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Rupture Models of the 2016 Central Italy Earthquake Sequence
from Joint Inversion of Strong-Motion and InSAR Datasets:
Implications for Fault Behavior

Chuanhua Zhu 1,2,3, Chisheng Wang 1,2,*, Xinjian Shan 3, Guohong Zhang 3, Qingquan Li 1,2, Jiasong Zhu 1,4,

Bochen Zhang 1,4 and Peng Liu 5

1 Ministry of Natural Resources (MNR) Key Laboratory for Geo-Environmental Monitoring of Great Bay Area,
Guangdong Key Laboratory of Urban Informatics, Shenzhen Key Laboratory of Spatial Smart Sensing and
Services, Shenzhen University, Shenzhen 518060, China; czhu@szu.edu.cn (C.Z.); liqq@szu.edu.cn (Q.L.);
zjsong@szu.edu.cn (J.Z.); zhangbc@szu.edu.cn (B.Z.)

2 School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
3 State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration,

Beijing 100029, China; xjshan@ies.ac.cn (X.S.); zhanggh@ies.ac.cn (G.Z.)
4 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
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Abstract: We derived the joint slip models of the three major events in the 2016 Central Italy earth-
quake sequence by inverting strong-motion and InSAR datasets. b-values and the historic earthquake
scarp offset were also investigated after processing the earthquake catalog and near-field digital
elevation model data. The three major events gradually released seismic moments of 1.6 × 1018 Nm
(Mw 6.1), 1.5 × 1018 Nm (Mw 6.1), and 1.1 × 1019 Nm (Mw 6.7), respectively. All the ruptures exhibit
both updip and along-strike directivity, but differ in the along-strike propagation direction. The high
b-value found beneath three mainshock hypocenters suggests possible fluid intrusions, explaining
the cascading earthquake behavior. The cumulative surface scarp from past earthquakes shows
rupturing features that are consistent with the 2016 earthquake sequence, suggesting a characteristic
fault behavior. Under the assumption of the Gutenberg–Richter law, the slip budget closure test gives
a maximum magnitude of Mw 6.7 and implies the seismic hazard from the largest event has been
released in this sequence.

Keywords: source inversion; rupture model; strong motion; InSAR; seismic hazard

1. Introduction

Earthquakes have sustainedly caused a large number of casualties and damages
worldwide. Seismological research relies heavily on the inversion for the earthquake
source, including the source location, fault geometry, slip distribution, rupture directions,
etc. Using that, we can explore fault behaviors and seismic hazards [1–4]. As such, inversion
for earthquake sources has long been one of the most popular topics after a destructive
earthquake. Benefitting from the algorithm progressive and data coverage, joint inversion
of seismic and geodetic data have been successfully applied for detailed source rupture
processes of earthquakes worldwide, e.g., the 1999 Mw 7.1 Duzce, the 2011 Mw 9.0 Tohoku,
and the 2012 Mw 7.6 Nicoya, Costa Rica, earthquake, etc. Additionally, it has been proved
to be able to provide a stabler and higher resolution source model than a single-data
inversion [5–8].

On 24 August 2016 (UTC 01:36, local time 03:36), a destructive earthquake (Mw 6.2)
occurred in central Italy (the Amatrice earthquake). The USGS reported that the earthquake
originated at a depth of 4.4 km, with a normal faulting mechanism. The epicenter was

Remote Sens. 2022, 14, 1819. https://doi.org/10.3390/rs14081819 https://www.mdpi.com/journal/remotesensing1
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located at 42.70◦N, 13.23◦E, between the towns of Norcia and Amatrice. According to the
official figures of the Protezione Civile, this event caused the death of 297 people, with
234 of the casualties occurring in the town of Amatrice. Two months later, two major
earthquakes were triggered northwest of the Amatrice earthquake on 26 October (19:18
UTC) and 30 October (19:18 UTC), with individual moment magnitudes of 6.1 (Visso
earthquake) and 6.6 (Norcia earthquake). There were no reports of serious injuries in the
October earthquakes.

The ground motion associated with the Amatrice earthquake was recorded by many
geodetic and seismic instruments, including space-borne synthetic aperture radar (SAR)
sensors and ground seismometers. These datasets can be used to constrain a fault slip
model, which can help us to understand the earthquake mechanics and seismic hazard.
To date, source models have been inferred using one or several datasets [9–16]. For ex-
ample, Tinti et al. (2016) presented the first kinematic model of this event by inverting the
waveforms from 26 3-component strong-motion accelerometers [14]. Lavecchia et al. (2016)
derived a static slip model constrained by differential interferometric SAR (DInSAR) mea-
surements from several SAR satellites [12]. However, the features of these models differ
from each other because different datasets were used in these studies. As InSAR datasets
and strong-motion datasets have complementary strengths in earthquake source inver-
sion [17], it is possible to invert both datasets simultaneously for a more comprehensive
fault slip model.

The future hazard of a fault after an earthquake is of great importance for human life
and property safety. The 2016 central Italy earthquake sequence is located in a segmented
fault system mixed with modern and ancient structures. Conventional seismic hazard
models assume earthquake ruptures are controlled by fault segmentation, where the rupture
is believed to be unlikely propagate from one segment to another. In the 2016 sequence, the
heterogeneous crust has broken the lateral continuity of the seismogenic fault, prohibiting it
to grow to a large devastating earthquake. However, increasing observations, e.g., the 2010
EI Mayor-Cucapah earthquake [18] and the 2016 Kaikoura earthquake [19], show that multi
fault segments are possible to simultaneously rupture in a single earthquake. In addition,
the segmented faults may become more continuous and mature after many earthquakes
repeatedly ruptured, and consequently, inclined to host a larger earthquake. Therefore, the
future seismic hazards in this region need to be re-examined based on more observations.
Besides the comprehensive rupture model, we obtained as mentioned above, the complete
Italian earthquake catalogue and available near-field high-resolution topography enable us
to retrieve more fault information including b-value, historical events trace, and seismic
activity. A detailed interpretation of the causative fault by combining the information can
therefore benefit the earthquake hazard evaluation.

In this paper, we first present the rupture processes of the three major earthquakes
in the central Italy earthquake sequence by inverting joint datasets, including both InSAR
and strong-motion data. We then explore the b-values and historic earthquake scarp offsets
through processing the earthquake catalog and near-field digital elevation model (DEM)
data. Based on these results, we interpret the fault behavior of the earthquake sequence
and discuss the future seismic hazard in this area.

2. Tectonics

The 2016 central Italy earthquake sequence took place in the northern and central
Apennines of Italy, which were formed due to the collision between the Adria microplate
and the Eurasian plate. The collision induced compression in the front arc and extension
in the back arc. The back arc of the Apennines chain is thus characterized by a set of
NW–SE-striking normal fault systems with a current overall east–west extension rate
of 1.5–3 mm/yr [20,21]. The earthquake sequence occurred across several fault systems
(Figure 1), including the Mt. Vettore–Mt. Bove Fault system (VBFS) and the Mt. Gorzano
Fault system (GFS).
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Figure 1. Overview of seismicity, faults and SAR data coverage for the 2016 central Italy earthquake
sequence. (a) Seismotectonic setting. The three major earthquakes in the sequence are denoted by the
red stars and beach ball symbols, and the two recent large historical events are colored in black. The
dashed black rectangles represent the surface projection of the fault planes adopted in this study. The
bold black lines are the two seismogenic normal fault systems, namely, the Mt. Vettore–Mt. Bove
Fault (VBFS) system and the Mt. Gorzano Fault (GFS) system. The pink line shows the simplified
trace of the preexisting compressional front named the Olevano–Antrodoco–Sibillini (OAS) thrust.
Aftershocks are marked by the small dots with different colors. The blue, purple, and yellow points
represent the events taking place between 24 August 2016–26 October 2016, 26 October 2016–30
October 2016, and 30 October 2016–8 October 2017, respectively. (b) Map view of the SAR data
coverage. The black rectangles represent the coverage of the Sentinel-1A and ALOS 2 SAR data for
generating the interferograms. The red rectangle denotes the area shown in (a). (c) Cross section
through A-A’ shown in Figure 1a. The dashed black line represents the fault plane of the 30 October
2016 Mw 6.7 Norcia earthquake.

The VBFS is a SW-dipping fault system, composed of different splays and segments.
The fault system scarps are exposed along the SW foothills of Mt. Vettore, Mt. Porche, and
Mt. Bove, with a length of ~27 km. The GFS is a SW-dipping fault, with a ~26 km long fault
scarp developing along the foothills of Mt. Gorzano. These two faults are segmented by
existing tectonic structures inherited from pre-Quaternary compressional tectonics [22]. A
~3 km thick layer in which small events and some large extensional aftershocks occur is
found below the seismogenic fault, limiting the seismicity to the first 8 km of the crust [10].

A series of moderate earthquakes have repeatedly struck this area in the last 400 years.
The largest one occurred near Norcia town in 1703, with a magnitude of 6.8. The closest
large historical event was the 1639 Mw 6.2 earthquake that took place near Amatrice town.
According to instrumental records, two Mw > 6 earthquakes have also struck the area
in modern times. One was the 1997 Mw 6.0 Colfiorito earthquake that occurred to the
northwest, and the other was the 2009 Mw 6.3 L’Aquila earthquake to the south. The 2016
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earthquake sequence occurred in a seismic gap which is located between the areas hit by
the 1997 Colfiorito earthquake and the 2009 L’Aquila earthquake.

3. Rupture Model

3.1. Data

We used four SAR image pairs to measure the ground displacement relative to the
24 August Mw 6.1 Amatrice earthquake, the 26 October Mw 5.9 Visso earthquake, and
the 30 October Mw 6.5 Norcia earthquake (Figure A1 and Table A1). To better serve the
rupture model inversion, each selected SAR pair only covered one event mentioned above.
Among the image pairs, three were from the Sentinel-1 satellite and the other was from the
Advanced Land Observing Satellite (ALOS) satellite. Many institutions and researchers
have created interferograms for the Amatrice and Visso events using Sentinel-1 images,
and their results are quite similar. In this study, we directly used the InSAR interferograms
from the European Space Agency’s InSARap program for the analysis (provided free
online at http://insarap.org/, last accessed 20 March 2022). For the 24 August event, the
deformation pattern is characterized by two NNW–SSE striking main distinctive lobes
with different shapes, but having almost the same maximum negative line-of-sight (LOS)
deformation of around 20 cm. Regarding the 26 October event, the interferogram reveals
an ear-shaped deformation pattern, striking NNW–SSE, similar to the 24 August event.

The 30 October Mw 6.5 Norcia earthquake generated much larger ground displace-
ment than the previous two events, making the InSAR measurements more challenging.
Therefore, we adopted the L-band ALOS 2 SAR image pair, which has better resistance to
phase incoherence, to retrieve the coseismic deformation. A two-pass technique was used
to process the data with Gamma software. The TanDEM-X DEM with a 12-m resolution was
used to remove the topographic components in the interferogram. A baseline refinement
step was carried out to remove the ionospheric disturbance. Finally, we obtained the
displacement map after unwrapping the interferogram by the use of the minimum cost
flow (MCF) algorithm. The InSAR interferogram reveals a similar ear-shaped deformation
pattern to the 26 October event, with around ~90 cm maximum negative LOS displacement.
To reduce the quantity of InSAR data, we first applied uniform downsampling to reduce the
displacement map to a size of ~500 × 500, and we then used the equation-based quadtree
downsampling algorithm to select ~1000 LOS measurements from each interferogram [23].

In addition to the InSAR datasets, we also collected three-component strong-motion
datasets of the three earthquakes for joint inversion [24]. These data were obtained from the
Italian National Accelerometric Network operated by the Istituto Nazionale di Geofisica e
Vulcanologia (INGV) and the Rete Accelerometrica Nazionale (RAN). We selected strong-
motion stations with good azimuthal coverage and epicentral distances of less than 50 km.
Under these criteria, we separately adopted strong-motion data from 30, 24, and 19 stations
for the 24 August, 26 October, and 30 October earthquakes (Figure A2). To better represent
the longer period features of strong motion, the velocity waveform data were used for the
inversion. We first removed the mean offset and instrument response from the original
accelerogram, then filtered the local site effects, and finally, integrated the accelerogram
in time. The frequency of each time-series velocity waveform was resampled to 2 Hz to
reduce the computational burden during the joint inversion. More details on the inversion
strategy and setting are provided in the Supporting Information Texts S1 and S2 [9,25–31].

3.2. Slip Models

We tested three different inversion scenarios: InSAR data inverted alone, strong-
motion data inverted alone, and a joint inversion with both geodetic and seismic data
(Figures A2 and A3). In the three events, the InSAR-only model differs from the strong-
motion data-only model in slip distribution. However, the joint inverted slip distributions
seem to make a compromise, absorbing the characteristics from both models. Overall, the
joint slip model is closer to the InSAR-only results, which is consistent with the fact that
the near-field InSAR data have a better ability to constrain the fault slip pattern. The InSAR
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and strong-motion prediction from the joint model fits quite well with the observations
(Figures A2 and A7, Figures A8 and A9).

The joint model of the 24 August earthquake shows two separate major slip concentra-
tions with a maximum slip of 0.76 m and 0.72 m, respectively, locating at depths between
5 km and 3 km (Figures 2 and A4). The characteristics of the rupture model are in general
accordance with previous models [13,14], exhibiting a normal faulting mechanism, bilateral
rupture directivity, and a relatively fast rupture velocity. A more detailed comparison
with previous models is provided in supporting information Text S3 [9–14,16,32]. Assum-
ing a shear modulus of 30 GPa, the overall seismic moment of the two fault segments is
1.6 × 1018 Nm, equivalent to a moment magnitude of Mw 6.1. The slip pattern is mostly
constrained by the near-field InSAR data, but the relative far-field strong motion still fits
quite well. During the first 6 s, the majority of the seismic moment was released. The
moment rate rapidly increased in the initial stage and reached 3.9 × 10 17 Nm/s at 2.8 s,
and then decreased rapidly with time. The rupture process took place in a relative manner,
propagating gradually from the epicenter to distant patches, and no delayed slip patches
were observed.

  

 
Figure 2. The inverted joint slip models for the 2016 central Italy earthquake sequence. (a) Distribu-
tions of slip at depth for the Visso (left) and Amatrice (right) earthquakes. The yellow stars denote
the start point for the ruptures. (b) Distributions of slip at depth for the Norcia earthquake. (c–e) The
moment rate functions of the Visso, Amatrice, and Norcia earthquakes, respectively.
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For the 26 October earthquake, our joint model suggests a single elongated normal
faulting slip concentration in the northern segment of the VBFS (Figures 2 and A5). The
rupture started from the southeast part of the fault plane and propagated mostly uni-
laterally toward the northwest. The moment rate rapidly increased at the initial stage,
reaching 2 × 10 17 Nm/s at 2.1 s, but the relatively high moment rate (>1 × 1017 Nm/s)
lasted for about 4 s, and then decreased rapidly. This event released a seismic moment of
1.5 × 1018 Nm, corresponding to a Mw 6.1 event.

The 30 October earthquake was the largest event in the earthquake sequence. The
inverted rupture model suggests a normal faulting mechanism, consistent with the moment
tensor solution, as well as the long-term behavior of the VBFS system. Two slip patches
were found, the larger one located in the north with a maximum slip of 2.8 m at a depth
between 4 km and 6 km, and the other one peaking at 2.3 m at a depth between 5 km
and 7 km (Figures 2 and A6). It can be noted that the latter slip patch is almost below the
northwest slip concentration of the 26 August event. The slip history shows that the largest
moment rate reached 1.8 × 1018 Nm/s at 4.2 s, and almost all of the coseismic moment was
released in the first 7 s. The overall seismic moment was 1.1×10 19 Nm, equivalent to a Mw
6.7 event.

4. Mapping of the b-Values and Scarp Offsets

4.1. b-Values

The Gutenberg–Richter (G–R) law is the commonly used statistical model when
describing the size distribution of earthquakes. In G–R law, the number (N) of earthquakes
having a magnitude ≥M follows a logarithmic relationship with magnitude M, expressed
as log10 N = a − bM, where a and b are constants. Parameter b describes the occurrence
ratio of small to large earthquakes. The variance of the b-value is thought to be related
to local conditions, e.g., stress applied to the material, the strength heterogeneity of the
material, the crack density, and the thermal gradient [33]. Among these potential factors,
applied stress is usually cited. It is believed to have a negative linear relationship with the
b-value, which has been proved by a number of laboratory experiments and earthquake
observations. In this section, we investigate the b-value variation of the 2016 central Italy
earthquake sequence area, attempting to reveal the potential stress heterogeneity of the
seismogenic fault. ZMAP software [34] was used to calculate the b-values. An event catalog
covering the 12 recent years of 3 April 2005–8 October 2017 with a depth below 30 km was
downloaded from the INGV (http://cnt.rm.ingv.it/en, last accessed 20 March 2022) and
adopted as the data source (Figure 3a).

The results give a cut-off magnitude (MC) for this region of 1.3. The average b-value
for this sequence is estimated to be equal to 1.03 ± 0.02, with a 90% goodness-of-fit level.
The average b-value is slightly larger than the global mean value of 1.0, which is consistent
with previous findings of normal fault-related earthquakes having relatively high b-values
compared with strike-slip and reverse-slip faulting mechanisms [35]. We further mapped
the spatial distribution of the b-value in a 0.05◦ × 0.05◦ grid (Figure 3a). Each grid selected
300 neighboring events and required at least 50 events above the local value of MC. The
estimated b-values vary from 0.55 to 2.05. The three events are found to be located in the
low b-value region, suggesting high-stress regimes. High b-values are also observed to the
southwest of the 24 August earthquake hypocenter. This event happened in the connecting
area between the Gorzano fault and Vettore fault, where the Olevano–Antrodoco–Sibillini
(OAS) thrusting structure is thought to intersect. The complex structure may generate a
highly fractured rock mass, which is thought to correspond to large b-values.
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Figure 3. b-value and cumulative vertical displacements for the 2016 central Italy earthquake se-
quence. (a) Seismic activity, b-value distribution map, and cross section using the INGV earthquake
catalog covering the period from 3 April 2005 to 8 October 2017. The pink dashed rectangles in-
dicate the location of the b-value swath profile. The red, blue, and black dashed lines indicate the
60% maximum slip area of the Amatrice, the Visso, and the Norcia earthquakes. (b) Cumulative
vertical displacements (red arrows) along the VBFS/GFS fault systems, and an example of scarp
offset measurement. Red arrows represent vertical offsets of ruptures, and they are orthogonal to
fault strikes.
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We also mapped the depth variation of the b-values across the rupture zone (Figure 3a),
which was performed in a 1 km × 1 km grid on the swath profile, with 300 neighboring
events and a minimum of 50 events above MC. The cross section clearly reveals a low
b-value layer above 10 km, suggesting that high differential stress exists in the first 10 km
of the upper crust. The lower part has low stress possibly due to the presence of fluids
in the rock matrix, and the energy is released by a series of small events, as observed.
However, these features are not held to the southeastern end of the GFS, where the number
of fault branches increases followed by rotating counterclockwise from NNW–SSE to
NWW–SEE trending [36], indicating that the magnitude and direction of tectonic stress
changed considerably.

4.2. Scarp Offsets

Scarps are universal along the GFS and VBFS systems. Measuring the scarp offset
through topography analysis is a common approach in paleoseismology for slip rate
estimation. The diversity of the offset values along the fault trace can, therefore, represent
the rupture history on the fault. We adopted the 12 m resolution TanDEM-X DEM obtained
before the earthquake sequence to extract the scarp offsets along the seismogenic fault trace.
Guided by the active fault map reported in Falcucci et al. (2016) [37], we identified the
fault trace through visual analysis of high-resolution Google imagery. We then exacted
the elevation profile from the TanDEM-X DEM across the fault trace. Two parallel lines
orthogonal to the fault strike were generated by least-squares fitting on each side of the
fault. As the height profile across the fault is complex, we designed an interactive approach
where the user can manually select a profile section with a relatively constant slope for
linear fitting. The distance between the lines is considered as the vertical offset of the scarp.
As the long-term interseismic slip may not generate a near-fault scarp, we assume that the
measured topographic offsets were contributed by large historic earthquakes.

We located 28 sites in the Google imagery and TanDEM-X DEM where obvious scarp
features can be observed (Figure 3b and Table A2). The scarp features distribute along
the surface trace of the Norcia and Visso earthquakes and to the south of the Amatrice
earthquake, while no obvious scarp is found on the south fault segment of the Amatrice
earthquake. This agrees with the results reported in Falcucci et al. (2016) [37], i.e., there is
no evidence at the surface of late Quaternary fault activity in this area. The scarp features
are consistent with the mechanisms of the 2016 central Italy earthquake sequence. Vertical
offsets in the height profile are obvious at these sites, while no horizontal displacement is
visible in the high-resolution satellite imagery. The average of the measured offsets is about
1.4 m, with the largest value exceeding 3.8 m, which is approximately 1.5 times larger than
the maximum slip found for the 30 October Norcia earthquake.

5. Discussion

5.1. Fault Behavior

Historical earthquakes in the central Apennines of Italy show an obvious space-time
clustering behavior, where one main shock triggers a series of subsequent events in a
relatively short period. Two recent earthquakes nearby this sequence share the same
cascading character. To the north, the 1997 Mw 6.0 Colfiorito earthquake triggered six
M > 5 events in 20 days. To the south, the 2009 Mw 6.3 L’Aquila earthquake started a
strong sequence of aftershocks. The 2016 sequence is a typical cascading event in the
central Apennines, which offers us another opportunity to investigate the fault behavior in
this region.

One notable feature in our joint slip models is the complex multi-fault segments
and heterogeneous coseismic slip distribution. Several slip concentrations with different
maximum slips are located in different fault patches. Such heterogeneity is also evidenced
by spatial b-value mapping, where the estimated b-value varies largely in different locations
(Figure 3a). The slip distributions of three events connect quite well, with few overlaps
or gaps, implying an almost complete release of the accumulated interseismic energy. An
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exception is the conjunction location between the two fault segments of the 26 August
event. Such discontinuity is thought to be related to the inherited compressional thrust
fault. The interaction between the inherited thrust fault and the active normal fault controls
the seismicity very obviously, by which the aftershocks are divided into two clusters,
separately distributing on each side of the inherited thrust fault. Fault segmentation
is a common features found in earthquakes worldwide, where the fault is composed
of discrete segments divided by geometrical discontinuities [38]. It normally acts as a
structural control on earthquake magnitude and rupture progress. The central Apennines
is dominated by a mix of modern and ancient structures, resulting in heterogeneous crust
and segmented faults. Comparing some mature faults which have up to 10 million years
of history (e.g., most faults in the San Andreas fault system), the modern extending faults
in the central Apennines starting from about a half million years ago are still very young.
In an immature fault system, it is mechanically difficult for rupture propagate from one
segment to another. The moderate magnitude and slip heterogeneity as observed in our
joint slip model is thus a result of the segmentation and immaturity of the seismogenic fault
system. Research on the 2016 Kaikoura earthquake [19] warns that multi-fault segments
are likely to rupture simultaneously to generate a large earthquake, but its seismogenic
faults within the southern island of New Zealand are relatively mature. The immature
fragmented fault systems in the central Apennines may still favor moderate magnitude
earthquakes at the current stage.

Normally, it is believed that the heterogeneous fault slip distribution is mainly con-
trolled by the fault strength variation [39]. As reported by the joint slip model, several
asperities were found in this fault system, with the middle one corresponding to a much
larger fault strength. From the observation of the b-value mapping, we can also find that
low b-values are associated with these strong patches. The b-value represents the relative
occurrence of large and small events, where a low value indicates a larger proportion of
large earthquakes [35]. The b-value is normally believed to be related to the stress condition,
as large earthquakes are thought to be caused by highly loaded stress. Beneath the three
mainshock hypocenters, we can observe a high b-value region associated with low strain
energy (Figure 3a). It is probably due to the presence of fluids in the rock matrix, which is
also proposed to exist in the nearby 2009 L’Aquila earthquake [40]. The hypothesis of deep
fluid intrusion may also give a good explanation for the space-time clustering behavior of
earthquakes in the central Apennines [41]. Pore fluid pressure diffusion after an earthquake
can dramatically reduce the shear strength of adjacent fault segments, and consequently
induce a cascade of multiple events on them even they are not fully loaded.

Another notable feature of this earthquake sequence is the rupture directivity of the slip
models. The retrieved rupture progress shows that the nucleation of three major events all
started at the bottom of the fault and then propagated to the upper patches. The along-strike
unilateral propagation is also very obvious. The Amatrice and Visso events propagated
mostly toward the NNW, and the Norcia event was toward the SSE. The preference for
unilateral propagation is observed in many earthquakes, and a potential explanation is the
fault segmentation [42], as the earthquake prefers to propagate unilaterally along strike
until reach discontinuities. The up-dip rupture direction might result from the material
property contrast along with the depth. As denoted above, high b-value is observed at
the deeper depth from the b-value cross section, suggesting the existence of fractured rock
mass saturated with fluids over there. The rupture may thus prefer to initiate at the more
compliant down-dip part of the rupture zone.

Laboratory experiments have shown that non-uniform normal stress characterized
by a high amplitude single-stress asperity favors the occurrence of strong characteristic
microquakes, which share similar locations, magnitudes, and return periods [43]. Both
rupture model and b-value mapping suggest heterogeneous stress in terms of several
asperities in this fault system, and the middle one associated with the Mw 6.7 Norcia
earthquake has the largest amplitude. We can expect that the Mw 6.7 Norcia earthquake
was a characteristic earthquake in this fault system, and that it may rupture again within a
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certain period. An effective way to test the long-term characteristic behavior of an active
fault is through a comparison between historical fault scarps and recent earthquakes [44].
We can refer to such independent observations to verify this characteristic earthquake
assumption. In this case, we obtained the cumulative scarp features of historic earthquakes
through measuring the near-fault topographic offset. The scarp characteristics agree quite
well with the joint slip model in this fault system, where the vertical displacement is
obvious in the seismogenic fault of the Norcia event and is several times larger than the
coseismic slip. This suggests that long-term constant strong patches locate in this area, and
this fault may have displayed characteristic slip behavior.

5.2. Slip Budget Closure Test

If we assume a characteristic fault behavior in this fault system for this earthquake
sequence, an important issue related to the seismic hazard assessment is whether the Norcia
earthquake is the largest earthquake in this fault and whether there is any unruptured
fault segment that has the potential to generate a larger earthquake. For a characteristic
earthquake, it is possible to derive information about the maximum-magnitude earthquake
and its return period from the earthquake catalog by assuming that the frequency magni-
tude follows G–R law. The relationship between the maximum magnitude (Mw) and its
corresponding frequency (Nmax) can be expressed as [45]:

log Nmax = −3
2

Mw − 9 + logM0 + log
[

α

(
1 − 2b

3

)]
(1)

where, α is the fraction of transient slip that is seismic, b is the b-value in G–R law, and M0
is the seismic moment deficit.

The slip budget closure test can therefore be run with the maximum earthquake
frequency equation and G–R law. This test has been found to be quite successful in
several faulting systems, such as the longitudinal valley fault in Taiwan and the Sumatra
Megathrust fault [45]. It is thus interesting to examine the fault slip budget in this complex
normal faulting system under frequency–magnitude law.

We tested the seismicity in the area between the 1997 Colfiorito and 2009 L’Aquila
earthquakes. We assumed a 75 km length (L) and 16 km width (W) fault plane and half-area
(SL = 0.5×L × W) is locked according to the observed distribution of the earthquakes.
The long-term slip rate (V) was set to be 2 mm/yr, referring to previous studies [20,21].
Using a shear modulus (G) of 30 GPa, we obtained a rough seismic moment deficit of
7.06 × 10 16 Nm/yr, according to the simplified equation M0 = GSLW.

We combined three catalogs for the frequency–magnitude linear fitting. The INGV
catalog includes a wide range of earthquakes with different magnitudes, but the span period
is only from 2005 to 2022. The USGS catalog has a longer cover period from 1950 to 2022, but
is incomplete for small events. The DBMI catalog contains historical events between 1005
to 2014, but also lacks small and recent earthquakes (http://emidius.mi.ingv.it/DBMI11/,
last accessed 20 March 2022). As earthquakes in the central Italy often occurred in terms
of cascading earthquake storm, the earthquake frequency in a short-period earthquake
catalog is significantly biased. In order to obtain a more comprehensive catalog, we formed
a combined DBMI-USGS catalog, where earthquakes before 2014 are from DBMI and
events between 2014 and 2017 are from the USGS. The three catalogs give a similar b-
value, while the a-values differ a lot. This is because the seismic rates are overestimated
in the previous two catalogs. Therefore, we prefer to use the combined DBMI-USGS
catalog. If we assume that the seismic moments are released partly seismically with
α = 0.8, estimated according to the area proportion of asperities on fault planes, the return
period line given by Equation (1) will intersect with the frequency–magnitude line at point
(Mw = 6.7, Lg N = –3.02), suggesting a maximum magnitude of 6.7 and a predicted return
period of 1064 years (Figures 4 and A10).
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Figure 4. Seismic slip budget closure test on the 2016 central Italy earthquake sequence. The red line
represents the G–R law fitted by the DBMI-USGS catalog. The blue line shows the return period of
the maximum magnitude event given in Equation (1). The yellow star depicts the intersection of the
blue line and red line, giving a maximum magnitude of 6.7 and a return period of 1064 years.

We can also directly estimate the earthquake recurrence interval T by T = S/V, as
suggested by Shen et al. (2009) [46], where S is the mean coseismic slip on the fault segment
and V is the secular slip rate. Our joint slip model suggests 1.8 m average slip on the slip
concentration for the Norcia event (~0.16-m and ~0.24-m average slips for the Amatrice and
Visso events). Together with the predetermined ~2 mm/yr slip rate [20,21], we can obtain a
recurrence interval of around 900 years for the Norcia fault segment (~80- and ~120-year
recurrence intervals for the Amatrice and Visso fault segments). This is in general agreement
with the slip budget closure test, implying a low seismic hazard for this area in the future.
However, we should also note that both results are rough estimations because they rely on
many assumptions, such as the characteristic earthquake, the frequency–magnitude law,
the secular fault slip rate, and the catalog completeness. Meanwhile, although the return
period for a maximum-magnitude earthquake is long (~1000 yr), such normal faulting areas
usually have relatively high b-values, which means that the return period of an earthquake
drops sharply with the decrease of the magnitude, according to the magnitude–frequency
law. It should also be noted that the risk of smaller earthquakes (Mw 5–6) still exists,
because they can rupture again with a much shorter return period.

6. Conclusions

This paper has provided a complete rupture history of the three main shocks in the
2016 central Italy earthquake sequence. The 24 August Amatrice earthquake occurred on
two fault segments divided by an inherited compressional thrust fault, with a total seismic
moment of 1.6 × 1018 Nm (Mw 6.1). The 26 October and 30 October events both ruptured in
the VBFS system, releasing seismic moments of 1.5 × 1018 Nm (Mw 6.1) and 1.1 × 1019 Nm
(Mw 6.7), respectively. The b-value mapping reveals a complex and non-uniform stress
condition in this area. The complex segmented faults and heterogeneous coseismic slip
distribution suggest an immature fault behavior over there. Possible fluid intrusion implied
by high b-value at deep depth may be the cause of the rupture of multi-fault segments in
a short period. The cumulative surface scarp displacement from past earthquakes shows
faulting that is consistent with the 2016 earthquake sequence, suggesting a characteristic
fault behavior. Under the slip budget closure test for characteristic earthquakes, we obtained
a maximum magnitude of 6.7 in this area. It is likely that the maximum earthquake has
already been triggered in this sequence, and the seismic hazard from large earthquakes
(M 6+) in this region will be at a low level for a long period (~1000 years).
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Appendix A

 

 

Figure A1. SAR Interferograms, predictions, and residuals based on the joint slip models derived
in this study for the Central Italy earthquake sequence. The S1A interferograms are wrapped to
2.8 cm, and the ALOS interferogram is wrapped to 11.45 cm. The red beach ball in each interferogram
represents the location and focal mechanism of the corresponding event.

13



Remote Sens. 2022, 14, 1819

Figure A2. Distribution of the strong-motion stations used to retrieve the slip models of the Amatrice
(a), Visso (b), and Norcia (c) earthquakes.

 

Figure A3. Comparison of slip models using different data constraints. (a) The Amatrice earthquake.
(b) The Visso earthquake. (c) The Norcia earthquake.
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Figure A4. Rupture snapshots in a time interval of 1 s for the Amatrice earthquake.

Figure A5. Rupture snapshots in a time interval of 1 s for the Visso earthquake.

 

Figure A6. Rupture snapshots in a time interval of 1 s for the Norcia earthquake.
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Figure A7. Comparison of strong-motion velocity records (black) and the synthetic seismograms
(red) predicted by the joint slip model of the Amatrice earthquake.
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Figure A8. Comparison of strong-motion velocity records (black) and the synthetic seismograms
(red) predicted by the joint slip model of the Visso earthquake.
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Figure A9. Comparison of strong-motion velocity records (black) and the synthetic seismograms
(red) predicted by the joint slip model of the Norcia earthquake.
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Figure A10. Distribution of seismic activity along the VBFS/GFS systems from the INGV, USGS and
DBMI-USGS catalogs. The dashed black rectangles represent the surface projection of the fault planes
adopted in this study. The bold red lines are the two seismogenic normal fault systems, namely, the
Mt. Vet-tore–Mt. Bove Fault (VBFS) system and the Mt. Gorzano Fault (GFS) system.

Table A1. SAR scenes used for generating the coseismic interferograms.

No Start Date End Date Satellite Path Heading Event

1 0821 0827 S1A 22 D 24 August
2 0815 0827 S1A 117 A 24 August
3 1015 1027 S1A 117 A 26 October
4 1028 1111 ALOS2 196 A 30 October
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Table A2. Scarp offset measurements through topography analysis.

No Latitude Longitude Offset (m) No Latitude Longitude Offset (m)

1 42.983 13.137 3.0562 14 13.249 42.835 0.56817
2 42.983 13.137 3.1736 15 13.251 42.819 1.5543
3 42.972 13.158 0.19934 16 13.251 42.821 3.7760
4 42.968 13.159 0.53237 17 13.255 42.817 0.85712
5 42.957 13.167 2.3998 18 13.255 42.817 2.3591
6 42.957 13.167 2.6133 19 13.259 42.814 3.2770
7 42.956 13.168 1.3242 20 13.256 42.816 2.9960
8 42.913 13.194 0.53158 21 13.264 42.804 1.5217
9 42.897 13.210 0.69758 22 13.329 42.646 0.39271
10 42.899 13.207 0.32701 23 13.344 42.632 0.17142
11 42.890 13.219 0.69320 24 13.364 42.604 0.30947
12 42.855 13.239 0.22003 25 13.382 42.577 1.1996
13 42.854 13.239 0.16111 26 13.445 42.512 1.9561
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Abstract: With the rapid development of interferometric synthetic aperture radar (InSAR) mea-
surement technology, its measurement accuracy requirements are increasing. Atmospheric delay
errors must be corrected, especially in the case of crustal deformation monitoring, the 20% variation
of tropospheric water vapor among InSAR pairs generally produces range from 10 cm to 14 cm
deformation errors. Such errors can be of the same magnitude as the annual changes in crustal
deformation, or even greater, masking crustal deformation information and seriously affecting the
results of crustal deformation monitoring. Therefore, in order to obtain a more accurate InSAR
atmospheric delay correction model, this paper calculated and integrated atmospheric delays that
were estimated by different sources, including the 37 pressure levels of the fifth generation of the
European Centre for Medium-Range Weather Forecasts (ECMWF)) numerical weather prediction
model, ECMWF Reanalysis v5 (ERA5), and Global Navigation Satellite System (GNSS) measurement
data from the crustal movement observation network of China, based on the variance component
estimation (VCE) weighting method. The results showed that the integrated model, based on the
VCE method, is better than the generic atmospheric correction online service (GACOS) model for
InSAR measuring of crustal deformation. The precision in monitoring crustal deformations was
improved by approximately 5 mm, the correlation coefficient of atmospheric delay errors and crustal
deformations improved from 0.287 to 0.347, and accuracy improved by approximately 25%. However,
the improvement in accuracy was limited because of system error decoherence that was induced by
atmospheric noise caused by abundant vegetation or snow cover. Therefore, in order to achieve more
accurate results, we recommend the adoption of the multi-source integrated atmospheric delay cor-
rection model, based on the VCE method, for InSAR high-precision measuring of crustal deformation
and seismic activities.

Keywords: InSAR; ERA5; the crustal movement observation network of China; variance component
estimation (VCE) weighting; accuracy analysis

1. Introduction

Interferometric synthetic aperture radar (InSAR) is an earth observation (EO) tech-
nique that combines synthetic aperture radar (SAR) technology and interferometry. After
periodically obtaining and aligning images of the same area, interferometric images are
generated based on the imaging geometry relationship between the SAR satellite and the
ground targets; then, the monitoring of crustal deformation and seismic activities can be
carried out [1]. InSAR technology has attracted much attention, due to its advantages of
large coverage and high spatial resolution; in addition, it can provide all-weather, all-day,
high-precision deformation monitoring, especially in some geographical areas that are
not covered by the traditional measurement methods. Therefore, the data processing ac-
curacy of InSAR technology for atmospheric delays is improving and the technology is
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receiving increased attention (see the Supplementary Materials). In 1997, Zebker et al. [2]
indicated that the deformation errors caused by atmospheric delays attributed to water
vapor alone can reach 10 cm to 14 cm, a degree of error that is difficult to ignore in monitor-
ing millimeter-scale crustal deformation. Therefore, atmospheric delay correction must be
carried out for InSAR data processing (see the Supplementary Materials).

We investigated the developmental history of atmospheric delay correction techniques
via InSAR measurement, from the use of InSAR’s own image data to the use of external data
to correct the atmospheric delay effect on deformation monitoring. We also examined single-
technology and multi-technology fusion correction methods. In each step, we witnessed
the persistence of researchers with respect to the atmospheric delay correction of InSAR
measurements and the gradual improvement of accuracy.

In this paper, we built a new atmospheric delay correction model by fusing the
newer numerical meteorological forecasting model and the GNSS stations of the crustal
movement observation network of China, based on a more reasonable weighting approach,
and verified the accuracy of the new model by comparing it with the generally used generic
atmospheric correction online service (GACOS) model for InSAR (http://www.gacos.net/,
accessed on 11 May 2021), under the same experimental conditions and performing the
deformation validation on GNSS stations.

In 1994, Massonnet [3] studied the Landers earthquake and identified the presence of
atmospheric signals in the interferogram of repeated tracks. After that, there were more
and more studies on the correction of atmospheric delay errors in InSAR measurements.
The methods that were used can be divided into two main categories: one category is the
correction of errors by on the basis of a method’s own image data without the involvement
of meteorological parameters; the other category is the use of external data in making
corrections. The first category includes the phase accumulation method (stacking) [4], the
permanent scatterer (PS) technique [5], and the small baseline subset (SBAS) technique [6].
Among these three methods, the phase accumulation method may reduce the temporal res-
olution of InSAR measurements; the PS and SBAS techniques may waste a large amount of
SAR image data, and the processor’s subjective judgment is arbitrary. The second category
of methods utilizes external data from the ground-based global navigation satellite system
(GNSS), satellite-based medium resolution imaging spectrometer (MERIS) and moderate-
resolution imaging spectrometer (MIRIS) data, moderate-resolution imaging spectrora-
diometer (MODIS) observations, numerical weather prediction models, ground-based
meteorological station observations [7], and wireless sounder observations [8]. Among
these methods, the use of GPS data is the primary source of information.

In 1997, Zebker et al. [2] pointed out that when spatial and temporal variations in
atmosphere relative to humidity reaches 20%, deformation measurement errors of 10 cm
to 14 cm and elevation measurement errors of 80 m to 290 m can result. In 1998, Williams
et al. [9] used GPS water vapor data obtained from the GPS monitoring network in southern
California to reduce the influence of the atmosphere on InSAR interferogram maps. Their
results confirmed that GNSS-derived water vapor data could provide a more thorough
and rigorous modeling of the effects of water vapor on InSAR interferometric data after a
certain spatial interpolation, and that the GPS zenith delay was correlated with elevation,
which was consistent with the conclusion of Zebker [2] and the statistical model of Treuhaft-
Lanyi [10,11]. Li et al. [12,13] and Luo et al. [14] proposed different interpolation models
and investigated the relationship between atmospheric delay and topography. They found
that the use of the topography-dependent turbulence model (GTTM) [15,16] could result in
the interpolation correction map being more accurate.

In 2011, Jolivet et al. [17] conducted InSAR atmospheric delay correction in the Kunlun
Mountains region, using reanalysis information from the European Centre for Medium-
Range Weather Forecasts (ECMWF). They calculated the ratio of phase/elevation before
and after atmospheric delay correction within a certain displacement window range. They
found the monitoring accuracy was improved by 2.0 rad/km. However, their study also
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found that the atmospheric delay values obtained from meteorological models alone were
not necessarily reliable [18].

In 2014, Wang et al. [19] used the ECMWF meteorological forecast model to correct
the effects of INSAR atmospheric delay errors and found that the ECMWF model could
not accurately reflect the details of local atmospheric changes, especially in regions with
large changes in relative humidity. The ECMWF model was more suitable for regions with
relatively small changes in large-scale meteorological conditions [20]. Regardless of whether
GNSS data or other external data, such as data derived from numerical weather prediction
models, are used, they need to match the temporal and spatial resolution of InSAR-obtained
image data. However, there are no data that can achieve complete agreement with InSAR-
obtained image data, in terms of spatial and temporal resolution. Therefore, it is necessary
to combine multiple data to develop a better InSAR atmospheric delay correction model.

In 2007, Li et al. [21] analyzed the Gaussian morphology, anisotropy, and energy
spectrum characteristics of atmospheric noise by four interferograms in the Shanghai area,
and theoretically confirmed that an external data spatial resolution of at least 0.3 km is
required in order to correct 90% of atmospheric delay errors in InSAR measurements.
However, GNSS stations are discrete and unevenly distributed, requiring the use of other
data to achieve higher spatial resolution. Thereafter, many scholars [22–28] studied the
integration of GPS and MODIS/MERIS water vapor data for better atmospheric delay
correction. However, both MODIS and MERIS are near-infrared water vapor measurements,
which can only describe the amounts of column water vapor on clouds in clear daytime
land areas, as well as in cloud-free land and ocean areas. Currently, MERIS water vapor
data are not freely available.

Therefore, we built an atmospheric delay correction model for InSAR measurements
by integrating newer numerical weather prediction model reanalysis data and ground-
based GNSS observation data, based on a variance component estimation (VCE) weighting
method. The model was validated and compared with the current widely used generic
atmospheric correction online service (GACOS) model for InSAR measurements [29], and
then applied to deformation monitoring of the 2019 Changning M6.0 earthquake that
occurred in Sichuan, China, to evaluate its monitoring accuracy.

We emphasize that atmospheric delay errors exist in a variety of measurement tech-
niques; such errors are among the important sources of error that affect the accuracy of
crustal deformation monitoring. Our atmospheric delay correction model can be extended
and used in the data processing of various types of crustal deformation monitoring. Our
model is not limited seismic deformation applications. Although the magnitude of the
seismic deformations is generally larger than that of atmospheric deformations, atmo-
spheric delay is significant in monitoring crustal deformation via InSAR measurements,
especially in regions with a large tropospheric influence, such as those regions near the
equator. Atmospheric delay is also significant in monitoring urban surface subsidence.

2. Study Area and InSAR Data

Changning is a region of complex terrain in the Sichuan province of China. It is located
on a secondary fault near the Changning-Shuanghe back-slope tectonics on the edge of the
Sichuan Basin, with a northwest–southeast trending stress field that is prone to triggering
landslide hazards [30]. On 17 June 2019, there was an M6.0 earthquake with an epicenter
located at 28.34◦N (north latitude) and 104.90◦E (east longitude). It had a 16 km source
depth (http://www.ceic.ac.cn/history, accessed on 29 January 2021). The study area of
interest is near the epicenter. Figure 1 shows the range and the topography of the study
area. We monitored co-seismic deformation by InSAR measurements from the Sentinel-1A
satellite and calculated the atmospheric delay correction model for InSAR measurements
in the study area in order to improve the accuracy of crustal deformation monitoring.
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Figure 1. The range of the area of interest and the topography from SRTM3 v4.1 DEM [31]. The red
rectangular represents the area of interest, the yellow pentagram represents the earthquake location as
identified by the China Earthquake Networks Center. The color-coded strip represents the elevation
of the topography.

The Sentinel satellite is another epoch-making C-band SAR satellite, after ERS and
ENVISAT satellites. It can provide all-weather, all-day, high spatial resolution remote
sensing data with good spectral quality. Due to its short wavelength, the C-band can be
ignored in considering the effect of ionospheric delay in atmospheric delay, and only the
tropospheric delay in the signal propagation process needs to be considered. The Sentinel-1
series satellite opens a new era of free data accessibility [32]. The measurement data of
the Sentinel-1 satellite can be downloaded freely from European Space Agency (ESA) data
(https://scihub.copernicus.eu/dhus/#/home, accessed on 24 September 2019) by user
registration and login; the orbit file, with measurement data, can be downloaded freely
in the other website of the ESA (https://scihub.copernicus.eu/gnss/#/home, accessed
on 27 October 2019) via different user information. The Sentinel-1 satellite has two-track
data, three-track data, and four-track data, the two-track data is generally used in different
InSAR data, i.e., D-InSAR (differential interferometric synthetic aperture radar).

Due to the short wavelength and high frequency of the C-band, the effect of ionospheric
delay is very small and the effect of atmospheric delay is mainly that of the tropospheric
delay in the signal propagation process.

Usually, InSAR data processing is used to extract DEM with high accuracy and D-
InSAR data processing is used to obtain the surface deformation displacement caused by
an earthquake, a volcano, or city surface subsidence, and to carry out interference stake
time series analyses, such as persistent scatters (PS) and Small baseline subsets (SBAS). For
simplicity, in this paper, we refer to D-InSAR as InSAR.

In processing the InSAR measurements for crustal deformation displacement, co-
polarization is usually used, because its penetrability is better than that of cross-polarization.
Sngle look complex (SLC) radar image data, before and after the interested event, is taken as
input data (e.g., Sentinel-1A VV polarization image data). One image is used as the master
image and another is used as the slave image. The quality of the interference image pairs is
evaluated by a baseline estimation and multi-look processing by azimuth resolution and
range resolution to suppress the speckle noise of the SAR images. Then, an interferogram
could be obtained, based on STRM DEM [31], in order to reduce the influence of terrain
error. This paper adopted a DEM of 90 m × 90 m resolution. The phase unwrapping is
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carried out by the Goldstein filtering method, using the Delaunay minimum cost flow
theory to solve the problem of phase ambiguity. The corresponding precision orbit is used
to adjust the orbit and re-flatten it by selected ground control points (GCP). Finally, the
line-of-sight (LOS) co-seismic deformation displacement in the WGS84 coordinate system
is obtained via geocoding, and the initial or raw displacement field before atmospheric
delay correction is obtained.

We chose the repeat track data of the Sentinel-1A satellite for a 12-day interval period
before and after the Changning M6.0 earthquake in the interest area, i.e., SLC image data
for 9 June 2019 (day of year, DOY 160) and 21 June 2019 (DOY 172) were downloaded,
respectively; we obtained the co-seismic displacement field of the area of interest by D-
InSAR measurements.

3. Methodology

3.1. Numerical Meteorological Forecasting Atmospheric Delay Calculation Model

In 2016, the European Centre for Medium-Range Weather Forecasts (ECMWF) [33]
(http://www.ecmwf.int, accessed on 8 May 2021) released a revised version of the fifth
generation of the global atmospheric numerical forecast reanalysis (ECMWF Reanalysis v5,
ERA5); the data has been updated since 2019 [34]. This information provides 137 model
levels of information on atmospheric, terrestrial, and oceanic climate changes within 80 km
of height and 37 pressure levels of the relevant atmospheric data, stratified by hourly
pressure values from 1 hPa to 1000 hPa on an 0.25◦ × 0.25◦ grid. The latter information is
freely available. Therefore, this paper applied the pressure, temperature, specific humidity,
potential volume, and relative humidity information provided from the 37 pressure levels.

There are two steps in ERA5 atmospheric zenith total delay (ZTD) calculations (sub-
sequently referred to as ERA5 ZTDs). First, the ERA5 ZTDs are calculated for each grid
corresponding to the 37 pressure levels’ atmospheric data, by integral methods, as fol-
lows [33]:

ZTDint_s f c = 10−6 ·
∫ htop

hs f c

N · dh (1)

In addition,

N = k1 · (P − e)
T

+ k2 · e
T
+ k3 · e

T2

e = sh × P/0.622

k1 = 77.604K/Pa; k2 = 64.79K/Pa; k3 = 377600.0K/Pa

where ZTDint_s f c denotes the atmospheric delay from the bottom to the top of the
37 pressure levels’ meteorological values; hs f c and htop denote the bottom and top heights
of the ERA5 meteorological data, respectively; N is the total refractive index; P denotes
the atmospheric pressure in hPa; e denotes the water vapor pressure in hPa; sh denotes
the specific humidity; T denotes the temperature of the nth level at the corresponding grid
point; the unit is K; dh = hn−1 − hn; and hn, the potential height, indicates the height of the
nth level on the grid point, and is obtained by the potential divided by the local acceleration
of gravity named, the unit is km; n decreases with the increase in height.

After deriving the ZTD value by the integration method from the 37 pressure levels’
meteorological data, at approximately 47 km in height, the zenith delay above the top level
must be added in order to make it comparable with the ZTD of GNSS stations, based on
GNSS’s high-precision data processing solution [33]. However, there is no meteorological
data above the top level of approximately 47 km in height. Fortunately, the effect of the wet
delay is almost negligible, due to the reduced water vapor content above the top level [35].
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The ZTD value above the top level could be calculated by the Saastamoinen delay model,
as in the following equation [36]:

ZTDtop = 0.002277 ×
[

Ptop +
(

0.05 + 1255
Ttop+273.15

)
· etop

]
f (ϕ, H)

(2)

In addition,

etop = rh × 6.11 × 10
7.5·Ttop

Ttop+273.15

f (ϕ, H) = 1 − 0.00266 · cos(2ϕ)− 0.00028 · H

where Ptop denotes the integrated top pressure level in hPa, Ttop denotes the integrated top
level Celsius temperature in ◦C, etop denotes the integrated top level water vapor pressure; rh
denotes the integrated top level relative humidity (0~1); ϕ is the geocentric geodetic latitude
of the station or grid point in rad; and H is the grid height in km above the sea level.

By adding the integrated atmospheric delay and the corresponding grid atmospheric
delay obtained via the Saastamoinen model, the atmospheric zenith delay derived by the
numerical weather prediction model can be expressed as follows [33]:

ZTD = ZTDint_s f c + ZTDtop (3)

This ZTD value is the atmospheric delay at the grid position with the pressure of
1000 hPa. In fact, due to the existence of terrain undulations, the obtained atmospheric
delay is not necessarily the surface elevation observed by InSAR measurements. Therefore,
it is necessary to convert the ZTD value to the surface elevation-by-elevation correction,
and the conversion formula used is the following [37,38]:

P = P0 ·
[

1 +
(

8.419 × 10−5 · (H0 − H)

P00.190284

)]5.255303

(4)

T = T0 − 6.5 · (H − H0) (5)

where P is the surface air pressure and the unit is hPa; P0, T0, H0 are the air pressure,
temperature, and elevation at the known points of the corresponding grid in hPa, K, and
km, respectively; H is the elevation of the surface; T is the surface temperature; and the
unit is K.

3.2. GNSS Data Estimated Atmospheric Delay Model

Using GAMIT/GLOBK software, GNSS ZTDs with high accuracy could be obtained [39].
This paper applied the continuously observed GNSS stations of the crustal movement ob-
servation network of China (i.e., the land state network, CMONC) and the IGS stations
around the study area to obtain absolute ZTD values, for GNSS network stations with
a maximum baseline of more than 500 km. All models, including receiver antenna files,
antenna phase center models, earth orientation parameters, moon ephemeris tables, sun
ephemeris tables, and ocean tide models, were updated. ITRF2014 provided the prior
coordinates, with constraints of 0.1 m for CMONC stations and 0.01 m for IGS stations.
The GMF mapping function was used for the tropospheric delay model and the zenith
wet delays, as the unknown parameters, were solved once per hour, together with other
parameters, such as station coordinates and satellite orbits.

However, ZTDs determined by the GNSS network or by ERA5 reanalysis data are
often different from ZTDs that are required at the time of InSAR satellite transit in the
spatio-temporal distribution. They must be interpolated and matched. This paper applied
Lagrange’s interpolation to obtain the required ZTDs of the InSAR observation area at the
time of SAR satellite transit.
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3.3. GACOS Model

In 2018, CHEN et al. [29] proposed taking advantage of the 0.125◦ × 0.125◦ horizontal
resolution global coverage and the 137 levels of vertical resolution data information pro-
vided by the 6-h ECMWF numerical meteorological model, as well as the high temporal
resolution (5 min) and high accuracy measurements of discrete fixed GPS stations, to form
an atmospheric delay correction model for InSAR measurements. The optimum weight
between ECMWF and GPS is the lowest cross-validation RMS value of the GPS network
stations within 150 km of the decorrelation distance. The test range of the ECMEF/ GPS
relative weight is from 0.0 to 10 by steps of 0.1. In [29], the atmospheric delay was sepa-
rated into the elevation-related components and the turbulent components by an iterative
approach. Moreover, the atmospheric delay correction model for InSAR measurements was
built by interpolation and exponential coefficients for the considered pixel. This GACOS
model is generally applicable in both flat and upland areas. Users can download the
atmospheric delay correction model for a certain region at a certain time on the GACOS
website (http://www.gacos.net/, accessed on 11 May 2021) and load it into their own
study area. The GACOS model is a commonly used method to correct the atmospheric
delay for InSAR measurements. In this paper, it is used as the comparative atmospheric
delay model.

We calculated the GNSS ZTDs by using the more than 60 GNSS stations on the Qinghai-
Tibet Plateau of the Crustal Movement Observation Network of China (CMONC) and eight
surrounding IGS stations. Figure 2 shows the distribution of the selected GNSS stations in
the CMONC, and the location of the epicenter.

Figure 2. Distribution of selected GNSS stations in the crustal movement observation network of
China near the area of interest. The green triangle represents the selected GNSS stations of the Crustal
Movement Observation Network of China (CMONC). The yellow pentagram represents the location
of the epicenter by the China earthquake networks center (CENC).

3.4. Multi-Source Data Integrated Atmospheric Delay Modeling Based on VCE

With the weather forecasting model update and the increase in the number of GNSS
stations, and most importantly with the need for a more reasonable weighting method, this

29



Remote Sens. 2022, 14, 4329

paper established a new multi-source data integration atmospheric delay correction model
for InSAR measurements, based on the variance component estimation (VCE) weighting
method [40–44], by GNSS high-precision real ZTD observations and high spatial and
temporal resolution ERA5 ZTDs.

In order to integrate the same volume for the different sources, we converted the
surface elevation of the ERA5 ZTDs to the corresponding elevation position of the GNSS
station by the elevation-correction-of-the-neighborhood-grid-points method and compared
them with the ZTDs at the GNSS station. The ERA5 ZTDs and the GNSS ZTDs were
discussed in Sections 3.1 and 3.2.

The integrated ZTD is a sum of the elevation-related stratified component and the
turbulence component, in that the stratified component can be expressed as the exponential
function. The formula is as follows [29].

ZTD = S + T + ε (6)

In addition,
S = L · e−βh (7)

where ZTD is the integrated atmospheric delay value, T is the turbulence component delay,
S is the stratified component delay value, ε is the remaining residual, L is the stratified
delay at sea level, β is the exponential coefficient, and h is the height.

Because the accuracy and spatio-temporal resolution of the ZTD obtained by different
techniques are different, the integration from different sources needs to consider the weight
assignment of each source to obtain the high-precision measurement result. In data process-
ing, the variance component estimation (VCE) is a widely used weighting method [40–44]
that can set an arbitrary initial weight value to provide a pre-adjustment and calculate the
variance of observation; then, the new variance estimation weight is calculated to improve
the previous weight value. These steps were performed repeatedly until the weight factor
was convergent. It was most important to establish the error equations for the VCE method.
Suppose there are two technologies; then, the VCE method is as set out below.

The functional model is as follows.

l1 = B1 · x + Δ1 (8)

l2 = B2 · x + Δ2 (9)

Then,
D(l1) = D(Δ1) = σ01

2 · P1
−1 (10)

D(l2) = D(Δ2) = σ02
2 · P2

−1 (11)

where l1 and l2 are the observations of two technologies, respectively; Δ1 and Δ2 are obser-
vation errors of two technologies, respectively; x is the unknown matrix; B1 and B2 are the
coefficient matrices of the two technologies, respectively; D(Δ2) and D(Δ1) are the pretest
variances of the two technologies, respectively; σ01

2 and σ02
2 are the variances in the unit

weight of the two technologies, respectively; and P1 and P2 are the observation weights.
The established error equations are as follows.

v1 = B1 · x̂ − l1 (12)

v2 = B2 · x̂ − l2 (13)

Generally, the initial weight is not appropriate, while the variances in unit weight are
identical for the different technologies, as follows.

σ01
2 ≈ σ02

2 (14)
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This means that we need to establish the relationship between the residual error and
the variance in unit weight. The specific formula can be found in references [40–45].

In this study, we supposed, first, that the turbulence components were zero and then
we established the error equation by derivation of the exponential function. The error
equation was as follows.

v = ln L − βh − ln S (15)

We calculated the coefficient β and L of the stratified component by the VCE method.
The iteration stopped until the β and L were convergent., During the process, the stratified
and turbulence components were updated constantly by new β and L and the new stratified
component was again weighted by the variance component estimation. These steps were
repeated. This iteration stopped until the weight factor was convergent [45,46] and each
component was also convergent.

The threshold setting of the convergence condition affects the iteration number and the
accuracy of the results. the lower the stop threshold, the greater the number of iterations
and the longer the procedure operation time; however, higher accuracy is not necessarily
obtained. We chose different thresholds of weight factor change for our experiments to
facilitate building the more accurate and appropriate atmospheric delay correction model
based on the VCE. We found that the correction result was not more highly accurate when
the threshold was lower, but the result was consistent with the accuracy obtained by setting
the threshold at 0.001. Moreover, the coefficient convergence condition of 0.001 was sufficient
to obtain the accuracy of the atmospheric delay correction values at sub-millimeter levels.

The threshold referred to was the convergence condition weight factor. In order
to separate the stratification associated with the elevation and turbulent components,
each component was required to converge simultaneously with the iterative process in
calculating the exponential function coefficients.

We used the atmospheric delays in the study area on DOY 160 and DOY 172 in
2019 as the basis for calculating the daily atmospheric delays based on the VCE method
(Figure 3c,d), and compared those results with the daily results produced by the GACOS
model in the same areas at the same time (Figure 3a,b). In Figure 3, the vertical axis
and horizontal axis represent the latitudinal and longitudinal ranges of the study areas,
respectively, and the color-coded strips represent the calculated ZTD values. It can be seen
that the two atmospheric delay models were almost the same at the same DOY times.

We found that the ERA5 weight value relative to the GNSS weight value of each
considered pixel did not change significantly and was stable on DOY 160 prior to the
earthquake; however, there was a significant change on DOY 172 after the earthquake,
at which time the weight values varied abruptly from 0.049 to 0.053 between adjacent
pixel points. The sizes of the weights on these two days were significantly different. The
weight ratio between ERA5 and GNSS on DOY 172 was larger than the weight ratio before
the earthquake, but it was far less than 1.0. This might have been because the ERA5
meteorological model had a certain forecast error, so that its accuracy was lower than the
accuracy of the GNSS ZTD. However, the increase in the weight ratio of ERA5 relative to
GNSS, as well as the weight ratio between some adjacent pixels, was unstable after the
earthquake, which might be related to the co-seismic deformation of GNSS stations that
led to an increase in the atmospheric delay error and a decrease in their weights.
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Figure 3. Daily atmospheric delay obtained from different models: (a) the atmospheric delay of
the InSAR signals on DOY 172 according to the GACOS model; (b) the atmospheric delay of the
InSAR signals on DOY 160 according to the GACOS model; (c) the atmospheric delay of the InSAR
signals on DOY 172 according to the variance component weighting model; and (d) the atmospheric
delay of the InSAR signals on DOY 160 according to the variance component weighting model. The
color−coded strips represent the calculated ZTD; the vertical axis and horizontal axis represent the
north latitudinal range and the east longitudinal range of the study area, respectively.

The difference between the atmospheric delay correction model on DOY 172 and
on DOY 160, obtained by multi-source data integration based on the estimated variance
components and the corresponding correction by the GACOS model, is provided in Figure 4
(top). The corresponding pixel point ZTD corrected difference between the two models is
provided in Figure 4 (bottom). It can be seen that the maximum difference in value between
the two models was about 15 mm, which occurred in the northeast part of the study area,
which had large changes in topography elevation and was far from the epicenter. The big
differences were perhaps because the GNSS stations were not sufficiently dense in places
with large terrain changes, leading to ZTD grid calculation errors. The other error caused
by the large variations in topography may be due to the fact that the ERA5 meteorological
data used in this paper included a 0.25◦ × 0.25◦ grid, while the ECMWF meteorological
data used in the GACOS model included a 0.125◦ × 0.125◦ grid.
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Figure 4. Comparison for atmospheric delay correction between the variance component weighting
model and the GACOS model: the top shows the difference between the two models in the area of
interest; the color−coded strips represent the difference between the atmospheric delay correction
model, based on the VCE method, and the GACOS model; the vertical axis and the horizontal
axis represent the northern latitudinal range and the eastern longitudinal range of the study area,
respectively; at the bottom is the difference between the two atmospheric delay correction models in
the corresponding pixels: the horizontal axis represents the pixels extracted by row, and the vertical
axis represents the difference values; the unit is meter.

4. Results of the Atmospheric Delay Correction Model Applied to Crustal
Deformation Monitoring

In order to verify that the precision of the deformation can be improved by the
atmospheric delay model, based on the VCE method, the Sentinel-1A satellite data were
used to obtain the raw crustal deformation information for the area of interest. The raw co-
seismic deformation displacement is shown in Figure 5, which depicts an obvious regional
variability; the deformation near the epicenter was drastic. It is shown as striped.

The InSAR measurement provides the line-of-sight (LOS) direction displacement of
the satellite in the study area, so that the atmospheric delay correction model needs to be
mapped to the LOS of the satellite by a trigonometric function on the mean elevation angle
at the moment of the satellite’s transmitting signal. Then, the corrected displacement of the
raw displacement field minus the multi-source data integrated atmospheric delay correction
model, based on the VCE method, and the GACOS model are provided in Figures 6 and 7,
respectively. Generally, it is believed that the crustal deformation in the area far from the
epicenter should be small or even nil. Therefore, we emphasized the eastern part of the image,
which is far from the epicenter, and compared it with the GACOS model.
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Figure 5. InSAR co−seismic deformation for the area of interest, corresponding to Figure 1. The red
rectangle represents the area of interest; the black pentagram represents the earthquake location ac-
cording to the China Earthquake Networks Center; the color−coded strip represents the displacement
of co-seismic deformation for InSAR.

Figure 6. The corrected deformation displacement according to the atmospheric delay model based
on the VCE method: (a) the multi−source data integrated atmospheric delay correction model based
on the variance component estimation (VCE) method; (b) the corrected co−seismic deformation
displacement according to the model based on the VCE. The color−coded strip represents the
atmospheric delay correction model and the displacement in (a,b), respectively.

As shown in Figures 6 and 7, the results were consistent in most regions; however,
there were some differences in certain regions. On the one hand, this might be because of
the uneven distribution of the GNSS stations that were used in the GACOS model, which
were mainly distributed in Europe. Few GNSS stations in China could affect the accuracy
of the GACOS atmospheric delay model. On the other hand, GACOS model weighting by
a test step size of 0.1 could affect its accuracy in integrating the meteorological forecasting
model and the GNSS data. Although this weighting method is much improved, compared
with the previous equal-weight integration method, the choice of its step size was not a
good method for optimal weights [47].
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Figure 7. The corrected deformation displacement according to the GACOS model: (a) the multi-
source data integrated atmospheric delay correction based on the GACOS model; (b) the corrected
co−seismic deformation displacement according to the GACOS model. The color−coded strip
represents the atmospheric delay correction model and the displacement in (a,b), respectively.

5. Discussion

In order to determine the main factor affecting the precision of the atmospheric delay
correction model for the uneven GNSS stations and the weighting method, we built a
new atmospheric delay correction model by using the same sources of the GNSS stations’
ZTD and the ERA5 ZTD as those of the model based on the VCE method, and the same
weighting method as that of the GACOS model. This was the test model. The results were
as follows.

As shown in Figure 8, the atmospheric delay correction model was no better than the
GACOS model, especially in areas where the elevation change in the northeast corner was
dramatic and far from the epicenter. There was reason to believe that the weights method
accounted for the more dominant factor influencing the accuracy of the atmospheric delay
correction model.

Figure 8. The corrected deformation displacement by the test model: (a) the atmospheric delay
correction according to the test model; (b) the corrected co−seismic deformation displacement
according to the test model. The color−coded strip represents the atmospheric delay correction
model and the displacement in (a,b), respectively.

The RMS could be used as an indicator to evaluate the accuracy of the atmospheric
delay correction models. Therefore, the RMS values of the overall displacement fields in
the study area were calculated on the raw displacement and the corrected displacement by
different atmospheric delay correction models that were based on the VCE method and
the GACOS model, respectively. The results showed that the RMS value was 19.8 mm
on the raw displacement field, without atmospheric delay correction, in the study area.
The RMS value was 22.7 mm on the corrected displacement field according to the GACOS
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model, with deterioration of accuracy. The RMS value was 21.4 mm on that corrected
displacement according to the test model, which was almost identical to that of the GACOS
model. The RMS value of the corrected displacement according to the multi-source data
integrated atmospheric delay model based on the VCE method was 17.4 mm, which was a
5.3 mm improvement on that of the corrected displacement by the GACOS model, with
accuracy improvement of approximately 25%, and a 2.4 mm improvement on that of
the raw displacement, with accuracy improvement of approximately 25%. These were
important improvements for highly accurate deformation monitoring.

Generally, the crustal deformation was small in most the regions, except in circum-
stances of sudden change. For example, near the earthquake center there was large dis-
placement. In order to reduce the effect of the larger deformation by the earthquake, we
tested the accuracy of the regions far from the epicenter. The results showed that the RMS
was 21.4 mm, 24.4 mm, and 15.1 mm for the raw displacement, the displacement that
was corrected via the GACOS model, and the displacement according to the new model,
respectively. The results showed that the accuracy of the model based on the VCE method
was better by providing 6 mm improvement compared with that of the raw displacement
and provided 9 mm improvement in comparison with the displacement corrected by the
GACOS model.

Because of the rich vegetation and complex topographic features of the area of interest,
the raw phase measurement has low coherence, and other noise masked some of the
accuracy of the atmospheric delay correction model. Accordingly, while the precision of
the corrected result according to the integrated atmospheric delay correction model based
on the VCE method was improved, the improvement was limited.

Another factor to verify the quality of the atmospheric delay correction model is the
correlation between the raw displacement and the atmospheric delay correction [29]. The
InSAR phase measurement is highly correlated with the atmospheric delay correction.
This means that the atmospheric delay model is good when the atmospheric effect can be
most reduced from the raw displacement. Therefore, the higher the correlation coefficient
between the raw displacement and the atmospheric delay correction model, the better
the accuracy of the atmospheric delay correction model. Generally, the calculation of the
correlation coefficient is based on the degree of linear correlation between the atmospheric
delay X and the displacement Y, which can be expressed as

Y = a · X + b (16)

where a is the slope and b is the intercept.
The correlation coefficient between the atmospheric delay and the raw displacement

can be expressed as follows:

ρ =
cov(X, Y)√

var(X)var(Y)
=

∑[(xi − x) · (yi − y)]√
∑(xi − x)2 · ∑ (yi − y)2

(17)

where ρ is the correlation coefficient between X and Y, cov(X, Y) is the covariance of X and
Y, and var(X) and var(Y) represent the variance of X and Y, respectively. In this study,
X and Y represent the atmospheric delay correction model and the raw displacement,
respectively. xi is the atmospheric delay correction of each pixel in the study area, x is the
average of the atmospheric delay correction for all pixels, yi is the raw displacement of
each pixel, and y is the average of the raw displacement for all pixels.

The correlation coefficients between the raw displacement and the atmospheric delay
correction model based on VCE, as well as the coefficient between the raw displacement
and the GACOS model, respectively, are shown in Table 1. It can be seen that the correlation
coefficient between the displacement and the model based on the VCE method was higher
than that between the displacement and the GACOS model. The former improved the
correlation coefficient by approximately 25%, compared with the latter.
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Table 1. Performance indicators for the GACOS model and the atmospheric delay correction model
based on the VCE correlation coefficients.

Model
Linear Fit between Raw Displacement and

Atmospheric Delay
Correlation Coefficient

GACOS model Y = 1.6692X − 12.8042 0.2870

multi-source data integrated atmospheric
delay correction model based on VCE Y = 0.9495X − 6.8884 0.3465

In order to intuitively express the correction effect, the displacement of the test line
was analyzed for raw displacement and corrected displacement by different atmospheric
delay correction models. The results are shown in Figure 9.

Figure 9. A comparison of the test line displacement for the before and after correction with different
atmospheric delay models. Part (a) shows a raw interference displacement of the study area. We
can see the position of the test line; the black pentagram is the epicenter according to the China
Earthquake Networks Center; the color−coded strip represents the displacement. Part (b) shows
the displacement of the black test line located in (a); the bule curve is the raw displacement, the
green curve is the corrected displacement according to the GAOCS model, and the red curve is the
corrected displacement according to the model based on the VCE, respectively.

Figure 9a shows the raw deformation that was not corrected by the atmospheric delay
correction model. Based on the test line in Figure 9a, we extracted the raw displacement
and corrected it in different models, as expressed in Figure 9b. Figure 9b showed the
displacement of the test line in Figure 9a. In Figure 9b, the blue area represents raw
displacement, the green area represents the corrected displacement by the GACOS model,
and the red area represents the corrected displacement according to the model based on
the VCE method. Based on the principle that the smaller the displacement in a region
far from the epicenter, the better the correction effect, we concluded that the red curve,
representing the correction model, was the best, and that its curve contour shape but not
its value was almost the same as the blue one, i.e., the curve trend of the corrected test
line displacement based on the VCE method was similar to the raw displacement, and
the smaller displacement than the raw one indicated that there was a systematic constant
difference between the displacement corrected by the atmospheric delay correction model
based on the VCE method and the raw displacement. Moreover, the corrected displacement
according to the model based on the VCE method was lower. The existence of systematic
error between the corrected displacement of the VCE model and the raw displacement
could be the noise factors, such as rich vegetation in the region.

Given the high precision deformation monitoring capability of the GNSS stations, we
considered using a GNSS station to verify the external accuracy of the results achieved.
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Because the GNSS station was sparse in the area of interest, we chose and performed the
deformation of the SCJU station that was close to the study area by the different models;
then, we compared it with the solution of the GAMIT/GLOBK. The derived deformations
against the SCJU station from the GAMIT/GLOBK solution, the correction model base on
the VCE, and the GACOS model, were 0.016, 0.0377, and 0.0695, respectively. This indicated
that the result of the model based on the VCE method was better than that of the GACOS
model, due to the smaller deformation difference to the GAMIT/GLOBK. As there was still
a distance of about 10 km between the considered pixel and the SCJU station, this external
accuracy was used as the reference.

6. Conclusions

This paper’s proposed atmospheric delay correction model is better than the GACOS
model in separating the elevation-related stratified components from the water vapor
components, based on the VCE method. It can be applied to various geographic situations
for crustal deformation monitoring. For example, the selected Changning region has large
terrain fluctuations and large changes in temperature and relative humidity. Therefore,
its atmospheric delays, and especially its water vapor variations, are very complex. The
experimental results showed that the model based on the VCE method is better than the
GACOS model and that it is also suitable for flat terrain conditions.

