially in the rainy season. Proper atmospheric
corrections are needed to obtain accurate surface reflectance data from WV3 images to
relate spectral values with crop vegetation parameters, which might not be easy to achieve.
Additionally, the WV3 data cannot be acquired whenever it is needed because of its revisit
frequency of one to five days, depending on the latitude. However, applying WV3 data to
estimate crop parameter in the entire crop field can be efficiently performed because of the
large spatial coverage of each satellite scene.

On the other hand, the UAV-borne CUB data can be collected whenever the data is
needed, and there is no effect on the data due to cloud cover (when a proper radiometric
correction is applied). However, coverage of a larger field needs to done using several
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UAV flight sessions, which could be a disadvantage over the WV3 data. Additionally,
UAV-borne data is also challenging to collect in extreme weather conditions such as rain
and wind, typical of the tropical region′s monsoon seasons.

This study’s third sub-objective explored how the crop parameter estimation accuracy
was affected by the crop′s water and fertiliser treatments. The collected field data showed
a significant positive effect due to irrigation in all three crops. However, finger millet
(inflorescence emergence) and maize (development of fruit) were in similar phenological
stages in both water treatments, while lablab showed two different phenological stages
for irrigated and rainfed crops. (Table 1). The results clearly showed that the prediction
accuracy of crop vegetation parameters did not significantly affect irrigation, and only
finger millet′s LAI and CWC prediction error had a significant difference due to fertiliser
treatments (Figure A3). Confirming these findings, [29] also reported no significant differ-
ence for biomass prediction error between two water treatments and fertiliser treatments
for the same three crops with three-year data using in-situ hyperspectral data with machine
learning methods.

This study utilised only a few (n = 24) samples for model building for vegetation
parameter estimation. For this reason, separate models for the irrigation treatments were
not employed, even though the data showed a significant difference between treatments.
Therefore, the CV was applied to build unbiased models, which facilitated evaluating
models with a limited number of data points from both treatments. However, the number
of sample points for both training (n = 22) and validation (n = 2) in the CV was not
enough to capture the dataset′s total variability. For example, when the model was trained
with a unique range of dataset and the validation data points were out of the range
from the trained model, then the model tends to under or overestimates the prediction
value. It is necessary to have more data points to increase the model sensitivity to the
dataset′s total variability. However, having many sample points is always challenging
for RS-based crop parameter estimation for many reasons, including human and physical
resource availability.

The two RS datasets used in this study were sensitive from the visible to the near-
infrared region. According to published studies, usage of the spectral region until the
shortwave infrared (2500 nm) could increase crop parameter estimation potential [12,24].
The two RS datasets utilised in this study could accurately estimate three crop vegetation
parameters from three crop types with different agriculture treatments. Hence these
results could be utilised as a starting point to an in-depth examination of how to use RS
data without shortwave infrared spectral data for modelling LAI, LCC, and specifically
CWC. Additionally, these research findings could be employed to monitor monsoon crops
using the currently available spaceborne and UAV-borne high spatial resolution remote
sensors with similar spectral sensitivity (e.g., Parrot Sequoia, Micasense RedEdge, and
microsatellite constellations such as Planet).

5. Conclusions

This study focused on uncovering how two different spectral resolution RS data can
be utilised for estimating crop vegetation parameters from three crops (finger millet, maize,
and lablab) prominently grown in Southern India. This study evaluated two different very
high spatial resolution (>1.5 m) RS spectral datasets (UAV-borne hyperspectral Cubert–
CUB, spaceborne multispectral WorldView3–WV3) for estimating LAI, LCC, and CWC for
the three target crops. Two distinct modelling methods, namely linear regression with best-
correlated vegetation index and random forest regression with important wavebands, were
also evaluated. According to the results, irrespective of the RS datatype, crop type, and
modelling method, the average relative estimation error was less than 16%, 25%, and 22%,
respectively, for LAI, LCC, and CWC estimation. However, there was no clear evidence
to identify the best RS dataset or the best modelling method to estimate the examined
crop parameters. Nevertheless, there was a trend that hyperspectral (CUB) data was better
for estimation of vegetation parameters of finger millet while multispectral (WV3) data
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was better for both lablab and maize vegetation parameter estimation. Overall, vegetation
indices derived from the combination of either green, red, red-edge, and near-infrared
wavebands showed clear potential from either multi or hyperspectral data for an accurate
estimation of the investigated vegetation parameters regardless of the crop type.
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Appendix A

Table A1. Summary of the crop parameter data (LAI: leaf area index, LCC = leaf chlorophyll content,
CWC: canopy water content, SD: standard deviation, CV: coefficient of variation).

Crop Water Min Mean SD Max CV

LAI (m2/m2)

Finger
millet

Irrigated 1.4 2.6 0.5 3.2 19.2%
Rainfed 0.4 1.0 0.4 1.6 40.0%

Lablab
Irrigated 1.7 2.5 0.6 3.5 24.0%
Rainfed 0.2 0.5 0.2 0.7 40.0%

Maize
Irrigated 2.1 2.7 0.2 3.0 7.4%
Rainfed 1.0 1.6 0.4 2.2 25.0%

LCC (μg/cm2)

Finger
millet

Irrigated 19.3 39.7 13.6 65.6 34.3%
Rainfed 10.2 12.8 3.4 21.4 26.6%

Lablab
Irrigated 17.5 36.3 7.8 43.0 21.5%
Rainfed 20.1 27.5 4.3 33.3 15.6%

Maize
Irrigated 15.7 42.1 19.6 76.4 46.6%
Rainfed 11.9 20.3 5.3 30.6 26.1%
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Table A1. Cont.

Crop Water Min Mean SD Max CV

CWC (kg/m2)

Finger
millet

Irrigated 0.4 1.4 0.7 2.7 46.5%
Rainfed 0.1 0.5 0.2 1.0 52.1%

Lablab
Irrigated 0.4 0.7 0.3 1.6 48.5%
Rainfed 0.03 0.08 0.04 0.1 50.0%

Maize
Irrigated 0.8 1.5 0.4 2.3 26.6%
Rainfed 0.2 0.9 0.4 1.5 45.5%

 
Figure A1. Correlation between vegetation indexes from two remote sensing data Cubert (black) and WorldView3 (grey)
and crop vegetation parameters leaf area index (LAI), leaf chlorophyll content (LCC), and crop water content (CWC) for
finger millet, maize, and lablab.
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Figure A2. Distribution of actual impurity reduction value-based important wavebands for two remote sensing datasets
(Cubert–black and WorldView3–grey) for leaf area index (LAI) estimation (a,d,g), leaf chlorophyll content (LCC) estimation
(b,e,h), canopy water content (CWC) estimation (c,f,i) for finger millet (a,b,c), lablab (d,e,f), and maize (g,h,i) crops.
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Figure A3. Distribution of the normalised residuals values against (a) water treatments and (b) fertiliser treatments from
the best models for leaf area index (LAI) estimation, leaf chlorophyll content (LCC) estimation, and canopy water content
(CWC) estimation for finger millet, lablab, and maize. The dashed line at y = 0 represents zero normalised residual value.
(ns or NS: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001).
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Abstract: Current strategies for phenotyping above-ground biomass in field breeding nurseries
demand significant investment in both time and labor. Unmanned aerial vehicles (UAV) can be used
to derive vegetation indices (VIs) with high throughput and could provide an efficient way to predict
forage yield with high accuracy. The main objective of the study is to investigate the potential of
UAV-based multispectral data and machine learning approaches in the estimation of oat biomass.
UAV equipped with a multispectral sensor was flown over three experimental oat fields in Volga,
South Shore, and Beresford, South Dakota, USA, throughout the pre- and post-heading growth phases
of oats in 2019. A variety of vegetation indices (VIs) derived from UAV-based multispectral imagery
were employed to build oat biomass estimation models using four machine-learning algorithms:
partial least squares (PLS), support vector machine (SVM), Artificial neural network (ANN), and
random forest (RF). The results showed that several VIs derived from the UAV collected images were
significantly positively correlated with dry biomass for Volga and Beresford (r = 0.2–0.65), however,
in South Shore, VIs were either not significantly or weakly correlated with biomass. For Beresford,
approximately 70% of the variance was explained by PLS, RF, and SVM validation models using data
collected during the post-heading phase. Likewise for Volga, validation models had lower coefficient
of determination (R2 = 0.20–0.25) and higher error (RMSE = 700–800 kg/ha) than training models
(R2 = 0.50–0.60; RMSE = 500–690 kg/ha). In South Shore, validation models were only able to explain
approx. 15–20% of the variation in biomass, which is possibly due to the insignificant correlation
values between VIs and biomass. Overall, this study indicates that airborne remote sensing with
machine learning has potential for above-ground biomass estimation in oat breeding nurseries. The
main limitation was inconsistent accuracy in model prediction across locations. Multiple-year spectral
data, along with the inclusion of textural features like crop surface model (CSM) derived height and
volumetric indicators, should be considered in future studies while estimating biophysical parameters
like biomass.

Keywords: high throughput phenotyping; remote sensing; machine learning; UAV/drone; biomass
estimation; oats

1. Introduction

Oat (Avena sativa L.) is a cool-season, multipurpose grain crop which ranks sixth among
the most produced cereal in the world [1]. According to USDA-National Agricultural
Statistics Service small grains 2020 summary statistics, out of 1.2 million hectares of oats
farmed in the United States, approximately 406,000 hectares were harvested for grain,
accounting for less than half of the entire planted area [2]. The crop has traditionally been
collected for fodder, forage, straw, hay, silage, and chaff production in addition to grain
production [1]. Oat forage is preferred over other annual forage crops because of its high
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palatability and dry matter content [3,4]. In accordance with previous findings, oat forage
dry matter production ranged from 4000 kg per hectare in water-stressed conditions [5] to
8000 kg per hectare for the humid north-central US [6].

Breeding for improved forage yield necessitates an accurate estimation of the perfor-
mance of genotypes for biomass production across the target environment [7,8]. Visual scor-
ing, sample clipping, and mowing of individual breeding plots are some of the approaches
utilized for the phenotypic assessment of forage productivity. Although visual scoring is
non-destructive and ratings on individually spaced plants or rows can be correlated to dry
matter yield, they are still time-consuming and vulnerable to subjectivity [9]. The clipping
of small samples for the measurement of biomass is often constrained by greater sampling
error resulting from soil variability and other factors. Full plot harvest provides a means
to collect a representative sample, but it is destructive and time-consuming. With limited
resources, full plot harvest restricts the number of seasons and places that can be sampled,
the number of experimental lines that can be evaluated, and thus the genetic gain that
can be obtained [10–12]. To maximize genetic gain for dry matter yield, high-throughput,
cost-effective, resilient, and precise in-field forage phenotyping techniques are required [13].
Remote sensing platforms such as low altitude unmanned aerial vehicles (UAV) are be-
coming a common tool to increase the throughput of phenotypic data collection in plant
breeding nurseries [14–16]. UAV are capable of rapid assessment of phenotypes in varietal
trials with high spatial and temporal resolutions [17], and per consequent, can increase
selection intensity, improve selection accuracy, and provide valuable selection decision
support [18]. Such platforms can be equipped with different types of sensors such as RGB
sensor (red (R), green (G), and blue (B)) and a multispectral sensor including near-infrared
spectral bands (wavelength ranging between 400 and 1000 nm). These are commonly
used for phenotyping various agronomic traits, including biomass [19–22], yield, disease
resistance, crop/soil water status, and ground cover [23–27].

A variety of spectral features, also known as vegetative indices (VIs), have been used
for biomass estimation, which also offers to quantitatively evaluate the richness, greenness,
and vitality of vegetation in field experiments [28]. Several studies have utilized VIs for
biomass monitoring in various crop species, including maize (Zea mays L.) [22,29,30], barley
(Hordeum vulgare) [15], rice (Oryza sativa) [31,32], wheat (Triticum spp.) [19,20], and other
small grain crops [33]. One of the most used indices is the normalized difference vegetation
index (NDVI) [34,35], which responds to variation in chlorophyll absorption in red spectra
and multi-scattering in NIR spectra, causing high reflectance [36]. The NDVI has been used
for the prediction of biomass and percentage of ground cover in winter forage crops [37].
An NDVI value less than 0 indicates no vegetation covering, whereas a value larger than
0.1 indicates vegetation coverage [38] as the index is directly proportional to vegetation
density, the higher the NDVI score, the greater the vegetation covering. However, the use of
multiple indices is recommended for biomass prediction as different types of VIs are subject
to different sensitivity depending on the amount of biomass and the stage of the crop. The
NDVI, GNDVI (Green Normalized Differential Vegetation Index), SAVI (Soil-Adjusted
Vegetation Index) and G-R (Green-Red Vegetation Index) are more accurate for estimating
the biomass at early crop stages [37], while they get saturated at later stages [36,39] and TVI
(Triangular Vegetation Index) is useful for predicting canopy biomass at later stages [40].

Accurate detection and mapping of crop canopy through remote sensing is challeng-
ing because of background effects like soil, shadow, and non-target canopies with high
morphological similarities. An object-based classification method, particularly machine
learning-based supervised and unsupervised pixel classification, has been widely used
for canopy identification. Gašparović et al. [41] implemented automatic/manual and
object-based/pixel-based classification algorithms for oats (Avena sativa L.) mapping using
UAV-based red, green, and blue (RGB) imagery. Random forest supervised classification
followed K-means unsupervised classification to differentiate oats from background soil
and weed effects [41]. Likewise, Devia et al. [42] utilized the K-mean clustering algorithm
for pixel classification for the identification of rice plants over soil and grasses.
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Statistical models have been implemented to relate spectral information with biophys-
ical attributes of crops [43,44]. Traditional modeling approaches are limited by statistical
assumptions failing to address outlier data, nonlinearity, heteroscedasticity, and multi-
collinearity issues [45]. Recently, machine learning algorithms have been widely employed
for the exploration and analysis of big data sets to identify meaningful correlations, patterns,
and rules among data, which are frequently found to outperform traditional regression
analysis [46]. The relationship between spatial and temporal changes of various predictor
factors determines biomass estimation. Machine learning techniques could be highly rel-
evant for biomass estimation as it has excellent capacity to treat multidimensional data
via incorporating several predictor features [47]. Expected biomass being a continuous
variable, machine learning methods such as support vector machine (SVM) [24], partial
least square (PLS) [48,49], random forest (RF) [50], and artificial neural network (ANN) [51]
have been used for biomass estimation. Training data is often required for supervised
machine learning algorithms, however, obtaining a large dataset is often challenging be-
cause of the difficulty in manually harvesting large numbers of plots and the limited crop
growing season [28]. In order to get reliable and unbiased estimates of model performance
in these cases, validation techniques such as leave one out for cross-validation and k-fold
cross-validation have been used in previous studies [22,52].

There are a limited number of studies that have used UAV-based canopy spectral
information and machine learning to predict the biomass in oats. Various studies related to
above-ground biomass estimation in cereal crops have seen lower estimation accuracy after
the heading stage, which could be due to higher biomass amount or other inflorescence/
stem interference overleaf canopy after heading [25,53]. Few studies have explored the
impacts of canopy spectral information from different growth phases on biomass estimation
for oats. Thus, the objectives of this study are; to (i) evaluate the potential of UAV multi-
spectral imagery-derived VIs in estimation of above ground biomass in oats, (ii) evaluate
the performance of UAV imagery collected at pre- and post-heading phases for oat biomass
estimation, and (iii) compare the performance of different machine-learning algorithms for
estimating above ground biomass of oats.

2. Materials and Methods

2.1. Field Experiments

Thirty-five oat genotypes adapted to the Northern Great Plains were cultivated in
2019 at three locations in South Dakota (Figure 1): Volga (44.321994, −96.924565), South
Shore (45.105087, −96.927985), and Beresford (43.080859, −96.776148). The experimental
design followed a randomized complete block design (RCBD) with three replications.
Each plot (experimental unit) was approximately 2.78 m2. Oats were planted at a density
of approximately 300 seeds per square meter and at a depth of approximately 0.038 m.
Beresford, Volga, and South Shore were planted on 26 April, 14 May, and 7 May, respectively,
and were harvested on 11 July, 18 July, and 19 July, respectively. Agronomic practices such as
fertilization and weed management were carried out in accordance with regional practices.
Based on the information extracted from the Agacis website (https://agacis.rcc-acis.org,
accessed on 1 July 2021), the average temperature during the growing season (May to July)
was 16.4 ◦C in South Shore, 18.8 ◦C in Beresford and 17.2 ◦C in Volga. In 2019, precipitations
during the growing season (May to July) totaled 11.93 cm in South Shore, 9.90 cm in Volga,
and 11.93 cm in Beresford.
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Figure 1. Three different experimental locations (South Shore, Beresford, and Volga) in South Dakota.

2.2. Ground Data Collection

Several phenotypic traits, such as heading time and crown rust severity, which can
directly or indirectly affect forage yield, were collected for this study. Crown rust severity
was scored as the percentage of leaf area covered by pustules over the entire plot. When
plants were between late milk and early dough, oats were harvested for forage. The plants
were cut close to the soil surface (approximately 7.6 cm) with a Jari mower or a forage
harvester (Figure 2a), depending on the location. The above-ground biomass of each plot
(fresh weight) was recorded immediately after harvest. For each plot, a sub-sample was
collected and subjected to air-dried oven set at 70 degrees Celsius until the weight was
constant (approximately a week). Dry matter content was calculated and used to measure
dry matter yield for each plot; the details of dry biomass calculation are as follows:

Dry mater content (%) =
Subsample dry weight

Subsample fresh weight
∗ 100% (1)

Dry biomass =
Fresh biomass ∗ dry matter content

100
(2)

 
(a) 

Figure 2. Cont.
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(b) 

Figure 2. Harvesting of forage for biomass yield in Beresford (a); preparation for drone flight (b).

2.3. Sensor and Aerial Platform

The UAV deployed is a DJI (Dà-Jiāng Innovations) Matrice 600 hexcopter (SZ DJI Tech-
nology Co., Ltd., Shenzhen 518057, China) (Figure 2b). Multispectral images were collected
with a MicaSense RedEdge-MX camera (MicaSense, Inc., Seattle, WA, USA). Micasense
RedEdge-MX has a 3.2-megapixel resolution, and five bands with central wavelengths of
457 nm (blue), 560 nm (green), 668 nm (red), 717 nm (red-edge), and 840 nm (near-NIR).
The spectral range covered by the green, red, red-edge, and NIR bands were 545–555 nm,
640–660 nm, 710–720 nm, and 840–860 nm, respectively. For UAV waypoint navigation and
flights, an autopilot system was applied using Drone Deploy (Drone Deploy, San Francisco,
CA, USA) software over the fields. Drone Deploy software was used for autonomous
takeoff, flight, and landing purposes, and for capturing consistent data over time. Each of
the flights was performed at an altitude of 25 m and with a front and side overlap of 80%.
The flights were performed in either sunny or overcast conditions with wind gusts less
than 12 miles per hour. Aerial images were collected on multiple days: Beresford (14 June,
1 July, 8 July, and 12 July), Volga (13 June, 25 June, 4 July, and 11 July), and South Shore
(16 June, 25 June, 6 July, 11 July, and 18 July). The UAV flights were conducted between
10 a.m. to 12 p.m. to ensure constant daylight operation.

2.4. UAV Data Processing
2.4.1. Image Preprocessing

The processing of raw images captured by UAV was conducted by using Pix4DMap-
persoftware (Pix4D Inc., San Francisco, CA, USA) to generate orthomosaic images in tiff
format (Figure 3). The orthomosaic images were generated with a spatial resolution of
0.7 cm. Following the orthomosaic, 10 ground control points (GCPs) were employed across
the field area to geo-reference the imageries from various flights. The GCP coordinates
were measured with a Magellan GPS device (Magellan Navigation Inc., San Dimas, CA,
USA). Four white tarps were evenly spaced around each corner of each field for radiometric
correction. The reflectance value of the tarps was determined using a CROPSCAN MSR16R
(CROPSCAN Inc., 1932 Viola Heights Lane NE Rochester, MN 55906, USA). Four white
tarps were used in the development of the linear relationship between DN (digital number)
and surface reflectance. The average DN of white tarps from drone imageries from all
the flights was used to develop an equation for each band. A linear regression-based
calibration [54] was used where slope and intercept from the equation was later used
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to convert DN values from each band to reflectance as described. The DN values were
converted to reflectance using the following equation:

SRij = Slope × DNij + Intercept (3)

where DNij is the digital number for ith band at jth flight period, and SRij is the surface
reflectance for ith band at jth flight period.

