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Convolutional Neural Network Algorithms for Semantic
Segmentation of Volcanic Ash Plumes Using Visible
Camera Imagery
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and José Antonio Palenzuela Baena 2
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2 Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18,
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* Correspondence: francisco.guerrero@ingv.it

Abstract: In the last decade, video surveillance cameras have experienced a great technological
advance, making capturing and processing of digital images and videos more reliable in many fields
of application. Hence, video-camera-based systems appear as one of the techniques most widely used
in the world for monitoring volcanoes, providing a low cost and handy tool in emergency phases,
although the processing of large data volumes from continuous acquisition still represents a challenge.
To make these systems more effective in cases of emergency, each pixel of the acquired images must be
assigned to class labels to categorise them and to locate and segment the observable eruptive activity.
This paper is focused on the detection and segmentation of volcanic ash plumes using convolutional
neural networks. Two well-established architectures, the segNet and the U-Net, have been used for
the processing of in situ images to validate their usability in the field of volcanology. The dataset
fed into the two CNN models was acquired from in situ visible video cameras from a ground-based
network (Etna_NETVIS) located on Mount Etna (Italy) during the eruptive episode of 24th December
2018, when 560 images were captured from three different stations: CATANIA-CUAD, BRONTE, and
Mt. CAGLIATO. In the preprocessing phase, data labelling for computer vision was used, adding
one meaningful and informative label to provide eruptive context and the appropriate input for the
training of the machine-learning neural network. Methods presented in this work offer a generalised
toolset for volcano monitoring to detect, segment, and track ash plume emissions. The automatic
detection of plumes helps to significantly reduce the storage of useless data, starting to register and
save eruptive events at the time of unrest when a volcano leaves the rest status, and the semantic
segmentation allows volcanic plumes to be tracked automatically and allows geometric parameters
to be calculated.

Keywords: ANN; automatic classification; risk mitigation; machine learning

1. Introduction

Volcano monitoring is composed of a set of techniques that enable the measurement of
different parameters (geochemical, seismic, thermal, deformational, etc.) [1]. Keeping these
parameters under surveillance is essential for risk mitigation and guarantees security to the
population. These parameters allow us to know the state of internal and external activity
of a volcano and to know if there are changes in the behaviour of the volcano that can lead
to an eruption or to understand if there are changes during an eruptive event. Although
seismic and geodetic instruments permit quasi-real-time monitoring, video cameras are
also currently a standard and necessary tool for effective volcano observation [2,3].

Explosive volcanic eruptions eject a big quantity of pyroclastic products into the
atmosphere. In these events, continuous surveillance is mandatory to avoid significant
damage in rural and metropolitan areas [4] that may disrupt the surface and air traffic [5],
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and even may cause negative impacts on human health [6]. In 1985, the eruption of “Nevado
del Ruiz” volcano in Colombia ejected more than 35 tons of pyroclastic flow that reached
30 km in height. This eruption melted the ice and created four lahars that descended
through the slopes of the volcano and destroyed a whole town called “Armero” located
50 km from the volcano, with a loss of 24.800 lives [7]. To counteract further disasters, it is
fundamental to create new methodologies and instruments based on innovation for risk
mitigation. Video cameras have proven suitable for tracking those pyroclastic products in
many volcanoes in the world, whether with visible (0.4–0.7 μm) or near-infrared (~1 μm)
wavelength. Both sensors are suitable to collect and analyse information at a long distance.

Video cameras installed on volcanoes often experience limited performance in relation
to crisis episodes. They are programmed to capture images in a specific time range (i.e., one
capture per minute, one capture every two minutes, etc.); those settings lead to the storage
of unnecessary data that need to be deleted manually by an operator with time-consuming
tasks. On the other hand, video cameras do not have an internal software to deeply analyse
images in real time. This work is carried out after downloading by applying different
computer vision techniques to calibrate the sensor [8] and extract relevant information
by edge-detection algorithms and GIS-based methods, such as contours detections and
statistics classification, such as PCA [9]. All these kinds of postprocessing procedures
involve semi-automatics and time-consuming tasks.

These limitations can be faced through machine-learning techniques for computing
vision. In the last decade, technological innovation has increased dramatically in the world
of artificial intelligence (AI) and machine learning (ML) in parallel to video cameras [10].
The convolutional neural networks (CNN) became popular because they outperformed any
other network architecture on computer vision [11]. Specifically, the architecture U-Net is
nowadays being routinely and successfully used in image processing, reaching an accuracy
similar to or even higher than other existing ANN, for example, of the FCN type [12–14],
providing multiple applications where pattern recognition and feature extraction play
an essential role. CNNs have been applied to find solutions to mitigate risk in different
environmental fields, such as for the detection and segmentation of smoke and forest
fires [15,16], flood detection [17], and to find solutions regarding global warming, for
example, through monitoring of the ice of the poles [18,19]. CNNs have been applied in
several studies in the field of volcanology for earthquake detection and classification [20,21],
for the classification of volcanic ash particles [22], and to validate their capability for real-
time monitoring of the persistent explosive activity of Stromboli volcano [23], for video
data characterisation [2], detection of volcanic unrest [24], and volcanic eruption detection
using satellite images [25–27]. Thus, the importance of applying architectures based on
CNN could be an alternative to improve the results obtained in the different scientific
works performed till now.

This research aims to create algorithms that help solve computer vision problems based
on deep learning for the detection and segmentation of the volcanic plume, providing an
effective tool for emergency management to risk management practitioners. The concept of
this tool focuses on a neural network which is fed with data from the 24th to 27th December
2018 eruptive event. The eruption that began at noon was preceded by 130 earthquake
tremors, the two strongest of which measured 4.0 and 3.9 on the Richter scale. From this
eruptive event, 560 images were collected and then preprocessed and split into 80% training
and 20% validation. The training dataset was used in the training of two very consolidated
models: the SegNet Deep Convolutional Encoder-Decoder and U-net architectures. In this
groundwork phase, more consolidated models were sought to have a large comparative
pool and to substantiate their use in the volcanological field. As a result, a trained model
is generated to automatically detect the beginning of an eruptive activity and tracking
the entire eruptive episode. Automatic detection of the volcanic plume supports volcanic
monitoring to store useful information enabling real-time tracking of the plume and the
extraction of concerning geometric parameters. By developing a comprehensive and
reliable approach, it is possible to extend it to many other explosive volcanoes. The current
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results encourage a broader research objective that will be oriented towards the creation
of more advanced neural networks [2], deepening the real-time monitoring for observing
precursors, such as change in degassing state.

2. Geological Settings

Mt. Etna is a basaltic volcano located in Sicily in the middle of Gela-Catania foredeep,
at the front of the Hyblean Foreland [28] (Figure 1). This volcano is one of the most
active in the world with its nearly continuous eruptions and lava flow emissions and,
with its dimensions, it represents a major potential risk to the community inhabiting
its surroundings.

 

Figure 1. Location of Etna volcano.

The geological map, updated in 2011 [29] at the scale of 1:50,000, is a dataset of the
Etna eruptions that occurred throughout its history (Figure 2, from [29], with modifications).
This information is fundamental for land management and emergency planning.

 

Figure 2. Geological map of Mt. Etna.
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3. Etna_NETVIS Network

Mt. Etna has become one of the better monitored volcanoes in the world by using sev-
eral instrumental networks. One of them is the permanent terrestrial Network of Thermal
and Visible Sensors of Mount Etna, which comprises thermal and visible cameras located at
different sites on the southern and eastern flanks of Etna. The network, initially composed
of CANON VC-C4R visible (V) and FLIR A40 Thermal (T) cameras installed in Etna Cuad
(ECV), Etna Milo (EMV), Etna Montagnola (EMOV and EMOT), and Etna Nicolosi (ENV
and ENT), has been recently upgraded (since 2011) by adding high-resolution (H) sensors
(VIVOTEK IP8172 and FLIR A320) at the Etna Mt. Cagliato (EMCT and EMCH), Etna
Montagnola (EMOH), and Etna Bronte (EBVH) sites [3]. Visible spectrum video cameras
used in this work and examples of field of view (FOV), Bronte, Catania, and Mt. Cagliato
are shown in Figure 3. These surveillance cameras do not allow 3D model extraction due to
poor overlap, unfavourable baseline, and low image resolution. Despite this, simulation of
the camera network geometry and sensor configuration have been carried out in a previous
project (MEDSUV project [3]) and will be adopted as a reference for future implementation
of the Etna Network.

Figure 3. Etna_Netvis surveillance network.

The technical specifications of Etna_NETVIS network cameras used in this work, such
as pixel resolution, linear distance to the vent, and horizontal and vertical field of view
(HFOV and VFOV), are described in Table 1.

4
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Table 1. Characteristics of the ETNA NETVIS cameras.

ETNA NETVIS

Station Name
Resolution

Pixel
Distance to

the Vent
Image Captured

per Minute
Model Angular FOV (deg)

BRONTE 760 × 1040 13.78 km 1 VIVOTEK 33_~93_ (horizontal), 24_~68_ (vertical)

CATANIA 2560 × 1920 27 km 1

MONTE CAGLIATO 2560 × 1920 8 km 2 VIVOTEK 33_~93_ (horizontal), 24_~68_ (vertical)

4. Materials and Methods

4.1. Materials: Data Preparation

The paradigm used for this work was a supervised learning based on a set of samples
consisting of a pair of data; input variables (x) and output labelled variables (y). Data
labelling is the crucial part of the data preprocessing in the workflow to build a neural
network model, which requires large volumes of high-quality training data. The processes
for creating label data are expensive, complicated, and time-consuming. Many open-source
libraries, such as MNIST by Keras, offer a full dataset ready to use, but it covers neither
all types of objects nor labelled data for volcanic ash plume shapes. Thus, the 560 images
collected were manually labelled using an open-source image editor “GIMP” to delineate
the boundaries of volcanic plums and generate the ground truth mask (Figure 4). The
samples were split into two sets: training and validation in a proportion of 80% and 20%,
respectively. As this research deals with a binary classification problem, the neural network
is contextualised within volcanic plume shapes by assigning pixel level. Thus, pixels that
are inside the ash column contour are assigned values of 255 or, otherwise, 0. Inputs with
large integer values could collapse the bias value or slow down the learning process, so, to
avoid this effect, pixels were normalised between 0 and 1 by applying Equation (1):

x′ = (x− xmin)

(xmax − xmin)
(1)

where x is the pixel to normalize, xmin is the minimum value of pixels of the image, and
xmax is the maximum value pixel of the image. To keep size consistency across the dataset
while reducing memory consumption, images were resized to (768px × 768px) by applying
bilinear interpolation.

Finally, to improve the robustness of the inputs, the training data were augmented
through a technique called “data augmentation”. It was applied with the Keras library
“ImageDataGenerator” class that artificially expands the size of the dataset, creating some
perturbating in our images as horizontal flips, zoom, random noise, and rotations (Figure 5).
Data augmentation avoids overfitting in the training stage.

4.2. Methods: ANN and UNET

The perceptron, core concept of deep learning and convolutional neural network
introduced by Rosenblatt [30], in brief, consists of a single-layer neural network whose base
algorithms are the threshold function and the gradient descent [31]. The latter method is the
most popular algorithm that performs parametrisation and optimisation of the parameters
in the artificial neural network (ANN), by means of labelled samples and process iterations
for the prediction of accurate outputs [31].

The optimisation minimises the loss function (or cost function), represented by the
cross-entropy as a measure of the difference between the actual and predicted classes.
Finally, the learning rate is an important parameter, used in the following sections to
control the time of the algorithm and the network parameter training at every iteration,
which is crucial to reach the expected results of the refined model. These parameters are
here briefly introduced, leaving the theoretical digression to dedicated sources [30,31].

5
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Figure 4. Examples of variable pairs (in (A) the real images are shown and (B) represents the ground
truth mask).

 
Figure 5. Example of data augmentation with vertical and horizontal flips ((A) is a vertical right
flipped image of 60 inclination degrees, (B) is a horizontal and vertical flipped and (C) is a horizontal
and vertical flipped with distortion).

6
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Convolutional Neural Network Architectures

Segmentation is a fundamental task for image analysis. Semantic segmentation de-
scribes the process of associating each pixel in an image with a class label. Segmenting
images of volcanic plumes is a complicated task, different from segmenting other objects,
such as people, cars, roads, buildings, and other entities that are well differentiated from
their background. Those types of objects are considered homogeneous and regular in form
and radiometry, but a volcanic plume can have very different physical properties [32], such
as shapes, colour, and density. In deep learning, CNN appears as a class of ANN based on
the shared-weight architecture of the convolution kernels [11] and proved very efficient
for pattern recognition, feature extraction for applications in computer vision analysis and
image recognition [33], classification [34], and segmentation [35]. This is useful to solve
problems as faced in this paper. Thus, this paper presents developed models based on
specific CNN architectures.

Different algorithms were implemented to develop a tool able to segment a vol-
canic ash plume from in situ images, creating two models based on architectures of Seg-
Net [36] and U-Net [37]. Those trained models were carried out using Tensorflow GPU
version 2.12 [38], Python 3.6 language, and Keras 2.9 [39], all of these based on open-source
libraries and built on Tensorflow framework. Keras appears here as the core language for
ANN programming, as it contains numerous implementations of commonly used neural
network building blocks, such as layers, activation functions, optimizers, metrics, and tools,
to preprocess images.

The U-net (Figure 6) is a CNN architecture for the segmentation of images, developed
by Olaf Ronneberger et al. [37] and used for medical scope, but now applied in several
other fields [40–43]. It is built upon the symmetric fully convolutional network and is
made up of two parts. The down-sampling network (encoder) reduces dimensionality of
the features while losing spatial information; instead, the up-sampling network (decoder)
enables the up-sampling of an input feature map to a desired output feature map using
some learnable parameters based on transposed convolutions. Thus, it is an end-to-end
fully convolutional network (FCN) that makes it possible to accept images of any size.

 
Figure 6. U-net architecture.

On the other hand, the SegNet architecture [36] FCN is based on decoupled encoder–
decoder, where the encoder network is based on convolutional layers, while the decoder is
based on up-samples. The architecture of this model is shown in Figure 7. It is a symmetric
network where each layer of encoder has a corresponding layer in the decoder.

7
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Figure 7. SegNet architecture.

Loss functions are used to optimize the model during training stage, aiming at min-
imising the loss function (error). The lower the value of loss function, the better the model.
Cross-entropy loss is the most important loss function to face classification problems. The
problem tackled in this work is a single classification problem and the loss function applied
was a binary cross-entropy (Equation (2)):

Loss = − 1
N

N

∑
i=1

yi ∗ logy′i + (1− yi) ∗ log
(
1− y′i

)
(2)

where y′i is the i-th scalar value in the model output, yi is the corresponding target value,
and N is the number of scalar values in the model output.

A deep learning model is highly dependent on hyperparameters, and hyperparameter
optimisation is essential to reach good results. In this work, a CNN based on U-net
architecture was built, capable of segmenting volcanic plumes from visible cameras. The
values assigned to model parameters are shown in Table 2.

Table 2. Hyperparameters required for the training phase for both CNN architectures.

Hyperparameters Required for Training

Learning Rate 0.0001

Batch_Size 4

Compile networks

Optimiser adam

Loss binary_crossentropy

Metrics Accuracy; iou_score

Fit Generator

Step_per_epoch 112

Validation_steps 28

epochs 100

The encoder and encoder networks contain five layers with the configuration shown
in Table 3.
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Table 3. Convolutional layers description for U-Net architecture.

Input Layer A 2D Image with Shape (768, 768, 3)

Encoder Network

Convolutional Layer Filters Kernel Size Pooling Layer Activations Kernel Initialiser Stride Dropout

Conv1 16 3 × 3 yes ReLU he_normal 1 × 1 No

Conv2 32 3 × 3 yes ReLU he_normal 1 × 1 No

Conv3 64 3 × 3 yes ReLU he_normal 1 × 1 No

Conv4 128 3 × 3 yes ReLU he_normal 1 × 1 No

Conv5 256 3 × 3 yes ReLU he_normal 1 × 1 No

Bottle neck 512 3 × 3 No ReLU he_normal 0.5

Decoder Network

Convolutional Layer Filters Kernel Size Concatenate Layer Up-Sampling Activations Kernel Initializer Stride

Conv6 256 3 × 3 Conv5-Conv6 yes ReLU he_normal 1 × 1

Conv7 128 3 × 3 Conv4-Conv7 yes ReLU he_normal 1 × 1

Conv8 64 3 × 3 Conv3-Conv8 yes ReLU he_normal 1 × 1

Conv9 32 3 × 3 Conv2-Conv9 yes ReLU he_normal 1 × 1

Conv10 16 3 × 3 Conv1-Conv10 yes ReLU he_normal 1 × 1

Output layer 1 1 × 1 No No Sigmoid he_normal

Total trainable params 7.775.877

The encoder and encoder networks contain five layers with the configuration shown
in Table 4.

Table 4. Convolutional layers description for SegNet architecture.

Input Layer A 2D Image with Shape (768, 768, 3)

Encoder Network

Convolutional Layer Filters Kernel Size Pooling Layer Activations Stride Dropout

Conv1 16 3 × 3 yes ReLU 1 × 1 No

Conv2 32 3 × 3 yes ReLU 1 × 1 No

Conv3 64 3 × 3 yes ReLU 1 × 1 No

Conv4 128 3 × 3 yes ReLU 1 × 1 0.5

Conv5 256 3 × 3 yes ReLU 1 × 1 0.5

Bottle neck 512 3 × 3 No ReLU 0.5

Decoder Network

Convolutional Layer Filters Kernel Size Up-Sampling Activations Stride Dropout

Conv6 256 3 × 3 yes ReLU 1 × 1 No

Conv7 128 3 × 3 yes ReLU 1 × 1 No

Conv8 64 3 × 3 yes ReLU 1 × 1 No

Conv9 32 3 × 3 yes ReLU 1 × 1 No

Conv10 16 3 × 3 yes ReLU 1 × 1 No

Output layer 1 1 × 1 No Sigmoid No

Total trainable params 11.005.841

In order to show the models built and the difference in the architecture used in this
work, Keras provides a function to create a plot of the neural network graph that can make
more complex models easier to understand, as is shown in Figure 8.
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Figure 8. Left sketch of the U-net model with Deepest 4, right sketch of the SegNet model (the images
are available with higher resolution at the links in [44,45]).

4.3. Evaluation of the Proposed Model

Various evaluation metrics are used to calculate the performance of the model. The
evaluation metrics used in this research are explained below:

Accuracy score: it is the ratio of number of correct pixel predictions to the total number
of input samples (Equation (3)).

Accuracy = TP/TNP (3)

where TP is the number of true positives and NPT is the total number of predictions.
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Jaccard index is the Intersection over Union (Equation (4)), where the perfect intersec-
tion has a minimum value equal to zero.

L(A, B) = 1− (A ∩ B/A ∪ B) (4)

where: (A∩ B/A∪ B) is the predicted masks overlap coefficient with the real masks
between the union of that masks.

Validation curves: the trend of a learning curve can be used to evaluate the behaviour
of a model and, in turn, it suggests the type of configuration changes that may be made to
improve learning performance [46]. On these curve plots, both the training error (blue line)
and the validation error (orange line) of the model are shown. By visually analysing both
of these errors, it is possible to diagnose if the model is suffering from high bias or high
variance. There are three common trends in learning curves: underfitting (high bias, low
variance), overfitting (low bias, high variance) and best fitting (Figure 9).

Figure 9. Underfitting, overfitting, and best fit example.

Figure 10 shows a trend graph of the cross-entropy loss of both architectures (Y axis)
over number of epochs (X axis) for the training (blue) and validation (orange) datasets. For
the U-Net architecture, the plot shows that the training process of our model converges
well and that the plot of training loss decreases to a point of stability. Moreover, the plot of
validation loss decreases to a point of stability and has a small gap with the training loss.
On the other hand, for the SegNet architecture, the plot shows that the training process of
our model converged well until epoch 30, then showed an increase in variance, taking to a
possible overfitting. This means that the model pays a lot of attention to training data and
does not generalise on the data that it has not seen before. As a result, the SegNet model
performs very well on training data but has more error rates than U-net model on test data.

 
Figure 10. Trend curve of loss function.
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The loss function for U-Net architecture for the training dataset is 0.026 and validation
0.316 and, for SegNet, for the training dataset is 0.018, while for the validation dataset
is 0.142.

Figure 11 shows a trend graph of the accuracy metric (Y axis) over the number of
epochs (X axis) for the training (blue) and validation (orange) datasets. In the Epoch 100, the
accuracy value reached for the U-Net architecture training dataset is 98.35% and validation
dataset is 98.28; while, for SegNet, the accuracy value for the training dataset is 98.15% and
validation dataset is 97.56.

 

Figure 11. Trend curve of accuracy metric of training and validation dataset.

IoU (Intersection over Union) or Jaccard index is the most commonly used metric to
evaluate models of semantic segmentation. It is a straightforward metric but extremely
effective (metric ranges from 0 to 1, where 1 is the perfect IoU). Thus, in order to quantify
the results, for both architectures, the IoUs were calculated using the validation dataset
with 112 images with a step of 28 per epoch that represent 20% of the whole dataset. An
average of IoU of 0.9013 was obtained for U-Net architecture and, for SegNet, an average
value of IoU of 0.88 (Figure 12).

Figure 12. Jaccard index percentage for validation dataset of Unet (orange colour) and SegNet (blue
colour) architectures.
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In Figure 13, the predicted mask results of three samples of the validation dataset are
shown, where (a) is the image, (b) is the ground truth mask (mask made by hand), (c) is the
predicted mask by SegNet model, and (d) is the predicted mask by U-Net model.

 

Figure 13. Original image (A), ground truth mask (B), predicted mask by SegNet (C), predicted mask
by U-net (D).

Once the model was completely trained and after verifying training and validation
metrics, in order to evaluate how the models performed, a test dataset (data not previously
used in training and validation) was used. The samples of the data used provide an
unbiased evaluation as the test dataset is the crucial standard to evaluate the model, it
is well curated, and it contains carefully sampled data that cover several classes that the
trained model will deal with when used in the real world, for example, images non acquired
from Etna_NETVIS Network, eruptions in cloudy time, and images from other volcanoes
different from Mt. Etna.

Figure 14 shows examples of photographs of different eruptive events, of which two
were taken by local citizens during the Etna eruption; the one following belongs to photos
of the Monte Cagliato Etna station, the fourth shows the summit crater on a cloudy day,
and a last one photo was taken by local people during an eruptive event of the Galeras
volcano in Colombia, where the column reached 6 km in height.
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Figure 14. Semantic segmentation of results from test dataset: original image (A), predicted mask by
SegNet (B), predicted mask by U-net (C).

5. Discussion and Concluding Remarks

In this paper, we proposed a new innovative approach based on AI for volcanic
monitoring focused on the use of visible high-resolution images coming from a surveillance
network of Mount Etna (Etna NETVIS). Considering that optical RGB channels and the
wavelength of in situ images carry enough information, the primary aim was using all
these data to solve problems related to the characterisation and monitoring of ash plumes
during an explosive eruption. For this, a deep convolutional neural network was built to
extract ash plume shapes automatically.
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Before reaching the final results, we had to face several challenges, as the amount of
data was limited; in fact, the accuracy of a neural network largely depends on the quality,
quantity, and contextual meaning of training data. Even though our amount of data was
limited (560 images), not enough for a model of machine learning, we hypothesised that
there could have been a possible overfitting; therefore, to avoid this problem, we artificially
increased the amount of data by generating new ones from the existing dataset through
“data-augmentation” technique. The use of supervised learning paradigm applied in this
work required that the data collected were labelled, and these preprocessing and data
labelling tasks were other challenges faced in this work, which took 60% of the whole time
of the full project.

In order to assess the performance of our trained deep CNN models, firstly, we
measured our model error through metrics combination in a learning curve (training loss
and validation loss over time). The training loss indicates how well the model is fitting the
training data, while the validation loss indicates how well the model fits new data. Loss
measured in the U-Net model error was of 0.026 for the training dataset and 0.0316 for the
validation dataset. Secondly, we measured in the learning curve with an accuracy of 0.9835
for the training dataset and 98.28 for the validation dataset, evidencing that our model
performance increased over time, which means that the model improved with experience.
To reach the optimal fitting during our training, a regularisation named “early stopping”
was applied to block our training when detecting an increase in the loss function value,
thus avoiding the overfitting. To determine the robustness of our preliminary results, we
computed the Jaccard similarity coefficient [47] to measure the similarity and diversity of
sample sets. The average (IoU) value obtained from 20% of our validation dataset was
equal to 91.3% of similarity. On the other hand, loss measured in SegNet model error was
of 0.018 for the training dataset and 0.142 for the validation dataset. In the learning curve,
an accuracy of 0.9815 was reached for the training dataset and 97.56 for the validation
dataset. These results are interpreted as an increasing model performance over time but
giving greater importance to the training data, which means an increase in the value of
the variance, leading to possible errors in the segmentation of new data. It should be
noted that the SegNet model obtained good results but always lower than those of the
U-Net architecture.

The developed method is currently tested for analysis of visible images. As a future
work, this method can also be integrated with images acquired from satellite sensors when
the terrestrial cameras are out of coverage range. Extensive testing will be performed by
exploiting the data of the open-source and on-demand platforms to validate their suitability
for different types of explosive volcanoes. Moreover, this is a semi-automatic tool because
the data need to be downloaded from a server storage and loaded into the deep NN.
Concerning this, the creation of an internal software into the cameras is planned, which can
collect and automatically analyse them by deep CNN; this will improve the performance by
allowing real-time monitoring and having at disposal a powerful tool in times of emergency.

Predictably, deep learning will become one of the most transformative technologies
for volcano monitoring applications. We found that deep CNN architecture was useful for
the identification and classification of ash plumes by using visible images. Further studies
should concentrate on the effectiveness of deep CNN architectures with large high-quality
datasets obtained from remote sensing monitoring networks [25,48].

Concerning the aim of the research in the current phase, the method has been, so far,
developed for plume monitoring purposes, such as detection and measurement of ash
clouds emitted by large explosive eruptions, focusing on the capability of measuring the
height of the plume, as the most relevant parameter to understand the magnitude of the
explosion, and not yet for observing eruption precursors. By extending the procedure
to process large time series of images, additional parameters can be extracted, such as
elevation increase rate and temporal evolution, which can significantly contribute to set
up a low-cost monitoring tool to help mitigate volcanic hazards. Furthermore, additional
precious information usable as precursor indices can be derived from the monitoring of the
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degassing state of volcanoes. As is already noticeable in Figure 14, the algorithm allowed
the distinction of a lenticular meteorological cloud from volcanic water vapor emission,
excluding it from the eruption ash plume. These water vapour clouds can give important
indications about changes in a volcano’s degassing, considered as eruption precursors, so
their discerning may be profitable for the mitigation of risks in volcanic context. However,
the data used in this research are still insufficient and inadequate to detect other parameters
as indicators of dew point or humidity. The important difference is that a large eruption
plume is recognizable from the meteorological clouds in the background. Conversely, the
degassing plume is subject to the physical condition of the atmosphere.

The results shown in this work demonstrated that this innovative approach based
on deep learning is capable of detecting and segmenting volcanic ash plume and can be
a powerful tool for volcano monitoring; also, the proposed method can be widely used
by volcano observatories, since the trained model can be installed on standard computers
where they can analyse images acquired by either own surveillance cams or from other
sources through internet, as long as visibility allows, enhancing the observatory capacity in
volcano monitoring.
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Abstract: Vehicle detection is an important but challenging problem in Earth observation due to the
intricately small sizes and varied appearances of the objects of interest. In this paper, we use these
issues to our advantage by considering them results of latent image augmentation. In particular,
we propose using supervised contrastive loss in combination with a mutual guidance matching
process to helps learn stronger object representations and tackles the misalignment of localization
and classification in object detection. Extensive experiments are performed to understand the
combination of the two strategies and show the benefits for vehicle detection on aerial and satellite
images, achieving performance on par with state-of-the-art methods designed for small and very
small object detection. As the proposed method is domain-agnostic, it might also be used for visual
representation learning in generic computer vision problems.
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1. Introduction

Object detection consists of two tasks: localization and classification. As they are
different in nature [1] yet contribute toward the overall detection performance, deep
architectures usually have two distinct prediction heads, which share the same features
extracted from an input. The separated branches, despite the shared parameters, have
shown inefficiency as classification scores might not well reflect proper localization [2,3],
while the intersection-over-union (IOU) scores of anchor boxes might miss the semantic
information [4].

The misalignment of localization and classification may be aggravated depending
on the domain of application. Vehicle detection is a challenging but important problem
in Earth observation. It is instrumental for traffic surveillance and management [5], road
safety [6], traffic modeling [7], and urban planning [8] due to large coverage from aerial
viewpoints [9]. The intrinsic challenges include, but are not limited to, the small and
diverse sizes of vehicles, inter-class similarity, illumination variation, and background
complexity [10,11].

A simple method to combine the localization and classification score to mutually
guide the training process, recently introduced by Zhang et al. [4], has shown effectiveness
in alleviating the task misalignment problem on generic computer vision datasets MS-
COCO [12] and PASCAL-VOC [13]. Its ability to cope with the intricacies of remote sensing
vehicle detection yet remains unexplored.

In this paper, we propose a framework inspired by the mutual guidance idea [4] for
vehicle detection from remote sensing images (Figure 1). The idea is that the intersection-
over-union (IOU) of an anchor box should contribute toward the predicted category and
vice versa; the learned semantic information could help in providing more fitting bound-
ing boxes.
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Figure 1. Vehicle detection from the VEDAI’s aerial images performed by the proposed contrastive
mutual guidance loss. Class labels include car (1), truck (2), pickup (3), tractor (4), camping (5), boat (6),
van (7), other (8).

To improve the semantic understanding and overcome the varied object sizes and ap-
pearances, we also propose a loss module based on the contrastive learning notion [14,15]:
for each detected object, the other objects of the same class are pulled closer in the embed-
ding space, while those of different classes are pushed away. The underlying intuition
is that the features of the same-class objects should be close together in the latent space,
and by explicitly imposing this, the network is forced to learn representations that better
underline intra-class characteristics.

Contrastive learning is a discriminative approach to visual representation learning,
which has proven effective for pre-training networks before transferring to an actual down-
stream task [16–20]. The well-known SimCLR framework [16] proposes applying image
augmentation to create an image’s positive counterpart, eliminating the need for manual
annotations for pretext tasks, hence self-supervision. Our hypothesis is that different objects
of the same class from aerial points of view could be considered as a result of composi-
tions of multiple augmentation operations, such as cropping, scaling, re-coloring, adding
noises, etc., which, as shown by SimCLR, should be beneficial for representation learning
(Figure 2). Thus, by pulling together same-class objects and pushing away the others, the
network could learn to overcome the environmental diversity and better recognize the
objects of interest.

As we rely on ground truth labels to form positive and negative contrastive pairs,
the proposed contrastive loss could be seen as being inspired by supervised contrastive
learning [17], but applied here to object detection. The differences are that the contrastive
pairs are drawn from object-instance level, not image level, and that contrastive loss is
employed as an auxiliary loss in combination with the mutually guided detection loss.
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Figure 2. Different objects of the same class, “car”, from an aerial point of view could be considered as
passing through various compositions of image augmentation, such as cropping, rotation, re-coloring,
noise adding, etc.

The contributions of the paper are fourfold, i.e.,

• applying the mutual guidance idea to a remote sensing context;
• formulating supervised contrastive learning as an auxiliary loss in a detection problem,

which, to the best of our knowledge, is the first approach using supervised contrastive
learning for object detection, especially in the context of Earth observation;

• improving existing detection networks for vehicle detection by combining mutual
guidance and contrastive learning, termed contrastive mutual guidance or CMG;

• providing new state-of-the-art results on benchmarked datasets including VEDAI
(aerial images) [21] and xView (satellite images) [22].

2. Related Work

2.1. Vehicle Detection in Remote Sensing

Deep-learning-based vehicle detection from aerial and satellite images has been an
active research topic in remote sensing for Earth observation within the last decade due to
intrinsically challenging natures such as intricately small vehicle sizes, various types and
orientations, heterogeneous backgrounds, etc. General approaches include adapting state-
of-the-art detectors from the computer vision community to apply to Earth observation
context [11,23,24]. Similar to the general object detection task [25], most of the proposed
methods could be divided into one-stage and two-stage approaches and are generally based
on anchor box prediction. Famous anchor-based detector families such as Faster-RCNN,
SSD, and YOLO have been widely exploited in remote sensing object detection, including
vehicles. In [26,27], the authors proposed to modify and improve the Faster-RCNN detector
for vehicle detection from aerial remote sensing images. Multi-scaled feature fusion and
data augmentation techniques such as oversampling or homography transformation have
proven to help two-stage detectors to provide better object proposals.

In [28,29], YOLOv3 and YOLOv4 were modified and adapted to tackle small vehicle
detection from both Unmanned Aerial Vehicle (UAV) and satellite images with the objective
of providing a real-time operational context. In the proposed YOLO-fine [28] and YOLO-
RTUAV [29] models, the authors attempted to remove unnecessary network layers from
the backbones of YOLOv3 and YOLOv4-tiny, respectively, while adding some others to
focus on small object searching. In [23], the Tiramisu segmentation model as well as the
YOLOv3 detector were experimented and compared for their capacity to detect very small
vehicles from 50-cm Pleiades satellite images. The authors finally proposed a late fusion
technique to obtain the combined benefits from both models. In [30], the authors focused on
the detection of dense construction vehicles from UAV images using an orientation-aware
feature fusion based on the one-stage SSD models.

As the use of anchor boxes introduces many hyper-parameters and design choices,
such as the number of boxes, sizes, and aspect ratios [9], some recent works have also inves-
tigated anchor-free detection frameworks with feature enhancement or multi-scaled dense
path feature aggregation to better characterize vehicle features in latent spaces [9,31,32].
We refer interested readers to these studies for more details about anchor-free methods.
As anchor-free networks usually require various extra constraints on the loss functions,
well-established anchor-based approaches remain popular in the computer vision com-
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munity for their stability. Therefore, within the scope of this paper, we base our work on
anchor-based approaches.

2.2. Misalignment in Object Detection

Object detection involves two tasks: classification and localization. Apparently, precise
detection results require high-quality joint predictions of both tasks. Most object detection
models regard these two tasks as independent ones and ignore their potential interactions,
leading to the misalignment between classification and localization tasks. Indeed, detection
results with correct classification but imprecise localization or with precise localization but
wrong classification will both reduce the overall precision, and should be prevented.

The authors of IoU-Net [2] were the first to study this task-wise misalignment problem.
Their solution is to use an additional prediction head to estimate the localization confidence
(i.e., the intersection-over-union (IoU) between the regressed box and the true box), and
then aggregate this localization confidence into the final classification score. In this way,
the classification prediction contains information from the localization prediction, and the
misalignment is greatly alleviated.

Along this direction, the authors of Double-Head RCNN [1] propose to apply different
network architectures for classification and localization networks. Specifically, they find
the fully connected layers more suitable for the classification task, and the convolutional
layers more suitable for the localization task.

TSD [3] further proposes to use disentangled proposals for classification and localiza-
tion predictions. To achieve the best performance of both tasks, two dedicated region of
interest (RoI) proposals are estimated for classification and localization tasks, respectively,
and the final detection result comes from the combination of both proposals.

The recently proposed MutualGuidance [4] addresses the misalignment problem from
the perspective of label assignment. It introduces an adaptive matching strategy between
anchor boxes and true objects, where the labels for one task are assigned according to the
prediction quality on the other task, and vice versa. Compared to the aforementioned
methods, the main advantage of MutualGuidance is that its improvement only involves
the loss computation, while the architecture of the detection network remains unchanged,
so it can be generalized to different detection models and application cases. These features
motivate us to rely on this method in our study, and to explore its potential in Earth
observation.

2.3. Contrastive Learning

Contrastive learning has been predominantly employed to transfer representations
learned from a pretext task, usually without provided labels, to a different actual task, by
finetuning using accompanied annotations [14–16,18–20,33]. The pretext tasks involving
mostly feature vectors in embedding space are usually trained with metric distance learning
such as N-pair loss [34] or triplet [35].

Depending on the downstream tasks, the corresponding pretexts are chosen accord-
ingly. Chen et al. [16] propose a simple framework, called SimCLR, exploiting image
augmentation to pretrain a network using the temperature-scaled N-pair loss and demon-
strate an improvement in classifying images. An image paired with the augmented version
and used against its pairing with other images in a mini-batch for optimization helps in
learning decent visual representations. The representations can be further improved when
they participate in the contrastive loss by non-linear transformed proxy. This notion is
employed in our paper as the projection head.

Contrastive learning trained on image-level tasks, i.e., a single feature vector per
image, however, is shown to be sub-optimal for downstream tasks requiring instance-level
or dense pixel-level prediction, such as detection [18] or segmentation [20], 3respectively.
The reasons are attributed to the missing of dedicated properties such as spatial sensitivity,
translation, and scale invariance. Consequently, different pretext schemes are proposed
to effectively pretrain a network conforming to particular downstream tasks, including
but not limited to DenseCL [36], SoCo [18], DetCo [19], and PixPro [20]. The common
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feature of these methods is the use of explicit image augmentation to generate positive
pairs, following SimCLR’s proposal, for pretraining networks. In our method, we acquire
the augmentation principles yet consider the aerial views of different same-class objects as
their augmented versions; hence, no extra views are generated during training. Moreover,
the contrastive loss is not used as pretext but as auxiliary loss to improve the semantic
information in the mutual guidance process.

In contrast to most works that apply contrastive learning in a self-supervised context,
Khosla et al. [17] leverage label information and formulate the batch contrastive approach
in the supervised setting by pulling together features of the same class and pushing apart
those from different classes in the embedding space. They also unify the contrastive loss
function to be used for either self-supervised or supervised learning while consistently
outperforming cross-entropy on image classification. The contrastive loss employed in
our paper could be considered as being inspired by the same work but repurposed for a
detection problem.

3. Method

In this paper, we follow the generic one-stage architecture for anchor-based object
detection comprising a backbone network for feature extraction and 2 output heads for
localization and classification. The overview of our framework is shown in Figure 3. For
illustration purposes, a 2-image batch size, single spatial resolution features, and 6 anchor
boxes are shown, yet the idea is seamlessly applicable to larger batch sizes with different
numbers of anchor boxes, and multi-scaled feature extraction such as FPN [37].
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Figure 3. An overview of our framework: the backbone network encodes a batching input before
passing the extracted features to the localization and classification heads, which predict 4-tuple
bounding box values and nc-class confidence scores for each anchor box. The mutual guidance
module re-ranks the anchor boxes based on semantic information from the classification branch and
improves the confidence score with localization information. The ground truth categories of the
anchor boxes are used to supervise the contrastive loss. The pipeline is illustrated with a batch size of
2 and the number of anchor boxes na = 6.

The 2 output heads have the same network architecture: two parallel branches with
two 3× 3 convolution layers, followed by one 1× 1 convolution layer for localization and
classification predictions. The former classifies each anchor box into foreground (positive)
or background (negative), while the latter refines anchor boxes via bounding-box regression
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to better suit target boxes. Instead of optimizing the 2 head networks independently, mutual
guidance [4] introduces a task-based bidirectional supervision strategy to align the model
predictions of localization and classification tasks.

3.1. Generation of Detection Targets

A general supervised object detection provides, for each input image, a list of ground
truth bounding boxes B ∈ RnB×4 accompanied by a list of labels L ∈ RnB , where nB is the
number of ground truth boxes annotated for the image. Each box is represented by a 4-tuple
(l, t, w, h) (in MS-COCO [12] format) or (xc, yc, w, h) (in YOLO [38] format), where (l, t) and
(xc, yc) are the (x, y) coordinates of a box’s top-left corner and center, respectively, and
w, h are the box’s width and height. The ground truth boxes are arbitrary and unordered
and thus usually adapted into targets of a different form that is more compatible for
optimization in a deep network. The process is called matching.

The idea is to define a list of fixed-size boxes called anchors, A ∈ RnA×4, for each vector
in a CNN output feature map, where nA is the total number of predefined anchors per
image. For a 512× 512 input image with na = 6 predefined anchor sizes per vector, a
3-level FPN-based feature extraction network with output scale of (8, 16, 32) can produce
up to (

512
8
× 512

8
+

512
16
× 512

16
+

512
32
× 512

32

)
× 6 = 32,256 (1)

anchors. As the anchors are defined at every vector in an output feature map, they are
directly compatible with loss calculation and thus are used as targets for optimization.

Conventional matching. Depending on how similar each anchor is to the real ground
truth boxes, it is marked as a positive (i.e., object) or negative target (i.e., background). The
most common similarity metric is the Jaccard index [39], which measures the ratio of the
overlapping area of 2 boxes (an anchor and a ground truth box) over their area of union, as
shown in Equation (2).

J (X, Y) =
X ∩Y
X ∪Y

. (2)

Specifically, the matrix M containing the Jaccard indices between all pairs of ground
truth and anchor boxes is computed. We define the Jaccard index over the Cartesian
product of two sets of boxes as the Jaccard indices of all the pairs of boxes in the sets as
follows:

J (X ×Y) = {J (X, Y)|X ∈ X and Y ∈ Y }. (3)

Thus, M = J (B× A). An anchor is matched to a ground truth box if (1) this anchor is
the closest that the ground truth box can have (among all anchors) or (2) this ground truth
box is the closest that the anchor can have (among all other ground truths). A threshold can
be applied to further filter out the matched anchors with low intersection-over-union scores.
Subsequently, each anchor is associated with, at most, 1 ground truth box, i.e., positive target,
or none, i.e., background or negative target. Some of the positive targets can be marked as
ignored and do not contribute to the optimization process. The concrete algorithm is shown
in Algorithm 1.

Mutual matching. Mutual guidance [4] formulates the process of label assignment in
a mutual supervision manner. In particular, it constrains anchors that are well localized to
be well classified (localize to classify), and those well classified to be well localized (classify
to localize).

