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and Sevastianos Roussos et al.
Chemometric Discrimination of the Geographical Origin of Three Greek Cultivars of Olive Oils
by Stable Isotope Ratio Analysis
Reprinted from: Foods 2021, 10, 336, doi:10.3390/foods10020336 . . . . . . . . . . . . . . . . . . . 195

vi



About the Editor

Theodoros Varzakas

Theodoros Varzakas has a Bachelor (Honours) in Microbiology and Biochemistry (1992), a Ph.D.

in Food Science and Technology, and an MBA in Food and Agricultural Management from Reading

University, UK (1998). He has also worked as a postdoctoral research staff at the same university.

He has worked in large pharmaceutical and multinational food companies in Greece for 5 years

and has at least 22 years of experience in the public sector. Since 2005, he has served as Assistant,

Associate, and Full Professor at the Department of Food Science and Technology, University of

Peloponnese, ex Technological Educational Institute of Peloponnese, Greece, specializing in issues of

food technology, food processing/engineering, and food quality and safety. He is also a Section Editor

in Chief for the Journal Foods in Food Security and Sustainability (2020–), was an ex Editor in Chief

for Current Research in Nutrition and Food Science (2015–2019), and is a reviewer and member of

the editorial board in many international journals. He has written more than 250 research papers and

chapters in books and has presented more than 160 papers and posters at national and international

conferences. He has written and edited 16 books in Greek and 14 in English on sweeteners, biosensors,

food engineering, and food processing, chemometrics and authenticity published by CRC. He has

participated in many European and national research programs as a coordinator or scientific member.

His work has been cited in over 4000 citations with an h-index of 31.

Ex EFSA advisor/scientific expert to panel of biological hazards, visiting professor at Ghent

University global campus, South Korea, Research Fellow at University Technology Malaysia and

Expert in JEMRA of FAO/WHO.

According to September 2022 data-update for “Updated science-wide author databases of

standardized citation indicators” Varzakas Theodoros is in the 2% of citations worldwide.

vii





Preface to ”Implementation of Chemometrics and
Other Techniques as Means of Authenticity and
Traceability to Detect Adulteration in Foods for the
Protection of Human Health”

Authenticity and traceability are crucial in order to overcome frauds in the international food

trade.

Classification of foods, such as olive oils, according to their variety and/or geographical

origin is of great importance for producers, importers, and consumers. Toward this target of food

classification, different multivariate statistical procedures are employed, such as cluster analysis,

factor analysis, multidimensional scaling, discriminant analysis, correspondence analysis, canonical

analysis, and Procrustes analysis.

Recently, artificial intelligence has also been applied to solve food characterization problems.

Different analytical approaches have been employed for the adulteration of foods, such as

gas chromatography–mass spectrometry (GC/MS), compound-specific isotope analysis (CSIA),

isotope ratio mass spectrometry (IRMS), NMR spectroscopy, Fourier transform mid-infrared (FTIR),

near-infrared (FT-NIR), and Raman (FT-Raman) spectroscopy. Moreover, chemometric methods have

been used to process experimental data, such as linear discriminant analysis (LDA) and artificial

neural networks (ANN). The aim of this e-book is to describe chemometrics and authenticity in a

range of foods of plant and animal origin.

Theodoros Varzakas

Editor
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Editorial

Implementation of Chemometrics and Other Techniques as
Means of Authenticity and Traceability to Detect Adulteration
in Foods for the Protection of Human Health
Theodoros Varzakas

Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
t.varzakas@uop.gr

The authenticity of foods of plant and animal origin is key to safeguarding both quality
and safety aspects without jeopardizing consumers’ health. Hence, this Special Issue brings
advances in the area of the authentication and chemometrics of foods, in attempt to prevent
fraud, a phenomenon which has increased recently. Different food materials have been
investigated and the results have been reported.

Tocopherols (α-, β-, γ-, and δ-) are part of the commonly known vitamin E complex,
along with the corresponding tocotrienols, which protect against the non-enzymatic per-
oxidation of polyunsaturated fatty acids, are lipid-soluble, and can be found in high-fat
plant foods, such as walnuts. In the first paper, Mitsikaris et al. [1] determined the levels of
tocopherols in walnut seed oils by HPLC-UV. The levels of the samples varied from four
European countries and showed that the Ukrainian walnut seed oils exhibited significantly
higher total concentrations. Moreover, a higher mean concentration of α-tocopherol was
reported for Greek walnuts compared to the French and Bulgarian walnuts.

Zhao et al. [2] discriminated the lamb meat quality of Protected Geographical In-
dication (PGI) Sunite lamb, from two other banners in the Inner Mongolia autonomous
region by stable isotopes and modeling. They found that this methodology, in conjunction
with chemometric approaches such as the data-driven soft independent modeling of class
analogy (DD–SIMCA), can be used as an effective indicator for protecting PGI Sunite lamb,
taking into account geographical origin, feeding system, age, and gender.

Rana et al. [3] discriminated the physico-functional properties and chemometric tech-
niques (principal component analysis (PCA) and multiclass discriminant analysis (MDA))
of four Cinnamomum species. They found a clear separation of the different Cinnamomum
species using the above techniques, thus showing that this combination is effective against
food fraud.

Siddiqui et al. [4] employed Fourier infrared spectroscopy (FTIR) to determine adul-
teration in meat mixtures of beef, lamb, and chicken. They also used PCA and multiclass
support vector machine (M-SVM) and found that the highest classification accuracy value
of 85% was presented in beef and lamb samples for both adulterated and non-adulterated
classes. This method could be a rapid quality control tool in the meat industry and might
be employed in halal authentication.

Shomaji et al. [5] reported the use of low-field 1H-nuclear magnetic resonance (NMR)
relaxometry to determine dye contamination on vegetables. It is very well known that
non-food-grade dyes could be very toxic. It was concluded that the proposed low-cost
detection approach can be used to generate warning flags if the detected dye concentrations
are over the limit of the accepted standards for food dyes.

The article by Agriopoulou et al. [6] discussed Greek table olive varieties from pro-
tected designation of origin (PDO) areas. The authors used orthogonal partial least square
discriminant analysis (OPLS-DA) for the discrimination and classification of table olives
and found the model to be effective in olive fruit authentication.
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Zhao et al. [7] employed multivariate data analysis applied to elemental analysis,
stable isotope analysis, and fatty acid analysis in combination with orthogonal partial
least squares discriminant analysis (OPLS-DA) to determine the geographical origin of
milk in four neighboring provinces. The discrimination of milk took place in farms with
different distances of less than 11 km in each province, and the discriminant distance was
successfully reduced to 0.7 km.

They found that for a relatively close sample origin distance, a single technique, such
as the fatty acid chemical parameter analysis, could be completely superior compared
to the combination multiple technologies. These results could be used to improve milk
traceability in China.

The paper by Tarapoulouzi et al. [8] reported on stable isotope ratio analysis and
orthogonal projections to geographically discriminate Greek olive cultivars. This combi-
nation was very good and they showed that the most important isotope markers for the
discrimination of olive oil samples were δ18O and δ2H.

Tarapoulouzi et al. [9] discussed and reviewed the evolution of the use of chemometrics
on honey composition/the physico-chemical parameters during processing and storage
in order to determine the authenticity of honey. They verified it as an effective tool to
optimizing quality control and the safety protection of consumers’ health.

Another review paper by Grassi et al. [10] compared the different chemometric tech-
niques (from clustering to classification and regression) along with spectroscopy, chro-
matography, electrochemical sensors, and other on-site detection devices against milk
adulteration. They also presented the steps which should be followed to develop a chemo-
metric model to face adulteration issues.

Finally, Avila-Sosa et al. [11] determined the specific chemical markers coupled with
chemometric methods to discriminate the adulterated samples of saffron. Saffron is an
important colorant, antioxidant, and source of phytochemicals aromatic spice due to the
large number of chemical compounds found in the by-products (flower parts) of saffron
(catechin, quercetin, delphinidin, etc.). They found that the geographical origin and har-
vest/postharvest characteristics of saffron could play a key role in chemical characterization.

Data Availability Statement: Data is contained within the article.
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Insight into the Recent Application of Chemometrics in Quality
Analysis and Characterization of Bee Honey during Processing
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Abstract: The application of chemometrics, a widely used science in food studies (and not only
food studies) has begun to increase in importance with chemometrics being a very powerful tool in
analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing
honey authenticity and quality control, combined with well-established analytical methods. Research
related to investigation of the quality changes in honey due to modifications after processing and
storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating
novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This
review presents the evolution in the last few years in using chemometrics in analyzing honey quality
during processing and storage. The advantages of using chemometrics in assessing honey quality
during storage and processing are presented, together with the main characteristics of some well-
known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey
samples based on changes of characteristics during storage and processing.

Keywords: honey; quality parameters; chemometrics; storage; processing; thermal treatment

1. Introduction

Bee honey is a natural food extracted from honeycombs, together with bee wax, pollen
and propolis, royal jelly and venom [1,2]. Honey, also known as “the food of the Gods” [3],
was always used as food by humans [4]; its success is represented by the very high content
in simple sugars (honey is a supersaturated sugar solution with about 25–35% glucose
and 35–45% fructose, together with 1–2% sucrose) [5]. Honey is considered to be the most
energy-dense food in nature [6], with an appreciable energy value (100 g of bee honey
provides 310 kcal) [7]. It has a glycemic index in the range 32–87 [8], seeming to show a
hypoglycemic effect [9].

Honey is a complex food, a valuable gift of nature [10,11]; research in the field shows
that, in addition to the sugars, bee honey also contains valuable compounds in small
quantities, namely: vitamins (B1, B2, B6, C, K, A, D, E, K, etc.), proteins (an average of
0.5% in the case of floral honey and higher doses in the composition of manna honey),
dextrins, coloring and odorous substances, organic acids (malic, pantothenic, citric, oxalic,
lactic, succinic, etc.), trace elements (calcium, iron, potassium, silver, nickel, beryllium, etc.)
and others [9,12,13]. Because of this very complex composition and valuable compound
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richness, bee honey is used in its natural state [14,15] or incorporated in food matrices
to improve sensorial [16], functional and physicochemical properties [17]. The antimicro-
bial [18,19], antioxidant [20–22], antiviral [23] and anti-inflammatory action [24] of different
types of honey is well known; the research has also demonstrated the anticarcinogenic
activity of honey [25].

The addition of food ingredients is prohibited in honey, including food additives, as
well as any other addition. Similarly, the removal of any of the natural components of
honey is prohibited, including pollen, unless such removal cannot be avoided [26]. The
authenticity of honey can be defined as the precise identification of its botanical and geo-
graphic origin in relation to its unique composition and properties [27]. Honey adulteration
has generally been identified with trained sensory evaluation based on viscosity, color,
taste and aroma The testers in such sensory evaluations require long-term professional
training to ensure the reliability of the results. However, these methods are mostly subjec-
tive and prone to human error. Beyond the sensory assessment, methods described in the
literature include microscopy, immunoassays, physico-chemical analyses, chromatography,
mass spectrometry, near-infrared spectroscopy, Raman spectroscopy, DNA transcoding and
enzyme-linked immunosorbent assay [28].

In general, the quality of honey and its chemical composition are related to many
factors, such as its geographic, botanical or plant origin, climate and seasonality; other
factors could be external, such as environmental factors, processing methods of honey by
beekeepers, storage conditions and deliberate adulteration by producers [29]. The quality
of honey can also be characterized by its purity; the purity of honey can be determined
by its physico-chemical properties, i.e., moisture content, pH, free acidity, total soluble
solids, sugar content, color intensity, 5-hydroxymethylfurfural (5-HMF) content and amino
acid content [30]. Heavy metals can accumulate in the honey, from the soil [31] or from
the air [32]. Therefore, the evaluation of physico-chemical properties and certification of
botanical origin is vital to determine the quality and authenticity of honey. These factors
may affect market price and consumer acceptance. Consumers’ safety and their protection
from fraud is the overall goal [33].

For production on an industrial scale, raw bee honey has to be extracted from the
honeycombs and then processed. Due to their natural characteristics, all varieties of flower
honey, except acacia honey, crystallize shortly after extraction from honeycombs; crystal-
lization of flower honey is a natural process and is due to the fact that most varieties of
honey are supersaturated solutions of sugars (at an average temperature of 20 ◦C) [34].
The honey crystallization degree is dependent on the absolute pollen count [35]. Crystal-
lization does not alter the biological and medicinal properties of the product and should
not be considered as a defect, but rather as a guarantee of its authenticity [36]. However,
many consumers prefer fluid honey and have reservations about buying and consuming
crystallized honey [37]. In order to meet the demands of consumers, many solutions are
used to obtain decrystallized honey and to keep it in this state for as long as possible; on
the other hand, it is very important for the technologists to bring honey in a liquid state
through liquefaction for further processing [34]. After liquefaction, technologies such as ul-
trasonication, microwave and infrared irradiation or heating are used to eliminate water in
excess and to sterilize the raw bee honey, to continue honey decrystallisation and to temper
it for further processing steps such as filtration or mixing with other compounds [38].

Many research papers and reviews indicate the difficulties in analyzing the great
amount of results generated by the literature, but also the disparity of the results, due
to different methods used to appreciate honey quality [9,19,22,39–42]. The progress of
methods and techniques used, the multivariate methods applied to analyze honey, indicates
chemometrics as one of the most adequate solutions for large quantities of data evaluation
and interpretation [43]. Nowadays, the field of chemometrics is well-applied in the fields of
honey authenticity and quality control. There are numerous studies published in the last few
years, e.g., between 2017 and 2021 combining chemometrics with well-established analytical
methods in honey authentication and quality control [44–64]. Based on chemometrics,
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Bruker has developed the largest database containing the spectroscopic 1H NMR signatures
of 28,000 reference honeys, monofloral and polyfloral types from more than 50 countries,
aiming at the botanical and geographical determination or adulteration of honeys [65].
This review aims to present the state-of-the-art in using chemometrics in analyzing honey
quality during processing and storage; the advantages of using chemometrics are presented
extensively in the next sections, and also the main characteristics of some well-known
chemometric methods. From our knowledge, no review on the chemometric methods used
for assessing honey quality during processing and storage has been published and this is
the most original contribution of this publication.

2. Methodology and Design

The literature search was conducted in order to identify the most relevant research
articles and reviews illustrating the state-of-the art in using chemometrics in analyzing
bee honey quality during processing and storage. The online databases queried were Web
of Science, ScienceDirect, Google scholar, MDPI, ResearchGate, PubMed, Scopus and the
Wiley Online Library. The keywords used individually and combined on the searching
engines were: honey, quality parameters, chemometrics, storage, processing, thermal
treatment. By selecting the publications to be included, a similar pathway as that in [66]
was used. The criteria were: (i) research that focused on the use of chemometric methods
in analyzing honey quality and changes/adulteration during storage and processing;
(ii) papers written in English; (iii) papers with accessible full text (in some cases after
requests from the authors).

After a short introductory discussion on honey as food and its properties, we discuss
the aspects related to storage and the two main processing steps—dewatering and thermal
treatment—and their influence on the honey quality (Section 3). Then, we present the main
chemometric methods and the quality parameters of honey mostly investigated by using
chemometrics and we intensively analyze the main publications applying chemometrics in
honey processing and storage (Section 4).

The review includes mainly publications from the period 2010–2022 (the last 12 years),
together with a few older publications considered as being very important for this research.

3. Honey Processing and Storage

After the extraction from the honeycomb, honey contains pollen, beeswax and other
materials, and these impurities have to be removed from the preheated honey by straining
and coarse filtration. Dewatering, liquefaction and filtration are the main operations in
processing honey [67] to assure its commercial quality and these processes will be discussed
here, together with storage before or after processing. The product can be bottled as it is or
can be enriched with other different ingredients, including: (a) bioactive compounds such
as propolis or bee bread [68,69], coumarin [70] or spirulina [71]; (b) dried fruits [72–74];
(c) flavored materials usually accepted by the consumers, such as cocoa or cinnamon [75,76],
to obtain novel foods. Figure 1 presents the main industrial treatments of the raw honey
received from the primary suppliers and/or beekeepers.

According to the EU Regulations, the compositional criteria of honey are: moisture
content (M), simple sugars (fructose + glucose and sucrose), water-insoluble solids, electri-
cal conductivity, free acids, 5-hydroxymethylfurfural (HMF) content and diastase value (the
last two criteria in the processed honey) [39,77] together with melissopalynological analysis
and other physical–chemical parameters (such as pH, proline content, enzymatic activity
and ash content) and with sensorial characteristics (such as color and volatile profile),
they are the classical tools to provide important information on the honey’s origin and
authenticity [78]. Other important parameters, especially for honey storage and processing,
are: water activity (aw) and rheological behavior [79,80]. HMF and M can be used to classify
blended honey samples according to their crystallization degrees [35]. According to the
European and international norms, a special importance must be given to the knowledge
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of these quality parameters, but also to the causes that determine changes in their initial
values [36,81,82].
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3.1. Influence of Storage Conditions on Raw Honey Quality

After the extraction from the comb, bee honey could be preserved for a long time (from
months to years). The storage conditions will influence honey quality; refrigeration temper-
atures lead to a darkening of the color, whereas storage at room temperatures and higher
(28 ◦C) results in modification of the acidity and an increase in HMF and the microbiota
in honeys, together with a small modification of the composition in monosaccharides [83]
and phenols [84]. Although low temperatures do not favor honey crystallization, its re-
frigeration determines the internal reorganization of the water molecules with increased
fermentation risk when the honey returns to room temperature [85].

There is a negative correlation between HMF content and diastase (amylase) activity
during storage; a longer storage time increases the HMF content, with a reduction in the
enzymatic activity [83]. The storage of honey at higher temperatures (35 ◦C) for a longer
time (from 6 to 9 months) increases the HMF content to values exceeding those accepted
by the legislation [86]. A deeper discussion on these parameters is given in Section 4.2. of
this review.

The storage conditions influence the antibacterial properties of honey. Besides pro-
polis, two antibacterial compounds are the most investigated in honey, methylglyoxal, the
compound responsible for the antimicrobial action of Manuka honey [87] and hydrogen
peroxide obtained from glucose degradation by glucose oxidase in bee honey [88,89]. It
should be mentioned that the peroxidase activity of honey is lost during storage, together
with the exposure to light and heating [90–92].

The aroma compounds in honey are a complex mix of volatile components with
various functions and relatively low molecular weight [93]. The storage results in reduction
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in its odorous compounds, especially at higher temperatures; temperatures near to refri-
geration maintain the volatile compounds in honey [94].

The honey properties during storage seem to be more dependent on the honey type
than the storage conditions [95].

3.2. Influence of Storage Conditions on Raw Honey Quality

Dewatering and dehumidification refer both to the Moisture (M); M can be removed
from honey through dewatering or through dehumidification from air in contact with
honey. The acceptable range of moisture content is 16.4–20.0% [96]; higher moisture can
cause honey fermentation by osmotolerant yeasts [97] and favors faster crystallization [98].
Table 1 presents some methods used for M removal.

Table 1. Honey dewatering and dehumidification methods used in the last 12 years.

Method Device and Conditions Reference

Use of dry
air

Heating in a desiccant honey dehydrator (with silica gel desiccant
bed) with dehumidified air at 35 ◦C or 45 ◦C [99]

Heating of containers (having hot-water jacket) combined with
treatment with dried air (until 40 ◦C) [100]

Desiccant-bed silica gel heating and drying the air, with
recirculation at 40–55 ◦C up to 36 h [101]

Dehydrator system with control of temperature, drying air speed,
relative humidity and honey exposure surface [102]

Vertical centrifugal honey-dehydrator with an external electric heat
source and a closed air circuit and heat pump [103]

Vacuum
drying

Use of Low Temperature Vacuum Drying (LTVD) (30 ◦C) with
induced nucleation technique [104]

Ultrasonic vacuum drying at 40 kHz 80 W [105]

3.3. Honey Thermal Treatment

The thermal treatment of honey involves two main operations, liquefaction and
pasteurization. Liquefaction is realized for the honey decrystallization, by using different
methods. The classical liquefaction is conducted by heating honey at temperatures around
50 ◦C (45 to maximum 60 ◦C) for a long time (12 h), with sensorial changes such as:
darkening, contracting the taste of caramel and weakening or even the disappearance of
the specific flavor [106]; the antioxidant activity and the phenolic compounds seem to also
become modified [106,107].

Another method used is microwave heating, with the increase in HMF concentration
and decrease in antioxidant properties as disadvantages [108]. Novel methods such as
ultrasounds or high-pressure treatments seem to be effective in destroying/minimizing the
crystals or in increasing the period before starting crystallization and they have the advan-
tage of being shorter [109–111]. Higher ultrasound power input lowers the liquefaction time
(in minutes) [112]. Ultrasounds are beneficial for the extraction of volatile and semi-volatile
compounds [113], and they do not affect the physical–chemical parameters (moisture, pH,
diastase activity, HMF content) and sensorial characteristics (color) [114,115]; ultrasounds
have antimicrobial activity, too, depending on the pathogens and honey types [116–118].
Studies have shown that the high-pressure treatment improves the nutritional and antimi-
crobial characteristics of honey [110,119].

Liquefied honey can be pasteurized at higher temperatures (around 80–90 ◦C) for
seconds to destroy microorganisms (especially yeasts, responsible for fermentation); a se-
condary effect is the moisture reduction and the delaying of crystallization [120]. The non-
thermal treatments such as ultrasounds [121] or irradiation [122] are promising techniques
for destroying the microorganisms in honey. In addition to the classical way of heating the
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water for obtaining the temperatures required for the thermal treatment (liquefaction or
pasteurization), a new trend is to use geothermal water as a sustainable resource [123,124].

4. Chemometrics Used in Honey Quality Analysis during Storage and Processing
4.1. Introduction to Chemometrics in Honey Quality Analysis

Chemometrics means the use of statistical and in recent times Artificial Intelligence
(AI) methods to characterize and classify samples based on large quantities of analytical
data. The most frequent applications are the identification of the class of a sample and the
prediction of its properties not covered by the analysis [125]. The methods can be divided
into unsupervised and supervised ones.

4.1.1. Unsupervised Chemometric Methods

The unsupervised methods do not require a training set, and they group the samples
based on the similarities between them; a new sample will be placed in the existing groups
or possibly will create a new group. These methods are suited for preliminary, exploratory
and qualitative analysis especially when no prior classifying information is available.
Examples of such methods are:

• ANOVA or ANalysis Of VAriance is used to compare statistical populations in order
to decide if there are statistically significant differences between them. Its use has
become a standard requirement for proving the soundness and validity of a research
hypothesis. In the context of chemometrics, ANOVA is used to investigate the effect
of independent variables on the dependent variable. If multiple dependent variables
are of interest then a Multivariate ANOVA (MANOVA) is performed [126];

• Cluster Analysis (CA) which groups samples in clusters with the most used being:

o HCA or Hierarchical Cluster Analysis [127], which uses distance-based meth-
ods to group the data in hierarchical clusters and to place a new sample in
this hierarchy;

o K-means clustering, which is a non-hierarchical clustering of data in k clusters.

Examples of the use of clustering techniques in honey chemometrics can be found
in [128,129]. In these individual pieces of research, polycyclic aromatic hydrocarbons
(PAHs) were identified in honey by using ultrasound-vortex-assisted dispersive liquid–liquid
micro-extraction followed by a triple quadrupole gas chromatograph/mass spectrometer
(DLLME-GC-MS). The dataset was then grouped using k-Mean cluster analysis and PCA
in order to identify geographic specific pollution [128] or human activity specific pollution
patterns [129].

• Principal Component Analysis (PCA) is used to reduce the dimensionality of a sample
space when many features are investigated for many samples; they are plotted in
a reduced space where the axes are combinations of the features chosen so that the
relations between them (distances) are preserved [130]. PCA principal use is for visu-
alization and qualitative analysis and it needs the use of a secondary method—usually
a supervised Discriminant Analysis (DA) method—for classification. In [128,129],
PCA is used in combination with k-Mean cluster analysis to visualize the grouping of
pollutants based on geographical location [127] or human activity [128]. PCA was used
by [131] to cluster honey types based on the data expressing the content in vi-tamin B2
and Cu and the antioxidant activity measured by 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) [132] and CUPric Reducing Antioxidant Capacity (CUPRAC) [133]
values. The grouping allows the identification of the botanical origin:

o An extension to multiple dimensions of PCA is the PARAllel FACtor analy-
sis (PARAFAC) [134–136] which can be used on multiway spectral data. It is
employed in [134] where fluorescence spectrometry data are first decomposed
with PARAFAC in order to identify the representative patterns in honey. An
improvement of the traditional PARAFAC specifically for use on chromatog-
raphy data is the alternating trilinear decomposition algorithm (ATLD) [137].
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ATLD can be used to decompose the HPLC data in order to evidence the data
related to the phenolic components used as markers; the quantitative data can
be subjected to PCA analysis to visualize the clustering potential of the chosen
markers in honey [138].

Multiple unsupervised methods are used in some research for exploratory analysis.
One example is the research presented in [139], where one way ANOVA, CA and PCA are
used on IPC-MS data to explore the relation between concentration in thirty nine elements
and the geographical origin of Bracatinga honeydew [139].

4.1.2. Supervised Chemometric Methods

The supervised methods need an initial set of classified or labeled data to adjust the
parameters (to train) of a model which is then used as a predictor. The trained predictor
can classify new samples in the existing classes. The methods used for food product and in
particular for honey characterization can be grouped in:

• DA methods which use the observations of a number of variables for each sample for
the separation of samples of the training set in groups and for the allocation of new
(test) samples in these groups [140]. DA methods can be grouped after the type of
relation used in:

o Linear Discriminant Analysis (LDA) which builds a discriminator function as
a linear combination of the independent variables. It is a common technique
used to build predictors for the botanical and geographical origins of honey
based on their composition. One recent example is given in [139], that used
LDA to develop a predictor for the geographical origin of Bracatinga honeydew
honey based on IPC-MS data.

Measurement interferences can make the separation of spectral data harder. In order
to facilitate the classification of spectral data, the results of measurements are preprocessed
with different mathematical techniques. The techniques mostly employed are Multiplicative
Scattering Correction (MSC), normalization, Standard Normal Variate (SNV) transforma-
tion, De-Trending (DT) baseline correction, first- and second-order derivatives [141]. Light
scattering present in the spectra of food is greatly reduced by MSC and SNV. By applying
the first and second derivatives, the baseline and random noise are reduced. The same
treatment can be used to preserve the information for quantitative determinations. Indi-
vidual spectra analysis is enhanced by the use of DT. The baseline shift and curvilinearity
variations can be also handled by using DT [142].

Fourier Transform Infrared (FTIR) spectral data are used for the prediction of mono-
floral honey type and of honey’s physico-chemical properties [143]; the preprocessing
techniques investigated are MSC, MSC + first derivative, MSC + second derivative, SNV,
SNV + DT, SNV + first derivative, SNV + second derivative, first derivative and second
derivative. They are compared with no treatment of the spectra. PCA is used for the study
of the samples grouping according to their botanical origin. The study shows a distinct
grouping for mint, rape, acacia, tilia and sunflower honeys, and mixing for thyme and
raspberry honeys. An LDA-based classifier is then developed to reliably identify the link of
the sample to one of the seven honey groups. The best results are obtained with the MSC
pretreatment. For each of the physico-chemical parameters of interest for the honey quality,
i.e., M, pH, electrical conductivity (EC), free acidity, HMF, fructose, glucose and sucrose
contents, an individual PLS-R-based predictor is developed. Each predictor uses data from
a specific spectral band. SNV combined with the first derivative is the best pretreatment
method for predicting pH, electrical conductivity, free acidity, 5-HMF, fructose, glucose and
sucrose. The first derivative is the best data pretreatment for the prediction of moisture
content [143]:

o Stepwise Linear Discriminant Analysis (SLDA) uses a stepwise inclusion of the
independent variables in the model [144].
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PCA, MANOVA and SLDA are used to build a correlation between the volatile com-
pounds’ composition measured by headspace solid-phase microextraction coupled to gas
chromatography/mass spectrometry (HS-SPME/GC-MS) and the geographical provenance
of Greek Quercus ilex honey [145]. MANOVA is used to identify the significant VOCs,
PCA to construct the groups and SLDA to construct a predictor for the origin of a new
sample [145].

• Partial Least Square (PLS) methods are regression-type methods. In opposition to
the Ordinary Least Squares (OLS), where all independent variables are used, in PLS
a smaller number of uncorrelated components are generated from the independent
variables in a similar fashion to PCA [146]. Some examples of using these components
for regression in honey analysis are:

o Simple Partial Least Square Regression (PLSR) [147] is used on the HPLC data
decomposed by ATLD to correlate the content in the phenolic compounds used
as markers for the honey’s antioxidant activity [28];

o Partial Least Square—Discriminant Analysis (PLS-DA) is a combination be-
tween PLS and DA, used when categorical results are needed [148]. The
influence of different preprocessing steps (autoscale, variance (std) scaling,
min–max scaling, class centroid centering and scaling, smoothing, SNV and
Pareto) on the accuracy of a PLS DA predictor for the geographical and botani-
cal origin of honey, is analyzed by [149]. The predictor uses 1H NMR spectra
data. A first pretreatment step is the reduction in the data by replacing each
six consecutive chemical shifts with their mean. For the geographical origin,
identification of the highest accuracy is obtained through autoscale, variance
(std) scaling and class centroid centering and scaling. For the botanical ori-
gin, the highest accuracy is obtained through the variance (std) scaling data
pre-treatment [149];

o Unfolded PLS-DA UPLS-DA combines unfolded PLS [150] which decompose
the sample spectra to extract the relevant information with DA;

o Multilinear PLS-DA MPLS-DA combines multilinear PLS [151,152] which can
use multidimensional data as input with DA.

The suitability of different DA techniques for building adulterant predictors based on
fluorescence spectrometry data are compared with PARAFAC [134]. PLS-DA, UPLS-DA
and NPLS-DA are used to build classification models. The UPLS-DA model performs the
best and the PLS-DA performs the worst [134]:

o Linear discriminant analysis based on partial least-squares (PLS-LDA) in which
LDA is performed using PLS as the reduction step [153];

o Orthogonal projections to latent structures discriminant analysis (OPLS-DA)
combines Orthogonal projections to latent structures (OPLS), which separates
the independent variables into predictive and uncorrelated variables, with DA
for a categorical response [154];

• 1H NMR spectra of Chinese honey samples are used to identify adulterated honey.
A PCA LDA discriminator and an OPLS-DA one were built, trained, validated and
tested. The OPLS-DA has a slightly better accuracy. The OPLS-DA also helped to
identify a set of substances with significantly different concentrations in altered and
unaltered honey that can be used as a marker for adulteration [155];

• PCA and OPLS-DA on proteomics data obtained with sequential window acquisition
of all theoretical fragment ion mass spectra (SWATH-MS) to develop a predictor for
honey adulteration, the producing region (Tainan, Changhua, and Taichung), country
(Taiwan and Thailand) and botanical sources (longan and litchi) [138]:

o Orthogonalized partial least squares coupled with linear discriminant anal-
ysis (SO-PLS-LDA) is a multi-block discriminant classifier that results from
the combination of LDA with the sequential and orthogonalized-partial least
squares method (SO-PLS) which is a multi-block regression method [156,157].
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A method for detection of honey alteration after heat treatment (4 h at 80 ◦C) is
presented in [158]. The data are obtained through differential pulse voltamme-
try using three types of Natural Deep Eutectic Solvents (NADES) buffers and a
normal buffer with the multiple wells screen-printed carbon electrodes. The
data for each type of buffer were first used individually for developing a PLS
DA classification models. With the fused data from the four sensors, a multi-
block classifier based on SO-PLS-LDA with very good accuracy is developed;

• k-Nearest Neighbors method (kNN) classifies the sample based on the classes of the
k-nearest neighbors [159];

• Soft Independent Modeling by Class Analogy Method (SIMCA) uses PCA on the
samples of the training set for the construction of the classification models [160].

The correlation between honey sample fluorescence spectra and their botanical (acacia,
linden, honeydew, colza, sunflower, chestnut, lavender) and geographical (Romania and
France) origin [161] is investigated. The PARAFAC was used to decompose and visualize
the fluorescence excitation emission matrices to identify the features that allow classifica-
tion. On the basis of the obtained PCs, a SIMCA model was developed that predicts the
geographical and botanical origin [161].

A comparison between two analytical methods, MIR spectroscopy and Matrix-Assisted
Laser Desorption Ionization (MALDI)-Time of Flight (ToF)-based MS (MALDI-ToF-MS)
and between multiple chemometric methods PCA-LDA, PCA-kNN and SIMCA for the
identification of the botanical origin of the honey is presented [162]. The datasets from each
of the analytical methods were used for the development of predictors with each of the
enumerated chemometric methods. The SIMCA method has proven better able to identify
both monofloral and multifloral honeys due to its “soft” classifier which can identify a
sample as an outlier or belonging to multiple groups as opposed to the hard classifier of
the other methods which classify a sample strictly in a single existing group. The MIR
method due to its higher reproducibility, lower demand for manual labor and laboratory
infrastructure is more suitable for implementing an automatic authentication method based
on a cloud-located database that can be used worldwide [162].

• Support Vector Machine methods (SVM) use the training set to construct the hyper-
plane that separates the classes with the largest margin [163]. Support vector machine
can be used for regression (SVR) [163] or for classification (SVC) [164]. The Least
Squared-Support Vector Machines (LS-SVM) [165] are improved variants.

The performances of four methods for building predictors that use Attenuated Total
Reflectance-Fourier Transform Infrared (ATR–FTIR) spectral data are compared to identify
adulteration with rice syrup in honey from three different botanical origins (acacia, linden
and jujube) [166]. The four used methods are PLS-DA, Der-PLS-DA, LS-SVM and Der-
LS-SVM. The methods noted with Der implement a derivative-based pre-processing for
removing spectra baseline offsets before modeling.

Hyperspectral imaging combines the spectral information from spectroscopy with
spatial information from digital imaging [167]. The data from VIS-NIR hyperspectral
imaging are used to develop a machine learning-based classifier for the botanical origin of
the honey. The developed classifiers combines two classification methods, SVC and kNN,
and attains an accuracy of 91% for close set and 80% for open set cases [168].

A linear classifier based on PLS-DA and a nonlinear classifier based on SVM for the
species of honey-producing insects are presented in [169]. The data from the GCMS of
honey samples were first investigated with PCA to identify the physico-chemical parame-
ters and volatile compounds relevant for species’ determination. The contribution of
the parameters to the clustering of the samples were identified using HCA. Both models
showed good performances [169].

A new gold nanoparticle sensor array that changes the color in contact with the
volatile components in honey was developed [170]. The resulting images from the analysis
of honey samples from three different botanical species (acacia, canola, honeydew) are used
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as training set for three supervised methods LDA, PLS-DA and SVM. The best accuracy in
identifying a new sample was obtained with SVM [170];

• Artificial Neural Networks (ANN) are universal approximators that mimic the func-
tioning of biological neurons [171]. Convolutional neural networks (CNN) are ANN
in which the connectivity is inspired by the animal visual cortex.

The approach presented in [172] uses data from Raman spectra of pure glucose maltose,
fructose and sucrose solution and from commercial honeys to train ANN to identify the
honey concentrations in those sugars. Multiple network structures were mentioned. This
indicates the possibility of developing a non-invasive, rapid, automatable and cost-effective
method for honey-sugar composition analysis [172].

Physico-chemical (moisture, fructose, glucose and sucrose content) and rheological
(loss modulus, elastic modulus, complex viscosity, shear storage compliance and shear
loss compliance) parameters of the honey samples are used for the identification of their
botanical origin. Two predictors were developed, one based on LDA and the other based
on ANN, both with good accuracy. A rheological properties’ predictor based on the ANN
that uses the physico-chemical parameters of honey was also developed [173].

A deep convolutional neural-network was used to classify honey based on the results
from a multi-electrode differential pulse voltammetry. The honeys were grouped into
12 classes by PCA and then labeling for the classification was completed on the basis of the
type and time of harvesting of the honeys [174].

In [175], the detection of exogenous sugars in honey based on the analysis of the
Raman spectra of honey samples was investigated. PLS-DA, PCA-LDA and kNN were
used to construct predictors for the quantity and type of multiple adulterants. The study
was then extended with an exploratory analysis using PCA and t-distributed stochastic
neighbor embedding (tSNE) [176] to correlate the results from Raman spectroscopy with
the botanical origin and the possible adulteration. tSNE proved better at separating the
adulterations quantitatively. Based on the exploratory analysis, predictors for both the
botanical origin and the quantity of adulterants were developed on the basis of CNN,
SVR and PLSR. The CNN predictor proved the best in handling the nonlinearities and
multimodali-ties of the spectra followed by SVR, and the PLSR was the least accurate.
Table 2 presents the chemometrics used in the honey quality analysis.

4.2. Modification of the Quality Parameters Used for Quality Evaluation of Honey during
Processing as Analyzed by Chemometrics

The quality of honey is changed during processing and/or storage. Important
physico-chemical parameters have been proposed for honey evaluation and its conformity
within stipulated legislated limits [77,96], such as: water content, main sugar content
(glucose + fructose), disaccharide sucrose, free acidity, diastase activity, electric conduc-
tivity, ash content, 5-hydroxymethylfurfural and water-insoluble content. Furthermore,
additional attributes, associated with the basic ones above, are evaluated such as total
amino acids, color parameters L*, b*, a*, amino acids composition, proline content, min-
erals, composition in di- and oligosaccharides, phenolic compounds, phenolic content,
volatile compounds, viscosity and rheological properties, crystallization, total protein,
nitrogen content and sensorial attributes. Major modifications of the physico-chemical
parameters and related features by the applied changes regarding the quality of honey
changes during processing/storage are discussed below in comparison with those for
untreated honeys.
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4.2.1. Free Acidity

Free acidity (FA) originates from organic acids, being in equilibrium with their internal
esters lactones and inorganic ions such as phosphates, sulfates, nitrates and chlorides,
capable of generating their conjugated acids [36], while its determination constitutes one of
the basic parameters (≤50 meq/kg of honey) stipulating limits for assuring the protection
of the product’s quality from microbial activity [77]. FA is attributed to:

(a) Organic acids. Acidity is mainly derived from the presence of organic acids, up to
0.5% in honeys, contributing to honey flavor, stability against microorganisms, en-
hancement of chemical reactions and antibacterial and antioxidant activities [178].
The principal organic acid in honey is gluconic acid derived from the activity of
the glucose-oxidase enzyme on the glucose substrate, that is in equilibrium with
δ-gluconolactone [179–182]. The gluconic acid level, for a specific honey species,
is mostly dependent on the time elapsed between the collection of nectar and for-
mation of the final honey by bees for obtaining the final density in the honeycomb
cells, while glucose–oxidase activity becomes insignificant when the honey is thick-
ened [183]. Moreover, other organic acids are found in honey such as formic, aspartic,
acetic, butyric, citric, fumaric, galacturonic, gluconic, glutamic, butyric, glutaric,
2-hydroxybutyric, glyoxylic, α -hydroxyglutaric, lactic, isocitric, α-ketoglutaric, malic,
2-oxopentanoic, malonic, methylmalonic, propionic, pyruvic, quinic, shikimic, suc-
cinic, tartaric, oxalic acid and others [184]; their ratio and abundance are influenced by
the honey species enabling discrimination of the honeys [179,185], while some organic
acids have exhibited a high discriminant power for the separation of conventional
from organic honeys [186];

(b) Lactones. Lactones found in honey are mostly in the form of gluconolactones, consti-
tuting part of the organic acids in the intra-esterified form; they contribute a reserved
acidity measured when the honey solution becomes alkaline [36]; lactonic acidity
is added to FA to yield the total acidity of honey [77]. The pH of honey and its
acidity are not parameters directly related to each other because many other compo-
nents found in honey exert a buffering capacity, therefore, compensating for a part of
honey’s true acidity [187,188]. Similarly to pH, free and lactonic acidity in the different
honeys are dependent on their botanical origin, also influenced by the harvesting
season [178,183,187,189–191].

During storage time, the amount of organic acids significantly increases [192]. Several
factors contribute to honey FA:

(a) Effect of maturation. During honey maturation, the FA or total acidity is increased
while pH is significantly decreased [178]. In a pioneering study covering the introduc-
tion of national legislative limits for Talh honey, the free acidity (FA) of Talh honey
was determined from Talh tree leaves and flowers (30 ± 0.99; 34 ± 0.92 meq/kg) to
bee crop (honey stomach) and unripe honey (43 ± 1.80; 72 ± 1.56 meq/kg) and finally
to ripe honey (77 ± 1.28 meq/kg), [193], while the highest pH value was recorded in
the leaves and kept decreasing as honey production proceeded, obtaining its lowest
value in ripe honey (4.91 ± 0.06);

(b) Effect of storage. Reports have shown a significant effect of storage on honey FA, pH,
(p < 0.05), with FA increasing and pH decreasing with storage time [181,194,195]. In
one kinetic study, exclusively dedicated to the variability of all the three parameters
versus 30 months storage for honey stored at room temperature (15–25 ◦C), lactonic
acidity found to increase by storage time (p < 0.05), even at a higher degree than FA
increased or pH decreased [196], while in some cases lactonic acidity was slightly
decreased, and total acidity was increased [181]. Formation of levulinic and formic
acids also is derived from 5-HMF transformation, and keep increasing by storage [197].
Evaluation of the variability of FA, pH, lactonic acidity, and total acidity has resulted in
estimation of 20 months of storage to be the “best before” period “once opened” [196].
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Investigation of the effect of short storage at 35–40 ◦C for 3 and 6 months with or
without the addition of metabisulfites (12 pp) on water content (WC), pH, FA, lactone
acidity and total acidity of two honeys, cashew and marmeleiro [198], showed that
significant differences were observed for pH, FA, lactone acidity and total acidity
compared to the respective parameters for the fresh samples. A reverse correlation
between FA and lactone acidity was recorded and attributed to the glucose–oxidase
activity that converts glucose to gluconolactone, which is consequently hydrolyzed to
gluconic acid. In this study, FA is reduced but lactone acidity is increased with the
storage time. The presence of bisulfite acted upon the esterification of gluconic acid to
increase the lactone concentration [198];

(c) Effect of dehumidification. Dehumidification of honey in other studies has shown no
differences in pH and FA between raw and dehumidified honeys when a group of
samples from the stingless bees H. itama, G. thoratica and T. apicalis honeybee species
were used. However, samples of H. itamas honey had a lower FA and higher pH and
ash content values than G. thoratica honey samples [199], similarly to honeys of the
other bee tribe [200];

(d) Effect of temperature/storage. Storage under different thermal conditions for times up
to eight months induced a great increase in the free acidity of Talh honey, a rare type of
honey because of its high FA. Talh honey naturally exceeds the permitted level for the
FA values (>50 meq/kg) which is attributable to the plant origin. Storage temperature
was found to be a factor with the highest significant influencing power on the FA
(p < 0.05). Although all the values of FA in this study were beyond the standard limit,
the results indicated that the stability of the FA of Talh honey was maintained stable at
low temperatures (0–25 ◦C) for up to 6 months without significant effects [194]. In this
study, statistical analysis showed the FA to exert a positive correlation with storage
period (0.401), storage temperature (0.631), 5-HMF (0.852), color (0.541), moisture
(0.440) and EC (0.155). On the other hand, FA was negatively correlated (p < 0.05)
with glucose (−0.892), pH (−0.851), fructose (−0.821), sucrose (−0.422) and diastase
activity (DN) (−0.309). Thus, low pH, DN and sugars are associated with higher FA.
The strong positive correlation of FA with the 5-HMF is related to the strong effect
of pH on the formation of furfurals generated more by the Amadori Rearrangement
Products pathway than the routes of reductones and fission products dominant at
pH > 7 [181,201].

4.2.2. Ash Content and Electric Conductivity (EC)

Ash content is indicative of the amount of minerals contained in honey [191]. There is a
great dependency of ash content on the type of soil, climatic conditions and environmental
pollution. The dissolved salts in the soil are pumped to the flowers used for nectar collected
by the bees [31,32], enabling ash content to be a good indicator of the geographic origin of
honey [49,202]. Mineral content is strongly correlated with the color and EC, affecting the
color and flavor of the honey. Honeydew contains a higher quantity of minerals, therefore,
it is commonly used in quality control to distinguish honeydew from floral honey [202,203],
while citrus has a lower EC [204]. EC is influenced by the presence of salts, organic acids,
minerals, amino acids, proteins, storage time and different sources [187]. The legislative
limits require EC ≤ 0.8 mS/cm for all honeys, and ash content ≤0.6 in general and ≤0.1 for
honeydew honey and its blends with blossom honey [77,96].

Storage and/or thermal treatment of honey results in an increasing effect of EC on
honey [204]. Correlation analysis showed a strong positive correlation (p < 0.05) between EC
and storage period, HMF and FA, whereas, a negative correlation (p < 0.05) was recorded
between EC and sucrose, glucose and fructose [192,194,205,206].

4.2.3. Sugars

Carbohydrates are the main constituents of honey [207]. They are produced from
nectar sucrose by honey-bees, which is transformed through the catalytic action of several
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enzymes, mainly α-, and β-glucosidase α- and β-amylase, and β-fructosidase, diastase
and invertase, resulting in a composite mixture of monosaccharides, disaccharides and
oligosaccharides [183,208]. Glucose and fructose monosaccharides constitute the major
honey saccharides, ranging from 65% to 80% of the total soluble solids, followed by
disaccharides and trisaccharides, while more than 26 sugars have been identified and
quantified in honey [207]. The composition of the carbohydrate fraction of honey is strongly
dependent on the plant species from which the nectar is collected by the bees, the bee
species, maturation, with geographical and seasonal effect being negligible [183,209]. It has
also been reported that bee species have a strong effect on the differentiation of honeys
as has been revealed by NMR studies based on the different conformers of glucose and
fructose contained in honey [210].

Fructose and glucose are the predominant sugars in honey, with fructose found in
higher amounts except rape (Brassisa napus), blue curls (Trichoderma lanceolatum) and dande-
lion (Taraxacum officinale) honeys, where glucose is in a higher quantity [98,207]. They are
derived from the transformation of nectar’s sucrose via the enzymatic action of invertase
contained in the salivary glands of bees. However, invertase also owns transglucosylation
activity, catalyzing the α-glucosylation of monosaccharides, disaccharides or trisaccharides
in honey resulting in the formation of di- and tri-saccharides [203]. More than 30 saccha-
rides have been identified, such as: (a) di-saccharides: sucrose or saccharose (predominant),
maltose, turanose, cellobiose, kojibiose, maltulose, trehalose, nigerose, isomaltose, tre-
halulose, gentiobiose, laminaribiose, palatinose, gentiobiose, (b) tri-saccharides: erlose,
theanderose, panose, maltotriose, 1-kestose, isomaltotriose, melezitose, isopanose, gen-
tose, 3-α-isomaltosylglucos, planteose, (c) oligosaccharides: raffinose, isomaltotetraose,
isomaltopentaose.

Enzymatic α-glycosylation of monosaccharides to di- and tri- saccharides starts once
the mixture of nectar enriched with bees’ saliva is placed in combs by the bees. A recent
study reports that the acacia honey has ripened when the concentration of turanose is above
1.2 g/100 g honey, which occurs just after the combs are capped by the bees, timing before
the 10th day of honey ripening in the honey combs [211]. A strong positive correlation has
been recorded between the days of honey maturation in combs and the turanose content
(p < 005) but a strong negative correlation with the water content as expected to occur
during maturation in the beehive [211].

The amount of sucrose is dependent on its botanical source, honey maturity, elevated
nectar abundance or artificial bee-feeding [59,183,212]. The steps in honey maturation
involve an appreciable decrease in sucrose because of the continuous action of invertase
added by the bee. Therefore, the maximum limit of sucrose (<5 g/100 g) is an indicator of
freshness or possibly adulteration [134]. The evolution of main honey monosaccharides,
glucose, fructose and disaccharides has been investigated by the fractionation of stable
carbon isotope (δ13C) towards the examination steps for: (i) flowers, (ii) stamens, (iii) nectar
and the (iii) ripened rape honey. It has been reported that δ13C keeps increasing with
the same order with these steps reaching a maximum for the ripened honey, which is
significantly different than the δ13C of the previous steps, a fact attributed to the addition
of enzymes for sucrose inversion and the water evaporation caused by the bees’ fanning
with their wings [213].

During prolonged storage of honey, the amount of fructose, glucose and sucrose
decrease. A remarkable decrease of 9% of monosaccharides per year was recorded during
prolonged storage [107].

Reported studies for Tahl honey, which by its nature has FA values exceeding interna-
tional limits, recorded a high decrease in saccharide concentrations especially for samples
stored at 35 and 45 ◦C for different time intervals up to eight months at 0, 25, 35 and
45 ◦C [194]. Under all the storage temperatures, the sugars (fructose, glucose and sucrose)
significantly decreased during the storage period with reducing sugars’ amounts to reach
levels below legislation limits (Fructose + Glucose >60 g/100 g) [96]. This declining trend
for sugars is more pronounced at higher temperatures, 35 and 45 ◦C. Based on the results,
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temperatures below 25 ◦C are suggested for maintaining Talh honey. Statistical analysis
showed higher Pearson’s coefficients among parameters: positive correlations between
sugars and pH and DN, but between sugars and storage period, temperature, color, EC,
HMF, FA and moisture negative correlations were recorded.

Very important losses in the monosaccharides of citrus honeys were recorded during
storage at different temperatures for 12 months reaching at 13.5, 25 and 25.2% for 10, 20
and 40 ◦C, respectively, compared to those of fresh honeys [195]. Sucrose is significantly
decreased. However, marked increased changes were recorded for other disaccharides,
such as nigerose, turanose, maltulose, isomaltose and kojibiose, whereas trisaccharides did
not show any trend. In the same line, maltose with an initial amount of 2.5 mg/g changed to
23.2 mg/g after 1 year stored at 40 ◦C, predominating all the saccharides. Both the presence
of invertase, which also acts as transglycosidase on glucose substrates, and the low pH
values arising from the elongated storage enhance the conversion of monosaccharides to
disaccharides and higher sugars, and count for sucrose decrease and maltose increase in
the thermal-treated honeys [194,198,214–216]. High levels of maltose could be used as an
indicator of the prolonged storage of honey [195].

Use of thermo-sonication for the honey dehydration processing led to a higher increase
in 5-HMF compared to conventional thermal processing. Higher dehydration rates recorded
for the thermos-sonication method than bath process count for higher formation rates of
5-HMF as an intermediate product of acid-catalyzed dehydration reaction of hexose and/or
by Maillard reaction than conventional thermal treatment [217]. Although the rate of
5-HMF for conventionally heated honeys was the largest for acacia honey, during the
processing by microwave the fastest formation of 5-HMF was recorded for lime honey [218].
The conventional and microwave heat processing induced the largest relative increase in
the 5-HMF formation in honeydew honey while other studies have reported that during
the microwave heating the most rapid increase in 5-HMF was found in lime honey; all these
results indicate that the formation of the 5-HMF is dependent on the particular composition
of each honey [108,218].

Chemical composition changes for sugars have been studied during thermal treatment
and/or storage using FTIR spectroscopy as a tool for mining data [219]. Prominent changes
have been recorded for the region 900–1500 cm−1 [220], with specific absorptions at 987
and 1040 cm−1 where maximum variances were recorded originating from carbohydrates
absorption, mainly fructose, glucose, and sucrose [221]. Chemometric discriminating
methods applied on FTIR data ranging from 600 to 4000 cm−1 discriminated between
raw and thermally treated honeys. Furthermore, by using chemometrics the honeys were
categorized for (a) 70 ◦C, for samples treated for 15 min and those for 120 min (overall
accuracy 0.947%); (b) 40 ◦C, for samples treated for 15 min, and those for 120 min (overall
accuracy 0.895%), leading to the conclusion that the model is successful for classifying the
samples according to different thermal treatments based on the carbohydrate’s changes.

4.2.4. HMF

Heating, dehydration, and storage processes play an important role in the formation
of 5-HMF. This furanic compound originates from different chemical pathways occurring
during honey processing (a) from dehydration of hexoses in acidic conditions [222], and
(b) as an intermediate of the Maillard reaction [195,197,223].

The fact that the 5-HMF mostly reaches low concentrations in fresh honeys means
that it is commonly employed as a quality parameter for assessing the freshness and/or
overheating of honey. Legal regulation bodies have set a maximum 5-HMF content of
40 mg kg−1 for honeys in general, and 80 mg kg−1 for honeys from tropical climates,
including blends [77]. Furthermore, there are safety concerns by consumers for foods
of high 5-HMF content, such as DNA mutagenicity and colon carcinogenicity among
others [224–226].

Honey freshness based on 5-HMF can be determined with several analytical protocols,
however, an easy determination is executed using the 1H NMR spectroscopy, where the
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integration of signals occurs at 4.65 ppm for the methyl protons or at 9.55 ppm for the
proton of aldehyde, enabling its quantification [227].

Storage of cashew honey for up to six months resulted in the excess formation of
5-HMF at levels exceeding the legal limits. Addition of metabisulfite in honey at the start
decreased the 5-HMF concentration, a fact attributed to the formation of sulfonic acids
of the dehydro-reductone Maillard intermediary interrupting the cyclization prior to the
formation of 5-HMF [198]. The 5-HMF can be produced from all hexoses, but actually is
selectively derived from keto-hexoses, such as fructose because of (a) enolization of fructose
proceeds with a comparatively higher rate than that of glucose because in solution fructose
forms less stable ring structures enabling it to spend a larger life-time in the open chain
form and (b) fructose becomes involved in an equilibrium reaction by forming di-fructose-
di-anhydrides so that the most reactive groups capable for cross-polymerization are intra-
disabled favoring an increase in selectivity, whereas glucose forms real oligosaccharides
which still have reactive reducing groups, available for cross-polymerization with HMF
and reactive intermediates [228–230].

There are many factors influencing 5-HMF levels, such as temperature, storage condi-
tions, water activity, divalent cations concentrated in the media, the flowers’ origin, and
some chemical properties of honey, including pH, acidity, reducing sugars, and mineral
content, of which the pH is the most recorded [195,218,228,231]. For honeys which have an
unusual high FA, exceeding the legislative limit, a great increase in FA was followed by
a very high increase in 5-HMF, which was more pronounced for honeys stored at 35 ◦C
for twelve months, and for those stored at 45 ◦C from the very first month. A very strong
positive correlation of Pearson’s coefficient found between 5-HMF and FA, storage time,
and storage temperature [194]. Reports on thermal formation kinetics of 5-HMF fitting to a
first- or zero-order reaction, or first-order kinetics of the degradation of amino acid and
zero-order kinetics for the formation of product (5-HMF), resulted in activation energies
calculated according to the Arrhenius model in various honeydew and floral honeys evi-
dencing that, besides the processing treatment, the composition of honey also has a role on
the 5-HMG formation [223,228,232–234].

The effect of thermal processing in the content of 5-HMF in monofloral pine, citrus,
thyme, and eucalyptus, blends (Thyme-pine, Erica-pine) and multifloral honeys from Crete,
at different temperatures and storage times showed that the 5-HMF changes for Pine honey
are the most resistant towards thermal treatment especially for high temperature and
prolonged times while thyme was the most vulnerable to 5-HMF increases, followed by
citrus honey, a fact attributed to the higher pH value of pine honey [190].

Separation of raw honeys from those heated at different temperature levels was
achieved using FTIR data and chemometrics. PCA analysis for eucalyptus honey yields
a strong discriminating factor for complete separation of raw samples from those heated
at 40 ◦C/3.5 h and 70 ◦C/15 min, but not for acacia or orange blossom honeys, based on
the spectral features at 990 and 1050 cm−1, where mostly stretching (C-OH) vibrations of
carbohydrates occur [221]. Application of DA showed sufficient categorization for (a) raw
samples heated to 70 ◦C for 15 min, and heated samples to 70 ◦C 120 min (overall accuracy
0.947%) (b) raw heated samples to 40 ◦C for 15, and samples heated to 40 ◦C for 120 min
samples (overall accuracy 0.895%), thus, enabling classification of the samples according to
different thermal conditions, temperature, and duration [221]. The effect of storage has also
been investigated with other spectroscopies such as 1H NMR spectroscopy, where mainly
sugars and minor components were found to differentiate honeys [29].

During storage or thermal treatment furanic compounds are formed besides 5-HMF,
such as 2-HMF and 2-(furan-2-methyl)-4-methoxyfuran-3-(2H)-one (2-Furfural). These are
derived by Amadori degradation via: (a) enolization for pH < 7 with 2-HMF formation
to prevail (implication of pentose, as xylose is implicated) and (b) enolization at basic pH,
5-HMF (implication of hexose, as glucose) could be produced through reductones and
the fission products’ route [181,201,235]. In honeys owning mostly an acidic pH, 5-HMF
prevails whereas in wood and chestnut honeys, 2-Furfural is predominant because of the
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higher pH values [236], however, different conclusions have been reported as well [197].
The Maillard reaction is commenced by nitrogen-containing compounds, and carbonyl
compounds such as amino acids in foods resulting in Schiff base intermediates and rear-
rangement to Amadori or Heyns products. The α-Dicarbonyl compounds (α-DCs), which
are highly reactive critical intermediates in the Maillard reaction [237,238], are affected
by pH, nectar composition, and storage. Artificially matured honeys significantly exceed
in α-DCs those that are naturally matured [237], proving α-DCs to be a more sensitive
indicator for heat treatment than HMF [237,239].

4.2.5. Components in Crystallization

Crystallization and viscosity affect sensorial properties of honeys, in consequence, the
consumers’ acceptability. Heating pretreatment delays the crystallization of honeys while
maintaining low viscosity values, with the most common methods of crystal prevention
including the pasteurization method (treatment at high temperatures), storage at low
temperature, microwave or ultra sound pre-treatment, storage at very low temperature and
filtration using sieves (pores < 80 µm) [34,38]. Heating procedure at 70 ◦C/15 min manages
to extend the non-crystallization period, but it negatively affects the quality of the honey
and its shelf life [240].

The ratio of fructose to glucose (F/G) and their relationship with water content govern
the rate of honey crystallization, and as a consequence, have a predominant role for
controlling the rheological properties of honeys [241,242]. An effect of the botanical source
on the honey crystallization and stability has also been recorded [243]. Molecular dynamics
revealed that the crystallization of honey was different from that of pure glucose regarding
the morphology and conformational stability, with glucose/fructose at 2.5:1 to result in
crystallization of the same stability as the crystals found in honey described of the same
glucose/fructose ratio [244].