Figure 3. Orthomosaic RGB raster and corresponding NDVI map obtained during first flight (i,ii)
and last flight (iii,iv).

2.4.2. Spectral Vegetation Indices Extraction

Two methodologies were used to derive vegetation indices. The first one (hereafter re-
ferred to as “average reflectance over ROI”) was based on averaging the spectral reflectance
for all pixels within the region of interest (ROI). However, the spectral information de-
rived from average reflectance over ROI included shadows, background soil, and panicles
(for imagery collected after heading), which could affect the overall VIs values. Spectral
indices are sensitive to green living vegetation, therefore, only pixels with high NIR re-
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flectance values within ROI were selected in the second methodology (hereafter referred to
as “pixel classification”).

Average Reflectance over Region of Interest

The orthomosaic images were processed using ArcGIS software (Version 10.7. Red-
lands, CA, USA) to extract the spectral indices. They were first converted to float from
raster format. Then, using the raster calculator tool in the software, a variety of VIs were
generated (Table 1). The shape file polygons were created using the same software and
used for the identification of each sampling plot as an experimental unit. Finally, the zonal
statistics tool was used to derive plot-level mean VIs from each experimental unit.

Table 1. List of spectral vegetation indices calculated.

Vegetative Index Source Mathematical Formula

Normalized Differential Vegetation Index (NDVI) Rouse et al. (1974) [55] (NIR − R)/(NIR + R)
Green Normalized Differential Vegetation

Index (GNDVI) Moges et al. (2004) [56] (NIR − G)/(NIR + G)

Triangular Vegetation index (TVI) Broge and Leblanc (2000) [57] 0.5 × (120 × (NIR − G)-200 × (R − G))
Red edge Triangular Vegetation Index (RTVI) Chen (2010) [58] 100 × (NIR − RE) – 10 × (NIR − G)

Normalized Red-Green Difference Index (NGRDI) Tucker (1979) [59] (G − R)/(G + R)
Visual Atmospheric Resistance Index (VARI) Gitelson et al. (2002) [60] (G − R)/(G + R − B)

Excess Green Minus Red (ExGR) Camargo and Neto (2014) [61] EXG − (1.4R − G)

NIR, Near Infra-Red; R, Red; G, Green; and RE, Red Edge.

Pixel Classification Using K-Mean Clustering Algorithm

Pixel classification was used based on the K-mean algorithm using MATLAB. The
processing software imported stacked mosaic images to create 6 cluster classes. This
differentiation of clusters was based on the color feature of the image. Based on higher
NIR reflectance, cluster types with green pixels were identified. A binary vegetation
image was created after masking non-canopy type cluster classes. Then DN values for that
cluster were extracted for all bands (NIR, red edge, red, green, and blue) and converted to
surface reflectance using a calibration method. The same VIs was computed as previously
described (Table 1).

2.5. Statistical Analysis
2.5.1. Data Pre-Processing

Multispectral imagery from each flight was aggregated, resulting in a comprehensive
dataset for all three locations. For accessing spectral properties in accordance with the
specific growth phase of oats and its relationship with biomass yield, the dataset was
divided into two subsets, i.e., pre-heading and post-heading stages. This division was
based on the heading date noted for each genotype in different field conditions. The
spectral information collected prior to panicle emergence was separated as the pre-heading
dataset, and the spectral information collected after panicle emergence in most genotypes
was separated as the post-heading dataset. More explanation could be obtained from
histograms plotted for each location (Figure 4) representing the distribution of heading
occurrence in different genotypes measured after days of planting. The vertical dotted line
represents spectral data collection through UAV. For Beresford and South Shore, spectral
data from the first two flights were averaged and considered as pre-heading sample data.
Likewise, remaining later flights were averaged and considered as post-heading data.
While in Volga, the first three flights were averaged for the pre-heading data frame and the
last single flight was considered as the post-heading data frame.
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(i) 

 

(ii) 

 

(iii) 

Figure 4. Distribution of heading dates for 35 oats genotypes at Beresford (i), Volga (ii), and South
Shore (iii).

2.5.2. Correlation Analysis between VIs and Biomass

The package “hmisc” in R (version 3.5.1, R Development Core Team, 2018) [62] was
used to calculate the correlation matrix, including VIs and biomass. The function “rcorr”
was used to generate a matrix of Pearson’s rank correlation coefficients for all possible pairs
of columns of the matrix.
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2.5.3. Broad Sense Heritability Estimate

Broad sense heritability estimate refers to the proportion of phenotypic variance in a
trait that is attributed to the genetic variance in a population. Based on the linear mixed
model approach, “Minimum norm quadratic unbiased estimation (MINQUE)” was used
for estimating variance components and random effects. The jackknife as resampling
technique was implemented to generalize statistical test using R package “minque” [63].

2.5.4. Modeling

The spectral data retrieved from image processing were combined with ground truth
dry biomass to create the final dataset for modeling. The dataset included many variables
as each VI was considered over different time frames. Hence, various linear and non-linear
regression-based machine learning techniques were evaluated, and their performance was
compared. The “caret” package (Version 6.0-88) in R (version 3.5.1, R Development Core
Team, 2018) was used for implementing all different model algorithms [64]. In this study,
four machine learning algorithms, i.e., PLS (partial least square regression), SVM (support
vector machine), RF (random forest), and ANN (artificial neural network), were used to
predict biomass.

The PLS approach is known for its convenience in highly correlated predictors by di-
mension reduction techniques as in principle component analysis [65]. The SVM algorithm
aims to find a hyperplane in an n-dimensional space that distinctly classifies the data points.
These hyperplanes are known as the decision boundary and are used to predict continuous
output [66]. In our study, SVM was implemented using a linear variant, “svmLinear”
method that was chosen from the caret package in R for this purpose. The RF algorithm
principle works on a combination of tree predictors, such that each tree is dependent on
the values of a random vector that is sampled independently having similar distribution
for rest of trees in forest [67]. The ANN adopts the computing environment by repeated
adjustment using neuron weights and thresholds. The network training completes its task
once the output error of the network reaches its expected value [68].

For all four modeling approaches, tuning parameters were set (Table 2). For example,
in the PLS method, the model was subjected to tuning for finding the optimal number of
principal components (“ncomp”) to be incorporated. While in the case of SVM, parameter
C, known as “Cost”, was used as a tuning parameter, allowing different iterations of C to
maximize model accuracy. The cost-penalty parameter relates tolerance to error, which
means that when C gets large, the model gets flexible, and it leads to overfitting. In
other cases, with a small value of C, the model is rigid and subjected to underfitting. For
the RF analysis, the number of trees defaulted to 500, while to obtain the best predictor
combination for split candidate, the “mtry” parameter was tuned with its corresponding
cross-validation error. For the ANN analysis, size and decay were hyper-parameters used to
tune, where size is the number of units in the hidden layer and decay acts as a regularization
parameter to avoid over-fitting. To change the candidate values of the tuning parameters,
the “tuneLength” or “tuneGrid” arguments were used in the train function.

Table 2. Types of models implemented with their tuning parameters.

Model Source Strategy Tuning Parameter

PLS Abdi (2003) [69] Linear regression ncomp (#component)
SVM Vapnik (1995) [70] Linear regression Cost (C)
RF Livingston (2005) [67] Tree-based regression mtry

ANN Zou (2008) [68] Non-linear regression Size and decay

For Beresford and South Shore, seventy percent of the data for each location was used
for training the model and the rest was used as a validation set for evaluating the model
performance. In Volga, only the first two replications of the field trial were used in our data
analysis because heavy precipitation after planting caused delayed emergence in the third
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replication. Because of the smaller number of datapoints, the set was split 50:50 for training
and validation. Random-number seeds were applied before training each model such that
every model had the same data partition and had stable result output. For PLS, SVM, and
ANN models, data were transformed using the “preProcess” function, which forced all
predictors to be centered and scaled. In addition, “trainControl” was used to specify the
type of resampling methods to estimate performance of model.

For resampling methods, k-fold cross-validation (CV) was performed on the training
data set. The CV approach divides data into folds, estimating the error rate of machine
learning-based classifications on iteration and outputs the final model with the least error
rate [71]. In this study, repeated k-fold CV was implemented using 10 folds with three
replications. The default metric used for accuracy assessment in each model was the root
mean square error (RMSE). The comparison analysis was performed for both the training
set (cross-validation) and the test set data using RMSE and coefficient of determination
(R2). Those parameters were calculated as

R2 =
∑n

i=0(Xi−X)
2
(Yi−Y)

2

n ∑n
i=0(Xi−X)

2
∑n

i=0(Yi−Y)
2

RMSE =
√

1
n ∑n

i=1 (Yi − Xi)
2

where Xi and Yi were estimated biomass and measured biomass, respectively, and X, Y
were the average estimated biomass and measured biomass, respectively, and n was the
number of samples.

The predictor or variable importance for each model was derived using the generic
function “varImp” using the caret package. For the PLS model, the variable importance
was calculated based on weighted sums of the absolute regression coefficients. While in RF
model, variable importance was derived from mean square error, computed out-of-bag data
for each tree, then recomputed again after permuting each predictor variable. For ANN
and SVM, there was no model-specific way for calculating variable importance; hence, the
importance of each predictor was evaluated individually by using the “filter” approach [64].
The overall workflow for machine learning modeling using UAV remote-sensing data for
above-ground biomass estimation is explained in Figure 5.

Figure 5. Workflow diagram representing methodology for UAV data processing and modeling for
biomass estimation.
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3. Results

3.1. Ground-Based Dry Biomass Measurements

The highest dry biomass was produced at South Shore, with an average of 13,674.4 kg/ha.
The lowest dry biomass was produced in Volga, with an average of 9191.0 kg/ha (Figure 6i).
Wet conditions favored the development of crown rust in all three locations. Crown rust
severity was least severe in South Shore, where it averaged 25%, but 50% at the other two
locations (Figure 6ii). There was a negative correlation between fresh biomass and crown
rust severity at Beresford (r = −0.59 **) and Volga (r = −0.4 **), and this shows that biomass
was negatively affected by the presence of crown rust infection on leaves at those two
locations (Table 3). The correlation between biomass and crown rust severity was, however,
not significant in South Shore. The average height for each plot was also correlated to
dry biomass yield. Plant height had a significant positive correlation with dry biomass in
Beresford (r = 0.38) and South Shore (r = 0.24).

Figure 6. Boxplot representation of dry biomass yield (i) and crown rust severity (ii) for thirty-five
oat genotypes evaluated at three South Dakota locations.
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Table 3. Pearson correlation coefficient (r) of dry biomass with plant height and crown rust severity.

Location Plant Height Crown Rust Severity

Beresford 0.38 ** −0.59 **
Volga 0.15 −0.4 **

South Shore 0.24 ** 0.01
** are significant at 95% CI.

3.2. Broad Sense Heritability Estimates for Vegetative Indices

Broad-sense heritability (H2) estimates were calculated for dry biomass yield and
VIs. The broad-sense heritability for dry biomass yield was 0.55 for Beresford and 0.24 for
Volga. In South Shore, however, the heritability was 0.01, which shows that variation in
dry biomass yield was primarily due to other factors than the genotype. Among the VIs
considered, VARI and NDVI were found to consistently have higher heritability across
growth phases and locations. The broad-sense heritability estimates were lower for VIs
derived from pre-heading flights (NDVI: H2 = 0.46 and VARI: H2 = 0.47 for Beresford;
NDVI: H2 = 0.46 and VARI: H2 = 0.45 for Volga; and NDVI: H2 = 0.55 and VARI: H2 = 0.64
for South Shore) than for VIs derived from post-heading flights for all locations (NDVI:
H2 = 0.53 and VARI: H2 = 0.5 for Beresford; NDVI: H2 = 0.63 and VARI: H2 = 0.7 for Volga;
and NDVI: H2 = 0.55 and VARI: H2 = 0.63 for South Shore) (Figure 7).

Figure 7. Bar plot representation of broad-sense heritability estimates for vegetative indices collected
from pre-heading and post-heading phases across all three locations. (Only the VIs with significant
heritability estimate at 95% CI are presented in the figure).

3.3. Comparison of Vegetation Indices Derived through “Average Reflectance over ROI” and “Pixel
Classification” Methods
3.3.1. Relationship between Dry Biomass Yield and Vegetation Indexes Derived through
Average Reflectance over ROI Method

Pearson correlation coefficients (r) were calculated between dry biomass and VIs
obtained through average reflectance over the ROI method (Table 4). In Beresford, the
highest correlations between VIs and dry biomass yield (0.45 to 0.6) were obtained for later
flights (post-heading). For Volga, the strength of correlations between VIs and dry biomass
yield was similar for both post- and pre-heading flights. Among the VIs, NDVI and RTVI
were most highly correlated with dry biomass yield for both pre-heading (r = 0.43 and 0.57,
respectively) and post-heading flights (r = 0.42 and 0.41, respectively). In South Shore, few
VIs (TVI, ExGR, VARI) had significant correlations with dry biomass yield for flights before
heading. For post-heading flights, only GNDVI was significantly positively correlated with
biomass (r = 0.23).
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Table 4. Pearson correlation coefficients (r) between dry biomass yield and VIs from pre- and
post-heading flights.

Location Stage NGRDI ExGR VARI NDVI GNDVI TVI RTVI

Beresford
pre-heading 0.24 ** 0.3 ** 0.24 ** 0.32 *** 0.26 ** 0.27 ** 0.3 **
post-heading 0.6 *** 0.55 *** 0.55 *** 0.57 *** 0.54 *** 0.45 *** 0.54 ***

Volga pre-heading 0.35 ** 0.25 * 0.33 ** 0.43 ** 0.38 ** 0.47 *** 0.57 ***
post-heading 0.38 ** 0.3 * 0.39 ** 0.42 *** 0.35 ** 0.38 ** 0.41 ***

South
Shore

pre-heading 0.17 0.3 * 0.28 * 0.08 0.3 0.24 * 0.1
post-heading 0.23 −0.11 0.04 0.1 0.23 ** 0.1 0.2

p value significance: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.

3.3.2. Relationships between Dry Biomass Yield and Vegetation Indexes Derived through
Pixel Classification

For VIs derived from the pixel classification method, post-heading flights were more
strongly correlated (r = 0.4–0.7) with dry biomass yield than those derived from pre-heading
flights (r = 0.3–0.5) in Beresford (Table 5). Similar results were obtained for Volga. For South
Shore, however, dry biomass was not significantly correlated with any of the VIs except
TVI (r = 0.23) for pre-heading flights (Table 5). The use of pixel classification resulted in
higher correlations between VIs and dry biomass for both pre-heading and post-heading
flights in Beresford.

Table 5. Pearson correlation coefficients (r) of dry biomass yield with VIs from pre- and post-heading flights.

Location Stage NGRDI ExGR VARI NDVI GNDVI TVI RTVI

Beresford
pre-heading 0.42 ** 0.3 ** 0.44 ** 0.56 ** 0.35 ** 0.36 ** 0.4 **
post-heading 0.53 *** 0.61 *** 0.47 ** 0.72 *** 0.52 ** 0.40 ** 0.44 **

Volga pre-heading 0.28 * 0.20 * 0.30 ** 0.33 ** 0.32 ** 0.36 * 0.45 **
post-heading 0.44 ** 0.38 * 0.42 ** 0.54 ** 0.45 ** 0.42 ** 0.46 **

South
Shore

pre-heading 0.17 0.3 0.19 0.20 0.3 0.23 * 0.2
post-heading 0.1 0.2 0.1 0.12 0.1 0.12 0.10

p value significance: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.

For Beresford, the correlation between dry biomass and NDVI was r = 0.57 for the
average reflectance over the ROI method and r = 0.72 after pixel classification. For Volga,
correlation coefficients between dry matter yield and VIs derived from pre-heading flights
were quite similar for both methods (average reflectance over ROI and pixel classification)
irrespective of VIs. For the post-heading phase, VIs derived from the pixel classification
method had significantly greater correlation values (r = 0.38–0.54) with dry matter yield as
compared to average reflectance over the ROI method. For the post-heading stage in Volga,
the correlation between dry biomass and NDVI was r = 0.42 for the average reflectance over
the ROI method and r = 0.54 in the pixel classification method. No substantial differences
were observed between the two methods for South Shore. In both cases only some VIs was
significantly correlated to biomass during pre-heading, i.e., ExGR (r = 0.3), VARI (r = 0.28)
and TVI (r = 0.24) in average reflectance over ROI method and TVI (r = 0.23) in the pixel
classification method.

3.4. Analysis of Oat Biomass Estimation
3.4.1. Biomass Prediction from Spectral Information Collected Pre- and Post-Heading

Biomass estimation models were built with 7 VIs derived from flights during pre-
heading and post-heading phases using machine learning regression methods. To assess
each model’s performance, the RMSE and R2 for the testing data set were compared for
each model (Table 6). For UAV data collected prior to heading, the RF model was the best
model for Beresford (RMSE = 1726.3 and R2 = 0.3) and South Shore (RMSE = 1659.1 and
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R2 = 0.2), but the SVM model was best for Volga (RMSE = 695 and R2 = 0.4). For UAV
data collected post-heading, the PLS model performed best for Beresford (RMSE = 1098.6
and R2 = 0.7) and Volga (RMSE = 717.4 and R2 = 0.3), and the SVM model worked best
for South Shore (RMSE = 1681.5 and R2 = 0.1). For Beresford, most models had a good fit;
data points were distributed close to the fitted line as compared to the other two locations
(Figure 8). We found no single model that performed best in all three sites, no matter if it
was based on pre-heading or post-heading flights. The interval in the dot plot (Figure 9)
shows the difference in performance, with wider intervals indicative of greater variation
in performance. The overlapping confidence interval for RMSE values for the different
models (Figure 9) represents the performance gap which could be due to the small sample
size used for modeling.

For Beresford, models’ validation using testing dataset indicates higher R2 for models
developed based on data from post-heading flights as compared to models based on data
from pre-heading flights. For Volga and South Shore, however, the model’s performance
was very similar whether pre- or post-heading data was used for model development.

 

Figure 8. Cont.
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Figure 8. Plots of Predicted Vs Actual biomass yield for 35 oat genotypes grown in Beresford (A),
Volga (B), and South Shore (C) for pre-heading (i) and post-heading (ii) phase. The horizontal axis
represents the predicted biomass yield obtained from the model, and the vertical axis represents the
biomass measured manually at ground level.
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Table 6. Performance of prediction models for dry matter yield in oats based on VIs derived from
imagery collected pre- and post-heading (A and B) using RGB and multispectral sensors.