Localize to classify. The target anchor box corresponding to a feature vector that well
localizes an object must be covering semantically important parts of the underlying object;
therefore, it should be prioritized as a target for classification. A step-by-step procedure
is shown in Algorithm 2. To this end, the Jaccard matrices between all ground truth and
predicted boxes are computed, i.e., M̂ = J (B× B̂) (see Algorithm 2, Line 1). The top-K
anchors per ground truth box are shortlisted as positive classification targets, while the rest
are considered negative targets. Concretely, we keep the Jaccard score of the best ground
truth box (if any) for each anchor and zero out the other ground truth boxes, i.e., a column
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in the Jaccard matrix now has at most a single non-zero entry (Line 3–5). Then, each ground
box will have all anchors besides the K with the highest score removed (Line 6–7). The
remaining ground truth box per anchor is associated with it. We also use their Jaccard
scores as soft-label targets for the loss function by replacing 1s in one-hot vectors with the
corresponding scores. The loss is shown in Section 3.2.

Algorithm 1 Generating targets with common matching

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
negative and positive threshold θn, θp, where θn ≤ θp

Output: list of target boxes B̃ ∈ RnA×4,
and corresponding target labels L̃ ∈ RnA for each anchor

1: M ← J (B× A) # M ∈ RnB×nA

2: L̃ ← [
0 0 · · · 0

]
3: B̃ ← A # the target boxes are the anchor boxes
4: for each column index c of M do
5: iou ← max(M∗c) # Processing condition 2
6: i ← argmax(M∗c)
7: if iou ≥ θ
8: L̃c ← Li
9: B̃c∗ ← Bi

10: else if iou < θn
11: L̃c ← −1
12: for each row index r of M do
13: iou ← max(Mr∗) # Overwritten with condition 1
14: i ← argmax(Mr∗)
15: if iou ≥ θ
16: L̃i ← Lr
17: B̃i ← Br
18: else if iou < θn
19: L̃i ← −1

Algorithm 2 Generating classification targets from predicted localization

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
list of predicted boxes B̂ ∈ RnA×4

Output: list of target labels for all anchors L̃ ∈ RnA

1: M̂ ← J (B× B̂) # M̂ ∈ RnB×nA

2: L̃ ← [
0 0 · · · 0

]
3: for each column index c of M̂ do
4: i ← argmax

(
M̂∗c

)
5: M̂kc ← 0, ∀ k �= i
6: for each row index r of M̂ do
7: M̂rk ← 0, ∀ k /∈ topk(M̂r∗)
8: for each column index c of M̂ do
9: i ← argmax

(
M̂∗c

)
10: L̃c ← Li

Classify to localize. Likewise, a feature vector at the output layer that induces correct
classification indicates the notable location and shape of the corresponding target anchor
box. As such, the anchor should be prioritized for bounding box regression. To this end, the
Jaccard similarity between a ground truth and anchor box is scaled by the confidence score
of the anchor’s corresponding feature vector for the given ground truth box. Concretely,
a curated list C̃ ∈ RnB×nA of confidence scores for the class of each given ground truth
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box is obtained from the all-class input scores Ĉ ∈ RnA×nC , as shown in Algorithm 3 on
Line 2–4, where nC is the number of classes in the classification task. The Jaccard similarity
between a ground truth and anchor box M (similar to conventional detection matching) is
scaled by the corresponding confidence score and clamped to the range [0, 1] (Line 5, where
� indicates the Hadamard product). The rest of the algorithm proceeds as shown in the
previous algorithm with the updated similarity matrix M̃ in lieu of the predicted similarity
matrix M̂.

Algorithm 3 Generating localization targets from predicted class labels

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
list of confidence scores for all classes Ĉ ∈ RnA×nC ,

Output: list of target box specifications for all anchors B̃ ∈ RnA×4

1: M ← J (B× A) # M ∈ RnB×nA

2: for each row index r of M do
3: l ← Lr∗

4: C̃r∗ ← exp

(
Ĉl∗
σ

)
# C̃ ∈ RnB×nA

5: M̃ ← max
(
0, min

(
1, M� C̃

))
6: L̃ ← [

0 0 · · · 0
]

7: for each column index c of M̃ do
8: i ← argmax

(
M̃∗c

)
9: M̃kc ← 0, ∀ k �= i

10: for each row index r of M̃ do
11: M̃rk ← 0, ∀ k /∈ topk(M̃r∗)
12: for each column index c of M̃ do
13: i ← argmax

(
M̃∗c

)
14: B̃c∗ ← Bi∗

3.2. Losses

Classification loss. For classification, we adopt the Generalized Focal Loss [40] with
soft target given by the Jaccard scores of predicted localization and ground truth boxes.
The loss is given by Equation (4):

Lclass(ŷ, ỹ) = −|ỹ− ŷ|2
nC

∑
i

ỹi log ŷi, (4)

where ỹ ∈ RnC is the one-hot target label given by C̃, softened by the predicted Jaccard
scores, and ŷ ∈ RnC is the anchor’s confidence score.

Localization loss. We employ the balanced L1 loss [41], derived from the conventional
smooth L1 loss, for the localization task to promote the crucial regression gradients from
accurate samples (inliers) by separating inliers from outliers, and we clip the large gradients
produced by outliers with a maximum value of β. This is expected to rebalance the involved
samples and tasks, thus achieving a more balanced training within classification, overall
localization, and accurate localization. We first define the balanced loss Lb(x) as follows:

Lb(x) =

⎧⎪⎨⎪⎩
α

b
(b|x|+ 1) ln

(
b
|x|
β

+ 1
)
− α|x|, if |x| < β

γ|x|+ γ

b
− α ∗ β, otherwise,

(5)

where α = 0.5, β = 0.11, γ = 1.5, and b is constant such that

α ln(b + 1) = γ. (6)

The localization loss using balanced L1 loss is defined as Lloc = Lb(pred− target).
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Contrastive Loss. The mutual guidance process assigns to each anchor box a con-
fidence score si ∈ [0, 1] from the prediction of the feature vector associated with it, and
a category label ci > 0 if the anchor box is deemed to be an object target or ci = 0 if
background target. Let Bφ

k = {i �= k : ci = φ} be the index set of all anchor boxes other
than k, whose labels follow the condition φ and z be a feature vector at the before-last layer
in the classification branch (Figure 3). Following SupCo [17], we experiment with two
versions of the loss function, Lout, with summation being outside of the logarithm, and Lin
inside, whose equations are given as follows:

Lin =
−1
|B| ∑

i∈B
log

⎛⎝ 1∣∣Bci
i

∣∣ ∑j∈Bci
i

δ
(
zi, zj

)
∑k∈Bi

δ(zi, zk)

⎞⎠, (7)

Lout =
−1
|B| ∑

i∈B

1∣∣Bci
i

∣∣ ∑
j∈Bci

i

log
δ
(
zi, zj

)
∑k∈Bi

δ(zi, zk)
, (8)

where δ(v1, v2) = exp
(

1
τ

v1 · v2

‖v1‖‖v2‖
)

is the temperature-scaled similarity function. In this

paper we choose τ = 1.

4. Experiments

4.1. Setup

In this section, the proposed modules are analyzed and tested using the YOLOX small
(-s) and medium (-m) backbones, which are adopted exactly from the YOLOv5 backbone
and its scaling rules, as well as the YOLOv3 backbone (DarkNet53+SPP bottleneck) due to
its simplicity and broad compatibility, and hence popularity, in various applied domains.
More detailed descriptions can be referred to in the YOLOX paper [42]. We also perform
an ablation study to analyze the effects of different components and a comparative study
with state-of-the-art detectors including EfficientDet [43], YOLOv3 [38], YOLO-fine [28]
YOLOv4, and Scaled-YOLOv4 [44].

For fair comparison, the input image size is fixed to 512× 512 pixels for all experiments.
Dataset. We use the VEDAI aerial image dataset [21] and xView satellite image

dataset [22] to conduct our experiments. For VEDAI, there exist two RGB versions with
12.5-cm and 25-cm spatial resolutions. We name them as VEDAI12 and VEDAI25, respec-
tively, in our experimental results. The original data contain 3757 vehicles of 9 different
classes, including car, truck, pickup, tractor, camper, ship, van, plane, and others. As done by
the authors in [28], we merge class plane into class others since there are only a few plane
instances. Next, the images from the xView dataset were collected from the WorldView-3
satellite at 30-cm spatial resolution. We followed the setup in [28] to gather 19 vehicle
classes into a single vehicle class. The dataset contains a total number of around 35,000 vehi-
cles. It should be noted that our intention to benchmark these two datasets is based on their
complementary characteristics. The VEDAI dataset contains aerial images with multiple
classes of vehicles from different types of backgrounds (urban, rural, desert, forest, etc.).
Moreover, the numbers of images and objects are quite limited (e.g., 1200 and 3757, respec-
tively). Meanwhile, the xView dataset involves satellite images of lower resolution, with a
single merged class of very small vehicle sizes. It also contains more images and objects
(e.g., 7400 and 35,000, respectively).

Metric. We report per-class average precision (AP) and their mean values (mAP)
following the PASCAL VOC [13] metric. An intersection-over-union (IOU) threshold
computed by the Jaccard index [39] is used for identifying positive boxes during evaluation.
IOU values vary between 0 (no overlapping) and 1 (tight overlapping). Within the context
of vehicle detection in remote sensing images, we follow [28] to set a small threshold, i.e.,
testing threshold is set to 0.1 unless stated otherwise.
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To be more informative, we also show the widely used precision–recall (PR) curves
in later experiments. The recall and precision are computed by Equations (9) and (10),
respectively.

Recall =
number of correct detections

number of existing objects
=

TP
TP + FN

(9)

Precision =
number of correct detections
number of detected objects

=
TP

TP + FP
, (10)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
The PR curve plots the precision values, which usually decrease, at each recall rate.

Higher recall rates correspond to lower testing confidence thresholds, thus indicating a
higher likelihood of false positives and a lower precision rate. On the other hand, lower
recall rates mean stricter testing thresholds and a reduced likelihood of false positives, thus
resulting in better precision. The visualization of the precision–recall curve gives a global
vision of the compromise between precision and recall.

4.2. Mutual Guidance

In this section, we show the impact of mutual guidance on the remote sensing data
by applying it directly for vehicle detection, apart from the other modules. The baseline is
the same backbone with a generic setup, as used in [4]. As they use focal loss [45] in their
setup, we include the mutual guidance with the same loss for a fair comparison.

The results in Table 1 show the improvement when switching from the IOU-based
scheme to mutual guidance. The impact is diminished with YOLOX-m as was already
efficient to begin with. The use of GFocal loss shows even further improvement for both
architectures.

Table 1. Mutual guidance for different backbone architectures on VEDAI25 dataset. The best
performance per column is shown in boldface.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

IOU-Based Focal 70.20 74.30 70.78
Mutual Guidance Focal 71.48 74.47 74.13
Mutual Guidance GFocal 73.04 79.82 74.88

4.3. Contrastive Loss

Similar to the previous subsection, here, we aim to test the ability of contrastive loss in
the context of vehicle detection. To this end, the contrastive loss is used together with the
detection losses using the IOU-based matching strategy. Following [17], we also test the
two possibilities of loss function, namely Lin (Equation (7)) and Lout (Equation (8)). The
results are shown in Table 2.

Table 2. YOLOX-s performance on VEDAI25 with different contrastive loss functions.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

IOU-Based Focal 70.20 74.30 70.78
GFocal +Lin 71.53 79.89 75.53
GFocal +Lout 74.20 77.81 74.41

The contrastive loss seems to have the reverse effect of mutual guidance on the two
YOLOX backbones. The additional auxiliary loss does not improve the performance of
YOLOX-s as highly as YOLOX-m, and, for the case of the outside loss, it even has negative
impacts. This shows that YOLOX-m does not suffer from the misalignment problem
as much as YOLOX-s does; thus, it can benefit more from the improvement in visual
representation brought about by the contrastive loss.
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4.4. Mutual Guidance Meets Contrastive Learning

The results of YOLOX with the mutual guidance strategy and contrastive learning
are shown in Table 3. Contrastive loss shows great benefit to the network when the
misalignment between localization and classification is alleviated by mutual guidance. The
improvement seems balanced between both backbones. Although the inside contrastive
loss seems to dominate over the outside one in the previous experiment, it becomes
inferior when the semantic information from the classification branch and projection head
is properly utilized in the localization process, conforming to the finding from [17]. The
combination of mutual guidance and outside contrastive loss is coined contrastive mutual
guidance, or CMG.

Table 3. Performance of YOLOX backbones on VEDAI25 when training with mutual guidance (MG)
and contrastive loss.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

Mutual Guidance GFocal 73.04 79.82 74.88
GFocal +Lin 75.57 80.95 76.26
GFocal +Lout 76.67 81.57 77.41

Multiple datasets. We further show the results on different datasets with different
resolutions in Table 4 and the corresponding precision-recall curve in Figure 4.

Table 4. Performance of YOLOX-s vanilla with mutual guidance (MG) and contrastive mutual
guidance (CMG) on the 3 datasets. The contrastive mutual guidance strategy consistently out-
performs other configurations, showing its benefit.

Configuration VEDAI12 VEDAI25 xView30

vanilla 78.68 70.20 79.96
+MG 79.70 73.04 83.49

+CMG 81.25 76.67 83.67
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Figure 4. Precision–recall curve of YOLOX-s on 3 datasets, from left to right: VEDAI12, VEDAI25,
and xView30. The methods with +CMG gain improvement over the others at around recall level of
0.5 for the VEDAI datasets and both +MG and +CMG outperform the vanilla method on the xView
dataset.

The methods with +CMG gain an improvement over the others at around a recall level
of 0.5 for the VEDAI datasets and both +MG and +CMG outperform the vanilla method on
the xView dataset.

Some qualitative results on the VEDAI25 and xView datasets can be found in Figures 5
and 6, respectively. Several objects are missing in the second and third columns, while the
CMG strategy (last column) is able to recognize objects of complex shape and appearance.

Comparison to the state-of-the-art. In Table 5, we compare our method with several
state-of-the-art methods on the three datasets. Our YOLOX backbone with the CMG
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strategy outperforms others on the VEDAI datasets and is on par with YOLO-fine on xView.
From the qualitative results in Figures 7 and 8, respectively, for the VEDAI and xView, it
can be seen that although the xView dataset contains extremely small objects, our method,
without deliberate operations for tiny object detection, can approach the state-of-the-art
method specifically designed for small vehicle detection [28]. A breakdown of performance
for each class of VEDAI is shown in Table 6.

Table 5. Performance of different YOLOX backbones with CMG compared to the state-of-the-art
methods. Our method outperforms or is on par with the methods designed for tiny object recognition.

Architecture VEDAI12 VEDAI25 xView30

EfficientDet 74.01 51.36 82.45
YOLOv3 73.11 62.09 78.93

YOLO-fine 76.00 68.18 84.14
YOLOv4 79.93 73.14 79.19

Scaled-YOLOv4 78.57 72.78 81.39

YOLOX-s+CMG (ours) 81.25 76.67 83.67
YOLOX-m+CMG (ours) 83.07 81.57 84.79
YOLOv3+CMG (ours) 78.09 77.41 83.54

Table 6. Per-class performance of YOLOX backbones with CMG on VEDAI25 dataset. Our method
outperforms the state-of-the-art for all classes.

Model Car Truck Pickup Tractor Camping Boat Van Other mAP

EfficientDet 69.08 61.20 65.74 47.18 69.08 33.65 16.55 36.67 51.36
YOLOv3 75.22 73.53 65.69 57.02 59.27 47.20 71.55 47.20 62.09

YOLOv3-tiny 64.11 41.21 48.38 30.04 42.37 24.64 68.25 40.77 44.97
YOLOv3-spp 79.03 68.57 72.30 61.67 63.41 44.26 60.68 42.43 61.57

YOLO-fine 76.77 63.45 74.35 78.12 64.74 70.04 77.91 45.04 68.18
YOLOv4 87.50 80.47 78.63 65.80 81.07 75.92 66.56 49.16 73.14

Scaled-YOLOv4 86.78 79.37 81.54 73.83 71.58 76.53 63.90 48.70 72.78

YOLOX-s+CMG (ours) 88.92 85.92 79.66 77.16 81.21 65.22 64.90 70.33 76.67
YOLOX-m+CMG (ours) 91.26 85.34 84.91 76.22 85.03 78.68 82.02 69.08 81.57
YOLOv3 +CMG (ours) 92.20 85.98 87.34 77.27 85.56 53.74 73.94 64.13 77.41

Two failure cases are shown in the last columns of Figures 7 and 8. We can see that our
method has difficulty in recognizing the “other” class (VEDAI), which comprises various
object types, and might wrongly detect objects of extreme resemblance (xView).

30



Remote Sens. 2022, 14, 3689

GT YOLOX-s vanilla YOLOX-s+MG YOLOX-s+CMG

Figure 5. Qualitative results of YOLOX-s on VEDAI25. The contrastive mutual guidance helps to
recognize intricate objects. The number and color of each box correspond to one of the classes, i.e.,
(1) car, (2) truck, (3) pickup, (4) tractor, (5) camper, (6) ship, (7) van, and (8) plane.

GT YOLOX-s vanilla YOLOX-s+MG YOLOX-s+CMG

Figure 6. Qualitative results of YOLOX-s on xView. The contrastive mutual guidance helps to
recognize intricate objects. The number and color of each box indicate the vehicle class.
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Figure 7. Qualitative results of our methods and state-of-the-art methods on VEDAI25. The number
and color of each box correspond to one of the classes, i.e. (1) car, (2) truck, (3) pickup, (4) tractor,
(5) camper, (6) ship, (7) van, and (8) plane. The last column shows a failure case. Our method has
difficulties in recognizing the “other” class, which comprises various object types.
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Figure 8. Qualitative results of our methods and state-of-the-art methods on xView. The number
and color of each box indicates the vehicle class. The last column shows a failure case. Our method
could recognize objects of various shapes and would wrongly detect objects of extreme resemblance
(although this might have been because of the faulty annotations).
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5. Discussion

Although supervised contrastive loss has been shown to be able to replace cross-
entropy for classification problems [17], in this paper, contrastive loss is applied as an
auxiliary loss besides the main localization and classification losses. This is because only a
small number of anchors are involved in the contrastive process due to the large number of
anchors, especially negative anchors.

However, contrastive loss shows weakness when the annotations are noisy, such as
those of the xView dataset. Several boxes are missing for (what appear to be) legitimate
objects, as shown in Figure 9.

Figure 9. Examples of faulty annotations in the xView dataset: non-vehicle annotation (red border),
missing annotations of container trucks (green border), and cars (blue border). The number and color
of each box indicates the vehicle class.

It is shown from the experimental results that inward contrastive loss is not always
inferior to its outward counterpart, as shown in [17]. We speculate that this could be due to
the auxiliary role of contrastive loss in the detection problem and/or the characteristics of
small objects in remote sensing images.

6. Conclusions

This paper presents a combination of a mutual guidance matching strategy and
supervised contrastive loss for the vehicle detection problem. The mutual guidance helps
in better connecting the localization and classification branches of a detection network,
while contrastive loss improves the visual representation, which provides better semantic
information. The vehicle detection task is generally complicated due to the varied object
sizes and similar appearances from the aerial point of view. This, however, provides an
opportunity for contrastive learning, as it can be regarded as image augmentation, which
has been shown to be beneficial for learning visual representations. Although the paper
is presented in a remote sensing context, we believe that this idea could be expanded to
generic computer vision applications.
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Abstract: Plastic pollution is a critical global issue. Increases in plastic consumption have triggered
increased production, which in turn has led to increased plastic disposal. In situ observation of plastic
litter is tedious and cumbersome, especially in rural areas and around transboundary rivers. We
therefore propose automatic mapping of plastic in rivers using unmanned aerial vehicles (UAVs) and
deep learning (DL) models that require modest compute resources. We evaluate the method at two
different sites: the Houay Mak Hiao River, a tributary of the Mekong River in Vientiane, Laos, and
Khlong Nueng canal in Talad Thai, Khlong Luang, Pathum Thani, Thailand. Detection models in the
You Only Look Once (YOLO) family are evaluated in terms of runtime resources and mean average
Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5. YOLOv5s is found to be the most
effective model, with low computational cost and a very high mAP of 0.81 without transfer learning
for the Houay Mak Hiao dataset. The performance of all models is improved by transfer learning
from Talad Thai to Houay Mak Hiao. Pre-trained YOLOv4 with transfer learning obtains the overall
highest accuracy, with a 3.0% increase in mAP to 0.83, compared to the marginal increase of 2% in
mAP for pre-trained YOLOv5s. YOLOv3, when trained from scratch, shows the greatest benefit from
transfer learning, with an increase in mAP from 0.59 to 0.81 after transfer learning from Talad Thai to
Houay Mak Hiao. The pre-trained YOLOv5s model using the Houay Mak Hiao dataset is found to
provide the best tradeoff between accuracy and computational complexity, requiring model resources
yet providing reliable plastic detection with or without transfer learning. Various stakeholders in the
effort to monitor and reduce plastic waste in our waterways can utilize the resulting deep learning
approach irrespective of location.

Keywords: deep learning; transfer learning; plastic; UAVs

1. Introduction

Plastic is used extensively in households and industry. Plastic takes hundreds of years
to degrade, so it affects both the terrestrial and marine ecosystems. Marine litter has been
recognized as a serious global environmental issue since the rise of the plastic industry
in the mid-1950s [1]. Hence, the need for research into plastic management solutions is
self-evident [2]. The UN Environment Programme (UNEP) estimates that 15% of marine
litter floats on the sea’s surface, 15% remains in the water column, and 70% rests on the
seabed. Up to 80% of the plastic in the ocean is from land-based sources and reaches the
ocean via rivers [3]. Nevertheless, riverine plastics are understudied compared to marine
plastics [4]. The earliest research on riverine plastic began in the 2010s, with a study on a
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sample of waterways in Europe and North America, particularly the Los Angeles area [5]
and the Seine [6].

Current government regulations do not adequately address marine litter and plastics.
There is also a gap in regional frameworks addressing the issue of plastic litter. Establishing
proper waste collection systems and changing peoples’ perceptions are two major hurdles
to plastic litter prevention, and both goals remain a distant dream in southeast Asian
countries. Thoroughly surveying plastic litter distribution in rural areas manually is time-
consuming and complex, so automatic mapping of plastic litter using unmanned aerial
vehicles (UAVs) is a better option, especially in inaccessible locations.

UAVs (abbreviations used throughout the paper are listed in “Abbreviations” in
alphabetical order) are relatively low-cost and can operate at low-altitudes with minimal
risk. They provide images with high resolution and high image acquisition frequency [7].
UAV-based real-time data collection of imagery is important for surveillance, mapping,
and disaster monitoring [8,9]. UAVs are widely used for data collection, object detection,
and tracking [10]. UAVs can be categorized as low- or high-altitude platforms [11] and
can be roughly categorized into three classes: small, medium, and large, according to their
maximum altitude and range. The maximum altitude for small drones is usually below
300 m; the maximum altitude for large drones is normally above 5500 m. Altitudes vary
within these ranges for medium size UAVs. Regarding maximum range, small UAVs can
typically cover less than 3 km, while medium UAVs can cover 150–250 km, and large ones
can cover even larger distances. High-altitude UAVs can image large areas quickly, while
low attitude UAVs can capture more detailed features in smaller fields of view. High-
altitude UAV scans can be used as a preliminary to reduce the overhead involved in finding
the correct areas for more detailed surveys. Once a high-altitude survey is completed, the
plastic in a river can be precisely detected and catalogued based on a follow-up low-altitude
UAV survey. Since UAVs at such low-altitudes can provide centimeter-level or better pixel
resolution with high accuracy [12], they open the door for ordinary individuals to collect
and analyze high-quality imagery through automatic methods irrespective of whether
satellite or aerial imagery is available from formal sources. Given a specific camera selected
and mounted on a UAV, an appropriate flight altitude should be determined to obtain
a suitable ground sampling distance (GSD) for measuring sizes of items captured in the
images and for efficiently covering the target area. The GSD is the size of the projection of
one pixel on the ground and is a function of the focal length of the camera, flight altitude,
and physical dimensions of sensor’s pixels. The GSD places a lower limit on the precision
achievable for points on the ground [13]. In addition, flight altitude, camera properties
determine the resolution of the images captured. Though we obtain good resolution with
a 4K camera at 30 m, other researchers [13–15] conducted flights at ranges of 6–10 m for
better image resolution. UAVs flying at a low-altitude provide high-resolution data, which
are useful in detecting plastic, metal, and other litter in rivers. The focal length also affects
image quality and plays a vital role in obtaining accurate annotations and precise plastic
detection [16]. Simple color-based approaches to categorization of litter in UAV images [17]
are less dependent on flight altitude and GSD than object detectors, which typically require
high resolution images captured at lower altitudes.

UAVs have already been used in monitoring marine macro-litter (2.5 cm to 50 cm) in
remote islands [18–20], which suggests that low-cost UAVs are suitable for low-altitude,
high-resolution surveys (from 6 m to 30 m). Estimates of plastic litter in global surface
waters are available [2], but we are far from having a global inventory of litter along shores
due to the low efficiency and limited extent of surveys along shores thus far [21]. However,
UAV images have been found effective for analyzing the spatial distribution of plastic
litter cross-shore and long-shore, as well as for measuring the sizes of detected items using
semi-automated image processing techniques [22]. Moreover, UAV applications were found
to be effective for monitoring coastal morphology, the extent of morphological changes,
and interaction of marine litter dynamics on the beach [23].
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Floating litter surveys conducted by UAVs at altitudes of 20 m and 120 m have been
found to be more accurate than beach litter surveys at altitudes of 20 m and 40 m [24].
The authors attribute this to seawater being a more homogeneous background than sand.
Floating litter surveys, however, have the risk of losing the UAV while it is flying over
the sea, and beach litter surveys are less affected by environmental challenges. According
to Martin et al. [20], manual screening of UAV images of beaches taken from a height of
ten meters was 39 times faster and 62% more accurate than the standard ground-based
visual census method. Researchers also pointed out that training citizen scientists to anno-
tate plastic litter datasets acquired through UAVs is effective [25,26]. However, machine
learning-based automatic mapping combined with manual screening was found to be even
faster and more cost-effective [19,20].

Since rigorous interpretation of aerial images from UAVs by humans is time-consuming,
error-prone, and costly, modern deep learning (DL) methods using convolutional neural
networks (CNNs) are a preferable alternative [27]. DL is already well established in re-
mote sensing analysis of satellite images. UAV technology integrated with deep learning
techniques is now widely used for disaster monitoring in real time, yielding post-disaster
identification of changes with very higher accuracy [28,29]. DL has emerged as an ex-
tremely effective technique in modern computer vision due to its ability to handle a variety
of conditions, such as scale transformations, changes in background, occlusion, clutter,
and low resolution, partly due to model capacity and partly due to the use of extensive
image augmentation during training [30]. DL has proven superior to traditional machine
learning techniques in many fields of computer vision, especially object detection, which
involves precise localization and identification of objects in an image [17,31]. Classification,
segmentation, and object detection in multispectral ortho imagery through CNNs has been
successful [32]. In UAV mapping applications involving detection of objects, changes in
viewing angles and illumination introduce complications, but CNNs nevertheless extract
useful distinguishable features. CNNs are very effective for per-pixel image classification.

Although deep learning methods have been shown to provide accurate and fast de-
tection of marine litter [33], little research integrating UAVs and deep learning has been
conducted in the context of monitoring plastics on beaches and rivers. Once a model has
been trained, processing UAV images for detection of plastics with the model is straight-
forward. However, deep learning methods require a great deal of computing resources
for offline training and online inference, as models are required to perform well across
various conditions, increasing their complexity. Furthermore, training of modern object
detection models requires a great deal of manual labor to label data, as the data preparation
requires accurate bounding boxes in addition to class labels, making the data engineering
more intensive than that required for classification models. To minimize these costs, plastic
monitoring application should analyze georeferenced UAV patch images ensuring appro-
priate image quality and little redundancy. To determine whether a given training dataset
is sufficiently representative for the plastic detection in similar georeferenced patch images
after model development, we advocate evaluation of the method at multiple locations.

It is time consuming to train a deep neural network for detection from scratch. It can
be more effective to fine-tune an existing pre-trained model on a new task without defining
and training a new network, gathering millions of images, or having an especially powerful
GPU. Using a pre-trained network as a beginning point rather than starting from scratch
(called transfer learning) can help accelerate learning of features in new datasets with small
amounts of training data while avoiding overfitting. This approach is therefore potentially
particularly useful for detection of plastic in a modest-scale dataset. OverFeat [34], the
winner of the localization task in the ILSVRC2013 competition, used transfer learning.
Google DeepMind uses transfer learning to build deep Q-network agents that use pixels
from 210 × 160 color video at 60 Hz and the game score as input and learn new games
across different environments with the same algorithms and minimal knowledge. This
model was the first artificial agent to learn a wide variety of challenging tasks without
task-specific engineering [35]. Nearly every object detection method in use today makes use
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of transfer learning from the ImageNet and COCO datasets. The use of transfer learning
provides the following advantages [36]:

1. higher baseline performance;
2. less time to develop the model;
3. better final performance.

We therefore investigated the performance of pretrained and tabula rasa object detec-
tion models for plastic detection using data acquired from a Mekong river tributary, the
Houay Mak Hiao (HMH) river in Vientiane, Laos, as well as a canal in the Bangkok area,
Khlong Nueng in Talad Thai (TT), Khlong Luang, Pathum Thani, Thailand. We explored
how a model trained on one location performs in a different location in terms of compute
resources, accuracy, and time.

This paper makes three main contributions to the state of the art in riverine plastic
monitoring:

1. We examine the performance of object detection models in the You Only Look Once
(YOLO) family for plastic detection in ortho imagery acquired by low-altitude UAVs.

2. We examine the transferability of the knowledge encapsulated in a detection model
from one location to another.

3. We contribute a new dataset comprising images with annotations for the public to
use to develop and evaluate riverine plastic monitoring systems.

We believe that this research will provide practitioners with tools to save computing
resources and manual labor costs in the process of developing deep learning models for
plastic detection in rivers. The techniques introduced here should scale up to various types
of landscapes all over the world.

2. Materials and Methods

In this section, we describe the study area for the research and the materials and
methods adopted to perform experiments on the task of plastic detection from UAV imagery
in two locations through deep learning.

2.1. Study Area

We gathered data at two locations, viz., Khlong Nueng Canal, Talad Thai, Pathum
Thani (TT), Thailand and Houay Mak Hiao river in Vientiane, Laos (HMH) as in Figure 1.
HMH is in a sub-basin of the Mekong River basin with a land area of 436.91 km2, located in
Vientiane, the capital city of Laos as in Figure 2. The study area was at coordinates 17.95◦N
102.91◦E. This river contributes pollutant to the Mekong River basin. TT is in Khlong Luang
district, Thailand with coordinates 14.08◦N 100.62◦E, as shown in Figure 3. The study areas
were selected based on their contribution to pollution downstream and the ease and safety
of accessibility for data collection considering UAV survey zone restriction in Laos and
Thailand. As no study of individual plastic object detection in these areas has yet been
performed, they were found to be ideal for evaluating plastic monitoring methods.

2.2. Materials

UAV surveys 30 m above the terrain were carried out at Houay Mak Hiao river (HMH)
in Vientiane, Laos and Khlong Nueng Canal (TT) in Talad Thai, Pathum Thani, Thailand
with a DJI Phantom 4 with a 4K resolution camera resulting in a ground sampling distance
of 0.82 cm to assess the plastic monitoring methods for these waterways.

The computing resources comprised two environments: (1) Anaconda with Jupyter
running on a personal computer with an Intel®Core™ i7-10750H CPU @2.60 GHz, 16 GB
RAM, and NVIDIA GeForce RTX 2060 GPU with 6 GB GPU RAM, and (2) Google Co-
laboratory Pro. The personal computer was used for YOLOv3 and YOLOv5, and Google
Colaboratory Pro was used for YOLOv2 and YOLOv4.
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Figure 1. Location of study sites (Background map: OpenStreetMap, 2021).

Figure 2. Study area showing Houay Mak Hiao River, Vientiane, Laos. (Background map: Open-
StreetMap, 2021).
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Figure 3. Study area showing Khlong Nueng, Talad Thai, Pathum Thani, Thailand (Background map:
OpenStreetMap, 2021).

2.3. Methodology

In this section, the proposed methodology for detection of plastic in rivers is discussed,
along with the various deep learning model architectures used in the experiments. We aim
to assess model performance in the task of identifying plastic in rivers using georeferenced
ortho-imagery and deep learning approaches utilizing minimal computing resources, as
shown in Figure 4.

 

Figure 4. Methodological framework for assessment of performance of deep learning architectures
for plastic detection.
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2.3.1. Deep Learning Models for Object Detection

CNNs can locate multiple objects in an image, effectively separating foreground from
background [37]. We thus evaluate various CNN-based object detection models on riverine
plastic detection. Object detection has two main functions: to find regions of interest and to
classify those regions. Regions of interest can be obtained in two ways, by region proposal
methods or direct regression. Region proposal methods involve two stages, the first of
which involves finding regions of interest through color contrast and superpixel straddling,
and the second of which involves classifying the resulting proposals with CNNs. The direct
regression method, on the other hand, is a one step-method in which region proposals and
object detection are carried out in a single step. Single-step models tend to find it difficult
to locate small objects in an image due to a limited number of possible bounding boxes at
fine levels of detail. YOLO is the most popular single-stage detector. It carries out both the
bounding box identification and object classification tasks in a single pass of the network.
R-CNN is a representative of two-stage detectors. Some of the older detection models use a
full CNN classifier such as VGG-16 or ResNet as the classifier while most modern detectors
such as YOLO use a CNN classifier as a backbone for feature extraction followed by a small
“head” for classification.

Early versions of YOLO had better performance in both speed and accuracy than extant
models such as MobileNetSSDv2 and Faster R-CNN. YOLO makes use of a single CNN
to detect objects by processing the entire image at once without creating region proposals.
It predicts a detection tensor directly based on a small set of possible bounding boxes.
Features at the deeper layers used for the final detection have receptive fields spanning the
entire image, making it less likely to predict false positives in background regions. YOLO
models output bounding box coordinates, confidence scores, and object class scores directly
with an image as input. The confidence scores signify the probability that a predicted box
contains an object. YOLO is fast, running at 45 FPS in real-time, and Fast YOLO is faster at
155 FPS [38]. The original YOLO architecture predicts just two bounding boxes per grid
cell [39]. The total of 98 bounding boxes per image is small compared to the 2000 boxes
predicted by Selective Search. Though most of the early detection frameworks depended
on heavy feature extractors such as VGG-16, which uses 30.69 billion floating operations in
a single pass for a single image of 224 × 224 resolution, YOLO used the more lightweight
GoogLeNet architecture, with only 8.52 billion operations [40], albeit with lower accuracy
as a backbone than VGG-16. YOLO has no localization error and hence is less likely to
predict false positives in the background [41].

YOLOv2 was introduced to improve the speed-accuracy trade-offs in YOLO. The
custom GoogLeNet [42] network was replaced by DarkNet19, and batch normalization [43]
was introduced. The fully connected layers in GoogLeNet were also removed, and anchor
boxes with aspect ratios learned through k-means were introduced along with multiscale
training. Despite these improvements, YOLOv2 has low recall [38], so YOLOv3 was
subsequently introduced with further improvements. YOLOv3 is tuned for small objects
with multi-scale features [44]. YOLOv3 is much more complicated than the previous model,
and the speed and accuracy can be varied by changing model size. YOLOv3 provides
good average precision (AP) at an Intersection over Union (IoU) threshold of 0.5, but
the AP decreases at higher IoU levels because YOLOv3 does not predict ground truth
bounding box boundaries very accurately. YOLOv3-SPP (spatial pyramid pooling) adds a
SPP module, which uses the concept of the spatial feature pyramid, realizing both local and
global features. This solves the issue of image distortion caused by cropping and zooming
the image area and repeated feature extraction by the CNN. The smaller version of YOLOv3,
called Tiny YOLOv3, is designed for mobile machine learning and low-powered computing
devices such as the Internet of Things (IoT) devices and shows better performance in terms
of speed accordingly [45]. The size of the Tiny YOLOv3 CNN is about 20% that of YOLOv3,
and it runs several times faster, making it usable for real-time detection on small devices.
From YOLOv2 to YOLOv3, the computational complexity in terms of GFLOPs (billion
floating-point operations), which mostly depends on the number and types of layers used
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in the network, increases from 30 to 140, with an increase in mAP from 21% to 33%. The
added complexity, however, means it cannot be considered a light-weight model [44].

YOLOv4 and YOLOv5 were developed to increase the speed of YOLOv3 while keeping
high accuracy. YOLOv3 was known not to perform well on images with multiple features
or on small objects. Among other improvements, YOLOv4 uses the Darknet53 backbone
augmented with cross-stage partial blocks (CSPDarknet53), improving over YOLOv3 using
only 66% of the parameters of YOLOv3, accounting for its fast speed and accuracy [46].
The YOLOv5 model pushes this further, with a size of only 27 megabytes (MB), compared
to the 244 MB of YOLOv4. YOLOv5 models pre-trained on MS COCO achieve mAPs
from 36.8% (YOLOv5s) to 50.1% (YOLOv5x). YOLOv5 and YOLOv4 have similar network
architectures; both use CSPDarknet53 as the backbone, and both use a path aggregation
network (PANet) and SPP in the neck and YOLOv3 head layers. YOLOv5’s reference
implementation is based on the PyTorch framework for training rather than the Darknet
C++ library of YOLOv4. This makes YOLOv5 more convenient to train on a custom dataset
to build a real time object detection model.

Yao et al. [47] consider the fact that UAVs normally capture images of objects with
high interclass similarity and intraclass diversity. Under these conditions, anchor-free
detectors using point features are simple and fast but have unsatisfactory performance due
to losing semantic information about objects resulting from their arbitrary orientations. The
authors’ solution uses a stacked rotation convolution module and a class-specific semantic
enhancement module to extract points with representations that are more class-specific,
increasing mAP by 2.4%. Future work could compare YOLO-type detectors with improved
point feature-based detectors such as R2 IPoints. However, it is difficult to detect small
objects with dense arrangements using this detector due to the sensitiveness of IoU to the
deviation of the position of small objects.

The use of transformer neural networks [48] has led a new direction in computer
vision. Transformers use stacked self-attention layers to handle sequence-to-sequence tasks
without recursion, and transformers have recently been applied to vision tasks such as
object detection. The vision Transformer (ViT) was the first high accuracy transformer
for image classification [49]. However, ViT can only use small-sized images as input,
which results in loss of information. The detection transformer (DETR) [50] performs
object detection and segmentation. DETR matches the performance of highly optimized
Faster R-CNN on the COCO dataset [51]. The Swin transformer [52] has been proposed
as a backbone for computer vision. Swin stands for shifted window which is a general-
purpose backbone for computer vision. Swin is a hierarchical transformer that limits the
self-attention computation to non-overlapping local windows and allows cross-window
connection through shifted window to address the issue of a large variation in scale and
resolution of images, leading to relatively good efficiency on general hardware, running
in time linear in the image size. The Swin transformer achieves current state-of-the-art
performance on the COCO object detection task (58.7 box AP and 51.1 mask AP on COCO
test-dev) and ADE20K semantic segmentation (53.5 mIoU on ADE20Kval).

CNNs have a natural inductive bias for image processing problems, such as translation
equivariance and contrast adaptivity, but the transformer lacks these properties, resulting
in requirements for much larger datasets or stronger data enhancement [53] to achieve
the best performance. Since our goal is to perform well on moderate-sized datasets using
modest compute resources, we do not consider transformers at this time.

2.3.2. Selection of Object Detection Models

Various object detection models have been used in research related to plastic litter
detection. Majchrowska et al. [54] use EfficientDet-D2 to localize litter and EfficientNet-B2
to classify waste into seven categories. The researchers obtained 75% classification accuracy
and 70% mean average precision.

Córdova et al. [55] conducted a comparative study on state-of-the-art approaches for
object detection using the PlastOPol and TACO datasets and found that YOLOv5-based
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detectors perform well in litter detection. On the PlastOPol dataset, YOLO-v5x obtains a
best AP@0.5 of 84.9, and YOLO-v5s obtains best AP@0.5 of 79.9. On the TACO dataset,
YOLO-v5x obtains a best AP@0.5 of 63.3, and YOLO-v5s obtains a best AP@0.5 of 54.7
for YOLO-v5s. YOLO-v5s was found to be 4.87, 5.31, 6.05, and 13.38 times faster than
RetinaNet, Faster R-CNN, Mask R-CNN, and EfficientDet-d5, respectively.

Kraft et al. [56] use calibrated onboard cameras with GNSS and GPS to capture
images and use YOLOv3, YOLOv4, and EfficientDet for object detection [57]. They find
that YOLOv4 and EfficientDet-d3 show the highest mean average precision (mAP) for
trash detection. Kumar et al. [58] analyze the efficiency of YOLOv3 and YOLOv3-tiny in
separating waste into bio-degradable and non-biodegradable types. Their research shows
that YOLOv3 has better predictive performance than YOLOv3-tiny, with accuracies of
85.29% and 26.47%, respectively. This research used 6437 images drawn from six classes
(cardboard, paper, glass, plastic, metal, and organic waste) and found that YOLOv3-
tiny needs four times less computation time than YOLOv3, demonstrating a wide speed-
accuracy tradeoff.

Fulton et al. [59] evaluate the performance of object detection algorithms (YOLOv2,
Tiny-YOLO, Faster R-CNN with Inception v2, and Single Shot MultiBox Detector (SSD)
with MobileNetV2 for underwater trash detection and removal of trash using autonomous
underwater vehicles. (AUVs). The models detect three classes of objects in the J-EDI
(JAMSTEC E-Library of Deep-Sea Images) dataset, i.e., plastic, remotely operated vehicles
(ROVs), and a “bio” class (plants, fish, detritus, etc.). All the above-mentioned models
are fine-tuned from their pre-trained states. The authors’ transfer learning method for
the YOLO model only updates weights in the last three layers. The authors find that the
YOLOv2 models have good speed, but YOLOv2 and tiny-YOLO have low mAP. They
also find that transfer learning increases accuracy for the bio-class to a level sufficient for
deployment in real time scenarios.