The parameter Fructose/Water (F/G) can predict crystallization because glucose is less
soluble than fructose. When F/G < 1.4, fast crystallization of honey occurs but when ratio
is > 1.54 honey exhibits no tendency to crystallize [245,246]. Strong relationships among
sugars (fructose, glucose, sucrose, melezitose, and maltose), palynological characteristics,
sugar ratios (F + G, F/G, G/W), and moisture content were revealed when statistics
applied towards the establishment of a predictive base for the crystallization tendency of
monofloral honeys [98]. PCA discriminated rape and sunflower honey that exhibited the
highest F + G mean values (>75%) which are significantly different compared to honeydew,
eucalyptus, bramble, heather, chestnut honeys (p < 0.05). Honeydew exhibited the lowest
F + G concentration (< 60%) than the others (p < 0.05). This parameter is a marker for
distinguishing honeydew honey from blossom [182]. Rape and sunflower, being blossom
honeys, are known from the literature to easily crystallize during storage, therefore, they
are expected to have the highest F/G ratio in the PCA components plot [98]. Water content
is another parameter that affects crystallization. The ratio G/W < 1.7 is indicative of slow
or no crystallization but ratio > 2 for complete or fast crystallization [107]. The higher
the glucose content and the lower the water content, the higher the crystallization rate
proceeds. Many sugars crystallize if their concentration is above the saturated level [205].
Glucose in high concentration leads honey to crystallization because it is less soluble and
crystallizes faster than fructose.

The effect of the phase of honey during thermal treatment conditions on the mois-
ture, 5-HMF content, lightness, and yellowness has been recorded, where moisture loss
of crystallized and Bi-phase honeys are greatly affected by the thermal treatment at a
low temperature of 39 ◦C/30 min and at a high temperature of 55 ◦C/24 h, while liquid
samples were not affected [247]. Chemometrics were applied on FTIR spectroscopic data,
which express structural modifications induced by the heating process originating from the
dissolution of glucose crystals, acquired at 1470 (O-H stretching vibrations), 1935 (H2O-OH
bonds of water molecules), 2100 (carbohydrates), and 1690 cm−1 for fructose, for high-
lighting the ratio on F/G, showing (a) a high predictive ability (0.78 MMC) to discriminate
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honeys treated at room temperature from those at high temperature. Conventional and
chemometric approaches showed that changes in physico-chemical parameters and NIR
spectroscopic characteristics were larger for crystallized and Bi-phase honeys than for those
in liquid phase, therefore, they are phase related [247].

Prediction for the type of liquefaction treatment can be achieved for honeys liquefied
at 40 ◦C or 72 ◦C first and afterwards stored for 12 months at different temperatures,
based on changes in the physico-chemical parameters associated with the crystallization
occurrence in honeys versus time [240]. A PCA statistical model showed separation for
each group of samples with each one subjected to different liquefaction treatment, while
HCA categorized samples into three groups, one for heated honeys at low temperatures
(0–18 ◦C), a second for unheated (fresh + heated at a low temperature), and a third group
containing the samples heated at a high temperature level [240]. Samples stored at −18 ◦C
showed no difference in the physico-chemical parameters from the fresh ones; it may affect
honey viscosity [220].

Dehydration of honeys at 40 ◦C goes through several steps: at the two first steps, water
loss occurs, the third step is characterized by volatiles’ loss, whereas, at the last dehydration
step both volatiles and water are removed from samples [248]. Kinetics of honey heating at
40 ◦C for time intervals varying up to 90 h were performed with Synchronous 2D correlation
spectroscopy for monitoring changes at 995 nm for rape and 990 nm for chaste honeys
versus increasing dehydration times. NIR spectra showed differentiation at 900–990 nm for
absorption assigned to the second overtone stretching vibrations of NH of aromatic amines
and OH of CHOH groups originated from sugars, enzymes, fragrant aroma, water, and
other components of honey [249].

The presence of oligosaccharides can modify the honey’s tendency for crystalliza-
tion [98] Honeydew honeys containing a higher content of melezitose do not easily crystal-
lize [203,207,250]. In this line, crystallization prevention has been reported based on the
addition of trehalose to the honey samples, a fact attributed to trehalose’s high hydrophilic
character that prevents the formation of internal hydrogen bonds but enhances the ten-
dency to form hydrogen bonds with surrounding macromolecules resulting in preventing
glucose crystallization and the expulsion of water molecules from its supersaturated so-
lution [251]. Although the addition of trehalose leaves the G/W ratio the same, trehalose
interferes with the dynamics of water molecules by hindering glucose from crystallizing in
the supersaturated honey solution [252].

The crystallization process is directly associated with the chemical composition of
honey [98]. The ease with which glucose monohydrate forms crystals in honey is due
to its ability to adopt miscellaneous geometric forms leading to a change not only in the
consistency but also in the water binding during the crystallization process [85,246]. A
recent approach, developed for detecting honey liquefaction based on (i) the water impact
on pH and the monosaccharides and (ii) disaccharides’ contents of honey, predicts if
honey has previously undergone liquefaction above 30 ◦C based on the modification of
EC behavior and pH changes, both induced by the irreversible changes of the molecular
structure [107,205].

4.2.6. Amino Acids/Proteins

Amino acids are contained in honeys accounting for 1% (w/w) [13]. They are originated
mostly from pollen, and in a lesser degree from animal and vegetable sources, among them
fluids and the nectar secretions of salivary glands and pharynx of bees [253]. Several amino
acids are contained in honeys such as arginine, aspartic, serine, glutamic, asparagine,
glutamine, threonine, proline, phenylalanine, histidine, β-alanine, glycine, α-alanine,
γ-aminobutyric, tyrosine, α-aminobutyric, tryptophan, methionine, valine, isoleucine,
leucine, ornithine, and lysine [253]. The composition of amino acids in honey is depen-
dent on the pollen species from where the nectar originates, therefore, it can serve as an
index for botanical differentiation [56,254]. Proline, originated from the salivary secretion
of bees acting on honey collection and maturation, has been found in higher amounts

24



Foods 2023, 12, 473

than the other amino acids in honeys, as the major contributor with 50–85% of the total
amino acids [208,255,256], while in some studies, phenylalanine has been reported to be
the predominant one [253,257]. In general, honeydew contains higher amounts of amino
acids than floral honeys [203], and can be differentiated from raw floral honey by amino
acids composition in all amino acids except for phenylalanine, tyrosine, and proline [255].
Chemometrics on the amino acid profile of honeydew Mimosa scabrella Bentham species
resulted in differentiation based on geographical origin [57].

Proteins such as diastases (α-, β- amylases) for hydrolysis of a-D-(1,4) glycosidic
bonds, invertase for sucrose inversion to equimolar amount of glucose and fructose, and
glucose-oxidase for oxidation of glucose to δ-gluconolactone to final hydrolysis to gluconic
acid, are the most common enzymes in honey [180,198,258].

The concentration of amino acids is reduced during the thermal treatment of honey
or prolonged storage [203,233]. Several compounds are formed from the reaction of the
carbonyl group of a reducing sugar with the free amino group originated from amino acid or
protein (Maillard reaction) resulting in the formation of dark compounds followed the initial
step of Amadori compounds, darkening the honey’s color. Amino acids found to easily
trigger the Maillard reaction are lysine, proline, γ-aminobutyric acid, and arginine [192].

The effect of storage at room temperature on the composition of amino acids of hon-
eydew, floral, and blends of honey for different time intervals up to 24 months showed
the total amino acid content to decrease with storage, with losses ranging from 45 to 52%
for glutamic acid, arginine, and glutamine in honeydew honey [258], while in Brazilian
honeydew, the “Bracatinga” glutamic acid, the most sensitive to prolonged storage, de-
creased by 84% compared with fresh honeys [192]. In general, honeydew honeys have
a higher content of individual amino acids [203,259] than floral honeys except for histi-
dine, tyrosine, phenylalanine, leucin, and proline. Although the amount of each amino
acid decreases over a storage period, their concentration and ratio in 24 months-stored
honeys can still discriminate the honey type (88.7% correct assignment) [255]. The fact
that the order for honeydew or floral amino acid concentrations, found in raw honeys as
glutamine < asparagine < aspartic acid < glutamic acid << proline, is different than the
one in stored honeys is evidence for a selective decrease in amino acids because of the
different sensitivity of each of them to trigger the Maillard reaction [192]. Although it is
expected that the proportion of each amino acid in processed honeys varies a lot since
its reactivity is different, the loss of amino acids occurs in a way associated with the type
of honey (honeydew, floral, blends) [255]. Results reported for jujube and chaste honeys
showed a strong correlation of the decrease in the concentration of each amino acid for
different heating treatments with the increase in 5-HMF formed during storage time. Low
pH favors the Maillard reaction: it was found that chaste honey, with lower pH and higher
total amino acid content, undergoes reactions of high rates for both the disappearance of
the dominant amino acids and the formation of 5-HMF which were found to be several
times faster than the respective reactions recorded for the jujube honey [257].

Heating or long-term storage of honey has been associated with the formation of furo-
sine (2-furoylmethyl-lysine) generated by acid catalysis of Amadori compound fructosyl-
lysine, which has been proposed as a useful indicator of the extent of the degradation
of foods because of their exposure to processing or extended storage [260,261]. In addi-
tion, 2-furoylmethyl adducts of arginine, gamma-Aminobutyric acid (GABA), and proline
have been detected. Furosine content is higher in honeydew honey than in other com-
mercial/fresh honey as derived from the higher content of honeydew in amino acids,
and its increase is associated with the increase in 5-HMF [260]. Samples may be consid-
ered properly heat-treated, when the furosine concentration is low, while the absence of
2-furoylmethyl-amino acids could be an indicator for honey freshness or a short period of
honey storage under proper conditions [260].

Derivatives of 5-HMF, N-(1-deoxy—1-fructosyl) phenylalanine, (Fru-Phe), formed
through the Amadori pathway towards thermal processing and storage of honeys, can
serve as indicators of thermal process and storage. In this line, in Artificial Mature Acacia
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Honeys Fru-Phe is rapidly increasing, reaching 2.4 times the initial concentration while
for Natural Mature Acacia Honey the increase was only 1.2 times, with respect to the
initial concentrations at the start of the 24 months’ storage period [262]. Chemometrics
were performed to screen for differential compounds that distinguish the two groups
resulted in several compounds, however, only Fru-Phe was the one chosen because it
fulfills the criteria: (a) to be present in all Artificial Mature Acacia Honeys and be in low
concentrations or absent in Natural Mature Acacia Honey samples, and (b) to be stable and
easily determined [237].

Reports have pointed out that D-amino acids are formed during heating of aqueous
solutions of L-amino acids in the time course of the non-enzymic browning through
formation of stable Amadori compounds, upon which racemization occurs [263], with the
racemization to be dependent, particularly, on steric hindrance and electronic properties of
the amino acid side chains [236].

4.2.7. Diastase Activity

Heating processes for crystallization prevention and improvement of rheological
properties of honey and elongated storage time result in denaturation of the contained
enzymes as directly calculated by enzyme activities [107,195,264] or by the loss of ability
to inhibit biofilm formation of certain bacteria species during thermal liquefaction of
crystallized honeys [107].

Diastase is the most thermal tolerant among honey enzymes, therefore, its presence is
the criterion of freshness. According to the legislation limits, diastase activity (DN) in honey
in general must be ≥ 8 (Schade scale), except for honeys with low natural enzyme content
(e.g., citrus), where diastase ≥3 which is accompanied by a limit for 5-HMF not exceeding
15 mg/kg in order to ensure that the low DN value does not originate from heating or
elongated storage of honey [77]. Diastase hydrolyzes starch and dextrin to oligosaccharides,
and exhibits activity significantly positively correlated with invertase activity [265]. It
originates from pollen digestion by bees [208] and from nectar (blossom and honeydew),
and therefore is dependent on the botanical origin [264,266]. It is also dependent on the age
of the bees, the nectar harvesting season, the physiological period of the colony, the large
quantity of nectar flow, its sugar content since a high flow of concentrated nectar results in
a decrease in enzyme concentration and pollen consumption [228], and the bee tribe [267]
while low diastase activity occurs in artificial honeybees feeding [59]. Consequently, DN
alone is not an indicative parameter for honey overheating treatment [77].

High heating temperatures decrease diastase content [194,198,268], with up to 40%
reported for the storage of Greek honeys for one year [59]. Chemometrics showed a
negative correlation (p < 0.05) for diastase activity with storage time, storage temperature,
FA, and HMF [194], while the diastase content decreased concomitantly with heating at
higher temperatures [264].

Studies on the effect of heating temperature on the denaturation of diastase have
shown a different behavior of diastase activation towards isothermal or transient patterns
of heating; specifically, after isothermal treatment, diastase activity remained constant,
even increased, for heating periods 600 and 1200 s for each specific temperature [190].
This peculiar behavior has been explained on the basis of the Eyring theory regarding the
enzymatic recovery after the enzyme returns to the native-like state for not succeeding in
overcoming the energy barrier opposed by the isothermal pattern heating [228,269]. Pine
honeydew exhibits higher change-resistance heating followed by citrus, multifloral, thyme,
and cotton honeys. Storage for an elongated time decreases diastase activity in honeys.
Kinetics regarding storage time showed that diastase activity of pre-heated honeys from
different origins were significantly different (p < 0.05) at both the initial and ending storage
time, while the correlation of honey origin with heating exposure period was significant
(p < 0.05) [270].
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4.2.8. Water Content

The water content of honey is dependent on different factors such as the botanical and
geographical origin of nectar [182,202,203,249,271], harvesting season [178], intensity of
nectar flux [36], soil and climatic conditions, bee tribe [199], degree of honey maturation
in the beehive, and practices followed in harvest and extraction [183]. Some properties
of honey such as viscosity, density, crystallization, color, and flavor are influenced by the
water content [246].

However, it is not the water (or moisture M) content but the water activity that is
responsible for the quality and process attributes of honey, since water activity represents
the fraction of water not tightly bound to solids (mostly sugars) contained in honey, which
becomes available for yeasts’ and bacterial growth [203,271]. There is a linear relationship
between water activity and water content [203,271], therefore, it is reliable to use the term
water content /moisture instead. The water content of honey must be kept low, ≤20%,
except for heather ≤23%, as stipulated by the legislation limits [77]. In this line, water
content is deliberately reduced by dehumidification to lower than a 20% level to prevent
fermentation, especially in honeys produced by stingless bees which produce honeys of a
water content higher than the above limits [199].

During the ripening process of honey, the moisture keeps decreasing with the storage
beehive cells to be totally capped with beeswax when the percentage of water in honey is
appropriate [183].

The effect of honeycomb material on water evaporation and the maturation of honey
inside the beehive has been investigated by the replacement of beeswax by a composite
material consisted by 90% paraffin and 10% beeswax, and used along with the pure
beeswax honeycombs within the same beehive [272]. Results showed that the water content
of honeys ripening in the paraffin-based honeycombs was significantly higher than those in
the beeswax honeycombs, negatively influencing the honey ripening. This was attributed
to the hydrophilic character of the function groups of esters and unbound aliphatic alcohols
and acids, and the presence of lipolytic enzymes incorporated into the wax by bees during
comb construction enabling cells that allow for moisture transfer. 1H NMR spectroscopic
data showed that honeys of elevated water content in paraffin combs were accompanied
with a higher concentration of acetic and citric acids [272].

Water content is important for the phase stability of honey, with the ratio G/W to be
proposed for the prediction of honey crystallization [98,245]. Honeydew honeys exerting
a G/W ratio > 1.7 are prone to crystallization compared to blossom honeys possessing a
ratio between 1.17 to 1.27 that make them vulnerable to granulate [271].

Water activity is increased during the crystallization of stored honey, because reduc-
tion in the water molecules bound to glucose occurs, from five in liquid to one in the
crystalline phase, releasing water and causing the liquid phase to become less concentrated,
in consequence, leading to an increase in the water activity [107,205,243,244]. On the con-
trary, thermal liquefaction of honey results in a decrease in water activity of honey [107].
Moisture exerted high discriminant power for the differentiation of honeys of different
origin based on the storage period and botanical origin after they were first liquefied at
40 ◦C/60 min, and afterwards when stored at 14 ◦C for 60 and 180 days [243]. Significant
differences (p < 0.001) have been reported for the water content of honeys of three differ-
ent phases to follow the order: crystallized > bi-phase > liquid, at each different storage
temperature [247].

Results derived from this bibliographic search shows that experimental data give a
wealth of information containing hidden trends and correlations among variables that
cannot been realized with other ways than chemometrics [273]. Spectroscopic methods,
most commonly NMR and FTIR, and chromatography, providing the chemical fingerprint
of honey are ideal to be utilized for honey chemometrics [273]. Although NMR spectroscopy
has not been extensively used for honey processing and storage, the FTIR spectroscopy
is currently the most common data platform for application chemometrics for quality
control as well for exploring the maturation, the aging, and the degradation of honey
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versus processing methods and storage conditions towards quality control the preservation
and/or the improvement of honey quality. In this way, it is possible that the useful
information is extracted and separated from the non-useful one, also solving the problem
of spectral noise. As described, honey is a complicated chemical system, with a number
of parameters to influence its quality and safety, even more so since these variables are
strongly correlated to each other through chemical interacting pathways and system in
equilibrium states; therefore, chemometrics, as a method for multivariate data analysis, can
be used for fingerprinting analysis and chemical profiling for honey affected by processing
and storage.

4.3. Chemometrics Used in Recent Studies Related to Honey Quality Analysis during Storage
and Processing

In this part of the review paper, the combination of chemometrics with analytical
techniques mentioning the quality characteristics in honey during processing and storage
are discussed. Specific emphasis is given to the chemometric methods used in each study
and the outcome after their application. A brief presentation of very recent studies available
in literature is shown in Table 3.

Segato et al. (2019) studied how heating treatments may change various physico-
chemical characteristics and color of honey samples in three phases (liquid, bi-phasal, and
crystallized). NIR measurements were taken, and interpretation took place by applying
PCA. Only the first two principal components (PCs) were important. PLS-DA and SVM
have been applied on the NIR data. They worked with a training set and all the remaining
samples formed the blind test. Cross-validation was conducted using a leave-one-out
procedure. The three most important absorbance bands were found to be around 1420,
1905, and 2130 nm. The PCA results showed that neither mild heating nor overheating
resulted in changes of the NIR data of the liquid samples; thus, they were not sensitive to
temperature changes. However, overheating at 55 ◦C for 24 h affected the native conforma-
tion of glucose crystals in bi-phasal samples, and reduction in moisture and an increase
in the HMF content, as well as a strong color change (intense browning) generated. The
highest temperature strongly affected the NIR data of the crystallized and bi-phase honeys.
The importance of chemometrics was underlined again, this time by SVM which showed
that mild heating (39 ◦C for 30 min) did not affect the NIR data making this combination
suitable for pre-treatment analysis if needed [240].

Oroian et al. (2017) studied five different honey species, all from Romania, overall
50 samples of honey. They measured important properties such as pH (3.88–6.39), aw
(0.476–0.603), free acidity (3.40–37.10), MC (14.44–19.80%), EC (109.9–1276.8 µS/cm), ash
content (0.05–0.63%), fructose content (33.64–47.31%), glucose (22.06–38.25%), sucrose
(0–2.71%), as well as fructose and glucose contents sum (66.62–79.94%), etc. Based on LDA,
94% of the samples were correctly classified. Only the first two principal components (PCs)
were important. The samples were grouped in five clusters based on their species, thus by
botanical origin. However, in the meantime, the physico-chemical characteristics that may
change during storage were also discussed. Regarding PCA, conductivity and ash content
were found to be very important factors for the clustering of samples, however, free acidity
and hue angle were not, due to similar species’ origins. The authors supported that pH is a
factor influencing the extraction and storage of honey, as it affects stability, texture, and
shelf life of honey. In addition, more than 20% moisture can speed up the fermentation
reactions during storage [172].
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Olawode et al. (2018) analyzed 10 honey samples based on their pH (3.75–4.38), EC
(99–659 µS/cm), and moisture (14.2–17.7%) and their measurements agreed with quality
limits. In addition, 1H-NMR profiling was measured, and after that PCA and PLS-DA
were applied. The aim of the study was to classify the samples based on botanical or
geographical origins; however, they also discussed processing and storage. Concerning
1H-NMR profiling, the peaks at 8.46 ppm (formic acid) and 9.49 ppm (HMF) were important
in all honey samples. All the honeys contained HMF. The authors confirmed that the HMF
in honey increases due to storage and thermal treatment of honey during processing [29].
D-glucose, D-fructose, maltose, and sucrose profiles were similar for all the honey samples
and did not seem to be important in chemometric analysis. Normalization of the data using
Log 2 transformation and Pareto scaling were used to make the metabolites’ concentration
reasonably normal and more comparable. OPLS-DA supervised chemometric method
was also applied, as it is a powerful tool for data reduction and identification of the most
important spectral points for discrimination of samples. The authors stated that the OPLS-
DA models produced were less complex and more meaningful than PLS-DA. OPLS-DA
may replace PLS-DA, due to its ability to discriminate between variations in the normalized
data that are important for predicting grouping. HCA took place using the centroid option
for the observations, and Euclidean distances were calculated. The HCA dendrogram and
the PLS-DA score plot were both in agreement [29].

Zhao et al. (2018) managed to discriminate overheated honey (industrial treatment)
based on the analysis of amino acid and 5-HMF contents as well as color values after
different thermal treatments. Two categories of honey were used, such as a light-colored
honey (chaste honey) and a dark-colored honey (jujube honey). The authors found out
that the concentrations of most amino acids in honey decreased after heat treatment, and
also 5-HMF and proline in jujube honey, as well as 5-HMF and phenylalanine in chaste
honey [257]. HCA, PCA, and OPLS-DA chemometric methods were applied to study
the similarities and differences of the samples. More particularly, HCA and PCA, so the
non-supervised methods were applied to the data with data mean-centered, UV-scaled, and
log-transformed. A cluster tree was produced after application of HCA by using the group
distance method, thus the distance represents the degree of similarity, based on heating
time and heating temperature of honey samples. OPLS-DA was performed to discriminate
the samples, and mean-centered, Pareto scaled, and log-transformed data were used. The
seven-fold internal cross-validation was used to validate the OPLS-DA models, as well
as permutation tests (20 times). Furthermore, their study may be used for identification
of overheated (ultra-high temperature) processed honey (65 ◦C for 10 h or 80 ◦C for 8 h)
versus moderate thermal conditions [257].

Ismail et al. (2021) used a variety of physico-chemical properties as well as charac-
terization based on ATR-FTIR measurements to distinguish Malaysian honey samples
from different species, dehumidification process, and geographical origins by applying
chemometrics. Dehumidified honey samples were treated by dehydration using a de-
humidifier at a temperature between 35 ◦C and 38 ◦C. Their study was innovative since
no study has investigated the effect of dehumidification on the proline level in honey.
The mean concentration of proline in dehumidified honey samples (14.97 mg kg−1) was
significantly higher than in raw honey samples (5.52 mg kg−1). The conclusion was that
physico-chemical properties, ATR-FTIR, and chemometrics are capable of differentiating
honey samples according to the dehumidification process and geographical origin but not
by species [199].

Regarding chemometric analysis, PCA was used and successfully grouped raw and
dehumidified honey using both physico-chemical properties and FTIR data. The data were
centered to 0 and scaled using a unit variance. For the visualization of results various
techniques were applied, such as 2-D and 3-D score plots, biplot (overlay between 2-D score
plots and loading plots), and eigenvalues plots. The statistical difference was tested using
the unpaired t-test with Welch’s correction for normally distributed data, Mann–Whitney
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U test, and Spearman’s r test for parameters with non-normal distribution. p-values of less
than 0.05 and 0.01 were considered significant [199].

Some honeys found in the local Malaysian market were dehumidified, and this trend
is expected to increase in the future, as the authors stated; their goal was to observe the
differences between raw and dehumidified honey. Twenty-five samples of dehumidified
honey were compared with 49 samples of raw honey of the same species. The dehumidified
group was found to have significantly lower water content (WC), fructose, and sucrose,
however the group possessed significantly higher electrical conductivity (EC), insoluble
matter (IM) content, and proline, as presented in Figure 2A. The parameters pH, free
acidity (FA), glucose, maltose, HMF, and ash content (AC) were similar between raw and
dehumidified samples. A clear separation was observed in the PCA biplot with the raw
samples at the left side of the quadrant while dehumidified samples at the right side, as
shown in Figure 2B.
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Chemometric interpretation of the ATR-FTIR measurements showed that there were
different wavenumbers in the raw honey when compared with the dehumidified stingless
bee honey, as shown in Figure 3. The wavenumbers at 3242 cm−1 due to OH stretching,
2934 cm−1 is related to -CH stretching of carboxylic acids, 1657 cm−1 because of OH
deformation, 1256 and 1040 cm−1 corresponding to the C-O stretch in the COH group and
the C-C stretch in the carbohydrate structure were significantly present in raw samples.
On the other hand, the wavenumbers at 700–978 cm−1 were prominent in dehumidified
samples representing the out-of-plane OH deformation, C=O in-plane deformation, and
vibrations of the CH2 group of L-proline.

Antonova et al. (2021) worked with honey samples to determine adulterations or
changes caused due to thermal treatment. They stated that chemometrics had a significant
role for the ATR-FTIR data interpretation. Three species of raw honey before and after
thermal treatment, for various exposure periods and different temperatures have been
tested. Calibration and validation models produced by chemometric analysis showed that
the most useful region was 800–1500 cm−1 which contained characteristic bands of sugar
transformations. Cross-validation took place based on the train-test-split approach, which
randomly splits the data into a training set and a test set containing 75 and 25% of the
data, respectively [215]. PCA successfully distinguished the samples between manually
thermally treated and raw honey. It was used to initially decrease the huge load of data, so
as to produce a new, smaller set of variables. PCA is not suitable for quantitative studies,
but it is very useful for a general overview of the samples. The authors found that among
the three species, eucalyptus honey changed the most after thermal treatment. As shown in
Figure 4B, thermal processing caused significant changes in the ratio of the intensities of
the bands at 990 cm−1 and 1050 cm−1, which represent fructose and glucose, respectively,
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and the reason could be either the Maillard reaction or sugar changes. As seen in Figure 4A,
thermal treatment for 15 and 120 min at 70 ◦C cannot be separated very well by PCA [215].
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On the other hand, LDA quantitatively discriminated against different conditions of
thermal treatment at 70 ◦C, as presented in Figure 5 left. A confusion matrix was calculated
for validation. In addition, heating at 40 ◦C at different periods is seen in Figure 5 right. Of
course, the lower the heating temperature, the lower the classification that was possible,
but raw honey was still clearly discriminated from heated honey. LDA also proved that
the most important spectral wavenumber for differentiation is approximately at 990 cm−1.
Antonova et al. (2021) stated that ATR-FTIR spectroscopy with chemometric methods
proves a powerful technique as they can detect if heating was due to transport or storage
or the intended adulteration of raw honey [221].

Chen et al. (2014) have studied manually dehydrated raw honey by using synchronous
two-dimensional (2D) NIR correlation spectroscopy. Honey samples were taken from six
different dehydration stages using a drum wind-drying method with the temperature
monitored at 40 ◦C. The second overtone of O–H and N–H groups vibration upon their
H-bonds forming or collapsing due to the interactions between water and solute. Problems
such as baseline shift and overlapping peaks of raw spectra were solved by performing
preprocessing using a chemometric software. The 25-point Savitzky–Golay (SG) quadratic
polynomial smoothing was used, as well as 25-point quadratic polynomial first derivative
to reduce baseline shift and enhance the spectral features. The synchronous 2D correlation
contour maps between 900–1080 nm were obtained from the first derivative spectra of
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chaste honey at different drying stages. The authors concluded that absorption in the
NIR short wave region was much weaker than that in the middle and long wave region
(1100–2500 nm), and it was also overshaded by water absorption. Only the use of advanced
chemometrics can handle that problem as the application enlarges the signal by minimizing
the noise [248].
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Yan et al. (2022) investigated a unique marker (327.1321 Da) that is produced after
thermal heating (dehydration) by using UHPLC-Q-TOF-MS, HRMS, and NMR. N-(1-deoxy-
1-fructosyl) phenylalanine (Fru-Phe) was identified, and it was an Amadori compound.
The concentration of Fru-Phe was almost stable in naturally heated samples for more than
2 years of storage, but it increased in manually heated samples, and this marker can indicate
honey fraud. The PCA method was used to visualize the groups of samples and to check
that the groups were well-separated [262].

Rust et al. (2021) used NIR spectroscopy combined with chemometric analysis for
determining syrup-adulterated honey. The effects of age, storage temperature, syrup
adulteration (10 and 20% w/w), and irradiation treatment were captured, and ANOVA-
simultaneous component analysis (ASCA) was used to treat the data which is a method
combining ANOVA and PCA. Pre-processing by standard normal variate (SNV) was
performed to eliminate unwanted multiplicative effects from the spectra. The proposed
method was successful to detect syrup-adulterated honey [219].

Pasias et al. (2022) tried to determine the optimum conditions for honey storage. To
obtain a non-crystallized product that lasts over a year, samples must be treated by heating
at 72 ◦C or stored at −18 ◦C in order to maintain the same quality (low HMF content, high
diastase activity, and high phenolic content) as with the fresh non-heated samples. PCA
and HCA chemometric methods were applied to cluster the samples, and to distinguish
and confirm the outcomes of the study [240]. Önür et al. (2018) assessed three methods
of processing in honey, such as thermal, ultrasound (US), and high hydrostatic pressure
(HHP) processing on the liquefaction of honey. US generated rapid dissolution of crystals.
HHP gave shorter liquefaction times, as well as relatively lower HMF formation observed
with HHP treatments. Chemometric analysis took place via the PCA method, and the
contribution was in explaining the importance and the relation among various factors
especially in the case of ultrasonication variables which were interrelated [112]. Scripcă
and Amariei (2021) also used PCA to study the correlations between the honey types and
the sugars, color parameters, and texture parameters. The PCA method was also important
to see the variation and to finalize the main principle components [115].

5. Conclusions

Dewatering/dehumidification and thermal treatments, together with storage, are the
most important stages of honey processing. They influence honey composition such as the
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concentration of sugars, organic acids, amino acids, and the content of HMF and phenolics,
physico-chemical characteristics such as the free acidity and diastase activity, water content
or processes such as the honey crystallization and melting. Honey composition and the
physico-chemical parameters undergo significant changes through chemical and enzymatic
reactions that take place and subsequently the changes in chemical and physical structures
may affect its quality.

Chemometric analysis is a useful and necessary approach, as well as an alternative
way of handling experimental data. Validation increases the robustness of chemometric
models to underline the quality of chemometric studies. Without using chemometrics, the
results of the studies would not be possible to be drawn, thus the use of chemometrics
seems crucial. Between 2014 and 2022, the growing number of research papers which use
chemometrics in analyzing honey samples shows its current importance and effectiveness
in the honey industry. The main reasons justifying the increasing demand for chemometrics
are initially to interpret the huge quantities of measurements obtained by the analytical
methods, and after this, the visualization of samples in groups for the unsupervised
methods. Moreover, chemometrics are used to clarify the reason for grouping by identifying
a marker responsible for grouping the samples. In addition, it enables prediction for a
possible classification of unknown samples for the supervised methods. The research
potential of chemometrics seems to be very positive. The application of chemometrics on
honey composition/physico-chemical parameters alternations has become a valuable tool
for revealing trends and patterns hidden in data based on which processing/storage affect
honey quality. Chemometrics enable the explanation and understanding of the meaning of
the numbers, in order to optimize quality control and safety protection leading to a better
service to society, both to the industry performance and to consumers by ensuring high
quality products.
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106. Aydoğan Coşkun, B.; Coklar, H.; Akbulut, M. Effect of heat treatment for liquefaction and pasteurization on antioxidant activity
and phenolic compounds of Astragalus and sunflower-cornflower honeys. Food Sci. Technol. 2019, 40, 629–634. [CrossRef]

107. Villacrés-Granda, I.; Proaño, A.; Coello, D.; Debut, A.; Vizuete, K.; Ballesteros, I.; Granda-Albuja, G.; Rosero-Mayanquer, H.;
Battino, M.; Giampieri, F.; et al. Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against
multiresistant human pathogens of crystallized eucalyptus honey. Food Chem. 2021, 365, 130519. [CrossRef]

108. Kowalski, S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave
processing. Food Chem. 2013, 141, 1378–1382. [CrossRef]

109. Kabbani, D.; Sepulcre, F.; Wedekind, J. Ultrasound-assisted liquefaction of rosemary honey: Influence on rheology and crystal
content. J. Food Eng. 2011, 107, 173–178. [CrossRef]

110. Akhmazillah, M.F.N.; Farid, M.M.; Silva, F.V.M. High pressure processing (HPP) of honey for the improvement of nutritional
value. Innov. Food Sci. Emerg. Technol. 2013, 20, 59–63. [CrossRef]

111. Quintero-Lira, A.; Ángeles Santos, A.; Aguirre-Álvarez, G.; Reyes-Munguía, A.; Almaraz-Buendía, I.; Campos-Montiel, R.G.
Effects of liquefying crystallized honey by ultrasound on crystal size, 5-hydroxymethylfurfural, colour, phenolic compounds and
antioxidant activity. Eur. Food Res. Technol. 2017, 243, 619–626. [CrossRef]
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Abstract: Adulteration and fraud are amongst the wrong practices followed nowadays due to the attitude
of some people to gain more money or their tendency to mislead consumers. Obviously, the industry
follows stringent controls and methodologies in order to protect consumers as well as the origin of
the food products, and investment in these technologies is highly critical. In this context, chemometric
techniques proved to be very efficient in detecting and even quantifying the number of substances used
as adulterants. The extraction of relevant information from different kinds of data is a crucial feature to
achieve this aim. However, these techniques are not always used properly. In fact, training is important
along with investment in these technologies in order to cope effectively and not only reduce fraud but
also advertise the geographical origin of the various food and drink products. The aim of this paper is
to present an overview of the different chemometric techniques (from clustering to classification and
regression applied to several analytical data) along with spectroscopy, chromatography, electrochemical
sensors, and other on-site detection devices in the battle against milk adulteration. Moreover, the steps
which should be followed to develop a chemometric model to face adulteration issues are carefully
presented with the required critical discussion.

Keywords: fraud; authentication; dairy; clustering; classification; regression; validation

1. Introduction

Milk and milk products provide the human body with valuable nutritional compo-
nents such as proteins, carbohydrates, vitamins, minerals, organic acids, and fat [1,2].
Milk’s high protein content has attracted many consumers, making it a popular nutri-
tional commodity [3]. The increasing consumption of milk and dairy products leads to
many cases of adulteration [4,5]. A range of possible milk adulterants is described by
Nascimento et al. [4].

The prices of milk differ primarily depending on the type of animal from which they
come, whereas its availability is significantly affected by the season. These two factors are
enough to cause problems in its market, as practices of replacing it with cheaper milk are
common [6]. Goat’s milk shows a nutritional profile superior to that of cows, as a result of
which it is a priority for consumers not only in traditional dairy products such as cheese and
yogurt, but also in liquid form. Its low production combined with its beneficial nutritional
content makes this category of milk an attractive target for adulteration. Goat’s milk is
easily mixed with water, whey as well as cow’s milk which is much cheaper. The latest
fraud is increasingly worrying people because of their sensitivity to lactose and the allergic
disorders that can be caused by cow’s milk proteins [7]. An equally important adulteration
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is related to the substitution of goat’s milk with sheep’s milk. In this case, the lower price
of goat’s milk compared to sheep’s milk pushes the producers to this adulteration [6].

Fraud in milk production is carried out by admixture or substitution of inferior
substances and sometimes dangerous products. The economically motivated adulteration
(EMA) is the most important, aiming to gain profit by the addition of extraneous water,
glucose or other sugars, non-dairy proteins such as soybean and pea protein isolates [8],
various substances such as melamine, urea, maltodextrin, cheese whey (a byproduct of
cheese production) [9], hypochlorite, dichromate, salicylic acid [10], and reconstituted milk
powders to correct protein and/or density values [11]. A famous case of adulteration was
recorded in China in 2013 when the substance melamine was detected in milk powder
in infant milk products, which was added to increase the apparent protein content, with
dramatic consequences for public health [12].

The deliberate addition of formaldehyde to raw milk is also illegal and considered a
major adulteration, which aims to increase the shelf life of milk at room temperature. High
moisture content is responsible for the rapid spoilage of milk. Therefore, formaldehyde
provides preservative and antiseptic properties, and the ability to improve the appearance
including the smell of milk. Furthermore, formaldehyde is toxic at low concentrations and
is classified as a human carcinogen by the International Agency for Research on Cancer
(IARC) [12,13].

Another form of adulteration is the replacement of milk fat with vegetable fats of lower
economic value [14]. Among others, soybean oil has been mentioned in the adulteration of
milk [15]. In addition, the recent EU regulations for foods designated as PDO (protected
designation of origin), PGI (protected geographical indication), and TSG (traditional spe-
cialty guaranteed) require the inclusion on the label of the geographical origin of food.
In the case of dairy products such as cheeses produced in a defined area with specific
physicochemical and sensorial features, their geographical origin is put forward as an
important indication [16].

Chemometrics plays a dominant role in the field of food adulteration as it relates
a multitude of chemical analytical characteristics to the qualitative and quantitative
analysis of food [17]. Deriving a fingerprint of each sample and reflecting its complex
chemical composition could be a way to solve such difficult analytical tasks. Then,
chemometric techniques can be used to develop classification models to classify samples
into authentic/adulterated ones, or regression models aiming at quantifying a specific
adulterant [8,18–21]. In this direction, both specific and non-specific fingerprinting can
be implemented. Specific chemical analysis is based on the detection of organic species,
mainly achieved by chromatographic techniques.

The non-specific fingerprinting approach relies on the implementation of instrumental
methods to obtain a multivariate description of the chemical composition of the sam-
ple. These non-specific fingerprints can be obtained by different methodologies such as
Fourier transform infrared spectroscopy (FT-IR), mid-infrared spectroscopy (MIR), Raman
spectrometry, nuclear magnetic resonance (NMR), or mass spectrometry [22]. All these
methodologies have been used in studies, which are relevant to authenticity and chemo-
metrics in milk and dairy products [23–25]. In addition, near-infrared (NIR) spectroscopy
has been used by several researchers to detect various forms of adulteration in both cow’s
milk and cow’s milk products [26–28].

Vibrational spectroscopic techniques are rapid, low-cost, and non-destructive tests
that require only limited training for processing. Results are evaluated using chemometric
models to extract meaningful information that distinguishes different and significant groups
by removing redundant data [29].

Data processing can be completed by principal component analysis (PCA) since it
is amongst the most fundamental methods for multivariate data exploration [18]. PCA
has been used along with other methodologies to help to differentiate fresh milk and
reconstituted skim milk powder samples [11].
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kNN (k-nearest neighbor), PLS-DA (partial least squares-discriminant analysis), and
SIMCA (soft independent modeling of class analogy) are the most popular classification
methods [30]. kNN and PLS-DA have been used for the detection of various types of
adulteration, such as water, urea, cow’s whey, and cow’s milk in goat’s milk samples [31].
SIMCA could also be employed to model the class of fresh types of milk. When address-
ing a specific adulterant quantification, the goal could be achieved by means of partial
least squares (PLS) regression analysis, as demonstrated for the prediction of fresh milk
adulteration with reconstituted skim milk powders [11].

Finally, in order to validate a chemometric approach, a sampling strategy should be
followed taking into account the size and the representativeness of the sample along with
intrinsic variability [32]. Sampling is closely associated with robustness and reliability. Other
key parameters of authenticity and fraud not to be ignored are the heterogeneity of a food
matrix and the presence of an undeclared substance to the geographical origin discrimination.

In this framework, the aim of this work is to give an overview of the recent applica-
tion of different chemometric techniques—from clustering to classification and regression
applied—to several analytical data—encompassing spectroscopy, chromatography, and
electrochemical sensors—to fight milk adulteration. Further, a critical discussion is pre-
sented to schematize the steps which should be followed to develop a chemometric model
to face adulteration issues.

2. Chemometric Approaches
2.1. Clustering

The definition of “cluster analysis” or “clustering” encompasses the techniques which
split a set of samples (observations) into several groups or clusters. The outcome is usu-
ally represented as a vector of data, or a point (scatter) in a multidimensional space [33].
Clustering falls in the general category of unsupervised pattern recognition and numerical
and mathematical taxonomy [33,34]. Natural grouping of data takes place based on some
inherent similarity, as clustering is performed without any group labels, and this justifies
the unsupervised pattern recognition [33,35]. Furthermore, it takes place based on simi-
larities of the samples within the same group and others in different groups. Therefore,
homogeneity is dominant within the same groups [34]. In practice, the most common
approach to define similarity is the distance among the patterns; by lowering the distance
(e.g., Euclidean distance which is a well-used dissimilarity measure) between the two
objects, higher similarity and vice versa will be obtained [35,36].

Clustering is a valuable component of data analysis or machine learning-based ap-
plications such as regression, prediction, data mining, etc. [35]. Saxena et al. (2017) [35]
stated that there are various ways to categorize clustering methods because it is difficult
to define a cluster. In their paper, they suggested division into two different groups such
as hierarchical and partitioning techniques, or in three categories based on application,
density-based methods, model-based methods, and grid-based methods.

Hierarchical methods initially group the objects into small clusters of some samples,
and these are next grouped into larger clusters, thus a dendrogram is produced, which
is a tree-based depiction of each observation [36]. Optimization- partitioning methods
split the samples into a few groups to optimize a particular feature e.g., total within-group
distances. In this category, algorithms like k-means clustering, Fuzzy c-means clustering,
etc., are included [33–35]. Density-based clustering is focused on the probability that data
objects are drawn from a specific probability distribution and the overall distribution of
the data is assumed to be a mixture of several distributions. Data points can be derived
from different types of density functions (e.g., multivariate Gaussian or t-distribution),
or from the same families but with different parameters. Model-based clustering works
by detecting feature details for each cluster, where each cluster represents a concept or
class. Decision trees and neural networks are the two most frequently used methods in this
category. Grid-based clustering divides the space into a finite number of cells that make a
grid structure on which all the operations for clustering are performed [35].
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Recently, many evaluation criteria have been developed, and these are internal and
external. Internal quality parameters include the sum of squared error, scatter criteria,
Condorcet’s criterion, the C-criterion, category utility metrics, and edge cut metrics. Ex-
ternal quality criteria are related to the mutual information-based measure, Rand index,
F-measure, Jaccard index, Fowlkes–Mallows index, and confusion matrix [35].

Clustering is applied to perform data reduction or compression for handling huge
loads of data. It helps in compressing data information by grouping them into different
sets of clusters. This helps us to choose what is useful or not by saving time from data
processing along with data reduction [35]. Other uses contain data mining, document
retrieval, image segmentation, and pattern classification [33].

In order to explore the use and development of clustering methods recently, Table 1
has been prepared to summarize the studies related to milk adulteration and authenticity.

Table 1. Recent studies (2015–2021) related to milk adulteration and authenticity in combination with
clustering analysis.

Type of Milk Target Analytical
Method(s)

Clustering
Method Approach Reference

Milk adulteration

Cow’s, sheep’s, and
water buffalo’s origin

milk

Adulteration from
different species’ origin

milk
FTIR HCA method [37]

Bovine milk Adulteration with urea EIS HCA Euclidean
distance [36]

UTH milk samples
(skimmed and

semi-skimmed) and raw
milk

Adulteration with cheese
whey, based on
quantification of

caseinomacropeptide

FTIR-ATR HCA

Euclidean
distance and

Ward’s
method

[38]

Cow milk Adulteration with
melamine and urea

Electrochemical
biosensor HCA Ward’s

method [39]

Bovine milk
Adulteration with

formaldehyde, based on
aldehydes and ketones

Colorimetric sensor
array HCA - [40]

UHT whole bovine milk
and UHT goat milk

Adulteration with
soymilk in bovine and
goat milk, as well as

bovine milk in goat milk.

NMR CA

The
minimum
distance
method

[41]

Raw cow milk

Adulteration with
Sodium Salicylate,

Dextrose, Hydrogen
Peroxide, Ammonium

Sulphate

Sensor system
k-means

clustering
algorithm

- [42]

Milk authentication

Powder and liquid milk Type of milk based on
metal profiles ICP-OES HCA

Euclidean
distance and

Ward’s
method

[43]

Organic and
conventional milk

Type of milk (organic vs.
conventional) based on
organic status and trace

element content

ICP-MS HCA

Euclidean
distance and

Ward’s
method

[44]

Malaysian vs. milk from
other countries

Geographical origin,
based on metal content ICP-MS HCA Ward’s

method [45]
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Table 1. Cont.

Type of Milk Target Analytical
Method(s)

Clustering
Method Approach Reference

-
Geographical origin,
isotope ratios, metals,

and fatty acids

CF-IRMS (δ 18O),
EA-IRMS (δ 13C and

δ15N), GC (fatty
acids), ICP-OES (Na,
K, Mn, P, Zn, Ca, Fe,

and Mg), and ICP-MS
(other metals)

HCA - [46]

Cow milk
Geographical origin,

based on stable isotope
ratios

IRMS and CRDS HCA - [47]

Raw milk
Geographical origin,

based on stable isotope
ratios and metal content

IRMS and ICP-MS

HCA and
k-means

clustering
algorithm

HCA:
Euclidean

distance and
Ward’s
method

K means: 200
iterations and

25 random
starting
points

[48]

Cow, goat, camel,
donkey, and yak milk

Species recognition
based on sn-2 and sn-1,3
fatty acid composition

and sterols

GC, GC-MS HCA - [49]

Fresh buffalo, bovine,
and donkey milk as well

as processed milk
samples (pasteurized
and dried skimmed

powder)

Species recognition
based on amino acids,
non-amino acids, and

citric acid cycle
metabolites

GC-MS HCA

Euclidean
distance and

Ward’s
method

[50]

Reconstituted milk vs.
UHT milk

Different content of
peptides, lipids, and

nucleic acids

UPLC–Q-TOF-MS
combined with
UPLC–MS/MS

HCA - [51]

Cow milk

Fat globule
characteristics (diameter,
membrane surface, and
yield), fat, protein, fatty
acids, calcium content

IR (fat, protein, and
lactose contents), GC

(fatty acids
composition), atomic

absorption
spectrophotometry
(calcium content)

HCA Euclidean
distance [52]

Cow, goat, buffalo, and
camel milk

Different seasons of milk
collection, based on
sterols in milk fat of

different species’ origin
of milk

GC–MS-SIM HCA Euclidean
distance [53]

Abbreviations: CA = cluster analysis, CF-IRMS = continuous flow-isotope ratio mass spectrometer, CRDS = cav-
ity ring-down spectroscopy, EA-IRMS = element analysis-isotope mass spectrometry, EIS = electrochemi-
cal impedance spectroscopy, FCM = fuzzy c-means, FTIR-ATR = Fourier transform infrared-attenuated to-
tal reflection, FTIR = Fourier transform infrared spectroscopy, GC = gas chromatography, GC-MS = gas
chromatography-mass spectrometry, GC-MS-SIM = gas chromatography-mass spectrometry-single ion moni-
toring mode, HCA = hierarchical cluster analysis, ICP-MS = inductively coupled plasma mass spectrometry,
ICP-OES = inductively coupled plasma emission spectroscopy, IR = infrared, IRMS = isotopic ratio mass
spectrometry, UHT = ultra-high temperature, UPLC–MS/MS = UPLC–tandem mass spectrometry, UPLC–Q-
TOF-MS = ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

51



Foods 2023, 12, 139

Regarding milk adulteration studies, Cirak et al. [37] focused on determining milk
species adulteration by using FTIR. HCA was conducted based on Ward’s algorithm after
having calculated the initial derivate by using a standard method. The produced 2D-
dendrogram indicated that the types of origins (sheep, cow, and water buffalo origin, and
adulterated samples in binary mixtures) were clustered correctly. Minetto et al. [36] applied
HCA to detect urea in raw bovine milk samples, and the Euclidean distance was used to
build the dendrogram. HCA helped them to find the more appropriate number of clusters
which was used later in the classification of the samples. Vinciguerra et al. [38] used HCA
as an exploratory treatment on the pre-processed measurements obtained by FTIR-ATR.
By using both the Euclidean distance and Ward’s method, a dendrogram was generated,
however no pattern related to the caseinomacropeptide concentration was observed in
the dendrogram, and multivariate regression was followed. Qualitatively, the adulterated
groups with caseinomacropeptide were separated correctly in 3 groups: raw milk, skimmed
milk, and semi-skimmed milk. Adulteration with melamine and urea in cow’s milk was
also studied by Ezhilan et al. [39], who developed an electrochemical biosensor to detect the
two adulterants simultaneously. HCA application was useful to study the interrelationship
of the factors affecting the model for measurements taken by using various combinations of
concentrations of the adulterants. Mostafapour et al. (2021) [40] used a colorimetric array
device. The authors commented that even if there are differences in the colorimetric schemes
of the analytes, it is not a proper manner to group the samples after visual examination,
thus chemometrics is used to perform the clustering. The HCA dendrograms showed
highly accurate clustering of the studied carbonyl compounds, particularly eight different
aldehydes and ketones. In addition, HCA showed that one sample from formaldehyde
and one sample from acetophenone has been misclassified. Li et al. [41] used NMR to
detect the metabolites as markers of different milk types. Clustering analysis (CA) was
very useful as it provided similarities for the same species of milk as well as variations
in different milk species by applying the minimum distance method. CA also separated
the three milk types and showed that NMR and metabolites can differentiate these milk
products. Sowmya et al. [42] during the pre-processing steps applied cluster analysis, i.e.,
the k-means clustering algorithm. The algorithm proceeded by calculating the centroid
point of the dataset and the groups’ mean points to build the new groups required. The
aim was to see the grouping of samples, to identify the similarities in the same categories,
and to check if the adulterants can be clustered by using raw spectra. Intraclass variation
was performed.

Regarding milk authenticity, Souza et al. [43] studied the metal profile of powder and
liquid milk samples to differentiate them based on the type of milk. HCA successfully
confirmed the initial outcome of PCA, and it allows the visualization of a sample’s trend to
form two groups. Whole cow powder milk, whole goat powder milk, skimmed cow powder
milk, and milk compounds powder fell in the first group due to their similar composition.
A sample from the last group clustered at a longer distance from its group due to the high
content of Zn. The second group consisted of whole and skimmed cow liquid milk and some
yogurts. Rodriguez-Bermudez et al. [44] by applying HCA revealed a correct clustering
based on the type of milk, organic vs. conventional. It was obvious that the variables
(metal content) in both the organic and conventional sets were distinct. To determine the
geographical origin, Zain et al. [45] measured the metal content of milk samples and due
to different environmental conditions, and the samples clustered successfully by HCA.
Ca, Na, Fe, Zn, Mn, K, Ba, and Mg are the metals that were significant for the samples’
grouping regarding geographical origin. Xu et al. [46] worked also in terms of geographical
origin by measuring isotope ratios, metals, and fatty acids and then by applying HCA. δ18O
measurements were taken by having the milk in the fluid state, but for δ13C, δ15N, and
elemental and fatty acid measurements lyophilization took place. HCA aided to picture
the correlation between the sample and each variable as HCA heatmaps were created.
In addition, geographical origin was the target of Amenzou et al. [47], who studied the
13C/12C, 15N/14N, 18O/16O. The application of HCA was very important to visualize the
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samples in 3 important clusters. The stable isotope ratios analysis in combination with
chemometrics showed a very good capability to indicate the geographical origin of milk. In
a similar study, Podkolzin and Solovev [48] used HCA and the k-mean clustering algorithm
and both methods showed an equal number of clusters with almost the same content.
Karrar et al. [49] used HCA to evaluate the similarity in terms of sn-2 and sn-3 fatty acids
in different milk-origin samples. HCA heatmaps were produced to present the content
of sn-2 and sn-3 fatty acids in the samples. Bhumireddy et al. [50] applied HCA to group
the samples based on intrinsic similarities in their GC-MS measurements. HCA heatmaps
were produced using the log-transformed and normalized values of the relative abundance
of 17 amino acids, and their high and low expressions in each sample were presented
with different colors. Tan et al. [51] employed HCA to proceed to the clustering of the
different biomarkers (peptides, lipids, and nucleic acids) and to demonstrate the chemical
properties of the important metabolites. It must be also noted that the results indicated
that the processing that takes place to produce milk powders influences the nutritional loss
of peptides and lipids. HCA heatmaps showed that nutritional components were found
to be in lower concentrations in reconstituted milk compared to ultra-high-temperature
milk. Couvreur and Hurtaud [52] studied the parameters of fat globule characteristics
(diameter, membrane surface, and yield), fat, protein, fatty acids, and calcium content in
milk concerning diet composition, milking frequency, breed, stage of lactation, parity and
residual/cisternal milk. Based on the principal components of PCA, HCA was performed
which indicated 4 independent clusters of milk. A minor relationship was observed
between fat content and fat globule diameter in milk, especially for the Normandy breed at
the very end of the lactation. Dhankhar et al. [53] proposed a method to study the influence
of season on the variability of sterols in different species’ origins. Buffalo milk has a very
different sterol profile compared to other animal species. In addition, seasonal variation
affected especially cholesterol content compared to other minor sterols, and winter milk
had a lower level of cholesterol compared to other seasons. The authors commented that
the variation based on season was not able to be satisfactorily explained by PCA. However,
HCA correctly grouped the 4 species of animals into 4 clusters by the sterol content. Squared
Euclidean distance between objects was applied in HCA, to give the natural grouping of
samples. The HCA dendrogram allowed the visualization of the similarity or dissimilarity
of the measurements in 2D.

As can be observed, HCA is the main representative of the clustering methods. It
is also important to note that after CA, most of the studies presented above proceeded
to classification and/or regression analysis, which are presented in the next sections of
this paper. Overall, in the aforementioned-studies, CA was used as a step to visualize the
samples in clusters and to understand the interrelationships of the samples’ datasets, before
proceeding to supervised methods.

2.2. Classification

The capability to assign an object to a class on the basis of its characteristics belongs to
the pattern recognition field. There are many methods to classify objects and one of the
applications of chemometrics is the classification of objects in groups depending on their
characteristics expressed as results of a set of measurements [54]. Classification methods
could be distinguished into “discriminant” and “class-modeling” techniques (Table 2).

In the first case, the technique tries to discriminate among the object’s groups di-
viding the model hyperspace into several regions equal to the number of classes and
assigning each object to a specific region of the hyperspace on the base of its characteris-
tics. In this way, each sample may belong to just one class. In the case of class modeling
instead, the technique tries to model the analogies between objects of a class rather than
observe the differences. So, each group of objects is modeled separately, and, at the end,
an object could be assigned to one or more classes, or rejected as non-included in none of
the classes (Figure 1).
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Table 2. Main classification methods cited.

Classification Method Extended Name Abbreviation

Discriminant

Partial least squares-discriminant analysis PLS-DA
Orthogonal partial least squares-discriminant analysis OPLS-DA
One class-partial least squares OC-PLS
Quadratic discriminant analysis QDA
Random forest RF
Support vector machine SVM
Linear discriminant analysis LDA
k-nearest neighbors kNN
Extreme learning machine ELM
Ensemble of extreme learning machine EELM

Class-modeling
Soft independent modeling of class analogy SIMCA
Data-driven soft independent modeling of class analogy DD-SIMCA
Unequal class models UNEQ
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Figure 1. Example of difference between discriminant (a) modeling and (b) classification methods. In
(a) the hyperspace is divided into regions equal to the category number.

In the discriminant classification, some methods may be counted: kNN, PLS-DA, LDA,
and QDA. Instead, class-modeling techniques may be included: SIMCA, DD-SIMCA, and
UNEQ [55].

Describing the details of all classification methods is out of the scope of this work,
and here we will consider only the most used techniques (discriminant or class-modeling)
applied to the milk and dairy product classification in milk adulteration in the last years.

A basic distinction between supervised and unsupervised classification techniques
will be maintained. Supervised classification methods require some knowledge “a priori”
of the classes and the method to assign or not assign samples to a certain class; in contrast,
the unsupervised methods just classify samples on the base of their characteristics [56].

In recent years, the number of studies that use chemometrics to properly elaborate and
interpret analytical results is largely increasing. The power of the chemometric technique
is evident in all the cases where the output of an instrumental analytical technique is a
spectrum, like in visible and/or infrared spectroscopy (VIS, VIS-NIRS, NIRS), nuclear
magnetic resonance (NMR), or spectrometry (CG-MS, LC-MS).

Regarding classification used in milk adulteration, in the last five years, there have
been several examples that used chemometrics and in Table 3 some relevant examples have
been reported.
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The use of chemometrics on instrumental data requires some preliminary steps, like
data pre-processing or data dimension reduction. A short illustration of these steps has
been reported below. In general, the application of a specific classification technique in
place of another one depends on the data structure. In some cases, using one method rather
than another one leads to the same results; in others, the application of a specific method
could improve classification efficiency.

The classification statistical techniques most used in the last years for milk applications
were PLS-DA as a pure classification technique and SIMCA as a class-modeling approach.
Kamboj [57], for example, used PLS-DA to detect water adulteration in milk from NIRS
spectra. Chung [58], working on isotope ratio data, used OPLS-DA to perform classification.
The paper did not extensively explain the reason for this choice. Jin [59] used the least
squares support vector machine (LS-SVM) for qualitative analysis of adulterated milk
identification using 2D autocorrelation spectroscopic data. Karunathilaka [60] used Raman
spectroscopy data from two different instruments and SIMCA for not-target classification to
detect milk powder adulteration. Galvan [61], on data coming from low-cost spectroscopic
devices (NIR and energy dispersive X-ray fluorescence—EDXRF), used more than one
technique: PLS-DA for the EDXRF data and C-support vector classification (C-SVC) for
NIR data. In the end, they concluded that DD-SIMCA was more useful to classify the
samples with good accuracy (98.9%). Other two interesting uses of PLS-DA applied to NIR
data were conducted by Ejeahalaka et al. [62] on cow’s milk and by Di Donato et al. [63]
on donkey’s milk. DD-SIMCA is a one-class classification algorithm proposed in 2017 by
Zontov [64]. The algorithm in the first phase is similar to the SIMCA algorithm, with a
preliminary PCA. Then the PCA results were used to calculate the orthogonal distance and
score distance for each object. These distances were then used to individuate a threshold
limit value of the classification area. New samples were then classified in the orthogonal vs.
score plot and assigned to the class when under the acceptance area defined for a given
alpha value. Wang [65] evaluated four different classification methods (RF, LDA, SVM,
and kNN) when dealing with milk authentication by infrared spectroscopy. To evaluate
the best algorithm, the means of precision, accuracy, recall (true positive divided by the
sum of true positive and false negative), and another parameter F1 (that together evaluate
precision and recall) were calculated for each performance evaluation of all classes and
for every classifier. The results indicate that RF had the best performance. In a work
about image analysis [66] applied to recognize goat’s milk (as a target class) from other
milk species adulterants, two methods were tested: OC-PLS and DD-SIMCA. In this case,
OC-PLS was not recommended and DD-SIMCA was preferred. Chen [67] used ELM
and extreme ELM (EELM) to classify six types of milk of different brands analyzed by
NIRS. ELM is a regression and classification algorithm. It is simple and efficient and
extremely fast. Vargas [56] applied PLS on the voltammetric characterization of fresh cow’s
milk and from milk powder, using as Y the percentage of adulteration with reconstituted
milk. Potocnik [68] in his paper used DA and OPLS-DA to elaborate data from isotopic
ratios on types of milk to verify their geographical origins. Similarly, Xie [69] performed
similar work on geographical discrimination of milk from Mongolia using isotope ratio,
elements, and amino acids composition. In this paper, the chemometric analysis was
performed with OPLS-DA. Tommasini [70], again using NMR, in this case, to classify
the breed of cow, used PLS-DA analysis to distinguish between milk from different cow
breeds, Friesian vs. autochthonous. PLS-DA and OPLS-DA, together with HCA and RF,
were also cited by Sundelkide [71] to elaborate on the NMR spectra acquired in order to
underline the importance and potentiality of the milk metabolomics studies. Segato et al.
also used NMR to discriminate the metabolic profiles of different pasture-based alpine
Asiago PDO cheeses [72]. To conclude the NMR overview, Yanibada [73] reported the
application of OPLS-DA, preceded by an explorative PCA, to classify two groups of cows
by NMR metabolomics. In Table 3 a synthesis of the more relevant papers identified has
been reported.
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To summarize, excluding PCA (mainly used to preliminarily study the problem),
PLS-DA and OPLS-DA were the most used methods for classification in the recent papers
on milk classification. The second most used have been SIMCA and DD-SIMCA, followed
by many other various methods. The use of some classification techniques more than
others could be attributed to different reasons: PLS-DA and OPLS-DA, the more used in
the reviewed articles, are more known compared to some other more specific methods. The
main reason for their popularity is probably linked to the fact that they are implemented in
a lot of user-friendly commercial software, mainly used by non-expert users. It is advisable
to use PLS-DA in place of LDA when the number of variables is higher than the number of
samples and when the predictors are correlated. When classes are not balanced (i.e., the
number of samples for each class is very different), better results are often obtained by class-
modeling techniques, such as SIMCA. The choice of the proper classification method should
also be influenced by their parametric or non-parametric nature: the former, such as LDA,
assumes that the data follow a particular statistical distribution, so the model calculation
becomes the calculation of the parameters of these distributions. The disadvantage of
parametric techniques is that they can lead to big mistakes when starting assumptions
fail to be verified. The advantage is that they make it easier to obtain the probability of
obtaining a correct classification. On the other hand, non-parametric methods do not
explicitly assume no statistical distribution (e.g., SIMCA, kNN, etc.).