A. Pre-Heading

Training Data Beresford Volga South Shore

RMSE R2 RMSE R2 RMSE R2
PLS 1546.98 0.30 538.08 0.55 1502.14 0.29
RF 1682.61 0.28 538.08 0.56 1546.98 0.30

SVM 1636.66 0.33 605.34 0.51 1479.72 0.28
ANN 1860.86 0.20 582.92 0.52 1703.92 0.29

Test data
PLS 1771.18 0.26 695.02 0.3 1703.92 0.15
RF 1726.34 0.30 717.44 0.22 1659.08 0.20

SVM 1793.6 0.22 695.02 0.36 1793.6 0.10
ANN 1860.86 0.24 695.02 0.32 2264.42 0.10

B. Post-Heading

Training Data Beresford Volga South Shore

RMSE R2 RMSE R2 RMSE R2
PLS 1233.10 0.60 605.34 0.61 1659.08 0.18
RF 1345.20 0.54 538.08 0.56 1748.76 0.30

SVM 1233.10 0.59 560.50 0.56 1726.34 0.13
ANN 1300.36 0.56 695.02 0.52 1771.18 0.25

Test data
PLS 1098.58 0.70 717.44 0.27 1703.92 0.15
RF 1188.26 0.70 739.86 0.24 1771.18 0.10

SVM 1121.00 0.71 784.70 0.20 1681.50 0.14
ANN 1143.42 0.68 739.86 0.16 1771.18 0.18

 

i 

ii 

iii 

Figure 9. Dot plots from “caret” package show model comparisons using the resampling technique
for Beresford (i), Volga (ii), and South Shore (iii). Each plot shows the mean estimated RMSE value
for all four algorithms. Error bars are 95% confidence intervals on the metrics for each algorithm.
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3.4.2. Assessing Variable Importance in Various Models

All four regression methods considered for model development were implemented
with seven predictor variables (VIs), but the relative importance of each predictor varied
depending on the algorithm, location, and time of spectral information collection (i.e.,
pre-heading or post-heading). For Beresford, GNDVI and ExGR had high importance
for both pre- and post-heading across the models (Figure 10a). For Volga, RTVI had the
greatest importance among the VIs (Figure 10b). For South Shore, results were variable
across models (i.e., GNDVI in SVM and PLS, ExGR in ANN and RTVI in RF) (Figure 10c).

  

 

 

Figure 10. Importance scores for predictor variables at Beresford (a), Volga (b), and South Shore (c)
aggregating data from pre- and post-heading flights.

Variable importance was also accessed for pre- and post-heading by aggregating infor-
mation for all locations and models. For models based on pre-heading data, ExGR, GNDVI,
and RTVI had a greater value of importance in comparison to another VIs (Figure 11). The
same three predictor variables also had higher importance in models developed using data
from post-heading flights (Figure 11). This suggests that both RGB based (ExGR) and NIR
based (GNDVI and RTVI) indices were influential for biomass prediction.
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Figure 11. Importance scores for predictor variables. The importance scores of predictors are
summarized considering all locations and model types.

4. Discussion

4.1. Vegetative Indices on Predicting Biomass

Significant correlations between VIs and dry biomass yield were observed in Beresford
and Volga. In South Shore, however, very few VIs were significantly correlated to dry
biomass. This means that spectral information from aerial multispectral sensors may not
be fully efficient for biomass monitoring in certain cases. The principle of VIs is based
on photosynthetically active material, which could lead to error for the prediction of total
biomass [72,73]. The indicators of plant performance in remote sensing are color, structure,
and shapes of leaves. This is determined by properties like chlorophyll content and leaf
morphological and surface structures, which are dependent on the genotypes and on
environmental stresses and plant nutrition status. In our case, the higher moisture and
lower temperature in South Shore likely resulted in the higher biomass production along
with a low correlation of biomass yield with a disease like crown rust which led to minimal
spectral differences amongst genotypic plots. Another possible reason for the indices not
being able to predict biomass could be optical saturation. VIs saturation has been reported
previously in different studies. Prabhakara et al. [37] reported that VIs was not able to detect
the amount of biomass when there was high vegetation for barley and rye. In their study,
NDVI, GNDVI, and G-R saturated after reaching a value of approximately 0.8 and were
only related to biomass under ~1500 kg/ha, beyond which an increase in biomass did not
increase vegetative index value. In our study, although every location had average biomass
measured above 1500 kg/ha, in South Shore, VIs reached the highest value (average NDVI
value of 0.63) during the second flight (before heading) and gradually declined in later
flights. Whereas, for Beresford and Volga, the average value of VIs consistently increased
over time and reached to peak for the last flight before forage harvest.

In addition, during the 2019 growing season, precipitations were frequent at South
Shore, where the soil was saturated with water, and dew was frequent. The average soil
moisture over the growing season in South Shore was relatively 37.5% higher than in
Beresford (29.2%) [74]. The presence of dew on the canopies at the time of flight could
have affected the spectral reflectance quality and resulted in inaccurate vegetation indices.
Pinter et al. [75], in their study on the effect of dew on canopy reflectance, found that
moderate to high dew levels enhanced reflectance in visible wavelengths by 40–60% in
wheat cultivars. The wetness on leaves has been observed to affect the canopy reflectance
in a variety of plants, particularly in visible wavelengths [76,77].

The thirty-five oat genotypes used in this study had different maturity. The interval for
heading occurrence varied depending on the location. The heading stage for all 105 plots
occurred within nine days in Beresford, within six days in Volga, and within nine days in
South Shore. Plots also had different maturity stages on the day of forage harvest. There
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is evidence that the vegetation indices are affected not only by environmental conditions
but also by the growth stage of the crop [78]. Future studies should include soil moisture
status, weather information, crop stage of each genotype, and other environmental factors
to investigate the possible cause for failure of VIs to predict biomass.

Several studies reported using plant height derived from the crop surface model (CSM)
in combination with VIs for the accurate prediction of biomass for crops like barley [79]
and winter wheat [80]. Using a volume metric to estimate crop biomass within a plot
(combination of spectral and structural information) has significantly improved above-
ground biomass in corn [22]. Overall, these studies, along with our findings, suggest that a
combination of spectral and structural information from an aerial sensor may be necessary
to predict biophysical parameters like biomass more precisely.

4.2. Broad-Sense Heritability Estimates for VIs

For all three locations, NDVI and VARI had higher broad-sense heritability than
dry biomass yield. Another study reported a strong genetic correlation between winter
wheat grain yield and spectral reflectance and found Multispectral/RGB-based VIs with
heritability (H2 = 0.6–0.8), greater than for yield (H2 = 0.4–0.7) [81]. With these criteria,
spectral data can be used for indirect selection in plant breeding operations to increase
genetic gains [18]. However, in this study, biomass and VIs were not significantly correlated
in all locations. Evaluating the performance of UAV as a breeding tool for phenotyping
should be evaluated over multiple locations and years before determining if VIs can be
used as an indirect selection tool for oat biomass.

4.3. Comparison of Methodologies for VIs Computation

Several studies [82,83] have used pixel classification to enhance the accuracy of UAV-
based data to differentiate canopy and non-canopy areas. Booth et al. [82] used the single
pixel sample point method to differentiate shrub and grass species from other background
pixels. Patrignani et al. [83] used Canopeo (automatic color threshold classification in
MATLAB, which classified pixels to the canopy and non-canopy categories in various crops
(turf, corn, sorghum, etc.). In our study, NDVI correlation to biomass improved with the
pixel classification method in almost all cases (except for Volga for pre-heading flights).
Nevertheless, it is essential to note that improvement seen with average reflectance over the
ROI method was not consistent for every VIs. The lack of significant correlations between
VIs and biomass remained unchanged for most cases in South Shore even when the pixel
classification method was applied.

When considering different planophile and erectophile species, Myneni and Williams [84]
reported that NDVI was unaffected by pixel heterogeneity for estimating canopy vigor
based on biomass and color. Pixel heterogeneity, in our case, was comprised of panicle
structure and other background effects (shadow). But resolving problems through the
selection of pure canopy pixels was successful for one location (Beresford), but it did not
quite improve the relationship with ground truth biomass in all cases.

4.4. Evaluation of Prediction Models for Biomass

The proportion of variance in dry biomass yield explained by the models developed
in this study ranged from 70% in Beresford to 0.1% in South Shore. Similar to our results,
Wengert et al. [23] used VIs (RGB and multispectral) along with texture and plant height as
the predictor variable with the RF algorithm to predict above-ground biomass in barley
with a R2 of 0.62. Lu et al. [19], using VIs only as predictor variables, found that RF had a
higher R2 (0.69) than SVM and other linear-based models for predicting biomass in wheat.
For Beresford, model performance marginally fluctuated between model development and
model validation. Validation R2 for Volga, however, drastically decreased for all types
of models. One of the possible reason could be the lower range of dry biomass yield
among plots at that location. The low performance metrics for the models developed for
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South Shore are expected considering the insignificant correlations between VIs and dry
biomass yield.

Comparatively, all machine learning approaches yielded similar performances, except
ANN. The sample size in this study was very small, while a high number of training data
points is required to build optimal neural network models. Small datasets are subject to
overfitting [80,85–87].

RTVI, GNDVI, and ExGR consistently ranked as highly important variables. GNDVI
was also reported to be a highly ranked variable for above-ground biomass prediction of a
legume–grass mixture using UAV-borne spectral information [21]. Several studies [88,89]
have reported that red-edge VIs were not as important as NIR-based VIs for model predic-
tion. In our study, a red-edge-based VI (RTVI) was ranked as an important predictor.

5. Conclusions

The purpose of the study was to estimate oat biomass using VIs derived from high
resolution UAV imagery. Differences in growing conditions between the three locations
resulted in significant variations in oat biomass production. The VIs derived from multi-
spectral imagery was found to be positively correlated to above-ground biomass for two
of the locations. In the third location, however, very few UAV-derived VIs were signifi-
cantly correlated with biomass yield. Two different methodologies for VI extraction were
compared, i.e., the pixel classification method and average reflectance over ROI method.
While the use of pixel classification appears useful to increase the strength of the correlation
between VIs and biomass as observed in Beresford, this was not consistent across locations.

Four machine learning algorithms for estimating dry biomass yield were developed
using VIs from UAV imagery. Approximately 70% of the variance was explained by RF,
SVM, and PLS models for biomass prediction at one location. Additional sampling points
with multi-year trials should be considered to improve prediction models because advanced
machine learning algorithms, such as deep learning, often requires larger number of data
points and long training periods to improve model accuracy.

The same crop in different environments exhibited distinct physical properties, hence,
a single algorithm may not suffice the need for precise biomass monitoring. Multi-sensor
data fusion, multi-index combination, the inclusion of a range of characteristics not directly
linked to crop biomass monitoring, and the use of sophisticated algorithms are all viable
options for enhancing the accuracy of oat biomass predictions [90].
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Abstract: The extraction of wheat lodging is of great significance to post-disaster agricultural produc-
tion management, disaster assessment and insurance subsidies. At present, the recognition of lodging
wheat in the actual complex field environment still has low accuracy and poor real-time performance.
To overcome this gap, first, four-channel fusion images, including RGB and DSM (digital surface
model), as well as RGB and ExG (excess green), were constructed based on the RGB image acquired
from unmanned aerial vehicle (UAV). Second, a Mobile U-Net model that combined a lightweight
neural network with a depthwise separable convolution and U-Net model was proposed. Finally,
three data sets (RGB, RGB + DSM and RGB + ExG) were used to train, verify, test and evaluate the
proposed model. The results of the experiment showed that the overall accuracy of lodging recog-
nition based on RGB + DSM reached 88.99%, which is 11.8% higher than that of original RGB and
6.2% higher than that of RGB + ExG. In addition, our proposed model was superior to typical deep
learning frameworks in terms of model parameters, processing speed and segmentation accuracy.
The optimized Mobile U-Net model reached 9.49 million parameters, which was 27.3% and 33.3%
faster than the FCN and U-Net models, respectively. Furthermore, for RGB + DSM wheat lodging
extraction, the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared with
FCN and U-Net, respectively. Therefore, the Mobile U-Net model using RGB + DSM could extract
wheat lodging with higher accuracy, fewer parameters and stronger robustness.

Keywords: UAV; wheat lodging; deep learning; lightweight; digital surface model (DSM)

1. Introduction

Wheat is the main food source in the world, the quality and yield of which are
related to food security [1]. Lodging is a common agricultural natural disaster in wheat
production, especially in the middle and late stages of wheat growth, and it is one of
the important factors that limit the high yield of wheat [2]. On the one hand, lodging
changes the individual development of wheat and, on the other hand, lodging changes the
population structure of wheat. Previous studies have shown that lodging not only affects
protein synthesis and nutrient transport, but also causes a sharp decline in photosynthetic
rate and dry matter production capacity [3]. Therefore, it is of great significance for
production management, prevention and control guidance, as well as disaster assessment
for agricultural departments and agricultural insurance departments, to accurately and
quickly obtain information, such as the location and area of wheat lodging.

The traditional method of obtaining lodging information is ground manual mea-
surement, which is time-consuming and labor-intensive and its measurement results are
subjectively affected. In addition, for large-scale lodging disasters, its low work efficiency
often cannot meet actual needs [4]. In contrast, the rapid development based on remote
sensing technology provides a practical means for large-scale and rapid monitoring of
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lodging information [5], such as near-ground remote sensing, satellite remote sensing and
unmanned aerial vehicle (UAV) remote sensing monitoring. The low efficiency of near-
ground remote sensing technology limits its further application on the farmland scale [6].
To achieve large-scale crop lodging monitoring, Yang et al. used the Radarsat-2 radar
polarization index method to monitor wheat lodging [7]. Chauhan et al. used Sentinel 1
radar data and Sentinel 2 multispectral data to monitor the incidence of wheat lodging [8].
To make full use of the information provided by satellites, Chauhan et al. realized the clas-
sification of the degree of lodging of wheat by combining satellite data and the measured
crop height on the ground [9]. However, for the limitation of time resolution, satellites
cannot quickly obtain data to meet the needs of real-time identification. Therefore, it is
necessary to develop a fast and reliable method for identifying wheat lodging. In recent
years, UAV remote sensing has made up for the shortcomings of satellite remote sensing
and near-ground remote sensing by virtue of its advantages of miniaturization, low cost,
simple operation and high spatial and temporal resolution. UAV is the main tool for rapid
and accurate acquisition of crop information in the application of agricultural quantitative
remote sensing. UAV remote sensing is the current research hotspot and the future research
trend. Previous studies have shown that remote sensing technology based on UAV can
detect not only lodging in high-density crops, such as buckwheat [10], rice [11], barley [12],
wheat [13] and jute [14], but low-density crop lodging information acquisition, such as
corn [15], sunflower [16], cotton [17] and sugarcane [18], has also achieved good results. In
addition, many scholars have also carried out analyses of crop lodging based on different
features extracted by UAV, including spectral information [19], texture features [20], gray
level co-occurrence matrix [21] and vegetation indices [22]. In any case, the above research
papers showed the feasibility of extracting crop lodging based on digital images obtained
from UAV. However, it is difficult to achieve accurate lodging detection tasks for tradi-
tional features. Therefore, it is expected that more robust features will be used to identify
wheat lodging.

At present, UAV not only obtains digital images with three channels of R, G and
B, but also can generate a variety of derivative models based on multiple aerial images,
including digital orthophoto (DOM), digital elevation model (DEM) and digital surface
model (DSM), which have been successfully used in the application of monitoring crop
growth. Among them, DSM has received extensive attention because of its rich information
and intuitive reflection of features such as canopy, location and height. Handique et al.
used the difference of DSM to distinguish crops of different heights [23]. Feng et al. utilized
DSM to successfully estimate crop yields [24]. In general, the DSM generated by UAV
images can accurately represent the spatial variability of crops in different growth states.
Yang et al. successfully realized the lodging detection of rice using DSM and texture
features generated by UAV images [25]. In fact, fusion images based on RGB images
contain multi-channel information, which can provide more heterogeneous features for
lodging recognition. For example, some studies have focused on fusion image combining
RGB and DSM to extract lodging, while other studies have developed a method of fusing
RGB and the vegetation index to extract lodging [26]. At present, there is no universally
accepted understanding of which information is better to fuse aerial images obtained by
UAV. In addition, most of the research was still based on manually extracted features.
Therefore, the extraction of crop lodging information still faces many challenges.

With the enhancement of computer processing power, the recognition of crop lodging
based on deep learning has become a research hotspot in the field of agriculture. Many
methods based on convolutional neural networks have been successfully applied to the
research of lodging recognition. Yang et al. used EDANet to extract the lodging infor-
mation of rice [27]. Zhao et al. utilized U-Net to extract the lodging area of rice [28].
Compared with traditional algorithms, the advantage of deep learning is that it can au-
tomatically extract effective features through a multi-layer neural network. In particular,
the convolutional neural network model not only extracts the local detailed features of the
image, but also extracts the high-level semantic features of the image. Research results
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showed the feasibility and superiority of extracting crop lodging information based on
deep learning. However, the limitations of large amounts of calculation and high resource
consumption still make the model complex, which makes it difficult to meet the needs of
large-scale, real-time detection. In particular, it was not known whether the multi-channel
image of fusion information could further improve the accuracy of lodging information
extraction. Although Li et al. exploited deep learning methods to achieve lodging area
segmentation based on multi-channel spectral information [29], so far, it is not clear how
fusion-based multi-channel images could detect crop lodging based on lightweight neural
network models.

Therefore, a method for extracting wheat lodging information based on a light-weight
U-Net model with depthwise separable convolution is proposed in this study. Self-built
data sets obtained from UAV were used to evaluate the performance of the model, including
RGB of three channels, RGB + DSM of four channels and RGB + ExG of four channels.
The purpose of this research study is to (1) train Mobile U-Net using self-built data sets
and fine-tune model parameters to improve the robustness of the model, (2) verify the
effectiveness of the multi-channel fusion image to improve the accuracy of wheat lodging
extraction and (3) compare ours with other models to evaluate the performance of the
proposed model.

2. Materials and Methods

2.1. Data Collection

The field experiment was conducted in the National Modern Agriculture Demon-
stration Zone (31◦29′26′′ N, 117◦13′4′′ E) located in Guohe Town, Lujiang County, Anhui
Province, China. The area belongs to the subtropical monsoon climate, with four distinct
seasons, obvious cold and heat and it is suitable for the cultivation of wheat. Thirty-six
plots in the experimental area were selected as the study area, each plot covering the area
of 144.3 square meters (78 × 1.85 m2). The large row spacing was 0.3 m and the small row
spacing was 0.1 m. The variety of wheat was ‘Wanmai 55’. From 30 April to 26 May 2021,
Lujiang County experienced severe convective weather such as severe storms and rains,
with winds reaching up to 7–8 levels, and severe weather such as hail in some areas, leading
to multiple lodging of wheat in the study area. The wheat in the experimental area was in
the critical period of wheat growth. During this period, members of our team collected
UAV images and ground information at different stages of wheat growth, including the
flowering (7 May 2021), filling (17 May 2021) and maturity (27 May 2021) stages.

During the data collection process, a total of 298 UAV aerial images was obtained at
a height of 30 m above the ground during the three growth stages of wheat, including
flowering (98 images), filling (100 images) and maturity (100 images). The size of a single
image was 4000 × 3000 pixels. The Pix4DMapper software (Pix4D, Prilly, Switzerland) was
used to stitch the original images to obtain orthophotos of wheat fields in three periods.
Then, the acquired aerial images were manually annotated, cropped and subjected to
data augmentation.

Figure 1a shows the research location; Figure 1b is a partially enlarged display of
the wheat field. It is easy to see that the lodging area was very large and the degree of
lodging was very serious. Figure 1c shows a close-up map of lodging and healthy wheat in
flowering stage; the image of the wheat field was acquired by UAV at a height of about
3 m above the ground and the shooting angle was about 65◦. Figure 1d shows a close-up
map of lodging and healthy wheat in filling stage, Figure 1e shows a close-up map of
lodging and healthy wheat in maturity stage. We found that the height of lodging wheat
is significantly lower than that of non-lodging wheat by at least 20 cm. Figure 1d,e was
obtained using a mobile phone (nova5 pro, ISO: 50, focal length: 26 mm).
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Figure 1. Location of UAV imaging area, study site and lodging samples: (a) study site; (b) partially enlarged display of the
wheat field; the close-up maps of lodging and healthy wheat in (c) flowering, (d) filling and (e) maturity. The field indicated
by the blue arrow is the lodging wheat.