Tata et al. [60] describe the DeepPlastic project for marine debris detection in the
epipelagic layer of the ocean. This project includes the development of the DeepTrash
dataset comprising annotated data captured from videos of marine plastic using off-the-
shelf cameras (GoPro Hero 9) in three study sites in California (South Lake Tahoe, Bodega
Bay, and San Francisco Bay) and also incorporating the J-EDI dataset to represent marine
plastics in different locations. The research used low-cost GPUs and the deep learning
architectures YOLOv4-tiny, Faster R-CNN, SSD, and YOLOv5s for detection with the aim
to build a real-time monitoring system. The YOLOv5s model achieved a mAP of 85%,
which is higher than that of the YOLOv4-tiny model (84%). These models outperformed a
model for detection of deep-sea and riverine plastic by the University of Minnesota [59],
which had mAPs of 82.3% using YOLOv2 and 83.3% using Faster R-CNN. The authors
therefore selected YOLOv4-tiny and YOLOv5s, which have good accuracy and sufficiently
high inference speeds for real-time object detection. Since there are several models with
different speed-accuracy tradeoffs in the YOLOv5 group of detectors, various YOLOv5
models have been used in research related to the detection of plastic [61]. This family
of object detection models offers flexibility in terms of architecture and can be adjusted
for the best performance in different tasks. From YOLOv5s to YOLOv5l, the number of
parameters, depth, and width increases steadily resulting in higher model complexity
but better accuracy. We use the YOLO family of algorithms for plastic detection in the
river in this research due to its good performance in terms of speed and accuracy of
detection in real-world environments with limited computing resources and data. We
trained different pre-trained YOLOv2 models (YOLOv2, YOLOv2-tiny), YOLOv3 models
(YOLOv3, YOLOv3-tiny, and YOLOv3-spp), YOLOv4 models (YOLOv4, YOLOv4-tiny),
and YOLOv5 models (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) to perform plastic
detection in UAV images. In addition, fine-tuning the pre-trained models, we also trained
each of the aforementioned models from scratch to determine which approach performs
best with limited time and capacity. As previously discussed, YOLOv5s was previously
found to perform best for plastic detection in the epipelagic layer of the ocean, with a mAP
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of 0.851 [60], so we use a similar methodology to evaluate performance of plastic detection
models for rivers using various YOLO architectures according to mAP at different IoUs.

2.3.3. Transfer Learning

Training deep CNNs from scratch is difficult, as they need a large amount of training
data and labeling expertise. Transfer learning can speed up model development compared
to training from scratch by fine-tuning some or all of the layers of a pretrained network to
perform well on a new dataset [62]. Transfer learning reduces training time, as the model
does not need to be trained for many iterations to give good performance. There are two
methods of transfer learning, feature extraction and fine-tuning. Feature extraction uses
knowledge of features learned on one model to extract meaningful features from a new
dataset. In this transfer learning setup, weights of the feature extraction portion of the
pre-trained network are not updated during training on the new dataset. Instead, some
of the deepest layers are unfrozen, and the model is trained with a low learning rate for
both the new classifier layer and the previously existing deepest layers of the base model.
Transfer learning via fine-tuning, on the other hand, allows all the layers or some of the
layers of the base model to be unfrozen, and model is retrained end-to-end, again with a
very low learning rate. The outcome is to fine-tune the weights of the pre-trained network
to extract high-order features more appropriate for the specific new task.

2.3.4. Performance Assessment of Transfer Learning

In addition, in-sample test performance, we also assess each model’s capacity for
knowledge transfer to another location. Deep learning models learn features representative
of their training datasets. Early layers tend to learn general features, while later layers
tend to learn features that are high level and more specific to the training dataset. We
perform transfer learning on models pre-trained on one location, fine-tuning them by either
(1) freezing weights of all the initial layers of the network of the pre-trained models and
then changing the weights of the last two layers of the respective network, allowing them
to learn features from data of the new location, or (2) fine-tuning all parameters in every
layer. The best weights for the best model for plastic detection at one location are used
as a basis for training at the other location. The same performance metrics are computed
for each of the transferred models to find the best approach to transfer learning about the
plastic detection task to a new location at low computing cost with minimal compute time.

The following basic steps are required to perform the comparison of deep learning
techniques.

a. Data preparation: Prepare the data set in the appropriate format (e.g., DarkNet
format for YOLOv4-tiny and PyTorch format for YOLOv5s) and then split it into
training and validation sets.

b. Input: Prepare images and label files for training and validation dataset along with
the pre-trained weights and configuration file for training.

c. Output: Save trained model to a file containing optimized weights.

(A) Training models from pre-trained networks (S1):

To train neural networks for plastic detection beginning with pre-trained networks,
we perform the following steps.

i. Load pre-trained weights (optimized for the COCO dataset) into the model.
ii. Freeze the initial N1 layers and unfreeze the last N2 layers of the model.
iii. Select a hyperparameter configuration from Table 1.
iv. Train the model and stop training when average loss stops decreasing.
v. Record final average loss.
vi. Repeat steps iii–v for all combinations of hyperparameters.
vii. Select the model with hyperparameters that achieve the lowest average loss.
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Table 1. Selection of hyperparameters.

Parameters Value

Batch size * 16, 32, 64 and 128
Learning rate 0.01 to 0.001

No. of filters in YOLO layers 18 **
* YOLOv5 requires a batch size 4 for all experiments due to limited GPU memory; ** Replace number of filters
(80 + 5) · 3 for COCO with (1 + 5) · 3 in the convolutional layer before each YOLO layer.

(B) Training from scratch (S2):

The following steps are undertaken to carry out model training from scratch. The
steps are the same as for pre-trained networks (S1) with modifications to step (ii) as follows:

i. Load the pre-trained weights (trained on COCO dataset).
ii. Unfreeze all layers and initialize weights to random values from Gaussian distri-

butions having mean zero and standard deviation
√

(2/n), where n denotes unit’s
fan in (number of input units). This initialization controls the initial output and
improves convergence empirically [63].

iii. Select a subset of hyperparameters from Table 1.
iv. Train the model and stop training when average loss stops decreasing.
v. Record average loss.
vi. Repeat steps iii–v for all combinations of hyperparameters.
vii. Select the model with hyperparameters that achieve the lowest average loss.

(C) Transfer learning:

To evaluate transfer of learning from one location to another, the following steps are
carried out.

i. Collect best weights for each model and each type of training at one location.
ii. Load the best weights for one location and one model.
iii. Freeze initial N1 layers and fine-tune the last N2 layers.
iv. Select a subset of hyperparameters from Table 1.
v. Train the model in a new location and stop training when average loss stops decreasing.
vi. Calculate average loss.
vii. Repeat steps iv–vi for all combinations of hyperparameters, for all models.

2.3.5. Performance Indicators

We evaluate the performance of detection models using the performance metrics
described in this section.

(A) Mean Average Precision (mAP):

It is unrealistic to expect perfect matches between the ground truth and predicted
bounding boxes due to variations in labeling and quantization. The area under a precision
versus recall curve gives the average precision for a specific class for the set of predictions of
a model. The average of this value, calculated over all classes and multiple IoU thresholds,
is called mAP. mAP measures the performance of an object detector based on the IoU
between the predicted and ground truth bounding boxes across all classes in the dataset.
The Jaccard similarity or IoU is a measure of how well a predicted bounding box fits a
ground truth bounding box for an object, defined by

IoU =
Area of Overlap
Area of Union

. (1)

The numerator is the area of the intersection of the predicted and ground-truth bound-
ing boxes, while the denominator is the total area covered by the union of the predicted
and ground truth bounding boxes. IoU ranges from 0 to 1. Closer rectangles give higher
IoU values. If the IoU threshold is 0.5, and a predicted bounding box has an IoU with a
ground-truth bounding box of more than 0.5, the prediction is considered a true positive
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(TP). If a predicted bounding box has IoUs less than 0.5 for all ground-truth bounding
boxes, it is considered a false positive (FP). IoU is well suited to unbalanced datasets [64].
We use an IoU threshold of 0.5.

mAP is a widely used metric and the benchmark for comparing models on the COCO
data set. AP gives information about the accuracy of a detector’s predicted bounding boxes
(precision) and the proportion of relevant objects found (recall). Precision is the number of
the correctly identified objects of a specific class in class, divided by the total number of
objects of that class in an image set.

Precision =
TP

TP + FP
(2)

In the equation, TP and FP are the total number of true positives and false positives.
The recall is the number of correctly detected objects divided by the total number of

objects in the dataset. It signifies how well the ground truth objects are detected.

Recall =
TP

TP + FN
(3)

FN is the number of false negatives. A false negative is a ground truth bounding
box with insufficient overlap with any predicted bounding box [65]. Perfect detection is a
precision of 1 at all recall levels [66]. There is usually a tradeoff between precision and recall;
precision decreases as recall increases and vice-versa. AP averages the model’s precision
over several levels of recall.

(B) F1-Score:

F1 is a measure of a model’s accuracy on a dataset at a specific confidence level and IoU
threshold. It is the harmonic mean of the model’s precision and recall [67]. It ranges from 0
to 1. A F1-score of 1 indicates perfect precision and recall. The maximum F1 score refers
to the best harmonic mean of precision and recall obtained from a search over confidence
score thresholds for the test set.

F1− Score =
2 · Precision · Recall
Precision + Recall

(4)

3. Results

3.1. Dataset Preparation

The image dataset comprised tiled ortho-images cropped to a size of 256 × 256 pixels
corresponding to 2 m × 2 m patches of terrain. We annotated 500 tiles for each river using
the YoloLabel tool [68] to record the bounding box for each identifiable piece of plastic in
each image. Sample images from Laos (HMH) and Talad Thai (TT) datasets are shown in
Figure 5.

Manual labeling of plastic in the image is a work-intensive task. However, labelers
have done their best to identify only plastic though there will be some unavoidable errors
in the labeling due to difficulty in perceiving the material [69]. Plastic litter is the bulk of
the litter in the marine environment and the greatest threat to marine ecosystems. Marine
plastic is the biggest concern for the world, most of the marine plastic comes from rivers, etc.

The images were randomly assigned to training and validation sets in a ratio of 70:30
for preparing object detection models using different versions of YOLO. The objects in the
HMH dataset tended to be brighter and more distinct-shaped than in the TT dataset, in
which the objects were darker, occluded with sand, and mostly trapped among vegetation.
Variations in datasets should result in learning of better features and more robust predic-
tions. In most cases, only a small portion of each image contains plastic. Most deep learning
methods do not generalize well across different locations [70]. The datasets represent only
floating plastic and plastic visible on riverbanks. Submerged plastic was not considered.
Similar analysis of the training data representative of plastic has been conducted in the
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context of automatic mapping of plastic using a video camera and deep learning in five
locations of Indonesia [71].

   

(a) 

   

(b) 

Figure 5. Sample images from datasets used for training deep learning models for plas-
tic detection in rivers. (a) HMH in Laos with co-ordinates (887,503.069 m, 1,995,416.74 m);
(887,501.986 m, 1,995,416.537 m); and (887,501.418 m, 1,995,417.692 m) (b) TT in Thailand with
co-ordinates 674,902.457 m, 1,557,870.257 m); (674,903.403 m, 1,557,860.135 m); and (674,925.317 m,
1,557,850.965 m) under WGS_1984_UTM_Zone_47N.

3.2. Experimental Parameter Sets

The individual experiments we carried out to assess the performance of plastic detec-
tion with various models in the YOLO family for two locations are tabulated in Table 2. The
parameters that are considered for YOLOv3 and YOLOv5 families are batch size 4, epoch
100, and batch size 16 for YOLOv2 and YOLOv4 families with a learning rate 0.001. Mostly,
the batch size is adjusted according to the GPU memory with possible allowed high value
to simulate model [72]. The models are set up to train on HMH and TT datasets separately
from pre-trained networks and from scratch with various YOLO models. Transfer learning
from one location HMH (Laos) to another location TT (Thailand), and vice-versa is per-
formed taking the best weights from the best model in each YOLO family to transfer the
knowledge to different locations through fine-tuning.

We evaluate the experimental results through the calculation of mAP, computational
complexity in terms of GFLOPs, and F1-score. We also calculate the total volume of plastic
in terms of estimated surface area covered by plastic objects, using the pixel size in cm
and each bounding box’s size. We also analyze the smallest and largest plastics that can be
detected by the best model. We report the results in this section.
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Table 2. Plastic detection experiment details using Houay Mak Hiao river (HMH) and Khlong Nueng
Canal (TT) datasets.

Experiment Training Dataset Testing Dataset Training Method
Models

(YOLO Family)

I

HMH TT

Scratch
YOLOv2

YOLOv2-tiny
YOLOv3

YOLOv3-tiny
YOLOv3-spp

YOLOv4
YOLOv4-tiny

YOLOv5s
YOLOv5m
YOLOv5l
YOLOv5x

II Using pre-trained model

III

TT HMH

Scratch

IV Using pre-trained model

V HMH TT Fine-tuning YOLOv5s, YOLOv4, YOLOv3-spp,
and YOLOv2 trained in II

VI TT HMH Fine-tuning YOLOv5s, YOLOv4, YOLOv3-spp,
and YOLOv2 trained in IV

VII Plastic volume estimation using pre-trained YOLOv5s in terms of surface area

3.3. Experiments I, II, III, and IV: Plastic Detection in UAV Imagery

Plastic detection results without transfer learning given in Tables 3 and 4 are for the
HMH and TT datasets, respectively.

The performance of YOLOv2-tiny is clearly worse than that of YOLOv2, YOLOv3, and
YOLOv3-tiny as small objects tend to be ignored by YOLOv2. This is likely due to the lack
of multi-scale feature maps in YOLOv2 [73]. Previous research [59] found that YOLOv2
provides mAP 47.9 with average IoU 54.7 in the plastic detection compared to 0.809 at
IoU 0.5 for YOLOv4 pre-trained here. YOLOv3-tiny scratch has the best inference time of
0.004 s when there is no detection in the HMH dataset.

In our research, the F1 is highest with a value of 0.78 for pre-trained YOLOv4,
YOLOv5s, and YOLOv5l for HMH, while the highest F1 is 0.78 and 0.61 for the TT, for pre-
trained YOLOv4 and YOLOv5s. Overall, pre-trained YOLOv5s is small, requiring 13.6 MB
for weights on disk, and has lower computational complexity than other models, requir-
ing only 16.3 GFLOPs compared to YOLOv4’s 244.2 MB model size and 59.563 GFLOPs.
Moreover, YOLOv5s takes less time to train than the other models. It exhibits fast inference
speed and produces real-time results. Because YOLOv5 is implemented in PyTorch, while
YOLOv4 requires the Darknet environment, it is slightly easier to test and deploy in the
field, though we note that both Darknet models and PyTorch models can be converted to
ONNX and deployed easily. With all of these considerations in mind, we conclude that
YOLOv5s is better than YOLOv4 for plastic detection in rivers.
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3.4. Experiment V and VI: Transfer Learning from One Location to Another

The results of the transfer learning experiments are shown in Table 5.

Table 5. Experiment V and VI results. Performance comparison between models trained from scratch,
without transfer learning, and with transfer learning by location based on mAP.

YOLO
Family

Best Model
(Pre-Trained)

Evaluation
Dataset

Mean Average Precision (mAP)

Training from
Scratch

Pretraining on COCO;
No Transfer Learning

Transfer
from

Pretraining on
COCO + Transfer

YOLOv5 YOLOv5s
HMH 0.74 0.81 TT 0.83

TT 0.53 0.61 HMH 0.62

YOLOv4 YOLOv4
HMH 0.76 0.80 TT 0.83

TT 0.54 0.60 HMH 0.61

YOLOv3 YOLOv3-spp HMH 0.59 0.79 TT 0.81
TT 0.39 0.57 HMH 0.59

YOLOv2 YOLOv2
HMH 0.58 0.72 TT 0.77

TT 0.37 0.49 HMH 0.51

Transfer learning with fine-tuning is only marginally better than transfer learning
without fine-tuning, but both are substantially better than training from scratch. Though
mAP on HMH for YOLOv4 and YOLOv5s transfer without fine-tuning is similar (0.81),
with fine-tuning, YOLOv4 shows a 3% increase in mAP compared to 1% for YOLOv5s.
The number of ground truth objects in HMH is 592 compared to 796 for TT so we see that
the model of TT transfers better than HMH with a 2.7% increase in mAP by YOLOv3-spp
to 0.81 in compared to training from scratch but still, it is less than by mAP obtained
by transfer learning using pre-trained YOLOv4 and YOLOv5s. The YOLOv3-spp model
is large (119MB) and has high computational complexity (155.7 GFLOPs) compared to
YOLOv5s (13.6 MB and 16.3 GFLOPs). YOLOv4 and YOLOv5 are also faster than YOLOv3.
Hence, considering model simplicity, speed, and accuracy, the pre-trained YOLOv5s model
for HMH is good for detection with or without transfer learning.

3.5. Experiment VII: Estimation of Plastic Volume in Different Detection Cases

Experiments I-VI lead to the conclusion that the pre-trained YOLOv5s is the best in
terms of mAP, inference time, and detection resources. The minimum and maximum size
of detected plastic objects are measured using the surface area covered by the detected
bounding box using the best pre-trained YOLOv5s model are shown in Figure 6. The
smallest and largest ground truth bounding box areas are approximately 26 cm2 and
4422 cm2 for HMH, while they are 30 cm2 and 3336 cm2 for TT, respectively.

The smallest size of plastic detected is approximately 47 cm2 in HMH, while the largest
size of plastic detected is approximately 7329 cm2, in TT. The applicable size range for
detected plastic depends not only on the models but also on the GSD. The GSD, in turn,
depends on the flight altitude and geometric properties of the camera (focal length and
sensor size) [74]. Here, we used a single camera for capturing images at both locations, so
higher spatial resolution images captured at lower altitudes using the same high-resolution
camera could improve the detection of the smaller plastic objects.
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Smallest size: 47 cm2 Largest size: 3855 cm2 Smallest size: 48 cm2 Largest size: 3234 cm2 

(a) (b) 

    

Smallest size: 150.61 cm2 Largest size: 2796 cm2 Smallest size: 48 cm2 Largest size: 7329 cm2 

(c) (d) 

Figure 6. Experiment VII results. Smallest and largest plastics detected. (a) HMH. (b) TT. (c) Transfer
from TT to HMH. (d) Transfer from HMH to TT. For reference, the actual dimensions of a 600 mL
bottle of water are 23 × 5 cm = 75 cm2.

4. Discussion

In this section, we discuss the detection results, examining specific examples of detec-
tion using the best pre-trained YOLOv5s model. We also discuss the performance of the
model under transfer to a new location.

We find that bright plastics are well detected by the Houay Mak Hiao (HMH) models,
while darker and rougher plastics are better detected by the Talad Thai (TT) models. Neither
model detects soil-covered or very bright plastic well. This result is sensible, as the HMH
data include varied types of rigid plastic objects that are bright and irregular, while the TT
data include objects that are more irregular and darker in appearance. Under both transfer
and direct training, we find that the TT dataset is more difficult than HMH. The TT dataset
has a wider variety of plastic in terms of shape, color, and size.

4.1. Analysis of Sample Plastic Detection Cases with/without Transfer Learning from HMH to TT

First, we consider transfer learning from HMH to TT. Figure 7 shows some of the good
results obtained by a model trained on HMH then fine-tuned on TT. The HMH model was
originally trained on brighter and rigid objects; hence, the brighter rigid objects in the TT
dataset are well detected. However, plastic filled with sand and soil or affected by shadow
are ignored.

Figure 8 shows some of the weak results for the HMH model fine-tuned on TT.
Amorphous plastic is detected with high confidence by the TT model but with lower
confidence by the HMH model fine-tuned on TT. The HMH model appears biased toward
rigid and bright objects.

54



Remote Sens. 2022, 14, 3049

   
(a) 

   
(b) 

Figure 7. The HMH model fine-tuned on TT performs well in some cases. (a) TT model result on TT.
(b) HMH model results on TT with fine-tuning. (Note: bar-like objects are galvanized stainless steel
roof sheets).

   
(a) 

   
(b) 

Figure 8. Fine-tuning the HMH model on TT is weak in some cases. (a) TT model result on TT.
(b) HMH model results on TT with fine-tuning. Transfer learning confidence scores are lower. (Note:
bar-like objects are galvanized stainless steel roof sheets).
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Figure 9 shows some cases in which no plastic is detected by either the TT model or
the HMH model after fine-tuning on TT. The plastic is very bright and looks like water or
sticks. Apart from the brightness, it is known that the turbidity or cloudiness of the water
also affects detection in shallow water, making plastic detection difficult [75]. Shadows and
reflections also make detection difficult [19]. Hence, image capture should be performed
under optimal weather conditions from a nadir viewing angle [76]. Unavoidable remaining
shadows in the image can be rectified through statistical analysis or by applying filters
such as gamma correction [77]. In addition, the flight height of the UAV, temperature, and
wind speed need to be considered to minimize the effects of atmospheric condition on
the images.

    

Figure 9. Both the TT model and the HMH model transferred to TT fail in some cases. Neither model
detected any plastic in these images from TT.

4.2. Analysis of Sample Plastic Detection Cases with/without Transfer Learning from TT to HMH

Next, we consider transfer learning from TT to HMH. Figure 10 shows good results
obtained by training on TT then transferring to HMH with fine-tuning. The TT model was
originally trained on the amorphous dark objects typical of the TT dataset; hence, these
types of objects in the HMH dataset are well detected, showing that model does retain
some positive bias from the initial training set.

   
(a) 

   
(b) 

Figure 10. The TT model fine-tuned on HMH performs well in some cases. (a) HMH model result on
HMH. (b) TT model results on HMH with fine-tuning.
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Figure 11 shows weak results for the TT model fine-tuned on HMH. Rigid, bright, and
colored objects are well detected with high confidence by the HMH model but with lower
confidence by the TT model fine-tuned on HMH, as the TT data are biased toward dark
irregular objects.

   
(a) 

   
(b) 

Figure 11. Fine-tuning the TT model on HMH is weak or fails in some cases. (a) HMH model result
on HMH. (b) TT model results on HMH with fine-tuning.

Figure 12 shows some cases in which no plastic is detected by either the HMH model
or the model using transfer learning from TT to HMH. Neither model detected objects that
are soil-like or bright objects floating in the water. Transparent plastic partially floating on
the water surface is particularly difficult to identify, as it is affected by the light transmitted
through and reflected by the plastic [72].

    

Figure 12. Both the HMH model and the TT model with transfer learning fail in some cases. Neither
model detected any plastic in these images.

4.3. Analysis of Performance of YOLO Models for Detection

Models generally improve in accuracy over time as new techniques are introduced,
but it is important to evaluate the various models’ effectiveness in terms of computational
complexity and operational considerations as well as in terms of accuracy. In our exper-
iments, the mAP measurements of the best pre-trained models are higher than those of
the best scratch-trained models at the same number of training epochs. The mAP results
from the pre-trained YOLOv4 and YOLOv5s models are similar, with values of 0.809 and
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0.81 in HMH, respectively, and 0.608 and 0.610 in TT, respectively. This result is consistent
with the results of research by the Roboflow team on a custom trained blood cell detection
model [78]. A custom dataset of 364 images with three classes (red blood cells, white blood
cells, and platelets) was used in their research. The researchers found that YOLOv4 and
YOLOv5s had similar performance, with 0.91 mAP @ 0.5 IoU for red blood cells and white
blood cells.

According to our method, the pre-trained YOLOv5s model outperforms other YOLO
algorithms regardless of the study area. However, the plastic in the HMH dataset appears
to be easier to detect than in the TT dataset. Training the pre-trained YOLOv5s model on
the HMH or TT dataset gives the best result that dataset in terms of speed, accuracy, and
compute resources. We also find that transfer learning improves mAP. Transfer learning
from HMH to TT with fine-tuning performs better than training on TT only in the case
of bright objects, while TT to HMH works better for dark objects. Pre-trained YOLOv4
and YOLOv5s on TT before fine-tuning on HMH shows high mAP. In other work [78],
YOLOv5s has been found to be as accurate as YOLOv4 on small datasets, while YOLOv4
can make better use of large datasets. YOLOv5s has good generalization, while YOLOv4
has more accurate localization. However, YOLOv5s is 88% smaller than YOLOv4 and easier
to deploy than YOLOv4, as the YOLOv5 implementation is based on PyTorch, making it
easier to deploy in production.

Multiple kinds of research on plastic detection in UAV images using deep learning al-
gorithms have found that plastic can be detected using deep learning techniques [72,76,79],
but choosing appropriate models is important. Research with different versions of YOLO
on object detection [80,81] have found that YOLOv3 is less capable than YOLOv4 and
YOLOV5, perhaps because YOLOv3 uses DarkNet53, which has low resolution for small
objects [44]. YOLOv4 extends YOLOv3 with the “bag of freebies” and “bag of specials,”
that substantially increase accuracy [46]. Research applying YOLOv5s and YOLOv4-tiny
models in the epipelagic layer in the ocean [60] found that YOLOv5s performed the best,
with high mAP and F1 scores. They found that the VGG19 architecture obtained the best
prediction, with an overall accuracy of 77.60% and F1 score of 77.42% [25]. The F1 score
of 77.6% is a big improvement over previous research [20] on automatic detection of litter
using Faster R–CNN, which obtained an F1 score which found an F-score of 44.2 ± 2.0%.
Consistent with these results, our research shows that YOLOv5s is a fast, efficient, and
robust model for real time plastic detection. YOLOv5 uses a Focus structure with CSP-
Darknet53 to increase speed and accuracy [81]. Compared to DarkNet53, this structure
utilizes less CUDA memory during both forward and backward propagation. YOLOv5 also
integrates an anchor box selection process that automatically selects the best anchor boxes
for training [82]. Overall, we find that the lightweight YOLOv5s is the most user-friendly
model and framework for implementing real-world plastic detection.

4.4. Challenges in Plastic Detection and Future Opportunities for Improvement

There are several challenges involved in detecting plastic in rivers. The reflectance
properties of water and other objects influences plastic detection. Previous research [83]
found that floating debris caught in river plumes can be identified as plastic when images
are analyzed by the floating debris index (FDI) and spectral signatures. Clear water is
efficient in absorbing light in the near infrared (NIR) spectrum, while floating plastic and
weeds reflect NIR. These spectral properties make floating plastic more visible depending
on the spectrum used. Seaweed absorbs shortwave infrared (SWIR) light at 1610 nm
more than seawater or plastic, but SWIR absorption has high variation due to atmospheric
correction. Timber has peak reflection in the NIR band and is also reflects strongly in the
red and SWIR ranges. These properties would help distinguish plastic litter from other
materials more effectively if hyperspectral sensors were adopted.

It is sometimes difficult to detect plastic in RGB images due to their limited spectral
range and precision [84]. A UAV with a RGB camera may be accurate enough for larger
objects but will depends on the objects having distinctive color and weather condition
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being good for the best performance [85]. UAVs with multispectral or hyperspectral sensors
can achieve centimeter-level or decimeter-level resolution while flying at an altitude of
several hundred meters and have great potential for monitoring of plastic debris [86].
Though multi-spectral and hyperspectral remote sensing is still in its early stages, it has
long-term and global potential for monitoring plastic litter, due to the broader wavelength
range and differing absorption and reflectance properties of different materials at different
wavelengths. Multispectral sensors can also improve litter categorization. Research by
Gonçalves et al. [87] used multispectral orthophotos to categorize litter types and materials
applying the sample angle mapping (SAM) technique considering five multispectral bands
(B, R, G, RedEdge, and NIR) providing a F1 score of 0.64. However, dunes, grass, and
partly buried items were challenges for the litter detection process obtaining a low number
of false positives (FP) was crucial to outputting reliable litter distribution estimates.

According to research by Guffogg et al. [88], spectral feature analysis enables detection
of synthetic material at a sub-pixel. The minimum surface cover required to detect plastic
on a sandy surface was found to be merely 2–8% for different polymer types. The use of
spectral features in the near and shortwave infrared (SWIR) regions of the electromagnetic
spectrum (800–2500 nm) that characterize plastic polymers can deal with the challenges that
occurred due to variable plastic size and shape. Spectral absorption features at 1215 nm and
1732 nm proved useful for detecting plastic in a complex natural environment in Indian
Ocean, whereas RGB video and imagery can be complicated by variable light and the color
of plastic. Other research [89] has used SWIR spectral features to find large plastics and
found that airborne hyperspectral sensors can be used to detect floating plastics covering
only 5% of a pixel. However, plastic detection can be affected by the presence of wood or
spume, and spectral feature analysis is susceptible to plastic transparency [90].

The characteristics of plastic litter in a river also affect detection quality. Plastic litter
does not have a definite shape, size, or thickness in every river. In a study of some beaches
of Maldives, more than 87% of litter objects larger than 5 cm were visible in images captured
with a UAV at 10 m altitude with a 12.4 MP camera [19]. However, on beaches and in
rivers, small plastic objects cause confusion, especially in crowded images [55], while
larger plastic items are easily identified, as they span a greater number of pixels and are
distinct from surrounding objects. Some plastics can be easily identified through color, but
color fades with time, and plastic structure can also degrade in response to exposure to
natural elements. Some plastics are flexible, with no distinct edges, and are easily occluded
by water and sand. In addition, some transparent objects that look like plastic can be
easily misclassified as plastic. Watergrass and strong sunlight reflections interfere with
riverine plastic monitoring, as do natural wood debris and algae [91–93]. Different types of
vegetation have unique roles in trapping different litter categories, and this phenomenon
can increase the difficulty of plastic litter detection [22]. However, including such images
in the training set does improve the robustness of the trained model. We therefore include
such data in the training sets in this research. Shadows also disrupt the quality of visual
information and can impair detectors [94]. It is also difficult to collect a large amount of
training data in a short period of time in real environments.

The UAV platform and the performance of its sensors are also important for obtaining
good image quality with low observation time. High-performance sensors operated at
high-altitudes can cover a broader area more quickly than a low-performance sensor
at low-altitudes [95]. The wide coverage area achievable with UAV mapping provides
more detailed information on the distribution of plastic in a given area than other survey
methods [96]. In future work, the use of hyperspectral sensors [95,97] should be explored,
as plastic reflects various wavelengths differently than other objects and materials. Imaging
conditions such as brightness, camera properties, and camera height affect the quality of
the image. It is also difficult to obtain high quality marine plastic litter monitoring data
under different wind speeds and river velocities. Such operating conditions can affect
plastic detection accuracy by 39% to 75% [98]. Detection of plastics is easier when the study
area has a homogenous substrate on the riverbank.
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In summary, plastic detection and monitoring is highly dependent on plastic character-
istics and imaging conditions. The global orthomap could be combined with the grid-wise
plastic litter detections over the whole study region to create detailed litter maps that would
guide stakeholders in effective management of plastic litter.

5. Conclusions

In this paper, we have examined the performance of object detection models in the
YOLO family for plastic detection in rivers using UAV imagery with reasonable computing
resources. Pre-trained deep learning YOLO models transfer well to plastic detection in
terms of precision and speed of training. YOLOv5s is small size with low computational
complexity and fast inference speeds, while YOLOv4 is better at localization. Transfer
learning with fine-tuning using YOLOv5s improves plastic detection. Hence, we find the
pre-trained YOLOv5s model most useful for plastic detection in rivers in UAV imagery.

We make the following main observations from the experiments.

1. Our experiments provide insight into the spatial resolution needed by UAV imaging
and computational capacity required for deep learning of YOLO models for precise
plastic detection.

2. Transfer learning from one location to another with fine-tuning improves performance.
3. Detection ability depends on a variety of features of the objects imaged including the

type of plastic, as well as its brightness, shape, size, and color.
4. The datasets used in this research can be used as references for detection of plastic in

other regions as well.

This research introduces a simple to use and efficient model for effective plastic detec-
tion and examines the applicability of transfer learning based on the nature of the available
plastic samples acquired during a limited period of time. The study should provide plastic
management authorities with the means to perform automated plastic monitoring in rivers
in inaccessible areas of rivers using deep learning techniques. Furthermore, the research
was carried out over limited river stretches during a specific limited period of time. Hence,
a UAV survey with wide coverage area and longer flight time may add more prominent
data, which would in turn enhance the performance of the detection of plastic.
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Abbreviations

The abbreviations including in the text are reported alphabetically.

AP Average Precision
AUVs Autonomous Underwater Vehicles
CNNs Convolutional Neural Networks
COCO Microsoft Common Objects in Context
CSM Class-specific Semantic enhancement Module
CSP Cross Stage Partial
DETR Detection Transformer
DL Deep Learning
FDI Floating Debris Index
FN False Negative
FP False Positive
FPS Floating Point Systems
GFLOPs One billion Floating-point Operations Per Second
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
GSD Ground Sampling Distance
HMH Houay Mak Hiao
ILSVRC2013 ImageNet Large Scale Visual Recognition Challenge 2013
IoU Intersection over Union
J-EDI JAMSTEC E-Library of Deep-sea Images
mAP Mean Average Precision
NIR Near Infrared
PANet Path Aggregation Network
R-CNN Region-Based Convolutional Neural Networks
RNN Recurrent Neural Network
R2 IPoints Rotation-Insensitive Points
ROVs Remotely Operated Vehicles
SAM Sample Angle Mapping
SPP Spatial Pyramid Pooling
SRM Stacked rotation convolution module
SSD Single Shot Detector
SWIR Short-wave Infrared
TP True Positive
TT Talad Thai
TACO Trash Annotations in Context Dataset
UAVs Unmanned Aerial Vehicles
UNEP United Nations Environment Programme
VGG-16 Visual Geometry Group-16
YOLO You Only Look Once
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Abstract: Rotated object detection in aerial images is still challenging due to arbitrary orientations,
large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated
object detection methods mainly rely on angle-based detectors. However, angle-based detectors
can easily suffer from a long-standing boundary problem. To tackle this problem, we propose a
purely angle-free framework for rotated object detection, called Point RCNN. Point RCNN is a
two-stage detector including both PointRPN and PointReg which are angle-free. Given an input
aerial image, first, the backbone-FPN extracts hierarchical features, then, the PointRPN module
generates an accurate rotated region of interests (RRoIs) by converting the learned representative
points of each rotated object using the MinAreaRect function of OpenCV. Motivated by RepPoints,
we designed a coarse-to-fine process to regress and refine the representative points for more accurate
RRoIs. Next, based on the learned RRoIs of PointRPN, the PointReg module learns to regress and
refine the corner points of each RRoI to perform more accurate rotated object detection. Finally,
the final rotated bounding box of each rotated object can be attained based on the learned four
corner points. In addition, aerial images are often severely unbalanced in categories, and existing
rotated object detection methods almost ignore this problem. To tackle the severely unbalanced
dataset problem, we propose a balanced dataset strategy. We experimentally verified that re-sampling
the images of the rare categories can stabilize the training procedure and further improve the
detection performance. Specifically, the performance was improved from 80.37 mAP to 80.71 mAP
in DOTA-v1.0. Without unnecessary elaboration, our Point RCNN method achieved new state-of-
the-art detection performance on multiple large-scale aerial image datasets, including DOTA-v1.0,
DOTA-v1.5, HRSC2016, and UCAS-AOD. Specifically, in DOTA-v1.0, our Point RCNN achieved
better detection performance of 80.71 mAP. In DOTA-v1.5, Point RCNN achieved 79.31 mAP, which
significantly improved the performance by 2.86 mAP (from ReDet’s 76.45 to our 79.31). In HRSC2016
and UCAS-AOD, our Point RCNN achieved higher performance of 90.53 mAP and 90.04 mAP,
respectively.

Keywords: rotated object detection; angle-based detector; angle-free framework; rotated region of
interests (RRoIs); representative points

1. Introduction

Object detection has been a fundamental task in computer vision and has progressed
dramatically in the past few years using deep learning. It aims to predict a set of bounding
boxes and the corresponding categories in an image. Modern object detection methods of
natural images can be categorized into two main categories: two-stage detectors, exempli-
fied by Faster RCNN [1] and Mask RCNN [2], and one-stage detectors, such as YOLO [3],
SSD [4], and RetinaNet [5].

Although object detection has achieved significant progress in natural images, it still
remains challenging for rotated object detection in aerial images, due to the arbitrary
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orientations, large scale and aspect ratio variations, and extreme density of objects [6].
Rotated object detection in aerial images aims to predict a set of oriented bounding boxes
(OBBs) and the corresponding classes in an aerial image, which serves an important role
in many applications, e.g., urban management, emergency rescue, precise agriculture,
automatic monitoring, and geographic information system (GIS) updating [7,8]. Among
these applications, antenna systems are very important for object detection, and many
excellent examples [9–11] have been proposed.

Modern rotated object detectors can be divided into two categories in terms of the
representation of OBB: angle-based detectors and angle-free detectors.

In angle-based detectors, an OBB of a rotated object is usually represented as a five-
parameter vector (x, y, w, h, θ). Most existing state-of-the-art methods are angle-based
detectors relying on two-stage RCNN frameworks [12–16]. Generally, these methods use
an RPN to generate horizontal or rotated region of interests (RoIs), then a designed RoI
pooling operator is used to extract features from these RoIs. Finally, an RCNN head is
used to predict the OBB and the corresponding classes. Compared to two-stage detectors,
one-stage angle-based detectors [17–21] directly regress the OBB and classify them based
on dense anchors for efficiency. However, angle-based detectors usually introduce a long-
standing boundary discontinuity problem [22,23] due to the periodicity of the angle and the
exchange of edges. Moreover, the unit between (x, y, w, h) and angle θ of the five-parameter
representation is not consistent. These obstacles can cause the training to be unstable and
limit the performance.

In contrast to angle-based detectors, angle-free detectors usually represent a rotated
object as an eight-parameter OBB (x1, y1, x2, y2, x3, y3, x4, y4), which denotes the four corner
points of a rotated object. Modern angle-free detectors [24–27] directly perform quadri-
lateral regression, which is more straightforward than the angle-based representation.
Unfortunately, although abandoning angle regression and the parameter unit is consistent,
the performance of existing angle-free detectors is still relatively limited.

How to design a more straightforward and effective framework to alleviate the bound-
ary discontinuity problem is the key to the success of rotated object detectors.

However, all the above methods use predefined (rotated) anchor boxes, whether angle-
based or using angle-free methods. Compared to anchor boxes, representation points can
provide more precise object localization, including shape and pose. Thus, the features
extracted from the representative points may be less influenced by background content
or uninformative foreground areas that contain little semantic information. In this paper,
based on the learning of representative points, we propose a purely angle-free framework
for rotated object detection in aerial images, called Point RCNN, which can alleviate the
boundary discontinuity problem and attain state-of-the-art performance. Our Point RCNN
is a two-stage detector and mainly consists of an RPN (PointRPN) and an RCNN head
(PointReg), which are both angle-free. PointRPN serves as an RPN network. Given an input
feature map, first, PointRPN learns a set of representative points for each feature point in a
coarse-to-fine manner. Then, a rotated RoI (RRoI) is generated through the MinAreaRect

function of OpenCV [28]. Finally, serving as an angle-free RCNN head, PointReg applies a
rotate RoI Align [13,15] operator to extract RRoI features, and then refines and classifies
the eight-parameter OBB of the corner points. In addition, the existing methods almost
ignore the category imbalance in aerial images, and we propose to resample images of rare
categories to stabilize convergence during training.

The main contributions of this paper are summarized as follows:

• We propose Point RCNN, a purely angle-free framework for rotated object detection
in aerial images. Without introducing angle prediction, Point RCNN is able to address
the boundary discontinuity problem.

• We propose PointRPN as an RPN network, which aims to learn a set of representative
points for each object of interest, and can provide better detection recall for rotated
objects in aerial images.
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• We propose PointReg as an RCNN head, which can responsively regress and refine
the four corners of the rotated proposals generated by PointRPN.

• Aerial images are usually long-tail distributed. We further propose to resample images
of rare categories to stabilize training and improve the overall performance.

• Compared with state-of-the-art methods, extensive experiments demonstrate that our
Point RCNN framework attains higher detection performance on multiple large-scale
datasets and achieves new state-of-the-art performance.

2. Materials and Methods

2.1. Related Work
2.1.1. Horizontal Object Detection

In the past decade, object detection has become an important computer vision task
and has received considerable attention from academia and industry. Traditional methods
use hand-crafted features (e.g., HoG, SIFT) to solve detection as classification on a set of
candidate bounding boxes. With the development of deep convolutional neural networks
(CNN), modern horizontal object detection methods can be mainly categorized into three
types: two-stage detectors, one-stage detectors, and recent end-to-end detectors.

One line of research focuses on two-stage detectors [2,29–33], which first generate a
sparse set of regions of interests (RoIs) with a region proposal network (RPN), and then
perform classification and bounding box regression. While two-stage detectors still attract
much attention, another line of research focuses on developing efficient one-stage detectors
due to their much simpler and cleaner design [3–5,34–37], in which SSD [4] and YOLO [3]
are the fundamental methods that use a set of pre-defined anchor boxes to predict object cat-
egory and anchor box offsets. Note that anchors were first proposed in the RPN module of
faster RCNN to generate proposals. Recently, more studies [38,39] that use bounding boxes
for object detection have been reported. In addition, effort has been spent on designing
anchor-free detectors [35,40]. FCOS [35] and Foveabox [40] use the center region of targets
as positive samples. In addition, FCOS introduces the so-called centerness score to make
non-maximum suppression (NMS) more accurate. The authors of [41] propose an adaptive
training sample selection (ATSS) scheme to automatically define positive and negative
training samples. PAA [42] involves a probabilistic anchor assignment strategy, leading
to easier training compared to heuristic IoU hard-label assignment strategies. In addition
to improve the assignment strategy of FCOS, efforts has been devoted to the detection
features [43] and loss functions [44] to further boost anchor-free detector performance.

Very recently, several studies have proposed end-to-end frameworks for horizontal
object detection by removing NMS from the pipeline. DETR [45] introduces a transformer-
based attention mechanism to object detection. Essentially the sequence-to-sequence
learning task in [46] was solved in parallel by a self-attention-based transformer rather than
RNN. Deformable DETR [47] accelerates the training convergence of DETR by proposing
to only attend to a small set of key sampling points. DeFCN [48] adopts a one-to-one
matching strategy to enable end-to-end object detection based on a fully convolutional
network with competitive performance. PSS [49] involves a compact and plug-in PSS head
to eliminate heuristic NMS and achieve better performance.