Table 3. Recent studies (since 2018) involving classification methods related to milk adulteration.

Type of Milk Target Analytical Method(s) Classification
Method(s) Reference

Cow Classification NIRS EELM Chen [67]

Cow Organic milk
geographical indication Isotope ratio OPLS-DA Chung [58]

Cow Authenticity NMR CDA Segato [72]

Goat Adulteration detection Image analysis OC-Classifier, OC-PLS,
DD-SIMCA dos Santos Pereira [66]

Cow Quality Chemical analysis, NIRS PCA, SIMCA, PLS-DA Ejeahalaka [62]

Various Authenticity NIRS, EDXRF DD-SIMCA, PLS-DA,
C-SVC Galvan [61]

Cow Adulteration IR LS-SVM Jin [59]

Cow Adulteration NIRS PCA, PLS Kamboj [57]

Milk powder Adulteration Raman PCA, SIMCA Karunathilaka [60]

Cow Geographical origin Isotope ratio ANOVA, DA, OPLS-DA,
DD-SIMCA Potočnik [68]

Cow Authentication Chemical analysis PCA, OPLS-DA Vargas [56]

Cow Authentication FTIR PCA, kNN, SVM, RF,
LDA Wang [65]

Cow Traceability Chemical analysis,
isotope ratio, PCA, OPLS-DA Xie [69]

Cow Quality, breed
classification NMR PLS, PLS-DA Tomassini [70]
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Table 3. Cont.

Type of Milk Target Analytical Method(s) Classification
Method(s) Reference

Cow Quality NMR PCA, PLS-DA, OPLS-DA,
HCA, RF Sundekilde [71]

Cow Quality NMR PCA, OPLS-DA Yanibada [73]

Donkey Authentication NIRS PLS-DA, VSN, ASCA Di Donato [63]

Abbreviations: ANOVA = analysis of variance, ASCA = ANOVA simultaneous component analysis,
CDA = canonical discriminant analysis, C-SVC = C-classification support vector classifier, DA = discriminant
analysis, DD-SIMCA = data-driven soft independent modeling of class analogy, EELM = ensemble of extreme
learning machine, HCA = hierarchical cluster analysis, k-NN = k-nearest neighbors, LS-SVM = least squares
support vector machine, LDA = linear discriminant analysis, OC = one-class classifier, OC-PLS = one-class
partial least Squares, OPLS-DA = orthogonal partial least squares-discriminant analysis, PCA = principal com-
ponent analysis, PLS = partial least squares, PLS-DA = partial least squares-discriminant analysis, RF = random
forest, SVM = support vector machine, VSN = variable sorting for normalization.

2.3. Regression

Multivariate regression is widely used to quantify the concentration of adulterants in
food matrices. In Table 4, the papers presented for this review in the last five years, with
reference to regression methods, are listed.

The most popular multivariate regression method is certainly partial least squares
(PLS) [74], as it is relatively simple to use and is implemented in a lot of statistical soft-
ware, including instruments software (e.g., Opus). For this reason, in the last five years,
PLS regression was used in more than three-quarters of the works on milk adulteration.
The main advantage of PLS is its ability to handle data with many more variables than
samples, specifically when these variables co-vary. The algorithm performs a simultaneous
decomposition of both X (descriptors matrix) and Y (response matrix) matrices with the
aim to maximize the covariance between the two matrices, computing at the same time
latent variables (LVs) that explain the maximum variability of X. Due to its features, PLS
is often used to treat spectral data, especially in the infrared region. In fact, with respect
to other methods, such as chromatography, near- and mid-infrared spectroscopies (NIR
and MIR, respectively) offer numerous practical advantages: they are fast, non-destructive,
non-invasive, and relatively cheap techniques. Moreover, sample preparation is usually
absent or extremely simple. The only drawback is the complex interpretation of the spectra,
especially for NIR spectra, where differences in overtones and combination bands are
difficult to detect and interpret. For this reason, the use of a simple multivariate tool for the
extraction of relevant information is essential.

NIR spectroscopy is used to detect and quantify different kinds of adulterants: the
most common and simple ones, such as water [57], urea [75–77], melamine [76–78], and
sugar [79], and less common ones, such as sodium dodecyl sulfate (a milk surfactant) [80]
or different vegetable oils added to yogurt [81]. Moreover, NIR spectroscopy is also used
to detect specific adulterants for particular matrices as showed by Pandiselvam et al.,
where coconut milk residue was used to adulterate desiccated coconut powder [82], or by
Di Donato et al., which used cow’s milk as an adulterant in goat’s milk samples [63].

MIR spectroscopy is also widely used coupled with PLS regression to detect and
quantify adulterants in different milk samples. In several works, MIR was used to quantify
the amount of cow’s milk in more expensive milk types: buffalo [83,84], goat [85], and
horse [86]. It was used to analyze coconut milk samples adulterated with water [87]. MIR
spectrometers equipped with an ATR cell were employed to detect soya bean oil and
common sugar [88], sucrose [89], and formalin [13] in cow’s milk. The use of an ATR cell
allows for minimizing sample preparation, as the penetration depth in the sample of IR
radiation does not depend on sample thickness. Obviously, NIR and MIR spectra have to be
properly pre-processed to minimize noise, scattering, and other undesirable contributions.
Hence, it is good practice to build PLS models applying different combinations of pre-
processing methods and compare the results to see which one provides the best prediction

57



Foods 2023, 12, 139

performance. For instance, Temizkan et al. [81] tried different preprocessing options: nor-
malization, smoothing, first derivative, second derivative, multiplicative scatter correction
(MSC), and standard normal variate (SNV). These, together with the baseline correction,
are the most common row pre-processing method used to treat NIR and MIR spectra.

Another spectroscopic technique coupled with PLS in the milk adulteration field is
Raman spectroscopy, whose spectra rely on the light scattering of vibrating molecules.
Raman spectroscopy was employed to find maltodextrin, sodium carbonate, and whey
in bovine milk [90,91], as well as margarine, palm oil, and corn oil in cheeses made using
adulterated milk samples [92,93].

Although in the majority of papers PLS regression is applied to vibrational spectro-
scopic data, in recent literature, there are also many applications with different techniques.
Cyclic voltammetry, using a graphite/SiO2 hybrid-working electrode, was employed to
quantify reconstituted skim milk in cow’s milk [11], electrochemical impedance spec-
troscopy was used to measure urea [36] whereas face fluorescence spectroscopy and laser-
induced breakdown spectroscopy assessed the amount of bovine milk in buffalo milk [90]
and ovine and caprine milk [94], respectively. Moreover, time-domain NMR [12] and
opto-electronic nose [40] quantified formaldehyde in bovine milk. The versatility of this
technique is one of the reasons why its presence is predominant among papers that deal
with multivariate regression. Actually, in many papers, PLS is frequently compared with
other two multivariate regression methods, i.e., multiple linear regression (MLR) [95] and
principal component regression (PCR) [96]. Jaiswal et al. [85] and Gonçalves et al. [84]
showed comparable results between PLS and MLR in quantifying adulterants with MIR
spectroscopy. Conceição et al. [97] used MLR coupled with MIR spectroscopy to assess
the amount of sodium bicarbonate, sodium hydroxide, hydrogen peroxide, starch, sucrose,
and urea in cow’s milk. However, the use of MLR is not recommended if the data matrix is
ill-conditioned, namely has more variables (e.g., wavenumbers) than samples, and if those
variables co-vary, as the regression model would be unstable. On the other hand, PCR
is a more reliable method, since the variables are orthogonal (the ill-conditioned matrix
problem has been overcome) and only relevant information in the original data matrix
is considered, being based on PCA. Unlike PLS, in PCR the information in the response
matrix (Y) is not taken into account when choosing the number of PCs. Moreover, for this
reason, PLS has been habitually preferred to PCR. In some of the papers inspected for
this review, these two methods were compared: on three occasions PLS provided the best
prediction performances [13,86,89], whereas in one case the results obtained by the two
methods were similar [87].

Throughout the years, the PLS algorithm has been modified by many authors to add
features and make it more suitable for specific tasks (e.g., multiblock analysis, locally
weighted models, etc.). One of the most famous extensions of PLS is orthogonal PLS
(OPLS) [98], which removes the systematic variation from X that is not correlated (orthogo-
nal) to Y. It was used by Delatour et al. [99] on data collected from eight different NIR and
MIR miniature sensors to measure the amount of semicarbazide hydrochloride, ammonium
sulfate, and cornstarch in skimmed milk powder [96]. Another different use of PLS regres-
sion, synergy interval PLS (siPLS) [100], has been used by Vinciguerra et al. to quantify
cheese whey in cow’s milk samples through MIR spectroscopy [38]. In this method, the MIR
spectra were divided into different intervals (8, 16, 32, 64, and 128) with the same number
of variables, applying a PLS on each interval. Furthermore, combinations of these intervals
(two by two, three by three, and four by four) were also explored and PLS was performed
for each combination. Hosseini et al. used the genetic algorithm PLS (GA-PLS) in order to
perform an efficient variable selection before calculating the regression models [80]. Lastly,
unfolded PLS with residual bilinearization (U-PLS/RBL) [101] coupled with fluorescence
spectroscopy was used by Barreto et al. to quantify melamine in bovine milk [102]. Actually,
U-PLS/RBL belongs to the family of multiway methods, similar to other techniques such
as parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least
squares (MCR-ALS), all based on obtaining pure profiles of the components present in
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a mixture system. They are also called second-order calibration algorithms, as they can
operate by decomposing the 3-way data matrix and then performing a regression between
the resolved relative concentration of the constituents of interest and the corresponding
reference concentration. Fluorescence spectroscopy provides excitation-emission matrices
(EEMs) that can be resolved by those algorithms. According to de Araújo Gomes et al.,
U-PLS/RBL is particularly suitable to deal with fluorescence data, as it is able to model the
inner filter effect that occurs in chemical fluorescence spectroscopy analysis systems [103].
Barreto et al. also used PARAFAC to quantify melamine, obtaining slightly better results
than the ones achieved with U-PLS/RBL. PARAFAC [104] is a generalization of PCA to
higher-order matrices, and its models furnish parameters (loadings) that describe the vari-
ability in the samples. Hence, MCR-ALS [105] was used by Zhao et al. on NIR data to
compute calibration models for the simultaneous quantification of multiple adulterants
(urea, melamine, and starch) [77]. In this case, MCR-ALS was used on classical 2-way data
(i.e., NIR spectra), but the assumptions made earlier are valid. In general, MCR decomposes
the data matrix into a bilinear model constraining the components’ profiles to assure that
the solution makes sense not only from a statistical point of view, but also chemically. ALS
optimization explores the possible solutions through an iterative least square calculation
until convergence is achieved.

Moving forward, some other less popular (but no worse) applications of multivariate
regression techniques employed in the area of milk adulteration than PLS and its extensions
can be found in the literature. Artificial neural network (ANN) regression methods, namely
generalized regression-NN [106] and back propagation-ANN [107], were used to assess
the amount of melamine, wheat flour, and corn flour in milk powder samples [108] and
acidity in cow’s milk samples [109], respectively, both through Raman spectroscopy. Least
squares support vector machine (LS-SVM) [110] was applied on both NIR and dielectric
spectroscopic data to quantify mature bovine milk in colostrum samples [111] and on
MIR data to assess cheese whey in bovine milk [38], providing better results than PLS.
A generalized linear model with lasso regularization (GLM-Lasso) [112] coupled with
MALDI-TOF mass spectroscopy provides better results than PLS too, in this case, to detect
bovine milk in caprine and ovine milk [113]. Ehsani et al. applied boosted regression
tree (BRT) [114] on NIR spectra collected by a portable spectrometer for a fast water
quantification in cow’s milk [115]. The presence of water in cow’s milk was also inspected
by Asefa et al. [116], who proposed a procedure based on digital image analysis coupled
with extreme gradient boosting (XGBoost) [117].

To sum up, the most-used technique for multivariate regression in the field of milk
adulteration is by far PLS, as it is relatively simple to use and is present in much commercial
software. In most cases, proper use of PLS regression is enough to obtain good prediction
performances, but in the case of a more complex data structure, it is worth trying more
advanced techniques. The use of the many extensions of PLS can be useful to increase the
signal-to-noise ratio, to compute prediction models only with the most relevant variables,
or to deal with 3-way data. More expert users sometimes use other kinds of multivariate
regression methods, such as ANN or SVM. In some cases, they provide slightly better
results than PLS, but in many other cases, the results are comparable.
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Table 4. Recent studies (2018–2022) involving regression methods related to milk adulteration.

Type of Milk Target Analytical Method(s) Regression Method(s) Reference

Cow milk Water NIR PLS [57]

Cow milk Urea NIR PLS [75]

Fat-filled milk powder Melamine, urea NIR PLS [76]

Goat milk powder Melamine, urea, starch NIR PLS, MCR-ALS [77]

Milk powder—infant
formula Melamine, vanillin NIR HSI PLS [78]

Cow milk Sugar NIR PLS [79]

Cow milk Anionic surfactant (SDS) NIR, MIR (ATR) PLS, GA-PLS [80]

Yogurt
Margarine, sunflower oil,

corn oil, hydrogenated
vegetable oil

NIR, MIR PLS [81]

Desiccated coconut
powder Coconut milk Vis-NIR PLS [82]

Donkey milk Cow milk NIR PLS [73]

Buffalo milk Cow milk MIR PLS [83]

Buffalo milk Cow milk MIR PLS, MLR [84]

Goat milk Cow milk MIR, Raman PLS [85]

Horse milk Cow milk, goat milk MIR PLS, PCR [86]

Coconut milk Water MIR PLS, PCR [87]

Cow milk Soya bean oil, sugar MIR (ATR) PLS, MLR [88]

Cow milk Sucrose MIR (ATR) PLS, PCR [89]

Cow milk Formalin MIR (ATR) PLS, PCR [13]

Cow milk Maltodextrin, sodium
carbonate, whey Raman PLS [90]

Cow milk Whey Raman PLS [91]

White ultra-filtered
cheese

Margarine, palm oil, and
corn oil Raman PLS [92]

Cow milk Reconstituted skim milk
powder Cyclic voltammetry PLS [11]

Cow milk Urea Electrochemical
impedance spectroscopy PLS [36]

Buffalo milk Cow milk Face fluorescence
spectroscopy PLS [93]

Ovine and caprine milk Cow milk Laser-induced
breakdown spectroscopy PLS [94]

Cow milk Formaldehyde TD-NMR PLS [12]

Cow milk Formaldehyde Opto-electronic nose PLS [40]

Cow milk

Sodium bicarbonate,
sodium hydroxide,
hydrogen peroxide,
starch, sucrose, urea

MIR (ATR) MLR [97]

Skimmed milk powder

Semicarbazide
hydrochloride,

ammonium sulfate,
cornstarch

NIR (miniature spectral
devices) OPLS [99]
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Table 4. Cont.

Type of Milk Target Analytical Method(s) Regression Method(s) Reference

Cow milk Whey MIR PLS, siPLS, LS-SVM [38]

Cow milk Melamine Fluorescence
spectroscopy PARAFAC, U-PLS/RBL [102]

Milk powder Melamine, wheat flour,
corn flour Raman GRNN [108]

Cow milk Acidity Raman PLS, BP-ANN [109]

Colostrum Mature cow milk NIR, dielectric
spectroscopy PLS, LS-SVM [111]

Ovine milk and caprine
milk Cow milk MALDI-TOF-MS PLS, GLM-Lasso [113]

Cow milk Water NIR (portable) BRT [115]

Cow milk Water Digital image analysis XGBoost [116]

Abbreviations: ATR = attenuated total reflection, BP-ANN = back propagation artificial neural networks,
BRT = boosted regression trees, GA-PLS = genetic-algorithm partial least squares, GLM-Lasso = generalized
linear model with lasso regularization, GR-NN = generalized regression neural networks, HSI = hyperspectral
imaging, LS-SVM = least squares support vector machine, MALDI-TOF-MS = matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry, MCR-ALS = multivariate curve resolution alternating least
squares, MIR = mid-infrared, MLR = multiple linear regression, NIR = near-infrared, OPLS = orthogonal partial
least squares, PARAFAC = parallel factor analysis, PCR = principal component regression, PLS = partial least
squares, siPLS = synergy interval partial least squares, TD-NMR = time-domain nuclear magnetic resonance,
U-PLS/RBL = unfolded partial least squares with residual bilinearization, Vis = visible, XGBoost = extreme
gradient boosting.

3. Steps for Development and Validation of a Chemometric Approach

It is difficult to define a precise pipeline for the correct development and validation
of a chemometric approach for authentication purposes. This chapter tries to face the
fundamental steps, covering the sampling procedure, considering the analytical source of
data, the model calibration and validation, and the main figure of merits useful for model
evaluation (Figure 2).
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3.1. Correct Sampling Procedure
3.1.1. Sampling Strategies

No matter the chemometric model to be performed, according to the developed
strategy goal, it is mandatory to perform a proper sampling strategy. Behind the word
“proper” there are a set of extremely challenging standpoints that should consider the nature
of the sample, the statistical representativeness, the analytical chemistry principles, and
the quality and the management of the obtained datasets. Sampling procedures are very
important to assure the robustness and reliability of the developed chemometric models.
However, no well-defined sampling protocols exist so far for fingerprint techniques.

When addressing the nature of the sample, a relevant emphasis should be placed
on the heterogeneity of a food matrix, together with the wide possibility of frauds, from
the adulteration, i.e., the presence of an undeclared substance to the geographical origin
discrimination, passing through the substitution of ingredients or commodities. In any case,
the source of the samples, i.e., the provider, must be extremely reliable when addressing an
authentication issue. They must be of provable provenance to assure they are authentic or
not; thus, it would be advisable to obtain them from the producer rather than buying at
retail markets [21].

For instance, the collection of commercial samples from local grocery stores to study
goat’s milk adulteration by cow’s milk [85] could be inappropriate. Indeed, the commercial
milk already passed to technological operation (heat treatments, fat separation, homoge-
nization); thus, it would be more representative of real fraud to mix the different types of
milk before any unit operation. This is what was done by Spina et al. [83], who described
in detail the farmers, the breeds, and the sampling period and batches. Furthermore, they
strengthened their experimental plan by planning a randomized pairing of cow and buffalo
milk to obtain 17 adulteration levels.

Pandiselvam et al. [82] also adopted the strategy of ad hoc sample preparation. They
prepared different adulterated samples by adding coconut milk residue to desiccated
coconut powder. Even though the sample numerosity was quite high, i.e., 20 samples
prepared for ten adulteration levels (from 0 to 100% w/w), it seems that the raw materials
used to prepare the standard samples were always the same, thus not covering all the
possible sources of variability. The variability of simulated adulterated samples was better
covered by de Oliveira Mendes et al. [88], who considered six samples of milk from
different producers to be adulterated with sweet whey prepared at a laboratory scale at
eight adulteration levels.

From a statistical standpoint, the size and the representativeness of the sample col-
lection must be considered [32] to obtain samples spanning all the sources of variability
associated with the application of the model [118]. Different strategies described by the
theory of sampling (ToS) could be followed to guarantee representative sampling and
appropriate analytical quality [119]. A power analysis could be performed to establish the
adequate number of samples required and to reduce the technical and biological variability.
When a wide variability should be covered in a limited set of measures, design of experi-
ments (DoE) techniques could be applied to obtain statistically valid data; the advantages
of these approaches are well described by Peris-Díaz & Krężel [120].

In the literature there are examples of poor sampling strategies; for example, there are
works considering a number of samples that is too low to be representative from both a
technological/chemical and statistical point of view [12,38,87].

From an analytical point of view, the sample handling in terms of conservation prior
to analysis, preparation, and analytical replicates should be faced to circumscribe the
intrinsic variability. This is quite a challenging issue which has been clearly pointed out by
Kemsley, et al. [121], and too often poorly described in the revised literature.

Finally, to sum up the useful sampling strategy to be adopted, the approach proposed
by the “Five Ws” iterative interrogative technique could be winning. The first W to be
clearly set is the goal of the developed approach, i.e., why, and the definition of the
authentication issue to be addressed. Then, it is appropriate to cover the personnel and
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instrument variability (who), together with the definition of sample unit, the number of
samples, handling procedure, representativeness, balanced/not balanced datasets, and
possible development/availability of trusted samples (what). Moreover, the range of time
(when)—which could refer to seasons, harvesting years, vintages, product aging, and so
on—should be adequately covered. Finally, the investigation of the effects of the area of
origin and/or the processing steps (where) should be faced.

3.1.2. Data Quality

The quality of the collected raw data strongly influences the data processing and
the model quality. This is highly dependent on the instrumentation characteristics and
related analytical methodology. The review by Szymanska [122] deeply described the four
main dimensions of data quality (accuracy, completeness, timeliness, and consistency) and
their characteristics. The most common artifacts generated by quality collection failures
are missing values, outliers, noise, and misalignments. According to the type, there are
strategies for their detection and deletion, substitution, or correction [122]. However, in
most of the literature, little attention is given to the description of these strategies, which
are hopefully applied to assess and monitor the quality of the collected data before the
chemometric model construction.

3.2. Pre-Processing

An exception is the description of data pre-processing, which is generally reported
as a winning strategy to remove irrelevant sources of variation, such as instrumental and
experimental artifacts due to the employed analytical method. However, there are still
authors who miss the preprocessing description, such as Kamboj et al. (2020) [57], or just
mention an automatic strategy applied by the software. Different preprocessing strategies
are available; in-depth information is given by Engel et al. [123]. Every specific dataset
has specific features; thus, the definition of a rule of thumb to define which preprocessing
strategy is more appropriate is impossible.

In any case, the spectroscopic data requires a pre-processing step before the statistical
data analysis to remove or minimize variability in the spectra not related to the sample’s
characteristics. It will be clear that pre-processing cannot generate information, but only
help to extract proper information already existing in the data. Moreover, incorrect use of
pre-processing may cause a loss of information. Pre-treatment should be well calibrated to
minimize the effects of “noise” such as optical phenomena, effects of temperature changes,
light scattering, baseline shift or trends, and so on.

Most of the revised works, especially the ones dealing with infrared data, apply
different preprocessing strategies, such as smoothing, standard normal variate (SNV) or
multiplicative scatter correction (MSC), and derivatives alone or in combination [87,99,124].
Later on, they select the most appropriate one to solve the specific adulteration issue based
on the performance criteria obtained in the developed models. However, it is important
not to apply all of them by default without looking back at their effect on the data. Indeed,
it should be considered that an inappropriate transformation can cause alterations to data
quality, driving relevant consequences on model outcomes. A must-read tutorial concerning
pre-processing has been written by Oliveri et al. [125].

Between the papers explored, some different approaches have been found in NIR
pre-processing. Ejeahalaka [62] performed a comparison between two different approaches:
first, no pre-processing at all, and second, extended multiplicative signal correction (EMSC)
on a selected part of the spectrum. In Galvan [61] some different pre-processing methods
were tested before a mean centering for all: (1) raw data, (2) Savitzky–Golay smoothing
(third-order polynomial and 21 window points), (3) standard normal variate (SNV), (4) mul-
tiplicative scatter correction (MSC), (5) first and second derivative with Savitzky–Golay
smoothing, (6) SNV plus first and second derivative, and (7) MSC plus first and second
derivative. At the end, the best performance (evaluated by RMSE of the calculated models)
was obtained by the application of the first derivative with smoothing (pre-processing 5).
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Wang [65] used three pre-processing steps: (1) mean centering, (2) first, and (3) second-
order Savitzky–Golay derivative, selecting at the end the first-order derivative as the better
pre-processing method.

Kamboj [57] did not indicate which pre-processing was used. Not mentioning the
pre-processing step should be avoided because this step implies some assumptions on
the nature of the data set variability, and it is crucial that these assumptions are well
understood and appropriate. An innovative approach was reported by Di Donato [63] in a
study on donkey milk. NIR data were used to identify and quantify cow adulteration in
expensive donkey milk. In this case, the pre-processing was done by variable sorting for
normalization (VSN), a recent scatter correction technique [126] that estimates the weight
of wavelengths that are or are not related to scattering effects instead of that related to the
response of interest. Not-related wavelengths were not considered in the successive step.
In this way, it is possible to obtain an improvement in signal and model interpretation.

Karunathilaka [60] in an application of Raman spectroscopy cites different spectral
pre-processing to remove fluorescence and laser fluctuations, including Savitzky–Golay
first and second derivatives and standard normal variate (SNV), choosing at the end the
second derivative.

3.3. Data Reduction

The analysis of spectroscopic results is a typical example in which the dimension of
the analytical part of the dataset (n columns) is much higher than the number of samples
(m rows), normally thousands of columns vs. tens or hundreds of rows. So, to avoid
elaboration problems and to select just the variables relevant for the statistical analysis, a
variable selection step is often evaluated. Reviewing in detail all the possible algorithms is
out of scope, considering their relevant number; thus, here we only report the ones used
in the evaluated papers. Between them, just a few used a data reduction algorithm. For
example, Chen [67] on NIRS data used an extension of the ReliefF filter algorithm [74].
ReliefF filter works on multiple classes, building a weight vector that indicates for each
feature (wavelengths in the NIRS case) how important it is to explain the differences
between samples of different classes. Wang [65] instead used just an observation of the first
two PCA loadings as the criterion to understand relevant wavelengths, but it was unclear
if just the relevant wavelengths in the subsequent classification step were used.

3.4. Use of Robust Validation Procedures

Before detailing the possible validation procedures, it is essential to consider the quality
of the calibration. Taking for granted that the data representativeness and numerosity must
be guaranteed according to the defined purpose, it is relevant not to overfit or underfit the
model calibration.

Model validation is frequently addressed by iterative validation procedures, such
as cross-validation. In the considered papers, the most used cross-validation strategy
is leave-one-out, to whatever degree it should be avoided for its over-optimistic results,
especially in the case of exhaustive sampling procedures [13,75,83]. Indeed, it means
that during the iterative recalculation of the model just one sample at a time is removed;
this way the robustness of the model is poorly investigated. None of the work internally
validates models with other iterative procedures such as Monte Carlo, Jackknife, holdout,
or bootstrapping.

The use of internal validation is often justified when a low number of samples is at
disposal. In these situations, it can be unaffordable to exclude 30–40% of the collected data
to be used as a test set. Westad and Marini [127] suggest this strategy when the number of
samples is smaller than 40.

Moreover, the internal validation procedures are fundamental insights to study
the model stability, identify the main sources of variation, and improve model perfor-
mance, i.e., by setting model dimensionality [128]. This was the approach followed by
Ejeahalaka et al. [76] for both SIMCA and PLS model development. It is important to notice
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that the correct model dimensionality is fundamental for predicting the test set; if the model
dimensionality is incorrect, the performance criteria/figure of merit may not be a good
estimate of future samples, as reported by Westad and Marini [127]. For instance, the
results obtained from internal validation give insights about model overfitting due to the
selection of a huge number of components/variables, which means fitting too much of the
data so that also the measurement noise is interpreted as a relevant effect.

Then, it is the time to use robust, mandatory validation procedures in order to guaran-
tee reliable and reproducible results. Usually, the available samples are divided into two
subsets: a training (or calibration) set to be used for building the model, and a test set used
to evaluate its validity [20] in terms of quality and generalization ability [129]. The division
should guarantee that the calibration set covers the whole variability domain to obtain
reliable results. The dataset split could be performed arbitrarily—according to the acquired
knowledge of the data, randomly, or designed by sampling strategies—such as the Kennard
and Stone algorithm, Duplex, D-optimality criterion, and K-means or Kohonen mapping;
for more details about the differences among the strategies and their effects refer to Westad
and Marini [127].

Infrequently, the experimental structure is considered for data splitting. This was
the case for Genis et al. [92] who considered 15 concentrations of fat in the calibration
set, and 11 concentrations of fat as validation data set when developing methods for the
identification of foreign lipid types and adulteration ratio in milk. Most of the revised
papers apply random sample selection to build the test set considering from 40 to 20% of
the whole data. Among the designed sampling strategies, the Kennard and Stone algorithm
is the one mostly used. However, in many cases no information is provided for dataset
splitting, thus making the model robustness evaluation difficult.

In any case, it would be advisable to use a fully independent set of data to test the
model; for example, considering a different production batch, a different time of the year,
or a different harvesting year.

This option will represent the ideal procedure for model validation, anyway it should be
set to guarantee the samples’ diversity if possible, or at least their mutual independence [130].

If someone argues it is still not enough, we can reply as suggested by Westad and
Marini [127]: “Another way to overcome the problem of using the same criterion to select
a subset of variables and the error (i.e., cross-validation) is to divide the objects into a
calibration, a validation and a verification set, where the verification set is the ‘proof of
the pudding’”.

Each step of model development (i.e., calibration, cross-validation, and external vali-
dation) should be properly evaluated by diagnostic metrics (i.e., Figures of Merits), which
are discussed in the next session.

3.5. Performance Criteria/Figure of Merits

Before mentioning the performance criteria useful for regression evaluation, it is
important to have enough information to evaluate the quality of the collected data. In
particular specific information must be reported about the numerosity of the data, their
variability (i.e., mean, median, and standard deviation), the nature of the measure (instru-
mentation used), the removed outliers (and adopted strategy), the regression algorithm
employed (mainly PLS, OPLS, PCR, MLR, LSSVM, SWM, ANN, GLM-Lasso, and so on),
or the classification approach (mainly PLS-DA and OPLS-DA for the pure classification,
and SIMCA and DD-SIMCA for the class-modeling techniques), the characteristics of the
model development steps (calibration, internal- and external validation), the potential data
pre-treatments, and the selected components/latent variables [131]. Last but not least, the
information about the reference method employed to determine the specific compound
and the associated error, i.e., the standard error of the laboratory (SEL), or the standard
error of the test (SET), must be reported [131]. Having a clear idea of the variance covered
by the data and the error of the reference analysis would be crucial to judge the results
obtained by the regression model obtained. Indeed, the accuracy of chemometric model
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predictors depends on the repeatability of the reference methods and it combines both the
error of the reference measure and the error of the fingerprint analysis [132].

3.5.1. R2 (Coefficient of Determination) and RMSE (Root Mean Squared Error)

The main effective tests used to evaluate multivariate regression models are R2, SEP,
and the RPD. R2, the coefficient of determination, is commonly used to evaluate regression
models in every development step. It is quite relevant to compare the different coefficients
of determination obtained in calibration, cross-validation, and prediction to understand
the model stability. It would be better to evaluate the R2 adjusted, which corrects for the
number of explanatory terms in relation to the number of data points.

The coefficient of determination (R2) is, in its most general definition, computed by:

R2 = 1 − SSres

SStot
(1)

where SSres is the sum of squares of residuals for measurements yi and mean of observed
data (Ῡ) and SStot is the total sum of squares.

The R2 adjusted is:

R2
adj = 1 − n − 1

1 − k − 1
SSres

SStot
(2)

where n is the number of observations and k is the number of independent variables.
However, the evaluation of R2 alone is not exhaustive: there may be models with

high coefficient values, thus describing high data variability, but with high error, expressed
as root mean square error. To determine the reasonability of RMSE value it should be
compared to measurement errors such as reference method, reproducibility error, historical
data, and so on.

The RMSE is computed as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (3)

where n is the number of observations, yi is the predicted value and ŷ is the actual value.
If divided by the standard deviation of the experimental values it is obtained the

normalized RMSE (nRMSE), which is an unbiased measurement for model predictions.
Good error estimation was performed for the models developed by Genis [92]. They

calculated the relative error of standard deviation (RSD) and relative error of prediction
(REP) together with the limit of detection (LOD) and the limit of quantification (LOQ) in
the regression model intended for fat authenticity in milk for ultra-filtered white cheese.

The use of both criteria, R2 and RMSE, is relevant especially in cases of high range of
variability of the considered compound; in this case, it could be plausible to obtain a model
with higher R2, but accompanied by higher RMSE, if compared with a dataset with limited
range of variability. Generally speaking, “wide” calibration could be less precise, but more
dangerous is a too-narrow calibration which will be valid just for the case understudy [132].

The ratio between the SD and the RMSE is referred to as ratio percentage deviation
(RPD). It can be seen as a performance criterion like R2, even if RPD is a ratio of SD,
whereas R2 is a ratio of variance. Its calculation is present in few papers dealing with
milk adulteration [13,82,84,89,91], but its use can give an immediate insight to evaluate
the predictions as well as to compare models predicting different compounds [132]. There
are different papers that give an interpretation of model performance according to RPD
values, among them the one of Williams [133] which defines six levels of performance.
In the considered works the RPD was always quite high. Indeed, very good prediction
capabilities were reached by the MLR model for buffalo’s milk authenticity verification
developed by Gonçalves et al. [84]; the RPD was 7.9. When developing a PLS regression
on the same data it improved to 9.0, thus demonstrating the excellent performance of mid-
infrared spectroscopy to assess cow’s milk levels in buffalo’s milk. The model developed by
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Pandiselvam et al. [82] for the detection of adulteration with coconut powder also achieved
excellent performance, resulting in an RPD of 11. Excellent performances were found by
Balan et al. [13] when developing a PLS model to predict formalin in cow’s milk, reaching
an RPD above 8. Also, the RPD of the PLS models developed by Balan et al. [89] was high
(13.4), demonstrating an excellent prediction capability of sucrose in milk, thus being able
to detect sucrose addition intended to increase total solid content as well as the sweet taste.
Similarly, de Oliveira Mendes et al. [91] developed a PLS model for whey quantification in
raw milk by Raman spectroscopy obtaining an RPD of 13.9.

In any case, where RPD is not reported as a model parameter, it can be calculated
directly from the R2 such as 1/−(1 − R2).

Bellon-Maurel et al. [134] proposed to substitute RPD with a new index, RPIQ (ratio of
performance to IQ). The index is based on quartiles, thus better representing the population
distribution. They found out that, in sample sets with skewed distribution, the RPD is
not a good approach for SEP standardization according to population spread, whereas the
RPIQ index, in which standard deviation is replaced by IQ (=Q3 − Q1), better considers
the spread of the population. However, none of the works considered here applied this
figure of merit.

3.5.2. Specificity and Sensitivity, and Graphical Representations

The performance of classification models is assessed by verifying if samples belonging
to the class of interest are designated as true positives (TP) or false negatives (FN), as well
as if samples not belonging to the class of interest are labeled as false positives (FP) or
true negatives (TN) [20]. Just to recall the theory, TP defines the samples recognized to
belong to the class a priori assigned, FN are samples erroneously rejected, FP are samples
erroneously assigned to the class, and TN are samples correctly refused.

From their assignments, it is possible to calculate the sensitivity and sensibility of the
method. Sensitivity is the true positive rate (TPR), computed as TP/(TP + FN). Specificity
is the true negative rate (TNR), computed as TN/(TN + FP).

The graphical tool used to represent the performance criteria of a discriminant model
is the receiver operating characteristic (ROC) curves (Figure 3a). The plot represents a
two-axis Cartesian space, with the horizontal axis reporting FPR, and the vertical axis the
TPR. The dashed diagonal represents the performance of a random classifier. Two examples
of classifiers (green and red) are shown, representing good and scarce results, respectively.
The curves are built by connecting with a line the experimental outcomes. This tool is
useful to compare the performances of models obtained with different parameter settings,
such as the threshold value. A detailed analysis of ROC curves is discussed by Oliveri [20].

If discriminant methods can be applied only to solve multi-class situations, class
modeling can be used to address both multi-class and one-class problems.

When performing a class-modeling analysis it could be useful to evaluate the results
with a graphical representation, so Coomans’ plots (Figure 3b). In a two-class problem, the
two axes represent the distances of samples from the models of Class 1 (#) and Class 2
(star), respectively. The two dashed lines correspond to the critical acceptance levels for
each model at the defined confidence level (normally 95%). Samples of the two classes
are projected as scatter points, with coordinates indicating the relative similarity with the
two models in the four sectors defined in the plot. In sector 1 it is possible to find samples
accepted only by Class 1 (#); in sector 2 it is possible to find samples accepted only by
Class 2 (star). Both sectors include samples defined as TP for the a priori defined class.

In sector 3 are positioned samples accepted by both models; indeed, since models
for each class are independently built, class spaces may overlap. Lastly, in sector 4 it
is possible to observe samples rejected by both models, which highlights that the used
variables do not completely resolve the class space. They prevent the forced (but possibly
wrong) classification of samples that may occur in discriminant approaches [20].
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4. Methods for Rapid and On-Site Detection to Combat Milk Adulteration

The dairy industry as well as regulatory bodies are looking for simple and rapid
methods for the detection of milk adulteration [135]. Lateral flow immunoassays (LFIAs)
have been used as in situ screening tools to monitor food raw material quality as they
provide rapid results [136]. LFIAs have been developed, among other applications [137],
for the detection and quantification of mycotoxins [138], such as aflatoxin M1 [139]. LFIAs
have been also used for the detection of adulteration of milk with melamine [140]. In a
very recent study adulteration of cow’s milk with buffalo’s milk was detected by an on-site
carbon nanoparticle-based lateral flow immunoassay in 10 min, with the sensitivity of the
test being 5%, i.e., 5% adulteration of cow’s milk with buffalo’s milk, proving that this tool
is suitable for rapid detection of adulteration [135].

Another novel technology for the rapid detection of milk adulteration is DNAFoil.
It is a portable, fully self-administered, on-site DNA test that does not require the use of
expensive PCR equipment or laboratory setups to confirm the detection of milk adulteration
within a short period of time. The efficiency of the DNAFoil kit used to detect the vegetable
material in milk products (DNAFoil UniPlant) was confirmed using real-time PCR assays.
The results showed that using 24 µL of DNAFoil UniPlant master mix, a 17.5 min reaction
time allowed the detection of 10% adulteration of liquid cow’s milk by wheat flour [141].

Moreover, an electronic nose (e-nose) system is being evolved for the falsification
detection of milk and dairy products in a reliable and rapid way [142]. This technology
avoids the disadvantages of chromatography, spectrometry, and chemical methods with
high costs and long cycle times [143]. Adulteration of bovine milk with formaldehyde,
based on aldehydes and ketones, was examined by electronic nose by Mostafapour et al. [40].
In another investigation, the identification of trace amounts of detergent powder in raw
milk using a customized low-cost electronic nose was achieved [144].

5. Conclusions

An overview of the different chemometric techniques (from clustering to classifica-
tion and regression applied to several analytical data) has been presented along with
spectroscopy, chromatography, and electrochemical sensors as well as rapid and on-site
detection devices in the fight against milk adulteration and fraud. HCA is the main rep-
resentative of the clustering methods. The classification of objects in groups depending
on their characteristics expressed as results of a set of measurements is one of the applica-
tions of chemometrics. Classification methods were distinguished into “discriminant” and
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“class-modeling” techniques. The classification statistical techniques mostly employed in
the last few years for milk applications were PLS-DA as a pure classification technique and
SIMCA as a class-modeling approach. Multivariate regression is widely used to quantify
the concentration of adulterants in food matrices and was deeply described.

Finally, the steps which should be followed to develop a chemometric model to face
adulteration issues were carefully presented with the required critical discussion describing
sampling strategies, pre-processing, data reduction, and use of robust validation procedures
along with performance criteria/figure of merits.

All chemometric methods, supervised and unsupervised, had fundamental results in
order to serve the goals of each research study. It cannot be concluded which chemometric
method is the best, as each dataset is unique and different. Robustness is usually more related
to supervised methods, but unsupervised methods are also important in the field. Usually,
the availability and access to each chemometric method are the variables that influence their
specific selection. With regard to the field of milk adulteration, it is clear that, in most cases,
the simplest methods are enough to obtain good results. However, even the simplest methods
are in some cases used improperly, making the results obtained inconsistent.

Author Contributions: Conceptualization, S.G., M.T., A.D., S.A., T.V. and L.S.; methodology, S.G.,
M.T., A.D., S.A., T.V. and L.S.; writing—original draft preparation, S.G., M.T., A.D., S.A., T.V. and L.S.;
writing—review and editing, S.G., M.T., A.D., S.A., T.V. and L.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Foods for the financial support provided.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Uncu, A.O.; Uncu, A.T. A barcode-DNA analysis method for the identification of plant oil adulteration in milk and dairy products.

Food Chem. 2020, 326, 126986. [CrossRef] [PubMed]
2. Zhang, T.; Wu, X.; Wu, B.; Dai, C.; Fu, H. Rapid authentication of the geographical origin of milk using portable near-infrared

spectrometer and fuzzy uncorrelated discriminant transformation. J. Food Process. Eng. 2022, 45, e14040. [CrossRef]
3. Ye, H.; Yang, J.; Xiao, G.; Zhao, Y.; Li, Z.; Bai, W.; Zeng, X.; Dong, H. A comprehensive overview of emerging techniques and

chemometrics for authenticity and traceability of animal-derived food. Food Chem. 2023, 402, 134216. [CrossRef] [PubMed]
4. Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R. Recent advances on determination of milk adulterants. Food Chem.

2017, 221, 1232–1244. [CrossRef] [PubMed]
5. Moore, J.C.; Spink, J.; Lipp, M. Development and application of a database of food ingredient fraud and economically motivated

adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [CrossRef]
6. Giglioti, R.; Polli, H.; Azevedo, B.T.; Katiki, L.M.; Vercesi Filho, A.E. Detection and quantification of adulteration in milk and

dairy products: A novel and sensitive qPCR-based method. Food Chem. Mol. Sci. 2022, 4, 100074. [CrossRef]
7. Teixeira, J.L.D.P.; Carames, E.T.D.S.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A.L. Vibrational spectroscopy and chemometrics tools

for authenticity and improvement the safety control in goat milk. Food Control 2020, 112, 107105. [CrossRef]
8. Du, L.; Lu, W.; Cai, Z.J.; Bao, L.; Hartmann, C.; Gao, B.; Yu, L.L. Rapid detection of milk adulteration using intact protein flow

injection mass spectrometric fingerprints combined with chemometrics. Food Chem. 2018, 240, 573–578. [CrossRef]
9. Motta, T.C.; Hoff, R.B.; Barreto, F.; Andrade, R.B.S.; Lorenzini, D.M.; Meneghini, L.Z.; Pizzolato, T.M. Detection and confirmation

of milk adulteration with cheese whey using proteomic-like sample preparation and liquid chromatography–electrospray–tandem
mass spectrometry analysis. Talanta 2014, 120, 498–505. [CrossRef]

10. Qin, C.; Liu, L.; Wang, Y.; Leng, T.; Zhu, M.; Gan, B.; Xie, J.; Yu, Q.; Chen, Y. Advancement of omics techniques for chemical profile
analysis and authentication of milk. Trends Food Sci. Technol. 2022, 127, 114–128. [CrossRef]

11. Nikolaou, P.; Deskoulidis, E.; Topoglidis, E.; Kakoulidou, A.T.; Tsopelas, F. Application of chemometrics for detection and
modeling of adulteration of fresh cow milk with reconstituted skim milk powder using voltammetric fingerpriting on a
graphite/SiO2 hybrid electrode. Talanta 2020, 206, 120223. [CrossRef] [PubMed]

12. Coimbra, P.T.; Bathazar, C.F.; Guimarães, J.T.; Coutinho, N.M.; Pimentel, T.C.; Neto, R.P.C.; Esmerino, E.A.; Freitas, M.Q.; Silva,
M.C.; Tavares, M.I.B.; et al. Detection of formaldehyde in raw milk by time domain nuclear magnetic resonance and chemometrics.
Food Control 2020, 110, 107006. [CrossRef]

13. Balan, B.; Dhaulaniya, A.S.; Jamwal, R.; Sodhi, K.K.; Kelly, S.; Cannavan, A.; Singh, D.K. Application of Attenuated Total
Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of
formalin in cow milk. Vib. Spectrosc. 2020, 107, 103033. [CrossRef]

69



Foods 2023, 12, 139

14. Wasnik, P.G.; Menon, R.R.; Sivaram, M.; Nath, B.S.; Balasubramanyam, B.V.; Manjunatha, M. Development of mathematical
model for prediction of adulteration levels of cow ghee with vegetable fat using image analysis. J. Food Sci. Technol. 2019, 56,
2320–2325. [CrossRef]

15. Roy, M.; Doddappa, M.; Yadav, B.K.; Jaganmohan, R.; Sinija, V.R.; Manickam, L.; Sarvanan, S. Detection of soybean oil adulteration
in cow ghee (clarified milk fat): An ultrafast study using flash gas chromatography electronic nose coupled with multivariate
chemometrics. J. Sci. Food Agric. 2022, 102, 4097–4108. [CrossRef]

16. Vatavali, K.; Kosma, I.; Louppis, A.; Gatzias, I.; Badeka, A.V.; Kontominas, M.G. Characterisation and differentiation of
geographical origin of Graviera cheeses produced in Greece based on physico-chemical, chromatographic and spectroscopic
analyses, in combination with chemometrics. Int. Dairy J. 2020, 110, 104799. [CrossRef]

17. Aleixandre-Tudo, J.L.; Castello-Cogollos, L.; Aleixandre, J.L.; Aleixandre-Benavent, R. Chemometrics in food science and
technology: A bibliometric study. Chemom. Intell. Lab. Syst. 2022, 222, 104514. [CrossRef]

18. Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the
adulteration of dairy products: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [CrossRef]

19. Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Chemometric applications to assess quality and critical parameters of virgin
and extra-virgin olive oil. A review. Anal. Chim. Acta 2016, 913, 1–21. [CrossRef]

20. Oliveri, P. Class-modelling in food analytical chemistry: Development, sampling, optimisation and validation issues—A tutorial.
Anal. Chim. Acta 2017, 982, 9–19. [CrossRef]

21. McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the
scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?
Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [CrossRef]

22. Cubero-Leon, E.; Penalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int. 2014, 60, 95–10711.
23. Hanganu, A.; Chira, N. When detection of dairy food fraud fails: An alternate approach through proton nuclear magnetic

resonance spectroscopy. J. Dairy Sci. 2021, 104, 8454–8466. [CrossRef] [PubMed]
24. Souhassou, S.; Bassbasi, M.; Hirri, A.; Kzaiber, F.; Oussama, A. Detection of camel milk adulteration using Fourier transformed

infrared spectroscopy FT-IR coupled with chemometrics methods. Int. Food Res. J. 2018, 25, 1213–1218.
25. Wang, X.; Esquerre, C.; Downey, G.; Henihan, L.; O’Callaghan, D.; O’Donnell, C. Feasibility of discriminating dried dairy

ingredients and preheat treatments using mid-infrared and Raman Spectroscopy. Food Anal. Methods 2018, 11, 1380–1389.
[CrossRef]

26. Karunathilaka, S.R.; Yakes, B.J.; He, K.; Chung, J.K.; Mossoba, M. Non-targeted NIR spectroscopy and SIMCA classification for
commercial milk powder authentication: A study using eleven potential adulterants. Heliyon 2018, 4, e00806. [CrossRef]

27. Da Silva Dias, L.; da Silva Junior, J.C.; Felício, A.L.D.S.M.; de França, J.A. A NIR photometer prototype with integrating sphere
for the detection of added water in raw milk. IEEE Trans. Instrum. Meas. 2018, 67, 2812–2819. [CrossRef]

28. Windarsih, A.; Rohman, A.; Irnawati; Riyanto, S. The Combination of Vibrational Spectroscopy and Chemometrics for Analysis
of Milk Products Adulteration. Int. J. Food Sci. 2021, 2021, 8853358. [CrossRef]

29. de Lima, A.B.S.; Batista, A.S.; de Jesus, J.C.; de Jesus Silva, J.; de Araújo, A.C.M.; Santos, L.S. Fast quantitative detection of
black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control 2020, 107, 106802.
[CrossRef]

30. Jiménez-Carvelo, A.M.; González-Casado, A.; Bagur-González, M.G.; Cuadros-Rodríguez, L. Alternative data mining/machine
learning methods for the analytical evaluation of food quality and authenticity—A review. Food Res. Int. 2019, 122, 25–39.
[CrossRef]

31. Teixeira, J.L.d.P.; Caramês, E.T.d.S.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A.L. Rapid adulteration detection of yogurt and cheese
made from goat milk by vibrational spectroscopy and chemometric tools. J. Food Compost. Anal. 2021, 96, 103712. [CrossRef]

32. Ramirez-Lopez, L.; Schmidt, K.; Behrens, T.; Van Wesemael, B.; Demattê, J.A.; Scholten, T. Sampling optimal calibration sets in
soil infrared spectroscopy. Geoderma 2014, 226, 140–150. [CrossRef]

33. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. CSUR 1999, 31, 264–323. [CrossRef]
34. Bratchell, N. Chapter 6 Cluster Analysis. Data Handl. Sci. Technol. 1992, 9, 179–208.
35. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C. A review of clustering techniques

and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]
36. Minetto, T.A.; França, B.D.; da Silva Dariz, G.; Veiga, E.A.; Galvão, A.C.; da Silva Robazza, W. Identifying adulteration of raw

bovine milk with urea through electrochemical impedance spectroscopy coupled with chemometric techniques. Food Chem. 2022,
385, 132678. [CrossRef]

37. Cirak, O.; Icyer, N.C.; Durak, M.Z. Rapid detection of adulteration of milks from different species using Fourier Transform
Infrared Spectroscopy (FTIR). J. Dairy Res. 2018, 85, 222–225. [CrossRef]

38. Vinciguerra, L.L.; Marcelo, M.C.; Motta, T.; Meneghini, L.Z.; Bergold, A.M.; Ferrão, M.F. Chemometric tools and FTIR-ATR
spectroscopy applied in milk adulterated with cheese whey. Química Nova 2019, 42, 249–254. [CrossRef]

39. Ezhilan, M.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Babu, K.J.; Krishnan, U.M.; Rayappan, J.B.B. Design and
development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples.
Sens. Actuators B Chem. 2017, 238, 1283–1292. [CrossRef]

70



Foods 2023, 12, 139

40. Mostafapour, S.; Gharaghani, F.M.; Hemmateenejad, B. Converting electronic nose into opto-electronic nose by mixing MoS2
quantum dots with organic reagents: Application to recognition of aldehydes and ketones and determination of formaldehyde in
milk. Anal. Chim. Acta 2021, 1170, 338654. [CrossRef]

41. Li, Q.; Yu, Z.; Zhu, D.; Meng, X.; Pang, X.; Liu, Y.; Frew, R.; Chen, H.; Chen, G. The application of NMR-based milk metabolite
analysis in milk authenticity identification. J. Sci. Food Agric. 2017, 97, 2875–2882. [CrossRef] [PubMed]

42. Sowmya, N.; Ponnusamy, V. Development of spectroscopic sensor system for an IoT application of adulteration identification on
milk using machine learning. IEEE Access 2021, 9, 53979–53995. [CrossRef]

43. Souza, S.O.; Santos, V.S.; Santos, E.S.; Ávila, D.V.L.; Nascimento, C.C.; Costa, S.S.L.; Garcia, C.A.B.; Araujo, R.G.O. Evaluation of
the mineral content in milk and yogurt types using chemometric tools. Microchem. J. 2018, 143, 1–8. [CrossRef]

44. Rodríguez-Bermúdez, R.; López-Alonso, M.; Miranda, M.; Fouz, R.; Orjales, I.; Herrero-Latorre, C. Chemometric authentication
of the organic status of milk on the basis of trace element content. Food Chem. 2018, 240, 686–693. [CrossRef]

45. Zain, S.M.; Behkami, S.; Bakirdere, S.; Koki, I.B. Milk authentication and discrimination via metal content clustering–A case of
comparing milk from Malaysia and selected countries of the world. Food Control 2016, 66, 306–314. [CrossRef]

46. Xu, S.; Zhao, C.; Deng, X.; Zhang, R.; Qu, L.; Wang, M.; Ren, S.; Wu, H.; Yue, Z.; Niu, B. Determining the geographical origin
of milk by multivariate analysis based on stable isotope ratios, elements and fatty acids. Anal. Methods 2021, 13, 2537–2548.
[CrossRef]

47. Amenzou, N.; Hamid, M.; Fouad, T.; Elyahyaoui, A.; Elghali, T.; Elmoqrani, L.; Mahmoud, E. Stable Isotope Ratios in Dairy Products
(Milk) as New Tool to Determine Their Different Origins in Morocco; Joint FAO/IAEA Centre of Nuclear Techniques in Food and
Agriculture, Food Safety and Control Section: Vienna, Austria, 2022; pp. 60–69, 128, ISBN 978-92-0-124822-0. ISSN 1011-4289.
CONTRACT MOR 18051.

48. Podkolzin, I.; Solovev, A. Application of Stable Isotope Techniques and Elemental Analysis to Confirm Geographical Origin of Milk
Produced in the Russian Federation; IAEA: Vienna, Austria, 2022.

49. Karrar, E.; Mohamed Ahmed, I.A.; Huppertz, T.; Wei, W.; Jin, J.; Wang, X. Fatty acid composition and stereospecificity and sterol
composition of milk fat from different species. Int. Dairy J. 2022, 128, 105313. [CrossRef]

50. Bhumireddy, S.R.; Rocchetti, G.; Pallerla, P.; Lucini, L.; Sripadi, P. A combined targeted/untargeted screening based on GC/MS to
detect low-molecular-weight compounds in different milk samples of different species and as affected by processing. Int. Dairy J.
2021, 118, 105045. [CrossRef]

51. Tan, D.; Zhang, X.; Su, M.; Jia, M.; Zhu, D.; Kebede, B.; Wu, H.; Chen, G. Establishing an untargeted-to-MRM liquid
chromatography–mass spectrometry method for discriminating reconstituted milk from ultra-high temperature milk. Food Chem.
2021, 337, 127946. [CrossRef]

52. Couvreur, S.; Hurtaud, C. Relationships between milks differentiated on native milk fat globule characteristics and fat, protein
and calcium compositions. Animal 2017, 11, 507–518. [CrossRef]

53. Dhankhar, J.; Sharma, R.; Indumathi, K. A comparative study of sterols in milk fat of different Indian dairy animals based on
chemometric analysis. J. Food Meas. Charact. 2020, 14, 2538–2548. [CrossRef]

54. Marini, F. Classification methods in chemometrics. In Proceedings of the Mediterraneum Meeting, Ventotene, Italy, 1–4 June 2008.
55. Derde, M.P.; Massart, D.L. UNEQ: A disjoint modelling technique for pattern recognition based on normal distribution. Anal.

Chim. Acta 1986, 184, 33–51. [CrossRef]
56. Vargas-Bello-Pérez, E.; Gomez-Cortes, P.; Geldsetzer-Mendoza, C.; Sol Morales, M.; Toro-Mujica, P.; Fellenberg, M.A.; Ibanez, R.A.