In this paper, the denser GNSS data for the study area and the newer meteorological
weather forecasting model, ERA5, were adopted. Even if the degree of granularity of the
ERA5 37-layer pressure level is poorer than that of the GACOS model’s ECMWF 137-layer
spatial resolution, the accuracy of the new model, based on the VCE method, is much higher
than that of the GACOS model. the model’s corrected seismic deformation displacement
RMS, based on the VCE method, decreased by 5 mm and 2.4 mm, compared with the
GACOS model and the raw displacement. This is important for high-precision crustal
deformation monitoring. Given the large deformations due to earthquakes, we tested the
corresponding RMS in an area far from the epicenter, the precision improvement of the
corrected deformation by the new model was 9.3 mm and 6.3 mm, compared with that of
the GACOS model and the raw displacement.

The results indicate that with variance component estimation weighting it is feasible to
build the multi-source data integrated atmospheric delay model, and the correction effect of
the model based on the VCE method is better than that of the GACOS model. Given the more
refined meteorological numerical information that can be obtaine, with an auxiliary to denser
GNSS stations and other source data, it is possible to obtain a more accurate atmospheric
delay correction model for InSAR by the variance component estimation (VCE) method.

In addition, the vegetation cover in the Changning area was very rich in the study
period. For the C-band Sentinel satellite, the penetration of vegetation was not as good
as the longer wavelength, such as L-band; thus, there was noise in the interferogram.
However, the resulting analysis showed that the multi-source data integration atmospheric
delay correction model based on the VCE method had higher precision than the GACOS
model. The fault was consistent with the results of the analysis by Yu et al. [48] of the
Changning M6.0 earthquake. The strike of the fault was northwest to southeast and the
regional characteristics of the two sides of the fault were obviously different. The uplift of
the southeastern side was up to 6 cm and the subsidence of the northwestern side was up
to 8 cm. Compared with the GACOS model, the major improvement of the multi-source
data integrated atmospheric delay correction model based on VCE was in the northeastern
area of the study area, which had the largest elevation change. This indicates that accurate
atmospheric delay correction is good for the correction effect of the large topographic
elevation change.

We recommend the integration of the different multi-sources by the VCE method to
obtain a more accurate atmospheric delay correction model to monitor crustal deformation.
With the establishment of the China Seismic Science Experimental Site, the GNSS network
in Sichuan and Yunnan will become more dense. This paper provides ideas and methods
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for the future integration of multi-source data for InSAR atmospheric delay correction.
Such ideas and methods could be used as a reference for conducting atmospheric delay
correction scientific research in different regions and different terrain conditions.

7. Summary

The atmospheric delay model for InSAR was established based on the VCE method,
by integrating GNSS high-precision observation data and the high spatial—temporal
resolution meteorological numerical forecasting model. ERA5. The model’s reliability and
advantages were evaluated by comparing the correction results with those of the GACOS
model. We found that the VCE method is an effective way to improve the accuracy of
crustal deformation monitoring in the multi-source data integrated atmospheric delay
correction model.
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Abstract: Persistent Scatterer Interferometry (PSI) has been widely used for monitoring land defor-
mation in urban areas with millimeter accuracy. In natural terrain, combining persistent scatterers
(PSs) and distributed scatterers (DSs) to jointly estimate deformation, such as SqueeSAR, can enhance
PSI results for denser and better coverage. However, the phase quality of a large number of DSs
is far inferior to that of PSs, which deteriorates the deformation measurement accuracy. To solve
the contradiction between measurement accuracy and coverage, a Bayesian estimation method of
land deformation combining PSs and DSs is proposed in this paper. First, a two-level network is
introduced into the traditional PSI to deal with PSs and DSs. In the first-level network, the Maximum
Likelihood Estimation (MLE) of deformation parameters at PSs and high-quality DSs is obtained
accurately. In the secondary-level network, the remaining DSs are connected to the nearest PSs or
high-quality DSs, and the deformation parameters are estimated by Maximum A Posteriori (MAP)
based on Bayesian theory. Due to the poor phase quality of the remaining DSs, MAP can achieve
better estimation results than the MLE based on the spatial correlation of the deformation field.
Simulation and Sentinel-1A satellite data results verified the feasibility and reliability of the proposed
method. Regularized by the spatial deformation field derived from the high-quality PSs and DSs, the
proposed method is expected to achieve robust results even in low-coherence areas, such as rural
areas, vegetation coverage areas, or deserts.

Keywords: Persistent Scatter Interferometry (PSI); persistent scatterers (PSs); distributed scatterers
(DSs); Bayesian theory; land deformation

1. Introduction

Differential Interferometry Synthetic Aperture Radar (DInSAR) is a powerful tech-
nique to precisely monitor land deformation, such as seismological activities, volcanism,
landslides, and ground subsidence [1,2]. However, it has limitations due to atmospheric
artifacts and temporal and geometric decoherence. Under unfavorable conditions, the
deformation signal is obscured by atmospheric interference [3], temporal decorrelation
noise (introduced by the changes in the scattering characteristics of the target and incoher-
ent movement of individual scattering elements) [4], and geometric decorrelation noise
(introduced by changes in radar viewing angles) [5,6].

Persistent Scatterer Interferometry (PSI) technology is an extension of DInSAR tech-
niques that overcomes the limitations of decoherence and atmospheric problems through
time-series methods [7–9]. PSI technology relies on persistent scatterers (PSs), whose
amplitude and phase values are stable over time and imaging geometry [10]. Therefore,
such technology has been widely used for monitoring land deformation with millimeter
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accuracy in urban areas where man-made structures behave like strongly reflecting corner
reflectors [11].

However, PSI technology failed to perform satisfactorily in the absence of PSs in
non-urban areas [9]. Especially in natural terrain or desert areas, the scattering mechanisms
are dominated by distributed scatterers (DSs), whose back-scattered energy is less strong,
but shares similar reflectivity values within a wide area. Contrary to PSs, DSs are seriously
affected by temporal and spatial decorrelation. Therefore, the observed phases of DSs
are much noisier than those of PSs [12]. This makes PSI an opportunistic approach that
functionally limits the density of the useful scatterers [13].

Recently, several advanced techniques have been proposed to extract information from
DSs and increase the spatial density of measured points. Among them, the most represen-
tative techniques are the Small Baseline Subset Algorithm (SBAS) [14] and SqueeSAR [15].
Unlike PSI, the SBAS method relies on multilooked and unwrapped differential interfer-
ograms with short spatial and temporal baselines to minimize the effects of decorrela-
tion [16–18]. However, the error-prone phase-unwrapping and multi-looking operations
in SBAS often lead to poor accuracy and low resolution of the estimated deformation [12].
Moreover, the rectangular multi-looking window in SBAS results in a superposition of
different objects on the ground and then a loss of the deformation information contained in
the isolated pixels [19]. In addition, the phase unwrapping often results in discontinuous
fringes, especially in natural terrains.

In contrast, to reduce the decorrelation noise of DSs, the SqueeSAR method obtains the
best possible estimates of the phase history over spatially statistically homogeneous pixels
(SHPs) using all possible wrapped interferograms using a phase triangulation algorithm
(PTA) [20,21]. The PTA can reduce the stochastic noise in DSs. Then, the DSs and PSs are
jointly processed indiscriminately under the traditional PSI processing framework [15,22].
The optimum phase of DSs is estimated from the coherence matrix [23]. Recently, a
number of works have recognized that coherence errors due to limited ensembles in data
statistics affect the accuracy of InSAR measurements for DSs, especially over low coherence
scenarios [24–28]. Moreover, although preprocessing of DSs is often simplistically depicted
as transforming DSs into PSs, preprocessed DSs are statistically not equivalent to PSs [29].
In other words, the phase quality of a large number of DSs is far inferior to that of PSs, which
deteriorates the deformation measurement accuracy [30–32]. In addition, the quality of the
estimated phase of DSs can be indicated by the temporal coherence γPTA, which can be used
effectively for the final selection of DSs with a reliable phase estimation [21,33]. However, a
high value of temporal coherence indicates a large agreement between the observations
and estimated parameters but fewer DS candidates. A low value of temporal coherence
can involve more DS candidates but a large disagreement between the observations and
estimated parameters. To sum up, the contradiction between measurement accuracy and
coverage has not been fundamentally solved in both SBAS and SqueeSAR.

To solve the contradiction between measurement accuracy and coverage, a Bayesian
estimation method of land deformation combining PSs and DSs is proposed in this pa-
per. First, a two-level network is introduced into the traditional PSI to restrain the error
propagation of low-quality DSs in the adjustment network. In the first-level network, the
deformation parameters at PSs and high-quality DSs are obtained accurately based on the
Maximum Likelihood Estimation (MLE). Then, the probability density function (PDF) of
the deformation parameters at the remaining DSs can be obtained according to the spatial
correlation of the deformation field. Finally, in the secondary-level network, the remaining
DSs are connected to the nearest PSs or high-quality DSs and the deformation is estimated
using Maximum A Posteriori (MAP) based on Bayesian theory.

This study aimed to achieve robust estimation results of land deformation even in
low coherence areas, such as rural areas, vegetation coverage areas, or deserts. A total of
31 Sentinel-1A SAR data acquired between 2017 and 2019 were exploited to detect the land
deformation at Remah in the United Arab Emirates (UAE) caused by the overexploitation of
the aquifers. The proposed method not only greatly increased the density of the measuring
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points, but also ensured measurement accuracy and contained more detailed information,
which reflected the depression cone correlating with the groundwater level. Even in low
coherence areas, the deformation rate estimated using the proposed method is in good
agreement with that of the groundwater level. Finally, the strengths, limitations, and
application prospects of the proposed method are discussed.

2. Methodology

2.1. Maximum Likelihood Estimation of Land Deformation Combining PSs and DSs
2.1.1. MLE of Land Deformation in PSI

Assuming that the deterministic signal of PS y is corrupted by additive independent
and identically complex circular Gaussian (CCG) noise, the likelihood function of the
unknown geophysical parameters x can be expressed as [25,34]

P(y|x) = 1

(2πσ2)
N exp

(
− 1

2σ2 ‖ y − y(x) ‖2
2

)
, (1)

where N is the number of interferograms, σ denotes the standard deviation of the CCG
noise, and y(x) is the modeled PS signal. Then, the MLE of the parameters in x can be
written as

argmax
x

P(y|x) = argmax
Δh, Δv

∣∣∣∣∣ 1
N

N

∑
n=1

exp(−jϕn(Δh, Δv))

∣∣∣∣∣, (2)

and

ϕn(Δh, Δv) = Φn − 4πBn
⊥

λRsinθ
Δh − 4π

λ
TnΔv (3)

is the modeled phase of the nth interferogram; Φn, Δh, and Δv are the differential phase
difference, residual elevation difference, and deformation rate difference in the arcs between
two adjacent PSs; Bn

⊥ is the perpendicular baseline; λ is the radar wavelength; R is the
point-to-satellite distance; θ is the incidence angle; and Tn is the temporal baseline length.
Under the MLE, the well-known maximum temporal coherence (MTC) can be rewritten
as [8],

γMTC =

∣∣∣∣∣ 1
N

N

∑
n=1

exp
(
−jϕn

(
ΔĥMLE, Δv̂MLE

))∣∣∣∣∣ . (4)

Due to the common phase errors, such as atmospheric phase error, orbital phase error,
nonlinear deformation phase error, and so on, which can be eliminated in the PS pair
between two adjacent PSs, the modeled phase ϕn represents the noise level for the PS pair.
Moreover, since PSs are hardly affected by temporal and spatial decorrelation, the noise
level for the PS pair is usually very small

|ϕn| � π. (5)

The MTC can be used as an indicator of noise level and estimation quality, and the
higher the value of the MTC, the lower the noise level and the higher the estimation
accuracy. Finally, the deformation parameters in the PSs can be solved using the weighted
least-square adjustment method [35].

Ferretti has shown that the MLE of the deformation parameters can achieve an accuracy
of some mm/year in urban areas [7–9]. To extract information from DSs and increase
the spatial density of the measured points, the DSs and PSs can be jointly processed
indiscriminately under the traditional PSI processing framework. Although preprocessing
of DSs is often simplistically depicted as transforming DSs into PSs, preprocessed DSs are
statistically not equivalent to PSs [29]. In the next subsection, the quality and CRB of the
preprocessed phase of DSs are investigated in detail.
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2.1.2. Cramér–Rao Bound (CRB) of the Optimum Phase of DSs

The optimum phase of DSs is estimated from the coherence matrix using PTA [20,21].
The CRB evaluates the highest achievable precision for the optimum phase. Under the
assumption of scattering with a multivariate circular Gaussian distribution with absolute
coherence matrix Y and atmospheric noise α as a zero-mean normal stochastic process, the
variance matrix of the unbiased estimation of the interferometric phase φ̂ is bounded by

D
{
φ̂
}
= E

{(
φ− φ̂

)(
φ− φ̂

)T
}
≥
(

ΘT
(

X−1 + Qα

)−1
Θ
)−1

, (6)

where Qα is the N × N covariance matrix of the atmospheric signal, Θ = [0 IN−1]
T is the

N × N − 1 Jacobian matrix of the first-order partial derivatives of the interferometric phases
with respect to the unknown parameters, and X is the Fisher Information Matrix (FIM)
defined as

X = 2L
(

Y ◦ Y−1 − IN

)
, (7)

where ◦ indicates the Hadamard product, L is the number of looks, and IN is an N × N
identify matrix. Assuming the atmospheric effect is deterministic and the atmosphere
covariance matrix is zero, the CRB of the estimated phase can be rewritten as

Qφ̂ ≥
(

ΘTXΘ
)−1

. (8)

The coherence matrix can be simulated according to the exponential decorrelation model

Yi,k = (γ0 − γ∞)exp
(
− ti,k

τ

)
+ γ∞, (9)

where γ0 and γ∞ are the short-term and long-term coherences, respectively, ti,k is the
temporal baseline between the ith and kth acquisitions, and 1/τ denotes the decorrelation
rate. The parameters γ0, γ∞, and τ are related to types of land use.

As shown in Figure 1a, the temporal decorrelation behavior depends on land use [36,37].
The urban area tends to have higher γ0 and γ∞ but a middle τ, which indicates that the
urban area keeps adequate coherence semi-permanently. The pasture (rural) area has a
very low γ∞ but a middle γ0 and a higher τ, which indicates that the pasture (rural) area
becomes almost completely decorrelated sooner or later. In the water area, we never have a
coherent signal. Therefore, the γ0, γ∞, and τ are always small. According to Equation (5),
assuming a stack of N = 25 SLC images containing an ensemble of L = 30 homogeneous
pixels and the repeat cycle is 12 days in C-band, the CRB standard deviations of the
preprocessed phase of DSs are simulated as shown in Figure 1b. It can be seen that the
processed DS phase in the urban area can achieve a much better quality than that of PSs.
However, in the pasture (rural) area, the processed DS phase quality does not reach the
PS standard deviation, indicating that the information content of DSs is not sufficient for
precise estimation of phase time series. In the water area, the processing of DSs is no longer
valid because there is almost no coherent information in the stacks.

It should be noted that the CRB is achieved under the assumption that the coherence
matrix is unbiased. The typical estimation methods, such as maximum likelihood (ML),
eigenvalue decomposition (EVD), and integer least squares (ILS), usually cannot achieve
such high precision in practice. The traditional preprocessing of DSs is often simplistically
depicted as transforming DSs into PSs, and the DSs and PSs can be jointly processed
indiscriminately under the traditional PSI processing framework discussed in Section 2.1.
However, the phase quality of DSs, even after optimization, is far inferior to that of PSs,
especially in low coherence areas (pasture or rural), which will lead to poor estimation
accuracy of (ΔĥMLE, Δv̂MLE) in arcs connected to DSs, and errors will further propagate in
the subsequent adjustment network. Moreover, by constraining γMTC and γPTA, some DSs
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with poor estimation can be removed, but this is bound to reduce the number of estimated
points. Therefore, the contradiction between measurement accuracy and coverage has not
been fundamentally solved.

(a) (b) 

Figure 1. Temporal coherence and CRB of the preprocessed phase of DSs. (a) Temporal coherence
model in urban, pasture, and water areas; (b) The CRB standard deviations of the preprocessed phase
of DSs and the standard deviation of a typical PS (∼25◦) are also plotted.

2.2. Bayesian Estimation of Land Deformation Combining Persistent and Distributed Scatterers
2.2.1. MAP Estimation of Deformation Parameters Based on Bayesian Theory

The main problem with the MLE is that the accuracy of the parameter estimation
is greatly affected by the size and quality of the observation data, which means that the
result of the parameter estimation is sensitive to random variations in the observation data.
To deal with this, prior probabilities P(x) are introduced to improve the accuracy of the
MLE. According to Bayesian theory, the posterior can be written as a product of likelihood
and prior

P(x|y) = P(y|x)P(x)
P(y)

, (10)

where P(y), called the probability of the observed data, is a normalizing constant ensuring
that the posterior distribution has an area of 1. Then, we replace the likelihood with the
posterior in the MLE in Equation (2), and we obtain the MAP estimation as in [38] by

argmax
x

P(y|x)P(x) = argmax
Δh, Δv

∣∣∣∣∣ 1
N

N

∑
n=1

exp(−jϕn(Δh, Δv))

∣∣∣∣∣P(Δh, Δv), (11)

where P(Δh, Δv) is the prior joint probabilities of Δh and Δv.
The MAP estimation provides a framework for regularizing the tendency to match

exactly with the observed data thus leading to a less noisy estimation. Moreover, MAP
pulls the estimation towards the prior to an extent, which depends on the strength and bias
of the prior relative to the likelihood.

As shown in Figure 2a, the MLE can achieve an unbiased estimation of Δh and Δv at
(0, 0) without noise. However, as the noise increases, the temporal coherence decreases
gradually and achieves the maximum of 0.6 at (2.8, −1.4) as shown in Figure 2b, and
the MLE of Δh and Δv becomes worse. To improve the estimation accuracy of the MLE,
the prior probabilities of Δh and Δv are given to achieve the MAP estimation. As shown
in Figure 2c, the temporal coherence has greater kurtosis, and the MAP estimation is
much better than the MLE in the case of unbiased Gaussian distribution for the priori
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probabilities. When the priori probabilities are biased slightly, the estimation accuracy of
MAP will decline, but it is still better than the MLE as shown in Figure 2d. Thus, the priori
probabilities of Δh and Δv determine the accuracy of the MAP estimation, and the PDF
estimation method is given in the next subsection.

 
(a) (b) 

 
(c) (d) 

Figure 2. Estimation of Δh and Δv: (a) MLE without noise: γMTC = 1, Δh = 0, Δv = 0; (b) MLE with
noise: γMTC = 0.6, Δĥ = 2.8, Δv̂ = −1.4; (c) MAP estimation with noise: Δĥ = 0.2, Δv̂ = 0 and unbiased
prior: Δh~N(0,9), Δv~N(0,4); (d) MAP estimation with noise: Δĥ = 0.8, Δv̂ = 0.6 and biased prior:
Δh~N(1,9), Δv~N(1,4).

2.2.2. Two-Level Network for Deformation Parameters Estimation

• The first-level network for reliable scatterers

A two-level network is introduced into the traditional PSI to deal with PSs and DSs.
In the first-level network, the deformation parameters at PSs and high-quality DSs are
obtained accurately based on the Maximum Likelihood Estimation (MLE).

Given a stack of N + 1 coregistered SAR images, PSs are first selected using the
amplitude dispersion method [7–9]. Meanwhile, DSs are selected to increase the density of
the measuring points. The DSs, affected by temporal and spatial decorrelation, are much
noisier than the PSs, so the phase history of DSs is optimized using the PTA [15].

Unlike the traditional PS–DS algorithm, the DSs are divided into high-quality DSs and
low-quality DSs according to the posterior coherence factors ρPTA_H and ρPTA_L, respec-
tively. The high-quality DSs and PSs are jointly processed in the Delaney triangle network.
Due to the noise of these points being very small, the MLE can obtain reliable estimation

48



Remote Sens. 2022, 14, 3471

results in the arcs. Then, the linear deformation rate can be solved using the weighted
least-square adjustment method [32]

X =
(

BT PB
)−1

BT PL, (12)

where X is the vector of the deformation rates for the M reliable points, L =
[
Δv̂1 Δv̂2 · · · Δv̂Q

]
is the vector of the deformation rate difference of the Q arcs, and B is the coefficient matrix
composed of 1 and −1 and has the form

B =

⎡
⎢⎢⎢⎣

1
0
...
0

0
0
...
1

−1
. . .
...
0

0
1
...

−1

0
−1

...
0

⎤
⎥⎥⎥⎦

Q×M

, (13)

where 1 represents the starting point and −1 corresponds to the ending point along each
arc and P is the weight matrix composed of the MTC

P =

⎡
⎢⎢⎢⎣
γ2

MTC_1
0
...
0

0
γ2

MTC_2
...
0

0
. . .
...
0

0
0
...

γ2
MTC_Q

⎤
⎥⎥⎥⎦

Q×Q

, (14)

The residual elevation for reliable points can also be solved using the same process as
above and L =

[
Δĥ1 Δĥ2 · · · ΔĥQ

]
is the vector of the residual elevation difference of the

Q arcs.

• PDF estimation based on the Kriging model

Based on the results estimated from the first-level network and the spatial correlation
of deformation field and elevation, the PDF of the deformation and elevation parameters at
the low-quality DSs can be obtained using the Kriging model.

Kriging method, namely the Gaussian process regression method, is a geostatistical
interpolation technology, which can give the best linear unbiased prediction at the un-
sampled locations according to the empirical observations [39]. In addition to a predicted
value, it also provides the attached prediction error variance. The variance increases for
predictions away from the data and as the spatial correlation weakens. Assuming that the
output predicted values are hprior and vprior and the variances are σh and σv, respectively,
the prior joint Gaussian distribution for h and v can be expressed as

P(h, v) =
1

2πσhσv
exp

[
−1

2

((
h − hprior

)2

σ2
h

+

(
v − vprior

)2

σ2
v

)]
. (15)

• The second-level network for the remaining DSs

In the second-level network, to restrain the error propagation of low-quality DSs in
the adjustment network, the low-quality DSs are connected to the nearest PSs or high-
quality DSs in the second-level network. Additionally, to improve the estimation accuracy,
the deformation parameters of the low-quality DSs are estimated using MAP based on
Bayesian theory.

Assuming that the deformation parameters of the nearest reliable scatterers are hr and
vr according to Equations (11) and (15), the MAP estimation can be written as

ΔhMAP, ΔvMAP = argmax
Δh, Δv

{∣∣∣∣∣ 1
N

N

∑
n=1

exp(−jϕn(Δh, Δv))

∣∣∣∣∣·P(Δh + hr, Δv + vr)

}
, (16)
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and the MAP estimation of the remaining DSs can be calculated directly by

vMAP = ΔvMAP + vr, (17)

hMAP = ΔhMAP + hr. (18)

The processing workflow of the proposed Bayesian estimation of land deformation
combining PSs and DSs is shown in Figure 3.

Figure 3. The processing workflow of the proposed method.

3. Analysis and Results

To validate the feasibility of the proposed method and assess its performance, two
experiments are conducted based on simulated data and the Sentinel-1 real data set. More-
over, to show the reliability of the proposed method, the processing results are compared
with the traditional PS–DS processing method using the MLE.

3.1. Simulated Data

A stack of 20 interferograms (with a size of 500 × 500) is generated in an existing
single-master baseline configuration of the Sentinel-1A data with a time span of one year.
The simulated phase consists of the deformation signals, residual elevation errors, and
atmospheric phases, as shown in Figure 4a–c, respectively. Then, 450 PS pixels and 3000 DS
pixels were simulated randomly in the study area, as shown in Figure 5. As mentioned
above, the PSs and DSs with different scattering mechanisms have different noise levels.
Therefore, the random noises with a standard deviation of 15 degrees and 45 degrees are
added to the PS pixels and DS pixels (after PTA), respectively.
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(a) (b) (c) 

Figure 4. The simulated phase consists of (a) the deformation signals (mm/year); (b) residual
elevation errors (m); and (c) atmospheric phases (rad).

Figure 5. The proposed two-level network combining PSs and DSs.

The deformation rates estimated using PSI, MLE combining PSs and DSs, and the
proposed method are shown in Figure 6a–c, respectively. It can be seen that the deformation
field in the PSI is in good agreement with the simulated deformation rates. However, due
to the low density of PSs, many details are missing. The MLE combining PSs and DSs
can increase the density of the measuring points. However, due to the poor phase quality
of DSs in the simulation and the diffusion of arc errors in the adjustment network, the
inversion results in some areas cannot accurately reflect the real deformation field. The
proposed method not only greatly increases the density of the measuring points, but also
ensures measurement accuracy and contains more detailed information.

Figure 7 shows the performance of the MLE combining PSs and DSs and the proposed
method under different noise levels of DSs. In the MLE combining PSs and DSs, the
arc measurements with poor estimation are discarded by setting the threshold of the
MTC to 0.75 [31]. However, this operation cannot completely eliminate the influence of
overwhelming outliers or decorrelation noise. When the phase quality of DSs deteriorates
by more than 35 degrees, the measurement accuracy and measuring points of the MLE
combining PSs and DSs will decrease sharply. As a comparison, the proposed method can
still ensure the measurement accuracy and measuring points in the case of serious noise,
which confirms the robustness of the proposed method. This shows that the proposed
method is more robust, especially in low coherent areas such as rural areas, vegetation
coverage areas, or deserts.
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Figure 6. Deformation rates estimated using (a) PSI, (b) MLE combining PSs and DSs, and (c) the
proposed method.

Figure 7. The performance comparison of the proposed method and MLE combining PSs and DSs.

3.2. Real Data Set: Sentinel-1

Further validation of the proposed method was carried out by the experiments using
a stack of 31 C-band Sentinel-1A SAR images in VV polarization from 1 April 2017 to
22 March 2019. The spatial-temporal baseline configuration is shown in Figure 8.

The test site is located at Remah in the United Arab Emirates (UAE), as shown in
Figure 9, a place in an arid desert where rainfall is scarce and groundwater is the only
source of natural freshwater. There are many farms and plantation forests in the study area.
Groundwater abstraction for agricultural or human use has a significant impact on ground-
water resources. As water is pumped from a well, it causes a drawdown of the aquifer
water level nearby. According to the survey [40], there are about 4175 operational wells in
Al Khaznah and about 232 mio m3 groundwater is abstracted every year. Agriculture and
forests account for about 94% of the total annual groundwater use.

Abstracting groundwater leads to a depression of the groundwater surface around the
well (the cone of depression). The map of groundwater level changes shows the ground-
water level change from 2005 to 2017, which coincides with the agricultural areas [40,41].
At the test site, the groundwater level drops more than 14 m by monitoring the wells. In
2019, a cone-shaped water level was formed and the maximum drawdown at its center is
approximately 40 to 50 m.
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Figure 8. The baseline configuration of the used data set.

Figure 9. The test site located at Remah.

To explore the land deformation due to groundwater level drops, PSI technology is
first adopted. As shown in Figure 10, the deformation rates estimated using PSI indicate
that a subsidence bowl with a diameter of about 30 km is formed and the maximum defor-
mation rate is about 55 mm/year, which is caused by the drawdown of the groundwater
piezometric level. The PS pixels were selected using amplitude dispersion with a threshold
of 0.25, and about 84,753 PSs are selected over the whole area of about 700 km2. Therefore,
the PS density is about 120 PSs/km2. The arc measurements with an MTC less than 0.75
are discarded. The MTC of all available arcs has a mean value as high as 0.925. Therefore,
the deformation rates using PSI are convincible.
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Figure 10. The land deformation estimated using PSI.

Due to the common phenomenon of spatial-temporal decorrelation, it was difficult to
obtain sufficient and effective PSs. To extract information from DSs and increase the spatial
density of the measured points, PTA is performed to reduce the stochastic noise in DSs [15].
Based on the intensity image set and backscattering coefficient, the SHP is firstly selected,
as shown in Figure 11. The selection window size is 11 × 21 and the SHP number threshold
is set to 25. Based on the SHP family, the optimum phase values of DSs in time series are
estimated using the MLE on all interferograms [15]. As shown in Figure 12, compared with
the original phase, the signal-to-noise ratio (SNR) of the optimum phase values has been
greatly improved, which proves the effectiveness of the PTA operation. The quality of the
estimated phase of DSs can be indicated by the temporal coherence γPTA, which can be
used effectively for the final selection of DSs with reliable phase estimation, as shown in
Figure 13. In the traditional PS–DS algorithm (MLE combining PSs and DSs), the threshold
is set to 0.6. However, unlike the traditional PS–DS algorithm, the proposed method
divided the DSs into high-quality DSs and low-quality DSs according to the posterior
coherence factor ρPTA_H = 0.75 and ρPTA_L = 0.6, respectively.

Figure 11. The SHP numbers.
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Figure 12. The original and optimum phase of DSs.

Figure 13. Temporal coherence map γPTA.

Then, the deformation rates were also estimated using the MLE combining PSs and
DSs and the proposed method, as shown in Figures 14 and 15, respectively. It can be seen
that the PS–DS results contain much more detailed information in comparison with the
counterpart outcomes of PSI. Both the MLE combining PSs and DSs and the proposed
method can reflect the depression cone correlated with the groundwater level. However,
in analogy to the simulated experiment, the deformation rates estimated using the MLE
combining PSs and DSs are not consistent with the results estimated using PSI in some PS
pixels, as shown in the bottom row of Figure 14. There are some unexpected variations
from pixel to pixel due to the poor phase quality of DSs and the diffusion of arc errors
in the adjustment network, as shown in the red oval box in Figure 14. Moving on to the
results estimated using the proposed method, the deformation rates are highly consistent
with the results using PSI and the outliers are significantly suppressed by the employment
of prior information derived from the high-quality results using PSI.

55



Remote Sens. 2022, 14, 3471

Figure 14. The land deformation estimated using MLE combining PSs and DSs. (A) Site A, (B) Site B.

 
Figure 15. The land deformation estimated using the proposed method. (A) Site A, (B) Site B.

According to the survey in Refs. [40,41], the spatial distribution of the land deformation
fits with the area affected by the overexploitation of the aquifers. Moreover, there is a strong
positive relationship between the groundwater level drawdown in the wells and the land
subsidence in the time series. When the water level in the well drops by about 10 m,
the surface settlement is about 50 mm [41]. From 1 April 2017 to 22 March 2019, the
groundwater level time series in region B can be monitored by the water level of the well in
region B. The mean deformation rates are calculated in region B of Figures 14 and 15 and
they are 12 mm/year and 25 mm/year, respectively.
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As shown in Figure 16, the red circle is the groundwater level date of the GWP-060
monitoring well [41]. As mentioned earlier, due to the overexploitation of agricultural water,
the groundwater level decreased significantly from May 2017 to January 2019, by up to
about 8 m. According to the relationship between groundwater level and land subsidence,
the land subsidence in the time series can be deduced, as shown by the solid blue line in
Figure 16. The dotted blue line and dashed blue line are the deformation rates estimated
using the MLE combining PSs and DSs and the proposed method, respectively. It is obvious
that the deformation rate estimated using the proposed method is in good agreement with
that of the groundwater level. However, the deformation rate estimated using the MLE
combining PSs and DSs is too small, which is inconsistent with the groundwater level.
The causes of the phenomenon are the poor phase quality of DSs in region B, which is
reflected in the low temporal coherence value in Figure 13 and the error propagation in
the subsequent adjustment network. In contrast, regularized by the spatial deformation
field derived by the high-quality PSs and DSs, the proposed method achieves robust results
even in the low coherence area.

Figure 16. The correlation between the groundwater level and land deformation.

4. Discussion

The results demonstrated the potential of the proposed method for measuring land
deformation velocity in low coherence areas. Especially in rural areas, vegetation cover-
age areas, or deserts, the temporal decorrelation is particularly serious. Even after PTA
processing, the phase quality of a large number of DSs is far inferior to that of PSs, which de-
teriorates the deformation measurement accuracy. The proposed method regularized by the
spatial deformation field has better robustness in low coherence areas, and while ensuring
the measurement accuracy, the number of measurement points can be greatly increased.

The spatial deformation field is derived from PSs and high-quality DSs in the first-level
network. Thus, the proposed method is a model-free implementation and does not require
the surface deformation pattern to be known before starting the data analysis. The land
deformation measurement in the first-level network is crucial, which not only determines
the accuracy of the measurement points in the primary network but also has a direct impact
on the measurement in the secondary network. Therefore, when building the first-level
network, we prefer reliable points. In some areas, there are few reliable points and the
proposed method will also risk failure. It would be a good choice to obtain the information
on the deformation field from other instruments as a priori input.
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For our test site in the UAE, the land deformation presents as a subsidence bowl
caused by the overexploitation of groundwater. This type of land deformation has a strong
spatial correlation and is easier to derive accurately from the first-level network. Therefore,
the proposed method is expected to perform well in strong spatial correlations of land
deformation, such as mining subsidence, landslides, etc.

5. Conclusions

This paper proposes a Bayesian estimation method of land deformation combining
PSs and DSs to solve the contradiction between measurement accuracy and coverage. A
two-level network is introduced into the traditional PSI to deal with PSs and DSs. In the
first-level network, the MLE of the deformation parameters at PSs and high-quality DSs are
obtained accurately. In the secondary-level network, the remaining DSs are connected to the
nearest PSs or high-quality DSs and the deformation parameters are estimated using MAP.
Due to the poor phase quality of the remaining DSs, MAP can achieve better estimation
results than the MLE based on the spatial correlation of the deformation field. The main
advantage of the proposed method lies in its robustness despite the PTA phase estimation
bias and the inconsistent noise levels due to the diffserent decorrelation mechanisms.
Simulation and Sentinel-1A real data results verified the feasibility and reliability of the
proposed method. A total of 31 Sentinel-1A SAR data acquired between 2017 and 2019
were exploited to detect the land deformation at Remah in the United Arab Emirates (UAE)
caused by the overexploitation of the aquifers. The proposed method not only greatly
increased the density of the measuring points, but also ensured measurement accuracy and
contained more detailed information, which reflected the depression cone correlating with
the groundwater level. Even in low coherence areas, the deformation rate estimated using
the proposed method is in good agreement with that of the groundwater level. Moreover,
the proposed method is a model-free implementation and does not require the surface
deformation pattern to be known before starting the data analysis but is affected by the
spatial correlation of land deformation. Therefore, in a strong spatial correlation of land
deformation, such as groundwater-related subsidence, mining subsidence, landslides, etc.,
the proposed method is expected to perform well.
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Abstract: Land subsidence is a common geological hazard. Rapid urban expansion has led to dif-
ferent degrees of ground subsidence within Wuhan in the past few years. The novel coronavirus
outbreak in 2020 has seriously impacted urban construction and people’s lives in Wuhan. Land
subsidence in Wuhan has changed greatly with the resumption of work and production. We used
80 Sentinel-1A Synthetic Aperture Radar (SAR) images covering Wuhan to obtain the land subsi-
dence change information of Wuhan from July 2017 to September 2021 by using the small baseline
subset interferometric SAR technique. Results show that the subsidence in Wuhan is uneven and
concentrated in a few areas, and the maximum subsidence rate reached 57 mm/yr during the study
period. Compared with land deformation before 2017, the land subsidence in Wuhan is more obvious
after 2020. The most severe area of subsidence is located near Qingling in Hongshan District, with
a maximum accumulated subsidence of 90 mm, and obvious subsidence funnels are observed in
Qiaokou, Jiangan, Wuchang and Qingshan Districts. The location of subsidence centers in Wuhan
is associated with building intensity, and most of the subsidence funnels are formed in connection
with urban subway construction and building construction. Carbonate belt and soft ground cover
areas are more likely to lead to karst collapse and land subsidence phenomena. Seasonal changes are
observed in the land subsidence in Wuhan. A large amount of rainfall can replenish groundwater
resources and reduce the rate of land subsidence. The change in water level in the Yangtze River
has a certain impact on the land subsidence along the rivers in Wuhan, but the overall impact is
small. An obvious uplift is observed in Caidian District in the south of Wuhan, and the reason may
be related to the physical and chemical expansion effects of the expansive clay.

Keywords: land subsidence; SBAS-InSAR; Wuhan city; urban construction; land uplift

1. Introduction

Land subsidence is a geological phenomenon of regional ground elevation reduc-
tion caused by natural or human factors [1–3]. With rapid urban expansion and ex-
cessive groundwater extraction, it has become a widespread geohazard in many cities
worldwide [4,5]. Many countries and regions in the world, such as Iran, Italy, Egypt, Spain,
Mexico and Texas, are facing the problem of land subsidence [6–12]. Among them, Jakarta,
the capital of Indonesia, had to move its capital to East Kalimantan Province due to severe
land subsidence [13]. Subsidence can decrease the water storage capacity of underground
aquifers, leading to land collapse, damage to buildings and civil infrastructures, and in-
creased risk of flooding [14–16]. The United Nations has studied and predicted that the
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global land subsidence will affect 1.6 billion residents by 2040 [17]. Therefore, subsidence
in large cities must be monitored.

As the largest developing country in the world, China is experiencing a large-scale
and high-speed urbanization. Land subsidence caused by excessive exploitation of ground-
water and high-intensity urban construction is becoming increasingly exacerbated. For
example, land subsidence has occurred in Beijing, Tianjin, Guangdong, Foshan and other
cities [18–22]. Statistics show that the area where ground subsidence of more than 10 mm/yr
occurs in China is more than 120,000 km2 by the end of 2015, involving 94 prefecture-level
cities and 425 districts and counties [23]. Wuhan is a central city in the central region of
China and is the political, economic and cultural center of Hubei Province. In recent years,
Wuhan is on a speed way of urbanization and rail transit construction. At present, the
permanent resident population of Wuhan has reached 12.33 million, and the operating
mileage of rail transit has reached 409.1 km. Large-scale urban construction and the special
geological structure of Wuhan often lead to land subsidence caused by karst collapse, soft
soil compression and engineering construction [24,25].

The first recorded land surface subsidence in Wuhan occurred in 1931 [26]. With the
increase in human activities and the overexploitation of groundwater, the rate and extent
of subsidence in Wuhan are increasing [27,28]. In particular, the rapid expansion of Wuhan
in recent years has led to the emergence of several subsidence funnels within the city.
Land subsidence can be divided into three types: tectonic subsidence caused by crustal
subsidence movement, pumping subsidence and goaf subsidence [29]. The main causes
of ground subsidence in Wuhan are the consolidation of soft soil layers and karst ground
collapse caused by groundwater overdraft and urban construction [30,31]. Monitoring land
subsidence in Wuhan mainly depends on about 300 benchmark points distributed in the
city but lacks long-term effective land subsidence monitoring [32]. Although traditional
measurement techniques (e.g., level survey and global navigation satellite system) have
high measurement accuracy and sensitivity, performing subsidence monitoring on a large
scale is difficult [33,34]. Interferometric Synthetic Aperture Radar (InSAR) technology can
compensate for the shortcomings of traditional deformation monitoring methods [35,36].
Specifically, the time series InSAR technology overcomes the problems of temporal and
spatial decorrelation and atmospheric effect [37,38] and greatly improves the measurement
accuracy. This method has been widely used in the fields of land subsidence and landslide
monitoring [39–42]. The often-used time series InSAR techniques include Persistent Scat-
terer InSAR (PS-InSAR), Small Baseline Subset InSAR (SBAS-InSAR) and Multi-Temporal
InSAR (MT-InSAR) [43–45].

Bai et al. [46] first monitored the Wuhan urban area using high-resolution TerraSAR-X
data and found that the land deformation rate in Wuhan ranges from −64 to 18 mm/yr
between 2009 and 2010, with Hankou being the largest subsidence area, and urban construc-
tion and karst geology being the major causative factors of subsidence. Costantini et al. [47]
used COSMO-SkyMed SAR data to obtain the land deformation rates in Hankou from
2013 to 2014 ranging from −80 to 40 mm/yr. Urban construction in Wuhan accelerated
after 2015, and approximately 10,000 sites were under construction, leading to serious land
subsidence and collapse in the city [48–51]. Zhou et al. found land subsidence was the
most severe in the Houhu area between 2015 and 2016, with a maximum subsidence rate of
more than 80 mm/yr [49]. Zhang et al. found that subsidence had occurred in Hankou,
Wuchang, Hanyang, Qingshan Industrial Park and Baishazhou between 2015 and 2018 [51].

In this study, we used the SBAS-InSAR technique to obtain the surface deformation
of Wuhan between July 2017 and September 2021. Here, we discussed the relationship
between land subsidence and rainfall, the total amount of groundwater and the change in
river level, which can provide a reference for the prevention of land subsidence disasters
in Wuhan.
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2. Study Area and Datasets

2.1. Study Area

Wuhan is located in the eastern part of Hubei Province (South East China) and it
covers an area of 8494.41 km2. It is situated at the intersection of hills, mountains and
the Han River Plain, as shown in Figure 1a. The overall topography is high in the south
and low in the north, with a remnant mounded impact plain in the middle. Wuhan has
a maximum West–East directional distance of 134 km from east to west and a maximum
North–South directional distance of about 155 km (at latitude 29◦58′N to 31◦22′N and
longitude 113◦41′E to 115◦05′E) with altitudes ranging from 19.2 m to 873.7 m. Wuhan
has a north subtropical monsoonal (humid) climate with rainfall concentrated between
June and August each year, and is characterized by rain and heat in the same season and
four distinctive seasons [52,53]. Many rivers and lakes form in the city, where the Yangtze
River and Han River form a huge water network. The total water area reaches 2217.6 km2,
accounting for about 26.1% of the city’s total area.

  
(a) (b) 

Figure 1. (a) Geographical location of Wuhan. The orange rectangle illustrates the coverage of
Sentinel-1A, and the red rectangle is the study area. (b) Optical satellite image of Wuhan, where
green triangles indicate level benchmarks.

Wuhan has several belts of occult carbonates, consisting of the “Lower Carbonate
Group” with a total thickness of more than 200 m deposited in the middle of the Late
Paleozoic and the “Upper Carbonate Group” represented by marl, thin-bedded tuff, thick-
bedded tuff and thick-bedded dolomite deposited in the Early Triassic. The Indochinese
movement at the end of the Middle Triassic forged the basic outline of the carbonate
stratigraphy in Wuhan [54]. As shown in Figure 2, the carbonate rock group is distributed
in a plane from north to south, forming a total of six carbonate belts (L1–L6). Wuhan is
located at the intersection of the Yangtze River and the Han River [30]. The soft soil is
mainly silty soil and silt, and it has a large distribution in the sections along the rivers and
around the lakes in Hankou, Wuchang, Hannan, Xinzhou and Jiangxia, with a maximum
thickness of 37 m and a minimum thickness of 0.1 m. The soft soil with low strength and
high compressibility covers most areas of the city and is easy to cause foundation settlement
and other adverse geological problems [28]. The complex geological structure often leads
to disaster events, such as sinkholes, uneven foundation settlements and landslides, in
Wuhan [26,30].
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Figure 2. Geological structure map of Wuhan. Carbonate belts (L1–L6) are the Tianxingzhou karst
belt, Bridge karst belt, Baishazhou karst belt, Zhuankou karst belt, Junshan karst belt and Hannan
karst belt, respectively.

2.2. Datasets

We employ 80 ascending Sentinel-1A single-look complex images acquired from
July 2017 to September 2021. These images cover the entire area of Wuhan, with a 1-month
interval for image acquisition between July 2017 and December 2019 and a 12-day interval
for images between January 2020 and September 2021. The information of Sentinel-1A
images is shown in Table 1. We used the Shuttle Radar Topography Mission (SRTM)
30 m Digital Elevation Model by the National Aeronautics and Space Administration to
remove topographic phases, and precise orbit ephemerides provided by the European
Space Agency to eliminate orbital errors.

Table 1. Specific parameters of Sentinel-1A data.

Parameter Value Parameter Value

Product type Sentinel-1A Incidence angle 39◦
Wavelength C-band Path 113

Flight direction Ascending Resolution 2.7 m × 22 m
Polarization VH Number of images 80

Beam mode IW Time range 17 July 2017–
30 September 2021

We collected some data related to ground subsidence in Wuhan. Wuhan Metro infor-
mation is obtained from Wuhan Metro Group Co., Ltd., Wuhan, China. The distribution
map of soft soil and carbonate rocks is acquired from Hubei Geological Bureau. Rain-
fall and groundwater data are obtained from the Wuhan Water Resources Bulletin. The
water level information comes from the Water Resources Department of Hubei Province
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(https://slt.hubei.gov.cn, accessed on 29 December 2021). To more intuitively analyze the
urban changes in Wuhan, we used Google Earth historical optical images.

3. Methods

3.1. SBAS-InSAR Technique

SBAS-InSAR technology combines the data into several sets in accordance with the
distribution of SAR image sequences in temporal and spatial baselines. Within the set, the
interferometric image is smaller for the spatial baseline, and the interferometric image is
larger for the spatial baseline between the sets, resulting in a small baseline interferogram.
On the basis of the minimum norm criterion of deformation rate, the deformation rate
and its time series of the coherent target are obtained by using the least square method or
Singular Value Decomposition (SVD) [44].

If the target feature has N + 1 SAR images, then time to acquire the image is t0 ∼ tN .
Images from the same area at different times can interfere with each other, and two images
can be found in at least one subset. One of the images is selected as the master image, and
the remaining images are registered with it. N view images can generate M multi-view
differential interferograms, and M satisfies the following inequality [48]:

N + 1
2

≤ m ≤ N
(

N + 1
2

)
(1)

The differential interferogram j is generated by interfering the SAR image maps at
time tA and time tB (tB > tA). The extracted high coherence points are phase unwrapped
after removing the flat-earth and topographic phase, and the phase of the differential
interferogram at pixel coordinates (x, r) can be expressed as:

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r)

≈ 4π
λ [d(tB, x, r)− d(tA, x, r)] + Δφ

j
topo(x, r) + Δφ

j
APS(tB, tA, x, r)

+Δφ
j
noise(x, r)

(2)

where φ(tA, x, r) and φ(tB, x, r) represent the phase values of SAR images at tA and tB,
respectively, d(tB, x, r) and d(tA, x, r) are the cumulative form variables in the Line of Sight
(LOS) direction relative to d(t0, x, r) at moments tB and tA. Δφ

j
topo(x, r) denotes the residual

phase of the differential interferogram. Δφ
j
APS(tB, tA, x, r) is the phase error caused by

atmospheric delay. Δφ
j
noise(x, r) denotes random noise phases.

When the effect of error is ignored, Equation (2) can be simplified as:

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r) ≈ 4π

λ
[d(tB, x, r)− d(tA, x, r)] (3)

The phase in Equation (3) is expressed as the product of the average phase rate
and time between the two acquisition times to obtain the settlement time series with
physical meaning:

νj =
φj − φj−1

tj − tj−1
(4)

The phase value of the interferogram j can be written as:

tB ,j

∑
k=tA ,j+1

(tk − tk−1)νk = δφj (5)
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This equation indicates that the integration of the rate of each time period over the
master and slave image time intervals is expressed in matrix form as:

Bν = δφ (6)

Rank deficiency is likely to occur because the SBAS-InSAR technique uses multiple
master image spatio-temporal baselines to obtain differential interference. The generalized
inverse matrix of matrix B can be obtained by using SVD to acquire the minimum norm
solution of rate vector. The rate in each time period is integrated to obtain the amount of
surface settlement in each time period.

3.2. SBAS-InSAR Data Processing

The main processing flow of SBAS-InSAR method is shown in Figure 3, which mainly
includes the steps of generating small baseline subsets, interferogram formation and phase
unwrapping, refinement and reflattening, and generation time series results. To more
intuitively compare the changes in subsidence in Wuhan before and after the COVID-19,
this study divides the data into two time periods (July 2017 to June 2020 and January 2020 to
September 2021). The two time periods have half year data overlap to ensure the continuity
of settlement results [49].

(1) Generating connection pairs: we selected the images of 13 January 2018 and 18 August 2020
as the master images and realigned the other images with the master images to avoid
the effect of temporal and spatial decorrelation factors. For the first time period, the
time threshold is 180 days, and the spatial baseline threshold is 45%. In the second
time period, the time threshold is 60 days, and the critical value of spatial baseline
is 45%.

(2) Interferogram formation and phase unwrapping: interference processing is per-
formed on all interferometric pairs to generate differential interferograms, remove
the flat-earth and topographic phase, perform phase unwrapping and generate
phase diagram.

(3) Refinement and reflattening: this process mainly aims to estimate and remove the
residual phases and ramp phase that still exists after phase unwrapping.

(4) Generation of time series results: the phase after unwrapping is calculated by using
SVD, and the atmospheric phase and other errors are removed by two inversions to
obtain the accurate displacement results on the time series. The final deformation
value in the LOS direction is obtained by geocoding.

Figure 3. SBAS flow chart.
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4. Results

4.1. Temporal and Spatial Distribution Characteristics of Land Subsidence in Wuhan

Figures 4 and 5 show the land subsidence rates in the LOS direction in Wuhan for the
two time periods, respectively. Positive values in the graph indicate land uplift, whereas
negative values indicate land subsidence. We extracted 2,851,137 PS points in the study area
using SBAS InSAR technique from July 2017 to June 2020 (Figure 4), and the deformation
rate in the main urban area of Wuhan ranged from −46.2 mm/yr to 24.6 mm/yr during
the study period, with an average subsidence rate of 0.3 mm/yr. Four subsidence areas are
found Qiaokou, Jiang’an, Qingshan and Hongshan Districts. The subsidence in Qingshan
District is relatively serious, which may be related to the presence of a large number of
industrial parks in the area, such as Wuhan Iron and Steel (Group) Company and Wuhan
Petrochemical Plant.

Figure 4. Land subsidence rate in the LOS direction in Wuhan from July 2017 to June 2020. The gray
rectangles are the major areas of subsidence. JA, QK, QS and HS are the abbreviations of Jiangan,
Qiaokou, Qingshan and Hongshan, respectively.

A total of 4,375,472 PS points were acquired from January 2020 to September 2021
(Figure 5), and the deformation rate varies from −57.1 mm/yr to 33.1 mm/yr with an
average of −2.2 mm/yr. The subsidence in Wuhan has a high tendency to further expand
after 2020. Five obvious subsidence areas are found in the main urban area: Jiangan,
Qiaokou, Qingshan, Wuchang and Hongshan Districts. Compared with previous results,
Qingshan District has a large-scale settlement phenomenon, and the settlement center is
located in the Wuhan Iron and Steel (Group) Company (WISCO) ironmaking plant. The
subsidence near Qingling in Hongshan District is the most serious, and the land subsidence
rate in some areas exceeds 50 mm/yr under the influence of urban and subway construction.
The overall subsidence range in Wuhan is small, and the deformation rate in most areas
is between −5 mm/yr and 7 mm/yr. Land subsidence in Wuhan is concentrated in a few
areas. Interestingly, uplift has been occurring in parts of Caidian District in the southern
part of Wuhan.
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Figure 5. Land subsidence rate in the LOS direction in Wuhan from January 2020 to September 2021.
The gray rectangles indicate the major area of subsidence. JA, QK, QS, WC and HS are the abbrevia-
tions of Jiangan, Qiaokou, Qingshan, Wuchang and Hongshan, respectively.

To explore the temporal evolution of land subsidence in Wuhan, we used the image
acquired on 3 January 2020, as the reference image for the time series and calculated the
time series of cumulative subsidence in Wuhan from 3 January 2020 to 30 September 2021.
The results are shown in Figure 6. The distribution of cumulative settlement is consistent
with the distribution of subsidence rate, which is relatively stable in most areas of Wuhan
city, with cumulative settlement mostly between −5 and 10 mm. The maximum subsidence
in Wuhan during the study period is 104 mm, located near Qingling, Hongshan District.
The settlement in the main subsidence zone gradually increases with time, and the area of
the subsidence funnel gradually expands. Land subsidence in Wuhan can be significantly
nonlinear with seasonal changes. The area of subsidence increases rapidly between March
and June during the same year. However, the change in subsidence is smaller between
June and September, and a slowing trend is observed in land subsidence. Land subsidence
may be influenced by rainfall. Wuhan has a considerable amount of rainfall from June to
August, and a large amount of rainfall can effectively recharge groundwater, which may
alleviate the land subsidence.

To check the accuracy of the Wuhan land subsidence results obtained by SBAS-InSAR
technique, we evaluated the error of the average deformation rate in two time periods.
The Root Mean Square Error (RMSE) is obtained by calculating the deviation of rate linear
fitting. The probability density function of the RMSE of subsidence rate in the two time
periods is shown in Figure 7a,b, and the average value of RMSE is 2.5 and 2.6 mm/yr,
respectively. The RMSE of 97% PS points in the study area is less than 5 mm/yr, which has
high accuracy for InSAR time series results.
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Figure 6. Time series of cumulative settlement from 3 January 2020 to 30 September 2021. The image
obtained on 3 January 2020 is the reference image.

 
(a) (b) 

Figure 7. (a) RMSE of subsidence results from 17 July 2017 to 19 June 2020; (b) RMSE of subsidence
results from 3 January 2020 to 30 September 2021.

4.2. Subsidence Changes before and after the COVID-19 in Wuhan

The changes in the main subsidence areas in Wuhan are shown in Figure 8. Five major
areas of subsidence are found in Wuhan between June 2017 and September 2021, with
the degree and extent of subsidence increasing in each area over time. The subsidence
area in Jiangan District (JA) transfers from north to south, and the subsidence is mainly
concentrated near Hankou Railway Station with the maximum subsidence rate around
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30 mm/yr. The subsidence in Qiaokou (QK) District gradually transfers westward with
time, and the subsidence along the Han River is more serious. A severe subsidence funnel
occurred near Heping Avenue in Qingshan District (QS) between 2017 and 2020, and
the subsidence of this funnel decreased after 2020. However, a widespread subsidence
phenomenon occurred in the central part of Qingshan District (QS) compared with the
previous period, with the deformation rate ranging from −40 mm/yr to −20 mm/yr. The
Wuchang District experienced a subsidence after 2020, with severe subsidence occurring
in areas close to the Yangtze River. The subsidence in Hongshan (HS) District is the most
severe. Many areas have severe subsidence, and they are becoming contiguous.

 

Figure 8. Changes in major subsidence areas in Wuhan from 17 June 2017 to 30 September 2021. The
red rectangles are the five detected subsidence areas. Time 1 indicates June 2017 to June 2020, and time
2 denotes January 2020 to September 2021. JA, QK, QS, WC and HS are the abbreviations of Jiangan,
Qiaokou, Qingshan, Wuchang, and Hongshan, respectively. The black triangle in (a) indicates the
location of Hankou Railway Station, and the black triangle in (b) indicates the location of Heping
Avenue. (a–e) indicate the sudsidence changes in Jiangan, Qiaokou, Qingshan, Wuchang and
Hongshan, respectively.

We conducted a statistical analysis of the subsidence rate in Wuhan to analyze the
subsidence changes in recent years. We calculated the percentage of PS points in different
deformation rate ranges when performing the comparative analysis due to the large differ-
ence in the number of PS points in the two results. The results are shown in Figure 9a. The
percentage of the PS points after the COVID-19 is higher than that before the COVID-19 in
each range of deformation rate. A large change is observed in the number of PS points in
the deformation rate ranging from −15 mm/yr to −5 mm/yr, and the percentage increases
from 6.86 to 33.21%, which indicates a large-scale subsidence phenomenon in Wuhan after
2020. The number of PS points within the deformation rate ranging from −25 mm/yr
to 15 mm/yr increases significantly, indicating that the subsidence situation in Wuhan
is aggravated.

Figure 9b,c show the changes in the maximum and average deformation rates for
the five major subsidence areas in Wuhan, respectively. The average deformation rate
of Qingshan and Hongshan Districts changes the most due to a large-scale subsidence
phenomenon in Qingshan District, and the subsidence phenomenon in Hongshan District
is intensified. The maximum subsidence rate of each area exceeds 20 mm/yr between
June 2017 and September 2021. After 2020, the deformation rate increases in all regions,
with the maximum subsidence rate in Hongshan District exceeding 50 mm/yr.
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Figure 9. (a) Percentage of different deformation rate intervals; (b) changes in the maximum de-
formation rate of the major subsidence areas; (c) changes in the average deformation rate of the
major subsidence areas. Time 1 denotes June 2017 to June 2020, and time 2 indicates January 2020 to
September 2021.

In this study, we obtained the land subsidence results of Wuhan city in the last 4 years
from 2017 to 2021. We summarized the results of previous studies on land subsidence
monitoring in Wuhan to study the early subsidence, as shown in Table 2. The early
subsidence funnels in Wuhan are distributed in Hankou, Qingshan, Wuchang and near
Baishazhou, and the most obvious subsiding area is located in Houhu [46,47]. Historically,
Houhu is a lake beach, and the lower cushion is composed of silt with a thickness of 10 m
to 30 m. Urban development, especially the continuous construction of super high-rise
buildings, has caused great pressure on the soft soil foundation. Previous studies showed
that the Houhu area experienced severe subsidence between 2013 and 2016, with the
maximum subsidence rate exceeding 80 mm/yr [48]. Qingshan District is the industrial
center of Wuhan. A large amount of groundwater has been extracted because of industrial
activities, resulting in land subsidence in the Qingshan District. In summary, the subsidence
in Wuhan has been alleviated since 2017. The subsidence in the Houhu area has mitigated
significantly, and the subsidence in other areas has also been alleviated [49]. However, the
subsidence phenomenon in Wuhan intensified after 2020, with several areas experiencing
subsidence [51].
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Table 2. Summary of the previous studies of land subsidence in Wuhan.

Study Method Dataset Deformation Rate Main Subsidence Area

Bai et al.
(2016) [46] PS-InSAR 12 TerraSAR images

(October 2009–August 2010) −67 to 17.5 mm/yr The largest subsidence area in
Wuhan is located in Hankou

Costantini et al.
(2016) [47]

PSP-InSAR
approach

45 Cosmo-SkyMed
images

(June 2013–June 2014)
−80 to 40 mm/yr Most areas of Hankou

Zhou et al. (2017) [48] SBAS-InSAR 15 Sentinel-1 images
(Aprirl 2015–April 2016) −82 to 18 mm/yr Houhu, Wuchang,

Hanyang, Qingshan

Zhang et al.
(2019) [49] SBAS-InSAR 20 Radarsat-2 images

(October 2015–June 2018) −52 to 28 mm/yr Houhu, Qingshan Industrial
Park, Baishazhou

Shi et al.
(2021) [51] SBAS-InSAR 113 Sentinel-1 Images

(April 2015–September 2019) −30 to 30 mm/yr Qingshan, Houhu,
Dongxihu, Qingling

5. Discussion

Many factors are associated with the subsidence of Wuhan. Next, we will discuss the
causes of land subsidence in Wuhan in terms of subway construction, urban infrastructure
construction, hydrogeology, groundwater and rainfall, and river level changes. We will
also briefly analyze the ground uplift phenomenon in Caidian District.

5.1. Subway Construction

Subways can effectively alleviate the pressure of urban ground traffic and improve
commuting efficiency. However, subway tunneling can affect the surrounding soil during
subway construction and cause ground deformation. In the area of dense buildings,
subway tunneling can even lead to foundation deformation, affecting the safety of subway
construction and ground buildings. Wuhan started to build subways as early as 2000. The
total number of subway operating mileage in Wuhan reached 435 km with 14 subway lines
by the end of 2021. The distribution of subway is shown in Figure 10a. To investigate
the relationship between subway construction and land subsidence, we extracted the
land subsidence within 500 m on two sides of the subway (Figure 10b). We counted the
information of subway lines under construction in Wuhan during the study period, as
shown in Table 3. The findings indicate that the land subsidence along Metro Line 5 is
relatively severe, with the subsidence rate exceeding 35 mm/yr in some areas, and some
sections of Metro Lines 6 and 12 have experienced subsidence exceeding 20 mm/yr. Two
typical subsidence areas are located near Qingling Station in Hongshan District (HS) and
Shiqiao Station in Jiangan District (JA).

The subsidence in the area near Qingling Station is shown in Figure 11a, with several
subsiding areas along the elevated bridge section of Metro Line 5. The construction of
Wuhan Metro Line 5 is difficult due to the access to the Qingling River, the elevated Third
Ring Road and the karst area. A part of the line passes through the main traffic road in
Baishazhou, and the surrounding communities are dense, so subsidence is extremely easy to
occur during construction. Wuhan Metro Line 5 returned to construction on 24 March 2020.
As a transit station for Metro Lines 5 and 12, Qingling Station has a large land subsidence.
In this study, we conducted a profile analysis along the Qingling Station of Line 5 (black
dashed line AA’ in the figure). Figure 11b,c indicate the profile deformation rate and
cumulative settlement, respectively. The subsidence fluctuation shows an “M” shape, with
large fluctuations and rapid changes in the deformation rate from 0 m to 250 m and from
850 m to 1500 m. The subsidence rate at Baisha Five Road Station and Qingling Station
exceeded 35 mm/yr, with the maximum settlement reaching 70 mm, and other areas were
relatively stable.
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(a) (b) 

Figure 10. (a) Distribution of major metro lines in Wuhan; (b) land subsidence within 500 m on two
sides of Wuhan subway. The red rectangle indicates the typical subsidence areas. JA and HS are the
abbreviations of Jiangan and Hongshan, respectively. The red box in (a) indicates the range of optical
satellite images.

Table 3. Information of Wuhan Metro under construction during the study period.

Name Starting Point End Point Mileage Construction Time

Metro Line 5 Hubei University of
Chinese Medicine Station

East Square of Wuhan
Railway Station 32.5 km 3 December 2015–10 December 2021

Metro Line 6 Jinyinhu Station Xincheng 11th Road Station 7 km 28 July 2017–19 March 2021

Metro Line 12 Qingling Station Qingling Station 59.876 km 18 December 2017–2024

Metro Line 16 South International Expo
Center Station Zhoujiahe Station 33.1 km December 2018–September 2021

Metro Line 19 Wuhan Railway Station Gaoxin 2nd Road Station 23.3 km 19 February 2019–2023

Figure 11. (a) Land subsidence along Qingling Station; (b) Deformation rate on profile AA’;
(c) Cumulative settlement on profile AA’. The black dashed line AA’ is the profile position. The
red boxes in (b,c) represent the subsidence intervals.
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Shiqiao Station is also a typical area, and the subsidence is shown in Figure 12a.
Two subsidence areas (S1 and S2) are found at the intersection of Metro Lines 6 and 12.
Combined with the Google satellite optical images of the area, S1 is located in a residential
neighborhood, and S2 is a vacant land. Residential buildings were being constructed in the
S1 area during the study period. The simultaneous construction of subway and building
leads to the subsidence of nearby ground. A 3D land subsidence model of S1 is shown in
Figure 12c. The cumulative settlement in the study period reached 30 mm. We plotted the
deformation rate and cumulative settlement profiles along BB’. The results are shown in
Figure 12d,e. In a word, the subsidence fluctuation shows a “W” shape, with two obvious
subsiding areas. The maximum settlement is located at S2, with a cumulative settlement of
approximately 60 mm.

Figure 12. (a) Land subsidence around Shiqiao Station; (b) Google satellite optical images of the
region; (c) three-dimensional land subsidence model of S1; (d) Deformation rate on profile BB’;
(e) Cumulative settlement on profile BB’. The black dashed line BB’ is the profile position. The white
boxes in (b) indicates the location of the subsidence funnel. The red boxes in (d,e) represent the
subsidence intervals.

5.2. Infrastructure Construction

Urban construction is also an important cause of land subsidence. As the central city
of central China, Wuhan has made great development in urban infrastructure construction
in recent years, starting from the construction of tall buildings, city ring road, rail transit,
sponge city and other projects. Various construction projects in Wuhan resumed one after
another after April 2020. Groundwater needs to be pumped during the excavation of the
foundation pit before the construction of the building, and the construction of the building
will increase the ground load, all of which may cause subsidence. Figure 13 shows the
urban surface changes in four obvious subsidence areas in Wuhan during the study period.
To further investigate the settlement trend in the surrounding area during the construction
of the building, we selected some reference points in the center of the settlement area to
draw the cumulative settlement curve. The results are shown in Figure 14.
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Figure 13. Urban surface changes in four obvious subsidence areas in Wuhan. The white boxes are
the construction area. Black dots indicate the locations of the PS points.

Figure 13a shows an industrial park in Qiaokou District. The subsidence began to
appear with the excavation of the foundation pit in September 2020, and the subsidence de-
creased after the construction of the foundation pit was completed in April 2021. Figure 13b
shows a construction site located near Yangsigang Yangtze River Bridge in Baishazhou,
where the construction of residential buildings was ongoing at the center of settlement
during the study period. Figure 14b shows that subsidence continues until May 2021,
with cumulative subsidence reaching about 50 mm. The rapid construction of high-rise
buildings increases the ground load, which leads to the compression of soft soil layers and
causes land subsidence.

In addition to a single building, multiple buildings are constructed in reality, which
will cause regional large-scale subsidence. The subsidence in Hongshan District is shown
in Figure 13c. Many office and residential buildings have been built near Qingling in
Hongshan District in the past few years, and the area is close to Metro Lines 5 and 12 under
construction. The simultaneous construction of the above ground part and the underground
part has resulted in multiple subsidence funnels in this area. The optical image shows
that the subsidence center is located at the people’s Hospital of Wuhan University in
Hongshan District under construction, and the maximum settlement exceeds 80 mm.
Bridge construction can also cause land subsidence. Figure 13d shows a transportation hub
under construction on the fourth ring road in Qingshan District. During the construction
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of the bridge, significant land subsidence occurred in the surrounding area from June 2020.
The overpass has been completed, and the cumulative settlement has reached 40 mm until
September 2021. The spatial distribution of land subsidence in Wuhan is affected by urban
construction to a certain extent.

 
Figure 14. (a) Cumulative settlement curve of subsidence areas in Qiaokou District; (b) Cumulative
settlement curve of subsidence areas in Baisahzhou; (c) Cumulative settlement curve of subsidence
areas in Hongshan District; (d) Cumulative settlement curve of subsidence areas in qingshan District.
Lines of different colors indicate the change in the subsidence of PS points.

5.3. Influence of Hydrogeology on Land Subsidence

Wuhan has complex geological conditions, carbonate rocks and soft soils are widely
distributed, and special soils, such as artificial fill layers and old clay, are found. Figure 15a
illustrates the spatial relationship between land subsidence and carbonate rock and soft
soil. Most of the subsidence areas are located on carbonate rock and soft soil layer. For
example, HH and QS are located on soft soil layer, and HS is located in carbonate rock
belt and soft soil superposition area. Soft soils have high water content and low bearing
capacity, and construction in areas with thick layers of soft soils can easily cause subsidence.
Excessive groundwater extraction in large-scale urban construction can lead to a significant
drop in the water level of fractured karst. The rapid change in karst groundwater dynamics
gradually destroys the soil structure and forms soil cavities, leading to karst collapse of the
ground. The special geological conditions of Wuhan make the city highly susceptible to
geological hazards. We counted some of the locations of subsidence and ground collapse
hazards recorded in Wuhan city, as shown in Figure 15b. Since 1977, about 30 karst collapse
events have occurred in the Baishazhou carbonate belt in Hongshan District, and several
subsidence disasters have occurred in the Houhu and Wuchang areas. However, the subsi-
dence is only concentrated in a small part of the area, most of the areas located in carbonate
rock or soft soil areas have relatively stable ground surface, and the land subsidence is
insignificant. Areas located in carbonate rocks or soft soils do not necessarily experience
land subsidence but are more likely to experience subsidence. Therefore, hydrogeology is
not a decisive factor in the formation of subsidence.
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(a) (b) 

Figure 15. (a) Spatial relationship between land subsidence and carbonate rocks and soft soils in
Wuhan; (b) location of subsidence and ground collapse disaster sites in Wuhan. The red ellipse in
(a) indicates the subsidence area. HH, QS and HS are the abbreviations of Houhu, Qingshan, and
Hongshan, respectively. The red rectangle in (a) indicates the range of optical satellite images.

5.4. Impact of Groundwater and Rainfall on Land Subsidence

An important factor in ground subsidence is the excessive extraction of groundwater.
Figure 16a shows the changes in total water resources and average annual rainfall in
Wuhan between 2015 and 2020. After 2016, the annual rainfall and the total amount of
water resources in Wuhan decrease, and this situation is not improved until 2020. The
proportional distribution of water consumption in Wuhan in 2020 is shown in Figure 16b,
with industry and agriculture accounting for the largest share of water consumption.
Qingshan District is a heavy industrial area and an important national steel production
and chemical base. Many large industrial parks are located in this area as shown in
Figure 16c. The groundwater in Qingshan District is mainly pore pressurized water
in the loose accumulation layer, which is distributed in a band. One possible cause of
the widespread ground subsidence phenomenon in the Qingshan district is the over
exploitation of groundwater in industrial production.

To analyze the relationship between rainfall and land subsidence, we selected 15 reference
points in different areas of Wuhan and compared the cumulative ground subsidence at
the reference points with the monthly rainfall during the study period. The results are
shown in Figure 16d. Rainfall in Wuhan is concentrated from May to September each
year, with less rainfall in other months. The trend of ground deformation in Wuhan is
associated with the rainfall in a certain time range. A large increase in rainfall is observed
in Wuhan between May and September 2020, after which the deformation rate decreases
in all subsiding areas, with some areas of slight ground uplift. After September, rainfall
decreases significantly, and the rate of ground subsidence begins to increase. The results
indicate a link between the magnitude of rainfall and land subsidence. In the time range of
large rainfall, the land subsidence decreases, showing that a large amount of rainfall can
effectively recharge groundwater resources and reduce the rate of surface subsidence.

77



Remote Sens. 2022, 14, 3142

 
Figure 16. (a) Changes in total water resources and average annual rainfall in Wuhan between 2015
and 2020; (b) proportional distribution of water consumption in Wuhan in 2020; (c) distribution of
industrial parks in Qingshan District; (d) comparison between cumulative subsidence and monthly
rainfall in Wuhan. The red arrow indicates the change trend of subsidence.

5.5. Relationship between River Water Level Change and Land Subsidence

Wuhan is known as the “City of a Hundred Lakes”, where the Yangtze River and
Han River meet and form a water network together with many lakes. The total water
area is 2117.6 km2. The change in river water level is easy to lead to flood disaster, which
affects the urban construction and people’s normal lives in Wuhan. In 2020, Wuhan
flood precipitation accounted for 75.8% of the annual precipitation. The Yangtze River
passed through five flood peaks, and the water level of Hankou station was up to 28.77 m.
Changes in water levels bring disasters and affect the ground stability along the rivers in
Wuhan. The subsidence along the Han River in Qiaokou District (Figure 17b) and along
the Yangtze River Road in Wuchang District (Figure 17c) may be related to water level
changes. Several carbonate belts in Wuhan cross the Yangtze River, and the underground
aquifers are connected to the Yangtze River. The change in water level leads to groundwater
infiltration into the carbonate rock, which erodes and dissolves the carbonate rock causing
more ground subsidence or collapse.

We selected two observation stations located in the Hankou area of the Yangtze River
and the Hanchuan area of the Han River, respectively, and recorded the changes in water
level at the stations during the study period. The locations of the stations are shown in
Figure 17a. The water level changes at the two stations are the same, and the water level
changes considerably during the flood season. Figure 17d,e show the relationship between
water level values and land subsidence at the two observation stations of Yangtze and Han
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Rivers, respectively. The peaks presented in water level changes and subsidence changes
have some similarity, but the peaks in the cumulative deformation time series appear later
than the water level changes. The subsidence decreases with the increase in the water
level of the Yangtze River from May 2020, and the cumulative subsidence increases with
the decrease in the water level of the Yangtze River after September 2020. The subsidence
in areas farther away from the Han River is less influenced by the water level, and the
correlation between the subsidence trend and the water level change is small. The closer
to the water surface, the more similar the cumulative deformation curve is to the water
level. There may be a link between land subsidence and water level changes on two sides
of the Yangtze River. However, the seasonal variation of subsidence time series cannot be
studied in detail due to insufficient data and short study period. More data will be used
in future studies to further determine the correlation between land subsidence and water
level changes.

 
Figure 17. (a) Location of observation station; (b) subsidence along Changjiang Road in Wuchang
District; (c) subsidence along the Han River in Qiaokou District; (d) comparison of water level and
land subsidence in the Yangtze River; (e) comparison of water level and land subsidence in the Han
River. P1 and P2 indicate the location of the observation point. The red boxes indicate the ranges of
(b) and (c), respectively. Black dots indicate reference point locations.
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5.6. Ground Uplift in Wuhan

In the result map of InSAR, the subsidence information of the ground surface can
be extracted and the uplift information can be found. Although the main deformation
of Wuhan is subsidence, it has significant uplift. As shown in Figure 18a, the uplift
phenomenon is mainly concentrated in Caidian District in the south of Wuhan, with uplift
rates ranging from 10 mm/yr to 20 mm/yr, and uplift exists in the downtown area. Dozens
of lakes are located in Caidian District (Figure 18b), groundwater is abundant, and urban
construction activities are low, so subsidence rarely occurs. Silty clay, muddy silty clay and
old clay are widely distributed in Wuhan. The old clay is rich in expansive clay minerals,
such as montmorillonite and illite. They produce physical and chemical swelling effects
when they encounter water, resulting in volume expansion. Geological tectonics, flood
deposition of the Yangtze River, and artificial filled soil are factors affecting the ground
uplift in Wuhan [50]. At present, no clear explanation is provided for the phenomenon of
ground lifting in Wuhan, and further research is still needed.