2.1.2. Rotated Object Detection

With the development of deep-learning technology, rotated object detection in aerial
images has achieved great success in the past few years, especially with the release of the
largest aerial image dataset DOTA [6], which has become a standard benchmark and has
significantly boosted the development of rotated object detectors. In terms of the represen-
tation of the oriented bounding box (OBB), modern rotated object detectors can be mainly
divided into two categories: angle-based detectors and angle-free detectors. As depicted in
Figure 1, we show the main differences between angle-based detectors and angle-free
detectors. Figure 1a shows the learning targets (x, y, w, h, θ) of angle-based detectors, where
(x, y) denote the coordinates of the center points, (w, h) denote the shorter and longer edges
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of the rotated bounding box, and θ denotes the angle between the longer edge and the
horizontal axis. Figure 1b shows the learning targets (x1, y1, x2, y2, x3, y3, x4, y4) of angle-
free detectors, which represent the coordinates of four corner points of a rotated bounding
box. Compared to angle-based detectors, angle-free detectors are more efficient since they
are more straightforward and can alleviate the boundary discontinuity problem without
introducing angle prediction.

Figure 1. Comparison of angle-based and angle-free detectors.

Angle-based detectors: Figure 2 illustrates three different methods for generating
RRoIs: (a) and (b) denote two classical and mainstream RRoI generating methods. As shown
in Figure 2a, one line of early research in the generation of RRoIs is the rotated region
proposal network (rotated RPN) [17,18], which sets 54 anchors with different scales, angles,
and aspect rations (three scales × six angles × three ratios) on each location to cover
oriented objects. With the help of densely rotated anchors, the detection recall performance
is thus improved. However, the introduction of massive rotated anchors increases the
computational complexity and memory consumption, which limits the application of these
methods. To tackle this issue, as shown in Figure 2b, the RoI transformer [13] proposes
that RRoIs learn from horizontal RoIs by transforming default horizontal RoIs into RRoIs.
The RoI transformer avoids introducing abundant anchors; however, it involves RPN,
RoI alignment and regression, which are also complex processes. R2CNN [12] proposes
the detection of the horizontal and rotated bounding box simultaneously with multi-task
learning. SCRDet [14] enhances features with an attention module and proposes an IoU-
smooth L1 loss to alleviate the loss discontinuity issue. SCRDet++ [23] extends SCRDet with
image-level and instance-level de-noising modules to enhance the detection of small and
cluttered objects. CSL [19] reformulates angle prediction from regression to classification
to alleviate the discontinuous boundary problem. GWD [50] and KLD [51] propose a
more efficient loss function for OBB regression. R3Det [20] proposes a refined single-stage
rotation detector for fast and accurate object detection using a progressive regression
approach from coarse to fine granularity. Constraint loss [52] proposes a decoupling
modulation mechanism to overcome the problem of sudden changes in loss. S2A-Net [21]
proposes a single-shot alignment network to realize full feature alignment and alleviates
the inconsistency between regression and classification. Recently, ReDet [15] has proposed
the use of a rotation-equivariant network to encode rotation equivariance explicitly and
presents a rotation-invariant RoI aligned to extract rotation-invariant features. The oriented
RCNN [16] proposes a two-stage detector that consists of an oriented RPN for generating
the RRoI and an oriented RCNN for refining the RRoI. Both ReDet and the oriented RCNN
provide promising accuracy.

However, the boundary problem in the angle regression learning still causes training to be
unstable and limits the performance. While angle-based detectors still find many applications,
angle-free methods are receiving more and more attention from the research community.

Angle-free detectors: Textboxes++ [53] directly predict arbitrarily oriented word
bounding boxes via a regression model by quadrilateral representation. ICN [24] proposes
to directly estimate the four vertices of a quadrilateral to regress an oriented object based
on an image pyramid and feature pyramid. RSDet [25] and gliding vertex [26] achieve
more accurate rotated object detection via directly quadrilateral regression prediction. LR-
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TSDet [8] proposes an effective tiny ship detector for low-resolution remote-sensing images
based on horizontal bounding box regression. TPR-R2CNN [54] proposes an improved
R2CNN based on a double-detection head structure and a three-point regression method.
Recently, BBAVectors [27] have extended the horizontal keypoint-based object detector
to an oriented object detection task. CFA [55] proposes a convex-hull feature adaptation
approach for configuring convolutional features. Compared to angle-based methods, angle-
free detectors are more straightforward and can alleviate the boundary problem to a large
extent. However, the performance of current angle-free oriented object detectors is still
relatively limited.

Figure 2. Comparison of different methods for generating rotated RoI (RRoI). (a) Rotated RPN
places multiple rotated anchors with different angles, scales, and aspect ratios. (b) RoI transformer
proposes an RRoI learner to model the RRoI from the horizontal RoI (HRoI) for each feature point
based on 3 anchors. (c) Our proposed PointRPN generates accurate RRoI in an anchor-free and
angle-free manner.

In this paper, we propose an effective angle-free framework for rotated object detection,
called Point RCNN, which mainly consists of an RPN network (PointRPN) and an RCNN
head (PointReg). Compared to the methods of Figure 2a,b, our proposed PointRPN
generates accurate RRoIs in an anchor-free and angle-free manner. Specifically, PointRPN
directly learns a set of implicit representative points for each rotated object. Based on
these points, RRoIs can be easily attained with the MinAreaRect function of OpenCV.
Without introducing anchors and angle regression, PointRPN becomes more efficient
and accurate.

2.2. Methods

The overall structure of our Point RCNN is depicted in Figure 3. We start by revis-
iting the boundary discontinuity problem of angle-based detectors. Then, we describe
the overall pipeline of Point RCNN. Finally, we elaborate the PointRPN and PointReg
modules, and propose a balanced dataset strategy to rebalance the long-tailed datasets
during training.

Figure 3. The overall pipeline of the proposed angle-free Point RCNN framework for rotated object
detection. Point RCNN mainly consists of two modules: PointRPN for generating rotated proposals,
and PointReg for refining for more accurate detection. “RRoI” denotes rotated RoI, “FC” denotes
fully-connected layer, “C” and “B” represent the predicted category and rotated box coordinates of
each RRoI, respectively.
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2.2.1. Boundary Discontinuity Problem

The boundary discontinuity problem [22,23] is a long-standing problem that has
existed in angle-based detectors. Taking the commonly used five-parameter OBB repre-
sentation (x, y, w, h, θ) as an example, where (x, y) represent the center coordinates, (w, h)
represent the shorter and longer edges of the bounding box, and θ represents the angle
between the longer edge and the horizontal axis. As shown in Figure 4, when the target
box is approximately square, a slight variation in edge length may cause w and h to swap,
leading to a substantial variation in π/2 in angle θ.

This boundary discontinuity issue in angle prediction will confuse the optimization of
the network and limit the detection performance.

Figure 4. Boundary discontinuity problem of angle prediction. The red and yellow bounding boxes
indicate two different targets. Although the two square-like targets have slightly different edge (w
and h) lengths, there is a huge gap between the angle target θ.

2.2.2. Overview

To tackle the boundary problem in angle regression, in this paper, we propose a
straightforward and efficient angle-free framework for rotated object detection. Instead
of predicting the angle, as many previous angle-based two-stage methods do [13,15,16],
our proposed Point RCNN reformulates the oriented bounding box (OBB) task as learning
the representative points of the object in the RPN phase and modeling the corner points
in the RCNN refine phase, which are both totally angle-free. Figure 5 shows the entire
detection process, from the representative point learning to the final refined four corners of
the oriented object.

Figure 5. Illustration of the detection process of the Point RCNN framework. (a) denotes the predicted
representative points with the PointRPN module. (b) denotes the conversion from the representative
points to the rotated proposals. (c) denotes the refinement process of the corner points with the
PointReg module.

The overall pipeline of Point RCNN is shown in Figure 3. During training, Backbone-
FPN first extracts pyramid feature maps given an input image. Then, PointRPN performs
representative points regression and generates a pseudo-OBB for the rotated RoI (RRoI).
Finally, for each RRoI, PointReg regresses and refines the corner points and classifies them
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for final detection results. Furthermore, we propose to resample images of rare categories
to stabilize training and further improve the overall performance.

The overall training objective is described as:

L = LPointRPN + LPointReg, (1)

where LPointRPN denotes the losses in PointRPN, and LPointReg denotes the losses in
PointReg. We will describe them in detail in the following sections.

2.2.3. PointRPN

Existing rotated object detection methods generate rotated proposals indirectly by
transforming the outputs of RPN [1] and suffer from the boundary discontinuity problem
caused by angle prediction. For example, Refs. [13,15] use an RoI transformer to convert
horizontal proposals to rotated proposals with an additional angle prediction task. Unlike
these methods, in this paper, we propose to directly predict the rotated proposals with
representative point learning. The learning of points is more flexible, and the distribution
of points can reflect the angle and size of the rotated object. The boundary discontinuity
problem can thus be alleviated without angle regression.

Representative Points Prediction: Inspired by RepPoints [37] and CFA [55], we pro-
pose PointRPN to predict the representative points in the RPN stage. The predicted points
can effectively represent the rotating box and can be easily converted to rotated proposals
in subsequent RCNN stages.

As shown in Figure 6, PointRPN learns a set of representative points for each feature
point. In order to make the features adapt more effectively to the representative points
learning, we adopt a coarse-to-fine prediction approach. In this way, the features are refined
with deformable convolutional networks (DCN) [56] and predicted offsets in the initial
stage. For each feature point, the predicted representative points of the two stages are
as follows:

Rinit = {(x0
i + Δx0

i , y0
i + Δy0

i )}K
i=1,

Rre f ine = {(x1
i + Δx1

i , y1
i + Δy1

i )}K
i=1,

(2)

where K denotes the number of predicted representative points and we set K = 9 by default.
{(x0

i , y0
i )}K

i=1 denotes the initial location, {(Δx0
i , Δy0

i )}K
i=1 denote the learned offsets in the

initial stage, and {(Δx1
i , Δy1

i )}K
i=1 denote the learned offsets in the refine stage.

Figure 6. The structure of the proposed PointRPN. The red points are the learned representative
points, and the green polygon represents the converted convex-hull. The red dotted OBB is converted
from the representative points with the MinAreaRect function of OpenCV [28] for generating RRoI.
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Label Assignment: PointRPN predicts representative points for each feature point
in the initial and refine stages. This section will describe how we determine the positive
samples among all feature points for these two stages.

For the initial stage (see the initial stage in Figure 6), we project each ground-truth box
to the corresponding feature level li according to its area, and then select the feature point
closest to its center as the positive sample. The rule used for projecting the ground-truth
box b∗i to the corresponding feature level is defined as:

li = log2

(√
wihi

s

)
, (3)

where s is a hyper-parameter and is set to 16 by default. wi and hi are the width and
height of the ground-truth box b∗i . The calculated li will be further limited to the range
of [3, 7], since we make predictions for the five feature levels of (P3, P4, P5, P6, P7). It is
beneficial to optimize the overall detector by placing objects with different scales into
different feature levels.

For the refine stage (see the refine stage in Figure 6), considering that the initial stage
can already provide coarse prediction, we use the predicted representative points from
the initial stage to help determine the positive samples for refined results. To be specific,
for each feature point with its corresponding predictionRinit, if the maximum convex-hull
GIoU (defined in Equation (6)) betweenRinit and ground-truth boxes exceeds the threshold
τ, we select this feature point as a positive sample. We set τ = 0.1 in all our experiments.

Optimization: The optimization of the proposed PointRPN is driven by classification
loss and rotated object localization loss. The learning objective is formulated as follows:

LPointRPN = λ1
+Linit

loc + λ2 Lre f ine
cls + λ3

+Lre f ine
loc , (4)

where λ1, λ2, and λ3 are the trade-off parameters and are set to 0.5, 1.0, and 1.0 by default,
respectively. +Linit

loc denotes the localization loss of the initial stage. Lre f ine
cls and +Lre f ine

loc
denote the classification loss and localization loss of the refine stage. Note that the classifi-
cation loss is only calculated in the refine stage, and the two localization losses are only
calculated for the positive samples.

In the initial stage, the localization loss is calculated between the convex-hulls con-
verted from the learned points Rinit and the ground-truth OBBs, respectively. We use
convex-hull GIoU loss [55] to calculate the localization loss:

+Linit
loc =

1
N0

pos
∑

i

(
1−CIoU

(
Γ(Rinit

i ), Γ(b∗i )
))

, (5)

where N0
pos indicates the number of positive samples of the initial stage. b∗i is the matched

ground-truth OBB. CIoU represents the convex-hull GIoU between the two convex-hulls
Γ(Rinit

i ) and Γ(b∗i ), which are differential and can be calculated as follows:

CIoU
(
Γ(Rinit

i ), Γ(b∗i )
)
=

∣∣Γ(Rinit
i ) ∩ Γ(b∗i )

∣∣∣∣Γ(Rinit
i ) ∪ Γ(b∗i )

∣∣ −
∣∣Pi \

(
Γ(Rinit

i ) ∪ Γ(b∗i )
)∣∣

Pi
, (6)

where the first term denotes the convex-hull IoU, and Pi denotes the smallest enclosing
convex object area of Γ(Rinit

i ) and Γ(b∗i ). Γ(·) denotes Jarvis’s march algorithm [57] used
to calculate the convex-hull from points.

The learning of the refine stage, which is responsible for outputting more accurate
rotated proposals, is driven by both classification loss and localization loss. Lre f ine

cls is a
standard focal loss [5], which can be calculated as:

Lre f ine
cls =

1
N1

pos
∑

i
FL(pi, c∗i ), (7)
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FL(pi, c∗i ) =
{
−α(1− pi)

γ log(pi), if c∗i > 0;
−(1− α)pγ

i log(1− pi), otherwise,
(8)

where N1
pos denotes the number of positive samples in the refine stage, pi and c∗i are the

classification output and the assigned ground-truth category, respectively. α and γ are
hyper-parameters and are set to 0.25 and 2.0 by default. The localization loss Lre f ine

loc is
similar to Equation (5) and can be formulated as:

+Lre f ine
loc =

1
N1

pos
∑

i

(
1−CIoU

(
Γ(Rre f ine

i ), Γ(b∗i )
))

. (9)

With the refined representative points, the pseudo-OBB (see red-dotted OBB in
Figure 6) is converted using the MinAreaRect function of OpenCV [28], which is then
used for generating the RRoI for PointReg.

2.2.4. PointReg

Corner Points Refine: The rotated proposals generated by PointRPN already provide
a reasonable estimate for the target rotated objects. To avoid the problems caused by angle
regression and to further improve the detection performance, we refine the four corners of
the rotated proposals in the RCNN stage. As shown in Figure 7, with the rotated proposals
as input, we use an RRoI feature extractor [13,15] to extract the RRoI features. Then, given
the RRoI features, two consecutive fully connected and ReLU layers are used to encode the
RRoI features. Finally, two fully connected layers are responsible for predicting the class
probability P and refined corners C of the corresponding rotated object. The refined corner
points can be represented as follows:

C = {(xi + Δxi, yi + Δyi)}4
i=1, (10)

where {(xi, yi)}4
i=1 denotes the four corner coordinates of the input rotated proposals,

and we denote the corresponding four predicted corner offsets as {(Δxi, Δyi)}4
i=1.

In PointReg, instead of directly performing angle prediction, we refine the four corners
of the input rotated proposals. There are three advantages of adopting corner points refine-
ment: (1) it can alleviate the boundary discontinuity problem caused by angle prediction;
(2) the parameter units are consistent among the eight parameters {(xi, yi)}4

i=1; and (3) it is
possible to improve the localization accuracy using a coarse-to-fine approach.

Figure 7. The diagram of the proposed PointReg. For simplicity, we only show the first stage of
PointReg. The blue and red points represent the four corner points of the input RRoI and the refined
results, respectively.

We can easily extend PointReg to a cascade structure for better performance. As shown
in Figure 3, in the cascade structure, the refined rotated proposals of the previous stage are
used as the input of the current stage.

Optimization: The learning of PointReg is driven by the classification loss and the
rotated object localization loss:
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LPointReg = μ1Lcls + μ2
+Lloc, (11)

where μ1 and μ2 are the trade-off coefficients and are both set to 1.0 by default. Lcls indicates
the classification loss, which is a standard cross-entropy loss:

Lcls = − 1
N ∑

i

C

∑
c=0

Yi→c log(Pi), (12)

where N denotes the number of training samples in PointReg, C is the number of categories
excluding the background, Pi is the predicted classification probability of the ith RRoI.
Yi→c = 1 if the ground-truth class of the ith RRoI is c; otherwise it is 0. +Lloc represents the
localization loss between the refined corners and the corners of the ground-truth OBB. We
use L1 loss to optimize the corner points refinement learning which can be calculated as:

+Lloc =
1
N ∑

i
|Ci − ϑ(b∗i )|, (13)

where we let Ci(= {(xj, yj)}4
j=1) denote the refined corners for the ith rotated proposal, let

b∗i (= {(x∗j , y∗j )}4
j=1) denote the corners of the matched ground-truth OBB. ϑ(b∗i ) denotes

the permutation of four corners of b∗i with the smallest L1 loss
∣∣Ci − ϑ(b∗i )

∣∣, which can
alleviate the sudden loss change issue in angle-free detectors. Note that +Lloc is only
calculated for positive training samples.

2.2.5. Balanced Dataset Strategy

The extremely non-uniform object densities of aerial images usually make the dataset
long-tailed, which may cause the training process to be unstable and limit the detec-
tion performance. For instance, DOTA-v1.0 [6] contains 52, 516 ship instances but only
678 ground-track field instances [7]. To alleviate this issue, in this section, we propose a
balanced dataset strategy. Specifically, we resample the images of rare categories, which
was inspired by [58]. More concretely, first, for each category c ∈ C, we compute the
fraction of images Fc that contains this category. Then, we compute the category-level
repeat factor for each category:

rc = max(1.0,
√

βthr/Fc), (14)

where βthr is a threshold which indicates that there will not be oversampling if “Fc > βthr”.
Next, we compute the image-level repeat factor rI for each image I:

rI = max
c∈CI

(rc), (15)

where CI denotes the categories contained in image I. Finally, we can resample the images
according to the image-level repeat factor. In other words, those images that contain
long-tailed categories will have a greater chance of being resampled during training.

3. Results

In this section, we describe the dataset, evaluation protocol, implementation de-
tails, and demonstrate an overall evaluation and describe detailed ablation studies of the
proposed method.

3.1. Datasets

To evaluate the effectiveness of our proposed Point RCNN framework, we performed
experiments on four popular large-scale oriented object detection datasets: DOTA-v1.0 [6],
DOTA-v1.5, HRSC2016 [59], and UCAS-AOD [60], which are widely used for rotated object
detection. The statistic information comparison of these datasets is depicted in Table 1.

DOTA [6] is a large-scale and challenging aerial image dataset for oriented object de-
tection with three released versions: DOTA-v1.0, DOTA-v1.5 and DOTA-v2.0. To compare
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the performance with the state-of-the-art methods, we performed experiments on DOTA-
v1.0 and DOTA-v1.5. DOTA-v1.0 contains 2806 images ranging in size from 800 × 800 to
4000 × 4000, and contains 188, 282 instances in 15 categories, abbreviated as: Bridge (BR),
Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small vehicle (SV), Large vehicle
(LV), Baseball diamond (BD), Ground track field (GTF), Tennis court (TC), Basketball court
(BC), Soccer-ball field (SBF), Roundabout (RA), Swimming pool (SP), and Storage tank (ST).
The dataset is divided into a training set, validation set, and test set, which account for one
half, one sixth, and one third of the total dataset, respectively. DOTA-v1.5 is an updated
version of DOTA-v1.0. It has the same images as DOTA-v1.0 but contains 402, 089 instances.
DOTA-v1.5 has revised and updated the annotation of objects, where many small object
instances about or below 10 pixels that were missed in DOTA-v1.0 have been additionally
annotated. This is a more challenging dataset, which introduces a new category Container
Crane (CC) and more small instances. For a fair comparison, we used the training set and
validation set for training, and the test set was used to verify the performance of our model.
The performances were obtained by submitting the prediction results to DOTA’s evaluation
server. The official evaluation protocol of the DOTA dataset in terms of the mAP was used.

Table 1. The statistic information comparison of the datasets. OBB denotes the oriented bounding box.

Dataset Source Annotation Categories Instances Images Year

UCAS-AOD [60] Google Earth OBB 2 14,596 1510 2015
HRSC2016 [59] Google Earth OBB 1 2976 1061 2016
DOTA-v1.0 [6] multi source OBB 14 188,282 2806 2018

DOTA-v1.5 multi source OBB 15 402,089 2806 2019

HRSC2016 [59] is another popular dataset for oriented object detection. The images
of this dataset were mainly collected from two scenarios, including ships on the sea and
ships close to the shore. The dataset contains 1061 aerial images with size ranges from
300 × 300 to 1500 × 900, with most larger than 1000 × 600. There are more than 25 types
of ships with large varieties in scale, position, rotation, shape, and appearance. This
dataset can be divided into a training set, validation set and test set. There are 436 images,
181 images, and 444 images in the training set, validation set and test set, respectively. For a
fair comparison, we used both the training and validation sets for training. The standard
evaluation protocol of HRSC2016 dataset in terms of mAP was used.

UCAS-AOD [60] is another dataset for small oriented object detection with two categories
(car and plane), which contains 1510 aerial images with 510 car images and 1000 airplane im-
ages. There are 14,596 instances in total, and the image size is approximately
659 × 1280. For a fair comparison, equivalent to the UCAS-AOD-benchmark (https:
//github.com/ming71/UCAS-AOD-benchmark, accessed on 29 March 2022), we also
divided the dataset into 755 images for training, 302 images for validation, and 453 images
for testing with a ratio of 5:2:3. The standard evaluation protocol of the UCAS-AOD dataset
in terms of mAP was used.

3.2. Implementation Details

We implemented Point RCNN using the MMDetection tool-box [61]. We followed
ReDet [15] to use ReResNet with ReFPN as our backbone (ReR50-ReFPN), which has
shown the ability to extract rotation-equivariant features. We also verified with the more
generalized transformer backbone (Swin-Tiny) to show the generalization and scalability
of our Point RCNN framework.

For the DOTA dataset, following previous methods [13,15,21], we cropped the images
to 1024 × 1024 with 824 pixels as a stride and we also resized the image to three scales
{0, 5, 1.0, 1.5} to prepare multi-scale data. Random horizontal flipping and random rotation
([−45◦, 45◦]) were adopted as the data augmentation for multi-scale training. For the
HRSC2016 dataset, as in the previous method [15], we resized all the images to (800, 512),
and we used random horizontal flipping as the data augmentation method during training.
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For the UCAS-AOD dataset, following the UCAS-AOD-benchmark, we resized all the
images to (800, 800) and only used the training set for training. We also used random
horizontal flipping, HSV augment and random rotation as the data augmentation approach
during training. Unless otherwise specified, we trained all the models with 19 epochs for
DOTA, 36 epochs for HRSC2016, and 36 epochs for UCAS-AOD. Specifically, we trained
all the models using the AdamW [62] optimizer with β1 = 0.9 and β2 = 0.999. The initial
learning rate was set to 0.0002 with warming up for 500 iterations, with the learning rate
decaying by a factor of 10 at each decay step. The weight decay was set to 0.05, and the
mini-batch size was set to 16 (two images per GPU). We conducted the experiments on a
server with 8 Tesla-V100 GPUs. The code will be released.

3.3. Main Results

We compared our Point RCNN framework with other state-of-the-art methods for four
datasets: DOTA-v1.0, DOTA-v1.5, HRSC2016, and UCAS-AOD. As shown in Tables ??–5,
without unnecessary elaboration, our Point RCNN demonstrated superior performance
compared to state-of-the-art methods.

Results on DOTA-v1.0: As reported in Table ??, we first evaluated our method on
the DOTA-v1.0 dataset and compared it with the popular and the state-of-the-art rotated
object detection methods. We obtained the overall detection performance by submitting
our results to the official DOTA-v1.0 evaluation server. In this comparison experiment,
we compared many classic and impressive methods [13,19,21,23,26,27,55,63–65] and some
state-of-the-art methods, e.g., Oriented RCNN [16] and ReDet [15].

As shown in Table ??, our Point RCNN method achieved new, state-of-the-art, de-
tection performance against the comparison methods. More specifically, with the ReR50-
ReFPN backbone, our Point RCNN improved the detection performance by 0.61 mAP
against ReDet (form 80.10 to 80.71). Compared with Oriented RCNN, Point RCNN im-
proved the performance by about 0.2 mAP. We observed that, with the proposed balanced
dataset strategy, our Point RCNN was able to improve the performance by 0.34 mAP (from
80.37 to 80.71), which confirms that the extremely non-uniform rotated object densities of
aerial images do limit detection performance.

In addition, we also evaluated our Point RCNN with the more generalized transformer
backbone Swin-Tiny [66] (Swin-T). The Swin transformer [66] is a new vision transformer,
which has been used as a general backbone of computer vision in recent years. Our
proposed Point RCNN was able to further improve the performance by 0.61% (from 80.71
to 81.32), indicating that Point RCNN is scalable to general backbone networks.

Results on DOTA-v1.5: As reported in Table 3, we then evaluated our method on the
DOTA-v1.5 dataset, which is a more challenging dataset, since it contains more categories
and more small object instances. We obtained the overall detection performance by sub-
mitting our results to the official DOTA-v1.5 evaluation server. In this experiment, we
compared some traditional strong two-stage oriented object detectors, e.g., Faster RCNN
OBB (FR-O) [6], Mask RCNN [2], the Hybrid Task Cascade (HTC) [67] and state-of-the-art
methods, including Oriented RCNN [16] and ReDet [15].

As shown in Table 3, our Point RCNN method achieved the new state-of-the-art
detection performance on DOTA-v1.5 against the comparison methods. More specifically,
our Point RCNN improved the detection performance by 2.51 mAP against ReDet (form
76.80 to 79.31), which represents a significant improvement for oriented object detection.
Compared with Oriented RCNN, Point RCNN also significantly improved the performance
by 2.86 mAP (from 76.45 to 79.31). We also observed that, with our proposed balanced
dataset strategy, Point RCNN was able to further improve the performance by 0.57 mAP
based on a high performance baseline (from 78.74 to 79.31). We also evaluated Point
RCNN with the Swin-Tiny [66] (Swin-T) backbone. With the more generalized transformer
backbone, our proposed Point RCNN was able to further improve the performance by
0.83 mAP (from 79.31 to 80.14), indicating that Point RCNN is scalable to general backbone
networks and more challenging aerial image datasets.
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Table 3. Performance comparisons on DOTA-v1.5 test set (AP (%) for each category and overall
mAP (%)). * denotes multi-scale training and testing, *† denotes the results of using balanced dataset
strategy. Note that the results of Faster RCNN OBB (FR-O) [6], RetinaNet OBB (RetinaNet-O) [5],
Mask RCNN [2] and Hybrid Task Cascade (HTC) [67] are excerpted from ReDet [15]. The results
of Oriented RCNN* and ReDet* with Swin-T-FPN backbone are our re-implementations based on
their released official code. “R50” denotes ResNet-50, “R101” denotes ResNet-101, “ReR50” denotes
ReResNet-50, “Swin-T” denotes Swin Transformer Tiny.

Method Backbone PL BD BR GTF SV LV SH TC

RetinaNet-O [5] R50-FPN 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84
FR-O [6] R50-FPN 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78

Mask RCNN [2] R50-FPN 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46
HTC [67] R50-FPN 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48

OWSR * [68] R101-FPN - - - - - - - -
Oriented RCNN * [16] R101-FPN 87.20 84.67 60.13 80.79 67.51 81.63 89.74 90.88

ReDet * [15] ReR50-ReFPN 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86
ReDet * [15] Swin-T-FPN 80.90 85.13 60.61 80.83 67.07 83.32 89.80 90.79

Point RCNN * (Ours) ReR50-ReFPN 83.40 86.59 60.76 80.25 79.92 83.37 90.04 90.86
Point RCNN *† (Ours) ReR50-ReFPN 83.12 86.55 60.84 82.43 80.60 83.39 90.01 90.88
Point RCNN * (Ours) Swin-T-FPN 83.88 85.22 60.76 79.40 81.64 83.48 89.98 90.75
Point RCNN *† (Ours) Swin-T-FPN 86.93 85.79 59.52 80.42 81.91 81.92 89.95 90.35

BC ST SBF RA HA SP HC CC mAP

RetinaNet-O [5] R50-FPN 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O [6] R50-FPN 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00

Mask RCNN [2] R50-FPN 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [67] R50-FPN 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40

OWSR * [68] R101-FPN - - - - - - - - 74.90
Oriented RCNN * [16] R101-FPN 82.21 78.51 70.98 78.63 79.46 75.40 75.71 39.69 76.45

ReDet * [15] ReR50-ReFPN 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80
ReDet * [15] Swin-T-FPN 86.04 78.69 75.35 77.38 78.48 75.41 79.51 61.95 78.20

Point RCNN * (Ours) ReR50-ReFPN 87.45 84.50 72.79 77.32 78.29 77.48 78.92 47.97 78.74
Point RCNN *† (Ours) ReR50-ReFPN 87.25 84.60 73.49 78.51 78.75 78.41 76.12 54.12 79.31
Point RCNN * (Ours) Swin-T-FPN 87.00 84.65 70.70 77.87 78.32 79.50 74.35 63.80 79.46
Point RCNN *† (Ours) Swin-T-FPN 85.72 85.84 68.57 76.35 78.79 81.24 78.64 69.23 80.14

Results on HRSC2016: We also verified our Point RCNN method on the HRSC2016
dataset, which contains many ship objects with arbitrary orientations. In this exper-
iment, we compared our proposed Point RCNN method with some classic methods,
e.g., RRPN [17], RoI-Trans. ref. [13], R3Det [20], and S2A-Net [21], and the state-of-the-art
methods, Oriented RCNN [16] and ReDet [15]. Some methods were evaluated under the
VOC2007 metric, while others were compared under the VOC2012 metric. To make a
comprehensive comparison, we report the results for both metrics.

We report the experimental results in Table 4. We can observe that our Point RCNN
method attained a new state-of-the-art performance under both the VOC2007 and VOC2012
metrics. Specifically, under the VOC2007 metric, our Point RCNN achieved 90.53 mAP,
which exceeded the results for the comparison methods. It is worth noting that the Point
RCNN significantly improved the performance by 0.90 and 0.93 mAP against ReDet and
Oriented RCNN under the VOC2012 metric, respectively.
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Table 4. Performance comparisons for the HRSC2016 test set. mAP07 and mAP12 indicate that the
results were evaluated under VOC2007 and VOC2012 metrics (%), respectively. We report both
results for fair comparison. “R50” denotes ResNet-50, “R101” denotes ResNet-101, “R152” denotes
ResNet-152, “H34” denotes Hourglass-34, “ReR50” denotes ReResNet-50.

Method Backbone mAP07 (%) mAP12 (%)

RC2 [69] VGG16 75.70 -
RRPN [17] R101 79.08 85.64
R2PN [18] VGG16 79.60 -
RRD [70] VGG16 84.30 -

RoI-Trans. [13] R101-FPN 86.20 -
Gliding Vertex [26] R101-FPN 88.20 -

R3Det [20] R101-FPN 89.26 -
DRN [64] H34 - 92.7

CenterMap [65] R50-FPN - 92.8
CSL [19] R152-FPN 89.62 -

S2A-Net [21] R101-FPN 90.17 95.01
ReDet [15] ReR50-ReFPN 90.46 97.63

Orient RCNN [16] R101-FPN 90.50 97.60
Point RCNN (Ours) ReR50-ReFPN 90.53 98.53

Results on UCAS-AOD: The UCAS-AOD dataset consists of a large number of small
rotated objects, which are often overwhelmed by complex scenes in aerial images. We
evaluated our proposed Point RCNN method on UCAS-AOD and report the comparison
results in Table 5. For a fair comparison, we report the results under the VOC2007 metric.
As shown in Table 5, our proposed method achieved the best performance of 90.04 mAP07,
in which a value of 89.60 was obtained for the car detection, and a value of 90.48 was
obtained for the airplane detection.

Table 5. Performance comparisons for the UCAS-AOD test set (AP (%) for each category and overall
mAP (%)). All models were evaluated via the VOC2007 metric (%).

Method Backbone Car Airplane mAP07 (%)

R-Yolov3 [71] Darknet53 74.63 89.52 82.08
R-RetinaNet [5] ResNet50 84.64 90.51 87.57
RoI-Trans. [13] ResNet50 88.02 90.02 89.02

DAL [72] ResNet50 89.25 90.49 89.87
S2A-Net [21] ResNet50 89.56 90.42 89.99
Point RCNN

(Ours) ReR50-ReFPN 89.60 90.48 90.04

3.4. Ablation Study

In this section, we report an ablation study of our proposed Point RCNN framework.
If not specified, all the models were trained only on the training and validation set with
a scale of 1.0 for simplicity, and were tested using multi-scale testing. The metric mAP
was evaluated on the DOTA-v1.5 test set and obtained by submitting prediction results
to DOTA-v1.5’s evaluation server. In the following sections, we mainly elaborate the
effectiveness of our angle-free Point RCNN framework, including PointRPN, PoingReg,
and the balanced dataset strategy.

3.4.1. Analysis of PointRPN

To analysis the efficiency of the proposed PointRPN, which serves as an RPN network,
we evaluated the detection recall of PointRPN on the validation set of DOTA-v1.5. For
simplicity, we trained the models on the training set with scale 1.0 and evaluated the
detection recall on the validation set with scale 1.0 as well. The positive intersection
over union (IoU) threshold was set to 0.5. We selected the top-300, top-1000, and top-
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2000 proposals to calculate their recall values, respectively. The experimental results
are reported in Table 6. We found that when the number of proposals reached 2000,
as for the settings of many state-of-the-art methods [15,16], our PointRPN was able to
attain 90.00% detection recall. When the number of proposals changed from top-2000
to top-1000, the detection recall value only dropped by 0.17%. Even if there were only
top-300 proposals, our PointRPN was still able to achieve 85.93% detection recall. The high
detection recall observed demonstrates that our angle-free PointRPN can alleviate the
boundary discontinuity problem caused by angle prediction and effectively detect more
oriented objects with arbitrary orientations in aerial images.

Table 6. Comparison of the detection recall results by varying the number of proposals of
each image patch. The metric recall is evaluated on the DOTA-v1.5 validation set. Recall300,
Recall1000, and Recall2000 represent the detection recall of the top-300, top-1000, and top-2000
proposals, respectively.

Method Recall300 (%) Recall1000 (%) Recall2000 (%)

PointRPN 85.93 89.83 90.00

We also performed visualization analysis of PointRPN. As shown in Figure 8, we
visualized some examples of the learned representative points of our PointRPN on the
DOTA-v1.0 test set. The visualization results demonstrated that the proposed PointRPN
was able to automatically learn the extreme points and the semantic key points of the
rotated objects with arbitrary orientations, the large scale and aspect ratio variations,
and the extreme non-uniform object densities.

Figure 8. Visualization results of some examples of the learned representative points (red points) of
PointRPN on the DOTA-v1.0 test set. The green oriented bounding boxes (OBBs) are the converted
pseudo-OBBs via the MinAreaRect function of OpenCV. The score threshold was set to 0.001 without
using NMS.
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3.4.2. Effectiveness of PointReg

In this section, we provide an analysis of the effectiveness of the proposed PointReg
module. We evaluated different OBB regression types of our PointReg and the results are
reported in Table 7; compared to the five-parameter (x, y, w, h, θ) representation, the eight-
parameter (also called corner points) (x1, y1, x2, y2, x3, y3, x4, y4) regression type achieved
higher detection performance (77.60 vs. 77.25) for oriented objects. In other words, our
angle-free PointReg was shown to be capable of alleviating the boundary discontinuity
problem caused by angle prediction and to achieve higher performance.

Table 7. Analysis of the effectiveness of OBB regression type of PointReg. The metric mAP was
evaluated for the DOTA-v1.5 test set.

Regression Type of PointReg mAP (%)

(x, y, w, h, θ) 77.25
(x1, y1, x2, y2, x3, y3, x4, y4) 77.60

3.4.3. Analysis of Balanced Dataset Strategy

In this section, an analysis of the impact of the oversampling threshold βthr of the
proposed balanced dataset strategy is provided. As shown in Table 8, we achieved the
best detection accuracy of 77.60 mAP at βthr = 0.3. Therefore, we set βthr = 0.3 in all other
experiments, unless otherwise stated.

Table 8. Comparison of detection accuracy by varying the oversampling threshold βthr. The metric
mAP was evaluated on the DOTA-v1.5 test set.

Oversampling Threshold (βthr) mAP (%)

0 73.52
0.1 76.49
0.2 77.44
0.3 77.60
0.4 77.48

3.4.4. Factor-by-Factor Experiment

To explore the effectiveness of each module of our proposed Point RCNN framework,
we conducted a factor-by-factor experiment on the proposed PointRPN, PointReg and
balanced dataset strategy. The results are depicted in Table 9. Each component had a
positive effect, and all components were combined to obtain the best performance.

Table 9. Factor-by-factor ablation experiments. The detection performance was evaluated on the test
set of DOTA-v1.5 dataset.

Method PointRPN
Balanced
Dataset
Strategy

PointReg mAP (%)

Baseline 71.36

Point RCNN

� 74.17
� 74.22

� � 77.25
� � � 77.60

3.4.5. Visualization Analysis

We visualized some detection results for rotated objects for the DOTA-v1.0 test set.
Figure 8 depicts some examples of the learned representative points of our PointRPN, which
indicates that PointRPN was capable of learning the representative points of the rotated
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object. Specifically, PointRPN was able to automatically learn the extreme points, e.g., the
corner points of the rotated objects, and the semantic key points, e.g., the meaningful area
of the rotated object.

Based on the reasonable prediction of high detection recall for the target rotated objects
of PointRPN, our PointReg was able to continuously optimize and refine the corner points
of the rotated objects. Some quantitative results for the DOTA-v1.0 test set are shown in
Figure 9; the red points represent the corner points of the rotated objects learned by
PointReg and the colored OBBs converted by the MinAreaRect function of OpenCV denote
the final detection results. We also provide a visualization of the detection results for the
UCAS-AOD and HRSC2016 datasets in Figures 10 and 11, respectively. The visualization
results demonstrate the remarkable efficiency of our proposed angle-free Point RCNN
framework for rotated object detection.

Figure 9. Visualization of the detection results of Point RCNN for the DOTA-v1.0 test set. The score
threshold was set to 0.01. Each color represents a category. The red points and colored OBBs are the
predicted corner points and the converted OBBs of PointReg.
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Figure 10. Visualization of the detection results of Point RCNN for the UCAS-AOD test set. The score
threshold was set to 0.01. The red points and colored OBBs are the predicted corner points and the
converted OBBs of PointReg.

Figure 11. Visualization of the detection results of Point RCNN for the HRSC2016 test set. The score
threshold was set to 0.01. The red points and colored OBBs are the predicted corner points and the
converted OBBs of PointReg.

4. Discussion

Although the experiments undertaken substantiate the superiority of our proposed
Point RCNN framework over state-of-the-art methods, our method did not perform well
enough in some categories, e.g., PL (Plane) in the DOTA dataset, which requires further
exploration. In addition, as with existing oriented object detectors, our Point RCNN
also needs to use rotate non-maximum suppression (NMS) to remove duplicate results,
which may mistakenly remove the true positive (TP) predictions and thus limit the final
performance. Transformer-based methods [45] may provide potential solutions, which will
be pursued in future work.

5. Conclusions

In this study, we revisited rotated object detection and proposed a purely angle-free
framework for rotated object detection, named Point RCNN, which mainly consists of
a PointRPN for generating accurate RRoIs, and a PointReg for refining corner points
based on the generated RRoIs. In addition, we proposed a balanced dataset strategy to
overcome the long-tailed distribution of different object classes in aerial images. Compared
to existing rotated object detection methods, which mainly rely on angle prediction and
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suffer from the boundary discontinuity problem, our proposed Point RCNN framework
is purely angle-free and can alleviate the boundary problem without introducing angle
prediction. Extensive experiments on multiple large-scale benchmarks demonstrated the
significant superiority of our proposed Point RCNN framework against state-of-the-art
methods. Specifically, Point RCNN achieved new state-of-the-art performances of 80.71,
79.31, 98.53, and 90.04 mAPs on DOTA-v1.0, DOTA-v1.5, HRSC2016, and UCAS-AOD
datasets, respectively.
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Abstract: The3D object detection of LiDAR point cloud data has generated widespread discussion
and implementation in recent years. In this paper, we concentrate on exploring the sampling method
of point-based 3D object detection in autonomous driving scenarios, a process which attempts
to reduce expenditure by reaching sufficient accuracy using fewer selected points. FPS (farthest
point sampling), the most used sampling method, works poorly in small sampling size cases, and,
limited by the massive points, some newly proposed sampling methods using deep learning are
not suitable for autonomous driving scenarios. To address these issues, we propose the learned
sampling network (LSNet), a single-stage 3D object detection network containing an LS module that
can sample important points through deep learning. This advanced approach can sample points
with a task-specific focus while also being differentiable. Additionally, the LS module is streamlined
for computational efficiency and transferability to replace more primitive sampling methods in
other point-based networks. To reduce the issue of the high repetition rates of sampled points, a
sampling loss algorithm was developed. The LS module was validated with the KITTI dataset and
outperformed the other sampling methods, such as FPS and F-FPS (FPS based on feature distance).
Finally, LSNet achieves acceptable accuracy with only 128 sampled points and shows promising
results when the number of sampled points is small, yielding up to a 60% improvement against
competing methods with eight sampled points.

Keywords: 3D object detection; point cloud; sampling; single-stage

1. Introduction

Three-dimensional data captured by LiDAR and the RGB-D camera have applications
in various fields such as autonomous driving, virtual reality, and robotics. Many deep
learning techniques have been applied to point cloud tasks such as point cloud classification,
segmentation, completion, and generation. In this paper, we focus on 3D object detection of
autonomous driving.

In recent years, 3D object detection of autonomous driving has been a major focus.
Refs. [1–4] fuse point clouds and images together to detect 3D objects. In this paper,
we focus on the processing of point clouds. With a point cloud captured by LiDAR,
the different methodologies to approach this issue can be classified as view-based, point-
based, and voxel-based methods. Additionally, some methods utilize the advantages of
both the point-based method and voxel-based method to enable both high-quality 3D
proposal generation and flexible receptive fields to improve 3D detection performance.
With the massive number of raw points in a point cloud, it is not trivial to downsample the
point cloud data efficiently and reserve as many meaningful points as possible. With this
said, the sampling approaches themselves have received comparatively less attention.