Authentication of retail cheeses based on fatty acid composition and multivariate data analysis. Int. Dairy J. 2018, 85, 280–284.
[CrossRef]

57. Kamboj, U.; Kaushal, N.; Mishra, S.; Munjal, N. Application of Selective Near Infrared Spectroscopy for Qualitative and
Quantitative Prediction of Water Adulteration in Milk. Mater. Today Proc. 2020, 24, 2449–2456. [CrossRef]

58. Chung, I.M.; Kim, J.K.; Yang, Y.J.; An, Y.J.; Kim, S.Y.; Kwon, C.; Kim, S.H. A case study for geographical indication of organic milk
in Korea using stable isotope ratios-based chemometric analysis. Food Control 2020, 107, 106755. [CrossRef]

59. Jin, H.; Dong, G.M.; Wu, H.Y.; Yang, Y.R.; Huang, M.Y.; Wang, M.Y.; Yang, R.J. Identification of adulterated milk based on
auto-correlation spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 121987. [CrossRef]

60. Karunathilaka, S.R.; Yakes, B.J.; He, K.; Brückner, L.; Mossoba, M.M. First use of handheld Raman spectroscopic devices and
on-board chemometric analysis for the detection of milk powder adulteration. Food Control 2018, 92, 137–146. [CrossRef]

61. Galvan, D.; Lelis, C.A.; Effting, L.; Melquiades, F.L.; Bona, E.; Conte-Junior, C.A. Low-cost spectroscopic devices with multivariate
analysis applied to milk authenticity. Microchem. J. 2022, 181, 107746. [CrossRef]

62. Ejeahalaka, K.K.; On, S.L.W. Chemometric studies of the effects of milk fat replacement with different proportions of vegetable
oils in the formulation of fat-filled milk powders: Implications for quality assurance. Food Chem. 2019, 295, 198–205. [CrossRef]

63. Di Donato, F.; Biancolillo, A.; Ferretti, A.; D’Archivio, A.A.; Marini, F. Near Infrared Spectroscopy coupled to Chemometrics for
the authentication of donkey milk. J. Food Compos. Anal. 2022, in press. [CrossRef]

64. Zontov, Y.V.; Rodionova, O.Y.; Kucheryavskiy, S.V.; Pomerantsev, A.L. DD-SIMCA—A MATLAB GUI tool for data driven SIMCA
approach. Chemom. Intell. Lab. Syst. 2017, 167, 23–28. [CrossRef]

65. Wang, Y.T.; Ren, H.B.; Liang, W.Y.; Jin, X.; Yuan, Q.; Liu, Z.R.; Chen, D.M.; Zhang, Y.H. A novel approach to temperature-
dependent thermal processing authentication for milk by infrared spectroscopy coupled with machine learning. J. Food Eng. 2021,
311, 110740. [CrossRef]

71



Foods 2023, 12, 139

66. Dos Santos Pereira, E.V.; de Sousa Fernandes, D.D.; de Almeida, L.F.; Sucupira Maciel, M.I.; Gonçalves Dias Diniz, P.H. Goat milk
authentication by one-class classification of digital image-based fingerprint signatures: Detection of adulteration with cow milk.
Microchem. J. 2022, 180, 107640. [CrossRef]

67. Chen, H.; Tan, C.; Lin, Z.; Wua, T. Classification of different liquid milk by near-infrared spectroscopy and ensemble modelling.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119460. [CrossRef]
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Abstract: A rapid HPLC-UV method was developed for the determination of tocopherols in walnut
seed oils. The method was validated and the LODs ranged between 0.15 and 0.30 mg/kg, while the
LOQs were calculated over the range of 0.50 to 1.00 mg/kg. The accuracy values ranged between
90.8 and 97.1% for the within-day assay (n = 6) and between 90.4 and 95.8% for the between-day
assay (n = 3 × 3), respectively. The precision of the method was evaluated and the RSD% values were
lower than 6.1 and 8.2, respectively. Overall, 40 samples of walnuts available on the Greek market,
originating from four different European countries (Greece, Ukraine, France, and Bulgaria), were
processed into oils and analyzed. One-way ANOVA was implemented in order to investigate potential
statistically significant disparities between the concentrations of tocopherols in the walnut oils on the
basis of the geographical origin, and Tukey’s post hoc test was also performed to examine exactly
which varieties differed. The statistical analysis of the results demonstrated that the Ukrainian walnut
seed oils exhibited significantly higher total concentrations compared to the rest of the samples.

Keywords: walnut; seed oil; tocopherols; HPLC-UV; geographical origin

1. Introduction

Walnuts (Juglans regia L.) are a prominent member of the culinary nuts family. Their
chemical composition, both macronutrient- and micronutrient-wise [1,2], suggests that they
are a useful choice in a healthy and balanced diet. According to the FAO [3], 3,323,964 tons
of walnuts were produced worldwide in 2020, while China, USA, Iran, Turkey, and Mexico
were the top producers. The bioactive compounds in walnuts and walnuts oils have
been linked with several beneficial effects to human health, such as anti-inflammatory [4],
cardioprotective [5], and anti-proliferative [6] effects, among others. Furthermore, walnut
consumption also aids in slowing down degenerative brain diseases [7,8] and has also been
associated with hunger suppression [9], rendering it an effective tool in a weight-loss plan.

Tocopherols (α-, β-, γ-, and δ-) are part of the commonly known vitamin E com-
plex, along with the corresponding tocotrienols. Their molecular structure consists of a
chromanol ring and a saturated phytyl side chain located at the C2 position. Within the
human organism they act as powerful antioxidants, as has been proven by both in vivo [10]
and in vitro [11] studies. Specifically, their main function is to protect against the non-
enzymatic peroxidation of polyunsaturated fatty acids that construct the bilayer cellular
membrane [12]. Tocopherols are plant-derived [13], meaning they have to be provided
to humans through diet or supplementation. One of their main characteristics is that
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they are lipid-soluble, and this is the reason why they can only be found in high-fat plant
foods [14,15], such as walnuts.

The exploration of the tocopherol content in walnut oil samples is a broadly analyzed
topic in the literature. There are an array of studies available discussing walnut oil’s
tocopherol content on the basis of the variety, maturity level, crop year, harvest time,
and storage conditions [16–27]. However, there is no information available regarding the
walnut oil tocopherol profile on the basis of the geographical origin. This is a gap that has
to be filled, taking into consideration that domestic and imported products are both widely
available in the Western world and consumers are concerned about which to select.

Several analytical protocols have been proposed in the literature for tocopherol anal-
ysis, employing high-pressure liquid chromatography coupled to diode array (HPLC-
DAD) [27–29], UV–Vis [30,31], fluorescence (FLD) [32], or mass spectrometric (MS) detec-
tors [33–36]. Undoubtedly, UV detectors allow a fast, reliable, and cost-effective analysis,
especially when it comes to such a small number of compounds, where separation and
identification can be achieved without much adversity. The flagship of the analytical
workflow techniques, however, is sample preparation. Several prolonged and laborious
protocols have been suggested, including some that involve the use of substantial volumes
of organic solvents in a Soxhlet apparatus [37]. Solid liquid extraction (SLE) is also fre-
quently used, but in most cases requires the use of large amounts of solvents [37,38]. The
use of solid-phase extraction (SPE) allows for a reduction in the amount of toxic solvents
but demands the fulfillment of various steps throughout the sample preparation process,
as well as the acquisition of cartridges [27]. The objective is to choose the right approach in
order to determine the bioactive analytes that are present in the samples, eliminate the use
of time-consuming extraction steps, and minimize the use of organic solvents.

The next step after the chromatographic analysis involves data mining. The statistical
analysis of the experimental data enables the interpretation of the results. Statistical and
chemometric tools are widely used in authenticity studies to support the outcomes that are
acquired from the experimental results [30,31,39,40].

The goal of this study is to propose a rapid HPLC-UV analytical protocol that could be
applied in the investigation of the authenticity of walnut seed oils prepared from walnut
seeds that are available in the Greek market, originating from four European countries,
namely Greece, Ukraine, France, and Bulgaria. The concentrations of tocopherols among
the analyzed samples of different geographical origins were examined using a one-way
ANOVA. Tukey’s post-hoc test was also performed to examine exactly which samples from
different geographical origins differed from each other.

2. Materials and Methods
2.1. Chemicals and Reagents

The HPLC-grade acetonitrile (ACN) and HPLC-grade methanol (MeOH) were ac-
quired from Carl-Roth (Carlsruhe, Germany), while the 2-propanol (IPA) and heptane were
purchased from Panreac-AppliChem (Darmstadt, Germany). The ultrapure water was pro-
vided by a Milli-Q water purification system (Millipore, Bedford, MA, USA). The standard
compounds that were utilized were all purchased by Sigma-Aldrich (Steinheim, Germany),
namely α-tocopherol (96%), β-tocopherol (96%), γ-tocopherol (96%), and δ-tocopherol
(96%). For each one of the standard compounds, stock solutions at a concentration of
1000 µg/mL were prepared in MeOH and they were then stored in dark brown bottles at
−20 ◦C.

2.2. Walnut Samples

Forty samples of dried walnut kernels (500 g each) were used in the study, and they
were all available on the Greek market. Specifically, 10 samples that originated from various
regions of Macedonia and Thessaly in Greece, 10 samples of walnuts produced in Bulgaria,
10 samples produced in Ukraine, and 10 samples produced in France were provided by
traders. All samples were acquired in 2021. The walnut kernels were separated from their
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shells and subsequently chopped and homogenized in a mixer. All samples were stored at
−20 ◦C until further processing and analysis.

2.3. Instrumentation

The chromatographic analysis was performed using an Agilent 1220 Infinity HPLC-
UV system (Agilent Technologies, Santa Clara, CA, USA). The system comprised of: (i) the
degasser, (ii) the column oven, (iii) the manual injector, and (iv) the UV detector. The
OpenLAB software (Agilent Technologies, Santa Clara, CA, USA) and the Method and Run
control package were employed to monitor the analysis. The sonication of the samples was
performed in a MRC:DC-150-H ultrasonic bath provided by MRC (Essex, UK). A vortex
mixer purchased from VELP Scientifica (Usmate Velate, Italy) was used for agitation. Cen-
trifugation was carried out using a 3-16PK centrifuge system supplied by Sigma (Osterode
am Harz, Germany). Prior to the injection in the chromatographic system, all samples were
filtered through QMax RR 25 mm 0.22 µm PTFE syringe filters purchased from Frisenette
ApS (Knebel, Germany).

2.4. Chromatographic Analysis

For the separation of the analytes, a reversed-phase (RP) Kromasil C18 (4.6 × 250 mm,
5 µm) analytical column was used, provided by Macherey-Nagel (Dueren, Germany). A
binary gradient elution program consisting of MeOH (A) and ACN (B) was used for the
separation of tocopherols. The temperature in the column oven was maintained at 28 ◦C.
The elution program lasted for 15 min in total. The gradient program started with 50% A
and remained stable for seven min, then gradually increased to 100% A until the 12 min
mark, and remained stable for the last 3 min [31]. The flow rate was set to 1 mL/min and
the absorbance was measured at 295 nm.

2.5. Sample Preparation

For sample preparation, a slightly altered version of the extraction procedure previ-
ously introduced by Martakos et al. [41] was employed. First of all, the walnut seeds were
thoroughly homogenized in a porcelain mortar. After, 1 g of solid sample was weighed in a
falcon tube and 10 mL of heptane was added. The solution was vigorously agitated in a
vortex mixer for 1 min and was then placed in an ultrasonic bath at 40 ◦C for 20 min. The
samples were subsequently centrifuged at 8000 rpm for 10 min. In a following step, the
organic layer was transferred into the rotary evaporator and evaporated under vacuum
to obtain the pure oil. Then, 100 mg of oil was weighed and extracted with 400 µL of
isopropanol. The mixture was vortexed during 1 min, centrifuged at 8000 rpm for 10 min,
and finally, the aliquot was collected and filtered through 0.22 µm PTFE syringe filters prior
to the injection in the chromatographic system.

2.6. Method Validation

Linearity, accuracy, precision, limits of detection (LODs), and limits of quantification
(LOQs) were assessed to validate the method. Linearity studies were conducted at the
concentration range LOQ—50 mg/kg, by plotting the peak area versus the concentration of
the standard compounds for 7 calibration points. The r2 values of the standard calibration
curves were calculated in order to assess the linearity of the method. The LOQs were
considered to be the lower point of the calibration curve that corresponded to a signal-
to-noise ratio (S/N) higher than 10. In order to calculate the LOD values, the LOQ of
each analyte was divided by 3.3 [42]. Accuracy and precision were evaluated using a
pool sample spiked at three different concentration levels (0.5, 25 and 50 mg/kg). The
relative recoveries (%R) were calculated by means of recovery percentage, by comparing
the found and added concentrations of the examined analytes, expressing accuracy. The
relative standard deviations (%RSDs) were calculated to assess the precision of the method.
Repeatability was assessed by measuring within-day precision using six replicates (n = 6),
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and reproducibility was evaluated by performing triplicate analysis of a pool sample spiked
at three different concentrations (0.5, 25 and 50 mg/kg) within three consecutive days.

2.7. Statistical Analysis

The statistical analysis was performed using IBM SPSS Statistics 21. As the assumption
of normality was not met by tocopherol concentration values in some groups, the concen-
trations of each tocopherol were compared between groups using the Kruskal–Wallis non
parametric test at α = 0.05. One-way ANOVA was performed to explore potential signifi-
cant disparities between the samples, both in the concentration of every single tocopherol
and in their total sum, as well. The confidence level was set at α = 0.05. To discover this,
a post hoc analysis was carried out. There isa large variety of post hoc tests available, all
of which have their own pros and cons [43]. In this study, we chose to perform Tukey’s
test, which is the most commonly used one [44]. The MetaboAnalyst 5.0 package was used
to create box plots and present the concentrations of the determined tocopherols in the
analyzed samples [45].

3. Results
3.1. Method Validation Results

Table 1 presents the analytical parameters of the HPLC-UV method. The LODs
were found to range between 0.15 to 0.30 mg/kg, and the LOQ ranged between 0.50 to
1.00 mg/kg. The method precision was good since the %RSD values of the within-day
(n = 6) and between-day assays (n = 3 × 3) were lower than 6.1 and 8.2, respectively. The
accuracy was assessed by means of relative percentage of recovery (%R) were calculated
at three concentration levels (0.5, 25, 50 mg/kg), and ranged between 90.8 and 97.1% for
the within-day assay (n = 6) (Table 2), and between 90.4 and 95.8% for between-day assay
(n = 3 × 3) (Table 3).

Table 1. HPLC-UV analytical parameters.

Compound Calibrationequation
Linear
Range

(mg/kg)
r2 LOD

(mg/kg)
LOQ

(mg/kg)

α-tocopherol y = 5.68x − 1.23 1–50 0.999 0.30 1.00

β+γ-tocopherol y = 6.94x + 0.19 0.5–50 0.997 0.15 0.50

δ-tocopherol y = 5.89x + 0.33 0.8–50 0.996 0.27 0.80
LOD: limit of detection; LOQ: limit of quantitation.

Table 2. Recovery (%R) rates for the evaluation of the repeatability.

Compound
Low

Concentration
(%R, n = 6)

%RSD
Medium

Concentration
(%R, n = 6)

%RSD
High

Concentration
(%R, n = 6)

%RSD

α-tocopherol 92.2 5.4 90.8 5.8 96.5 6.1

β+γ-tocopherol 94.1 3.6 92.5 2.9 97.1 5.8

δ-tocopherol 93.5 6.5 96.9 4.3 93.4 5.3

Table 3. Recovery (%R) rates for the evaluation of the reproducibility.

Compound
Low

Concentration
(%R, n = 3 × 3)

%RSD
Medium

Concentration
(%R, n = 3 × 3)

%RSD
High

Concentration
(%R, n = 3 × 3)

%RSD

α-tocopherol 93.7 6.5 93.3 6.5 95.5 8.2

(β+γ)-tocopherol 94.3 7.3 94.1 8.3 91.2 6.9

δ-tocopherol 95.8 5.8 90.4 7.5 92.4 7.5
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3.2. Walnut Seed Oil Analysis

Overall, 40 samples originating from 4 different countries were analyzed in tripli-
cate, and the contentrations of α-tocopherol, (β+γ)-tocopherol, and δ-tocopherol were
determined. The separation of the tocopherols was accomplished within twelve minutes,
as it is shown in the characteristic chromatogram of a standard mixture of tocopherols
(α-tocopherol: 5 mg/kg; (β+γ)-tocopherol: 5 mg/kg; δ-tocopherol: 5 mg/kg) monitored at
295 nm, presented in Figure 1. The β- and γ-tocopherol are isomers and were quantified as
a sum [46]. Table 4 presents the determined analytes along with the molecular formulas,
molecular structures, and retention times (RTs). The β- and γ-tocopherol are isomers, and
subsequently they eluted at the same RT [27,30,31].
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Table 4. Molecular formulas, molecular structures, and retention times.
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3.3. Quantitative Analysis of Tocopherols

The concentration ranges (minimum and maximum values) of the tocopherols ex-
pressed in mg per kg of walnut seed oil, are presented in Table 5. The average concentration
ranges and their mean values (±SD), as well as their average total concentrations are pre-
sented in Table 6. The sum of β- and γ-tocopherol was proven to be the most abundant in all
samples, owing to the high concentrations of γ-tocopherol in the walnuts [16]. The second
most abundant tocopherol was δ-tocopherol, whileα-tocopherol was the least abundant.

Table 5. Concentration ranges (mg per kg of walnut seed oil) of the samples.

Tocopherol Greek Walnuts French Walnuts Ukrainian Walnuts Bulgarian Walnuts

α- 5.3–18.4 2.9–10.9 7.2–22.1 4.1–7.2

β- and γ- 100.3–189 92.0–142.5 166.9–229.0 105.9–160.8

δ- 11.2–19.6 14.5–20.9 18.3–24.8 12.5–20.9

Total 117.5–220.8 110.6–174.3 192.4–263.2 124.4–187.0

Table 6. Mean values ± SD (mg per kg of walnut seed oil) of samples.

Tocopherol Greek Walnuts
(n = 10)

French Walnuts
(n = 10)

Ukrainian Walnuts
(n = 10)

Bulgarian Walnuts
(n = 10)

α- 10± 4 6 ± 3 12 ± 6 5.5 ± 1.0

β- and γ- 150 ± 30 122 ± 17 204 ± 21 138.0 ± 17.8

δ- 15± 3 17 ± 2 23 ± 2 16 ± 2

Total 176 ± 34 145 ± 20 239± 23 159 ± 20

Box and whisker plots were created for each compound to graphically depict their
concentrations among the different European regions. The concentration levels of α-
tocopherol did not differ significantly between Greek and Ukrainian walnuts. However,
these concentration levels were significantly higher compared to those determined in
Bulgarian and French walnuts (x2 (3) = 19.9, p < 0.001, Figure 2A). The sum of (β and γ)-
tocopherols and the concentration levels of δ- tocopherol were determined in significantly
higher levels in Ukrainian walnuts (x2 (3) = 23.6, p < 0.001 for sum of β- and γ-tocopherols,
Figure 2B; x2 (3) = 20.6, p < 0.001, for δ tocopherol, Figure 2C). Similarly, the average
total concentrations of tocopherols were found to be significantly higher in Ukrainian
walnuts (x2 (3) = 22.9, p < 0.001, Figure 3). δ-Tocopherol was found to be the most abundant
tocopherol in Ukrainian walnuts with a mean concentration equal to 23 ± 2 mg per
kg of oil. The second most abundant concentration was determined in French samples
(17 ± 2 mg/kg). The Bulgarian and Greek walnuts mean values were 16 ± 2 mg/kg
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and 15 ± 3 mg/kg, respectively. The total tocopherol content was highest in Ukrainian
samples, presenting a mean value equal to 239 ± 23 mg per kg of oil. The Greek walnuts
had the second highest mean value of 176 ± 34 mg/kg. The Bulgarian walnuts mean
concentration was 159 ± 20 mg/kg, while the French walnuts demonstrated a mean value
of 145 ± 20 mg/kg.
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The concentration ranges reported were in accordance with studies published in the
literature. There is a wide variety of studies available that confirm that γ-tocopherol is of
the highest concentration in walnut seed oils, no matter the cultivar or the geographical
origin of the sample [19,20,22–25,47–50].

Concerning α-tocopherol, in particular, some of the aforementioned studies have
reported higher values compared to those reported in this study, at up to 45 mg per kg of
walnut oil [20,21,24]. The range of concentrations is even wider for the sum contents of
β- and γ-tocopherols, since some studies have reported the sum of β- and γ-tocopherols
at the lowest limit of 35 mg per kg of oil, which is significantly lower compared to the
concentrations found in this study [20]. On the other hand, higher concentrations have
been reported in crops originating from Argentina and Turkey, supporting the idea that
there is a correlation between the tocopherol content and the geographical origin [18,24].
As for δ-tocopherol, the concentration ranges reported in the literature are similar to those
determined in the present study.

4. Conclusions

A rapid protocol was developed to determine the concentrations of tocopherol ho-
mologues in walnut samples originating from four different European regions (Greece,
Ukraine, France, and Bulgaria) using HPLC-UV. According to the results, the highest con-
centrations were determined in Ukrainian walnuts, the second largest were found in Greek
walnuts, and then the Bulgarian and the French walnuts followed. The results were ana-
lyzed with one-factor ANOVA, and it was revealed that the samples differed significantly
from each other (p-value < 0.001), indicating that big discrepancies do exist on the basis of
the samples’ geographical origin. Furthermore, the Ukrainian walnut seed oils presented a
significantly higher concentration compared to the rest of the samples. Finally, the Greek
walnuts possessed a significantly higher mean concentration of α-tocopherol compared to
the French and Bulgarian walnuts and a significantly higher mean concentration of β- plus
γ-tocopherols compared to the French walnuts.
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Abstract: This review aims to evaluate the state of saffron’s main bioactive compounds and their
relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of
the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of
its carotenoid derivatives, synthesized throughout flowering and also during the whole production
process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive
metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that
determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are
used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting
or chemo typing are essential for saffron identification. The determination of the specific chemical
markers coupled with chemometric methods favors the discrimination of adulterated samples, pos-
sible plants, or adulterating compounds and even the concentrations at which these are obtained.
Chemical characterization and concentration of various compounds could be affected by saffron’s ge-
ographical origin and harvest/postharvest characteristics. The large number of chemical compounds
found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an
interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also
bring additional economic value to the most expensive aromatic species in the world.

Keywords: saffron; bioactive compounds; chemometric methods; adulteration; by-products

1. Introduction

Plants and vegetables are major sources of food bioactives. Spices and herbs are plant
materials that provide a wide range of biologically active compounds. In addition to being
used as sources of aroma, flavor, and color and as preservatives, spices and herbs have
been used for medicinal purposes and health and wellness for centuries. Aromatic spices
can be added to food in their natural state as a powder or extract [1]. In the food industry, it
is not only the active parts of vegetables or plants that are important since there are several
uses for their waste or by-products as ingredients in different food formulations [2].

Saffron is the commercial name for the dried red stigmas of the Crocus sativus L.
flower. It is appreciated for adding color, flavor, and a particular aroma to different food
dishes or drinks (paella in Spain, Milanese risotto in Italy, lussekatter buns in Sweden, and
alcoholic beverages). It is considered a high-priced condiment (1500–2200 euro/kg) due
to the considerable labor involved in its production since it requires manual harvesting
as well as a laborious handling process (sorting, drying, and storage) [3–6]. Saffron’s
principal producers are Iran and Spain, whereas the leading importers are Spain, Hong
Kong, and the United States [3]. Saffron’s quality is essential for consumers in the food
industry [7] and is based on the concentration of its apocarotenoids and their respective
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sensory attributes: crocin’s coloring strength, picrocrocin’s bitter taste, and safranal’s
aromatic intensity. Saffron contains over 150 volatile and non-volatile compounds including
proteins, carbohydrates, vitamins, amino acids, minerals, gums, and other compounds [8,9].
However, the apocarotenoids (crocin, picrocrocin, and safranal) are responsible for saffron’s
sensorial attributes and are the major bioactive compounds used as markers for its quality.
Furthermore, the quality and, consequently, the commercial value of saffron are based on
the estimation of its coloring power, bitter taste, and aroma [10].

Reductions in saffron’s commercial quality can be attributed to inappropriate harvest-
ing methods, insufficient dehydration processing, exposure to direct sunlight, improper
storage, and adulteration [4,5]. Saffron fraud is related to unfair competition, including
(a) by adding substances (parts of other, cheaper plants or synthetic dyes) to produce low-
cost spices [5,7,11] or (b) spices that carry the Protected Designations of Origin (PDO) logo
without being produced or processed in the specified geographic area [11,12]. To prevent
adulteration, it is necessary to establish a precise chemical identification protocol to protect
producers’ and consumers’ interests [13]. Metabolic and chemical profiling is a valuable
tool for product standardization and for detecting mislabeled or fraudulent samples [4].
This review aims to evaluate the state of saffron’s main bioactive compounds and their
relationship with its commercial quality. To fully achieve this purpose, the following topics
are addressed: (i) we describe the C. sativus characteristics for obtaining saffron and its
uses in the food industry; (ii) we present and discuss saffron’s chemical composition, its
main bioactive compounds, and their determinations; (iii) we explain saffron’s quality
compounds related to color, odor, and flavor; (iv) we differentiate the saffron authentication
techniques and their relationships with chemical compounds and chemometric methods as
a critical parameter of its commercial quality; and (v) we consider the saffron by-products
and their applications in the food industry.

2. C. sativus

C. sativus belongs to the Iridaceae family and is considered a sterile herb from the
Crocus genus [14–18]. It is a perennial plant; therefore, soil fertility must be carefully
controlled to achieve high production. Its cultivation is adapted to arid and semi-arid
lands. It grows abundantly in regions with cold winters and abundant rain in spring and
autumn and low rainfall in summer; it can also grow in temperate and subtropical climates
with sandy or clay soils with good drainage. Saffron is grown in Iran, Spain, India, and
Greece. The plant is small, with a height of up to 30 cm. Predominantly, it consists of
leaves (deep green), flowers, and a globular underground corm or bulb measuring 3 to
5 cm in diameter [14,19–21]. The flowers are composed of six tepals; inside the flower,
three stamens are present, and a filiform white style terminates in a stigma divided into
three threads. During its development and growth, the stigma changes color from white
to scarlet [16,18,22–26]. The stigma constitutes between 7 and 7.4% of the flower and the
remaining 93% is composed of the petals, stamens, and style. Stigmas represent the unique,
marketable part; the rest of the plant is called the floral biomass [14]. Saffron flowers are
sterile; therefore, they do not produce viable seeds and must be propagated manually by
planting corms that grow underground. Flowering occurs approximately 40 days after
sowing and lasts from 20 to 30 days [16–18,25,26]. Corms remain dormant during summer
and grow at the end of the season [16,17]. The geographical origin and their respective
environmental conditions (altitude, temperature, rainfall, irrigation cycles, harvest season,
humidity, and properties or type of soil) influence plant growth and development, exerting
strong effects on the production of secondary metabolites [6,27].

3. From C. sativus to Saffron

There are a variety of methodologies and techniques for obtaining saffron from the
C. sativus flower. The main phases are described in the following subsections.
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3.1. Harvesting

Harvesting begins in the morning (deep red stigma); flowers are cut before the tepals
open to prevent them from wilting in the sun (causing loss of color and concentration of
apocarotenoids). This break is made in the lower part of the corolla. Fresh-cut flowers
should be kept in good storage conditions, with high humidity, a low temperature, and
moderate airflow. This is due to their short shelf life, rapid senescence, high water loss, and
high likelihood of contamination by bacteria and fungi [3,28,29].

3.2. Post-Harvest

Cut flowers are transferred in baskets or sacks to the processing area, avoiding pressure
or deformation of the stigmas (in Greece, stigmas are cut on the plant). Next, they are
placed on a table for “monda” (separation of tepals and removal of the styles). The flower
is opened and the stigmas are separated from the tepals and stamens (the stigma is cut
at the base of the filaments and the style is removed). The whole, manually performed
operation takes around 4 s per flower (a step responsible for the high cost). The stigmas are
collected manually to preserve the bioactive compounds. However, easy degradation in the
presence of light or oxidizing agents means that few stigmas are classified as high-quality
saffron. Poor hygiene, transportation, bulk storage, manual harvesting, monda, sudden
rain during flowering, and prolonged and inadequate storage temperatures are critical
factors of quality and contamination. Accelerated stigma separation after flower harvesting
is recommended to reduce these factors [3,17,28–31].

3.3. Drying

As described above, fresh stigmas do not transmit the typical color, flavor, and aroma
so a drying treatment is necessary. This step is crucial and essential to convert C. sativus
stigmas into the aromatic spice saffron. In most cases, it can be stated that the drying
method affects the color, morphological characteristics, bioactive composition, flavor, and
aroma of saffron; this is explained by the fact that, during the process, a series of biochemical
and enzymatic changes occur, generating volatile and non-volatile compounds. There are
several techniques for carrying out the drying process (conventional: room or moderate
temperatures of 35–45 ◦C over long periods of time are recommended; non-conventional:
very short periods of time at high temperatures of 60–70 ◦C) and each method has its own
variables (place, temperature, relative humidity, raw material load, etc.). The variables
differ between countries and according to the experience, available resources, and climate
of each region, which results in variations in saffron quality [32–36].

3.4. Storage

Dried stigmas are packed in sealed containers away from moisture and light at temper-
atures between 5 and 25 ◦C. Saffron is marketed as strands or ground saffron. One kilogram
of dry saffron requires between 110,000 and 165,000 flowers, which implies around 50 h of
labor to pick the flowers plus 200 h to peel the stigmas from them. Storage favors the oxida-
tive and hydrolytic decomposition of the secondary metabolites (crocin and picrocrocin).
However, inadequate storage can affect the properties of the finished product [30,36,37].

4. Saffron in the Food Industry

Saffron’s aroma develops during the drying and storage stages. However, the loss
of apocarotenoid quality occurs due to poor harvesting, inadequate drying and storage
conditions, the mixing of stigmas with other parts of the plant, etc. [10,36,38]. It is tra-
ditionally used in industry as a medicine, textile dye [8], cosmetic raw material, orna-
mental flower [35], and aphrodisiac [39]. Specifically, it is used in the food industry
and cuisines worldwide as a spice or seasoning [8,40], acting as a flavoring and coloring
agent [39,41–43]. However, it is also recognized as a medicinal plant [41], carrying various
beneficial health properties such as analgesic, sedative, antioxidant, anticancer, and other
therapeutic properties [39].
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Saffron has been used in the food industry for culinary purposes as an aromatic,
flavoring, and coloring agent, in many products. The chemical composition of saffron
makes it a valuable functional ingredient for various products in the food industry [14].
Saffron has been added to several formulations for the development of functional foods as
a preservative, colorant, flavoring, antioxidant, base for bioactive compounds, etc.

Regarding the bakery and confectionery industries, Gani et al. (2021) produced forti-
fied cookies with encapsulated bioactive compounds from saffron. The additions enhanced
its antioxidant activity, providing a better color and suitable stability. In addition, in vitro
digestibility showed a low glycemic index [44]. Moreover, Bhat et al. (2018) designed whole-
wheat flour cookies with saffron extracts. They reported acceptable sensory characteristics
(except texture), antioxidant properties, and a suitable shelf life [45]. Bhat et al. (2022) pro-
duced functional cakes from whole-wheat flour combined with saffron or tomato extracts.
The addition of saffron extract to the cakes produced desserts with improved antioxidant
properties, without affecting the product’s sensory quality [46]. Armellini et al. (2018) eval-
uated the qualities (texture, physicochemical, and sensory) of dough enriched with saffron
powder. The results showed that saffron provided better textural properties, higher sensory
acceptability (visual appearance, color, aroma, flavor, chewiness, hardness, gumminess,
and overall acceptability), and improved antioxidant activity (higher values of crocin) in
the saffron-enriched dough [47]. The same research group [43] studied the effect of saffron
extract addition on starch digestibility and crocin fate and release at different cooking times
in fresh pasta. The results showed that the saffron extract affected the digestibility and
glycemic index. The higher the saffron concentration and the shorter the cooking time, the
higher the amount of crocin released in the digestive fluids.

Sena-Moreno et al. (2018) used a saffron extract (rich in safranal) as a flavoring
agent in olive oil. They reported that small concentrations of safranal led to organoleptic
improvements in the oils. In addition, positive values were obtained for oxidative stability,
indicating this product’s potential in the charcuterie market [48]. Almodóvar et al. (2018)
compared the advantages and culinary applications of a natural commercial saffron extract
(affron®eye) vs. saffron stigmas in refrigerated foods. They demonstrated that affron®eye
has advantages in terms of microbiological safety, ease of dissolution, quick application,
and simple mixing of ingredients [49]. Finally, Moghaddam et al. (2018) developed a
probiotic beverage (Lactobacillus, Lactococcus) fermented using saffron petals. They reported
its physicochemical, antioxidant, rheological, and sensory properties, showing overall
benefits in terms of antioxidant and phenolic activity after fermentation [50].

5. Saffron’s Chemical Composition

Saffron contains more than 150 compounds (volatile and non-volatile) including
carotenoids (crocetin, crocin, β-carotene, lycopene, and zeaxanthin), monoterpene aldehy-
des (picrocrocin and safranal), monoterpenoids, and isopherones [8,28]. However, it also
contains other compounds such as flavonoids, vitamins, proteins, and amino acids [51].
Saffron owes its sensory and functional properties mainly to the presence of its carotenoid
derivatives, synthesized throughout flowering but also during the whole production
process [43]. These compounds include crocin, crocetin, picrocrocin, and safranal, which
are the secondary or bioactive metabolites [8,43,44,52]. Saffron’s quality depends on its
chemical profile and is directly related to the geographic area, climate variability, environ-
mental practices, genetic traits, soil composition, cultivation conditions, and processing
and storage methods [53,54]. Nevertheless, according to the ISO standards (3632-1:2011
and ISO 3632-2:2010), the value and quality of the stigma are measured based on the
content of the color components (crocin and crocetin), the bitter taste component (picro-
crocin), and the volatile compounds responsible for the odor and aroma (safranal). These
specific parameters are influenced by the environmental conditions, extraction method,
purification, etc. [14,28,55–57]. Some studies have been conducted on the extraction of
bioactive compounds from saffron using the concept of green chemistry [58]. Some research
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on saffron stability demonstrates that temperature and humidity exert a strong influence
on the degradation of the principal active ingredients [8].

5.1. Saffron’s Important Apocarotenoids

Crocin: The main bioactive compound of saffron was isolated by Aschoff in 1818, re-
porting a family of yellowish-red water-soluble carotenoids (mono-glycosyl or di-glycosyl-
polyene esters) of 20 carbons [8,34,58–60]. In other words, this was a group of compounds
formed by crocetin esterification (dicarboxylic carotenoid), which were classified according
to their sugar fractions [59]. The abbreviations used in this review are as follows. The
cis/trans-X-R1R2 crocin abbreviation system is used based on three main characteristics:
(a) cis/trans isomers, (b) X: number of glucose components (1–5), and (c) type of structure
in R1 and R2 (acid form: H; glucose: g; gentiobiose: G; Neapolitan: n; or triglucose: t.)
(Suchareau et al. (2021)). The most represented crocins are trans-4-GG, trans-3-Gg, trans-2-
G, trans-2-gg, trans-5-tG, and trans-1-g, among others [19,59,61–70].

Crocins are unusual apocarotenoids since their terminal glycoside rings confer high
solubility. These pigments are detected in the red lobes of the stigmas of the Crocus
sativus flower [14,19] and their content is proportional to the color and quality index.
However, it should be noted that zeaxanthin (fat-soluble carotenoid) can also influence the
color [35]. Crocins as such have low stability and lose their functionality during exposure
to heat, oxygen, light absorption, acidic environments, and/or due to the presence of
additives [43]. Therefore, the drying and storage temperatures are important for proper
color development [68]; poor storage conditions lead to color pigment degradation [71].
Several factors are related to the concentration of these pigments in saffron stigmas, which
are mainly the geographical growing region, crop conditions, type of soil, plant genetic
traits, climate, planting time (rate), seed/crown rate, planting depth, corm size/weight,
crop density, nutrient management, weed management, growth regulators, harvest and
postharvest management, and drying conditions [49,72]. Finally, crocin (digentiobiose ester
of crocetin) is recognized as a natural food-grade dye that displays biological activity such as
antigenotoxic, cytotoxic, antioxidant, anti-inflammatory, anti-atherosclerotic, anti-diabetic,
hypotensive, hypolipidemic, hypoglycemic, and antidepressant properties [14,28,55].

Crocetins are lipophilic carotenoids derived from the hydrolysis of crocin glycosides,
which is a crocin aglycone [67]. It contains a carboxyl group at each end of the polyene
chain [19]; these groups of compounds (α-crocetin or crocetin I, crocetin II, β-crocetin,
γ-crocetin) are produced from the degradation of zeaxanthin [73].

Picrocrocin’s structure was established by Khun and Winterstein in 1934 [60]. It is a
colorless and odorless glycoside monoterpene (4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-
carboxaldehyde or hydroxy-β-cyclocitral: HTCC and glucose), a product of the degradation
of zeaxanthin, and is responsible for saffron’s bitter taste [8,28,34,52,58,74]. Picrocrocin
is the second most abundant component in dry matter content [66,73,75]. During the
drying process (35–50 ◦C for 4–7 h), picrocrocin’s temperature and/or hydrolysis form an
aglycone [73,76]. Therefore, picrocrocin decreases during dehydration, whereas safranal is
absent before drying [17].

Safranal is an aldehyde monoterpene and the volatile component responsible for saf-
fron essential oil. HTCC (hydroxy-β-cyclocitral or 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-
1-carboxaldehyde) is regarded by many authors as a safranal precursor. This compound is
obtained by chemical or enzymatic hydrolysis (dissociation) or when the vegetal material
is dehydrated and transformed into safranal, but this also happens due to the handling and
storage processes [8,53,58,63,75,77,78]. The safranal content changes according to the dura-
tion and intensity of drying, causing quality fluctuations [34], whereas its concentration
increases with the storage and timely harvesting of flowers. However, heat and sunlight
decrease the final quality and price [28].
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5.2. Hypotheses on the Method of Obtaining Apocarotenoids

There are various hypotheses on the method of obtaining these important apoc-
arotenoids from saffron. The first theory focuses on synthesizing these compounds in the
plant from protocrocin (glycosyl derivative of zeaxanthin), the substrate of an oxidative
enzyme that produces a molecule of crocin and two molecules of picrocrocin. Regarding
safranal, it has been described that only a minimal concentration is detected in the fresh
spice [79]. Fallahi et al. [80] described another pathway wherein apocarotenoids, which
are commercially important, are obtained by the cleavage of carotenoids (zeaxanthin and
β-carotene) by the carotenoid dioxygenase enzyme, giving rise to crocetin and hydroxy-
β-cyclocitral as products. Later, they propose a glycosylation (glycosyltransferases) step,
which produces crocins and picrocrocin, respectively. Finally, they describe that picro-
crocin is hydrolyzed to form safranal. This hypothesis is consistent with that described by
Sereshti et al. [81], who also describe other, more specific enzymes and substrates, as seen
in Figure 1.
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Figure 1. Possible pathways of commercial apocarotenoids in saffron.
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The enzyme dioxygenase performs a 7–8C and 7′–8′C symmetric cleavage on the
carotenoid zexanthin, converting it to 3-hydroxy-β-cyclocitral and dialdehyde crocetin.
Crocetin dialdehyde undergoes oxidation by aldehyde dehydrogenase to crocetin. Crocetin
further undergoes glycosylation at the carboxyl group by the enzyme UDP-glucuronosyl
transferase, forming crocin. Picrocrocetin is obtained from 3-hydroxy-β-cyclocitral by glyco-
sylation at the hydroxyl group by the enzyme UDP-glucuronosyl transferases. Picrocrocin
is converted to safranal by the action of the enzyme β-glucosidase along with heat during
drying [14].

6. Saffron Quality: Compounds Related to Color, Odor, and Flavor

Saffron’s quality depends on its chemical profile, which provides the bitter taste,
desirable aroma, and attractive yellowish-red color of this spice [29,82]. Several studies on
saffron stability are related to temperature, humidity, pH, light, oxygen [76], geographical
growth location, and drying and storage conditions [83]. Since 1980, a standard quality
procedure has been employed for saffron classification according to the International
Standard Organization (ISO/TS 3632), which was updated in subsequent years (2003,
2010, 2011). This regulation allows saffron to be classified into distinct categories based on
physical and chemical criteria: Category I—high quality; Category II—±medium quality;
and Category III—low quality [61,84,85]. The grouping parameters used are moisture
content, flower residues, foreign material, ash, and coloring power. However, external
parameters, such as the absence of other plants, biological micro-flora, and pesticide
residues, are also used. The methodology to determine saffron’s quality using these
regulations is the spectrophotometric quantification of the stigmas’ aqueous extracts (1%)
at three maximum wavelengths, namely 257 nm to indicate flavor strength (picrocrocin),
330 nm related to aroma (safranal), and 440 nm for coloring force (crocins), using a 1 cm
pathway quartz cell [85–89]. The results are reported according to Equation (1):

E1%
1cm(λmax) =

(A× 10, 000)
m× (100− H)

(1)

where λmax is the wavelength (257, 330, or 420 nm), A is the absorbance, m is the saffron
sample weight (g), and H is the moisture content (%) [20,79,88,90–92]. The color intensity is
the most important characteristic related to quality and is used to establish the market price
of saffron [93]. The crocin content (degraded carotene) [32] determines the market color
specifications. Category I includes a minimum value of 200 units of coloring strength (ucs)
and for Category III, the minimum value is 120 ucs [61]. Saffron merchants usually consider
a 3-4-year shelf life for saffron when stored under suitable conditions (at room temperature
without light exposure). The color intensity decreases by nearly 30 to 40 units per year and
is a significant determinant of the final quality of saffron [94]. Diverse drying methods affect
crocins, which may be related to the time, temperature, and resistance used [35]. Other
factors that affect color are geographic location, harvest, storage, and mixing with additional
non-colored parts of the plant (stems and other adulterating materials) [91]. Saffron’s bitter
taste is attributed to picrocrocin, a compound present in the plant’s stigmas. The ISO
standard determines the flavor strength with values of 70 (Category I), 55 (Category II),
and 40 (Category III) [61]. The final picrocrocin content varies according to the dehydration
process used [94]. The spice’s flavor can suffer significant losses during processing [1].
Safranal is the active odor in this spice [18,94,95]. The ISO 3632 method determines three
categories of aroma strength in safranal, with values within a range of 20–50 [61,96]. It is
important to emphasize that during dehydration and storage, there are modifications in
saffron’s sensory characteristics [94,97].

Therefore, the chemical components of saffron quality are crocin, picrocrocin, and
safranal. Lage and Cantrell [21] established that crocins are found in a more significant
range (18–37%), followed by picrocrocin (4.2–28%) and, in a lower proportion, safranal
(0.04–0.48%). This is consistent with the results described by various authors [21,64,72,90,96],

91



Foods 2022, 11, 3245

who determined crocins as the major components, specifically trans-4-GG and trans-3-Gg
crocins [61,64,98].

Concerning crocins, Chaouqi et al. [87] demonstrated that these coloring components
are extracted in a more considerable proportion at 40 ◦C than at room temperature; the
authors suggested the use of short dehydration times since an increase in temperature
allows for the maximum crocin content, which also depends on the production [94]. How-
ever, Rocchi et al. [68] found that the use of elevated temperatures (125–200 ◦C) in the
drying treatment can influence the pigments’ degradation (glucose hydrolysis), and fresh
samples (<1 year) retain a significant amount of glycosylated crocin, which is hydrolyzed
after storage. Sereshti et al. [81] described that freshly dried samples have an intense color
due to crocins since during storage, these pigments decrease (enzymes, temperature, light,
hydrolysis), with a negative correlation with odor (the color is reduced, whereas the aroma
increases). Saffron storage causes apocarotenoids’ glycosidic bonds to break down (band
at 1028 cm), which was confirmed using FT-IR spectroscopy, and is associated with the
presence of glucose, together with intensities in the region of 1175–1157 cm linked with
glucosidic bonds [99]. The second quality component in the percentage is picrocrocin,
which increases with the dehydration temperature (40 ◦C) [21] but decreases with storage
time [87]. Ordoudi et al. [78] determined that saffron produced under optimal processing
and storage conditions retains its organoleptic characteristics for 1 to 4 years. Meanwhile,
samples stored for more than four years produce low amounts of crocetin and picrocrocin
esters. This is related to the findings described by Sereshti et al. [81], who determined
that during storage, picrocrocin loses its sugar residues and becomes HTCC and safranal
(fresh samples are more bitter). In other words, fresh samples contained a higher concentra-
tion of crocins and picrocrocins, whereas the level of safranal (the most abundant volatile
component, but with a minimum total concentration in the aromatic spice) was higher
in the stored samples; therefore, the relationship between time and safranal content was
demonstrated by the higher concentration in the samples with extended storage. García-
Rodríguez et al. [96] determined that the aged spice produces safranal from HTCC. The
safranal concentration depends on the drying and storage conditions [97].

6.1. Quality Standards and Apocarotenoid Quantification

The ISO standard proposes a fast, economical, and easy-to-implement spectropho-
tometric UV-vis method for aqueous saffron extracts. However, this technique does not
allow for the actual determination of the quality compounds [87]. ISO 3632 proposes the
quantifications of picrocrocin, safranal, and crocins at a maximum of 257 nm, 330 nm, and
440nm, respectively. However, Cossignani et al. [88] and Aiello et al. [86] determined that
crocins show an absorption spectrum between 250 and 470 nm that overlaps at various
wavelengths between the compounds. Trans-crocin isomers showed two bands: the first
at 260 nm (glycosidic ester bond) and the second band between 400 and 470 nm (typical
of carotenoids). Meanwhile, the cis-crocin isomers showed three bands: two bands as
previously described and a third band of medium intensity at 328 nm. This indicates
that the amount of picrocrocin is affected by the concentration of cis and trans-crocins.
Meanwhile, the safranal concentration obtained by UV-vis is not precise since cis-crocins
interfere. In summary, overlapping causes quantification errors and limitations in this
technique [57,90,96,100–102]. Another group of compounds that could interfere with
saffron’s quality is the kaempferol derivatives, which absorb UV-vis light at 264 and
344 nm [88,103]. Moreover, safranal is slightly soluble in water and therefore the use of
hexane and chloroform has been determined as the best strategy for the extraction and
detection of adulterants [101,104].

6.2. Apocarotenoids and Their Quantification by Chromatography

Color, flavor, and odor are the quality parameters for saffron aqueous extract according
to ISO 3632. They are determined by a non-specific spectrophotometric technique, albeit
with limitations in assessing the authenticity of saffron. In the search for a more effective
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technique, liquid chromatography (LC) or HPLC have been proposed to separate and
identify the components contained in a sample [89]. Various studies have described the
identification and detection of saffron metabolites by HPLC including safranal, crocins,
picrocrocin, and kaempferol and its derivatives [86]. For its part, a mass spectrometry
(MS) detector coupled to HPLC and/or DAD could improve quantification [105,106],
and MS/MS could facilitate the identification of compounds through structural elucida-
tion [107]. The key quality parameter of saffron is color and the compound to which it is
attributed is crocin, which must be quantified in order to determine the market price. For
the qualitative and quantitative determinations of crocins, it is necessary to implement
standards (quantification by internal and external standards) such as trans-4-GG-crocin
(high price and questionable purity ~80%) [53,67,102].

The MS detector has been of considerable help since the lack of suppliers and the high
prices of the standards make the structural elucidation (fragmentation patterns) of each
crocin important (the different crocins can be identified by the number of hexoses and the
molecular weight provided by the mass spectra) to compare them with the patterns in the
scientific literature [102,107]. Crocin determination was carried out by Aghhavani et al. [28];
they determined no correlation between the color indexes obtained with spectrophotometry
and HPLC data. They concluded that one could use the most accurate, easiest, and
low-cost method depending on the experimental conditions to evaluate the quality of
saffron. Rocchi et al. [68], demonstrated a poor correlation between the total crocin content
(quantification) obtained by the ISO method and by UHPLC-MS/MS.

García-Rodríguez et al. [96] and Kabiri et al. [90] found that the quantification of
safranal obtained by UV-vis does not correlate with HPLC data due to the interferences
(overestimation by interference) generated by cis-crocetin esters and other compounds with
λmax 330 nm. They also demonstrated that crocins interfere with picrocrocin and safranal,
resulting in overestimates of the latter compounds in samples with large amounts of crocin.
They concluded that semipreparative HPLC could represent an efficient method for the
quantification of apocarotenoids. Similar results were presented by Moras et al. [106];
they reported that safranal content is more accurately calculated using UHPLC-DAD-MS
because it is not influenced by the overestimation of safranal (with cis-crocetin esters at
λmax 310–330 nm), which is shown when using the ISO methodology. They recommend
determining, separating, identifying, and quantifying the metabolite content using the
UHPLC-DAD-MS method as a unique and rapid analysis technique. Maggi et al. [104]
and Bononi et al. [100] reported a null correlation between safranal content obtained by
ISO 3632 and the GC method, as many other saffron substances display absorbance at a
maximum of 330 nm.

For this reason, several instruments and analytical methods have been developed for
saffron quality control, including chromatography, spectroscopy, molecular biology, and
biomimetic techniques, with varying degrees of success and benefits [89]. HPLC is used
to isolate, identify, quantify, purify, and determine the quality or adulteration; reverse-
phase chromatography is widely used as it is capable of detecting compounds of different
polarities and molecular masses [108]. Some authors have pointed out that HPLC-DAD is
a selective, precise, sensitive, and specific technique that could evaluate the commercial
quality of saffron [27,109].

In Table 1, the major commercial-quality compounds in saffron quantified by HPLC,
are shown. The extractant solvents used in the investigations (Table 1) are polar and
are in agreement with the descriptions by Rahaiee et al. (2015), who suggested that
solvents such as water, ethanol, and pure methanol can be used but that mixtures would
be more appropriate for the extractions of bioactive compounds [110]. For many authors,
ethanol is the most suitable solvent (compared to methanol, ethyl acetate, diethyl ether,
hexane, and/or water) for extracting metabolites from saffron stamens [111]. Meanwhile,
Rahaiee et al. (2015) showed that an ethanolic extract obtained higher yields compared to
water and methanol [66]. Similarly, this solvent was better than methanol for obtaining
qualitative and quantitative data from saffron extracts. Meanwhile, Kyriakoudi et al. (2012)
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recommended the mixture of methanol: water (1:1, v/v) as a suitable solvent for industrial
and analytical applications of saffron apocarotenoids [112]. Crocin isolation by solubility
in a water–organic solvent mixture was tested by Zhang et al. (2004), who showed better
results for methanol–water > ethanol–water > acetone–water extract [113]. Crocins are the
most determined compound, followed by picrocrocin and safranal. In crocins, the ratios
determined from highest to lowest were trans-4-GG, trans-3-Gg, cis-4-GG, trans-2-G, and
trans-2-gg, respectively. An exception was Moratalla-López et al. [109], whose results did
follow this relationship because the saffron samples used in their research were only of
quality grade III. In general, ISO 3632 is used by researchers as a preliminary test. However,
to perform the true quantification of saffron’s commercial-quality compounds, more precise
spectroscopic techniques are used (HPLC, GC-MS, etc.).

Table 1. Principal quality chemical components of saffrons obtained from different geographical
origins and their concentrations.

Geographical
Origin Type of Extract Compound Concentration Technique Ref.

Azerbaijan Methanol–water
(50:50, v/v)

Trans-4-GG 39.08

mg/g HPLC-PDA [53]
Trans-3-Gg 27.25
Cis-4-GG 7.49
Σ crocins 77.16

Picrocrocin 3.34
Safranal 0.98

China Methanol–water
(50:50, v/v)

Trans-4-GG 6.29

mg/g HPLC-PDA [53]
Trans-3Gg 2.44
Σ crocins 8.73

Picrocrocin 0.53
Safranal 0.22

Poitou, France Methanol–water
(50:50, v/v)

Trans-4-GG 38.43

mg/g HPLC-PDA [53]
Trans-3-Gg 27.74
Cis-4-GG 5.89
Σ crocins 75.07

Picrocrocin 5.97
Safranal 0.81

Greece Methanol–water
(50:50, v/v)

Trans-4-GG 40.77

mg/g HPLC-PDA [53]
Trans-3-Gg 30.36
Cis-4-GG 10.14
Σ crocins 86.51

Picrocrocin 5.95
Safranal 1.29

India Methanol–water
(50:50, v/v)

Trans-4-GG 37.54

mg/g HPLC-PDA [53]
Trans-3-Gg 22.13
Cis-4-GG 9.12
Σ crocins 75.68

Picrocrocin 7.87
Safranal 0.47

Fars, Iran Aqueous
extracts

Trans-4-GG 56.16

mg/g HPLC-DAD [27]
Trans-3-Gg 48.72
Cis-4-GG 12.53

Trans-2-gg 12.49
Σ crocins 153.81

Picrocrocin 77.29

Ghaen, Iran Ethanol (70%)

Trans-4-GG 197.84

mg/g HPLC-
DAD-MS

[64]

Trans-3-Gg 71.56
Cis-4-GG 26.88
Trans-2-G 24.86
Σ crocins 338.87

Picrocrocin 43.82
Safranal 1.35

Gonabad, Iran Ethanol (70%)

Trans-4-GG 168.91

mg/g HPLC-
DAD-MS

[64]

Trans-3-Gg 61.25
Cis-4-GG 30.42
Trans-2-G 26
Σ crocins 302.51

Picrocrocin 36.97
Safranal 1.26
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Table 1. Cont.

Geographical
Origin Type of Extract Compound Concentration Technique Ref.

Isfahan, Iran Aqueous
extracts

Picrocrocin 150.64

mg/g HPLC-DAD [27]

Trans-4-GG 46.86
Trans-3-Gg 43.51
Trans-2-G 14.53
Trans-2-gg 10.56
Σ crocins 137.05
Safranal 1.04

Kerman, Iran Aqueous
extracts

Trans-4-GG 77.89

mg/g HPLC-DAD [27]
Trans-3-Gg 46.69
Trans-2-G 12.79
Σ crocins 159.86

Picrocrocin 63.95
Safranal 1.31

Razavi
Khorasan, Iran

Aqueous
extracts

Trans-4-GG 54.73

mg/g HPLC-DAD [27]
Trans-3-Gg 34.51
Trans-2-G 9.35
Σ crocins 123.61

Picrocrocin 120.62
Safranal 2.13

Tehran, Iran Aqueous
extracts

Trans-4-GG 59.7

mg/g HPLC-DAD [27]

Trans-3-Gg 44.43
Cis-4-GG 12.39

Trans-2-gg 9.34
Σ crocins 146.66

Picrocrocin 131.61
Safranal 0.57

Tehran, Iran
Aqueous

extracts (1%)
Freeze-Dried

Picrocrocin 33.88

mmol/100g HPLC-DAD [109]

HTCC 20.2
Trans-3-Gg 3.81
Trans-4-GG 3.53
Trans-2-gg 1.17
Σ crocins 9.91
Safranal 0.84

Tehran, Iran
Aqueous

extracts (1%)
Dark-Dried

HTCC 16.82

mmol/100g HPLC-DAD [109]
Picrocrocin 15.14
Trans-4-GG 4.59
Trans-3-Gg 3.71
Σ crocins 11.95
Safranal 0.41

Torbat, Iran Ethanol (70%)

Trans-4-GG 238.02

mg/g HPLC-
DAD-MS

[64]

Trans-3-Gg 85.36
Trans-2-G 24.3
Cis-4-GG 19.38
Σ crocins 388.23

Picrocrocin 67.95
Safranal 1.79

Iran Aqueous
extracts

Trans-4-GG 42.24

% HPLC [70]

Trans-3-Gg 24.76
Cis-4-GG 5.09
Trans-2-G 3.53
Trans-2-gg 3.18
Σ crocins 83.06

Picrocrocin 16.72
Safranal 0.22

Iran Methanol–water
(50:50, v/v)

Trans-4-GG 38.41

mg/g HPLC-PDA [53]
Trans-3-Gg 23.58
Cis-4-GG 4.73
Σ crocins 69.32

Picrocrocin 3.69
Safranal 0.65

Iran Ethanol 80%
Crocin 26.81

mg/0.1g HPLC [90]Picrocrocin 12.92
Safranal 0.042

Cascia, Italy Ethanol (70%)

Trans-4-GG 343.97

mg/g HPLC-
DAD-MS

[64]
Trans-3-Gg 111.94
Trans-2-G 13.59
Σ crocins 494.42

Picrocrocin 127.83
Safranal 3.01
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Table 1. Cont.

Geographical
Origin Type of Extract Compound Concentration Technique Ref.

Città della
Pieve, Italy Ethanol (70%)

Trans-4-GG 302.65

mg/g HPLC-
DAD-MS

[64]
Trans-3-Gg 109.17
Trans-2-G 16.12
Σ crocins 450.73

Picrocrocin 101.92
Safranal 2.41

Fiesole, Italy Ethanol (70%)

Trans-4-GG 372.49

mg/g HPLC-
DAD-MS

[64]

Trans-3-Gg 123.15
Trans-2-G 21.24
Cis-4-GG 12.55
Σ crocins 548.84

Picrocrocin 130.35
Safranal 2.01

Fiesole, Italy
Ethanol

(70%)—formic
acid

Trans-4-GG 238.91

mg/g HPLC-
DAD-MS

[98]

Trans-3-Gg 65.64
Trans-2-G 16.96
Cis-4-GG 4.95
Σ crocins 342.02

Picrocrocin 111.14
Safranal 2.27

Navelli, Italy Methanol–water
(50:50, v/v)

Trans-4-GG 38.25

mg/g HPLC-PDA [53]
Trans-3-Gg 28.28
Σ crocins 72.02

Picrocrocin 5.8
Safranal 0.53

Perugia, Italy
Ethanol

70%—formic
acid

Trans-4-GG 148.5

mg/g HPLC-
DAD-MS

[98]

Trans-3-Gg 46.2
Trans-2-G 14.8
Cis-4-GG 14.1
Σ crocins 231.1

Picrocrocin 68.9
Safranal 2.6

Italy Aqueous
extracts

Trans-4-GG 43.57

% HPLC [70]

Trans-3-Gg 23.09
Cis-4-GG 5.29

Trans-2-gg 2.12
Σ crocins 78.45

Picrocrocin 21.26
Safranal 0.28

Larache,
Marruecos

Degassed
methanol

Σ crocins 17.9
% HPLC-DAD [21]Picrocrocin 11.92

Safranal 0.21

Safranier
d’Ourika,

Marruecos

Degassed
methanol

Σ crocins 37.23
% HPLC-DAD [21]Picrocrocin 28.78

Safranal 0.24

Rangiora,
New Zealand

Methanol–water
(50:50, v/v)

Trans-4-GG 41.21

mg/g HPLC-PDA [53]
Trans-3-Gg 31.26
Σ crocins 74.61

Picrocrocin 7.94
Safranal 0.47

La Mancha,
Spain

Methanol–water
(50:50, v/v)

Trans-4-GG 38.41

mg/g HPLC-PDA [53]
Trans-3-Gg 24.43
Cis-4-GG 5.76
Σ crocins 73.85

Picrocrocin 8.14
Safranal 0.88

Turkey Methanol–water
(50:50, v/v)

Trans-4-GG 36.35

mg/g HPLC-PDA [53]
Trans-3-Gg 25.32
Cis-4-GG 5.21
Σ crocins 69.73

Picrocrocin 5.67
Safranal 0.84

7. Saffron Authentication

Due to its high market price, saffron is the most adulterated spice in history, which is
most frequently carried out by adding adulterants such as pulverized stigmas [114,115]
since diverse plants with similar color and morphology to saffron function as adulterants
when mixed [86]. Saffron adulteration can be classified into five common practices, as fol-
lows: (1) Adulteration using material from other plants such as calendula, arnica, gardenia,
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beet, pomegranate, turmeric, achiote, and safflower [93,106,115,116] or with other plant
parts of C. sativus besides the stigmas; (2) Increasing saffron mass by moistening with honey,
corn silk, sugar, fat, inorganic compounds, vegetable oils, or glycerin [18,116]; (3) Using
natural or artificial food-grade colorants such as tartrazine, ponceau-4R, quinoline, methyl
orange, sunset yellow, Sudan II, and Allura red [117,118]; and other less-used adulteration
methods including (4) The addition of exogenous components mixed with food flavorings
(erythrosine) and extracted spent saffron (recolored or old), and (5) Geographic origin
tagging fraud [31,93,119,120].