2.2. Data Preprocessing
2.2.1. Image Annotation

Among them, the Labelme software (http://labelme.csail.mit.edu/Release3.0/, ac-
cessed on 10 May 2021) was used to manually mark; the non-lodging area of wheat was
marked as wheat, the lodging area was marked as lodging, the other areas were marked as
background. The label images were created and the annotated images were cropped into
images with 256 × 256 pixels, as shown in Figure 2.

Figure 2. Example of original image and labeled image after cropping.
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2.2.2. Image Fusion

To explore the influence of DSM and ExG on the recognition of the lodging effect
based on the deep learning model, the RGB images collected by the UAV in this study were
calculated to obtain the ExG index, the DSM was generated based on the dense point cloud
and then the band was synthesized by the ENVI5.3 (Exelis Visual Information Solutions,
USA) software. The ExG and DSM were added to the RGB image as the fourth band to
obtain fusion images of RGB + ExG and RGB + DSM.

Among them, high-resolution, multi-view dense images were obtained from UAV and
then Pix4Dmapper (Pix4D Company, Switzerland) software was used to adjust and match
the images to generate dense point clouds; then, the triangulated irregular network (TIN)
was constructed and, finally, a digital surface model (DSM) was obtained.

Excess green (ExG) can better distinguish vegetation and soil and it is often used for
crop remote sensing monitoring [30]. To increase the extraction accuracy of wheat lodging
information, the ENVI5.3 software was used to extract the gray values of the three bands
of R, G and B from the RGB image obtained by UAV aerial photography and then the ExG
index was calculated according to Equation (1).

ExG =
2R − G − B
R + G + B

(1)

where G, B and R are the visible light green band, blue band and red band respectively.

2.2.3. Image Augmentation

To obtain more training samples, data augmentation was performed on training
sample images and label images. A lossless transformation method was used, i.e., random
horizontal or vertical flipping, random rotation at 90◦ and random x–y coordinate axis
transposition. Therefore, data sets based on RGB and fusion images (four channels based
on RGB + ExG and four-channel images based on RGB + DSM) were constructed, each
including 1500 images. Different lodging detection models were trained based on three
different data sets, training sets, validation sets and test sets, which included 1200, 150 and
150 images, respectively.

2.3. Model Construction and Evaluation Indicators
2.3.1. U-Net Model

U-Net is currently a popular deep learning model for semantic segmentation, which
consists of a convolutional coding unit and a convolutional decoding unit [31]. Generally,
the coding unit is mainly used to capture the context information in the image and the
decoding unit is used to accurately locate the part that needs to be divided. Although
the U-Net performance has been improved by improving the fully convolutional network
(FCN), the standard U-Net neural network still needs to be further improved. To improve
the detection accuracy, we proposed a wheat lodging recognition model combining Mo-
bileNetV1 with depthwise separable convolution and U-Net to form a wheat lodging
segmentation model.

2.3.2. Mobile U-Net Model

The Mobile U-Net model was composed of an encoder and a decoder. The ordinary
convolution was replaced with a depthwise separable convolution to reduce the number of
parameters and calculations of the entire network [32]. Among them, the pooling layer (Max
pooling) and the convolutional layer were combined to construct a down-sampling unit,
while the up-sampling layer and the convolutional layer were combined to construct an
up-sampling unit. At the same time, depthwise separable convolution was used for feature
extraction in the down-sampling unit, which enhances the feature extraction capability of
the network model and reduces the computational cost. The addition of the convolutional
layer could make up for the shortcomings of the Max Pooling layer and up-sampling layer
that are not trainable, so it could reduce the loss of feature information during the sampling
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process and effectively improve the segmentation accuracy of the small boundary of the
lodging edge of wheat, as shown in Figure 3.

 
Figure 3. The structure of the Mobile U-Net model. (3/4 means that the parameter is set to 3 for RGB as input data and the
parameter is set to 4 for four-channel image as input).

The input of the model was an image with a resolution of 256 × 256 pixels (3-channel
image or 4-channel image) and the output was a single-channel segmented image. In
the convolutional coding unit, a total of 4 up-samplings was performed and the first up-
sampling unit included 2 repeated depthwise separable convolution modules and a Max
pooling layer. The second, third and fourth up-sampling units had the same structure,
including a depthwise separable convolution module and a Max pooling layer. After each
pooling operation, the feature map size decreased and the number of channels doubled.
The decoder performed down-sampling through transposed convolution and gradually
restored image information. Corresponding to the encoder part, the decoder performed a
total of 4 down-samplings. The first down-sampling unit included a depthwise separable
convolution module and a transposed convolution module. The second, third and fourth
down-sampling units also had the same structure, including two repeated depthwise
separable convolution modules and one transposed convolution module, respectively.
Each up-sampling expanded the feature map size and reduced the number of channels by
half. Finally, a standard convolution module with a size of 1 × 1 was used to reduce the
dimension and a normalized exponential function (SoftMax) was used to convert the value
into a probability. The specific parameters are shown in the Table 1.

2.3.3. Wheat Lodging Segmentation Model

The technical process of this research study, shown in Figure 4, mainly included UAV
digital image collection, data set construction, model training and verification, testing,
model evaluation and optimization. Firstly, the DSM and ExG derived from the RGB image
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obtained by UAV were used to construct the RGB, RGB + ExG and RGB + DSM data sets.
Secondly, the Mobile U-Net model proposed in this study was trained, verified and tested
using different data sets. Furthermore, we compare the performance of Mobile U-Net
with typical deep learning frameworks, such as FCN and U-Net. Finally, three data sets in
different periods were used to predict the lodging area.

Table 1. Parameters of the Mobile U-Net model.

Layer Type Size Filter Stride

Input 256 × 256 × 3/4
Depthwise separable convolution 256 × 256 × 64 3 × 3, 1 × 1 2

Max pooling 128 × 128 × 64 2 × 2 1
Depthwise separable convolution 128 × 128 × 128 3 × 3, 1 × 1 2

Max pooling 64 × 64 × 128 2 × 2 1
Depthwise separable convolution 64 × 64 × 256 3 × 3, 1 × 1 2

Max pooling 32 × 32 × 256 2 × 2 1
Depthwise separable convolution 32 × 32 × 512 3 × 3, 1 × 1 2

Max pooling 16 × 16 × 512 2 × 2 1
Depthwise separable convolution 16 × 16 × 1024 3 × 3, 1 × 1 2

Transposed Convolution 32 × 32 × 512 3 × 3 1
Skip connection 32 × 32 × 1024 1

Depthwise separable convolution 32 × 32 × 512 3 × 3, 1 × 1 2
Transposed Convolution 64 × 64 × 256 3 × 3 1

Skip connection 64 × 64 × 512 1
Depthwise separable convolution 64 × 64 × 256 3 × 3, 1 × 1 2

Transposed Convolution 128 × 128 × 128 3 × 3 1
Skip connection 128 × 128 × 256 1

Depthwise separable convolution 128 × 128 × 128 3 × 3, 1 × 1 2
Transposed Convolution 256 × 256 × 64 3 × 3 1

Skip connection 256 × 256 × 128 1
Depthwise separable convolution 256 × 256 × 64 3 × 3, 1 × 1 2

Standard convolution 256 × 256 × 3 1 × 1 1

 
Figure 4. The technical flow chart of this study.

2.3.4. Evaluation Indicators

There were four indicators used to evaluate the performance of the model, including
precision, recall, F1 − score and mean Intersection over Union (mIoU). Among them,
precision shows the proportion of samples that are predicted to be lodging wheat in the
segmented image that are actually lodging wheat; recall shows to the proportion of samples
that are predicted to be lodging wheat among all the samples that are actually lodging
wheat; F1− score is the harmonic mean of accuracy and recall, reflecting the comprehensive
performance of segmentation of lodging wheat in the wheat field; mIoU is the ratio of
overlap between the segmentation result of wheat lodging and ground truth. The values of
the above evaluation indicators are all between 0 and 1 and the larger the value, the better
the segmentation effect. In this study, precision, recall, F1 − score and mIoU are used as
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the evaluation indexes for evaluating the segmentation accuracy of lodging wheat and the
calculation formulas are as follows:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 − score = 2 × precision × recall
precision + recall

(4)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(5)

where TP refers to the correct segmentation of the wheat lodging area, which is the wheat
lodging area; TN refers to the correct segmentation of the non-lodging area of wheat, which
is a non-lodging area of wheat; FP refers to the correct segmentation of the wheat lodging
area, which is a non-lodging area of wheat; FN refers to the correct segmentation of the
non-lodging area of wheat, which is the wheat lodging area; k is the number of categories.

3. Results

3.1. DSM and ExG Images Derived from RGB

Pix4Dmapper was used to generate a high-precision DSM (digital surface model)
and ExG (excess green) in the wheat research area with high-resolution digital images
obtained from UAV in different growth periods, as shown in Figure 5. Among them, the
first column represents the flowering period, the second column represents the filling
period and the third column represents the maturity period, as shown in Figure 1a–c. The
first row represents the RGB image of the study area, the second row represents the DSM
extracted from the image of the study area and the third row represents the ExG extracted
from the image of the study area.

It can be seen, from Figure 5 (a2, DSM of flowering period; b2, DSM of filling period;
c2, DSM of maturity period), that the elevations of the digital surface models in different
periods were still significantly different. Especially, in the same period, the elevation of
the wheat field was also different, because the digital surface model covered the elevation
of other surface information except the ground. In this study, DSM showed the ground
elevation model of normal wheat and lodging wheat, which could most truly express the
growth status of crops on the ground of wheat fields. Therefore, DSM was beneficial to
distinguish between normal wheat and lodging wheat in the field.

In addition, to clarify the contribution of the ExG index in identifying lodging wheat,
the digital numbers (DNs) of the R, G and B channels were extracted from the RGB images
of the study area acquired in three different periods; then, ExG was calculated and the
visualization of ExG is shown in Figure 5 (a3, ExG of flowering period; b3, ExG of filling
period; c3, ExG of maturity period). It can be seen, from Figure 5, that ExG was different in
different periods.

Figure 6a–d shows the specific values of the digital number of R, digital number of
G, digital number of B and ExG of lodging and non-lodging wheat in different periods
extracted from the set 30 regions of interest (ROI). It can be seen, from Figure 6a–d, that the
distribution of R, G, B and ExG was different in the flowering, filling and maturity periods.
Especially, Figure 6d shows that the ExG of non-lodging wheat was significantly lower
than that of lodging wheat. The mean values of ExG were 0.193–0.307, 0.009–0.157 and
0.027–0.049 for non-lodging and 0.238–0.319, 0.053–0.227 and 0.032–0.07 for lodging at the
flowering, filling and maturity stage, respectively. Among them, the average ExG values of
lodging wheat fields were 0.281, 0.116 and 0.044 in the three periods, which were 10%, 39%
and 12% higher than those of normal wheat fields. It can be seen that ExG had a positive
effect on the identification of wheat lodging.
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3.2. Model Parameter Setting and Training

The experimental environment of this research project was the Windows10 Profes-
sional 64-bit operating system and the deep learning framework was Keras 2.2.4, which
was used to train the network model. Model training and verification environment were
as follows: Intel(R) Core (TM) i7-8700 @3.20 GHz and 16 G NVIDIA GeForce RTX 2080.
The images were stitched with Pix4Dmapper and were cropped with Python codes. The
language of model development used was python.

Figure 5. RGB, DSM and ExG of wheat fields in different growth periods: (a) flowering, (b) filling and (c) maturity.
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Figure 6. Comparison of the ExG values of lodging and non-lodging in different periods: (a) digital
number of R; (b) digital number of G; (c) digital number of B; (d) value of ExG.

The model was trained using the Adam algorithm, the learning rate was 0.0001, the
Batch size was 4 and the training iterations were 200 Epochs. After each Epoch training,
not only the loss and accuracy were obtained by calculation, but the weights were also
updated and saved. After the model was trained for 200 Epochs, the model with the
highest accuracy was selected as the test model. Figure 7 shows the loss and accuracy
curves of the training set and the validation set (RGB, RGB + ExG and RGB + DSM) of
the Mobile U-Net model. It can be seen, from Figure 7, that that the error between the
training set and the validation set decreased with the increase in the number of iterations
and the error dropped below 0.1 when epoch = 65, then finally stabilized. On the one
hand, this shows that the model can control the deviation. However, the close error of
the training set and the verification set after stabilization indicated that the variance of
the model was relatively low. In addition, the accuracy of the network increased as the
number of iterations increased, until it stabilized. Therefore, when the training converged,
the model with the highest accuracy was selected as the test model.

Figure 7. Loss and accuracy curves of the training set and validation set: (a) loss curve; (b) accuracy curve of training set
and verification set. Train indicates training set; Val indicates validation set.
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3.3. Results of Wheat Lodging Recognition with Different Data Sets

Table 2 showed the test results of data sets for different growth periods based on the
Mobile U-Net model. Among them, the F1-score of the training set was 74.31–94.87% and
the mIoU was 70.21–91.31%. The F1-score of the test set was 70.45–96.82% and the mIoU
was 62.11–87.99%. Therefore, the Mobile U-Net model performed well in the extraction of
wheat lodging. In particular, the F1-score of wheat lodging segmentation was 70.45–85.42%
for RGB, 78.49–90.37% for RGB + ExG and 80.8–96.82% for RGB + DSM. The corresponding
mIoU were 62.11–74.68%, 69.58–83.45% and 70.39–87.99%.

Table 2. Segmentation results using different data of three different periods.

Dataset
F1-Score (%) mIoU (%) F1-Score (%) mIoU (%)

Training Set Test Set

RGB
Flowering 74.31 70.21 70.45 62.11

Filling 88.02 77.67 85.42 74.68
Maturity 83.46 72.89 79.65 70.64

RGB + ExG
Flowering 81.32 76.53 78.49 69.58

Filling 94.87 87.04 90.37 83.45
Maturity 88.36 83.87 81.58 72.94

RGB + DSM
Flowering 89.69 85.94 80.8 70.39

Filling 97.59 91.31 96.82 87.99
Maturity 90.62 84.55 89.36 80.73

Figure 8 shows the lodging segmentation results of three different data sets in different
periods, including RGB, RGB + ExG and RGB + DSM. It could be seen from Figure 8a
that the lodging degree of wheat in the three different periods was quite different and the
canopy structure was also different. Figure 8b represents the ground truth of wheat lodging.
Figure 8c–e shows the results of wheat lodging recognition. Among them, the lodging
recognition error rate with the RGB image was relatively high. There were many missed
recognitions in lodging recognition using RGB + ExG. The result of lodging recognition
using RGB + DSM was close to ground truth.

 
Figure 8. Test results of lodging recognition using different data.
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4. Discussions

4.1. Compare the Identifying Results of Wheat Lodging Using Different Fusion Images

The visible light vegetation index could quantify the growth of vegetation under
certain conditions, because it could reflect the difference between the reflection of vegetation
under visible light and the soil background [33]. Some studies have used the vegetation
index to successfully extract crop lodging information. For example, Wu et al. used NDVI
to extract the lodging of rice [34]. Zhao et al. used a combination of three vegetation indices,
including super green (ExG), super red (ExR) and the visible band difference vegetation
index (VDVI), to successfully extract the lodging area of rice [28]. They only carried out the
lodging extraction study based on the spectral characteristics of the vegetation, but did not
carry out the comparison with the image fusion. In particular, the identification of lodging
and non-lodging based only on the spectral characteristics of the wheat canopy could
easily lead to misidentification and low recognition accuracy, because it was inevitable that
the same objects had different spectra and the same spectrum reflected different objects.
Therefore, it was necessary to study the different characteristics of the canopy in order to
improve the accuracy of lodging detection.

In this study, three wheat field data sets of different growth periods were constructed,
including RGB, RGB + ExG and RGB + DSM. Table 3 shows the comparison of the lodging
recognition results based on data sets in different periods. Compared with RGB, F1-score
and mIoU based on RGB + DSM increased by 12.8% and 11.8% in the flowering stage,
increased by 11.8% and 15.1% in the filling stage and increased by 10.9% and 12.5% in the
maturity period. In the corresponding period, F1-score and mIoU were 2.9% and 1.2%,
6.7% and 5.2%, and 8.7% and 9.6% higher than that of RGB + ExG, respectively. It is worth
mentioning that there were significant differences in the elevations displayed in the DSM
of the study area before and after the lodging of the wheat. Therefore, DSM fully expressed
the difference in elevation between ground features in different periods, which was suitable
for distinguishing lodging wheat from normal wheat.

Table 3. Comparison of lodging recognition results of different models.

Methods Data F1-Score mIoU Time-CPU
(s/Image)

Parameter
(Million)

FCN
RGB 59.45 56.87 0.53 17.08

RGB + ExG 61.90 53.72 0.70 17.08
RGB + DSM 67.33 55.89 0.73 17.08

U-Net
RGB 66.17 60.51 0.60 30.95

RGB + ExG 69.06 59.78 0.80 30.95
RGB + DSM 75.36 64.95 0.80 30.95

Mobile
U-Net

RGB 78.51 69.14 0.33 9.49
RGB + ExG 83.48 75.32 0.53 9.49
RGB + DSM 88.99 80.7 0.53 9.49

4.2. Compare the Identifying Results of Wheat Lodging Based on Different Methods

To further verify the performance of our proposed method, the classic segmenta-
tion method U-Net model and FCN model under the deep learning framework were
selected and compared with the model proposed in this paper on three identical test sets
(150 images). The hardware environment for model testing was Intel(R) Core (TM) i7-
1065G7 @1.30 GHz, 16 G. The results are shown in Table 3. It can be seen, from Table 3,
that, compared with FCN and U-Net, the F1-Score of Mobile U-Net increased by 24.3% and
15.7% and mIoU increased by 17.7% and 12.5% for the RGB; 25.9% and 17.3% of F1-Score,
28.7% and 20.6% of mIoU for the RGB + ExG; 24.3% and 15.3% of F1-Score, 30.7% and 19.5%
of mIoU for the RGB + DSM. Therefore, regardless of RGB, or the fused image RGB + ExG
and RGB + DSM, the Mobile U-Net proposed in this study was superior to FCN and U-Net
in wheat lodging recognition. In particular, F1-Score and mIoU based on Mobile U-Net
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using RGB + DSM was 88.99%, 80.7%, 11.8% and 14.3% higher than that of RGB and 6.2%
and 6.7% higher than that of RGB + ExG.

Table 3 shows the comparison results of the average time for different models to
process each image. After the model was tested using the test sets, the average time for
Mobile U-Net to process each four-channel image with a size of 256 × 256 was 0.53 s
using CPU (Intel(R) Core (TM) i7-1065G7, @1.30 GHz, 16 G). Both U-Net and FCN took
longer to process the same types of images than the Mobile U-Net model. Regarding
processing time per image, Mobile U-Net was 37.5% and 44.4% faster than U-Net and
FCN for RGB, 23.8% and 33.3% faster for RGB + ExG, and 27.3% and 33.3% faster for
RGB + DSM. In addition, regarding the parameters of the model, FCN was 17.08 million,
U-Net was 30.95 million and Mobile U-Net was only 9.49 million, which was the model
with the fewest parameters among the three models. Therefore, the model proposed in
this study ensured that the accuracy was not reduced and improved the speed of image
segmentation, aiming to achieve the goal of early warning of wheat lodging, reducing the
impact of lodging, increasing production and income and benefiting farmers.

In fact, some studies have shown that semantic segmentation methods based on deep
learning have strong advantages in lodging recognition. Yang [26] et al. used FCN (full
neural network) to extract rice lodging based on RGB + ExG fusion information. Zhao et al.
used UNet to extract lodging information [28]. Although the above-mentioned deep
learning methods could effectively extract lodging features, too many parameters resulted
in a low operating speed of the model. The possible reason is that the structure of the model
they adopted was more complicated. For example, the standard U-Net neural network
consists of 19 convolutional layers, the corresponding pooling layers and up-sampling
layers. Therefore, it was necessary to improve the model, aiming to reduce the amount of
calculation and improve the recognition effect.