View-based methods project the 3D point cloud data into different 2D views so that ma-
ture 2D convolution techniques can be applied to solve the problem efficiently. The down-
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sampling process is reflected in both the pooling process and the step size of convolution.
Voxel-based methods view the 3D point cloud space as a cube and divide it into voxels.
This means the size of the sampled point subset can be controlled by the length, width,
and height of each voxel, while the step size of 3D convolution and 3D pooling can also
downsample the data. Additionally, point-based methods take the raw point cloud as
input and generate predictions based on each point. This causes the point-based methods
to suffer from a heavy computational burden due to the need to process so much data.
Ref. [5] addressed this issue and proposed an efficient and lightweight neural architecture
for semantic segmentation task of large-scale point clouds. Ref. [6] introduced kernel point
convolution to improve the efficiency of feature extraction in point-based methods. Hence,
developing an appropriate sampling strategy has become a crucial issue.

In a point-based model, one naive approach is to sample points randomly. The most
widely used method is furthest-point-sampling (FPS), which selects a group of points that
are farthest apart from each other based on their 3D Euclidean distance. However, there is
one sampling approach that first voxelizes the whole 3D space and only preserves one point
in each voxel. KPConv [6] used grid subsampling and chose barycenters of the original
input points contained in all non-empty grid cells. The 3DSSD [7] utilizes the F-FPS and FS
methods. F-FPS samples points based on feature distance instead of Euclidean distance in
FPS, while FS is the fusion of D-FPS(FPS) and F-FPS. Crucially, these sampling strategies
are non-learned approaches and cannot preserve important points when the sampling size
is small, leading to poor performance. Recently there have been a few learned approaches.
Ref. [8–10] proposed learning-based methods, but they are limited to simple datasets such
as ModelNet40 [11] and are not suitable to autonomous driving scenarios.

In conclusion, the small sampling size can save the cost of both memory and compu-
tation. However, existing sampling approaches either perform poorly in small sampling
size cases or are not suitable for autonomous driving scenarios. Motivated by these issues,
in this paper, we present a novel architecture named LSNet, shown in Figure which con-
tains a learning-based sampling module and works extraordinarily well in low sampling
size cases. The sampling process faces two main challenges. The first is how to allow
backpropagation and the second is how to avoid excessive time consumption. The learned
sampling module of LSNet is a deep learning network that must be kept streamlined to
avoid the issue of excessive computation time because if the sampling network is too
complex, the resources and time invested would render the downsampling strategy moot.
The LS module outputs a one-hot-like sampling matrix and uses matrix multiplication
to create the sampling subset of points. Since the sampling process itself is discrete and
is not trainable, we instead adjust the grouping method in the SA module and use the
τ-based softmax function in the LS module to make it differentiable. Additionally, we add
random relaxation to the sampling matrix in the early part of the training with the degree
of relaxation decaying to zero along the training step. However, the sampling matrix of
the LS module cannot ensure that the sampled points will not be redundant. To solve this
issue, a new sampling loss was proposed. Finally, of major importance is that the entire
LSNet model is end-to-end trainable.

We evaluate the model on the widely used KITTI [12] dataset. To verify the effec-
tiveness of the LS module, we compare it with random sampling, D-FPS, F-FPS, and FS.
The results of these comparisons show that the LS module method outperformed the other
methods and it was close to the state-of-the-art 3D detectors with 512 sampled points.
Specifically, LSNet with 128 sampled points has relatively little accuracy loss and achieves
acceptable accuracy. It is also shown that the fewer the sampling points, the better the
improvement. Figure 1 shows the results of different sampling methods with only eight
sampled points. Unlike other sampling methods, such as FPS, this learning-based sam-
pling approach utilizes semantically high-level representations, which is reflected in the
fact that the points sampled by the LS module are distributed around the target objects.
Furthermore, it pays more attention to regions of interest and is less sensitive to outliers.
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Figure 1. The results of different sampling methods processing the same eight sampled points in
the same scene. The top-left picture is the 3D object detection results of our model and the green
box shows the ground truth, while the red box shows the detection of our model with eight points.
The remaining three pictures demonstrate the points before sampling (4096 white points) and the
points after sampling (eight green points inside green circle) in the bird’s eye view (BEV). Top-right:
sampling results of the LS module, zoomed in and cropped for better illustration since there are no
outliers, unlike the other two pictures. Bottom-left: sampling results of D-FPS (FPS). Bottom-right:
sampling results of F-FPS.

In addition, the proposed LS module can be viewed as a complete standalone module.
This means it can be attached to another model to sample points flexibly. Following the
results of the end-to-end training is the study of the multi-stage training process. Based
on the results from the experiment evaluation, when given a trained task network with
limited training time, the number of sampled points can be reduced by half. This can be
accomplished quickly with the only cost an affordable loss of accuracy.

To summarize, the key contribution of the proposed model lies in the following
four points:

• First, the proposed LSNet, a point-based 3D object detector with a novel sampling
approach (LS module), can be trained end-to-end to sample points with consideration
for a specific task. The approach nears parity with state-of-the-art 3D detectors when
using 512 sampling points while still achieving acceptable performance with only
128 sampling points.

• Second, to enable backpropagation of the sampling process and make it differentiable,
the vanilla SA module’s grouping method was adjusted and the τ-based softmax
function was used to approximate one-hot-encoding while also applying random
relaxation to the sampling matrix to boost the performance.

• Third, to address the issue of duplicate sampling, a new sampling loss technique was
used. This resulted in a significant increase of unique samples as well as improved
accuracy.
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• Fourth, the LS module can be flexibly transferred and inserted into other point-based
detection models to reduce the number of points needed. Of significant importance
is the fact that the multi-stage training method enables the LS module to be easily
attached to other trained models, while reducing the necessary number of points with
relatively little training time.

2. Related Work

In this section, recent advances in 3D object detection of autonomous driving are
reviewed, after which some of the pioneer works related to point cloud sampling methods
are examined.

For the purposes of 3D object detection, recent 3D object detection models based on
LiDAR point clouds can be roughly categorized into view-based methods, voxel-based
methods, point-based methods, and integrated methods.

With the rapid development of computer vision, much effort has been devoted to
detecting objects from images. In the service of this effort, representing 3D point clouds
as 2D views is helpful as it makes it easy to apply off-the-shelf and mature computer
vision skills to the problem. The most used views are front view ([13–15]), bird’s eye
view ([1,3,16–18]), and range view ([19,20]). However, these methods cannot localize 3D
objects accurately due to the loss of information.

In the voxel-based methods ([21–26]), the point clouds are divided into 3D voxels
equally to be processed by 3D CNN. Due to the massive amount of empty voxels, 3D sparse
convolution [23,27] is introduced for efficient computation. For example, ref. [22] used
3D sparse convolutions through the entire network. VoxelNet ([24]), SECOND ([23]), and
PointPillars ([25]) learn the representation of each voxel with the voxel feature encoding
(VFE) layer. TANet ([26]) learns a more discriminative and robust representation for each
voxel through triple attention (channel-wise, point-wise, and voxel-wise attention). Then,
the 3D bounding boxes are computed by a region proposal network based on the learned
voxel representation.

Point-based methods are mostly based on the PointNet series [28,29]. The set ab-
straction operation proposed by PointNet is widely used in point-based approaches [7].
PointRCNN [30] generates 3D proposals directly from the whole point clouds. Qi, Litany,
He, and Guibas proposed VoteNet [31], the Hough voting strategy for better object feature
grouping. The work in [32] introduces StarNet, a flexible, local point-based object detector.
The work in [33] proposed PointGNN, a new object detection approach using a graph
neural network on the point cloud.

PV-RCNN [34] takes advantages of both the voxel-based and point-based methods for
3D point-cloud feature learning, leading to improved performance of 3D object detection
with manageable memory consumption. The work in [35] combines both voxel-based CNN
and point-based shared-MLP for efficient point cloud feature learning.

In relation to point clouds sampling, farthest point sampling (FPS) is widely used
in many models ([7,29,31,33]) to handle the downsampling issue inherent in using point
clouds. Ref. [36] applied graph-based filters to extract features. Haar-like low/highpass
graph filters are used to preserve specific points efficiently, and 3DSSD [7] proposed F-FPS
and FS. According to [8], the proposed simplification network, termed S-Net, is the first
learned point clouds sampling approach. After this, SampleNet [9] further improved the
performance with sampled point clouds to classify and reconstruct the tasks based on it.
Ref. [10] used Gumbel subset sampling to replace FPS to improve its accuracy.

3. Methods

3.1. Problem Formulation

Consider a general matrix representation of a point cloud with N points and K attributes,
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P =
[

f1 f2 . . . fK
]
=
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...

pT
N

⎤⎥⎥⎥⎦ ∈ R
N×K, (1)

where fi ∈ RN denotes the ith attribute and pj ∈ RK denotes the jth point. Specifically,
the actual number of K varies according to the output feature size of each layer. The at-
tributes contain 3D coordinates and context features. The context features can be the
original input features or the extracted features. For instance, the input feature of velodyne
LiDAR is the one-dimensional laser reflection intensity, and it is the three-dimensional RGB
colors of the RGB-D camera. Additionally, the extracted features come from the neural
network layers. To distinguish 3D coordinates from the other attributes, we store them in
the first three columns of P and call that submatrix Pc ∈ RN×3, while storing the rest in the
last K− 3 columns of P and call that submatrix Po ∈ RN×(K−3).

The target of the LS module in Figure 2 is to create a sampling matrix,

S =
[

p′1 p′2 . . . p′N′
]
=
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pT

1
pT

2
...

pT
N

⎤⎥⎥⎥⎦ ∈ R
N×N′ , (2)

where p′i ∈ RN represents the ith sampled point and pj ∈ RN′ represents the jth point
before sampling. N is the original points size and N′ is the sampled points size. This matrix
is used to select N′(N′ < N) points from the original points. Let the sampled point cloud
be PN′ ∈ RN′×K and the original point cloud be PN ∈ RN×K. To achieve this, column p′i
should be a one-hot vector, defined as

p′i,j =
{

1, j = the index of selected point in N original points;
0, otherwise.

(3)

Figure 2. The overall architecture of the proposed LSNet. The input data of each module contain
coordinates data (N × 3) and feature data (N × K). The raw coordinates information is kept for point
grouping and feature extraction. The blue arrows represent the main data flow of LSNet, while the
red arrows demonstrate the data flow in the multi-stage training method when the LS module is
skipped. There are two ways to split the entire network for a concise model description in the paper.
One is dividing the network into a feature extraction backbone and a detection head. The other is
dividing the network into a task network and a sampling network (LS module).

There should be only one original point selected in each column p′i, defined as

N

∑
j=1

(
p′i,j

)
= 1. (4)
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With the sampling matrix S and original point cloud PN , we can acquire the new
sampling point cloud PN′ through matrix multiplication:

PN′ = ST ⊗ PN , PN′ ∈ R
N′×K; ST ∈ R

N′×N ; PN ∈ R
N×K. (5)

The invariance properties of the sampling approach are pivotal. Since the intrinsic
distribution of 3D points remains the same when we permutate, shift, and rotate a point
cloud, the outputs of the sampling strategy are also not expected to be changed. These
invariance properties will be analyzed on the coordinate matrix Pc alone because the
features of each point (Po) will not be influenced by them.

Definition 1. A sampling strategy is permutation-invariant when, given input PN ∈ RN×K, ∀
permutation matrix Mp of size N,

SAMPLE(Mp · PN) = SAMPLE(PN). (6)

Definition 2. A sampling strategy is shift-invariant when, given input PN ∈ RN×K, ∀ shift
matrix Ms of size 3,

SAMPLE(Ms · PN) = SAMPLE(PN). (7)

Definition 3. A sampling strategy is rotation-invariant when, given input PN ∈ RN×K, ∀
rotation matrix Mr of size 3,

SAMPLE(Mr · PN) = SAMPLE(PN). (8)

The softmax function is also permutation-invariant, which is already proved in [10].

Lemma 1. Given A ∈ RN×N, ∀ permutation matrix Mp of size N,

softmax(MpAMT
p ) = Mp softmax(A)MT

p . (9)

3.2. Network Architecture

The entire network structure of LSNet is displayed in Figure 2. It is a point-based,
single-stage 3D object detection network with a feature extraction backbone and a detection
head. The backbone, similar to many other point-based methods [7,29,31,34], uses the multi-
scale set abstraction(SA) proposed by PointNet++ [29] to gather neighborhood information
and extract features, making it a PointNet-based model as well. Multiple SA modules
were stacked to abstract high-level features and enlarge the receptive field. Inspired by
VoteNet [31] and 3DSSD [7], a vote layer was added to improve network performance.
For downsampling points, the FPS sampling method, i.e., D-FPS in 3DSSD [7], is used to
downsample the raw points roughly, while the LS module is used to further sample the
points delicately. In addition, there are two 3D detection heads in the proposed model, one
for box regression and the other for classification.

In relation to the LiDAR point cloud, the inputs of the model consist of 3D coordi-
nates and 1D laser reflection intensity, i.e., Pinput = [Pc Po], Pinput ∈ RN×4, Pc ∈ RN×3,
Po ∈ RN×1. The predicted object in the KITTI 3D object detection dataset can be repre-
sented by a 3D bounding box (cx, cy, cz, h, w, l, θ), including its center, cx, cy, cz, size, h, w, l,
and orientation, θ, which indicates the heading angle around the up-axis.

First, FPS based on 3D Euclidean distance is used to sample a subset of the raw points
Pinput. Then, the vanilla multi-scale SA module is applied to extract the low-level features
Po ∈ RN×(K−3), which will be viewed as the inputs of the LS module with their coordinates.
Working from these middle features, the LS module generates the sampling point cloud
PN′ and PN′ ⊂ PN . After several SA modules and a vote layer, the final features are
fed into the detection head to predict the box and class of the object. After this, NMS is
applied to remove the redundant boxes. Non-maximum suppression (NMS) is a critical
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post-processing procedure to suppress redundant bounding boxes based on the order of
detection confidence, which is widely used in object detection tasks.

According to PointNet++, the SA module has many 1D-convolution-like layers, which
are composed of shared-MLP layers. For each point, the SA module groups the surrounding
points within a specific radius and uses shared-MLP to extract the features. The box
regression head and the classification head are both fully connected (FC) layers.

3.3. LS Module

The traditional sampling approaches are neither differentiable nor task-agnostic. There-
fore, they cannot be trained using the loss method. Since the sampling process is discrete,
we need to convert it to a continuous issue to smoothly integrate the sampling operation
into a neural network. Ref. [8] proposed S-Net and [9] proposed its variant SampleNet
to ameliorate this shortcoming. These sampling strategies have several defects. First,
they generate new point coordinates, which are not in the subset of the original points.
In addition, they can only be placed at the beginning of the total network and the entire
model lacks the ability to be trained end-to-end. Another issue is due to the fact that the
sampling network extracts features from coordinate inputs, while the task network also
extracts features from the raw inputs. This duplicated effort inevitably results in a level
of redundant extraction in regard to low-level features. A final issue is that the sampling
network is relatively complex and time-consuming. This problem will become more severe
as the number of points grows. A sampling process that requires burdensome levels of
computation to function defeats the purpose of its application to the issue. In consideration
of these issues, the discussed methods are not suitable for autonomous driving tasks.

To overcome such problems, the LS module was developed. As illustrated in Figure 3,
the network architecture of the LS module has only a few layers, which keeps the complexity
low. Rather than extracting useful features to create a sampling matrix from a fresh start,
these features are instead extracted by the task network part 1 and are shared, and the
matrix is the output based on them to improve computational efficiency and to avoid the
repeated extraction of the underlying features.

Figure 3. The details of the LS module’s network structure, where B is the batch size, N is the points
size, and K is the feature size.
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The input of the LS module is PN , which is the subset of the points sampled by FPS
with the features extracted by the former SA module. First a shared-MLP convolution layer
is applied to obtain the local feature Flocal of each point,

Flocal = f (PN |W1), Flocal ∈ R
N×k′ . (10)

Function f represents the shared-MLP convolution layer with its weights W. Then, a sym-
metric feature-wise max pooling operation is used to obtain a global feature vector Fglobal,

Fglobal = MaxPool(Flocal) Fglobal ∈ R
1×k′ . (11)

With the global features and the local features, we concatenate them of each point and
pass these features to the shared-MLP convolution layers and use the sigmoid function to
generate a matrix Ŝ, defined as

Ŝ = f ( f (concat(Flocal , Fglobal)|W2)|W3), (12)

Ŝ = Sigmoid(Ŝ) Ŝ ∈ R
N×N′ . (13)

Ŝ has the same shape as the sampling matrix S. It is the output of the LS module while
also being the middle value of S.

To sample data based on PN , the sampling matrix is further adjusted to S (used in the
inference stage) or S′ (used in the training stage). S can be computed as

S = one_hot_encoding
p′i∈RN ,i∈[1,N′ ]

(argmax(Ŝ)), (14)

where the argmax function and the one_hot_encoding function are applied to each column
of Ŝ, i.e., p′i with the shape of original points size N. Since Ŝ has N′ columns, corresponding
to N′ sampled points, and each column of S is a one-hot vector, Equation (5) can be used to
obtain the final sampled points PN′ .

However, the argmax operation and the one_hot_encoding operation are not differ-
entiable, indicating that Equation (14) cannot be used in the training stage to enable
backpropagation. Inspired by the Gumbel-softmax trick [10,37,38], softmax is applied
to each column of Ŝ with parameter τ to approximate the one_hot_encoding operation.
The generated sampling matrix is called S′,

S′ = so f tmax
p′i∈RN ,i∈[1,N′]

(Ŝ/τ), (15)

where parameter τ > 0 is the annealing temperature, as τ → 0+, each column in S′
degenerates into a one-hot distribution such as S. When the distribution of each column in
S′ does not degenerate to a one-hot distribution, the features of sampled points Po,N′ are
not the same as before. Po,N′ is computed by the matrix multiplication with S′,

Po,N′ = S′T ⊗ Po,N , Po,N′ ∈ R
N′×(K−3); S′T ∈ R

N′×N ; Po,N ∈ R
N×(K−3). (16)

Nevertheless, it is desirable to keep the coordinates of the sampled points the same
as they were previously. So, the argmax operation and the one_hot_encoding operation are
applied to S′ to generate sampling matrix S. Then, the coordinates of the sampled points
Pc,N′ are computed as

Pc,N′ = ST ⊗ Pc,N , Pc,N′ ∈ R
N′×3; ST ∈ R

N′×N ; Pc,N ∈ R
N×3. (17)

Additionally, before Equation (15), a random relaxation trick is employed to further
boost the performance of the model, represented as
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γ = r
current_step
decay_steps , r ∈ [0, 1]; (18)

Ŝ = Ŝ + Random(γ), Random(γ) ∈ R
N×N′ , (19)

where r is the decay rate and γ is the upper boundary of the random number. Parameter γ
is decayed with the training step exponentially and eventually approaches 0 when there is
no relaxation.

In actuality, the sampling matrix S′ introduces the attention mechanism to the model.
Each column of S′ indicates the newly generated sampling point’s attention on old points.
Then, the new features in Po,N′ contain the point-wise attention on the old points. Since
each column of S is a one-hot distribution, the coordinates of the sampled points Pc,N′
calculated with S mean its attention is focused on the single old point when it comes to
coordinate generation.

In all the above functions, the shared-MLP function f and the Sigmoid function
are point-wise operations, while the random relaxation is an element-wise operation.
In addition, the MaxPool function operates from the feature dimension and selects the
max value of each feature from all points. This means these functions do not change the
permutation equivariance of the LS module. Separate from these functions, Lemma 1
shows the permutation invariance of so f tmax. Thus, our proposed sampling method is
permutation-invariant (Definition 1).

3.4. SA Module

The set abstraction procedure proposed by Qi et al., PointNet++, which is widely used
in many point-based models, can be roughly divided into a sampling layer, grouping layer,
and a PointNet layer. To obtain better coverage of the entire point set, PointNet++ uses FPS
to select N′ grouping center points from N input points in the sampling layer. Based on the
coordinates of these center points, the model will gather Q points within a specified radius,
contributing to a group set. In relation to the PointNet layer, a mini-PointNet (composed
of multiple shared-MLP layers) is used to encode the local region patterns of each group
into feature vectors. In this paper, the grouping layer and the PointNet layer are retained
in our SA module. The LS module is used instead of FPS to generate a subset of points
serving as the grouping center points, while the grouping layer is adjusted to fit our learned
sampling model.

As shown in Figure 4, multi-scale grouping is used to group the points of each center
point with different scales. Features at different scales are learned by different shared-
MLP layers and then concatenated to form a multi-scale feature. If the points sampled by
the LS module are viewed as ball centers and perform the ball grouping process on the
original dataset N, similar to PointNet++, the entire network cannot be trained through
backpropagation since the outputs of the LS module are not passed to the following network
explicitly. Two methods have been developed to address this issue. The first method is
to ignore the old dataset before sampling and instead use the newly sampled dataset for
both the grouping center points and grouping pool. The other possibility is to use the
new sampled dataset as grouping center point and replace the points of the old dataset
with the new points in their corresponding positions. Using this method, it is possible to
concatenate the features of the new sampled points to each group and pass the outputs
(new points) of the LS module to the network.

Within each group, the local relative location of each point from the center point is
used to replace the absolute location Pc. Importantly, the extracted features Po will not
be affected by shifting or rotating the point cloud. So, it follows that the inputs to the LS
module remain the same despite the shift and rotation operations, which also indicates
that the proposed sampling method is shift-invariant (Definition 2) and rotation-invariant
(Definition 3).
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Figure 4. Adjusted multi-scale grouping methods. The red points are sampled by the LS module,
while the blue points are old points before sampling. The dotted circle represents a ball of a particular
radius. Top: Grouping with old points and new points. Bottom: Grouping with new points only.

3.5. Loss

Sampling loss. Unlike the D-FPS and F-FPS methods, the point in the sampling
subset generated by the LS module is not unique and the high duplicate rate will result in
unwanted levels of computational usage while being unable to make full use of a limited
sampling size. This problem increases in severity as the sampling decreases in size.

As illustrated in Equation (20), a sampling loss has been presented to reduce the
duplicate rate and sample unique points to as great an extent as feasible. We accumulate
each row of S′, i.e., pj ∈ RN′ . pj represents the sampling value of each point in the original
dataset PN . The ideal case is that the point in PN is sampled 0 or 1 time. Since each column
in S′ can be summarized to 1 and tends to be a one-hot distribution, the accumulation of
pj should tend to be near 0 or 1 if the point is not sampled more than once. Equation (20)
is designed to control this issue. The more the accumulation of pj nears 0 or 1, the less
the loss.

Lsample =
1
N

N

∑
j=1

(∣∣∣∣∣∣∣ N′

∑
i=1

S′[j, i]− 0.5
∣∣∣− 0.5

∣∣∣∣
)

(20)

Each row of S′ indicates the old point’s attention on the newly generated sampling
points. If there are many high values in one row, this old point is highly relevant to more
than one new point, and the new point’s features will be deeply affected by the old point
with high attention when each column in S′ tends to be a one-hot distribution. That is, these
new points tends to be similar to the same old point, which leads to repeated sampling.
However, we expect a variety of new sampling points. In a word, we utilized Equation (20)
to restrain each old point’s attention.

Task loss. In the 3D object detection task, the task loss consists of 3D bounding box
regression loss Lr, classification loss Lc, and vote loss Lvote. θ1, θ2, and θ3 are the balance
weights for these loss terms, respectively.

Ltask = θ1Lr + θ2Lc + θ3Lvote (21)

Cross-entropy loss is used to calculate classification loss Lr while vote loss related
to the vote layer is calculated as VoteNet [31]. Additionally, the regression loss in the
model is similar to the regression loss in 3DSSD [7]. The regression loss includes distance
regression loss Ldist, size regression loss Lsize, angle regression loss Langle, and corner loss
Lcorner. The smooth-l1 loss is utilized for Ldist and Lsize, in which the targets are offsets from
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the candidate points to their corresponding instance centers and sizes of the corresponding
instances, respectively. Angle regression loss contains orientation classification loss and
residual prediction loss. Corner loss is the distance between the predicted eight corners
and assigned ground-truth.

Total loss. The overall loss is composed of sampling loss and task loss with α and β
adopted to balance these two losses.

L = αLsample + βLtask (22)

3.6. Training Method
3.6.1. End-to-End Training

Problem statement: Given a point set PN ∈ RN×K, a sample size N′ ≤ N, and a
untrained task network T, find a subset P∗N′ ∈ RN′×K of N′ points and a group of weights
W of T that minimize the total objective function L:

P∗N′ = arg min
PN′ ,W

L(T(PN′)|W), PN′ ⊆ PN , |PN′ | = N′ ≤ N. (23)

For the end-to-end training method, the task network T and the LS module are trained
simultaneously using the total loss L. Compared to the network in the multi-stage training
method, the task network part 2 is trained and inferred on the same sampling points
distribution. Thus, the entire network is well trained with a certain sampling size.

3.6.2. Multi-Stage Training and Flexibility of the LS Module

Problem statement: Given a point set PN ∈ RN×K, a sample size N′ ≤ N, and a
trained task network T, find a subset P∗N′ ∈ RN′×K of N′ points that minimizes the total
objective function L:

P∗N′ = arg min
PN′

L(T(PN′)), PN′ ⊆ PN , |PN′ | = N′ ≤ N. (24)

Figure 5 shows the flexibility of the LS module and the multi-stage training procedure.
The task network part 2 is first trained on sampling points distribution DN . After this,
the task network parts are loaded and fixed to train the sampling network(LS module).
Therefore, it is possible to obtain a learned sampling points distribution DN′ . Subsequently,
in the inference stage, the distribution DN′ is passed to the task network part 2 for detection.
Due to these factors, the task network part 2 is trained and inferred on different sampling
points distribution. With the sampled dataset P∗N′ being the best subset of PN that can make
full use of the trained task network, the performance of the network using this method is
relatively inferior to the performance of an end-to-end training network because the task
network part 2 has not been fully trained with the sampled dataset P∗N′ .

In relation to the flexibility of the LS module, the effectiveness of the multi-stage
training demonstrates that the LS module can be transferred and adjusted to other point-
based models to replace FPS or any other sampling approaches concisely. Even in the case
of an already trained task network, point size can still be reduced simply by attaching the
LS module to the existing task network and training the LS module solely. This training
process can be accomplished quickly because stage 1 is skipped and the LS module is
relatively simple and small.

99



Remote Sens. 2022, 14, 1539

Figure 5. Flexibility and multi-stage training. Illustration of the proposed multi-stage training and
inference procedure. In stage 1, the LS module is skipped and the task network is trained on N points
data with task loss. In stage 2, we use the trained weights from the former stage and fix the weights
of the task network layers, after which the LS module is trained through task loss and sampling loss.
The LS module will output N′ sampled points. In stage 3, the inference step, the trained LS module is
used to sample data and generate the results.

4. Experimental Results

4.1. Setup

Datasets. The KITTI Dataset [12] is one of the most popular dataset for 3D object
detection for autonomous driving. All of the experiments for the proposed module are
conducted on it. The KITTI dataset collects point cloud data using a 64-scanning-line
LiDAR and contains 7481 training samples and 7518 test samples. The training samples are
generally divided into the training split (3712 samples) and the val split (3769 samples).
Each sample provides both the point cloud and the camera image. Using this approach, only
the point cloud is used. Since the dataset only annotates objects that are visible within the
image, the point cloud is processed only within the field of view of the image. The KITTI
benchmark evaluates the mean average precision (mAP) of three types of objects: car,
pedestrian and cyclist. We perform all our experiments on the car objects. Three difficulty
levels are involved (easy, moderate, and hard), which depend on the size, occlusion level,
and truncation of the 3D objects. For training purposes, samples that do not contain objects
of interest are removed.

Data Augmentation. To prevent overfitting, data augmentation is performed on the
training data. The point cloud is randomly rotated by yaw Δθ ∼ U (−π/4,+π/4) and
flipped along its x-axis. Each axis is also shifted by Δx, Δy, and Δz (independently drawn
from N (0, 0.25)). The mix-up strategy used in SECOND [23] is also used to randomly add
foreground instances from other scenes to the current scene. During the translation, it is
checked to avoid collisions among boxes, or between background points and boxes.
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Network Architecture Details. The network architecture is illustrated in Figure 2.
FPS is used to sample 4096 points from the raw input. The LS module will sample points
from these 4096 points. There are four multi-scale SA modules in the network with a
different shared-MLP structure and a different grouping radius. The shared-MLP layer is a
stack of “FC–BN–FC–BN–FC–BN”.

Training and Inference Details. All of the experiments are conducted on a single RTX
2080Ti GPU card. The Adam optimizer [39] is used in the training stage with a learning
rate of 0.002. The mini-batch size differs according to each sampling size.

Evaluation Metric. Mean average precision (mAP) is utilized as the evaluation metric.
For a fair comparison, the official evaluation protocol is followed. Specifically, the IoU
threshold is set to 0.7 for cars. As for the unique rate of the sampled points, this is
determined by taking the size of the unique points divided by the size of the entire points.

4.2. 3D Object Detection on the KITTI Dataset

LSNet is evaluated along two points. First is submitting the results of the car objects to
the KITTI 3D object detection benchmark and the BEV object detection benchmark. Table 1
shows a comparison of the submitted results and the existing literature on the KITTI test
dataset. The LSNet-512 (LSNet with 512 sampled points) model is applied to detect the
3D objects of the test dataset, with the results showing that LSNet outperforms other 3D
detectors [1–3,23–25] with only 512 points, and the performance of LSNet-512 is similar
to 3DSSD [7] on the easy difficulty level and is a little worse than it on the moderate and
hard difficulty levels. For a more specific and detailed comparison of the two models,
Table 2 compares their precision and speed on the KITTI validation set. LSNet-1024 (LSNet
with 1024 sampled points) works better than LSNet-512 and shows competitive accuracy
compared to 3DSSD. However, LSNet-1024 runs slower than LSNet-512. Although LSNet-
512 sacrifices some accuracy, it runs faster than 3DSSD. To balance the accuracy and speed,
we chose LSNet-512 as the final model which was used to generate results on the KITTI
test set in Table 1.

Table 1. The mean average precision (mAP) comparison of 3D object detection and bird’s eye
view(BEV) object detection on the KITTI test set.

Method Modality
Car-3D (%) Car-BEV (%)

Easy Moderate Hard Easy Moderate Hard

MV3D [1] Image + LiDAR 74.97 63.63 54.00 86.62 78.93 69.80
F-PointNet [2] Image + LiDAR 82.19 69.79 60.59 91.17 84.67 74.77
AVOD-FPN [3] Image + LiDAR 83.07 71.76 65.73 90.99 84.82 79.62

VoxelNet [24] LiDAR 81.97 65.46 62.85 89.60 84.81 78.57
PointPillars [25] LiDAR 82.58 74.31 68.99 90.07 86.56 82.81
SECOND [23] LiDAR 83.34 72.55 65.82 89.39 83.77 78.59

3DSSD [7] LiDAR 88.36 79.57 74.55 92.66 89.02 85.86

LSNet (ours) LiDAR 86.13 73.55 68.58 92.12 85.89 80.80

Table 2. The mean average precision (mAP) and speed comparison of 3D object detection on the
KITTI validation set between 3DSSD and LSNet.

Method Speed (fps)
Car-3D (%)

Easy Moderate Hard

3DSSD 10.89 90.87 82.62 79.82
LSNet-512 12.17 89.29 78.36 75.46
LSNet-1024 10.71 91.04 82.15 78.98

Second, Tables 3–5 compare the mAP of different sampling approaches with different
sampling sizes. To make a fair comparison, the only change is replacing the LS module
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with other sampling methods such as random, FPS, F-FPS, and FS sampling, with the
rest of the model remaining unchanged. F-FPS and FS are sampling methods raised by
3DSSD [7]. After detailed study about the structure and code of SampleNet, we found
that the sampling method of SampleNet [9] is too heavy and not suitable for massive
points scenarios such as autonomous driving. Therefore, it is not necessary to conduct
experiments on it. The red values between parentheses in these tables are calculated by
subtracting the mean of random, FPS, F-FPS, and FS from the value of the LS module. With
only eight sampled points, LSNet outperforms other sampling methods significantly with
a 60% mAP gain on the easy difficulty level, a 42% mAP gain on the moderate difficulty
level, and a 33% mAP gain on the hard difficulty level. Also shown is the fact that when the
number of sampling points is decreased, the LS module increasingly outperforms the other
approaches. However, once the number of points reaches 512, the differences between these
approaches are small. The cause of this behavior is due to the fact that there are already
enough points to describe the whole 3D space and the sampling mode does not affect the
coverage of key information.

Table 3. Performance comparison on the easy difficulty level between different sampling methods on
the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 4.12 0.18 2.06 0.06 61.28 (+59.67)
16 18.71 1.83 10.87 0.15 66.59 (+58.70)
32 35.95 8.29 46.38 9.09 73.48 (+48.55)
64 51.40 32.61 77.21 45.30 83.57 (+31.94)

128 70.55 64.82 86.63 74.94 88.19 (+13.95)
256 72.81 76.10 89.66 86.10 88.56 (+7.39)
512 78.93 87.75 89.17 85.27 89.29 (+4.01)

Table 4. Performance comparison on the moderate difficulty level between different sampling methods
on the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 3.19 0.18 0.32 0.08 42.49 (+41.54)
16 13.30 2.07 8.57 0.24 46.53 (+40.49)
32 27.11 7.82 35.70 7.56 53.29 (+37.74)
64 39.21 28.60 64.28 34.34 65.18 (+23.57)

128 54.87 54.77 75.87 63.01 72.64 (+10.51)
256 61.20 64.66 79.08 74.72 74.51 (+4.60)
512 66.97 76.79 79.52 76.83 78.36 (+3.33)

Table 5. Performance comparison on the hard difficulty level between different sampling methods on
the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 2.16 0.32 1.31 0.03 33.46 (+32.50)
16 11.76 1.62 7.54 0.28 39.17 (+33.87)
32 24.18 7.49 30.77 6.82 46.28 (+28.97)
64 34.77 26.89 58.65 30.54 58.43 (+20.71)

128 51.20 52.31 71.62 57.05 67.19 (+9.15)
256 57.99 62.84 76.43 70.60 72.63 (+5.67)
512 64.82 73.94 78.83 74.45 75.46 (+2.45)

In Figures 6–8, visual examples of the described behavior are shown that illustrate
the advantages of the LS module. Firstly, by comparing these three sampling methods, we
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can see that our sampling approach generates more points within the region of interest
and near the target object, which is the reason why LSNet works extremely well when
the sampling size is small. Furthermore, Figures 6 and 7 depict a complex scene with
various features and a simple scene with relatively less different features. It is obvious that
FPS and F-FPS performed poorly in the complex scene because there is relatively more
distraction. In contrast, our sampling approach can still locate the key areas by selecting
the corresponding points nearby.

Figure 6. Visualizing the results of LSNet with 16 sampled points and different sampling approaches.
The top-left frame presents the 3D object detection results, where ground truth and predictions are
labeled in red and green, respectively. Moreover, the area surrounded by gray lines is the visible area
within the image, which can be also recognized as a region of interest. The top-right frame displays
the image of the scene. The second line illustrates the sampling results of the LS module, D-FPS, and
F-FPS, where the sampled points are displayed in green and the 4096 original points before sampling
are displayed in white.

Figure 7. Visualizing the results of LSNet with 16 sampled points and different sampling approaches.
This is an easier scene compared to Figure 6 .
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Figure 8. Visualizing the results of LSNet with 512 sampled points and different sampling approaches.

4.3. Effects of Multi-Stage Training and the Flexibility of the LS Module

As previously described, only the LS module is replaced, with the rest of the archi-
tecture remaining the same. This ease of insertion and the removal of the part of the LS
module illustrates how flexibly it can be used. Additionally, Tables 6 and 7 show the
results of multi-stage training when starting from an already-trained task network. In this
paper, the model trained with the F-FPS sampling approach was used as the task network.
Following this, F-FPS was substituted with the LS module. Once the substitution was
finished, the weights were set as fixed to solely train the LS module. Finally, Tables 6 and 7
show the results inferred by the new model with the LS module. Using the LS module,
the number of sampled points is halved in short order with only a small loss of accuracy.
The number of sampled points of the fixed task model is 256 in Table 6 and 512 in Table 7.
This illustrates that the greater the difference in the number of sampled points between
the original task network and the LS module, the larger the performance degradation.
For example, with 128 sampling points, task-network-256 leads task-network-512 by over
17% mAP gain in moderate difficulty. Figure 9 shows that the training time of the LS
module is much shorter in comparison to the time required for the end-to-end training.
Furthermore, the growth trend of the time cost for training the LS module is more gentle.

Table 6. Multi-stage training on the trained task network with 256 sampled points using the F-FPS
sampling method. The first line of the table shows the original performance of the trained model and
the results are evaluated by the mean average precision (mAP).

Sampled Points Easy (%) Moderate (%) Hard (%)

256 (task-net) 89.66 79.08 76.43

8 30.19 18.23 14.56
16 42.61 27.13 22.34
32 69.24 50.36 42.28
64 76.47 59.29 50.82

128 84.13 70.08 65.21
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Table 7. Multi-stage training on the trained task network with 512 sampled points using the F-FPS
sampling method. The first line of the table shows the original performance of the trained model and
the results are evaluated by the mean average precision (mAP).

Sampled Points Easy (%) Moderate (%) Hard (%)

512 (task-net) 89.17 79.52 78.83

8 6.80 4.36 3.31
16 21.43 15.33 12.52
32 50.31 32.29 26.48
64 64.28 46.47 39.61

128 79.36 52.86 55.31
256 85.58 70.36 66.53

Figure 9. Time comparison between training the entire model end-to-end and training the LS module
only with a batch size of eight.

5. Discussion

Ablation Study

In this section, extensive ablation experiments are conducted to analyze the individual
components of the proposed approaches. All the models are trained on the training split
and evaluated on the validation split for the car class of the KITTI dataset [12].

Effects of the Different Grouping Methods. Table 8 compares the performance
between the grouping with the old points and new points together versus the grouping
with the new points only. The result is that while there is no difference when the number
of points is large, when the number of points is very small, the approach of grouping old
and new points together gains higher accuracy. For example, the mAP of eight sampled
points for “new points only” is lower than the one for “old + new”, which is caused by the
relatively smaller information loss of grouping old and new points together.
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Table 8. The mAP results for different groupings.

Sampled Points
Old + New (%) New Points Only (%)

Easy Moderate Hard Easy Moderate Hard

8 61.24 42.36 33.12 46.49 35.01 29.15
16 66.38 46.09 39.31 69.16 51.61 42.29
32 73.07 53.35 46.21 74.08 57.81 50.26
64 83.47 65.81 58.43 83.13 69.42 63.16

128 88.12 72.42 67.35 87.52 74.16 69.63
256 88.63 74.36 72.61 88.17 74.56 70.47
512 89.36 78.61 75.47 89.35 75.43 72.39

Effects of the Sampling Loss. As shown in Table 9, the proposed sampling loss can
boost the unique rate significantly. With our sampling loss, the average unique rate of the
points can be stabilized at around 95%. On the contrary, once we remove the sampling
loss, the repetition rate climbs to 88% with 512 sampled points and 77% with 256 sampled
points. Another issue is that the model performs poorly with a large number of repetition
points when it comes to mAP.

Table 9. The effectiveness of sampling loss evaluated by unique rate and mAP results.

Sampled Points

Unique Rate (%) mAP (%)

With SL Without SL
With SL Without SL

Easy Moderate Hard Easy Moderate Hard

8 95 94 46.49 35.01 29.15 47.35 35.12 30.56
16 95 85 69.16 51.61 42.29 63.26 45.63 39.18
32 95 75 74.08 57.81 50.26 72.53 55.45 49.32
64 95 54 83.13 69.42 63.16 70.64 56.36 50.21
128 96 51 87.52 74.16 69.63 79.10 65.12 60.03
256 96 33 88.17 74.56 70.47 80.59 65.51 60.52
512 95 22 89.35 75.43 72.39 76.53 62.59 56.24

Effects of Relaxation. Table 10 confirms that the random relaxation strategy of the
sampling matrix yields a higher mAP, i.e., increasing the mAP by an average of 2.96%,
2.94%, and 1.97% on the easy, moderate, and hard difficulty levels, respectively.

Table 10. The effectiveness of random relaxation evaluated by mAP results.

Sampled Points
With Relaxation (%) Without Relaxation (%)

Easy Moderate Hard Easy Moderate Hard

8 61.24 42.36 33.12 54.23 36.19 30.09
16 66.38 46.09 39.31 60.63 41.71 35.32
32 73.07 53.35 46.21 70.52 49.63 44.37
64 83.47 65.81 58.43 81.25 63.61 56.47

128 88.12 72.42 67.35 86.21 70.45 65.21
256 88.63 74.36 72.61 88.04 73.54 71.58
512 89.36 78.61 75.47 88.54 77.31 75.65

Speed Analysis of LSNet. All the speed experiments were run on a 2080Ti GPU.
Table 11 illustrates the inference speed of the entire network in fps(frames per second).
The processing time of each model with different sampling approaches has little variation,
which proves that replacing the original sampling strategy in other models with the LS
module will not introduce excessive time consumption. Thus, this shows that the LS
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module is lightweight and can be plugged into other models without encumbering them.
Under the consideration of both inference speed and accuracy, LSNet outperforms the other
tested methods according to Figure 10. The green gradient background of the table shows
the overall performance of the method, and the darker the color, the better the performance.
Then, we can see that LSNet gains higher overall performance, especially when it comes to
faster inference speed. Furthermore, we add several auxiliary lines (black dashed lines) in
Figure 10 to address this superiority. Each auxiliary line indicates the same accuracy, and
LSNet runs faster than other methods with the same accuracy. In addition, FPS collapses
very quickly at speeds above 15 fps. The inference time of LSNet-256 is 73 ms and the
inference time of LSNet-8 is 64 ms.

Table 11. Speed comparison between different sampling methods by checking the fps (frames per
second) of the entire model.