The chemical composition of food is an indicator of quality, origin, authenticity, and/or
adulteration. The chemical profile, also known as spectral fingerprinting or chemo typing,
is considered a characteristic pattern [121]. In food, variations in a profile are related
to alterations in production systems, the geographical origins of raw materials, storage
conditions, or adulterant practices [122]. It should be emphasized that it is important to
identify the adulterant and quantify the adulteration level [123]. Furthermore, the ISO/TS
3662 spectrophotometric technique does not differentiate between genuine and adulterated
saffron [9,124]. Saffron authentication is based on a pharmacognostic analysis (micro-
scopic examination of histomorphological features). It is time-consuming and requires the
availability of trained and experienced personnel [115,125].

Regulatory systems evaluate saffron using sensory inspections (macroscopic and mi-
croscopic examinations) as well as conduct quantitative determinations of specific chemical
compounds [126]. Authentication is based on detecting known chemical compounds ob-
tained with instrumental signals [127]. However, these kits yield many characteristics or
compounds, making it necessary to establish the chemical markers of authenticity [128].
Spectral fingerprinting can also detect and quantify adulterations using statistical data [127].
Chemometrics uses mathematical and statistical methods to create a correlation between
the sample properties and chemical data obtained from analytical instruments [129]; this
area is based on optimizing the experimental design and extracting useful information from
large and complex data sets [122]. Therefore, analytical chemometric coupling could no-
tably decrease the number of characteristics/compounds/signals and generate the markers
responsible for different authenticity issues (adulteration detection, variety or geographical
origin, discrimination, organoleptic profile, maturation, and production method). In ad-
dition, the identified markers would help to establish databases containing complete and
standardized information on the chemical profiles [128].

The following research summary is based on determining chemical compounds as
authentication markers (of genuine saffron or adulterants used) using different analytical
techniques to determine the spectral fingerprints and/or even using chemometrics to
obtain the amount of the adulterant or even the detection limits of the adulterant. Saffron
adulteration determination by the inclusion of tepals and/or stamens was carried out
by Senizza et al. [9]. They determined 232 compounds using UHPLC-QTO-MS. Among
them, 77 chemicals were present in trace quantities including the presence of flavonoids:
11 flavanols (tepals had a high content) and 7 anthocyanins (pigments of flowers, fruits, and
other plant organs), which increased in the adulterated samples. On the other hand, lignans
(12 compounds) were found in low amounts in the authentic samples. Zeaxanthin and
picrocrocin, which decreased in the adulterated samples, suggested a possible “dilution
effect” when adding adulterants. Moras et al. [106] determined, through UHPLC-DAD-MS,
the presence of iridoids as a marker for saffron adulteration, yielding positive test results
when gardenia extract was added.

Investigations using analytical techniques and chemometrics to quantify the adulterant
and the minimum detection to detect fraud have been presented. A method for deducing
saffron authenticity using LC-MS with derivatives of kaempferol and geniposide was
developed by Guijarro-Díez et al. [119]. They detected a minimum quantifiable value of
adulteration (0.2%) regardless of the adulterant (linear regression lineal and ANOVA), the
specific method, and saffron quality control. Sabatino et al. [85] used HPLC-PDA-ESI-MS
to identify unusual concentrations of adulterants in saffron (10–67% safflower, calendula,
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and turmeric). Their results showed that the ISO did not detect the addition of 10% of
adulterants. Moreover, marker molecules such as picrocrocin, trans-5-nG, trans-4-GG,
trans-4-ng, cis-3-Gg, cis-4-GG, and cis-2-gg were not found in the adulterated spices. They
determined the addition of 5% of safflower or calendula and 2% addition of turmeric in the
analyzed samples.

Saffron stigma adulteration with up to 20% of plant derivatives (saffron stamens,
calendula, safflower, turmeric, buddleja, and gardenia) was determined by Petrakis and
Polissiou [123] using a DRIFTS method and chemometric techniques. PLS-DA was applied
to perform saffron authentication based on infrared fingerprints (4000–600 cm). Identifica-
tion was carried out with data from the 2000–600 cm−1 region to develop the mathematical
models and detection limits ranging from 1.0 to 3.1% (p/p). Another (NIR) spectroscopy in-
vestigation combined with multivariate data analysis was performed by Shawky et al. [130].
They performed saffron stigma authentication with other plants (safflower, pomegranate
peel, calendula flower, paprika, turmeric, hibiscus, saffron stamens, and re-extracted saffron
stigma), modeling them with data at the spectral region (9000–4000 cm−1). The use of
PLS-DA allowed them to differentiate between authentic, adulterated, and mixed adulter-
ant samples, with a detection limit of up to 10 mg/g of the adulterant. In addition, they
quantified other added adulterants.

Saffron stigma authentication using artificial intelligence (simulating senses: sight,
smell) was reported by Heidarbeigi et al. [7]. They determined plant adulterants (safflower
and dyed corn using beetroot as a colorant, in addition to their mixtures) through signals
obtained by the e-nose (managing to differentiate adulterated and unadulterated saffron).
They also applied PCA and artificial neural networks (ANN) to determine fraud in saffron
stigmas, determining adulteration levels higher than 10%. Kiani et al. [83] used CVS
(camera, lighting system, and software) and an e-nose in combination with multivariate
methods (PCA, HCA, and SVMs) to detect saffron stigma adulterants (colored safflower and
saffron style) based on color and aroma profiles. The test demonstrated the ability to identify
the adulterated samples and this was achieved using ANN-MLP models, concluding that
neural networks allowed color (89%) and aroma-intensity (100%) prediction. CVS was
used by Minaei et al. [91] to characterize saffron color by sample image analysis. The use of
PCA to group color characteristics and the use of PLS, MLR, and MLP neural networks
(color characteristics used: R, Y, I, and Cr) related color and dye force (ISO 3632), with a
correlation coefficient of 0.89 and a success rate of 96.67%.

Another interesting application is the use of an e-nose (non-conventional technique),
compared to IR-MS and GC-MS (conventional techniques) to discriminate among saffron
samples with different origins, ages, and types of drying. The e-nose, in conjunction
with PLS-DA, was able to discriminate between samples of saffron with different origins;
this unconventional methodology was proposed to detect adulterates [131]. Recently,
molecular techniques for detecting fraud by adulterations have gained interest. Safflower
adulteration stamens as saffron adulterants were also studied by Babaei et al. [124], using a
multiplex PCR technique. Khilare et al. [116] described three methods to achieve saffron
authentication (microscopic examination, ISO3632 standard, and DNA barcode). They
evaluated 36 saffron samples and showed that the ISO only determines the color and aroma,
while the microscopic method indicates color purity and uniformity (possible adulterants).

Finally, DNA codes (gene code used: rbcL) have allowed researchers to authenticate
saffron’s origin and quality. Torelli et al. [115] used SCAR to detect adulteration or con-
tamination. SCAR markers can represent a rapid, reliable, and inexpensive method for
saffron authentication. Other rapid techniques for determining saffron adulteration were
proposed by Zhao et al. [132] via DNA extraction. They used a recombinase polymerase
amplification (RPA-LFD), which allowed them to perform the rapid visual detection of the
saffron and adulterated samples. Finally, when saffron was immersed in water, it expanded
immediately; when a diphenylamine and sulfuric acid solution was added, the saffron
was colored with a blue tone and quickly became reddish brown. Saffron phenylethanol
varies according to the spice preparation and is related to the stamen pollen [93]. Table 2
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shows a summary of the various research works and techniques for the determination of
the different types of adulterants. As regards the adulteration of saffron by its origin or
PDO products, saffron has a high value on the market so some saffron producers falsify the
product’s origin [15,54]. In Europe, a PDO label carries a regional valuation that identifies
the products produced, processed, and prepared in a specific geographic area [103]. There
are five brands recognized with this label: “Krokos Kozanis” (Greece), “Azafrán de la
Mancha” (Spain), “Zafferano dell ‘Aquila”, “Zafferano di San Gimignano”, and “Zafferano
di Sardegna” (Italy) [15]. There have been a considerable number of studies on origin
adulteration [31,54,101,103,131,133–135]. La Mancha in Spain and Kashmir in India are two
regions where saffron maintains higher prices [134]. Therefore, labeling saffron samples
with a PDO implies that the product is of high quality [54]. Moreover, Senizza et al. [9]
determined the chemical markers capable of discriminating PDO saffron samples from non-
PDO. Chemical fingerprints were obtained using UHPLC-ESI-QTOF-MS and multivariate
statistics, obtaining the flavonoids belonging to the flavonols and flavones (pelargoni-
din 3-O-6-succinyl-glucoside, isoxanthohumol, nobiletin, jaceosidin, 6-hydroxyluteolin,
3-methoxysinenset, 7-dimethylquercetin, quercetin 6-O-malonylglycitin), phenolic acids
(protocatechuic aldehyde, 4-hydroxybenzaldehyde, vanillin, 2/3/4-hydroxybenzoic acids,
benzoic acid, sinapine, p-coumaroyl malic acid, p-coumaric acid, cinnamoyl glucose,
4-hydroxyphenylacetic acid), lignans, and other polyphenols.

Table 2. Different techniques for saffron adulterant determination.

Type Adulterant Adulterant
Concentration

Adulterant
Minimal Detection

Adulterants Indicators or
Markers Technique Ref.

1. A

Calendula flower
Curcuma rhizome

Hibiscus flower
Paprika fruit

Pomegranate fruit
Safflower

10–400 mg/g 10 mg/g
6000–5800
5400–5000
4600–4200

cm−1
FT-NIR/PCA:

SIMCA
PLS-DA

[130]

1. A Gardenia 0–100% w/w 5 % w/w

Geniposide
Deacetyl-asperuloside acid

methyl ester
Gardenoside

Genipin-1-β-D-gentibioside
6′′-O-trans-

coumaroylgenipin
gentibioside

Scandoside methyl ester
Absence of picrocrocin

derivatives

UHPLC-DAD-
MS [106]

1. A Gardenia extract ND 41.7 g/g Geniposide LC–MS [119]

1. A Gardenia extract 0–100%

0.8
0.2
1.8
2.5
2.2

%

Kaempferol
3,7,40-O-triglucoside

Kaempferol
3-O-sophoroside

7-O-glucoside
Kaempferol

3,7-O-diglucoside
Kaempferol

3-O-sophoroside
Kaempferol 3-O-glucoside

LC-MS [51]

1. A Curcuma rhizome 0.5–20% w/w 0.5 % w/w ND
DNA isolation/

[15]Bar-HRM
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Table 2. Cont.

Type Adulterant Adulterant
Concentration

Adulterant
Minimal Detection

Adulterants Indicators or
Markers Technique Ref.

1. A
Calendula

Rubia
Safflower

5–35% w/w 5 % w/w

4200
4750
5170

6000–5400
7100–6000
8300 cm

cm−1 NIR/PLS-DA [117]

1. A

Turmeric,
Onion peels

Pomegranate peels
Calendula petals

0–30% w/w

3.7
6.2
3.6
3.5

% w/w
4961–4016
6388–5389
9975–7472

cm−1 FT-NIR/MCR-
ALS [136]

1. A

Tumeric
Safflower

G. jasminoides
fruit extract

20% w/w 20 % w/w

7.541, 6.751,
6.059, 7.318,
7.147, 6.819
5.205, 5.138,

5.066
7.569, 7.466,
5.679, 5.121

1 H ppm
1 NMR/OPLS-

DA/O2PLS-DA
[125]

1. A

Buddleja
Officinalis flower
Calendula petals

Gardenia fruit
extract

Safflower
Turmeric

0–20% w/w

1.1–1.6
1.9–2.6
1.1–1.5
2.1–2.8
1–1.6

% w/w

1624–1456 and
941–771

1508–1396 and
1167–1055

1794–1626 and
1113–943

1539–1456 and
858–773

1624–1286 and
941–771

cm−1 DRIFTS/PCA
PLS-DA [123]

1. B Saffron style 5–35% w/w 5 % w/w

4200
4750
5170

6000–5400
7100–6000

8300

cm−1 NIR and
MIR/PLS-DA [117]

1. B Saffron stamens 20% w/w 20 % w/w 5.181 1 H ppm

1

NMR/OPLSDA/
O2PLS-DA

[125]

1. B Saffron stamens 0–20% w/w 2.2–3.1 % w/w
4000–600

1963–1626 and
941–771

cm−1 DRIFTS/PCA
PLS-DA [123]

1. B Saffron stamens 10–400 mg/g 10 mg/g
6000–5800
5400–5000
4600–4200

cm−1 FT-NIR/PLS-DA [130]

3 Carminic acid 0.5–20% w/w 10 % w/w

1564–1576
1445–1456
1211–1231

810–816

cm−1
FT-

IR/PCA/PLS-
DA

[137]

3 Carminic acid 0.2–2% w/w 0.2 % w/w
Carminic acid

at 4.7 min,
495 nm

min, nm RT-HPLC-DAD [137]
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Table 2. Cont.

Type Adulterant Adulterant
Concentration

Adulterant
Minimal Detection

Adulterants Indicators or
Markers Technique Ref.

3 Synthetic dyes ND Magenta III
Rhodamine B

330.1964
(HRMS)

300.14 (EI-MS)
223.11 (EI-MS)

2.5 (HPLC)
443.2320
(HRMS)

399.17 (EI-MS)
316.21 (EI-MS)

3.4 (HPLC)

m/z
min

TLC/EI-
MS/HRMS

HPLC
[138]

3

Sudan III
Sudan I
Sudan II
Sudan IV

0.14–7.1 g/Kg 0.14 g/Kg

8.014
6.87

8.618
8.181

1 H ppm 1 H NMR [139]

4 Exhausted saffron 10–400 mg/g 10 mg/g
6000–5800

cm−1
FT-NIR/SIMCA

[130]5400–5000 PLS-DA
4600–4200

A suitable method is the use of NMR in conjunction with multivariate statistical
analysis. Principal component analysis allowed the discrimination between the samples
of Italian PDO and commercial saffron, despite the year of harvest, date of purchase, and
storage time [101]. Bosmali et al. [15] proposed a molecular approach for the authentication
of the “Krokos Kozanis” brand using specific ISSR (inter-simple sequence repeat) markers
to evaluate the variability within the C. sativus L. species (differences in bands produced by
other Crocus species). The species-specific markers such as HRM analysis were developed
in conjunction with the DNA barcode regions.

8. Saffron By-Products

The preparation of saffron is expensive due to the intense harvesting work and posthar-
vest processes (dehydration and storage) required [32]. It is known that in order to pro-
duce 1 kg of stigma, around 1000 kg of flowers are treated by weight, which represents
220,000–260,000 flowers [42,98]. Therefore, saffron cultivation is not highly profitable in
terms of biomass, which increases the interest in minimizing losses and ensuring efficient
waste management [140]. Several reports have focused on the stigma, which is the plant’s
biologically active part [141]; its bioactivity is attributed to the composition, containing the
main chemical components and their synergy with other compounds [60].

However, the by-products are also important since their use could increase the
C. sativus flower’s economic value, considering that other parts of the plant contain com-
pounds with sensorial properties or biological activity [98,140]. C. sativus tepals are the
main by-product of saffron production [142] but the flowers have low safranal content so
they cannot be consumed or sold as saffron on the spice market [42]; only the leaves are
used as forage [143]. Using HPLC-DAD, Serrano-Díaz et al. [144] determined kaempferol
3-Osophoroside and delphinidin 3,5-di-O-glucoside as the main components of the aque-
ous by-products of saffron flowers. Tepal and stamen biomarkers were determined
by Mottaghipisheh et al. [145] using HPLC-DAD; they reported crocin, crocetin, picro-
crocin, safranal, kaempferol-3-O-sophoroside, kaempferol-3-O-glucoside, and quercetin-
3-O-soforoside. Tepal’s main component was kaempferol-3-O-sophoroside with crocin,
crocetin, and picrocrocin; safranal was not detected in any of the analyzed samples. Table 3
shows the principal agro-industrial by-products of saffron that have been investigated and
their possible uses. Lahmass et al. (2017) determined that the corms, leaves, and spasms of
C. sativus may possess anti-aging or anticancer properties.

101



Foods 2022, 11, 3245

These investigations generate interest in valorizing the various parts of saffron flow-
ers and improving small-scale farmers’ incomes. These results could contribute to the
development of innovative products from saffron flowers and more effective biological
waste management and exploitation [146]. It is important to emphasize knowledge of the
components’ depth (majority or minority) within each potentially valuable plant part of
the saffron plant, which could help in determining the most suitable application [10].

Table 3. Saffron by-products of different geographical origins, major components, and applications.

By-Product (Origin
and Type of Extract) Major Components Concentration Application Ref.

Sepals (Fiesole, Italy;
ethanolic)

Trans-4-GG
Trans-3-Gg

Cis-2-G
Kaempferol-3-sophoroside

Quercetin diglucoside
Kaempferol glucoside

Kaempferol sinapoyl glucoside

3.1
0.8
0.2
6.4
0.4
0.4
0.3

mg/g Phytochemicals [98]

Stamens (Fiesole,
Italy; ethanolic)

Trans-4-GG
Trans-3-Gg
Cis-4-GG
Trans-2-G

Kaempferol-3-sophoroside
Quercetin diglucoside

Methyl quercetin derivative
Methyl quercetin diglucoside

Kaempferol-3-sophoroside-7-glucoside

112.2
33.4
22.0
20.7
1.7
1.0
0.7
0.6
0.5

mg/g Phytochemicals [98]

Sepals (Perugia,
Italy; ethanolic)

Traces of crocin
Kaempferol-3-sophoroside

Quercetin diglucoside
Kaempferol glucoside

Kaempferol sinapoyl glucoside

nd
8.3
0.7
0.4
0.3

mg/g Phytochemicals [98]

Stamens. (Perugia,
Italy; ethanolic)

Trans-4-GG 4

mg/g Phytochemicals [98]

Trans-2-G 1.3
Methyl quercetin diglucoside 2.1

Quercetin diglucoside 1.2
Methyl quercetin derivative 1.2

Kaempferol-3-sophoroside-7-glucoside 0.9
Kaempferol diglucoside 0.8

Petals (Srinagar,
Jammu & Kashmir,

India; aqueous)
Not detected Kashmir dye green

and yellow tones [66]

Petals (Kerman, Iran;
aqueous)

Methanol 355

ppb

Volatile
compounds in the

pharmaceutical
industry

[42]

Biogenix aldehyde fragment 303
Acetic acid 492
Isobutanal 694
Furanone 6397

2,3-butanedione 524

Petals (Sardinia,
Italy; aqueous)

Kaempferol-3-O-sophoroside 2790

mg/L
Antioxidant and
colon anticancer

activities.
[147]

Phenylalanine 1072
Delphinidin 3,5-di-O-glucose 822

Tyrosine 619
Kaempferol-3,7-di-O-glucoside 368
Isorhamnetin-3-O-rutinoside 268
Quercetin 3-O-sophoroside 207
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Table 3. Cont.

By-Product (Origin
and Type of Extract) Major Components Concentration Application Ref.

Petals (Northeast,
Iran; ethanolic and

aqueous)

Pelargonidin 3,5-glycosides 56.1

% Antioxidant and
colorant activities.

[148]
3,5 cyanidin-diglycosides 20.9

Petunidin 15.5
Delphinidin 3-glycosides 4.1
Pelargonidin 3-glycosides 3.4

Petals and anthers
(Navelli, Italy;

ethanolic, oil, and
aqueous)

Crocin 0.6

%
Antioxidant and

anti-inflammatory
(in vivo; in vitro).

[149]

Catechin 0.2
Rutin 0.1

Epicatechin 0.08
p-OH benzoic acid 0.04

Safranal 0.02
Vanillic acid 0.02

Galic acid 0.09
Safranal 0.05

Quercetin 0.01

Petals (Torbat
Heydariyeh region,

Iran; ohmic
extraction)

Crocin 81.2

%
Source of natural

flavoring, coloring,
and antioxidants.

[41]

Safranal 5.5
Catechin 1.4

Epicatechin 1.2
Delphinidin 3,5-di-O-glucose 74.2

Petunidin 3-O-glucoside 10.3
Petunidin 2,5-di-O-glucoside 8.6

Quercetin 3-O-glucoside 59.5
Kaempferol-3-O-sophoroside 8.2

Kaempferol-3-O-glucoside 6.1
Quercetin 3-O-sophoroside 5.5

Kaempferol 5.4

Petals. (Torbat
Heydariyeh region,

Iran; ultrasound
extraction)

Crocin 79.02

%
Source of natural

flavoring, coloring,
and antioxidants.

[41]

Safranal 4.03
Delphinidin 3,5-di-O-glucose 67.88

Petunidin 3-O-glucoside 10.74
Petunidin 3,5-di-O-glucoside 7.39

Quercetin 3-O-glucoside 54.32
Kaempferol-3-O-sophoroside 8.16

Kaempferol-3-O-glucoside 5.27
Quercetin 3-O-sophoroside 5.12

Petals. (Torbat
Heydariyeh region,

Iran; microwave
extraction)

Crocin 77.42

%
Source of natural

flavoring, coloring,
and antioxidants.

[41]

Safranal 5.03
Epicatechin 1.02
Vanillic acid 1.03

Delphinidin 3,5-di-O-glucose 56.36
Petunidin 3-O-glucoside 11.44

Malvidin O-glucoside 7.94
Quercetin 3-O-glucoside 59.49

Kaempferol-3-O-sophoroside 8.16
Kaempferol-3-O-glucoside 6.13
Quercetin 3-O-sophoroside 5.51

Kaempferol 5.42

9. Conclusions

The high commercial value of saffron is a result of the production (harvesting, drying,
and storage) and low biomass yield, a critical characteristic of market fraud. Saffron is
used in the food industry as an aromatic species to give flavor, color, and odor to various
foods, but its extracts or extractive compounds are also used as functional ingredients in a
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large number of products (desserts, beverages, oils, pastes, etc.). The ISO 3632 standard
proposes a spectrophotometric technique for the determination of the commercial quality
of saffron. This methodology has the great advantage of being easy to prepare, accessible,
and low-cost in terms of equipment. The quality of C. sativus is based on the quantity of
the main apocarotenoids (crocin, picrocrocin, and safranal). However, for the quantifica-
tion of saffron apocarotenoids, more rigorous, sensitive, selective, and related analytical
techniques (UHPLC/QTO/MS, DRIFTS, NIR, SCAR, PCR, etc.), which provide more accu-
rate concentrations, are preferred. Moreover, the results obtained by spectrophotometry
yield inaccurate results (overlapping of chemical compounds, poor solubility of safranal,
erroneous quantification of compounds, and non-identification of adulterants). Therefore,
the ISO standard is only proposed as a preliminary methodology to rule out low-quality
saffron and is not suitable for authentication and/or the detection of adulterants. The
determination of the chemical profiles or fingerprints of the sample or aromatic plant is
used to obtain the markers of the saffron or adulterants. These signals or fingerprints
obtained by analytical techniques coupled to chemometric methods (principal component
analysis, linear discriminant analysis (LDA, etc.) favor the discrimination of adulterated
samples, possible adulterant plants or compounds, the detection limits of the equipment,
and even the concentrations at which they are obtained. Finally, it was determined that not
only the stigmas contained bioactive compounds since this work describes some research
on saffron flower by-products that contain a large number of phytochemical compounds
(catechin, quercetin, delphinidin, etc.). For these reasons, saffron is an interesting and
aromatic spice as a colorant, antioxidant, and source of phytochemicals.
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Abbreviations

ANN: Artificial Neural Network; ANN–MLP: Multi-Layer Perceptron–Artificial Neural Network;
ANOVA: Analysis of Variance; Bar–HRM: Barcode-DNA–High-Resolution Melting; CVS: Com-
puter Vision System; DNA: Deoxyribo Nucleic Acid; DRIFTS: Diffuse Reflectance Infrared Fourier
Transform Spectroscopy; EI–MS: Electrospray Ionization–Mass Spectrometry; E-nose: Electronic
nose; FT–IR: Fourier Transform–Infrared Spectroscopy; FT–NIR: Fourier Transform–Near-Infrared;
GC–MS: Gas Chromatography–Mass Spectrometry; HCA: Hierarchical Cluster Analysis; HPLC: High-
Performance Liquid Chromatography; HPLC–DAD: High-Performance Liquid Chromatography
coupled with Diode Array Detection; HPLC–DAD–MS: High-Performance Liquid Chromatography
coupled with Diode Array Detection–Mass Spectrometry; HPLC–PDA–ESI–MS: High-Performance
Liquid Chromatography coupled with Photo Diode Array–Electrospray Ionization–Mass Spectrom-
etry; HTCC: 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde or hydroxy-β-cyclocitral;
HRM: High-Resolution Melting; HRMS: High-Resolution Mass Spectrometry; ISSR: Inter-Simple
Sequence Repeat; ISO: International Organization for Standardization; IR–MS: Isotope Ratio–Mass
Spectrometry; LC: Liquid Chromatography; LC–MS: Liquid Chromatography–Mass Spectrometry;
MCR–ALS: Multivariate Curve Resolution–Alternating Least Squares; MIR: Mid Infrared; MLP:
Multi-Layer Perceptron; MLR: Multiple Linear Regression; NIR: Near Infrared; NMR: Nuclear
Magnetic Resonance; OPLS–DA: Orthogonal Projection to Latent Structures–Discriminant Analysis;
O2PLS–DA: Orthogonal Projection to Latent Structures–Discriminant Analysis with bidirectional
modifications; PCA: Principal Component Analysis; PDO: Protected Designations of Origin; PLS:
Partial Least Squares; PLS–DA: Partial Least Squares–Discriminant Analysis; PCR: Polymerase Chain
Reaction; RPA–LFD: Recombinase Polymerase Amplification in combination with-Lateral Flow dip-
stick; RT–HPLC–DAD: Reverse Phase–High-Performance Liquid Chromatography coupled with
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Diode Array Detection; SCAR: Sequence-Characterized Amplified Regions; SIMCA: Soft Independent
Modeling of Class Analogies; SVMs: Support Vector Machines; Trans-1-g: crocin-1or trans-crocetin
mono-(β-D-glucosyl) ester; Trans-2-gg: crocin-2II, crocin-2′ or trans-crocetin di-(β-D-glucosyl) ester;
Trans-2-G: crocin-2 or trans-crocetin (β-D-gentiobiosyl) ester; Trans-3-Gg: crocin-3 or trans-crocetin
(β-D-glucosyl)-(β-D-gentiobiosyl) ester; Trans-4-GG: crocin-4 or trans-crocetin di-(β-D-gentiobiosyl)
ester); Trans-5-tG: crocin-5 or trans-crocetin (β-D-triglucosyl)-(β-D-gentiobiosyl) ester; TLC: Thin
Layer Chromatography; UDP-glucuronosyl transferase: Uridine-diphosphate-glucuronosyl trans-
ferase; UHPLC–QTO–MS: Ultra-High-Performance Liquid Chromatography coupled to Quadrupole
Time-of-Flight–Mass Spectrometry; UHPLC–ESI–QTOF–MS: Ultra-High-Performance Liquid Chro-
matography with Electrospray Ionization coupled to Quadrupole Time-of-Flight–Mass Spectrometry;
UHPLC–DAD–MS: Ultra-High-Performance Liquid Chromatography with Diode Array Detection–
Mass Spectrometry; UHPLC–MS/MS: Ultra-High-Performance Liquid Chromatography coupled to
Tandem Mass Spectrometry; UV-vis: Ultraviolet-visible spectroscopy.
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Abstract: For the protection of Protected Geographical Indication (PGI) Sunite lamb, PGI Sunite lamb
samples and lamb samples from two other banners in the Inner Mongolia autonomous region were
distinguished by stable isotopes (δ13C, δ15N, δ2H, and δ18O) and two local modeling approaches. In
terms of the main characteristics and predictive performance, local modeling was better than global
modeling. The accuracies of five local models (LDA, RF, SVM, BPNN, and KNN) obtained by the
Adaptive Kennard–Stone algorithm were 91.30%, 95.65%, 91.30%, 100%, and 91.30%, respectively.
The accuracies of the five local models obtained by an approach of PCA–Full distance based on
DD–SIMCA were 91.30%, 91.30%, 91.30%, 100%, and 95.65%, respectively. The accuracies of the
five global models were 91.30%, 91.30%, 91.30%, 100%, and 91.30%, respectively. Stable isotope
ratio analysis combined with local modeling can be used as an effective indicator for protecting PGI
Sunite lamb.

Keywords: local modeling; protected geographical indication; Sunite lamb; stable isotopes;
machine learning

1. Introduction

Sunite sheep were formed in the special ecological environment of Sunite grassland
through long-term natural selection and artificial selection. They enjoy natural herbage
and pure water in the ecological environment of natural grassland without pollution, and
feed on more than 400 kinds of natural herbage, such as Allium mongolicum regel, Allium
polyrhizum turcz, and Stipa capillata. It is this good ecological environment and primitive
and extensive feeding mode that afford Sunite lamb with excellent quality and flavor [1,2].
Sunite lamb was awarded protected geographical indication (PGI) status in China in 2008.
PGI Sunite lamb originates from the Sunite Right Banner and Sunite Left Banner, and it
recognizes its high-quality reputation and characteristic flavors. Therefore, PGI labeling
guarantees the origin and quality of food products, minimizing food safety risks, and
ensures consumer confidence for the declaration of origin on this commodity [3].

In order to protect the PGI products, researchers have put forward a fingerprint
tracing method, that is, using chemical parameters to build the fingerprint of geographical
indication products [4] and comparing it with the fingerprint of the testing sample to
determine whether the testing sample is the geographical indication product. At present,
the chemical parameters used in the traceability of animal-origin food include stable
isotopes [5], mineral elements [6], fatty acid content [7,8], amino acid content [9], and
metabolites [10]. Stable isotopes are commonly used to characterize geographical origin
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information and to describe agricultural products’ origin information, where δ2H and
δ18O can be used to distinguish altitude, δ15N can be used to determine the type of grazing
vegetation, and δ13C can determine the type of animal feed [11]. In addition, δ34S is related
to rainfall in the geological environment and traditional industrial emissions, so it indicates
the geographical characteristics of animal food. Sr is obtained from the decay of 87Rb, and
its stable isotope abundance is mainly affected by geological conditions and rock ages. Sr
has good applications in plant-derived-food tracing [12], but it is limited in tracing the
origin of animal food due to its low content in animal bodies [13].

Thus, the stable isotope ratios can be used to distinguish PGI Sunite lamb from
different origins. Stable isotopes have been applied to determine the origin of different
animal-origin foods, such as beef [14], lamb [15,16], milk and dairy products [17], and
marine products [18]. In 2007, Camin et al. [19] measured δ13C, δ15N, δ2H, δ18O, and
δ34S in crude lamb protein from 13 European regions, and achieved correct classification
rate of original grouping and cross validation of 78.7% and 77.6%, respectively. This
indicated the feasibility of using stable isotopes to distinguish the geographical origin of
lambs. However, the information of the samples Camin et al. [19] tested was complex, such
as samples collected in different years from the same region, and samples collected in the
same year for different feeding methods from the same region, meaning that the sample set
covered a wide range of variations, which led to the model’s lower predictive performance.
On the other hand, the wide range of variations in the sample set may cover samples that
will appear in the future; that is to say, it is conducive to improve the prediction ability of
the model for unknown samples. Additionally, smaller sample difference coverage also
leads to lower predictive performance. In the study by Sun et al. [5], the similarities of feed
types, agricultural practice, and environment in two regions accounted for the overlapping
of lamb samples from these two regions in the Inner Mongolia autonomous region. In
subsequent studies, in order to improve the prediction ability of the geographical origin
model, not only was the increase of chemical parameters considered, but also the coverage
of sample differences.

In previous research on food traceability, the global modeling method was used to
establish the discriminant model, that is, to create a model from all data sets that cover the
whole space [20]. However, a good traceability model requires that the sample set should
cover as wide a range as possible and avoid the appearance of samples with as similar
chemical information as possible. In addition, the number of samples in the model should
not be too large, so as to avoid the increase in interference information along with the
increase in information, which will reduce the prediction performance of the model [21].
In fact, in the field of the near-infrared spectrum, scholars have focused on the coverage
and representativeness of the sample set [22–24]. In a large sample set, there is a nonlinear
relationship between response Y and all predictors X to varying degrees, and a sample
set with a linear relationship can be obtained based on distance similarity. This is local
modeling, where a set of local model data is created from all data sets according to certain
rules, each covering a subspace [20]. Local modeling includes two rules; one is selecting
the local model data set based on spatial similarity, and the other is selecting the most
representative data subset based on the uniform design principle. Abhinav et al. [25] used
the small spectral library obtained by a local modeling scheme based on spatial similarity
to predict the soil property parameters of samples, which improved the prediction accuracy
of soil properties compared with global modeling. This local modeling scheme referred to
predicting the response of the samples by finding the most similar samples from existing
databases. The similarity here was based on distance measures, such as the Euclidean
distance, the covariance distance, the correlation distance, the surface difference spectrum,
the information distance, optimized principal component Mahalanobis distance, and local
linear embedding. Additionally, sampling representative samples can ensure that the
chemical parameter characteristics and property range of the sample set can better cover
the chemical parameter properties of unknown samples and improve the prediction ability
of the unknown samples. In 2017, Palou et al. [26] proposed a strategy for calibration set
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selection of biodiesel/diesel samples based on principal component analysis (PCA) and
the Kennard–Stones algorithm, and the results showed that, by using this methodology,
the models could keep their robustness over time. In the future, local modeling should be
more applied in the discrimination of the geographical origin of agricultural products.

In order to better discriminate PGI Sunite lamb from other origins using stable isotopes
(δ13C, δ15N, δ2H, and δ18O) and machine learning, we proposed two local modeling ap-
proaches to optimize the sample set. It is worth mentioning that this is the first exploration
of the protection of PGI Sunite lamb, and also a new application of local modeling in origin
identification. The two local modeling approaches were (a) the Adaptive Kennard–Stone
(AKS) algorithm and (b) an approach of PCA–Full Distance (FD) based on Data-Driven
Soft Independent Modeling of Class Analogy (DD–SIMCA). The AKS algorithm was used
to select the most representative data subset based on a uniform design principle, and the
approach of PCA–FD based on DD–SIMCA was used to select the local model data set
based on spatial similarity. It should be emphasized here that global modeling and local
modeling in this study refer to the selection of data set coverage space, and the establish-
ment of the discriminant model still depends on machine learning. The machine learning
methods used in this work are linear discriminant analysis (LDA), random forests (RF),
support vector machine (SVM), back-propagation neural network (BPNN), and k-nearest
neighbor (KNN) classification. Based on the confusion matrix, we compared the predictive
performance of the traceability models established by the five machine learning methods.

2. Proposed Two Local Modeling Approaches
2.1. Adaptive Kennard–Stone (AKS)

AKS is an adaptive sample selection method based on the Kennard–Stone algorithm,
and its advantage is that it can determine the optimal sample set. The idea of AKS is to
provide a uniform spatial design for the selection of the most representative samples from
the known sample set. It ensures that the chemical parameters and property range of the
sample set can better cover that of the unknown samples, and improves the prediction
ability of the unknown samples. To our knowledge, there was only one report related to
AKS application in the near-infrared spectrum [23]. At present, AKS has not been reported
in the discrimination of the geographical origin of agricultural products, but Kennard–Stone
(KS) has been reported [27].

The D-optimal criterion [28] was used as the criterion to select the samples. The
minimum variance in the model could be achieved by selecting the right number of
samples included in S that maximize log[Det(MN)]. The log[Det(MN)] can be represented
as the information of the selected sample set. The one we chose was the subset with the
most information per sample, which was given by log[Det(MN)], where MN = STS/N,
Det is the determinant of the matrix, and S is the principal component score matrix of the
selected sample set. The number of principal components was pc. Figure 1 shows the steps
for obtaining the optimal sample set [23].

2.2. An Approach of PCA–Full Distance (FD) Based on Data-Driven Soft Independent Modeling of
Class Analogy (DD–SIMCA)

The measurement of similarity used to be based on Euclidean distance, Mahalanobis
distance, principal component analysis Euclidean distance (PCA–ED), and principal com-
ponent analysis Mahalanobis distance (PCA–MD). Both distances can be calculated in the
original variable space and in the principal component space. In the principal component
space, the correlation between variables is eliminated, simplifying the data information
and making it superior to the original variable space. The Euclidean distance is the straight
line distance between two points, and it is affected by the data distribution, noise, and
characteristic metrics. Unlike the Euclidean distance, the Mahalanobis distance introduces
a covariance matrix, and implements coordinate rotation and data compression, which
makes Mahalanobis distance not affected by data distribution and feature dimensions [29].
However, these distance threshold choices were hard, often selected several times, and
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then compared the predictive ability of the model of the selected multiple sample sets. It
took time and effort to achieve this, but the best sample set might not be found. Moreover,
the whole process could not be visualized, making it harder to understand. Based on the
understanding of DD–SIMCA, we found that PCA–FD integrated the advantages of MD
and ED, the operation process was simple, and the results were visible. Therefore, we
proposed an approach of PCA–FD based on DD–SIMCA. As far as we know, an approach
of PCA–FD based on DD–SIMCA to screen the samples has not been reported.
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Each element of the data cloud can be presented as a sum of two vectors: a vector that
lies in the subspace (a projection) and a vector transversal to the hyperplane (a residual).
The lengths of these vectors are important indicators that characterize a sample position
with respect to the subspace (model). These statistics are often referred to as the leverage
and the residual variance. In DD–SIMCA, they are termed as the score distance (SD) and
the orthogonal distance (OD) correspondingly, which are used to define the critical limits
of the classification model [30]. SD is equal to the squared Mahalanobis distance from the
model center to one sample within the score subspace, and OD is the squared Euclidean
distance from one sample to the model subspace. FD is affected by parameters related to
SD and OD (See Formula (1)), as shown below.

FD =
Nh × SD

SD0
+

Nq × OD
OD0

(1)

where Nh and Nq are the degrees of freedom (DOF) for SD and OD, and SD0 and OD0
are the means of SD and OD of all the samples [31], respectively. PCA–FD integrated
the advantages of MD and ED and eliminated the effects of data distribution and feature
dimensions. Moreover, the approach of PCA–FD based on DD–SIMCA simplified the
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operation and could be visualized. As shown in Figure S1, the abscissa and ordinate of
the acceptance plot were the parameters associated with SD and OD, respectively, and the
boundary lines of regulars and outliers are given. The red line and the green line were
available on the figure, and the yellow line was added later. The red line is the boundary of
the outliers, and samples above the bounds are outliers; the green line is the boundary of
regulars, and samples below the bounds are regulars; the points in the middle area of the
green line and the red line are extremes; the yellow line is FD. The FD on the same line is
the same, and the larger the FD, the farther the yellow line is away from the base point. You
can obtain all samples inside the strip centered on the testing sample (a black triangular),
such as a custom bound of

FD1 < FD one testing sample < FD2 (2)

where the border values, FD1 and FD2, have certain rules. Samples between the two yellow
lines are the screened samples.

As a measure of similarity, FD was used to select samples similar to one testing sample
from the original sample set to solve the nonlinear problem of large-sample data modeling.
This approach greatly simplifies the threshold selection process, and part of the process
is visualized.

3. Predictive Performance of the Model

The predictive performance of the model in our work based on the confusion matrix
includes the sensitivity, specificity, accuracy, and kappa coefficient (these measures were
calculated for each method based on the test data set). The confusion matrix summarizes
the results of a classification method. For a binary classification, when we determine that
class 1 is positive, the schematic table of the confusion matrix is shown in Table 1.

Table 1. The schematic table of the confusion matrix.

Confusion Matrix
Predicted Class
Class 1 Class 2

Actual class
Class 1 True positive (TP) False negative (FN)
Class 2 False positive (FP) True negative (TN)

In this study, instead of negative and positive, the classes were “non-PGI lamb” and
“PGI Sunite lamb”, respectively. For example, TN is the number of non-PGI lamb in the
test data set correctly classified as non-PGI, and FN is the number of PGI Sunite lamb
incorrectly classified as non-PGI. The sensitivity, specificity, accuracy, and kappa coefficient
are defined as follows:

sensitivity =
TP

TP + FN
(3)

speci f icity =
TN

TN + FP
(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

kappa =
P0 − Pe
1 − Pe

(6)

where P0 (P0 = accuracy) indicates the accuracy of the model, and
Pe (Pe = (TP+FN)×(TP+FP)+(TN+FN)×(TN+FP)

(TP+TN+FP+FN)2 ) is the expected proportion of lamb correctly

classified by chance.
Sensitivity is the proportion of actual PGI Sunite lamb that is correctly classified as PGI

Sunite lamb. Specificity is the proportion of actual non-PGI lamb that is correctly classified
as non-PGI lamb. Accuracy is the ratio of true positive and true negative samples to the
total number of testing samples, which reflects the overall accuracy. If the proportion of
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one class of samples is not dominant in all classes of samples, then its high error rate has
little influence on the accuracy. In this case, the accuracy does not carry much meaning,
and the Kappa coefficient can better reflect the discrimination effect. The Kappa coefficient
can better reflect the consistency of actual classification and predict classification. The
evaluation result of the Kappa coefficient is divided into three grades [32]: excellent
(Kappa > 0.75), good (0.40 < Kappa ≤ 0.75), and poor (Kappa ≤ 0.40). As long as the
accuracy of one class is low, the Kappa coefficient will decrease.

4. Materials and Methods
4.1. Materials

Lamb samples (n = 116) were collected from 4 banners in two cities of China’s Inner
Mongolia autonomous region (Table S1), where the Sunite Right Banner and Sunite Left
Banner are the specified regions of PGI Sunite lamb, located in Xilin Gol League; Abaga
Banner also belongs to Xilin Gol League, east of Sunite Left Banner; Siziwang Banner
belongs to Ulanqab City, west of Sunite Right Banner (Figure 2). The lamb samples from
each banner came from the same abattoir and were collected from the right hind leg. The
samples were from 5–8-month-old grazing sheep. The fresh mutton (50 g) was dried to a
constant weight and then pulverized through a 100 mesh. The sample was mixed with a
chloroform/methanol (2:1, v/v) solution at 1:5, vortexed for 10 min, and centrifuged at
5000 rpm for 5 min, and the supernatant was discarded [33]. Then, the previous degreasing
step was repeated twice, the supernatant was discarded, and the solid was retained and
lyophilized to obtain a defatted dry matter (DDM) for the determination of stable isotopes.
These samples were stored at −20 ◦C for subsequent analysis.
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4.2. Stable Isotope Analysis

For the stable isotope analysis of δ13C and δ15N, DDM and other international refer-
ence materials (USGS40, USGS43, and USGS62) were weighed into tin capsules (5 × 8 mm)
and then introduced into an elemental analyzer (Flash 2000, Thermo, Waltham, MA,
USA), converting the entire material into carbon dioxide and nitrogen gas analyzed
by an isotope ratio mass spectrometer (Delta V Advantage of Thermo, Waltham, MA,
USA). The calibration of δ13C and δ15N was analyzed with USGS40 (δ13C = −26.39‰,
δ15N = −4.5‰ air N2), USGS43 (Indian Hair, δ13C = −21.28‰, δ15N = 8.44‰), and USGS62
(caffeine, δ13C = −14.79‰, δ15N = 20.17‰).

For the stable isotope ratio analysis of δ2H and δ18O, DDM and international reference
materials (Caribou Hoof, Kudu Horn, and EMA P2) were weighed into silver capsules
(4 × 6 mm) along with other international reference materials and introduced into the
elemental analyzers (Flash 2000, Thermo, Waltham, MA, USA). The reactor packing was a
glassy carbon reactor and silver wool. The elements hydrogen and oxygen in the samples
were converted into H2 and CO at 1380 ◦C via pyrolysis with glass carbon. The gas was
transferred to an isotope ratio mass spectrometer (Delta V Advantage, Thermo, Waltham,
MA, USA). The calibration of δ2H and δ18O was analyzed with CBS (Caribou Hoof Stan-
dard, δ2H = −197.00‰, δ18O = 3.80‰), KHS (Kudu Horn Standard, δ2H = −54.10‰,
δ18O = 20.3‰), and B2205 (EMA P2, δ2H = −87.80‰, δ18O = 26.90‰).

The results of the isotope analysis were expressed as δ (‰), and the formula was

δ (‰) =
Rsample − Rstandard

Rsample
× 1000 (7)

where R sample and R standard are the isotope ratios of the sample and the international
reference material, respectively. The references of δ13C, δ15N, δ2H, and δ18O were Vienna–Pee
Dee Belemnite (V–PDB), Air, Standard Mean Ocean Water (SMOW), and SMOW, respectively.

4.3. Statistical Analysis

All of the samples (N = 116) were divided into a training set and a testing set (4:1).
Due to the uneven sample size in the four regions, stratified random sampling was adopted
to avoid contingency, and samples in each region were divided into 4:1. The training set
samples (N = 93) were used for modeling, and the testing set samples (N = 23) were used
to evaluate the prediction ability of the model. The training set data were imported into
R Studio and the training set subset (N < 93) was obtained by the AKS algorithm. After
that, the training set subset used five machine learning methods (LDA, RF, SVM, BPNN,
and KNN) to establish the geographical origin discriminant model, and finally used the
confusion matrix of testing set samples to evaluate the predictive performance of the model.

One sample (called Pi, i = 1, 2, 3, . . . , 23) in the testing set (N = 23) and the training
set samples (N = 93) was imported into DD–SIMCA in Microsoft Excel (SIMCA template-
xlsb) to obtain the FD of all samples (N = 93), and the training subset was appropriately
selected centering on the FD of Pi. Then, import the training set subset into R Studio and
use the 5 machine learning methods to build a one-time local model for Pi. Repeat the
above operation 23 times, and obtain 5 confusion matrices. The evaluation method of the
model was consistent with the evaluation method of the training set subset obtained by the
AKS algorithm.

All of the training set samples (N = 93) were imported into R Studio, and 5 machine
learning methods were used to establish the geographical origin discriminant model. The
evaluation method of the model was consistent with the evaluation method of the training
subset obtained by the AKS algorithm.

In order to compare the changes before and after screening the training set samples
(N = 93), we analyzed the main characteristics of the global lamb isotope libraries and
local lamb isotope libraries obtained by the AKS algorithm. SPSS was used to conduct an
independent-samples T-test to analyze the significance between the two groups (PGI Sunite
lamb and non-PGI lamb), produce box diagrams to intuitively see the significance, conduct
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exploratory analysis (mean value, standard deviation, and histogram), and produce the 3-
dimensional scatter plot to observe the spatial distribution of the sample set. Furthermore, to
know the difference of lamb between different regions, we performed a descriptive analysis
of all data (N = 116) (Table S2). Additionally, we drew a 3D–score plot of the global lamb
isotope library and local lamb isotope library according to geographical origin (Figure S2).

The statistical software packages R, SPSS 25.0 (SPSS Inc., Chicago, IL, USA), and a
chemometric tool employed in Excel were used. AKS was written by our laboratory using
R language.

5. Results and Discussions
5.1. Training Subset Obtained by Two Local Modeling Approaches

In this work, the training subset was obtained by two local modeling approaches:
(a) AKS and (b) the approach of PCA–FD based on DD–SIMCA. Based on the AKS algo-
rithm, a line chart (Figure S3) was drawn using the log[Det(MN)] value as the ordinate and
number of samples as the abscissa. As shown in Figure S3, when the number of samples
was 40, the maximum log[Det(MN)] value appeared, and the corresponding S subset was
the best training set subset. Chen et al. [23] used AKS to screen the near-infrared spectrum
library of plant alkali, and 49 samples were selected from 85 samples for constructing the
PLS model. The sample size was also half of the original data. However, Chen et al. [23]
continued to sample the near-infrared spectrum library of the aqueous solution and selected
37 samples out of 38 samples to construct the PLS model [23]. This shows that the capacity
of the training subset was not related to the capacity of the training set, but was only related
to the information contained in the training subset, namely the log[Det(MN)] value. When
the maximum log[Det(MN)] value is not reached, the log[Det(MN)] value increases with
the increase in the number of samples. When the maximum log[Det(MN)] value is reached,
the log[Det(MN)] value decreases as the sample size increases.

According to the approach of PCA–FD based on DD–SIMCA, 23 targeted training
subsets were obtained with a sample size between 20 and 47. When screening data, we
found that, when the FD of Pi (Figure S1a) deviated from the central position of FD of all
data (N = 93), the discriminant effect of the model established by the data set with a small
sample size (20 ≤ N < 35) was better, and that when the FD of Pi (Figure S1b) close to
the central position of FD of all data, the discriminant effect of the model established by
the data set with a medium sample size (35 ≤ N < 50) was better. This may be related to
the principle of screening. This method selected samples within the linear range of Pi for
modeling based on similarity [22]. The linear range was probably related to the position
of the FD of Pi in the FD of all of the data. In the future, this finding will continue to be
verified in order to summarize the screening rules.

To sum up, during sample screening, it is necessary to follow the screening principles
and consider the data characteristics to select data with an appropriate sample size. In this
work, with two local modeling methods, half or less of the original sample size could be
used to obtain the same model effect as the original data.

5.2. Main Characteristics of the Lamb Isotope Libraries

Taking the training set subset (N = 40) obtained by AKS and the training set (N = 93)
as an example, the main characteristics of the local and global lamb isotope libraries were
compared. Table 2 lists the mean, the standard deviation, and the ranges spanned by the
samples and Figure 3 shows the corresponding distribution histograms. For the mean
of δ13C, δ2H, and δ18O, the local lamb isotope library was smaller than the global lamb
isotope library. For the standard deviation of δ13C, δ15N, δ2H, and δ18O, the local lamb
isotope library was larger than the global lamb isotope library. The mean reflected the
overall average and the degree of data concentration, while the standard deviation reflected
the degree of data dispersion. This meant that the local lamb isotope library was more
centralized and more dispersed, and was the ideal training set. The histogram (Figure 3)
also supported this conclusion. Through the histogram, we could see the data distribution
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of the local and global lamb isotope libraries more intuitively. The distribution of the global
lamb isotope libraries was not uniform, and some data were abrupt in the histogram, which
had a great influence on the main characteristics of the whole data set. The local lamb
isotope libraries weakened the influence of prominent data and better reflected the main
characteristics of the overall data.

Table 2. (a) Descriptive statistics of the isotope attributes of samples in the lamb isotope libraries.
(b) δ13C, δ15N, δ2H, and δ18O values of the local and global lamb isotopes libraries from two groups.

(a)

Parameter Mean Standard Deviation Minimum Maximum

Global lamb isotope library (Training set, n = 93)

δ13C −19.87 2.10 −24.69 −17.16
δ15N 7.10 0.95 5.58 8.88
δ2H −103.90 11.14 −131.87 −93.77
δ18O 12.55 3.08 4.92 17.98

Local lamb isotope library (Training subset by AKS, n = 40)

δ13C −21.24 2.21 −24.69 −17.26
δ15N 7.16 1.01 5.58 8.88
δ2H −110.85 14.11 −131.87 −95.44
δ18O 11.15 3.90 4.92 16.56

(b)

Parameter δ13C δ15N δ2H δ18O

Global lamb isotope library (Training set, n = 93)

PGI Sunite lamb −19.31 ± 1.52 a 7.28 ± 0.94 a −99.48 ± 5.44 a 13.65 ± 1.90 a

non-PGI lamb −21.92 ± 2.65 b 6.45 ± 0.70 b −120.02 ± 11.84 b 8.53 ± 3.28 b

Local lamb isotope library (Training subset by AKS, n = 40)

PGI Sunite lamb −20.57 ± 1.44 a 7.88 ± 0.73 a −101.68 ± 9.58 a 13.78 ± 2.43 a

non-PGI lamb −21.92 ± 2.65 b 6.45 ± 0.70 b −120.02 ± 11.84 b 8.53 ± 3.28 b

Note: The values are given as mean ± SD; the small letters represent significant differences (p < 0.05); the sample
sizes of Sunite Right Banner, Sunite Left Banner, Siziwang Banner, and Abaga Banner in the global lamb isotope
and local lamb isotope libraries were 68, 5, 15, and 5, and 15, 5, 15, and 5, respectively.

In this work, we paid more attention to the influence of screening on the two categories,
rather than the overall data. The significance of isotopes has an impact on the accuracy of
geographical origin discrimination and traceability feasibility [34], so we compared the
significance of the δ13C, δ15N, δ2H, and δ18O values between PGI Sunite lamb and non-PGI
lamb in the local and global lamb isotope libraries. The result of the T-test showed that
there were both significant differences (p < 0.05) in the δ13C, δ15N, δ2H, and δ18O values
between PGI Sunite lamb and non-PGI lamb before and after sample screening. This meant
that PGI Sunite lamb and non-PGI lamb always had a characteristic stable isotope ratio
profile. Figure 4a,b show the corresponding boxplots, and consistent conclusions could be
drawn. In the local and global lamb isotope libraries, PGI Sunite lamb samples exhibited
the highest δ13C, δ15N, δ2H, and δ18O values. The regional disparity of the δ13C and δ15N
of lamb samples was a consequence of the feeding systems [35]. The δ13C value in animal
products was based on C3 and C4 plants in the animal diet. One study showed that the
δ13C value of C3 plants ranged from −20‰ to −35‰, and that the δ13C value of C4 plants
ranged between −9‰ and −17‰ [36]. In this work, the lamb samples were grazing sheep.
We could predict that the proportion of C3 and C4 plants fed to PGI Sunite lamb was
higher than that fed to non-PGI lamb. In another aspect, the value of δ15N reflects the
nitrogen cycle in soil. Compared with other C3 plants, leguminous plants can directly
utilize atmospheric nitrogen, resulting in a lower δ15N value [37]. Generally, leguminous
plants, such as alfalfa hay, are abundant at high altitudes, which could be the cause of lower
δ15N value of lambs (non-PGI lamb) from high-altitude regions, such Siziwang Banner
(Table S2). The values of δ2H and δ18O reflect the geographical information of lamb, such
as altitude. In the atmospheric circulation process, the higher the altitude, the lower the
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enrichment degree of 2H2O, and the δ2H and δ18O values in the high-altitude region are
lower than those in the low-altitude region [38]. The best examples are Sunite Left Banner
and Siziwang Banner in Table S2. The altitude of Sunite Left Banner is higher than that of
the four sons king flag (Table 2), and the δ2H and δ18O in the lamb of Sunite Left Banner
are significantly lower than those in the lamb of Siziwang Banner. In addition, the values
of δ13C, δ15N, δ2H, and δ18O are affected by objective factors, such as rainfall, temperature,
and geology.
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We carried out descriptive analysis and independent-samples T-tests on the local and
global lamb isotope libraries above, and concluded that sample screening can optimize
the sample data. Now, we can more intuitively determine the data spatial distribution
and whether the data are representative through the 3D–score plot. Additionally, we
can also determine the contribution of the δ13C, δ15N, δ2H, and δ18O values to PC1 and
PC2 (Figure S4). In the 3D–score plot of the global lamb isotope library (Figure 4c), PGI
Sunite lamb and non-PGI lamb samples overlapped and were difficult to distinguish. From
Figure S2a, the lamb samples from Abaga Banner adjacent to the PGI area had a serious
overlap with PGI Sunite lamb. However, in the 3D–score plot of the local lamb isotope
library (Figure 4d), PGI Sunite lamb samples were entirely separated from the non-PGI
lamb samples. Additionally, the samples from the four regions were completely separated
(Figure S2b). After sample screening, the spatial distribution was uniform and the samples
were representative. These results provide strong evidence that the local lamb isotope
libraries were superior to the global lamb isotope libraries.
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5.3. Predictive Performance

According to the above data feature analysis, the local lamb isotope libraries were
better than the global lamb isotope libraries. The significance analysis and 3D–score plot
showed that it was feasible to use isotopes to discriminate PGI Sunite lamb from non-PGI
lamb. To further compare the local and global lamb isotope libraries, machine learning was
used for modeling, and some indicators of predictive performance were used to evaluate
the effect of the model. For the same library, five machine learning methods were used to
ensure model stability.

The origin classification results of applying the five models to the testing set lambs are
shown in Table 3, together with the evaluation of prediction performance. The evaluation
of each binary discriminant model was built from the confusion matrix, the records of
which correctly and incorrectly recognized samples from different geographical origins.
True positives were samples of PGI Sunite lamb correctly predicted, false negatives were
samples of PGI Sunite lamb incorrectly predicted to be from non-PGI lamb, true negatives
were samples of non-PGI lamb correctly predicted to be from non-PGI lamb, and false
positives were samples of non-PGI lamb incorrectly predicted to be from PGI Sunite lamb.
The evaluation of the whole model was calculated as a two-class overall classification.
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Table 3. Origin classification results of applying the 5 models to the testing set lambs according to (a)
the global lamb isotopes libraries, (b) the local lamb isotopes libraries screened by AKS, and (c) the
local lamb isotopes libraries screened by the approach of PCA–FD based on DD–SIMCA.

(a) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 4 4 5 4(tni)
False positive

1 1 1 0 1(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 0.8000 0.8000 1.0000 0.8000

Kappa 0.7444 0.7444 0.7444 1.0000 0.7444
Accuracy 0.9130 0.9130 0.9130 1.0000 0.9130

(b) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 5 4 5 4(tni)
False positive

1 0 1 0 1(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 1.0000 0.8000 1.0000 0.8000

Kappa 0.7444 0.8808 0.7444 1.0000 0.7444
Accuracy 0.9130 0.9565 0.9130 1.0000 0.9130

(c) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 4 4 5 5(tni)
False positive

1 1 1 0 0(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 0.8000 0.8000 1.0000 1.0000

Kappa 0.7444 0.7444 0.7444 1.0000 0.8808
Accuracy 0.9130 0.9130 0.9130 1.0000 0.9565

As shown in Table 3, in the global lamb isotope libraries, the five models established
by machine learning achieved a good discrimination effect. Among them, the confusion
matrix of models established by LDA, RF, SVM, and KNN was all one false negative and
one false positive; that is to say, a sample of PGI Sunite lamb was incorrectly predicted
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to be from non-PGI lamb, and a sample of non-PGI lamb was incorrectly predicted to be
from PGI Sunite lamb. The sensitivity and specificity of the above models were 94.44% and
80.00%, respectively. Additionally, the accuracy of the model was 91.30%, a satisfactory
result for the overall classification. The Kappa coefficient was 0.7444 (0.40 < Kappa ≤ 0.75),
a good consistency of actual classification and predict classification. On the other hand, the
confusion matrix of the BPNN model was true positives and true negatives, and all the
classes were correctly discriminated. This indicates that the five origin models established
based on global lamb isotope libraries were stable, and the BPNN model had the best
predictive performance.