To show the recognition of wheat lodging based on different models, only the recogni-
tion results using the RGB + DSM were provided here, as shown in Figure 9. It can be seen,
from Figure 9, that there were many wrong recognitions based on the FCN. The lodging
detection based on U-net was close to the result of our method and there were still some
areas missing recognition. According to the analysis in Table 3, compared with FCN and
U-net, the model we proposed not only maintained the premise of the same accuracy, but
also improved the processing speed and reduced the parameters of the model, providing a
technical basis for portable mobile devices that detect lodging in the field.

Figure 9. The results of estimating wheat lodging with different models with RGB + DSM.
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4.3. Visualization of Feature Activation in Lodging Wheat

To verify the function of the depthwise separable convolution module, gradient-
weighted class activation mapping (Grad-CAM) [35], which mainly uses the gradient of the
target class and propagates to the final convolutional layer to generate a rough positioning
map, was used to visualize the features,. The results of visualization clearly show how
the network model selects important areas of the prediction class, so as to determine the
impact of the depthwise separable convolution module.

As shown in Figure 10, the red area in the feature map indicates the high-weight
area of the neural network to determine the lodging wheat and the blue area indicates
the low-weight area of the network to determine the lodging wheat. The redder the color,
the greater the influence of this area on the recognition result of the lodging wheat. It
can be seen, from Figure 10b,d, that U-Net focused on the lodging area, non-lodging area
and background. Figure 10c,e shows that the Mobile U-Net model paid attention to the
more accurate lodging areas. Therefore, our proposed model with a depthwise separable
convolution module could better learn the characteristic information of lodging wheat and
improve the segmentation accuracy of lodging wheat.

Figure 10. Visualization of feature activations using Grad-CAM.

5. Conclusions

In this study, a wheat lodging segmentation model based on a lightweight U-Net
neural network with depthwise separable convolution, which was used to realize wheat
lodging recognition and accurate segmentation from UAV images under field conditions, is
proposed. The proposed model was trained, verified and tested with self-built wheat data
sets (RGB, RGB + ExG, RGB + DSM) of different growth periods, including flowering, filling
and maturity. The experiments showed that the extraction of wheat lodging effect based
on the fusion image of DSM and RGB was the best; the F1-Score reached 88.99% and the
mIoU reached 80.7%, indicating that the fusion image was more suitable for wheat lodging
extraction. Furthermore, the parameters of the Mobile U-Net model were 9.49 million
and the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared
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with FCN and U-Net, which indicate that the proposed model was suitable for the task of
quickly and accurately detecting wheat lodging in the field.
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Abstract: Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus,
this trait is evaluated in most forage breeding programs with the objective of increasing the yield.
Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to
increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP),
aiming to estimate parameters correlated to important traits. The main goal of this study was to
propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry
matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots
of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset
was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits
leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional
agronomic methodology and considered as the ground-truth data. Different CNN architectures
were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for
related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were
also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of
DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits.
Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and
from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha−1

for LDMY and from 413.07 to 506.56 kg·ha−1 for TDMY. All the CNNs generated heritable HTP
traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP
traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained
achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates
that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in
forage breeding programs.

Keywords: deep learning; forage dry matter yield; high-throughput phenotyping; Brazilian pasture
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1. Introduction

Pastures are the best alternative for feeding beef cattle in Brazil since they are the
most economical and sustainable feed strategy available for cattle rearers. It is estimated
that 86% of the beef produced in the country occurs entirely on pastures [1], which are
composed mostly of perennial African species such as guineagrass (Megathyrsus maximus,
syn. Panicum maximum) and brachiariagrass (Urochloa spp., syn. Brachiaria spp.) [2]. Beef
cattle production in Brazilian pastures has been increased by the adoption of improved
forage cultivars [3]. As an example, the first two guineagrass cultivars released by Embrapa
(Brazilian Agricultural Research Corporation) in the 1990s presented 86% (cv. Tanzânia)
and 136% (cv. Mombaça) higher leaf dry matter yield than the oldest cv. Colonião with a
great impact on the beef and milk production systems [4]. Thus, new improved cultivars
are highly recommended to increase profits and sustainability of beef cattle production.

Dry matter yield (DMY) is the most important trait in forage breeding since it contains
most of the essential nutrients of the cattle’s diet, such as carbohydrates, proteins, lipids,
vitamins, and minerals [5]. Forage dry matter is composed of different morphological
components such as leaf blades, leaf sheaths, and stems, and most of the nutrients accumu-
late in the leaf blades. In all the phases of cultivar development, DMY is evaluated and
included in the breeder’s selection criteria. However, the high labor costs and the time
spent to acquire DMY phenotypes limit the genetic gains in breeding programs [6].

Currently, phenotyping for forage yield traits is performed by low-cost inaccurate
visual evaluations [7] or by high-cost low throughput measurements [8]. For the latter
strategy, samples are air-forced dried in a drying chamber to calculate DMY. If breeders
seek to include DMY components in the selection criteria, an additional laboring step
for separating different components of the forage samples is necessary prior to drying.
Additionally, the multi-season x year x environment harvests increase labor costs and time
of phenotyping in perennial forage breeding. In this regard, new strategies that guarantee
high throughput, accuracy, low costs, and less time consumption would highly impact
forage breeding programs, especially the ones with limited resources.

High-throughput phenotyping (HTP) is an emerging strategy to reduce the bottleneck
of phenotyping in breeding programs [9]. HTP is performed in fully automated facilities,
growth chambers, or in the field; the latter is expected to impact directly plant breeding
since the information correlates better with the real environment of crop production [9].
Generally, field HTP uses unmanned aerial vehicles (UAV) platforms combined with
different sensors (RGB, multispectral, hyperspectral, LiDAR) and image processing tools.
Thus, features (e.g., physiological vegetation indices) are extracted from the images and
correlated with ground-truth data to validate the HTP process.

Highly correlated estimates indicate that HTP may be a tool to support breeder or
agricultural specialist’s decisions [10–12]. Gebremedhin et al. [6] reviewed different aspects
of sensor technologies applied to forage DMY and pointed out that machine learning is an
important technique that can be widely applied in data analysis for HTP in large population
field trials. Remote sensing in conjunction with robust and intelligent data processing
methods has been an alternative used for visual inspection of agricultural landscapes in
recent years [13].

Recently, machine learning methods such as deep learning have gained prominence,
outperforming traditional methods. Spectral indices [14] are commonly used as input for
traditional methods. Deep learning-based algorithms, using raw data, search for patterns
necessary for classification or regression, with various levels of representation obtained
by the composition of non-linear but straightforward models. Each one transforms the
representation that is at a raw level into a higher-level representation, slightly more abstract.
There are different types of deep neural networks used for image processing, speech
recognition, and language interpretation. Convolutional neural networks (CNNs), which
are the most used for remote sensing image processing, are deep networks with convolution
and pooling layers [15]. They apply mathematical operations of convolution in vectors that
represent images, thus extracting information used for training these networks [16].
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Deep learning has the advantage of performing end-to-end learning, whereas con-
ventional machine learning often requires a domain-dependent custom feature extraction
process [16]. For instance, Lee et al. [17] presented a data pipeline consisting of several
steps to use conventional machine learning to evaluate plant growth. The image is prepro-
cessed and submitted to a superpixel algorithm as a feature extraction technique. Using
a conventional machine learning algorithm, Random Forest, the model performed plant
segmentation. Additionally, they need to compare the images to evaluate plant growth.
Our proposal is much simpler and easier to tackle. We use CNNs that incorporate the
feature extraction step in the lower levels of the convolutional layers and direct outputs the
target information. Other similar approaches in HTP using conventional machine learning
can be found in [18–21]

The applications of CNNs in agriculture are diverse [22,23]. For example, in rice [24],
a set of 500 images were used to identify diseases in the field by adopting CNN inspired by
AlexNet [25], and LeNet [26]. In the training part of the neural network, the 10-fold cross-
validation strategy was used, and the proposed CNN achieved an accuracy of 95.48% in
identifying diseases. Research that served as the inspiration for this investigation addressed
the use of images and CNNs to estimate biomass in wheat [27], in which a network was
proposed inspired by VGGNet [28] and RGB images. They obtained a high correlation
coefficient and a low Root Mean Square Error (RMSE) compared with other techniques,
such as Random Forest and Support Vector Machines.

In our previous research [29], green biomass was estimated in a tropical forage experi-
ment applying different already known CNNs, such as AlexNet, ResNet, and VGGNet, in
a bank of 330 image patches of guineagrass, taken using RGB sensor embedded in UAV.
AlexNet outperformed other architectures obtaining a better correlation and intersection
between the real data measured by experts and data predicted by these CNNs. However,
based on literature, few studies are found in which convolutional neural networks are
applied in forages, and we have not found any research that applies these techniques to
estimate forage DMY in a HTP context.

Field HTP using remote sensing and CNNs generate new traits throughout the image
detection, classification, and retrieval process. These traits can be used in different selection
methods in the breeding program, such as indirect selection [30,31], index selection, or
in prediction with genomic selection [32]. In the indirect selection, a secondary trait (e.g.,
HTP trait) can replace the main trait (e.g., DMY) in selection criteria if the secondary trait
is highly heritable and correlated to the main trait [33]. However, if the secondary trait is
more suitable to evaluate in large plant populations, as expected with HTP traits, a higher
selection intensity can be applied and increase the efficiency of indirect selection [34].

To increase the efficiency of forage breeding programs, it is important to evaluate
state-of-the-art methods to estimate parameters correlated to important traits. Our work
hypothesis is that deep learning regression-based methods are able to estimate DMY traits
using only RGB UAV-based imagery with adequate accuracy for a guineagrass breeding
program. The main goal is to propose a CNN regression-based approach to estimate
DMY traits using only RGB UAV-based imagery. AlexNet, ResNeXt50, DarkNet53, and
two networks proposed recently for related tasks named MaCNN [27] and LF-CNN [35],
which compose the state-of-the-art, were investigated in the current work. Different from
previous work [29] that assessed green biomass, here we considered the dry matter. Besides,
the CNN-based DMY was not assessed only in a traditional mode (RMSE, correlation
coefficient, etc.) but also in the statistical genetic analysis. Also, the HTP traits from the
best CNN were used to evaluate their performance in the indirect selection method.

2. Method

The proposed approach is presented in Figure 1. First, RGB images were acquired
with a UAV. Orthoimages were generated using the acquired RGB images based on UAV
photogrammetry technique. In the next step, the orthoimage for each plot was extracted
and used as input for the CNN regression-based architectures. As ground truth, two traits
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were evaluated for each plot: leaf dry matter yield (LDMY) and total dry matter yield
(TDMY), in kg·ha−1. These traits were estimated based on field and laboratory evaluation.
Finally, the estimated values from the CNNs were validated on a genetic model. Detailed
descriptions of the two main steps are presented in the following sections.

Figure 1. Workflow of phenotyping DMY traits by conventional (bellow) and high-throughput (above) processes in the
guineagrass breeding program at Embrapa Beef Cattle.

2.1. Deep Learning Architectures and Evaluation

AlexNet was the architecture initially chosen for the application. According to the
result of previous research focused on the estimation of green matter [29], AlexNet pre-
sented the best Pearson correlations and Root Mean Square error, compared to ResNet and
VGGNet. AlexNet is a CNN proposed in [25], and is composed of eight layers in which
five are convolution layers, using as activation function Rectified Linear Units (ReLU) and
MaxPool between the layers, and three layers are fully connected. AlexNet and the other
CNNs were adapted to the regression problem.

In addition to this network, two other CNNs containing a number of small layers
were chosen for this research. Ma et al. [27] proposed in 2019 a CNN for estimating wheat
biomass. Thus, it was decided to use this network and verify its performance to estimate
dry matter yield traits in forages. In our study, this network was named MaCNN, and
this CNN consists of four convolution layers, with layers between them with the average
pooling operation, in which the image dimension is downsampled, thus containing three
more levels. In addition, in each convolution layer, a batch normalization was also carried
out, which contributes to the acceleration of the CNN training process. Finally, there was a
fully connected dropout layer.

Another CNN used was proposed by Barbosa et al. [35] in 2020. This network was
named Late Fusion (LF). It is a multi-stream network in which each input is connected to
an independent convolutional layer with eight 3 × 3 filters. However, a fully connected
ReLU layer with 16 neurons was added to each stream after the maximum cluster layer,
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followed by a single ReLu neuron. Then, the five neurons (one from each stream) were
concatenated and fed to the last two layers.

Even though previous research [29] verified a higher efficiency of AlexNet in relation
to deeper networks, it was decided to evaluate state-of-the-art and deeper CNNs for dry
matter traits. The architecture ResNeXt [36] with 50 layers was chosen, namely ResNeXt50.
In addition to ResNeXt50, the DarkNet53 proposed by Redmon et al. [37] was considered,
in which a 53-layer CNN was used. In order to have a better comparison between the
different architectures, Table 1 presents the architectures used in this study with the number
of layers and the number of parameters.

Table 1. Comparison between the different models in terms of number of layers and parameters.

Models Number of Layers Number of Parameters

AlexNet 8 62 M
AlexNet pretrained 8 62 M
MaCNN 5 1.1 M
LF-CNN 10 3.6 K
ResNeXt50 50 25 M
ResNeXt50 pretrained 50 25 M
DarkNet53 53 42 M

Data augmentation related to rotation (horizontally and vertically) was also adopted to
avoid overfitting, thus increasing the data set for training. For training these architectures,
a 10-fold cross-validation technique was used. This procedure randomly divides the data
set into 10 sets with equal size, and each set is, in turn, used to test the model trained
from the other 10-1 sets [38]. In all experiments, the Adam optimization method [39] was
used. The cost function used was the mean square error, described in Equation (1). The
pretrained models considered the ImageNet, where the pretrained weights were loaded
and adjusted to these models using the training set. Models without pretraining were fully
trained using the training set.

ε =
1
n

n

∑
i=0

(yi − ŷi)
2 (1)

To evaluate the experiments, different metrics were used, as expressed in
Equations (2)–(4). The MAE and RMSE metrics express the average model prediction
error in units of the variable of interest. The metric r establishes a linear relationship
between the real value and the predicted value. In the Equations (2) and (3), the y is the
real value and the ŷ the predicted one. In the last equation, x represents real values, and x
is the average of real values. The y represents the predicted values and the y the average of
the predicted values.

MAE =
1
n

n

∑
i=0

|yi − ŷi| (2)

RMSE =

√
1
n

n

∑
i=0

(yi − ŷi)2 (3)

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2(yi − y)2

(4)

Finally, to evaluate the distribution of real and estimated values, we constructed
histograms. For the construction of the histograms, the number of bins was determined
using the [40] elbow rule from the partitioning of the real values of the samples.
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2.2. Validation of HTP Traits on a Genetic Model

Each CNN architecture generated estimates of each DMY trait from the cross-validation
process for each trial plot. Here, these estimates for a given CNN were nominated HTP
traits, which means a trait estimated from a UAV platform-RGB sensor-CNN architecture
related to the real trait (LDMY or TDMY). Thus, DMY traits estimated by HTP and by
conventional phenotyping were analyzed considering the linear mixed model shown in
Equation (5).

y = XB + Z1b + Z2g + e (5)

where y is the vector of observations of the real or each HTP trait; B is the vector of fixed
effects of replications and checks (genitors and cultivars); b is the vector of random effects
of blocks within replications where b ˜ N(0,Vb); g is the vector of random effects of full-sib
family where g ˜ N(0,Vg); and e is the vector of random effects of residuals where e ˜
N(0,RVe). R is a matrix of (co)variances of residuals where the spacial tendencies were
modeled for autocorrelation among lines and columns of the trial according to [41]. X
relates y to B, whereas Z1 and Z2 relate y to b and g, respectively. Estimation of variance
components from the data was carried out using restricted maximum likelihood (REML)
by the Average Information algorithm as implemented in the ASREML-R package [42] in
the R environment. Based on the most likely variance components, the fixed effects were
estimated, and the random effects (family BLUPs) were predicted by solving the mixed
model equations.

To compute the broad-sense heritability (H) for real and HTP traits on the basis of
full-sib family means, we considered Equation (6), as suggested by [43]:

H = 1 − PEV
2Vg

(6)

where PEV is the prediction error variance, which represents the average variance of the
difference between a pair of family predictions (BLUP), and Vg is the genetic variance
component among full-sib families.

Correlations between family BLUPs of a given HTP trait and its related real trait
(LDMY or TDMY) were estimated as an approximated genetic correlation (r) between
traits.

Direct response to selection (DR) for real traits and correlated response to selec-
tion (CR) when using its related HTP trait as a secondary trait were obtained using
Equations (7) and (8) [33], where i is the selection intensity, h is the square root of H, v
is the square root of Vg.

DR = i.h real.vg real (7)

CR = i.h HTP.r.vg real (8)

For DR, we considered a selection intensity of 10%, or approximately nine selected
families, which represented an i = 1.76; for CR we considered three scenarios that main-
tained the same number of selected families: (1) the same selection intensity (10%) as for
the real trait, (2) increasing the selection intensity to 5% or i = 2.06 by simulating twice the
number of full-sib families evaluated (172) by HTP and (3) increasing the selected intensity
to 1% or i = 2.67 by simulating ten times the number of full-sib families evaluated (860)
by HTP. In the last two scenarios we must consider the same experimental design as for
the first one. Thus, the total number of plots considered in (2) and (3) were 660 and 3300,
respectively.

3. Experiments and Results

3.1. Study Area and Data Set

For the development of this study, images from a guineagrass trial located at Embrapa
Beef Cattle in Campo Grande, Mato Grosso do Sul, Brazil, were used. A total of 110
genotypes composed of 86 full-sib families, ten sexual, and ten apomictic genitors along
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with four commercial checks (Mombaça, MG12 Paredão, BRS Quênia, and BRS Tamani)
were used as treatments. A 10 × 11 alpha lattice design with three replications was
considered, totaling 330 plots in the trial. Each plot consisted of two rows of 2.0 m length
and 0.5 m apart. Each row consisted of five plants spaced 0.5 m between plants, in a total
of ten plants per plot. Plots were 1.0 m apart, representing an area of 4.5 m2. This trial is
described according to Figure 2.

Figure 2. Sketch of the trial in the field.

The images were taken using the UAV Phantom 4 PRO, with an RGB sensor of
5427 × 3748 of image resolution. The flight was carried out on 23 January 2019, close to 9
am, at the height of 18 m, thus generating a resolution of 0.5 cm/pixel, with a frontal image
overlap of 75% and lateral of 60%, and the flight took about 20 min.

To properly extract each plot, the images were processed using the software Pix4dMapper.
An orthomosaic was generated, which is a mosaic of orthorectified and enhanced aerial images
to homogenize its appearance. With the orthomosaic generated, it was possible to correctly
map the area of interest and perform the extraction of images from each plot of the trial.
To perform this extraction, a Python script proposed in [29] was used, in which it uses the
orthomosaic as a parameter in tiff format and from the information of the trial, such as the
number of blocks and the number of plots per block, as well as how the numbering of each
plot is organized, generates the images of each plot identified according to the established
numbers. For this experiment, 330 orthoimage patches were generated relative to the total
number of plots in the trial.

Each plot was evaluated for forage yield traits on 25 January 2019. Traits were obtained
by harvesting each plot 0.2 m from the soil. The harvested material (green matter) was
weighed in the field using a field dynamometer to obtain the total green matter weight
per plot (TGMW) in kg. After weighing, samples of 300 g to 500 g of the green matter
were taken and sent to the Laboratory of Forage Sample Preparation of Embrapa Beef
Cattle to obtain the sample green weight (SGW), in g, and which were then separated
into leaf blades, leaf sheaths + stems and dead material. These forage sample components
were then air-forced dried at 65 ◦C in the drying chamber for 72 h. After this period, the
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dried samples were weighed to obtain leaf dry matter weight (LDMW), sheaths + stem
dry matter weight (SSDMW), and dead material dry matter weight (DMDMW) in kg. The
Equations (9)–(12) were considered to obtain the dry matter yield per plot.