Figure 18. (a) Ground uplift in Wuhan city; (b) location distribution of major lakes in Caidian District.
The green dots indicate lakes. The red box indicates the range of optical satellite images.

6. Conclusions

In this paper, we used 80 Sentinel-1A (SAR) images covering Wuhan to obtain the land
subsidence information of Wuhan from July 2017 to September 2021 with the SBAS-InSAR
technique. In accordance with the temporal and spatial distribution characteristics of land
subsidence in Wuhan, we explored the causes of land subsidence in Wuhan in combination
with subway association, infrastructure construction, hydrogeology, groundwater and
rainfall, and changes in river water level. We briefly discussed the phenomenon of ground
uplift in Caidian District.

The results show that the land subsidence in Wuhan is not uniformly distributed, with
a maximum subsidence rate of 57.08 mm/yr. The subsidence funnel is distributed in the
area covered by a soft soil layer and carbonate rock belt. Compared with that before 2017,
the subsidence of Houhu area in Wuhan is obviously smaller. In contrast, the subsidence
in other areas is severe. At present, the major subsidence areas in Wuhan are Jiangan,
Qiaokou, Qingshan, Wuchang and Hongshan Districts. The subsidence near Qingling is
the most serious, with a maximum cumulative deformation of 90 mm. The subsidence
extend in this area is expanding, and multiple subsidence funnels tend to be connected.

Urban development and engineering construction are the major factors causing land
subsidence in Wuhan. The construction of large buildings and subways increases the
ground load, disturbs the surrounding soil and affects the ground stability, resulting in
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subsidence. Special geological formations are an important factor in land subsidence in
Wuhan. Carbonate rock belts and large areas of soft soils make Wuhan more prone to
geological problems such as karst ground collapse and uneven foundation subsidence. The
amount of rainfall affects the total amount of water resources and changes in the water level
of the Yangtze River. A large amount of rainfall in flood season can recharge groundwater
resources and reduce the rate of land subsidence. The change in river water level has a
certain impact on the land subsidence along the river in Wuhan, but the impact is small.

An obvious uplift is observed in Caidian District, and the reason for the uplift may be
related to the physical expansion and chemical expansion effects of the old clay. At present,
the type and accuracy of radar data continue to improve with the launch of more SAR
satellites, thereby helping to better monitor urban subsidence, identify potential risks and
delve into the mechanisms of subsidence.
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Abstract: Shanghai Lingang New City, located in the southeast corner of Shanghai, was constructed
by land reclamation from 2002 to 2005, in an area where the geological structure is prone to subsidence
over time. Firstly, we explore the spatio-temporal pattern of ground subsidence and its mechanism
using the Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR) technique by
processing 50 scenes of Sentinel-1A images acquired from May 2016 to May 2018. In order to assess the
accuracy of PSInSAR derived deformation, we collect the first-class leveling data at two benchmarks
located in the study area; the comparison between the two settlement indicates that the maximum
difference is 1.93 mm and 2.9 mm, respectively, which validates the PSInSAR’s high accuracy. We
then obtain the skeleton release coefficients by the joint analysis of PSInSAR measurements and
groundwater level data. Finally, we find that this coastal area has undergone both elastic and inelastic
deformation from 2016 to 2018. The outcome shows that the combination of different techniques is
conductive to understand the deformation mechanism of the aquifer system in these coastal areas,
which is expected to be a valuable reference for ground subsidence monitoring and groundwater
extraction management.

Keywords: ground deformation; PSInSAR; leveling; groundwater; Shanghai Lingang New City

1. Introduction

Land reclamation, as an important way to use coastal areas to expand land resources,
has been conducted in many regions such as the Netherlands [1,2], the Hong Kong Inter-
national Airport [3–5], Macau [6], Tianjin [7,8], and Shanghai Lingang New City [9–11],
which is located in the southeast corner of Shanghai, China. Due to the compaction and
consolidation of the soil layer and groundwater extraction, these areas suffer from ground
subsidence, which raises potential risks to urban buildings, bridges, metro lines, and
other infrastructures, even threatening people’s lives. The monitoring of land subsidence,
the estimation of water release coefficient of the aquifer, and the correlation analysis be-
tween land subsidence and groundwater in these areas provide an important basis for
the study of subsidence mechanisms and the formulation and implementation of certain
protective measures.

InSAR (Interferometric Synthetic Aperture Radar) time series analysis techniques–
such as PS-InSAR (Persistent Scatterers-InSAR), SBAS-InSAR (Small Baseline Line- InSAR),
TCP-InSAR (Temporarily Coherent Point Interferometric Synthetic Aperture Radar) [12,13],
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DS interferometry (DSI) [14], and other InSAR techniques–have been proven to be effi-
cient in monitoring ground subsidence and the relationship between land subsidence and
groundwater changes. Galloway et al. used radar data collected from ERS-1 satellite to
detect and quantify land subsidence caused by aquifer system compaction in the Antelope
Valley, Mojave Desert, California [15]. Hoffmann et al. used ERS-2 satellite data to monitor
land subsidence in the Antelope Valley and compared these data with repeatedly surveyed
benchmarks [16]. Erban et al. collected L-band ALOS PALSAR data to measure the land
subsidence rate in the Mekong Delta in Vietnam [17]. Matano et.al processed three SAR
datasets of ascending and descending orbits acquired over the Campania coastal sectors
from June 1992 to July 2010, which provided new insights into the spatial variability of ver-
tical ground deformation (subsidence/uplift) of the Volturno River coastal plain [18]. Wang
et al. used C-band Envisat ASAR data to investigate the rate and extent of coastal land
subsidence in the Pearl River Delta in China [19]. Liu et al. detected subsidence in a coastal
area by implementing the ultrashort-baseline TCPInSAR algorithm with high-resolution
TerraSAR-X images acquired over Tianjin (close to Bohai Bay) in China [20]. Zhao et al. used
ASAR (2007–2010), CSK (2013–2016), and Sentinel-1A SAR images (2015–2017) to obtain
the ground deformation rate in coastal areas in Shanghai using InSAR techniques [21–23].
There are many research results of the application of PSInSAR in Shanghai [24–33]; most
scholars have analyzed the subsidence of the Shanghai area with InSAR space technology
and levelling data. In this paper, we involve various technologies including not only
PS-InSAR and leveling, but also groundwater level measurements taken monthly that
are used to cross-validate each other, establish the relationship between settlement and
groundwater in the delta area, and further distinguish the deformation types. This is
helpful to further understand the evolution of land compaction and consolidation in the
land reclamation area.

In this paper, we adopted 50 scenes of Sentinel-1A images acquired from May 2016
to May 2018 to detect and process persistent scatterers (PS) in Shanghai Lingang New
City using the Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR)
technique. Then, we compared the displacement time series of these high coherence points
with groundwater well data and leveling data using PSInSAR technology. Finally, we
estimated the aquifer parameters at groundwater wells and analyzed the deformation
characteristics and their geophysical mechanism.

2. Study Area

Lingang New City is located in the southeast corner of Pudong New District, Shanghai,
China, where 60% of the land was constructed by reclamation between 2002 and 2005 [9–11].
It is about 75 km from the center of Shanghai and has a total area of 152.15 km2. Most
of the Lingang New City area was built by land reclamation. Its coastal zone–a frequent
landing site of typhoons and storm surges–is vulnerable to a number of natural disasters.
Factors such as the natural consolidation of mucky soil and the compression effect of the
underground soil layer structure often cause ground subsidence in this area.

The geographical location of Shanghai Lingang New City is shown in Figure 1. The
locations of two groundwater wells (W65, W66) and two leveling points (F65, F66) are
marked with asterisks in Figure 1. The names W65 and W66 under these asterisks are
abbreviations for groundwater monitoring wells. The names F65 and F66 are abbreviations
for leveling monitoring points. Groundwater well W65 and leveling point F65 are located
at the same place, and W66 and F66 are similarly in the same location.
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Figure 1. The geographical location of Shanghai Lingang New City and the location of groundwater
wells and leveling monitoring points (marked with asterisk).

As shown in Table 1, the aquifers of Shanghai include: the submerged aquifer (A0),
first confined aquifer (A1), second confined aquifer (A2), third confined aquifer (A3),
fourth confined aquifer (A4), and the fifth confined aquifer (A5). Weakly permeable layers
include: the topsoil layer (B0), first weakly permeable layer (B1), second weakly permeable
layer (B2), third weakly permeable layer (B3), fourth weakly permeable layer (B4), fifth
weakly permeable layer (B5), and the sixth weakly permeable layer (B6). This is according
to the hydrogeological profile of the Shanghai area, as shown in Figure 2; aquifers and
weakly permeable layers are missing in some areas. The second, third, fourth, and fifth
confined aquifers contain abundant groundwater resources and are the main targets for
emergent groundwater exploitation. To explore the relationship between groundwater
and ground subsidence in Shanghai Lingang New City, we mainly consider here the
thickness changes of the fourth confined aquifer, as the first, second, and third confined
aquifers are in a reverse relationship between the upper and lower soft soil layers and
the fifth aquifer is rare in the Lingang area. The large thickness index of the third and
fourth aquifer sand layer in Lingang New City indicates that the development of the sand
layer may increase ground subsidence during exploitation, especially during unreasonable
groundwater extraction. Otherwise, it will not lead to ground subsidence disasters [34];
that is, the cumulative thickness indicators of the fourth confined aquifer can reflect the
abundance of groundwater resources, and the thickness changes can reflect the surface
subsidence. We take the changes in the water levels of the fourth confined aquifer as the
research object in this paper.
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Table 1. The List of Hydrogeological Section.

Hydrogeological Section Full Name Short Name

Aquifers

Submerged aquifer A0
First confined aquifer A1

Second confined aquifer A2
Third confined aquifer A3

Fourth confined aquifer A4
Fifth confined aquifer A5

Weakly permeable layers

Topsoil layer B0
First weakly permeable layer B1

Second weakly permeable layer B2
Third weakly permeable layer B3

Fourth weakly permeable layer B4
Fifth weakly permeable layer B5
Sixth weakly permeable layer B6

 

Figure 2. Hydrogeological Section Map of Shanghai City [34].

3. Materials and Methods

3.1. SAR Data

A total of 50 scenes of Sentinel-1A images acquired from 15 May 2016 to 5 May 2018
(seen in Table 2) are used to detect and process the high coherence points in Lingang New
City, Shanghai. Figure 3 shows the distribution of the spatial and temporal baselines, where
the image acquired on 27 June 2017 was selected as the reference image. In [35–38] the
maximum temporal baseline was 408 days, and the maximum spatial baseline was 90 m.
And thus the thresholds of temporal and spatial baselines were empirically set as 408 days
and 90 m, respectively, to select interferograms.
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Table 2. The List of SAR data and acquisition times.

No Acquisition Time No Acquisition Time No Acquisition Time

1 20160515 18 20170311 35 20171013
2 20160608 19 20170404 36 20171106
3 20160726 20 20170416 37 20171118
4 20160819 21 20170428 38 20171130
5 20160912 22 20170510 39 20171212
6 20161006 23 20170522 40 20171224
7 20161018 24 20170603 41 20180117
8 20161030 25 20170615 42 20180129
9 20161111 26 20170627 43 20180210
10 20161123 27 20170709 44 20180222
11 20161205 28 20170721 45 20180306
12 20161217 29 20170802 46 20180318
13 20161229 30 20170814 47 20180330
14 20170122 31 20170826 48 20180411
15 20170203 32 20170907 49 20180423
16 20170215 33 20170919 50 20180505
17 20170227 34 20171001

Figure 3. Distribution of the temporal and spatial baselines. The red square indicates the reference
image; blue squares indicate the slave images.

3.2. Leveling Data

We collected the measurements from two first-class leveling points (i.e., F65 and F66,
marked as asterisks in Figure 1) located in the study area to verify the accuracy of the InSAR
measurements. The Trimble DINI03 digital level was used to obtain the leveling data with
first-class leveling accuracy. The accuracy of the vertical displacement monitoring was
±0.3 mm. The F65 and F66 leveling points were observed monthly since 15 February 2011
and 25 February 2009, respectively.

3.3. Water Level Well Data

The Shanghai Institute of Geological Survey has conducted long-term monitoring of
groundwater level changes in Shanghai. There are two groundwater level wells (W65, W66)
in the study area, as shown in Figure 1, and the groundwater level is monitored monthly.

3.4. PSInSAR Technique

PSInSAR is an advanced InSAR technology that can accurately detect ground surface
deformation from a stack of SAR images [39–43]. The PSInSAR technique has been widely
used in urban areas with a high density of coherent points. This algorithm is a time
series analysis method based on point targets with stable scattering characteristics (e.g.,
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buildings, bridges, roads, and bare rocks). Then, time series analysis is performed on the
interference phase to obtain high-precision surface observation information from these
persistent scatterers.

When processing these SAR images, one SAR image is usually selected as the master
image and the others are used as slave images. After registration and mitigation of the
flattening effect, the external DEM (e.g., SRTM DEM 90 m × 90 m) is used to remove the
topographic phase, and the differential interferograms are generated. Then, persistent
scatterers (PS) that can keep high coherence in all the interferograms are selected. A
Delaunay triangle network is generated from these PS points [44–48]. The wrap phase (ϕk

i )
at the point i in the k th interferogram can be written as follows:

ϕk
i = W

{
ϕk

i,de f + ϕk
i,hgt + ϕk

i,orb + ϕk
i,atm + ϕk

i,noise

}
(1)

where W{·} is the wrapping operator; ϕk
i,de f is the phase contributed by ground deforma-

tion, ϕk
i,hgt is the phase associated with height errors, ϕk

i,orb is the phase associated with

orbital errors, ϕk
i,atm is the phase that is related to the atmospheric delay, and ϕk

i,noise is
the noise.

The atmospheric phase and the orbit phase can be separated by temporal and spatial
filtering. Finally, the time series deformation phase and average deformation rate of
the line of sight of the satellite are obtained [49–53]. The deformation phase reflects the
displacement of the ground during the observation time. SAR belongs to active remote
sensing. The signal is measured twice from transmission to reception. Therefore, the phase
change caused by ground point deformation can be expressed as:

ϕk
i,de f = −4π

λ
De fLOS (2)

where λ is the wavelength of the radar signal. De fLOS is the deformation of the radar line
of sight, and in the data analysis and comparison, it is necessary to transfer it to the vertical
direction to compare it with levelling data or other vertical measuring data.

3.5. Reduction of InSAR Measurement

In order to investigate the relationship between ground deformation monitoring by
PSInSAR and groundwater well observations, we processed them to the same scale by
using the inverse distance square weighted (IDW) method, which has been widely used in
many fields such as meteorological research, mine reserves research, oceans research, and
other fields.

In this case study, the coherent points located within 100 m of the groundwater well
and their subsidence time series were extracted. The deformation value of the groundwater
well was calculated by the former IDW method for the coherent points. Then, the weighted
deformation was seen as the surface deformation of the groundwater well within this time.

The weight function to calculate the weight of each PS point:

wi =
D−P

i

∑n
i=1 D−P

i
(3)

where wi is the weight of each PS point, Di is the Euclidean distance between the PS point
and the groundwater level point, Pis the power parameter, and n is the number of PS point.
In this paper, we use P = 2, which is the commonly used method of the inverse distance
square weighted method.
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Then, we use the inverse distance weighted function to obtain the estimated deforma-
tion value at the coordinates of the groundwater well:

Disp(h0) =
D−P

i ∑n
i=1 Disp(hi)

∑n
i=1 D−P

i
(4)

where Disp(h0) is the estimated deformation value of the groundwater well, Disp(hi) is
the deformation value of the PS point.

Based on this method, the characteristics of the unknown geographic space are predicted.

3.6. Aquifer Parameters Estimation

According to the Terzaghi-Jacob theoretical model [54], the total stress of the con-
fined aquifer (σT) is equal to the sum of the pore stress (p) and the effective stress (σe) of
the aquifer.

σT = p + σe (5)

When the groundwater in the confined aquifer is extracted, the groundwater level of
the confined aquifer will decrease, resulting in the decrease of the pore stress and increase
of the effective stress. The sum of these two stresses will introduce compression to the
aquifer, which will cause ground subsidence.

When the effective stress of the aquifer σe is less than the historical effective stress
σe(max), the aquifer system undergoes elastic deformation, and the surface settlement can
be recovered by measures such as recharging the groundwater. If the effective stress of
the aquifer σeis continuously greater than the historical effective stress σe(max), the aquifer
system will undergo inelastic deformation, i.e., consolidation deformation, and the ground
surface will have permanent ground subsidence.

The water release capacity of the confined aquifer is expressed by the water release
coefficient. According to the Terzaghi-Jacob theoretical model, the relationship between
the aquifer system deformation and groundwater level change can be represented by two
different skeleton water release coefficients. Such coefficients are key hydraulic parameters
for evaluating the water storage capacity of groundwater aquifer systems.

s∗ke =
Δb∗

Δh
, σe < σe(max) (6)

s∗ki =
Δb∗

Δh
, σe > σe(max) (7)

where s∗ke is the elastic water release coefficient of the aquifer skeleton, s∗ki is the inelastic
water release coefficient of the aquifer skeleton, Δb∗ is the deformation of the aquifer system
obtained from the deformation results of PSInSAR, Δh is the change of groundwater level,
which can be obtained by the change of groundwater level at the well.

When the aquifer thickness changes due to changes in the groundwater level, the
actual observed water release coefficient can be compared with the theoretical value to
determine whether the water release coefficient is elastic or inelastic. Therefore, whether
elastic deformation or inelastic deformation occurs in the aquifer system can be determined.

4. Results and Discussion

4.1. PSInSAR Derived Deformation

Based on PSInSAR technology, the Sentinel-1A images covering Shanghai Lingang
New City acquired from 15 May 2016 to 05 May 2018 were processed. The deformation rate
map generated from 21,447 PS points is shown in Figure 4. PS points are mainly distributed
on the west side of Dishui Lake in the experimental area. The deformation rate ranges
from −67 mm/year to 1.1 mm/year in the LOS (line of sight) direction, and the average
deformation rate is −3.4 mm/year in the LOS direction.
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Figure 4. The map of the deformation rate map of Shanghai Lingang New City.

Dishui Lake is an artificial lake built on the beach in Lingang New City, the construction
of which was started in 2002. The east and north sides of Dishui Lake are mainly farmlands
and wetlands, where quite sparse PS points were identified. As shown in Figure 4, the area
with large deformation is mainly concentrated on the east side of Dishui Lake. Although
ground subsidence also occurred on the west side of Dishui Lake, it is relatively stable.

The coastal embankment on the east side of Dishui Lake suffered large subsidence,
and notable subsidence also occurred around Huanhu East Road. Due to the late formation
of land on the east side of Dishui Lake, such subsidence is mainly contributed by the
compaction and consolidation of the soil layer in the area.

The coastal embankment, located on the east side of Dishui Lake in Shanghai Lingang
New City, has a length of 4 km and was built on the beach with cement or bare rocks.
The coastal embankment can help avoiding the erosion of the coast by external factors
and is also an important guarantee for flood prevention. Figure 4 indicates the coastal
embankment has larger deformation. To investigate the spatial pattern of the deformation,
the PS points on the coastal embankment were extracted and their deformation rates were
plotted in Figure 5. There are 334 PS points in total, and the density of PS points is about
85.6 points per kilometer. The deformation rate of the coastal embankment ranges from
−18.23 mm/year to −4.69 mm/year in the LOS direction. The average deformation rate is
−10.55 mm/year in the LOS direction. The statistics of the deformation rate of the coastal
embankment from south to north is shown in Figure 6.
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Figure 5. The deformation rate map of the coastal embankment.

Figure 6. The statistics of the deformation rate in the LOS direction of the coastal embankment from
south to north (x-axis is the distance from the coherence point to the starting point of the south).

The results show that the deformation rate on the north side of the coastal embankment
is larger than that on the south side, see Figure 6. The deformation rate of the coastal
embankment is continuous. Since there are no GPS measurements or leveling data on
the coastal embankment section, the deformation results derived from InSAR technology
provide useful data for the study of settlements in the area.
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4.2. Analysis of Subsidence Characteristics and Leveling Verification

A comparison between the leveling observation data and the PSInSAR result at ground-
water monitoring wells W65 and W66 is shown in Figures 7 and 8. Figure 7 shows the time
series relationship between the leveling observation data F65 and the PSInSAR result at
groundwater monitoring well W65. Figure 8 shows the time series relationship between
the leveling observation data F66 and the PSInSAR result at groundwater monitoring well
W66. InSAR results have been converted from the LOS direction to the vertical direction
and then compared with the leveling data. The maximum difference of these two datasets
at W65 and W66 is 1.93 mm and 2.9 mm, respectively. It indicates that the PSInSAR derived
deformation time series has comparable accuracy with the leveling data. As the noise level
at the selected PS points is similar, the deformation retrieved is expected to be reliable for
exploring the geophysical mechanism behind the data.

Figure 7. The time series relationship between the leveling observation data F65 and the PSInSAR
result at groundwater monitoring well W65.

Figure 8. The time series relationship between the leveling observation data F66 and the PSInSAR
result at groundwater monitoring well W66.
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4.3. The Relationship between Groundwater Level Changes and Ground Subsidence

In order to study the ground subsidence of Shanghai Lingang New City and its
mechanism, we used the groundwater level data at two monitoring wells (i.e., W65 and
W66) to analyze the relationship between ground subsidence and groundwater level
changes. The distribution map of groundwater wells is shown in Figure 1. The landscapes
around these wells are shown in Figures 9 and 10. The groundwater monitoring well W65
is close to the coastline, surrounded by wasteland, houses, roads, and ponds. There was no
new construction during our observation period. The W66 monitoring well is located on
the west side of Hucheng Ring Road and is also near the river. This area is mostly occupied
by farmlands.

 
Figure 9. The distribution and deformation rate of PS points around groundwater well W65.

Figures 11 and 12 show the relationships between the groundwater level monitoring
value of the fourth confined aquifer and the surface deformation obtained by the InSAR
technique. During the observation period, the groundwater level of W65-4 (the fourth
confined aquifer of groundwater monitoring well W65) varied within 2 m and had notable
seasonal fluctuations. It is well documented that the groundwater level starts to rise in
winter and spring and starts to decrease in summer and autumn. The ground deformation
value obtained by the PSInSAR method at the monitoring well W65 is around 2 mm within
two years, and the average deformation rate is −0.3 mm/year. The ground deformation
trend is consistent with the variation of groundwater level data. The variation between
InSAR results and groundwater level data had some relevance. It can be considered that
it is stable relatively. On the other hand, during the observation period, the groundwater
well level of W66-4 was quite steady before August 2017, and from August 2017 to May
2018 had undergone tremendous changes, but it still has the same deformation trend as the
InSAR deformation results in the region.
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Figure 10. The distribution and deformation rate of PS points around groundwater well W66.

Figure 11. The relationship between PSInSAR derived deformation time series and groundwater
level at well W65-4.

96



Remote Sens. 2022, 14, 2693

Figure 12. The relationship between PSInSAR derived deformation time series and groundwater
level at well W66-4.

Table 3 shows elastic and inelastic skeleton release coefficients determined by PSInSAR
deformation and groundwater level variations. W65 groundwater well skeleton release
coefficient is between 0.0013–0.0087, and the correlation coefficient between PSInSAR de-
formation and groundwater level of W65-4 is 0.24 (positive correlation). Groundwater well
skeleton release coefficient at well W66 is between 0.0024–0.0054, and the max correlation
coefficient between InSAR deformation and groundwater level is 0.68 (positive correlation).
According to the study conducted by Hoffmann in 2003 [55], the theoretical value of the
elastic water release coefficient is generally between 10−5 and 10−3 for aquifers dominated
by loose clay and silt, and the inelastic water release coefficient often reaches tens to hun-
dreds of times the value of the elastic water release coefficient. Therefore, this indicates
that the aquifer at the W65 well and W66 well had undergone elastic deformation.

Table 3. Elastic and inelastic skeleton release coefficients determined by InSAR deformation and
groundwater level variations.

ID Time Span (year/month) Well (m) InSAR (mm) S*
ki

W65-4
201605–201611 −0.37 −0.83 0.0022
201611–201707 0.15 1.3 0.0087
201706–201805 0.45 0.56 0.0013

W66-4
201605–201611 −0.19 −0.83 0.0044
201611–201707 0.24 1.3 0.0054
201706–201804 1.11 2.71 0.0024

4.4. Discussion

By using the Sentinel-1 A SAR images, leveling data, and groundwater well data, we
have monitored the land subsidence in the delta area and reveal the geophysical mechanism
behind this deformation.

In terms of the precision of PSInSAR vertical subsidence, the maximum difference of
PSInSAR and leveling time series at two level points is 1.93 mm and 2.9 mm, respectively,
which is basically consistent with Zhao et al.’s result that the mean of absolute difference
values between COSMO-SkyMed and leveling measurements is 3.0 mm, and the mean
difference value between Sentinel-1 A and leveling measurements is 3.6 mm; these data
were obtained by studying Shanghai coastal deformation from February 2007 to April
2017 [21]. It validates that the PSInSAR derived deformation time series has millimeter-
level comparable accuracy with the leveling data [32], which shows that the PSInSAR
derived deformation is reliable for exploring the geophysical mechanism behind the data.
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After extracting the settlement from the PSInSAR LOS deformation, we analyze the
displacement of these PS points and the fluctuation of the two groundwater wells and
confirm that the changes of the fourth layer confined aquifer data of Shanghai can better
reflect the surface deformation in this area from 2016 to 2018. Previous research results
related to the zone of the ocean-reclaimed lands of Shanghai are subject to subside due
to soil consolidation and compression. Our results show that except for this reason, the
settlement in our research of interest may be related to groundwater extraction. This was
demonstrated by the comparative analysis of the PSInSAR settlement and groundwater
level in the period from May 2016 to May 2018.

Furthermore, according to the Terzaghi-Jacob theoretical model [54], we determine
the types of the ground subsidence near the coastal area in the delta by calculating skeleton
water release coefficients, which shows that part of Shanghai Lingang New City suffered
inelastic ground deformation; this type of deformation is difficult to recover and may result
in secondary disasters [16].

The coastal embankment on the southeast side of Lingang New City suffered large
subsidence, as shown through the PSInSAR from May 2016 to May 2018, which has been
investigated in other period stages using ASAR, COSMO-SkyMed, and Sentinel-1 SAR
images from February 2007 to April 2017 [21–23]. Its subsidence mechanism has not yet
been fully studied due to lack of sufficient ground-truth validation, however this settlement
should be taken seriously due to its special geographical location.

5. Conclusions

In this paper, we mainly used 50 scenes of Sentinel-1A images acquired from May
2016 to May 2018 to obtain the displacement time series of Lingang New City after 14 years’
reclamation using the PSInSAR technique. By establishing the relationship between land
subsidence and groundwater changes, we firstly combine ground in-situ observations such
as first-class leveling data to validate the precision of PSInSAR, which indicates that the
PSInSAR derived deformation time series has comparable accuracy with leveling data.
Then, we integrate the groundwater well data to obtain the elastic and inelastic skeleton
release coefficients, and finally obtain the type of deformation of this area.

The results show that the combination of multiple technologies is more conductive to
understand the deformation mechanisms and fluctuation of aquifer systems in these coastal areas.

Therefore, we will next consider carrying out longer time series of SAR combined
with ground monitoring to investigate the evolution of Shanghai Lingang New City for the
management of coastal embankment safety risk assessment and adjustment, which is also
extended to other case study areas.
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Abstract: Since the 1930s, due to the rapid development of the city and the increase of population,
the demand from Beijing residents for water resources has gradually increased. Land deformation in
the Beijing Plain is a serious issue. In order to warn of, and mitigate, disasters, it is urgently necessary
to obtain the latest rate, extent, and temporal evolution of land subsidence in Beijing. Firstly, the
temporal and spatial distribution characteristics of land deformation in Beijing during 2003–2020 were
unveiled using the time-series interferometric synthetic aperture radar (InSAR) technique and two
different satellite datasets, sentinel-1a/1b and ENVISAT ASAR. By means of combining calibration
of InSAR results with the global positioning system (GPS), we studied the evolutionary process of
long-term land subsidence in Beijing. The precision of our InSAR annual subsidence results is less
than 10 mm. Land subsidence in Beijing is unevenly distributed, and so five main land subsidence
zones were monitored. The time-series results showed that the rate of land subsidence rate continued
to increase from 2003 to 2015, but has gradually shown a slowing trend from 2015 to 2020. Further,
we used the quadratic polynomial fitting method to interpolate the time-series deformation results
from 2010 to 2015, and compared these with GPS. The results demonstrated that although the InSAR
observation method is not strictly registered with GPS in time, its deformation trend is consistent. In
addition, the calibrated long time-series was consistent with the three deformation stages of land
subsidence evolution in Beijing. Finally, we analyzed the deformation information obtained by InSAR
technology in combination with land use type data, precipitation and groundwater data. The results
demonstrated that the central area is mostly stable, and land deformation in the northeast is obvious
and uneven. In addition, land use type and precipitation have little influence on land subsidence.
Changes in land subsidence were closely related to changes in groundwater level, and seasonal
variations in deformation correlated with precipitation.

Keywords: land subsidence; dataset calibration; quadratic polynomial fitting; spatiotemporal evolu-
tion characteristics

1. Introduction

Beijing has an extensive geopolitical history and cultural diversity. It is the political,
cultural, and international communication capital of China. Social, economic, and urban
development have been rapidly increasing in Beijing. In addition, Beijing has been affected
by land subsidence since 1935 [1]. In the 1970s, rapid, large-scale, and concentrated land
subsidence was observed. Consequently, new subsidence areas, such as Changping, Shunyi,
and Daxing, have gradually appeared. Land subsidence is a local descending movement
caused by consolidation and compression of the underground loose strata under the influ-
ence of human engineering economic activities. It is also the main regional environmental
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geological disaster in China [2]. Therefore, analyzing long-term land subsidence in Beijing
is necessary.

With acceleration in urbanization a number of technologies have been commonly used
to monitor surface subsidence in Beijing: precise leveling surveys [3], global positioning
system (GPS) [4], interferometric synthetic aperture radar (InSAR) [5] and other technolo-
gies. Among these, leveling has several advantages, including high precision, advanced
technology, and reliable results. However, it can only reflect the overall situation of surface
deformation in Beijing, and requires permanent observations which can be time-consuming
and labor-intensive. GPS technology can provide high-precision geographical coordinates,
which can be used to monitor global and regional crustal deformation and land subsidence.
However, GPS technology can only provide a limited number of discrete points for land
subsidence monitoring, has a small monitoring range, and cannot obtain real-time and
macroscopic deformation monitoring results in most cases. In contrast, InSAR, a novel
method of determining land subsidence, can provide high-precision three-dimensional
terrain information and small-scale land deformation information [6–10]. It greatly reduces
costs and labor, and provides risk analysis and early warning signals during rapid ur-
ban development [11–15]. In contrast to conventional measurements, it can provide land
subsidence results with centimeter-level, or even millimeter-level, accuracy over a large
region [16]. The conventional differential interferometry synthetic aperture radar (D-InSAR)
method was based on individual interferogram to obtain land subsidence [17]. However, it
does not capture changes in deformation rate within the study area. In addition, changes
in atmospheric conditions, satellite orbit errors and digital elevation model (DEM) errors
also significantly reduce the accuracy of D-INSAR measurements. The Small Baseline
Subset (SBAS) technique, proposed by Berardino et al. [18,19], can continuously and stably
monitor the land surface for a long period in a large area with a specific revisit period,
thereby minimizing the limitations of conventional measurement methods [20]. Regarding
land subsidence monitoring in Beijing using the InSAR method, some annual InSAR defor-
mation results have been exhibited in recent years. Shi [21], Yuan [22], Zhou [23], Li [24]
and Pan et al. [25]. obtained the deformation sequence of Beijing for a long time period
using SBAS-InSAR technology. In addition, many experts and scholars have conducted
relevant studies on the spatiotemporal evolution of surface deformation in Beijing and its
genesis mechanism. Zhou et al. [26] used ENVISAT ASAR and RadarSAT-2 data, and found
several settlement funnels in the north and east of Beijing. Further, Du et al. [27] used ALOS
data, and found that the subsidence rate in northern Beijing accelerated from 2007 to 2016.
Liu et al. [28] used ENVISAT ASAR and RadarSAT-2 data and SBAS-InSAR technology to
obtain vertical deformation characteristics of Beijing during 2003–2013. Muhetaer et al. [29],
Yang [30], and Ng [31] analyzed the spatiotemporal distribution characteristics of land de-
formation in Beijing using time-series InSAR and GPS technologies. Hu et al. [32] analyzed
development and changes in land deformation and their relationship with geological faults
in Beijing from 2015 to 2017 using an atmospheric estimation model time-series analysis
method. Further, Zhou et al. [33] introduced the machine learning approach to analyze
the influence of groundwater, compressible layer thickness and other influencing factors
on land deformation. Previous studies either identified land subsidence stages, by the
analysis of individual interferograms based on conventional InSAR method, or detected
land subsidence in a limited time, by SBAS-InSAR. New data and more advanced InSAR
techniques are demanded to gain the latest rate, scope of activity, and temporal evolution
of ground deformation in Beijing. In addition, there are some time gaps between different
SAR datasets.

To better study long-term evolution of land deformation in Beijing, we need to con-
tinuously update the time series of different sensor deformations. SAR images provided
by a single radar satellite are insufficient to reflect the long-term evolution of land sub-
sidence, thus we need to combine the Sentinel satellite with others to update the time
series of different sensors’ monitoring of deformation. Samsonov [34] and Pepe et al. [35]
used a singular value decomposition algorithm to fuse multi-satellite time-series data
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with time overlap data, further fusing the vertical deformation time-series of ENVISAT
ASAR and COSMO -SkyMed using the consolidation settlement model, thus realizing
the deformation time series over a long time period. Based on the Sentinel-1A/1B, and
ENVISAT ASAR datasets, and GPS measurements since 2003, our study aimed to acquire
the spatial and temporal distribution characteristics of land subsidence in Beijing from
2003 to 2020 provided by advanced InSAR technology. First, the interferograms of two
different InSAR datasets are processed by SBAS-InSAR technology respectively, and time
series deformation measurements from 2003 to 2020 are generated to reveal the temporal
and spatial changes of land subsidence in Beijing. Second, combined with calibration of the
InSAR results by GPS, we obtained the spatial and temporal changes of land subsidence in
Beijing over nearly twenty years. In addition, the results were verified by the Mann-Kendall
method. Finally, we discuss the correlation between land subsidence and land use type,
groundwater, and precipitation. The rest of the manuscript is organized in the following
way: Section 2 introduces the study area; Section 3 introduces the SBAS-InSAR algorithm,
GNSS processing strategy and the data used for processing and verification; Section 4
introduces the temporal and spatial changes of land subsidence in different SAR datasets
and the settlement results of fusion time series; and Section 5 introduces the relationship
between land subsidence and land use type, groundwater level, precipitation, ground
fissures and fault activity, Section 6 summarizes our conclusions.

2. Study Area

Beijing is located in northern China and north of the North China Plain, ad-jacent to
Tianjin in the east and Hebei in the west. It has a total area of 16,412 km2. The elevation
of Beijing is high in the northwest and low in the southeast, with an average elevation
of 43.5 m. Beijing is surrounded by mountains in the west, north and northeast, whereas
the southeast region comprises a plain gradually sloping towards the Bohai Sea. Figure 1
shows the geographical location of Beijing. The depressions in the Beijing plain area are
loose sediments with thicknesses of more than 1000 m, which are prone to ground fractures
and land subsidence [36].

According to results from the Beijing earthquake station, the faults in the northeast
mainly include Huangzhuang-Gaoliying fault and Shunyi’s buried active fault, and the
horizontal deformation of these faults is mainly dextral. However, the Sunhe-Nankou
fault is a typical fault in the northwest; its horizontal deformation is mainly characterized
by sinistral deformation [37]. The faults in the northeast and northwest reflect tectonic
compression to a certain extent. In addition, some earthquakes in Beijing are mainly related
to characteristics of the crustal structure and physical properties of the rocks. The fault
structure has a significant controlling effect on quaternary sediments in the Beijing plain and
is closely related to seismic activity. The quaternary tectonic activities have both inheritance
and cenozoic factors, and the distribution of depositional centers is more complex than
those in the northeast. The tertiary and tectonic activities in the northwest are more obvious.
Studies have shown that spatial distribution of land deformation was consistent with that
of the quaternary compressible layers in Beijing [38]. Land subsidence in the plain is more
severe, and the frequency of land subsidence in Chaoyang, Shunyi, Tongzhou, Changping,
Haidian and other areas in Beijing is higher and the degree of harm greater. More than half
of the Beijing plain area is seriously affected by land subsidence [39].

The geological environment in Beijing is complicated. Therefore, combined with
groundwater, geological information, land use type data, and the result of time-series SBAS,
it is necessary to continuously monitor land subsidence in Beijing for a long time.
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Figure 1. Study area geographical location and coverage of the Synthetic Aperture Radar (SAR)
data. In the background is the shaded terrain-generated digital elevation model (SRTM DEM) of
the Shuttle Radar Topography Mission. The red and yellow rectangles represent the coverage of
sentinel-1 SAR data, the blue indicate coverage of ENVISAT ASAR data, and the green rectangle
represents the location of the study area. The Beijing Plain is mainly controlled by northeast and
northwest direction active faults. The northeast direction fault systems are composed mainly of the
Xiaotang Mountain (1), Huangzhuang-Gaoliying (4), Tongxian-Nanyuan (5), Shunyi-Liangxiang (6),
and Xiadian (7) faults. The northwest direction fault systems are composed mainly of the Nankou
Sunhe (2) and the Yongding River (3) faults. The figure in the upper right corner shows the location of
the study area in China. It can be downloaded from http://bzdt.ch.mnr.gov.cn/index.html, accessed
on 12 January 2022. The part of the red rectangle in the map corresponds to the figure on the left.

3. Materials and Methods

3.1. SAR Images

ENVISAT and Sentinel-1A/1B image data of Beijing were used to monitor land sub-
sidence, and to analyze the spatiotemporal evolution characteristics of land subsidence
in Beijing. ENVISAT ASAR is a polar-orbiting Earth observation satellite launched by the
European Space Agency (ESA) in 2002, while Sentinel-1A/1B is an active radar imaging
satellite launched by the ESA in 2014. In total, our study used 40 SAR images from the
ENVISAT ASAR satellite from 2003 to 2010, and 90 SAR images from Sentinel-1A/1B satel-
lite from 2015 to 2020. Both datasets had a VV polarization model. The specific imaging
parameters are listed in Table 1, and the time span of the SAR dataset used in this study is
shown in Figure 2. The processed SAR datasets span the entire time interval between June
2003 and December 2020. Due to the absence of comprehensive SAR datasets, there is a
significant temporal gap (about five years) between the available ENVISAT and Sentinel
datasets. The spatiotemporal baseline diagrams of the two data types are shown in Figure 3.
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Table 1. Information of the SAR dataset.

Sensor ENVISAT ASAR Sentinel-1A/1B

Band C C
Wavelength (cm) 5.5 5.56

Heading (◦) −164 −166
Track 2218 47

Polarization VV VV
Orbit directions Descending Descending

Number of images 40 90
Data range 18 June 2003–29 September 2010 24 January 2015–22 January 2021

Incidence angle (◦) 22.8 33.9

 
Figure 2. Time span of the SAR datasets and GPS measurement.

Figure 3. Temporal and perpendicular baseline maps of (a) ENVISAT ASAR and (b) Sentinel-1A/1B.
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3.2. Other Datasets

Digital elevation model (DEM) data, having a spatial resolution of 30 m and provided
by the National Aeronautics and Space Administration (NASA) Shuttle Radar Topography
Mission (SRTM), were used in this study. In addition, the five-year interval land use data
(spatial resolution: 30 m) from 2005 to 2020, provided by Landsat data through the Google
Earth Engine (GEE) platform [40], were used. Groundwater exploitation and depth data
were provided by the Beijing Water Authority, and precipitation data of the meteorological
station were provided by the National Oceanic and Atmospheric Administration (NOAA).
Groundwater exploitation and depth data can be downloaded from http://swj.beijing.gov.
cn/, accessed on 10 February 2022. Precipitation can be downloaded from https://www.
ncei.noaa.gov/maps-and-geospatial-products, accessed on 10 February 2022. Moreover,
the data from 12 global positioning system monitoring sites in Beijing, from 2009 to 2020,
were acquired by the Beijing Institute of Geological & Prospecting Engineering in China.
Each monitoring site had 12 data periods, and each monitoring site was a bedrock point.
The distribution of monitoring points is shown in Figure 1.

3.3. Land Subsidence Monitoring Using SBAS-InSAR

The principle of SBAS-inSAR technology is to combine all SAR data into several small
sets by setting certain spatiotemporal baseline thresholds, with smaller baselines within the
sets and larger baselines between the sets. Finally, through the least square solution within
the set and the singular value decomposition method between the sets, the joint solution
result of the surface deformation information of the whole time-series is obtained [41,42].
In this way the data utilization rate is improved to overcome the incoherent problem of
image information. In addition, the influence of DEM error on deformation measurement
can be reduced.

Assuming that there are N + 1 SAR images covering the same area and the time
series is (t0, · · · , tN), M differential interferograms can be obtained under the condition
that the spatiotemporal threshold is satisfied. Let the acquisition times of the primary and
secondary images of the differential interferogram i be tB and tA, respectively, and tB > tA.
Thus, the differential interference phase generated by SAR images at pixels (x, y) of tA and
tB can be expressed as:

δϕi (x, y) = ϕ(tB, x, y)− ϕ(tA, x, y) ≈ ϕde f ,i(x, y) + ϕtopo,i(x, y) + ϕatm,i(x, y) + ϕnoise,i(x, y) (1)

where, (x, y) are azimuth direction and distance direction coordinates, ϕ(tB, x, y) and
ϕ(tA, x, y) is the image phase generated by the differential interferogram phase, ϕde f ,i(x, y)
is the deformation phase caused by interference on the land displacement between tA and
tB, ϕtopo,i(x, y) is the topography phase error caused by topographic undulation, ϕatm,i(x, y)
is the atmospheric phase error, ϕnoise,i(x, y) is the random noise phase.

According to Equation (1), a set of equations including M equations and N variables
can be obtained [18]:

δϕ = Aϕ (2)

where δϕ is the matrix formed by M differential interferogram phase, ϕ is the matrix of the
deformation phase to be determined by an image on N SAR. A is an M × N matrix, each
row corresponds to an interference pair. When the number of small baseline subsets is one,
A is the full rank matrix, and its least square solution is:

ϕ̂ = [(AT A)−1 AT ]·δϕ (3)

When the number of small baseline subsets is greater than 1, A is a rank-deficient
matrix and the rank deficient is N − L + 1. AT A is a singular matrix, and there are infinite
solutions to the equation. To solve this problem, the equation must be transformed into
the phase average change rate in the sense of the minimum norm, and the pseudo-inverse
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matrix can then be obtained by the singular value decomposition method [43]. Let the
parameter to be solved be expressed as:

v =

[
ϕ1 − ϕ0

t1 − t0
, · · · ,

ϕN − ϕN−1

tN − tN−1

]T
(4)

where the value of ϕ0 is zero. It can be further obtained as:

δϕi =
tMi

∑
i=tSi+1

v(ti − ti−1), i = 1, · · · , M (5)

where tMi and tSi respectively represent the acquisition time of the master and slave image
corresponding to the interferogram i. For M differential interferogram, equations can
be formed:

B · v = δϕ (6)

where, B is a M × N matrix corresponding to the unknown vector. For each row element in
B, the value of B(j, i) is ti+1 − ti. Everything else in the matrix is 0. Subsequently, singular
value decomposition was performed on matrix B, the value of which is USVT [44], where
U is an M × N orthogonal matrix, S is a M × N diagonal matrix, and V is an N × N
orthogonal matrix. According to least squares, the phase change rate can be expressed as:

v = VS−1UTδϕ (7)

3.4. GPS Processing Strategy

In order to obtain the results of high-precision positioning of GNSS data, we used
the GAMIT/GLOBK10.7 software package developed by the Massachusetts Institute of
Technology (MIT) and Scripps Institution of Oceanography. GAMIT/GLOBK software
has the characteristics of high precision, is a free and open source for scientific research
institutes, has continuous upgrading and updating, and has been widely used in high-
precision GNSS data processing at home and abroad [45]. Using precise ephemeris and
high precision starting points, the relative accuracy of the baseline solution can reach about
10 mm, and the accuracy of the short baseline solution can be better than 1 mm [46]. The
data processing procedure of GPS measurements include observation data preprocessing,
GPS baseline calculation, GPS network adjustment, and extraction of GPS station elevation
change information [47]. Firstly, prior to high-precision processing of GPS data, prepro-
cessing the original GPS observation data was necessary. We used GPS observation data
quality analysis software (TEQC) to analyze the quality of GPS original observation data.
Secondly, we converted the qualified GPS data into RINEX standard format data as the
input data of the high-precision GPS data processing software GAMIT/GLOBK. Thirdly,
combined with the data of the IGS global tracking station, we used GAMIT/GLOBK 10.7
software to calculate the baseline of GPS survey data, and adopted the double difference
relative positioning mode for baseline calculation [48]. In addition, in order to ensure the
accuracy of GPS baseline calculation, we used the IGS precise ephemeris and atmospheric
correction model to eliminate errors in orbit and signal propagation and ensure the accuracy
of GPS baseline calculations. The adjustment principle of GLOBK software can be found in
references [49,50]. Fourthly, we obtained the three-dimensional coordinates of the frame
points with the high-precision GPS elevation change monitoring software package (HPGP-
SADJ). In addition, the International terrestrial Reference Frame (2008) was adopted in GPS
monitoring of land subsidence in Beijing from 2009 to 2020 to reduce the error caused by
coordinate conversion calculation. Finally, based on the network adjustment results of GPS
measurement points, and the GPS monitoring results, we obtained the settlement amount
and development trend of each GPS measurement point of land subsidence in Beijing.
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3.5. Dataset Calibration for Different Platforms

While processing ENVISAT ASAR and Sentinel-1A/1B data using SBAS-InSAR tech-
nology, selecting the same coordinates of unwrapped reference points of the two datasets
is necessary. The specific operational process for processing involves transforming the
same selected geographical coordinates into phase coordinates. Due to the deformation
information captured by ENVISAT and Sentinel in different spatial regions, it was neces-
sary to extract overlapping regions of the two datasets. To obtain a development trend
of land subsidence over the period 2003 to 2020, we projected LOS direction deformation
from different sensors to the vertical direction and geocoded them in the same geographic
coordinate system. By using continuous GPS measurement and quadratic polynomial
interpolation, we referenced two measurement data to the same location and corrected the
offset in time to obtain GPS and InSAR observation data in the same temporal and spatial
reference frame.

Before calibration, due to differences in the incident angle and resolution of different
satellite data, land subsidence in the Beijing area was mainly vertical, and the deformations
in the east–west and south–north directions were relatively small [51]. Therefore, the LOS
deformation results can be projected in the vertical direction using the following formula:

VVertical =
VLOS
cosθ

(8)

where θ is the SAR satellite incidence angle. Notably, before the LOS deformation results
are projected, we need to resample the deformation acquired by different sensors to have
the same spatial resolution.

4. Results

4.1. Spatiotemporal Characteristics of Land Subsidence and Reliability Analysis

To obtain land subsidence information in Beijing from 2003 to 2020, we processed
SAR images from two different datasets employing SBAS-InSAR technology to obtain the
annual average deformation rate chart and cumulative deformation chart along the line
of sight (LOS) in Beijing during 2003–2010 and 2015–2020 (Figure 4). Figure 4a,b show
annual average deformation rate during 2003–2010 and 2015–2020, whereas Figure 4c,d
show the cumulative subsidence during 2003–2010 and 2015–2020. The deformation
result was positive when the ground objects moved closer to the satellite. Conversely, the
deformation result was negative when the ground object moved away from the satellite.
Here, the positive value in blue indicates movement towards the satellite (representing
lifting), and the negative value in red indicates movement in a direction away from the
satellite (representing deformation). Due to the deformation information being captured by
ENVISAT and Sentinel in different spatial regions, it was necessary to extract overlapping
regions of the two datasets.

The spatial evolution process indicated that the distribution of land subsidence in
Beijing was not uniform. The deformation in the central Beijing plain area was relatively
small, and the land subsidence in the northeast was more severe. Subsidence was mainly
observed in Changping, Haidian, Chaoyang, Shunyi and Tongzhou districts. Chaoyang,
located in the northeast of Beijing, and Tongzhou showed the most severe subsidence.
Furthermore, the subsidence of Chaoyang and Tongzhou districts tends to be contiguous.
In addition, the deformation rate in Beijing during 2003–2010 ranged from −128 mm/year
to 3 mm/year, and the maximum cumulative deformation was −808 mm, which was
located in Chaoyang. The average deformation rate in Beijing during 2015–2020 ranged
from −135 mm/year to 12 mm/year, with the maximum cumulative deformation being
−734 mm. The maximum cumulative deformation was also observed in Chaoyang, Beijing.
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Figure 4. Deformation results of land subsidence along the LOS in Beijing during 2003–2010 and
2015–2020. Mean deformation velocity during 2003–2010 (a) and 2015–2020 (b). Cumulative deforma-
tion during 2003–2010 (c) and 2015–2020 (d). Note: Q1–Q6 (c) and P1–P6 (d) represent the extracted
deformation feature points in typical subsidence area. The black marks in the figure are mainly
deformation zones. The colored dots from green to red represent InSAR values.

In addition, to verify the reliability and accuracy of the deformation results, 35 GPS
measurements were collected for verification. Due to the InSAR deformation result mainly
reflecting deformation along the LOS direction [52], according to the heading and incident
angle of the pixels corresponding to the GPS point, the GPS deformation result was uni-
formly projected to the LOS direction for checking of accuracy. GPS deformation in the line
of sight can be expressed as

dGPS = sin θ × sin
(

α − 3π

2

)
× dx + sin θ × cos

(
α − 3π

2

)
× dy + cos θ × dz (9)

where, α is the satellite heading angle and θ is the radar incidence angle. dx, dy and dz are
the deformation of GPS in the three-dimensional direction, respectively.
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There are three methods to verify the comparison between GPS measurement values
and InSAR deformation results, which are point-to-point verification, point-to-surface veri-
fication, and point-to-line verification. In order to quantitatively evaluate the deformation
monitoring accuracy obtained by InSAR and GPS, point-to-point verification was adopted
to verify accuracy. In order to highlight the correlation of deformation between InSAR
and GPS, we compared InSAR-derived deformation rates with GPS deformation results
in the LOS direction (Figure 5). The difference between the deformation results of InSAR
and GPS is less than 10 mm/a, and the root mean square error is 4.6 mm/a. In addition,
the correlation between INSAR and GPS is high with a correlation value of about 0.9. The
reliability of InSAR monitoring results is illustrated.

 
Figure 5. Correlation between GPS measurements and annual LOS deformation results of InSAR.
Black scatter points are the ENVISAT-derived results, and black straight line is the line fitted by
ENVISAT-derived results and GPS. Red scatter points are the sentinel-derived results, and red straight
line is the line fitted by sentinel-derived results and GPS.

4.2. Time Series Land Subsidence

To better analyze the long-term evolution characteristics of land subsidence in Beijing,
six deformation feature points at different positions were extracted from the subsidence
funnel in the accumulated deformation charts for 2003–2010 and 2015–2020. The location
distribution of each feature point are shown in Figure 4b,d. A time-series deformation
analysis was performed on the extracted feature points and the corresponding results are
shown in Figure 6. Moreover, since only Gaussian noise is permitted in deformation time
series, it is necessary to correct atmospheric error, orbit error and DEM error phase.
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Figure 6. Time-series deformation of typical feature points from (a) 2003–2010 and (b) 2015–2020.

The time-series of the extracted feature points during 2003–2010 and 2015–2020 showed
nonlinear subsidence at different velocities (Figure 6). From 2003 to 2010 (Figure 6a), land
subsidence along the LOS in Beijing continued to increase, and its land deformation rate
also increased, with the maximum accumulative deformation amount reaching −514 mm.
The deformation was relatively small from 2003 to 2005. After 2006, the amount of land
subsidence in Beijing increased gradually. Further, five observed deformation funnels ex-
panded over approximately seven years in scale and number. The largest settlement center
was located in Chaoyang. In addition, the time-series deformation diagram (Figure A1 in
Appendix A) further demonstrates the formation process of settlement funnels from 2003 to
2010. From 2015 to 2020 (Figure 6b), land subsidence continued to increase. The subsidence
in Chaoyang was the most severe, with the maximum accumulative deformation reach-
ing −472 mm. The deformation changed slightly from 2015 to 2016, and then gradually
increased from 2017 (Figure A2). Although the accumulated subsidence amount in Beijing
continued to increase from 2005 to 2020, land subsidence showed a slowing trend from
2015 to 2020. In analyzing the time-series of each feature point, the time-series subsidence
of Changping, Haidian, and Tongzhou, corresponding to the feature points Q1, Q2, Q3, Q4,
P4, and P6, showed obvious seasonal characteristics. Considering the time series of the Q1
feature point as an example, land subsidence showed a rebound trend from October 2006
to October 2007, and subsequently continued to sink.

The development process of land subsidence in Beijing included three deformation
stages: initial subsidence, serious subsidence and then gradual stability [53]. In the 1930s,
land subsidence was found in Xidan and Dongdan of Beijing. With the expansion of
industry in the city and over-exploitation of groundwater, several new settlement centers,
such as Changping and Shunyi, emerged in Beijing. At the same time, problems, such as
foundation settlement, buildings cracking and environmental pollution also occurred. It
brought great financial loss and harm to urban construction and peoples’ lives. In the case of
vertical deformation, in order to analyze the development and change of land deformation
in Beijing from 2003 to 2020, we projected LOS direction deformation from different sensors
to the vertical direction and geocoded them in the same geographic coordinate system.
In order to compare the time-series displacements of InSAR inversion with those from
GPS, we generated a buffer 100 m radius around the GPS reference point. On this basis,
we obtained the average displacement of all slow varying filtered phase (SFP) pixels in
the buffer. After referring the two measurements to the same location, and correcting the
offset in time, we obtained GPS and InSAR observations in the same temporal and spatial

111



Remote Sens. 2022, 14, 2242

reference frame. Finally, long-time and high-time resolution deformation time series were
generated. The specific strategies were as follows:

The time-series results of the ENVISAT ASAR, GPS, and Sentinel-1A/1B data are
shown in Figure 7. ENVISAT ASAR and Sentinel-1A/1B satellites have different incident
Angles, spatial resolutions, and selected reference points. To address the problem of
different reference points, we selected the same coordinate reference points during the
SBAS-InSAR process. The ENVISAT ASAR and Sentinel-1A/1B data had incident angles of
22.8◦ and 33.9◦, respectively. The deformation results obtained from the ENVISAT ASAR
and Sentinel-1A/1B data were mainly vertical. Therefore, directly projecting the LOS
deformation results obtained from ENVISAT ASAR and Sentinel-1A/1B data in the vertical
direction was appropriate. Moreover, we resampled the deformation results obtained from
the two datasets to 30m to ensure consistency of their spatial resolution. In this study, the
time-series of the two feature points P3 (Figure 8a) and P5 (Figure 8b) were selected for
calibration. Due to the fact that the ENVISAT satellite stopped operating around 2012 and
the Sentinel satellite began operating in 2014, there is no temporal overlap between the
two satellites. It was impossible to directly calibrate the time series deformation results
obtained from ENVISAT ASAR and sentinel-1a/1b data. Therefore, we used GPS data
and a polynomial fitting algorithm to calibrate the deformation results. The time-series
deformations of the ENVISAT, Sentinel-1A/1B, and GPS data were referenced to the same
position, and corrected and offset temporally. For the time-series deformation results
obtained from InSAR, we selected deformation points within 100 m of the GPS monitoring
points. ENVISAT ASAR and Sentinel-1A/1B data acquired on 10 December 2003 and
24 January 2015, respectively, were used as temporal data. Both had different temporal
datum for obtaining deformation results; therefore, the temporal datum of ENVISAT ASAR
and Sentinel-1A/1B had to be unified. The GPS data used for calibration were based
on the image from 17 October 2009. Thus, long time-series deformation was acquired
(as shown in Figure 8a,b) after rectifying the deformation results from 2003 to 2010 and
2015 to 2020. In the same time period, we found that, although the InSAR observation
method is not strictly registered in time with GPS, its deformation trend was consistent.
However, the time series was not continuous. To acquire the missing data from 2010 to
2015, we adopted quadratic polynomial fitting interpolation and a mean algorithm. The
resultant deformation results for the long time-series are shown in Figure 8c,d. We used
continuous GPS time series results to analyze the obtained results. It was found that the
deformation trend of this result was consistent with GPS. In addition, the calibrated long
time-series was consistent with the three deformation stages of land subsidence evolution
in Beijing. This was mainly demonstrated through rapid land subsidence after the over-
exploitation of groundwater in Beijing. As the South-to-North Water Transfer Project was
implemented at the end of 2014, the rate of land subsidence gradually decreased, and
gradually became stable. The maximum accumulative deformation amount at P5 reached
−1368 mm. In addition, on comparing GPS deformation results from 2009 to 2020 with
those of ENVISAT and Sentinel-1A/1B fused data, the temporal sequence results after
supplementing were found to be consistent with GPS trends through visual interpretation.
By observing the data supplemented by the quadratic polynomial fitting method and the
mean value algorithm, the inflection point of land subsidence in Beijing was found to
be located in the corresponding time span of the supplemented data. Quantitatively, the
inflection point occurred around 2015. The result obtained by the Mann-Kendall method
was consistent with the analysis results (Figure 9). The extent and magnitude of land
subsidence are related to geological structures [54–56]. Since geological structural changes
occur over a certain time period, the magnitude of land subsidence does not change quickly.
However, the rate of land subsidence can change with changes in groundwater [57,58]. The
South-to-North Water Transfer Project significantly reduced the amount of groundwater
exploitation. Thus, based on the analysis of the actual scenarios, the inflection point could
have occurred due to the implementation of this project, which slowed the deformation
rate of land subsidence to a certain extent.
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Figure 7. Time-series deformation results of typical feature points from 2003 to 2010.

 

Figure 8. Comparison of the corrected time series settlement with GPS observation results: (a,b) are
the corrected results of time series deformation at P3 station and P5 station, respectively. (c,d) are the
supplemented results at P3 station and P5 station during 2010–2015.
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Figure 9. Mann-Kendall test result.

5. Discussion

5.1. Relationship between Land Subsidence and Land Use Type in Beijing during 2003–2020

Land subsidence is a slow time-dependent subsidence process, which may have a slow
and correlated response to land use and cover [59,60]. In order to explore the relationship
between surface deformation and land use types in Beijing, we used previously obtained
information of surface deformation rate from 2003 to 2020 to explore the evolutionary
relationship between surface deformation and land use types in Beijing, based on land
cover data.

With rapid urbanization, the proportion of construction land in Beijing is gradually
increasing, whereas that of cropland is decreasing. To analyze the changes in land use types
in Beijing over a long period of time we acquired the distribution data of land use types in
Beijing from 2005 to 2020 over a five-year interval, and used ArcGIS software to perform
simple operations, such as reclassification and superposition analysis. Figure 10 shows the
land use types in Beijing from 2005 to 2020.

According to the distribution maps of land use types in 2005, 2010, 2015 and 2020,
change of land use type in Beijing was obvious during the study period, especially the
change in construction land. This type of land use is prone to land subsidence, because the
loads of construction land and human activities lead to subsidence of construction land
area [61]. The specific magnitude will be explained later.

In order to display the magnitude of change of land use types in detail during the
study period, we calculated the area proportion of each land use type, and the correspond-
ing statistical results are shown in Table 2. As time goes on, we found that construction
land expanded in space, while cropland continued to decrease. The proportion of con-
struction land increased by 5%, i.e., from 16.7% in 2005 to 21.8% in 2020. Further, during
2005–2020, the proportion of cropland decreased, whereas that of other land use types
remained unchanged.
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Figure 10. Land use types in Beijing from 2005 to 2020.

Table 2. Statistical results of different land types in Beijing (2005–2020).

Land Use and Cover
Proportion of the Corresponding Area

2005 2010 2015 2020

Constructionland 16.7% 19% 21.1% 21.8%
Cropland 31.2% 28.6% 26.5% 25.6%

Forest 47.6% 47.8% 48.4% 48.8%
Grassland 3.4% 3.6% 3% 2.4%

Water 1% 1% 1% 1.4%

Superposition analysis is a very important spatial analysis function in GIS. Under the
unified spatial reference system, in order to analyze the relationship between evolution
of land use type and land subsidence, we superimposed land use type data with land
subsidence results from InSAR based on the 2005–2020 land use type data, having a
resolution of 30 m. The land subsidence areas were mainly located in Changping, Tongzhou,
Shunyi, Haidian and Chaoyang. Therefore, we analyzed the proportion of each land
use type in these five land subsidence areas. The corresponding results are shown in
Figure 11. The proportion of forest, grassland, and water in each of the five land subsidence
areas was relatively small from 2005 to 2020, while that of cropland was the highest in
2005. However, over time, the proportion of cropland gradually decreased, and building
density continued to increase, resulting in the proportion of construction land in each
land subsidence area increasing, with the highest proportion observed in Tongzhou and
Changping. The settlement is mainly concentrated in construction land, and is pretty small
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in other land use types. Therefore, land subsidence is related to land use type. Compared
with other land use types, construction land is more prone to land subsidence.

 

Figure 11. Proportion of land use types in the five subsidence areas of Changping, Haidian, Shunyi,
Tongzhou, and Chaoyang.

Since changes in forest, grassland and water in the land subsidence area were pretty
small, in order to better analyze the development and change of land subsidence from
2003 to 2020, we focused on the area of construction land and subsidence area in the study
area during 2003–2020; the extent of change is shown in Figure 12. We also calculated the
corresponding number of pixels. From 2005 to 2010, the proportion of construction land
(the pixel count increased from 3,076,955 to 3,522,020) and land subsidence both showed
an upward trend, and the change in both showed a positively correlation. It shows that
construction land has an impact on land subsidence. Previous studies have proven that
overexploitation of groundwater was the major cause of land subsidence in the Beijing
plain. Groundwater is distributed in confined aquifers. Overexploitation of groundwater
makes it difficult for the aquifer to bear the weight of its upper layer. Solari et al. [62]
found that building load is a factor promoting high displacement rate. In the case of
overexploitation of groundwater, the large-scale construction of buildings aggravates the
rate of land subsidence. Therefore, the impact of construction land on land subsidence
is closely related to massive exploitation of groundwater. After 2015, although the area
of construction land continued to increase (the pixel count increased from 3,883,157 to
4,003,512), the proportion of land subsidence area decreased, which may be largely related
to the South-to-North Water Transfer project, implemented at the end of 2014. In addition,
Yang et al. [30] found that the use of long piles in high-rise buildings can effectively
reduce the settlement, and increase of building load does not cause the same proportion of
ground settlement. After effective measures were adopted in construction, the impact of
construction land on land subsidence in Beijing was relatively small or even nothing. The
reasons for the change of land subsidence1 rate with groundwater level will be explained
in the next chapter.
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Figure 12. Change extent of construction land and deformation.

5.2. Relationship between Land Subsidence and Groundwater in Beijing during 2003–2020

According to previous studies, land subsidence and groundwater in Beijing are closely
related [63]. We obtained groundwater depth and exploitation data from 2003 to 2020
from the Beijing Water Resources Bulletin [64], provided by the Beijing Water Authority.
The corresponding land subsidence results were also analyzed. The results are shown in
Figure 13.

 
Figure 13. Evolutionary trend of groundwater data and deformation results from 2003 to 2020.
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As shown in Figure 13, groundwater depth continued to increase from 2003 to 2010,
and the annual average groundwater depth from 2013 to 2020 showed an important turning
point around 2015; mainly reflected in slowing down of groundwater depth and a down-
ward trend around 2015. Further, groundwater exploitation gradually decreased from
2003 to 2020, while the land subsidence rate increased between 2003 and 2010. Although
groundwater exploitation decreased during this period, the decrease was not significant.
Thus, the conclusion is that extreme exploitation of groundwater may have aggravated land
subsidence. The changes in land subsidence rate from 2003 to 2015 in Beijing were not reg-
ular, but showed an overall increasing trend. The land subsidence rates were 106 mm/year
in 2004 and 120 mm/year in 2015, and the deformation rate in 2015 was 14 mm/year,
higher than that in 2004. To solve the problem of excessive groundwater exploitation
caused by large-scale demand for water resources by residents, China implemented the
South-to-North Water Transfer Project at the end of 2014. After the middle route of the
project was implemented, the demand for residential water shifted from groundwater ex-
ploitation to south-to-north water diversion; thus, preventing land subsidence to a certain
extent. During 2015–2020, the land subsidence rate in 2020 was 99 mm/year, which was
21 mm/year lower than that in 2015. Although the land subsidence rate increased from
2015 to 2017, it showed a declining trend after 2017, whereas an overall decreasing trend
was observed from 2015 to 2020.

Figure 14 shows monthly precipitation deformation during the study period. In
Figure 14, it can be observed that rainfall is mainly concentrated in the summer months
of May-August, and the rainfall in summer is higher than that in other seasons. On this
basis, we combined surface deformation with rainfall trends and analyzed the relationship
between them. During the concentrated rainfall period, there is an obvious rebound
deformation phenomenon along the LOS direction. We discovered that higher rainfall from
May to August 2006 reduced the need to use groundwater for farm irrigation, and, thus,
land subsidence rate showed a gradually slowing trend from October 2006 to March of
the following year. Meanwhile, rainfall in autumn and winter of the same year decreased,
so that land subsidence in the spring of the following year showed intensification. This
indicates that peoples’ demand for groundwater decreases after rainfall, which slows
down land subsidence to a certain extent. Ground settlement is negatively correlated
with precipitation.

5.3. Relationship between Land Subsidence and Geological Structures and Faults in Beijing

Beijing is located at the intersection of Yanshan, North China Plain, and Taihang
Mountain fault. Due to its complex tectonic environment and active neo-tectonic movement,
many active fault zones, including Huangzhuang-Gaoliying and Nankou-Sunhe in the
northeast, Shunyi-Qianmen-Liangxiang, and Nanyuan-Tongxian, have been formed in
the boundary area [65]. The sediments in Beijing are mainly distributed in the Beijing
Plain and vary in thickness from a few meters to several hundred meters. The presence
of a compressible layer is the elementary criterion of ground subsidence. The lithologic
conditions and structural characteristics of Beijing provide an inner geological background
for land subsidence, which mainly occurs in the quaternary strata. The sedimentary time,
genetic type, lithology and thickness of the quaternary strata affect land subsidence [66].
Previous studies have shown that when the groundwater level declines in Beijing, the pore
water pressure of the clayey aquifer decreases, and the effective stress in the soil increases,
thus resulting in compression deformation and land subsidence [67].
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Figure 14. Changes in precipitation from 2003 to 2010.

Section 4.2 shows the feasibility of using a quadratic polynomial fitting algorithm and
mean algorithm to supplement missing data required for land subsidence analysis. It not
only reduces the cost of using other expensive satellite data, such as ALOS-2 and Radarsat-2,
but also successfully reflects the changing trend of land subsidence in Beijing from 2010 to
2015. Moreover, the result obtained by the Mann-Kendall method was in good agreement
with the analysis results. However, the quadratic polynomial fitting algorithm and mean
algorithm are relatively simple. Therefore, it is necessary to combine groundwater change
and the subsidence model to connect long-term time-series deformation in the future.

6. Conclusions

Using Beijing as the study area, we studied spatiotemporal evolution characteristics
and their influencing factors for the time period from 2003 to 2020. First, 40 ENVISAT
images and 90 Sentinel-1A/1B images were selected, and SBAS-InSAR technology was
used to acquire LOS deformation rate charts and accumulated deformation charts dur-
ing 2003–2010 and 2015–2020 in Beijing. We then analyzed the spatiotemporal variation
characteristics of land subsidence during 2003–2010 and 2015–2020. This study provides
significant deformation information for the Beijing area. Furthermore, the results of this
study have important reference significance for stability analysis, large-scale engineering
construction, urban planning and comprehensive utilization of land resources in Beijing.
We can draw the following main conclusions from this study. Firstly, the distribution of
land subsidence in Beijing was found to be uneven. The settlement is mainly located in
the northeast and more stable in the middle. In the former stage, the maximum deforma-
tion rate was −128 mm/year, and the maximum cumulative deformation amount was
−808 mm, which is located in Chaoyang. In the latter stage, the maximum deformation rate
in Beijing was −135 mm/year, and the maximum cumulative deformation amount reached
was −734 mm. Using GPS measurements, we demonstrated the reliability of our InSAR
annual subsidence results. Secondly, modified surface deformation results were obtained
by using the quadratic polynomial fitting method combined with GPS data to report on the
evolutionary characteristics of surface subsidence during 2003–2020. The reported results
are consistent with those obtained by the Mann-Kendall method. On the other hand, it
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showed that, although the InSAR observation method is not strictly registered with GPS in
time, the deformation trend was consistent, which further demonstrated the reliability of
InSAR monitoring results. In addition, the calibrated long time-series was consistent with
the three deformation stages of land subsidence evolution in Beijing. Thirdly, compared
with other land use types, construction land is more prone to land subsidence and its influ-
ence on land subsidence is closely related to overexploitation of groundwater. Fourthly,
overexploitation of groundwater can aggravate land subsidence. The implementation of
the middle line project at the end of 2014 prevented land subsidence to a certain extent. In
addition, during the concentrated rainfall period, there is an obvious rebound deformation
phenomenon along the LOS direction. It shows that the seasonal variation in deformation
is related to precipitation. Finally, geological factors show that when groundwater level
declines in Beijing, the pore water pressure of the clayey aquifer decreases, and the effective
stress in the soil increases, thus resulting in compression deformation and land subsidence.
Therefore, land use type and precipitation have little influence on land subsidence. The
change of groundwater level is the main influence factor of land subsidence.
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Appendix A

 

Figure A1. Cumulative time-series deformation in LOS from 2003 to 2010. CY: Chaoyang District,
CP: Changping District, HD: Haidian District, SY: Shunyi District, and TZ: Tongzhou District.
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Figure A2. Cumulative time-series deformation along the LOS from 2015 to 2020. CY: Chaoyang
District, CP: Changping District, HD: Haidian District, SY: Shunyi District, and TZ: Tongzhou District.
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Abstract: As the northern boundary of the Tibetan Plateau, the long Altyn Tagh fault (ATF) controls
the regional tectonic environment, and the study of its long-term fault slip rate is key to understanding
the tectonic evolution and deformation of the northern Tibetan Plateau. In this paper, we measure the
fault slip rate of the western segment of the ATF using InSAR observations between 2015 to 2020. The
Multi-Temporal Interferometric InSAR analysis is applied to obtain the two-dimensional fault-parallel
and vertical displacement fields. The spatially dense InSAR observations clearly illustrate the
asymmetrical pattern of displacement fields across the fault. Constrained by our InSAR observations,
the fault slip rate and locking depth of the western segment of the ATF are inverted using four
different models in a Bayesian framework. The two-layer viscoelastic model incorporating lateral
heterogeneity of rheology in the lower crust indicates that the fault slip rate of the western ATF
is estimated to be 9.8 ± 1.1 mm/yr (at 83.8◦E across the ATF) and 8.6 ± 1.1 mm/yr (at 85.1◦E),
respectively, and the locking depth is 15.8 ± 4.3 km and 14.8 ± 4.9 km. Our new estimates generally
agree with the previous estimates of fault slip rate constrained by GPS observations. We conclude
that the contrast between the thickness of the elastic layer and the shear modulus of the Tibetan
plateau and the Tarim basin jointly contribute to the asymmetric interseismic strain accumulation on
the ATF.