In Table 3, using local lamb isotope libraries screened by AKS, the five models es-
tablished by machine learning had a better discriminating effect, in which the order of
predictive performance was LDA, SVM, and KNN < RF < BPNN. It was the same as
the predictive performance of four models (LDA, SVM, BPNN, and KNN) based on the
local and global lamb isotope libraries. Compared to global modeling, locally modeled
RF models are superior to globally modeled RF models. In the RF model, only one PGI
Sunite lamb was incorrectly predicted to be from non-PGI lamb, and all of the non-PGI
lamb samples were identified as non-PGI lamb (specificity = 100.00%). The accuracy of
the RF model was 95.65%, a very satisfactory overall classification result. Additionally,
the Kappa coefficient was 0.8808 (Kappa > 0.75), indicating excellent consistency of actual
classification and prediction classification. In other words, the local lamb isotope libraries
obtained by AKS were better than the global lamb isotope libraries. The KS algorithm has
also been applied to Protected Designation of Origin (PDO) cheeses recently, and good
results were obtained. In 2021, Coppa et al. found that mid-infrared spectroscopy (MIR)
enables the authentication of the cow feeding restrictions included in the specification of
two PDO cheeses (Cantal and Laguiole). The classification result of the testing sample
showed that the accuracy, sensitivity, and specificity of Cantal PDO cheeses were 90.3%,
91.1%, and 89.2% respectively; and the predictive performances of the model for Laguiole
PDO cheeses were 99.5%, 100%, and 99.4%, which all outperformed the AKS modeling
effect in this paper [27]. However, it must be said that Coppa et al. used the KS algorithm
to select training sets and testing sets. We consider it inappropriate to select the testing sets,
because it changes the true distribution of the sample, which may be the reason for the
over-good classification results.

There was a better discrimination effect of five models using local lamb isotope
libraries screened by the approach of PCA–FD based on DD–SIMCA (Table 3), in which the
order of predictive performance was LDA, RF, and SVM < KNN < BPNN. It was the same
as the predictive performance of four models (LDA, RF, SVM, and BPNN) based on local
and global lamb isotope libraries. Compared to global modeling, locally modeled KNN
models were superior to globally modeled RF models. In the KNN model, only one PGI
Sunite lamb was incorrectly predicted to be from non-PGI lamb, and all of the non-PGI
lamb samples were identified as non-PGI lamb (specificity = 100.00%). The accuracy of
the KNN model was 95.65%, a very satisfactory result overall classification. Additionally,
the Kappa coefficient was 0.8808 (Kappa > 0.75), indicating excellent consistency of actual
classification and prediction classification. In other words, the local lamb isotope libraries
obtained by the approach of PCA–FD based on DD–SIMCA were better than the global
lamb isotope libraries.

The differences in the isotope profiles of the lamb’s geographical origins allowed
satisfactory discrimination between them, but were not sufficiently wide and systematic
to be validated by adding an external set sample to the classification model. As shown in
Figure 2, the lamb samples collected were PGI Sunite lambs and non-PGI lambs in their
adjacent origins; that is, lambs at municipal geographical distance from the PGI Sunite
lamb and lambs at banner geographical distance from the PGI Sunite lamb. This is because
the geographical information difference of lambs at the provincial level and above is large
and easy to distinguish [5]. Thus, this study pays more attention to the identification of
lambs at municipal/banner/county geographical distances. After that, lambs from other
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provinces and countries would be added to enrich the sample library so that the sample
library could cover as large sample differences as possible, such as geographical origin,
feeding type, breed, age, and gender differences, and the external samples were verified.

To sum up, the local lamb isotope libraries obtained by AKS and the approach of
PCA–FD based on DD–SIMCA were better than the global lamb isotope libraries.

6. Conclusions

In this work, stable isotope ratio (δ13C, δ15N, δ2H, and δ18O values) analysis combined
with local modeling was used to discriminate PGI Sunite lamb from other origins, and
the accuracy rate reached 100%, which could be used as an effective indicator system for
protecting PGI Sunite lamb. A good traceability model requires that the sample set should
cover as wide a range as possible and avoid the appearance of samples with basically the
same chemical information as much as possible. Therefore, local modeling is very necessary
for the traceability of agricultural products, but it has not been reported. In this paper, two
local modeling approaches were first proposed for the protection of PGI Sunite lamb, and
the identification effect of models was better than that of global modeling, which could be
used for the optimization of the training set and the traceability of agricultural products.
We found that the sample set with less than or equal to half of the original sample size
in this study could achieve a better predictive effect. However, the ratio of the screened
sample size to the original sample size will not always be 1:2, and the screened sample
size is related to the information contained. The information (geographical origin, feeding
system, age, and gender) of the lamb samples collected in this paper was similar. This
may account for the small changes in the data characteristics before and after screening.
In the future, while increasing the sample size, we will try our best to make the sample
set cover a wide range of differences, such as geographical origin, feeding system, breed,
age, and gender. At that time, there will be a more obvious nonlinear relationship between
the classification response and the isotope ratio, and the application of a local modeling
method is more necessary.
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Table S1: Region information of lamb samples, Table S2: δ13C, δ15N, δ2H and δ18O values of all lambs
(n = 116) from four regions.
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Abstract: Discrimination of highly valued and non-hepatotoxic Cinnamomum species (C. verum) from
hepatotoxic (C. burmannii, C. loureiroi, and C. cassia) is essential for preventing food adulteration
and safety problems. In this study, we developed a new method for the discrimination of four
Cinnamomum species using physico-functional properties and chemometric techniques. The data
were analyzed through principal component analysis (PCA) and multiclass discriminant analysis
(MDA). The results showed that the cumulative variability of the first three principal components
was 81.70%. The PCA score plot indicated a clear separation of the different Cinnamomum species.
The training set was used to build the discriminant MDA model. The testing set was verified by
this model. The prediction rate of 100% proved that the model was valid and reliable. Therefore,
physico-functional properties coupled with chemometric techniques constitute a practical approach
for discrimination of Cinnamomum species to prevent food fraud.

Keywords: cinnamon; chemometrics; food fraud; identification model; physico-functional

1. Introduction

Cinnamon is one of the important spices and is obtained from the dried inner bark of
the evergreen tree belonging to the genus Cinnamomum. There are four main economically
available species of cinnamon in the spice market, including C. verum (Ceylon cinnamon,
CV), C. burmannii (Indonesian cinnamon, CB), C. loureiroi (Vietnamese cinnamon, CL),
and C. cassia (Chinese cinnamon, CC). Consumers’ growing awareness of the health ben-
efits of cinnamon is driving the global cinnamon market, which is expected to reach to
US$1.9 billion by 2025 [1]. Because of worldwide demand and the direct relationship
between food quality and commercial value, the cinnamon supply chain is susceptible to
food fraud. Important types of food fraud are deliberate substitution, dilution or addition,
or misrepresentation of food ingredients [2]. According to reports, cinnamon is at very
high risk for adulteration involving substitution, and the increased trading of cinnamon
substitutes has increased that risk [3].

Many Cinnamomum plants are morphologically similar. Some cheaper and hepatotoxic
adulterant Cinnamomum species, such as C. burmannii, C. loureiroi, and C. cassia, are easily
confused with the highly valued and non-hepatotoxic C. verum [4,5]. Consuming such
substitutes, however, is dangerous due to the high amount of coumarin present in compar-
ison to C. verum. Furthermore, the number of these lower-priced substitutes is increasing
in the consumer market [6]. The task of differentiation becomes more challenging and
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difficult when cinnamon is converted into powder [7]. As a result, distinguishing between
cinnamon species is critical for ensuring food quality and avoiding safety issues associated
with fraudulent adulteration.

So far, efforts are made for evaluating the quality and safety [8] of cinnamon. Cur-
rently, there is increasing demand on governmental agencies and industries to combat
the rising threat of food fraud [9]. However, most of the quality-monitoring analytical
methods are expensive, have high environmental impact, require skilled analysts, and can
only be employed in well-equipped laboratories [10]. To overcome these problems, more
recent research trends have emphasized the evaluation of physico-functional properties
of food materials, since they could serve as quality control indexes. Physico-functional
properties such as pH, moisture content, and density can be determined with limited labo-
ratory resources and are easily accessible in laboratories of less developed or developing
countries [11]. Therefore, these analyses can be determined in all steps during routine
quality inspections of foods at the industrial or supplier levels.

Chemometric techniques have been successfully employed as useful tools for data
analysis in food-related studies [9], for example, assessing food quality, confirming food
authenticity, detecting food adulteration, and distinguishing cultivars [11]. At present, there
is a growing body of literature discussing the importance of principal component analysis
(PCA) and multiclass discriminant analysis (MDA) in discriminating peach varieties, Boletus
edulis [12], rice varieties [13], and vinegar varieties [14]. Although there has been some
discussion of the physical or functional properties of Cinnamomum species [15,16], none has
reported discrimination of Cinnamomum species based on physico-functional properties
coupled with chemometric techniques.

This study was aimed at investigating the relative contribution of 13 physico-functional
properties of C. verum, C. burmannii, C. loureiroi, and C. cassia. PCA was first employed for
exploratory purposes and tested the suitability of the physico-functional properties for
discrimination of four Cinnamomum species. Then, MDA was employed for classification
and prediction purposes [17,18].

2. Materials and Methods
2.1. Sample Collection and Preparation

Twenty cinnamon samples (6 CV, 6 CB, 4 CL, and 4 CC) were collected from different
Asian countries over the period 2018 to 2020 (Supplementary Table S1). All samples
were identified at the Department of Biological Sciences, National Sun Yat-sen University,
Taiwan, based on morpho-anatomical features [19,20]. Dried cinnamon bark samples were
crushed manually and then pulverized to powder using a laboratory-scale stainless steel
grinder. The powder samples were placed in plastic bags and stored in a vacuum desiccator
until use.

2.2. Determination of Physico-Functional Properties

A total of 13 physico-functional properties were assessed on each sample.

2.2.1. Bulk Density (BD) and Tapped Density (TD)

The BD and TD were calculated by the ratio of the weight to the unsettled or tapped
volume of the sample and expressed in grams per cubic centimeter (g/cm3) [21,22].

2.2.2. True Density

The true density was measured by a gas pycnometer (AccuPyc 1340, Micromeritics,
Norcross, GA, USA) and calculated using Equation (1) [15].

True density (ρt) =
[

Ws
Vs

]

Vs =

[
Vcell −

(
Vexp(
P1
P2

)
−1

)] (1)
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In Equation (1), Ws = weight of the sample (g), Vs = volume of the sample (cm3),
Vcell = volume of the cell, Vexp = observed volume (experimental), and P1 and P2 = pressure
of the multivolume pycnometer before and after nob revolution, respectively, in psi.

2.2.3. Porosity

Porosity (ε) was determined as the ratio of the difference between true density and
bulk density to the true density [15]. The percentage porosity (ε%) was calculated using
Equation (2).

Porosity (ε%) =

[(
1− ρb

ρt

)
× 100

]
(2)

where ρb = bulk density (g/cm3) and ρt = true density (g/cm3).

2.2.4. pH

Sample pH was determined according to the procedure of Jeong, et al. [23]. One gram
of sample was mixed with 40 mL of doubly-deionized (2D) water and shaken for 3 h at
200 rpm. The mixture was then centrifuged (Himac CR 21F, Hitachi Koki Co., Ltd., Tokyo,
Japan) at 1294× g for 10 min, and the filtrate was collected for pH measurement by a pH
meter (sensION TM + PH3, Hach Lange GmbH, Düsseldorf, Germany).

2.2.5. Moisture Content

The moisture content of the sample was measured using an automated moisture bal-
ance (MA 35, Sartorius Weighing Technology GmbH, Goettingen, Germany) and expressed
as % moisture content on a dry basis.

2.2.6. Color

The sample color was determined using a colorimeter (ZE 2000, Nippon Denshoku
Industries Co. Ltd., Tokyo, Japan) and evaluated by means of CIELAB coordinates [23].
The total color difference (∆E) was determined by taking an unsieved sample as a reference
and using Equation (3) [11].

∆E =
[
∆L2 + ∆a2 + ∆b2

] 1
2 (3)

where ∆L = difference in lightness, ∆a = difference in red intensity, and ∆b = difference in
yellow intensity.

2.2.7. Aspect Ratio

The aspect ratio was determined according to the method described by Charles and
Alamsjah [11]. Samples were mounted on a microscope slide without overlap of particles
and observed under a microscope (Eclipse E100, Nikon Instruments Inc., Melville, NY,
USA). The parameters of the aspect ratio, including the particle major axis (l) and minor
axis (b), were analyzed by Image-Pro® 10 [24]. The aspect ratio (ϕAR) was calculated
according to Equation (4).

Aspect ratio (ϕAR) =

[
minor axis (b)
major axis (l)

]
(4)

2.2.8. Water Absorption Index (WAI) and Water Solubility Index (WSI)

The WAI and WSI were determined by the procedure described by Kraithong, et al. [25].
One gram of sample was added to 10 mL of 2D water and vortexed for 1 min. The sus-
pension was submerged in a water bath at 30 ± 2 ◦C for 30 min with intermittent stirring
and centrifuged at 1294× g for 10 min. The supernatant was transferred to a preweighed
aluminum moisture dish and dried overnight at 105 ◦C. The weight of the sediment was
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recorded. The WAI and WSI were calculated and expressed as g/g of sample and %,
respectively, as shown in Equations (5) and (6).

Water absorption index (WAI, g/g) =
[

weight of wet sediment (g)
dry weight of sample (g)

]
(5)

Water solubility index (WSI, %) =

[(
weight of dried supernatant (g)

dry weight of sample (g)

)
× 100

]
(6)

2.2.9. Oil Absorption Index (OAI)

The OAI was determined as described by Kraithong, et al. [25]. Samples (1 g) were
added to commercial soybean oil (10 mL) and centrifuged at 2301× g for 20 min. The
weight of oil absorbed was recorded. The amount of oil absorbed by the samples was
calculated according to Equation (7).

Oil absorption index (OAI, g/g) =
[

weight of oil absorbed (g)
weight of sample (g)

]
(7)

2.2.10. Swelling Power (SP)

The SP was determined according to the method described by Moutaleb, et al. [26].
One gram of sample was mixed with 10 mL of 2D water and then incubated at room
temperature for 24 h. The SP was calculated using Equation (8).

Swelling power (SP, mL/g) =
[

total volume of the swollen sample (mL)
original dry weight of sample (g)

]
(8)

2.2.11. Emulsifying Activity (EA)

The EA was performed by adapting the method by Chandra, et al. [27]. One gram
of sample was mixed with 10 mL of 2D water and 10 mL of soybean oil. The mixture
was vortexed thoroughly and centrifuged at 2000× g for 5 min. The EA was calculated
according to Equation (9).

Emulsifying activity (EA, % ) =

[(
height of emulsified layer

total height of mixture

)
× 100

]
(9)

2.3. Data Processing and Analysis

A data matrix consisting of 120 observations (20 cinnamon samples × 6 replicates)
and 13 physico-functional variables were used in this study. The replicates were used to
enlarge the sample size. One-way ANOVA (analysis of variance) was first performed to
determine the significant (p < 0.05) variables that could be used to discriminate among
Cinnamomum species. Then, trials for different combinations of significant variables were
conducted for the two selected groups of Cinnamomum species using an independent
samples t-test (p < 0.05). Finally, the analysis, providing the best discriminative variables
with better discrimination power for the established identification model was used for the
chemometric approach.

2.4. Chemometric Techniques

IBM SPSS Statistics for Windows, Version 22.0 [28] was employed for chemometric analyses.

2.4.1. Multivariate Analysis of Variance (MANOVA)

Raw data for selected physico-functional properties were subjected to MANOVA to
determine the significant interactions between the species and selected variables. Physico-
functional properties were taken as the dependent variables, while species were used as
the independent variables. Two multivariate tests, Wilk’s lambda (Λ) and Pillai’s trace,
were computed to determine significant effects of selected variables on the species.
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2.4.2. Principal Component Analysis (PCA)

A total of 120 observations (36 observations each for CV and CB; 24 observations each
for CL and CC) were selected. Prior to PCA, we computed the Kaiser–Meyer–Olkin (KMO)
measure of sampling adequacy and Bartlett’s test of sphericity to assess the multicollinearity
of the data for PCA suitability [29]. A factor extraction method with varimax rotation was
employed. The extracted principal components (PCs) with eigenvalues equal to or higher
than 1 were used to calculate the PC scores and establish a PCA model. The PC score was
calculated according to Zhao, et al. [12], as shown in Equation (10).

PCn =
[
FACn ×

√
λn

]
(10)

where PCn = principal component score, FACn = factor score obtained directly through SPSS
analysis, λ = principal component eigenvalue equal to or higher than 1, and n = number of
principal component extracted.

2.4.3. Multiclass Discriminant Analysis (MDA)

The PC scores of 120 observations were divided randomly into the training set (83.3%)
and the testing set (16.7%) using the Microsoft Excel® 2016 Add-In function, Ablebits
tools [30]. The former set included 100 observations of the four species, and the latter set
contained the remaining 20 observations. The PC scores of the training set were taken as
the input for stepwise discriminant analysis (DA) to build the MDA model [12]. Finally,
typical discriminant functions were established for the species distinction models.

3. Results and Discussion
3.1. Descriptive Statistics of Physico-Functional Properties

The 13 physico-functional properties of Cinnamomum species are listed in Table 1,
and box-and-whisker plots are shown in Supplementary Figure S1. The bulk density (BD)
values for CB (0.45 ± 0.05 g/cm3) showed a highly significant difference (p < 0.05), while
nearly identical values were reported for CV (0.35 ± 0.02 g/cm3), CL (0.34 ± 0.01 g/cm3),
and CC (0.33 ± 0.02 g/cm3). Hermanto, et al. [21] reported BD values for CB samples
between 0.43 g/cm3 and 0.49 g/cm3, consistent with our study. A similar trend was
followed for the tapped density (TD), where no significant differences (p > 0.05) were
found for CL (0.58 ± 0.02 g/cm3), CC (0.58 ± 0.03 g/cm3), and CV (0.57 ± 0.04 g/cm3),
but that of CB (0.71 ± 0.06 g/cm3) was different. Slight variations among the species could
be associated with their origin and environmental conditions. The true density varied
significantly (p < 0.05) among Cinnamomum species and ranged from 1.46 ± 0.02 g/cm3

(CC) to 1.51 ± 0.00 g/cm3 (CV). The increase in the true density of cinnamon samples
might be affected by the moisture content [15]. The porosity values were similar for CC
(77.40 ± 1.01%), CL (76.71± 0.73%), and CV (76.49± 1.01%) but not for CB (69.76 ± 3.58%).
The higher porosities might be due to drastic changes occurring after the grinding pro-
cess [31]. The pH values of the four species were reported as moderately acidic pH values
ranging between 4.73 ± 0.24 (CV) and 5.04 ± 0.17 (CC). Jeong, et al. [23] reported similar
pH values (4.93 to 5.07) for cinnamon powder samples available in the Korean spice market.
The observed acidic pH might be associated with the presence of organic compounds (e.g.,
cinnamaldehyde and cinnamyl acetate) in cinnamon. The highest moisture content was
recorded for CC (11.63 ± 0.67%), while the lowest was recorded for CV (9.89 ± 0.44%).
These results are in line with the results of Jeong, et al. [23], in which recorded moisture
contents ranged from 7.25 to 12.73% in various cinnamon samples. Additionally, the vari-
ations in moisture content might have influenced the true densities of the samples [15],
which was also evident from our findings. The color differences (∆Es) showed a signifi-
cantly (p < 0.05) wide range of values from 3.28 ± 0.36 (CC) to 7.89 ± 1.14 (CB). The wide
variations observed for ∆E highlighted the diversity of the samples. The aspect ratios
varied little between the species, ranging from 1.66 ± 0.27 (CV) to 3.63 ± 0.33 (CB). The
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similarities in particle aspect ratio might be related to grinding and sieving methods used
for sample preparation [11].

Table 1. Descriptive statistics for physico-functional properties of cinnamon samples from four Cinnamomum species.

Variables

Cinnamomum Species

C. verum (n = 6) C. burmannii (n = 6) C. loureiroi (n = 4) C. cassia (n = 4)

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max

Bulk density (g/cm3) 0.35 b 0.02 0.33 0.39 0.45 a 0.05 0.39 0.53 0.34 b c 0.01 0.32 0.36 0.33 c 0.02 0.31 0.36
Tapped density (g/cm3) 0.57 b 0.04 0.50 0.65 0.71 a 0.06 0.63 0.82 0.58 b 0.02 0.54 0.63 0.58 b 0.03 0.54 0.63

True density (g/cm3) 1.51 a 0.00 1.50 1.52 1.49 b 0.01 1.48 1.50 1.48 c 0.01 1.47 1.49 1.46 d 0.02 1.42 1.48
Porosity (%) 76.49 a 1.01 74.01 78.36 69.76 b 3.58 64.44 73.69 76.71 a 0.73 75.55 78.39 77.40 a 1.01 75.72 79.24

pH 4.73 c 0.24 4.42 5.11 4.90 b 0.10 4.78 5.08 4.93 b 0.09 4.83 5.08 5.04 a 0.17 4.75 5.21
Moisture content (%) 9.89 d 0.44 9.03 10.58 11.15 b 0.40 10.20 11.85 10.80 c 0.50 10.03 11.76 11.63 a 0.67 10.57 12.92

Color 3.85 c 0.78 2.94 5.22 7.89 a 1.14 5.90 9.36 5.76 b 0.58 5.06 6.66 3.28 d 0.36 2.81 3.79
Aspect ratio 1.66 c 0.27 1.11 2.17 3.63 a 0.33 3.26 4.67 2.85 b 0.14 2.44 3.09 2.78 b 0.04 2.69 2.85

Water absorption index (g/g) 3.78 b 0.20 3.27 4.07 5.18 a 0.82 4.17 6.40 3.09 c 0.17 2.90 3.33 2.93 c 0.19 2.58 3.15
Water solubility index (%) 5.61 b 1.90 2.81 8.62 7.89 a 2.66 4.14 12.68 8.63 a 0.44 7.95 9.42 7.83 a 1.12 6.11 9.29
Oil absorption index (g/g) 3.16 a 0.25 2.64 3.48 2.53 b 0.20 2.30 2.81 2.38 c 0.09 2.24 2.51 2.32 c 0.08 2.21 2.44

Swelling power (mL/g) 4.56 b 0.17 4.19 4.80 8.93 a 2.02 5.20 11.40 3.53 c 0.25 3.10 3.90 3.05 c 0.19 2.70 3.40
Emulsifying activity (%) 2.97 b 0.48 2.27 4.84 27.53 a 13.89 7.14 46.34 1.58 b 0.39 0.82 2.61 1.72 b 0.32 1.40 2.54

Data is mean of six replicates. Mean values followed by different superscripts (a–d) within the same row are significantly different (p < 0.05)
based on Duncan’s test (One-way ANOVA). n is the number of samples and SD is standard deviation.

On the other hand, similar water absorption indexes (WAIs) were documented for
CC (2.93 ± 0.19 g/g) and CL (3.09 ± 0.17 g/g), whereas CV (3.78 ± 0.20 g/g) and CB
(5.18 ± 0.82 g/g) showed differences. A high WAI may be associated with large hydrophilic
molecules, such as polysaccharides. Other factors, including the nature, concentration
and conformation of proteins and the level of protein interaction with water, might also
influence the WAI [27]. The water solubility index (WSI) of CL (8.63 ± 0.44%) was high
but showed no significant difference (p > 0.05) from those of CB (7.89 ± 2.66%) and CC
(7.83 ± 1.12%) but differed from that of CV (5.61 ± 1.90%). This trend might be attributable
to particle size resulting from similar grinding and sieving processes. The oil absorption
index (OAI) values for CV (3.16 ± 0.25 g/g) and CB (2.53 ± 0.20 g/g) differed significantly
(p < 0.05) from those of CL (2.38 ± 0.09 g/g) and CC (2.32 ± 0.08 g/g). However, OAI
is mainly affected by the hydrophilic or hydrophobic nature of the proteins [27], which
highlights the partial interdependence between WAI and OAI properties of Cinnamomum
species. The swelling power (SP) ranged from 3.05 ± 0.19 mL/g (CC) to 8.93 ± 2.02 mL/g
(CB). The SP might be affected by the species, particle sizes, and different processing meth-
ods or unit operations employed [27]. The emulsifying activity (EA) showed a wide range
of values from 1.58 ± 0.39% (CL) to 27.53 ± 13.89% (CB). There are, however, possible
explanations, including geographical origin and differences in packaging or storage of cin-
namon powder samples [23], which could have affected the physico-functional properties
of cinnamon samples. The findings from this study have made several contributions to the
current literature by providing useful and practical information on the physico-functional
properties of Cinnamomum species.

3.2. Selection of Discriminative Variables

In general, it is important to understand the major contributing variables (within
13 physico-functional variables) that could provide the maximum information for differ-
entiation of Cinnamomum species. We used an independent samples t-test to compare the
two groups [(CV and CB) ∩ (CL and CC)] and variables to enable the correct identifica-
tion among different species. The analysis identified the nine most informative physico-
functional variables, including BD, true density, porosity, pH, moisture content, color, WAI,
WSI, and SP (Supplementary Table S2), with less crossreactivity between the samples.

3.3. Multivariate General Linear Analysis

MANOVA was employed to perform multisignificant tests with nine selected physico-
functional variables (Supplementary Table S3). The p-value was rounded to three decimal
places due to generation of very low values, indicating very high significance. A study
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conducted by Karabagias, et al. [32] supported Pillai’s trace and Wilks’ Λ as the preferred
test statistics for MANOVA and suggested the appropriateness of MANOVA by considering
possible multi-significant effects of dependent variables on independent variables. In this
study, Pillai’s trace (F (27,330) = 54.65, p = 0.000 < 0.05; Pillai’s trace = 2.45) and Wilks’ Λ
(F (27,316.06) = 84.52, p = 0.000 < 0.05; Wilks’ Λ = 0.00) tests were considered. The results
showed the existence of statistically significant multivariate effects of physico-functional
properties among the cinnamon samples. Hence, we further applied PCA and MDA for a
clear and in-depth understanding of variations among Cinnamomum species.

3.4. Data Dimensional Reduction through PCA

The dimensionality of the data for nine selected physico-functional variables was
reduced to principal components (PCs) using PCA. In the present study, a KMO value
of 0.61 and statistically significant (p < 0.05) Bartlett’s test of sphericity supported the
appropriateness of the data for performing PCA. In addition, the three significant variables
(true density, moisture content, and color) determined by one-way ANOVA collectively
failed to yield acceptable KMO value (0.45), thus making PCA inapplicable. Therefore, it
was not considered in this study. Only the first three PCs presented eigenvalues exceeding 1
(PC1–46.69%, PC2–21.49%, and PC3–13.51%) and explained 81.70% of the cumulative
variability (Supplementary Table S4). A three-dimensional (3-D) score plot shows the
separation of cinnamon samples into four groups (Figure 1a). The CB samples presented
relatively different physico-functional properties and thus formed a distinct group to the
left of the score plot. Although CL and CC samples were found close to each other due to
similarities in their respective physico-functional properties, significant boundaries were
observed between them. Notably, the CV samples were placed towards the bottom of
the plot and distinguished from the CB, CL, and CC samples. These results agreed with
those from the study by Shawky and Selim [33], which applied PCA to demonstrate a
clear separation of CV samples from adulterated cinnamon samples based on near-infrared
(NIR) fingerprints. Similarly, Jeong, et al. [23] employed PCA to establish clear variations
among different cinnamon powders based on physico-chemical parameters. Our results
implied that physico-functional information can be utilized to discriminate among different
species of Cinnamomum samples.
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Figure 1. PCA plots of Cinnamomum species based on nine physico-functional variables: (a) 3-D score plot and (b) corre-
sponding loading plot showing positively (with circles) and negatively (without circles) correlated variables. CV: C. verum;
CB: C. burmannii; CL: C. loureiroi; CC: C. cassia; BD: bulk density; WAI: water absorption index; WSI: water solubility index;
SP: swelling power.
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Moreover, the principal component loading matrix (Supplementary Table S4) of the
first three PCs extracted and the corresponding loading plot (Figure 1b) illustrate the
relationships among the variables and describe the variables effecting the separation of
samples. The CB samples obtained higher scores in PC1 due to high positive loadings
for BD, color, WAI, and SP, whilst CV samples showed higher scores in PC1 due to high
negative loading for porosity. Similarly, the CC samples reported higher scores in PC2 due
to higher values of pH and moisture content, but lower values of true density. Finally, the
CL samples projected towards PC3 with a strong positive weight of WSI. This showed the
contribution of positively correlated (BD, pH, moisture content, color, WAI, WSI, and SP)
and negatively correlated (true density and porosity) variables in explaining variations
among the samples.

These findings demonstrated that the cumulative contribution rate of the first three
PCs reached 81.70%, indicating that these PCs represented the original variables. From the
contained information, the number of original nine selected physico-functional variables
was reduced to three new variables called three PCs. Overall, the reliabilities of the three
new variables demonstrated that physico-functional analysis with PCA is a promising
strategy for discrimination among Cinnamomum species. Furthermore, MDA was applied
to implement the comprehensive use of Cinnamomum physico-functional information from
different species to predict the species of a test sample.

3.5. Establishment of the MDA Model for Cinnamomum Species
3.5.1. MDA Characteristics

The first three PC scores of 100 observations were used as independent variables, and
Cinnamomum species were used as grouping variables. The highlighted MDA characteristics
of nine physico-functional variables using stepwise DA are summarized (Supplementary
Table S5). The results showed that three significant discriminant functions (DF1 = 60.30%,
DF2 = 39.20%, and DF3 = 0.50%) accounted for 100% of the total variance. We exclude the
discussion of DF3 since it represented a very small fraction of the total information. The
Wilks’ Λ values for DF1 (χ2 = 443.66, p = 0.000 < 0.05) and DF2 (χ2 = 207.26, p = 0.000 < 0.05)
were 0.10 and 0.11, respectively. The existence of small Wilks’ Λ and large chi-square (χ2)
values indicated significantly high discriminatory ability of a function and that the groups
appeared to differ [11]. Moreover, DF1 exhibited a high eigenvalue (10.89) and canonical
correlation of 0.96, followed by DF2 with an eigenvalue of 7.08 and canonical correlation of
0.94. These findings also revealed that a larger eigenvalue explained more variance in the
grouping variable in the function test. Similarly, a higher canonical correlation indicated
significant differences in physico-functional properties among Cinnamomum species.

3.5.2. Identification Model for Cinnamon Samples

The identification model was developed using stepwise DA to correctly identify cin-
namon samples based on nine physico-functional variables. Fisher’s linear discrimination
functions were established for the species distinction models according to the following
Equations (11)–(14):

CV : Y1(x) = −10.97− 3.22x1 − 8.09x2 − 4.97x3 (11)

CB : Y2(x) = −12.71 + 7.40x1 + 2.36x2 + 3.55x3 (12)

CL : Y3(x) = −3.82− 2.01x1 + 2.87x2 + 1.21x3 (13)

CC : Y4(x) = −10.81− 4.31x1 + 6.18x2 + 1.13x3 (14)

where Y1(x), Y2(x), Y3(x), and Y4(x) are the identification values for CV, CB, CL, and CC,
respectively. x1, x2, and x3 are the values of the first three PC scores.
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The values of the first three PC scores of 100 training observations were taken into
the established identification functions to validate the functions. Out of 100 observations,
two observations originating from CB and one observation originating from CC were
misclassified as CL. This could be explained by a minor and unavoidable experimental
handling error or the close relationship among CB, CL, and CC. As shown in Table 2, the
correct identification rates were 100%, 93.30%, 100%, and 95% for CV, CB, CL, and CC,
respectively. The overall correct rate of 97% showed that the established identification
model was feasible. Therefore, MDA could be employed to build a distinction model for
Cinnamomum species with a high percentage of correct identification based on physico-
functional properties. In order to establish a full-scale quality evaluation and discrimination
system for Cinnamomum species, collecting more cinnamon samples from different species
should be required in the further study.

Table 2. Correct identification and prediction rates of the training and testing sets based on the MDA model.

Actual Species
Species Discriminated by Model

Total
Correct Identification

Rate (%)CV CB CL CC

Training set

CV 30 0 0 0 30 100
CB 0 28 2 0 30 93.30
CL 0 0 20 0 20 100
CC 0 0 1 19 20 95

Total 30 28 23 19 100 97

Actual Species Species Discriminated by Model
Total

Correct Prediction
Rate (%)CV CB CL CC

Testing set

CV 6 0 0 0 6 100
CB 0 6 0 0 6 100
CL 0 0 4 0 4 100
CC 0 0 0 4 4 100

Total 6 6 4 4 20 100

CV: C. verum; CB: C. burmannii; CL: C. loureiroi; CC: C. cassia.

A two-dimensional (2-D) score plot (DF1 × DF2) represents the qualitative identifica-
tion of Cinnamomum species (Figure 2). The results showed that CL and CC samples were
spread out in the second quadrant, while CV samples were located in the third quadrant.
On the other hand, CB samples were distributed in the fourth quadrant. Therefore, CV
samples were completely separated from other samples. We concluded that there was a
good cluster result for Cinnamomum species based on the first two DFs.

3.5.3. Analytical Model Prediction for Cinnamon Samples

To further test the reliability of the established identification model, the 20 testing
observations were set into the four identification functions. The function with a larger
value determined the predicted species (Supplementary Table S6). The results of the testing
set to validate the built model showed a 100% prediction rate for the assigned samples to
their respective categories (Table 2). Therefore, the established identification model was
valid and reliable.
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Figure 2. 2-D score plot of Cinnamomum species based on the two discriminant functions.
CV: C. verum; CB: C. burmannii; CL: C. loureiroi; CC: C. cassia.

4. Conclusions

This study presented a valid and reliable model for Cinnamomum discrimination
with the potential use of selected physico-functional variables coupled with chemometric
techniques. By combining the PCA and MDA techniques, a relationship was established
between the physico-functional properties and the Cinnamomum species. Additionally,
by applying PCA, the training and testing of the MDA model have become feasible. The
data correct identification and prediction rates realized by using the MDA model provide
a checkpoint for food authorities. The combination of characteristic physico-functional
variables with different Cinnamomum species constitutes the novelty of the present work
designed to ensure future food safety. However, this method may be time-consuming way
to train and test the model. Future research is recommended on the integration of feature
selection and data mining approaches to decrease training time and accelerate learning
from testing a large number of samples.
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Abstract: Adulteration of meat products is a delicate issue for people around the globe. The mixing of
lard in meat causes a significant problem for end users who are sensitive to halal meat consumption.
Due to the highly similar lipid profiles of meat species, the identification of adulteration becomes
more difficult. Therefore, a comprehensive spectral detailing of meat species is required, which can
boost the adulteration detection process. The experiment was conducted by distributing samples
labeled as “Pure (80 samples)” and “Adulterated (90 samples)”. Lard was mixed with the ratio of
10–50% v/v with beef, lamb, and chicken samples to obtain adulterated samples. Functional groups
were discovered for pure pork, and two regions of difference (RoD) at wavenumbers 1700–1800 cm−1

and 2800–3000 cm−1 were identified using absorbance values from the FTIR spectrum for all samples.
The principal component analysis (PCA) described the studied adulteration using three principal
components with an explained variance of 97.31%. The multiclass support vector machine (M-SVM)
was trained to identify the sample class values as pure and adulterated clusters. The acquired overall
classification accuracy for a cluster of pure samples was 81.25%, whereas when the adulteration ratio
was above 10%, 71.21% overall accuracy was achieved for a group of adulterated samples. Beef and
lamb samples for both adulterated and pure classes had the highest classification accuracy value
of 85%, whereas chicken had the lowest value of 78% for each category. This paper introduces a
comprehensive spectrum analysis for pure and adulterated samples of beef, chicken, lamb, and lard.
Moreover, we present a rapid M-SVM model for an accurate classification of lard adulteration in
different samples despite its low-level presence.

Keywords: food adulteration; halal authentication; Fourier transform infrared (FTIR) spectroscopy;
principal component analysis (PCA); chemometric methods; multiclass support vector machine
(M-SVM)

1. Introduction

The verification of authenticity and the detection of adulterants are critical aspects of
food control, particularly in high-value items. As a measure of food quality and authen-
ticity, laboratory data as well as chemical, physical, and visual pictures of foodstuffs are
employed. The authenticity of the food is a major concern in the worldwide food industry;
with the abundance of packaged food with a lengthy supply chain on the market, food
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authenticity is still an issue, as introduced by Spink and Mayor [1]. Nowadays, manual in-
spection, which is highly impacted by subjective variables, is nevertheless used frequently
in quality evaluation. As a result, detecting pork in a variety of food items has become a
major research topic in many countries, particularly in those where religious laws restrict
the eating of pig products. Food adulterations may only financially impact a part of the
population, but others may be more seriously affected [2–4] due to food poisoning, their
religious views [5,6], etc. Some of the food tampering has been poisonous, for instance,
such as the addition of sawdust to make white bread [7,8], the melamine adulteration of
formula milk [7,9,10], the mixing of oil for engines with oil for human consumption in
Spain [11]; some cases also involved the misrepresentation of food ingredients such as the
UK horse meat issue in 2013 [12–15]. There are several ways of determining the provenance
of animal species in meat products that are based on nucleic acid resources, commonly
known as molecular techniques, which include DNA finger printing, PCR assays and
PCR simple sequence repeat (PCR-SSR) [16,17], chromatographic techniques, isotopic
techniques, vibrational and fluorescence spectroscopy, elemental techniques, nuclear mag-
netic resonance spectroscopy, sensory analysis, non-chromatographic mass spectrometry,
immunological techniques, along with chemometrics and bioinformatics [18]. However,
each methodology has its own set of drawbacks such as being costly, time-consuming,
and inefficient, as well as requiring a wide range of equipment and making it difficult to
understand the acquired data; moreover, most of these methods often require extensive
sample preparation or are very susceptible to impurities. Unless all the protocols are strictly
followed, they may lead to unpredictable outcomes. As a result, establishing a quick and
reliable identification procedure to recognize meat species is critical. To address these
restrictions, individuals have increasingly turned to spectroscopic methods in recent years.
Fourier transform infrared spectroscopy (FTIR) has been widely used in the identification
of agricultural commodities such as wine, olive oil, tea, and meat due to its quick and easy
operation [19–22]. Research into food-authentication vibrational spectroscopy technologies
today has been growing [22–26], partly because the sample preparation using the FTIR tech-
nique is relatively simple, results are relatively rapid, and this process is non-destructive
in nature. The FTIR spectroscopic methods are thus fast becoming popular [27–33]. Some
researchers have started to veer to Near Infrared (NIR) spectroscopy, mainly because its
feasibility would open the possibilities of making the food authentication instrumentation
set-up portable [28–30]. FTIR is quick and relatively inexpensive, with an easier sample
preparation and a non-destructive process [18,19,24,34]. FTIR spectroscopy can distinguish
meat and lard in meatball broth quickly and with high accuracy [19,21]; it has also been
used with chocolate [24,34] and vegetable oils [22]. Table 1 presents the summary of meth-
ods and adulterants used in the literature, along with the multivariate techniques used
for detecting the adulteration in different meat species. Therefore, the aim of this study
was to utilize in-depth FTIR spectral analysis to improve the accuracy of lard adulteration
detection by employing the classification of pure and adulterated samples combined with
an M-SVM analysis for lard adulterated in mixtures of beef, lamb, and chicken.

Table 1. Summary of food analyses using multivariate techniques with infrared spectroscopy for the detection of meat
species adulteration [35–40].

Method Meat Adulterant Analysis Technique

Fourier Transform Infrared Spectroscopy Palm Oil with Chicken Fat Linear Discriminant Analysis

E-Nose Lard, Chicken, and Beef K-Nearest Neighbors algorithm (KNN),
Support Vector Machine (SVM)

Fourier Transform Infrared Spectroscopy Beef Jerky with pork LDA, SIMCA, and SVM
Fourier Transform Infrared Spectroscopy Lard, Mutton, and Cow PLS Regression

Raman Spectroscopy Beef and Horsemeat PCA
Fourier Transform Infrared Spectroscopy Lard and Palm Oil PLS
Fourier Transform Infrared Spectroscopy Lard, Beef Meatballs PCA and PLS
Fourier Transform Infrared Spectroscopy Lard in Palm Oil PCA and PLS
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2. Materials and Methods
2.1. Meat Sample Collection

All meat samples were obtained from the local market at Seri Iskander in Malaysia.
After that, the meat was washed with purified water and cut into small parts (1 cm × 1 cm)
and held at −10 ◦C. Total samples were then divided into two different classes, as pure
and adulterated. There were 80 pure and 90 adulterated samples produced for the spectral
analysis. The sample preparation was designed to be straightforward, with no extra
chemical substances used. Beef, lamb, and chicken loin cuts were used, and all pork was
lean meat taken from chops.

2.2. Extraction Procedure and Sample Distribution

Lard and other animal body fats from meat such as chicken fat, beef fat, and mutton
fat were extracted according to the method stated by [34], with little variation. All samples
were gradually heated from 50 ◦C to 150 ◦C for 45 min until the fat was extracted from all
the samples on the petri dish. The discharged fat was then filtered as the concentration
contained solid minute particles. Moreover, samples were centrifuged at 3000 rpm for
20 min and filtered through Whatman filter paper. Pure fats produced by the extraction
process were then used to make adulterated samples. All the chemicals used in this
experiment were of analytical consistency. Pure and adulterated fats were then analyzed
using FTIR spectroscopy. The instrument used was Frontier FT-IR by PerkinElmer. The
optical system with KBr beam splitter was used to enable quality data collection over a
range of 8300–350 cm−1 at a best resolution of 0.4 cm. The resulting spectrum contained
2500 continuous values for one sample, with intervals of 0.8 cm−1. To guarantee that there
was no major fluctuation between each spectra scanned, each spectrum was recorded at
the same temperature. This procedure was required to remove any uncontrolled ambient
influences on the instrument and the sample.

2.3. Spectral Data Pre-Processing

Smoothing and normal variate transformation (SNV) were used as spectrum pre-
processing approaches in this investigation. The reflectance spectra were smoothed by
Savitzky-Golay smoothing using a second-order polynomial and a 5-point window to
eliminate the random disturbances caused by the system’s internal components. SNV was
used to adjust for scatter effects and reduce slope variation. The Savitzky-Golay smoothing
filter was used to increase the precision of the data without distorting the signal tendency.

2.4. Preparing Mixture Samples

Lard was mixed with body fats of lamb, beef, and chicken to obtain a series of standard
or trained sets of 80 pure and 90 adulterated samples containing 10–50% v/v of lard in
lamb, beef, and chicken samples, as shown in Table 2. The following method is according
to Rohman et al. [23]. We prepared six pieces for each combination of lard mixed with a
defined percentage of lamb, chicken, and beef, with pork in the proportion of 10, 20, 30, 40,
and 50%, whereas B-50%, L-50%, and C-50% represent a 50-50 ratio of pork with beef, lamb,
and chicken, respectively; meanwhile, B-90%, L-90%, and C-90% indicate 10% lard with
90% of the respective species. The detailed distribution of samples is presented in Table 3.

Table 2. Distribution of adulterated and pure samples along with the number of pieces produced and spectra obtained for
individual species.

Meat Specie Number of Pieces Number of Samples Obtained Number of Spectra Obtained
Pure Samples Adulterated Samples (v/v)

Beef 20 10 × 2 = 20 15 × 2 = 30 50
Lamb 20 10 × 2 = 20 15 × 2 = 30 50
Pork

Chicken
20
20

10 × 2 = 20
10 × 2 = 20

-
15 × 2 = 30

20
50

Total 80 80 90 170
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Table 3. Composition of adulterated samples with the ratio of lard mixed with samples of beef, lamb,
and chicken, represented by their initials (Lamb: L-90% to L50%, Beef: B-90% to B-50%, Chicken:
C-90% to C-50%).

Mixture
Samples Label Pork (v/v) Lamb (v/v) Beef (v/v) Chicken

(v/v)
Number of

Samples

L-90% 10% 90% - - 6
L-80% 20% 80% - - 6
L-70% 30% 70% - - 6
L-60% 40% 60% - - 6
L-50% 50% 50% - - 6
B-90% 10% - 90% - 6
B-80% 20% - 80% - 6
B-70% 30% - 70% - 6
B-60% 40% - 60% - 6
B-50% 50% - 50% - 6
C-90% 10% - - 90% 6
C-80% 20% - - 80% 6
C-70% 30% - - 70% 6
C-60% 40% - - 60% 6
C-50% 50% - - 50% 6

Total Mixture Samples 90

3. Results and Discussion

After a careful process of sample-making and data pre-processing, the obtained spec-
trum for both pure and adulterated samples was analyzed separately. The developed
workflow for further investigating the lard adulteration was carried out using a three-stage
process. In the first stage, identification of functional groups in lard samples without any
contamination was made. Secondly, pure spectral samples of beef, lamb, chicken, and lard
were analyzed by overlapping the spectrums and identifying the region of difference (RoD)
for highly significant regions. Moreover, the profiling of adulterated samples with the per-
centage difference for beef, lamb, and chicken was also carried out. After spectral analysis,
the third and final stage combined the multivariate analysis with M-SVM classification
for both pure and adulterated samples separately. Samples were divided into two classes,
‘Haram (lard)’ and ‘Halal (chicken, lamb, and beef)’, for M-SVM classification.

3.1. FTIR Spectra Analysis of Pure Samples

Amid the four different meat fats, the pure lard used in this study was evaluated and
analyzed separately using FTIR spectroscopy. The peak is shown in Figure 1 approximately
at wavenumber 2921 cm−1, which was due to the tensile vibration of C-H (Sp3) in = C-H
cis. The functional group-CH2 provided peaks at wavenumber 2853 cm−1 consecutively as
result of asymmetrical and symmetrical vibration. The peak showed the triglyceride ester
carbonyl (C=O) group at wavenumber 1750 cm−1.

In the fingerprint region, vibrations of the stretching mode from the C-O group
in esters were detected at wavenumber 1155 cm−1, while at wavenumber 1467 cm−1

the bending vibrations of the CH2 and CH3 aliphatic groups were detected, as shown
in Figure 1. Table 4 shows the details of wavenumber and the associated vibration of
functional groups for the pure lard sample.

Figure 2 below shows the FTIR spectra of pure samples overlapped for the identifica-
tion of wavenumbers, with associated peaks identified as the region of difference (RoD)
along with the fingerprint region. This spectrum can be divided into three regions to make
the analysis convenient: the first region range is at wavenumber 3000–2500 cm−1, the
second region range is 2000–2500 cm−1, the third region range is 1500–2000 cm−1, and to
conclude, the fingerprint region range is at wavenumber 1500–500 cm−1. Two separate
regions are highlighted with dotted lines (a and b), with the overlapping of pure samples
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for all species, as indicated in Figure 2, where the change in absorbance values is highly
prominent; wavenumbers associated with these two regions are in the spectrum ranges
of 1700–1800 cm−1 for RoD(a) and 2800–3000 cm−1 for RoD(b) respectively as shown in
Figure 3. The FTIR spectra of all the lipids obtained from different species were combined
and overlapped.
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As the value for the adulteration of lard increases for both beef and chicken, the
absorbance values merge with the lard, showing high contrast compared to lamb samples,
which indicates negligible change when lard is mixed. This is clearly visible in the spectral
analysis shown in Figure 4 for all the adulterated samples. The absorbance values in the
region of RoD(b) are carefully analyzed, where the adulteration of lard can potentially be
detected. This is shown in Table 5. On the other hand, beef samples are highly prone, and
lard is detectable because of the significant change in absorbance value at the region of
2800–3000 cm−1 in the spectrum, specifically at RoD(b) a and b, which represent regions at
2840–2860 and 2900–2940 cm−1, respectively. Table 5 lists all the absorbance values at the
peaks of RoD(b) in Figure 2; the percentage difference is calculated with respect to lard for
peak absorbance in regions with high significance.

The highest proximity of absorbance values to pure lard can be seen in the samples of
B-50%, C-90%, C-80%, and C-50%, for both regions RoD(b)-a and RoD(b)-b. At the same
time, adulterated beef shows a pattern of variation according to the adulteration percent-
age of lard. Beef samples with 10% adulteration (B-90%) have an approximate percentage
difference of 7–14%, while beef with 50% adulteration (B-50%) shows approximately 3–8%
change for both regions. All samples containing adulterated chicken from C-50% to C-90%
show the lowest percentage difference as compared to lamb and beef. This reveals the
highest similarity to be between chicken and lard, which could present some difficulty in
detecting the adulteration of lard in chicken irrespective of the percentage mixing. More-
over, adulterated lamb samples depict minor variation in absorbance values throughout the
mixing samples (L-50% to L-90%) and have the highest percentage difference as compared
to pure lard.

3.2. Results of Principal Component Analysis

Pure lard, along with other samples of beef, chicken, and lamb, was classified using
the chemometric of PCA. PCA is used to reduce the dimension of the spectral signal. The
wavenumber regions for PCA were also optimized. To confirm the separation based on
adulterant type, the raw data (eigenvectors of the covariance matrix) was subjected to
principal component analysis (PCA). Further explanation on PCA is at Appendix A.1
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Table 5. Absorbance values and percentage difference with respect to lard for adulterated samples of beef, lamb, and
chicken in the region of RoD(b) at the highly significant region of 2800–3000 cm−1.

Species Type Sample Absorbance Value at
RoD(b)-a

Absorbance Value
at RoD(b)-b Percentage Difference w.r.t Pork

Pure Lard Pork-100% 1.5963 1.75306 RoD(b)-a RoD(b)-b

Adulterated Beef

B-50% 1.6580 1.9154 3.79% 8.85%
B-60% 1.8357 2.1793 13.95% 21.67%
B-70% 1.8310 2.1784 13.69% 21.63%
B-80% 1.7611 2.0906 9.81% 17.56%
B-90% 1.7262 2.0227 7.81% 14.28%

Adulterated Chicken

C-50% 1.5256 1.8577 4.52% 5.79%
C-60% 1.5289 1.8737 4.31% 6.65%
C-70% 1.5312 1.8868 4.16% 7.34%

1.5358 1.8995 3.86% 8.01%
C-90% 1.5358 1.8995 3.86% 8.01%

Adulterated Lamb

L-50% 1.8739 2.2576 15.99% 25.15%
L-60% 1.8739 2.2576 15.99% 25.15%
L-70% 1.8739 2.2576 15.99% 25.15%
L-80% 1.8739 2.2576 15.99% 25.15%
L-90% 1.8710 2.2396 15.84% 24.37%

It is possible to observe a distinct split depending on the level of adulteration by show-
ing the scores of the first two main components (Figure 5), which represent 99.36 percent
of data variance. Only a little amount of overlap exists between the chicken samples that
have been tainted with pork. The selection of wavenumbers was based on their ability to

147



Foods 2021, 10, 2405

provide a useful classification between samples, as seen in Figure 5. The PCA plot showed
clusters of samples based on their similarity with the first main component (PC1) and
the second main component (PC2), which provided a good separation between the lamb,
beef, and pork groups but was unable to separate pork and chicken. The percentage (%)
variability of PC1 and PC2 was 97.31% and 2.05%, respectively. PC1 comprised the most
variation of the data, as shown in Table 6.
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Figure 5. Principal component analysis plot showing the similarity between pork, chicken, lamb,
and beef samples with adulterated mixtures. C1–C5 (10–50% Pork), B1–B5 (10–50% Pork), L1–L5
(10–50% Pork).

Table 6. Percentage of variance for each PCA component contributing to the variation of the classification.

Principal Component Variance Contribution

PC1 97.31%
PC2 2.05%
PC3 0.64%

The FTIR spectra of the pure pork sample were compared with those of adulterated
beef, chicken, and lamb. Three dimensional plots are shown in Figure 6. The PCA analysis
shows the PCA projection divided into three dimensions for better analysis.

Figure 6a shows the distribution of samples across the first principal component
using 1D spectra of the pure samples for beef, lamb, chicken, and pork, where chicken
and pork samples overlap and correlate highly coupled values of absorbance with similar
wavenumbers. At the same time, Figure 6b depicts the samples at PC1 and PC2 using 2D
representation for all the adulterated species. Figure 6c combines all the three principal
components using 3D for all the adulterated samples. The regions in these figures are
separated based on the adulteration quantity, starting with slightly mixed, i.e., 10%, to
highly adulterated, i.e., 50%. In the first projection, the plotted points representing the
samples of chicken, beef, and lamb are scattered, and they are far from the pork group. The
closer the dots of chicken, beef, and lamb are to the pork samples, the more significant the
quantity of lard is in pure samples.

3.3. Multiclass Support Vector Machine Classification

The data obtained from the previous processes were divided into testing data (30%)
and training data (70%), and subsequently evaluated with the classification model. The data
acquired from the FTIR spectroscope was analyzed using the scikit-learn machine learning
library in Python. The radial basis function (RBF) was used as the kernel function of SVM
using the grid search method. To add an extra validation step to our model, we used the
confusion matrix for both multiclass datasets, as shown in Tables 7 and 8. The confusion
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matrix projects the true data against predicted data. In our study, we divided the problem
into two different sections: one identified pure samples correctly, and the other predicted
the adulterated samples. The learning rate was 0.0001, and the regularization parameter λ
was set to 1/epochs. Table 7 illustrates the user, producer, and overall accuracy of the pure
samples data set. Details of the SVM is explained at Appendix A.2. Pure samples of beef
and lamb using optimal parameters produced the highest accuracy (85%) among all the
samples. Furthermore, pure samples of chicken had the lowest accuracy of 75%, whereas
pure pork was significantly better than chicken, with 80% accuracy. Moreover, Figure 7
shows a confusion matrix using a 10-fold cross-validation for the pure samples where the
a, b, and c rows represent the true label; meanwhile, according to the model prediction, the
a, b, and c columns represent the number of predicted sets for each respective class.
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Table 7. Sensitivity, precision, and classification accuracy for pure samples of beef, lamb, chicken,
and pork.

Classified as User Accuracy
(Sensitivity)

Producer Accuracy
(Precision) Overall Accuracy

Beef 85% 85.00%

81.25%
Lamb 85% 85.00%

Chicken 78% 75.00%
Pork 76% 80.00%

Table 8. Sensitivity, precision, and classification accuracy for adulterated samples of beef, chicken,
and lamb.

Classified as User Accuracy
(Sensitivity)

Producer Accuracy
(Precision) Overall Accuracy

a = AdulteratedBeef 68.86% 73.33%
72.2%b = AdulteratedLamb 67.19% 76.66%

c = AdulteratedChicken 83.20% 66.00%
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Figure 7. Heatmap confusion matrix of multiclass classification for pure samples of beef, chicken,
lamb, and pork showing the predicted and true labels.

The predicted labels for pure samples shown in Figure 7 misclassified three samples
of pure chicken as pure pork, while two samples of pure pork were falsely labeled as
chicken. Moreover, beef and lamb both had three label misclassifications, one for each
species of meat.

Table 8 shows the confusion matrix for the multiclass SVM of adulterated data samples.
The adulterated data set contained all the samples that were adulterated with different
proportions of lard. The AdulteratedBeef sample included samples with a v/v ratio from B-
50% to B-90%. The producer accuracy was highest for AdulteratedLamb at 76.6%, whereas
AdulteratedBeef had the second-highest value of 73.3%. The spectrum of lamb had no
change in absorbance value when it was adulterated, irrespective of the adulteration
ratio, which was also validated by the SVM classifier by getting the maximum number of
correctly classified labels, as shown in Figure 8.
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Figure 8. Heatmap confusion matrix of the multiclass SVM classifier for adulterated samples of beef,
chicken, and lamb.

AdulteratedChicken samples, with 20 correctly classified samples, produced the
lowest precision accuracy of 66% due to its high variation in absorbance values, as shown
in Figure 8.

4. Conclusions

FTIR spectroscopy, coupled with the multivariate and M-SVM methods, seems to be an
efficient and rapid technique for the discrimination of lard from other meat samples. In this
paper, we demonstrated the identification and discrimination of lard from beef, chicken,
and lamb fats in meat mixtures. FTIR spectral analysis in combination with Principal
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Component Analysis (PCA) and M-SVM have shown that pure lard fat has unique peaks
that can distinguish the pork from beef, chicken, and lamb meat at wavenumbers 1155 cm−1,
1467 cm−1, 1750 cm−1, and 2921 cm−1. The absorbance values indicate a direct correlation
between lard and other species. The PCA results show that adulteration in chicken meat is
positively correlated with pork meat, while lamb is negatively correlated with respect to
lard. The SVM model produced an overall prediction accuracy of 81.25% for pure samples,
and for adulterated samples, it showed a 72.2% prediction accuracy. The overall accuracy
was computed using the sensitivity and precision values. The model accurately classified
the pure samples better than the adulterated samples due to a smaller number of samples
and the minimalistic difference in absorbance values of the spectrum. Thus, this study has
the potential to establish as a rapid method for halal authentication and could revolutionize
the in-line quality control in the meat industry. For future work, the FTIR profiles for pure
and adulterated samples can be increased, and deep learning may be applied for detecting
an adulteration quantity of less than 10%.
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Appendix A

Appendix A.1. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that is particularly
useful in reducing observations that have many dimensions. This technique consists of
transforming dimensions of a dataset into a new but smaller set of uncorrelated dimensions
called principal components (PCs). An array of (qij) values can be normalized using the
equation below:

Xij = qij − qj (A1)

The data given to us is the array element data corresponding to the variable Xij, and
the mean value of the variable qj. Then, using the new dataset array, a correlation matrix is
constructed so that information about how the variables in the dataset are correlated can
be obtained. To create our new correlation matrix X with the new correlation coefficients
Xij, the following formula is used:

R = XT•X (A2)

Only the principal components that explain the greatest amount of data in the original
are determined using the equation below:

S = V•Q (A3)

where S is the matrix data, known as Score; V is the eigenvectors; and Q is the original
data array. The matrix S (Score) will now represent the data in a way that each column
represents the projection of the initial data Q.
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Appendix A.2. Support Vector Machine Classification

Most machine learning techniques have been created and statistically verified for
linearly separable data. For the reduction of dimensionality, linear classifiers such as
Support Vector Machines (SVMs) or the (conventional) Principal Component Analysis
(PCA) are common examples. However, to efficiently accomplish tasks involving pattern
analysis and discovery, most real-world data require non-linear approaches. By incorpo-
rating the kernel trick, the SVM approach has improved over time. To detect a pattern in
non-linear separable data, the kernel method effectively translates the input data to higher
dimensions. When the training data has many variables in comparison to the number of
observations, SVMs are an excellent classification approach. In SVM, every sample x that
consists of n variables is treated as an n-dimensional vector. Prediction performance can
be assessed using the following three indicators: sensitivity (User Accuracy), precision
(Producer Accuracy), and overall accuracy. Precision is the proportion of appropriately
positive labels produced by our software to all positive labels produced. The ratio of the
exactly positive labels identified by our algorithm to all positive labels is referred to as
sensitivity. Accuracy is the proportion of correctly categorized topics to the total number of
issues. Equations (A4)–(A6) present the formula for Precision, Accuracy, and Sensitivity.

Sensitivity =
True Positive

Predicted Results
(A4)

Precision =
True Positive

Actual Results
(A5)

Overall Accuracy =
True Positive + True Negative

Total
(A6)

References
1. Spink, J.; Moyer, D.C. Defining the Public Health Threat of Food Fraud. J. Food Sci. 2011, 76, R157–R163. [CrossRef] [PubMed]
2. The Guardian. Allergic Teenager’s Death after Eating Kebab Was Accidental, Rules Coroner. The Guardian, 2017. Available

online: https://www.theguardian.com/uk-news/2017/jun/16/teenager-with-dairy-allergy-died-accidentally-rules-corone
r(accessed on 16 July 2017).