LDMY =
TGMW ∗ LDMW

SGW
(9)

SSDMY =
TGMW ∗ SSDMW

SGW
(10)

DMDMY =
TGMW ∗ DMDMW

SGW
(11)

TDMY = LDMY + SSDMY + DMDMY (12)

Finally, LDMY and TDMY per plot were converted to kg·ha−1.
The distribution of the values of LDMY and TDMY in kg·ha−1, which for this research

will be the attributes classes y, are shown in Figure 3.

(a) (b)

Figure 3. Data distribution. (a) TDMY; (b) LDMY.

3.2. Deep Learning Protocol

Due to the fact that only 330 image patches were used, this can become a problem when
using deep neural networks, as there is a high number of parameters that are estimated. As
previously mentioned, data augmentation related to rotation (horizontally and vertically)
was also adopted to avoid overfitting, thus increasing the data set for training.

For training the architectures, a 10-fold cross-validation technique was used. The
Adam optimization method [39] was used, with the descending gradient algorithm, and a
fixed learning rate of 0.001, constant β1 = 0.9, β2 = 0.999 and ε = 10−8. Table 2 summarizes
the CNN architectures used, the number of epochs for each experiment, and the batch size.
The number of epochs for each experiment was defined empirically using early stopping
evaluated every 100 epochs. The batch size sought to use the highest value that did not
overflow the GPU memory. For all experiments, a server with an NVIDIA K80 (2 × 12 GB),
AMD TR 1900X 3.7 GHz CPU, and 64 GB of RAM was used.

Table 2. Configurations of the experiments.

Models Number of Epochs Batch Size

AlexNet 500 256
AlexNet pretrained 500 256
MaCNN 500 256
LF-CNN 500 256
ResNeXt50 300 64
ResNeXt50 pretrained 300 64
DarkNet53 300 64
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3.3. Results

Tables 3 and 4 present the MAE, the RMSE and the Pearson Correlation coefficient r for
each CNN architecture with respect to the dry matter traits. From the tables presented, the
MAE values ranged between 204.39 (AlexNet pretrained) and 266.77 (LF-CNN) kg·ha−1 for the
LDMY trait, and ranged between 289.66 (AlexNet pretrained) and 366.93 (LF-CNN) kg·ha−1

for TDMY trait. It is important to mention that we have values, predominantly, from 500 to
4000 kg·ha−1 for these traits. Therefore, it is possible to analyze a better performance of AlexNet
pretrained for LDMY trait, since it presented the lowest values for MAE and RMSE, with an
absolute average error of 204.39 kg·ha−1. For TDMY trait, AlexNet pretrained presented the
lowest MAE in relation to the others; however, for the other metrics, ResNeXt50 pretrained
presented better results, with an RMSE of 413.07 kg·ha−1.

Table 3. Results for LDMY.

Models Mean Absolute Error Root Mean Square Error Pearson Correlation (r)

AlexNet 248.41 ± 47.58 340.70 ± 64.85 0.70 ± 0.09
AlexNet pretrained 204.39 ± 56.46 286.24 ± 80.39 0.79 ± 0.12
MaCNN 240.74 ± 65.09 333.60 ± 86.93 0.71 ± 0.11
LF-CNN 266.57 ± 89.19 366.93 ± 110.33 0.62 ± 0.13
ResNeXt50 221.04 ± 54.44 319.98 ± 98.47 0.72 ± 0.12
ResNeXt50 pretrained 231.66 ± 63.41 319.58 ± 87.06 0.73 ± 0.10
DarkNet53 217.30 ± 57.09 311.76 ± 76.68 0.76 ± 0.12

Table 4. Results for TDMY

Models Mean Absolute Error Root Mean Squared Error Pearson Correlation (r)

AlexNet 311.37 ± 88.58 441.31 ± 131.29 0.73 ± 0.17
AlexNet pretrained 289.66 ± 96.28 419.95 ± 136.93 0.75 ± 0.20
MaCNN 345.11 ± 97.94 477.12 ± 136.34 0.68 ± 0.20
LF-CNN 364.44 ± 145.38 506.56 ± 176.24 0.60 ± 0.17
ResNeXt50 306.09 ± 137.15 449.07 ± 175.06 0.71 ± 0.17
ResNeXt50 pretrained 294.73 ± 78.83 413.07 ± 117.77 0.76 ± 0.24
DarkNet53 291.12 ± 80.26 419.50 ± 131.87 0.75 ± 0.23

Furthermore, analyzing the coefficient r, we verified that there was a variation from
0.62 (LF-CNN) to 0.79 (AlexNet pretrained) for LDMY and 0.60 (LF-CNN) up to 0.76
(ResNeXt50 pretrained) for TDMY. This shows that there was a significant correlation
between the data estimated by the CNN and the real data obtained in the field, realizing
that it is possible to obtain a high relationship between the RGB images and the dry
matter data using the CNN. Overall, the three networks with the best results were AlexNet
pretrained, ResNeXt50 pretrained, and DarkNet53. LF-CNN had the worst results for both
traits.

3.3.1. Graph of Predicted Versus Real

The graphs shown in Figures 4 and 5 are composed of points (y, ŷ), in which y
represents the real values of LDMY and TDMY, respectively, while ŷ represents the values
predicted by CNNs for each of the traits. A perfect prediction would result in a straight
line on the graph since the predicted, and real values would be the same.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 4. Predicted vs. Real plots-LDMY. (a) AlexNet; (b) AlexNet pretrained; (c) MaCNN; (d) LF-
CNN; (e) ResNeXt50; (f) ResNeXt50 pretrained; (g) DarkNet53.

Analyzing the graphs presented in Figure 4, which presents the plot of the estimated
and real values of LDMY, it is possible to notice that for high values, above 2500 kg·ha−1,
AlexNet pretrained (Figure 4b) provided smaller errors. The ResNeXt50 pretrained and
DarkNet53 models presented more linear graphs (Figure 4f,g), providing less error mainly
in the range of 1000 and 2000 kg·ha−1. The other networks (Figure 4a,c–e) have some major
errors with respect to values between 1000 and 2000 kg·ha−1, and for higher values, they
were able to estimate the values properly.

186



Sensors 2021, 21, 3971

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 5. Predicted vs. Real plots-TDMY. (a) AlexNet; (b) AlexNet pretrained; (c) MaCNN; (d) LF-
CNN; (e) ResNeXt50; (f) ResNeXt50 pretrained; (g) DarkNet53.

For TDMY, the analysis of the graphs presented in Figure 5 occured in a similar way.
For this trait, we can notice that AlexNet pretrained (Figure 5b), ResNeXt50 pretrained
(Figure 5f) and DarkNet53 (Figure 5g) provided more accurate results, mainly for values
above 3000 kg·ha−1. The MaCNN (Figure 5c) and LF-CNN (Figure 5d) networks presented
small errors for values between 1000 and 2000 kg·ha−1, but they started to disperse more
as the values increased (between 2000 and 3000 kg·ha−1). However, MaCNN in some
data had a smaller error for values above 3000 kg·ha−1, which was not verified for LDMY.
Finally, we verified that AlexNet not pretrained had more spread points for values below
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1500 kg·ha−1. On the other hand, ResNeXt50 not pretrained presented more spread points
for values above 3000 kg·ha−1.

3.3.2. Histograms

The histograms (Figures 6 and 7) show the distribution of data of LDMY and TDMY,
respectively, and the intersection between the predicted values ŷ and real values y. The
intersection area between the values was then calculated and is presented in Table 5. It
was verified that for group values greater than 20, the addition of new groups did not
significantly increase the representativeness of the data; thus, the number of bins was
defined as 20.

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 6. Comparison of predicted ŷ vs. real y in relation to LDMY data distribution. (a)
AlexNet; (b) AlexNet pretrained; (c) MaCNN; (d) LF-CNN; (e) ResNeXt50; (f) ResNeXt50 pretrained;
(g) DarkNet53.
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Table 5. Intersection area of histograms.

Experiments/Intersection Leaf Dry Matter Total Dry Matter

AlexNet 0.87 0.93
AlexNet pretrained 0.91 0.90
MaCNN 0.89 0.91
LF-CNN 0.86 0.81
ResNeXt50 0.88 0.85
ResNeXt50 pretrained 0.86 0.89
DarkNet53 0.89 0.90

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 7. Comparison of predicted ŷ vs. real y in relation to TDMY data distribution. (a)
AlexNet; (b) AlexNet pretrained; (c) MaCNN; (d) LF-CNN; (e) ResNeXt50; (f) ResNeXt50 pretrained;
(g) DarkNet53.

From the analysis of the tables and the histograms presented above, it is possible to
notice a higher area of intersection for AlexNet.

189



Sensors 2021, 21, 3971

3.3.3. Genetic Parameters and Indirect Selection Efficiency

Results in Table 6 showed that the Vg components changed according to the HTP
trait considered, but all of them were lower than for the Real LDMY and TDMY traits. It
can be observed that traits derived from ResNeXt50 pretrained showed 5.5 and 3.8 times
higher Vg than those derived from LF-CNN for LDMY and AlexNet for TDMY, respectively.
Compared to the Real traits, the Vg of ResNeXt50 pretrained were 0.66 and 0.73 times of the
Vg for LDMY and TDMY, respectively. Interestingly, ResNeXt50 pretrained increased the
estimates of Vg in comparison to ResNeXt50, a non-pretrained model, especially for TDMY.
DarkNet53 was another CNN that stood out for estimating the Vg of the traits compared to
the other networks.

Table 6. Genetic parameters for dry matter traits in the guineagrass breeding program using field
data and their estimates by several CNNs architectures.Vg-Genetic variance among full-sib families;
H-broad sense heritability; r-approximate genetic correlation between real and HTP trait.

Data Origin

Traits

Leaf Dry Matter Yield Total Dry Matter Yield

Vg H r Vg H r

Real 44,258 0.41 1.00 87,562 0.48 1.00
AlexNet 18,299 0.08 0.71 16,956 −0.36 0.82
AlexNet pretrained 15,602 0.05 0.85 51,343 0.11 0.81
MaCNN 18,643 0.08 0.76 32,888 0.10 0.69
LF−CNN 5288 −0.49 0.71 23,975 0.23 0.75
ResNeXt50 21,188 0.36 0.78 37,580 0.47 0.80
ResNeXt50 pretrained 29,337 0.45 0.84 64,288 0.51 0.83
DarkNet53 22,347 0.44 0.84 62,378 0.45 0.85

Broad-sense heritability (H), which is related to the accuracy of phenotypes to predict
genotypes, ranged from −0.49 (LF-CNN) to 0.45 (ResNeXt50 pretrained) for LDMY and
from −0.36 (AlexNet) to 0.51 (ResNeXt50 pretrained) for TDMY, indicating that there were
effects of the phenotyping process in the heritability of the traits. Except for HTP traits
from ResNeXt50 (only for TDMY), ResNeXt50 pretrained, and DarkNet53, all the other
CNN generated traits with lower H than real traits. Thus, while some CNN generated
phenotypes with moderate accuracy to predict the family genotypic values, other CNN
showed low or even highly inaccurate values, as in the case of LF-CNN for LDMY and
AlexNet for TDMY.

Genotypic correlations (r) between HTP and real traits were positive and high, al-
though their magnitudes varied according to the CNN architecture. The values ranged
from 0.71 (AlexNet and LF-CNN) to 0.85 (AlexNet pretrained) for LDMY and from 0.69
(MaCNN) to 0.85 (DarkNet53) for TDMY. The highest correlations were achieved by HTP
traits generated by AlexNet pretrained, DarkNet53 and ResNeXt50 pretrained for LDMY
and DarkNet53, ResNext50 pretrained, and AlexNet for TDMY.

ResNeXt50 pretrained was chosen to estimate the efficiency of indirect selection using
HTP secondary traits, since it showed a generally better performance for Vg, H and r for
both dry matter traits. Table 7 shows that the CR/DR ratios were 0.88 and 0.86 for LDMY
and TDMY, respectively, when considering the same number of plots (330), population
size (86) and selection intensity (10%). This means that the CR was 88% and 86% of the
efficiency of DR for LDMY and TDMY, respectively.

Simulated scenarios shown in Table 7 compare the selection response using the HTP
process in larger trial and population sizes with conventional process maintaining the
current trial and population size. It is important to mention that the estimated selection
efficiency would only be achieved if the same experimental design were to be repeated,
since the genetic parameters are considered the same regardless of the population size. If
selection intensity increased to 5% by evaluating 660 plots (172 full-sib families) in the field,
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the CR/DR ratio would be 1.03 for LDMY and 1.00 for TDMY, indicating that CR would be
103% of the DR for LDMY and similar for TDMY. The CR might be efficient if we applied
a selection intensity of 1% by evaluating 3300 plots (860 full-sib families) instead. In this
latter scenario, the CR/DR ratio would be 1.34 for LDMY and 1.30 for TDMY, which means
that the CR would be 134 and 130% of the DR for these DMY traits.

Table 7. Direct (DR) and correlated (CR) response to selection for dry matter traits in the guineagrass breeding program
using field and data estimated by the ResNeXt50 pretrained CNN architecture. SI—selection intensity.

Responses to Selection
Trait

Leaf Dry Matter Yield (kg·ha−1) Total Dry Matter Yield (kg·ha−1)

330 plots
DR (SI = 10%) 237 361
CR (SI = 10%) 209 309
CR/DR 0.88 0.86

660 plots
CR (SI = 5%) 244 361
CR/DR 1.03 1.00

3300 plots
CR (SI = 1%) 317 468
CR/DR 1.34 1.30

4. Discussion

The results showed that the CNNs with the best performance for the estimate of the
LDMY and TDMY were the AlexNet pretrained, ResNeXt50 pretrained, and DarkNet53.
Regarding the statistical-genetic analysis, it was noticed that ResNeXt50 pretrained and
DarkNet53 were the best CNNs to estimate genetic parameters. The literature usually
reports deeper networks with better performance than shallower networks [44,45]. For our
final aim, which is related to the genetic analysis, we also verified that deeper networks
provided more accurate solutions.

The results for the LDMY and TDMY traits showed a high correlation with the ground
truth, in general, higher than 0.75 for the three best CNNs. This indicates that the high-
throughput and the conventional phenotyping processes were highly correlated in this
study. The result presented in Ma et al. [27] to estimate the above-ground biomass in
winter wheat showed an R2 correlation of 0.80, which is slightly greater than that obtained
in our investigation. To compare the results with their study, we used the same network to
estimate dry matter in guineagrass, but it did not achieve the same performance presented
in the paper. In the research of [46], using RGB images and crop surface models to
estimate dry matter in barley, they obtained an RMSE between 97 and 234 g·m−2, while
this experiment had an RMSE between 41.3 to 50.65 g·m−2.

Regarding the correlation between predicted and real data, it was possible to verify
that, to estimate dry matter yield traits, the RGB images obtained with UAV and the CNNs
can have a high correlation. However, as presented in the previous research [29], the
correlation was better for estimating green than dry biomass. A possible explanation is that
the image presented to the neural network, which represents the plot before harvest, is more
related to the green matter yield. Thus, the dry matter obtained in the laboratory process
was not fully represented in the RGB images, thus making extracting characteristics through
the network more laborious. Nevertheless, the performance obtained was encouraging,
even when compared with other methodologies for estimating biomass.

From the statistical-genetic analysis, it was noticed that ResNeXt50 pretrained and
DarkNet53 were the best CNNs to estimate genetic variance and heritability. Estimates
from AlexNet pretrained failed to exploit these parameters, especially the heritability, thus
showing the importance of the validation of the CNN in a genetic model. Our results
showed that the HTP traits generated by these networks presented a larger Vg and higher
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H when compared to the other CNN. When compared to the Real traits, it showed lower Vg
and a similar H. Thus, while the accuracy of the high-throughput process was comparable
to the conventional process, it failed to exploit the available genotypic variance among
families. This situation is expected due to the small number of examples to train the model,
mainly for data in the extreme of the normal distribution, as shown in Figure 3. Thus, to
overcome this limitation, we expect that increasing the size as well as the variability of
examples of the data set will increase the power of ResNeXt50 and DarkNet53 to estimate
phenotypes more representative of the genetic variability.

Theoretically, selection for one trait will cause a correlated response to selection in a
second trait if a genetic correlation exists between the two traits [33]. This is an important
concept in applying HTP traits in indirect selecion in plant breeding. Our results indicated
high genetic correlation (r > 0.69) between the HTP and Real traits even for CNN with lower
performance for the other genetic parameters. This indicates the high potential of HTP
process (UAV-RGB-CNN) used in this research to be considered in different strategies in
guineagrass breeding for DMY traits. The CNN, AlexNet pretrained, ResNeXt50 pretrained
and DarkNet53 stood out among the other CNN showing the highest values of r (>0.81).
Thus, the results of genotypic correlations are in accordance with the results shown by the
standard evaluations of the algorithms. From a selection point of view, high correlations
indicate that the ranking of the family genotypic values were highly coincident between
HTP and Real traits, and the best-selected families would also be highly coincident.

Indirect selection is one of the main applications of HTP in breeding programs [32].
The potential of HTP in improving the efficiency of early generation selection has been
studied in sugarcane [30], and wheat [31]. In both studies, the results were encouraging to
use HTP traits and indirect selection. In our results with guineagrass, considering the same
selection intensity for DR and CR (i = 10%), the efficiency of indirect selection (CR/DR ratio)
was 88 and 86% of the direct selection for LDMY and TDMY traits, respectively. These
lower indirect selection efficiencies for the DMY traits were due to the lower magnitudes
of the product between the heritability of the HTP traits (hHTP) and the genetic correlation
between the HTP and the real traits (r) compared to the heritability of the real trait (hreal).
Natarajan et al. [30], using indirect selection based on NDVI as HTP trait, reached 73% of
the efficiency of direct selection for yield in sugarcane. Also, using NDVI, Krause et al. [31]
reported a higher efficiency of indirect selection when compared to visual selection for
grain yield in lines of wheat in early generations. Thus, these results in different crops
show that HTP is a promising strategy to improve the efficiency of breeding programs.

Increasing the size of the breeding program to enable higher selection intensity is
one of the main benefits of using HTP [34]. This important aspect of HTP stimulated us
to simulate scenarios where the only parameter to be changed is the selection intensity.
This is achieved by increasing the number of plots and families evaluated and maintain
the heritability and genotypic variance of HTP traits unchanged. Our results showed
a high increase in the indirect selection efficiencies for DMY traits were achieved when
multiplying by two (100 to 103%) and by ten (130 to 134%) times the size of the population
evaluated in the field by the high throughput process using ResNeXt50 pretrained. Here
the CR/DR ratio increased due to the higher values of i (2.06 for i = 5% and 2.67 for i = 1%)
applied in larger populations evaluated by the proposed process. This means that families
with superior DMY values are more likely to be selected in a larger population evaluated
with the HTP process. Although these results are promising, they are not yet useful to
extend to different populations or environments (regions/climates). In further researches,
we will include data from a wider range of environments (seasons, locations) to investigate
the generalization of the methodology to a diversity of scenarios. Investigation regarding
domain adaptation will also be performed.

Resources aspects as labor, time and cost are important phenotyping issues for breed-
ing programs, since evaluations are performed in a range of environments, seasons and
populations. Thus, we compared these issues between conventional and high-throughput
phenotyping processes (Figure 1) used in guineagrass breeding program. We used LDMY
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trait for comparison since it requires all steps of phenotyping in the field and in the labo-
ratory. Conventional phenotyping took about eight days to obtain phenotypes: one day
for field evaluations (seven workers), three and a half days for sample separation in the
laboratory (three workers), three days for samples drying in the dry chamber, and a half-
day for dried samples weighing and preparing the data for genetic analysis (one worker).
With the HTP process, it took us about four and a half hours as following: 13 min to UAV
flight covering an area of 1.5 ha, four hours for the process to generate the orthomosaic,
approximately 10 min, based on the period of organizing the data to use in the algorithm
and the execution of it for extracting plots, which is very fast, approximately 15 s to apply
the ResNeXt50 pretrained algorithm, considering it was just trained. Therefore, we see here
that the HTP process with ResNeXt50 pretrained can produce phenotypes with the same
accuracy with less time (a half-day) labor and cost, when compared to the conventional
process.