Sampled Points Random FPS F-FPS LS module

8 15.48 15.64 15.10 15.53
16 15.38 15.58 15.09 15.49
32 15.38 15.53 15.04 15.13
64 15.31 15.47 15.00 15.05

128 14.96 14.99 14.93 14.83
256 14.00 14.02 13.73 13.66
512 13.02 12.92 12.51 12.17

Figure 10. Speed-precision demonstration of different sampling size and different sampling methods.

6. Conclusions

In this paper, LSNet was proposed to solve the 3D object detection task that operates
on LiDAR point clouds. Importantly, the LS module, which is a novel deep-learning-based
sampling approach that is differentiable and task-related, was presented. Specifically,
with 128 sampled points, it attained a computational acceleration at the cost of acceptable
accuracy loss. In addition, the random relaxation method was introduced to the sampling
matrix. Evaluated on the challenging KITTI dataset, the LS module of LSNet was found
to work extremely well when only using a small amount of sampling data in comparison
to the D-FPS and F-FPS methods. The proposed sampling loss was proven to be highly
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effective in ameliorating the issue of sampling duplicates. Finally, it has been shown that,
with an already trained point-based task network, the LS module can be attached to the
task network flexibly to replace the original sampling method such as FPS.

As the proposed method has been shown to be superior in comparison to other
sampling methods for usage in low sampling size cases and complex scenarios, it is
therefore particularly appropriate for autonomous driving usage on urban roads. This is
due to the increased complexity faced on urban roads in comparison to highway driving.
Additionally, if autonomous vehicles, i.e., trucks, are equipped with multiple LiDARs, this
would greatly increase the initial amount of raw points in the system, an issue this sampling
method is well suited to handling, giving rise to a reduction in the required memory and
computational cost. In a similar vein, the large amount of exploration undertaken recently
in China on vehicle-to-everything (V2X) scenarios can also benefit from the LS module.
As V2X involves multiple sensors containing LiDAR, they inevitably produce more point
cloud data than vehicle-only scenarios. Once again, this means that the module’s efficiency
in dealing with such issues is applicable. These varied use cases show the widespread
potential and applicability of the LS module.

The LS module tends to sample more points in dense objects than sparse objects, which
results in relatively weak performance in moderate and hard categories. In the future, we
will work on sampling points evenly on each object and regard their density. Furthermore,
it is expected to keep at least one point, even when the object is badly shaded. In addition,
we look forward to achieving better accuracy with less points in the following study.

Author Contributions: Conceptualization, M.W.; Data curation, M.W. and Z.F.; Formal analysis,
M.W.; Funding acquisition, Q.C.; Investigation, M.W.; Methodology, M.W.; Project administration,
M.W. and Q.C.; Resources, Q.C.; Software, M.W.; Supervision, M.W. and Q.C.; Validation, M.W. and
Z.F.; Visualization, M.W.; Writing—original draft, M.W.; Writing—review and editing, M.W., Q.C.,
and Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Shanghai Key Science and Technology Project (19DZ1208903);
National Natural Science Foundation of China (Grant Nos. 61572325 and 60970012); Ministry of
Education Doctoral Fund of Ph.D. Supervisor of China (Grant No. 20113120110 0 08); Shanghai
Key Science and Technology Project in Information Technology Field (Grant Nos. 14511107902
and 16DZ1203603); Shanghai Leading Academic Discipline Project (No. XTKX2012); Shanghai
Engineering Research Center Project (Nos. GCZX14014 and C14001).

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: [http:
//www.cvlibs.net/datasets/kitti/index.php], accessed on 10 March 2022.

Acknowledgments: The authors would like to acknowledge the support from the Flow Computing
Laboratory at University of Shanghai for Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

2. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.

3. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection from View Aggregation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2019.

4. Wang, J.; Zhu, M.; Wang, B.; Sun, D.; Wei, H.; Liu, C.; Nie, H. KDA3D: Key-Point Densification and Multi-Attention Guidance for
3D Object Detection. Remote Sens. 2020, 12, 1895. [CrossRef]

5. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020.

6. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for
Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019.

108



Remote Sens. 2022, 14, 1539

7. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11040–11048.

8. Dovrat, O.; Lang, I.; Avidan, S. Learning to sample. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2760–2769.

9. Lang, I.; Manor, A.; Avidan, S. SampleNet: Differentiable Point Cloud Sampling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7578–7588.

10. Yang, J.; Zhang, Q.; Ni, B.; Li, L.; Liu, J.; Zhou, M.; Tian, Q. Modeling point clouds with self-attention and gumbel subset sampling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 3323–3332.

11. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 1912–1920.

12. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

13. Song, S.; Chandraker, M. Joint SFM and detection cues for monocular 3D localization in road scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3734–3742.

14. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3d object detection for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2147–2156.

15. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3d bounding box estimation using deep learning and geometry. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 June 2017; pp. 7074–7082.

16. Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.

17. Simony, M.; Milzy, S.; Amendey, K.; Gross, H.M. Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection
on Point Clouds. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany,
1–4 September 2018.

18. Yang, B.; Liang, M.; Urtasun, R. Hdnet: Exploiting hd maps for 3d object detection. In Proceedings of the Conference on Robot
Learning, Zurich, Switzerland, 29–31 October 2018; pp. 146–155.

19. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d LiDAR using fully convolutional network. arXiv 2016, arXiv:1608.07916.
20. Chai, Y.; Sun, P.; Ngiam, J.; Wang, W.; Caine, B.; Vasudevan, V.; Zhang, X.; Anguelov, D. To the Point: Efficient 3D Object Detection

in the Range Image With Graph Convolution Kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 16000–16009.

21. Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Seoul,
Korea, 27 October–3 November 2019; pp. 9775–9784.

22. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and
part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [CrossRef] [PubMed]

23. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
24. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
25. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 27 October–3 November 2019;
pp. 12697–12705.

26. Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. TANet: Robust 3D Object Detection from Point Clouds with Triple Attention.
In Proceedings of the AAAI Conference on Artificial Intelligence , New York, NY, USA, 7–12 February 2020; pp. 11677–11684.

27. Graham, B.; Engelcke, M.; Van Der Maaten, L. 3d semantic segmentation with submanifold sparse convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 9224–9232.

28. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 June 2017; pp. 652–660.

29. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.
Process. Syst. 2017, 30, 5099–5108.

30. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 770–779.

31. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 9277–9286.

32. Ngiam, J.; Caine, B.; Han, W.; Yang, B.; Chai, Y.; Sun, P.; Zhou, Y.; Yi, X.; Alsharif, O.; Nguyen, P.; et al. Starnet: Targeted
computation for object detection in point clouds. arXiv 2019, arXiv:1908.11069.

33. Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1711–1719.

109



Remote Sens. 2022, 14, 1539

34. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10529–10538.

35. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-Voxel CNN for efficient 3D deep learning. Adv. Neural Inf. Process. Syst. 2019, 32, 965–975.
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Abstract: Oriented object detection is a fundamental and challenging task in remote sensing image
analysis that has recently drawn much attention. Currently, mainstream oriented object detectors are
based on densely placed predefined anchors. However, the high number of anchors aggravates the
positive and negative sample imbalance problem, which may lead to duplicate detections or missed
detections. To address the problem, this paper proposes a novel anchor-free two-stage oriented
object detector. We propose the Anchor-Free Oriented Region Proposal Network (AFO-RPN) to
generate high-quality oriented proposals without enormous predefined anchors. To deal with rotation
problems, we also propose a new representation of an oriented box based on a polar coordinate
system. To solve the severe appearance ambiguity problems faced by anchor-free methods, we use a
Criss-Cross Attention Feature Pyramid Network (CCA-FPN) to exploit the contextual information of
each pixel and its neighbors in order to enhance the feature representation. Extensive experiments on
three public remote sensing benchmarks—DOTA, DIOR-R, and HRSC2016—demonstrate that our
method can achieve very promising detection performance, with a mean average precision (mAP) of
80.68%, 67.15%, and 90.45%, respectively, on the benchmarks.

Keywords: remote sensing images; oriented object detection; contextual information; Anchor Free
Region Proposal Network; polar representation

1. Introduction

Object detection is a fundamental and challenging task in computer vision. Object
detection in remote sensing images (RSIs) [1–9], which recognizes and locates the objects of
interest such as vehicles [4,5], ships [6,7], and airplanes [8,9] on the ground, has enabled
applications in fields such as traffic planning and land surveying.

Traditional object detection methods [10], like object-based image analysis (OBIA) [11],
usually take two steps to accomplish object detection: firstly, extract regions that may
contain potential objects, then extract hand-designed features and apply classifiers to
obtain the class information. However, their detection performance is unsatisfactory
because the handcrafted features have limited representational power with insufficient
semantic information.

Benefitting from the rapid development of deep convolutional neural networks (DC-
NNs) [12] and publicly available large-scale benchmarks, generic object detection [13–19]
has made extensive progress in natural scenes, which has also prompted the increased
development of object detection in RSIs. Generic object detectors employ an axis-aligned
bounding box, also called a horizontal bounding box (HBB), to localize the object in the
image. However, detecting objects in RSIs with HBBs remains a challenge. Because RSIs
are photographed from a bird’s eye view, the objects in RSIs often have large aspect ratios
and dense arrangements, as is the case with, for example, ships docked in a harbor. As a
result, oriented bounding box (OBB) has recently been adopted to describe the position of
the arbitrary-rotated object in RSIs.
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Currently, mainstream oriented object detectors [20–23] are based on densely placed
predefined anchors. Several early rotation detectors use a horizontal anchor-based Re-
gion Proposal Network (RPN) to generate horizontal regions of interest (RoIs), and then
design novel network modules to convert the horizontal RoIs into OBBs. For example,
Ding et al. [20] build a rotated RoI learner to transform horizontal RoIs into rotated RoIs
(RRoIs), and then regress the RRoIs to obtain the final results. However, the horizontal RoI
typically contains massive ground pixels and other objects due to the arbitrary orientation
and dense distribution of the objects, as shown in Figure 1a. The mismatch between the
horizontal anchors and rotation objects causes difficulties in network training and further
degrades performance [21].

(a) (b)

Figure 1. Disadvantages of anchor-based detectors. The blue rectangle represents the ground truth,
and the orange rectangle represents the anchor box. (a) The horizontal anchor contains massive
ground pixels and other objects. (b) RRPN often places too many oriented anchors to ensure a high
recall rate.

To address the problem, some detectors use a rotated anchor-based RPN (RRPN) [23]
to generate RRoIs. Nevertheless, the Intersection over Union (IoU) is highly sensitive to
the angle. To ensure the high recall rate, RRPN places 54 rotated anchors (six orientations,
three aspect ratios, and three scales) for each sample point on the feature map, as shown
in Figure 1b. However, the high number of anchors increases the computational burden
and aggravates the imbalance between positive and negative samples. Moreover, dense
anchors may lead to duplicate detections of the same object and missed detections [21]
after the non-maximum suppression (NMS).

Owing to the above problems, the use of anchor-free oriented object detectors is
increasing. Anchor-free detectors directly locate the objects without manually defined
anchors. In particular, keypoint-based methods use several points, such as corners [24],
extreme points [25], and the center [26], to represent the positive samples and directly
regress the categories and locations of the objects from the features of the keypoints. For
example, CenterNet [26] uses one center point to represent the object and directly regresses
other properties, such as object size, dimension, and pose, from the features at the center
position. Most anchor-free oriented object detectors are inherent from CenterNet for high
efficiency and generality, having achieved performance competitive with anchor-based
detectors. For example, Pan et al. [27] extend the CenterNet by adding a branch to regress
the orientations of the OBBs, and the proposed DRN achieved consistent gains across
multiple datasets in comparison with baseline approaches.

However, keypoint-based anchor-free object detectors face severe appearance ambi-
guity problems with backgrounds or other categories. As shown in Figure 2, the central
areas of the objects are similar to the backgrounds, and some objects belonging to dif-
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ferent categories even share the same center parts. The main reason for this is that the
commonly used fully convolutional networks have insufficient contextual information [28]
because of the limited local receptive fields due to fixed DCNN structures. Furthermore,
nearly all anchor-free detectors are one-stage detectors, which usually encounter severe
misalignment [29] between the axis-aligned convolutional features extracted by the DCNNs
and rotational bounding boxes. However, the feature warping module of the two-stage
detectors, such as RRoI Pooling [23] or RRoI Align [20], can alleviate this problem.

(a) (b)

Figure 2. Appearance ambiguity problems of the keypoint-based anchor-free object detectors. (a) The
central areas of the objects are similar to the backgrounds. (b) Some different categories objects share
the same center parts.

Based on the above discussion, we propose a novel two-stage oriented object detector,
following the coarse- to fine-detection paradigm. Our method consists of four components:
a backbone, a Criss-Cross Attention Feature Pyramid Network (CCA-FPN), an Anchor-Free
Oriented Region Proposal Network (AFO-RPN) and oriented RCNN heads.

At the outset, we use the proposed AFO-RPN to generate high quality–oriented
proposals without placing excessive fix-shaped anchors on the feature map. To enhance
the feature representation of each pixel in the feature map, we adopt CCA-FPN to exploit
the contextual information from full image patch. To deal with rotation problems, we
propose a new representation of OBB based on polar coordinate system. Finally, we apply
an AlignConv to align the features and then use oriented RCNN heads to predict the
classification scores and regress the final OBBs. To demonstrate the effectiveness of our
method, we conducted extensive experiments on three public RSI oriented object detection
datasets—DOTA [30], DIOR-R [31], and HRSC2016 [7].

The contributions of this paper can be summarized as follows: (1) We propose a new
anchor-free oriented object detector following the two-stage coarse-to-refined detection
paradigm. Specifically, we proposed AFO-RPN to generate high-quality proposals without
enormous predefined anchors and a new representation method of OBB in the polar
coordinate system, which can better handle the rotation problem; (2) We apply CCA module
into FPN to enhance the feature representation of each pixel by capturing the contextual
information from the full patch image; and (3) Experimental results on three publicly
available datasets show that our method achieves promising results and outperforms
previous state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews the related work
and explains our method in details. Section 3 compares the propsed method with state-of-
the-art methods on different datasets. Section 4 discusses the ablation experiments of the
proposed method. Section 5 offers our conclusions.
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2. Materials and Methods

2.1. Related Work
2.1.1. Generic Object Detection

With recent advances in deep learning techniques, the performance of DCNN-based
generic object detectors has improved significantly. Generic object detectors aim to detect
general objects in natural scenes with HBBs to locate objects. The mainstream generic object
detection methods can be roughly divided according to the following standards: two- or
single-stage object detection, and anchor-free or anchor-based object detection.

Two-stage object detectors, such as Faster RCNN [13] and Mask RCNN [14], first
generate RoIs, which can be treated as coarse class-agnostic detection results, and then
in the second stage extract the RoI features to perform refined classification and location.
Two-stage object detectors can achieve high detection accuracy, but their inference speed is
slow. One-stage object detectors, such as YOLO series [15–17], SSD [18], and RetinaNet [19],
directly regress the complete detection results through one-step prediction. One-stage
detectors are fast and can achieve real-time inference, but they are less accurate than two-
stage detectors. The design of anchors has been popularized by Faster R-CNN in its RPN
and has become the convention in many modern object detectors.

Although anchor-based detectors currently dominate in the object detection arena, they
involve placing a dense set of predefined anchors at each location of the feature map, which
dramatically increases the computational cost. As a result, anchor-free detectors [24–26,32–34],
which directly locate the object without manually defined anchors, have become popular. For
example, CornerNet [24] directly regresses the top-left and bottom-right corner points and then
groups them to form the final HBB. ExtremeNet [25] predicts four extreme points (top-most,
left-most, right-most, and bottom-most) and one center point, and then groups them into the
HBB. CenterNet [26] models an object as one single point and directly regresses the center point
of the HBB. Unlike key point-based anchor-free detectors, which treat several key points of
the objects as positive samples, pixel-based anchor-free detectors attempt to solve the problem
in a per-pixel prediction fashion. RepPoints [32] introduces a set of representative points that
adaptively learn to position themselves over an object. Tian et al. [33] regard all the pixels inside
the object HBB as positive samples. Motivated by the human eye system, Kong et al. [34] regard
the pixels inside the fovea area of the object HBB as the positive samples. Both of them predict
four distances to the four sides of HBB from the positive pixels to form the HBB. Anchor-free
detection methods are fast in inference and also achieve competitive detection results with
anchor-based detection methods.

2.1.2. Oriented Object Detection

Oriented object detection is receiving significant attention in areas such as remote
sensing images and natural scene text. Oriented object detectors use OBBs to locate
arbitrary-rotated objects other than HBBs because the objects in those scenes usually have
large aspect ratios and are densely packed.

Oriented object detectors often use generic object detectors as a baseline and then add
specially designed modules to regress OBB from HBB. Based on Faster-RCNN [13], RRPN [23]
uses Rotation RPN and Rotation RoI pooling for arbitrary-oriented text detection. The RoI
Transformer [20] utilizes a learnable module to transform horizontal RoIs to RRoIs. Xu et al. [22]
propose to glide each vertex on the four corresponding sides of HBB to represent OBB, and Ye
et al. [35] introduce feature fusion and feature filtration modules to exploit multilevel context
information.

Based on RetinaNet [19], ADT-Det [36] uses a feature pyramid transformer that en-
hances features through feature interaction with multiple scales and layers. S2A-Net [29]
utilizes a feature alignment module for full feature alignment and an oriented detection
module to alleviate the inconsistency between classification and regression. R3Det [37] uses
a feature refinement module to re-encode the position information and then reconstruct the
entire feature map through pixel-wise interpolation.
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Some research has adopted the OBB based on the semantic-segmentation network,
such as Mask RCNN [14]. Mask OBB [38] is the first to treat the oriented object detection
as an instance segmentation problem. Wang et al. [39] propose a center probability map
OBB that gives a better OBB representation by reducing the influence of background pixels
inside the OBB and obtaining higher detection performance.

Aside from the above anchor-based detectors, some rotation object detectors use an
anchor-free approach. Based on CenterNet [26], Pan et al. [27] propose DRN by adding
a branch to regress the orientations of the OBBs, and Shi et al. [40] develop a multi-task
learning procedure to weight multi-task loss function during training. Other anchor-free
detectors use new OBB representations. Xiao et al. [41] adopt FCOS [33] as the baseline
and propose axis learning to detect oriented objects by predicting the axis of the object.
Guo et al. [42] propose CFA, which uses RepPoints [32] as its baseline, and construct a
convex-hull set for each oriented object.

2.1.3. Contextual Information and Attention Mechanisms

Numerous studies have shown that using contextual information and attention mech-
anisms can improve the performance of vision tasks such as scene classification, object
detection, and instance segmentation.

For example, Wang et al. [43] use a novel locality and structure regularized low-rank
representation method to characterize the global and local structures for hyper-spectral
image classification task. ARCnet [44] utilizes a novel recurrent attention structure to force
the scene classifiers to learn to focus on some critical areas of the very high-resolution
RSIs, which often contain complex objects. AGMFA-Net [45] uses an attention-guided
multi-layer feature aggregation network to capture more complete semantic regions for
more powerful scene representation.

Contextual information aggregation has been widely adopted in semantic segmen-
tation networks. To enhance the ability of the network to distinguish small-scale objects,
CFEM [46] uses a context-based feature enhancement module to enhance the discriminant
ability to distinguish small objects. HRCNet [47] utilizes a lightweight high-resolution
context extraction network to acquire global context information and recognize the bound-
ary being.

The usefulness of contextual information has been verified by many studies [35,48,49]
in aerial object detection, especially when object appearances are insufficient due to small
size, occlusion, or complicated backgrounds. CADNet [48] incorporates global and local
contextual information and has a spatial-and-scale awareness attention module for object
detection in RSIs. Wu et al. [49] propose a local context module that establishes the
positional relationships between a proposal and its surrounding region pixels to help detect
objects. F3-Net [35] uses a feature fusion module that extracts the contextual information
at different scales.

Attention mechanisms also show promise in oriented object detection by guiding the
processing to more informative and relevant regions. ROSD [50] uses an orientation attention
module to enhance the orientation sensitivity for accurate rotated object regression. CFC-Net [51]
utilizes polarized attention to construct task-specific critical features. Li et al. [52] use a center-
boundary dual attention module to extract attention features on the oriented objects’ center and
boundary regions. RADet [53] uses a multi-layer attention network focused simultaneously
on objects’ spatial position and features. SCRDet [54] uses a supervised multi-dimensional
attention network consisting of a pixel attention network and channel attention network to
suppress the noise and highlight the foreground.

2.1.4. OBB Representation Methods

The two most widely used OBB representation methods are the angle-based five-
parameter representation method and the vertex-based eight-parameter representation
method. The more commonly used five-parameter representation directly adds an angle
parameter θ to HBB representation (x, y, w, h), and the definition of the angle θ is the
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acute angle determined by the long side of the rectangle and X-axis. The eight-parameter
representation directly adopts the four corners of the OBB, e.g., (x1, y1, x2, y2, x3, y3, x4, y4).

Although oriented object detectors with either form of OBB representation have
demonstrated good performance, the inherent drawbacks of these two representations
hinder the further improvement of the detection results [55]. The angular parameters em-
bedded in the five-parameter representation encounter the problem of angular periodicity,
leading to difficulty in the learning process. In contrast, the eight-parameter representation
requires the exact same points order of ground truth and prediction, which otherwise leads
to an unstable training process.

To handle these problems, some detectors have introduced new representations along
with the anchor-free model. Axis learning [41] locates objects by predicting their axis and
width, the latter of which is vertical to the axis. O2DNet [56] treats the objects as pairs
of middle lines. SAR [57] uses a brand-new representation with a circle-cut horizontal
rectangle. Wu et al. [58] propose a novel projection-based method for describing OBB.
Yi et al. [59] propose BBAVectors to regress one center point and four middle points of
the corresponding sides to form the OBB. X-LineNet [9] uses paired appearance-based
intersecting line segments to represent aircraft.

The above representations are all based on cartesian coordinates, and recently, the
representation based on polar coordinates has been employed for rotated object detection
and instance segmentation. Polar Mask [60], which model instance masks in the polar
coordinates as one center and n rays, achieves competitive performance with much simpler
and more flexible. Polar coordinates-based representations have been proved helpful
in rotation and direction-related problems. Following Polar Mask, some rotated object
detectors [61,62] also adopt polar representation and show great potential. PolarDet [61]
represents the OBB by multiple angles and shorter-polar diameter ratios. However, the
OBB representation of PolarDet needs 13 parameters, and some of them are redundant. In
contrast, we propose a similar but more efficient representation method with only seven
parameters. P-RSDet [62] regresses three parameters in polar coordinates, which include a
polar radius ρ and the first two angles, to form the OBB and put forward a new Polar Ring
Area Loss to improve the prediction accuracy.

2.2. Method
2.2.1. Overall Architecture

As shown in Figure 3, the proposed detector follows the two-stage detection paradigm,
and contains four modules: the backbone for feature extraction, a CCA-FPN for feature
representation enhancement with contextual information, an AFO-RPN for RRoI generation,
and oriented RCNN heads for the final class and locations of the rotational object. For the
backbone, we adopted ResNet [12], which is commonly used in many oriented detectors.

Figure 3. Overall architecture of the proposed method. There are four modules: backbone, Criss-Cross
Attention FPN, anchor-free oriented RPN, and oriented RCNN heads.

2.2.2. Criss-Cross Attention FPN

Contextual information has been shown to be helpful in many computer vision tasks,
such as scene classification, object detection, and semantic segmentation. In general,
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contextual information in vision describes the relationship between a pixel and its sur-
rounding pixels.

One of the characteristics of RSIs is that the same category objects are often distributed
in a particular region, such as vehicles in a parking lot or ships in a harbor. Another
characteristic is that objects are closely related to the scene—for example, airplanes are
closely related to an airport, and ships are closely related to the water.

Motivated by the above observations and analysis, we propose a Criss-Cross Attention
FPN to fully exploit the contextual information of each pixel and its neighbors, which
enhances the feature representation of the objects. Specifically, we embed the cascaded
criss-cross attention modules into the FPN to enhance the pixel representations. The
criss-cross attention module first used in CC-Net [28] is designed to collect the contextual
information in the criss-cross path in order to enhance the pixel representative ability by
modeling full-patch image dependencies over local features.

Given a feature map H ∈ RC×W×H , we first apply three 1× 1 convolutional layers
on H to obtain three feature maps: queries map Q, keys map K, and values map V. Note
that Q and K have the same dimension, where {Q, K} ∈ RC′×W×H , and V has the same
dimension as H. We set C′ less than C for the purpose of dimension reduction.

Next, we obtain a vector Qu at each spatial position u of Q and the set Ωu in which
the vectors are extracted from the same row and column with spatial position u from keys
map K. The correlation vector Du is calculated by applying affinity operation on query
vector Qu and key vector set Ωu as follows:

Du = QuΩT
u , (1)

where Du ∈ RW+H−1. Next, we calculate the attention vector Au by applying softmax
function on Du over the channel dimension, as follows:

Au = so f tmax(Du). (2)

Then, we obtain the value vector set Φu, in which the value vectors are extracted from
the same row and column with position u of V. The contextual information is collected by
an aggregation operation defined as:

H′
u =

W+H−1

∑
i=0

Ai,uΦi,u + Hu, (3)

where H′ ∈ RC×W×H is the output of criss-cross attention module, which aggregates
contextual information together with each pixel. A single criss-cross attention module
can only capture contextual information of pixels in horizontal and vertical directions.
However, it is not sufficient to focus only on the criss-cross path information for the problem
of oriented object detection. To capture the contextual information in other directions, we
use two cascaded criss-cross attention modules, following CC-Net [28].

2.2.3. Anchor-Free Oriented Region Proposal Network

As shown in Figure 3, the CCA-FPN produces five levels of feature maps {P2, P3, P4, P5, P6},
where their strides {s2, s3, s4, s5, s6} are 4, 8, 16, 32, and 64, respectively. The proposed AFO-RPN
takes the feature map Pi as input and outputs a set of oriented proposals, as shown in Figure 4.
We introduce the polar representation method of OBB and then present the details of AFO-RPN.
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Figure 4. Details of the proposed AFO-RPN.

2.2.4. Polar Representation of OBB

Instead of the commonly used Cartesian-based OBB representation, we use the polar-
based OBB representation in this paper, as shown in Figure 5. Specifically, the centroid
of each object is used as the origin of the polar coordinates, and we use

(
cx, cy, ρ, γ, ϕ

)
to represent the OBB, where cx, cy are the centroids of the OBB, which are also the poles
of the polar coordinates. ρ is the radius, which calculates the distance from the centroid
to the vertex, and γ is the central angle corresponding to the short side of the OBB. This
representation is more robust than the one that uses w and h to represent a rectangular
box’s long and short sides. The reason is that using w and h to represent the rectangular box
is prone to the problem of confusion between w and h when the rectangular box is close to
the square [55]. However, by using ρ and γ to represent rectangular, the confusion between
w and h can be avoided. ϕ represents the rotation angle of the OBB, which is defined in the
polar coordinate system. We define the beginning angle 0◦ to coincide with the positive
y-axis and increase the angle counterclockwise.

Figure 5. Proposed polar representation of OBB.

2.2.5. Pole Point Regression

Following previous work such as CenterNet [26], we use pole point (center point of the
OBB) heatmaps to represent the location and objectness of the objects. Unlike CenterNet,
which uses a 2D Gaussian kernel with a diagonal correlation matrix to map the key point
to heatmaps, we use the rotated Gaussian kernel with a correlation matrix related to the
rotation angle of the ground truth box.

Specifically, for an OBB ground truth
(
cx, cy, w, h, θ

)
, we place a 2D Gaussian distribution

N (m, Σ) to form the ground truth heatmap in the training stage. Here, m =
(⌊ cx

s
⌋
,
⌊

cy
s

⌋)
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represents the center of the gaussian distribution mapped into the feature map, where s is the
downsampling stride of each feature map. The correlation matrix Σ is calculated as:

Σ
1
2 = R(θ)SRT(θ), (4)

where the rotation matrix R(θ) is defined as:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (5)

S = diag
(
σx, σy

)
is the standard deviation matrix, where σx = w× σp, σy = h× σp, and σp

is an object size-adaptive standard deviation [26].
In the training stage, only the peaks of the Gaussians are treated as the positive

samples; all the other points are negative. To handle the imbalance between the positive
and negative samples, we use a pixel-wise logistic regression with variant focal loss as
CenterNet [26]:

Lk =
−1
N ∑

xy

{(
1− Ŷxy

)α log
(
Ŷxy

)
, if Ŷxy = 1(

1−Yxy
)β log

(
Ŷxy

)α log
(
1− Ŷxy

)
, otherwise

, (6)

where Ŷxy and Yxy refer to the ground-truth and the predicted heatmap values, α and β are
the hyper-parameters of the focal loss that control the contribution of each point, and N is
the number of the objects in the input image.

Furthermore, to compensate for the quantization error caused by the output stride,
we additionally predict a local offset map O ∈ R2×H×W , slightly adjust the center point
locations before remapping them to the input resolution, and the offset of the OBB center
point is defined as o =

(
cx
s −

⌊ cx
s
⌋
, cy

s −
⌊

cy
s

⌋)
.

The offset is optimized with a smooth L1 loss [13]:

LO =
1
N ∑

k
SmoothL1(ok − ôk), (7)

where ôk and ok refer to the ground-truth and the predicted local offset of the kth object,
respectively. The smooth L1 loss is defined as:

SmoothL1 =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

. (8)

2.2.6. Box Parameters Regression

The box parameters are defined as b = (ρ, γ, ϕ), where ρ is the radius that calculates
the distance from the centroid to the vertex, γ is the central angle corresponding to the short
side of the OBB, and ϕ represents the rotation angle of the OBB, as depicted in Figure 5. We
predict the box parameter map B ∈ R3×W×H with a smooth L1 loss:

LB =
1
N ∑

k
SmoothL1

(
bk − b̂k

)
, (9)

where b̂k and bk refer to the ground truth and the predicted box parameters of the kth
object, respectively.

The overall training loss of AFO-RPN is:

LAFO−RPN = Lk + λOLO + λBLB, (10)

where λO and λB are the weighted factors to control the contributions of each item, and we
set λO = 1 and λB = 0.1 in our experiments.
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2.2.7. Oriented RCNN Heads

As shown in Figure 6, the RoI feature extractor takes a group of feature maps {P2,
P3, P4, P5, P6} and a set of oriented proposals as input. We use the align conv module
to extract a fix-sized RoI feature from the corresponding feature map. The details of the
align conv can be referred to S2A-Net [29]. Then we use two fully connected layers and
two sibling fully connected layers to predict the classification scores and regress the final
oriented bounding boxes, as shown in Figure 3. The loss of RCNN heads is the same as
that in [20]. The RCNN heads loss is given by:

Lhead =
1

Ncls
∑

i
Lcls +

1
Nreg

∑
i

p�i Lreg, (11)

where Ncls and Nreg are the number of proposals generated by AFO-RPN and the positive
proposals in a mini batch, respectively. p�i is an index and when ith proposal is positive, it
is 1, otherwise it is 0.

The total loss function of the proposed method follows the multitask learning way,
and it is defined as:

Ltotal = λAFO−RPNLAFO−RPN + λheadLhead, (12)

where λAFO−RPN and λhead are the weighted factors, and we set λAFO−RPN = 1 and
λhead = 1.

Figure 6. The details of RoI feature extractor module.

3. Results

3.1. Datasets
3.1.1. DOTA

DOTA [30] is one of the largest public aerial image detection datasets. It contains
2806 images ranging from 800 × 800 to 4000 × 4000 pixels and 188,282 instances labeled by
arbitrarily oriented quadrilaterals over 15 categories: plane (PL), baseball diamond (BD),
bridge (BR), ground track field (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis
court (TC), basketball court (BC), storage tank (ST), soccer-ball field (SBF), roundabout (RA),
harbor (HA), swimming pool (SP), and helicopter (HC). The total dataset is divided into the
training set (1411 images), validation set (458 images), and test set (937 images). We used
the training set for network training and the validation set for evaluation in the ablation
experiments. In a comparison with state-of-the-art object detectors, the training set and
validation set were both used for network training, and the corresponding results on the
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test set were submitted to the official evaluation server at https://captain-whu.github.io/
DOTA/evaluation.html (accessed on 27 January 2022). Following [20], we crop the original
images into 1024× 1024 patches with a stride 200 for training and testing. For multi-scale
training and testing, we first resize original images at three scales (0.5, 1.0, and 1.5) which
are chosen empirically, and then crop them into 1024× 1024 patches with a stride of 512.

3.1.2. DIOR-R

DIOR-R [31] is a revised dataset of DIOR [1], which is another publicly available
arbitrary-oriented object detection dataset in the earth observation community. It contains
23,463 images with a fixed size of 800× 800 pixels and 192,518 annotated instances, covering
a wide range of scenes. The spatial resolutions range from 0.5 m to 30 m. The objects of this
dataset belong to 20 categories: airplane (APL), airport (APO), baseball field (BF), basketball
court (BC), bridge (BR), chimney (CH), expressway service area (ESA), expressway toll
station (ETS), dam (DAM), golf field (GF), ground track field (GTF), harbor (HA), overpass
(OP), ship (SH), stadium (STA), storage tank (STO), tennis court (TC), train station (TS),
vehicle (VE), and windmill (WM). The dataset is divided into the training (5862 images),
validation (5863 images), and test (11,738 images) sets. For a fair comparison with other
methods, the proposed detector is trained on the train+val set and evaluated on the test set.

3.1.3. HRSC2016

HRSC2016 [7] is an oriented ship detection dataset that contains 1061 images of rotated
ships with large aspect ratios, collected from six famous harbors, including ships on the
sea and close in-shore. The images range from 300 × 300 to 1500 × 900 pixels, and the
ground sample distances are between 2 m and 0.4 m. The dataset is randomly split into the
training set, validation set, and test set, containing 436 images including 1207 instances, 181
images including 541 instances, and 444 images including 1228 instances, respectively. We
used both the training and validation sets for training and the test set for evaluation in our
experiments. All images were resized to 800 × 1333 without changing the aspect ratio.

3.2. Implementation Details

We used ResNet 101 [12] as the backbone network for comparisons with state-of-the-
art methods. Our model was implemented on the mmdetection [20] library. We optimized
the model by using the SGD algorithm, and the initial learning rate was set to 0.005. The
momentum and weight decay were 0.9 and 0.0001, respectively. The DOTA and DIOR-R
datasets were trained by 12 epochs in total, and the learning rate was divided by 10 at eight
epochs and 11 epochs, respectively. The HRSC2016 dataset was trained by 36 epochs in
total, and the decay steps were 24 and 33 epochs. We used one Nvidia Titan XP GPU for all
the experiments.

In this article, we adopt the mean Average Precision (mAP) metric to evaluate the
multi-class detection accuracy of all experiments. mAP is the average of AP values for all
classes:

mAP =
∑N

i=1 APi

N
, (13)

where N is number of classes. The AP metric is measured by the area under the precision-
recall curve. The higher the mAP value, the better the performance, and vice versa.

3.3. Comparisons with State-of-the-Art Methods
3.3.1. Results on DOTA

To validate the effectiveness of our method, we compared it with several state-of-
the-art methods on the DOTA dataset test set. The results were evaluated by the official
DOTA evaluation server. As shown in Table 1, our model achieved a 76.57% mAP, which is
higher than many advanced methods. With the multi-scale training and testing strategy,
our model achieved an 80.68% mAP. Some detection results are shown in Figure 7.
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Figure 7. Depictions of the detection results on the DOTA dataset test set. We use bounding boxes of
different colors to represent different categories.

3.3.2. Results on DIOR-R

DIOR-R is a new oriented object detection dataset, so we retrained and tested several
advanced methods to conduct fair performance comparisons. As shown in Table 2, Faster
RCNN OBB [30], as the baseline two-stage oriented method, and RetinaNet OBB [19], as
the baseline single-stage oriented method, achieved 57.14% and 55.92% mAP, respectively.
As the advanced methods, RoI Transformer [20] and Gliding Vertex [22] achieved 65.93%
and 61.81% mAP, respectively. AOPG [31], as the baseline method in the DIOR-R dataset,
achieved 64.41% mAP. Our model achieved 65.80% mAP with ResNet 50 [12] as the back-
bone and 67.15% mAP with ResNet 101 [12] as the backbone. The detection results are
depicted in Figure 8.
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Table 2. Comparisons with state-of-the-art methods on DIOR-R dataset test set. Bold denotes the
best detection results.

Method Backbone APL APO BF BC BR CH DAM ETS ESA GF GTF HA OP SH STA STO TC TS VE WM mAP

RetinaNet-O [19] ResNet 101 64.20 21.97 73.99 86.76 17.57 72.62 72.36 47.22 22.08 77.90 76.60 36.61 30.94 74.97 63.35 49.21 83.44 44.93 37.53 64.18 55.92
FR-O [30] ResNet 101 61.33 14.73 71.47 86.46 19.86 72.24 59.78 55.98 19.72 77.08 81.47 39.21 33.30 78.78 70.05 61.85 81.31 53.44 39.90 64.81 57.14

Gliding Vertex [22] ResNet 101 61.58 36.02 71.61 86.87 33.48 72.37 72.85 64.62 25.78 76.03 81.81 42.41 47.25 80.57 69.63 61.98 86.74 58.20 41.87 64.48 61.81
AOPG [31] ResNet 50 62.39 37.79 71.62 87.63 40.90 72.47 31.08 65.42 77.99 73.20 81.94 42.32 54.45 81.17 72.69 71.31 81.49 60.04 52.38 69.99 64.41

RoI Trans [20] ResNet 101 61.54 45.46 71.90 87.48 41.43 72.67 78.67 67.17 38.26 81.83 83.40 48.94 55.61 81.18 75.06 62.63 88.36 63.09 47.80 66.10 65.93

Proposed Method ResNet 50 68.26 38.34 77.35 88.10 40.68 72.48 78.90 62.52 30.64 73.51 81.32 45.51 55.78 88.74 71.24 71.12 88.60 59.74 52.95 70.30 65.80
Proposed Method ResNet 101 61.65 47.58 77.59 88.39 40.98 72.55 81.90 63.76 38.17 79.49 81.82 45.39 54.94 88.67 73.48 75.75 87.69 61.69 52.43 69.00 67.15

Figure 8. Depictions of the detection results on the DIOR-R dataset test set. We use bounding boxes
of different colors to represent different categories.
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3.3.3. Results on HRSC2016

The HRSC2016 dataset contains many densely packed ship instances with arbitrary
orientation and large aspect ratios. Table 3 shows the results of our comparison of the
proposed method with several state-of-the-art methods. Our model achieved 89.96% mAP
with ResNet 50 as the backbone and 90.45% mAP with ResNet 101 as the backbone, which
shows the effectiveness of dealing with such objects. As shown in Figure 9, our model
accurately detects ships in complex remote sensing images.

Table 3. Comparisons with other methods on HRSC2016 dataset test set. Bold denotes the best
detection results.

Method Backbone Image Size mAP

Axis Learning [41] ResNet 101 800 × 800 78.15
SLA [21] ResNet 50 768 × 768 87.14
SAR [57] ResNet 101 896 × 896 88.11

Gliding Vertex [22] ResNet 101 - 88.2
OPLD [69] ResNet 50 1024 × 1333 88.44

BBAVectors [59] ResNet 101 608 × 608 88.6
DAL [63] ResNet 101 800 × 800 88.6

ProjBB-R [58] ResNet 101 800 × 800 89.41
CSL [55] ResNet 152 - 89.62

CFC-Net [51] ResNet 101 800 × 800 89.7
ROSD [50] ResNet 101 1000 × 800 90.08

PolarDet [61] ResNet 50 800 × 800 90.13
AOPG [31] ResNet 101 800 × 1333 90.34
ReDet [68] ResNet 50 800 × 512 90.46

CBDANet [52] DLA 34 512 × 512 90.5

Proposed Method ResNet 50 800 × 1333 89.96
Proposed Method ResNet 101 800 × 1333 90.45

Figure 9. Depictions of the detection results on the HRSC2016 dataset test set.
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4. Discussion

4.1. Ablation Study

To verify the effectiveness of the proposed method, we conducted ablation studies on
the DOTA dataset test set. We used the RoI Transformer [20] with ResNet 101 [12] as the
baseline in the experiments. It can be seen from the first row in Table 4 that the baseline
method achieved 69.56% mAP, and from the fourth row that the proposed method with
both CCA-FPN and AFO-RPN modules achieved a significant improvement of 7.01% mAP.
Some visual comparison examples are shown in Figure 10.

Table 4. Ablation study of proposed modules on DOTA dataset test set.

Method CCA-FPN AFO-RPN PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)

Baseline [20] - - 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

Proposed Method
� - 88.59 81.60 52.27 68.19 78.02 73.69 86.64 90.74 82.97 85.12 56.31 65.38 69.66 68.50 56.75 73.63 (+4.07)
- � 88.88 84.06 52.13 69.55 70.96 76.59 79.52 90.87 87.23 86.19 56.14 65.35 66.96 72.08 64.20 74.05 (+4.49)
� � 89.23 84.50 52.90 76.93 78.51 76.93 87.40 90.89 87.42 84.66 64.40 63.97 75.01 73.39 62.37 76.57 (+7.01 )

(a) (b)

Figure 10. Depictions of the detection results on the DOTA dataset test set. (a) Baseline [20]. (b) Pro-
posed method.

4.1.1. Effect of the Proposed AFO-RPN

The third row of Table 4 shows 4.49% increases in terms of mAP with the AFO-RPN
module. The proposed AFO-RPN is designed to generate high quality–oriented proposals
without placing excessive fix-shaped anchors on the feature map. The accuracy for hard
instance categories such as BD, BR, LV, BC, and HC increased by 5.54%, 8.69%, 2.91%, 9.96%,
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and 16.53% in terms of mAP, respectively. However, the accuracy for some categories such
as GTF, SH, SBF decreased by 6.37%, 4.07%, and 2.25% in terms of mAP. The reason is
that AFO-RPN is keypoint-based anchor-free method and it could face severe appearance
ambiguity problems with backgrounds or other categories, as shown in Figure 2. The
results prove the weakness of the anchor-free method

4.1.2. Effect of the CCA-FPN

The second row of Table 4 shows 4.07% increases in terms of mAP with CCA-FPN
module. CCA-FPN is designed to enhance the feature representation of each pixel by
capturing the contextual information. The accuracy for some hard instance categories, such
as BR, SV, SH, BC, and RA, increased by 8.83%, 9.21%, 3.05%, 5.7%, and 11.84% in terms of
mAP, respectively. It can be seen from the last two rows in Table 4, the performances for GTF,
SH, SBF increased by 7.38%, 7.88%, 8.26% in terms of mAP, respectively. It shows contextual
information is useful to enhance the representation of each point on the feature map.