Keywords: Altyn Tagh Fault; asymmetry interseismic strain; viscoelastic; InSAR

1. Introduction

The 1600-km-long Altyn Tagh fault (ATF) is the northern boundary of the Tibetan
Plateau (TP). It separates the rigid Tarim basin from the relatively weak TP [1,2] and
connects almost all orogenic belts and the thrust systems on the northern margin of the
plateau. Investigating the earthquake cycle behavior of this large left-lateral strike-slip
fault system informs us of the uplift process, stress transfer, and crustal deformation
mechanism of the TP [3–5]. For instance, the slip rate of the ATF has been a matter of debate
to discriminate among continental deformation models [6–8]. The large fault slip rate
(20–30 mm/yr) of the ATF supports the ‘lithosphere extrusion model,’ which proposes that
the India–Eurasia collision be accommodated laterally along large-scale narrow bounding
fault zones by lithosphere extrusion [2,9,10]. Whereas slow slip rate along the ATF supports
the ‘continuum model,’ which stresses that the India–Eurasia collision is partitioned by
numerous, isolated fault structures [9–11]. Determining the fault slip rate of ATF helps
to understand the interrelationship between the large-scale plateau boundary faults and
continental dynamics [12–14].

Due to the harsh environment and inconvenient transportation in most areas along
with the ATF, conventional geodetic measurements such as Global Positioning System (GPS)
and leveling are limited. Interferometric Synthetic Aperture Radar (InSAR) substantially
improves the temporal and spatial resolution of surface deformation via stacking individ-
ual interferograms, thus providing crustal deformation maps at a decadal scale [15–18].
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Wright et al. [19] processed the European Remote Satellite (ERS) images (1992–1999) across
the western ATF (79◦E) and obtained the interseismic fault slip rates of the Karakoram fault
and the western ATF. Their work pioneered the use of InSAR to obtain interseismic crustal
deformation. Elliott et al. [20] found that the ATF (85◦E) slips at 11 ± 5 (1σ) mm/yr, and
their derived line-of-sight (LOS) displacement field features an asymmetric pattern across
the fault. However, due to the phase decorrelation in interferograms around the Altyn
mountains, the LOS velocities show a sense of asymmetry to the north of the ATF, opposite
to that expected for the rigid Tarim basin. Zhu et al. [21] processed the Environmental
Satellite (ENVISAT) data spanning 2003–2010 at almost the same location as Elliott et al. [20]
but identified an asymmetric velocity pattern to the south of the ATF. Jolivet et al. [22]
processed InSAR images across the eastern ATF (94◦E) and observed apparent velocity
asymmetry on both sides of the fault. They linked the asymmetric strain pattern to rigidity
differences across the ATF or the geometry of a south-dipping fault. More recently, using a
combination of GPS and InSAR measurements at 86◦E, Li et al. [23] favored no asymmetric
strain pattern across the ATF. Several factors might contribute to the discrepancies among
previous studies. For example, vertical crustal deformation is neglected in the InSAR obser-
vations, which are more sensitive to vertical deformation than horizontal deformation. In
addition, simplified two-dimensional elastic models might not be reasonable for modeling
the interseismic strain.

Compared with previous ERS and ENVISAT satellites, the Sentinel-1 satellite has the
advantages such as wide coverage, a short revisit period, and free public access to the data
policy. Besides, Terrain Observation with Progressive Scans (TOPs) imaging technology is
adopted, ensuring a large area of ground monitoring and reducing the revisit period [24–26].
The Sentinel SAR data have been widely used in geological disaster monitoring [27–29].

In this study, we processed three ascending and three descending Interferometric
Wide swath (IW) mode images across the western ATF. We decomposed the ascending
and descending LOS maps to obtain the horizontal and vertical deformation fields. We
modeled the fault-parallel velocity profiles using different models to investigate possible
asymmetric interseismic strain across the ATF. Our results provide new insights into the
kinematic characters along with the ATF.

2. Data and Methods

2.1. GPS Data

He et al. [30] established a 400-km-long transect consisting of 17 GPS stations across
the ATF (86◦E) in 2009 (indicated by the red triangle symbol in Figure 1). Those campaign
GPS stations was routinely observed for 2–3 periods in 2009–2011. In December 2017,
Li et al. [31] re-measured the same GPS stations and processed those campaign-mode GPS
data together with data at seven regional Crustal Movement Observation Network of
China (CMONOC, https://iag.dgfi.tum.de/media/archives/prchina03/CRUSTAL%20
MOVEMENT%20OBSERVATION.htm (accessed on 8 February 2022)) continuous sites near
this region. We combined the GPS velocity field of Li et al. [31] with that of Wang and
Shen [32] by minimizing the velocity residuals within common sites. The combined GPS
velocity is referenced to a Eurasian frame. To highlight the relative motion of the crust on
both sides of the Altyn Tagh fault, we transformed the GPS site velocities into a Tarim-fixed
reference frame. The Euler pole in Wang et al. [33] is selected, then the GPS velocity field
relative to Tarim Basin is obtained by deducting the rotational motion and global motion of
the Euler pole from the whole velocity field data. A more detailed description of the GPS
data process can be found in Li et al. [31].
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Figure 1. Tectonic map of northern Tibet showing major faults, sutures, and InSAR data coverage. It
shows major faults (dashed line denoting buried faults, strike-slip faults in black). Cyan and dashed
cyan rectangles show the spatial extent of the ascending and descending Sentinel-1 images, respec-
tively. Beach balls in gray displaying the focal mechanisms are from the global CMT catalog [34]).

2.2. InSAR Data and Processing

Three ascending and three descending Interferometric Wide (IW) swath mode imagery
are selected, and three frames on each orbit are concentrated into a long strip. The coverage
of each strip is about 250 km × 700 km, and the observation period is from 2014 to 2020.
See Figure 1 for InSAR data coverage.

GAMMA software performs the InSAR processing [35], starting with Single Look
Complex (SLC) level data. For each track, we take the middle acquisition as the single
prime, then use the imaging geometry as the reference for the images of other dates,
and perform registration resampling after stitching until the registration accuracy of all
images relative to the reference is higher than 1/1000 pixels in the azimuth direction [36,37].
In this way, interferograms can be generated with all combinations among those scenes
without re-registration. The selection criterion of the interferogram pairs according to
the spatial baseline is less than 30 m, and the time baseline is more than 1 year and less
than 3 years, considering that the study area in the summer by the influence of the thickness
of active layers change with the melting permafrost [38–42], to eliminate the interferograms
between June to September [43,44], the final baseline network is shown in Figure A1. In
the interferometry process, a multilooking operation with 20 looks in the range direction
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and 4 looks in the azimuth direction is applied to suppress noises. The simulation and
removal of the topography phase are performed using the 30 m ALOS Global Digital
Surface Model ALOS World 3d-30 m (AW3D30) [45,46], and the two-pass InSAR approach
is used to produce differential interferograms, then the interferograms are filtered using
a power spectrum filter [47]. The rock area with a stable phase is selected as a reference
point and the region with coherence smaller than 0.2 is masked. The unwrapped phase is
derived from the filtered phase using a minimum cost flow (MCF) algorithm [48]. Finally,
the unwrapped phase is geocoded in the geographic coordinate system.

For ATF, an area with significant relief, spatial variations in hydrostatic delays are
strong, it is necessary to reduce the tropospheric effects carefully [49–51]. The traditional
atmospheric correction method based on the empirical linear correlation formula of phase
elevation may remove the concerned deformation signal [52–55], especially in this region
where long-wavelength deformation signals correlate with topography. For this purpose,
the stratified tropospheric delay is corrected by Generic Atmospheric Correction Online
Service (GACOS) [56], which is based on reanalysis data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) with a spatial resolution of 0.125◦ and a
temporal resolution of 6 h. The Iterative Tropospheric Decomposition (ITD) model is used to
separate the elevation-related signals and turbulence signals from the Zenith Tropospheric
Delay (ZTD) and interpolate this to generate high-resolution tropospheric delay maps,
and the high-resolution tropospheric delay is obtained by interpolation [56–58]. Compared
with other atmospheric delay correction methods, its effectiveness has been verified [59–61],
and it has been applied in many studies recently and achieved good results [62–64].

Detailed atmospheric phase correction steps of GACOS can be found in reference [65].
The interferograms corrected by the GACOS atmospheric correction are obtained by fur-
ther differencing between the unwrapped interferograms and the atmospheric correction
maps. A quadratic surface model and iterative least-squares method are used to remove
residual orbit errors. Here, the correction process is briefly described. Figure 2 shows the
12-day ascending track interferogram from 15 to 27 December 2019 (20191215–20191227).
Since the interval is only 12 days, it can be considered that the interferogram does not
contain a crustal deformation signal, while atmospheric behavior and orbital error play
a dominant role. Figure 2b shows the phase difference between two GACOS ZTD maps
obtained at the date of Sentinel-1 acquisitions and project the result into line-of-sight (LOS)
using the incidence angle of the SAR image. By only applying the GACOS corrections, the
corrected phase still shows an insignificant correlation with the topography, we observed
long-wavelength residual signals, and we also used the spatial information contained in the
cumulative displacement to determine the empirical correction on each interferogram [66].
Figure 2 shows an example where we have removed a quadratic ramp in latitude and a
linear ramp in longitude, a latitudinal cross dependency of the phase-elevation relationship,
and then apply the procedure to all the interferograms. Figure 2d shows the phase value
after correction. From the histogram, the original interference phase diagram and GACOS
simulation have two peaks (Figure 2g,h). After correction, the phase histogram has only
one peak value and is near 0 value, showing obvious atmospheric delays have been most
effectively corrected. However, we admit that there is still a left side heavy tail distribution
in the GACOS corrected phases, as shown in Figure 2i. As can be seen from the original
interferogram, this signal has always existed in the upper left corner of the graph, and we
interpret it as atmospheric turbulence signal, so neither GACOS nor the phase-elevation
empirical formula can remove it, but it can be removed by filtering in the subsequent
time-series processing.

The corrected interferograms are then imported into the poly-interferogram rate and
time-series estimator algorithm (Π-RATE) software package for time-series analysis [67–69].
Unlike other Small Baseline Subset (SBAS) methods, Π-RATE uses a minimum distance
spanning tree algorithm to pick out independent observations for time series analysis. In
this method, pixels that are not always coherent in different interferograms are employed to
calculate deformation rates to provide as much constraint on the rate as possible [70,71]. The
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observed values also include a random Atmospheric Phase Screen (APS), a temporal high-
pass filter followed by a spatial low-pass filter applied to mitigate atmospheric disturbances.
LOS velocity and its uncertainty are obtained using an iterative weighted least squares
approach on a pixel-wise basis.

Figure 2. Example of an empirical correction of the stratified delays after the GACOS correction.
(a) Interferogram for date pair 15–27 November 2019 (format: YYYYMMDD). (b) Modeled tropo-
spheric delays using GACOS product. (c) Reconstruction of the stratified delays considering an
empirical displacement-elevation relationship. (d) Corrected interferogram. (e) Digital Elevation
Model from AW3D30. (f) Phase/GACOS correlation. (g) Histogram for reconstructed GACOS.
(h) Histogram for original interferogram. (i) Histogram for corrected interferogram.

3. Results

3.1. InSAR LOS Velocity Field

To obtain a large-scale velocity field including several tracks, it is a common procedure
that ties the InSAR to the GNSS velocities like Weiss et al. [72]. However, due to the scarity
of GPS stations (most of the research area is uninhabited), the final result of tie to GPS
may be biased by removing the best-fit plane. Here we adopted a simple method; first, we
calculate the datum offset using the overlapped zone of the adjacent track, then the offset is
subtracted from the adjacent track to unify the datum. After removing the average offset in
each overlapping area between every two adjacent tracks in ascending and descending,
respectively, we obtain the merged LOS velocity fields. We project the GPS velocities into
the local satellite line-of-sight and calculate the difference from the InSAR velocities. Three
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GPS stations (AT13, AT14, and AT15) are chosen as reference sites to align those datasets,
as shown in Figure 3a,c. all the velocity maps were computed with respect to an average
value at the location of the three GPS stations. There is an obvious cross-fault deformation
gradient on both sides of the fault, and the color is relatively uniform on the south or north
side of the fault, but there is an obvious difference near the fault zone. The blue movement
is toward the satellite, and the red movement is away from the satellite, which is consistent
with a left-lateral motion across the fault.

 

Figure 3. Line-of-sight (LOS) velocities on (a) ascending (mosaic of tracks 85, 12, and 114) and
(c) descending (mosaic of tracks 92, 19, and 121) tracks. The solid white line indicates the position of
the velocity profile. Negative (blue) and positive (red) values indicate relative motion towards and
away from the satellite, respectively. (b,d) Ascending and descending LOS velocity along with PQ
profiles across the ATF. Red dashed lines represent the ATF. The blue squares with error bars are the
velocities projected into LOS within 100 km of the fault crossing profiles. The scattered points show
InSAR LOS velocities within a 10 km perpendicular distance from the profiles. The solid red lines
mark binned mean along with profiles. Grey shaded areas are topographic profiles along the PQ line
from DEM.

Figure 3b,d shows the cross-fault rate profile (PQ) in the ascending and descending
InSAR rate maps. From the profile of PQ, there are obvious velocity gradients across the
fault, and the LOS velocity difference is about 4–5 mm/yr. In the study area, the ATF
is the major fault, whereas the velocity profiles also reflect the deformation of the Altyn
North Margin fault (NATF) and Cherchen fault (CHEF). Such an effect may lead to an
asymmetrical pattern in the velocity profiles. The ascending and descending velocity fields
exhibit a clear transition, reflecting the left-lateral strike-slip fault motion.

We compare the LOS-converted GPS (no vertical velocities) profile (Figure 1) in
He et al. [30] at longitude 86◦E (Figure 3c,d) with our InSAR observations. The result
shows that the difference between them is distributed within ±1 mm/yr, comparable
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to InSAR measurement accuracy (about 1 mm/yr). The good agreement indicates the
reliability of our InSAR rate map.

3.2. ATF-Parallel and Vertical Surface Velocities

According to the previous tectonic results, considering the geometry, structural con-
tinuity of ATF, and the earthquakes, the whole Altyn Tagh fault system can be divided
into eight segments [73]. We are concerned about the Nierkule and Kurukuole segments
in this paper. The continuous Nierkule section from 82.75◦E to 84.5◦E has a length of
190 km, characterized by the development of a fault depression valley. The Kurukuole
segment from 84.5◦E to 87.2◦E has a length of about 230 km and an overall trend of NE70◦,
characterized by obvious linear characteristics and a large fault slip rate.

When InSAR observations are made in the northeastern margin of Qinghai-Tibet
Plateau, LOS deformation inherently contains a contribution from vertical deformation,
which may lead to deviation of crustal deformation interpretation based on InSAR data.
Therefore, after obtaining the velocity fields from different perspectives of the ascending
and descending orbits, we derive maps of horizontal and vertical average velocities by
combining different orbits. By combining two independent observation directions and
assuming that the third component is zero, we can project the information in the direction
of any two orthogonal basis vectors [74]. Here, we use the method in Lindsey et al. [75]:

[
Easinϕ + Nacosϕ Ua
Edsinϕ + Ndcosϕ Ud

][
DH
DV

]
=

[
LOSa
LOSd

]
(1)

where E, N, and U are east, north, and up components (subscript character a for ascending
and d for descending) of the unit look vectors for the satellite tracks considering the radar
incidence angle; DH and DV are horizontal and vertical surface displacement components;
ϕ is the local fault strike, and LOSa and LOSd are InSAR LOS displacements from the
ascending and descending tracks, respectively. Assuming that the horizontal movement
is N70◦E along the average strike of ATF, Figure 4 shows the fault-parallel and vertical
displacement results.

To compare the decomposed components with GPS results, GPS measurements are
projected in parallel and vertical fault directions and compared with InSAR velocity profiles.
Therefore, in addition to the PQ profile, an MN profile is added in the west, as shown
in Figure 4. Within 100 km on both sides of the MN profile, there are only a few GPS stations
on one side of the Tarim Basin.

The most prominent feature in the deformation field is the large-scale tectonic motion
across the fault boundary with sharp transitions. Superimposed on this tectonic pattern
are numerous nontectonic deformations mostly related to permafrost. Firstly, in addition
to the strike-slip rate of the ATF, the Cherchen fault zone is also reflected in the rate map.
Cherchen fault zone is a boundary fault in the northwestern part of the southeastern Tarim
Basin, which is approximately parallel to the ATF. The fault has been active for a long time
since the end of the early Paleozoic and has controlled the sedimentation and affected
the tectonic deformation in the southeastern Tarim Basin. The SAR data mainly cover the
western segment, with strong Cenozoic activity intensity and developed branch faults,
which can be divided into Cherchen deep fault and Cherchen main fault. The western
segment of the Cherchen fault bears not only the compressive stress caused by the west
Kunlun uplift but also the compressive stress caused by the Altyn uplift, so the fault activity
intensity is high, and branch faults are developed. At the same time, because of the multiple
compressive stress directions in the western section, the Cherchen fault plane is complex
and has the characteristics of strike-slip thrust activity. This characteristic is shown in
both vertical and horizontal decomposition rate fields, and similar characteristics are also
shown in Daout et al. [40]. In Figure 4b, there is a vertical component, which shows the
thrust characteristic.
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Figure 4. Horizontal and vertical surface velocities for the Altyn west segment region. (a) Fault-parallel
and (b) Vertical components of InSAR observations derived from a combination of ascending and
descending LOS directions (Figure 3), assuming a constant horizontal direction of motion of N70◦E.
The red line segment marks the beginning of the fault segment. (c) InSAR fault-parallel velocities
within 10 km of the Kulukuole segment crossing profile PQ are shown in (a). The blue squares with
error bars are the fault-parallel Global Positioning System (GPS) velocities, which location is shown
as a red triangle in (b). The solid red lines and purple dashed line mark binned mean and standard
deviations along with profiles, respectively. (d) Same as above but for a profile MN that crosses
Xiaoerkule segment of ATF, but GPS stations used are marked with a purple triangle in (b). The solid
white line indicates the position of the velocity profile, and vertical dashed red lines represent the
locations of the ATF. The green line represents the outline of the glacier, and the symbol G1 represents
Songzhiling, G2 for Muztag Feng, and G3 for Zangser Kangri. YHB-Yanghu Basin.

Secondly, obvious and steep displacement gradient changes are observed on the
Manyi fault trace, and the post-earthquake effect can still be observed. The post-earthquake
deformation seems to have a local pattern, with the deformation mainly concentrated at
about 50 km from the fault. The seismogenic fault of the Manyi earthquake in 1997 is
a strike-slip fault with a relatively simple structure. Using InSAR, the surface coseismic
rupture length is about 170 km, the maximum displacement is 7 m, and the overall strike
is N76◦E [76]. Some scholars have studied the post-earthquake mechanism of the Manyi
earthquake. Ryder et al. [77] found that both the standard linear body model and the
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afterslip model can be used to describe the post-earthquake deformation. It has been
24 years since the earthquakes occurred, and further research is needed to determine
whether it has gradually entered the interseismic stage from post-earthquake [78,79].

Finally, there are large areas with sporadic permafrost in the vertical rate map. The
annual average temperature of the Qinghai–Tibet Plateau is very low, forming a large
area of permafrost, which is the highest elevation and largest permafrost area in the
world [80–83]. Permafrost in the Tibetan Plateau is very sensitive to climate change and
unstable in nature [84]. In the cold environment, the soil is frozen, the water in the soil is
redistributed during the freezing process, and the structure and density of soil particles
change with the generation of pressure, resulting in frost heave. In a warm environment,
the frozen soil melts, the soil drains and consolidates under the action of gravity and
external load, and the soil layer compresses and deforms, resulting in settlement. These
are the characteristics of frost heaving and thawing settlement, and such changes will be
repeated and reversible with the alternation of seasons [85–87]. Thawing subsidence and
freezing uplift are reflected in the InSAR rate map [40]. Therefore, when selecting data
for time series processing, we try to avoid the summer with serious frozen soil melting to
minimize the impact [44]. Nevertheless, there are still large vertical deformation variables
near major glaciers and the Yanghu basin.

3.3. Locking Depth and Slip Rate

The screw dislocation model of Savage & Burford [88] in homogeneous elastic half-
space is used to retrieve the far-field velocity and the locking depth of ATF firstly. The
model assumes that the slip on the fault is zero (locked) to depth D but is an amount v0
everywhere below that depth. The part above locking depth cannot slide freely, the shear
strain will accumulate near the fault, and the strain value will increase with the distance
closer to the fault. For an infinitely long vertical strike-slip fault, the relationship between
slip rate and distance can be expressed by an arctangent function as follows [70]:

Vx =
v0

π
tan−1

( x
D

)
+ Vo f f set (2)

where Vx is observed fault-parallel velocity, v0 is the slip rate, x is the perpendicular distance
to the fault trace, D is the locking depth, and Vo f f set is the rate offset constant related to the
reference frame [89].

To solve the locking depth and slip rate along with other parameters given in Equation (2)
with the uncertainty in consideration, we use the Bayesian probability density method to find
the best-fitting fault parameters as well as their uncertainties [89–92]. Referring to previous
research results, a prior constraint is carried out on the range of parameter values. The slip
rate is constrained from 1 mm/yr to 30 mm/yr, the locking depth is constrained from 1 km
to 65 km, and all parameters are a uniform prior probability distribution over each range.
Based on the Markov chain Monte Carlo (MCMC) sampler [93,94], 600 initial walkers are
selected to explore the parameter space. For each InSAR slip rate profile across the fault, the
model ran over 1 million iterations and produced over 20,000 independent random samples
from which we estimate both the maximum a posteriori probability (MAP) solution and
corresponding parameter uncertainties. The MAP solution is taken as the optimal solution for
the model parameters.

The results of our analysis are shown in Figure 5. The best-fitting results (blue curve
in the figure) show that the slip rate of the Nierkule segment is 7 ± 0.1 mm/yr and the
locking depth is 18.1 ± 0.6 km. At the Kurukuole segment, the fault slip rate decreases
to 6.1 ± 0.3 mm/yr, and the locking depth becomes 11.7 ± 0.4 km. The results show that
the slip rate and locking depth change obviously from west to east and decrease gradually
from west to east.
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Figure 5. Probability distributions for profiles MN (a) and PQ (b). The red line and dot indicate the
maximum a posteriori probability (MAP) solution from the Markov chain Monte Carlo (MCMC)
analysis. We modeled fault-parallel velocity profiles along ATF, (c) for profile MN, and (d) for profile
PQ. The profile’s location is shown in Figure 4. The red dashed lines are the fault location of ATF.

4. Discussion

4.1. Strain Asymmetry

Over the last two decades, the proliferation of geodetic measurements, including
GPS and InSAR, has helped to document asymmetric patterns of cross-fault velocity on
major continental strike-slip faults [95–97], such as the San Andreas fault [98–100] and
the Anatolian fault [101,102]. Elliott et al. [20] and He et al. [30] observed asymmetric
patterns in the Altyn fault zone and excluded the possibility of offsetting the location of
the fault trace, meaning that the deep fault plane shifted southward for more than 10 km.
Therefore, the southward dip of the fault is nearly 45◦, which is obviously unreasonable
for the strike-slip ATF with a vertical fault plane. Jolivet et al. [22] found that the rigidity
contrast coefficient across the fault is 0.85 and concluded that such asymmetry is the joint
effect of a rigidity decrease from Tarim to Qaidam and a southward fault trace deviation.

The possible factors leading to the asymmetric velocities across the strike-slip faults
are summarized as follows: (1) the difference in medium properties on both sides of the
fault [103]; (2) the varying thickness of the elastic layer (hereafter Te) on both sides of the
fault [104]; (3) the rheological contrast in the lower crust and upper mantle across faults [105];
(4) the deviation of the fault positions relative to fault trace below the brittle layer [106].

The reason in part accounting for the above disputes is the scarcity of geodetic mea-
surements in some regions and the limited resolution of the diverse models. Constrained
by the high-resolution rate map, we establish different models to fit and explain the asym-
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metry of the velocity profile across the ATF. In Model A, we used the Savage–Burford
model in an elastic half-space (Figure 6a); Models B and C have two layers, and they are
both the Savage–Prescott coupling model but different in thickness of the elastic layer
(Figure 6b,c). Model D is the three-layer channel viscous model (Figure 6d), which is
discussed in Section 4.1.3.

Figure 6. Schematic diagrams of the (a) modified Savage–Burford model in elastic half-space [88].
Interseismic deformation is modeled as slip on a buried dislocation that slides at the plating rate, Vp.
(b) Savage–Prescott coupling model. Cyclic motion down to depth H and steady sliding below H on
a fault in an elastic layer over viscoelastic half-space. The slip rate on the fault is equal to the plate
velocity, Vp. (c) Same as model b, but considering the different thickness of the elastic layer across
the fault. (d) Three-layer channel velocity model geometries. The thicknesses of the elastic upper
crust and viscoelastic mid-crustal layers are H and h, respectively. Figure adapted from Figure 3
in Ref. [107].

4.1.1. Modified Half-Space Model

For the Model A, we calculate an asymmetric surface velocity field on each side of the
fault accounting for the medium difference on both sides of the fault [22]:

Vx

{ 2Kv0
π tan−1( x

D
)
+ Vo f f set if x > 0

2(1−K)v0
π tan−1( x

D
)
+ Vo f f set if x > 0

(3)

where K is the rigidity contrast, representing the rigidity ratio of the upper crust on both
sides of the fault, ranging from 0 to 1. If K = 0.5, it means that the rigidity of the upper
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crust on both sides is the same. Inversion results are shown in Figures 7a and 8a. The ratio
for rigidity of the upper crust in the Nierkule segment is 0.6/0.4, and in the Kurukuole
segment is 0.7/0.3, which means that the crustal rigidity on the north side of the fault is
about 0.5–1.3 times larger than that on the south side. At the same time, the resolved slip
rate of 6.8 ± 0.1 mm/yr is similar to the inversion result of the model without considering
the rigidity parameters. The locking depth of 17.2 ± 0.4 km is about 1 km shallower in the
Nierkule segment and 1 km deeper in the Kurukuole segment. Generally, the inversion
result with the addition of the asymmetry coefficient does not change much for the elastic
half-space model.

Figure 7. Inversion results of profile MN using the MCMC method. Results of (a) Model A, (b) Model B,
(c) Model C, (d) Model D.
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Figure 8. Inversion results of profile PQ using the MCMC method. Results of (a) Model A, (b) Model B,
(c) Model C, and (d) Model D.

4.1.2. Viscoelastic-Coupling Models

Both Model B and C are viscoelastic-coupling models [108]. It is assumed that an
elastic upper crust is overlying a viscoelastic (the Maxwell body) lower crust or upper
mantle, and there is a linear coupling relationship between the two layers.

v(x, z) =
Δu
πtR

e− t/tR

∞

∑
n=1

(t/tR)
n−1

(n − 1)!
Fn(x, z, D, H) (4)

The surface velocity of the viscoelastic model is related to the elastic layer thickness (H),
the earthquake recurrence period T, the relaxation time τM, and other parameters [109]. A
prior constraint of the unknown parameters is employed according to Table A1.

For a ground point with z = 0, the Fn is simplified as [107]:

Fn(x, z = 0, D, H) = tan−1
(

x
2nH − D

)
− tan−1

(
x

2nH + D

)
(5)
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In the case of model B, the best-fitting model parameters are shown in Figures 7b and 8b.
For the Nierkule segment (MN in Figure 4), the inferred long-term slip rate is 7.3 ± 1.1 mm/yr,
the locking depth is 15.8 ± 4.3 km, and the elastic layer thickness is 26.1 ± 2.2 km. For the
Kurukuole section (PQ in Figure 4), the optimal values are estimated to be 7.5 ± 0.3 mm/yr
slip rate, 14.8 ± 4.9 km locking depth, and 19.8 ± 4.3 km elastic layer thickness. The slip rate
obtained by this model is slightly larger than that obtained by the buried screw dislocation
model in elastic half-space, but it is still smaller than the long-term geological rate.

Model C is still a viscoelastic model adopted in [107]. The difference is that different
effective elastic layer thicknesses on both sides of the fault are considered. To reduce the
number of parameters in the inversion, the locking depth is fixed as the results from Model
B and no longer participates in inversion because of the trade-off between fault slip rate
and locking depth. We assume that the Tarim Basin and the TP have different effective
elastic thickness and shear modulus, respectively, and other prior conditions are the same
as Model B to inverse the difference in elastic layer thickness and shear modulus ratio on
both sides of the fault.

The inversion results are shown in Figures 7c and 8c. The long-term slip rate of the
Nierkule segment (MN profile inversion) estimated by the model is 9.8 ± 1.1 mm/yr, the
viscosity coefficient of the viscoelastic layer in the lower crust is 3.2 ± 3.3 × 1020 Pa s, and
the thickness of the elastic layer on the side of the Tarim Basin is 36.3 ± 6.1 km. The
thickness of the elastic layer on the side of the Tibetan Plateau is 18.3 ± 2.3 km, and the ratio
of the shear modulus on both sides is 1.8 ± 1.2. For the Kurukuole segment (PQ profile),
the inferred slip rate is 8.6 ± 1.1 mm/yr, and the viscosity coefficient in the lower crust
is 1.7 ± 2 × 1020 Pa s. The thickness of the elastic layer on the side of the Tarim Basin
is 34.8 ± 4.2 km, and that on the other side of TP is 18.8 ± 2.9 km. The ratio of shear
modulus on both sides is 1.5 ± 1.1, and the inversion results of fault slip rate by this model
are close to the long-term geological rate. The best-fitting model is shown in Figure 9.

 

Figure 9. Model prediction from four types of models constrained by the horizontal velocity profiles.
(a) for profile PQ and (b) for profile MN. The location of the profile is shown in Figure 4a. Blue, green,
pink, and yellow curves are model predictions from Model A, B, C, and D, respectively.

In addition, two other cases are also tested. One is that the thickness of the elastic
layer on both sides of the fault is the same, but the shear modulus is different (that is, the
ratio parameter of shear modulus on both sides of the fault is added based on Model B).
The test results showed that the long-term slip rate increased to 9.5 ± 0.5 mm/yr and
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9.3 ± 0.5 mm/yr, respectively. The ratio of the shear modulus of the upper crust on the
side of the Tarim Basin to that on the other side of TP is 0.5 ± 0.2 (see Figure A2), which
means that the rigidity of the upper crust on the side of Tarim Basin is weaker than that on
the other side of TP, which is not consistent with general understanding. In the other case,
the shear modulus on both sides of the fault is the same, but the elastic layer thickness is
different (the shear modulus ratio parameter is removed based on Model C). The test results
are shown in Figure A3. The inferred long-term slip rate estimated is close to model C,
which is 9.3 ± 0.2 mm/yr and 9.4 ± 0.2 mm/yr, respectively. However, the obtained
elastic layer thickness on the side of Tarim Basin is large, the inversion result for the MN
profile is 41.5 ± 2.5 km, and the inversion result for the PQ profile is 50.6 ± 3.4 km. The
elastic layer thickness on the side of TP does not change much with Model C. That is to
say, the big difference in elastic layer thickness on both sides of the fault can also cause
such asymmetry of deformation field in the Altyn fault zone. The study of Te based on
topographic and gravity data shows that the Tarim Basin has a moderate elastic layer
thickness, with Te values ranging from 20 to 60 km. The closer it is to the TP, the lower the
value is, and the higher value, the near center of the basin is [110–112]. Intermediate Te
values appear in the Qaidam Basin, filled with thick sediments. The Altyn and East Kunlun
regions obviously have low elastic layer thickness, with Te values ranging from 10 to 30 km.
Generally, large deformation also occurs in these weak zones, which are also the main
areas absorbing the shortening of the India-Euroasia continental collision [112]. It can be
considered that the addition of the shear modulus ratio parameter does not affect model
inversion. As a characterization of lithospheric strength, the spatial variation of effective
elastic thickness is of great significance to lithospheric deformation. In addition, because
elastic thickness mainly depends on crustal thickness, temperature, composition, etc., it
can be used to reflect the lateral changes of deep lithosphere structure, and the elastic layer
thickness on both sides of the fault has a great influence on the inversion results. Results
based on the four combined test results of models B and C and the previous research results
on the thickness of the elastic layer around the TP, we prefer the results of Model C. The
differences in elastic layer thickness and shear modulus on both sides of the fault jointly
cause the asymmetry in deformation across the ATF.

4.1.3. Three-Layer Model

The large-scale tectonic evolution of the Qinghai Tibet Plateau and its marginal areas
show that the weak ductile lower crust plays an important role. Therefore, Model D, fol-
lowing the practice of DeVries and Meade [113], establishes a simple three-layer viscoelastic
model on the side of the TP to restrict the viscosity and thickness of the lower crust of the
ATF, a low viscosity viscoelastic channel (H1) with a thickness of 20 km is embedded on
the right side between the elastic block and the bottom substrate. The two-layer elastic, vis-
coelastic model (as shown in Figure 6d) is still used on the side of the Tarim Basin. The inver-
sion results are shown in Figures 7d and 8d. The inferred long-term slip rate of the Nierkule
segment (MN profile) is 7.2 ± 0.2 mm/yr, and the viscosity coefficient of the lower crust is
2.9 ± 2.5 × 1020 Pa s, the viscosity coefficient of the embedded layer is 4.7 ± 4.1 × 1019 Pa s,
the thickness of the elastic layer on the side of the Tarim Basin is 47.6 ± 4.5 km, and on TP
side is 15.8 ± 6.5 km. For the Kulukuole section (PQ profile), the inferred long-term slip rate
is 6.9 ± 0.2 mm/yr, and the viscosity coefficient of the lower crust is 0.9 ± 0.6 × 1020 Pa s,
the viscosity coefficient of the embedded layer is 3.0 ± 0.6 × 1019 Pa s, the thickness of
the elastic layer on the Tarim Basin side is 37.4 ± 4 km, and the thickness of the elastic
layer on the TP side is 9.1 ± 0.7 km [114]. The geomagnetic data revealed the existence
of two huge middle and lower crustal low-resistance anomalous zones, which are con-
sidered as two weak material flows in the middle and lower crust, where thermal fluids
are abundant [115]. The purpose of Model D is to test whether there is a low viscosity
viscoelastic channel on one side of the TP. Compared with the Altyn collision orogenic belt
where the Model D section is located, the model may be more suitable for the Lhasa block
and Qiangtang terrane suture belt.
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4.1.4. Summary

In short, Model A is a half-space model with different rigidity on both sides of the fault,
highlighting the asymmetric pattern is only due to a lateral variation in rigidity. Models B
and C are viscoelastic-coupling models, where both the elastic thickness and shear modulus
are free parameters, highlighting the difference between elastic layer thickness and shear
modulus on both sides of the fault might contribute to the asymmetric strain pattern across
the western ATF. The Model D is a three-layer model in which a viscoelastic mid-crustal
layer is sandwiched between an elastic upper crust and an elastic upper mantle, aiming to
test whether the middle to lower crust may be weak.

Integrating the above comparisons and results, we conclude that the difference in
elastic layer thickness and shear modulus might lead to the asymmetric strain across the
ATF. Nevertheless, our current study could not distinguish which factor plays a dominant
role. Further studies are needed in the future.

In conclusion, there are differences in the physical properties of the media on the north
and south sides of the ATF, and the above results are verified by inversion. This difference
may be related to the collision orogeny between the Tarim block and the Altyn block. In
addition, there are some shortcomings in this paper. On the north side of the ATF, there
is a parallel Cherchen fault, which should be classified into the Altyn fault zone System
from the perspective of its distribution characteristics and kinematic characteristics. On the
south side, there are also several large faults whose deformation characteristics are shown
in the InSAR deformation field. The large-scale surface deformation signal observed by
satellites should be the interaction of these faults. Here, it is only simplified to be controlled
by a single fault, and the research of multi fault combination model can be strengthened in
the future.

4.2. Interseismic Slip Rate

As a boundary strike-slip fault, the fault slip rate of the ATF is useful to constrain the
current continental dynamic process [116], as well as to further explore the deformation
mechanism of the TP and quantitatively evaluate seismic risk. Therefore, a great deal of
research work has been carried out to obtain the slip rate of each segment of the ATF by
using Geodesy (GPS, InSAR) and geological methods.

The geological method is mainly based on accumulated displacements of the offset
landforms and the corresponding dating data to estimate the average slip rate of fault move-
ment. Xu et al. [117] and Meriaux et al. [6,118] obtained a slip rate of 17–20 mm/yr through
a detailed study of each segment of the ATF. Zhang et al. [119] and Cowgill et al. [120]
resummarized and analyzed previous research data and believed that the ATF slip rate
should be ~10 mm/yr. Cowgill et al. [120] assumed that the abandonment age for the
upper terrace was the offset time of the alluvial terrace scarp, and the calculated geolog-
ical slip rate was 9.4 ± 2.3 mm/yr. Zhang et al. [119] also recalculated the fault slip rate
from the abandoned age of upper and lower terraces and the activity of fault scarps and
yielded a result consistent with the slip rate observed by GPS and InSAR, which could
solve the mismatch between the geological slip rate and the slip rate obtained by GPS. Later,
Gold et al. [121] and Cowgill et al. [122] obtained geological slip rates of different sites along
with the ATF, which were basically at low slip rates. In the past 20 years, with the advance
in dating of the geomorphological markers, it seems that both the slip rate obtained by
geodesy [20,22,123–125] and the slip rate obtained by geology in recent years [123,125,126]
have been well consistent. That is, along most of the ATF, there is a uniform slip rate
of ~10 mm/yr. Our results show that after using the layered model, considering the ver-
tical variation of viscosity coefficient, the long-term slip rate is 9.8 ± 1.1 mm/yr, and the
estimated slip rate of ATF is consistent with the geological data. If the viscous effect of the
lower crust and upper mantle is ignored, it will lead to a misestimation of the slip rate.
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5. Conclusions

The fault slip rate and locking status of the boundary faults are important for under-
standing regional tectonic deformation and seismogenic potential. The rapid development
of spatial geodesy techniques (GPS and InSAR) provides technical support for obtaining
high-resolution and high-precision deformation maps, and studying fault slip rate and
locking depth during the earthquake cycle. Our key conclusions are summarized as follows:

1. Different models are used to invert the fault slip rate and locking depth of the west-
ern segment of ATF. In the viscoelastic model, the media on both sides of the fault
are divided into the elastic upper crust, viscoelastic lower crust, and upper man-
tle, and stratified lateral inhomogeneity parameters are considered. From the west
to east section, the inferred sinistral strike-slip rate of the ATF is 9.8 ± 1.1 mm/yr
and 8.6 ± 1.1 mm/yr, respectively, and the locking depth is 15.8 ± 4.3 km and
14.8 ± 4.9 km respectively. Based on the elastic model fitting, the left-lateral strike-slip
rates of the ATF are 7.1 ± 0.1 mm/yr and 6.1 ± 0 mm/yr, respectively, and the locking
depths are 18.1 ± 0.6 km and 11.7 ± 0.4 km, respectively. The results show that
ignoring the viscoelastic effect will significantly affect the estimation of fault slip rate
and locking degree;

2. The decomposition of the ascending and descending LOS velocities into fault par-
allel and vertical components in this paper shows that although the ATF is mainly
strike-slip, it is accompanied by a small amount of thrust, and the thrust component
gradually increases from west to east, reaching 1 mm/yr in the Altyn Mountains. If
the vertical deformation of InSAR data is ignored, it may bias the interpretation of
crustal deformation. Constrained by the fault parallel velocity field from west to east,
the sinistral strike-slip rates of the ATF obtained in this paper are 9.8 ± 1.1 mm/yr
and 8.6 ± 1.1 mm/yr, respectively, in line with the characteristics that the ATF is
in low slip rates and decreases gradually from west to east which is obtained by
GPS inversion;

3. The velocity profile across the ATF shows that there is asymmetry across the fault.
The results integrate the combined test results of different parameters of Models B and
C and the previous research results on the thickness of the elastic layer around the TP;
we believe that the difference between elastic layer thickness and shear modulus on
both sides of the fault jointly causes the asymmetry of interseismic velocity.

Author Contributions: Conceptualization, InSAR data processing, writing—original draft prepara-
tion, Y.L.; software, model and editing D.Z.; validation and supervision, X.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (41874027),
the National Key Technologies R&D Program (2018YFC1503605), and the Basic Scientific Funding of
the Institute of Geology, China Earthquake Administration (IGCEA1804).

Data Availability Statement: Copernicus Sentinel-1 SAR data for the years 2014–2020 was retrieved
from ASF DAAC in September 2020, processed by ESA (https://search.asf.alaska.edu, accessed
on 8 February 2022). The glacier outlines dataset is provided by National Cryosphere Desert Data
Center. (http://www.ncdc.ac.cn, accessed on 8 February 2022). The AW3D30 DEM is provided by the
Japan Aerospace Exploration Agency (JAXA) (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/
index.htm, accessed on 8 February 2022). The GACOS data can be downloaded from the website
(http://www.gacos.net/, accessed on 8 February 2022).

Acknowledgments: The conceptualization originates from Yunhua’s collaborating supervisor, Tim
Wright, at the University of Leeds. The author highly appreciated his help, advice, support, and for
his constructive suggestions. We are also grateful to Richard Walters (now at Durham University) and
Ekbal Hussain for their help in InSAR data processing when Yunhua visited the University of Leeds.
We thank Yanchuan Li for providing the GPS data. The figures in this study were generated using the
public domain Generic Mapping Tools (GMT) software [127] and the Matplotlib Python libraries.

Conflicts of Interest: The authors declare no conflict of interest.

143



Remote Sens. 2022, 14, 2112

Appendix A

Figure A1. Computed interferograms for the six Sentinel-1 tracks. The reference images are shown
with red dots.
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Figure A2. Maximum a posteriori probability (MAP) solution for profiles MN (a) and PQ (b). With
the model, it has the same elastic thickness but different elastic shear modulus on both sides of
the fault.

Figure A3. Maximum a posteriori probability (MAP) solution for profiles MN (a) and PQ (b). With
the model, it has the same elastic thickness on both sides of the fault.

Table A1. A Priori Bounds in inversion for ATF.

Parameter Minimum Maximum Priori Value

Fault slip rate (mm/yr) −20 20 10
Locking depth (km) 0 35 18

Velocity offset (mm/yr) 0 15 3
Recurrence interval (years) 800 1500 1000

Time since last earthquake (years) 100 100 100
Elastic thickness of FNE, H1 (km) 10 65 35
Elastic thickness of FSW, H2 (km) 10 65 20

Viscosity η 1016 1022 1019

Viscoelastic lower crust η2 1016 1022 1019

Rigidity ratio, μ1/μ2 0 5 2
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Abstract: Focusing on stratified tropospheric delay correction in the small-amplitude coseismic
displacement field of small-to-moderate earthquakes (<Mw 6.5), we develop a Simple-Stratification-
Correction (SSC) approach based on the empirical phase-elevation relationship and spatial properties
of the troposphere, via an equal-size window segmentation. We validate our SSC method using
23 real earthquakes that occurred from January 2016 to May 2021 with a moment magnitude (Mw)
ranging from 4.5 to 6.5. We conclude that SSC performs well according to the amount of reduction
in semi-variance and the root-mean-square value. This method primarily focuses on stratification
delay correction; thus, it is especially useful in regions with complex terrain, while it can mitigate
partial large-scale turbulence signals. We investigate three parameters that are empirically setup
in the correction working flow and inspect their optimal settings, when implementing SSC for
quick response after earthquake. Our method is ready to be integrated into an operational InSAR
processing chain to produce a reliable atmospheric phase screen map, which can also serve as an
auxiliary product to quickly and timely quantify stratification delays in coseismic interferograms.
Through improved accuracy of the coseismic displacement field, the focal mechanism could be better
constrained to facilitate the building and expansion of the geodesy-based earthquake catalogue.

Keywords: Interferometric Synthetic Aperture Radar (InSAR); coseismic displacement; tropospheric
delay correction; small-to-moderate earthquakes; geodetic earthquake catalogue

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) observations are sensitive to the
magnitude and location of earthquakes and is widely applied to recognize earthquakes with
small moment magnitude (Mw < 6.5) but still having observable surface deformation [1].
Many previous studies have found that InSAR-derived coseismic displacement can be used
to determine the location, depth, and coseismic slip distribution, providing more accurate
results than those constrained by traditional seismic data [2–7]. It is especially useful for
monitoring earthquakes that occurred in remote areas, where the density of the in situ
observation network is limited. Constrained by InSAR-derived coseismic displacements,
various algorithms and community tools have been developed to retrieve the kinematic
and dynamic source parameters of earthquakes [8–12], greatly extending our knowledge
of earthquake mechanisms. Additionally, the expansion of SAR satellite missions and
the development of robust processing techniques in recent years led to increasing interest
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in building a geodetic earthquake catalogue using InSAR datasets [13] that complement
earthquake relocation using traditional seismic observations.

However, the applicability of InSAR for deformation monitoring is limited by the in-
fluence of temporal decorrelation and electromagnetic path delay variations, both of which
reduce the sensitivity and accuracy of the InSAR measurements [14,15]. This is especially
severe with respect to small-to-moderate earthquakes, whose coseismic displacement could
be contaminated with interferometric noises, such as atmosphere noise.

The uncertainties in InSAR observations have a significant impact on the accuracy
of the fault slip models [2,16]. For example, InSAR-derived coseismic slip models often
contain uncertainties in geometry determination, particularly in constraining fault dip
orientation in cases of blind thrust faults [17]. Observations of such events can expand our
knowledge of the local fault systems, given that they often occur on unmapped buried
faults (e.g., [18]). The small-to-moderate earthquakes occur far more frequently than larger
events. Many of them occur in remote areas, where GPS observations are often unavailable.
With a simulated dataset Dawson et al. [2] demonstrated that InSAR is insensitive to Mw 6.2
earthquakes with a focal depth deeper than 10 km, and Mw 5.5 earthquakes occurred deeper
than 6 km. It provides a rough bound of magnitude and depth of the InSAR-detectable
coseismic deformation.

Our research will focus on those events with Mw ≤ 6.5. As a major factor impeding ac-
curate displacement measurement, atmospheric delay is caused by the refractivity changes
from a neutral atmosphere (mainly from the troposphere) and the ionosphere [19–22].
The artifacts due to ionosphere effects are correlated to radar sensor wavelength [15]. As
suggested by Funning et al. [23], tropospheric noise is the major factor that causes ambi-
guities in identifying deformation signals in Sentinel-1 interferograms. In this study, we
are concerned with the mitigation of tropospheric signals, which can be further classified
into turbulent mixing and vertical stratification [20], informed by the physical origin in a
neutral atmosphere.

Many previous studies that relied on various auxiliary tropospheric information
sources have achieved success in mitigating InSAR tropospheric delays. The atmospheric
phase screen can be obtained from dense Global Navigation Satellite System (GNSS)
network (e.g., [24,25]), multispectral remote sensing products [26], and numerical weather
prediction [27], or from reanalysis products (e.g., [28–30]), or combined outputs from above
sources (e.g., GACOS [31]). However, the external tropospheric correction schemes are
either limited by spatially coarse input (e.g., of the absence of a dense GNSS network) or
only effective for specific satellite missions (e.g., MERIS products or an ENVISAT mission)
or significantly dependent on the quality of input reanalysis products (e.g., European
Centre for Medium-Range Weather Forecasts (ECMWF) products).

Researchers have also made progress in separating atmospheric components from
interferometric phase-self, based on the spatial/temporal characteristics of tropospheric
signals. Focusing on coseismic displacement refinement, several studies adopted advanced
multi-temporal InSAR strategies (e.g., [32–34]) to correct atmospheric delays, considering
the temporally stochastic properties of the troposphere’s components. However, the
requirement of a large SAR dataset in these approaches implies that it takes several years to
calculate a long-term time-series, which in turn causes incoherence due to a large temporal
baseline. More importantly, stratification delays are seasonally correlated [35], contradicting
the underlying assumption in multi-temporal InSAR analysis.

Other previous efforts explored the separation of atmospheric delays from a single
interferogram. These studies included an investigation of the modeling of co-variance due
to atmospheric delays, to determine a reasonable weighting in the inversion as well as to
improve accuracy when estimating geophysical parameters using InSAR displacement
products [36,37]. Other algorithms focused on stratified delays and estimated correspond-
ing contributions from terrain dependence [38–42]. For those methods, some studies
applied a phase-elevation model directly to an entire interferogram (e.g., [39]), while other
studies applied segmentation (e.g., segmenting an interferogram into multiple windows) or
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spatial spectrum decomposition, and then performed the phase-elevation correction in each
segment. For example, windows-based algorithms may split images into multiple windows
with constant size [41,43], or adjust the window size based on local elevation gradients [44].
Lin et al. [38] developed a multi-scale approach via band-pass filtering to estimate and
remove the tropospheric delay components. Bekaert et al. [42] developed a power-law-
based phase-elevation model and applied a band filter to reduce the displacement signal
before modeling tropospheric phases. Murray et al. [40] segmented each interferogram
using a K-means clustering algorithm and constructed a tropospheric delay screen from
each cluster.

To improve the accuracy of the observed coseismic displacements and better serve
various geophysical applications, our study aims to develop a new tropospheric artifact
mitigation method, drawing on the empirical phase-elevation relationship and spatial vari-
ant atmosphere. In the following discussion, a brief introduction to 23 small-to-moderate
earthquakes in our test, InSAR datasets and the details of our proposed method will be
described. The quality of our correction algorithm will be subsequently validated by apply-
ing it to multiple earthquakes and comparing the results to GACOS products. Finally, we
discuss various parameter settings in our method and related them to atmospheric physical
properties. The discussion will help users to better apply our method and to understand
the composition of the modeled tropospheric phases.

2. Data and Methodology

2.1. Atmospheric Stratification Delay Estimation

The changes of tropospheric reflectivity between two SAR image acquisitions causes
a phase shift that would interfere with surface deformation signals. According to the
physical origin of tropospheric signal, interferometric phases include contributions from
the turbulent mixing component and the vertical stratification:

1. The turbulent delay component typically results from turbulent processes in the tropo-
sphere and leads to three-dimensional spatial heterogeneities in refractivity [20]. The
stochastic model of tropospheric spatial variability shows a power-law dependence
on frequency [36]. The contribution from this type of component could be reduced by
averaging independent interferograms [19].

2. Vertical stratified delay is caused by the different vertical refractivity profiles of two
acquisitions, assuming no heterogeneity within the horizontal layers [20]. In contrast
to the turbulent component, the vertical stratified delay is correlated with topography
and affects regions with mountainous terrain conditions [20,21]. Additionally, as
revealed by the ERA5 weather model dataset, the stratified delay features a seasonal
fluctuation [35]. Many methods rely on a suite of assumptions about the spatial-
temporal characteristics of InSAR signals (e.g., the linear progression of deformation
over time and the zero-mean Gaussian nature of atmospheric phases) that are often
not valid in cases of the stratification delay. This is of great significance for many earth-
quake studies using InSAR. The coupling in the temporal domain further complicates
the correction of stratification delays. Thus, the estimated surface deformation may
be ambiguous, and inappropriate correction may lead to an erroneous interpretation
of the earthquake deformation.

Mitigation of the stratification delay can be performed based on the empirical relation-
ship between the interferometric phase and elevation [31,38–40,45,46]. Cavalié et al. [39]
approximated the relationship as a linear function between height and phase:

φstra = K × H + C (1)

where K denotes the slope relates to topography H and phase ϕstra, and C denotes the
constant parameter. In order to better approximate the phase spatial variation at a higher
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part of the atmosphere, Bekaert et al. [41] described phase-elevation dependence using a
power-law decaying model:

φstra = A × (h0 − h)α (2)

where A is a scale factor that relates to the elevation, α is a constant factor describing the
power-law decaying, h0 is the reference height where the tropospheric phase converges to
zero (h0 suggested to be ~7–13 km [41]), and thus h0 − h denotes a height difference relative
to the reference height at each pixel.

2.2. Correction Working Flow

Focusing on the applications to earthquake studies, especially with respect to small-to-
moderate earthquakes, we introduced an empirical phase-elevation-model-based tropo-
spheric delay correction method, Simple-Stratification-Correction (termed SSC hereinafter).
Two challenging factors should be considered are (1) avoiding partial or complete removal
of real deformation signals, because the deformation may be correlated to elevation [38,40],
and (2) preparing for significant spatial variation of the tropospheric properties at a several-
kilometer scale [41,43,44]. Here, we masked the main deforming zone for each earthquake
and segmented the images into small windows to deal with these two problems. The
detailed steps are described below:

1. We masked the coseismic displacement area in individual interferograms. The mask
was generated based on the reported epicenter. We aimed to avoid participation of
pixels dominated by coseismic displacements in estimating phase-elevation model
parameters.

2. We then segmented each interferogram into multiple small patches. We cropped the
interferogram into M × 2N by M × 2N dimensions and the coseismic zone had to be
included in this step. We aimed to roll-change the window numbers by a factor of 2
in a more automatic manner. The choice of the number of segmented windows was
related to the scale of the estimated stratifications and the size of the earthquakes. We
found that a patch number of 8 or 16 in both range and azimuth was appropriate for
most of the earthquakes tested here. More scenarios on properly splitting windows
will be discussed in Section 4.

3. Each window contained a cluster of pixels, which were subsequently utilized to esti-
mate the phase-elevation model parameters via the empirical linear model (Figure 1).
For a window partially impacted by coseismic deformation, the percentage of de-
forming pixels was computed in conjunction a with previously determined mask of
the coseismic zone. The empirical threshold was 60%, meaning that if >60% pixels
were not masked, they were used to estimate the phase-elevation model parameters
in this window. However, if the percentage was smaller than 60%, this window
was recognized as a masked one and the corresponding parameters estimation were
skipped here.

4. The next step was to fill the masked windows that failed in the direct estimation in
the previous step. We calculated the semi-variogram structure from the input phase
over the non-deforming zone. This step aided the kriging solution in predicting the
model parameters at those windows dominated by coseismic deformation zones.

5. Based on the obtained sparse C (constant parameter) and K (scale parameter) grid, we
applied the kriging interpolation to calculate the values at all pixels. For each pixel,
we obtained a pair of K and C. Given the known height, we applied these resolved
values back to the empirical phase-elevation model to calculate φstra. Note that the
estimated parameters in the last step were assigned to be at the center of each window.
Therefore, after the spatial interpolation, it left an empty area that was not computable.
This appears in Figure 1b as the region outside the dashed box. The width of this zone
is the half of a segmented window.

6. Finally, we subtracted the modeled tropospheric delay from each unwrapped interfer-
ogram to obtain the corrected coseismic displacement map.
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Figure 1. Demonstration of the primary ideal of the developed stratification correction scheme with
the 25 August 2018, Mw 5.98 Javanrud, Iran, earthquake as an example: (a) is the interferogram subset
with the original unwrapped phase and segmented with an 8 × 8 window; (b) is the unwrapped
phase with coseismic zone masked; the dashed box denotes zones computed during interpolation;
(c) is the elevation of the corresponding area; (d–i) are phase-elevation model examples for a single
window. The red markers show the computed regression model; other colored markers denote
original phase-elevation pixel pairs and they are associated with the box in (a) by the same color.

To better understand the overall procedure of SSC, Figure 1 takes the M 6.0 earthquake
that occurred on 25 August 2018, near Javanrud, Iran, as an example and provides a visual
demonstration. The unwrapped interferogram are segmented into 8 × 8 windows. Six
phase-elevation model examples are shown in Figure 1d–i. For each plot, the color of the
marks corresponds to the box with the same color in Figure 1a. They have different terrain
conditions. The one in Figure 1f is partially masked, due to the nearby coseismic zone.

We calculated the standard deviation (SD) of the regional height inside each window
and the coefficient of determination (R2) for each linear regression. Both calculations were
annotated in the corresponding plots. Of the unmasked windows, 60% had height SDs
larger than 200 m, and 50% achieved R2 values larger than 0.5. This indicated that this
coseismic example had certain topography relief and the regression reached an ordinary
quality. Figure 1h,i shows two windows as examples over a flat area. According to the
distribution of these phase-elevation samples, the stratification relationship was weak here
and the main atmospheric impact of this local zone was a likely turbulence component.
Thus, the absence of terrain relief was a main factor that reduced the quality in the phase-
elevation modeling.

In summary, the key objectives of our SSC solution are: (1) estimating atmospheric
phase from the non-deforming pixels, implemented by introducing a proper mask for
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each earthquake; and (2) combining the phase-elevation dependence model with spatial
property of the troposphere.

Note that we have also tested with the power-low model and integrated that test
into SSC scheme. However, after the interpolation step (step 4), it failed in producing
a physically reasonable atmospheric delay map. We suspect that the parameters of the
power-law model are not likely correlated at the spatial scale we used in SSC. Therefore,
our subsequent real earthquake test was performed using the linear phase-elevation model.

2.3. Earthquake Catalog and Coseismic InSAR Observations

We tested our SSC method with a total of 23 earthquakes that occurred from January
2016 to May 2021 (Table 1). The moment magnitude ranged from Mw 4.8 to 6.5. We
excluded earthquakes that occurred on flat areas as we are focusing on the stratification
correction. We also discarded those earthquakes that occurred at the seashore, because
there were not enough coherent pixels surrounding the coseismic zones, thereby causing
difficulties in determining the phase-elevation dependence. All of these earthquakes were
observed by Sentinel–1 SAR images, and three of them had both descending and ascending
interferograms. The majority of the coseismic interferometric pairs were downloaded from
SARVIEW projects (https://sarviews-hazards.alaska.edu/, accessed on 4 March 2022).
SARVIEW is a fully automatic D-InSAR processing system for Sentinel-1SAR acquisitions;
it includes interferometric pair selection, phase filtering, unwrapping, geocoding, and other
post-processing steps [47]. The focal mechanism parameters of the 22 May 2016, Dingjie
earthquake and the 8 August 2017, Jinghe earthquake were obtained from Hou et al. [33]
and Gong et al. [48], respectively, while the others were obtained from Zhu et al. [13]. We
limited the temporal baseline of each interferogram to the shortest revisit period, generally
6–12 days, to maximize the coherence. It was also important to make sure that there were
enough pixels surrounding the coseismic zones to ensure the sufficiency of non-deforming
pixels in the atmospheric delay modeling.

Table 1. Information of earthquakes (Mw ≤ 6.5) tested in this study.

Index Date Location
Lat.

(deg)
Lon.

(deg)
Depth
(km)

Mw
Strike
(deg)

Dip
(deg)

Rake
(deg)

Patch
Number

1 20 January
2016

Menyuan,
China 37.72 101.68 12.50 5.87 129 47 77 8

2 8 February
2016

San Juan
Xiutetelco,

Mexico
19.67 −97.45 1.50 4.83 160 80 96 16

3 22 May 2016 Dingjie, China 28.48 87.61 2.40 5.58 188 43 −78 8

4 24 August
2016 Norcia, Italy 42.74 13.29 5.00 6.16 168 50 −83 8

5 17 October
2016 Zaduo, China 32.88 94.82 10.50 5.85 68 69 −104 8

6 26 October
2016 Visso, Italy 42.97 13.20 5.00 6.28 155 40 −91 8

7 1 December
2016

Huarichancara,
Peru −15.29 −70.84 5.50 6.18 150 44 −92 8

8 8 December
2016 Shihezi, China 43.79 86.33 19.00 5.82 280 61 80 16

9 5 April 2017 Torbat-e Jam,
Iran 35.83 60.44 8.92 6.14 124 42 62 8
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Table 1. Cont.

Index Date Location
Lat.

(deg)
Lon.

(deg)
Depth
(km)

Mw
Strike
(deg)

Dip
(deg)

Rake
(deg)

Patch
Number

10 # 27 May 2017 Golmarmara,
Turkey 38.73 27.79 5.00 5.58 304 60 −89 16

11 8 August 2017 Jinghe, China 44.26 82.72 14.05 6.19 90 42 89.56 8

12 1 December
2017 Kerman, Iran 30.78 57.34 7.45 6.08 119 51 80 8

13 25 August
2018 Javanrud, Iran 34.63 46.24 5.50 5.98 264 78 4 8

14 25 November
2018

Sarpol-e Zahab,
Iran 34.39 45.60 14.50 6.50 25 63 −173 8

15 25 February
2019 Yanling, China 29.47 104.50 1.67 4.83 174 64 80 8

16 22 March 2020 Kasina, Croatia 45.84 16.04 9.15 5.55 46 16 9 8

17 15 May 2020 Monte Cristo
Range, America 38.18 −117.93 9.84 6.44 76 73 −10 4

18 25 June 2020 Hotan, China 35.61 82.47 9.78 6.28 186 68 −89 8

19 # 22 July 2020 Western Xizang,
China 33.20 86.82 10.00 6.36 31 52 −80 8

20 29 December
2020 Petrinja, Croatia 45.43 16.22 5.00 6.48 120 78 174 8

21 # 3 March 2021 Tyrnavos,
Greece 39.63 22.15 6.00 6.39 292 35 −98 8 (Asc.)

6 (Des.)

22 18 April 2021 Bandar, Iran 29.72 50.60 6.50 6.10 306 60 81 8

23 21 May 2021 Dali, China 25.64 99.94 7.00 6.09 134 90 179 16
# These three earthquakes had coseismic observations on both the ascending (Asc.) and descending (Des.) tracks.

3. Results

Our proposed atmospheric delay correction approach, SSC, was evaluated using 23
earthquakes in nature. Three of them had coseismic observations on both the ascending
and descending tracks. Therefore, a total of 26 coseismic interferograms were used in the
real data validation. We calculated the statistics before and after the corrections, in order
to better quantify the effectiveness of such corrections. In order to compare the correction
quality, we also applied correction with the Generic Atmospheric Correction Online Service
(GACOS; http://www.gacos.net/, accessed on 4 March 2022). The GACOS product has
global availability and provides high spatial resolution and easy-to-implement zenith total
delay maps [31].

We took the epicenter shown in Table 1 as a priori information to mask the coseismic
deformation zone. We solved the phase-elevation dependence, as described previously. We
then reconstructed the atmospheric stratification delay for each coseismic interferogram
and removed that factor from the original unwrapped phase. The resulting corrected
coseismic displacement maps could be further used in slip distribution inversion in geo-
physical studies.

As shown in Figures 2 and 3, we took two earthquakes, the Mw 4.8 Mexico earthquake
and the Mw 6.5 Iran earthquake, as examples for our demonstration. These two earthquakes
had the minimum and maximum magnitudes in all our tested earthquakes, respectively.
These two figures demonstrated interferograms before and after the atmospheric delay
correction using our SSC method and the GACOS products. For these two examples,
both the GACOS and SSC reduced the noises, but at different levels. The residual signals
after SSC in the corrected interferograms (Figures 2c and 3c) were likely the localized
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phase noises (e.g., the small scale turbulence or localized stratification). The plots (d,e) of
Figures 2 and 3 are the scale and offset parameter maps after kriging interpolation. The
unit of digital elevation applied in the modeling was meter; therefore, Figure 2d shows a
relatively small value range. Both Figures 2f and 3f show the displacement differences along
a profile across the coseismic zone after the correction. Figures 2g and 3g are the histograms
calculated from non-deforming pixels that were identified using the same masks in SSC
implementation. They show an apparent change in the shape of displacement distribution,
where the SSC largely reduced the tropospheric delays. The correction results for all other
earthquakes are demonstrated in the Supplementary Materials (Figures S1–S21).

Additionally, we calculated the Root-Mean-Square (RMS) value before and after the
atmospheric correction over the non-deforming zone as a statistic factor to evaluate the
overall correction quality. This value was used to indicate an overall level of phase noise in
each interferogram. The result is summarized in Figure 4. After implementing our SSC,
most interferograms had a reduced RMS by 45%.

Figure 2. Examples of atmospheric correction: (a–c) are original, GACOS-corrected-, and SSC-
corrected interferograms of the Mw 4.83 Mexico earthquake;(d) is the scale factor map; (e) is the offset
factor map; (f) shows the phase changes along cross section P1–P2 in (a); (g) is the histogram of (a–c)
after masking the main coseismic zone.
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Figure 3. Examples of atmospheric correction: (a–c) are original, GACOS-corrected, and SSC-
corrected interferograms of the Mw 6.5 Sarpol-e Zahab, Iran, earthquake; (d) is the scale factor
map; (e) is the offset factor map; (f) shows the phase changes along cross section P1–P2 in (a); (g) is
the histogram of (a–c) after masking the main coseismic zone.

Figure 4. Statistics before and after correction. The Y-axis denotes the RMS value of each case with
a unit of radiance. The blue bars denote the image RMS before correction. The red bars denote the
image RMS after applying the method developed here. The yellow bars denote the image RMS after
correction by GACOS products.

We also calculated the semivarigoram to quantify the reduction in the noise magni-
tude at various spatial scales. The semivariogram depicts the spatial autocorrelation of
the sampled measurements and was used to quantify the atmospheric impacts in many
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previous studies (e.g., [20,40,49]). Note that we excluded pixels at deforming zones in the
calculation.

As shown in Figure 5, SSC performs well for all tested coseismic interferograms, with
a significant reduction in semi-variance. In this study, the SSC-corrected interferograms
showed a reduction of 5 to 20 km at an overall spatial scale. This was likely related to (1) the
spatial size of the coseismic zone; (2) the parameters used in the SSC correction, especially
the number of windows; and (3) the spatial scale of the regional terrain. Here, we took
the Mw 6.5 Sarpol-e Zahab, Iran, earthquake (Figure 3) as an example. After cropping the
interferogram into a 2N by 2N dimension, the subset was then split into 8 × 8 windows
and each window corresponded to a spatial size of ~17 km × 17 km. Note that we did not
expect to accurately reconstruct the real phase-elevation parameters below this spatial scale
(e.g., smaller than a single window size). Hence, the atmospheric signals related to local
terrain or turbulence signal with small spatial scale remained as residuals in the corrected
interferograms.

Figure 5. Semivariance of tested earthquake dataset before and after atmosphere correction.

Overall, the SSC method provided a satisfactory performance, validated by both semi-
variance and RMS. Another advantage of the SSC method was that it only used a single
interferogram. Compared to the multi-temporal-analysis-based tropospheric correction
methods (e.g., [32–34]), our SSC could perform as long as a single interferogram was
available. In this study, the GACOS products could also reduce partial atmospheric delays.
The inconsistent correction quality of GACOS may be caused by the input atmospheric
reanalysis products or by the GNSS meteorological products in each single case.

4. Discussion

In this section, we inspect the optimal parameter settings in SSC and its performance
dependence to regional terrain. We also discuss the link of the parameters of the empir-
ical phase-elevation model to the tropospheric contributions. This analysis help us in
understanding which part of tropospheric artifacts could be modeled.

4.1. Parameter Setting

To implement the SSC, there were three parameters that had to be empirically set
up. The first one was the size of image subset covering the coseismic zone, which was
cropped from the uncorrected unwrapped interferogram. This was not a critical step, and
the SSC could be implemented into an entire interferogram. This step was conducted in
order to improve computation efficiency and to exclude large water bodies (e.g., oceans).
To generate this subset, we required (1) enough land area surrounding a coseismic zone,
ensuring sufficient pixels for phase-elevation parameter estimation, and (2) an image subset
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having a dimension of M × 2N in width and length, ensuring that the number of windows
in both directions was ×2i ( i < 16).

The second empirically determined input was the mask of the coseismic zone. The
mask, or an equivalent method of reducing the estimation bias caused by coseismic de-
formation, could be realized via a spatiotemporal filter. For example, Murray et al. [40]
built a temporal low-pass filter to identify and mask deforming pixels. Bekaert et al. [42]
applied a band filter, which was constructed based on an initial analysis with InSAR
and GNSS, to avoid contamination of the tectonic slow slip deformation signal. Given
that the rupture length of small-to-moderate earthquakes with Mw ≤ 6.5 may be limited
to 10–20 km in length or less (e.g., an Mw 6.5 event may produce a rupture of about
20 km [50]), and concentrating on a known tectonic area from a seismically determined
epicenter, we built a rectangle mask for each earthquake. The spatial extent of the mask
was generally controlled by the earthquake’s magnitude and focal depth. In this study, the
mask zone was manually set up mainly based on USGS reported epicenters. The overall
length of the masks for all of the events here ranged from 3.3 to 33 km. Here, we also
proposed a potential treatment to generate a proper mask in an automatic way, to allow
for possible use in future applications. First, one can predict a spatial size of the coseismic
displacement zone with a facility’s (e.g., via U.S. Geological Survey Earthquake Hazards
Program) reported focal mechanism parameters. In other words, the size of the mask could
be considered as a known. Thereafter, one could search for an optimal masking location by
minimizing the standard deviation of un-masked pixel phases. As suggested by a previous
study [51], the average distance between an InSAR-reported epicenter and one from USGS
was 3.7 km for Iranian earthquakes, and 2.7 km for Japanese earthquakes. Therefore, the
search could be started from USGS-reported epicenters and bounded in a limited zone
within a several-kilometers radius.

The third consideration is the number of segmented windows. As shown in Table 1,
we preferentially segmented the interferogram into 8 × 8 window subsets for most of the
events. For a few earthquakes with smaller magnitudes or deeper depths, we applied
finer window segmentation (16 × 16). For earthquakes with similar moment magnitudes
(Mw 4.5–6.5), an 8 × 8 window segmentation was sufficiently effective. To guarantee the
correction quality, we suggest not splitting an image into very fine equal-size windows.
Because the number of pixels of a smaller window would be reduced, the chance of
them capturing stratification delays presented in areas with a sufficient signal-to-noise
ratio became smaller. This would reduce the robustness of the phase-elevation model’s
parameter regression. In addition, it would leave more “blind” windows sitting inside
the coseismic displacement zone. As mentioned above, for those windows containing
insufficient number of pixels to capture the atmospheric delay, calculation could only be
done by kriging interpolation instead of by direct phase-elevation regression. However, the
derived windows could not be too coarse; otherwise, a single window could be controlled
by a multiple trend of phase-elevation dependence.

4.2. Relationship with Regional Terrain

We compared the percentage of the RMS reduction value with the regional terrain
conditions in order to quantify the terrain’s dependence of correction quality. This helped
us to better understand its future application scenario. We took the RMS in Figure 4 and
calculated the corresponding reduction percentage in each case. Figure 6 visually demon-
strates the comparison of the mean and standard deviation (SD) of the regional elevation.
It shows that a reduction was >60% for most of the tested cases. For those with an average
elevation <2.5 km, the reduction ranged from 30% to 90%. For the other interferograms
with a higher average elevation, the correction percentage was >50%. However, we did
not see a correlation between the quality of correction and the regional terrain complexity
according to the SD of the height.
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Figure 6. The RMS reduction after SSC vs. average & standard deviation of the local elevation. The
X-axis has a unit of kilometer; the Y-axis is the percentage of RMS reduction; the error bar of each
marker is scaled by 5 km.

4.3. Regression Models and Parameters

As presented above, the linear approximation [39] between atmospheric delays and
local topography can be described by a scale factor and a constant. If we apply the phase-
elevation model to an entire interferogram, the constant parameter is only a shift of the
interferogram [45]. The estimation of phase-elevation model parameters is implemented
for each individual window in the SSC method. Thus, the estimated constant parameter is
an overall phase shift of each window. This shift describes the regional long wavelength
signals and should be smooth in space. Therefore, after the spatial kriging interpolation,
the whole map of the constant parameter approximates the long wavelength signal, which
is likely composed of both turbulence and stratification components, while the estimation
of the scale parameter (K in Equation (1)) describes the relationship between the phase and
the regional elevation. Both the de-correlated pixels and those pixels within the coseismic
zones should be pre-masked before the estimation.

After spatial interpolation of the K field, we obtained a pixel-by-pixel map that could
be used to model stratification within the interferogram subset. Therefore, according to
meaning of the parameter pair in the phase-elevation model and also the choice of spatial
interpolation in the SSC procedure, this method estimated not only stratification but also
some amount of large-scale troposphere phases.

As suggested by Bekaert et al. [41], the linearization assumption is only valid for the
lower part of the atmosphere. Bekaert et al. suggested a power-law model that predicted
that the phase delay would converge to zero at larger elevations. To integrate the power-
law model into our SSC method, we modified the power-law model by adding an offset
parameter ε (see Equation (3)).

φstra = A × (h0 − h)α + ε (3)

This is because the offset term can be used to represent the overall shift within each
window that is caused by the atmospheric delays with a large spatial scale, as discussed
above. Figure 7a–c shows the SSC resolved three parameters (scale parameter A, power
parameter α, and offset parameter ε) at each window. Figure 7d–f shows the results after
applying kriging interpolation. Figure 8 demonstrates the resulting stratification delay
maps based on the window-wise parameters and interpolated parameter maps. Figure 8a
indicates that the power-law model works well when each window is only associated
with a single set of estimated parameters. However, we could not produce a meaningful
phase-delay result (Figure 8b) when using interpolated parameter maps. Even the overall
spatial pattern after kriging remained similar to the original window-wise parameters (see
Figure 7). The failure here was likely because these variables in the power-law model remain
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invariant across a certain area; thus, they do not satisfy the spatially smooth assumption in
the SSC strategy.