If the size of the program were increased by ten times, as suggested here to increase
until 34% the response to selection, the conventional phenotyping process for DMY traits
would be impracticable for the current resources available for the guineagrass breeding
program. But it would be viable using the HTP phenotyping process, due to the advantages
just presented. Resources saved by using the high-throughput phenotyping would be
reallocated to the management of activities related to the increased breeding program size
and the infrastructure necessary for HTP, as UAV, sensor, and computation services.

HTP based on UAV brings some technical challenges related to working conditions
(e.g., sun angle, wind, clouds) that alter the image quality. Also, there are some UAV-related
problems such as flight safety, flight time, and limited payload [15,47]. Additionally, the
image overlap associated with the pasture features on images can cause errors during the
orthomosaic generation. Forage breeding images obtained from UAV are very similar,
making the matching process difficult. An overlap higher than 80% (front and side) is
recommended to reduce gaps in the generated orthoimages.

5. Conclusions

The high-throughput phenotyping has been increasingly used in research to improve
different species, as well as tropical forages. Thus, it is possible to conclude that remote
sensing with low cost unmanned aerial vehicles embedded with high-resolution RGB
sensors, together with convolutional neural networks, is a promising technique to be used
to estimate dry matter yield in the guineagrass breeding program. Moreover, the ResNeXt50
with pretraining shows the best results since this network is able to estimate more accurately
the genetic parameters. In future investigations, we expect to increase the data set and its
variability by evaluating other experimental fields with other environmental characteristics.
Finally, when performing these procedures, it is expected that CNN’s robustness will be
optimized and, with this, it will be applied as a tool for increase the efficiency of selection
in forage breeding programs.
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Abstract: Wheat accounts for more than 50% of Australia’s total grain production. The capability
to generate accurate in-season yield predictions is important across all components of the agricul-
tural value chain. The literature on wheat yield prediction has motivated the need for more novel
works evaluating machine learning techniques such as random forests (RF) at multiple scales. This
research applied a Random Forest Regression (RFR) technique to build regional and local-scale
yield prediction models at the pixel level for three southeast Australian wheat-growing paddocks,
each located in Victoria (VIC), New South Wales (NSW) and South Australia (SA) using 2018 yield
maps from data supplied by collaborating farmers. Time-series Normalized Difference Vegetation
Index (NDVI) data derived from Planet’s high spatio-temporal resolution imagery, meteorologi-
cal variables and yield data were used to train, test and validate the models at pixel level using
Python libraries for (a) regional-scale three-paddock composite and (b) individual paddocks. The
composite region-wide RF model prediction for the three paddocks performed well (R2 = 0.86,
RMSE = 0.18 t ha−1). RF models for individual paddocks in VIC (R2 = 0.89, RMSE = 0.15 t ha−1)
and NSW (R2 = 0.87, RMSE = 0.07 t ha−1) performed well, but moderate performance was seen for
SA (R2 = 0.45, RMSE = 0.25 t ha−1). Generally, high values were underpredicted and low values
overpredicted. This study demonstrated the feasibility of applying RF modeling on satellite imagery
and yielded ‘big data’ for regional as well as local-scale yield prediction.

Keywords: wheat; yield prediction; random forests; satellite imagery; Normalized Difference Vegeta-
tion Index (NDVI)

1. Introduction

Wheat is a key component of the Australian grain industry. Regional and national-
scale wheat yield forecasting and prediction provide essential information to all parts of
the value chain from farm production, aggregation, processing, distribution and through to
the commodity markets, as well as governmental agricultural and economic departments.
At the farm scale, this is the ability to monitor and predict crop health and, by exten-
sion, yields, in a spatially-variable manner within a farm paddock using NDVI facilitates
precision variable-rate nitrogen application to achieve high production efficiencies and
profitability [1]. The mainland southeast Australian wheat belt accounts for 53% of all
wheat production regions [2], but is particularly vulnerable to significant volatility in yields
due to climactic variability [3,4]. Therefore, this is a region that would benefit greatly from
accurate yield prediction. Comprehensive and up-to-date reviews of crop yield prediction
methods have been reported by [5,6].

High and ultra-high-resolution imagery using aerial platforms such as UAVs and
manned aircraft can now provide high-precision quantitative information for crop monitor-
ing of crop health and stresses at the sub-meter scale [7]. However, these techniques tend to
be beyond the capabilities of normal producers or regional assessors and can also be limited
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by the spatial coverage and revisitation frequency (cadence) meaning that satellite-based
data remain a critical component of regional and local-scale yield predictions. Cloud cover
is a persistent problem [8] but this can be largely addressed with high-cadence imagery.
Planet’s (www.planet.com; last accessed 17 July 2019) [9] constellation of Dove satellites
offers an unprecedented observing potential of daily land surface imagery increasing the
chances of acquiring cloud-free images for analysis, with an orthorectified spatial reso-
lution of 3 m, enabling the detection of reflectance variations over very small distances
and matching them with yield data [10]. This allows investigation of within-field yield
variation which aids farmers in precision agriculture decisions. While somewhat limited
in spectral resolution and range, PlanetScope imagery can bridge the spatio-temporal and
spectral characteristics of MODIS (36 bands; 250 to 1000 m spatial resolution; daily revisit),
Landsat 8 (9 bands; 30 m spatial resolution with 15 m for Band 8; 16-day revisit) and
Sentinel 2 MSI (10 to 60 m spatial resolution; 5-day effective revisit) platforms that have
recent multisensory data fusion strategies [11–13].

Machine Learning (ML)-driven approaches show much potential for the retrieval of
key parameters such as biomass and soil moisture from satellite imagery [14]. While much
previous work has focused on using Artificial Neural Networks (ANNs); the potential
of random forests (RF) [15], being quicker and requiring fewer training dataset volumes,
have yet to be comprehensively evaluated [14], particularly for dynamic, in-season wheat
yield prediction at multiple scales. RF is a supervised ML algorithm based on decision-
tree procedures to predict output classes based on patterns learnt in the training datasets.
These involve building tree ensembles whose growth are controlled by randomized se-
lection of (input-output) vectors from the training dataset; which are then assembled as
classification or regression models to predict the most likely output class (or values) from
the inputs of the test dataset with good accuracy and robustness to outliers with lower
likelihood of generalization errors [15]. RF have the potential to generate better mod-
els compared to single decision-tree models [16], are more efficient computationally and
therefore suitable for regional and global applications in agriculture [17] where Big Data
dominates [18,19]. For instance, RF-driven yield prediction for sugar cane in Australia has
been found to be more accurate and reliable than traditional approaches such as multiple
linear regression [20,21]. For wheat yield prediction, methods ranging from a traditional
crop-weather analysis model relating crop yield to stress (water, temperature) indices [22],
to computationally-driven crop model simulation tools such as DSSAT and APSIM [23–25]
have been used to varying degrees of success but require substantial calibration to reduce
uncertainty. Recently, Feng et al. [26] adopted a hybrid approach combining a biophysical
model and RF to improve dynamic yield forecasts for 29 sites across the New South Wales
wheat belt and achieved good yield forecasting results (r = 0.87, RMSE = 0.64 t ha−1) based
on the end of milk development stage. However, this study used NDVI derived from
MODIS/MOD09GA surface reflectance composites at 500 m spatial resolution, precluding
the assessment of intra-paddock variability.

Recent examples of RF-driven yield prediction include evaluating the effective use of
RF at the global and country (USA) scale using wheat, maize and potato yield, climate, soil
and fertilizer management datasets [27]; wheat biomass estimation in Jiangsu province of
southern China using experimental plots and vegetation indices (VIs) from 30 m resolution
multispectral imagery from HJ-1A/B satellites [28]; broad-scale wheat yield prediction
over nine agricultural divisions in north China using Terra MODIS MOD13Q1 data, where
RF was found to be one of the top best-performing ML algorithms [29]. These studies
demonstrated the higher performance, robustness and accuracy of RF compared to sta-
tistical models, artificial neural networks (ANNs) and support vector regressions (SVRs).
Furthermore, work on the use of ML techniques for within-farm wheat yield forecasting
has been found to be still in their early stages [30,31] and therefore can provide novel
and accurate information to aid farmers’ precision agriculture decision-making such as
variable-rate nitrogen or phosphorus application for improved production efficiency and
sustainability [32–34] as well as downstream stakeholders in the grain industry.
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The main objective of this research was to evaluate the integration of ML (RFR)
algorithms, high-resolution satellite imagery with multiple field and weather data to
develop advanced, data-driven yet generalizable models for wheat yield prediction for
wheat-growing paddocks in different parts of southeast Australia. This would therefore
develop a foundation for developing region-centric algorithms for national-scale yield
prediction. A key enabling objective was to build a parsimonious model (i.e., having a
maximum predictive power using a minimum number of parameters) to predict yield in-
season prior to, and up to harvest at various phenological stages while minimizing costs and
complexity, and maximizing applicability to potential users (e.g., growers and agronomists).

2. Materials and Methods

The project process workflow is summarized in Figure 1 and elaborated in the follow-
ing sections.

Figure 1. Summary of workflow processes and datasets used for building, testing and evaluating RF
model wheat yield prediction method.

2.1. Study Region Paddocks

Spatially-distributed and referenced wheat yield values (t ha−1) were the pixel-level
target variable for the RF prediction model. Three paddocks in southeast Australia viz.
the states of Victoria (VIC), New South Wales (NSW) and South Australia (SA), that grew
wheat in 2018 (Figure 2), were selected from a pool of private yield data collected from col-
laborating farmers; 5 m grid resolution yield maps were generated using a semi-automated
procedure involving block kriging of yield monitor data, detailed in [35]. The verified yield
maps were resampled to 3 m resolution to match with the PlanetScope imagery detailed
below. The paddocks varied in hydroclimatic conditions, and soil characteristics and the
preceding 3 years’ cropping/fallow sequences were likely to have affected fertility, water
availability and crop residue cover leading into the 2018 season [36]. Different wheat vari-
eties were also grown, adding another layer of complexity with which to test the robustness
of the present technique. For instance, Kord is a mid-maturing variety that is robust to
drought stresses, though not necessarily with the highest potential yields. Lancer is a mid
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to late-maturing variety suitable for early sowing with good resistance to lodging. Scepter
is an early-mid season maturing type that has moderate resistance to lodging and one of the
highest average yields of up to 3.0 t ha−1 in the SA wheat National Variety Trials (NVTs).
These yield maps were used as training, testing and validation datasets for the RF model
development [37].

Figure 2. Location of study paddocks in southeast Australia, covering the states of Victoria (VIC),
New South Wales (NSW) and South Australia (SA).

According to study [38], 2018 was a particularly difficult growing season for south-
east Australia cropping with the region experiencing rainfall in decile one range and
temperatures in decile ten.

2.2. PlanetTM Satellite Imagery

NDVI data was used as one of the predictor variables (features); 16-day Periods
spanning sowing to harvest dates for all three paddocks were created to constrain the
temporal variability of the wide range of data and imagery, and also enable foreseen
later work to compare with LANDSAT-based studies and imagery [39,40] (Table 1). In
total, 41 PlanetScope Analytic Ortho Scene (Level 3B), cloud-free BGRN imagery (VIC: 13,
NSW: 15, SA: 13) for the target paddocks were selected from available datasets, spanning
the southeast Australia winter wheat-growing season, ~April to December 2018, from
sowing to harvest. Ground Sample Distance (GSD) was 3.7 m and pixel dimensions
were 3 m × 3 m. This spatial resolution was relevant to practical precision agronomic
management by farmers (e.g., variable-rate fertilization), and harvesting header swath
width varying between approx. 5 to 12 m. Normalized Difference Vegetation Index (NDVI)
layers were generated for each scene using the Red (R) and Near Infra-Red (NIR) bands
following [41]; see also [42,43] in QGIS 3.4 [44], before cropping to paddock boundaries.
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Table 1. Location, cropping, climate and soil characteristics of study paddocks.

Location
2018

Wheat Crop
Information

Paddock Area &
Cropping Sequence

2015–2016–2017
Climate Soil Description

Ouyen,
VIC

142.37 E
35.12 S

Variety: Kord
Sowing: 15 May
Harvest: 30 Nov

Growing days: 199
Mean yield: 1.53 t ha−1

181.2 ha

Barley–Wheat–Fallow

Mean Max Temp: 23.8 ◦C
Mean Min Temp: 9.8 ◦C

Mean Annual Rainfall:
331.2 mm

Calcarosol (dune systems
with series of alkaline

sandy/loamy duplex, and
sandy clay soils).

Barmedman,
NSW

147.46 E
34.15 S

Variety: Lancer
Sowing: 4 April
Harvest: 27 Jan

Growing days: 298
Mean yield: 1.06 t ha−1

67.6 ha

Canola–Wheat–Canola

Mean Max Temp: 24.0 ◦C
Mean Min Temp: 9.9 ◦C

Mean Annual Rainfall:
470.9 mm

Brown Vertosol (heavy clay
soil, alkaline with strongly

sodic subsoil).

Pinery, SA
138.46 E
34.32 S

Variety: Scepter
Sowing: 9 May
Harvest: 11 Dec

Growing days: 216
Mean yield: 1.95 t ha−1

120.1 ha

Wheat–Wheat–Lentils

Mean Max Temp: 23.6 ◦C
Mean Min Temp: 9.7 ◦C

Mean Annual Rainfall:
408.9 mm

Calcarosol (alkaline silty
clay loam to

medium-heavy clay)
variable soil profiles on

dune systems.

In total, there were 377,475 pixels (3 m resolution; total area: 400 ha) across the VIC
(188,865 pixels; 170 ha), NSW (67,830 pixels; 61 ha) and SA (120,780 pixels; 109 ha) paddocks.
Areas covered by pixels analyzed were lower than actual paddock areas (Table 1) because
the data were cropped internally from paddock boundaries to mitigate edge effects.

The main dataset comprising all three paddocks was split into individual paddock
datasets, giving two levels: regional-scale (three-paddock composite) and local-scale (indi-
vidual paddock). All datasets were randomly divided into 60% training, 20% testing and
20% validation.

2.3. Weather Data

Location-specific daily weather data were compiled for each paddock from 5 km grid
resolution values interpolated from local and regional networks of the Bureau of Meteorol-
ogy and affiliated contractors’ weather station measurements, extracted from the Scientific
Information for Land Owners (SILO) database (http://www.longpaddock.qld.gov.au/silo,
last accessed 20 June 2019) [45], and assembled into the individual Periods (Table 2). For
each Period, mean maximum and minimum, absolute maximum and minimum temper-
atures were prepared as predictor variables (features) that would help indicate heat or
frost occurrence that could impact yield negatively; particularly pertinent at critical growth
stages such as anthesis [46]. Growing degree days (GDD) corresponding to the imagery
dates were also calculated and included as predictor variable [47]. Two rainfall datasets
were prepared: rainfall depth (mm) in the preceding Period and cumulative rainfall depth
(mm) since sowing date. Because of the coarse spatial resolution of the weather data, they
were applied uniformly at the paddock scale for each Period by assigning the same value
for all individual pixels within each paddock.
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Table 2. PlanetScope imagery fortnightly Periods, dates and corresponding Days After Sowing (DAS)
in year 2018 for each location in the states of Victoria (VIC), New South Wales (NSW) and South
Australia (SA), Australia.

Location Ouyen, VIC Barmedman, NSW Pinery, SA

Period 2018 Date DAS 2018 Date DAS 2018 Date DAS

1 - - 19 April 15 - -
2 - - 30 April 26 - -
3 25 May 10 14 May 40 16 May 7
4 31 May 16 29 May 55 31 May 22
5 14 June 30 22 June 79 13 June 35
6 30 June 46 30 June 87 29 June 51
7 14 July 60 14 July 101 14 July 66
8 29 July 75 12 August 130 29 July 81
9 13 August 90 27 August 145 26 August 109
10 7 September 115 4 September 153 4 September 118
11 20 September 128 21 September 170 17 September 131
12 4 October 142 30 September 179 1 October 145
13 19 October 157 18 October 197 19 October 163
14 4 November 173 11 November 221 2 November 177
15 18 November 187 26 November 236 17 November 192
16 - - 12 December 252 - -

2.4. RF Model Development

Pandas software library functions for Python [48] were used for data preparation,
manipulation and analysis. Time-series NDVI and weather data were used together as
predictor variables. The NDVI data layers were parsed into CSV format with each cell value
representing an individual pixel value. Weather variables were assembled as individual
pixel values homogenous for each Period. Yield data (t ha−1) for individual spatially-
referenced pixels were used as the target values for the prediction algorithms. All input
and target values were indexed to retain their individual geographic locations to enable
their reassembly for examination of their spatial distributions.

The RF approach is an ensemble learning technique that makes predictions by com-
bining decisions from a sequence of base models, with individual base models known as
trees [49]. Hyper-parameters (e.g., weather and NDVIs) are tuned using the best cross-
validation (CV) results. Random Forest Regression (RFR) was performed using the Scikit-
learn machine learning module for Python [50]. Each tree in the RFR was built by using
randomly selected variable sets from the training dataset with the final prediction for the
testing datasets derived by averaging the tree outputs. Cross-validation was conducted to
check the accuracy of the model on the independent validation dataset [51].

Calibration of each RFR model was done by hyperparameter tuning to obtain the
optimal combination of: (i) number of trees in ensemble (n_estimators); (ii) maximum
number of levels in each decision tree; (iii) maximum number of features considered for
splitting a node, and (iv) method for sampling data points (with or without replacement).
Random Grid Search was to incorporate a wide range of possible values and hyperpa-
rameter combinations in an unbiased manner, with superior computation times [52], an
important consideration for mining large volumes of agricultural data. Twenty iterations
of five-fold cross validation, with different model settings each time, were performed to
facilitate model optimization and generalizability, while avoiding overfitting on the test
dataset [50,53].

2.5. Feature Importance Analysis

Identifying and ranking the importance of individual features used in the RFR mod-
els we built, was conducted via Scikit-learn toolkit RF feature importance function, in
order to understand the underlying dynamics contributing to model accuracy in yield
prediction and ascertain their generalizability and meaningfulness [15,54,55]. To improve
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model performance while reducing the risk of overfitting, a forward-selection process was
implemented following [21,56]. The optimum parameter combination giving the highest
mean validation score was selected for model training. There was a need to balance per-
formance against computational costs, even though model accuracy would expectedly
increase with number of trees. To quantify and evaluate the tradeoffs made with different
hyperparameter combinations, mean validation score was compared against number of
trees, with the latter changed one at a time. Grid Search was then used for the selected
numbers of trees to corroborate the optimality of the tuned settings, thus giving converged
parameter settings of practical value.

3. Results

3.1. Regional (Composite) Yield Prediction

The RFR model developed for predicting yield of the three paddocks combined, i.e., at
the regional scale, performed well with good generalizability across the VIC, NSW and SA
locations. Table 3 compares the descriptive statistics of the observed and predicted yield
datasets; the independent validation dataset. They were very similar, albeit with predicted
minimum yield slightly higher, and maximum yield, slightly lower than the observed yield.
Performance metrics shown in Table 4 demonstrate the good accuracy of the developed
model. Notably, the adjusted R2 value and validated regression metric scores were similar,
indicating good model generalization ability and absence of overfitting, performing well
on unseen data.

Table 3. Descriptive statistics for regional-scale observed and RF model predicted yield.

Observed Yield Predicted Yield

sample size, n 75,495 75,495
minimum (t ha−1) 0.35 0.38
maximum (t ha−1) 2.79 2.67
mean (t ha−1) 1.60 1.60
standard deviation (t ha−1) 0.47 0.44

Table 4. Statistical performance of regional-scale RF yield prediction model.