We also compared the model’s parameters (Params) and calculations (FLOPs) of the
proposed method with baseline. The sizes of the input image are 800 × 800 pixels. The
smaller Params and FLOPs, the higher the efficiency and the shorter inference time of
the detector. The second row of Table 5 shows that the proposed method with AFO-RPN
module has fewer parameters and low computational complexity. However, the third
row of Table 5 shows that the CCA-FPN module brings huge parameters and a high
computational burden.

Table 5. Evaluation results with the parameters and computational complexity.

Method CCA-FPN AFO-RPN Params(M) FLOPs(G)

Baseline [20] - - 55.13 148.38

Proposed Method - � 41.73 134.38
� � 65.66 376.99

4.1.3. Effect of the Proposed Polar Representation of OBB

To explore the impacts of different OBB representation methods, we compared the
proposed polar representation method with two commonly used Cartesian system represen-
tation methods—angle-based representation (x, y, w, h, θ) and vertex-based representation
(x1, y1, x2, y2, x3, y3, x4, y4)—on the DOTA, DIOR-R, and HRSC2016 datasets. As shown in
Table 6, the proposed polar representation method achieved a significant increase over the
Cartesian system representation methods in all three datasets.

Table 6. Ablation study of proposed polar representation method of OBB.

Cartesian System Polar System DOTA mAP(%) DIOR-R mAP(%) HRSC2016 mAP(%)

(x, y, w, h, θ) - 73.84 64.81 88.12
(x1, y1, x2, y2, x3, y3, x4, y4) - 72.58 63.48 84.84

- (x, y, ρ, γ, ϕ) 76.57 67.15 90.45

4.2. Limitations

As shown in Table 4, the utilization of the proposed AFO-RPN module improves
the performance on many categories but degrades the performance on several categories.
To solve this problem, we apply an attention module Criss-Cross Attention into FPN to
enhance the feature representation by exploiting the contextual information. The proposed
method with both CCA-FPN and AFO-RPN modules achieved a significant improvement
while encountering another problem of calculation complexity, as shown in Table 5. This is
a problem to be solved in future work.
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5. Conclusions

In this paper, we analyzed the drawbacks of the mainstream anchor-based methods
and found that both horizontal anchors and oriented anchors will hinder the further im-
provement of the oriented object detection results. To address this, we propose a two-stage
coarse-to-fine oriented detector. The proposed method has the following novel features: (1)
the proposed AFO-RPN, which generates high-quality oriented proposals without enor-
mous predefined anchors; (2) the CCA-FPN, which enhances the feature representation of
each pixel by capturing the contextual information; and (3) a new representation method
of the OBB in the polar coordinates system, which slightly improves the detection perfor-
mance. Extensive ablation studies have shown the superiority of the proposed modules.
We achieved mAPs of 80.68% on the DOTA dataset, 67.15% on the DIOR-R dataset, and
90.45% on the HRSC2016 dataset, demonstrating that our method can achieve promising
performance compared with the state-of-the-art methods.

However, despite the good performance, our method increased the parameters and
computation cost. We will focus on improving the method and reducing the calculation
burden in our future work.
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Abstract: Matching aerial and satellite optical images with large dip angles is a core technology
and is essential for target positioning and dynamic monitoring in sensitive areas. However, due
to the long distances and large dip angle observations of the aerial platform, there are significant
perspective, radiation, and scale differences between heterologous space-sky images, which seriously
affect the accuracy and robustness of feature matching. In this paper, a multiview satellite and
unmanned aerial vehicle (UAV) image matching method based on deep learning is proposed to
solve this problem. The main innovation of this approach is to propose a joint descriptor consisting
of soft descriptions and hard descriptions. Hard descriptions are used as the main description to
ensure matching accuracy. Soft descriptions are used not only as auxiliary descriptions but also
for the process of network training. Experiments on several problems show that the proposed
method ensures matching efficiency and achieves better matching accuracy for multiview satellite
and UAV images than other traditional methods. In addition, the matching accuracy of our method
in optical satellite and UAV images is within 3 pixels, and can nearly reach 2 pixels, which meets the
requirements of relevant UAV missions.

Keywords: multiview; satellite and UAV image; joint description; image matching; neural network

1. Introduction

Aviation and space-based remote sensing technology has been applied in many fields
due to its advantages of macroscopic, rapid, and accurate object recognition [1]. Therefore,
it has important theoretical significance and practical value for mining and is associated
with different sensors (not simultaneously), different angles, and different resolutions of
image information (space and sky images) to achieve high precision and high efficiency in
regional dynamic monitoring, change detection, target recognition, positioning, and other
visual tasks [2–5]. Space images mean the images captured by the airborne platform and
sky images mean the images captured by the spaceborne platform. Among them, image
matching is the key core technology, and the resulting matching effect directly affects and
restricts the success or failure of the subsequent follow-up tasks.

Image matching technology refers to mapping an image to other images obtained
under different conditions, such as different time phases, angles, and levels of illumination,
through spatial transformation and the establishment of spatial correspondence relations
among these images. It is the key technology of image processing and analysis and
provides technical support for medical image analysis, industrial image detection, remote
sensing image processing, and other fields [6]. Remote sensing image matching connects
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the subregions of different images that correspond to the same landform scene, which
lays a foundation for follow-up operations such as remote sensing image registration,
mosaic procedures, and fusion and can also provide supervisory information for scene
analyses of remote sensing images [7]. Due to the observation of large aviation platform dip
angles, there are significant differences between the viewing angles and scales of satellite
and unmanned aerial vehicle (UAV) images, which brings great difficulties to the feature
matching process for the satellite and UAV images. This is shown in Figure 1.

Figure 1. The UAV image is on the left and the satellite image is on the right. (a,b) show the difference
in view between UAV images and satellite images. (c) shows the scale difference between UAV
images and satellite images.

Due to differences in imaging mechanisms, illumination levels, time phases, and
viewing angles, there are obvious nonlinear radiation distortions between UAV images
and satellite images. Therefore, it is difficult to achieve reliable matching with multiview
heterogeneous images by using only traditional artificial image-gradient-based operators
(such as the scale-invariant feature transform (SIFT)) [8]. With the development of deep
learning, convolutional neural networks (CNNs) have achieved great success in the field of
image processing [9–11]. The convolutional layer in a CNN has strong feature extraction
ability. Compared with artificially designed feature descriptors, CNN features can be
trained by a network model to enable a deep network to find the most appropriate feature
extraction process and representation form. Therefore, CNNs can be used for image
matching to better solve the influence of nonlinear radiation distortion between images,
which cannot be solved by the underlying gradient feature. During the process of network
training, the parameters of the network layer are updated by monitoring information and
a back-propagation function so that the CNN also has good robustness to deformation
and noise. This paper proposes a joint description neural network specifically designed to
match multiview satellite and UAV images. Compared with some traditional methods, the
proposed method can achieve better results in the multiview satellite image and remote
sensing image matching. First, the proposed method extracts features and filters them
through a CNN. Second, the extracted features are expressed by hard and soft descriptions.
Then, the loss function of the neural network is designed with a soft descriptor for neural
network training. Finally, the hard description and soft description are combined as the
final feature description, and the final matching result is obtained. The main contributions
of this paper can be summarized as follows:

(1) A soft description method is designed for network training and auxiliary description.
(2) A high-dimensional hard description method is designed to ensure the matching

accuracy of the model.
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(3) The joint descriptor supplements the hard descriptor to highlight the differences
between different features.

The rest of this article is organized as follows. In Section 2, the related works of
image matching are briefly discussed. In Section 3, a neural network matching method
is presented that includes feature detection, hard and soft descriptors, joint descriptors,
multiscale models, and a training loss. In Section 4, the experimental results for this model
are discussed. Finally, the conclusion is presented in Section 5.

2. Related Works

The existing image matching methods can be divided into gray-based matching
methods and feature-based matching methods. These two kinds of methods as well
as the image matching method based on deep learning and the improved method of
multiperspective image matching will be reviewed and analyzed in the following sections.
The practical image matching method is based on grayscale at the beginning. Due to the
limitations of the method based on grayscale, the feature-based image matching method
was proposed later, which greatly improves the applicability of image matching technology.
In recent years, with the rapid development of deep learning technology, image matching
methods based on deep learning are becoming more and more popular, which has brought
the image matching technology to a new level. Its development is shown in Figure 2.

Figure 2. Image matching development history map. In the 1970s and 1980s, the main method of
image matching was based on grayscale. By the end of the last century, feature-based image matching
methods became popular. In recent years, with the development of deep learning technology, more
and more image matching methods based on deep learning have been emerging.

2.1. Matching Method Based on Grayscale

The basic idea of image matching algorithms based on grayscale is to directly compare
the grayscale values of image pixels one by one; this is the most basic type of matching
method. Such an approach compares the similarity of all gray values of all pixels in the
image and then uses a certain algorithm to search for the transformation model parameter
value that maximizes or minimizes the similarity to judge the whole image. The similarity
measurement functions commonly used in this kind of matching algorithm include the
sum of squares, correlation, covariance, cross-correlation, and phase correlation functions
of the gray difference between two images.

Image matching methods based on grayscale are most suitable for image pairs with
only the rotation and scaling geometric relations. Leese [12] first proposed the multivariate
alteration detection (MAD) algorithm in 1971, which is the basic image matching algo-
rithm based on image gray levels. Subsequently, Silverman and Barnea [13] proposed the
sequential similarity detection algorithm (SSDA) based on the MAD algorithm and then
proposed the normalized cross-correlation (NCC) algorithm. Compared with other image
matching algorithms based on the grayscale, the NCC algorithm has been proven to be
the best approach for similarity evaluation, so the NCC algorithm has also been widely
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used. However, because the NCC algorithm uses the gray information of the whole input
image for image matching, it consumes considerable time, thus reflecting its limitations in
some applications requiring high real-time performance. Gray-based matching methods
are sensitive to the grayscale differences between images, and they can only match images
with linear positive grayscale characteristic correlations. In cases with large geometric
disparities between images, this method often fails and it is difficult to use it to match
multiview images [14].

Matching methods based on grayscale contain the information of all pixel points in
the input image, so their matching accuracy rates are very high, but they also have many
shortcomings and problems. (1) Because this type of method uses all image pixel points,
the algorithmic complexity is high, and the matching speed is very slow. However, most
matching algorithms require high real-time performance, which limits the application scope
of this approach. (2) Because this class of algorithms is sensitive to brightness changes, its
matching performance is greatly reduced for two images that are in the same scene but
under different lighting conditions. (3) For two images with only rigid body transformations
and affine transformations, the matching effects of these algorithms are good, but for images
with serious deformation and occlusion issues, the matching performance is poor. (4) The
algorithms exhibit poor antinoise performance.

2.2. Matching Method Based on Features

Feature-based image matching algorithms make up for the deficiencies of grayscale
matching algorithms and have good effects on the matching results of image pairs with
affine transformations and projection transformations. At the same time, because feature-
based matching algorithms do not match the whole input image but rather extract a series
of representative features from the image and then match the features between two images,
the algorithmic complexity is greatly reduced, and the matching rate is faster. Feature-based
image matching algorithms are typically used in applications requiring high real-time per-
formance. Therefore, this type of algorithm has become a research hotspot in recent years.
In 1988, Harris [15] proposed the Harris corner detection algorithm, and it was proven
that the Harris corner is rotation invariant and robust to noise and brightness changes to a
certain extent. In 1997, Smith and Brady [16] proposed Susan’s corner detection method.
In 1999, Davis Lowe et al. [17] proposed a SIFT descriptor-based detection method and
improved the algorithm in 2004. The SIFT algorithm has been a hot research topic be-
cause of its high robustness and invariance to scaling, rotation, and other transformations.
Bosch et al. [18] proposed the hue/saturation/value-SIFT (HSV-SIFT) algorithm due to the
lack of color information in existing algorithms. The algorithm extracts feature points in
each channel of the HSV color space and then connects the feature points in an end-to-end
manner in three channels to form a 3× 128-dimensional descriptor. Yan et al. [19] proposed
reducing the dimensionality of the SIFT algorithm by using principal component analysis
(PCA) to solve the problems regarding high SIFT dimensions and long matching times
and formed the PCA-SIFT algorithm with low dimensions. Aiming at the sensitivity of
the SIFT algorithm to affine transformation, Morel J M et al. [20] proposed the affine SIFT
(ASIFT) algorithm with full affine invariance, which improved the matching accuracy of
the algorithm for images with multiple perspectives. To improve remote sensing image
registration technology, Pouriya and Hassan [21] proposed a sample consistency-based
feature matching method built on sparse coding. This method can greatly improve the
matching results of two images via SCSC through a joint checkpoint. In addition, the
method exhibits excellent performance when many feature points are present or noise
is observed. San J et al. [22] proposed a feature-based image matching method by taking
advantage of the Delaunay triangulation. First, the Delaunay triangulation result and
its corresponding map were used to form adjacent structures containing the randomly
distributed feature points of an input image, and the image plane was divided into nearly
equilateral triangle patches. Second, photometric and geometric constraints were imple-
mented based on the constructed adjacent structures, and the influence of outliers on the
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algorithm’s decision-making regarding the embedded lines was transmitted by combin-
ing hierarchical culling and left-right checking strategies to ensure the accuracy of the
final matching results. Li et al. [23] proposed a method based on the concepts of local
barycentric coordinates (LBCs) and matching coordinate matrices (MCMs) called locality
affine-invariant feature matching (LAM). The LAM method first establishes a mathematical
model based on LBCs to extract a good match-preserving local neighborhood structure.
LAM then uses the extracted reliable communication to construct local MCMs and identifies
the correctness of the residual match by minimizing the ranks of the MCMs. This method
achieves excellent performance when matching real images with rigid and nonrigid images.
Yu et al. [24] proposed an improved nonlinear SIFT framework algorithm, which combines
spatial feature detection with local frequency domain description for synthetic aperture
radar (SAR) image registration and optical image registration.

2.3. Multiview Space-Sky Image Matching Method

Under the condition of a large dip angle, the resulting image deformation is serious and
traditional feature detection and description methods are often not applicable; especially in
scenarios with extreme viewing angles, it is difficult to achieve reliable matching results.
Gao et al. [25] proposed that there are two main methods for space-sky image matching
at present. The first is the direct matching method, which directly calculates a feature
descriptor for the input ground image and then realizes feature matching according to the
similarity measure of the feature descriptor. The other approach is the matching method
based on the geometric correction. This method first uses prior information to perform
geometric correction on a vacant image, then generates composite images, eliminates
or reduces the geometric deformation of the input space-sky image, and finally carries
out feature matching between the composite images. In the field of photogrammetry, to
overcome the matching problems of perspective and dimension changes, Hu et al. [26]
proposed the use of a priori information, such as high-precision POS data, as auxiliary
information and then performed geometric corrections on the obtained global image,
which eliminated or reduced the effects of geometric deformation. Finally, traditional
feature description and matching methods are used to match feature points. This kind
of method can improve the image matching effect to some extent, but it relies on prior
information, and the improvement yielded is limited because the global correction step
has difficulty accurately describing the local geometric deformation between the compared
images. Jiang et al. [27] proposed the idea that a certain number of matching points could be
obtained through initial matching to calculate a geometric transformation model between
pairs of stereo images in the absence of high-precision POS data, and then geometric
correction could be carried out for these images. However, such methods rely on the initial
matching results. In cases with more significant viewing angle and image scale differences
with large dip angles from the sky to space, it is difficult for the existing methods to obtain
reliable initial matching results for the subsequent geometric correction of the images and
thus to ensure the reliability of the final matching results for points with the same labels.

2.4. Matching Method Based on Deep Learning

With the rise of artificial intelligence, methods based on deep learning have been
introduced into the field of image feature matching. Kwang et al. [28] proposed a method
called learned invariant feature transform (LIFT). This method is a pioneering approach
in this field that combines three CNNs (corresponding to key point detection, direction
estimation, and feature description) to perform image matching. Balntas et al. [29] proposed
PN-Net, which adopts triplet network training. An image block triad T = {P1, P2, n} includes
a positive sample pair (P1, P2) and negative sample pairs (P1, n) and (P2, n). A soft PN
loss function is used to calculate the similarity between output network descriptors to
ensure that the minimum negative sample pair distance is greater than the positive sample
pair distance. Compared with other feature descriptors, PN-Net exhibits more efficient
descriptor extraction and matching performance and can significantly reduce the time costs
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of training and execution. Daniel et al. [30] proposed a method called Super Point to train
a full CNN consisting of an encoder and two decoders. The two decoders correspond to
key point detection and key point feature description. Bhowmik et al. [31] proposed a new
training method in which feature detectors were embedded in a complete visual pipeline,
and learnable parameters were trained in an end-to-end manner. They used the principle of
reinforcement learning to overcome the discrepancies of key point selection and descriptor
matching. This training method has very few restrictions on learning tasks and can be
used to predict any key point heat map and key point position descriptor architecture.
Yuki et al. [32] proposed a novel end-to-end network structure, loss function, and training
method to learn image matching (LF-Net). LF-Net uses the ideas of twin networks and
Q-learning for reference; one branch generates samples and then trains the parameters of
another branch. The network inputs a quarter video graphics array (QVGA) image, outputs
a multiscale response distribution, and then processes the response distribution to predict
the locations, scales, and directions of key points. Finally, it intercepts the local image
input network to extract features. Jiamin S. et al. [33] proposed a method of local image
feature matching based on the Transformer model, which operates under the idea that
intensive pixel-level matching should be established at the coarse level first, and then fine
matching should be refined at the fine level, rather than executing image feature detection,
description, and matching first. The global acceptance fields provided by Transformer
enable our approach to produce dense matches in low-texture areas where feature detectors
typically have difficulty producing repeatable points of interest. Deep learning is also
used for specific image matching. Lloyd et al. [34] proposed a three-step framework for
the sparse matching of SAR and optical images, where a deep neural network encoded
each step. Dusmanu et al. [35] proposed a method called D2Net, which uses more than
300,000 prematched stereo images for training. This method has made important progress
in solving the problem of image matching in changing scenes and has shown great potential.
However, the main purpose of these algorithmic models is to match close-up visible light
ground images with light and visual angle changes, and they are mostly used for the three-
dimensional reconstruction of buildings and visual navigation for vehicles. This paper
attempts to propose a dense multiview feature extraction neural network specifically for
multiview remote sensing image matching based on the idea of D2Net feature extraction.

In summary, the advantages and disadvantages of various type matching methods are
compared in Table 1.

Table 1. Comparison of matching methods.

Method Advantages Disadvantages

NCC, MAD, SSDA (based on grayscale) High matching accuracy rates. Low efficiency, poor adaptability to scale,
light, noise, etc.

SIFT, ASIFT, HSV-SIFT
(based on features)

High adaptability to scale, illumination,
and rotation. Low adaptability to radiation distortion.

Refs. [26,27] (multiview space-sky image
matching method)

High adaptability to large dip angle. Dependent upon prior knowledge.

LIFT, SuperPoint, D2net
(based on deep learning)

High feature extraction capability, strong
adaptability to different factors
through training.

Depending on the equipment, complex
model, tedious training process.

Ours
High feature extraction capability, high
adaptability to scale, large dip angle,
radiation distortion, etc.

Depending on the equipment, at
present, it cannot meet the needs of
real-time processing.

3. Proposed Method

In this section, a dense multiview feature extraction neural network is proposed
to solve the matching problem between space and sky images. Firstly, CNN is used to
extract high-dimensional feature maps for heterologous images with large space and sky
dip angles. Secondly, the salient feature points and feature vectors are selected from the
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obtained feature map, and the feature vector is used as the hard descriptor of the feature
points. Meanwhile, based on the gradient information around the feature points and their
multiscale information, soft descriptors for the feature points are constructed, which are
also used in the neural network training process. Then, by combining the hard and soft
descriptors, a joint feature point descriptor is obtained. Finally, the fast nearest neighbor
search method (FLANN) [36] is used to match the feature points, and random sample
consensus (RANSAC) [37] is used to screen out false matches. Figure 3 shows the structure
of the proposed method.

Figure 3. Flow chart of histogram of the proposed image matching method. After the input image
is passed through the convolutional network, the feature map is obtained. Then, the salient feature
points are screened from the feature map and the hard description is extracted. At the same time, a
soft description is made for the salient feature points, which is also used in the loss function. Finally,
the final descriptor is obtained by combining hard description and soft description.

3.1. Feature Detection and Hard Descriptor

In this section, the aim is to extract salient feature points and obtain their hard de-
scriptor. In the first step, the proposed method uses the fast nearest neighbor search
method (FLANN) [36] to match the feature points and uses random sample consensus
(RANSAC) [37] to screen out false matches. We use a CNN to convolve the input image
and obtain a 3D depth feature map D. The form of D is shown in Equation (1).

D ∈ Rh×w×n, Dk ∈ Rh×w (1)
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where h is the height of the convoluted image, w is the width of the convoluted image, and
n is the number of channels in the convolution output. The two-dimensional array of the
output of the two-dimensional convolution layer can be regarded as a representation of the
input at a certain level of spatial dimension (width and height). Therefore,Dk(k = 1, · · · , n)
is equivalent to a 2D feature map that represents a feature in a certain direction.

To screen out more significant feature points in D, the feature point screening strategy
adopted by the method in this paper is as follows: (1) The feature point is the most
prominent in the channel direction of the high-dimensional feature map. (2) The feature
point is also the most prominent feature point on the local plane of the feature map. So,
Dk

ij is required to be a local maximum in Dk and k is derived from Equation (2).

k = argmax
t

Dt
ij (2)

Dk
ij is the feature value at point (i, j) of Dk. For a point P(i, j) to be selected, the

channel k with the maximum response value is firstly selected from n channel feature maps.
Then, Dk

ij is verified to be locally maximum. If the above two conditions are met, it means
that P(i, j) is obtained as the significant feature point through screening.

Then, the channel row vector at P(i, j) is extracted from the feature map D as the hard
descriptor d̂ij of P(i, j), and we apply L2 normalization on the hard descriptor, as shown in
Equation (3).

d̂ij =
dij

‖dij‖2
(3)

However, the extrema of discrete space are not real extreme points. To obtain more
accurate key point positions, the proposed method uses the SIFT algorithm for reference and
adopts the method of local feature map interpolation and encryption to accurately perform
subpixel-level positioning. Some points are removed by considering eliminating edge
response and eliminating points with low contrast, and then the subpixel extreme points
are accurately located by curve fitting. Finally, the precise coordinates of feature points
are obtained. Additionally, the hard descriptor is also obtained by bilinear interpolation in
the neighborhood.

3.2. Soft Descriptor

In this section, we attempt to introduce a soft descriptor for training and auxiliary
description. During the training process, the descriptor is designed as a one-dimensional
vector to be amenable for neural network backpropagation.

First, the proposed method extracts the gradient information of the salient feature
points. A 3 × 3 matrix is constructed with the point Dij as the center. The gradient
information of the feature point is calculated according to the pixel values of the nine points
in the matrix in the k dimension. Therefore, the gradient scores of these feature points are
calculated. The gradient score αij containing the simple gradient information of point Dij
can be obtained by Equation (4).

αij =
eDij

k

∑ eDi′ j′ k
,
(
i′, j′ = [i− 1, i, i + 1], [j− 1, j, j + 1]

)
(4)

Then, the proposed method extracts the dimensional difference information of the
salient feature points. Since the extracted salient feature points are relatively significant
in some dimensions but not so significant in other dimensions, the differences among the
salient feature points are highlighted according to these different pieces of information.
Thus, the dimension scores of these feature points are calculated by Equations (5) and (6).

Dij =
∑n

m=1 Dij
m

n
(5)
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βij = 2× ∑n
m=1

(
Dij

m − Dij
)2

n
(6)

where Dij is the average pixel value of the feature point Dij in each dimension. The
dimension score βij contains the dimension difference information of the feature point Dij.

Finally, the proposed method constructs a soft descriptor from the gradient score and
dimension score of point Dij. This is because the product rule is well adaptable to input
data of different scales. Since the above two feature scores are one-dimensional values, the
final soft descriptor is obtained by multiplying the above two feature scores to highlight
the differences among the significant feature points. Soft descriptor sij is derived from
Equation (7).

sij = αij·βij (7)

Soft descriptors have two functions. On the one hand, they are used as the evaluation
basis for the training of neural networks; on the other hand, they are used as auxiliary parts
of hard descriptors to make the subsequent descriptions more accurate.

3.3. Joint Descriptors

In this section, we attempt to introduce a way to combine hard and soft descriptions,
as well as ways to adapt models to multiple scales.

Usually, the first few layers of the network have small receptive domains, and the
features obtained are edges, corners, and other local features relative to the bottom layer,
but the positioning accuracy is high. The deeper the network layers, the more abstract
the extracted features are and the more global the information is. The more resistant
the interference caused by geometric deformation and scale difference is, the worse the
positioning accuracy is. Therefore, the use of a hard description as the main description
results in deeper feature expression ability and ensures a certain positioning accuracy.
At the same time, the use of soft descriptions as auxiliary descriptions strengthens the
antijamming ability of joint descriptors.

Regarding the fusion of hard descriptors and soft descriptors, there are several strate-
gies for combining them, such as the sum, product, and maximum rules. In this paper,
we employ the product rule for similar reasons as those in Yang et al. [38]. First, utilizing
the product rule to integrate hard descriptions and soft descriptions can better amplify
the differences between the descriptions. Second, the product rule adapts well to input
data with different scales and does not require heavy normalization of the data. The joint
descriptor J

(
dij, sij

)
is calculated as Equation (8).

J
(
dij, sij

)
= dij·sij (8)

3.4. Multiscale Models

The CNN model uses training samples with different scales for training, and the
feature descriptor can learn scale invariance to a certain extent, but it is also difficult to
deal with situations involving large-scale changes. Therefore, this paper adopts the discrete
image pyramid model to cope with large-scale changes.

Given an input image I, an image pyramid Iρ containing four different resolutions
(ρ = 0.25, 0.5, 1, 2) is used to accommodate drastic changes in the resolutions of the two
images. Each layer of the pyramid extracts the Fρ of the feature map and then accumulates
the fusion results according to Equation (9).

F̃ρ = Fρ + ∑
γ<ρ

Fγ
(9)

The feature descriptions of key points are extracted through the fusion feature graph F̃ρ

obtained by accumulation. Due to the different resolutions of pyramids, the low-resolution
feature maps need to be linearly interpolated to the same size as that of the high-resolution
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feature maps before they can be accumulated. In addition, to prevent the detection of
repetitive features at different levels, this paper starts from the coarsest scale and marks the
detected positions. These positions are unsampled into a feature map with a higher scale
as a template. To ensure the number of key points extracted from the feature map at low
resolution, if the key points extracted from the feature map at a higher resolution fall into
the template, they are discarded.

3.5. Training Loss

The purpose of the loss function is to judge the quality of the neural network through
its output value so that the parameters of the neural network can be adjusted adaptively.
Furthermore, the feature detector and feature descriptions can be optimized so that the
next output result of the neural network is improved.

In this paper, the triple margin ranking loss (TMRL) is used as the loss function.
During the process of feature detection, the feature points should have some uniqueness
that allows them to adapt to the effects of environmental light and geometric differences.
However, at the same time, during the process of feature description, we want the feature
vector to be as unique as possible to find the homonymic image point. To address this
problem, the triple distance sorting loss function enhances the uniqueness of the correlation
descriptor by penalizing any uncorrelated descriptor that leads to a false match. Similar to
D2Net, first, images I1 and I2 are given, and a pair of the corresponding feature points A
and B are in I1 and I2, respectively, where A ∈ I1 and B ∈ I2. The distance between the soft
descriptors of A and B is derived from Equation (10).

r =
√
(sA − sB)

2 (10)

sA and sB are soft descriptor values of A and B, respectively. At the same time, a pair
of points N1 and N2 can be found, which are the point structures most similar to A and B,
respectively. N1 is derived from Equation (11).

N1 = argmin
√
(sP − sA)

2, P ∈ I1 and
√
(P− A)2 > K (11)√

(P− A)2 represents the pixel coordinate distance from the point to point. The
distance should be greater than K to prevent N1 from being adjacent to point A. N2 is
also obtained as in Equation (11). Then, the distances between points A and B and their
unrelated approximate points are calculated by Equation (12).

p = min
(√(

sN1 − sA
)2,

√(
sN2 − sB

)2
)

(12)

Finally, the triplet loss is derived from Equation (13).

Loss(I1, I2) = ∑
c∈C

max
(

0, M + p(c)2 − r(c)2
)

(13)

where M is the margin parameter, and the function of the margin parameter is to widen the
gap between the matched point pair and the unmatched point pair. The smaller it is set, the
more easily the loss value approaches zero, but it is difficult to distinguish between similar
images. The larger it is set, the more difficult it is for the loss value to approach zero, which
even leads to network nonconvergence.

In Equation (13), C is the set of corresponding points including A and B in image pair
I1 and I2. The smaller the loss value is, the closer the value of the corresponding point
descriptor is, and the greater the difference between it and the value of an irrelevant point
descriptor. Therefore, the evolution of the neural network towards the direction of a smaller
loss value means that it evolves towards the direction of more accurate matching.
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For the CNN model to learn a pixel-level feature similarity expression under radiation
and geometric differences, the training data must satisfy the following two conditions
in addition to containing a sufficient quantity of points. First, the training images must
have great radiometric and geometric differences. Then, the training images must have
pixel-level correspondence. Similar to D2Net, we use the MegaDepth data set consisting of
196 different scenes reconstructed from more than a million internet photos using COLMAP.

3.6. Feature Matching Method

After the feature points and feature descriptors of the image are extracted in the third
section, FLANN [36] method is used for feature matching. FLANN uses KDTree or Kmeans
to conduct clustering modelling for features so that the nearest neighbor point can be found
quickly. By comparing, screening the feature points and corresponding feature vectors of
the input target images, FLANN finally establishes a mapping set to matching points. Since
the proposed method extracts as many features as possible, a large number of mismatched
point pairs are generated. Therefore, RANSAC [37] is used to screen out the mismatched
point pairs. RANSAC randomly selects at least four samples from the matched data set
and ensures that the four samples are not collinear to calculate the homography matrix.
Then, RANSAC uses this model to test all the data and calculate the number of data points
and the projection error (the cost function) that satisfy this model. If this model is optimal,
the corresponding cost function is minimum.

3.7. Model Training Methods and Environment

The proposed method uses a VGG16 model pretrained on the ImageNet data set. The
last dense feature extractor Conv4_3 in the network model is trained using the migration
learning fine-tuning training method. The initial learning rate was set to 10−3, and then
reduced by half for every 10 epochs. For each pair of homonymous image points, a random
image region of 256 × 256 pixels centered on the homonymous image point is selected and
fed into the network for training.

In the experimental process, the proposed method is implemented in the PyTorch
framework. The computer used for the experiments has a CPU of i9-10900X, a graphics card
of NVIDIA TITAN RTX (24 GB video memory), and 32 GB of memory. The implementation
language is Python, and the operating system is Windows 10.

4. Experiment and Results

4.1. Data

Here, four sets of experiments (see Figure 4 and Table 2) are designed to evaluate the
proposed approach and compare it with previously developed methods. The areas where
the images are taken are a square, school, gas station, and park, each with its own character-
istics and representativeness. Finally, all sets are analyzed to provide comparative results.

4.2. Comparison of Image Matching Methods

To demonstrate the effectiveness of our approach, we use the proposed method,
D2Net [35] (a mainstream deep learning image matching method) and ASIFT [20] (a
classical multiview image matching method) to conduct control experiments on these four
groups of data, as shown in Table 3.

The convolutional network layer of the proposed method mainly refers to the con-
volutional layer settings of Visual Geometry Group 16 (VGG16), as shown in Figure 5. In
addition, the size of the feature extraction frame is 7 × 7. The D2Net parameter is set as its
default parameter. The algorithm feature extraction and feature description components of
ASIFT use the VLFeat library.

The number of correct matching points (NCM), matching accuracy (SR), root mean
square error (RMSE), and matching consumption time (MT) were used to evaluate the
performance of these algorithms, as shown in Figure 6.
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Figure 4. These are UAV images and the corresponding satellite remote sensing images. The left
side of each group of images is UAV image, and the right side is the satellite remote sensing image.
Each pair of images has obvious scale differences and perspective differences. In group (a) and
group (b), the UAV images are low-altitude UAV images. In groups (c) and (d), the UAV images are
high-altitude UAV images.

Table 2. Test data.

Test Data
Data Description

UAV Image Satellite Image Study Area Description

Group a

Sensor: UAV
Resolution: 0.24 m
Date: \
Size: 1080 × 811

Sensor: Satellite
Resolution: 0.24 m
Date: \
Size: 1080 × 811

The study area is located at Wuhan City, Hubei Province, China.
The UAV image is taken by a small, low-altitude UAV in a square.
The satellite image is downloaded from Google Satellite Images.
There is a significant perspective difference between the two
images, which increases the difficulty of image matching.

Group b

Sensor: UAV
Resolution: 1 m
Date: \
Size: 1000 × 562

Sensor: Satellite
Resolution: 0.5 m
Date: \
Size: 402 × 544

The study area is located at Hubei University of Technology,
Wuhan, China. The UAV image is taken by a small, low-altitude
UAV at the school. The satellite image is downloaded from Google
Satellite Images. There is a large perspective difference between the
two images, which increases the difficulty of image matching.

Group c

Sensor: UAV
Resolution: 0.5 m
Date: \
Size: 1920 × 1080

Sensor: Satellite
Resolution: 0.24 m
Date: \
Size: 2344 × 2124

The study area is located at Tongxin County, Gansu Province,
China. The UAV image is taken by a large, high-altitude UAV at a
gas station. The satellite image is downloaded from Google
Satellite Images. Similarly, the two images have a significant
perspective difference. Furthermore, these images are taken from
different sensors, resulting in radiation differences that make
matching more difficult.

Group d

Sensor: UAV
Resolution: 0.3 m
Date: \
Size: 800 × 600

Sensor: Satellite
Resolution: 0.3 m
Date: \
Size: 590 × 706

The study area is located at Anshun City, Guizhou Province, China.
The UAV image is taken by a large, high-resolution UAV in a park.
The satellite image is downloaded from Google Satellite Images.
The linear features of the two images are distinct and rich.
However, the shooting angles of the two images are quite different,
which leads to difficulty during the image matching process.
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Table 3. Test image matching.

Image\Method NCM SR RMSE MT

Group a
Ours 141 18.6% 2.18 6.1 s

D2Net 118 15.6% 2.44 6.2 s
ASIFT 0 - - -

Group b
Ours 56 14.5% 2.13 5.1 s

D2Net 41 10.6% 2.57 5.4 s
ASIFT 0 - - -

Group c
Ours 259 18.1% 2.17 17.1 s

D2Net 124 8.7% 2.71 17.2 s
ASIFT 0 - - -

Group d
Ours 78 19.1% 2.23 5.8 s

D2Net 66 16.2% 2.49 6.1 s
ASIFT 22 31.9% 3.21 8.2 s

Figure 5. Configuration of the convolutional network layer in our joint description neural network
for multiview satellite and UAV image matching.

NCM: NCM is the number of matched pairs on the whole image that satisfy Equation (14).
This metric can reflect the performance of the matching algorithm.

‖H(xi)− yi‖ ≤ ε (14)

where xi, yi denote the matching feature points to be judged, respectively. ‖H(xi)− yi‖ is
the reprojection error between the image corresponding matched point pairs and H is the
true transformation parameter between the image pairs.

SR: SR is the percentage of NCM to all initial match points.
RMSE: RMSE can reflect the accuracy of the matching point, which is calculated by

the following Equation (15).

RMSE =
1

NCM∑
i
‖H(xi)− yi‖ (15)
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This indicator reflects the position offset error of the matching point on the pixel.
MT: MT indicates the matching consumption time, reflecting the efficiency of

the method.
Figures 6 and 7 intuitively show the matching effects of the proposed method and

D2Net on the images in groups A, B, C, and D. Notably, compared with the D2Net results,
the matching points obtained by the proposed method are more widely distributed. It
can be intuitively seen from C that, in a case with large perspective, scale, and time phase
differences, the proposed method yields a better matching effect than D2Net.

Figure 6. The matching effects of the proposed method and D2Net on groups (a–d).

Figure 7. Quantitative comparisons of the proposed method, D2Net, and ASIFT on groups (a–d). The
higher the NCM and SR, the better the matching performance. A smaller RMSE means higher match-
ing accuracy. The smaller MT is, the higher the matching efficiency is. Based on the graph analysis,
the proposed method has better matching performance and accuracy than the other two methods.
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For ASIFT [20] method, due to the radiation differences and the fuzziness of the
UAV images, it cannot work well in the image groups A, B, and C, and there are no
matching points to be found. However, our method can effectively eliminate the influence
of radiation difference; thus, good results can be achieved for these images, which highlights
the effectiveness of matching UAV and remote sensing images from multiple perspectives.
For the image group D, the radiation difference is not obvious, and ASIFT method is
superior to our method on SR. However, based on the comparison of NCM, our method
shows better and more stable matching performance.

Compared with D2Net, for image groups A, B, and D, a slight improvement can
be achieved by the proposed method. However, for the image group C, there are more
significant scale and perspective differences; thus, the advantages of our method are
more obvious.

As can be seen from Figure 7, compared with the other two methods, our method has
better matching accuracy and matching performance. This reflects the superiority of the
joint description method. Hard description ensures a certain matching performance. Soft
description and hard description complement each other, which makes the joint descriptor
more specifically reflect the uniqueness of features.

In general, the proposed method can provide certain numbers of correctly matched
points for all test image pairs, and the RMSEs of the matched points are approximately 2 to
3 pixels, which is a partial accuracy improvement over that of D2Net. Moreover, the ASIFT
algorithm has difficulty matching the correct points for images with large perspective
and scale differences. This shows that the proposed method has better adaptability for
multiview satellite and UAV image matching.

4.3. Angle Adaptability Experiment

Notably, as the visual angle differences between the images increase, the matching
difficulty becomes greater. To verify the feasibility of the proposed method for matching
multiview UAV images and satellite images, we conducted experiments on UAV images
and satellite images taken from different angles at the same location. The experimental
results are shown in Figure 8.

Figure 8. Cont.
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Figure 8. The results of experiments with UAV images and satellite images taken from different
angles at the same locations. (a) The angle degree difference between this group of images is about 5◦.
(b) The angle degree difference between this group of images is about 10–15◦. (c) The angle degree
difference between this group of images is about 20–25◦. (d) The angle degree difference between
this group of images is about 30◦.

Four sets of multi-angle experiments are shown in Figure 8. There are scale, phase,
and viewing angle differences in each group of experimental images. These four sets of
experimental images are well matched. It can be seen from these four experimental image
pairs that although the viewing angle increases, the matching effect does not fail. In brief,
the algorithm proposed in this paper is applicable to UAV image matching with satellite
images when the tilt degree is less than or equal to 30 degrees.

4.4. Application in Image Geometric Correction

One of the main purposes of matching UAV images with remote sensing images
is to correct UAV images and provide geographic information. Based on the correctly
matched points determined in the previous section, a homographic transformation matrix
is estimated, and then this matrix is used to correct the input UAV image. Figure 9 shows
the results of correcting UAV images and assigning geographic information after matching
them with the proposed method.

Figure 9. These are the results of selecting evenly distributed points from satellite images and
corrected UAV images, and calculating the errors among them.
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From the registration results, the registration effect for UAV and satellite images is
improved due to the good matching correspondence. The registration accuracy nearly
reaches 2 pixels, which can meet the needs of UAV reconnaissance target positioning.

5. Discussion

The method presented in this paper exhibits a good matching effect for multiview
UAV and satellite images from the matching results. A certain number of relatively uniform
distributions of correctly matched points were obtained by the proposed method, which
can support the registration of UAV images. In addition, the proposed method exhibits
good adaptability to viewing angle, scale, and time phase differences among multiview
images. This shows that our designed joint descriptor makes our algorithm more robust
for multiview, multiscale, and multitemporal images. However, due to the large number
of convolutional computations required by deep feature learning, despite the use of GPU
acceleration, the efficiency of feature extraction is not greatly improved relative to that of
traditional feature extraction algorithms.

It is difficult to match multiview satellite images with UAV images due to the large
time phase, perspective, and scale differences between these images. The method proposed
in this paper uses joint description to make the resulting features more prominent, solving
the situation in which the features are difficult to match due to the above problems. Ex-
periments show that the proposed method is better than the traditional method in solving
these matching difficulties. However, the proposed method also has the problem of a long
matching time requirement, which makes it impossible to carry out real-time positioning
and registration for UAV images. Thus, in the future, it will be important to accurately
screen out the significant feature points to reduce the matching time. With the development
of deep learning technology, image matching technology of multiview satellites and UAV
should also make continuous progress from its development trend.

6. Conclusions

In this paper, an algorithm for multiview UAV and satellite image matching is pro-
posed. This method is based on a joint description network. The developed joint descriptor
includes a specifically designed hard descriptor and soft descriptor, among which the hard
descriptor ensures the matching accuracy of the network, and the soft descriptor is used
for network training and auxiliary description. According to experiments, the algorithm
proposed in this paper can achieve good matching effects for multiview satellite images and
UAV images in comparison with some popular methods. Moreover, the matching accuracy
of the proposed method in optical satellite and UAV images nearly reaches 2 pixels, which
meets the requirements of relevant UAV missions.
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Abstract: Logging trails are one of the main components of modern forestry. However, spotting
the accurate locations of old logging trails through common approaches is challenging and time
consuming. This study was established to develop an approach, using cutting-edge deep-learning
convolutional neural networks and high-density laser scanning data, to detect logging trails in
different stages of commercial thinning, in Southern Finland. We constructed a U-Net architecture,
consisting of encoder and decoder paths with several convolutional layers, pooling and non-linear
operations. The canopy height model (CHM), digital surface model (DSM), and digital elevation
models (DEMs) were derived from the laser scanning data and were used as image datasets for
training the model. The labeled dataset for the logging trails was generated from different references
as well. Three forest areas were selected to test the efficiency of the algorithm that was developed
for detecting logging trails. We designed 21 routes, including 390 samples of the logging trails and
non-logging trails, covering all logging trails inside the stands. The results indicated that the trained
U-Net using DSM (k = 0.846 and IoU = 0.867) shows superior performance over the trained model
using CHM (k = 0.734 and IoU = 0.782), DEMavg (k = 0.542 and IoU = 0.667), and DEMmin (k = 0.136
and IoU = 0.155) in distinguishing logging trails from non-logging trails. Although the efficiency of
the developed approach in young and mature stands that had undergone the commercial thinning is
approximately perfect, it needs to be improved in old stands that have not received the second or
third commercial thinning.