Figure 7. Demonstration of power-law-based SSC method: (a–c) show the estimated window-
wise scale factor, the power factor, and the offset factor in Equation (3), respectively, and each
window is described by a single set of variables; (d–f) are parameter maps after spatial interpolation,
corresponding to the scale factor, the power factor and the offset factor, from left to right.

Figure 8. Resulting stratification delay maps based on the estimated power–law model parameters at
each window and the interpolated parameter maps. (a) reconstructed atmospheric delay map base
on power-law model with a single set of estimated parameters of each window; (b) reconstructed
atmospheric delays base on power-law model with interpolated parameters maps. Dashed box
denotes the masked zone. Solid boxes denote where power-law parameter estimation failed.

The dashed box in Figure 8 denotes the masked coseismic zone, while the solid box
denotes windows where the nonlinear inversion failed in finding optimal values. The
failure was mainly because the phase-elevation relationship was weak at these windows
(e.g., a flat zone). For example, the dark blue window in Figure 8 bounds a region identical
to that outline by the box with the same color in Figure 1a. Both the linear model and the
power-law model show unsatisfied performance in this area. The region in the red solid
box has some terrain relief (with a height SD of 180.0 m), while also failed in modeling
power-law model parameters. The difficulty was caused by the mixing of multiple phase-
elevation dependence in this window. Overall, the linear-model-based SSC method is
preferred and performed well on the tested coseismic cases.
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5. Conclusions

InSAR observations provide rich products for building a geodetic earthquake cata-
logue. Nevertheless, the accuracy and the capability of earthquake deformation observa-
tions are largely dependent on the atmospheric noisy level of the derived displacement
field. Focusing on the coseismic displacement field reconstruction for small-to-moderate
earthquakes (<Mw 6.5), we developed a Simple-Stratification-Correction (SSC) method
based on the phase-elevation relationship and spatial smooth property of the troposphere.
SSC employs a windows-based segmentation strategy, given its simplicity and efficiency.
By applying the spatial-correlation property of atmospheric delays, SSC allows for the
phase-elevation dependence variant in space. The developed SSC method is especially
useful for zones with complex terrain, where the stratification delay is most severe. Our
method is also helpful in mitigating some large-scale turbulence signals, according to the
property of the offset term in the phase-elevation model and its usage in the SSC approach.

In SSC method, a proper mask is necessary to exclude impacts from the coseismic
signal in the tropospheric phase modeling, which can reduce the bias from coseismic
displacement signals. We also determined the optimal parameter setting to implement
SSC for earthquake events with moment magnitude (Mw) 4.5 to 6.5. SSC only needs
a single interferometic pair, rather than an interferogram stack, and thus can provide a
quicker response after an earthquake. A single interferogram can maintain better coherence
with the shortest available temporal baseline. This method can also be integrated in time
series analysis that would have a broad implication for other tectonic studies [52,53], e.g.,
assessing interseismic displacement [54,55]. The key to initiate such applications with SSC
is to provide a proper mask or other analysis schemes (e.g., integrating it in a small baseline
approach [56]) that can reduce the bias in atmospheric signal modeling.

Overall, by improving the accuracy of the co-seismic displacement field, one could
retrieve the seismogenic parameters with better quality that facilitate the building and
expansion of the geodetic earthquake catalogue. Thus, it allows us to extend the capacity
of InSAR in detecting and monitoring small earthquakes, increasing the number of the
geodetic-based earthquake studies, and improving the quality of geodetic earthquake
catalogues. Our method is ready to be integrated into an operational InSAR processing
chain, e.g., one can produce an additional atmospheric phase screen map via SSC as an
auxiliary product to help users understand the amount of stratification delays in each
coseismic interferogram.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14061425/s1. This file contains Figure S1–S21: Interferograms
before and after tropospheric corrections of the rest 21 earthquake events tested in this study are listed
here. Figure S1: Correction result for the Mw 5.87 earthquake in Menyuan, China, on 20 January
2016. Figure S2: Correction result for the Mw 5.58 earthquake in Dingjie, China, on 22 May 2016.
Figure S3: Correction result for the Mw 6.16 earthquake in Norcia, Italy, on 24 August 2016. Figure
S4: Correction result for the Mw 5.58 earthquake in Zaduo, China, on 17 October 2016. Figure S5:
Correction result for the Mw 6.28 earthquake in Visso, Italy, on 26 October 2016. Figure S6: Correction
result for the Mw 6.18 earthquake in Huarichancara, Peru, on 1 December 2016. Figure S7: Correction
result for the Mw 5.82 earthquake in Shihezi, China, on 8 December 2016. Figure S8: Correction
result for the Mw 6.14 earthquake in Torbat-e Jam, Iran, on 5 April 2017. Figure S9: Correction
result for the Mw5.58 earthquake in Golmarmara, Turkey, on 27 May 2017. Figure S10: Correction
result for the Mw6.19 earthquake in Jinghe, China, on 8 August 2017. Figure S11: Correction result
for the Mw6.08 earthquake in Kerman, Iran, on 1 December 2017. Figure S12: Correction result
for the Mw5.98 earthquake in Javanrud, Iran, on 25 August 2018. Figure S13: Correction result for
the Mw 4.83 earthquake in Yanling, China, on 5 February 2019. Figure S14: Correction result for
the Mw5.55 earthquake in Kasina, Croatia, on 22 March 2020. Figure S15: Correction result for the
Mw6.44 earthquake in Monte Cristo Range, America, on 15 May 2020. Figure S16: Correction result
for the Mw6.28 earthquake in Hotan, China, on 25 June 2020. Figure S17: Correction result for the
Mw 6.36 earthquake in Western Xizang, China, on 22 July 2020. Figure S18: Correction result for
the Mw6.48 earthquake in Petrinja, Croatia, on 29 December 2020. Figure S19: Correction result for
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the Mw 6.39 earthquake in Tyrnavos, Greece, on 3 March 2021. Figure S20: Correction result for the
Mw6.10 earthquake in Bandar, Iran, on 18 April 2021. Figure S21: Correction result for the Mw6.09
earthquake in Dali, China, on 21 May 2021.
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Abstract: An earthquake of moderate magnitude (MW 6.1) occurred in Yangbi County, Dali, Yunnan
Province, China, on 21 May 2021. Compared to strong earthquakes, the measurement of the deforma-
tion fields of moderate earthquakes is more susceptible to errors associated with atmospheric, orbital,
and topographic features. We adopted a new time-series InSAR method to process preseismic and
postseismic Sentinel-1A SAR time-series images and separated the coseismic deformation signals
from various error signals. This method uses preseismic time-series interferograms to estimate the
spatially correlated look angle error induced by the digital elevation model and the atmospheric and
orbital errors in the master image. The preseismic and postseismic time-series interferograms were
then segmented for spatio-temporal filtering to provide a precise estimate of the atmospheric and
orbital errors in slave images. Such time-series processing accurately separates various errors from
the coseismic deformation signal and prevents the coseismic deformation signal from being included
as noise in the error estimation during filtering. Based on this approach, we effectively eliminated
the masking of the deformation signal by the errors and extracted coseismic deformation field of the
Yangbi MW 6.1 earthquake with high precision. The maximum LOS displacement in the ascending
and descending tracks were determined to be −74 and −62 mm, respectively. Subsequently, we used
the Geodetic Bayesian Inversion Software to invert the fault geometric parameters of this earthquake,
and based on this inverted the rupture slip distribution using the least-squares method. The results
showed that the fault orientation is 133.43◦, dip angle is 76.98◦, source depth is 5.5 km, fault sliding
mode is right-lateral strike-slip. The moment magnitude (MW) was calculated to be 6.07.

Keywords: Yangbi MW 6.1 earthquake; time-series InSAR; error elimination; high-precision coseismic
deformation; fault inversion

1. Introduction

According to the China Earthquake Networks Center (CENC; https://news.ceic.ac.
cn/, accessed on 1 July 2021), an earthquake of a magnitude of MS 6.4 occurred in Yangbi
County, Dali Prefecture, Yunnan Province, China, at 21:48:34 Beijing time on 21 May 2021.
The epicenter of this earthquake was located at 25.67◦ N and 99.87◦ E with a focal depth
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of 8 km. The location of the epicenter is shown in Figure 1. The United States Geological
Survey (USGS) and Global Centroid Moment Tensor (GCMT) determined the moment
magnitude of this earthquake as MW 6.1. Multiple aftershocks followed the mainshock.
The earthquake most seriously impacted Yangbi County; however, Kunming, Baoshan,
and Lijiang were also significantly affected. The earthquake caused 3 deaths, 32 injuries,
and 192 collapsed houses. Earthquakes of moderate magnitude not only pose a threat
to human life but can also initiate a series of disasters such as tsunamis, landslides, and
collapses. The acquisition of accurate and reliable coseismic deformation fields can allow
the construction of accurate earthquake inversion models and the study of seismogenic
mechanisms. Moreover, it can provide more objective and high-resolution earthquake char-
acteristics, supporting scientific study and facilitating disaster assessment and emergency
rescue planning.

Figure 1. Regional tectonic background of Yangbi and the surrounding areas. The red and blue beach
balls represent the focal mechanisms of the 2021 Yangbi MW 6.1 earthquake provided by the Global
Centroid Moment Tensor (GCMT) and the United States Geological Survey (USGS), respectively; the
gray lines denote the major active faults in this area; the yellow star is the epicenter provided by the
China Earthquake Networks Center (CENC); the green dots and the purple dots indicate foreshocks
and aftershocks, respectively.
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Coseismic deformation is routinely measured using differential radar interferome-
try (D-InSAR). In 1993, Massonnet successfully extracted the coseismic deformation of
the 1992 Landers earthquake using differential interferometry with ESR1/2 data [1]. The
use of D-InSAR has gradually increased and can facilitate large-scale and dense measure-
ment of crustal deformation [2,3]. When extracting the coseismic deformation field of
strong earthquakes that have large magnitudes and a wide range of deformation, the
D-InSAR technique can obtain satisfactory results, allowing the analysis of the seismogenic
mechanism [4]. However, the conventional InSAR technique has inherent error sources,
including orbital error, topographic error, and atmospheric delay, which have a significant
impact on the extraction accuracy of coseismic deformation signals [5]. Although the
D-InSAR technique has been improved over time, it still cannot accurately eliminate certain
residual errors which affect the accuracy of the deformation signals, fault slip models, and
subsequent analyses.

The time-series InSAR was introduced in the late 20th century [6]. By analyzing the
time and space variations of different phase components using time-series SAR data, several
main phase components, such as the terrain residual phase, atmospheric effect phase, and
deformation phase, can be identified. Although these phases cannot be distinguished on
a single interferogram, the use of time-series InSAR can enable this and improve the accu-
racy of the deformation signals [7,8]. Ferretti proposed permanent scatterer interferometry
(PS-InSAR) in 1999. PS-InSAR interpolates a feature target (PS candidate) that can maintain
a high-level coherence over a long period of time, thereby obtaining phase information
for the entire interferogram and precisely separating the atmospheric phase delays from
other components to obtain fine deformation information [9,10]. The Stanford Method
for Persistent Scatter (StaMPS), developed at Stanford University, is a mature algorithm
for the PS-InSAR technique that directly uses a three-dimensional (3D) spatio-temporal
algorithm for phase unwrapping and separates deformation signals and other noise signals
by spatio-temporal filtering [11,12].

However, it is not common to apply time-series InSAR methods for the extraction
of sudden deformation fields. Using time-series SAR images for coseismic deformation
extraction has yielded better results than conventional D-InSAR. In 2020, Lei et al. proposed
an MT-InSAR method to distinguish coseismic deformation from satellite orbit error using a
set of pre-seismic SAR images and a post-seismic image; they also verified the effectiveness
of the method using the Dangxiong MW 6.3 earthquake on 6 October 2008 as a case
study [13]. They concluded that the inaccurate elimination of topographic and orbital errors
reduced the accuracy of coseismic deformation measurements and affected subsequent
fault-slip inversions. In 2021, Luo Heng et al. proposed a stacking method using time-series
SAR images to extract the coseismic deformations of three small-to-medium earthquakes on
the Qinghai–Tibet Plateau and in the Tienshan region; the method effectively suppressed
atmospheric phase screens and extracted weak coseismic deformation data at the sub-
centimeter level [14]. To accurately extract coseismic deformation fields, long time-series
interferograms are used to eliminate some disturbance terms that cannot be removed using
single interferograms. Therefore, time-series InSAR methods can enable high-precision
coseismic deformation field extraction.

Some studies have already studied the coseismic deformation field of the Yangbi
MW 6.1 earthquake [15,16] with conventional D-InSAR or GNSS. The main distinguishing
feature of our study is that we used a time-series InSAR processing method to extract more
accurate deformation data for this event. A traditional time-series InSAR procedure cannot
effectively extract the coseismic deformation field because of the existence of a sudden
deformation signal. Here, we improved it by processing the pre-seismic and post-seismic
time series interferograms separately. Such processing improved the accuracy of error
estimation and prevented the coseismic deformation signal being filtered out and excluded
as an error. We successfully extracted the coseismic deformation signal of the Yangbi
MW 6.1 earthquake from long time-series Sentinel-1A SAR images. With the line-of-sight
(LOS) coseismic deformation displacement of the ascending and descending tracks as
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the constraint, we inverted the fault geometry parameters and slip distribution of the
2021 Yangbi MW 6.1 earthquake to analyze the underlying seismogenic mechanism of
this earthquake.

2. Tectonic Background

The Yangbi MW 6.1 earthquake occurred in Yangbi County, Dali, Yunnan Province,
China. This area is located on the western edge of the Sichuan–Yunnan rhombic block.
which in turn is situated near the southeast of the Tibetan Plateau. The strong crustal
movement of the Tibetan Plateau has a considerable influence on the region’s geological
and tectonic activities, with intricate fault systems and occasional earthquakes [17]. Owing
to the long-term collision and compression of the Eurasian and Indian plates, destructive
geological disasters often occur in Yunnan Province [18]. Multiple active faults are present
within the Sichuan–Yunnan block and most are strike-slip fault [19]. The Yangbi MW 6.1
earthquake and its seismic sequence occurred along a secondary fault in the western part of
the Weixi–Qiaohou–Weishan fault zone located at the western edge of the Sichuan–Yunnan
rhombic block. The slip modes of the northern and middle sections of this fault were mainly
right-lateral strike-slip. As shown in Figure 1, various fault zones are staggered near the
epicenter of the earthquake, including the highly active Jinsha River Fault and Lancang
River Fault. The Jinsha River Fault Zone is complex and consists of three major faults:
the Jinsha River Main Fault, Jinsha River West Boundary Fault, and Jinsha River West
Branch Fault, which are surrounded by several secondary faults [20]. The overall trend
of the fault zone is in the north–south direction, and the main sliding mode was a right-
sliding type with a high sliding rate. The Red River Fault Zone has undergone long-term
tectonic deformation and evolution, and its movement is currently mainly right-lateral
strike-slip [21]. The Weixi–Qiaohou–Weishan Fault is a pivotal part of the Jinsha River Fault
and the Red River Fault, and no significant earthquakes have been recorded in its history.
However, in recent years, small- and medium-sized earthquakes have occurred frequently
near this fault zone, and the Yangbi MW 6.1 earthquake was the strongest earthquake in
this fault zone in recent decades.

According to historical earthquake information from the CENC, eight earthquakes
with magnitudes greater than MS 5.0 occurred in the area shown in Figure 1, five of
which occurred within Yangbi County, and the remaining three were included an MS
5.0 earthquake which occurred at the junction of Yangbi County and Eryun County in
2013, an MS 5.0 earthquake in Yunlong County in 2016, and an MS 5.1 earthquake in
Changning County in 2015. The Yangbi MW 6.1 earthquake presented a typical foreshock–
primary–aftershock sequence. According to the CENC records, as of 1 July 2021, there were
54 earthquakes with magnitudes larger than Ms 2.0 during the 2021 Yangbi earthquake
sequence. Before the mainshock, five tremors had magnitudes greater than MS 4.0, the
strongest of which was MS 5.6. The mainshock was followed by multiple aftershocks, two
of which were greater than MS 5.0, and nine of these were between MS 4.0 and 4.9. Table 1
provides a list of the focal mechanism parameters of the Yangbi earthquake provided by
the USGS and GCMT to aid further investigation into the Yangbi earthquake.

Table 1. Focal mechanism solutions of the Yangbi MW 6.1 earthquake provided by different agencies.

Source
Epicenter

MW Depth
Nodal Plane I Nodal Plane II

Lon Lat Strike Dip Rake Strike Dip Rake

USGS 100.008◦ E 25.727◦ N 6.1 17.5 45◦ 89◦ −5◦ 135◦ 85◦ −179◦
GCMT 100.02◦ E 25.61◦ N 6.1 15 46◦ 78◦ 4◦ 315◦ 86◦ 168◦

3. Materials and Methods

3.1. Time-Series InSAR Processing Method for Coseismic Deformation Field Extraction

In this study, we used a single master image interferometric configuration, specifically
conventional PS-InSAR, and applied a spatio-temporal algorithm for phase unwrapping.
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Because the extracted deformation signals were abrupt, the main improvement of the
method suggested in this study was the segmented time-series process for estimating
various errors. The phase of the coseismic deformation contained in the post-seismic time-
series interferogram can affect error estimates, resulting in incorrect estimates that affect
the extraction of the final coseismic deformation signal. Therefore, this method devides
unwrapped interferograms into pre-seismic and post-seismic sequences. To estimate the
spatially correlated look angle (SCLA) error and the atmospheric and orbit error (AOE)
due to the master image, we only used the pre-seismic time-series interferogram for
spatio-temporal filtering. This prevented the phase of the coseismic deformation in the
post-seismic interferograms from affecting the error estimation. Finally, AOE due to the
slave images were separated from the interferogram by performing temporal filtering
on the pre-seismic and post-seismic interferograms, respectively. In a general analysis,
filtering was performed uniformly for all time-series interferograms and weak coseismic
deformation signals may be erroneously filtered out as noise, which must be accounted for
in any processing flow. The complete process flow is illustrated in Figure 2.

 

Figure 2. Time-series InSAR processing flow for coseismic deformation extraction.

An SAR image acquired just before the earthquake was used as the master image,
and co-registered with other pre-seismic and post-seismic images that were used as the
slave images. The master and slave images were co-registered individually to perform
differential interferometry. In this case, the coseismic deformation signal is not present
in the pre-seismic interferogram but rather in the post-seismic interferogram. In StaMPS,
the threshold is first set using the amplitude deviation method combined with phase
stability estimates to select PS candidates, and then the wrapped phase is corrected to
filter out spatially uncorrelated look angle errors. Finally, the phase of the PS candidates
were unwrapped to recover the absolute deformation phase using the 3D spatio-temporal
method. The phases in the unwrapped interferograms were divided into five terms:

ϕint = ϕD + ϕA + ϕO + ϕc
θ + ϕn (1)

where ϕint indicates the unwrapped phase, ϕD indicates the surface deformation phase,
ϕA indicates the error due to atmospheric effect, ϕO is the residual orbital error, ϕc

θ is the
residual phase due to the SCLA error, and ϕn is the term for noise due to other factors, for
example, co-registration and phase unwrapping.

Because the pre-seismic and post-seismic time-series interferograms needed to be
processed separately, two different expressions were used for the unwrapped phases before
and after the earthquake. The spatially uncorrelated look angle errors were screened out
before the interferogram was unwrapped, so that the remaining residual errors in the
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unwrapped interferometric phase of the digital elevation model (DEM) only included
the SCLA errors. The other spatially correlated errors were divided into AOEs due to
the master and slave images, where the AOEs due to the master image are present in
each interferogram. The deformation phase and other error terms in the pre-seismic and
post-seismic interferograms can be expressed by the following equations:

ϕx,i = ϕnon
D,x,i + ϕc

θ,x,i + ϕs
A,x,i + ϕm

A,x,i + ϕs
O,x,i + ϕm

O,x,i + ϕn,x,i (2)

ϕx,j = ϕnon
D,x,j + ϕcos eismic,x,j + ϕc

θ,x,j + ϕs
A,x,j + ϕm

A,x,j + ϕs
O,x,j + ϕm

O,x,j + ϕn,x,j (3)

where x denotes the master image, ϕx,i represents the unwrapped phase of the pre-seismic
interferogram, ϕx,j represents the unwrapped phase of the post-seismic interferogram,
and the superscripts m and s denote the contributions of the master and slave images to
each spatially correlated error, respectively. ϕnon

D denotes the surface deformation phase
that does not include coseismic deformation signals and is present in all interferograms,
and ϕcos eismic,x,j represents the coseismic deformation phases included in the post-seismic
interferogram.

When using a DEM for terrain phase estimation, DEM errors can lead to other terrain-
related residual phases in the interferometric phase. DEM errors tend to be partially
spatially correlated and mapped to look angle errors; therefore, the SCLA error accounts for
most DEM errors [22]. An SCLA error is present in each pair of interferograms. Because the
terrain undergoes substantial deformation after an earthquake, the post-seismic time-series
interferograms containing the coseismic deformation signals were not involved in the
estimation of the SCLA error in this study. The following equation represents the SCLA
error due to the DEM:

Δϕθ ≈ 4π

λ
B cos(θ − ω)Δθ =

4π

λ
B⊥(θ)Δθ (4)

where λ denotes the radar wavelength; B denotes the baseline distance between the slave
image and master image sensor position; θ denotes the look angle in the master image
geometry; ω denotes the angle between the baseline and horizontal vectors; and B⊥(θ)
denotes the vertical component of the baseline.

Atmospheric conditions are unlikely to be identical when satellites make repeated
observations of the ground; therefore, the path of the electromagnetic waves changes dur-
ing propagation and produces phase delays during radar imaging, resulting in substantial
errors in the measurement of surface deformation [23,24]. Both the positioning accuracy
of the satellite orbit and atmospheric effects during operation can lead to biases when
a satellite revisits the same position. Even with orbital parameters, it is not possible to
completely remove orbital error streaks, and residual errors propagate with subsequent
processing [25]. Especially in coseismic deformation measurements, orbital errors propa-
gate into the interferometric phase and affect the final estimation of the deformation. The
orbital and atmospheric errors are similar in their spatial and temporal properties; therefore,
we adopted spatiotemporal filtering to separate the coseismic deformation signal from
the AOEs. The AOE due to the master image in the interferometric phase was estimated
first. Considering the effect of post-earthquake coseismic deformation on the estimation,
only pre-seismic interferograms were selected to estimate this error. Low frequencies
characterize the nonlinear deformation signal in both the time and space domains, whereas
high frequencies characterize the AOE in the time domain [12]. Therefore, we performed
low-pass filtering in the time dimension of the unwrapped phase for the pre-seismic inter-
ferogram to separate the surface deformation signal from the AOE due to the master image.
The AOE due to the master image was removed from the interferogram, and an estimate of
the master image AOE was obtained:

ΦL{ϕx,i} ≈ ϕD,x,i −
(

ϕm
A,x,i + ϕm

O,x,i
)

(5)
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where ΦL is the temporal low-pass filter operator.
To estimate the AOE due to slave images, separate spatio-temporal filtering was ap-

plyied to pre-seismic and post-seismic time-series interferograms. Given the high-frequency
characteristics of the AOE in the time dimension, high-pass filtering was performed for the
remaining phases in the pre-seismic and post-seismic time-series interferograms. While
the AOE has low-frequency characteristics in the spatial dimension, the high-pass filter
allows spatial low-pass filtering for the signal output, and the spatial filter outputs the final
estimate of the AOE due to the slave image:

ΨL
{

ΦH{ϕx,i}
}
≈ ϕs

A,x,i + ϕs
O,x,i + ϕn,x,i (6)

ΨL
{

ΦH{ϕx,j
}} ≈ ϕs

A,x,j + ϕs
O,x,j + ϕn,x,j (7)

where ΦH is the temporal high-pass filtering operator and ΨL is the spatial low-pass
filtering operator.

The phase of the interferogram formed by the SAR images on the nearest date before
and after the earthquake date contains the most accurate coseismic deformation signal;
therefore, the final coseismic deformation estimate is only based on the interferometric
phase in this interferogram. The DEM-induced SCLA error, AOE due to the master image,
and estimated AOE due to the slave image were first removed from the interferometric
phase, and other elevation-related errors were then removed from the remaining phases.
Finally, the extracted coseismic deformation phases were spatially filtered to remove other
spatial noises and obtain a final coseismic deformation phase estimate with high precision.
The coseismic deformation estimate was given by the following equation:

ϕcos eismic ≈ ϕx,x+1 − ϕc
θ,x,x+1 −

(
ϕS

A,x,x+1 + ϕS
O,x,x+1

)
−
(

ϕm
A,x,x+1 + ϕm

O,x,x+1

)
≈ ϕcos eismic,x,x+1

(8)

where x + 1 indicates the first post-seismic image to the date of the earthquake. As other
surface deformation ϕnon

D,x,x+1 is negligible, ϕcos eismic represents the final estimate of coseis-
mic deformation.

3.2. Inversion of Fault Geometry Parameters and Slip Distribution

Taking the coseismic deformation fields extracted by the above time-series InSAR
processing method as constraints, we performed an inversion of the 2021 Yangbi MW 6.1
earthquake to obtain the fault geometry parameters and fault slip distribution. Based on
this, we studied the fault activity and rupture characteristics of this earthquake in detail. In
this study, we used the Geodetic Bayesian Inversion Software (GBIS) developed by Bagnardi
and Hooper in 2018 to perform nonlinear homogeneous and slip inversion of the best fault
geometry parameters for this earthquake [26]. GBIS uses a Bayesian probabilistic inversion
algorithm for InSAR observations derived from the original datasets. In the Bayesian
framework, an optimal set of source model parameters is extracted from the posterior
probability density function (PDF) by quickly estimating the best model parameters and
associated uncertainties through efficient sampling the posterior PDF. In the process of
seismic inversion using this method, the Markov chain Monte Carlo (MCMC) method was
used to perform sampling [27], which was controlled in combination with the Metropolis
Hastings algorithm [28,29]. Automatic step-size selection can control the random walk step
of each model parameter to ensure sampling efficiency. After multiple iterations, the set of
model parameters with the maximum a posterior probability after pre-assigned iterations
was selected.

We inverted the fault based on the elastic half-space dislocation model proposed by
Okada in 1985, which provides the relationship between the surface deformation and fault
slip at depth [30]. This elastic dislocation model provides nine source model parameters,
including the length, width, depth, X and Y coordinates of the lower edge midpoint, dip
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and strike of the fault, and dip slip and strike slip. First, the seismic region was modeled as
a uniform rectangular fault plane and the geometric parameters of the fault were accurately
estimated using the GBIS algorithm. To obtain the dislocation distribution across a fault, it is
necessary to invert the slip distribution across the fault plane. Because the slip distribution
is nonuniform, the inversion of the fault slip distribution is equivalent to solving the optimal
value of a linear problem. Based on the parameters of the fault geometric model, the fault
plane was discretized into several uniform sub-fault planes, and the slip distribution of
each sub-fault plane was then inverted to further obtain the fine slip distribution of the
entire fault. The slip parameter model coefficient matrix is called Green’s function matrix,
and we chose the constrained least-squares algorithm to estimate slip distribution [31].
As Green’s function matrix is severely rank deficient, the Laplace smoothing matrix was
added to the inversion for regularization, and the L-curve method was used to select the
best regularization parameters [32].

4. Results

4.1. InSAR Coseismic Deformation Field

In this study, the time-series InSAR processing method was applied to the Yangbi
MW 6.1 earthquake using ESA Sentinel-1 A satellite Single Look Complex (SLC) images as
the data source. We acquired 36 SLC images from ascending track AT99 and 34 SLC images
from descending track DT135, with an image date interval of 12 days, consistent with the
satellite revisit cycle. For the Yangbi MW 6.1 earthquake occurred on 21 May 2021, the date
for the selected master image in the ascending track data is 20 May 2021 and the date of
the selected master image in the descending track data is 10 May 2021. Co-registration
and differential interferometry were performed using the Swiss interferometry software
GAMMA [33], and the corresponding precise orbit ephemerides were used to provide
orbit information. ALOS World 3D-30 m DEM data was selected as an external reference
DEM to assist SAR image co-registration and topographic phase removal in differential
interferometry. We chose the built-in algorithm of StaMPS to perform PS point selection
and phase decoupling for all interferograms and then used the time-series processing
method adopted in this study to accurately estimate each error. Finally, we extracted
the coseismic deformation phases of the Yangbi MW 6.1 earthquake in the ascending
and descending tracks, and obtained the coseismic deformation displacement in the LOS
direction after conversion.

It can be seen from the interferograms in Figure 3 that the long axis of the main
deformation field of the Yangbi earthquake is roughly in the NW direction, and it can be
assumed that the seismic traces divide the deformation area into eastern and western plates,
showing an asymmetric distribution. The range of the coseismic deformation field in the
ascending track was approximately 22 km in the north–south direction and approximately
24 km in the east–west direction. The maximum LOS displacement was approximately
−74 mm in the east plate and 44 mm in the west plate. The range of the descending
coseismic deformation field was approximately 22 km in the north–south direction and
approximately 20 km in the east–west direction, and the maximum LOS displacement was
approximately 43 mm in the east plate and −62 mm in the west plate. A positive value of
LOS displacement indicates that the surface deformation is moving towards the satellite,
whereas a negative value indicates that the deformation is moving away from the satellite.
Differences in the satellite side view and flight attitude in the ascending and descending
tracks results in different imaging patterns. Consequently, the coseismic deformations
obtained from the ascending and descending tracks differ in their spatial distribution and
magnitude. Based on the above results, the observed values of deformation in the east and
west plates extracted from the ascending and descending tracks showed exactly opposite
trends. Therefore, this earthquake had characteristics consistent with strike-slip type fault
deformation. Because the coseismic deformation area extends along the NW–SE direction,
it can be tentatively concluded that the Yangbi earthquake caused a rupture along the
NW–SE direction. Moreover, there was no obvious decoherence area caused by surface
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rupture in the deformation area of either track, so the earthquake rupture did not reach
the surface.

 

Figure 3. Ascending and descending interferograms of the 2021 Yangbi MW 6.1 earthquake: (a) inter-
ferogram in the ascending track; (b) interferogram in the descending track.

In this study, we compared the coseismic deformation extracted by time-series InSAR
method with that extracted by D-InSAR. The two different coseismic deformations are
shown in Figure 4. Figure 4a,d show the LOS coseismic deformation in the ascending and
descending tracks after the elimination of each error using time-series InSAR processing,
respectively. Figure 4b,e show the LOS coseismic deformations in the ascending and de-
scending tracks extracted from the single differential interferogram without error removal,
respectively. Figure 5a,d show the SCLA error values estimated by the time-series analysis,
Figure 5b,e show the estimated AOE due to the master image, and Figure 5c,f show the
estimated AOE due to the slave images. For the ascending track, the eastern plate of the
deformation field without error removal is mainly masked by the master AOE, and the
western plate is mainly affected by the SCLA error and the slave AOE. For the descending
track, the eastern plate of deformation field without error removal is mainly affected by
the master AOE and the SCLA error, and the western plate is affected by the slave AOE.
To demonstrate the effectiveness of the above time-series InSAR processing methods in
removing errors, we also performed a quantitative analysis of the coseismic deformations
extracted by the two different methods. We calculated the differences between the coseismic
deformation displacements extracted by the time-series InSAR and the coseismic deforma-
tions extracted from the single interferogram without removing the errors. Figure 4c,f show
histograms of the frequency distribution of the difference between the two deformations in
the ascending and descending tracks, respectively. The difference between the two different
coseismic deformations in the ascending track ranges from −20 mm to 70 mm, and the
RMS of the difference is 31.05 mm. The difference between the two different coseismic
deformations in the descending track ranges from −60 mm to 20 mm, and the RMS of the
difference is 16.87 mm. After analysis, we concluded that the time-series InSAR processing
method used in this study has a significant effect in estimating errors, which makes the
extracted coseismic deformation field more accurate and clarifies the deformation field.

4.2. Fault Geometry Parameters

Before fault inversion, it is necessary to down-sample the coseismic deformation
data to reduce the redundancy caused by the large number of data points and reduce
the computational cost of inversion. In this study, we chose an adaptive quadtree algo-
rithm to down-sample the ascending and descending LOS deformation data of the Yangbi
MW 6.1 earthquake, and maintained the dense deformation points in the near deformation
field [34–36]. The down-sampled data points retained better deformation field characteris-
tics and improved the subsequent calculation efficiency. With the ascending and descending
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down-sampled deformation points as common constraints, we used the GBIS to invert the
fault geometry parameters of the Yangbi Mw 6.1 earthquake. In the framework of the GBIS
algorithm, the MCMC method was used to sample the deformation data, and after 106

iterations, the burn-in period of the first 2 × 104 iterations was removed to determine the
optimal set of model parameters.

 

Figure 4. LOS coseismic deformation displacement: (a,d) represent the LOS coseismic deformation
displacements in the ascending and descending tracks extracted by time–series InSAR, respectively;
(b,e) represent the LOS coseismic deformation displacements in the ascending and descending tracks
extracted by D–InSAR, respectively; and (c,f) represent the frequency distribution histograms of the
LOS deformation differences in the ascending and descending tracks, respectively.

Figure 5. Error diagrams: (a–c) represent the SCLA error, master AOE, and slave AOE estimated
from the ascending data, respectively; and (d–f) represent the SCLA error, master AOE, and slave
AOE estimated from the descending data, respectively.
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Based on the Okada elastic half-space dislocation model, we used the GBIS algorithm
to obtain the nine source parameters of the Yangbi earthquake, which are listed in Table 2,
including the final maximum a posteriori probability solution and a 95% confidence interval.
Here, 2.50% and 97.50% represent the upper and lower limits of the confidence intervals,
respectively. There was little difference between the different parameters obtained from
the inversion, proving the reliability of the inversion results. According to the optimal
solution, the fault length of the Yangbi MW 6.1 earthquake was approximately 17 km and
the fault width was approximately 1033 m. The dip and strike of the fault were 76.98◦ and
313.43◦, respectively, which are close to the values provided by the GCMT. The optimal
solution of the X and Y coordinates at the midpoint of the lower edge is converted to a
geographic coordinate system of 25.6441◦ N and 99.9261◦ E, corresponding to a depth of
approximately 5.8 km. After inversion, we also obtained the slip components in the dip and
strike directions, where the strike-slip component was 2.56 m and the dip-slip component
was 0.13 m. Therefore, we can conclude that the slip direction of the fault mechanism is
consistent with a large right-lateral strike-slip component and a small thrust component.
In conclusion, the optimal fault geometric parameters obtained by GBIS inversion are in
agreement with the focal mechanism solutions provided by the USGS and GCMT.

Table 2. Seismic fault geometric parameters of the 2021 Yangbi MW 6.1 earthquake.

Parameter Optimal Mean Median 2.50% 97.50%

Length (m) 17,233.9 17,295.8 17,275.5 15,465.8 19,263.9
Width (m) 1032.87 1332.03 1023.97 606.288 4089.61
Depth (m) 5498.51 5362.01 5411.48 4384.8 5931.69

Dip (◦) 76.9801 78.2016 77.7524 83.8792 75.131
Strike (◦) 133.428 133.559 133.544 130.624 136.601

X center (m) 9031.41 8813.28 8828.41 9525.23 8018.04
Y center (m) 10,176.4 10,319.8 10,264.8 10,928.8 10,011.5

Strike slip (m) 2.56309 2.48903 2.55033 0.685637 3.91905
Dip slip (m) 0.133527 0.123478 0.112916 0.0114473 0.287731

4.3. Fault Slip Distribution

In this study, a constrained least-squares algorithm was used to invert the fault slip
distribution. First, the fault geometry parameters calculated by GBIS were introduced into
the linear inversion model, Green’s function coefficient matrix was solved, and a Laplace
smoothing matrix was used to constrain the slip roughness. According to the GBIS fault
geometry parameters, the strike of the fault model was fixed at 133.43◦, and the dip angle
was fixed at 76.98◦. The fault activity mode was right-lateral strike-slip; therefore, the
range of the rake was set to 90◦–180◦. The fault plane extended to 30 km along the strike,
and to 15 km along the dip. This fault plane was divided into 20 × 15 sub-fault planes
to analyze the fine slip distribution. The optimal slip factor was determined by plotting
the L-curve between the roughness and misfit of the slip distribution, which assessed the
reasonableness of the inversion results and obtained the optimal fault slip distribution.
Figure 6 shows the roughness and relative misfit corresponding to the optimal smoothing
factor determined from the L curve.

Figure 7 shows the fault-slip distribution determined by inversion. The direction
of the arrow indicates the movement direction of each sub-fault plane, indicating that
the slip direction of the entire fault plane is correct. Figure 7 illustrates that there is
a main fracture area in the Yangbi earthquake, concentrated at 6–24 km along the strike
direction and 3–12 km down the dip direction. It was also determined that the rupture
caused by the earthquake did not reach the surface. The 3D slip distribution indicated that
the slip-concentrated area is located at a depth of 5–10 km, and the maximum slip was
approximately 0.6738 m, occurring at a depth of 5.5 km. Combined with the geometric
parameters of the fault and the results of slip distribution, it can be determined that the fault
mechanism of Yangbi earthquake is dominated by a right-lateral component. Assuming
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that the shear modulus is 30 GPa, the inversion results show that the seismic moment energy
released by this earthquake is approximately 1.58 × 1018 N· m, and the corresponding
moment magnitude is approximately MW 6.07, which is slightly lower than the moment
magnitude of MW 6.1 provided by the USGS and GCMT. Finally, it was determined that
the epicenter of the Yangbi earthquake is located at 25.6388◦ N and 99.9175◦ E, which is
close to the focal center provided by the USGS.

 

Figure 6. Trade–off curve between the misfit and model roughness. The star indicates optimal
smoothing factor.

 

Figure 7. Different fault slip distribution models from two InSAR deformation datasets: (a,b) are
two–dimensional (2D) and three–dimensional (3D) displays of fault slip distribution inverted based
on deformation results extracted by time–series InSAR, respectively; (c,d) are 2D and 3D displays of
fault slip distribution based on deformation results extracted from a single interferogram, respectively;
the arrow indicates the movement direction of each sub–fault plane.
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To evaluate the reliability of the inversion results, we simulated the LOS coseismic
deformation fields in the ascending and descending tracks according to the inversion
results of the fault slip distribution. After obtaining models of the coseismic deformation
fields for the ascending and descending tracks, we calculated the residuals by subtracting
them from the deformation observations obtained using the time-series InSAR method
and then judged the reliability of the fault inversion based on the magnitude of the resid-
uals. We also performed an inversion of the fault geometry and slip distribution on the
coseismic deformation data extracted by a single interferogram to demonstrate that the
coseismic deformation extracted by the time-series InSAR method is more accurate than
that extracted by D-InSAR. The fault models were then fitted based on the results of the
slip distribution inversion, and the fitting residuals between the InSAR observations and
the models were calculated.

As shown in Figure 7c, many errors remained in the deformation results extracted
using only a single interferogram, and the slip distribution inversion based on this dataset
was largely disturbed, and as a result the slip distribution model to explain the data well.
Figure 8 shows the observation values of the ascending and descending down-sampled
LOS coseismic deformation fields extracted by the two different methods, the model values
fitted according to slip distribution inversion, and the residuals between them. Comparing
the inversion results of the two different datasets, it can be seen from Figure 8c,f that the
LOS deformation field model simulated by the deformation dataset extracted by time-series
InSAR is highly consistent with the observation values, and the fitting residual values for
ascending and descending tracks are both less than 0.02 m, indicating the high fitting degree
between the model and observation values and proving the reliability of the inversion
results. As shown in Figure 9a,b, the residuals between the observed LOS deformation in
the ascending track extracted by the time-series InSAR method and the model values fitted
by the inversion range of −0.03~0.03 m with a residual RMS of 0.79 cm, while the residuals
between the observed LOS deformation in the descending track and the model values fitted
by inversion range from −0.05~0.03 m with a residual RMS of 0.91 cm. Figure 8i,l show that
the fitting residuals between the LOS coseismic deformation fitted model value according
to the deformation dataset extracted by D-InSAR and the observation value are large, and
the fitting degree is relatively low because the error in the observation data affected the
simulation of the model for real data. As shown in Figure 9c,d the residuals between the
observed ascending LOS deformation extracted by D-InSAR and the model values fitted by
inversion range from −0.04 m to 0.04 m with a residual RMS of 1.34 cm, while the residuals
between the observed ascending LOS deformation and the model values fitted by inversion
range from −0.05 m to 0.05 m with a residual RMS of 1.32 cm. Therefore, the errors in the
deformation data observed by InSAR have a negative impact on seismic inversion, and the
comparison proves the effectiveness of the time-series InSAR method used in this study to
extract the coseismic deformation.
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Figure 8. LOS coseismic deformation model fitting results based on the time-series InSAR and
D–InSAR deformation datasets: (a–c) represent ascending LOS deformation observations, predicted
model values, and residuals, respectively; all are based on time–series InSAR data; (d–f) represent
descending LOS deformation observations, model values, and residuals, respectively, based on
time-series InSAR data; (g–i) represent ascending LOS deformation observations, model values, and
residuals, respectively, based on D–InSAR data; and (j–l) represent descending LOS deformation
observations, model values, and residuals, respectively, based on D–InSAR data.
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Figure 9. Histograms of residual frequency distributions: (a,b) indicate the ascending and descending
residual distributions between the time–series InSAR–based deformation and its inversion–fitted
model values, respectively; and (c,d) indicate the ascending and descending residual distributions
between the D–InSAR–extracted deformation and its inversion-fitted model values, respectively.

5. Discussion

5.1. Validation of Methods Using Synthetic Data

To verify the effectiveness of the time-series InSAR processing method used in this
paper to eliminate errors and extract coseismic deformations, synthetic time-series inter-
ferograms based on the inversion-fitted LOS coseismic deformations in the descending
track. The inverse model of the downsampled LOS coseismic deformation was used as the
true coseismic deformation of the synthetic data. Because the model values are the down-
sampled data, we used an interpolation algorithm to obtain interferograms corresponding
to the original data size. First, all deformation phases of the pre-seismic interferograms
were set to 0, and all deformation phases of post-seismic interferograms were set to the
true deformation phases. Then, we added errors estimated using the time-series analy-
sis as noise to the corresponding interferogram, such that the interferometric phase of
the synthesized time-series interferograms were closer to the actual characteristics of the
unwrapped interferogram. Finally, we used the time-series InSAR processing method to
perform a time-series analysis of the synthesized time-series unwrapped interferograms to
estimate errors, and obtained estimates of the LOS coseismic deformation after removing
the errors.

Figure 10a shows the interpolated downgraded LOS coseismic deformation model
values as the true coseismic deformation, Figure 10b shows the coseismic deformation
extracted from the first synthesized post-seismic interferogram, and Figure 10c shows
the coseismic deformation extracted from the synthesized time-series interferogram with
time-series InSAR processing. It is evident from Figure 10 that the difference between the
deformation field including noise and the real deformation simulation is large, and the
RMS of the difference between the two is 16.68 mm. However, the deformation extracted by
the time-series analysis was similar to the real deformation field pattern. Figure 10e shows
the frequency distribution of the difference between the deformation extracted by the
time-series processing and the real deformation, and here the difference is no greater than
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1 cm and the RMS of the difference is reduced to 8.77 mm, with a very small difference of
no more than 1 cm. After validation using the synthetic dataset, it was demonstrated that it
is feasible and effective to use the time-series InSAR processing method for error estimation
using time-series interferograms and to extract the coseismic deformation. We concluded
that the use of time-series analysis can improve estimate the errors in the unwrapped
interferograms and as well as the extraction accuracy of the coseismic deformation.

 

Figure 10. (a) represents the true coseismic deformation of the synthetic dataset; (b) represents the
coseismic deformation extracted from the unwrapped interferogram after adding noise; (c) represents
the coseismic deformation extracted from the synthetic dataset by the time–series InSAR processing
method; (d) is the histogram of the difference distribution between the deformation after adding
noise and the true deformation; and (e) is the histogram of the difference distribution between the
deformation extracted by the time–series processing and the true deformation.

5.2. Advantages of Time-Series InSAR Processing Method for Coseismic Deformation Extraction

A major contribution of this study is the use of a specifically designed time-series
InSAR technique to extract the coseismic deformation information. A time-series analysis
can eliminate disturbance that cannot be resolved using conventional D-InSAR techniques.
The errors due to atmospheric delay and the deformation phase both have low-frequency
spatial characteristics. It is difficult to distinguish these to eliminate atmospheric effects by
using a single interferogram. The D-InSAR technique uses orbital parameters to eliminate
orbital errors in the interferogram. However, the residual phase ramp has a significant
impact on the final measurement results. The time-series approach used in this study can
estimate three disturbance terms: terrain-related residual errors, errors owing to atmo-
spheric delays, and orbital errors. The application of this approach to the Yangbi MW 6.1
earthquake proves that the time-series InSAR processing technique can accurately resolve
certain unavoidable problems associated with the D-InSAR technique. The coseismic defor-
mation phases contained in the post-seismic time-series interferograms have a significant
impact on the error estimates, resulting in incorrect results. Only pre-seismic time-series
interferograms are used to estimate the SCLA error and the master AOE, which prevents the
coseismic deformation of the post-seismic interferograms from influencing the estimation
errors. By performing temporal filtering on the pre-seismic and post-seismic interferograms
separately, the slave AOE can be accurately separated from the interferograms. Moreover,
the coseismic deformations of moderate earthquakes are not as obvious as those of large
magnitude earthquakes, and often the various errors in the differential interferograms can
often mask the true deformations, resulting in the poor accuracy of the extracted deforma-
tions. The time-series InSAR processing method can retrieve weak coseismic signals by
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eliminating various errors and avoids the leakage of coseismic deformation signals into
error components. Compared to the deformation field extracted by D-InSAR, the coseismic
deformation extracted by the processing method in this study shows better agreement with
the actual pattern of earthquake deformation. By investigating the inversion results, we
found that the errors remaining in the D-InSAR results had a significantly negative impact
on the inversion. The time-series InSAR proessing method used in this study is based on
PS-InSAR technology; therefore, the time-series information of all persistent scatterers can
be retained to observe the pre-seismic and post-seismic deformation trends.

6. Conclusions

With the sentinel-1 SAR images, we used a time-series InSAR method to extract the
coseismic deformation field. The geometric parameters and slip distribution of the fault
were then inverted with the down-sampled deformation datasets as a constraint. The
following conclusions were drawn.

(1) The time-series InSAR method can estimate the erroneous terms accurately, includ-
ing the DEM error and the AOE due to master image and slave images. Analysis of both
synthetic and real-world datasets validated the effectiveness of this processing method.

(2) The deformation fields extracted by the time-series InSAR method displayed
opposite trends in ascending and descending tracks. In the ascending LOS direction, the
maximum displacement of the eastern disk was approximately -74 mm and that of the
western disk is approximately 44 mm. In the descending LOS direction, the maximum
displacement of the eastern disk was approximately 43 mm, and that of the western disk is
approximately −62 mm.

(3) The fault inversion results showed that the strike of the seismic fault was 133.43◦,
the dip was 76.98◦, and the maximum slip was 0.6738 m, located at a depth of 5.5 km. The
earthquake was a right-lateral strike-slip event with a moment magnitude (MW) of 6.07;
this finding is close to the source mechanisms proposed by the USGS and GCMT.
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Abstract: Ankang Airport is constructed on an expansive soil-fill platform in Shaanxi Province,
Central China. Since its completion in 2020, it has suffered surface deformation caused by the consoli-
dation and settlement of the fill layer and instability of the expansive soil slope. Exploring the special
deformation law of expansive soil regions by remote sensing and analyzing the deformation charac-
teristics of airports in mountainous areas have always been key issues in related disaster research.
Based on the intensity and phase observation data of 37 Sentinel-1 synthetic aperture radar images,
this study obtained the spatio-temporal distribution of the deformation of Ankang Airport from May
2020 to October 2021. First, phase optimization was performed on the original interferograms. Second,
the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) method was applied to
extract the surface deformation information of Ankang Airport, and the accuracy was evaluated.
Finally, the singular spectrum analysis method was introduced to jointly analyze the deformation
information obtained by the InSAR technology in combination with geological and climatic data.
The results show that the excavation area of Ankang Airport was basically stable, the filling area
had obvious surface and uneven deformation, and the expansive soil fill slope exhibits deformation
characteristics strongly related to slope, rainfall, and fill depth. The deformation was mainly caused
by consolidation and settlement, supplemented by the expansion and shrinkage deformation of the
expansive soil.

Keywords: ankang airport; expansive soil; phase optimization; PS-InSAR; singular spectrum analysis
(SSA)

1. Introduction

Ankang Airport is one of the representative projects of Chinese regional aviation net-
work construction, located in Shaanxi Province, China. Expansive soil is mainly distributed
in the Ankang Basin where Ankang Airport is located. Therefore, considering the actual
cost and transportation situation, the foundation of the airport is built with the expansive
soil material. The airport construction lasted 50 months; it is a typical airport located in a
mountainous region and, during its construction, excavation, and filling, works with a huge
amount of earthwork were carried out. The total filling volume reached 30,000,000 m3, with
excavation and filling works staggered. These factors make the uneven land subsidence
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process likely to occur in the Ankang Airport area, thereby causing related disasters. In
contrast to airports located in mountainous regions, expansive soil is widely distributed
in the Ankang Airport area. Expansive soil is a disaster-prone geological constituent with
obvious expansion and contraction properties and developed fissures [1]. In summary,
the expansion and contraction of expansive soil and the staggered distribution of many
excavation and filling works have caused potential hazards to the safe and stable operation
of the airport. The early research about the stability of Ankang Airport reflect that it has
suffered a certain degree of surface subsidence [2]. Therefore, it is necessary to monitor the
deformation of Ankang Airport and analyze its stability.

Traditionally, the surface deformation of large-scale artificial structures, such as air-
ports, can be monitored on-site using measurement methods such as GNSS and leveling.
Although these traditional geodetic methods have high accuracy, they tend to have poor
spatial resolution, omit a large amount of surface information, and are labor-intensive.
In recent years, with the rapid development of remote sensing technology with a higher
spatio-temporal resolution, various remote sensing technologies have been widely used in
deformation monitoring research of large-scale artificial structures. Examples include laser
scanning technologies [3], distributed fiber optic sensing (DFOS) [4], and unmanned aerial
vehicle measurements [5]. As a new type of Earth observation method, synthetic aperture
radar interferometry (InSAR) technology can overcome the shortcomings of traditional
observation methods. It can obtain high-resolution surface deformation information and
realize large-scale and precise long-term monitoring [6]. Recent studies have shown that
time-series InSAR technology is a reliable Remote Sensing method for airport deformation
monitoring. For example, Dai and Gao combined InSAR technology with groundwater,
active faults, and other factors to interpret the uneven subsidence of Beijing’s Da’xing
Airport [7,8]; Marshall combined InSAR technology to study the deformation of the Kuala
Lumpur Airport related to the subsidence model and tropical peat intensity [9], and Jiang
investigated the long-term reclamation subsidence of Hong Kong’s Chek Lap Kok Airport
based on the geological data of reclamation [10]. Furthermore, Wu successfully inverted
the 20-year subsidence history of the airport using multi-sensor SAR data [11]; Liu and
Zhuo used time-series InSAR technology to analyze the subsidence temporal and spatial
characteristics of Xiamen Airport in detail [12,13]. Taking Iqaluit Airport as an example,
Short proved that InSAR technology has the ability to obtain the periodic deformation
related to special soils such as frozen soil in the airport area [14]. Wu used Sentinel-1
images to study the uneven deformation patterns caused by the construction of Yan’an
New Airport’s cut-and-fill project [15]. These studies made full use of SAR data, climate,
hydrology, and geological data from various sensors [16] and, based on InSAR technology,
interpreted the land subsidence patterns of major airports. The reliability of the time-series
InSAR technique for monitoring surface deformations related to soil properties has been
demonstrated [16,17].

The Sentinel-1 series of SAR satellite data, provided worldwide for free by the Euro-
pean Space Agency (ESA), has greatly promoted the development and popularization of
InSAR technology. However, using Sentinel-1 SAR data alone to monitor airport surface
deformation still poses challenges, for example, the long observation period, surface scat-
tering characteristics, and other factors affect the coherence, and stable persistent scatterer
(PS) points can only be acquired in a limited area [18,19]. In this study, PS-InSAR technol-
ogy considering the phase optimization of homogenous points is used, combined with
geological and climatic data, to study the surface deformation of Ankang Airport due to
filling engineering and the distribution of expansive soil. This study has two goals. First,
we combine the Fast Statistically Homogeneous Pixel Selection-synthetic aperture radar
interferometry (FaSHPS-InSAR) method with the conventional StaMPS data processing
framework [20,21] to obtain the spatial distribution and deformation information of homo-
geneous ground scattering points at Ankang Airport, and compare the deformation results
with the leveling data measurement results to verify the potential of this data method to
study the surface deformation information. Second, multi-source data, such as construction
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data, geotechnical characteristics, regional rainfall data, and SAR interferometric data,
were integrated to explore the acquired temporal and spatial characteristics of deformation
and its possible evolution process, the possible causes of deformation were analyzed, and
stability analysis was conducted.

The remainder of this paper is organized as follows. First, the geological characteristics
of the expansive soil distribution area where Ankang Airport is located and the surface
deformation caused by high fill are described. Second, the InSAR data used and key
technical details of the data processing strategy are introduced. In the next section, the
spatio-temporal distribution of the deformation information from Ankang Airport obtained
by InSAR technology is introduced, and the accuracy checked using leveling data. The
newly compiled results are interpreted and analyzed in combination with the construction
and rainfall data. Finally, the conclusions are presented in the final section and recent work
is summarized.

2. Study Area

Ankang Airport is located in Ankang City, Shaanxi Province, China. This area belongs
to the intersection of the southern foothills of Qinling Mountains and the northern foothills
of Bashan Mountains. There is a regionally active fault here: the Yuehe fault. The Yuehe
fault was affected by the Dabashan torsional tectonic system in the late Yanshan period. At
present, it is a fault that is mainly tensile, has long-term activity, and is still active today.
Therefore, the study area itself is at risk of earthquakes (Figure 1). The airport is 15 km
northwest of the city center and designed to have an annual passenger throughput of
300,000 passengers and a cargo throughput of 750 tons. The total planning area of the
airport is about 128,000 m2, the total area of the airport terminal is 5500 m2, and the airport
runway is 2600 m long and 45 m wide. It is a 4C-level civil airport and was built in 2016
and completed in May 2020. It represents China’s gradual improvement of the civil airports
in recent years [22].

Figure 1. (a) Study area location and Synthetic Aperture Radar (SAR) data coverage. In the back-
ground is the shaded terrain-generated digital elevation model (SRTM DEM) of the Shuttle Radar
Topography Mission, the black rectangles indicate Sentinel-1 SAR data coverage, and the black lines
represent the faults location. The fault data is supported by “gmt-china”. (b) The study area is
located in Shaanxi Province, Central China. (c) A 3D model of Ankang Airport was acquired using
oblique photogrammetry.
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The original topography of the airport is dominated by hills, high in the north and
low in the south, spanning the Luojia River. Therefore, a large amount of filling work
has been carried out in the construction of the airport; the spatial distribution of cut and
fill is shown in Figure 2. The volume filled in the study area reached 30,000,000 m3 and
the filling area reached 52,000 m2, accounting for 41% of the total area of the airport. The
maximum filling depth was 48.08 m, and the maximum excavation depth was 45.86 m. The
excavation and filling works were staggered, and the maximum vertical height difference
in the excavation and filling area reached 93.96 m. The airport fill originated from the
undisturbed soil in the adjacent excavation area. The soil was silty clay, dominated by
expansive soil. Expansive soil is a naturally formed multi-fissured geological body with
significant expansion and contraction characteristics, over-consolidation, multi-fracture,
and other undesirable properties [23]. During the construction process of the airport’s
interior area, expansive soil improvement and soil compaction took place, the area was
concreted, and the strength of the structure was significantly improved. However, there
was an area of exposed soil on the expansive high-fill slopes on the south, north, and east
sides of the airport. The geological body was dominated by medium-strength expansive
soil, and obvious surface fissures developed in this area.

Figure 2. Distribution of excavation and filling works at Ankang Airport.

A comprehensive analysis of the hydrological conditions and geological environment
in the study area was conducted which showed that it will increase the possibility of disas-
ters, including the concentration of high-intensity rainfall and a large quantity of expansive
soils. During the heavy rainfall period, expansive soil absorbs water and expands; during
the drought period, it loses water and shrinks. The alternate wet and dry periods cause
repeated expansion and contraction, resulting in surface soil fissures. Second, carrying
out high-fill engineering under complex landform conditions leads to potential geological
problems such as the settlement and deformation of the high-fill foundation caused by con-
solidation of the original foundation and compression of the structure itself. Therefore, it is
necessary to continuously monitor the ground deformation of the airport in combination
with precipitation data, geological information, and InSAR observations.
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3. Dataset and Methodology

3.1. Dataset

A set of 40 ascending Sentinel-1 images acquired between May 2020 and December
2021 were used to characterize and monitor the ground surface deformation at Ankang
Airport. We chose 20210308 as the master image for co-registration with other images. The
thresholds of the temporal and perpendicular baselines were set to 60 days and 160 m,
respectively. In total, 36 interferograms were generated (Figure 3).

Figure 3. Baseline distribution of high-quality interferograms used in this study.

An unmanned aerial vehicle digital elevation model (UAV DEM) with a grid spacing
of 3 m and vertical accuracy of 1 m was provided by Shaanxi Jiawei Spatial Geographic
Information Technology Co., Ltd., Ankang, China. This DEM is also available to simulate
and remove the topographic phase contribution within the interferograms process. Table 1
lists the primary parameters of the SAR dataset and DEM used in this study.

Table 1. Specific information of Sentinel-1A images and DEM data.

Data Parameters Description

Type SLC
Track number 84

Sentinel-1 Orbit number Ascending
Azimuth resolution 1

Range resolution 1
Source UAV

Acquired Date 2020/6/11

DEM Resolution
Positioning accuracy

3 (m)
1 (m)

Elevation accuracy 1 (m)

The available and independently monitored ground deformation ground-truth points
we obtained are two leveling points (L1 and L2) located in the central area of the airport (in
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Section 4.2). In addition, we used the rainfall data provided by the Ankang Meteorological
Station to analyze the features of deformation time series, the observation data of this
station are provided by The China Meteorological Data Service Center.

3.2. Methodology

The intensity and phase information of the SAR images were applied to study the
spatio-temporal characteristics of the surface deformation at Ankang Airport. The data
processing methods used included original image preprocessing, time-series phase opti-
mization, and PS-InSAR deformation calculation.

First, Sentinel-1A image data were preprocessed using GAMMA software, including
image co-registration, topographic phase contribution removal, image resampling, and
data de-ramping [24]. As Sentinel-1 adopts the progressive scanning (TOPS) observation
imaging mode [25], the Doppler centroid rapidly varies along the track, which leads to
differences between different bursts. It is prone to obvious phase ramps [26]. Hence,
intensity matching was adopted for the burst overlap areas to ensure that all SAR images
were accurately co-registered [27].

In the case of varying surface conditions (e.g., planting vegetation or paving runways),
the stability of the scattering properties of the target may be compromised, which reduces
the number of PSs being detected [18,28]. Therefore, we designed a data-processing strategy
to optimize the interference phase by combining intensity information. First, the intensity
images were stacked in a time series to select the homogeneous points. The selection of
homogeneous points is an algorithm that measures the similarity between the domain
and central pixels by means of statistical inference [20]. Assuming that similar objects
have the same backscattering characteristics and phase center, the parameter estimation of
similar pixels can be used to improve the signal-to-noise ratio of echo signals in complex
scenes [29]. In this study, the FaSHPS-InSAR open-source toolbox proposed by Jiang et al.
was mainly used for homogeneous point selection [30]. The theoretical basis of FaSHPS
was to transform the hypothesis testing problem into a parameter estimation method
for confidence interval estimation under the condition that a Gaussian hypothesis was
established. Compared with traditional nonparametric hypothesis testing, it has higher
computational efficiency and less uncertainty.

The intensity samples of each scatter point p as the central pixel on the N intensity im-
ages were {A1, A2, . . . , AN}, and the sample points for the mathematical expectation μ(p)
of p were estimated as A(p) = (A1(p) + A2(p) + . . . + AN(p))/N. To obtain the expected
interval estimate, we determined the distribution of A(p) according to the central limit
theorem. As the number of samples N increased, A(p) gradually approached a Gaussian
distribution. Assuming that N was sufficiently large to hold the Gaussian hypothesis, the
interval estimate of A(p) was obtained as shown in Equation (1).

P{μ(p)− z1− α
2
·
√

Var(A(p))
N

< A(p) < μ(p) + z1− α
2
·
√

Var(A(p))
N

} = 1 − α (1)

where P{.} indicates the probability of the interval, z1− α
2

is the 1 − α
2 quantile of the

standard normal distribution, and Var A(p) is the variance of p. It is assumed that when
the image is a single look, the intensity image of the homogeneous area obeys the Rayleigh
distribution [31]. Its coefficient of variation CV is quantitative and can be expressed as

CV =

√
VarA(p)

E2 =

√
4
π

− 1 (2)

Therefore, when the dispersion of the backscattering coefficients in the N-intensity
image stacks was not large, the scattered intensity samples were considered stable and

194



Remote Sens. 2022, 14, 2217

homogeneous. At this time, Equation (1) is rewritten as Equation (3), which includes only
μ(p) in the form of an interval.

P

⎧⎨
⎩μ(p)− z1− α

2
·μ(p)·

√
4
π − 1

N
< A(p) < μ(p) + z1− α

2
·μ(p)·

√
4
π − 1

N

⎫⎬
⎭ = 1 − α (3)

When the value of μ(p) was calculated, the interval represented by Equation (3) was
also uniquely determined, such that the confidence interval of p can be estimated. When
processing the intensity image stack, it was assumed that the reference pixel is pK, and the
number of pixels to be measured is K. First, take A(pK) as the true value of pK, then estimate
the sample mean A(pK) of K-1 pixels and compare them with the confidence interval in
Equation (3) one by one. The points that fall within the interval are homogeneous points.
To reduce the estimation bias, α = 50%.

After the homogeneous point sample selection was completed, it was used as a
parameter, and a time sequence phase optimizer was introduced to optimize the phase
of the original interferograms. The core theory of the time series phase optimizer was: in
the SAR stack of N SLC images, the time vector of each point p was usually considered to
obey a complex multivariate Gaussian model with a covariance matrix [32], as shown in
Equation (4).

f(g) =
1

πndet(∑)
exp
(
−gH ∑−1 g

)
(4)

where superscript H is Hermitian transposition, the temporal vector is g = [g1, g2, . . . , gn]
T ,

and ∑ represents the covariance matrix. One of the main objectives of phase optimization
is to estimate ∑ using observation matrix G = [g1, g2, . . . , gl ]. The maximum likelihood
estimator of ∑ is:

ˆ∑ =
GGH

l
= Γ̂ ◦ φ̂ (5)

where ◦ is the Hermitian transposition, φ̂ consists of the phase difference between two
acquisitions, and Γ̂ indicates a real symmetric matrix in which each element is the coherence
between different acquisitions, also known as spatial coherence, can be expressed as

Γ̂i,k =

∣∣∣∑p∈Ω exp
(

j
(
∠gi,p −∠gk,p − φ f f t,p

))∣∣∣
l

(6)

where Γ̂i,k is the coherence between ith and kth acquisition. Ω denotes a set that includes l
homogeneous spatial pixels that satisfy the stationary assumption. ∠gi,p is the observed
value of ith SLC images at pixel p. φ f f t,p is a phase compensation used to remove the
spatial phase ramp in set Ω [33]. Next, we use Equation (4) to perform a maximum joint
likelihood function on the samples in the set Ω to achieve timing phase optimization [34].

Considering the superiority of the PS-InSAR algorithm, we introduce the phase-
optimized interferograms into the traditional StaMPS data processing framework. StaMPS
method select PS pixels based on amplitude dispersion and estimated phase stability.
Subsequently, the three-dimensional phase unwrapping method was applied to unwrapped
the wrapped phase. After the atmospheric phase removal and spatio-temporal filtering, we
can perform the extraction of deformation phase [35–37]. Finally, we obtain the velocity
and deformation time series in LOS direction. The overall data processing flow is shown in
Figure 4.
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Figure 4. The flowchart for the surface deformation research of Ankang Airport.

To verify the regional stability of the deformation results, the standard deviation of the
mean velocity derived from the PS-InSAR technique was calculated using Equation (7) [38,39]:

σ2
Δv ≈

(
λ

4π

)
σ2

ϕ

Mσ2
Bt

(7)

where λ is the wavelength of the radar wave, σ2
ϕ indicates the phase dispersion, M repre-

sents the number of interferograms, and the vertical baseline deviation of the interferograms
is σBt.

In order to explore the relationship between deformation time series and rainfall, this
paper introduces the singular spectrum analysis (SSA) method to analyze the deformation
time series of Ankang Airport.

Singular spectrum analysis is an orthogonal analysis method that can decompose a set
of relatively complex time series into a few, independent, and easy-to-interpret parts. The
main principle is shown in Equation (8) [40].

R = XXT = USVT (8)

where X is the Hankel matrix constructed from the original discrete time series, R is
the autocorrelation matrix constructed from X, and U and V are orthogonal matrices
belonging to R. S = [diag(λ1, λ2, . . . .), . . . , 0], and 0 is a zero matrix. λi is the singular
value of the autocorrelation matrix R, λ1 ≥ λ2 ≥ . . . ≥ 0, and the larger the corresponding
eigenvalue λi of the non-zero singular value, the larger the proportion of the component.
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The specific process is as follows: first, remove the noise part of the deformation time series;
second, calculate the eigenvalue matrix and decompose the trend deformation and periodic
deformation [41]; and finally, analyze the periodic deformation in combination with the
regional daily rainfall.

4. Results

4.1. Interferograms Phase Optimization

For the i interferograms obtained by differentially obtaining SLC images, there was
a common phenomenon of spatio-temporal decoherence, and it was difficult to obtain
sufficient effective PS points. To solve the above problems, this study used a sequential
phase optimizer based on the multidimensional complex circular Gaussian distribution
described in Section 3.1, to perform phase optimization on the original interferograms stack.

First, spatial samples with similar backscattering properties in space were obtained
based on the intensity image set and backscattering coefficient. In this study, the parameter
statistics FaSHPS homogenous point selection algorithm was used, which had a high-test
effect on the samples. The homogeneous point selection samples are shown in Figure 5.

Figure 5. Homogeneous point selection samples with similar scattering properties in space obtained
by FaSHPS-InSAR.

Using the timing phase optimizer described in Section 3.2, timing phase optimization
was performed on all interferograms. A comparison between the timing-phase optimization
results and the original phase is shown in Figure 6. The original phase depicted in Figure 6a
has a certain spatial coherence in the high-coherence region, but the signal-to-noise ratio
was low in the medium- and low-coherence regions. Notably, the phase optimization
method used in this paper not only had good results in the high coherence area but also
restored part of the signal in the noise area, and the coherence and integrity of the spatial
phase were significantly improved.
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Figure 6. (a) Phase distribution of the original interferograms, (b) the phase distribution of the
interferograms after time series phase optimization.

The coherence distribution of the original interferograms is shown in Figure 7a. The
spatial coherence in the airport area was poor, and especially in the high fill slope area,
the inner vegetation coverage area, and the runway area, there was a poor coherence
distribution. Figure 7b depicts the coherence distribution of the interferograms after the
phase optimization. The coherence of the airport area was significantly improved, and the
spatial noise had been suppressed to a certain extent; in particular, the spatial continuity of
coherence was better in the high fill slope, airport runway area, and terminal area. This
illustrates the suitability of the adopted phase optimizer for the phase optimization of the
Ankang Airport interferometry.

Using the StaMPS software, we set consistent phase mean and amplitude dispersion
threshold parameters and selected stable PS points from the two sets of interferograms.
The distribution of PS points identified using the original interferograms set was shown in
Figure 7c, and the distribution of PS points identified using the phase-optimized interfero-
grams set is shown in Figure 7d. The identification results of stable PS points showed that,
compared with the original interferograms, the phase-optimized interferograms shows
higher phase and intensity stability in the study area, and more PS points were identified,
especially in low shrubs. Compared to the original interferograms, the high-fill slope
area covered by the main vegetation had obvious advantages. Using the data processing
strategy in this study, under the same parameter settings, a total of 2129 PS points were
identified within the airport range, whereas using the original interferograms, only 1372 PS
points were identified. More importantly, in the airport runway and expansive soil high-fill
slope area with historical deformation, the number of PS points had increased significantly.
This is conducive to better monitoring of the safe operation of the airport functional area
and a more comprehensive stability analysis of high-fill slopes.
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Figure 7. (a) Original interferograms average coherence, (b) optimized interferograms average
coherence, (c) original interferograms scatterers identification, and (d) optimized interferograms
scatterers identification.

4.2. InSAR-Derived Results and Reliability Analysis

In this section, the set of interferograms processed by the phase optimization step de-
scribed in Section 4.1 was solved by the StaMPS method, and good deformation monitoring
results were obtained at Ankang Airport. The annual average deformation rate map of the
airport from May 2020 to October 2021 is shown in Figure 8, where the deformation rate was
in the direction of LOS, the positive value in blue indicates movement towards the satellite,
and the negative value in red indicates movement away from the satellite. The InSAR
results showed that most of the airport area was relatively stable, and the deformation rate
was between (−15–19 mm/year). However, four distinct deformation areas were identified
in the high-fill slope area of the airport. Moderate (−27.5–−35.9 mm/year) deformation
areas and severe (−35.9–−44.4 mm/year) deformation areas were concentrated in the slope
area of the airport expansive soil filling (I, II, III, and IV). The maximum deformation rate
appeared in the I area, and the annual maximum deformation rate was −44.4 mm/year.
This area was the slope formed by the area with the largest fill layer in the airport, and
expansive soil was used as the main filling soil. Therefore, it was necessary to analyze
the time-series deformation in combination with the special hydraulic laws of expansive
soil. In addition, combined with the distribution map of the airport cut-and-fill shown in
Figure 2, the magnitude of the deformation rate was proportional to the depth of the fill
layer. The aforementioned deformation laws are discussed in detail in Section 5.
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Figure 8. Deformation rate map of Ankang Airport along the LOS direction. Areas I, II, III, and IV
are areas with obvious deformation (deformation rate >−30 mm/year).

The standard deviation of the calculated deformation rate is shown in Figure 9a. It
can be seen from Figure 9a that the standard deviation of the slope area is lower than
5.3 mm/year, the standard deviation of the runway area is 3.5 mm/year, and the over-
all standard deviation is lower than 5.5 mm/year, showing the reliability of the data
processing strategies.

In addition, the leveling observation data of two ground reference points located on the
airport slope and north side of the runway at Ankang Airport (L1 and L2 in Figure 9a) were
collected. As the observation value of the leveling point reflects the vertical deformation
and the InSAR deformation result mainly reflects the deformation along the LOS direction,
according to the incident angle of the pixel corresponding to the leveling point, the leveling
deformation result was uniformly projected in the LOS direction for accuracy verification.
The comparison results of the deformation time series of points L1 and L2 observed by
leveling observation and InSAR technology are shown in Figure 9b,c. The difference in the
deformation results of the L1 point in the slope area is less than 3 mm, and the difference
in the deformation results of the L2 point in the runway area is less than 5 mm. Although
the two observation methods are not strictly registered in time, the deformation trend is
consistent, further illustrating the reliability of the InSAR monitoring results.

4.3. Stability Analysis of High Fill Slope

The high-fill expansive soil slope stability influence area was distributed around the
airport flight area, and the filling foundation was mainly expansive soil, which may have
caused deformation related to the hydraulic properties of the expansive soil. The stability
of an expansive soil slope area was also a key issue in airport safety operations.
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Figure 9. (a) Standard deviation of the mean velocity on coherent point targets, (b) time series
analysis of L1 by leveling and PS-InSAR technique, and (c) time series analysis of L2 by leveling and
PS-InSAR technique.