Metric
Test

Dataset
Validation

Dataset

R Squared (R2) 0.858 0.860
Adjusted R Squared (R2) 0.858 0.860
Mean Absolute Error (MAE) 0.126 0.126
Mean Squared Error (MSE) 0.032 0.031
Root Mean Squared Error (RMSE) (t ha−1) 0.179 0.177

As seen in Figure 3, the datapoints were mostly closely clustered around the reference
line, particularly for yield values between 0.8 to 1.3 t ha−1. However, they were more
dispersed between the 1.3 to 2.8 t ha−1 yield. While the VIC paddock (blue) yield values
were broadly distributed, NSW paddock (orange) yield values tended towards the lower,
and for SA paddock (green), the higher ranges.
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Figure 3. Scatterplot of observed and predicted yield of VIC, NSW and SA paddocks combined.

Feature importance analysis found that NDVI data acquired in late September/early
October were most important to the prediction accuracy of the RF model developed for
the 3-paddock composite (Figure 4; Table 2). This corresponded to 142, 179 and 145 DAS
for VIC, NSW and SA paddocks, respectively. If the NDVI data for Period 12 (P12) were
excluded as input to the model, a mean decrease in prediction accuracy of 53% occurred.
In contrast, excluding NDVI data from later or earlier time Periods led to only 2% to 6%
mean decrease in prediction accuracy. Notably, only NDVI images from P5 to P14 featured
in the top 10 most important features.

 

Figure 4. Top 10 features of importance for regional RF yield prediction model. Note: Data labels e.g.,
P12 refer to NDVI in Periods described in Table 2.
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We also found low feature importance of weather (temperature and rainfall) datasets,
being ranked outside of the top 10; this also applied to the individual paddock RF prediction
models discussed below.

3.2. Individual Paddock Yield Prediction Models

For all three paddocks, predicted mean yields were very close to the observed mean
yield with less than 1% difference (Table 5). Standard deviation values showed that RF
model predictions resulted in lower variations around the mean compared to observed
yield, with the worst performance for SA paddock and best performance for NSW paddock.
This was also shown in the overprediction of minimum yields by up to 0.06 t ha−1 for NSW
paddock, and underprediction of maximum yields by up to 0.14 t ha−1 for SA paddock.

Table 5. Descriptive statistics for predicted yields from individual RF models compared with observed
yields for VIC, NSW and SA paddocks.

VIC
(n = 37,773)

NSW
(n = 13,566)

SA
(n = 24,156)

Yield Statistic
(t ha−1)

Observed Predicted Observed Predicted Observed Predicted

mean 1.55 1.56 1.08 1.08 1.95 1.94
standard
deviation 0.44 0.41 0.20 0.19 0.33 0.22

minimum 0.36 0.38 0.34 0.40 0.91 0.96
maximum 2.72 2.66 1.67 1.59 2.80 2.66

The individual paddock RF model performance metrics are presented in Table 6.
RF prediction models for VIC and NSW paddocks performed well with high R2 values,
although with only moderate performance for the SA RF prediction model with R2 at 0.447.
Nevertheless, all adjusted R2 values indicated the absence of overfitting. MAE, MSE and
RMSE values were generally good, with lowest values for the NSW paddock but for the SA
paddock, relatively higher error values.

Table 6. Statistical performance of VIC, NSW and SA RF yield prediction models.

VIC NSW SA

Metric
Test

Dataset
Validation

Dataset
Test

Dataset
Validation

Dataset
Test

Dataset
Validation

Dataset

R2 0.890 0.887 0.870 0.878 0.447 0.443
Adjusted R2 0.890 0.887 0.869 0.877 0.445 0.441

Mean Absolute Error
(MAE) 0.110 0.111 0.056 0.054 0.186 0.185

Mean Squared Error
(MSE) 0.021 0.022 0.005 0.005 0.061 0.060

Root Mean Squared Error
(RMSE) (t ha−1) 0.146 0.147 0.073 0.071 0.246 0.246

Figure 5a–c compare the RF predicted and observed yield for VIC, NSW and SA
paddocks, respectively. There was a close clustering of data around the reference line for
VIC paddock for yield values between 1.0 to 1.3 t ha−1, while this was seen for the NSW
paddock between 0.8 to 1.3 t ha−1. SA paddock displayed quite widely-dispersed values
around the reference line with clear underprediction 2.0 t ha−1 and overprediction below it.
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Figure 5. Comparison of predicted vs. observed yield for (a) VIC; (b) NSW and (c) SA paddocks.
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Figure 6a–c present the yield map and histogram for VIC, NSW and SA paddocks,
respectively. For the VIC paddock, we saw from the yield map, good spatial correspondence
between the observed and predicted values. The histograms showed a higher number of
high-yield values being predicted compared to the observed yield values, quite apparent
for the yield values above 2.0 t ha−1. The NSW paddock yield map also showed good
spatial correspondence between observed and predicted values. The NSW yield histograms
also showed good similarities in the general distribution of values, although the prediction
was not able to replicate the bimodal pattern of the observed yield with peaks at 1.0 and
1.3 t ha−1. The prediction gave a single high peak around the 1.25 t ha−1 yield value.
The SA paddock yield map had comparatively poorer spatial correspondence between
the observed and predicted values. The predicted yield histogram had a higher peak of
average values around 1.95 t ha−1 compared to the observed yield histogram, which had
gentler peaks around 1.75 t ha−1 and 2.15 t ha−1. This corroborated with the lower standard
deviation of 0.22 t ha−1 for predicted yield compared to 0.33 t ha−1 for observed yield in
Table 5.

3.3. Feature Importance Analysis for Individual Paddocks

Table 7 shows the mean decrease in accuracy (MDA)—the arithmetic averaged loss of
prediction accuracy for all individual pixels comparing predicted output with target output
values, if one of the features were excluded as predictor input for the RF model, for the top
10 most important features, and the corresponding Period (P) (Table 2) of the NDVI data.

Table 7. Top ten most important features for VIC, NSW and SA paddock RF models, and correspond-
ing NDVI Period and mean decrease in accuracy (MDA) if excluded.

Feature
Importance Rank

VIC NSW SA

NDVI
Period

MDA
NDVI
Period

MDA
NDVI
Period

MDA

1 18 0.68 16 0.68 13 0.22
2 17 0.11 17 0.14 16 0.12
3 20 0.04 7 0.02 18 0.09
4 13 0.03 21 0.02 15 0.08
5 12 0.03 18 0.02 14 0.07
6 16 0.02 19 0.02 17 0.06
7 15 0.02 20 0.02 12 0.06
8 19 0.02 13 0.02 22 0.06
9 14 0.02 14 0.01 19 0.04
10 11 0.01 9 0.01 11 0.04

For the VIC paddock, NDVI data for Period 12 (30 September to 15 October; 138 to
153 DAS), with the imagery on 4 October (142 DAS) used for the VIC RF yield prediction
model. This image contributed 68% to the prediction accuracy. The second most important
NDVI map in the Period 11 (20 September, 128 DAS) contributed 11% to prediction accuracy.

For the NSW paddock, NDVI data for Period 10 (29 August to 13 September; 147 to
162 DAS), with imagery obtained on 4 September (153 DAS) used for the NSW RF yield
prediction model. This image contributed 68% to prediction accuracy.

For the SA paddock, NDVI data for Period 7 (12 July to 27 July; 64 to 79 DAS) with
imagery obtained on 14 July (66 DAS) used for the SA RF yield prediction model. In
contrast to the results for VIC and NSW paddocks, this image contributed only 22% to
prediction accuracy. The second most important NDVI map was obtained in Period 10
on 4 September (118 DAS) contributing 12% to prediction accuracy. Distribution of RF
yield prediction model feature importances of NDVI data for SA paddock were hence more
evenly distributed across the growing period, albeit with lower prediction accuracy.
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Figure 6. Yield maps and histograms for (a) VIC; (b) NSW and (c) SA paddocks. Notes: Yield
maps—darker colors indicate higher yield values; yield histogram y-axes differ in range for NSW
and SA paddocks.
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4. Discussion

The regional-scale RF regression model was able to provide accurate wheat yield
prediction at a high R2 value of 0.86 and low RMSE of 0.18 t ha−1. The results show
that the model is robust at prediction across the three different paddocks with distinct
conditions. Despite its limitations, NDVI continues to be a useful Vegetation Index (VI)
for yield prediction, and the results from this study concurs with previous work using
UAV-mounted cameras [57], LANDSAT [58] and MODIS imagery [59]. The present work
further demonstrates the ability for spatially-explicit predictions by using high-resolution
imagery and machine learning (RF) approach. Furthermore, the high-cadence of Planet
imagery enabled the acquisition of cloud-free images of our target paddocks within a
constrained time period, an important consideration for operational applications at the
regional and local scales.

Interestingly, we found that the weather data were not significant features for all de-
veloped RFR yield prediction models, even though it is indubitable that these are important
factors affecting crop health and growth [60], and their inclusion have improved accuracy
of various yield prediction techniques [61–63]. None of the weather data layers were found
in the top ten features of importance. The key explanation could be that while NDVI is
able to indicate plant health, including their responses to varying weather and climatic
conditions [64], high spatial resolution 3 m NDVI used in this study (and indeed other
VIs), the precision with which plant growth conditions are reflected, and the fidelity with
which the data can be extrapolated via RFR to reasonably accurate yield predictions, render
near-term weather data unnecessary. Hence, RFR could enable parsimonious wheat yield
prediction models to be built by possibly precluding the requirement for accessing and
assembling large weather datasets to aid the prediction process.

While good agreement was found between predicted and observed yield, the reported
differences can be attributed to several factors. Firstly, NDVI estimates live vegetative
biomass [65] which has good, but not perfect correspondence with yield. This is especially
so for grain crops, such as wheat, where the yield comprises grains in storage organs in
contrast with pasture or forage crops. Secondly, temperature extremes such as frost damage
to foliage, particularly during winter, can initiate leaf senescence and lower vegetation
greenness (higher red reflectance, lower NDVI value) but lag in time for these to manifest
(i.e., in later images normally of lower importance). The yield impacts of frost, particularly
during critical periods during the reproductive and grain development phases, strongly
determine wheat grain number and size [46]. Thirdly, index value saturation, and obscur-
ing of the biomass beneath the closed canopy can lead to high uncertainty in biomass
estimates [66,67] and, consequently, wide variation in accuracy of yield predictions.

Model calibration required few tunable model parameters, similar to how Houborg and
McCabe [42] found good accuracy by simply optimizing the number of trees (n_estimators).
This study concurs with other studies across different crops including wheat (biomass) [28],
sugarcane [21] mango [68] and corn [69]. Thus, RFR has been found to be a suitable and
parsimonious technique for regional-scale wheat yield prediction.

Examination of RFR yield predictions for individual paddocks found good accuracy
for VIC and NSW paddocks. The most important NDVI data for these two paddocks
correspond well to the start of anthesis where peak biomass (and NDVI values) are likely
to translate predictably to grain yield [70], barring any unpredictable perturbations in
the intervening time to harvest, such as temperature stresses (heat/frost) or strong winds
causing lodging. These demonstrate the viability of RFR for aspatial paddock-level pre-
diction of mean yields, as well as the good accuracy of spatially-explicit pixel-level yield
predictions in the given conditions. However, SA paddock RFR prediction model outputs
lowered the overall regional prediction accuracy, and had only moderate accuracy at the
individual paddock level illustrated by substantial statistical and spatial differences be-
tween the predicted and observed yields. The SA RF model feature importances’ lower
values, more even distribution, and higher importance of earlier Periods (Table 7) indicate
that some unpredicted factors were not comprehensively accounted for, when compared
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to the VIC and NSW RF model prediction accuracies and feature importance analyses.
Such inter-regional variability could be mainly attributed to the inter-paddock differences
in wheat variety, sowing density, soil, topography, local weather conditions and farmer
management practices, not all of which can be pragmatically quantified. The earlier time of
most important NDVI map in P7 was likely to have coincided with tillering stage [70], but
was probably confounded by paddock-level variabilities and perturbations affecting crop
health and yield later in the season.

We noted that only SA paddock had legume residue from the previous crop, which
has been shown to supply additional N to wheat crop via fixed soil N as well as organic N
that mineralized as it decomposed [71] and therefore enhanced yield outcomes. However,
there would likely to have been substantial spatial heterogeneity in these decomposition
processes [72]. Furthermore, Scepter was one of the highest yielding and drought tolerant
varieties (trial mean yield: 3 t ha−1) during the 2018 NVT [73]. Hence, this could have led
to ample overall biomass growth, canopy closure and NDVI value saturation which could
have obfuscated the predicted yield, leading to the overprediction of lower- performing ar-
eas and underprediction of high-performing areas. This may not have happened on the VIC
and NSW paddocks which grew comparatively lower-yielding and less drought-tolerant
varieties. This uncertainty would have been compounded by the variable topography and
soil characteristics for the SA paddock. For instance, we observed high-frequency microto-
pographical variations over SA paddock compared to the more regular undulating terrain
for VIC and flat terrain for NSW paddocks. For SA paddock, the high intra-paddock soil
variability, and corresponding soil moisture and fertility variations, could have contributed
to substantial uncertainties in yield outcomes. This corresponds to how study [74] found
close relationships between yield and mean surface curvature due to correlations with soil
productivity (e.g., moisture).

Furthermore, haying-off [75], leading to reduced yields due to post-anthesis drought
and heat stress despite vigorous growth through the season (detected as high NDVI values)
aided by ample N supply, can be quite unpredictable at both the regional and paddock-
level scale. This could have contributed to the overprediction of yield, particularly in SA
paddock. For instance, SA paddock recorded maximum daily temperatures above 35 ◦C
for three consecutive Periods prior to harvest, compared to 1 each for VIC and NSW. These
numerically small occurrences may not have been adequately accounted for amongst all the
other feature datasets used in the RFR. Altogether, the high spatio-temporal variability in
crop phenology throughout the season with drought and heat stresses led to only moderate
prediction accuracy for the SA paddock at Pinery. These results highlight nuances in crop
phenology, and their variable presentation via satellite imagery and NDVI that are difficult
to capture even using RFR.

The results for the composite dataset, and exemplified by the SA paddock results, show
that poor prediction accuracies occurred at the lower and higher ends of the yield values.
Similar outcomes were also found by [27] who found that while overall accuracy of RF
yield predictions were excellent, poor accuracy was found at extreme values or for values
that were outside the range of the training dataset. Nevertheless, similar to study [59], the
developed RF yield prediction models were able to predict yields up to two months before
harvest, a timeline that is useful for farmers and other wheat crop stakeholders further
along the value chain.

The results of the present study for wheat yield prediction (regional RF model: R2 = 0.86,
RMSE = 0.18 t ha−1, n = 75,495) compare favorably with similar studies such as [28],
who reported for wheat biomass prediction using RF and HJ-1/2 30 m satellite imagery,
R2 = 0.79, RMSE = 1.81 t ha−1 (n = 49); [76] applied RF yield prediction methods to wheat,
barley and canola using MODIS 250 m derived Enhanced Vegetation Index and reported
Lin’s Concordance Correlation Coefficient (LCCC) of 0.89 to 0.92 at the field resolution
(RMSE = 0.36 to 0.42 t ha−1) at 10 m spatial resolution. Relatedly, study [30] evaluated
convolutional neural networks (CNN) with bootstrapped regression trees (BRR), and the
effects of different data quality and resolution (Landsat 8, Sentinel 2 and proximal sensing)
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at 5 m spatial resolution; they found optimal wheat yield predictions at LCCC = 0.63
(RMSE = 0.08) for three selected fields using BRR with Sentinel 2 data. The results from
this study, particularly at the paddock scale for VIC and NSW paddocks at 3 m spatial
resolution, demonstrate the viability of RF modeling and, more broadly, data and ML-
driven techniques for wheat prediction. The spatial variations in predicted as well as
observed yield are particularly helpful in the era of precision agriculture where farmers are
able to make better spatial accuracy scouting or fertilizer management decisions (e.g., via
management zoning) [76].

Key challenges involved in this work include the inability to evaluate various other
Vegetation Indices (VIs) that could enable even higher prediction accuracies. Although the
broad spectral resolution limited the range and precision of vegetation indices that could be
harnessed, this study showed that good yield prediction results were possible by using RF
algorithms with NDVI data. This also points to the high potential for further work using
other VIs such as chlorophyll content index (CCCI) or Photochemical Reflectance Index
(PRI) [77], as air and spaceborne platforms with more spectral bands become available as
sensor technologies advance [78].

RF algorithms have some limitations which the present research encountered and
researchers should be aware of. Dang et al. [79] highlighted that the lower performance of
RFR autumn crop yield prediction compared to Support Vector Regression (SVR) and Deep
Neural Network (DNN). This was attributed to its inability to make predictions beyond the
range of values of the training set data, the tendency of overfitting when modeling noisy
data, and discreteness of output values defined by categories (however narrowly defined),
which would otherwise give continuous range of output values provided by, e.g., SVR.

This research also did not integrate data reflecting field management practices such
as fertilization and pest management. Although these are important factors affecting crop
health and yield [80], it is typically very difficult to obtain such information in a timely
way from farmers at the individual level, as well as prepare and input them into the
model. It is also likely the effects of these practices manifest in the crop performance and
health for which the spatially-distributed NDVI and yield values reflect to a reasonable
extent, although with some time lag. Thus, excluding management practices data is not
critical to the yield prediction objectives while allowing the RF modeling process to stay as
parsimonious as possible.

Beyond the present research, further work can include (i) increasing or decreasing
temporal resolution of predictor variables (e.g., NDVI) to optimize modeling and data
processing times and higher accuracy; (ii) evaluation of other VIs or the use of different VIs
at different growth stages [74]; (iii) increased number of paddocks distributed throughout
the region to increase size of training datasets and to capture greater variability for better
model generalizability; (iv) evaluating RFR yield prediction models for other areas such
as the western Australian wheat belt; (v) comparative evaluation of RFR with other ML
algorithms such as SVR, DNN, Least Absolute Shrinkage and Selection Operator (LASSO)
and Sequential Forward Selection (SFS) [81]. At the time of writing in late 2021, southeast
Australia and much of the rest of the country is estimated to record harvests at least 10%
above the 10-year average [77]. Application of the RF modeling method to this “good”
growing season in contrast to the “difficult” season examined in this research would
help to further test its robustness and viability for operational use, as well as reexamine
the importance of various features such as weather parameters, and the integration of
spatially-explicit soil data [28].

5. Conclusions

This study evaluated the use of RFR to perform in-season wheat yield prediction at
regional and paddock-level scales in southeast Australia using (3 m) NDVI data derived
from high-cadence, high-resolution (3 m) PlanetScope satellite imagery and weather data
through the winter crop-growing season with actual yield data as the reference. Evalua-
tion of the RFR models found that good yield prediction results were possible by using
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NDVI data, even though the broad spectral resolution limited the range and precision of
vegetation indices that could be harnessed.

With high accuracy at the regional scale and for two out of three paddocks at the
paddock scale, this research shows how RFR-driven yield prediction could be successfully
performed in data-rich, information-poor (lack of information on soil, topography, farmer
management actions) contexts. Hence, RFR methods have much potential for regional-scale
surveillance and monitoring of wheat crop that can benefit various business stakeholders,
while paddock-level yield predictions can aid spatially-explicit tactical crop management,
harvest and post-harvest decision-making by farmers. When fully or partially automated,
the modeling outputs can be generated efficiently, accurately and communicated effec-
tively to various stakeholders for timely decision-making. Where yields with significant
departures from the mean in terms of amount (t ha−1) or quality (protein, grain size),
further investigations of the contributing factors (soil, pests, microclimate) can be done.
Additionally, the high spatio-temporal resolution of Planet CubeSatCubeSat data exploited
by RFR modeling can also be particularly relevant in smallholder farm contexts (e.g., eco-
nomically less-developed countries) where plot sizes are modest compared to industrial-
scale paddocks in countries such as Australia.
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