3. Li, D.K. Toddler Allergic to Dairy Dies after Pre-School Serves Him Grilled Cheese. New York Post, 9 November 2017.
4. Barlass, T. Child Aged 10 Dies after Drinking Coconut Drink as Importer Admits Label Charges. Sydney Morning Herald, 6

October 2015.
5. FSA. (2013, 7/2/2018). Timeline on Horse Meat Issue. Available online: http://www.food.gov.uk/enforcement/monitoring/hor

se-meat/timeline-horsemeat (accessed on 16 August 2021).
6. Rohman, A.; Man, Y.B.C. Analysis of Pig Derivatives for Halal Authentication Studies. Food Rev. Int. 2012, 28, 97–112. [CrossRef]
7. Tähkäpää, S.; Maijala, R.; Korkeala, H.; Nevas, M. Patterns of food frauds and adulterations reported in the EU rapid alert system

for food and feed and in Finland. Food Control 2015, 47, 175–184. [CrossRef]
8. Wood, R. Symposium on Food Identification and Authentication. Available online: https://qualityalchemist.blogspot.com/2012

/01/symposium-on-food-identification-and.html (accessed on 16 July 2017).
9. Guan, N.; Fan, Q.; Ding, J.; Zhao, Y.; Lu, J.; Ai, Y.; Xu, G.; Zhu, S.; Yao, C.; Jiang, L.; et al. Melamine-Contaminated Powdered

Formula and Urolithiasis in Young Children. N. Engl. J. Med. 2009, 360, 1067–1074. [CrossRef]
10. Jia, C.; Jukes, D. The national food safety control system of China e a systematic review. Food Control 2013, 32, 236–245. [CrossRef]
11. Borda, I.A.; Philen, R.M.; de la Paz, M.P.; de la Cámara, A.G.; Ruiz-Navarro, M.D.; Ribota, O.G.; Soldevilla, J.A.; Terracini, B.;

Peña, S.S.; Leal, C.F.; et al. Toxic oil syndrome mortality: The first 13 years. Int. J. Epidemiol. 1998, 27, 1057–1063. [CrossRef]
12. Regenstein, J.M.; Chaudry, M.M.; Regenstein, C.E. The Kosher and Halal Food Laws. Compr. Rev. Food Sci. Food Saf. 2003, 2,

111–127. [CrossRef]
13. Chuah, L.-O.; He, X.B.; Effarizah, M.E.; Syahariza, Z.A.; Shamila-Syuhada, A.K.; Rusul, G. Mislabelling of beef and poultry

products sold in Malaysia. Food Control 2016, 62, 157–164. [CrossRef]
14. Reuters, T. State of The Global Islamic Economy Report 2016/17. 2016. Available online: https://www.iedcdubai.ae/ (accessed

on 16 July 2017).
15. Barnett, J.; Begen, F.; Howes, S.; Regan, A.; McConnon, A.; Marcu, A.; Rowntree, S.; Verbeke, W. Consumers’ confidence,

reflections and response strategies following the horsemeat incident. Food Control 2016, 59, 721–730. [CrossRef]
16. Schmutzler, M.; Beganovic, A.; Böhler, G.; Huck, C.W. Methods for detection of pork adulteration in veal product based on

FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 2015, 57, 258–267. [CrossRef]

152



Foods 2021, 10, 2405

17. Vlachos, A.; Arvanitoyannis, I.S.; Tserkezou, P. An Updated Review of Meat Authenticity Methods and Applications. Crit. Rev.
Food Sci. Nutr. 2016, 56, 1061–1096. [CrossRef] [PubMed]

18. Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging
approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132.

19. Kurniawati, E.; Rohman, A.; Triyana, K. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and
chemometrics. Meat Sci. 2014, 96, 94–98. [CrossRef] [PubMed]

20. Meza-Márquez, O.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Application of mid-infrared spectroscopy with multivariate
analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci.
2010, 86, 511–519. [CrossRef]

21. Rahmania, H.; Sudjadi; Rohman, A. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat
meat in meatball formulation. Meat Sci. 2015, 100, 301–305. [CrossRef]

22. Rohman, A.; Man, Y.B.C.; Hashim, P.; Ismail, A. FTIR spectroscopy combined with chemometrics for analysis of lard adulteration
in some vegetable oils Espectroscopia FTIR combinada con quimiometría para el análisis de adulteración con grasa de cerdo de
aceites vegetales. CyTA J. Food 2011, 9, 96–101. [CrossRef]

23. Rohman, A.; Che Man, Y.B. FTIR spectroscopy combined with chemometrics for analysis of lard in the mixtures with body fats of
lamb, cow and chicke. Int. Food Res. J. 2010, 17, 519–527.

24. Suparman, W.S.; Sundhani, E.; Saputri, S.D. The use of Fourier transform infrared spectroscopy (FTIR) and gas chromatography
mass spectroscopy (GCMS) for Halal authentication in imported chocolate with various variants. Analysis 2015, 2, 3.

25. Xu, L.; Cai, C.B.; Cui, H.F.; Ye, Z.H.; Yu, X.P. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by
Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Sci. 2012, 92, 506–510. [CrossRef]

26. Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy.
Food Chem. 2005, 93, 25–32. [CrossRef]

27. Alfar, I.J.; Khorshidtalab, A.; Akmeliawati, R.; Ahmad, S.; Jaswir, I. Towards authentication of beef, chicken and lard using micro
near-infrared spectrometer based on support vector machine classification. ARPN J. Eng. Appl. Sci. 2016, 11, 4130–4136.

28. Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh,
frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [CrossRef]
[PubMed]

29. Barbin, D.F.; Sun, D.-W.; Su, C. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and
frozen–thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. Technol. 2013, 18, 226–236. [CrossRef]

30. Morsy, N.; Sun, D.-W. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in
fresh and frozen-thawed minced beef. Meat Sci. 2013, 93, 292–302. [CrossRef] [PubMed]

31. Nizar, N.N.A.; Marikkar, J.M.N.; Hashim, D.M. Differentiation of lard, chicken fat, beef fat and mutton fat by GCMS and EA-IRMS
techniques. J. Oleo Sci. 2013, 62, 459–464. [CrossRef]

32. Marikkar, J.M.N.; Ghazali, H.M.; Man, Y.B.C.; Peiris, T.S.G.; Lai, O.M. Distinguishing lard from other animal fats in admixtures
of some vegetable oils using liquid chromatographic data coupled with multivariate data analysis. Food Chem. 2005, 91, 5–14.
[CrossRef]

33. Wang, L.; Hang, X.; Geng, R.; Wang, L.; Hang, X.; Geng, R. Molecular detection of adulteration in commercial buffalo meat
products by multiplex PCR assay. Food Sci. Technol. 2019, 39, 344–348. [CrossRef]

34. Man, Y.B.C.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and
chocolate products using Fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819.

35. The Harmful Effects of Counterfeit Goods–Athens State University. Available online: https://www.athens.edu/business-journa
l/spring-2013/asowder-couterfeit/ (accessed on 10 November 2019).

36. Food Taboos: Their Origins and Purposes. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711054/
(accessed on 10 November 2019).

37. Alikord, M.; Momtaz, H.; keramat, J.; Kadivar, M.; Rad, A.H. Species identification and animal authentication in meat products:
A review. J. Food Meas. Charact. 2018, 12, 145–155. [CrossRef]

38. Rohman, A.; Sismindari; Erwanto, Y.; Man, Y.B.C. Analysis of pork adulteration in beef meatball using Fourier transform infrared
(FTIR) spectroscopy. Meat Sci. 2011, 88, 91–95. [CrossRef]

39. Manning, L.; Soon, J.M. Food Safety, Food Fraud, and Food Defense: A Fast Evolving Literature. J. Food Sci. 2016, 81, R823–R834.
[CrossRef] [PubMed]

40. Yang, L.; Wu, T.; Liu, Y.; Zou, J.; Huang, Y.; Babu, V.S.; Lin, L. Rapid Identification of Pork Adulterated in the Beef and Mutton by
Infrared Spectroscopy. J. Spectrosc. 2018, 2018, 2413874. [CrossRef]

153





foods

Article

Detecting Dye-Contaminated Vegetables Using Low-Field
NMR Relaxometry

Sumaiya Shomaji *,†, Naren Vikram Raj Masna † , David Ariando, Shubhra Deb Paul , Kelsey Horace-Herron ,
Domenic Forte, Soumyajit Mandal and Swarup Bhunia

Citation: Shomaji, S.; Masna, N.V.R.;

Ariando, D.; Deb Paul, S.;

Horace-Herron, K.; Forte, D.; Mandal,

S.; Bhunia, S. Detecting

Dye-Contaminated Vegetables Using

Low-Field NMR Relaxometry. Foods

2021, 10, 2232. https://doi.org/

10.3390/foods10092232

Academic Editor:

Theodoros Varzakas

Received: 6 August 2021

Accepted: 2 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, University of Florida, 216 Larsen Hall, P.O. Box 116200,
Gainesville, FL 32611, USA; nmasna@ufl.edu (N.V.R.M.); dariando@ufl.edu (D.A.);
shubhra.paul@ufl.edu (S.D.P.); khoraceherron@ufl.edu (K.H.-H.); dforte@ece.ufl.edu (D.F.);
soumyajit@ece.ufl.edu (S.M.); swarup@ece.ufl.edu (S.B.)
* Correspondence: shomaji@ufl.edu
† These authors contributed equally to this work.

Abstract: Dyeing vegetables with harmful compounds has become an alarming public health issue
over the past few years. Excessive consumption of these dyed vegetables can cause severe health
hazards, including cancer. Copper sulfate, malachite green, and Sudan red are some of the non-
food-grade dyes widely used on vegetables by untrusted entities in the food supply chain to make
them look fresh and vibrant. In this study, the presence and quantity of dye-based adulteration in
vegetables are determined by applying 1H-nuclear magnetic resonance (NMR) relaxometry. The
proposed technique was validated by treating some vegetables in-house with different dyes and then
soaking them in various solvents. The resulting solutions were collected and analyzed using NMR
relaxometry. Specifically, the effective transverse relaxation time constant, T2,eff , of each solution was
estimated using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. Finally, the estimated time
constants (i.e., measured signatures) were compared with a library of existing T2,eff data to detect
and quantify the presence of unwanted dyes. The latter consists of data-driven models of transverse
decay times for various concentrations of each water-soluble dye. The time required to analyze each
sample using the proposed approach is dye-dependent but typically no longer than a few minutes.
The analysis results can be used to generate warning flags if the detected dye concentrations violate
widely accepted standards for food dyes. The proposed low-cost detection approach can be used in
various stages of a produce supply chain, including consumer household.

Keywords: food adulteration; dye additives; nuclear magnetic resonance; relaxometry

1. Introduction

Food adulteration has reportedly increased over the last few years because of the
complex supply chain of food from producer to consumer. Due to urbanization, consumers
rely on growth, processing, transportation, and supply of food by multiple entities in
the supply chain [1]. An untrusted entity can cause adulteration of food at any of these
stages. Adulteration can take numerous forms, e.g., deliberate addition of substances with
adverse health outcomes, not meeting desired product quality metrics, imitating other food
substances, and using false labels on food packaging [2]. Human health is sensitive to food
and thus can be affected by acute or chronic exposure to adulterated products. Even major
health hazards, involving liver, vision, skin, and stomach disorders, are directly associated
to adulterated food intake [3]. Foods like vegetables, fruits, fish, or meat adulterated with
formalin have been found to be responsible for asthma and cancer [3]. Use of chemical
pesticides has been linked to severe health problems, such as nerve damage and cancer [4].
There is also evidence that dye additives are responsible for genotoxicity, hypersensitivity,
and carcinogenicity [5].
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Synthetic dyes are added to many foods to provide them with a fresh look and compen-
sate for natural color variations. These dyes are often harmful for the health and may even
be carcinogenic [6]. Therefore, it is very important to understand the ingredients of food
items before consuming them. This information is generally available for packaged foods
since genuine product labels include the names of any dyes within the list of ingredients.
However, fresh fruits and vegetables are generally not labeled. Dishonest entities in the
food supply chain can exploit this lack of information to add toxic dyes to fruits and veg-
etables that make them appear fresh and vibrant to customers. Some real-world examples
of this practice are shown in Figure 1. Existing methods to detect many of these dyes have
been thoroughly reviewed in [6]. For example, chromatographic, physiochemical, sensory,
spectroscopy, and DNA-based detection methods have been combined with chemomet-
rics for a wide range of adulteration-detection applications [7]. Detection approaches
that are particularly suitable for dyes include capillary electrophoresis, electrochemical
voltametric analysis, and amperometry [6–8]. To illustrate, carcinogenic compounds, like
malachite green [9] and Sudan red [10], can be easily detected by liquid chromatography,
gas chromatography, capillary electrophoresis, amperometry, and plasmon resonance light
scattering [6].
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Figure 1. Various instances of vegetables and other consumables being adulterated with harmful chemicals. In most cases,
cheap, industrial-grade dyes are used instead of food colors to maximize profits [11–14].

Traditional methods have shown promising results in detecting food dyes with very
high accuracy [6]. However, they have some limitations. Firstly, they require a labor-
intensive set of tasks that ranges from sample preparation to analysis. Therefore, the
experiments require a large expenditure of time and human effort, making them unsuit-
able for at-home and field applications. Secondly, some of these methods often require
expensive instrumentation that is often unavailable in the low- and middle-income coun-
tries where dye-based adulteration is most common [7]. For example, NMR spectroscopy
requires highly uniform magnets, which are bulky and expensive [15,16]. Thirdly, low-cost
methods generally detect adulteration by observing anomalies in basic physical or chemi-
cal properties of the suspect substance (e.g., viscosity, pH, or electrical conductivity) [6,7].
However, modern “smart” adulteration techniques can bypass such simple detection
methods [17]. Therefore, to confront the food adulteration issues, i.e., the deliberate or
accidental contamination of food items with banned substances, the food industry, govern-
ment bodies, and consumers need sensitive, rapid, reliable, inexpensive, widely applicable,
and difficult-to-attack methods to detect adulterated foods. Spectroscopy meets many
of these criteria and is promising for detecting adulteration. During spectroscopy-based
analysis, the chemical composition of a food product is investigated by measuring its
frequency-dependent absorption or reflection spectra. Absorbance-based spectroscopy is
mostly used for liquids, whereas reflection-based spectroscopy is used to identify fillers
and adulterants, such as low-cost spices and dyes used to mask ageing. A variety of
spectroscopic techniques, including near-infrared (IR), mid-IR, Raman, nuclear quadrupole
resonance (NQR), and nuclear magnetic resonance (NMR), have been successfully used for
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monitoring food quality [18]. Each technique has its own advantages and disadvantages,
which makes the optimum choice strongly application dependent.

NMR is rapidly emerging as an important analytical technique for food analysis and
screening [19]. NMR-based methods can be grouped into three major measurement cate-
gories: imaging, spectroscopy, and relaxometry. NMR spectroscopy has many applications
in food analysis and adulterant detection. For example, it has been used to detect Sudan
red in paprika powder with higher sensitivity than Raman or IR spectroscopy [10]. Nev-
ertheless, NMR is intrinsically a bulk measurement method, so detecting adulterants at
extremely low concentrations (e.g., parts per billion) remains challenging [10]. Moreover,
high-resolution NMR spectroscopy requires a strong and highly uniform static magnetic
field (known as B0). Such fields are typically generated using large cryogenically cooled
superconducting coils, thus resulting in very high installation and maintenance costs. A
recent work proves that cryogen-free, desktop-sized permanent magnets can provide a
lower-cost alternative [20]. Nevertheless, such magnets must be temperature-stabilized
and manually-calibrated, so costs are still quite high (typically at least $20,000) [15,16]. As
a result, complete NMR spectrometers (which combine the magnet with sample interro-
gation and readout electronics) cost $50,000 or more. Thus, there is a need for lower-cost
alternatives for analyzing food samples.

NMR relaxometry provides such an alternative since it can be performed in a relatively
weak and inhomogeneous B0 field, which in turn allows the size, complexity, and cost of
the magnet to be greatly reduced [21,22]. Relaxometry focuses on measuring the nuclear
spin relaxation times of specific substances present in a sample, namely the spin- lattice
(T1) and spin-spin (T2) time constants; the translational diffusion coefficient (D) can also be
measured. In a semi-classical picture, atomic nuclei with non-zero spin can be modeled as
rotating magnetic dipoles. The static B0 field tends to align these dipoles (by convention,
along the z-axis) much like compass needles in the Earth’s magnetic field, thus resulting
in non-zero magnetization of the sample in thermal equilibrium. A second, time-varying
magnetic field (known as B1) can be applied to perturb the magnetization away from
equilibrium. Once B1 is removed, the sample gradually returns to equilibrium; this process
is known as relaxation [23]. Specifically, T1 is the time constant for re-establishment of the
equilibrium “longitudinal” magnetization, while T2 is the time constant for decay of the
non-equilibrium “transverse” magnetization.

The two parameters are generally not equal to each other (in almost all cases, T1 ≥ T2)
and also exhibit different dependencies on B0 field strength and temperature [21].

Several studies have used 1H-NMR and 13C-NMR NMR spectroscopy to detect food
dyes (e.g., azo dyes) in solution [24,25]. Azo dyes are water-soluble, organic compounds
that contain a functional group of the form R−N = N−R’, where R and R’ are typically
aromatic groups. These dyes are widely used in some foods and also in the textile industry;
common examples include Sudan red, metanil yellow, and malachite green. However,
the NMR relaxation properties of aqueous solutions of azo dyes have not been carefully
studied. This paper seeks to use the T1 and T2 relaxation time constants to detect these dies
in food samples. To the best of our knowledge, it is the first to show that NMR relaxometry
can be used for rapid and low-cost detection of multiple dyes (including malachite green
and Sudan red) present within common vegetables.

NMR relaxometry can be used to determine the presence and quantity of a target
compound with the help of a reference sample and chemometric analysis. In this approach,
relaxometry was first performed on a reference sample and its relaxation time recorded.
Next, relaxometry was performed on the test sample, and the relaxation time was again
recorded. Finally, the relaxation times were compared to detect the presence and quan-
tity of the target compound. Several methods, including linear regression, comparison
with internal and external standards, and comparison of relaxation spectra, were used
to quantitatively analyze the resulting data [26,27]. Linear or nonlinear regression on T1
and/or T2 values is simple to implement and numerically stable, while finding and prepar-
ing an appropriate reference compound (i.e., internal or external standard) is sometimes
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troublesome. However, both regression- and standards-based methods tend to fail for
complex mixtures due to overlap between the T1 and/or T2 values of different components.
Comparison of relaxation spectra generated using Laplace inversion is well-suited for such
complex samples but suffers from limited resolution due to the numerically ill-conditioned
nature of the inverse Laplace transform [27]. In this study, a simple and practical approach
was developed for quantification of multiple food dyes by combining an external reference
with nonlinear regression.

2. Materials and Methods

To simplify sample preparation, deionized (DI) water was used as the reference sample
for all dyes, which is acceptable when only a single dye is present in a given test sample.
The latter is a reasonable assumption since the goal of most dye-based adulteration is
to impart a single color (e.g., green, orange, or red) to the vegetable or fruit in question.
Finally, a general nonlinear regression method for quantitative analysis of the acquired
relaxation data was used [10]. The details of this process are described next.

2.1. Dyes and Vegetables

A large number of chemical dyes have been used to make vegetables look fresh and
vibrant [6], many of which are inedible and harmful to human health. For this study, three
widely-used dyes were chosen: copper sulfate, malachite green, and Sudan red [28]. The
first dye, copper (II) sulfate (CuSO4), is an inorganic compound that dissolves in water to
produce a dark blueish-green solution. When dipped in this solution, green vegetables, like
bitter gourds, peas, and cucumbers, turn dark or vibrant green. Unfortunately, CuSO4 is
poisonous if ingested in large quantities (>1 gm) [29], with symptoms ranging from slight
nausea to severe gastrointestinal infections and other diseases [28]. For this study, three
different green vegetables, namely bitter gourd, okra, and pointed gourd (also known as
parwal), were purchased from a local store and dyed using copper sulfate. The second
dye, malachite green, is the monochloride salt of an aromatic cation (a triarylmethane)
with formula C23H25N2

+ [30]. It is generally used to color materials like leather or silk
but because of its green hue is also illegally used to color vegetables, like peas and green
chilies [28]. However, it is moderately toxic (even at concentrations as low as 0.1 µg/mL)
and may also be carcinogenic [29]. In this study, yellow and green peas were dyed using
malachite green. The third dye, Sudan red, is a reddish-orange lysochrome azo dye with
formula C17H14N2O2 [31]. This chemical is known to be carcinogenic and banned in food
items but nevertheless continues to be illegally used to color red chilies, red chili powder,
red capsicum fruits, red pepper, chili jam, and tomatoes [32,33]. In this study, red chilies
were dyed using Sudan red. All the dyes were purchased from Sigma-Aldrich (St. Louis,
MO, USA), while the vegetables were obtained from local grocery stores (Gainesville,
FL, USA).

2.2. NMR Relaxometry Instrumentation

A block diagram of the overall experimental setup is illustrated in Figure 2a. The setup
uses a benchtop permanent magnet (Spincore Technologies Inc., Gainesville, FL, USA)
with a measured field strength of 0.5266 T at room temperature, resulting in a nominal
1H-NMR resonance frequency of 22.6 MHz. A 3D-printed holder containing the solenoid
probe coil and NMR sample tube is centered between the magnetic poles [34]. The holder
is coupled to a commercial benchtop NMR spectrometer (Kea2, Magritek Inc., Malvern,
PA, USA) through a two-capacitor impedance matching network [35]. The spectrometer is
powered by two 12-V, sealed lead-acid (SLA) batteries with a capacity of 18 Ah (not shown
in the figure) and connected to a personal computer using a USB interface. A proprietary
graphical user interface (GUI)-based software, Prospa, is used to control the spectrometer
and acquire experimental data.
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Figure 2. (a) A block diagram of the experimental setup; (b) a picture of the actual measurement
setup; (c) an inside view of the magnet enclosure; and (d) a picture of the 3D-printed sample holder
parts with the coil and an NMR tube inserted.

Figure 2b shows a photograph of the experimental setup. The permanent magnet,
matching network, and sample holder are placed within a metallic enclosure that pro-
vides electromagnetic shielding from external radio frequency (RF) interference by acting
as a Faraday cage. Figure 2c shows the internal layout of this enclosure, while Figure 2d
shows a more detailed view of the sample holder with a 10-mm thin-wall precision NMR
tube (Wilmad-LabGlass, Vineland, NJ, USA) inserted into it.

The probe coil was hand-wound using AWG 22 copper wire. The signal-to-noise
ratio (SNR) of the NMR measurements [36] was maximized by iteratively optimizing
the coil geometry to maximize its quality factor (Q) at the 1H-NMR resonant frequency
(f 0 ≈ 22.6 MHz). The final design consisted of a tightly-packed solenoid with a relatively
short length-to-diameter ratio (L ≈ 2 cm and d ≈ 10 mm, resulting in L/d ≈ 2) but a
relatively large number of turns (N = 13). Coil properties around f 0 were measured using a
vector network analyzer (E5071C, Agilent Technologies). The results (inductance = 840 nH,
series resistance = 415 mΩ) confirm adequately high quality factor (Q 287) and self-resonant
frequency (fSRF ≈ 130 MHz). The estimated position of the coil within the sample holder is
shown in Figure 2d.

2.3. Methodology

Instead of measuring the adulterant in situ, it was first washed out into solution. For
this purpose, the sample (fruit or vegetable) was soaked in a solvent with known properties
(e.g., DI water or brine) for a few minutes. The concentration of adulterant in the solvent
was then measured using NMR relaxometry. This process has several advantages, including
(i) eliminating the effect of sample heterogeneity from the T1 and T2 measurements and
(ii) greatly simplifying sample preparation. The acquired relaxation data were further
analyzed in two steps: (i) library creation (Figure 3a) and (ii) quantifying the concentration
of adulterant (Figure 3b). Our current implementation of both steps focused on T2 since it
can be rapidly and accurately measured using the well-known Carr–Purcell–Meiboom–Gill
(CPMG) pulse sequence [37,38], but the procedure can be readily extended to include T1
data (e.g., from an inversion recovery (IR) pulse sequence).
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3. Results and Discussion
3.1. Library Creation

Calibration was carried out by using IRand CPMG pulse sequences to measure the T1
and T2 values of the reference sample, which is typically 12 mL of DI water. The measured
values are T1 ≈ 2370 ms and T2 ≈ 2200 ms at room temperature (see Figure 3c). This value
of T1 ≈ 2400 ms is in good agreement with earlier studies [39], while T2 is similar to T1, as
expected for water [40].

The next goal was to confirm that aqueous solutions of all three dyes under study
exhibited T2 contrast, i.e., a reproducible dependence of T2 on dye concentration. For this,
known quantities of each dye were dissolved in a fixed amount (100 mL) of reference sample
(either DI water or 0.5% NaCl solution) to create a library of solutions. For convenience, a
solution containing x gram of a particular dye was referred as “x% solution”. Next, 12 mL
of each solution was placed in an NMR sample tube and analyzed using a CPMG pulse
sequence. The measured relaxation time constant is denoted by T2,eff to distinguish it from
that of the reference sample (DI water). In each case, the CPMG echo spacing (tE) was kept
small enough to ensure that molecular diffusion did not significantly affect the value of
T2,eff [37].

The smallest value of x (i.e., the sample weight) used within the proposed library was
experimentally adjusted for each dye to ensure that the resulting change in T2,eff could be
accurately estimated within a few scans. For this, the measured CPMG echo decay curves
were fit to mono-exponential functions of the form Ae−ntE/T2,eff using least-squares function
minimization; here, A is the initial signal amplitude, and n = 1, 2,... is the echo number.
Figure 4 shows the measured dependence of T2,eff on concentration for all three dyes. In
each case, a monotonic decrease of T2,eff with concentration was observed; the effect is
particularly strong for CuSO4. As a result, sample concentration can be unambiguously
estimated from the measured value of T2,eff .

The underlying cause for the observed decrease in T2,eff with concentration is increased
inter-molecular dipole-dipole (D-D) relaxation of the water molecules. Inter- molecular D-D
relaxation is typically the dominant relaxation mechanism in dilute aqueous solutions [21].
It arises from time-varying fluctuations in the B0 field seen by each nucleus due to random
thermal motion of other molecules or ions in the solution (which act like miniature dipole
field sources). In the case of CuSO4, the effect is dominated by random motion of the added
Cu2+ ions, which contain unpaired electrons and are thus paramagnetic [41]. In the case
of the organic dyes, the effect is likely dominated by slower motion (and thus increased
D-D relaxation rates) [21] of the loosely-organized shell of water molecules that surrounds
each dye molecule due to mutual electrostatic attraction. Each shell is in rapid chemical
exchange with bulk water molecules, thus explaining the observed mono-exponential echo
decay curves.
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The observed relationship between T2,eff and concentration for each dye was quantified
using nonlinear regression, i.e., least-squares curve fitting. The resulting functions can be
inverted to estimate unknown dye concentrations, as described in the next section.

3.2. Detection of Unknown Concentrations

The calibration curves described in the previous section were used to estimate the
concentration of dye washed out from adulterated vegetables. For this purpose, non-
adulterated vegetables were purchased from a local market, dyed by immersing them in
the appropriate solution, and air-dried to remove extra liquid. Finally, the adulterated
vegetables were soaked in the reference solvent (typically DI water) to wash out the dye.
The T2,eff value of the solution was then analyzed using a CPMG pulse sequence.

A careful set of experiments was performed to determine the optimum sample-
preparation procedure. Firstly, the optimum solution concentration for dyeing vegetables
was determined. Figure 4 shows that the NMR setup can reliably detect concentrations
as low as 0.1–0.3%. Thus, a higher concentration (1%) was used to dye each vegetable.
Specifically, 1% CuSO4 was used for pointed gourd, bitter gourd, and okra; 1% malachite
green for peas; and 1% Sudan red for red dried chilies. The original (raw) and adulterated
(dyed) vegetable samples are visually compared in Figure 5.
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Figure 5. Comparison between the raw and dyed vegetables: (a) raw okra, (b) okra dyed with copper sulfate, (c) raw peas,
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The vegetables were soaked in the corresponding dye solutions for 3 h and then
air-dried for 12 h in room temperature. Then, it was determined the optimum combination
of reference solvent, temperature, and soaking time, tsoak, for washing out each dye. Firstly,
both DI water and 0.5% NaCl solution were studied as reference solvents; the results were
similar, so DI water was chosen for convenience. Secondly, the solvent temperature and
soak time were varied. For water at room temperature, tsoak = 5, 60, and 180 min were
used. For warm water at 60 ◦C, tsoak = 1, 2, and 5 min were used since the wash-out process
(which is driven by diffusion) was expected to be significantly faster. Figure 6a–c show
that T2,eff values decreased with time as more dye (CuSO4 in this case) washed out into
solution; the rate of change was significantly higher for warm water, as expected. Similarly,
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Figure 6d,f confirm that (i) the estimated dye concentrations increased with time, and (ii)
warm water could extract most of the dye within tsoak = 2 min, while much longer soak
times were required at room temperature.
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During the experiments, the optimized procedure described above (dyeing with 1%
solution, drying for 12 h, soaking in warm water for 2 min, and finally estimating dye
concentration from T2,eff measurements) was repeated 10 times for each sample to ensure
that the results are repeatable and consistent. The experiments confirm that both the
presence of the chosen dyes and their extracted concentrations can be reliably estimated
(with typical error < 4%) using the proposed technique.

3.3. Discussion

While the experiments in the paper were focused on three common dyes, the proposed
method can be extended to any dye that exhibits NMR relaxation contrast (in T1 and/or
T2) while in aqueous solution. Compounds containing paramagnetic ions (such as Cu2+ or
Ni2+) fall into this category since they result in increased intermolecular D-D relaxation
rates. Compounds with permanent electric dipole moments, such as most azo and aryl
dyes, may also exhibit a small amount of relaxation contrast due to the reduced mobility of
water molecules in their associated hydration shells. Additional relaxation contrast can
be obtained by performing T1 measurements at different field strengths (e.g., by using an
electromagnet to generate B0); this process is known as field-cycling relaxometry [42].

Besides generality, additional desirable features for the proposed food-adulteration
detection platform include portability and cost-effectiveness. As noted earlier, NMR
spectroscopy is expensive because of the need to generate a strong and highly uniform B0
field. While the magnet size and cost requirements can be significantly reduced by focusing
on relaxometry, the large size and power consumption of the spectrometer electronics
(which includes an analog front-end and a digital back-end) remains a barrier for portable
and low-cost applications. Fortunately, recent work has demonstrated miniaturized and
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low-power versions of both the front- and back-ends. For example, a portable NMR
spectrometer based on a custom front-end and a low-cost system-on-chip (SoC) back-end
has been developed [43]. Such miniaturized and low-cost devices can be used to replace
the benchtop spectrometer used in the current setup.

4. Conclusions

This paper has demonstrated, for the first time to our knowledge, a simple, low-cost,
yet powerful technique that combines NMR relaxometry with nonlinear regression-based
trend modeling to detect and quantify harmful dyes in vegetables. Our experimental results
show that the proposed technique can reliably quantify the presence of three commonly
used illegal dyes, namely copper sulfate, malachite green, and Sudan red, at concentrations
as low as 1 g/L (0.1%). The proposed technique can be used for detecting and potentially
quantifying chemical dye-based produce adulteration in various stages of a supply chain,
including retail facilities and consumer households. Future work will focus on extending
our approach to a wider range of chemical dyes and food items as well as further enhancing
the detection sensitivity.
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Abstract: Table olives, the number one consumed fermented food in Europe, are widely consumed as
they contain many valuable ingredients for health. It is also a food which may be the subject of adul-
teration, as many different olive varieties with different geographical origin, exist all over the word.
In the present study, the image analysis of stones of six main Greek protected designation of origin
(PDO) table olive varieties was performed for the control of their authentication and discrimination,
with cv. Prasines Chalkidikis, cv. Kalamata Olive, cv. Konservolia Stylidas, cv. Konservolia Amfissis,
cv. Throuba Thassos and cv. Throuba Chios being the studied olive varieties. Orthogonal partial least
square discriminant analysis (OPLS-DA) was used for discrimination and classification of the six
Greek table olive varieties. With a 98.33% of varietal discrimination, the OPLS-DA model proved to
be an efficient tool to authentify table olive varieties from their morphological characteristics.

Keywords: Greek PDO table olive varieties; chemometric analysis; OPLS-DA; discrimination;
authenticity; adulteration; geographical origin; quality; safety

1. Introduction

Olive growing is associated with the first steps of human existence, with a history
about 5000 years [1], having acquired symbolism associated with peace and friendship as
olive branches crowned the winners of the Olympics in Ancient Greece [2]. Especially in
Mediterranean countries where the olive tree (Olea europaea L. of the family Oleaceae) is
considered the most emblematic tree, there exist more than 2000 varieties [3]. From the
fruit of the olive trees can produce the well-known olive oil and table olives (also called
eating olives) [4,5]. According to International Olive Oil Council (IOOC), “Table olives are
the product prepared from the sound fruits of varieties of the cultivated olive tree that are
chosen for their production of olives whose volume, shape, flesh-to-stone ratio, fine flesh,
taste, firmness and ease of detachment from the stone make them particularly suitable
for processing; treated to remove its bitterness and preserved by natural fermentation, or
by heat treatment with or without the addition of preservatives; packed with or without
covering liquid” [6]. The main producers of table olives in Europe are Spain, Greece, and
Italy, other major producers outside the Europe are Egypt, Algeria, Turkey, and Morocco,
while emerging producers are Syria, Peru and USA. The word total production exceeded
2.5 million tons in the 2018/2019 season, while the precognition for the 2020/2021 season
is to be exceeded 3.0 million tons [7].
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Table olives are an important cultural value for societies as a genetic source, displaying
a multitude of nutritional characteristics [8]. The quality of table olives is associated with
the presence of valuable nutrients and functional bioactive ingredients such as phenolic
acids, phenolic alcohols, flavonoids and secoiridoids, and depends on the variety [9].
Consumers highly appreciate olives for their body health as the consumption of olives
is associated with many biological activities such as antioxidant, anticarcinogenic and
anti-inflammatory and many others pharmaceutical and physiological benefits [5] that
allow them to be compared even to those of yogurt [8]. Moreover, olive polyphenols have
been used for the prevention of cardiovascular diseases and are highly recommended
together with olive oil in the Mediterranean diet [10,11].

The World Catalogue of Olive Varieties which has been compiled under the guidance of
IOOC, includes nine Greek olive varieties, namely, Adramitini, Amigdalolia, Chalkidiki, Kalamon,
Konservolia, Koroneiki, Mastoeidis, Megaritiki, and Valanolia [12]. Protected designation of origin
(PDO) and the protected geographical indication (PGI) are the main designations of origin for
agricultural products that are established from European Union (EU) as criteria of authenticity
and quality linking these products with origin, geographical indications and traditional
specialties [12–18]. The list in the World Catalogue of Olive Varieties, includes indicative olive
varieties from all over the world without recording all the existing olive varieties and
without all of them being obligatorily marked with a PDO or PGI indication. In addition,
these indications refer to products exclusively of the European Union. Until now, ten
Greek table olive varieties have been characterized as PDO products. Among them, cv.
Prasines Chalkidikis, cv. Kalamata Olives, cv. Konservolia Stylidas, cv. Konservolia
Amfissis, cv. Throuba Thassos and cv. Throuba Chios are very famous, and the present
study has focused on them. Since tables olives directly come from the tree are not edible,
the fermentation process is mandatory, in order to remove oleuropein, which is the main
phenolic compound responsible for the bitterness of fresh olives, except from cv. Throuba
Thassos and cv. Throuba Chios which have a different debittering process [5].

It is well known that better qualities of olives achieve better prices in the market. As
there is plethora of olive varieties with a diversity of morphological and physiological
characteristics, the existence of many different qualities is expected [19]. In order to avoid
olive adulterations, several discriminant protocols for varietal identification, based on
stone, fruit, and leaf data have been used [20].

The authentication of PDO and PGI table olives has been studied the last 15 years
in Italy [21], Tunisia [22], Turkey [23], Portugal [24], Greece [25] and Spain [4,26,27]. Sev-
eral advanced analytical techniques have been used for the study of authentication of
table olives, such as high-performance liquid chromatography (HPLC) [23,28], ultra-high-
performance liquid chromatography–quadrupole time of flight tandem mass spectrometry
(UHPLC-QTOF-MS) [25], gas chromatography-mass spectrometry (GC-MS) [26] and nu-
clear magnetic resonance spectroscopy (NMR) [21]. Chemometrics is an important science
which has been extensively used in food science and authenticity studies to facilitate
interpretation of huge load of data, and it provides an easy way to visualize the sam-
ples [19,20,29–36].

Characteristics like shape, profile symmetry, front symmetry, basis, apex, mucro,
position of maximum transversal width (MTW), number of fibrovascular furrow (NFF),
distribution of fibrovascular furrow (DFF), are important and have been used in characteri-
zation studies of olive stones [30]. Various standard process of stone processing have been
proposed in the literature. In a study by Satorres Martínez et al., three different cleaning
methods were applied: a water spray machine, an ultrasonic cleaner and a bleach solution.
With the first method, the olive stone was cleaned and part of its texture was damaged.
The second method did not have satisfactory results since there were residues of biological
material in the texture of the endocarp. Best results were achieved with the last method, the
bleach solution. Applying a 5% bleach solution for one hour, there were a complete absence
of biological material and no damage appears in the endocarp texture [33]. Bleach solution
was also used by Beyaz et al. for the cleaning process of olive stones [20]. Specifically, the
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olive stones were kept in plastic containers, containing 10% bleach solution, for 15 h and
stored at −4 ◦C to prevent them from cracking because of physiological activity.

To the best of our knowledge limited studies has been reported to investigate the
authentication of Greek olive varieties according to the morphological characteristics of
their stones [34]. The choice of the six Greek PDO table olive varieties, for the chemometric
treatments for varietal identification of olive fruits was based on the coverage of the main
cultivated with olives geographical areas of Greece. Thus the cv. Prasines Chalkidikis repre-
sent Northern Greece (geographic region of Macedonia), the cv. Konservolia Stylidas, and
cv. Konservolia Amfissis represent Central Greece (geographic region of Central Greece),
the cv. Kalamata Olive is the most famous all over the Greece and is also characteristic
of Southern Greece (geographic region of Peloponnese), and cv. Throuba Thassos and
cv. Throuba Chios represent Aegean Sea. The purpose of this work is to discriminate
the six Greek PDO table olives, namely cv. Prasines Chalkidikis, cv. Kalamata Olives, cv.
Konservolia Stylidas, cv. Konservolia Amfissis, cv. Throuba Thassos and cv. Throuba
Chios, regarding the morphological characteristics of their stones and to produce a reliable
chemometric model for the authentication of all these table olive varieties.

2. Materials and Methods
2.1. Olives Sampling

Two sets of olive fruits (perimeter harvested from two olive trees from the same
orchard) for each of six Greek PDO table olive varieties, were harvested by hand in the
starting of October 2020 from various geographical areas of Greece. These areas are some
of the main production areas of PDO table olives in Greece and specifically samples of cv.
Prasines Chalkidikis olives were harvested from Chalkidiki (40.20◦ N, 23.03◦ E), samples
of cv. Throuba Thassos were harvested from Thassos island (40.45◦ N, 24.35◦ E), samples
of cv. Throuba Chios were harvested from Chios island (38.27◦ N, 26.07◦ E), samples of
cv. Konservolia Stylidas were harvested from Stylida (38.54◦ N, 22.37◦ E), samples of cv.
Konservolia Amfissis were harvested from Amfissa (38.28◦ N, 22.26◦ E) and samples of cv.
Kalamata Olives were harvested from Kalamata (37.05◦ N, 22.10◦ E). Figure 1 shows the
geographical areas of the analyzed samples of six Greek PDO table olive varieties.
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2.2. Olive Stone Processing

The olive fruits were transferred to Laboratory of Environmental Biotechnology and
Chemometrics, Aix Marseille University, IMBE, and the weight of fresh olives for 60 fruits
was measured (30 for each set). The olive fruits were stored at −20 ◦C for preservation,
until the beginning of the analyses. The olive stones are de-fleshed using a procedure
developed by Vanloot et al. [11]. Briefly, after thawing, they were placed in hot water for ten
minutes and their flesh was removed manually. The olive fruits were brushed to remove all
traces of flesh and rinsed with water. The stones were then immersed in hydrogen peroxide
for 24 h. They were then rinsed thoroughly to remove all traces of hydrogen peroxide,
followed by drying for 48 h at room temperature to obtain a constant weight, which was
then measured. This was followed by the storage of the stones in airtight glass bottles
until their digital images were obtained. Images were taken from 60 olive stone and for
each olive stone, two images (face and profile) were obtained with a high-resolution color
camera for 103 character digital processing (Baumer TXD13C) connected on a computer for
image processing (Figure 2).
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Figure 2. Olive stone image acquisition with a high-resolution color camera (Baumer TXD13C) in
center and side lights.

2.3. Olive Stone Characteristics

The characterization of the stone parameters was based on the World Catalogue of Olive
Varieties. The determination of the shape parameters was determined visually on the basis
of the different shapes listed in the catalogue. In the World Catalogue of Olive Varieties are
described with the common glossary the morphological characteristics of tree, inflorescence,
leaf, fruit and endocarp (stone) of 139 olive varieties from 23 countries [12]. As it concerns
the stone, according to the describing characteristics which are including in the catalogue,
it will be very helpful to discriminate the varieties. According to classification there are
varieties with low (<0.3 g), medium (0.3–0.45 g) and high (>0.45 g) weight of stones. The
shape is characterized as spherical, ovoid, elliptic and elongated when the ratio between
the length and width is <1.4, 1.4–1.8, 1.8–2.2 and >2.2, respectively. The symmetry of stone
is characterized as symmetric, slightly asymmetric, and asymmetric. The base of the stone
which is the part that connects the stone with the peduncle is characterized as truncate,
pointed or rounded and apex which is the opposite part of stone it is characterized as
pointed or rounded, with or without a mucro. The surface of stone may be smooth, rugose
or scabrous [12]. The maximum transversal width can be toward the base, toward the apex
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or central and the fibrovascular bundles can be deep and abundant. Two positions of the
stone, the face and profile, have been used for stone characterization. The first position
refers to the maximum symmetry and the second is obtained after rotating 90◦ from the
first. Images were digitized by Visilog v6.7 imaging software from Noesis (Gif sur Yvette,
France). Figure 3 shows the detailed characteristics of a stone from Prasines Chalkidikis
olive variety.
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2.4. Application of Chemometrics

SIMCA version 15.0.2 (Umetrics, 907 29 Umeå, Sweden) was used for chemometric
analysis. The supervised OPLS-DA procedure was followed to discriminate and classify
the observations (samples).

The main limitation of PLS model is its linear nature and it is not applicable for data
with non-linear behavior [37,38]. OPLS-DA methods can be applied to visualize variations
between sample groups and to define the discriminating performance of the variables. With
the use of OPLS-DA it is possible to classify samples according to agricultural practices
and predict the origin of unknown samples [39].

Thirteen parameters (variables) were used. Ten of them were related to morphological
characteristics: shape, profile symmetry, front symmetry, basis, apex, mucro, MTW, surface,
NFF and DFF. Three other parameters were also used related to the weight of the samples,
such as average weight of olive fruits, average weight of stones and quantity of olive flesh
per olive fruit.

Scaling to unit variance (UV) and mean-centering were used. The samples were
discriminated into six classes, namely cv. Kalamata Olive (KO): Class 1, cv. Prasines
Chalkidikis (PX): Class 2, cv. Konservolia Stylidas (KS): Class 3, cv. Konservolia Amfissis
(KA): Class 4, cv. Throuba Thassos (TT): Class 5, and cv. Throuba Chios (TC): Class 6.

As described in Tarapoulouzi et al. [29] the OPLS-DA model was evaluated here by
the determination coefficient, R2, reflecting the goodness of fit and the cross-validated
correlation coefficient, Q2, reflecting the predictive ability of the model. Q2 was obtained
using the seven-fold leave out procedure (default setting in SIMCA). The ellipse in the
plots defines Hotelling’s T2 confidence region, which is a multivariate generalization
of Student’s t test and provides a 95% confidence interval for the observations. The
number of the important components which have been chosen is given with the symbol
A, therefore A = 1 + 1 components were used for all the models produced. In addition,
internal validation took place with regression models which were validated using CV-
ANOVA tables, via comparing Fstatistic vs. Fcritical values. F-value is a measure of the
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size of the effects. The larger this value, the greater the likelihood that the differences
between the means are due to something other than chance alone, namely real effects. If the
difference between the means is due only to chance, that is, there are no real effects, then
the expected value of the F-ratio would be one (1.00). A hypothesis test takes place where
the “null hypothesis” indicates that population means of the different appraisers are equal,
and “alternate hypothesis” shows that one of the means is not the same. Larger values
of Fstatistic than the Fcritical indicate that the difference of means of the samples is larger
compared to the dispersion of the observations within each sample, and therefore, the
null hypothesis should be rejected, and the alternate hypothesis is considered important.
In other words, a lower Fstatistic than the Fcritical indicates that the variation within the
appraisers is greater than the variation between them [40]. The misclassification table
was considered important to evaluate the quality of the model, as well as permutation
testing was applied (100 permutations) to check the validity and the degree of overfit for
the OPLS-DA model.

Validation of the model was tested using sevenfold cross-validation. Therefore, a
calibration and a validation set were set up by having 42 and 18 samples, respectively.

3. Results
3.1. Weight of Olive Stones

In Table 1, the weight of stones of the six Greek PDO table olive varieties are presented.
Statistical analyses were performed with SD and these gave the same score scatter plots
and classification rates as analyses which did not use them. Generally, the average weight
of an olive stone is 18–22% of the olive weight [41]. The average weight of studied fresh
olives varied between varieties. In this study, the maximum average weight was observed
in the fruits of cv. Prasines Chalkidikis whose average weight was almost ten grams and
was twice that of the cv. Kalamata Olive. The cv. Kalamata Olive had the smaller stone
and plenty of flesh with the best ratio of olive flesh (90% of the weight of fresh fruit). This
feature is extremely interesting to produce olive paste and other olive products from cv.
Kalamata Olive. Cv. Throuba Chios had the smaller average weight of fresh olives. As
it concerns the weight of olive stones the larger the olive fruit, the larger the stone. The
highest average weight of the stone was observed in the cv. Prasines Chalkidikis, followed
by the two varieties of Konservolia and the two varieties of Throuba while the smallest
average weight of the stone was observed in the cv. Kalamata Olive.

Table 1. Weight of 60 stones of six PDO Greek table olive varieties.

Table Olive Variety
Average Weight of

Stones (mg)
Mean ± SD

Average Weight of
Olive Fruits (mg)

Mean ± SD

Quantity of Olive
Flesh per Olive

Fruit (mg)
Mean ± SD

Percentage of
Flesh (%)

Mean ± SD

Percentage of
Olive Stone

Occupancy (%)
Mean ± SD

Kalamata Olive (KO) 489 ± 6 4960 ± 11 4471 ± 7.5 90.2 ± 13 9.8 ± 2
Prasines Chalkidikis (PX) 1050 ± 12.6 9710 ± 20.7 8660 ± 45 89.2 ± 24 10.8 ± 4
Konservolia Stylidas (KS) 621 ± 5 5940 ± 9.5 5319 ± 12 89.6 ± 5.5 10.4 ± 3.5

Konservolia Amfissis (KA) 691 ± 5 5950 ± 4.9 5259 ± 9.6 88.4 ± 9 11.6 ± 1.9
Throuba Thassos (TT) 629 ± 5.4 4520 ± 7.8 3891 ± 9 86.1 ± 7 13.9 ± 3
Throuba Chios (TC) 614 ± 9 3030 ± 8.3 2416 ± 10 79.7 ± 10 20.3 ± 6

3.2. Artificial Visions of Olive Stones

Figure 4 shows the detailed characteristics of face and profile images of olive stones
of six analyzed Greek PDO table olive varieties. In Table 2, they are presented the mor-
phological characteristics of stones of six PDO Greek table olive varieties. The images
prove that analyzed varieties differ quite except in the case of olive stones of varieties
Konservolia. MTW, NFF, DFF and surface are also described in Table 2. All varieties have
mucro except from cv. Kalamata Olive. The apexes of cv. Prasines Chalkidikis and cv.
Throuba Chios are rounded and the others are pointed. The basis of the stones are pointed
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for cv. Konservolia Stylidas, cv. Prasines Chalkidikis, cv. Throuba Chios, cv. Throuba
Thassos, and cv. Kalamata Olive and only for cv. Konservolia Amfissis is it rounded.
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Figure 4. Morphological characteristics of face and profile images of olive stones of six analyzed Greek PDO table
olive varieties.

Table 2. Morphological characteristics of 60 stones of six PDO Greek table olive varieties.

Table Olive
Variety Shape Profile

Symmetry
Front

Symmetry Basis Apex Mucro MTW a Surface NFF b DFF c

Kalamata
Olive (KO) Elongated Asymmetrical Slightly

asymmetrical Pointed Pointed Without
presence Middle Rugged Weak to

middle
Uniform or

grouped
Prasines

Chalkidikis
(PX)

Elongated Slightly
asymmetrical Symmetrical Pointed Rounded Presence Middle Rugged Middle Uniform

Konservolia
Stylidas (KS) Ovoid Slightly

asymmetrical Symmetrical Pointed Pointed Presence Middle Rough Middle Uniform or
grouped

Konservolia
Amfissis

(KA)
Elliptic Slightly

asymmetrical Symmetrical Rounded Pointed Presence Middle Rough Middle Uniform or
grouped

Throuba
Thassos (TT) Elongated Very

asymmetrical

Symmetrical
to slightly

asymmetrical
Pointed Pointed Presence Middle Smooth to

rough Middle Uniform

Throuba
Chios (TC) Elliptic Very

asymmetrical Symmetrical Pointed or
rounded Rounded Presence Middle Rough Middle Uniform

a Position of maximum transversal width. b Number of fibrovascular furrow. c Distribution of fibrovascular furrow.

Olive stones from varieties cv. Konservolia Amfissis were morphologically very
similar to cv. Konservolia Stylidas. Regarding the shape, cv. Prasines Chalkidikis cv.
Kalamata Olive and cv. Throuba Thassos have elongated shape, cv. Konservolia Amfissis,
cv. Throuba Chios have elliptic shape and cv. Konservolia Stylidas has an ovoid shape.
The profiles of cv. Throuba Chios and cv. Throuba Thassos stones are very asymmetrical,
slightly asymmetrical for cv. Prasines Chalkidikis, cv. Konservolia Amfissis, and cv.
Konservolia Stylidas stones and asymmetrical for cv. Kalamata Olive stones.

3.3. Chemometric Interpretation of the Data by Using OPLS-DA Methods

To tests the validity of the dataset, a calibration and a validation set were set up by
having 42 and 18 samples, respectively, as shown in Figure 5. Both scatter plots (a) and
(b) were successfully built with R2X(cum) = 0.950, R2Y(cum) = 0.946 and Q2(cum) = 0.933,
and R2X(cum) = 0.995, R2Y(cum) = 0.878 and Q2(cum) = 0.789, respectively.
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Figure 5. (a) OPLS-DA calibration set with R2X(cum) = 0.950, R2Y(cum) = 0.946 and Q2(cum) = 0.933, and (b) OPLS-DA
validation set with R2X(cum) = 0.995, R2Y(cum) = 0.878 and Q2(cum) = 0.789.

After chemometric interpretation of the data, an overall OPLS-DA model was con-
structed, as seen in Figure 6. No outlier samples were obtained; thus, all the 60 samples of
table olives were distributed in the Hotelling’s T2 ellipse. KO seems to be a very special
variety of table olives, as it is the only one which is located at the right part of the ellipse,
while the other five varieties (i.e., PX, KS, KA, TT and TC) are located at the center to left
part of the ellipse. The values of coefficients R2X(cum) = 0.991, R2Y(cum) = 0.912 and
Q2(cum) = 0.855 are all good, since they are all above 0.5, and the difference between
R2X(cum) and Q2(cum) is 0.136 which is satisfactory, as it is lower than 0.2–0.3.

Only one sample (PX9) was wrongly classified, as it was located away from the centre
of the PX group. It seems that PX9 should belong to TC group, however, chemometric
analysis and particularly misclassification table (Table 3) shows that PX9 is located closer
to the center of KS group. Calculation of Euclidean distances (results not shown here)
confirmed that PX9 is closer to KS group instead of TC. The incorrect classification of PX9
decreases the percentage of correct classification of the PX group to 90%, and the percentage
of the overall OPLS-DA model to 98.33%.

Table 3. Misclassification table for the overall OPLS-DA model.

Members Correct KO PX KS KA TT TC

KO 10 100% 10 0 0 0 0 0
PX 10 90% 0 9 1 0 0 0
KS 10 100% 0 0 10 0 0 0
KA 10 100% 0 0 0 10 0 0
TT 10 100% 0 0 0 0 10 0
TC 10 100% 0 0 0 0 0 10

No class 0 0 0 0 0 0 0
Total 60 98.33%

Fisher’s prob. 1.1 × 10−39

By eliminating PX9 from the dataset, the classification rate became 95% as the other
samples of PX class were not as closed between them. Thus, it was considered important
to keep PX9 in the PX class and in the overall model.
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To test the significance and adequacy of the model, the CV-ANOVA, which is consid-
ered as the most important test for the evaluation of significance of the developed model,
was applied. The CV-ANOVA results show the value of the Fstatistic and p-value and are
depicted in Table 4. The model is highly significant, due to the p-value of zero. Based on
DF = 295, the null hypothesis should be rejected, and the alternate hypothesis is considered
important due to that Fstatistic = 18.9 > Fcritical = 2.24 for probability level equal to 0.05.
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Table 4. CV-ANOVA data obtained for the overall OPLS-DA model.

OPLS-DA SS 1 DF 2 MS 3 F 4 p 5 SD 6

Total corr. 295 295 1 1
Regression 252.2 70 3.6 18.9 0 1.9
Residual 42.7 225 0.19 0.4

1 SS = sum of squares, 2 DF = degree of freedom, 3 MS = mean squares, 4 F = F-test calculated value or Fstatistic,
5 p = p-value of the test, 6 SD = standard deviation.

In addition, to validate further the goodness of fit and the predictability of these results,
a random permutation test with 100 permutations was employed, as seen in Figure 7. Both
R2 (original model) and Q2 (predictive model) located at right and permutated R2 (original
model) and Q2 (predictive model) located left while all blue Q2 values to the left and right
are lower than the green original R2 values. All the permuted models showed lower R2Y
values if compared with the original model’s R2Y value (0.912) and the majority of the Q2
regression lines showed negative intercepts (0.0, −0.688).
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4. Discussion

The determination of olive variety with this method is very different from the use
of precision instruments for material analysis. Not only does it reduce the cost of money
and time consumption, but also is more efficient. The identification of the variety of table
olives and especially the ones that have been characterized as PDO table olive varieties
is required, as the PDO characterization products have higher prices. Variety is a major
issue of authenticity and the use of the term PDO can lead to significant falsifications [42].
Since the final product of table olives is a fermented product and different types of table
olives can be produced, the methods for determining the variety of origin of fresh olives
are completely different from those of table olives, as many changes in the pulp of olives
can occur [30]. It is well known that all table olives are fermented in sodium chloride
brine [43], through a series of treatments that considerably vary depending on the region
and variety [19]. Over the last decade, several studies have been published focusing
primarily on reducing sodium chloride content. In this context, modified fermentation
brines have been used, in order to satisfy consumers’ demand for healthier table olives,
with less sodium chloride [43–49]. Therefore, different physicochemical characteristics, and
sensory and nutritional properties, may arise from the various fermentation procedures,
which makes table olive classification difficult.
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The study of morphological features of stones and weight measurements of examined
Greek varieties constitutes an alternative method that permit us to determine each variety
according to their different size, aspect and weight. Besides, using a high-resolution
color camera the examined stones are presented in more details, than those, that can be
measured with the human naked eye. In addition, the varietal identification achieved
with the machine vision system in combination with the chemometric analysis allows fast
classification, without the need for human observation and the subsequent errors. In many
studies, in addition to the morphological characteristics of the stones, the morphological
characteristics of the leaves and fruits have also been used to identify the olive variety.
Olive stone information is the most valuable, among other morphological features of a
variety, as they are little affected by environmental conditions. Therefore, olive stone
characteristics tend to appear similar to olives belonging to the same variety and tend to
differ in the opposite case. Martínez et al. approached the problem of varietal identification
by feature extraction from the analysis of endocarp images, and then using partial least
square-discriminant classifier [33].

This is the first time that the research group studied the authenticity of Greek varieties
of table olives, although similar research has been conducted in different countries and
varieties by other authors who combined imaging and chemometrics [19,20,30–32,34,35].
Esteves da Silva demonstrated the great usefulness of chemometrics in the classification of
olive varieties. The morphological characteristics of the endocarp among other character-
istics (for example olive fruits, trees, branches, leaves and flowers) were used to classify
22 Portuguese olive varieties. He also managed to demonstrate the similarities between the
varieties studied and to show that some characteristics have a greater power of distinction
than others [19].

Vanloot et al. achieved the discrimination of five French varieties, namely Aglandau,
Bouteillan, Lucques, Picholine, Tanche, through artificial vision and chemometric analysis
of olive stones with 100% of correct classification, working with the data obtained from
front and profile pictures [30]. Even if the front and profile parameters are different
for the discrimination of the varieties only the picture of profile was sufficient. Image
processing techniques of olive fruit, olive leaves, and olive stones, were used for the
identification of Turkish olive varieties namely Sarı ulak, Gemlik, Edincik su, Memecik, Eşek
zeytini, Ayvalık, Kilis yağlık, Uslu, Çilli, and Domat [20], while in another study, image
processing techniques with data obtained from the fruits and stones were used for the
classification of Spanish olive cultivars, namely Lechin De Granada, Arbequina, Picual, Verdial
De V-M, Picudo, Hojiblanca and Empeltre [31]. Seven Greek olive varieties, namely Kalamon,
Karidolia-Chalkidikis, Koroneiki, Lianomanako-Tyrou, Mastoidis, Megaron and Throumbolia, were
distinguished according to the morphological parameters of the olive fruit, olive leaves,
and olive stones [34]. The study of biometric characteristics of the olive stone was also
used to determine the relationships between wild and farmed olives [35].