According to the excavation and filling construction conditions (Figure 10a), Figure 10b
shows the spatial distribution of the deformation rate of the high-fill expansive soil slope at
the airport. The results showed that the deformation rate of most slope areas was relatively
low, but InSAR technology identified three obvious deformation areas (Figure 10b in I,
II, III, and IV). Area I and II are located on the fill slope on the north and south sides
of the airport runway. According to the excavation and filling construction conditions
(Figure 2), area I was the area with the largest fill layer depth (48.08 m) in the entire
airport with a history of slope failure. The maximum deformation rate of area I was
−42.19 mm/year, which was the largest deformation in the entire airport area; area III
was located on the fill slope on the east side of the airport. The fill depth of this area was
18.9 m, and the maximum deformation rate reached −37.1 mm/year; area IV was located
south of the terminal area, and the engineering slope at the airport expressway had a
maximum deformation rate of −37.4 mm/year. The filling depth here was only 14.206 m,
but according to previous geological data, the filling soil in this area was mainly strong

201



Remote Sens. 2022, 14, 2217

expansive soil. The above deformation areas appeared in the fill slope, indicating that
the consolidation and compression of the fill layer may be one of the potential causes of
slope instability.

Figure 10. (a) The location of characteristic points, and the distribution of fill-excavation, (b) defor-
mation rate map of the slopes of Ankang Airport along the LOS direction, regions I, II, III, and IV are
the areas of unstable slopes identified by InSAR technology. Area A is located on the fill slope on the
north and south sides of the airport runway.

From the site survey data, we found that there was a certain area of exposed expansive
soil in the fill slope area of the airport. Considering the expansion, contraction, and
crack-prone characteristics of expansive soils that are highly correlated with soil moisture,
this study collected regional rainfall data in the study area from May 2020 to July 2021,
and, based on the maximum daily rainfall and rainfall time intensity, this was divided
into two rainy seasons from May 2020 to July 2020 and April 2021 to August 2021. Four
feature points (P1, P2, P3, and P4 in Figure 10a) were extracted from three regions, and the
deformation time series and rainy season time distribution obtained by InSAR technology
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were combined for analysis. A comparison between the deformation time series of the
P1–P4 feature points and the distribution during the rainy season is shown in Figure 11.

 

Figure 11. Deformation time series in the LOS direction of regions I, II, III, and IV (the areas of
unstable slopes identified by InSAR technology, marked in Figure 10) from May 2020 to October 2021
for P1–P4, which are indicated as white dots in Figure 10a. (a) Point P1; (b) point P2; (c) point P3; and
(d) point P4.

P1 and P2 were located on the fill slopes on the north and south sides of the runway
area in deformation area A, respectively. As shown in Figure 11a,b, the deformation rates
reached −42.19 mm/year and −31.59 mm/year, respectively. The overall deformation
trend was away from the sensor. However, in the two rainy seasons, the deformation rate
slowed down significantly, and an expansion phenomenon appeared, which was consistent
with the soil mechanical properties of expansive soil to a certain extent. P3 showed a
similar deformation time series to P1 and P2: During the rainy seasons, there was obvious
rebound deformation phenomenon along the LOS direction, which was related to the
strong expansive soil distributed in this area. The deformation time series of P4 is slightly
different, although the deformation phenomenon away from the SAR sensor also occurred
in this area, no obvious rebound phenome-non occurred in the rainy season. The maximum
cumulative deformation of P4 reached −53.12 mm, and the deformation rate of P4 was
−34.89 mm/year.

To describe the spatial distribution pattern of the high-fill slope deformation in area
A in detail, a 3D model was constructed using the UAV to obtain the DEM and DSM
information of Ankang Airport, as shown in Figure 12a. The annual average deformation
rate of the slope in area A obtained using InSAR technology was registered to the 3D model
of the airport, as shown in Figure 12b. The fill slope on both sides of the runway was
divided into two parts, north and south. In Figure 12b, area N represents the north-side
slope, and area S represents the south-side slope. To analyze the correlation between the
spatial distribution of the slope and the slope rate, the deformation rate and 3D model
registration results of the slope in the north and south of area A obtained by InSAR were
enlarged, as shown in Figure 12c,d, respectively.
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Figure 12. (a) Three-dimensional model of area A, (b) deformation rate of area A in LOS direction,
(c) deformation rate of north slope in LOS direction, and (d) deformation rate of south slope in
LOS direction.

As shown in Figure 12c, the spatial distribution characteristics of the deformation of
the northern slope were as follows: the deformation rate gradually increases from east
to west along the slope; the deformation rate gradually increased with the increase in
elevation; and the larger deformation points gathered in the top area at the west end of
the slope. As shown in Figure 12d, the deformation rate of the southern slope of area A
increased gradually with increasing elevation but did not show obvious spatial distribution
characteristics in the east–west direction, and the larger deformation points were gathered
in the top area of the slope. The spatial distribution of slope deformation at N and S
presented characteristics related to the slope and elevation.

4.4. Stability Analysis of Runway

Ankang Airport currently has a runway with a total length of 2700 m and a total
width of 45 m. The ground of the runway is relatively weak and prone to consolidation
and compression, leading to uneven ground settlement. From the InSAR deformation
monitoring results of the runway area shown in Figure 13b, the airport runway is in a
stable state, and only the maximum fill area of the airport has a moderate deformation area
(−19 mm/year to −27.5 mm/year).

According to the distribution of fill and cut described in Section 2, P5–P8 were extracted
along the runway of Ankang Airport, and four feature points were used for time-series
deformation analysis. Based on a comparative analysis of the deformation time series of
the feature points in the filling area, the deformation time series of the four feature points
and the distribution of the regionally intensive rainfall period are shown in Figure 14.
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Figure 13. (a) Distribution of characteristic points of runway area of Ankang Airport, (b) deformation
rate map of the runway in Ankang Airport along the LOS direction.

 

Figure 14. Time series deformation along LOS direction of Runway from May 2020 to October 2021
for P5–P8, which are indicated as white dots in Figure 14a. (a) Point P5; (b) point P6; (c) point P7; and
(d) point P8.
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The deformation rate of P5 is −4.27 mm/year, and the maximum cumulative deforma-
tion reaches −18.7 mm. The deformation time series is shown in Figure 14a. In both rainy
seasons, P5 had been uplifted to different degrees along the LOS direction, the surface was
the largest, the lift amount reached 6.4 mm, and the overall deformation trend tended to be
stable. P6 was in the deepest filling area of the airport, the filling depth reached 48.08 m, the
deformation rate was −15.05 mm/year, and the maximum cumulative deformation reached
−14.13 mm. The deformation time series is shown in Figure 14b. In the rainy season of
2020, there was obvious uplift along the LOS direction, whereas in the rainy season of 2021,
the deformation rate slowed down significantly, and the overall deformation trend tended
toward subsidence along the LOS direction. Consolidation compression correlation; P7
was in the excavation area of the airport, the deformation rate was 0.19 mm/year, and
the maximum cumulative deformation reached 2.3 mm. The deformation time series is
shown in Figure 14c. Compared with points P5, 6, and 8, the deformation time series of
point P7 is relatively stable and has no obvious correlation with rainfall distribution, and
the overall deformation trend fluctuates between ±3 mm. The deformation rate of P8
was −4.07 mm/year, and the maximum cumulative deformation reached 15.4 mm. The
deformation time series is shown in Figure 14d. It was similar to P5 and P6, and both have
a certain degree of uplift along the LOS direction during the rainy season; however, the
fluctuation range of P8 was large, and the cumulative deformation was relatively small
(0.79 mm).

We created a section line RR1 (marked in Figure 15a) along the airport runway, ob-
tained the elevation change information of the runway along the section line of RR1
(Figure 15b), and extracted the deformation rate in the 25 m area on both sides of RR1, as
shown in Figure 15c. There was obvious uneven deformation along the airport runway. The
runway deformation in area A was significantly larger than that in other areas; multiple
settlement funnels were observed along the runway, and the maximum deformation rate in
the vertical direction was −24 mm/year.

Figure 15. (a) The distribution of fill–excavation and location of RR1 profile, The red rectangle
represents the maximum fill area of the airport (marked in Figure 12) (b) RR1 profile elevation
information, the current elevation information is provided by the DEM obtained by the UAV, and
the historic elevation information is provided by the SRTM, (c) RR1 runway area deformation rate
distribution, and (d) distribution of deformation points along the RR1 profile.

Based on the above analysis, the following conclusions were drawn: (1) the expansive
soil in the excavation area is more stable than the expansive soil in the filling area; and
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(2) the overall deformation of the runway area is sufficiently small to meet functional
requirements, such as general navigation.

5. Discussion

5.1. Driving Factors of Ankang Airport Deformation

The common deformation types of large-scale high-fill buildings were post-construction
settlement, caused by consolidation and compression of filled foundation, and uneven
settlement, caused by discontinuous construction [42].

The deformation rate of the PS point in the study area and the depth of the fill volume
at its location were extracted to describe the relationship between the distribution of the
fill volume in the Ankang expansive soil airport and the surface deformation, as shown in
Figure 16.

 

Figure 16. Distribution of the relationship between fill depth and deformation rate at Ankang Airport.

As shown in Figure 16, with an increase in the thickness of the fill body, the number
of settlement observation points and the degree of deformation increased significantly,
and the distribution and thickness of the fill soil affected the distribution and size of the
surface deformation. The areas with the most obvious deformation were all distributed
in the area where the depth of the fill layer was >30 m, and the deformation monitoring
points in this area accounted for 62% of all deformation and settlement monitoring points.
Monitoring points with a deformation rate greater than −24 mm/year appear only in the
area where the depth of the fill layer is >15 m. By contrast, in the area where the depth of
the fill layer is less than 15 m, there are fewer settlement points and lower deformation
rates. As the compressive deformation of the fill soil at different depths and the pressure
on the undisturbed soil increases with the depth of the fill layer [43], the consolidation
and compression of the fill layer is one of the reasons for the surface deformation of
Ankang Airport.

In addition, it is necessary to consider the ground deformation caused by the dry–wet
cycle of expansive soil [44,45]. The area has a subtropical monsoon climate, with rainfall
concentrated between late June and late August. The analysis in Sections 4.3 and 4.4 shows
that the deformation trend of the filling area in the entire airport area is relatively similar
and has certain regularity; the deformation rate slows down in the rainy season and then
springs back, and there are periodic deformations to different degrees, which is consistent
with the hydraulic effect of swelling and shrinking of expansive soil. However, the trend
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deformation caused by post-consolidation compression is the main component of the
deformation time series, and errors are caused by the noise phase in the InSAR settlement
process, which hinders the exploration of the relationship between the deformation time
series and rainfall. Therefore, this paper introduced the singular spectrum analysis (SSA)
method to analyze the deformation time series of Ankang Airport. The P1, P3, P5, and P7
deformation time series for SSA decomposition, and the trend deformation and periodic
deformation time series are shown in Figure 17.

Figure 17. The deformation time series of the four feature points (P1, P3, P5, and P7) is decomposed
into two parts, the periodic term and the trend term by the SSA method, (a) P1 Trend Item Deforma-
tion, (b) P1 Period Item Deformation, (c) P3 Trend Item Deformation, (d) P3 Period Item Deformation,
(e) P5 Trend Item Deformation, (f) P5 Period Item Deformation, (g) P7 Trend term deformation, and
(h) P7 Periodic term deformation.

P1 and P3 are in the slope fill area, P5 is in the runway fill area, and P7 in the runway ex-
cavation area, serving as the control group. The first column (a,c,e,g) of Figure 17 describes
the deformation trend of the four points. The deformation trends of P1 and P3 located on
the filled slope were similar, showing an obvious settlement trend. The trend deformation
of P5 in the fill area of the runway is small, and the trend deformation of P7 does not appear
obvious and tends to be stable. The periodic deformation was obtained after removing the
trend deformation and high-frequency noise (shown in Figure 17b,d,f,h). When the rainfall
increased significantly, P1, P3, and P5 showed an obvious uplift phenomenon; P1 and P3
located on the expansive soil fill slope show obvious periodic deformation, which is similar
to the monitoring results of similar cohesive soils using InSAR technology [46]. However,
the P7 point located in the excavation area remained stable during the observation period,
with no periodic deformation clearly related to rainfall. This is because the expansive soil
in the airport runway, terminal building, and other areas has been mixed with lime, cement,
or other chemical additives to inhibit the expansion and contraction characteristics of the
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expansive soil. In addition, the foundation of the runway area has been compacted several
times and covered with concrete as a water barrier. However, the expansive soil slope
around the airport still has some areas of bare leakage area, which are also the focus of this
research [47].

5.2. Potional of InSAR in Reaveling Surface Deformation in Expansive Soil Airport

The above analysis confirms that the deformation information obtained by the data
processing method adopted in this paper is consistent with the characteristics of the
geological environment.

Monitoring the surface deformation of the airport in expansive soil region by InSAR
Technology, the low-coherence effect in runway and vegetation area is the first problem to
be solved in data processing [19,48]. This paper adopted the timing phase optimization
method described in Section 3.2 to improve the coherence of interferograms. As the result
shown in Figure 7, Section 4.1, our method has much denser PS points in the whole airport
area, especially in the low-coherence area such as slope and runway. The results are
similar to the experimental results of using the likelihood function to estimate the phase at
Shenzhen Airport [49]. This illustrates the great potential of adopting methods for airport
deformation monitoring. The second problem is that airport deformation is often a complex
manifestation of multiple deformations [50]. In order to reasonably interpret the monitoring
results of InSAR, the SSA method is introduced in this paper to separate the periodic and
trend deformations of the deformation time series. As shown in Figure 17, the relationship
between the periodic term deformation and rainfall is more pronounced. This method can
help us understand the development law of expansive soil in engineering construction.

However, the proposed method still has its limitations. First, in the selection of
homogeneous point samples, the window size needs to be set carefully. A window size
that is too small will lead to biased estimates due to few samples, while a window size
that is too large will cause the interference signal to be non-stationary and underestimate
coherence. Second, the determination of eigenvalues in the SSA method still requires
subjective judgment, and we will establish an adaptive SSA method for analysis in future
research. In addition, this paper does not consider the topographic error and the effect of
temperature on the deformation of concrete structures [11,51]. Therefore, the monitoring of
surface deformation of expansive soil at Ankang Airport still needs further research.

6. Conclusions

In this study, interferogram phase optimization and PS-InSAR technologies were used
to monitor the ground deformation of Ankang Airport from its completion to the initial
stage of operation. Furthermore, SSA technology was introduced to decompose the trend
deformation of the fill area and the periodic deformation of the expansive soil from the
InSAR time series and analyzed with rainfall information. A total of 39 interferograms
were used, and the monitoring period was from May 2020 to October 2021. It fully reveals
the temporal and spatial distribution characteristics of the surface deformation after the
overall completion of Ankang Airport and provides important deformation information for
it. The research results have important guiding significance for airport safety navigation,
stability analysis, and future construction. The main conclusions drawn from this study are
as follows:

In this study, a method for selecting homogenous points under the assumption of a
Gaussian complex circle is introduced, and phase optimization of the interferograms is
carried out according to the samples of homogenous points. Compared to the original
interferograms, this method identifies more persistent scatterers in the airport. At Ankang
Airport, the method used in this paper identified 2129 persistent scatterer pixels, while
the original Stamps only obtained 1372 persistent scatterer pixels. The results show that
this method can significantly improve the coherence of interferograms and verify the
reliability of the monitoring results according to the level monitoring data and standard
deviation distribution.
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From May 2020 to October 2021, three relatively obvious deformation areas were
identified at Ankang Airport, all of which were located on the high-fill slopes of the
airport. The deformation trend of these filled slopes is positively correlated with the slope
and depth of the fill layer. The runway area of the airport is generally stable, but small-
scale land subsidence occurs in the fill area of the runway, which is mainly caused by
consolidation and compression of the fill layer in this area. In addition, the analysis results
of the deformation time series in different areas show that the expansive soil located in
the fill area is more sensitive to rainfall, particularly in the high-fill slope area without
integral concrete pouring. There is bare soil in this area, which is conducive to expansive
soil disasters. The deformation results showed an obvious periodic deformation.

In general, the monitoring results of the time-series InSAR technology, based on
phase optimization, in the Ankang Airport area show that the airport area is dominated
by the trend deformation caused by the consolidation and compression of the fill. In
the exposed slope and high-fill area, the deformation time series is consistent with the
rainfall distribution, and there are characteristics of expansive soil disaster development.
At present, the Ankang Airport is still in a stage of rapid deformation. Therefore, it is
necessary to monitor its long-term deformation.
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Abstract: Thaw consolidation of degrading permafrost is a serious hazard to the safety and operation
of infrastructure. Monitoring thermal changes in the active layer (AL), the proportion of the soil
above permafrost that thaws and freezes periodically, is critical to understanding the conditions of
the top layer above the permafrost and regulating the construction, operation, and maintenance of
facilities. However, this is a very challenging task using ground-based methods such as ground-
penetrating radar (GPR) or temperature sensors. This study explores the integration of interferometric
measurements from high-resolution X-band Synthetic Aperture Radar (SAR) images and volumetric
water content (VWC) data from SoilGrids to quantify detailed spatial variations in active layer
thickness (ALT) in Iqaluit, the territorial capital of Nunavut in Canada. A total of 21 SAR images
from COSMO Sky-Med (CSK) were first analyzed using the freely connected network interferometric
synthetic aperture radar (FCNInSAR) method to map spatial and temporal variations in ground
surface subsidence in the study area. Subsequently, we built an ALT retrieval model by introducing
the thaw settlement coefficient, which takes soil properties and saturation state into account. The
subsidence measurements from InSAR were then integrated with VWC extracted from the SoilGrids
database to estimate changes in ALT. For validation, we conducted a comparison between estimated
ALTs and in situ measurements in the airport sector. The InSAR survey identifies several sites of
ground deformation at Iqaluit, subsiding at rates exceeding 80 mm/year. The subsidence rate changes
along the runway coincide with frost cracks and ice-wedge furrows. The obtained ALTs, ranging
from 0 to 5 m, vary significantly in different sediments. Maximum ALTs are found for rock areas,
while shallow ALTs are distributed in the till blanket (Tb), the intertidal (Mi) sediments, and the
alluvial flood plain (Afp) sediment units. The intersection of taxiway and runway has an AL thicker
than other parts in the glaciomarine deltaic (GMd) sediments. Our study suggests that combining
high-resolution SAR imagery with VWC data can provide more comprehensive ALT knowledge for
hazard prevention and infrastructure operation in the permafrost zone.

Keywords: permafrost; ALT; FCNInSAR; CSK images; thaw settlement coefficient; VWC; SoilGrids
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1. Introduction

Permafrost regions are defined as grounds that remain continuously frozen for two or
more consecutive years. They underlie about 20% of the land surface of the Earth and are
located mainly in the Arctic, Antarctic, and high mountainous regions [1]. The seasonal
thawing and freezing of the active layer (AL), the surface layer atop permafrost, results
in ground motion, making infrastructure in such regions vulnerable to varying degrees
of damage. Therefore, accurate monitoring of active layer thickness (ALT) and related
ground surface change is vital to characterize permafrost degradation and regulate the
construction, operation, and maintenance of facilities [2–7].

Commonly used in situ investigation methods for ALT include point measurements
obtained by recording soil temperatures of probes on the ground at different sparse lo-
cations [8] and profile exploration of the underground geophysical status using ground-
penetrating radar (GPR) [9–11]. These methods are reliably accurate for estimating ALT at
a single point or local area, but are extremely limited in space and are costly and inefficient
for large-scale mapping in severe cold environments in the permafrost areas. Another
method of acquiring ALT information is using analytical models, which evaluate permafrost
thermal dynamics using air temperature, vegetation, snow, and soil properties [12–14].
However, the results of such models are inadequate, especially in data-poor areas. Remote-
sensing-based assessment of ALT fulfills the urgent need to extend point observations to
a broader spatial domain in permafrost areas. Similarly to GPR, the dielectric contrast
between the thawed and frozen soils results in a strong scattering of electromagnetic waves,
providing a signature in backscattering measurements for freeze/thaw boundary detection
in radar remote sensing imagery. However, due to the lack of proper satellite sensors, few
studies have explored the potential of such imagery for monitoring the processes operating
in permafrost [15].

The retrieval of ALT from surface displacement measurements detected by the InSAR
has been promising due to the technique’s capability for accurately mapping ground
displacements on the scale of millimeters to centimeters [16–20]. There are two main types
of ALT retrieval methods from InSAR-derived subsidence maps. The first works based
on soil’s one-dimensional heat transfer process [16]. The basic idea is that ALT could
be determined if the time intervals in which the maximal temperature diffuses from the
ground surface downward to the bottom of the active layer are known. Considering the
difficulty in measuring the time intervals directly, the model replaces them with the lag
time between the periodic feature of InSAR-observed surface deformation over permafrost
and the meteorologically recorded temperatures. The second method is based on the idea
that the volume change from ice to the water of the AL leads to surface subsidence [17–22].
It can be represented by the Stefan formula or the Berggren model. In these models, soil
moisture, as the most sensitive factor, is quantified as volumetric water content (VWC),
defined as the volume of water divided by the total soil volume. It determines the soil
heat capacity and thermal conductivity, influencing the flow of energy into and out of the
soil, thus, ALT and ground temperature [23]. The more accurate the soil moisture data (i.e.,
VWC) as an input, the more accurate the predictions of ALT are to be expected.

Several studies used the second retrieval approach discussed above to monitor ALT
with the subsidence derived from InSAR. According to the stratification of soil profiles,
Liu et al. proposed a vertical distribution model containing organic, mineral, pure water,
or mixed layers to estimate ALT over Alaska using uniform soil moisture values [17].
However, soil moisture is highly variable in both space and time [23]. Wang et al. built
a multilayered groundwater model for different land cover types using field data, then
integrated it into the Stefan formula to retrieve ALT over the Qinghai–Tibet Plateau [20].
Anne et al. estimated ALT using the modified Berggren solution over Barrow Peninsula
at a resolution of 30 × 30 m [24]. Both studies required detailed in situ measurements,
e.g., surface meteorological variables and soil thermal parameters, which are not available
everywhere. Zhang et al. used soil moisture data from ERA-Interim reanalysis and SMAP
L4 for ALT estimation. The spatial resolutions of ERA-Interim reanalysis and SMAP are
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0.1◦ (9 km) and 0.125◦ (13 km), respectively [24]. The data are too coarse to be used for
integration with submeter level SAR images.

However, the active layer freezes, sometimes with no uplift of the surface and at other
times with an uplift of even 100 percent of the depth of freezing [25–28]. The soil is an
open system in that the frost heaving can be much greater than the volume change of
pore water due to the available water supply [25]. In a summer season, the magnitude
of the subsidence resulting from the soil thawing downward from the surface is mainly
related to the soil thermal properties and ice content formed in the last winter. As Yanagiya
commented in [29], the retrieval models based on the volume change of pore water are
inadequate for obtaining more realistic results in most cases.

The objective of this study was to use a realistic model to quantify the meter-level
resolution ALT in Iqaluit based on the accurate thaw subsidence and explicit knowledge
of soil moisture from a global product. Here, we demonstrate the ALT retrieval solution
combining both the six-layer VWC dataset from the SoilGrids database at 250 m spatial
resolution and the subsidence field derived from FCNInSAR [30,31]. First, we explored
21 SAR images from COSMOSky-Med (SLC) using the FCNInSAR method to quantify
and map spatial and temporal variations in ground surface subsidence in the study area.
Secondly, the thaw-settlement coefficient was introduced to establish the relationship
between the thaw settlement and ALT. Soil properties and saturation state are considered in
the model. Then, ALT over the study area was obtained by integrating the high-resolution
subsidence rates measurements from InSAR with VWC. The results are then interpreted
against maps of surface geology to analyze the spatial distribution of ALT and find possible
reasons for the differences in ALTs.

2. Materials and Methods

2.1. Study Area

Iqaluit is the territorial capital of Nunavut, Canada, as shown in Figure 1. In the
far north latitude of 63, the city at the northern shore of Frobisher Bay is located in the
permafrost zone, extending in the subarctic from a few meters to 1500 m into the ground,
and is therefore extremely sensitive to climate change [32]. This area is under the subarctic-
tundra climate and has a series of typical climate characteristics, e.g., short growing seasons,
extremely low temperatures, strong winds, and variable sunlight periods. The summers
here are very short and humid. The period that air temperatures drop below 0 centigrade
is at least eight months per year. The active layer thaws during hot summers (usually in
June to September) but heaves in winter when the air temperature slides dramatically to
negative 30–40 centigrade. According to the temperature recordings in July and August,
the highest temperature reached 21 centigrade in 2016, and it has been generally warmer
than before in recent years.

The subsurface sediments under the city are mainly composed of lacustrine (Lv)
sediments, fluvial (coarse-grained) and glaciomarine deltaic (GMd) deposits, bedrock (R),
and rock with till cover (Tv) [33]. Except for the bedrocks that are relatively stable, all
subsurface sediments are considered to have an ice-rich content. As a result, in response to
seasonal alternation, the ground surface in frozen soil areas undergoes dramatic freezing
uplift and thawing settlement, as much as 10 cm [34], so the ALTs increase in thickness.

The elevation difference over the study area is about 70 m. Iqaluit airport was built
on a flat basin surrounded by hills and rock plateaus. It serves as the transport hub for
the eastern Canadian Arctic due to the lack of highway or railway there. The available
alternative forms of transportation are mainly ships in summer to connect the city to other
northern communities or the rest of Canada. The airport has been expanded with the
increasing mining and tourism in addition to serving nearly 8000 residents of the city.
Influenced by climate change in recent years, the airport and the houses built in this area
are becoming more vulnerable to the freeze–thaw cycle. The taxiway and runway of the
airport sustain continuous cracking due to the ground deformation. It is vital to monitor
uneven subsidence at the airport to guarantee safe operation.
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Figure 1. (a) Location of the study area and coverage of SAR images and soil moisture; (b) a CSK
amplitude image.

2.2. Dataset
2.2.1. SAR Data

For the InSAR analysis, 21 COSMO-SkyMed images in Spotlight mode acquired from
June to September 2014 with an incidence angle of 25.4◦ and “HH” polarization were used.
The pixel spacing of the single-look complex image in the slant range and azimuth direction
is 0.312 and 0.702 m, respectively. The coverage and the amplitude of the SAR images are
shown in Figure 1. The acquisition dates of all images can be found in Table 1.

Table 1. Iqaluit COSMO-SkyMed acquisition dates.

Date Date Date

10 June 2014 24 July 2014 29 August 2014
18 June 2014 28 July 2014 6 September 2014
26 June 2014 5 August 2014 14 September 2014
4 July 2014 13 August 2014 22 September 2014
5 July 2014 21 August 2014 23 September 2014
20 July 2014 22 August 2014 26 September 2014
21 July 2014 25 August 2014 30 September 2014

Two TanDEM-X images in bistatic mode acquired in July 2012 were used to produce
a DEM with 5 m spatial resolution and 2 m relative height accuracy for acquiring more
precise differential interferograms.

2.2.2. Soil Moisture Data

Publicly available soil profile data from SoilGridsTM [35] provide global predictions
for standard numeric soil properties including pH, soil organic carbon content, bulk density,
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coarse fragment content, sand content, silt content, clay content, cation exchange capacity
(CEC), total nitrogen soil organic carbon density, and soil organic carbon stock, as well as
volumetric water content (VWC) at six standard depths (0–5, 5–15, 15–30, 30–60, 60–100,
and 100–200 cm) with the highest scale of 250 m resolution. In this study, we used the VWC
in 1500 kPa predictions with the prediction uncertainty at 95th percentiles. Figure 2a–f
shows the spatial distribution of soil moisture over Iqaluit and the vicinity. Figure 3 gives
examples of the vertical profile of random points located in different sediments.

Figure 2. Spatial distribution of soil moisture over Iqaluit at six standard layers under UTM projection.
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Figure 3. Profiles of soil moisture at points in GMd, Tv, and Lv sediments.

2.3. Methodology

The aim of this study was to acquire high spatial resolution subsidence maps of Iqaluit
using InSAR and estimate ALTs on the basis of seasonal thaw subsidence. The main two
steps were (1) subsidence observation and (2) ALT retrieval.

2.3.1. Subsidence Observation from CSK Spotlight SAR Images

We applied the FCNInSAR algorithm to CSK images to map the subsidence in Iqaluit.
This is a robust method taking advantage of both PSInSAR [36] and SBAS [37] methods.
The main processing steps in FCNInSAR are similar to PSInSAR. The main differences
are as follows: (1) Forming interferograms following the SBAS method to increase the
measurements by connecting all possible images instead of using only one single master
image. This is useful especially when the number of available images is limited. (2) More
observations of arcs improve the stability of deformation acquisition. (3) The best estimation
of linear deformation rates and DEM errors can be found by searching in a predefined
value space rather than phase unwrapping. (4) SVD must be adopted to reconstruct the
time series of nonlinear deformation due to the SBAS method of forming interferograms.

We used a linear deformation model to estimate velocities since all selected images
were acquired in summer. However, the solution of FCNInSAR fully considers the ex-
traction of the nonlinear deformation component. In order to select a sufficient number
of persistent scatters (PSs) and obtain reliable subsidence, this study only processed SAR
images spanning the thawing season without snow cover. In Iqaluit, as mentioned above,
the average temperature from June to September is greater than 0 ◦C, so the thawing settle-
ment of frozen soil mainly occurs throughout these four months. Therefore, 21 images in
June and September (see Table 1) were selected to map the subsidence. The image acquired
on 21 August was chosen to be the reference image for co-registration. All images were
resampled into the reference image space. Then, the mean and the standard deviation (SD)
of amplitudes were calculated based on the co-registered amplitude images. A total of
1,000,561 PSs were selected in the study area, of which the amplitude dispersion index is
less than 0.25.

We also set the perpendicular baseline and temporal thresholds of 500 m and 90 days
to generate 167 interferograms. We visually inspected the quality of all interferograms and
removed those with temporal baselines longer than 30 days due to their low coherence. A
total of 72 interferograms remained for deformation analysis (see Figure 4). The phase at
each pixel consists of many components, such as topography, flat-earth trend, deformation,
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atmosphere, and decorrelation noise. We removed the topographic effects and the flat-
earth trend from interferograms using the newly made DEM and the orbital data and
then acquired 72 differential interferograms. The differential phase at each pixel (x, y) of
differential interferograms can be modeled as:

Δφi(x,y) = Δφlde f
i (x,y) + Δφdem

i (x,y) + Δφres
i (x,y) (1)

Δφres
i (x,y) = Δφnlde f

i (x,y) + Δφatm
i (x,y) + Δφnoise

i (x,y) (2)

where i denotes the ith interferogram, and Δφ
lde f
i (x,y), Δφdem

i (x,y), and Δφres
i (x,y) are the

differential phase of linear deformation, elevation error, and residual phase along the radar
line of sight (LOS), respectively. The residue phase includes nonlinear deformation phase,
atmospheric phase, and noise.

Figure 4. Spatiotemporal baselines of interferograms.

We freely linked the neighborhood PSs (e.g., within 1 km distance) to form a strong
network. By differencing the phase between two adjacent PSs, the residue phase can be
largely subtracted due to spatial autocorrelation [38]. Therefore, the differential phase
between two adjacent PSs (A and B) for the ith interferogram can be illustrated as:

Δφi(xA, yA; xB, yB) =
4π

λR sin θ B⊥iΔε(xA, yA; xB, yB) +
4π
λ TiΔv(xA, yA; xB, yB) + δ

arcAB
i ,

Δφi(xA, yA; xB, yB) = Δφi(xA, yA)− Δφi(xB, yB)
Δε(xA, yA; xB, yB) = ε(xA, yA)− ε(xB, yB)
Δv(xA, yA; xB, yB) = v(xA, yA)− v(xB, yB)

(3)

δ
arcAB
i = Δφ

nlde f
i (xA, yA; xB, yB) + Δφatm

i (xA, yA; xB, yB) + Δφnoi
i (xA, yA; xB, yB) (4)

where δ
arcAB
i denotes the residue phase on the arc AB, and Δφ

nlde f
i (xA, yA; xB, yB), Δφatm

i
(xA, yA; xB, yB), and Δφnoi

i (xA, yA; xB, yB) are the nonlinear deformation and the atmo-
spheric and noisy differential phase between AB, respectively. ε and v denote the DEM
errors and linear displacement velocities at pixels, and Δε and Δv are the increment of
elevation errors and the increment of linear displacement velocities between two connected
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PSs (e.g., A and B), respectively. B⊥i and Ti are the perpendicular (spatial) and tempo-
ral baseline of the ith interferogram, respectively; λ, R, and θ are the radar wavelength,
sensor-to-target distance, and radar incident angle, respectively.

Due to the phase ambiguity in the differential interferograms, the two unknowns Δε
and Δv of each pair of PS points can be determined by maximum likelihood estimation, i.e.,
by searching Δε and Δv in a pre-defined solution space (e.g., (−5, 5) m, (−200, 50) mm/year
in this study) to maximize the following equation:

ϒ =

∣∣∣∣∣ 1
N

N

∑
i=1

(cos warcAB
i + j• sin warcAB

i

∣∣∣∣∣, j =
√−1 (5)

warcAB
i = Δφi(xA, yA; xB, yB)− 4π

λR sin θ
B⊥iΔε(xA, yA; xB, yB)− 4π

λ
TiΔv(xA, yA; xB, yB) (6)

where ϒ is the model coherence, and warcAB
i denotes the difference between measured and

estimated phase values. After the increments of velocities and DEM errors are calculated,
we interpolated linear deformation rates and DEM errors at the regular grid points based on
the irregular PS samples. The residual phases of every pixel were obtained by subtracting
the gridded phase from each of the differential interferograms. As the interferograms
were freely generated, the SVD was applied to reconstruct the time series of residual
phases corresponding to the SAR acquisitions. We further isolated the nonlinear and
atmospheric phase by using the empirical mode decomposition (EMD) method [38] on
the unwrapped residue phase as the two terms have different frequencies in space and
time. The deformation of each PS is the sum of the linear and the nonlinear deformation.
A bedrock area close to the airport was chosen as the reference point for the velocity
calculation. The velocities of all PSs can be calculated by spatial integration in the freely
connected network with respect to the given reference point. InSAR measurements were
along the direction of the line of sight (LOS). We converted all results from LOS to vertical
displacement using the following equation:

Vvertical = VLOS/ cos θ (7)

2.3.2. ALT Estimation

The maximal thawing settlement throughout the year should be used as input for
inversion of ALT from subsidence data. Considering Iqaluit, the monthly average tempera-
tures from January to May or from October to December are all below 0 degrees Celsius.
The daily temperature was almost negative in those months by 2015, and therefore, the
frozen soil rarely thaws. In addition, the temperature decreases so rapidly in October that
while the soil close to the permafrost table remains in a continuous thawing state, the
surface starts freezing downward when the ground surface temperature becomes negative.
Therefore, in this study, we assumed that the thawing settlement from June to the end of
September equals the yearly thawing settlement, and the water totally changes to ice in
winter.

The total settlement is mainly affected by three terms: one from thawing settlement
and two volume-compressibility terms due to a surcharge load and the self-weight [39].
The volume compressibility can be ignored since consolidation comprises only a fraction
of the surface settlement that occurs as a result of drainage from the lower boundary [25].
Thus, the total thawing settlement can be simplified as:

H = A0Z (8)

where H is the thaw-induced settlement of the frozen soil, A0 is the thaw settlement
coefficient, and Z is the depth to thaw front from the original surface. The maximum
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thawing depth corresponding to the largest settlement is the ALT. Thus, the relationship
between ALT and the maximal thaw subsidence is:

Z =
H
A0

(9)

The main factors that affect the thawing settlement coefficient are soil types, ice content,
and the dry density of frozen soil [40,41]. With the same moisture content, sandy soil has
a smaller thaw coefficient than clay. The thawing settlement coefficient increases with
the decrease in the dry density when the soil is saturated. If the ice content is large, the
thawing settlement coefficient and settlement of frozen soil are both significant because
the settlement results not only from the volume shrink from the ice-water phase change
but also the drainage of saturated or oversaturated soil thawing. Owing to extremely low
temperatures in winter at Iqaluit (around −40 ◦C), we simply assumed that the ice content
is equated to the water content in this study. Based on the aforementioned ideas, the thaw
settlement coefficient can be calculated separately in the following conditions:

• Soil in an unsaturated state

It is generally assumed that when unsaturated soil freezes and thaws in situ, the
volume expansion cannot fill the pores fully. As a result, there is no heave uplift or
settlement. Experiments indicated that there is still observable uplifting upon freezing
which results from the volume expansion of bound water [40,41]. The combining rate Cr is
introduced to denote the ratio of water attending the freezing expansion:

Cr =
W
Wb

Wb = ρw
rd
(1 − rd

rs
)

(10)

where W is the water content of soil by mass and Wb is the water content of saturated soil
by mass. ρw refers to the water density, while rd is the dry density of the soil, and rs is the
specific gravity of soil particle. The thaw settlement coefficient of unsaturated soil is:

A0 = 0.09Cr
rdW
ρw

(11)

• Soil in a saturated state

For a saturated soil, Cr = 1. The thaw settlement coefficient is:

A0 = 0.09
rdW
ρw

(12)

• Soil in an oversaturated state

When the oversaturated soil freezes in winter, some water is pulled through the soil
to build up layers of segregated ice. When the AL thaws in summer, part of the water
becomes free water and discharges under good drainage conditions [25–29,39]. This part
of the water contributes its whole volume to the subsidence. Therefore, the difference in
volume between the frozen and thawed state is equated to the change in volume associated
with melting the ice plus the volume of water expelled from the soil. The void ratio of
oversaturated soil n can be solved by:

n = 1 − ρw

(rsW + ρw)rs
(13)

The relationship of the height of the free water in unit area and the height of the
thawing soil is:

HW =
n − n1

1 − n1
H (14)
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where n1 is the void ratio under the liquid limit, H is the total height of the thawing soil,
and HW is the height of the free water in unit area. The height of pore water that approaches
the liquid limit in unit area is:

Δh1 =
1 − n
1 − n1

n1H (15)

The thaw settlement coefficient can be expressed as:

A0 = 1.09
Hw

H
+ 0.09

Δh1

H
(16)

It also can be described as:

A0 =
1.09n − n1 − 0.09nn1

1 − n1
(17)

Thawing settlement coefficients for all soil types can be determined given values of
soil properties and VWC. In this study, the values of parameters [42] we used in the ALT
estimation are listed in Table 2. The VWC at 1500 kPa is transferred to the absolute VWC
in the soil by multiplying the ratio of VWC from remote sensing and the mean of VWC at
1500 kPa over the study site.

Table 2. Values for thaw settlement coefficient calculation.

Sediment Type n1 rd (g/cm−3) rs (g/cm−3)

R (bedrock) 0.42 2.4 2.75
Other sediments 0.42 1.9 2.65

3. Results

3.1. Deformation Results

Figure 5a illustrates mean displacement velocities in summer 2014. The results, su-
perimposed on Google Earth over the entire region, show that the city undergoes thaw
subsidence in summer. Ground subsidence varies significantly in size and shape over
the study area. It is larger at the airport and surrounding infrastructure than the natural
ground. Five subsidence funnels can be seen in Figure 5a. The most conspicuous settlement
(labeled as blue circle A) is centered the intersection of taxiway alpha and runway 17/35
of the airport, with a diameter of approximately 450 m. The vertical displacement rate is
up to 163 mm/year which is so detrimental to the airport’s performance that the taxiway
stopped working for some time. Another elliptical subsidence area (the ellipse where
GPS station IQAC [43] is located) with a major axis of about 420 m elongated along the
NW–ES direction was observed at the immediate south side of the runway. The mean
velocity around this area is 80–88 mm/year. In the vicinity of oil depots and the city landfill
(the ellipse where thaw tube T2 [44] is located), there is a significant settlement region of
approximately 1 km2 with a 110 mm/year subsidence rate. Another settlement region
appears in the south of the city (labeled as B), with a similar rate to the oil depot area. In
the northern end of the runway (labeled as E) and the residential area, the subsidence rates
are between 44 and 88 mm/year.
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Figure 5. (a) Displacement velocities over the study area. The red star is the reference point for
velocity calculation; blue triangles denote GPS stations; black dots denote two thaw tubes; black
polygons represent infrastructure and facilities; the blue line labeled as CD is the profile site along
runway 17/35 for further discussion; (b) cumulative subsidence between IQAL and IQAC from GPS
measurement and FCNInSAR time series; (c) time series subsidence of four points labeled in (a).

For further analysis of the dynamic evolution of the active layer, time series displace-
ments at four points are plotted in Figure 5c. The points are selected from the different
areas as presented in Figure 5a. A similar subsidence trend, albeit at different rates, is
observed for all points. The ground surface subsides relatively slowly in June and in
September, even with random uplifts, but much faster in July and August. Across four
months, the settlement of point A on the runway of the airport amounted to 57 mm. The
total subsidence of the thaw tube T2 installed in a marshy area [44] with seasonally ponded
water is 51.5 mm. It has higher rates compared to B and T1. The thaw tube T1 has little
sign of displacement of approximately 13 mm.

3.2. Estimated ALT Results

Figure 6 shows the ALT distribution over the entire study area. The magnitudes of
estimated ALTs are between 0 and 5 m and exhibit considerable regional heterogeneity.
ALTs in bedrock areas are generally larger than other sediments. The maximal ALTs are
located at the southern part of the study area. The 1–2 m ALTs are widely spread in the Lv,
GMd, and Mn sediments, while ALTs are smaller than 1 m in the Afp and the Tb sediments.
Stable areas without subsidence also have shallow ALTs in rock area. A deeper AL of 1.2 to
2.5 m dominates the intersection of the runway and taxiway alpha.
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Figure 6. Estimated ALTs.

Closer inspection of the airport sector (Figure 7) shows that the AL ranges between 0
and 2.5 m with a paved surface. The natural ground in the airport section shows a slightly
smaller ALT trend with most part of it having an AL of less than 1 m. Only the bare surface
between the taxiway and the runway has an AL similar to the paved ground which is even
deeper than 2.5 m.
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Figure 7. The ALT distribution in the airport sector. Blue triangles denote boreholes.

4. Analysis and Discussion

4.1. Comparison of Subsidence with GPS Data and Thaw Tubes

In order to assess the accuracy of subsidence detection, GPS data and thaw-tube
recordings were used for validation. We downloaded observations from the Nevada
Geodetic Lab for two GPS stations that were contemporaneous with the SAR data used in
this study [43]. The locations of GPS stations are listed in Table 3.

Table 3. GPS stations used for comparison.

GPS Station Coordinates

IQAC 63.737 N, −68.540 W
IQAL 63.756 N, −68.510 W

Figure 5b presents the temporal evolution of displacements relevant to the points
labeled as IQAC and IQAL. GPS station IQAL was set close to Geraldine Lake, and it is
underlain by till veneer sediments. The other GPS station IQAC was installed in Sylvia
Grinnell Park. Cumulative thawing settlements between IQAC and IQAL from FCNInSAR
and GPS measurements are 4.5 and 5 cm, respectively. The discrepancies’ mean value
and standard deviation are 7.06 and 8.76 mm. The FCNInSAR subsidence trend generally
agrees well with GPS displacement, but there is a significant difference in July and August,
up to 2.7 cm.

We also compared our subsidence to the results measured on site. Two thaw tubes
located in well-drained glaciomarine deposits (T1) and poorly drained marine sediments
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(T2) were available [44,45]. As plotted in Figure 5c, the subsidence of T1 in the whole
summer from FCNInSAR is 1.32 cm, while that recorded from the thaw tube is 0.8 cm.
Due to the construction work, T1 was removed in July 2014. Therefore, only part of the
subsidence was observed. Our InSAR result is somewhat consistent with that observed at
T2, in which we see a difference of 0.15 cm in 2014 (see Table 4). Compared to the report
published by Short in 2017 which stacked the DInSAR results for deformation analysis, as
shown in Figure 8, the FCNInSAR deformation trend better matches the deformation from
the measurement of the thaw tube [46].

Table 4. Subsidence at the location of thaw tubes.

Thaw Tubes
In Situ Subsidence

(cm)
Subsidence from
FCNInSAR (cm)

Year

T1 (removed in July) 0.8 1.32 2014
T2 5.3 5.15 2014

Figure 8. Ground displacement at T2 from Short et al. (2017), in situ measurement and FCNInSAR.

4.2. ALT Validation with Thermistor Cable Measurements

Mathon et al. studied the ALTs over Iqaluit by installing thermistor cables in boreholes
and recording schematic stratigraphy from boreholes [47]. The results show that the
thickness of the active layer varies between 90 cm for sectors covered with vegetation and
more than 2 m below paved surfaces [47]. In our study, the AL in the natural ground of the
airport sector within GMd sediments ranges between 0 and 2 m, and it is up to 2.504 m
under the paved taxiway, which shows good consistency with previous studies.

We averaged the ALTs of all PSs within the distance of 5 m to each thermistor cable for
point-to-point validation. The ALT of 1.5 m was observed in the field in 2012 at thermistor
cable AERO-2010 (with the same location as T1) [48], while it was 1.01 m in our results.
The ALT of DH13-02 under the paved taxiway is 2.7 m, and the result of this study is 2.5 m.
The ALT of thermistor DH11-07 installed on the taxiway shoulder increased from 1.5 m in
1992 to 2.2 m in 2012 [45,47,48]. The retrieved ALT in 2014 of this study is 1.8 m. All three
datasets are generally consistent with each other. The slight difference could be partially
attributable to the uncertainties in soil moisture data. Especially during the summertime,
the soil is observed to be saturated or flooded in shallow layers [45], but the soil moisture
data used to retrieve ALTs generally had values under 0.35. Subsidence detection errors
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and the different acquisition times of results for comparison are also possible reasons for
the discrepancy.

4.3. Uneven Trend of Subsidence and ALT along the Runway

Both subsidence velocity and ALT profile along CD were plotted to assess the hetero-
geneous changes of the ground along runway 17/35. As shown in Figure 9, the subsidence
velocity and ALT fluctuate considerably. The section from 230 to 800 m is recognized as the
part close to the runway entrance that exhibits more subsidence and a thicker active layer
than other parts of the airport. There were dense cracks on the asphaltic surface which
can be easily seen on optical images. Allard [33] mapped them in 2012, as shown by red
lines in Figure 7. Locations of cracks designated by dashed lines as shown in Figure 9 are
consistent with sudden changes of displacement velocity and ALT along the runway. With
the temperature rise, different soil characteristics of changing sediments introduce variable
subsidence, which results in ground surface cracking. Due to the high resolution of SAR
images, we obtained detailed subsidence fields and ALTs, showing many turning points
on the profile CD. The geophysical results proved that ice wedges appeared along the
runway [44]. Ice wedges are another possible reason for cracks. The v-shaped ice wedges
that vertically taper down into the permafrost grow as ground cracks occur in response to
thermal contraction of the ground during winter and that water entering the open cracks
freezes [49]. As the temperature rises, vein ice and ice wedges melt. Surrounding rocks and
upper soil collapse afterwards.

Figure 9. Deformation and ALT profile along CD.

4.4. ALTs under Infrastructure and Natural Ground

The histograms of ALT (Figure 10) display the difference between the AL under
infrastructure and the natural ground within the airport sector. This shows that the AL
under the paved surface (the runway, aprons, and the taxiway) ranges from 0 to 2.504 m.
As shown in Figure 10a, a part of taxiway alpha experienced significant subsidence, which
led to several resurfacings and diversions. In total, 96% of the natural ground has an AL
of less than 1.5 m. Only the tiny part mainly located at the shoulder of the runway has an
AL of thicker than 2 m. The surface paving and the construction work probably increase
the ground temperature, leading to the thicker ALs. According to previous field tests, the
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intersection part of the runway and taxiway alpha is wetter than neighboring parts [44,45].
Although the previous lake (where the Lv sediments on taxiway alpha are located) and
drainage channels were modified and covered by the airport’s construction, a water-rich
region extended from taxiway alpha across the runway remaining there. This indicates that
there are errors in VWC data. We found that the subsidence is the dominant factor of the
ALT in the paved area due to the subtle difference in VWC.

Figure 10. (a) Enlarged view and the statistic histogram of ALTs under infrastructure; (b) enlarged
view and the statistic histogram of ALTs under natural ground.

4.5. Relation between ALT and Geology

An ALT–geology combined analysis over the entire study area was conducted for a
further ALT interpretation. The surface geology map [29] over Iqaluit (Figure 11) shows
that the area mainly consists of glaciomarine deltaic (GMd) sediments, alluvial flood plain
(Afp) sediments, alluvial terraced (At) sediments, lacustrine (Lv), Littoral and nearshore
(marked as Mn) sediments, intertidal (marked as Mi) sediments, till blanket (Tb), till veneer
(Tv), and bedrock (R).
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Figure 11. (a) Surficial geology map over Iqaluit; (b) optical image of the intersection of the runway
and taxiway alpha; (c) optical image of landscape in Mn sediments.

The solid and tightly bound bedrock is considered stable, as reflected by the slightly
upward ground and patches without subsidence shown in Figure 5a. ALTs of almost 0 or
small values exist in these patches resulting from their positively proportional relationship
with the subsidence. Thick ALs up to 5 m shown at the southern tip of the study area
agree well with the large settlement and the small thaw settlement coefficient of bedrock.
Bedrocks are usually dry and prone to thaw deeper and quicker due to their high thermal
conductivity. The considerable settlement was observed in the Tb unit which is composed of
ice-rich coarse sediment. The ALTs in this area are generally less than 0.5 m (Figure 12). The
underlying deposits on which large downward movements occur at the airport and nearby
infrastructure (Figure 11b,c) are mainly related to the GMd and Mn shown in dark and light
blue in Figure 11a, which agrees with previous studies [44,45]. The GMd was deposited in
shallow water and formed adjacent to the grounded margin of a tidewater glacier since it
formed when marine submergence occurred [49]. Therefore, it is dominantly filled with silt
composition and salinity. Thus, the AL likely subsides more in summer. Subsequently, the
ALT estimated from the thawing subsidence is larger (Figure 12), and thick estimated ALTs
around 2 m are aligned well with the maximal subsidence in GMd sediments. They may
be overestimated, however, in well-drained parts with low water content since ice-wedge
melting is considered as soil thawing. Field campaign results [48,50,51] show that the
sediments are composed of 10 cm organic and 90 cm ice-boned medium brown sand with
grey silty sand layers. The higher the ground ice content, the larger the seasonal subsidence
or shallower corresponding ALT.
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Figure 12. Statistic histograms of ALT in different sediments.

ALT values reaching up to 2.504 m appear in the Lv, with a mean thickness of 0.5 m,
and 20% of these kinds of sediments have an AL of more than 1 m (Figure 12). We can see
several patches of Lv distributed at the northwest end of the runway and the immediate
south side of the runway. In Figure 10, a notable patch of Lv could be the reason for the
malfunction of taxiway alpha. The taxiway and marshy regions at the west side of Sylvia
Grinnell Road have significant subsidence since the Lv sediment is generally fine-grained
material with high moisture content [50,51].

Afp and At units exhibit an ALT less than 1 m (Figure 12). This is reasonable for
sediments with grain size ranging from boulders to silt particles [52,53]. The saturated
water content of this deposit is higher than other sediments. Therefore, to thaw or freeze
fully, more heat is required in the same height layer of soil. This is why subsidence and
ALTs are both subtle in this region.

4.6. Limitations

Even though the comparison of estimated ALTs and in situ measured results from
other studies shows differences of less than 0.5 m, some limitations should be noted. The ice
content is critical for ALT retrieval other than soil properties. The soil moisture data used
in this study reveal changes in water content across space but do not include ice-wedge
information. The data may introduce substantial errors when the water content and the ice
content are considered the same thing. Furthermore, the VWC from SoilGrids at 1500 kPa
is not identical to the VWC in the soil throughout the summer. The ratio between them
should be appropriately examined before estimating the ALT. In SoilGrids, the explained
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soil property variance ranges between 30% and 70% [35]. As a result, the uncertainties of
ALT estimation are possibly up to meter-level. In addition, the thaw settlement coefficient
can properly indicate the thawing conditions of frozen soil. However, more in situ data are
necessary for the precise determination of soil moisture and other parameters needed in
this retrieval model.

5. Conclusions

In this study, we retrieved high-resolution ALTs at Iqaluit airport by integrating the
subsidence derived from X-band interferometric measurements and volumetric water
content (VWC) datasets with a resolution of 250 m. The InSAR survey using 21 CSK images
in Spotlight mode identified several sites of ground deformation at Iqaluit, subsiding at
rates exceeding 80 mm/year. The largest settlement occurs at the intersection of runway
17/35 and taxiway alpha, which is up to 163 mm/year. We determined the saturation state
and the corresponding thaw settlement coefficient for all measurement points in different
sediments using the VWC data from SoilGrids and soil dry density. Our results suggest
ALTs that range from 0 to 5 m. Combined analysis of the ALT and surface geology indicates
that the retrieved ALT distribution is highly related to the subsurface geological conditions.
Maximal ALTs are distributed in bedrock areas. In the airport sector, thicker ALTs are found
in large settlement sites due to the thaw settlement coefficient being positively proportional
to the soil moisture where the soil is in an unsaturated state according to the VWC data.

We should emphasize that the detailed ALT map is valuable not only for supporting
infrastructure design and maintenance over the permafrost zone but also for comprehensive
understanding of the AL conditions with global warming. The proposed ALT solution can
provide denser observations over large areas than traditional point-based methods.
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Abstract: Serious land subsidence and ground fissure (GF) disasters have brought huge economic
losses to the Su-Xi-Chang area (China) and threatened the safety of its residents. To better understand
the development of these disasters, it is urgent to carry out long-term and large-scale deformation
monitoring in this region. In this study, based on time-series interferometric synthetic aperture
radar (InSAR) technology, ground deformation characteristics were obtained at different periods.
Meanwhile, Fast Lagrangian Analysis of Continua in Three Dimensions (FLAC3D) version 5.00 was
used to study the stress, seepage field, and displacement changes in the soil layers caused by pumping
activities at the bedrock bulge. The results showed that three subsidence centers were located in
Suzhou, Wuxi, and Changzhou from 2007 to 2010. The ground fissures in Guangming village had
obvious differential settlements and intense activities. The land subsidence in the Su-Xi-Chang area
was under control from 2018 to 2021, while there was a relative rebound in most areas. Combined
with numerical simulation and geological data, we demonstrated that pumping activities would
accelerate and intensify the land subsidence process, and differential subsidence was prone to occur at
the buried hill, which in turn led to the formation of ground fissures. By comparing the characteristics
of ground deformation in different periods, it was proven that banning groundwater exploitation is
an effective measure for preventing and controlling such disasters.

Keywords: Su-Xi-Chang area; InSAR time-series; ground fissure; land subsidence; FLAC3D

1. Introduction

Overexploitation of groundwater resources may result in compression of aquifer
systems (aquifers and permeable aquifers), which causes rapid land subsidence [1]. Many
major cities around the world are facing such geological disasters due to the excessive
extraction of groundwater, such as central Mexico, Las Vegas in the USA, and the United
Arab Emirates [2–4]. Moreover, ground subsidence disasters are often accompanied by the
formation and development of ground fissures (GFs). A GF is a type of geological disaster
that occurs following the fracture of rock and soil [5,6]. Ground subsidence disasters
pose an enormous threat to underground engineering, surface construction, and the safety
and properties of human life [7–9]. Land subsidence in coastal areas or around lakes
is also prone to causing disasters such as waterlogging and flooding due to the loss of
elevation [10,11].

Previous investigations have shown that at least 3000 GFs are distributed throughout
the Northern China Plain, and approximately 80% of the GFs are non-structural [6,12,13].
In some regions, although land subsidence disasters have been alleviated to a certain
extent owing to natural and artificial groundwater recharges, the trend has not yet reversed
because of excessive groundwater extraction [14].

The mechanisms of land subsidence can be divided into two categories: the tectonic
control type and non-tectonic control type [6]. Tectonic factors such as faults, earthquakes,
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basements, basins and sediments affect the formation and development of surface defor-
mation to a great extent, while non-tectonic factors [15,16] such as the over-exploitation
of groundwater, rainfall conditions and climate also have a great impact on the breeding
process of land subsidence. The inducing factors of ground fissures can be divided into
three categories [5,9,16,17]—they are: (1) internal dynamic action, such as fault creep, earth-
quakes and volcanic eruptions; (2) extraction of underground fluids, such as water, oil and
gas; (3) semiarid climates. Based on the ground fissures found in China, the main causes of
such disasters are mainly tectonic activities and groundwater exploitation.

To better understand the internal relationship between land subsidence and GFs in
the study area, a wide range of ground subsidence characteristics must be investigated.
Many methods can be used for land subsidence monitoring, such as: (1) taking measure-
ments with standard land surveying methods (precise leveling, total stations or global
navigation satellite systems (GNSS)) over the established stable benchmarks at different
times at the same site, while obtaining the elevation differences; (2) making comparisons of
measurements from borehole extensometers; (3) making comparisons of elevations from
light detection and ranging (LIDAR) data acquired at different times or by using other
elevation datasets [11,17–20]. In addition to mapping technology for directly obtaining
surface deformation, some commonly used technologies in engineering exploration are
also used to study land subsidence and ground fissure disasters, such as pore water pres-
sure gauges [17], convergence measurements, layered standards and distributed optical
fibers [21], which can measure changes in the strata below the surface. However, these
technologies generally have the characteristics of a high cost, a large workload in the field,
and poor continuity of deformation.

The Su-Xi-Chang area mainly includes the Suzhou, Wuxi, and Changzhou cities
of China (Figure 1), which—especially Jiangyin City (subordinate to Wuxi)—are typical
areas with land subsidence and ground fissure phenomena. It lies in the southern part
of Jiangsu Province, around the lower reaches of the Yangtze River, and east of Shanghai
City (Figure 1). The Su-Xi-Chang region has various types of groundwater, complex
burial conditions, and an uneven distribution of groundwater, with obvious regional
characteristics. Pore water is the main groundwater type in unconsolidated materials
in plain areas [22,23]. The aquifers are partitioned into phreatic aquifers and confined
aquifers—marked as I, II, and III, respectively, from top to bottom based on their genesis,
ages, burial distributions, hydraulic connections, and hydro-chemical characteristics [24,25].
Confined aquifer II is the main groundwater exploitation layer, consisting of Middle
Pleistocene loam, medium coarse sand, fine sand, sandy loam, coarse sand with pebbles
and gravel [14,22,24].

Due to the rapid development of industry and the large water demand for residential
daily life, as well as irrigated agriculture, groundwater is consumed quickly and in large
quantities, and land subsidence disasters began to emerge in the Su-Xi-Chang region in
the early 1960s [26,27]. Over the next few decades, the groundwater level has continued to
decrease, with a wider range of uneven land subsidence. The rapid development of land
subsidence has brought on the discovery of several GFs [22]. The government has made
considerable efforts to mitigate regional land subsidence since 2005, including prohibiting
groundwater withdrawal. Currently, the land subsidence rate in the study area has declined
to less than 10 mm/year in most areas [25,26].

GFs such as those in Yangshuli (YSL), Guangming village (GM), and Wuxi City are
the most typical, appearing in early 1998 and further developing after 2000. In the next
few years, the inclination of the paddy fields increased, forcing villagers to level the paddy
fields every year and divide the paddy fields into small pieces for cultivation [28]. With
the development of the JY subsidence field, the occurrence of GF disasters in the region
peaked after 2007. Although the groundwater ban has been implemented for a long time,
the ground rebound has a hysteresis effect. Thus, the ground rebound rate is extremely
slow. It was not until surface monitoring in recent years that a tiny rebound phenomenon
was observed [25].
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Figure 1. Geographical location of Su-Xi-Chang area. (a) Geographical position of Jiangsu Province
in China. (b) Geographical location of Su-Xi-Chang area in Jiangsu Province. (c) SAR image coverage.
YSL stands for Yangshuli where the GF disaster occurred.

As a space-to-earth observation technology, interferometric synthetic aperture radar
(InSAR) has the advantage of obtaining surface deformations over a large area with high
precision. Combined with geological data, the corresponding relationship between the
surface deformation information obtained by InSAR and the geological background can be
obtained, such as the temporal and spatial variation relationship between the deformation
funnel and the fluctuation of bedrock.

In this study, land subsidence and GF activities in the Su-Xi-Chang area were mon-
itored using time-series InSAR technology based on SAR images from different periods.
To study surface deformation from 2007 to 2010, we used two sets of Envisat advanced
synthetic aperture radar (ASAR) images from different orbits: Envisat T39 and T268. The
surface deformation of this area was observed based on Sentiel-1A images from 2018 to
2021. The Stanford method for persistent scatterers (StaMPS) was used to process SAR
data [29]. We then analyzed and discussed the deformation information of the Su-Xi-Chang
region. Fast Lagrangian Analysis of Continua in Three Dimensions (FLAC3D) software was
used to simulate the surface deformation caused by pumping activities to verify the causes
of land subsidence and GF disasters. Our research can support the government’s decision
making in response to disasters and the effective allocation of resource development and
provide a reference for studying surface subsidence and GF disasters.

2. Research Status

Since land subsidence and GF disasters have appeared in this region, scholars have
done a lot of work to analyze the mechanisms of land subsidence and ground fissure,
including model experiments, numerical simulations and data measurements. Bu et al.
analyzed the developmental process of land subsidence with pumping in the Su-Xi-Chang
area [24]. Wu et al. observed the difference in land subsidence on both sides of the ground
fissure through leveling, and found that the uneven distribution of loose layers determined
the uneven land subsidence through geological drilling and a controllable source geodetic
audio sounding method [22]. Using distributed fiber optical sensing technologies and
microstructure analysis, Gu et al. found that the larger the proportion of soil voids, the
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easier it is to produce land subsidence [26]. Gu conducted a pumping experiment by
analyzing a ground fissure in a buried hill area via a macro model experiment, and he
found that the more the groundwater level drops, the more serious are the land subsidence
and ground fissures that are likely to occur [28]. Through leveling, groundwater head
measurements and a borehole extensometer, Wang et al. found that there was a time lag
between land subsidence or uplift and changes in groundwater level in the Su-Xi-Chang
area [25], and she analyzed the Changjing ground fissure located in Jiangyin City [30].
Many studies have surmised that the development of GFs is affected by various factors,
such as bedrock undulation, heterogeneity of the Quaternary strata, groundwater over-
extraction and differential land subsidence [27,31–33]. Chen et al. found that excessive
extraction of groundwater is the principal factor in the occurrence of land subsidence
disasters. As the depth of the strata increases, the compression of the soil layer caused
by the weight of the soil body increases, and the settlement caused by the upper loads
increases with increases in the upper load intensity; this phenomenon was verified using a
column element settlement model [34]. Liu obtained the same conclusion using a numerical
simulation method based on the numerical simulation software MatDEM [35].

At present, the rebound phenomenon of the ground is mainly explained by measured
data and model experiments. Hu concluded from the measured data that the effective
stress in the stratum disappeared owing to the sharp rise in the groundwater level, the
elastic deformation in the stratum was partially restored owing to the unloading effect, and
the ground rebounded [14]. Wang et al. also confirmed the existence of ground rebound
through measured data [25]. Xu et al. confirmed that land subsidence and GF disasters
caused by groundwater extraction are reversible processes by building physical models
and related experimental systems in the laboratory [13].

Predecessors have done a lot of research on the disaster mechanisms in this area, but
there is a lack of corresponding research results on the developmental process of disasters
and the changes in surface deformation after groundwater mining prohibition. For example,
the measured data of these studies are only based on individual points and there is a lack
of deformation monitoring of the entire area in previous studies. Therefore, it is difficult to
conduct a more refined analysis and description of surface deformation. To better understand
the causes and development of land subsidence and the formation of GFs, we used different
bands of synthetic aperture radar (SAR) images to study the surface deformation of this
area—namely, Envisat ASAR and Sentinel 1A—using time-series InSAR technology.

3. Methods and Data Processing

3.1. Methods

The differential InSAR technology used for land surface deformation monitoring
is subject to various factors such as the residual phase of the look angle error, satellite
orbit error, decoherence, phase unwrapping error, digital surface model (DSM) error and
atmospheric delay error [36,37]. Among the factors mentioned above, the accuracy and
precision of InSAR technology for monitoring surface deformation are mainly limited by
coherence and atmospheric delay errors. By utilizing permanent scatterer (PS) InSAR
technology, the aforementioned errors can be effectively reduced.

The PS-InSAR method is based on PS points, which exhibit stable scattering character-
istics. The PS points were obtained by analyzing the phase and amplitude variations of
the SAR data in the same region during a certain period of time. By utilizing the StaMPS
method firstly provided by Hooper in 2007, slowly decorrelating filtered phase (SDFP)
pixels with smaller amplitudes and relatively stable phases were selected. PS/SDFP pixels
were refined using multiple iterative calculations. Based on the selected PS/SDFP pixels,
deformation information can be analyzed and extracted. The number of PS points in non-
urban areas can be enhanced using the StaMPS method [29]. Figure 2 shows the technical
process of StaMPS technology.
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Figure 2. StaMPS technology flow chart.

However, this measurement technology based on interference points has high require-
ments for the phase stability of point targets in the study area. For rural areas dominated by
farmland, it is difficult to obtain sufficient monitoring data. In addition, in the data process-
ing, due to the differences in the selection of unwrapping reference points, the deformation
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results may have an overall deviation. As we analyzed the deformation characteristics on a
large scale in our study, we ignored the problem of insufficient data in farmland areas. In
order to solve the deviation caused by different unwrapping reference points, we set the
same reference area for different orbital SAR images.

3.2. InSAR Data Processing

In this study, we monitored the surface deformation of two different time periods
based on the data obtained from different sensors. Envisat ASAR images were used to study
ground deformation from 2007 to 2010. In addition, data from Sentinel-1 were collected
to observe the ground settlement from 2018 to 2021. Specific information, the number of
interferograms, and the acquisition time of the main image involved in the calculation
of the different sets of SAR images are listed in Table 1. The repeat orbit interferometry
PACkage (ROI_PAC) was used to convert the Envisat ASAR raw images into single-look
complex images [38]. Doris software V4.06 was used to produce interferograms for the
Envisat ASAR images [39]. Interferograms were generated using GAMMA Remote Sensing
software version 201807 for Sentinel-1 images. Time-series analysis can be utilized with a
single master image, assuming that the number of SAR images is sufficient. Therefore, the
ground deformation was obtained using the StaMPS PS-InSAR technique. To reduce the
perpendicular and temporal baselines and Doppler difference, and considering the degree
of vegetation cover, we chose the SAR images taken in the middle of the time span and
taken in winter as the master image SAR images (Table 1). The distribution information
of the spatiotemporal baselines of the interferograms obtained from different sensors is
shown in Figure 3.

Table 1. Detailed information for the SAR images used in this study.

Sensor Envisat T268 Envisat T39 Sentinel 1A (T69)

Band C C C
Orbit direction ascending ascending ascending
Heading (◦) −13.2 −13.2 −12.7
Incidence angle (◦) 23.2 23.2 39.3
Polarization VV VV VV
Number of
interferograms 21 23 42

Master image 14 February 2009 29 January 2009 22 February 2020
Time span March 2008–February 2009 November 2007–April 2010 January 2019–June 2021

Figure 3. Space-time baseline distributions of the interferograms from the three sets of SAR images.
(a) Envisat ASAR (2007–2010), (b) Sentinel 1A (2018–2021).

To subtract the terrain phase from the interference phase more accurately, a shuttle
radar topography mission with 30 m resolution (SRTM1) was utilized. In this study, 21, 23
and 42 interferograms from Envisat T268, T39 and Sentinel-1 images, respectively, were
used. Subsequently, phase iterative filtering was performed on the selected interferograms
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to optimize the DEM error. Points with phase standard deviations less than 0.8 rad were
selected for the refinement of coherent points [40]. Generally, the difference in the at-
mospheric delay between passes has a more significant effect on the unwrapped phase
quality [41]. Based on the spatial and temporal correlations of differential interferograms,
this type of error caused by the atmosphere was reduced from each differential interfero-
gram by filtering. The deformation velocity and time-series deformation information in the
Su-Xi-Chang area were obtained through the decomposition of the unwrapping phase and
the removal of the error phase.

3.3. Constitutive Relationship Model

When using FLAC3D software for numerical simulations to study the influence of
pumping activities on surface deformation, it is very important to select an appropriate
constitutive model to describe the mechanical response between soil particles. This model
is an empirical expression of the mechanical characteristics of materials. Given the dis-
crepancy of different material properties, to show the mechanical response of geotechnical
materials with different external loads in different situations, the FLAC3D software devel-
oped 12 different models. The Mohr-Coulomb model is frequently used in geotechnical
mechanics studies [42,43]; it is more appropriate for the analysis of loose and cemented
granular materials [44]. We used this model in our study to obtain the variation in the
geotechnical materials around the GFs under pumping activities. The physical parameters
of the soil play a key role in the improvement of the simulation accuracy of stratum activity,
including porosity (n), permeability coefficient (k), Young’s modulus (E), Poisson’s ratio (v),
internal friction angle (u), cohesion (c), expansion angle (w), tensile strength (T), normal
stiffness (Kn) and tangential stiffness [18]. The model analysis assists in understanding the
relationship between land subsidence, ground fissure activity and pumping in this area,
and provides guidance for regional groundwater exploitation.

4. Results and Analysis

In order to interpret the deformation information monitored by time-series InSAR,
spatial analysis technology was applied, and time-series points of typical deformation area
were extracted in our study. Through these analyses, the temporal and spatial characteristics
of surface deformation in the study area can be clearly demonstrated. The specific research
method is shown in Figure 4.

 

Figure 4. Flow chart of deformation field analysis.

4.1. Results from SAR Images

The annual deformation rates calculated from the two bands of the SAR images are
shown in Figure 5a,b, which reveal the ground displacement toward or away from the
sensor in the line-of-sight (LOS) by the positive or negative value of the deformation
velocity, respectively. However, differences in imaging geometry parameters may influence
the results, such as the resolution of SAR images, azimuth angle, and incident angle, which
lead to differences in the results. Through comparison and comprehensive analysis of the
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results, we found that the southern part of JY was the main subsidence area. Therefore, we
mainly demonstrate JY where severe land subsidence and GFs had occurred and continued
to develop. From 2007 to 2010, the largest deformation rate was more than 20 mm/year,
which is consistent with the results from previous research [14,22].

 

Figure 5. Su-Xi-Chang area deformation rates derived from SAR data. InSAR results inferred from
(a) E nvisat T39 and Envisat T268, and (b) Sentinel 1A.

Three time-series (TS) points were selected from the subsidence regions (Wuxi, Suzhou,
and Changzhou) to obtain the time-series deformation, as shown in Figures 5a and 6a.
From November 2007 to May 2010, point A, which is located in the settlement center of
Changzhou, had a cumulative settlement of 68 mm; point B was located in the settlement
center of Wuxi, south of JY, with a cumulative settlement of 67 mm; and point C was in
Suzhou City, with a cumulative settlement of 45 mm.

After examining the deformation monitoring results from 2018 to 2020 (Figure 5b), we
found that land subsidence in the entire Su-Xi-Chang area was effectively controlled, and a
large area of surface rebound occurred in Changzhou and Wuxi. The maximum rebound
rate was approximately 10 mm/year. To analyze the deformation process of the ground
during this period, two TS points were selected (Figure 5b); specifically, D and E, between
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Changzhou and Wuxi. The TS points showed that the surface deformation during this
period slowed down, and there was a slight rebound after July each year. This may be
related to an increase in rainfall and short-term groundwater supplementation (Figure 6b).

Figure 6. Time-series deformation information at the typical deformation area. (a) Obtained from
Envisat T39 (Points A, B, and C are displayed in Figure 5a). (b) Obtained from Sentinel 1A (Point D
and E are displayed in Figure 5b).

Since the external observation materials applied to verify the InSAR observation results
are lacking, such as GNSS observation or leveling data, an internal compliance accuracy
assessment is utilized to evaluate the quality of the InSAR monitoring results [44,45]. As
the two sets of Envisat ASAR data obtained from different orbits are consistent over time,
the monitoring results of their common areas corresponding to the same pixel are extracted
and compared. Since the results of the InSAR monitoring are along the line of sight (LOS)
of the sensor, the InSAR results obtained at different incidence angles differ from each other
in theory [46–48]. Before comparing the two sets of data, the monitoring results must be
transferred in the vertical direction according to the incident angle of the sensor using the
following equation:

du = dlos/ cos θ (1)

where the θ represents the incidence angle and du and dlos are the deformations in the
vertical and LOS directions, respectively. The vertical deformation rate calculated from
the two sets of Envisat data was linearly fitted (Figure 7a) and the correlation coefficient
was 0.88. The difference in the vertical deformation rate values of the common pixels
between the two sets of Envisat ASAR data is shown in Figure 7b. The absolute value of
the difference between the two sets of data, which was less than 5 mm, was 95%. These
two results have a high degree of consistency, which also demonstrates the reliability of
our results.

Figure 7. Internal accuracy verification. (a) Scatter plot and linear fit of deformation rate for the two
sets of results, and (b) difference between the two sets of results in the vertical direction.
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4.2. Land Subsidence Analysis

Through the deformation zone, Profile S1 was created to observe the relationship
between the settlement funnel and the undulation of the bedrock, as shown in Figure 8. The
surface deformation rate and bedrock depth along S1 were extracted as shown in Figure 9a.
We can intuitively see that compared with shallow areas, the land subsidence is more
serious where the bedrock is deeply buried. In other words, the trend of the deformation
field was in good agreement with the undulation of the bedrock. The distribution of
subsidence areas was spatially consistent with the distribution of ancient river channels
(Figure 8). This verifies that fluctuations in bedrock control the formation and development
of ground subsidence disasters.

 

Figure 8. The land subsidence field in southern Jiangyin city (the small figure in the upper right
corner is an enlarged view of the ground fissure area).

Figure 9. Profile analysis. (a) Comparison of InSAR results with the variation of bedrock undulations
along profile S1 whose position is indicated in Figure 8. (b) Comparison of deformation information
on both sides of the ground fissure.
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4.3. Ground Fissure Analysis

The first GF in the Su-Xi-Chang plain area was formed in 1989, and GF disasters
increased every year before 2004 [49]. The specific spatial distribution of GFs in this area is
disarranged and closely related to paleogeography. Among the many paleo-geographic
factors, the bedrock buried hill is the dominant one [28]. According to existing investiga-
tions, GFs in the YSL, GM Village, corresponding to the bedrock ridge in the area, have the
following similarities with other GFs in Changzhou and Wuxi: the geological background
is similar, the ground subsidence is severe in places where the GF disasters occurred and
the time of their occurrence was similar [22,28]. Therefore, only representative and typical
YSL GFs were analyzed, and numerical simulations and analyses were carried out.

The GFs in the YSL are shown as clusters of GFs, with the main cracks trending at
48◦, approximately 100 m in length, and 20 m in width [28]. To analyze the causes and
development of GFs in this area, we extracted InSAR monitoring data within a range of 5
km on each side of the GF. As the GF is too small relative to the study area, we used the
black dashed line to indicate the location and direction of the GF (Figure 9b).

In Figure 9b, the black ‘x’ symbol represents the InSAR results, the blue solid line is
obtained by fitting the InSAR results, and the red dashed line represents the location of the
GF. We can intuitively see that the gradient of the settlement rate on both sides of the GF
has changed significantly, the footwall of the GF is relatively stable (i.e., the part on the
right side of the dashed line), and the settlement rate is relatively slow, approximately 5
mm/year. The settlement rate of the hanging wall is relatively large (i.e., the part on the
left side of the dotted line)—above 15 mm/year—and locally exceeds 20 mm/year. The
monitoring results proved that differential settlement led to the development of the GFs.

5. Deformation Modeling

Long-term groundwater exploitation is an essential factor in inducing GFs. Fluctuation
of the bedrock surface is the internal cause of the birth of GFs. Excessive exploitation of
groundwater is a direct condition [13,25]. To understand the impact of pumping activities
on GFs above bedrock undulations, we conducted a numerical simulation of the process
using the Moore–Coulomb model with the FLAC3D software.

5.1. Model Establishment

We simulated the influence of groundwater extraction activities on the formation and
development of GFs based on the bedrock bulge. First, a simple model was built using the
built-in extrusion module of FLAC3D software. The model was 400 m in length, 150 m in
depth and 250 m in height. The undulations of the buried hill in the model were designed
based on an existing geological map (Figure 10a). The pumping well was set above the
highest point of the bedrock. The depth of the pumping well was set to 90 m, and the
pumping strength was 15 m3/s. As shown in Figure 10b, the model was divided into four
layers: the first layer was the loess layer and the second was the clay layer; the third one
was composed of sand and the fourth was bedrock. Due to the lack of detailed geological
exploration data in this area, we designed the specific parameters of each soil layer in
our experimental model (Table 2), referring to the published research results [50–52] and
investigation reports [13,28,35] in this area. Figure 10c shows the displacement boundary
conditions. Blue, green and red represent fixed X-direction, Y-direction and Z-direction
displacements, respectively.
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Figure 10. (a) Stratigraphic cross section. (b) Model based on actual bedrock fluctuations.
(c) Boundary condition setting.

Table 2. Physical parameters of each soil layer.

Parameter
Value

Loess Clay Sand Bedrock

Cohesion, c (kPa) 35 800 39 4620
Dilation angle, Ψ (◦) 14 9.5 12.5 22.5

Internal friction angle, ϕ (◦) 28 19 25 45
Tensile strength, T (kPa) 0 0 400 4500

Permeability coefficient, k
(m2/Pa/s) 5.1 × 10−10 0.3 × 10−7 2.04 × 10−9 1.02 × 10−15

Elastic modulus, E (MPa) 40 150 120 5400
Porosity, n 0.48 0.38 0.4 0.1

Poisson’s ratio, υ 0.35 0.3 0.23 0.29

The bulk modulus K and shear modulus G must be calculated from the elastic modulus
E and Poisson’s ratio ν:

bulk modulus : K =
E

3(1 − 2ν)
(2)

shear modulus : G =
E

2(1 + ν)
(3)

5.2. State of Equilibrium before Pumping

Figure 11a shows the initial stress field, and the color scale on the left shows the
magnitude of the stress. The negative values indicate compressive stress and the positive
values indicate tensile stress. It is the effect of pressure accumulation caused by the action
of gravity on the rock and soil that causes the initial stresses to all be compressive stresses.
Furthermore, we found that the vertical downward pressure on the left side of the ridge
was greater than that on the right. This is because the overlying soil layers on the left side of
the bedrock are more affected by gravity than those on the right side and have a tendency
to produce differential settlement. This also shows that undulation of the bedrock is the
internal cause of the GFs.

The same conclusion from the initial displacement field can also be obtained. (Figure 11b,c).
The X-direction displacement on the left side of the bedrock protrusion was negative, in-
dicating that the soil on the left had a displacement away from the bedrock protrusion.
Similarly, the soil on the right was displaced away from the bedrock protrusion. The
Z-direction displacement of the soil on both sides of the bedrock protrusion was negative,
which indicates a downward displacement. Combining the displacement in the X and Z
directions, the ground above the bedrock protrusion will be an area highly prone to GFs,
which also verifies that the undulation of the bedrock surface is the internal cause of GFs.

Figure 11d shows the initial seepage field; the color scale on the left indicates the
amount of seepage flow and the direction of the arrow indicates the direction of seepage.
It shows that the seepage in the upper soil was mainly concentrated in the lower soil,
indicating that the movement of pore water in the middle and upper layers is less affected
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by external forces. Moreover, the seepage flow on the upper surface of the bedrock was
almost zero, which indicates that the bedrock has a blocking effect on the plane distribution
of the aquifer. However, this isolation was not absolute, and a small amount of pore water
was still observed to be moving along the model boundary.

Figure 11. The initial state of equilibrium. (a) Initial stress field. (b) Initial displacement field (X
direction). (c) Initial displacement field (Z direction). (d) Initial seepage field.

5.3. Pumping Simulation

Figure 12a,b show the stress distribution during the pumping activity. The magnitude
of the x- and z-directions stress is increased compared with the initial equilibrium state,
indicating that the pumping activity causes the stress on the soil particles around the well
to change significantly. Figure 12c shows the total displacement, with the arrow indicating
the direction of the displacement, indicating that pumping activities have aggravated the
surface deformation near the pumping well. Figure 12d shows the displacement component
in the X-direction; we found that the soil was displaced away from the bedrock bridge
and that the deformation area on the left side of the buried hill is larger than that on the
right side, indicating that the top of the bedrock ridge has become an area prone to ground
fissures. Figure 12e shows that the vertical compression around the pumping well is more
serious, and the settlement on the left side is greater at the same level. As is shown in
Figure 12f, in the seepage field in an equilibrium state after the pumping activity, it can
be seen from the color scale on the left that the maximum seepage flow rate was lower
than that in the initial seepage field, indicating that decreases in the aquifer water and the
compression of the soil layer reduced the seepage velocity after the pumping.

According to the principle of effective stress, when the pore water pressure changes,
the porosity between the soil skeleton increases after the pore water is discharged. Due to
the large horizontal seepage in the horizontal direction of the pumped aquifer, the seepage
force will drive the solid particles to migrate and compact, which is macroscopically
manifested as the horizontal displacement of the formation. In the vertical direction, the
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aquifer loses water. When the total stress remains unchanged, the stress borne by the pore
water decreases, and the stress borne by the soil skeleton will increase, resulting in the
increase of effective stress, which will compress the soil particles downward to decrease
the porosity, form vertical displacement in the stratum, and macroscopically show vertical
settlement; the seepage activity of the pore water in the underlying soil was restrained.
Therefore, the seepage rate was lower than that before pumping.

Figure 12. Distribution of stress field, deformation field, and seepage field after pumping. (a) Stress
field distribution (x direction). (b) Stress field distribution (z direction). (c) Total displacement.
(d) Displacement field distribution (x direction). (e) Displacement field distribution (Z direction).
(f) Pumping seepage field.

6. Discussion

6.1. Deformation and Geological Factors

The Su-Xi-Chang area has suffered severe land subsidence due to the long-term over-
exploitation of groundwater. Differences in bedrock undulations, quaternary sedimentary
structures, and hydrogeological conditions are the internal conditions that trigger GF disas-
ters. The long-term excessive exploitation of groundwater is an external factor that induces
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GF disasters. The excessive extraction of groundwater by human activities causes the
compression of soil particles, forming an underground sedimentation funnel and resulting
in ground subsidence [30].

By comparing the relationship between bedrock undulations and the InSAR results,
we can intuitively see that bedrock undulations control land subsidence. In addition, the
settlement field in southern JY had a large degree of correlation with the distribution of
ancient river channels (Figure 8). The monitoring results from 2007 to 2010 showed that
although the extraction of groundwater was banned in 2005, subsidence was still serious
and rapidly developing. However, with the implementation of water prohibition measures,
land subsidence in most areas of the Su-Xi-Chang area improved. By observing the InSAR
results from 2018 to 2021, we found that land subsidence in the Su-Xi-Chang area has
stabilized as a whole, and there has been an obvious rebound in some areas.

6.2. Ground Fissure Activity and Pumping

Field investigations have shown that the YSL GF is located just at the uplift of the
bedrock, and because of the uneven distribution of the aquifer, under the action of pumping
water in this area, there is too much water loss in the thick aquifer and less water loss in the
thin aquifer, resulting in uneven differential settlement [22,28]. Subsequently, GF disasters
occurred in this area.

Through the monitoring results of the InSAR data, we intuitively found that the area
had obvious differential settlements on both sides of the GF. The footwall of the GF is
relatively stable, but it still has a settlement rate of 5 mm/year. The settlement of the
hanging wall was more serious, with a deformation rate difference of nearly 15 mm/year
with the footwall; this verifies the conclusions of the aforementioned field investigation.
Through the analysis of deformation rate from 2018 to 2021, the difference of overall
deformation rate in southern Jiangyin is less than 5 mm/year (Figure 5b), and the ground
deformation has been basically restrained. Due to the small deformation magnitude, the
current situation of ground fissures is not analyzed.

Land subsidence and the formation of GFs in this area are mainly controlled by
bedrock and affected by pumping activities, which accelerate the process of land subsidence.
Through the process of FLAC3D numerical simulation and analysis, we found that because
of the shape of the bedrock undulation in the area and the uneven thickness of the soil on
both sides of the bedrock, the soil tends to compress and become uneven under the action
of its own weight, and there is a potential danger of uneven settlement. Pumping activities
accelerated and aggravated this process, leading to GF disasters.

7. Conclusions

To analyze the land subsidence and GF activities in the Su-Xi-Chang area, we obtained
the ground deformation characteristics at different time periods using the time-series
InSAR technique. The maximum land subsidence rate exceeded 25 mm/year from 2007
to 2010. By extracting the characteristic points from the three subsidence centers in the
Su-Xi-Chang area, we found that land subsidence in Suzhou was relatively well controlled.
The land subsidence in Changzhou and Wuxi was serious, and the cumulative subsidence
at the characteristic points exceeded 75 mm. It is verified that even after the prohibition of
groundwater extraction in this area, the land subsidence disaster was still serious in the
following years owing to the lag effect of aquifer recovery.

Through the comparison between the deformation rate and the corresponding bedrock
depth, it is concluded that areas with a relatively thick soil layer have larger compressible
space, and so the corresponding deformation rate may also be larger. We also found that
formation and development are related to the spread of the ancient channel. By comparing
the deformation rate of the hanging and foot walls of the GF, we proved that the direct
cause of the ground fissure is differential settlement (Figure 9). Land subsidence in most
areas of the Su-Xi-Chang area has decelerated, and a large area of rebound has occurred
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from 2018 to 2021; the rebound rate has been approximately 10 mm/year. This verifies the
effectiveness of the prohibition of groundwater extraction.

Through the simulation of pumping activities using FLAC3D, we proved that at the
bedrock buried hill, the soil is prone to ground fissure disaster under the influence of its own
gravity. By comparing the equilibrium state before and after pumping activities, we found
that pumping activities accelerate and aggravate the process of land subsidence. Pumping
activity leads to the release of water from soil particles, and the soil layer compresses
and consolidates with increases in the effective stress of soil particles. Due to the uneven
distribution of the soil layer caused by the existence of bedrock buried hill, differential
settlement easily occurs in the process of pumping, which makes the upper part of bedrock
buried hill an area prone to ground fissures.

Unfortunately, we have not been able to obtain more detailed geological data on this
area from public data, such as the thickness of aquifers and a larger range of bedrock
undulations. Therefore, we were not able to perform further analyses in some areas.
Furthermore, when FLAC3D is used for numerical simulations, only simple models can
be built. Hence, there was a difference between the simulated and real results. These
limitations necessitate that in-depth research be conducted in the future.
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Abstract: Deformation prediction for a salt solution mining area is essential to mining environmental
protection. The combination of Synthetic Aperture Radar Interferometry (InSAR) technique with
Probability Integral Method (PIM) has proven to be powerful in predicting mining-induced subsi-
dence. However, traditional mathematical empirical models (such as linear model or linear model
combined with periodical function) are mostly used in InSAR approaches, ignoring the underground
mining mechanisms, which may limit the accuracy of the retrieved deformations. Inaccurate InSAR
deformations will transmit an unavoidable error to the estimated PIM parameters and the forward
predicted subsidence, which may induce more significant errors. Besides, theoretical contradictory
and non-consistency between InSAR deformation model and future prediction model is another
limitation. This paper introduces the Coordinate-Time (CT) function into InSAR deformation model-
ing. A novel time-series InSAR model (namely, CT-PIM) is proposed as a substitute for traditional
InSAR mathematical empirical models and directly applied for future dynamic prediction. The
unknown CT-PIM parameters can be estimated directly via InSAR phase observations, which can
avoid the error propagation from the InSAR-generated deformations. The new approach has been
tested by both simulated and real data experiments over a salt mine in China. The root mean square
error (RMSE) is determined as ±10.9 mm, with an improvement of 37.2% compared to traditional
static PIM prediction method. The new approach provides a more robust tool for the forecasting
of mining-induced hazards in salt solution mining areas, as well as a reference for ensuring the
environment protection and safety management.

Keywords: InSAR; mine; land subsidence; time series deformation; model

1. Introduction

By the end of 2018, the reserves of mirabilite deposits in China had reached up to
117.297 billion tons [1]. For mirabilite production in the salt mining deposits, water-
soluble exploitation, with comprehensively multi-propulsion through groups of drilling
wells, is the primary mining mode in salt solution mining area. Attributing to the multi-
direction of water-soluble mining activities, the upper layer of the rock salt cavern is
prone to overburden, or even serious collapse [2]. As long as the roof of the cavern
uplifts to the ground surface, a large pit, which may cause potential damage to the nearby
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infrastructures, will be formed [3]. In addition, accumulated water-soluble mining activities
may cause significant lithological changes of the underground rock, even inducing a serious
pumping of brine and water salinization. Therefore, long-term spatio-temporal deformation
prediction of salt solution mines are of considerable importance to the environmental
protection and safety management. The multi-temporal interferometric synthetic aperture
radar (MT-InSAR) is an advanced space-to-earth observation technology developed in
recent years. Compared with traditional InSAR technology, MT-InSAR technology has been
reported to be more effective and applicable for deriving ground deformations (i.e., mining
area or infrastructures) [4–13]. However, the single MT-InSAR has a limitation in that it can
only obtain the deformation sequences during SAR acquisition dates; the subsequent future
displacement beyond the span of the SAR observations cannot be acquired. To compensate
for the limitation, researchers have incorporated InSAR deformation observations into the
Probability Integral Method (PIM), which has successfully solved the problems, such as
surface deformation space calculation and overlying strata movement prediction [14–22].
The basic idea for those studies is firstly using the traditional MT-InSAR technique to
generate the line-of-sight (LOS) deformation results as input dataset to estimate the PIM
parameters; then, the corresponding subsidence sequences for the future period can be
predicted based on the PIM prediction model. Those researchers have successfully retrieved
the spatio-temporal deformation characteristics and achieved the forward prediction of
mining-induced deformations, which proves that the combination with PIM theory is an
efficient and feasible complementation to single MT-InSAR technique.

However, there still exist limitations: Firstly, according to previous studies, pure em-
pirical mathematical models (i.e., linear model or linear model combined with periodical
function) are mostly utilized to generate the InSAR observations, and the underground
mining subsidence mechanism is not considered in the InSAR modeling procedure. In
MT-InSAR data processing, the deformation modeling procedure determines the temporal
functional relationship between the interferometric phase observations and the parameters.
The evolution of mining-induced surface displacement is a complex physical non-linear
process, varying with time. Apparently, modeling a physical process with a single em-
pirical mathematical function cannot accurately describe the underground deformation
mechanisms and, thus, may have a great impact on the accuracy of the generated InSAR
deformation observations. Secondly, inaccurate InSAR deformation results will transmit
an unavoidable error to the estimated PIM parameters, then, secondly, propagating to the
future subsidence prediction, leading even larger errors in the predicted displacements.
Finally, the traditional mathematical models (i.e., linear model or linear model combined
with periodical function) used in the deformation monitoring is not consistent with the
PIM used in the future deformation prediction, which is based on random medium theory.
Using InSAR deformation observations generated via a simple linear model to estimate
parameters for a complex non-linear model may not be reasonable. Consequently, contra-
diction and inconsistency between the InSAR deformation model and the future prediction
model is the third limitation.

Based on the above analysis, in order to improve the accuracy of deformation predic-
tion, we propose a novel InSAR deformation model, which can better describe the dynamic
evolution disciplines of the underground mining subsidence in the MT-InSAR deformation
modeling procedure, as well as be directly used to the forward deformation prediction. The
novel model is based on the Coordinate-Time (CT) function (namely CT-PIM) and used as a
substitute for traditional InSAR models. CT-PIM improves the static PIM via integrating the
temporal parameter to achieve the description of the temporal dynamical characteristics of
the mining-induced subsidence. Considering the physical subsurface mechanism, CT-PIM
can describe the temporal dynamical characteristics of the mining-induced subsidence
more realistically. The PIM parameters are introduced into InSAR time-series phase func-
tions and can be estimated via the phase observations, which can avoid the secondary
error propagation from the inaccurate InSAR deformations to the subsequent deformation
prediction. Subsidence can be predicted directly based on CT-PIM, which implements in
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opposition to the deficiency of inconsistency and lack of reasonability between the InSAR
model and the forward prediction model. Consequently, the new method is expected not
only to enrich the time series InSAR modeling theory but also provide a more robust tool
for forecasting mining-induced hazards in mining areas.

2. Materials and Methods

The CT-PIM, including the Coordinate-Time function, and the PIM parameters are
introduced in Section 2.1. The InSAR modeling based on CT-PIM is derived in Section 2.2,
together with the final functional relationship between the time series phase observations
and the PIM parameters.

2.1. Dynamic Coordinate-Time Probability Integration Model

The Coordinate-Time (CT) function was proposed in Reference [23], which improved
the traditional static PIM with introducing the temporal parameter t, thus being referred
as CT-PIM hereinafter. It has proven to be effective and reliable in the application for
the dynamic ground deformation prediction caused by mining activities. The surface
subsidence described in CT-PIM function is as follows [23]:

W (x, y, t) =
1

w0
W (x, t)W (y, t), (1)

where (x, y) denotes the coordinate of the surface point, and W (x, y, t) is the surface
vertical subsidence related to mining activities at time t; w0 is the maximum settlement,
which can be written as w0 = mq·cosα, where m is the thickness of the mine, q is the
subsidence factor, and α is the dip angle of the layer. W (x, t) and W (y, t) can be expressed
as follows:

(1) When the dip direction of the working face is under critical extraction, whereas the
strike is under subcritical extraction. This happens in the practical condition that
the advancing distance is longer than the depth along the dip direction. The ground
subsidence can be written as (the schematic diagram is shown as Figure 1b) [23]:
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where w(x) can be calculated based on the principles of static PIM following
the equation: w(x) = w0

2
[
er f
(√

π x
r
)
+1
]
; er f is a probability integral function:

er f (
√

π
r x) = 2√

π

∫ √
π

r x
0 e−u2

du (where u is the integral parameter, r is the main in-

fluence radius, r = H
tanβ ; H is the mining depth and tanβ is the tangent of the main

influence angle); nH is the starting distance, describing the advancing distance of the
working face when the ground point starts to move; n is the starting factor; ω is the
static leading influence angle (in degrees); vm is the mining advancing speed; and the
coefficients a and b can be expressed as a = 117r−ωnH

1.3r−nH and b = ω−90
1.3r−nH , respectively.

(2) When the strike direction of working face is under critical extraction, whereas the dip
is under subcritical extraction. This happens in the most practical condition of the
coal mining activities, since the strike direction is better to contain a longer advancing
distance (even up to several kilometers, much deeper than the depth along the strike),
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which can easily satisfy the critical extraction condition. The surface subsidence can
be written as (the schematic diagram is shown as Figure 1c) [16]:

W (y, t) =
w0

2

[
er f
(√

π
y
r1

)
−er f

(√
π

y − L
r2

)]
, (3)

where y denotes the vertical coordinate of the ground point in the mining area; r1 and
r2 represent the main influence radius along the down-dip, and up-dip directions,
respectively, which can be expressed as r1 = H1

tanβ1
and r2 = H2

tanβ2
. H1 and H2 are

the mining depths along the down-dip, and up-dip directions, respectively. Here,
H1 = H − D1

2 sinα and H2 = H + D1
2 sinα; L is the estimated length of strike working

face, which can be expressed as L = (D1 − s1 − s2)
sin(θ0−α)

sinθ0
; D1 is the inclined length

of working face; s1 and s2 are the offsets of inflection point along down-dip and
up-dip directions of the working panel; θ0 is the mining influence angle, which can be
calculated following θ0 = 90◦ − kα.

Figure 1. Schematic diagrams for the coordinate system: (a) 3D view of the coordinate system;
(b) profile along strike direction; (c) profile along dip direction.

It is worth noting that, when the strike of the working face is under subcritical extrac-
tion, the final deformation should be estimated via multiplying a coefficient: Cxm = Wxm

W0
< 1,

where W0 = mq·cosθ. Wxm is the maximum value of W (x, t), which can be calculated
according to the first equation in Equation (2), under the assumption that the tendency
has reached an extreme exploitation [16]. Similarly, when the dip of the working face is
under subcritical extraction, then a dip mining degree coefficient, Cym =

Wym
W0

< 1, should
be multiplied with it, where Wym denotes the maximum value of W (y, t) in Equation (3).

2.2. InSAR Modeling Based on CT-PIM (InSAR-CTPIM)

For each high coherence pixel in the i-th interferogram [24–26], its corresponding
interferometric phase can be expressed as:

δϕi = δϕi
de f + δϕi

topo + δϕi
orbit + δϕi

atm + δϕi
noise + Δϕi

non

≈ 4π
λ Δdi + 4πBi

λRsinθ ΔHi + Δϕi
res,

(4)

where λ is the radar wavelength; Δd is the LOS accumulated deformation spanning the
time period of the i-th interferogram, referred as the low-pass (LP) component hereinafter;
Δϕi

topo represents the residual topographic phase component; Δϕi
topo =

4πBi
λRsinθ ΔHi, where

Bi defines the perpendicular baseline, θ the incident angle, R the sensor-target distance,
and ΔH the residual elevation, which is an unknown parameter; Δϕi

res denotes the final

256



Remote Sens. 2022, 14, 842

residual phase, which includes the phase noise, atmospheric delay, and the high-pass (HP)
deformation component [27].

During the extraction of the brine from the wellhead, the deformation of the surface
caused by the change of the top pressure in the cavern is dominantly along the vertical
direction. Besides, the upper dissolution rate of the drilling solution mining process is
approximately twice of the side dissolution rate [28]. Therefore, compared with the vertical
subsidence, the horizontal displacement caused by water-soluble mining is relatively minor,
and omitted hereinafter. Then, the functional relationship between the LOS deformation
and the ground subsidence can be expressed as:

Δdi = dLOS

(
ti
B

)
−dLOS

(
ti

A

)
= [W (x, y, tB)− W (x, y, tA)]·cosθ, (5)

where W (x, y, tB) and W (x, y, tA) are the corresponding dynamic subsidence at tB and
tA, respectively. Substituting Equation (5) into (4), the functional relationship between the
InSAR phases and PIM parameters can be written as:

δϕi =
4π

λ
[W (x, y, tB)− W (x, y, tA)]·cosθ +

4πBi
λRsinθ

ΔHi + Δϕi
res, (6)

where the geological parameter GP = [m, α, H, D1, ω] of the rock salt mine can be deter-
mined according to the in-situ investigation of the study area or the materials provided
by the mining company, which can be regarded as known parameters. The unknown
parameters to be solved here are UP = [q, tanβ, s1, s2, k, n]. Among them, q is within the
range of [0.01, 1], tanβ, tanβ1, and tanβ2 are all distributed within the range of [1, 3.8], and
both s1 and s2 are within the range of [0.05H, 0.3H]. The propagation influence angle of
mining is θ0= 90◦ − kα. Here, k ranges from 0.5 to 0.8, and the starting distance coefficient
n ranges from 1/7 to 1/2 [14,16,23]. Equation (6) describes the temporal functional relation-
ship between the InSAR time series phases and the PIM parameters, which is referred as
InSAR-CTPIM, and will be applied for the time series deformation generation.

2.3. CT-PIM Parameters Estimation Based on InSAR Phases

If N + 1 scenes covering the whole study area are acquired at dates (t0, t1, . . . , tN),
then M differential interferometric pairs are generated accordingly. For each pixel (x, y)
on the differential interferograms, M InSAR functions (in Equation (6)) based on the
phase observations can be established. If M is higher than six, the unknown parameters
UP = [q, tanβ, s1, s2, k, n] can be estimated. The ill-conditioned nature of the phase
functions (introduced as Equation (6)) has also been tested to ensure the robustness. For
each pixel (x, y) on the differential interferograms, M InSAR functions based on the phase
observations can be established. The condition number Cond∞(A) = ||A||∞

∣∣∣∣A−1
∣∣∣∣

∞ is
estimated as 18 here, where A defined the coefficient matrix of the phase functions. The
value of Cond∞(A) implies that no ill-conditioned phenomenon exists in the functions.

The solving of Equation (6) is obviously a non-linear parameter estimation problem.
The Genetic Algorithm (GA), combined with the Simplex Method (SM), is introduced
here to estimate UP. GA processes the advantages of global optimization searching ability
and unrestricting to different model forms [29], and it has been proven to be feasible in
solving the problems of non-linear parameter estimation [30]. It generates the optimized
estimations in form of population individuals following the principle of fitness function
minimization [31]. However, the disadvantages of slow convergence speed and low
accuracy are also prominent for GA. SM has proven to be an efficient tool in solving
the non-linear estimation problems when combined with GA, which can refine the GA
generated results effectively [32]. Consequently, the combination of GA and SM, namely
GASM, is adopted here to effectively estimate the unknown parameters.

As for Equation (6), each individual gene is UP = [q, tanβ, s1, s2, k, n], and the fitness
function here is:

f =
∣∣∣∣∣∣Δϕi

res

∣∣∣∣∣∣ = min, (7)
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where Δϕi
res denotes the residual phase in Equation (6). After the iteration of population

selection, crossing over, and evolution for each individual gene until the minimum fitness
function value condition is satisfied, the final obtained individual genes, which are treated
as the initial GA-solutions for PIM parameters, will be taken as the input initial values
of SM. Then, SM is utilized to improve the accuracy of GA estimations after the global
searching, and the corresponding SM-output results are determined as the final solutions
for PIM parameters [33].

2.4. Flow Chart and Processing Steps

Figure 2 displays the processing flow of deformation prediction using the CT-PIM
function. The steps are as follows:

1. Differential Interferometry according to the N + 1 SAR images covering the study area.
2. High-coherent candidates extraction considering both the average coherence and the

amplitude dispersion index.
3. InSAR modeling following the CT-PIM function, which establishes the functional

relationship between InSAR phases and unknown PIM parameters.
4. PIM parameter estimation based on Genetic Algorithm and Simplex Method

(GASM) [32,33], which includes GA global searching to generate the initial values of
PIM parameters and SM to optimize the GA solutions.

5. Forward dynamic subsidence prediction beyond the spans of SAR acquisitions based
on CT-PIM function introduced as Equation (1).

Figure 2. Flow chart of deformation prediction based on CT-PIM function.
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3. Results

3.1. Simulated Experiment

A simulated experiment was designed and executed to evaluate the feasibility and
accuracy of the proposed method. Satellite parameters used in the simulated experiment
were set according to Sentinel-1 A spaceborne parameters, which was to keep consistent
with the real data experiment. The geological parameters m, α, H, D1, ω of the strata
overlying the saline layer were set as 0.66 m, 4.5◦, 600 m, 300 m, 80◦ according to real data
collected by the company in charge of the mining activity in the area. The advancing speed
vm at the simulated experiment was set as 0.24 m/d, which was also according to the real
data (will be discussed in Section 3.2.1). The simulated true values of UP were set primarily
as 0.504, 1.560, 30.310 m, 16.080 m, 0.524, 0.167.

After setting those parameters, the time series settlement field could be generated
according to Equation (1), which would be used as the real settlement field compared with
the subsidence generated based on the InSAR-CTPIM processing. The selected images
of the simulated real settlement field are shown in Figure 3. InSAR phase functions can
be simulated according to Equation (6), and the residual elevation ΔH was simulated
via Gaussian random simulator with its magnitude within [−20, 20] m. The random
noise with a variance from 0 rad to 0.65 rad was added in the simulation. The random
noise we added here can be expressed as Noi = sqrt (0.65) ∗ randn (60, 60), where Noi
represents the noise; sqrt (0.65) represents the variance of 0.65 rad; randn is the random
noise function in MATLAB; and (60, 60) is total simulated size of the phase function. Totally,
600 indexes of pixels were randomly extracted for the subsequent quantitative comparison
with the CT-PIM generated deformation. In order to evaluate the impacts of different
numbers of interferometric pairs on the corresponding generated deformation results, the
simulation experiments with a multi-master connection were designed [34]. Six subgroups
of simulation were carried out, with the number of interferometric pairs as 10, 15, 20, 25, 30,
and 35, respectively, which also represented the number of InSAR phase functions. The
corresponding GASM procedure was performed to obtain the CT-PIM parameters based
on the simulated InSAR phase observations, and the final estimated subsidence could be
obtained via Equation (1). The parameters, such as the spatio-temporal baselines, used in
the simulation were set according to the real data experiment (in Section 3.2.2).

Figure 3. Selected images of simulated settlement field (at 24 d, 120 d, 288 d, 468 d, 528 d,
and 576 d, respectively).

To estimate the unknown parameters of CT-PIM, the maximum iteration number, the
population size, the crossover probability, and the mutation probability in GASM algorithm
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were set as 400, 60, 0.5, and 0.2, empirically. After the SM secondary optimization, the
final optimal estimations of the CT-PIM parameters could be generated for each subgroup
of simulation. Substituting the obtained parameters into Equation (1), the time series
settlement field could be generated.

Figure 4 illustrates the relative errors for each parameter between the CT-PIM gen-
erated values and the simulated real ones under a different number of interferometric
pairs. The lower the relative error is, the higher is accuracy suggested for the CT-PIM
estimated parameter. As can be seen from the figure, generally, the relative errors decrease
with the increase of interferometric numbers. Under a multi-master connection, a stack of
20 interferograms is acceptable in our cases. It can also be noted from Figure 4 that, among
the six parameters, q and tanβ were more sensitive with higher curvature slopes than the
remaining four parameters.

Figure 4. Relative errors with different interferometric numbers under multi-master connection.

We extracted the interferometric pairs of 10 and 35, respectively, to show a quantitively
comparison with the simulated real values (shown as Tables 1 and 2). The results show
that the use of 35 interferometric pairs under the multi-master connection to estimate the
unknown parameters is evidently more accurate (for instance, the relative error for q is only
4.8% under 35 pairs compared with that of 10.4%). Therefore, we finally determined to use
35 interferometric pairs (noise level with a variance of 0.65 rad) under the multi-master
connection in the real data experiment. It can also be noted that, among the six parameters,
the relative error of s1 is relatively large, both in Tables 1 and 2, with 8.6 % and 6.2%,
respectively. This is consistent with the results of the sensitivity analysis in Section 3.3.3.

Table 1. Estimated CT-PIM parameters (under the 10 interferometric pairs).

Parameters
Simulated
Real Value

CT-PIM
Generated Value

Error Relative Error

q 0.504 0.559 0.055 10.4
tanβ 1.560 1.662 0.102 6.4

s1(m) 30.310 27.801 2.509 8.6
s2(m) 16.080 15.340 0.740 4.5

k 0.524 0.504 0.020 3.9
n 0.167 0.166 0.001 0.6
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Table 2. Estimated CT-PIM parameters (under the 35 interferometric pairs).

Parameters
Simulated
Real Value

CT-PIM
Generated Value

Error Relative Error

q 0.504 0.528 0.024 4.8
tanβ 1.560 1.572 0.012 0.8

s1(m) 30.310 28.431 1.879 6.2
s2(m) 16.080 15.437 0.643 4.0

k 0.524 0.507 0.017 3.3
n 0.167 0.167 0 0

Figure 5 shows the comparison results between the selected time series settlement
generated by CT-PIM and the simulated settlement with 600 pixels (35 interferometric
pairs, multi-master connection, with a noise variance level of 0.65 rad), and the differences
are illustrated in Figure 5f in red polylines. It can be noted that the two groups of results
demonstrate good agreement even under a relatively high noise level of 0.65 rad, and
the max deviation increases with the time span. According to the quantitative statistics
for Figure 5a–f, the number of points with the deviations within [−5, 5] mm account for
100%, 100%, 97%, 90%, 87.6%, and 85.8% of the total number of points for spans of 24 days,
120 days, 288 days, 468 days, 528 days, and 576 days, respectively, and the corresponding
maximum deviation is 0.1 mm, 1.3 mm, 7.9 mm, 9.3 mm, 9.5 mm, and 9.6 mm, respectively.
Compared with the maximum subsidence for each period (i.e., 165 mm at 576 days), the
deviation was relatively minor (a 9.6 mm deviation occupy only 5.8% approximately).
To quantitatively evaluate the distribution of the deviations, statistical analysis for the
probability distribution was carried out. Figure 6 demonstrates the probability distribution
of the average deformation deviations with 600 pixels. As determined, the magnitudes of
errors are concentrated within a relatively low ranges, with 83.8% of points distributed
within [−2, 2] mm and all the pixels distributed within [−6, 6] mm, which implies that
the proposed method is of promising accuracy. The RMSE between the CT-PIM generated
value and the simulated real settlement is estimated as ±4.5 mm.

Figure 5. Comparison between the CT-PIM generated deformation sequences (six periods are selected)
and the simulated real settlement.
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Figure 6. Probability distribution for deformation deviations.

3.2. Real Data Experiment
3.2.1. Study Area and SAR dataset

A salt mine, located in China, was selected as the study area. Figure 7 displays the
location of our test area in Hunan Province and the corresponding coverage of SAR satellite
images. The red rectangle in Figure 7b represents the spatial coverage of Sentinel-1 A
image obtained by a satellite ascending geometry, and the purple rectangle represents
the area of interest. The mine is located in the central part of Liyang Plain, with the
characteristics of abundant natural water systems, numerous large and densely distributed
ponds, crisscrossing artificial channels, and extensive surface paddy fields. Long-term
drilling soluble mining activities have caused serious land salinization, which imposed
significant influences to the surrounding environment (see Figure 8a). The mining-induced
accumulated subsidence also led to cracks on the ground surface of roads, which imposed
potential damage to infrastructures built on the nearby residential area (see Figure 8b,c).
Gradually accumulated ground subsidence may also generate an obvious stagnant water
pit (shown as Figure 8d, with a settlement approximately of 1.5 m).

Figure 7. Study area and SAR spatial coverage: (a) map of Hunan Province; (b) coverage of SAR
images; (c) mean amplitude image of the study area.
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Figure 8. Field pictures of the residential area near the study area: (a) area with land saliniza-
tion; (b) uneven displacement on the road; (c) cracks on the wall of a house; (d) a water pit in the
salinized area.

Figure 9 shows the local geological asset. The underground stratums mainly include
Lower Tertiary and Quaternary. The lithological components over this area mainly consist
of mudstone, dolomite, siltstone, gypsum, mirabilite, and glauberite. Anhydrous Glauber
salt (Na2SO4, 62.76–78.8%) produced in this area exist in the salt-bearing section (E2x3)
of Neogene Formation. Argillaceous dolomitic mirabilite is the dominate lithological
component, which distributes over the up layer, bottom layer, and interlayer and belongs
to weak layered rock mass. The poor stability of the rocks in this area makes the ground
surface vulnerable to soften and collapse.

Figure 9. Schematic diagram of the lithological distribution over the study area.

According to the above lithological characteristics of the upper layer on the working
surface and the collected geological materials of the mine, the aforementioned lithologic
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geological parameters GP (see Table 3) is set as GP = [3 m, 5.7◦, 240 m, 258 m, 80◦] according
to the geological materials provided by the mining company. The advancing speed vm is
practically calculated according to properties of the sedimentation funnel in the mining
area, which follows the equation vm = S

t = 0.056 m/day, where S denotes the mean radius
for the sedimentation funnels, and t denotes the time span of the mining activities.

Table 3. Geological parameters.

Geological
Parameters

m (m) α (◦) H (m) D1 (m) ω (◦) vm (m/Day)

value 3 5.7 240 258 80 0.056

3.2.2. SAR Data Acquisition and Preprocessing

A total of 32 Sentinel-1A scenes with ascending geometry spanning the period from
15 June 2015 to 15 August 2017 were collected for the differential interferometric dataset
processing. The unwrapped interferometric pairs with small spatial-temporal baselines
were generated via SARScape 5.2 and ENVI 5.3. The SAR sensor parameters and spa-
tial -temporal baselines are shown in Table 4 and Figure 10, and the subsequent high
coherence points extraction, InSAR deformation modeling, CT-PIM parameter estimation,
and deformation generation were all executed via MATLAB software. In the preprocess-
ing of differential interferometry, the multi-look ratio of SAR image was set as 5:1, with
the sampling resolutions as 9.022 m along azimuth, and 7.368 m along range direction,
respectively. Spatial-temporal interferometric baselines were set lower than 150 m and
420 days, respectively, with all the images registered and resampled to a super master
image (acquired at 3 July 2016). External 30 m resolution Shuttle Radar Topography Mis-
sion Digital Elevation Model (SRTM DEM) data was used to filter the terrain phase [35].
The procedure of phase unwrapping was executed with the Minimum Cost Flow (MCF)
method. After artificially eliminating the unsatisfied interferometric pairs with poor un-
wrapping effect, totally, 58 unwrapped differential interferograms were generated [36,37].
Thresholds for moderate to high coherent points were set as 0.45 for coherence, and 0.35 for
mean amplitude dispersion index. Finally, a total of 6027 candidates in the mining area
were extracted.

Figure 10. Spatio-temporal baselines.
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Table 4. Interferometric pairs and sensor parameters (Ascending, Orbit No. 11).

Image No.
Acquisition Date

(yyyy/mm/dd)
Perpendicular
Baseline (m)

Temporal
Baseline (Days)

0 2015/06/15 10.32 −384
1 2015/07/09 94.46 −360
2 2015/08/02 8.65 −336
3 2015/08/26 −25.59 −312
4 2015/09/19 −27.87 −288
5 2015/10/13 42.76 −264
6 2015/12/24 125.03 −192
7 2016/01/17 19.96 −168
8 2016/02/10 99.87 −144
9 2016/03/05 −21.75 −120
10 2016/03/29 −48.25 −96
11 2016/04/22 37.12 −72
12 2016/05/16 −9.33 −48
13 2016/07/03 0 0
14 2016/08/20 15.15 48
15 2016/09/25 −54.32 84
16 2016/10/07 −27.33 96
17 2016/10/19 63.93 108
18 2016/10/31 57.18 120
19 2016/11/12 52.15 132
20 2016/11/24 26.62 144
21 2016/12/18 25.12 168
22 2016/12/30 20.94 180
23 2017/01/11 76.93 192
24 2017/02/16 48.78 228
25 2017/03/12 34.61 252
26 2017/04/05 −16.41 276
27 2017/04/29 34.59 300
28 2017/05/23 47.07 324
29 2017/06/28 16.92 360
30 2017/07/22 63.26 384
31 2017/08/15 −69.95 408

3.2.3. PIM Parameter Estimation Based on InSAR-CTPIM

Before the novel InSAR-CTPIM processing being applied for the study area, the
traditional SBAS-InSAR with multi-linear velocity model was performed to capture the
spatial-temporal deformation characteristics over the rock salt mine. As shown in Figure 11,
it can also be determined that apparent multi subsidence bowls developed during the
observations from a spatial view. This phenomenon is related to drilling water-soluble
mining activities. As in situ investigated, the mining mode for the test rock salt mine is
multi-well groups connectivity, where more than two wells are connected for each well
group during the drilling soluble mining; thus, multi settlement funnels will be formed
around each well group. Since the CT-PIM model is based on a single subsidence funnel,
it is difficult to accurately cover the whole test area containing complex multi settlement
funnels with a single CT-PIM. Consequently, we divided the area into seven sub-settlement
funnels, which are shown as Figure 11b, with the subsidence image at 15 August 2017 as
the background.
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Figure 11. Schematic map of sub-settlement funnels distribution (with the settlement at 15 August
2017 generated via SBAS as the background): (a) the leveling points; (b) distribution of the seven
sub-settlement funnels; (c) the distribution of the traverse-longitudinal profiles of the funnels; (d) 3D
version of the mining coordinate system.

In InSAR-CTPIM processing, 24 images from 15 June 2015 to 11 January 2017 were
extracted to estimate the CT-PIM parameters with GASM algorithm, which would be used
to generate the corresponding deformation sequences following the step 4 of the procedures
introduced in Section 2.4. Based on the obtained CT-PIM parameters, the remaining eight
images (from 16 February 2017 to 15 August 2017) were reserved to validate the forward
predicted deformation generated by CT-PIM following the step 5. During the GASM
procedure, seven sub-funnels were processed separately, with seven groups of parameters
generated, which is shown in Table 5.

Table 5. Estimated CT-PIM parameters.

Parameters A1 A2 A3 A4 A5 A6 A7

q 0.832 0.882 0.919 0.741 0.957 0.750 0.974
tanβ 3.060 3.128 3.473 3.362 3.732 3.608 2.995

s1 (m) 39.170 40.694 44.933 49.888 42.297 47.468 31.116
s2 (m) 36.481 38.631 32.001 39.813 48.184 47.374 26.701

k 0.518 0.623 0.743 0.693 0.658 0.702 0.718
n 0.150 0.162 0.182 0.196 0.145 0.193 0.166

3.2.4. Deformation Prediction Based on CT-PIM

Based on the seven groups of obtained CT-PIM parameters in Table 5, the deformation
sequences covered by SAR data acquisition can be derived by InSAR-CTPIM. Figure 12
shows the time series deformation generated spanning from 15 June 2015 to 11 January
2017, which were treated as the deformation monitoring results. The deformation beyond
SAR data acquisition can be predicted according to CT-PIM (expressed as Equation (1)).
Figure 13 shows the eight 3D scenes (from 16 February 2017 to 15 August 2017) of the
predicted subsidence based on CT-PIM, which were treated as the deformation prediction
results. From 9 July 2015 to 10 February 2016, the overall deformation of the whole area
was relatively stable, with the maximum estimated subsidence as only 52 mm. Obvious
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subsidence began to occur at 5 March 2016 after an 8-month temporal lag, and the subsiding
velocities have increased rapidly since then. Since 20 August 2016, the boundary of the
seven sub-settlement bowls has become apparently more distinct, with the maximum
subsidence increasing from 110 mm to 205 mm on 11 January 2017. As of 15 August 2017,
the maximum subsidence had accumulated up to 294 mm.

Figure 12. Derived deformation sequences based on InSAR-CTPIM (reference date: 15 June 2015).

Figure 13. Three-dimensional scenes of the predicted subsidence based on CT-PIM (reference date:
15 June 2015).

3.3. Accuracy Analysis
3.3.1. Accuracy Evaluation for InSAR-CTPIM Monitored Subsidence

The historical leveling measurements from 2 August 2015 to 18 December 2016 for the
test mine were collected, which can be used to test the accuracy of the deformation results
during the SAR acquisitions obtained by InSAR-CTPIM. The locations of the leveling points
(CP1, CP2, . . . , CP7) are marked in Figure 11a, with the reference point marked as R in
the north-east corner. The leveling measurements which covered consistent periods with
the SAR acquisition dates were extracted to conduct a more precise comparison with the
InSAR-CTPIM monitored subsidence.

Figure 14 shows the comparison between the results of InSAR-CTPIM, SBAS-InSAR,
and leveling measurements. The average RMSE of InSAR-CTPIM results was estimated
as ±6.9 mm, whereas that of traditional SBAS-InSAR was ±8.5 mm, with an increase
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of approximately 20.8%. It can be determined that the dynamic settlement obtained by
InSAR-CTPIM shows better consistency with the leveling measurements. According to our
experiment, almost all the leveling points in the mining area were under a considerable
subsiding period. The most serious settlement occurred at CP3, with a value of 156 mm.
The RMSE accounts for 4.4% of the maximum settlement, which implies the promising
accuracy of InSAR-CTPIM in deriving time series subsidence of the rock salt mine.

Figure 14. Time series deformation at leveling points (reference date: 2 August 2015).

3.3.2. Accuracy Evaluation for CT-PIM Predicted Subsidence

As discussed above, the remaining eight images from 16 February 2017 to 15 August
2017 were reserved to evaluate the forward subsidence prediction results. To compensate
for the unavailability of simultaneous periods of leveling measurements, SBAS-derived
results were used to be compared with the predicted subsidence. The traditional static
PIM prediction method introduced in References [20,38], which inversed the PIM parame-
ters based on a single interferometric pair, was carried out preliminarily to be compared
with the CT-PIM predicted results. Four periods of predicted subsidence (spanning from
15 June 2015 to 26 February 2017, 5 April 2017, 28 June 2017, and 15 August 2017, respec-
tively) were extracted, which is shown as Figure 15. The maximum subsidence predicted
via static PIM were relatively lower than those of SBAS-InSAR. On 15 August 2017, the
maximum subsidence predicted by static PIM was estimated as 325 mm, with a 39-mm
difference with the SBAS-derived result, while the difference of CT-PIM is only 8 mm.
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Figure 15. Subsidence comparison: (a) SBAS-InSAR results; (b) CT-PIM predicted; (c) static PIM
predicted (with reference to 15 June 2015).

For further quantitative analysis, the points located in the subsidence funnels were
extracted from Figure 15. The probability distribution was statistically analyzed, and the
distribution histograms are shown as Figures 16 and 17. As Figure 16 shows, the residual
errors for all the sampled points between CT-PIM predicted subsidence and those of the
SBAS results during the four temporal periods are mainly distributed within the range of
[−25, 25] mm. The RMSE is estimated as ±12.8 mm, ±12.7 mm, ±12.9 mm, ±13.2 mm,
respectively. In contrast, those residual errors for static PIM (shown as Figure 17) are
mainly distributed within a more disperse range of [−40, 40] mm, with its RMSE estimated
as ±20.2 mm, ±18.5 mm, ±20.7 mm, ±15.8 mm, respectively, which are much higher.
Apparently, the distribution of CT-PIM errors is better concentrated than those of static
PIM, which indicates a better consistency with the SBAS technique and a higher predictive
accuracy. The total STD of those errors for CT-PIM is estimated as ±12.9 mm. It can be
inferred that the CT-PIM predicted results show better consistency with the traditional
SBAS-derived subsidence than that of static PIM predicted ones, with an increase of 37.2%
compared to that of static PIM.

Figure 16. Differences of CT-PIM predicted subsidence with comparison of SBAS-InSAR results (with
reference to 15 June 2015).
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Figure 17. Differences of static PIM predicted subsidence with comparison of SBAS-InSAR results
(with reference to 15 June 2015).

3.3.3. Sensitivity Analysis on CT-PIM Parameters

Since CT-PIM is directly used to predict the forward dynamic deformation subsequent
to the SAR acquisitions, the accuracy of the predicted mining subsidence directly depends
on the accuracy of CT-PIM parameters. Consequently, it is necessary to analyze the sensi-
tivity of CT-PIM parameters. Sensitivity analysis can assist us in understanding how the
parameters influence the predicted deformation, i.e., which parameter impacts the most
and to what extent it impacts the results. The sensitivity analysis method based on Sobol
indices is introduced here to execute a simulated experiment [39].

Sobol indices describe the correlation between each parameter and its global sensitivity
on the objective function. The higher the sensitivity index, the higher the result error of
the parameter on the deformation. Firstly, the objective function is decomposed based on
variance analysis; then, the first-order indices (Sα, where α represents the certain parameter)
and total-effect indices (STot

α ) of each parameter is calculated, and the sensitivity of the
interactive input parameters can also be generated. Here, Sα represents the partial variance,
which describes the main contribution of a sample of the certain parameter for the output
variances, while STot

α represents the total variance, which describes the percentage of a group
of samples for a certain parameter on the output variances. Finally, the disturbance analysis
is used to quantitatively analyze the influences of different parameters on the final predicted
deformation. The estimated two kinds of indices for each CT-PIM parameter are shown in
Figure 18, where X axis represents the input parameters (UP = [q, tanβ, s1, s2 , k, n] ), and
Y axis represents the Sobol indices for each parameter. The closer the magnitude of each
corresponding Sobol index to 1, the higher sensitivity the parameter possesses. Table 6 lists
the ranges of different importance extent. From it, we can determine that all the parameters
are beyond the range of “Not correlated”, which implies their impacts on the accuracy of
predicted deformation cannot be ignored. Among the six parameters, q and tanβ are more
sensitive to the model, with the Sobol indices STot

α of 0.95 and 0.90, respectively, which can
be treated as “Very important” parameters. Consequently, we should pay more attention to
the error control during the parameter estimation procedure for those two parameters. In
contrast, s1 and s2 show relatively lower sensitivity than the remaining four parameters,
with the Sobol indices STot

α of 0.60 and 0.65, respectively. The two parameters can be treated
within the united range of “Unimportant” and “Important”.

Table 6. Correlation extent for different ranges of sensitivity indices [39].

Correlation Extent Ranges of Sensitivity Indices

Very important 0.8 < Sα < STot
α ≤ 1

Important 0.5 < Sα < STot
α ≤ 0.8

Unimportant 0.3 < Sα < STot
α ≤ 0.5

Not correlated 0 < Sα < STot
α ≤ 0.3
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Figure 18. Estimated Sobol indices for CT-PIM parameter.

4. Discussion

Subsidence along the traverse and longitudinal lines marked in Figure 11c (EE’, FF’,
GG’, HH’) were extracted for a profile analysis. The profile analysis results based on
the SBAS-InSAR derived time series subsidence are shown in Figure 19 (as shown the
dotted line), while the CT-PIM results are shown as Figure 19 (as shown the solid line).
From the figures, we can see similar spatial-temporal characteristics and approximate
same locations of pixels with separate subsidence bowls along EE’, FF’, GG’, and HH’, for
both the two groups of generated results. The discrepancy between the SBAS results and
CT-PIM predicted ones, in the case of Figure 19c (particularly in the black rectangle), was
suggested to be related to the following reasons: (1) The systematic uplifts in the black
rectangle in Figure 19c for the SBAS results were related to the residual atmospheric delay
and orbital errors. During CT-PIM processing, the mining area was divided into several
subsidence bowls artificially. (2) We treated the GG’ profile that only traversed a single
subsidence funnel, and only one group of CT-PIM parameters was used to predict the
subsidence. Some unrevealed deformation characteristics maybe hidden in the predicted
results, which can be revealed by the SBAS-InSAR monitored results. As we determined
for the InSAR-CTPIM derived results, the apparent three peak values were detected at
172 m, 322 m, and 414 m along EE’, with the subsidence of 232 mm, 249 mm, and 205 mm,
respectively, and peak values at 149 m along the FF’ section of 219 mm, whereas, at 172 m,
along GG’ of 218 mm and, at 80 m, along the HH’ of 247 mm. The multi peaks of the
subsidence along traverse and longitudinal directions were due to the water-soluble mining
activities with groups of drilling wells simultaneously.
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Figure 19. Profile analysis based on SBAS (dotted line) and CT-PIM (solid line) predicted subsidence:
(a) Profile EE’; (b) FF’; (c) GG’; (d) HH’.

Five feature points (F1–F5, marked in Figure 11c) are extracted for quantitative analysis,
and the results are shown in Figure 20. It can be seen from Figure 20 that, during the whole
period, the five feature points displayed similar temporal evolution trends: slow settlement
period from 15 June 2015 to 29 March 2016, and then a rapid settlement period from
29 March 2016 to 15 August 2017. Maximum subsidence was determined at F5 with its
accumulated settlement of 289 mm until 15 August 2017. In contrast, F1, which was far
away from the wellhead, was relatively stable, with its maximum deformation accumulated
to 98 mm until 15 August 2017. As introduced in Section 3.2.4, an 8-month temporal lag
of the subsidence can be found in Figure 20, which is suggested to be mainly related to
the dissolution processing of the mirabilite by the solvent, with a certain longer time from
injection to the surface displacement emerged. In addition, the depth of rock salt mine is
generally deeper than that of common coal mines, which also leads to the time delay from
the underground displacement cavity being accumulated on the ground surface.

Figure 20. Time series settlement on feature points based on InSAR-CTPIM.
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Another phenomenon of seasonal related variations was determined from our exper-
iments. For a warm season (29 March 2016 to 19 October 2016 in Stage B and 12 March
2017 to 15 August 2017 in stage C), a rapid subsiding trend occurred for all the five feature
pixels, with the cumulative maximum subsidence reaching up to 98 mm and 83mm, while,
for a cold season (13 October 2015 to 29 March 2016 of Stage A and 19 October 2016 to
12 March 2017 of Stage B), a relatively slow developing trend dominated those points,
with a maximum subsidence of 31 mm and 45 mm, respectively, for the two periods. The
potential reasons are suggested to be related to the air temperature, which influences the
dissolution rate of mirabilite. The higher temperature of warm periods can accelerate the
dissolution, and, accordingly, increased the subsiding velocities. Comparatively, lower
temperature in cold periods slowed down the dissolution processing, which induced a
stable trend of deformation. It should be noted that the dissolution rate of mirabilite in
water is directly affected by solvent temperature (as shown in Table 7); however, it is
indirectly affected by the air temperature. Hot water is used as solvent in drilling soluble
production, which is delivered from the processing plant to the injection well after being
measured and distributed at the control station. In the process of transportation, the solvent
temperature is easily affected by the outside air temperature, which supports the above
temperature-related interpretations.

Table 7. Seven groups of obtained InSAR-CTPIM parameters [28,40].

Mineral
Temperature (◦C)

0 10 20 30 40 50 60 70 80 90 100

Thenardite – – – 50.4 48.8 46.7 45.3 44.1 43.7 42.9 42.5
Glauber’s Salt 5.0 9.0 19.4 40.8 – – – – – – –

Glauberite 0.18 0.19 0.20 0.21 0.21 – 0.21 0.20 0.20 – 0.16

It can also be determined, in Figure 20, that four minor jumps occurred for all the five
feature points (marked by black arrows). According to the precipitation and temperature
information of the Hunan Lixian Meteorological Bureau, the precipitation increased signif-
icantly on 13 October 2015, 16 May 2016, 31 October 2016, and 28 Jun 2017, as shown in
Figure 21 [41]. Besides the decrease of solvent solubility caused by the aforementioned low
temperature in winter, an increase of rainfall also contributed to the recoveries of subsidence.

Figure 21. Air temperature and precipitation of the mining area (6 June 2016 to 31 January 2017) [42].
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5. Conclusions

A novel InSAR deformation model, namely CT-PIM function, was proposed and
applied for predicting the dynamic deformation over a drilling solution rock salt mine. The
CT-PIM function was used as a substitute for traditional InSAR pure empirical models,
which can also provide as potential combined use with other high-productive inspection
methodologies, which has the following advantages: (1) with consideration of the physical
underground mechanism, CT-PIM can describe the temporal dynamical characteristics of
the mining-induced subsidence more realistically; (2) CT-PIM can be directly applied for
the forward deformation prediction, which implements to the deficiency of non-consistency
and unreasonableness between the traditional InSAR model (i.e., linear model or linear
model combined with periodical function) and the forward prediction model (i.e., PIM);
(3) it provides an alternative PIM parameters estimation method directly based on the
InSAR phase observations, which can avoid the secondary error propagation from the
InSAR inaccurate deformation to the subsequent deformation prediction; and, (4) as for
the computational burden, since the GASM are based on the input InSAR unwrapped
phases (not the final generated deformation sequences), we saved the preprocessing time
for InSAR Geocoding compared to the static PIM.

The feasibility and improvement of our method was verified by both simulated and
real-data experiments. The simulated results showed that the RMSE between the defor-
mation results estimated by the new model and the simulated true value was ±4.5 mm,
even under a high noise level of 0.65 rad. In the real data experiment, 32 Sentinel-1A SAR
images were used to carry out the experiment over a water-soluble rock salt mine. As
we determined, the maximum settlement was estimated as 294 mm. The experimental
results were compared with external leveling results, and the RMSE was determined as
±10.9 mm, which accounts for only 6.9% of the maximum settlement. During the deforma-
tion prediction procedures, CT-PIM showed a considerable improvement of 32.7% than
the traditional static PIM prediction approach, with an STD of ±12.9 mm compared to
SBAS-generated results.

6. Patents

There are patents resulting from the work reported in this manuscript. Our research
content has applied for a Chinese patent (ZL202010122691.8) entitled “A deformation
monitoring method in mining area”.
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Abstract: The Woda area in the upper Jinsha River has steep terrain and broken structures, causing
landslide disasters frequently. Here, we used the distributed scatterer interferometric SAR (DS-InSAR)
method to monitor and analyze the Woda landslide area. With the DS-InSAR method, we derived the
deformation of the Woda landslide area from 106 Sentinel-1A ascending images acquired between
5 November 2014 and 4 September 2019 and 102 Sentinel-1A descending images acquired between
31 October 2014 and 11 September 2019. The obvious advantage of the DS-InSAR method compared
to the persistent scatterer (PS) InSAR (PS-InSAR) method is that the densities of the monitoring
points were increased by 25.1% and 22.9% in the ascending and descending images, respectively. The
two-dimensional deformation of the landslide area shows that the maximum surface deformation
rate in the normal direction was −80 mm/yr, and in the east–west direction, 118 mm/yr. According
to the rescaled range (R/S) analysis, the Hurst index values of the deformation trends were all greater
than 0.5, which means the deformation trend will continue for some time. In addition, we analyzed
the influencing factors and the deformation mechanism of the Woda landslide area and found that
the surface deformation is closely related to the geological structure and precipitation, among which
precipitation is the main factor triggering the deformation. Our monitoring results will help the
local government to conduct regular inspections and strengthen landslide disaster prevention in
low-coherence mountainous areas.

Keywords: landslide; DS-InSAR; deformation monitoring; stability analysis

1. Introduction

Vigorous tectonic movements and natural erosions shaped the complex landform of
Southwest China, where mountains, plateaus, and vertical and horizontal surface gullies
are widely distributed. The Qinghai–Tibet Plateau, known as the ‘roof of the world’, has
obvious crustal uplift and strong and rapid rivers, resulting in frequent geological disasters
on both sides of the rivers [1,2]. Landslide disasters are easily triggered in areas with lush
natural or planted forests or in steep areas, especially after extreme events. In eastern Tibet,
continuous landslide disasters have seriously affected social and economic development
and people’s lives [3]. The region along the Jinsha River and its tributaries has steep terrains
and broken structures, so geological disasters such as ground fissures and landslides have
occurred frequently. Since the 1980s, 61 landslides have been recorded [4]. The Woda
landslide area in Yanbi Township, Jomda County, eastern Tibet, is located in the upper
reaches of the Jinsha River. It mainly includes two landslide bodies, which started slowly
deforming in 1985. Remote sensing interpretation and ground survey both show risks of
further deformation and sliding that may cause river closure [5]. On 11 October 2018, a
major landslide occurred in Baige village in the lower reaches of the Jinsha River, about
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80 km from the Woda village [6]. The slope blocked the Jinsha River and damaged many
roads, bridges, and buildings. Such major geological disasters may impact the areas
hundreds of kilometers upstream and downstream. Therefore, monitoring the long-term
surface deformation of the Woda landslide area is of great significance for preventing and
controlling the occurrence of geological disasters.

In the past few decades, leveling [7], three-dimensional laser scanning [8], global
navigation satellite system (GNSS) [9], and unmanned aerial vehicle (UAV) photogramme-
try [10] have been widely used in deformation monitoring. However, they cannot provide
satisfactory results in the identification and monitoring of landslides in large areas due to
their long measurement cycles, small spatial coverage, large demand of human and mate-
rial resources, and high-risk factors for close-range work. Synthetic aperture radar (SAR)
remote sensing has the advantages of wide coverage as well as all-day and all-weather
observation, so it has been widely used in geological disaster monitoring [11,12]. With the
deepening of interferometric SAR (InSAR) research, differential InSAR (D-InSAR) uses SAR
images before and after the deformation to monitor the surface deformation [13,14], but
it has low monitoring accuracy due to time and geometric decoherence and atmospheric
delay, meaning it cannot meet the long-term monitoring requirements. In 2000, Ferretti et al.
proposed the theory and method of persistent scatterer InSAR (PS-InSAR) [15], suitable
for monitoring targets with stable radar scattering characteristics, such as buildings and
bridges in urban areas, but it is difficult to effectively apply it in areas such as farmland
and woodland. For this reason, subsequently, Berardino et al. contributed many theoretical
innovations and algorithm improvements to the PS-InSAR method and proposed some
new time series InSAR methods, which greatly enriched the time series InSAR technical
theory system [16–19]. In recent years, the time series InSAR method has been widely used
in landslide investigation and identification [20], landslide sliding evaluation [21], the es-
tablishment of early warning systems for landslides [22], and landslide surface deformation
monitoring [23,24], which is powerful technical support for landslide disaster research.

In 2011, Ferretti et al. proposed the second-generation permanent scatterer technology
(SqueeSAR) and related scholars around the world began to shift their research focus to
distributed targets with relatively weak backscatter [25]. In recent years, the distributed
scatterer InSAR (DS-InSAR) method based on SqueeSAR technology was introduced to
the research in low-coherent areas with weak backscattering. Goel et al. proposed the
Anderson–Darling (A–D) test method to select statistical homogeneous pixels (SHPs),
which effectively solved the high error rate of the K–S test in small sample data [26].
Gianfranco et al. decomposed the covariance matrix of DS points and selected the eigenvec-
tor with the largest value as the optimal phase of the DS point [27]. Jiang et al. proposed fast
SHPs, modified fast SHPs, and hypothesis test of confidence interval (HTCI) algorithms,
which effectively improved the SHP selection efficiency and phase optimization quality
and greatly promoted the progress and development of the DS-InSAR method [28,29].
This method combines PS points and DS points to significantly increase the distribution
density of monitoring points. Compared to other time series InSAR methods, it has obvious
advantages and is more suitable for the surface deformation monitoring of landslides in
mountainous areas [30,31].

In addition, time series InSAR technology can only extract the deformation rate and
the deformation time series along the line of sight (LOS) direction [32]. In fact, real space
deformation is three-dimensional, namely in the vertical, east–west, and north–south
directions. The vertical direction is usually longer than the other two directions. Since the
flight direction of the Sentinel-1A satellite is close to the north–south direction, the satellite
heading angle is relatively small, and it is insensitive when calculating the north–south
deformation [33]. However, it is not enough to only know the deformation information
in the LOS direction, and it is difficult to meet the needs of surface deformation research.
Generally, for research on surface deformation, it is best to perform a comprehensive
analysis with ascending and descending SAR data and calculate the vertical and east–west
two-dimensional deformation, further enriching and expanding the research work of the
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surface deformation [34,35]. In landslide areas where data sources are scarce and it is
difficult to obtain leveling, GNSS, and other data, the two-dimensional monitoring results
combining ascending and descending SAR data can help distinguish different landslide
deformation directions, reflect different deformation rate modes, and reduce the influence
of geometric distortion with high reliability and practicability [36,37].

In view of the fact that the time series and two-dimensional studies of the Woda
landslide area are relatively few, in this study, the DS-InSAR method was applied to
monitor and analyze the deformation in the Woda landslide area using the ascending
and descending Sentinel-1A images. The HTCI algorithm with the highest computational
efficiency was used to select SHPs, and the adaptive spatial nonlocal filtering method was
constructed based on the results of the SHP selection to perform phase optimization. We
analyzed the deformation characteristics and inducing factors of the landslide area, which
can provide reference and guidance for the early investigation, monitoring, and timely
warning of densely vegetated landslides.

2. Study Area and Datasets

2.1. Study Area

The study area is the Woda village and its surrounding areas in the upper reaches of
the Jinsha River. The Woda village is located in Yanbi Town, Changdu City, Tibet, China,
with a longitude of 98◦49′38.63′′ E and latitude of 31◦25′56.31′′ N (Figure 1a). There are
two closely distributed landslides in the area, named landslide bodies 1 and 2, along the
Jinsha River (Figure 1b). The front edges of the landslides are steep and reach the Jinsha
River valley at the toe, but the middle and rear parts are relatively flat (Figure 1c). The
elevation of the Jinsha River surface is about 2950 m, and that of the trailing edge apex
of the landslide area is about 4000 m. Such a great elevation difference may contribute
to geological disasters, such as large-scale landslides, for example, the Baige landslide,
which blocked the main stream of the Jinsha River to form a dammed lake, causing huge
property losses.

 

Figure 1. (a) Location of the study area in Tibet Autonomous Region, China, and SRTM-derived
topographic map of the Woda landslide area (Jomda County). The red and blue boxes indicate the
coverage of Sentinel-1A ascending and descending data, respectively. (b) Two-dimensional Google
map imagery of the study area. (c) Three-dimensional Google map imagery of the study area.

2.2. Datasets

We used the Sentinel-1A data in the ascending and descending orbits. Sentinel-1A is a
C-band synthetic aperture radar (SAR) satellite with a new TOPSAR imaging mode. It has
a 12-day return cycle and a large-scale spatial coverage of 250 km × 250 km at medium
resolution. At present, the latest global real-time observation data are free of charge. A total
of 208 scenes of Sentinel-1A interferometric wide (IW)-swath mode data were adopted in
this study. Detailed information is shown in Table 1.
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Table 1. Detailed information of the dataset.

Sensor Temporal Coverage
Image

Number
Orbit Track Polarization

Sentinel-1A 5 November 2014–4 September 2019 106 Ascending 99 VV
Sentinel-1A 31 October 2014–11 September 2019 102 Descending 33 VV

In addition, the SRTM1 30 m DEM with a 1 arc-second spatial resolution from National
Aeronautics and Space Administration (NASA) was used to remove topographic phase
and geocoding. A Google optical image was also used to show the final results and the
analysis of the landslide area.

3. Methods

In this study, we used the DS-InSAR method to monitor the Woda landslide area,
and the specific data processing flowchart is shown in Figure 2. Firstly, SAR images
were registered and clipped by using precise orbit and DEM data, and then differen-
tial interferogram pair sequences were generated. When setting the temporal and space
baseline thresholds to 72 days and 200 m, the 106-scene ascending SAR images gener-
ated 209 interference pairs; when setting the temporal and space baseline thresholds to
96 days and 200 m, the 102-scene descending SAR images generated 201 interference pairs.
The generated interference pair information is shown in Figure 3. Then, we selected the
PS and DS points and extracted their phase and elevation information to calculate the
deformation. Finally, we combined the precipitation data and geological map to ana-
lyze the deformation of the landslide area in detail. The precipitation data in this paper
can be downloaded from the official Soil and Water Assessment Tool (SWAT) website at
https://swat.tamu.edu/ (11 October 2021), and the geological map is from the hydrogeo-
logical map of China (1:200,000).

Figure 2. The flowchart of landslide monitoring by the DS-InSAR method.
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Figure 3. Spatial and temporal baselines of the interferograms obtained by (a) ascending data;
(b) descending data.

3.1. PS Selection

The amplitude threshold and the amplitude dispersion index threshold were jointly
used to select the PS point. The amplitude threshold was used to select pixels with high
amplitude values as candidate points, from which those with smaller amplitude deviation
values were determined as the final PS points. The pixels with high amplitude values
indicate better coherence, and a smaller amplitude deviation index indicates better stability.
Therefore, the selected PS points have stable radar scattering characteristics, which can
improve the accuracy of the results.

3.2. DS Selection

DS point selection includes SHP selection and phase optimization. SHPs were se-
lected according to the SAR image intensity information, which was used to optimize the
interference phase of the SAR image. The phase optimization was evaluated by calculat-
ing the temporal coherence and setting the temporal coherence threshold to 0.4 to select
high-quality DS points [12,38].

3.2.1. SHP Selection

There are dozens of SHP selection algorithms with different accuracies. Assuming
that the SAR intensity dataset obeys the exponential distribution and the amplitude dataset
obeys the Rayleigh distribution, the algorithm can be divided into two categories—non-
parametric hypothesis testing methods, such as the KS test [39] and the BWS test [40],
and the parameter test algorithm, such as HTCI. The HTCI algorithm has higher selection
efficiency and accuracy than the KS and BWS test methods. In this study, we used the HTCI
algorithm to select SHPs.

Assuming that N SAR images obey complex Gaussian distribution in the time dimen-
sion and the variance of random variables is σ2/2, the SAR image intensity sequence obeys
Rayleigh distribution.

f (I) =
1
σ2 e−

I
σ2 , I ≥ 0 (1)

According to the central limit theorem, the sample mean obeys a normal distribution
of N(σ2, σ4/(NL)). The interval estimation analytical equation is as follows:

P
{

σ2 − zα/2 · σ2/
√

N · L < σ < σ2 + zα/2 · σ2/
√

N · L
}
= 1 − α (2)

where Zα/2 is the percentage of the standard normal probability density function α/2.
Defining the center pixel in the window as the reference pixel and the remaining pixels
as the neighboring pixels, if the sample mean of the neighboring pixels is within the
given confidence interval, the neighboring pixels are considered the SHPs of the reference
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pixel. However, in actual data processing, the available SAR images are very few, and
the Gaussian hypothesis is often difficult to establish. The Gamma distribution of the
accumulated N scene intensity images is Nσ ∼ G(Na, b), where a = L,b = σ2/L (where
L denotes the multi-look number). Set Y = Nσ/b, so Y obeys the standard Gamma
distribution with the shape parameter Na, which is Y ∼ G(Na, 1) [41]. Let gα;Na be the α
percentage of the standard Gamma distribution of the known parameter Na, and we get
the following:

P
{

gα/2;Na < Y < g1−α/2;Na
}
= 1 − α (3)

From which, we obtain the fixed interval analytic equation as

P
{

gα/2;NL · σ2/(N · L) < σ < g1−α/2;NL · σ2/(N · L)
}
= 1 − α (4)

If there is less available time series SAR image data, Equation (4) is better than
Equation (2), as the interval value is asymmetric and the tail feature is emphasized. In

summary, the algorithm defines a fixed window for each pixel of the image. Then, the mean
temporal intensity of the reference pixel and that of the neighborhood pixel are taken as the
values of σ2 and σ in Equation (4), respectively. Finally, the neighborhood pixels located in
the confidence interval are selected as the SHPs of the reference pixels. The algorithm selects
SHPs according to the intensity mean of the local spatial pixels and the local minimum
mean square error, which effectively improves its robustness and selection accuracy.