The analysis regarding geographic origin of the Greek PDO table olive varieties reveals
that there is regional clustering. KS and KA were expected to be located closer than the
other groups as the locations which have been harvested are nearby. In addition, it can be
said that regarding variety species, KS and KA as well as TT and TC were expected to be
located “in pairs”, meaning next to each other on the score scatter plot and this is what
was observed. These observations show that the varieties from a particular PDO variety
can easily be discriminated using the fruit and the stones characteristics. The stones of
the KO variety are very characteristic with their very elongated and pointed shape. These
stones are very similar to the Lucques variety, one of the best and most popular French table
olives [50].

Moreover, other authors also stated that image processing alone or coupled with
chemometrics can be the best combination in regard to rapidness and ease. Puerto et al.
presented a methodology for differentiating olives collected from the ground from those
harvested directly from the trees, as the former impoverishes quality of the subsequently
produced olive [51]. An automatic inspection system, based on computer vision, was
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used to classify automatically different batches of olives, before being processed for oil
extraction, with a success ratio of 100%. Ponce et al. proposed a non-invasive methodology,
in which the classification is carried out uniquely using the morphology of the olive-fruits
as distinguishing feature [52]. For this purpose, 2800 fruits belonging to seven different
olive varieties, were photographed. It was designed by a procedure, based on image
processing and analysis and convolutional neural networks, for developing a set of image
classifier. These image classifiers showed a remarkable behaviour in terms of performance,
as high rates of accuracy were obtained in general for all of them.

A new methodology, based on computer vision and feature modelling, was proposed
by Ponce et al. [53] for automatic counting and individual size and mass estimation of
olive-fruits. For its development, a total of 3600 olive-fruits from nine varieties were
photographed, stochastically distributing the individuals on the scene, using an ad-hoc
designed an imaging chamber. The results from the study indicated relative errors below
0.80% and 1.05% for the estimation of the major and minor axis length for all varieties,
respectively.

In a very recent study, an efficient methodology to estimate the maximum/minimum
(polar/equatorial) diameter length and mass of olive fruits by means of image analysis
was proposed [54]. Different sets of olives from the varieties Picual and Arbequina were
photographed, and an original algorithm based on mathematical morphology and statistical
thresholding was developed for segmenting the acquired images. The performance of
the models was evaluated on external validation sets, giving relative errors of 0.86% for
the major axis, 0.09% for the minor axis and 0.78% for the Arbequina variety; analogously,
relative errors of 0.03%, 0.29% and 2.39% were annotated for Picual.

Diaz et al. dealt the classification of table olive in different quality categories de-
pending on the defects in the surface of the fruits [55]. Learning algorithms that allow
the extraction of quality information from batches previously classified by experts have
been applied. A colorimetric characterization of the most common defects was performed.
An image analysis system was used to segment the parameter set with the olive quality
information. The results show that a neural network with a hidden layer can classify olives
with more than 90% accuracy.

New effective techniques for automatic detection and classification of external olive
fruits defects based on image processing techniques, was presented by Hassan et al. [56].
The proposed techniques can separate between the defected and the healthy olive fruits,
and then detect and classify the actual defected area. The proposed techniques are based
on texture analysis and the homogeneity texture measure. The results reveal that proposed
techniques have the highest accuracy rate among other techniques.

A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on
the cross-section and seed textures determined using image processing was developed by
Ropelewska and Szwejda-Grzybowska [57]. An effective method based on hyper- spectral
imaging combined with a group sparse representation (GSR) classifier for the geographic
origin authentication of Yangshan region peaches and to interpret the hyperspectral fin-
gerprint with physiological metabolism using high-performance liquid chromatography
(HPLC) analysis was developed by Sun et al. [58].

OPLS-DA method is a very efficient method for discrimination purpose. The NMR-based
metabolic profiling tool for the quality assessment of table olives, from the Konservolia, Kalamon
and Chalkidikis cultivars from different areas of Greece was used by Beteinakis et al. [59].
Specific biomarkers, related to the classification of olives based on different treatments,
cultivars and geographical origin, were identified and OPLS-DA models were built by
taking groups in pairs, in order to identify certain markers responsible for the differentiation
of cultivars. Moreover, the comparison of similar species in different countries can verify the
high discrimination accuracy of OPLS-DA method low-field nuclear magnetic resonance
(LF-NMR) in combination with multivariate statistical analysis was used to identify the
adulterated Spanish extra virgin olive oil with different rations of soybean oil or corn oil.
The multi-blended oil could be 100% classified by OPLS-DA when the adulteration ratio
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was above 30% [60]. In a very recent study, NMR analysis to avocado oil to differentiate it
from other oils including olive oil, was applied by Tang et al. [61]. Avocado oil and olive
oil were efficiently classified by OPLS-DA method with an R2 of 0.97, and a Q2 of 0.91,
indicating a very significant model.

This method gave satisfactory results for other agricultural products proving its
effectiveness. Becerra-Martınez et al. [62] used NMR spectroscopy supported by principal
component analysis PCA or OPLS-DA to differentiate between two Mexican cultivars of
chili based on the difference of their metabolites. The authors were able to differentiate
the two cultivars using PCA with an R2 of 0.936; to better observe differences between
groups, OPLS-DA was successfully applied (R2 = 0.923). Chung et al. [63] analyzed the
multi-element profile of rice samples procured from six different Asian countries using ICP-
MS to investigate geographical origin. Rice samples were clearly discriminated through
PCA and OPLS-DA as different countries exhibited a different proportion of micro and
macro elements.

This work is a pre-study that should be continued in order to increase the database
on Greek table olive stones. In future, similar research studies must test more samples
per variety and focus on the harvest period. The discrimination of olive varieties can be
definitely benefited from the current development of image analysis technology and big
data analysis.

5. Conclusions

This research study shows that the morphological features of olives (fruit and en-
docarp/stone) as well the weight of stones in combination with chemometrics can be
discriminated. OPLS-DA proved to be good method for visualizing and interpreting the
data. Morphological characteristics of olive stone have enough discrimination capacity to
allow to classify the olives. Further research and assessment will take place related to the
Greek PDO table olives, and more models can be developed for future predictions related
to their quality and authenticity. Ongoing research in the particular field will enlighten
the authenticity of the Greek PDO table olives. This preliminary study shows encouraging
results and that this visual authentication analysis is easy to implement. It will be more
efficient when the image analysis is computerised as planned. This will save time and
allow the Greek varieties to be compared with varieties from different geographic origins.
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Abstract: Traceability of milk origin in China is conducive to the implementation of the protection of
regional products. In order to distinguish milk from different geographical distances in China, we
traced the milk of eight farms in four neighboring provinces of China (Inner Mongolia autonomous
region, Hebei, Ningxia Hui autonomous and Shaanxi), and multivariate data analysis was applied to
the data including elemental analysis, stable isotope analysis and fatty acid analysis. In addition,
orthogonal partial least squares discriminant analysis (OPLS-DA) is used to determine the optimal
classification model, and it is explored whether the combination of different technologies is better
than a single technical analysis. It was confirmed that in the inter-provincial samples, the combination
of the two techniques was better than the analysis using a single technique (fatty acids: R2 = 0.716,
Q2 = 0.614; fatty acid-binding isotopes: R2 = 0.760, Q2 = 0.635). At the same time, milk produced
by farms with different distances of less than 11 km in each province was discriminated, and the
discriminant distance was successfully reduced to 0.7 km (Ningxia Hui Autonomous Region: the
distance between the two farms was 0.7 km, R2 = 0.771, Q2 = 0.631). For short-distance samples, the
combination multiple technologies are not completely superior to a single technique, and sometimes,
it is easy to cause model over-fitting.

Keywords: milk; fatty acids; isotopes; mineral elements; geographical origin; multivariate statistics

1. Introduction

With the great improvement of people’s living standard, China’s dairy farming indus-
try has also greatly developed, and has now become the third largest producer in the world.
Milk has high nutritional value, and its quality is considered to be related to the geographi-
cal location of pasture, forage, water source and other factors. Therefore, consumers pay
increasingly more attention to the origin of milk, resulting in the economic value of origin
information. Traceability of milk origin in China is conducive to the implementation of the
protection of regional products. It can also effectively prevent the spread of food safety
incidents and recall products. Therefore, the traceability of China is of high importance.
Chemical fingerprinting techniques occupy an important position among all traceability
methods due to its advantages of simple operation, accurate results and so on. Increasingly,
the traceability of milk utilizes fatty acids, stable isotopes and mineral elements to identify
the geographical origins of dairy products.

At present, many studies on the geographical origin of milk have been carried out
by isotope, mineral element and fatty acid techniques. Stable isotopes are commonly
used to characterize geographical origin information and to describe agricultural products’
origin information [1], where δ2H and δ18O can be used to distinguish altitude, δ15N can
be used to determine the type of grazing vegetation and δ13C can determine the type of
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animal feed. Thus, the stable isotope ratios can be used to distinguish milk [2–4] and dairy
products [5–7] of different areas.

Mineral elements have been widely used in the traceability of animal-derived agri-
cultural products such as beef [8], pork [9], lamb [10], poultry meat [11] and honey [12,13].
This technique is also increasingly being used to identify the types and origins of milk and
dairy products. In 2008, Benincasa et al. used 16 mineral elements in milk and buffalo
milk to distinguish two types of milk from the same pasture [14]. In 2015, Osorio et al.
determined the mineral elements in goat milk, Halloumi cheese and grazing plants in three
parts of Cyprus, which can be completely distinguished, and found some mineral elements
(Mn and Sr) with good traceability [15].

There have been a few studies on whether fatty acids can be used as potential chemical
parameters to identify milk and dairy products of different origins. It has been reported
that the proportion of fatty acids in milk produced in pastures at different latitudes varied
significantly. Among them, essential fatty acids (EFA) contents and the ratios of Conjugated
linoleic acid (CLA) and Polyunsaturated fatty acid (PUFA) in milk produced in mountain
areas were higher than those produced in indoor cows [16]. Similar conclusions have
been drawn in the study of fatty acids in milk from lowlands, mountains and highlands
in Switzerland [17]. Moreover, a study of nutrients in milk from four provinces in China
reported that the fatty acid contents were influenced by the geographical location [18].

Further studies showed that a model combining isotopes with mineral elements had a
good differentiation effect in the geographical origin of milk, and the differentiation rate
was above 90% [19–21]. This advantage has also been confirmed in the identification of the
origins of milk, dairy products and other foods, especially in the identification of the origins
of PDO foods [22–25]. In addition, in recent years, there have been studies using other
technologies, such as nuclear magnetic resonance, metabolomics, infrared spectroscopy
and elemental analysis, to analyze food origin. These studies have also shown that when
multiple analytical techniques are combined, the results are better than when using only a
single technical analysis [26–32].

To our knowledge, most of the research on the identification of milk producing areas
has been carried out in countries or regions with far-reaching distances, such as Australia
and New Zealand [1], the United States, Germany, China and France [3,4,33], or northern
and central Italy [23] and northern, northwestern and southwestern China [24]. Only a few
studies have focused on near-field production; in previous studies in our laboratory, Xie
et al. paid attention to the traceability of milk in small-scale districts of Inner Mongolia
Autonomous Region in China. It was found that a model combining all three techniques
could distinguish milk samples from 11 regions in the same province and improve the
accuracy of classification of a small-scale region tracking model [34]. However, in the study,
Xie et al. did not verify the PCA and OPLS-DA models, which may lead to over-fitting.
Although the combination of three techniques improves model accuracy, model reliability
is unknown and has an impact on subsequent traceability applications. Therefore, in this
study, we use permutation test to verify the model to ensure the reliability of the model.

In order to distinguish milk from different geographical distances in China, we traced
the milk of eight farms in four neighboring provinces of China (Inner Mongolia autonomous
region, Hebei, Ningxia Hui autonomous and Shaanxi), of which two farms in four provinces
were not more than 11 km apart. We used isotopes, mineral elements and fatty acids to
characterize milk origin information. Moreover, we used principal component analysis
(PCA) for preliminary clustering, and further used OPLS-DA to classify milk from four
provinces and distinguish milk from two farms in the province.

2. Materials and Methods
2.1. Materials

Milk samples (n = 120) were collected from eight large commercial farms in four
provinces of China (Table 1). Milk samples were divided into three parts. One was pro-
cessed according to the methods reported and used for the determination of fatty acids [18].
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Two were freeze-dried for 24 h and then pulverized. The sample was mixed with a chloro-
form/methanol (2:1, v/v) solution at 1:5, vortexed for 10 min and centrifuged at 5000 rpm
for 5 min, and the supernatant was discarded [35]. Then the previous degreasing step was
repeated twice, the supernatant was discarded, the solid was retained and lyophilized to
obtain a defatted dry matter (DDM) for the determination of stable isotopes and mineral
elements. These samples were stored at −20 °C for subsequent analysis.

Table 1. Information on dairy farms in four regions of China.

Origin Number of
Samples

Number of
Farms

Distance
between

Farms (km)

North
Latitude

East
Longitude Altitude (m) Staple Feed Species

HB 30 2 10.7 38◦ 117◦ 7 Yellow corn silage,
Alfalfa hay, straw

NMG 30 2 4.2 40◦ 111◦ 1030 Corn silage, Alfalfa
hay, Leymus chinensis

SX 30 2 2.9 34◦ 108◦ 468 Corn silage, Alfalfa
hay, straw

NX 30 2 0.7 37◦ 106◦ 1160
Corn silage, Alfalfa

hay, cottonseed,
Leymus chinensis

HB = Hebei Province; NMG = Inner Mongolia Autonomous Region; NX = Ningxia Hui Autonomous; Region; SX = Shaanxi Province.

2.2. Analytical Methods
2.2.1. Analysis of Fatty Acids

The samples were analyzed by an Agilent 7890A gas chromatograph with a flame
ionization detector. The column is an SP-2560 (100 m × 0.25 mm × 0.20 µm; Supelco
Inc., Santa Clara, CA, USA). The initial temperature is 100 ◦C, and raised by 5 ◦C min−1

to 210 ◦C, which was maintained for 25 min, then raised to 230 ◦C, which was held for
two minutes. The injector and detector temperature were maintained at 260 ◦C. In total,
32 fatty acids were measured (C4:0; C6:0; C8:0; C10:0; C11:0; C12:0; C13:0; C14:0; C14:1
cis-9; C15:0; C15:1 cis-10; C16:0; C16:1 cis-9; C17:0; C17:1 cis-10; C18:0; C18:1 trans-9; C18:1
cis-9; C18:2 cis-6; C18:3 cis-6,9,12; C18:3 cis-9,12,15; C20:0; C20:1-trans-11; C20:2-cis11,14;
C20:3-cis8,11,14; C20:3-cis11,14,17; C20:4-cis5,8,11,14; C22:0; C22:1-cis13; C22:2-cis13,16;
C24:1-cis15 and CLA).

2.2.2. Analysis of Stable Isotopes

For the stable isotope analysis of δ13C and δ15N, DDM and other international ref-
erence materials (USGS43, USGS40 and Sorghum Flour) were weighed into tin capsules
(5 × 8 mm), and then introduced into an elemental analyzer (Flash 2000, Thermo, Waltham,
MA, USA), converting the entire material into carbon dioxide and nitrogen gas analyzed by
an isotope ratio mass spectrometer (Delta V Advantage of Thermo, Waltham, MA, USA).
Two-point normalization of international standard materials was used. For the values of
δ13C, USGS40 and Sorghum Flour were used for two-point normalization, and USGS43
was used for QC. For the values of δ15N, USGS43 and USGS40 were used for two-point
normalization, and Sorghum Flour was used for QC. Blanks consisting of an empty tin
capsule were included and corrections were applied to the results.

For the stable isotope ratio analysis of δ2H and δ18O, DDM and international reference
materials (Caribou Hoof, Kudu Horn and EMA P2) were weighed into silver capsules
(4 × 6 mm) along with other international reference materials and introduced into ele-
mental analyzers (Flash 2000, Thermo, Waltham, MA, USA). The reactor packing is a
glassy carbon reactor and silver wool. The element hydrogen and oxygen in samples
were converted into H2 and CO at 1380 ◦C via pyrolysis with glass carbon. The gas was
transferred to an isotope ratio mass spectrometer (Delta V Advantage, Thermo, Waltham,
MA, USA). For the values of δ2H, Caribou Hoof and Kudu Horn were used for two-point
normalization, and EMA P2 was used for QC.
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2.2.3. Analysis of Mineral Elements

The content of the mineral elements in DDM were determined according to published
methods in our lab [36]. DDM underwent microwave digestion in a Microwave-Assisted
Reaction System (MARS) (CEM, Matthews, NC, USA). A total of 0.20 g of each sample was
accurately weighed directly into the PTFE digestion tube (15 mL) in triplicate, followed by
the addition of 10 mL 65% HNO3 (analytical grade) and 1.0 mL 30% H2O2 (analytical grade)
and digested for 40 min. After the sample digestion was complete, the objects in the PTFE
digestion tube were transferred to a 50 mL volumetric flask, diluted with ultra-pure water,
and the volume was constant to 50 mL Next, 12 elements (sodium (Na), magnesium (Mg),
potassium (K), calcium (Ca), titanium (Ti), cadmium (Cr), manganese (Mn), iron (Fe), nickel
(Ni), zinc (Zn), strontium (Sr) and molybdenum (Mo)) were determined by inductively
coupled plasma mass spectrometry (X Series 2, Thermo Fisher, Waltham, MA, USA). Three
analyses were performed for each sample and external standard analysis was performed
for quantification. All results are expressed as the average of three measurements.

2.3. Data Processing

Multivariate statistical analysis (PCA, OPLS-DA and Permutation test) was performed
on all data using SIMCA 14.1.0 software (Umetrics, Umea, Sweden). The raw data were
scaled using unit variance (UV-scale), and analyzed using supervised OPLS-DA, which
was used to obtain the classifying model and synchronously extract the variables with
important contributions to the classification. Permutation tests were used to assess the
reliability of the model.

3. Results and Discuss
3.1. Multivariate Statistical Analysis
3.1.1. Identification of Milk Produced in Four Provinces
PCA Results

PCA is used to reduce the dimension of high dimensional variable space under the
principle of minimum data information loss. These comprehensive indexes are called main
components. The principal component will retain as much information as possible about
the variation of the original index. In the preliminary study, single or multiple chemical
parameter data (fatty acids, stable isotopes and mineral elements) were analyzed by PCA to
study any possible milk clustering based on origin. PCA results (Supplementary Materials
Figure S1A,B) showed that there was no obvious grouping in the score plots for inter-
provincial samples, whether a single chemical parameter or the analysis with a combination
of chemical parameters; however, other PCA models had no obvious classification. Thus,
we consider conducting a supervised OPLS-DA of the data to improve the classification
of samples.

OPLS-DA Results

A slight sign of classification was observed on the PCA score plot. Next, a supervised
discriminant analysis of milk samples between four provinces was carried out using OPLS-
DA. Moreover, we used the measure of fit of the model (R2) and the measure of predictive
ability of the model (Q2) to evaluate the models.

There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and
a combination of the best and no over-fitting in Figure 1. Four groups of milk data
were analyzed by OPLS-DA. It was found that the results of the isotope and mineral
element chemical parameter analysis showed no signs of classification in the score plot
(Figure 1A,B). However, to our surprise, the fatty acid chemical parameter analysis showed
good classification on the score plot (Figure 1C). As Figure 1C shows, Ningxia and Inner
Mongolia were the most distinguished, followed by Hebei and Inner Mongolia and finally
Ningxia and Shaanxi. This was because the fatty acid content and composition are affected
by dairy cow breeds, feed and environmental factors such as altitude. Larsen et al. investi-
gated the influence of regional climatic conditions on milk composition, especially fatty
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acid composition, and the result shows that the content of short-chain fatty acid (C4-C14),
C18:0 and C18:3 n-3 are higher in central Sweden than in southern Sweden and that this
is most likely because maize growing is limited to southern Sweden [37]. Thus, environ-
mental factors affect the fatty acid content and composition in milk by affecting local plant
types. Staple feed species differences (Table 1) may be the main cause of milk differences in
four provinces, even more important than geographical factors. Moreover, some studies
have shown that lactation also affects the fatty acid composition of milk [18,38]. Among
the single techniques, the fatty acid model had the best predictive ability (Figure 1A–C). To
sum up, each region in this study had a characteristic fatty acid content fingerprint and
that the fatty acid chemical parameter analysis was more effective than the mineral element
and isotope analysis at identifying the milk samples in the four provinces.
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As shown in Table 2, the R2 of the isotope analysis, mineral element chemical parame-
ter analysis and the combination of the two was less than 0.03, and the fitting degree of the
model was extremely low, while the corresponding Q2 was negative, which indicates that
the prediction ability of the models is not good [39]. Except these three models (isotopes,
mineral elements, isotopes + mineral elements), the fitting degree of other models was more
than 71.60%, and the prediction ability of other models was more than 56.00%. It meant
that these regression models are good. Among the single techniques, the fatty acid model
had the well predictive ability (R2 = 0.716, Q2 = 0.614). Among the binding technologies,
fatty acid technology is helpful to improve the model prediction ability, and the binding
technologies including fatty acids have better model prediction ability (fatty acid and
mineral element technologies: R2 = 0.717, Q2 = 0.560; fatty acid and isotope technologies:
R2 = 0.760, Q2 = 0.635; three technologies: R2 = 0.754, Q2 = 0.581). This indicated that fatty
acid chemical parameters play a major role in classification, while mineral element and
isotope chemical parameters are less important for classification. The results show that it is
the best that the fit and prediction ability of the model combines the fatty acid with isotope
technologies (R2 = 0.760, Q2 = 0.635) in four provinces, even better than that of the three
technologies (R2 = 0.754, Q2 = 0.581). Similar conclusions have been reported before [40].
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When R2 and Q2 of each model are close to each other, we prefer to choose a combination
of multiple technologies. To sum up, we chose the model combining the fatty acid and
isotope chemical parameters as the best classification model for the milk samples from the
four provinces. The classification between the provinces is consistent with the results of
the K-fold cross validation (Supplementary Materials Table S1).

Table 2. Characteristics and evaluations of the OPLS-DA models for the inter-provincial milk samples.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.716 0.004 0.011 0.015 0.717 0.760 0.754

Q2 0.614 −0.043 −0.109 −0.088 0.560 0.635 0.581

y-intercepts of R2 0.112 0.031 0.061 0.045 0.179 0.143 0.211

y-intercepts of Q2 −0.289 −0.035 −0.614 −0.054 −0.339 −0.348 −0.417

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of the predictive ability
of the model.

3.1.2. Identification of Milk Produced by Two Farms in the Same Province

We observed that milk samples at provincial geographic distances were differentiated
significantly, so we will study the differentiation of milk samples within a smaller range.
We suppose that the above methods can be used to identify the milk produced by two
farms in the same province at a short distance. The analytical method used was the same
as that of milk samples from different provinces.

PCA Analysis

For samples from two farms in Hebei, the PCA model of the isotope chemical pa-
rameter was completely divided into two categories (Supplementary Materials Figure
S1C). However, no matter the other single chemical parameters or the combination of
multiple chemical parameters, the score plots showed some trends of separation, though
it was not completely separated. For two farm samples in Inner Mongolia and Shaanxi
(Supplementary Materials Figure S1D,F), all PCA models showed a separation trend, but
they were not completely separated. For two farm samples in Ningxia (Supplementary
Materials Figure S1E), almost all milk samples in the model overlapped, and there was no
classification trend. The above classification can be explained by the geographical distance
of the two farms in the province (Table 1). The farther the geographical distance in the same
province, the more obvious the classification of the samples; the closer the geographical
distance in the same province, the less obvious the classification of the samples.

OPLS-DA Analysis

By using OPLS-DA, a good distinction between short-distance milk in the province
was obtained. There are three OPLS-DA score plots of mineral elements, isotopes, fatty
acids and a combination of the best and no over-fitting in Figure 2. From OPLS-DA score
plots of Hebei samples, single chemical parameters or a combination of multiple chemical
parameters could be used to separate the samples from the two farms in Hebei. In the
mineral element and fatty acid chemical parameter model, there were some points that were
confused, which affected the classification; however, the models of the isotope chemical
parameter and the combination of isotopes and other chemical parameters were well
classified. Among the single techniques, the isotope model had the well predictive ability
(R2 = 0.907, Q2 = 0.876). Among the binding technologies, isotope technology is helpful to
improve the model prediction ability, and the binding technologies including fatty acids
have better model prediction ability (mineral element and isotope technologies: R2 = 0.857,
Q2 = 0.678; fatty acid and isotope technologies: R2 = 0.920, Q2 = 0.814; three technologies:
R2 = 0.891, Q2 = 0.707). This indicates that isotope chemical parameters play a major role
in classification, while mineral element and fatty acid parameters are less important for
classification. Milk samples from two dairy farms in Hebei were fingerprinted with isotope
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content, which is due to the geographical specificity of the isotopes in the local plants and
water. The value of δ13C in plants are affected by factors such as the type of plants, light,
atmospheric CO2 concentration, temperature, air pollution and soil moisture, salinity and
nutritional status, showing geographical differentiation; the value of δ15N in plants are
influenced by parent material, soil types, topography, land use patterns and fertilization,
showing geographical differentiation; the value of δ2H and δ18O of plants are related to the
latitude, altitude and distance from the sea, showing geographical differentiation; the value
of δ2H and δ18O of water content is affected by climate, season and precipitation, showing
geographical differentiation [41–43]. Geographical differences in isotopes in plants and
water are transferred to animals with breeding, distinguishing milk samples of different
origin by determining the isotopes. As shown in Table 3, the Q2 of the mineral element and
fatty acid chemical parameter analysis and the combination of the two were less than 0.500,
which indicates that the prediction ability of the models is not good. Except these three
models, the fitting degree of the other models was more than 85.70%, and the prediction
ability of other models was more than 67.80%. This model combines fatty acidwith isotope
chemical parameters (R2 = 0.920, Q2 = 0.814), proving to be the best classification model
for milk samples in Hebei. The classification in Hebei is consistent with the results of the
K-fold cross validation (Supplementary Materials Table S1).
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Figure 2. OPLS-DA score plots of Hebei samples obtained by the chemical analysis of: (A) Mineral elements; (B) Isotopes;
(C) Fatty acids; (D) Fatty acids combined with isotopes.

Table 3. Characteristics of OPLS-DA models of milk in Hebei province.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.755 0.907 0.562 0.857 0.768 0.920 0.891

Q2 0.469 0.876 −0.455 0.678 0.394 0.814 0.707

y-intercepts of R2 0.269 −0.020 0.170 0.281 0.374 0.315 0.396

y-intercepts of Q2 −0.884 −0.323 −0.182 −0.723 −0.819 −0.882 −0.826

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and a
combination of the best and no over-fitting in Figure 3. For two farms samples in Inner
Mongolia, among the single-index models, the fatty acid model was the best at separating
the samples. Compared with the models in Hebei, the mineral element model in Inner
Mongolia confused more points, and there were a few points in the isotope model that were
not distinguished. This is probably because the geographical distance between the two
dairy farms narrowed from 10.7 km to 4.2 km. After combining more methods, the samples
were completely separated. Among them, the model that combines all three chemical
parameters further aggregated the sample points. As shown in Figure 3, each farm had a
characteristic fatty acid content fingerprint and the fatty acid chemical parameter analysis
was more effective than the mineral element and isotope analysis at identifying the milk
samples in Inner Mongolia. For two farms samples in Inner Mongolia (Table 4), the model
that combines all three chemical parameters showed the best fit and prediction ability
(R2 = 0.985, Q2 = 0.910), but its y-intercepts of R2 was more than 0.40, which indicates
that the model shows over-fitting. Thus, the model combining the fatty acid and isotope
chemical parameters (R2 = 0.954, Q2 = 0.879) was determined as the best classification model
for milk samples in Inner Mongolia. The classification in Inner Mongolia is consistent with
the results of the K-fold cross validation (Supplementary Materials Table S1).
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Figure 3. OPLS-DA score plots of Inner Mongolia samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) Fatty acids combined with isotopes.

Table 4. Characteristics of OPLS-DA models of milk in the Inner Mongolia autonomous region.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.919 0.599 0.410 0.763 0.955 0.954 0.985

Q2 0.876 0.530 −0.243 0.432 0.813 0.879 0.910

y-intercepts of R2 0.233 0.057 0.265 0.353 0.559 0.388 0.677

y-intercepts of Q2 −0.680 −0.306 −0.339 −0.718 −1.130 −1.060 −1.560

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and a
combination of the best and no over-fitting in Figure 4. For two farms samples in Shaanxi,
among the single-index models, the fatty acid model was the best at separating the samples
and the fatty acid and fatty acid-bound isotope models showed excellent separation abilities.
The fitting degree of the fatty acid and fatty acids-binding isotope models of the samples in
Shaanxi (Table 5) was 91.9% and 95.3%, respectively, and the prediction ability was 68.4%
and 70.9%, respectively. However, the y-intercepts of R2 of the fatty acid-binding isotope
model was more than 0.40, which indicates that the model shows over-fitting. For the other
models, there were some easily confused sampling points. As shown in Figure 4, each farm
had a characteristic fatty acid content fingerprint and the fatty acid chemical parameter
analysis was more effective than the mineral element and isotope analysis at identifying
the milk samples in Inner Mongolia. For the two farms samples from Shaanxi (Table 5),
the model of fatty acid chemical parameters was the best classification model (R2 = 0.919,
Q2 = 0.684). The classification in Shaanxi is consistent with the results of the K-fold cross
validation (Supplementary Materials Table S1).
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Figure 4. OPLS-DA score plots of the Shaanxi samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) a combination of three chemical parameters.

Table 5. Characteristics of OPLS-DA models of milk in Shaanxi province.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.919 0.673 0.773 0.725 0.810 0.953 0.839

Q2 0.684 0.548 0.602 0.688 0.685 0.709 0.721

y-intercepts of R2 0.371 0.058 0.134 0.035 0.240 0.417 0.301

y-intercepts of Q2 −0.873 −0.300 −0.321 −0.303 −0.557 −1.020 −0.563

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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As shown in Figure 5, there are a total of four OPLS-DA scores, of which three are
of mineral elements, isotopes and fatty acids parameter models, and the remaining one
is a combined parameter model with the best differentiation and no over-fitting..For two
farm samples in Nngxia, among the single technology models, the fatty acid and mineral
element models had very good predictive ability for milksamples, but their separation
abilities were far less effective than in the other three provinces (Figures 2–4), because the
geographical distance between the two dairy farms in Ningxia narrowed to 0.7 km. For
the isotope model, there were no differentiation trends. For two farms samples in Ningxia
(Table 6), only the models of fatty acid-bound element minerals (R2 = 0.771, Q2 = 0.631)
showed great separation abilities. The classification in Ningxia is consistent with the results
of the K-fold cross validation (Supplementary Materials Table S1).
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Figure 5. OPLS-DA score plots of the Ningxia samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) Fatty acids combined with mineral elements.

Table 6. Characteristics of OPLS-DA models of milk in the Ningxia Hui autonomous region.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.630 0.310 0.654 0.474 0.771 0.557 0.777

Q2 0.434 −0.601 0.407 0.416 0.631 0.393 0.596

y-intercepts of R2 0.139 0.011 0.176 0.137 0.328 0.232 0.434

y-intercepts of Q2 −0.833 −0.217 −0.393 −0.257 −0.704 −0.453 −0.666

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.

3.1.3. Validation of the OPLS-DA Model

Generally, when using this type of supervised analysis, there is a risk of over-fitting
the data. Therefore, validation is crucial to verify the reliability of the model. In order to
check whether the model is over-fitting, we performed the permutation test. When using
the permutation test, the order of the y-variable randomly permutes the specified number
200 times, and separate models are fitted to all the permuted y-variables. Then, the original
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y-variable and the permuted y-variable draw a regression line. Interception is a measure of
over-fitting. Desirable values of y-intercepts should be less than 0.40 for R2 intercept and
less than 0.05 for Q2 intercept, respectively [44], indicating that the model is effective and
there is no over-fitting. The model test results are included in each table (Tables 2–6).

We found that the classification models, considered good in the previous section,
showed over-fitting. In the identification of inter-provincial samples, the fatty acid and fatty
acid-binding isotope models (y-intercepts of R2 = 0.143, y-intercepts of Q2 = −0.348) are
applicable. Thus, we still chose the model combining the fatty acid and isotope chemical
parameters as the best classification model for the milk samples from four provinces.
Similarly, in the two farms samples in the same province, we chose the isotope-bound
fatty acid model as the discriminant model for the Hebei and Inner Mongolia samples, the
fatty acid chemical parameter was selected as the discriminant model for Shaanxi and the
model combining fatty acid with mineral element chemical parameters was chosen as the
discriminant model for Ningxia.

4. Conclusions

The above research shows that multivariate statistical analysis combined with chemical
parameter analysis (fatty acids, isotopes and mineral elements) can distinguish milk from
different geographical distances in China. The fatty acid-binding isotope model is the
best for the classification of milk samples between provinces (R2 = 0.760, Q2 = 0.635).
Moreover, the model combining fatty acid with isotope chemical parameters was the best
classification model for milk samples within Hebei (R2 = 0.920, Q2 = 0.814) and Inner
Mongolia (R2 = 0.954, Q2 = 0.879); the models of the fatty acid chemical parameter showed
great separation abilities for milk samples in Shaanxi (R2 = 0.919, Q2 = 0.684); and the
model combining fatty acid with element minerals chemical parameters showed the best
separation abilities for two farms samples in Ningxia (R2 = 0.771, Q2 = 0.631). In this study,
traceability technology reduced the geographical distance of identified milk samples to
0.7 km. Among the five OPLS-DA models of two farms in four provinces and within the
provinces, the fatty acid chemical parameter analysis was more effective than the mineral
element and isotope analysis at identifying the milk samples. In addition, we found that
when the sample origin distance is relatively long, the combination of the two techniques is
better than the analysis using a single technique, but using the three techniques together is
not superior to the combination of two technologies or a single technique, and sometimes
weakens the robustness of the model. When the sample origin distance is relatively close,
the combination of various technologies is not always better than a single technique, and
sometimes, it can easily cause model over-fitting. These findings may be used to improve
the milk traceability in China. In a future study, we will collect unknown milk samples to
verify the OPLS-DA model and judge the effect of its practical application.
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Abstract: A stable isotope ratio mass spectrometer was used for stable isotope ratio (i.e., δ13C, δ18O,
and δ2H) measurements, achieving geographical discrimination using orthogonal projections to
latent structures discriminant analysis. A total of 100 Greek monovarietal olive oil samples from
three different olive cultivars (cv. Koroneiki, cv. Lianolia Kerkyras, and cv. Maurolia), derived
from Central Greece and Peloponnese, were collected during the 2019–2020 harvest year aiming to
investigate the effect of botanical and geographical origin on their discrimination through isotopic
data. The selection of these samples was made from traditionally olive-growing areas in which no
significant research has been done so far. Samples were discriminated mainly by olive cultivar and,
partially, by geographical origin, which is congruent with other authors. Based on this model, correct
recognition of 93.75% in the training samples and correct prediction of 100% in the test set were
achieved. The overall correct classification of the model was 91%. The predictability based on the
externally validated method of discrimination was good (Q2 (cum) = 0.681) and illustrated that δ18O
and δ2H were the most important isotope markers for the discrimination of olive oil samples. The
authenticity of olive oil based on the examined olive varieties can be determined using this technique.

Keywords: stable isotope ratios; Greek olive oils; chemometric analysis; OPLS-DA; discrimination;
fraud; authenticity; adulteration; geographical origin; quality

1. Introduction

Olive oil plays an important role in the diet in Greece as well as in other Mediterranean
countries. The various health benefits of olive oil consumption are well known, increasing
its reputation [1–5]. The high price of extra virgin olive oil makes it susceptible to fraudulent
activities. For instance, deliberate mislabeling of lower commercial-grade olive oils or even
mislabeling by a false declaration of origin may occur [6]. For these reasons, a series of
criteria and standards associated with the genetic variety, the geographical origin, and the
quality grade have been established by the European Union (EU) so as to offer both fair
trade in the olive sector as well as safety and protection guarantees for consumers [7,8]. Two
of the most well-known denominations related to foodstuff authenticity are the Protected
Designation of Origin (PDO) and the Protected Geographical Indication (PGI) [9–13].

The continuous evaluation of olive oil is a key priority as it holds great importance
in the Mediterranean diet. Recently, specific attention has been focused on geographical
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and cultivar traceability by using several advanced analytical techniques, for instance,
proton-nuclear magnetic resonance [14], liquid chromatography [15], luminescence [16],
Fourier transform infrared spectroscopy [17], near-and- mid-infrared spectroscopy [18–20],
as well as triacylglycerol, fatty acid, squalene, and tocopherol determinations [19,21–23].

Simple and efficient cultivar and geographical discrimination are of crucial importance
to judge labeling compliance. Agricultural practices applied in specific areas, as well as
geoclimatic characteristics, are reflected in the content of stable isotopes of bioelements
(H, C, N, O, and S) and determined experimentally with isotope ratio mass spectrome-
try (IRMS) [24]. The IRMS technique is a well-established method for determining the
authenticity of olive oil [14,25–29]. The stable isotope ratios of 13C/12C, 18O/16O, and
2H/1H give many promises for proof of food authenticity, as this analytical technique
offers more accuracy and sensitivity compared to other less expensive and equally effective
techniques [30]. Latitude and altitude, distance from the sea, and environmental and
climate-related conditions are some of the factors that influence 13C/12C, 18O/16O, and
2H/1H ratios [31].

Although indigenous Greek monocultivar olive oils are more than 40 [32], with cv.
Koroneiki being the most systematically cultivated variety, detailed investigation has not
been carried out for local autochthonous monocultivars. For example, the local variety of
Lianolia Kerkyras is cultivated exclusively on the coasts of northwestern Greece, while
cv. Maurolia, which according to our knowledge has never before been characterized,
is cultivated exclusively in northern Peloponnese, and more precisely in a small area
of the regional unit of Messinia [33,34]. Hence, the combination of the cultivar species
(cv. Koroneiki, cv. Lianolia Kerkyras, and cv. Maurolia) that have been chosen for study
have only been partly evaluated for genotyping and molecular characterization [35,36], as
well as for antioxidant content [1,37] and chemical composition [38].

Chemometrics and discriminant analysis are important tools for food authenticity. The
supervised method orthogonal projections to latent structures discriminant analysis (OPLS-
DA) is very useful for the discrimination of samples in food analysis [39–44]. Recently,
OPLS-DA has been used extensively by several authors in the olive oil authentication field
with great success [15,45–49].

The first goal of this research study was the achievement of a preliminary discrimi-
nation of the above-mentioned Greek monocultivar olive oils according to olive cultivar
by applying a multivariate analysis to the IRMS measurements. The second goal was to
produce a robust model capable of identifying any adulteration of unknown olive oils in
Greece regarding cultivar and geographical origin. One of the most innovative points of
this study was that the examined three monocultivar olive oils (cv. Koroneiki, cv. Lianolia
Kerkyras, and cv. Maurolia) had never before been evaluated by IRMS in combination with
chemometrics. By measuring the O, H, and C isotope ratios, the goal of this study has been
successfully reached. Chemometric analysis with combination of SIMCA software was
used to interpret the measurements. The OPLS-DA chemometric method was implemented.
External validation was achieved by dividing the dataset into two groups. The first group
(training set) was used for the adjustment of the model parameters and the second group
(test set) was used for the estimation of generalization error [50].

2. Materials and Methods
2.1. Sampling

A set of 100 monovarietal olive oil samples were gathered from various olive mills in
Central Greece and Peloponnese, located in different geographical areas. Particularly, 38,
29, and 33 samples of the three cultivars cv. Maurolia from Messinia (37.25◦ N, 21.95◦ E)
and both cv. Lianolia Kerkyras and cv. Koroneiki from Preveza (38.95◦ N, 20.75◦ E) were
collected, respectively. All samples were derived from the 2019–2020 harvesting period.
This was a significant factor in the evaluation of core geographical information from the
dataset in order to avoid differences due to seasonal effects. Additionally, long storage
effects of olive oils (e.g., through oxidation) had to be eliminated [51]. To this end, only
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fresh, recently harvested olive oils were used in this study. Since stable isotope ratios
are related to parameters like latitude, mean annual temperature, and average relative
humidity at the collection area, the samples were collected from coastal areas, i.e., Messinia
and Preveza.

2.2. IRMS Analysis

Stable isotope ratios of carbon (13C/12C) were measured using a horizon isotope ratio
mass spectrometer (Nu Instruments Limited, Wrexham, UK) following total combustion in
a Euro EA-CHNSO 2 dual elemental analyzer (EuroEA3000, EuroVector Srl, Pavia, Italy).
Stable isotope ratios of oxygen and hydrogen (18O/16O, 2H/1H) were measured with
a HTCEA (high temperature conversion elemental analyzer, Hekatech Gmbh, Wegberg,
Germany) connected to a horizon isotope ratio mass spectrometer (Nu Instruments Limited,
Wrexham, UK). Approximately 1 mL sample volume was used for each measurement.

The measured isotope ratios of each sample were normalized to a pulse of respec-
tive reference gases (CO2, CO, H2). Every sample was measured in duplicate. Each
measurement sequence included two reference materials with known isotope signatures
(2-point referencing) and multiple quality control samples to monitor sequence precision
and accuracy.

Carbon, hydrogen, and oxygen stable isotope ratio analysis was performed at Imprint
Analytics GmbH (Neutal, Austria) following the requirements of EN ISO17025:2018 ac-
creditation standard. The method validation reported repeatability of 0.2‰, 1.9‰, and
0.2‰ for carbon, hydrogen, and oxygen isotope ratios, respectively. The accuracy of the
reference materials (international reference materials, inhouse reference materials, and
quality control samples) was controlled by the SD of replicate analysis during the runs, as
well as quality control charts, and was under 0.1‰, 1.3‰, and 0.1‰ for carbon, hydrogen,
and oxygen isotope ratios, respectively.

The values were denoted in delta (δ) in relation to the international VPDB (Vienna-Pee
Dee Belemnite) and VSMOW (Vienna-Standard Mean Ocean Water) standards for δ13C,
δ18O, and δ2H, respectively, according to the following general equation:

δ13Cs = (Rs/Rstd) − 1 (1)

where R is the 13C/12C ratio of the sample (s) and of the standard (std) [52] (similarly for
18O/16O and 2H/1H) expressed in per mil (‰).

2.3. Statistical Analysis

SIMCA version 15.0.2 (Umetrics, Umeå, 907 29, Sweden) was used for multivariate
statistical analysis. Initially, by applying chemometrics, the unsupervised (principal com-
ponent analysis) PCA method was performed (not shown here). The supervised OPLS-DA
procedure was then applied to discriminate and classify the olive oil samples. OPLS-DA
was applied to distinguish the wrongly classified samples and to test the robustness of
the model. Scaling to unit variance (UV) and mean-centering were the two settings before
chemometric analysis. The application of classification methods was done after dividing
the olive oil samples into three classes: cv. Maurolia (Messinia): class 1, cv. Lianolia
Kerkyras (Preveza): class 2, and cv. Koroneiki (Preveza): class 3.

The 100-sample dataset was divided into training and test sets to apply external vali-
dation. Additionally, 80 and 20 samples were randomly selected to represent the training
and the test set, respectively. The symbol A was used for the number of important selected
components. Hotelling’s T2 confidence region is defined by the ellipse in the score scatter
plots, providing a multivariate generalization of Student’s t-test, and a 95% confidence
interval for the observations. Determination coefficient R2 was used for evaluation of the
internal validation. R2 reflects the goodness of fit, while Q2 reflects the predictive ability
of the model. The 7-fold leave out procedure (default setting in SIMCA 15.0.2) was used
for Q2 measurements. R2X is the amount of variation in X that is uncorrelated to Y with
systematic variation. It shows whether data can be well interpreted. R2X(cum) is the total
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sum of variation in X that is uncorrelated to Y. R2Y is the proportion of the variance of the
response variable that is explained by the model. R2Y(cum) is the total sum of variation
in Y explained by the model. Q2(cum) reflects the goodness of prediction calculated by
full cross validation. R2X, R2Y, and Q2values (not less than 0.5) recommended a powerful
model with predictive reliability [53]. R2X(cum) and Q2(cum) values must be less than
0.2–0.3 [54,55]. In addition, misclassification tables were produced for the constructed
models, as well as a permutation test (repeated 100 times) for the overall model. Referring
to the latter, the criteria for validity of both R2 (original model) and Q2 (predictive model),
located to the right, and permutated R2 (original model) and Q2 (predictive model), located
to the left, and all Q2 values to the left and right, are lower than the original R2 values.

3. Results and Discussion
3.1. Stable Isotope Analysis of Olive Oils

Hydrogen and oxygen isotope composition are generally affected by climatic and
environmental conditions [56]. More specifically, factors such as temperature [57], pre-
cipitation [58], air humidity, soil and plant evapotranspiration [59], and water stress [60]
are related with isotopic composition of hydrogen and oxygen. Moreover, carbon isotope
composition is influenced by humidity [61], ground and rain water, temperature [60], sea
distance, longitude, and latitude [57]. The climatic parameters of the examined olive oil cul-
tivation areas in Greece according to the data of EMY (the Hellenic National Meteorological
Service) are presented in Table 1.

Table 1. The climatic parameters of the examined olive oil cultivation areas in Greece for the harvest
year 2019.

Precipitation
(mm)/Month

Temperature
(◦C)

Relative Humidity
(%)

Messinia Preveza Messinia Preveza Messinia Preveza

Average 64 91 17 17.2 69 67

Minimum 6 13.4 9.8 8.7 57.7 59.2

Maximum 141.7 199.8 26.5 26.5 75 74.1

The stable isotope values act as ecophysiological tracers of natural processes with
very good discriminatory power [62]. The traceability that can be achieved by measuring
stable isotope values is based on the assumption that the isotope values of plants reflect
the characteristics of the specific environment [62]. In (Table 2), the mean, standard
deviation, minimum, and maximum values of δ2H, δ18O, and δ13C of three monocultivars,
i.e., Maurolia (Messinia), Lianolia Kerkyras (Preveza), and Koroneiki (Preveza), thus from
two geographic areas, i.e., Messinia and Preveza, are presented.

The stable isotope values of our samples varied between −152.1 and 23.4. Carbon
isotope values varied between −31.4 and −27.8, hydrogen isotope values varied between
−152.1 and −130.4, and oxygen isotope values varied between 16.7 and 23.4. It is important
to note that both cultivars from Preveza (i.e., Lianolia Kerkyras and Koroneiki) had more
similar isotope values compared to the Maurolia cultivar from Messinia, as shown in
Table 2. Relatively lower values of oxygen isotopes are correlated with areas of high
elevation, inland location, and cool climate, while higher values are associated with low
elevation, coastal location, and warmer climate [62]. The very specific climatic data that
differentiates the two areas from which the samples were taken refers to rainfall, with
Preveza having higher values of precipitation as presented in (Table 1). This is related
to the lower values of carbon isotopes in Preveza compared to Messinia. In general,
samples from the southern region (Messinia) had higher values for carbon and hydrogen
isotopes compared to the northern region (Preveza). Moreover, the oxygen isotope ratio
reflects water-related processes in plants. Comparing the climatic data (Table 1) with
the isotopic composition of examined samples (Table 2), cv. Lianolia Kerkyras and cv.
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Koroneiki, both from Preveza, had higher oxygen isotope compositions due to higher
values of precipitation.

Table 2. Stable isotope ratios (13C/12C, 2H/1H, 18O/16O) of Greek olive oils from three monocultivars, i.e., Maurolia
(Messinia), Lianolia Kerkyras (Preveza), and Koroneiki (Preveza), thus from two geographic areas, i.e., Messinia and Preveza.

Cultivar (Area) Stable Isotopes Mean Standard Deviation Minimum Maximum

Maurolia (Messinia)

δ2H/‰ −134.7 2.4 −140.4 −130.4

δ13C/‰ −29.3 0.5 −30.4 −28.4

δ18O/‰ 19.7 1.1 16.7 21.4

Lianolia Kerkyras
(Preveza)

δ2H/‰ −138.4 1.9 −141.7 −135.8

δ13C/‰ −30.1 0.5 −30.8 −29.2

δ18O/‰ 21.8 0.6 20.0 22.4

Koroneiki (Preveza)

δ2H/‰ −137.4 3.3 −152.1 −139.2

δ13C/‰ −29.7 0.7 −31.4 −27.8

δ18O/‰ 21.7 0.8 20.2 23.4

3.2. Chemometric Discrimination of Olive Oils

The training set in Figure 1 indicates that good discrimination of the samples in
the three classes was achieved. Difference of microclimate and soil could be a possible
explanation for the dispersal of samples of the same cultivar [63]. The validation values
R2X(cum) = 0.998, R2Y(cum) = 0.723, and Q2(cum) = 0.708 showed a good fit and prediction
ability of the training set. Moreover, the misclassification table for the OPLS-DA modeling
is presented in Table 3, and it also showed 93.75% correct classification of the 80 samples
in the three classes regarding cultivar. A low Fischer value of p < 0.05 emphasized the
statistical importance of the training set. In more detail, Maurolia cultivar samples (class 1)
were all correctly classified (100% correct classification), but Lianolia Kerkyras (class 2) and
Koroneiki (class 3) cultivar samples reduced their class’ correct classification to 83.33 and
96.15%, respectively. Classes 2 and 3, both originating from Preveza, were well separated.

It is important to note that sample 68, which was labelled as cv. Koroneiki from
Preveza (class 3), fell into cv. Lianolia Kerkyras from Preveza (class 2). The first reason
for this discrepancy is that a labeling mistake might have occurred during sampling. It is
very common in fields for the majority of olive trees to have one main variety with some
other varieties scattered amongst them. Particularly, in our case, cv. Lianolia Kerkyras
and cv. Koroneiki were harvested at the same time in the Preveza area. The outliers found
in this study are justified by the fact that the specific samples were indeed blended (i.e.,
from olive fruits that came from both varieties due to co-cultivation in the same field).
Co-cultivation essentially reinforces the fact that this model is capable of detecting samples
that are not pure cv. Lianolia Kerkyras or pure cv. Koroneiki, thus not purely monovarietal.
There are oils sold in the market with an indication of monovarietal, but since this is not
always the truth, this indication clearly has an economic impact. Monovarietal olive oils
are more expensive, and so this is consumer deception, which points to fraud. The model
presented here can detect this type of adulteration and consequently detect an important
type of fraud. The second reason is due to sample contamination during olive oil extraction
in the olive mill. Contamination may be related to impurities, such as traces of different
cultivar residues.

The test set in (Figure 2) indicates that the 20 randomly selected samples from
the three classes were able to present a very good classification. All 20 samples were
100% correctly classified in the three classes, as also shown by (Table 4). R2X(cum) = 0.894,
R2Y(cum) = 0.706, and Q2(cum) = 0.641 were acceptable and the test set was valid.
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Figure 1. Score scatter plot (t2/t1) from OPLS-DA modeling of the training set where 1 = Maurolia (Messinia), 2 = Lianolia
Kerkyras (Preveza), and 3 = Koroneiki (Preveza). A = 2 + 1 components, R2X(cum) = 0.998, R2Y(cum) = 0.723, and
Q2(cum) = 0.708 and 1.0014 * t[1] means 1.0014 × t[1].

Figure 2. Score scatter plot (t2/t1) from OPLS-DA modeling of the test set where 1 = Maurolia (Messinia), 2 = Lianolia
Kerkyras (Preveza), and 3 = Koroneiki (Preveza). A = 2 + 0 + 0 components, R2X(cum) = 0.894, R2Y(cum) = 0.706, and
Q2(cum) = 0.641 and 1.00246 * t[1] means 1.00246 × t[1] as well as 1.02783 * t[2] means 1.02783 × t[2].
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Table 3. Misclassification table from OPLS-DA modeling of the training set, where 1 = Maurolia
(Messinia), 2 = Lianolia Kerkyras (Preveza), and 3 = Koroneiki (Preveza).

Members Correct 1 2 3

1 30 100% 30 0 0
2 24 83.33% 3 20 1
3 26 96.15% 0 1 25

Total 80 93.75% 33 21 26
Fisher’s prob. 4.3 × 10−11

Table 4. Misclassification table from OPLS-DA modeling of the test set where 1 = Maurolia (Messinia),
2 = Lianolia Kerkyras (Preveza), and 3 = Koroneiki (Preveza).

Members Correct 1 2 3

1 8 100% 8 0 0
2 5 100% 0 5 0
3 7 100% 0 0 7

Total 20 100% 8 5 7
Fisher’s prob. 1 × 10−8

After merging the training and test sets, the overall model (whole database) was
constructed, which is presented in (Figure 3). The validation values R2X(cum) = 0.999,
R2Y(cum) = 0.695, and Q2(cum) = 0.681 showed a good fit and prediction ability of the
model. In addition, (Figure 4) presents the three-dimensional illustration of the score
scatter plot in (Figure 3). Furthermore, misclassification table for the OPLS-DA modeling
is presented in (Table 5), and it shows 91% correct classification of the 100 samples in the
three classes regarding cultivar. The low Fischer value of p < 0.05 emphasized the statistical
importance of the model. In more detail, Maurolia (Messinia) class had only 1 sample out
of 38 wrongly classified and 97.37% correct classification. Lianolia Kerkyras (Preveza) class
gave 75.86% correct classification and it had 7 samples out of 29 whose distance from the
center of class 2 was longer than what was expected; further study needs to take place for
this class. However, a possible explanation of the low percentage of classification in cv.
Lianolia Kerkyras samples (75.86%) could be explained by the fact that those 7 wrongly
classified samples (out of 29) could be derived from an olive grove where both cv. Lianolia
Kerkyras and cv. Koroneiki olive trees were co-cultivated. From Koroneiki (Preveza) class,
only 1 sample out of 33 was wrongly classified, and the class correct classification was
96.97%. In addition, sample 68 was indicated as a misclassified sample in (Figures 3 and
4) as well as in (Figure 1), confirming the robustness of both training and overall sets.
Figure 5 shows a random permutation test with 100 permutations used for the validation
of goodness of fit and the predictability of these results. The R2Y values of all permuted
models were lower than the original model’s R2Y value (0.695); most of the Q2 regression
lines showed negative intercepts (0.0−0.101).

Further chemometric analysis showed that O and H stable isotopes were more im-
portant variables for the constructed model than C isotopes. Stable isotope ratio analysis
variations of 13C/12C proved to be a useful tool for characterizing samples from different
regions with very different climatological and geographic characteristics [26,27,64–69] as
isotope ratios are affected by latitude, which indicates the distance from the sea, and envi-
ronmental conditions during the growing of trees (water stress, atmospheric humidity, and
temperature) as co-factors of variability. Since all the samples of this study were cultivated
in coastal locations, this explains why C stable isotopes were not as important as O and H.
Samples were discriminated mainly by olive cultivar and, partially, by geographical origin.
This is congruent with the recent study of Alves de Carvalho et al. (2020) [70].
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Figure 3. Score scatter plot (t2/t1) from OPLS-DA modeling of the overall model (whole database) where 1 = Maurolia
(Messinia), 2 = Lianolia Kerkyras (Preveza), and 3 = Koroneiki (Preveza). A = 2 + 1 + 0 components, R2X(cum) = 0.999,
R2Y(cum) = 0.695, and Q2(cum) = 0.681 and 1.00199 * t[1] means 1.00199 × t[1].

Figure 4. Three-dimensional illustration of the score scatter plot in Figure 3 where 1 = Maurolia (Messinia), 2 = Lianolia
Kerkyras (Preveza), and 3 = Koroneiki (Preveza).
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Table 5. Misclassification table from OPLS-DA modeling of the overall model (whole database)
where 1 = Maurolia (Messinia), 2 = Lianolia Kerkyras (Preveza), and 3 = Koroneiki (Preveza).

Members Correct 1 2 3

1 38 97.37% 37 1 0
2 29 75.86% 6 22 1
3 33 96.97% 0 1 32

Total 100 91% 43 24 33
Fisher’s prob. 2.3 × 10−8

Figure 5. Permutation test of the overall model (whole database) with 100 permutations where both
R2 (original model) and Q2 (predictive model) located at right and permutated R2 (original model)
and Q2 (predictive model) located left.

The choice for the study of these varieties was made based on specific parameters.
Specifically, the Maurolia variety, along with cv. Koroneiki and cv. Athinolia, are the
main varieties grown in southeastern Peloponnese, one of the most important olive oil-
producing areas. Compared to the other two varieties, the Maurolia variety matures and
is harvested first at the beginning of the olive harvesting period. This is very important,
because increased profit could arise from the very first harvest. Moreover, as monovarietal
Maurolia olive oil is characterized by balanced qualitative characteristics, manufacturers
prefer it in the case that they want produce blends with more bitter or more spicy oils [37].
Although Maurolia olive oil is of high quality, similar to Koroneiki olive oil, [37], this
variety has not been included in any catalogue of denominations related to foodstuff
authenticity, in contrast to the Koroneiki and Lianolia Kerkyras olive oils, which have
been characterized as PDO and PGI varieties, respectively. Instead, Koroneiki cultivar is
the most widespread all over the Greece, and the most well-known Greek olive cultivar.
It is cultivated in many areas of the country, mainly in Peloponnese, Crete, and in the
northwestern part of country [38,71]. Regarding Lianolia Kerkyras, this cultivar is mainly
cultivated in the Ionian Islands and in the geographical region of Epirus. As the Koroneiki
variety has the greatest reputation both in Greece and abroad, and thus achieves the best
prices, it could possibly be a blend of the lesser known and less widespread varieties of
Maurolia and Lianolia Kerkyras.

This is the first qualitative attempt to study three important Greek cultivars and extract
a robust chemometric model capable of discriminating olive oils based on geographic origin.
The qualitative results of this study answer the important question of which geographic
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area the samples of the three cultivars come from. The method proposed here can be
enriched in the future by creating synthetic samples from different geographic and cultivar
origins. The big challenge involves discriminating adulterant mixtures of olive oils from
the market. By adding the synthetic samples in the present chemometric model, a possible
fourth class will be generated. Unknown adulterated samples may be detected in the
future, as the adulterant samples will be classified in the fourth class of synthetic samples.

Moreover, a quantitative method is considered necessary for the next attempt, which
will be answering the significant question of how much adulteration the unknown sam-
ples contain. Those synthetic samples could be mixtures made of different proportions
(adulteration levels, %v/v) of olive oils, as Tsopelas et al. proposed [72]. In the future, the
more similar the adulteration level of every unknown adulterated and synthetic sample,
the closer the distance between them on a score scatter plot. Subsequently, the adulteration
level of the spiked samples will show the adulteration level of every unknown sample in
question by observing their positions after classification. Future predictions are important,
and this study is the beginning of a bigger model which will be developed in order to
classify unknown olive oils from the market.

4. Conclusions

By combining IRMS data and OPLS-DA through a multivariate statistical approach, a
statistical model able to discriminate olive oils based on geographical origin was obtained
with a successful discrimination ability at around 91%. Both δ18O and δ2H were the most
important isotope markers for discrimination of olive oils. The investigation carried out in
the present work can be used as a reliable and powerful tool for the characterization and
authentication of Greek olive oils. Future determinations of unknown samples can easily
occur based on the model depicted here.
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