3.2.2. Optimal Phase Estimation

In the selection window, the interference phases of SHPs are affected similarly by
noise, are highly correlated, and have distributed characteristics. In this study, we used
the adaptive spatial nonlocal filtering method based on the results of SHP selection to
perform phase optimization. In a certain window, the reference pixels were filtered by
adaptive spatial nonlocal filtering using the selected SHPs to reduce the phase noise of the
interferogram.

At any pixel p in the interferogram, the estimated value of the adaptive spatial nonlocal
filtering is as follows [42]:

NL(p) = ∑
m∈Ω

w(p, m)u(m) (5)

NL(p) is the phase value of the filtered pixel p, and is the phase value of the homogeneous
pixel m in the search range Ω. The weight value w(p, m) depends on the similarity between
pixels p and m, and satisfies the following conditions: 0 ≤ w(p, m) ≤ 1, ∑m w(p, m) = 1.

d(Np, Nm) =
‖u(Np)− u(Nm)‖2

2,a

1 + ‖u(Np)− u(Nm)‖2
2,a

(6)

Z(p) = ∑
m

exp(−d(Np, Nm)

h2 ) (7)

w(p, m) = exp(−d(Np, Nm)

h2 )/Z(p) (8)

where d(Np, Nm) is the Gaussian weighted Euclidean distance, which is defined as the
similarity between the distance weighted windows; Z(p) is the normalization parameter;
h is the attenuation factor of the control exponential function; a is the standard deviation
of the Gaussian kernel function. The larger the d(Np, Nm) value is, the greater the weight.
The value of h is usually determined according to the noise level. A value that is too large
may filter out some useful features and textures, but a value too small makes it difficult to
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filter out noises. Therefore, selecting the value of h becomes a key factor that affects the
nonlocal filtering. In this paper, it is defined as the following:

h =
1

1 + DA
(9)

where DA is the amplitude deviation index of the estimation window. In areas with large
terrain undulations, a small h will be selected to retain as much texture information as
possible; in areas with relatively flat terrain, a large h will be used to remove noise.

After phase optimization, the quality of the optimized phase was evaluated by
Equation (10). The difference between the optimized interference phase and the original
interference phase was fitted to obtain a fitting metric value of γDS [25].

γDS =
2

N2 − N
Re

N

∑
n=1

N

∑
k=n+1

eiφnk e−i(ϑn−ϑk) (10)

ϑn and ϑk are the optimized interference phases of a single master image, and φnk is
the original interference phase. γDS can also be regarded as the temporal coherence of the
interference pair sequence and was used to describe the quality of the optimized phase. By
setting the temporal coherence threshold, the points with high temporal coherence were
selected as the DS points in the subsequent analysis.

3.3. Combined Data Processing

Combining the selected PS and DS points can effectively improve the insufficient
point selection density of using the PS-InSAR method alone. The phases of the combined
coherent points are differentiated and unwrapped to construct triangulation networks.
Through iterative calculation and regression analysis, we separated the linear deformation,
the elevation residual, and the residual phase. According to the different characteristics
of the residual phase in the time and space domains, multiple filtering in the frequency
domain can separate nonlinear deformation, atmospheric delay phase, and noise phase. The
singular value decomposition was used to obtain the deformation rate and accumulative
deformation during the study period.

Then, using the deformation obtained from the ascending and descending orbit data,
we calculated the vertical and east–west deformation characteristics in the landslide area.
Finally, the stability analysis of the study area was carried out according to the two-
dimensional deformation results. The details are as follows.

3.3.1. Two-Dimensional Deformation Calculation

According to the geometric relationship of radar imaging, the surface deformation
monitored by the ascending and descending SAR images were both in the LOS direction
(DLOS). DLOS can be decomposed into the deformation in the vertical (Dv), east–west (De),
and north–south (Dn) directions (Figure 4).

DLOS can be expressed as [43,44] the following:

DLOS =
[

cos θ − sin θ cos α sin θ sin α
]⎡⎣ Dv

De
Dn

⎤
⎦ (11)

where θ represents the radar incident angle, and α represents the satellite heading angle.
Since the flight direction of the Sentinel-1A satellite is close to the north–south direction, the
deformation monitoring results in this direction are not sensitive. Therefore, we calculated
the deformation in the vertical and east–west directions.
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Figure 4. Three-dimensional spatial decomposition model of the LOS deformation. DLOS1 and
DLOS2 are the LOS deformations of the ascending and descending orbits, respectively; θ1 and θ2 are
the incidence angles of the ascending and descending SAR images, respectively; α1 and α2 are the
heading angles of the ascending and descending SAR satellites.

[
DLOS1
DLOS2

]
=

[
cos θ1 − sin θ1 cos α1
cos θ2 − sin θ2 cos α2

][
Dv
De

]
(12)

Av,e =

[
cos θ1 − sin θ1 cos α1
cos θ2 − sin θ2 cos α2

]
(13)

where Av,e is the coefficient matrix. The radar incidence angle information of each pixel of
the ascending and descending SAR images is shown in Figure 5. In areas with large terrain
undulations, the incidence angles of neighboring pixels are greatly different, and even the
incidence angles of the same pixel in the ascending and descending orbits are significantly
different. In this case, the deformation results are invalid in the overlapped and shadow
areas, and the reliability in the perspective shrinkage area is reduced [45]. Considering the
actual situation, we used the incidence angle of each pixel to calculate the two-dimensional
deformation by the least square method as follows.

Dv,e = (AT
v,ePAv,e)

−1
AT

v,ePDLOS1,2 (14)

where P is the weight matrix, the reciprocal of the residual standard deviation of the
monitoring result is used as the weight, and Dv,e = [Dv De]

T ; DLOS1,2 = [DLOS1 DLOS2]
T .

Finally, we obtained the deformation in the vertical direction and east–west direction of
the monitoring point of its tangent plane. However, it should be noted that since the radar
incident angle information of each pixel was considered, the vertical direction deformation
obtained was actually the deformation of the surface normal direction.

284



Remote Sens. 2022, 14, 532

  

Figure 5. Radar incidence angle distribution map: (a) ascending orbit SAR image; (b) descending
orbit SAR image.

3.3.2. Stability Calculation

We analyzed the stability of the Woda landslide area by the rescaled range (R/S)
analysis method [46,47]. The R/S analysis method is a time series fractal statistical method
based on fractal theory. It estimates the deformation trend over time and predicts the
continuity of future deformation by calculating the Hurst index value H of a non-linear
time series. A long time series {xN} consisting of N scenes of SAR images can be divided
into m sub-intervals with the length L. For each sub-interval, set

Xt,m =
L

∑
u=1

(xu − xu) (15)

where xu is the average value of the n-th (n ≤ m) sub-interval xu, and Xt,n is the cumulative
deviation of the n-th sub-interval. Then,

R = max(Xt,n)− min(Xt,n) (16)

S =

√√√√ 1
L

L

∑
u=1

(xu − xu)
2 (17)

where R is the range of the interval, and S is the standard deviation of the interval. R/S is

R/S = k(n)H (18)

where k is a constant with the empirical value of 0.5; H is the Hurst exponent. Taking the
logarithm of both sides of the above equation, we get

log (R/S)n = H log(n) + log(k) (19)

From the above equation, the Hurst index value H can be estimated by the least square
regression. The calculated Hurst index value ranges between 0 and 1. Only when the value
is greater than 0.5, the monitoring time series deformation has a long-term correlation, and
the current deformation trend will be maintained in the future. The closer the Hurst index
value is to 1, the more reliable and stable the correlation and consistency are.

4. Results and Analysis

4.1. Monitoring Results and Analysis

From the 106 ascending and 102 descending SAR images, we derived the surface
deformation of the Woda landslide area using the above method. On the basis of the SHPs
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selected by the HTCI algorithm, we optimized the interferograms by the adaptive nonlocal
filtering method. The time coherence threshold was defined as 0.6 to obtain the DS point;
the amplitude dispersion index threshold was set as 0.4 to obtain the PS point. Both the
PS point and the DS point were adopted for the phase unwrapping and residual phase
removal, and finally, the surface deformation during the study period was obtained.

Figure 6 shows the LOS deformation rate of the study area obtained by different
methods. The Woda landslide area is mainly mountainous and lacks strong scatterer point
targets, such as buildings and bare rock. So, the point targets obtained by the traditional
PS-InSAR method are sparse (Figure 6b,d) and cannot be used for analysis. The results
of DS-InSAR greatly improve the spatial distribution density of point targets than that of
PS-InSAR, especially in the areas with weaker coherence. Specifically, DS-InSAR selected a
total of 162,992 point targets from the ascending data and 149,518 point targets from the
descending data, with point densities of 25.5% and 23.4%, respectively. The PS-InSAR
method selected a total of 2293 point targets from the ascending data and 3088 point targets
from the descending data, with densities of 0.4% and 0.5%, respectively. In addition, as
Figure 6a,c shows, the results from the ascending and descending data are significantly
different in spatial distribution and magnitude. The maximum deformation rate of the
ascending data is −156 mm/yr, but for the descending data, it is −129 mm/yr. The reasons
for this could be (1) due to the differences in the observation direction, the incidence angle
and heading angle of the ascending and descending radar satellites, the projection of
the deformation on the LOS of different attitudes at the same location must be different;
(2) mountainous areas with great terrain undulations result in geometric distortion in SAR
images, which will directly affect the deformation results; (3) due to the changes in slope
and aspect, the results of the deformation in the ascending and descending LOS directions
of the same location may be opposite.

In this study area, the PS-InSAR method selected no point target at the landslide bodies
and could not perform subsequent experimental analysis, indicating that the method has
great defects in low-coherence research areas, such as for landslide monitoring. The DS-
InSAR method selected dense point targets and provided rich deformation details in the
area, which was very helpful for subsequent deformation analysis and discussion.

Due to the absence of leveling and GNSS data, we verified the reliability of the DS-
InSAR monitoring results by its correlation with the results of PS-InSAR [48,49]. Figure 7
shows the correlation between the PS-InSAR and DS-InSAR deformation rate results. Since
both the PS-InSAR and DS-InSAR results are dependent variables, the correlation coefficient
(Corr) proposed by Karl Pearson [50] was used to verify the results of the DS technology.
The Corr is a statistical indicator for reflecting the correlation between variables. The
closer the Corr value is to 1, the closer the correlation is between the two results. In the
ascending orbit, the Corr is 0.83 and the root mean square error (RMSE) is 4 mm/yr; in
the descending orbit, the Corr is 0.77 and the RMSE is 5 mm/yr. The results of these two
methods are highly correlated, which proves the reliability of DS-InSAR in monitoring the
surface deformation of the landslide area.

After analyzing and verifying the deformation rate results, we analyzed the time series
deformation in the landslide area to understand the surface deformation characteristics
more comprehensively. Figure 8 is a three-dimensional optical image feature map of the
landslide area. The yellow curves outline the identification boundaries of the two landslide
bodies 1 and 2. Considering the geomorphology and slopes, we selected three points from
each landslide body and analyzed their time series deformation trends to understand the
law of surface change in the landslide area.
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Figure 6. The LOS deformation rate maps of the Woda landslide area (a) derived from ascending
data using the DS-InSAR method; (b) derived from ascending data using the PS-InSAR method;
(c) derived from descending data using the DS-InSAR method; (d) derived from descending data
using the PS-InSAR method.

 

Figure 7. Correlation between PS-InSAR and DS-InSAR deformation rates in the (a) ascending orbit
and the (b) descending orbit.
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Figure 8. Three-dimensional optical image feature map of the Woda landslide area.

Figure 9 shows the time series deformation trends of points P1–P6 derived from
ascending and descending data between 5 November 2014 and 4 September 2019. The six
feature points all have varying degrees of deformation and the cumulative deformation
statistics of feature points are shown in Table 2. P1 is located in the west-central part
of landslide body 1. The ascending result shows great deformation, with a cumulative
deformation of −342 mm. The descending result shows a slight uplift (33 mm), which
may be a result of the electromagnetic wave emission direction and the radar incidence
angle. P2 is located in the south-central part of landslide body 1. The ascending result
shows large deformation, with a cumulative deformation of −375 mm. The deformation in
the descending result is smaller, with a cumulative deformation of −85 mm. P3 is located
in the east-central part of landslide body 1. It has smaller deformation in the ascending
result (−163 mm) than P1 and P2, but the change trend is obvious. The descending orbit
result is smaller and fluctuates greatly, indicating that the monitoring results were greatly
affected by noise. P4 is located in the upper part of landslide body 2. The deformation
of the ascending result is large (−209 mm), but the deformation trend is not smooth. The
deformation in the descending result is −73 mm. P5 is located in the middle of landslide
body 2. The deformations in the ascending and descending results are −223 mm and
−220 mm, respectively. P6 is located in the lower part of landslide body 2. The deformation
in the ascending orbit result is −284 mm. The deformation in the descending result has a
similar trend, but the value is smaller, at −214 mm.

Table 2. Cumulative deformation statistics of feature points.

Feature Points
Cumulative Deformation (mm)

Ascending Descending

P1 −342 33
P2 −375 −85
P3 −163 −42
P4 −209 −73
P5 −223 −220
P6 −284 −214

As Figure 9 shows, the six feature points all experienced deformation acceleration in
August 2017, but the deformations in the ascending and descending results of each feature
point are quite different. Thus, it was difficult to get a unified summary for the surface
deformation law according to the time series deformation trend. Therefore, we established
a two-dimensional deformation model using the results of the ascending and descending
orbits to further analyze the landslide area.
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Figure 9. Time series deformation of points P1–P6 (a–f) based on ascending and descending results.

4.2. Two-Dimensional Deformation Results and Analysis

As the geographic locations of the monitoring points in the ascending orbit SAR image
and those in the descending orbit SAR image may not be exactly the same, the homonymy
points had to be selected before the two-dimensional deformation modeling. In this study,
if the monitoring points on the two orbits had a distance of less than 10 m, they were
selected as the homonymy points, and a total of 76,943 monitoring points were obtained
(Figure 10).

  

Figure 10. The distribution of the homonymy points: (a) ascending orbit results; (b) descending
orbit results.
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According to the distribution results of the homonymy points, we obtained the normal
deformation and the east–west deformation by Equations (12) and (14). As shown in
Figure 11a,b, the two landslide bodies have obvious deformations, but the other regions
are stable. The maximum surface deformation rate in the landslide bodies was −80 mm/yr
in the normal direction and 118 mm/yr in the east–west direction. To analyze the surface
deformation characteristics more clearly and intuitively, the region in the red dashed
box was displayed in a three-dimensional map, as shown in Figure 11c,d. In the normal
direction, the deformation rate was between −70mm/yr and −40mm/yr, and higher in
the east–west direction. The regions with deformation rates greater than −70mm/yr are
concentrated in the middle of landslide body 2. In the east–west direction, the surface
deformation rates in the center area of the two landslide bodies were high (60 mm/yr to
90 mm/yr), especially in the middle part of landslide body 1 (>90 mm/yr). The deformation
rate of the rest area is about 30 mm/yr and not significant.

  

  

Figure 11. Two-dimensional deformation results (a) in the normal direction and (b) in the east–west
direction. Three-dimensional model of the deformation (c) in the normal direction and (d) in the
east–west deformation.

Through the two-dimensional calculation of the landslide area from the normal and
east–west directions, and combined with the actual surface model, the surface deformation
analysis was more comprehensive, specific, and vivid. Therefore, compared to the single
LOS direction deformation analysis, the two-dimensional deformation is beneficial for
comprehensively analyzing the surface deformation characteristics of the landslide area,
summarizing the surface deformation laws, as well as providing help for the subsequent
discussion of the influence of precipitation and the deformation mechanism.
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4.3. Stability Analysis

In order to further study and analyze the surface stability of landslide bodies 1 and 2,
we analyzed the stability of the P1–P6 feature points. For the R/S analysis of feature points,
we acquired 106 images from 5 November 2014 to 4 September 2019, which imposed a
huge calculation burden. We divided the study period into six segments and calculated the
Hurst index of each segment separately. The results in the normal direction and east–west
direction are shown in Tables 3 and 4, respectively. The distribution of the calculation
results is shown in Figure 12.

Table 3. Hurst index calculation results in the normal direction.

No. Period of Time
Hurst Index

P1 P2 P3 P4 P5 P6

1 5 November 2014–18 December 2015 0.934 0.919 0.842 0.938 0.953 0.847
2 18 December 2015–10 February 2017 0.956 0.949 0.907 0.942 0.932 0.939
3 10 February 2017–26 September 2017 0.948 0.818 0.943 0.774 0.726 0.900
4 26 September 2017–12 May 2018 0.932 0.939 0.817 0.932 0.905 0.935
5 12 May 2018–7 January 2019 0.817 0.949 0.956 0.865 0.748 0.924
6 7 January 2019–4 September 2019 0.934 0.945 0.935 0.904 0.937 0.925

Table 4. Hurst index calculation results in the east–west direction.

No. Period of Time
Hurst Index

P1 P2 P3 P4 P5 P6

1 5 November 2014–18 December 2015 0.932 0.938 0.867 0.963 0.840 0.931
2 18 December 2015–10 February 2017 0.934 0.938 0.828 0.945 0.876 0.936
3 10 February 2017–26 September 2017 0.909 0.911 0.956 0.942 0.736 0.748
4 26 September 2017–12 May 2018 0.925 0.929 0.927 0.908 0.959 0.922
5 12 May 2018–7 January 2019 0.947 0.904 0.927 0.881 0.849 0.915
6 7 January 2019–4 September 2019 0.946 0.908 0.935 0.858 0.928 0.905

 

Figure 12. Hurst index values of P1–P6 feature points (a) in the normal direction and (b) in the
east–west direction.

From Table 3 and Figure 12a we found that, in the normal direction, the Hurst index
of each feature point is greater than 0.5 at each segment, indicating that the time series
deformation results have a long-term correlation. From 10 February 2017 to 26 September
2017, the Hurst index values of each feature point are low, and the Hurst index values of
P2, P4, and P5 are all lower than 0.9, which is a little lower than the results of the other
periods and also confirms the acceleration trend of deformation after the precipitation peak
in 2017 obtained in the previous study. From 7 January 2019 to 4 September 2019, the Hurst
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index value of each feature point is greater than 0.9, indicating that the normal direction
deformation trend will continue for some time. From Table 4 and Figure 12b, we found
that in the east–west direction, the Hurst index calculated at each feature point is also
greater than 0.5 at each segment, indicating that the time series deformation results have a
long-term correlation. From 10 February 2017 to 26 September 2017, the Hurst index values
of P5 and P6 are obviously relatively low, at 0.736 and 0.748, respectively, while the other
points are greater than 0.9. From 7 January 2019 to 4 September 2019, the Hurst index value
of P4 is 0.858, and those of the other points are all above 0.9, indicating that the east–west
deformation trend will continue for some time.

As Figure 12 shows, the Hurst index values of P4–P6 have larger fluctuations than
those of P1–P3, especially between 7 January 2019 and 4 September 2019. This means that
after the peak of precipitation in 2017, the influence of precipitation on landslide body 2 was
greater than on landslide body 1. In addition, the Hurst index values of the P1–P6 feature
points are higher than 0.5 in both the normal and east–west directions, indicating that the
current deformation trend will continue. It is safe to infer that the surface deformation of
the two landslide bodies may develop along the current trend. In this study, we adopted
the R/S analysis method, which not only analyzes the stability and reliability of the surface
deformation trend during the study period but also predicts the deformation trend of the
subsequent landslide surface and provides effective theoretical support for local disaster
warning and reduction.

5. Discussion

5.1. Influence of Precipitation

In order to explore the inducing factors of the surface deformation of the Woda land-
slide area, we analyzed the relationships between the precipitation and normal deformation
and the east–west deformation time series. Since the time span of the ascending orbit SAR
images is not completely consistent with that of the descending orbit SAR images, based
on the time span of the ascending SAR images (5 November 2014–4 September 2019), we
performed time linear interpolation on the time series deformation results of the descending
SAR images. We calculated the two-dimensional time series deformation of the ascending
and descending data. The precipitation data were processed according to the temporal
baseline length between the SAR images of the ascending orbit, which makes the analysis
more reasonable.

Figure 13 shows the normal direction time series deformation and precipitation distri-
bution map of P1–P6. Figure 14 shows the east–west direction time series deformation and
precipitation distribution map of P1–P6. As the two figures show, the precipitation was
mostly concentrated in May to September each year. Therefore, in this study, we focused
on the deformation trend after the precipitation peak period from 2016 to 2018, as shown
by the green dashed boxes in Figures 13 and 14. As Figures 13a and 14a show, after the
precipitation peak period in 2016, the normal direction deformations of P1 and P3 had
accelerated trends. After the precipitation peak period in 2017, the normal direction and
east–west direction deformations of P1 and P2 had obvious acceleration. The east–west
direction deformation of P3 accelerated in May, in the rainy season. After the precipitation
peak period in 2018, the east–west deformation of P1 accelerated, and the deformation of
the other points did not change significantly. In Figures 13b and 14b, after the precipitation
peak period in 2016, only the normal deformation of P6 had an acceleration trend. After
the precipitation peak period in 2017, the normal direction deformation and east–west
direction deformations of P4–P6 show an obvious acceleration. P6 shows the most obvious
acceleration and maintained this trend for some time. After the precipitation peak period
in 2018, the deformations of the P4–P6 feature points are not obvious. In summary, the
P1–P6 feature points were most affected by the precipitation peak period in 2017.
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Figure 13. Time series deformation in the normal direction and precipitation distribution map of
the P1–P6 feature points. (a) includes P1–P3 feature points; (b) includes P4–P6 feature points.
The green dashed boxes are the deformation trend of the feature points after the period of
concentrated precipitation.

Figure 14. Time series deformation in the east–west direction and precipitation distribution
map of the P1–P6 feature points. (a) includes P1–P3 feature points; (b) includes P4–P6 feature
points. The green dashed boxes are the deformation trend of the feature points after the period of
concentrated precipitation.

To further analyze the relationship between precipitation and the time series de-
formation, more comprehensive statistics of precipitation data are listed in Table 5. In
May–September from 2015 to 2019, the precipitation in May–September 2017 was the high-
est, reaching 676.17 mm, which is 28.5% higher than in 2016. Table 5 also lists the maximum
daily precipitation rates throughout the whole study period. Three of the five days with the
highest precipitation are in 2017. The daily precipitation of 13 May 2017 reached 113.69 mm,
which is a heavy rainstorm; the daily precipitation for the two days of 7 September 2017
and 4 July 2017 also reached the heavy rain level. Combining the deformation trends of
P1–P6 in the LOS direction (Figure 9), normal direction (Figure 13), and east–west direction
(Figure 14), from Table 5, we found that the deformation of each point accelerated during
August to November 2017, indicating that precipitation was an important factor leading to
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the deformation acceleration; the precipitation from May to September in 2015 and 2016 was
less than that in 2017 and 2018, so the effect of precipitation on the deformation acceleration
is not significant; extremely rainy weather and high precipitation are some of the main
reasons for accelerated surface deformation in this landslide area. This provides a useful
reference for analyzing and judging the trend of surface deformation in the landslide area.

Table 5. Detailed statistics on precipitation data.

Annual Precipitation from May to September Precipitation per Day Ranking

Date Precipitation (mm) Date Precipitation (mm)

2015 597.59 13 May 2017 113.69
2016 526.27 7 September 2017 91.71
2017 676.17 2 July 2019 86.79
2018 642.35 4 July 2017 65.02
2019 559.48 6 August 2015 45.61

5.2. Discussion of Deformation Mechanism

The Woda landslide area is located in a typical alpine and canyon landform, through
which the Jinsha River runs. In this area, the Jinsha River is about 115 m wide, and the
terrain of the river is gentle. The landslide bodies have circle chair shapes, with multi-
level terraces [5]. A large amount of landslide material is accumulated on the slope. The
average slope of the landslide bodies is 20◦–25◦, and the maximum slope at the front edge
of the landslide bodies can reach 70◦. In addition, the area has a plateau cold temperate
semi-humid climate, with uneven precipitation throughout the year. Heavy rains occur
occasionally in the area, which has become a significant cause of geological disasters.

As Figure 15 shows, the lithology of this area is mainly composed of schist, slate,
and shale of the Upper Triassic Lanashan Formation and of crystalline limestone and
feldspar quartz sandstone of the Upper Triassic Tumgou Formation. Under the influence of
long-term tectonic movement, weathering, and rainfall, rock mass joints and fissures are
abundant and the structure is broken. Therefore, the deformation of the Woda landslide area
is controlled by geographical factors, such as stratum lithology and geological structure.
In addition, external factors, such as steep terrain, climate environment, and rainfall,
promote deformation.

Figure 15. Geological map of the study area. (1) Upper Triassic; (2) Upper Triassic diorite; (3) Upper
Triassic ultrabasic rock blocks; (4) diorite vein; (5) stratigraphic occurrence; (6) actual blatt flaws;
(7) supposed blatt flaws; (8) stratigraphic boundary; (9) identified landslides.
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Once a large-scale slide occurs, the materials may block the Jinsha River, forming a
dammed lake and inducing indirect disasters, such as river overtopping, dam breaking,
and flooding. Therefore, long-term monitoring of the surface deformation with the InSAR
method is necessary, which can be used for analyzing and judging the landslide scale,
deformation trends, and influencing factors. It plays an important role in improving
emergency management and the prevention and mitigation of landslide disasters.

5.3. Limitations and Prospects

In this study, surface deformation monitoring and stability analysis of the Woda
landslide area were successfully carried out. It is undeniable that this study has certain
limitations. (1) Due to the influence of geographical location and topography, there is a lack
of leveling and GNSS data for support and verification; (2) only SAR data was used, and
there was a lack of optical satellite and remote sensing images for collaborative monitoring
and analysis; (3) restricted by relevant management regulations, the collection of geological
data was not rich enough, and there was no perfect in-depth analysis of the geological
structure and lithology.

In future research, with the development of new observation platforms, such as the
BeiDou Navigation Satellite System (BDS) and UAV, it is possible to combine navigation
and positioning data, UAV photography data, SAR data of different polarization modes,
and multi-platform spaceborne SAR data to carry out surface deformation monitoring
fieldwork. In the field of landslide surface deformation monitoring, a scientific and reliable
monitoring and evaluation system will be formed.

6. Conclusions

This study adopted the state-of-the-art of DS-InSAR method to extract the surface
deformation of the Woda landslide area. The HTCI algorithm was used to select SHPs,
and the adaptive spatial nonlocal filtering method was combined with the SHP selection
result to optimize the phases. Both DS and PS points were used to increase the density of
monitoring points in the study area.

From the 106 Sentinel-1A ascending images and 102 Sentinel-1A descending images,
we derived the time series deformation of the Woda landslide area for nearly 5 years by
the DS-InSAR method. The two landslide bodies have obvious deformations, but the other
areas are stable. Compared to the traditional PS-InSAR method, the DS-InSAR method
increased the monitoring points density significantly. The results of the monitoring points
were verified by the Karl Pearson correlation coefficients, which are 0.83 for the ascending
result and 0.77 for the descending result. The obtained two-dimensional deformation
model shows that the maximum deformation rate of the normal direction is −80 mm/yr,
and for the east–west direction, it is 118 mm/yr. The stability analysis results show that
the current deformation trend is sustainable. The time linear interpolation analysis of
the six feature points suggests that the deformation is controlled by geographical factors,
such as stratum lithology and geological structure, and it is affected by external factors,
such as precipitation. The research results and analysis method in this paper provide
reference and guidance for the early investigation, monitoring, and timely warning of
dense forest landslides.
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Abstract: Dalian Jinzhou Bay International Airport (DJBIA) is an offshore artificial island airport,
where the reclaimed land is prone to uneven land subsidence due to filling consolidation and con-
struction. Monitoring and predicting the subsidence are essential to assist the subsequent subsidence
control and ensure the operational safety of DJBIA. However, the accurate monitoring and prediction
of reclaimed subsidence for such a wide area under construction are hard and challenging. This
paper utilized the Small Baseline Subset Synthetic Aperture Radar (SBAS-InSAR) technology based
on Sentinel-1 images from 2017 to 2021 to obtain the subsidence over the land reclamation area of
the DJBIA, in which the results from ascending and descending orbit data were compared to verify
the reliability of the results. The SBAS-InSAR results reveal that uneven subsidence is continuously
occurring, especially on the runway, terminal, and building area of the airport, with the maximum
subsidence rate exceeding 100 mm/year. It was found that there is a strong correlation between the
subsidence rate and backfilling time. This study provides important information on the reclaimed
subsidence for DJBIA and demonstrates a novel method for reclaimed subsidence monitoring and pre-
diction by integrating the advanced InSAR technology and Terzaghi Consolidation Theory modeling.
Moreover, based on the Terzaghi consolidation theory and the corresponding geological parameters of
the airport, predicted subsidence curves in this area are derived. The comparison between predicted
curves and the actual subsidence revealed by InSAR in 2017–2021 is highly consistent, with a similar
trend and falling in a range of ±25 mm/year, which verifies that the subsidence in this area conforms
to Terzaghi Consolidation Theory. Therefore, it can be predicted that in the future, the subsidence
rate of the new reclamation area in this region will reach about 80 mm/year ± 25 mm/year, and the
subsidence rate will gradually slow down with the accumulation of reclamation time. The subsidence
rate will slow down to about 30 mm/year ± 25 mm/year after 10 years.

Keywords: Dalian Jinzhou Bay International Airport; SBAS-InSAR; Terzaghi consolidation theory;
subsidence monitoring; subsidence prediction

1. Introduction

Dalian Jinzhou Bay International Airport (DJBIA), constructed in 2010, is built on a
reclaimed artificial island with an overall planned reclamation area of 20.87 km2, and all
the reclaimed land will be used for the airport, which will be the largest offshore airport
worldwide after construction. Land reclamation is prone to unstable geological foundations
due to sediment consolidation [1–4]. Airports built on reclaimed land commonly suffer
from land subsidence, which will threaten the operational safety of the airport, especially
the land subsidence occurring in runway areas [5]. Therefore, it is essential to monitor and
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predict the ground subsidence in this area and assess its impact on the safe operation of
the airport.

Reliable surface deformation information can be obtained through traditional point-
measurement methods, such as level surveys or global satellite navigation and positioning
technology. However, traditional measurement methods was difficult to apply them to
ground subsidence monitoring at airports under reclamation. Interferometric synthetic
aperture radar (InSAR) is an emerging geodetic technology. It is capable of acquiring high-
accuracy and continuously covered surface deformation information, which is widely used
in the fields of ground subsidence monitoring [1,3,6,7], and landslide monitoring [8–12]. In
recent years, InSAR technology has been widely used in land subsidence monitoring at air-
ports. Such as Hong Kong Chek Lap Kok Airport [13,14], Shanghai Pudong International
Airport [15,16], Beijing Capital International Airport [17,18], Shenzhen Baoan Interna-
tional Airport [19,20], Kuala Lumpur International Airport, Malaysia [5], and Japanese
airports [21–23]. The land formed by the land reclamation airport is characterized by high
compressibility, low strength, and a large porosity ratio, which easily leads to ground
subsidence. Studies related to reclaimed land airport monitoring by InSAR have been
performed. Lu et al. [19] and Xu et al. [24] monitored ground subsidence at Shenzhen
Baoan International Airport based on the SAR data from 2007 to 2010 and 2015 to 2019,
revealing that the subsidence in the reclamation area was greater than in the ground, and
dynamic loads is an important factor that causing airport subsidence. Zhuo et al. [25]
conducted subsidence monitoring of Xiamen Xiang’an New Airport based on SBAS-InSAR
from 2018 to 2020 and identified the areas that may be affected in the future based on
the type of airport land use. Hong Kong Chek Lap Kok Airport [14] and Xiamen New
Airport [26] used SAR data and geological data combined with Terzaghi consolidation
theory for long-term subsidence monitoring of the reclamation airports. The above studies
used InSAR observation on reclaimed airport subsidence monitoring and made a detailed
analysis of subsidence. Integration of InSAR observation and geological condition of the
artificial land area to predict the subsidence trend deserves further study.

In this paper, SBAS-InSAR was used to monitor the land subsidence at DJBIA based
on 50 Sentinel-1A ascending SAR images between March 2017 and April 2021. The SABS-
InSAR monitoring results reveal the regional distribution and time–series characteristics
of airport subsidence. Based on the Terzaghi consolidation theory, the geological data of
the airport were used to calculate the deformation of the soil layer at any time during the
land reclamation process and to predict the subsidence development trend. The InSAR
results verified that the subsidence in 2017–2021 is consistent with the predicted curve of
the Terzaghi consolidation theory in the area. The integration of InSAR observation and
Terzaghi Consolidation Theory works well in this area and could make a great contribution
to the subsidence prediction.

2. Study Area and Data Source

2.1. Study Area

Dalian, in Liaoning Province (China), is located between the Yellow Sea and the Bohai
Sea, surrounded by the sea, and dominated by mountainous and hilly peninsular landforms.
The hills are northeast-southwest direction, with relatively flat terrain on the east and west
sides [27]. The study area, DJBIA, is in the sea area of Jinzhou Bay, Dalian City. DJBIA is
an offshore artificial island airport on the Chinese mainland, which consists of berms, the
runway, and the building area (Figure 1). The western bay of Jinzhou District, where the
airport is located, belongs to the high-risk area for geological disasters [28].

DJBIA can serve an average annual passenger throughput of 43 million and 550,000 tons
of cargo and mail [29]. Its construction aims to effectively alleviate the tight operating
resources and over-saturation of throughput at Dalian Zhoushuizi International Airport,
and provide strong support for economic and social development and comprehensive trans-
portation construction in Dalian. DJBIA has a total planned area of 20.87 km2, including a
terminal area of 500,000 m2, with two 3600 m long teleparallel runways, 45 m, and 60 m
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wide, respectively [29]. The airport started to fill the land from the beginning of 2010. To
better analyze the characteristics of subsidence, the reclaimed area from 2010 to 2021 was
defined as six reclamation stages with a period of every two years. The spatial distribution
of the reclamation area and reclamation area in different stages is shown in Figure 2a. The
road to the airport has been completed in 2011, the building area and part of the terminal in
2013, all of the terminal and part of the heliport filled in 2015, and the focus on the runway
and building area filled from 2017 to 2021. As shown in Figure 2b, the largest increase in
filled area was 4.96 km2 in 2015 and the accumulation of filled area will reach 11.29 km2 by
April 2021.

Figure 1. Overview of Dalian Jinzhou Bay International Airport: (a) Location of the study area;
(b,c) Satellite map of the study area.

Figure 2. Spatial distribution of different reclamation stages: (a) Map of area change of the airport
from 2011 to 2021; (b) Statistical of the increasement and accumulation of reclamation area. Reclama-
tion data source: Google Earth.
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2.2. Data Source

In this paper, 50 images of Sentinel-1A ascending orbit and 15 images of Sentinel-1B
descending orbit from the European Space Agency (ESA) were acquired to monitor ground
subsidence at DJBIA. The main obtained include orbit, resolution, polarization mode, and
other parameter information, other detailed parameter information, as shown in Table 1.
The 30 m resolution SRTM DEM data provided by the National Aeronautics and Space
Administration (NASA) was used in the data processing, to remove the topographic phase.
It is worth noting that the study area in this paper is a new reclamation area, and the
airport area does not have the latest DEM in the SRTM data or other data. Considering
that the entire area is relatively flat (the fluctuation is within 5 m) and the spatial baseline
of the sentinel data is controlled within 100 m, the effect of elevation residuals on the
deformation of relatively flat terrain in this case of short vertical baseline interference pairs
can be neglected. Based on the 50 ascending images, a temporal baseline threshold of
100 days and a spatial baseline threshold of 221 m were set, and 132 pairs of interference
pairs were generated by the combination (Figure 3). Spatial and temporal baselines of
Sentinel-1 ascending and descending data are shown in Figure 3, Figure 4 respectively.

Table 1. Basic information of the Sentinel-1 images.

Parameter Value

Satellite Sentinel-1A Sentinel-1B
Orbit Ascending Descending

Azimuth/Range pixel spacing 13.99 m/2.33 m 13.99 m/2.33 m
Radar wavelength 5.6 cm 5.6 cm
Polarization mode VV VV

Revisit period 12 d 12 d
The angle of incidence 39.2◦ 39.1◦

Temporal coverage 2017.03–2021.04 2019.12.20–2021.04.13
Number of images 50 15

Figure 3. Spatial and temporal baselines of Sentinel-1 ascending data.
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Figure 4. Spatial and temporal baselines of Sentinel-1 descending data.

DJBIA was reclaimed through rock excavation, and the major foundation filled in
the site is soft soil, which can be approximately divided into highly compressible silt and
clay [30,31]. This kind of foundation condition will result in large foundation subsidence.
In order to calculate the subsidence of the reclamation area, geological parameters, such as
initial pore ratio, compression coefficient, and the water gravity [30,32] were selected for
further analysis in this paper. Detailed information is shown in Table 2.

Table 2. Experiment data in the airport.

Parameter Corresponding Values

Permeability Coefficient α = 0.0342 m/year
Initial Porosity Ratio k0 = 0.806

Compression Coefficient β = 3.52 × 10−4 kPa−1

Water Gravity Gw = 10.101 kN/m3

Maximum Drainage Distance H = −19.4 m
Solidification Stress Γ = 250 kPa

Coefficient of Consolidation C = 17.3959

3. Methodology

In this paper, the subsidence rate of the airport was firstly monitored based on SBAS-
InSAR technology, and the subsidence prediction curve of the area was derived by com-
bining the Terzaghi consolidation theory model with the geological sampling data of the
airport. Then, the ground subsidence rate results were compared with the subsidence
prediction curve to verify the applicability and accuracy of the prediction curve of the
Terzaghi consolidation theory. Finally, the development trend of airport subsidence is
determined based on this prediction curve. The detailed technology flow chart is shown in
Figure 5.
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Figure 5. Flowchart of Integration of SBAS-InSAR and Terzaghi consolidation theory.

3.1. SBAS-InSAR Technology

In 2002, Berardino et al. proposed SBAS-InSAR as a novel technology with great
prospects for application in the field of monitoring ground subsidence over long-term time
series [33,34]. The technology has better applicability and reliability in areas of changing
ground cover because it can reduce the negative effects of incoherence and DEM errors.
To detect ground subsidence at the airport, the paper used the SBAS plug-in in ENVI
software for step-by-step calculation. It includes three main steps: data pre-processing,
interferogram generation, and deformation result generation.
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The detailed steps of SBAS-InSAR technology are as follows:
Assuming that there are N +1 SAR images covering the same area acquired according

to the time series, the image acquisition time series is:

t = [t0, . . . , tN ]
T (1)

After selecting one of them as the master image for registration, in all the free combi-
nations of differential interferometric pairs selected to meet the time baseline and spatial
baseline thresholds, M differential interferograms can be obtained, then there are:

N + 1
2

≤ M ≤ N
(

N + 1
2

)
(2)

Combined with the orbit data and external digital elevation model data to remove
the flat and terrain effects. The noise is effectively removed by multi-viewing and filtering.
In order to obtain the accumulation of deformation on the radar LOS (Line of Sight,
LOS), the minimum cost flow (MCF) method is used to perform phase unwinding of M
interferometric pairs [35,36]. Suppose that the jth differential interferogram is generated
by acquiring the SAR image from the moment of image tA and the main image tB, then
the corresponding phase unwrapping at any pixel point in the jth interferogram can be
expressed as:

δϕj = ϕ(tB)− ϕ(tA) ≈ δϕ
j
de f + δϕ

j
topo + δϕ

j
atm + δϕ

j
noise (3)

where δϕj is the interference phase at the point; ϕ(tA) and ϕ(tB) are the phase values at tA

and tB moments, respectively, with respect to the initial moment t0; δϕ
j
de f , δϕ

j
topo, δϕ

j
atm ,

δϕ
j
noise indicate the phase difference caused by deformation phase (along with the radar

LOS), terrain error, atmospheric delay, and noise, respectively. In order to enhance the
accuracy of the deformation monitoring results in the study area, these error terms need to
be effectively estimated and eliminated.

Firstly, by selecting more uniform Ground Control Points (Ground Control Points,
GCPs) for orbit refinement and re-flattening, not only the orbit parameters can be corrected,
but also the residual phase and phase jumps can be estimated and removed [37]. Then, the
residual elevation and deformation rate are estimated based on the linear model, and the
wrapping phase will be unwrapped twice [38]. Finally, the atmospheric phase is removed
by spatial high-pass filtering and temporal low-pass filtering [39]. After removing the above
error phase components, the time series deformation information in the LOS direction is
obtained by the SVD method.

Due to SAR radar satellite side-view imaging, LOS displacement as a component of
real displacement can be acquired [24]. When the horizontal displacement is much smaller
than the vertical component, the LOS direction displacement is dominated by vertical
subsidence [24,25,40]. As the airport region is relative flat and not like the mountainous
area in the InSAR processing, based on the imaging geometry relationship, dlos can be
converted to ground subsidence du based on the incidence angle θ [41], as in Equation (4):

du = dlos/ cos θ (4)

where du is the vertical displacement component; dlos is the LOS displacement; θ is the
radar incidence angle.

3.2. Terzaghi Consolidation Theory

Terzaghi consolidation theory is commonly used to calculate the deformation of a
saturated soil layer at any time during infiltration consolidation. The basic assumptions of
consolidation theory are as follows: at the point when more than 80% of the pore volume in
the soil is filled with water, the soil can be considered saturated although a small amount
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of gas is present, it is mostly a closed [42]. To find the deformation of the saturated soil
layer at any time during infiltration consolidation, the Terzaghi consolidation theory can
be established to solve the problem. The Terzaghi theory of consolidation makes many
simplifications and assumptions about the changing parameter conditions of the soil during
consolidation. Firstly, the external load is applied to the soil instantaneously and at once,
and remains constant throughout the consolidation process. Secondly, the soil and water
do not produce compression deformation, and the soil compression is caused by drainage.
Finally, parameters such as permeability coefficient α and compression coefficient β of the
soil during consolidation remain constant during consolidation [30].

In this paper, based on the basic assumptions of the conventional Terzaghi consol-
idation theory, a differential unit soil body with a height of dh in the soil body is taken
for analysis. The volume compression of the soil is equal to the difference between the
inflow and outflow of water from the unit body, which is used to establish the consolida-
tion differential equilibrium equation. Additionally, used Darcy’s law and the effective
stress principle to solve the equation and obtained the differential equation of Terzaghi
consolidation theory [43,44]. As shown in Equation (5):

C
∂2Pw

∂h2 =
∂Pw

∂t
(5)

where C is the coefficient of consolidation (m2/year); Pw is pore water pressure (kPa); The
coefficient of consolidation C and the degree of time consolidation Dc of the soil can be
expressed by Equations (6) and (7):

C = α
1 + k0

βGw
(6)

Dc = 1 − 8e−
π2C
4H2

π2 (7)

where α is the permeability coefficient (m/year); k0 is the initial porosity ratio; β is the
compression coefficient (kPa−1); Gw is the water gravity (kN/m3) and H is the maximum
drainage distance (m).

Determining and deriving the relevant parameters can calculate any time soil consoli-
dation subsidence St(m) [45]. As shown in Equation (8):

St = Dc
β

1 + k0
γH (8)

where γ is the Solidification Stress (kPa).
After obtaining the subsidence prediction curves according to the above calculation

method and geological parameters, they were compared with the ground subsidence results
monitored by SBAS-InSAR technology. Finally, the curves were used to predict the rate
and trend of subsidence in the study area.

4. Results and Discussion

4.1. Analysis of Spatial and Temporal Subsidence Characteristics of DJBIA

The subsidence rate maps of DJBIA were retrieved from the SAR data from March 2017
to April 2021 as shown in Figure 6a, where the negative value denotes the subsidence (i.e.,
the displacement was far away from the satellite) and the reference point (no subsidence)
was chosen away from the reclamation area shown as a red point. Figure 7b–e shows the
coherence coefficient, differential interferogram, distribution of elevation residuals, and the
error map in the time-series processing, respectively. It can be seen that the area has a high
coherence coefficient, a clear interferogram, and small residuals in the time series analysis
(maximum less than 4 mm/year). Since the study area is under long-term construction and
exploitation, special consideration needs to be given to the possible errors due to inaccurate
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external elevation information. According to the demand of the landfill here, the elevation
error is about 10 m. Based on the results of related studies [46] and the better baseline
control of the sentinel data (all vertical baselines are less than 150 m), it is projected that this
part of the elevation error will cause the deformation measurement error of interference
pair to be less than 2 mm and can be further weakened during the time-series analysis.
The inversion results of the elevation residuals in Figure 7d also shows that the elevation
residuals of the airport building area, terminal, and heliport are small (between 0.3 and
3 m). Therefore, the measurement errors caused by elevation errors can be controlled. In
addition, we introduced the descending orbit data for the same period (December 2019
to April 2021), where the descending orbit data are missing from June-November 2019. It
can be found that the deformation results are highly consistent with the ascending orbit
results regarding the spatial distribution (Figure 7a). In the runway end area, the number of
effective monitoring points becomes more as the backfill progresses, and there is a partial
normal decrease in the deformation magnitude. The comparison of the time-series residual
results with the ascending and descending orbit results in Figure 6e confirms that the
InSAR results of this study are reliable. In summary, the InSAR monitoring results have
high accuracy. Because of the lack of data from the descending orbit, the results of the
ascending orbit were used for subsequent analysis to ensure data integrity. Since the study
area is dominated by vertical ground deformation with minimal horizontal deformation,
the absence of horizontal deformation is assumed here to approximate the ascending orbit
deformation results to ground subsidence, which is convenient for subsequent 5-year long
time series analysis and model building.

Figure 6. (a) Average annual vertical subsidence rate of Jinzhou Bay International Airport;
(b–e) Subsidence rate along profiles AA′, BB′, CC′, and DD′, respectively; The blue points P1, P2, P3,
and P4 in (a) were shown in Figure 8 with their accumulated subsidence; The red point in (a) denotes
the reference point.
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As shown in the spatial distribution of subsidence, most areas of the reclamation area
are undergoing significant subsidence. From the vertical subsidence results in Figure 6a
after ascending orbit decomposition, it can be seen that during the monitoring period from
March 2017 to April 2021, some areas of the airport, such as the runway, terminal, and
heliport areas of the airport are in a severe subsidence. It is revealed from the combination
of Figures 6a and 8 that the accumulation of subsidence in the terminal was over 300 mm
and the maximum vertical subsidence rate reached −160 mm/year. Moreover, the time
series of subsidence areas in Figure 8 was near linear in the short term, but the subsidence
rate was highly associated with the backfilling time, i.e., the longer the reclaimed time, the
lower the subsidence rate.

Figure 7. (a) Average annual subsidence rate distribution derived from descending track; (b) Average
coherence coefficient diagram; (c) Differential interferogram (20200817–20200910); (d) Distribution of
elevation residuals; (e) The error map of mean velocity results.

Figure 8. The accumulation subsidence in different areas of the airport. The location of P1–P4 were
shown in Figure 6.
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In order to further reveal the vertical ground subsidence spatial difference in DJBIA,
four typical vertical subsidence areas with complete data, obvious vertical subsidence,
and belonging to different reclamation stages were taken for vertical subsidence rate
analysis. Figure 6b–e show these four more severe subsidence areas and selected profile
lines AA′–DD′, respectively, and the corresponding four average annual vertical subsidence
rate profile lines are shown in Figure 9a–d. Ground subsidence can be observed in all four
profile line graphs, and there are inconsistent patterns in the curves of the subsidence areas
for different reclamation periods and differences in the magnitude of ground subsidence.

Figure 9. Vertical subsidence rate profiles (the location of the profile are marked in Figure 6).
(a–d) profiles along AA’, BB’,CC’, DD’, respectively.

As shown in Table 3, the earlier the time of reclamation, the lower the vertical subsi-
dence rate. In Figure 9, the different periods of completed reclamation are indicated by the
colors corresponding to the periods of reclamation in Figure 2, where two different periods
of reclamation are included in Figure 9a,d, respectively. By quantitatively analyzing the
correlation between different reclamation periods and ground subsidence, it is found that
the dividing line of the drastic change in the vertical subsidence rate coincides with the
boundary of reclamation in different periods. The ground subsidence magnitude in the
reclaimed area of DJBIA is closely related to its reclamation completion time, which means
that significant subsidence occurred in the area where the reclamation was completed in
the recent period, and the rate of subsidence decreases with time. This subsidence pattern
is more consistent with the subsidence patterns of other offshore reclamation areas, for
instance, the Hong Kong Chek Lap Kok Airport [14] and Shanghai Lingang New City,
China [15].

The areas with vertical subsidence rates greater than −100 mm/year at DJBIA are
located in the corner locations at the airport with the edge locations, which is in the recla-
mation areas completed in 2018–2019 and 2020–2021. The reclamation of the middle area
of the airport was completed in 2012–2013 and 2014–2015, and its vertical subsidence rate
was smaller but reached −70 mm/year to −80 mm/year. Overall, the vertical subsidence
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rate exhibits an emission-like progression from the middle to the edge regions. There is a
certain pattern of vertical subsidence rate in the areas where reclamation was completed
at different periods. From Figure 10, it can be seen that the maximum, minimum, and
median values of vertical subsidence rate are in different reclamation periods. The red
points indicate the average vertical subsidence rate. The InSAR subsidence monitoring
points in Figure 10 mean that the subsidence rate on the InSAR high-coherence points in
Figure 6 shown by counting the magnitude of the rate, and the arcs next to the subsidence
points represent the normal distribution curves of these points. The data of this figure are
the same as shown in Figure 6 but they are shown in another way to reveal the relationship
between reclamation time and vertical subsidence rate. The figure shows that the average
vertical subsidence rate of the main body of the airport is: 2020–2021 reclamation area
(−80 mm/year) > 2018–2019 reclamation area (−76 mm/year) > 2016–2017 reclamation
area (−74 mm/year) > 2014–2015 reclamation area (−66 mm/year) > 2012–2013 reclama-
tion area (−31 mm/year), which shows that the more recent the reclamation completion
time is, the greater the average vertical subsidence rate is.

Table 3. Subsidence rate of profile in different periods.

Profile Name Reclamation Time (Year) Maximum Subsidence Rate (mm/Year)

AA′ 2012–2013 2014–2015 −91 −97
BB′ 2014–2015 −93
CC′ 2016–2017 −99
DD′ 2018–2019 2014–2015 −108 −98

Figure 10. Temporal distribution of average vertical subsidence rates in different reclamation areas.

4.2. Terzaghi Consolidation Theory Verification and Prediction

The process stages of land reclamation are coast reclamation, blowing, subsidence,
and soft foundation treatment, in which subsidence is an inevitable problem of land
reclamation. This subsidence is a characteristic of subsidence exhibited by the compaction
of the reclaimed soil layer, which generally tends to stabilize in value after more than
20 years [47]. During this time, the ground will continue to subsidence to different degrees.
The ground subsidence related to land reclamation is primarily induced by three main
mechanisms, which include the initial consolidation of alluvial clay deposits after land
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reclamation, the secondary compression of alluvial clay deposits after land reclamation in
the long term, and the creep of the fill-in land reclamation [24,26,48,49]. In particular, the
initial consolidation of the filling soil in land reclamation accounts for the largest proportion
of the total subsidence, which is generally more than 70% in the case of airports in land
reclamation [14,50]. Moreover, the subsidence process of secondary compression and filling
creep is much slower than the subsidence process of initial consolidation [24]. Terzaghi
consolidation theory can provide an excellent explanation for this phenomenon.

From Figure 11, the subsidence rates of different reclamation area subsidence points
in the reclamation area of DJBIA are taken during the period from March 2017 to April
2021. The subsidence points of the reclamation area in 2012–2013, 2014–2015, 2016–2017,
2018–2019, and 2020–2021 are indicated by orange, light green, light red, light yellow, and
dark green points, respectively. The overall subsidence is undergoing the most significant
rapid subsidence phase after the reclamation is completed.

Figure 11. Prediction based on Terzaghi consolidation theory.

Based on the Terzaghi consolidation theory and combined with certain geological
sampling data, such as permeability coefficient, initial pore ratio, and compression coeffi-
cient of DJBIA [30–32], the subsidence prediction curve of the area is obtained as shown
in the red curve. As shown in Figure 11, the red prediction curve obtained by combining
the geological parameters of the area with the Terzaghi consolidation theory shows that
the reclamation area of the area in 2020 has an annual average vertical subsidence rate of
about 82 mm/year in the first year, and the results of InSAR monitoring reveal that the
first two years of vertical subsidence are within the range of 80 ± 25 mm/year, which is
highly consistent with each other. Additionally, the trend of decreasing deformation in the
following years is also highly consistent. The predicted subsidence in the reclaimed area in
2013 was around 32 mm/year, and the real subsidence was about 30 ± 25 mm/year, which
confirmed the applicability and feasibility of the Terzaghi consolidation theory and the cor-
responding parameters used in this paper at Jinzhou Bay Airport. Meanwhile, the results
not only show the entire airport is currently in a more significant and rapid subsidence
phase, but also the vertical subsidence rate of the airport reclamation area is gradually slow-
ing down over time. In addition, the future vertical subsidence rate of the newly reclaimed
area in the region is about 80 ± 25mm/year, and the subsidence rate will gradually slow
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down with the accumulation of reclamation time, and the vertical subsidence rate will slow
down to about 30 ± 25mm/year after 10 years. It is demonstrated that this theory can
provide an important reference to the prediction of land reclamation subsidence.

5. Conclusions

In this study, the time-series subsidence results of DJBIA from 2017–2021 were obtained
by using the SBAS-InSAR technology based on 50 Sentinel-1A ascending images, and the
Terzaghi consolidation theory was integrated to predict the future subsidence of DJBIA in
time series. The prediction based on the current stage can generally identify the subsidence
rate and trend in the study area, which is important for the control of the current and future
construction. The main findings of this paper are listed in the following.

(1) Extensive and significant uneven ground subsidence is occurring throughout the
land reclamation area of the airport, especially in the runway, terminal, and building
areas, with the maximum subsidence rate exceeding −100 mm/year. By analyzing the
maximum subsidence rate in four typical areas and the average regional subsidence rate
in six different reclamation periods, it shows that there is a large connection between the
ground subsidence rate and the reclamation time in this area, which means that the earlier
the reclamation completion, the larger the subsidence rate.

(2) Based on Terzaghi consolidation theory and on-site geological parameters, a pre-
dicted subsidence rate curve was derived for the area, which was in high agreement
with the InSAR monitored subsidence results in 2017–2021, verifying the applicability
of the proposed prediction model based on Terzaghi consolidation theory for this land
reclamation airport.

(3) The prediction model reveals that subsidence in the entire reclamation area is in a
relatively significant and rapid stage at this stage, and the overall subsidence rate of the
reclamation area will be decreasing dramatically as time goes by. The subsidence in the
newly reclaimed area in the first two years is within the range of 80 ± 25 mm/year, and it
will slow down to about 30 ± 25mm/year after 10 years.
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Abstract: On 22 December 2018, volcano Anak Krakatau, located in Indonesia, erupted and experi-
enced a major lateral collapse. The triggered tsunami killed at least 437 people by the 13-m-high tide.
Traditional optical imagery plays a great role in monitoring volcanic activities, but it is susceptible to
cloud and fog interference and has low temporal resolution. Synthetic aperture radar (SAR) imagery
can monitor volcanic activities at a high temporal resolution, and it is immune to the influence of
clouds. In this paper, we propose an automatic method to accurately extract the volcano boundary
from SAR images by combining multi-polarized water enhancement and the Nobuyuki Otsu (OTSU)
method. We extract the area change of the volcano in 2018–2019 from Sentinel-1 images and ALOS-2
imagesThe area change and evolution are verified and analyzed by combing the results from SAR
and optical data. The results show that the southeastern part of the volcano expanded significantly
after the eruption, and the western part experienced collapse and recovery. The volcano morphology
change experienced a slow-fast-slow process in the two years.

Keywords: Anak Krakatau volcano; the Nobuyuki Otsu (OTSU) method; multi-polarization; syn-
thetic aperture radar (SAR)

1. Introduction

On 22 December 2018, at 21:30 local time, the coastline of the Sunda Strait in Indonesia
was stricken by a tsunami, which was brought on by an undersea landslide of Anak
Krakatau volcano [1–4]. The tsunami led to 437 casualties, 31,943 injuries and 10 missing
people. Over 16,000 people were displaced [5]. Long-term monitoring of volcanic pattern
changes may reduce the damage caused by such disasters.

Optical images have high spatial resolution, but they have low temporal resolution
and are susceptible to clouds and fog contamination. Synthetic aperture radar (SAR)
sensors work with microwave bands that can penetrate clouds and fog, providing better
vision than visible light and infrared remote sensing [6,7]. Therefore, SAR images are
rapidly developed and widely applied in volcano and landslides monitoring, as well as
shorelines and water bodies extraction [8]. The algorithms for extracting water bodies
include the sea areas segmentation algorithm based on the Nobuyuki Otsu (OTSU) method
and statistical characteristics of sea areas, and the water body extraction algorithm based
on thresholds [9–11] or the object-oriented method [12–14]. SAR polarization information
is also used to extract the water body [15–19].

The surface deformation caused by volcanic eruptions can be obtained by analyzing
the InSAR coherence and backscatter images of Anak Krakatoa [20]. Some ground data and
satellite images show that, before the devastating tsunami, flanking motion was evident
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along with more frequent volcanic activities [4], which may present as morphology changes.
The initial landslide volume led by submarine collapse of the Krakatoa volcano ranged from
0.22 to 0.30 km3, which was estimated by comparing the satellite and aerial photography
images before and after the eruption [1]. Thus, using the multi-polarization information
of both optical and SAR images to monitor the volcano morphology change may provide
useful information for disaster warning.

In this paper, we use Google images and Planet images before and after the volcanic
eruption for visual interpretation and comparative analysis of volcanic morphological
changes, and use multi-polarization fused SAR images (Sentinel-1 and ALOS-2) to extract
the volcano area change during 2018–2019. We analyze the monthly morphological changes
of Krakatoa Island, and the changes before and after the eruption. The results show that
after the eruption, the southeastern part of the volcano expanded significantly, and the
western part experienced collapse and recovery. The volcano morphology experienced
slow-fast-slow changes during the two years.

2. Study Area and Data

2.1. Overview of the Study Area

The Sunda Strait of Indonesia, located between Sumatra and Java, bridges the Java
Sea with the Indian Ocean and is a shipping lane from North Pacific countries to East and
West Africa or around the Cape of Good Hope to Europe. The Sunda Strait region has
accommodated many crustal movements including volcanic activities. Krakatoa volcano at
the southern entrance is the most famous one (Figure 1a). Anak Krakatoa is the resurgent
volcanic island rising from the caldera formed in the historic 1883 eruption, with flat
areas covered in dense vegetation prior to the most recent large eruptions (Figure 1b).
On 17 December 2018, the Planet satellite observed the ash eruption from the crater. On
22 December 2018, the volcano started the large eruption sequence that was observed
by Sentinel-1A (Figure 1d),with a large amount of ash filling the air (Figure 1c). The
southwestern part of the volcano cone collapsed, which later formed a crater lake by the
materials floating on the sea surface in the southwestern part of the island, as observed by
the Google image acquired on 11 January 2019 (Figure 1e).

2.2. Data

In this study, we use Google images, Planet images, Sentinel-1 images and ALOS-
2 images (Figure 2). Two Google images and four Planet images before and after the
outbreak are adopted to extract the volcanic boundaries, which are then used to obtain the
morphological changes before and after the eruption. Google Earth’s satellite imagery is not
a single source of data, but an integration of satellite imagery and aerial photography. The
effective resolution of the global landscape imagery on Google Earth is usually 30 m, but
for large cities, famous scenic areas and built-up areas, high precision imagery is provided
with a resolution of around 1 m and 0.5 m.

Planet, the world’s largest microsatellite constellation, consists of hundreds of Dove
satellites (10 cm × 10 cm × 30 cm). Each Dove satellite is equipped with an optical system
and camera with the resolution of 3–5 m.

The Sentinel-1 satellite, consisting of two polar orbiting satellites (A and B), was
launched by the European Space Agency Copernicus program (GMES). The two sun-
synchronous satellites each have revisit cycles of 12 days. The C-band Sentinel-1 satellite can
provide continuous images in the Vertical Transmit-Vertical Receive and Vertical Transmit-
Horizontal Receive(VV + VH) polarization mode and Interferometric Wide swath (IW)
mode during the period of 2018–2019.

We use one ALOS-2 image acquired on 24 December 2018 to capture the morphological
change of the volcano after the eruption. The ALOS-2 satellite is the only L-band SAR
satellite currently operating in orbit. It has a revisit period of 14 days.
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Figure 1. Location map and images of Anak Krakatau volcano. (a) Location map; (b) volcano before
the eruption (Planet image); (c) a photo of the volcano eruption (from online source [21]); (d) volcano
after eruption (synthetic aperture radar (SAR) image); (e) volcano after eruption (Google image).

 

Figure 2. Time chart of the data used in this study, including Planet images, Google images, Sentinel-
1A images and ALOS-2 images.
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3. Method

We propose a method for volcano morphology extraction on the basis of Sentinel-1
Dual-Polarized Water Index (SDWI) and the Nobuyuki Otsu (OTSU) polarization informa-
tion enhancement. In this method, the VV and VH polarization of the output SAR image
in the IW mode are calculated by band, so as to achieve water body enhancement on the
image. The Otsu method is used to search for the best threshold for segmenting the en-
hanced image. The SAR images can identify water bodies and morphological deformation
accurately. Firstly, Sentinel-1A data are preprocessed to obtain the encoded image, which is
processed by the SDWI method [15], as shown in Equation (1).

ksdwi = ln(10∗VV ∗ VH)− 8 (1)

Since the backscattering coefficient of water in the SAR image is lower than that of
soil and vegetation, the double polarization data is multiplied to enhance the features of
water. Then, the Otsu method is used for threshold segmentation using the maximum
between class variance of background and target as the criterion. The algorithm is simple,
stable and effective [22]. The basic Otsu method is introduced below. Assuming the size
of an image is M ∗ N, its grayscale range is 0–L − 1, and the number of the pixels with
grayscale i is ni, then the probability of occurrence of grayscale i is Pi = ni/MN. By setting
threshold T to divide the grayscale into target class C0 = {0, 1 . . . , T − 1} and background
class C1 = {T − 1, . . . , L − 1}, we obtain:

The probability of the target part

P0 = ∑T−1
i=0 Pi (2)

The probability of the background part

P1 = ∑L−1
i=T Pi = 1 − P0 (3)

The mean value of the target component

μ0 =
T−1

∑
i=0

iPi/P0 (4)

The mean value of the background component

μ1 =
L−1

∑
i=T

iPi/P1 (5)

The total mean value of image pixels

μ = ∑L−1
i=0 iPi + P0μ0 + P1μ1 (6)

According to the defining formula of variance as follows:

s2 =
Σ(xi − x)2

n
(7)

The interclass variance is

∂2 = P0(μ0 − μ)2+P1(μ1 − μ)2 (8)

The formula for the optimal threshold K is

K = Arg max
0≤T≤L−1

(∂2) (9)
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Using the maximum interclass variance method in Python, we get the sea–land binary
images, with black being the sea surface and white being the volcanic island. On this basis,
the classification and post-processing are done in ArcGIS platform to eliminate redundant
invalid map spots. The monthly variation of the volcanic area in 2018–2019 is finally
calculated. The flowchart of this method is shown in Figure 3.

 
Figure 3. Flowchart of the proposed method.

4. Optical Image and SAR Image Results

4.1. Optical Image Results

After visually interpreting the Planet images (Figure 4a–c) and Google images
(Figure 4d–f), we extracted the volcanic morphological changes by vectorization. The
eruption smoke is obvious on the Planet image from 17 December 2018 (Figure 4a), indicat-
ing that the volcano was in an active period. Similarly, Figure 4c,f shows that the volcano
has significant morphological changes after the eruption. The southwestern part of the cone
collapsed, the crater formed a concave crater lake and the boundaries clearly expanded
eastward and northward.

4.2. SAR Time Series Analysis Results

We calculate the area change of Krakatoa volcano from 2018 to 2019 on the basis of
the Sentinel-1A data. The area of the volcano in January 2018 is taken as the initial area
(2.86 km2). The volcanic changes can be divided into the following stages (Figure 5).
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Figure 4. Comparative analysis of optical images: (a) the Google image on 15 July 2018; (b) the Google
image on 11 January 2019; (c) morphological changes after eruptions (Google images); (d) the Planet
image on 17 December 2018; (e) the Planet image on 12 January 2019; (f) morphological changes after
eruptions (Planet images).

Figure 5. The change of volcanic area from 2018 to 2019 and the comparison of OTSU images and
SDWI images at different stages. 1, 2, 3 represent the images of 20180423, 20180505, 20180529,
respectively; 4, 5, 6 represent the images of 20181222, 20181227, 20910112; 7, 8, 9 represent the images
of 20190629, 20190711, 20190804.

a. Slow volcanic active phase (5 January to 22 December 2018): The area (about 2.85 to
2.97 km2) grew slowly (before the eruption).

b. Volcano eruption phase (22 December 2018 to 28 December 2018 [23]: On the
Sentinel-1A image acquired at 22:34 on 22 December 2018, there are ripples on the sea
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surface around the island, and the volcanic plume covering the sky. Accordingly, the
volcano was still in a sustained phase of activity until 22:34 p.m. The area of the volcano at
that time was minimum due to the collapse of the southwest side and the loss of material.
The area was 2.79 km2, and decreased by 0.15 km2. According to the analysis in [23], the
volcano was active from 16:55 on 22 December to 5:00 on 28 December, which is confirmed
by our combined analysis of area, optical images and SAR images.

c. Stable phase after eruption (since January 2019): After the eruption, the eastern
and northern parts of the volcano stabilized gradually. The crater formed a closed lake by
the material floated back. This crater lake has small changes due to subsequent volcanic
activities [24] and ocean currents. During this process, the area of the volcano fluctuated,
as shown in the images acquired on NO. 7, 8 and 9 in Figure 5.

The volcano morphological changes occurred in the pre-eruption stage (stage a), the
eruption stage (stage b) and the post-eruption stage (stage c). We select the nine images
(Figure 5) processed by the SDWI and OTSU methods to show the volcano morphologi-
cal changes.

4.3. Combined Optical and SAR Image Analysis

For the eruption phase, we combined optical images and SAR images to restore the
morphological change process of the volcano (Figure 6).

Figure 6. The volcano morphologic changes during the eruption stage analyzed by optical and SAR
images. (a) the Sentinel-1A image on 19 December 2018; (b) the Sentinel-1A image on 22 December
2018; (c) the Alos-2 image on 24 December 2018; (d) the Sentinel-1A image on 27 December 2018;
(e) the Planet image on 7 January 2019; (f) the Google image on 11 January 2019.

The Sentinel-1A image on 19 December 2018 shows the state of the volcano before
the eruption (Figure 6a). The Sentinel-1A image acquired at 22:34 on 22 December 2018
shows that the volcanic cone has collapsed. The lost material moved to the southwest
side (Figure 6b). On 24 December 2018, the volcano could be divided into two parts
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(highlighted in red line in Figure 6c), with the southwest side showing signs of overall
collapse (Figure 6c). There are some ripples on the sea surface, so the volcano was still
active. The volcano shape in the descending orbit image on 27 December 2018 is not much
different from that in the subsequent time image (Figure 5), which proves that the eastern
part of the island has stabilized on 27 December 2018 (Figure 6d). The Planet image on 7
January 2019 shows an open crater lake with a collapsed gap in the southwestern part of
the island (Figure 6e). By 11 January 2019 the gap had closed, as observed by both Google
images (Figure 6f).

In general, the eruption started at 13:55 on 22 December 2018, and the volcanic material
was being lost until 22:34 on 22 December 2018 [4]. The southwestern part of the volcano
collapsed and became a crescent-shaped gap. A large amount of collapsed material piled
up on the eastern and northern sides and expanded the volcano area (Figure 6b,c). Some
material was driven back by the ocean currents and finally filled up the crescent gap by 11
January 2019. Since then, the volcano area became stable.

5. Accuracy Analysis and Discussion

5.1. Accuracy Analysis

In this paper, the volcanic boundaries are automatically identified by band polarization
enhancement combined with the Otsu method. To test the boundary accuracy, optical
images and SAR images acquired at the same time are selected for comparison. The
optical images are analyzed by visual interpretation (Figure 7a,d), and the SAR images are
analyzed by visual interpretation (Figure 7b,e) and automatic identification interpretation
separately (Figure 7c,f). As Table 1 shows, extraction accuracy before volcanic eruption can
reach 99.14%, and after volcanic eruption can reach 96.25%, which confirms the feasibility
of automatically extracting volcanic boundaries from SAR images.

Figure 7. Volcano boundaries extracted from (a) the Google image on 15 July 2018 by visual interpre-
tation; (b) the Sentinel-1A image on 16 July 2018 by visual interpretation; (c) the Sentinel-1A image
on 16 July 2018 by the Otus threshold segmentation method; (d) the Planet image on 12 January 2019
by visual interpretation; (e) the Sentinel-1A image on 12 January 2019 by visual interpretation; (f) the
Sentinel-1A image on 12 January 2019 by the Otus threshold segmentation method.
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Table 1. The volcano area obtained by different methods.

Time
Otus

Threshold
Visual Interpretation

(km2)
Difference

(km2)
Relative
Accuracy

Average
Accuracy

20180716 2.88
SAR image 2.90 0.02 99.31%

99.14%Optical
image 2.85 0.03 98.96%

20190112 3.16
SAR image 3.21 0.15 98.44%

96.25%Optical
image 3.36 0.20 94.05%

5.2. Discussion

In this paper, four pairs of optical images and SAR images with close acquisition time
(maximum interval of one day) are selected to explore the advantages and disadvantages
between them, taking Krakatoa Island as an example.

Figure 8a1,a2 shows the images acquired before the eruption. In Figure 8a1, there was
vegetation in the eastern part of the volcano, which was covered by a large amount of lava
after the eruption. In Figure 8a2, ground objects have sensitive polarization information
and high classification accuracy, so the image is suitable for the segmentation of the sea–
land boundary. Figure 8b1,b2 shows the post-eruption images, which have the same
information. The shadow in the eastern part of the volcanic island in the SAR image is
due to the geometric distortion. Both the optical image (Figure 8c1,c2) and SAR image
(Figure 8d1,d2) show the formation of the closed crater lake in the southwest. Since SAR
images have high temporal resolution and are free of charge, they can be better applied to
analyze the morphological changes of long time series. In summary, optical images and
SAR images have mutual respective advantages and disadvantages (Table 2), and how to
better integrate the advantages of optical images and SAR images for volcano monitoring
is worthy of further study.

 

Figure 8. Comparison of optical and SAR images at the same time; optical images for (a1,b1,c1,d1);
SAR images for (a2,b2,c2,d2).
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Table 2. Comparison of optical and SAR images.

Data Source Optical Images SAR Images

Advantages

1. Rich in texture and spectral
information, visually reflecting
geomorphological features
2. High spatial resolution, up to
0.3 m

1. All-day, all-weather detection
2. Unaffected by clouds and fog
3. Short revisit period

Disadvantages
1. Effective data constrained by
clouds and fog
2. Long revisit period

1. Include geometric
distortion areas
2. Geomorphological features
are not intuitive

Interpretation method

1. Combine texture, color, shape
and other features to interpret
2. Different combinations of
bands can be interpreted
according to different features

1. Interpretation by
amplitude information
2. Fusion interpretation based
on polarization information

Applicability
More suitable for areas with
lush vegetation and more
complex terrain

Suitable for a wide range of flat
terrain and perennial
cloudy areas

6. Conclusions

In this paper, we use the optical images and SAR images to analyze the morphological
changes of Krakatoa volcano before and after the eruption in 2018, by visual interpretation
and polarization enhancement combined with the maximum interclass variance method.
The polarization enhancement of water body information improves the identification
accuracy, and distinguishes water bodies and non-water bodies clearly. The area of Krakatoa
was stable before the eruption in December. It grew between 22 December 2018 and 11
January 2019, during which the volcanic morphology also changed greatly. After 11 January
2019, the volcanic morphology became stable. Krakatoa volcano experienced slow to fast
and then slow changes in 2018–2019. The volcano eruption had significant impacts on the
local climate and people’s lives. Timely monitoring of volcanoes is important for volcanic
disaster early warning and post-disaster assessment.
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