Keywords: U-Net; high-density laser scanning; logging trails; digital surface model; canopy height
model; commercial thinning; semantic segmentation; convolutional neural networks

1. Introduction

In modern timber harvesting, logging trails are crucial entities for the accurate naviga-
tions of harvesters and forwarders to penetrate into forest stands for silvicultural opera-
tions [1] in the pathway of precision harvesting. However, spotting the accurate locations
of old logging trails is one the major and most challenging tasks for forest owners or opera-
tors/drivers, particularly in the stands that have not undergone commercial thinning for a
long period of time. Little is known about holistic solutions for the detection of logging
trails using remote-sensing data. However, cutting-edge deep-learning based approaches
using high-density laser scanning data may aid in solving this problem.

In Finland, rotation forest management (RFM) is the most common silvicultural
method. It relies on three main phases: establishment, thinning, and final felling [2]. Nor-
mally, forest stands are thinned two to three times between the ages of 20 and 70 years [3,4].
Logging trails are determined with a width of 4–5 m and a spacing of 20–25 m in the first
commercial thinning [1,3,5], which covers the entirety of a stand. However, some segments
of a trail, an entire trail, or even a logging trail network may vanish on the ground over
time, due to the regrowth of trees, the growth of seedlings, and the spreading of the crowns
of trees on the trail surface. Therefore, spotting the initial locations of logging trails can be
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time-consuming and costly. Additionally, misinterpreting the original logging trail network
in subsequent thinning operations may cause overcut of the growing stock.

In recent decades, airborne laser scanning (ALS) systems have become central to
characterizing the 3D structure of forest canopies. These systems have provided cutting-
edge applications and research in forestry, particularly in the areas of forest inventory
and ecology [6–8]. Few studies have addressed the detection of logging trails using laser
scanning data [9,10], while well-documented literature is available regarding the mapping
of forest roads using either low-density laser scanning data or high-density laser scanning
data [11–16]. The majority of these studies have used traditional methods based on edge
detection, thresholding, or object-based segmentation to detect logging trails or forest
roads under canopies via machine learning algorithms. Sherba et al. [10] presented a rule-
based classification approach for detecting old logging roads using slope models derived
from high-density LiDAR data in Marin County, California. They reported that some
post-classification techniques such as LiDAR-derived flow direction raster and curvature
increased the accuracy of detecting logging trails by dropping streams and gullies and
adding ridge trails to the final classified layer. They emphasized that the high point density
of LiDAR data has a significant influence on the accuracy of discriminating old logging
trails from non-trail objects. Similarly, Buján et al. [16] proposed a pixel-based random forest
approach to map paved and unpaved roads through numerous LiDAR-derived metrics in
the forests of Spain. However, they concluded that the density of LiDAR points did not
have a significant impact on the accuracy of the detection of roads using random forest.
Lee et al. [9] extracted trails using the segmentation of canopy density derived from the
airborne laser swath mapping (ALSM) data. They labeled the sharpened sightlines as trails
that result from the visibility vectors between the canopies. The introduced approaches
may show promising results but rely on heavy pre-processing and post-processing tasks.
Typically, they are developed for a specific type of trail or road in a particular forest.
Furthermore, the detection of a logging trail is more difficult than the detection of a
forest road using these developed approaches, due to a lower geometric consistency, more
complex background, and the occlusions of the canopy [17]. Therefore, the need to develop
a versatile approach, such as deep learning methods with minimal processing and optimal
efficiency for detecting logging trails from laser scanning data, is undeniable.

Recently, convolutional neural networks (CNNs), as one of the architectures of deep
learning neural networks, have become the epicenter for image classification, semantic
segmentation, pattern recondition, and object detection, in particular with the emerging
high-resolution remote sensing data [18,19]. The standard architecture of a CNN encom-
passes a set of convolutional layers, pooling and non-linear operations [20]. The primary
characteristics of a CNN are the spatial connectivity between the adjacent layers, sharing of
the weights, acquiring features from low-spatial scale to high-spatial scale, and integrating
the modules of feature extractions and classifiers [21]. Various successful CNN architectures
have been developed for main road classification, such as U-Net [22] and GANs [23], and
for main road area or centerline extractions, such as U-Net [24–29], ResNet [30], GANs [31],
Y-Net [32], SegNet [33], and CasNet [34], which mostly were used very high-resolution
satellite (VHR) images or UAV. Several studies have addressed the outperforming of deep
learning-based approaches in forest applications, such as individual tree detection [35–38],
species classification [35,39–42], tree characteristics extraction [43,44], and forest distur-
bances [45–48], mostly using VHR, UAV, or high-density laser scanning data. At present,
little is known about the efficiency of the deep learning-based approaches on the extraction
of logging trails or forest roads.

Tree occlusions and other noises hampered accurate road detection using the tra-
ditional road segmentation methods even using VHR images [17,49,50]. However, the
CNN-based approaches could relatively alleviate the effects of complex background and
the occlusion of trees [34,51]. Using high-density laser scanning data with the capability
of penetrating into the canopy and reaching the ground surface may aid to solve these
problems. Few studies explored the feasibility of CNN-based architectures in using laser
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scanning-derived metrics for detecting road networks [52,53]. Caltagirone et al. [52] de-
veloped a fast fully convolutional neural network (FCN) for road detection through the
metrics of average elevation and density layers derived from laser scanning data. They re-
ported excellent performance of this approach in detecting roads, particularly for real-time
applications. Similarly, Verschoof-van der Vaart et al. [53] demonstrated the efficiency of
CarcassonNet using a digital terrain model (DTM) derived from laser scanning data for
detecting and tracing of archaeological objects such as historical roads in Netherlands.

Although the performance of CNNs methods for road extractions and its components
have been well documented using VHR and UAV for public roads [51], this efficiency re-
quires greater scrutiny in the more complex backgrounds, such as for detecting commercial
forest roads or logging trails in forests, and with different data such as laser scanning data.
Therefore, this study seeks to test the performance of U-Net, as one of the most popular
architectures of CNNs, in integration with high-density laser scanning data for detecting
logging trails, as one of the most complex networks regarding geometry and visibility in
the mechanized forests of Finland.

The main purpose of this research is to develop an end-to-end deep learning-based
approach that uses the metrics of high-density laser scanning data to automate the detection
of logging trails in forest stands that have undergone commercial thinning. Specifically,
we aim to comparatively evaluate the performance of a trained U-Net algorithm by using
different derivatives of laser scanning datasets (i.e., canopy height and elevation-based
models) for the detection of logging trails. We are also eager to investigate the perfor-
mance of this approach to detect logging trails in young and mature stands with different
development classes.

2. Materials and Methods

2.1. Description of the Study Area

We focused our research on the Kakkurinmaa, Länsi-Aure, and Karpanmaa forests
in the municipalities of Parkano and Ikaalinen, Southern Finland. The Kakkurinmaa and
Karpanmaa forests are owned by Finsilva Oyj, and the Länsi-Aure forest, as governmental
public land, is managed by state-owned Metsähallitus. The forest areas are structured
in spatially uniform forest stands, typically 3–10 hectares in size. The tree species are
pine, spruce, and birch with a predominance of pine in the three regions. The stands are
managed even-aged, and the age range of the stands is between 34 and 72 years. The height
of trees ranges between 5 and 30 m. Forest stands are typically thinned 2–3 times during a
rotation period in which around 25–30% of the trees are removed [4,54]. We classified forest
stands concerning age, height, and thinning operations into four development categories
to facilitate the detection of logging trails (Figure 1): (1) young stands before the first
commercial thinning, (2) young stands that had experienced the first commercial thinning,
(3) mature stands before the second commercial thinning, and (4) mature stands that had
undergone the second or third thinning operation. Logging trails may be visible within
Categories 2 and 4 stands (Figure 1b,d); however, in some development classes, for example,
within Category 3 stands, old logging trails are very challenging to find (Figure 1c).

2.2. Data

We ordered a license to access the high-quality laser scanning data for the study area
in 2020, under the framework of the National Land Survey of Finland (NLS). These data
are the latest and most accurate laser scanning data that have been collected by the NLS in
Finland. The density of data is at least 5 points per square meter, as the average distance
between points is circa 40 cm. The mean altimetric error of the data is less than 10 cm and
the mean error of horizontal accuracy is less than 45 cm [55]. To detect logging trails, we
extracted the canopy height and the elevation metrics after processing the high-quality
laser scanning data. The characteristics of the forest stands (e.g., species composition, age,
height, and thinning history) and their boundaries were collected from the databases of
Finsilva Oy and Metsähallitus. These data were used for the classification of the stands as
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described in Section 2.1. A further set of required data such as topographic maps and the
time-series of orthophotos were also obtained from the open databases of the NLS [56].

Figure 1. Forest stands regarding commercial thinning: (a) young stands before the first commercial
thinning; (b) young stands after the first commercial thinning; (c) mature stands before the second
commercial thinning; and (d) mature stands after the second/third commercial thinning. The logging
trails are visible in Categories (b) and (d), but they are difficult to spot in Category (c).

We used these data to create the labeled dataset of logging trails for training the U-Net
algorithm. In addition to the extensive ground-truth samplings of the logging trails to test
the algorithm efficiency (Section 2.5), we visited the logging trails and recorded some tracks
in three regions before creating the dataset of labels.

2.3. Training Datasets

We selected 44 laser scanning tiles of 1 × 1 km to create image and labeled datasets
for training the deep-learning algorithm. After decompressing the laser scanning datasets,
we merged the tiles and produced required data from the cloud points such as the height
metrics and elevation models. The canopy height model (CHM) was utilized [57] with a
spatial resolution of 0.5 m to estimate the total height of trees. The binning interpolation
methods were adopted to derive a digital elevation models (DEMs) based on the minimum
cell assignment types (DEMmin) (i.e., close to the terrain using the point clouds with
minimum elevation) and the average digital elevation model (DEMavg) as well as a digital
surface model (DSM) based on the maximum cell assignment type [58]. For example,
the assignment of each output cell was determined from the maximum value of point
clouds that fall within its extent to form the DSM. The values of all the raster models were
normalized between 0 and 255 using a min–max scaling method. Finally, we smoothed the
raster layers by calculating their median value in a 3 × 3 neighborhood around each cell.

The labels of logging trails were generated from a variety of resources such as or-
thophotos (Figure 2a), trees height (Figure 2b) and profiles extracted from the laser scanning
points (Figures 2c and 3). The ground elevation model was used to discriminate ditches
and forest roads from the logging trails (Figure 2d). We created a total of 336 km of logging
trails and then defined a 2 m buffer, as the width of a segment, from the centerline. The
logging trails were converted into a binary image containing the cells with the labels 0
(non-trail) and 1 (trail) (Figure 2e).

The images and their corresponding labels were converted into the patches with a
size of 256 × 256 cells (Figure 4a) before entering these into U-Net. In total, we selected
1888 image patches and their corresponding labels for training (75%) and validation (25%)
of the U-Net. We excluded some image patches from training datasets that were in the
areas selected for collecting test data, as described in Section 2.5.
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Figure 2. References comprising (a) near-infrared orthophotos and the derivatives of high-density
laser scanning data such as (b) canopy height model, (c) tree profiles, and (d) the ground elevation
model, used to produce the labeled datasets (e) from logging trails for training the U-Net convolu-
tional neural network architecture. While the orthophoto, tree height, and tree profiles enhanced
the visibility of logging trails, the digital terrain model heightened the ditches and roads that might
inadvertently be digitized as logging trails during creation of the labeled dataset.

Figure 3. The profile of the cloud points of a laser scanning dataset within a young stand that has
undergone its first commercial thinning (a–f,j,k). The intervals between two logging trails and their
footprint are shown on the layers of canopy height and trees’ profile.

2.4. U-Net Architecture

The U-Net is one of the cutting-edge architectures of the convolutional neural network
for image segmentation due to its simple structure, ability to work with little training
data, and high performance [59,60]. The U-Net concatenates low-level information and
high-level semantic information that is derived from the convolutional layers. This strategy
enables it to produce accurate prediction maps, even with limited training data [59]. The
U-shaped structure of U-Net consists of a contraction path (encoder) and an expansion
path (decoder). The extraction of low-level features and the reduction of spatial dimensions
are implemented in the contraction path, while the spatial dimensions of the features are
enhanced through a series of upward convolutions and concatenations in the expansion
path. In the architecture of our U-Net (Figure 4b), the contraction path consists of four steps,
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each step comprising two 3 × 3 convolution layers. Each convolution layer is followed by
an ReLU activation function and a batch normalization layer with a same-padded. The
spatial dimensions of the features were reduced using a 2 × 2 max-pooling layer. The
number of filters/features was doubled, while the spatial dimensions were halved at each
contraction step. In our U-Net, the first and last convolution layers of the contraction
path entail 16 and 128 filters, respectively. The expansion path consists of a sequence of
upsampling of the features, followed by the transposed convolution layers with a stride 2.
The upsampling layers combine the high-level features with the corresponding features
in the contraction path using the intermediate concatenations. A bottleneck layer with
256 filters is located between the contraction and expansion blocks as well (Figure 4b). The
output is a 1 × 1 convolutional layer with one dimension that is followed by a sigmoid
activation function (Figure 4c).

 

Figure 4. Architecture of the constructed U-Net for detecting logging trails using high-density laser
scanning data: (a) preparation of a laser scanning tile for use in the U-Net to detect logging trails;
(b) architecture of the designed U-Net, which includes the contraction path and the expansion path;
and (c) predicted logging trails.

The U-Net architecture was constructed and trained in Python using the powerful
Keras and TensorFlow libraries [61]. The model was trained using the GPU of NVIDIA
Quadro RTX 4000 with 8 GB. We implemented the Hyperband algorithm in Keras Tuner to
search the optimal set of hyperparameters for our algorithm [62], such as the optimization
algorithm, learning rate, dropout rate, batch size, and loss function [20]. The model builder
was used to define the search algorithm and hypertuned model. The model was trained
using the training data and evaluated using the test data. Table A1 shows a number of
tuned optimal values for the hyperparameters in training the U-Net. The minimum number
of epochs was set at 100, and the early stop rule was implicated to stop the process of
training, in case of overfitting. The cross-entropy loss function was set to monitor how
poorly the U-Net was performing. The plots of accuracy and loss versus the epochs in the
training of U-Net are provided in Figure A1.

Figure 5 shows an example of the predicted logging trails from DSM data, using the
trained U-Net. The algorithm accepts an input layer (i.e., a DSM) with a fixed size (256,
256, 1). It produces different feature maps in the intermediate step, such as convolution,
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batch normal, dropout, and max-pooling layers. The convolutional layers generate several
spatial features from small parts of the image, based on the defined number and size of
the filters. The batch normalization layer normalizes the previous layers in the network.
The dropout layer reduces the complexity of the network. The batch normalization and
dropout layers act as regulators to avoid overfitting in the model. The max-pooling layer
reduces the scale of the features in each step of the contraction path [63]. The output layer
indicates the probability of existing logging trails by the fixed size, as the input layer. A
few low-level feature maps generated from 32 filters (3 × 3) in the second block of the
contraction path along with the obtained high-level feature maps during the expansion
path with the same filters are shown in Figures 5b and 5c, respectively.

 
Figure 5. Visualization of different layers of the U-Net: (a) the input layer (e.g., a DSM derived from
high-density laser scanning data) with a fixed size (256, 256, 1). A few intermediate feature maps
such as convolutional layer, batch normalization, dropout, and max pooling generated from 32 filters
(b) in the contraction path and (c) in the expansion path, and (d) the output layer of logging trails
with the same size of the input layer.

2.5. Accuracy Assessment
2.5.1. Collecting Testing Data from Logging Trails

We selected some stands to collect testing data from logging trails in the Kakkurinmaa,
Länsi-Aure, and Karpanmaa regions (Figure 6a). We designed 21 routes to collect the
samples from segments to cover all of the logging trails within a stand (Figure 6b–d). Each
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route consisted of endpoints, trail segments, and edges (interval between two segment
trails) (Figure 6f,g). The segments and edges indicated ground-truth trails and non-trails,
respectively.

Figure 6. Collecting testing samples from logging and non-logging trails. (a) Selected forest
stands for sampling from the logging trails in the Parkano and Ikaalinen areas in southern Fin-
land; (b–e) designated routes for testing segments (logging trails) and edges (no logging trails) in the
three selected sites; (f) an example of a designed route and (g) its components.

The length of an example sample segment trail was approximately 30 m; it may be
longer in some cases, however, due to certain conditions such as existing connections
or looped trails at the edges. Each segment has a start point and an endpoint that are
both called endpoints. The positions of endpoints were converted into the GPS Exchange
Format (GPX) and imported into a Garmin Oregon 750t GNSS receiver. The routes were
reconstructed based on their corresponding endpoints and then navigated point by point
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with a PDOP (position dilution of precision) of less than 3 m. After finding the approxi-
mate location of an endpoint, the surveyor moved to the center of the trail and recorded
the segment between the two endpoints using a Trimble GeoXT GNSS receiver. It also
controlled the existence of any possible trails between two adjacent trails in the connector
edges. The attributes of each endpoint, segment, and edge (e.g., PDOP, dominant tree
species, existence trail, or other objects) were recorded. The data were transferred into
GPS Pathfinder Office to correct errors based on the nearby GPS base stations to achieve
an accuracy of less than 50 cm. The corrected data files were exported in shapefile format
for use in assessing the accuracy of the predicted trails by the trained U-Net using the
high-density laser scanning datasets.

2.5.2. Accuracy Metrics

A confusion matrix was constructed to assess the accuracy of the trained U-Net
through the testing data in predicting logging trails using the laser scanning-derived
datasets. The confusion matrix consisted of the number of the ground-truth samples that
were labeled as logging trails on the ground and predicted as logging trails through the
U-Net (TP), the number of samples that were labeled as non-logging trails and predicted
as non-logging trails (TN), the number of samples that were labeled as logging trails but
predicted as non-logging trails (FN), and the number of samples that were labeled as
non-logging trails but predicted as logging trails (FP). Cohen’s kappa, overall accuracy,
intersection over union (IoU), and recall metrics were then derived from the confusion
matrix to quantify the U-Net’s performance in detecting logging trails from the canopy
height and elevation models.

Cohen’s kappa indicates the ratio of agreement after removing chance agreement [64,65].
It was calculated as Equation (1) [20] with respect to the observed accuracy (P0) and the
randomly expected accuracy (Pe).

Cohen′s kappa =
(P0 − Pe)

(1− Pe)
(1)

P0 =
TP + TN

N
(1a)

Pe =
(TP + FN)× (TP + FP)

N2 +
(TN + FP)× (TN + FN)

N2 (1b)

where N is the total number of ground-truth samples.
The overall accuracy indicates the ratio of correct predictions for both logging trail

and non-logging trail classes (Equation (2)).

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(2)

IoU expresses the similarity ratio between the predicted logging trails and the corre-
sponding segments of ground truth samples (Equation (3)).

IoU =
TP

TP + FP + FN
(3)

Recall expresses the perfection of the positive predictions. It is the proportion that a
real instance of the target class (i.e., logging trails) can be correctly detected through the
model (Equation (4)).

Recall =
TP

(TP + FN)
(4)
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3. Results

3.1. Performance of Trained Models
3.1.1. Detection Logging Trails in the Entire Forest

The results of the accuracy assessment of the trained U-Net using the CHM, DSM,
and DEMs datasets in distinguishing logging trails from non-logging trails demonstrate
the superior performance of the DSM (Table 1). The accuracy metrics show almost ex-
cellent performance of the U-Net using the DSM (k = 0.846 and IoU = 0.867), substantial
performance using the CHM (k = 0.734 and IoU = 0.782), moderate performance using the
DEMavg (k = 0.528 and IoU = 0.587), and a slight performance using the DEMmin (k = 0.136
and IoU = 0.155). The values of Recall show the excellent performance of trained U-Net
using the DSM (0.959) and the CHM (0.908) in detecting the logging trail class.

Table 1. The accuracy of the trained U-Net using the derivatives of high-density laser scanning data,
including the canopy height model (CHM), the digital surface model (DSM), and the digital elevation
models based on the average (DEMavg) and minimum (DEMmin) values to distinguish the logging
trails from the non-logging trails in three testing forests in southern Finland.

Metric CHM DSM DEMavg DEMmin

Cohen’s kappa 0.734 0.846 0.528 0.136

Overall accuracy 0.867 0.923 0.736 0.553

IoU 0.782 0.867 0.587 0.155

Recall 0.908 0.959 0.649 0.157

3.1.2. Detection Logging Trails in Different Stages of Commercial Thinning

The performance of the trained U-Net using the CHM, the DSM, and the DEMs
varies in distinguishing logging trails from non-logging trails in the four classes of stand
development (Figure 7) as well. Although the trained U-Net using CHM could distinguish
significantly logging trails from non-logging trails in young stands after the first commercial
thinning (k = 0.859 and IoU = 0.893) and in mature stands after the second/third commercial
thinning (k = 0.834 and IoU = 0.876), it shows moderate performance in mature stands
before the second commercial thinning (k = 0.438 and IoU = 0.505) (Figure 7a).

Similarly, the trained U-Net using DSM showed excellent performance to distinguish
the logging trails from the non-logging trails in young stands (k = 0.953 and IoU = 0.963)
and mature stands (k = 0.854 and IoU = 0.889) after receiving the commercial thinning
operations. The efficiency of the trained model using DSM is higher than the trained
model using CHM in mature stands before the second commercial thinning (k = 0.684 and
IoU = 0.686) (Figure 7b).

The trained U-Net using DEMavg showed moderate performance in detecting logging
trails within thinned stands, with slightly better performance in the mature stands after
receiving the commercial thinning (k = 0.542 and IoU = 0.667) (Figure 7c). The trained U-Net
using DEMmin demonstrated a slight performance in all four stand classes. The accuracy
values in the mature stands with commercial thinning is slightly better than other stands
(k = 0.179 and IoU = 0.218) (Figure 7d).

3.2. Prediction of Logging Trails

Figure 8 shows some examples of predicted logging trails by trained U-Net using
different datasets within different stages of commercial thinning. Logging trails were
detected with high probabilities using both CHM (Figure 8b,c) and DSM (Figure 8f,g)
datasets in young stands and mature stands that had undergone commercial thinning.
The detected logging trail patterns were very similar by these two models. However, the
trained model using DSM detected the trails under the canopy with a higher probability.
In the old stands before the second commercial thinning, the trained U-Net, based on the
both CHM (Figure 8d) and DSM (Figure 8h), predicted some segments of a trail with a high
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probability while other segments with a low probability. Typically, most of these segments
are located in complex backgrounds that are clogged by regenerated trees or seedlings.
However, this detection, even with a low probability, can be used to restore the original
network of old logging trails in this type of stand.

Figure 7. Comparison of the accuracy of the trained U-Net (a) using the canopy height model
(CHM), (b) using the digital surface model (DSM), (c) using the average digital elevation model
(DEMavg), and (d) using the minimum digital elevation model (DEMmin) in detecting logging trails
from non-logging trails in different stages of commercial thinning operations.

The trained U-Net using DEMavg dataset for detecting logging trails, demonstrated
a weak prediction in the young stands that had received the first thinning (Figure 8j),
a relatively high prediction in the mature stands that had received the second thinning
(Figure 8k), and a moderate prediction in the old stands (Figure 8l). The trained U-Net using
DEMmin dataset only indicated a high prediction of logging trails in mature stands after a
second or third commercial thinning (Figure 8o). As logging trails were not established in
young stands before the first commercial thinning, the trained models did not predict any
significant segments as part of a logging trail (Figure 8a,e,i,m).
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Figure 8. Comparison of the probability of prediction logging trails using U-Net in different forest
development classes based on (a–d) the canopy height model (CHM), (e–h) digital surface model
(DSM), and (i–p) digital elevation models (DEMs), in a patch with a size of 256 by 256. Although
the U-Net using DSM and CHM showed high probability in detecting logging trails, using DEMmin

and DEMavg, it showed weak and moderate probabilities throughout forest stand classes except for
mature stands that received the final commercial thinning operations.
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4. Discussion

4.1. Distinguishing Logging Trails from Non-Logging Trails Using U-Net

The developed U-Net algorithm can distinguish logging trails from non-logging trails
with almost perfect accuracy in the studied forest stands. The algorithm could precisely
classify wide-open, polygonal spaces within the stands, such as forest storage areas and
landing areas as a non-logging trail (Figure 9b). Nevertheless, few narrow corridors,
mostly within the mature stands that were not thinned for a long time are predicted as
logging trails (Figure 9f). Additionally, some linear features such as drainage ditches with
geometric characteristics similar to logging trails (e.g., ditch width/cleaned area from
tress) may be misidentified as logging trails in some stands (Figure 9g,h). We classified
the testing samples of these objects as the FP samples in the confusion matrix during
the performance assessment. However, the pattern of the corridors in the network and
the geometric characteristics, such as their spacing and width, might cause the U-Net
to recognize them as a logging trail. The forest roads are detected as non-logging trails
in all stands; the specific geometry of a forest road and its texture on the DSM or CHM
resulted in distinguishing it from a logging trail through the U-Net (Figure 9c). As previous
studies reported the efficiency of U-Net in detection of road areas using VHR or UAV
images [24–29], this study adds its efficiency in detection of logging trails using high-
density laser scanning data as well. On the basis of traditional machine learning, some
studies have extracted numerous metrics from laser scanning data to achieve accurate
segments of roads under the canopy [10,16]. However, logging trail segmentation using our
trained U-Net does not require laborious feature extractions or post-processing to detect the
final trail using laser scanning-derived metrics. The developed end-to-end convolutional
neural network approach obtains the image patches of the DSM or CHM, derived from
laser scanning points, as inputs without extensive pre-processing and creates trail segments
without requiring specific post-processing.

4.2. Detection of Logging Trails in Different Stages of Commercial Thinning

Using the CHM and DSM datasets, our algorithm perfectly detected logging trails
in both young and mature stands that had undergone commercial thinning operations
(Figure 7a,b). The misidentification of some drainage ditches as logging trails mainly
occurred in these two types of stand; we recommend excluding these from the final network.
Triangular irregular networks (TIN), which are derived from the laser scanning data, can
significantly detect drainage ditches (Figure 9h) and solve this problem. Moreover, using
the DSM, the U-Net was able to detect logging trails within mature stands that had not
recently undergone a second commercial thinning. The logging trails in these stands
do not form a continuous network, as opposed to stands that have undergone recent
commercial thinning operations (Figure 8). Some segments of logging trails in the old
stands are occluded by regenerated young trees (Figure 9i). The U-Net detected some of
these clogged trails with a lower probability, however, which may aid in reconstruction of
the original network of logging trails in these stands, for example, similar to the proposed
approach [53] for restoring the network of historical roads through hollow roads detected
by CarcassonNet and laser scanning-derived DTM.

4.3. Geometric Properties of the Predicted Logging Trails

The trained U-Net has sharpened the geometric properties of the logging-trail network
as accurate as that of the labeled dataset used for its training. It recognized the pattern of a
network within a stand (Figure 9) and attempted to keep the average spacing (i.e., 20–25 m)
between the logging trails, while avoiding any overlap between them, particularly in the
stands that were thinned (Figure 9a). The connection between the trails occurred at the
endpoints or through intermediate trail connections that looped the trails (Figure 9d,e). The
algorithm also detected those segments of a trail that were clogged by new trees, mostly
in mature stands that were not thinned over a long period of time (Figure 9i). However,
it did retain the overall pattern of a network, making it possible to restore the missing
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segments and the original network. Similarly, earlier studies reported the efficiency of some
CNN-based algorithms, such as CasNet [34] and DH-GAN [66], for the extraction of some
characterizations of main roads using VHR images.

Figure 9. The ability of developed U-Net in detection the characteristics of logging trails: (a) patterns
and geometric properties of the detected logging trails, such as trail spacing; (d) intermediate trail
connections; and (e) looped trails through the U-Net and the DSM dataset. The algorithm correctly
distinguished some complex features such as (b) landing areas and (c) forest roads as non-logging
trails in the vicinity of the logging trails; (f) a corridor that was wrongly identified as a logging trail;
(g,h) a deep ditch was detected as a non-logging trail and a shallow ditch that was detected as a
logging trail; and (i) the occlusion of an old logging-trail by regenerated trees, although the algorithm
was able to guess it as a logging trail with a lower probability.

No ground data was available to measure the accurate width of the logging trails.
Therefore, we took the standard width of 4 m for a logging trail into account during the
creation of the labeled dataset. We attempted to select trails that are visible in the set of our
applied sources (e.g., orthophotos and tree profiles), particularly for the stands that had
undergone commercial thinning. We randomly visited some of the logging trails within
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the selected sites to achieve the highest confidence in the created labeled dataset, before
training the model.

The U-Net perfectly detected the features as logging trails when their width was
close to the average value. For example, forest roads were classified as non-logging trails
using this geometry by the U-Net. However, we could not find reliable labels in some
complex stands, such as the mature stands that were not thinned for a long time. With the
modern harvesting methods, the harvesters and forwarders are equipped with a computer
system and a global navigation satellite system (GNSS) [67,68] that enables them to record
the tracks of logging trails with an acceptable accuracy during thinning operations. We
recommend employing this large dataset to train the deep learning-based algorithms to
sharpen the detection of logging trails using high-quality laser scanning data, particularly
in the complex stands.

To explore how well the developed U-Net algorithm performed with the datasets of
high-quality laser scanning, we carried out a novel sampling method, with an extensive
field survey from the predicted logging trails and non-logging trails in three selected
forest sites. For this purpose, we collected adequate ground-truth samples (390) from the
segments of predicted logging trails (with a size of circa 30 m) and the interval between
two logging trails to check for possible missing trails that might not be detected by the
algorithm (Figure 6). This surveying method enabled us to take samples from almost
entire logging trails inside a stand; as a logging trail is designed as a continuous loop
line starting from one side of the stand and continuing to the other side, so a segment
of this line represents the existing or non-existence of the entire trail. It also enabled us
to detect the non-logging trail objects either in the spot of predicted logging trails (i.e.,
segments) or the space between the trails (i.e., edges). Therefore, we maintained a balance
between the samples of logging trails and non-logging trail objects, which is curtailed in
the assessment of the efficiency of machine learning- or deep learning-based approaches to
avoid unbalanced testing data and then miss-evaluation by the algorithm [69].

4.4. DEM Drawbacks in Detecting Logging Trails

Our research confirms the efficiency of the laser scanning derived metrics that sharpen
the changes in the canopy structure of the trees, such as the DSM and DHM, in detecting
logging trails (Figure 3). Therefore, the metrics, such as DEMs, which merely demonstrate
the topographic characteristics of the ground surface, failed to recognize logging trails
in the stands that had undergone commercial thinning. The earlier studies reported the
efficiency of high-quality laser scanning data for detecting old logging trails or skid trails
in harvested forests using DEM-derivatives, such as the morphological metrics [10,70].
Conversely, using the DEMs dataset (i.e., close to the ground surface), our research did
not verify the efficiency of U-Net for detecting logging trails in forests that use harvesters
or forwarders in commercial thinning (Figure 7). The soil damage created by harvesters
and forwarders is reported to be less than that of skidders during the forest operations [71].
Forwarders carry a large volume of timber, but skidders drag the logs on the ground with
several passes, which results in soil disturbance, compaction, and rutting [72]. Moreover,
Finland’s forest management regulations do not allow heavy soil disturbances, such as deep
ruts (>10 cm), during commercial thinning. They recommend spreading logging residues
on the logging trails, particularly on routes prone to rutting, to minimize soil damage [5].
The looped pattern of a logging trail network and retaining the optimal spacing between
the trails within a stand, may aid to reduce the number of passes on some specific trails
and then soil disturbances in forest operations as well. These practices lead to minimal
alterations in the natural condition of the ground by logging trails. Therefore, logging trails
are not expected to emerge in the DEM against the skid trails [70], abandoned logging
trails [10], drainage ditches, or forest roads (Figure 9). Nevertheless, a few logging trails
were detected using the DEMs dataset in the mature stands that had undergone commercial
thinning (Figure 8). There is a good chance that increasing the number of passes by the
machinery [73], using multifactional and heavier harvesters/forwarders [1], surging the
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weight of timber loads, and concentrating the forest operation during wet seasons [73],
have all resulted in soil compression and then alteration in the natural ground (i.e., terrain).

4.5. Applications

Our findings and the procedure that we developed have several implications for
precision harvesting and sustainable forest management during forest operations. A
holistic network of old logging trails may lead to a better understanding of the patterns,
geometric characteristics, efficiency, and drawbacks of the network. This understanding
provides a new perspective on the designation of an optimal logging-trail network in the
new stands, one that can minimize the costs of thinning operations and the damage to the
soil and the trees left. This new perspective also provides a modification of the routes of a
network that probably passes the soils with low bearing capacity due to a weakness in the
design of the initial network or the deformation of the ground surface over time.

By having a network of old logging trails, the operators can import the routes into the
computer system of the harvesters/forwarders for accurate navigation of the machines.
Doing so decreases the costs of finding the old trails and prevents the overthinning of the
stand, which may occur when removing trees for establishing new trails. This is a crucial
step to approaching the aims of precision harvesting by minimizing the operation costs
and preserving the forest landscape in modern forestry.

4.6. Outlook

Despite difficulties in finding reliable logging trails, we could collect acceptable patches
of labeled datasets for training the U-Net algorithm. However, the datasets are limited to
the Parkano and Ikaalinen areas, in Southern Finland. We strongly recommend employing
a large dataset of logging trails that covers similar forest stands, with regard to commercial
thinning, at least in the Nordic region for training the deep learning-based algorithm to
achieve a versatile algorithm for the detection of logging trails.

The developed model performed with reasonable accuracy in detection of old logging
trails in the mature stands that had not received the second thinning. However, detecting
entire segments of a logging trail is still challenging in this type of stand. As mentioned
earlier, providing an appropriate labeled dataset for improving the process of training the
algorithm or testing the performances of other deep learning-based algorithms may aid in
sharpening old logging trails in the mature stands.

In some stands, the drainage ditches hampered the efficiency of U-Net using the DSM
or DHM to distinguish the logging trails through the semantic segmentation procedure that
relies on the binary segmentation. We recommend testing high-level semantic segmentation
or instance segmentation that discriminates different objects from each other [74]. However,
this requires a larger labeled dataset based on the number of objects.

5. Conclusions

In this research, we presented an end-to-end U-Net convolutional neural network that
uses high-density laser scanning-derived metrics for logging trail extraction. We carried out
an extensive field survey to test the efficiency of the trained model based on three metrics
(i.e., DSM, CHM, and DEMs) in forests with different commercial thinning. The trained
U-Net using DSM was able to distinguish logging trails from the background with a high
probability and very high performance, particularly in young and mature stands that had
undergone commercial thinning. However, it needs to be improved for the very old stands
that have not received second commercial thinning for a long time. The developed model
can be used easily by the end-users, without heavy pre-processing of the laser scanning
data or heavy post-processing of the outputs. We recommend creating a large labeled
dataset from logging trials collected by harvesters during thinning operations and use them
to train the deep-learning based algorithms. It would help to develop a versatile model that
can extract logging trails in different forest management systems and different thinning
stages, at least over the Nordic regions.
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Appendix A

Table A1. U-Net tuned hyperparameters.

Parameter Value

Kernels 16, 32, 64, 128, 256

Activation RELU

Weight initializer HeNormal

Max-pooling size (2, 2)

Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1 × 10−7)

Learning rate 0.0008

Batch size 32

Dropout rate [0.2, 0.4]
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Figure A1. Accuracy and loss versus epochs during training of U-Net using (a) the DSM, (b) the
CHM, (c) the DEMavg, and (d) the DEMmin derived from high-density laser scanning data.
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Abstract: When segmenting massive amounts of remote sensing images collected from different
satellites or geographic locations (cities), the pre-trained deep learning models cannot always output
satisfactory predictions. To deal with this issue, domain adaptation has been widely utilized to
enhance the generalization abilities of the segmentation models. Most of the existing domain
adaptation methods, which based on image-to-image translation, firstly transfer the source images
to the pseudo-target images, adapt the classifier from the source domain to the target domain.
However, these unidirectional methods suffer from the following two limitations: (1) they do not
consider the inverse procedure and they cannot fully take advantage of the information from the
other domain, which is also beneficial, as confirmed by our experiments; (2) these methods may fail
in the cases where transferring the source images to the pseudo-target images is difficult. In this
paper, in order to solve these problems, we propose a novel framework BiFDANet for unsupervised
bidirectional domain adaptation in the semantic segmentation of remote sensing images. It optimizes
the segmentation models in two opposite directions. In the source-to-target direction, BiFDANet
learns to transfer the source images to the pseudo-target images and adapts the classifier to the target
domain. In the opposite direction, BiFDANet transfers the target images to the pseudo-source images
and optimizes the source classifier. At test stage, we make the best of the source classifier and the
target classifier, which complement each other with a simple linear combination method, further
improving the performance of our BiFDANet. Furthermore, we propose a new bidirectional semantic
consistency loss for our BiFDANet to maintain the semantic consistency during the bidirectional
image-to-image translation process. The experiments on two datasets including satellite images and
aerial images demonstrate the superiority of our method against existing unidirectional methods.

Keywords: unsupervised domain adaptation; bidirectional domain adaptation; convolutional neural
networks (CNNs); image-to-image translation; generative adversarial networks (GANs); remote
sensing images; semantic segmentation

1. Introduction

In the last few years, it has been possible to collect a mass of remote sensing images,
thanks to the continuous advancement of remote sensing techniques. For example, Gaofen
satellites can capture a large number of satellite images with high spatial resolution on a
large scale. In remote sensing, such a large amount of data has offered many more capability
for image analysis tasks; for example, semantic segmentation [1], change detection [2]
and scene classification [3]. Among these tasks, the semantic segmentation of remote
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sensing images has become one of the most interesting and important research topics
because it is widely used in many applications, such as dense labeling, city planning, urban
management, environment monitoring, and so on.

For the semantic segmentation of remote sensing images, CNN [4] has become one of
the most efficient methods in the past decades and several CNN models have shown their
effectiveness, such as DeepLab [5] and its variants [6,7]. However, these methods have
some limitations, because CNN-based architectures tend to be sensitive to the distributions
and features of the training images and test images. Even though they give satisfactory
predictions when the distributions of training and test images are similar [1], when we
attempt to use this model to classify images obtained from other satellites or cities, the
classification accuracy severely decreases due to different distributions of the source images
and target images, as shown in Figure 1. In the literature, the aforementioned problem is
known as domain adaptation [8]. In remote sensing, domain gap problems are often caused
due to many reasons, such as illumination conditions, imaging times, imaging sensors,
geographic locations and so on. These factors will change the spectral characteristics of
objects and resulted in a large intra-class variability. For instance, the images acquired from
different satellite sensors may have different colors, as shown in Figure 1a,b. Similarly, due
to the differences of the imaging sensors, images may have different types of channels. For
example, a few images may consist of near-infrared, green, and red channels while the
others may have green, red, and blue bands.

In typical domain adaptation problems, the distributions of the source domain are
different from those of the target domain. In remote sensing, we assume that the images
collected from different satellites or locations (cities) are different domains. The unsuper-
vised domain adaptation defines that only annotations of the source domain are available
and aims at generating satisfactory predicted labels for the unlabeled target domain, even
if the domain shift between the source domain and target domain is huge. To improve the
performances of the segmentation models in aforementioned settings, one of the most com-
mon approaches in remote sensing is to diversify the training images of the source domain,
by performing data augmentation techniques, such as random color change [9], histogram
equalization [10], and gamma correction [11]. However, even if these methods slightly
increase the generalization capabilities of the models, the improvement is unsatisfactory
when there exists huge differences between the distributions of different domains. For
example, it is difficult to adapt the classifier from one domain with near-infrared, red, and
green bands to another one with red, green and blue channels by using simple data aug-
mentation techniques. To overcome such limitation, a generative adversarial network [12]
was applied to transfer images between the source and target domains and made significant
progress in unsupervised domain adaptation for semantic segmentation [13,14]. These
approaches based on image translation can be divided into two steps. At first, it learns
to transfer the source images to the target domain. Secondly, the translated images and
the labels for the corresponding source images are used to train the classifier which will
be tested on the unlabeled source domain. When the first step reduce the domain shift,
the second step can effectively adapt the segmentation model to the target domain. In
addition, inverse translations which adapt the segmentation model from the target domain
to the source domain have been implemented as well [15]. In our experiments, we find
that these two translations in opposite directions should be complementary rather than
alternative. Furthermore, such unidirectional (e.g., source-to-target) setting might ignore
the information from the inverse direction. For example, Benjdira et al. [16] adapted the
source classifier to the unlabeled target domain, they only simulated the distributions of
the target images instead of making the target images fully participate in domain adaption.
Therefore, these unidirectional methods cannot take full advantage of the information from
the target domain. Meanwhile, the key to the domain adaptation methods based on image
translation is the similarity between the distributions of the pseudo-target images and the
target images. Given fixed image translation models, it will depend on the difficulty of
converting between two domains: there might be some situations where transferring the
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target images to the source domain is more difficult, and situations where transferring
the source images to the target domain is more difficult. By combining the two opposite
directions, we will acquire an architecture more general than those unidirectional methods.
Furthermore, the recent image translation network (e.g., CycleGAN [17]) is bidirectional so
that we can usually obtain two image generators in the source-to-target and target-to-source
directions when the training of the image translation model is done. We can use both of
generators to make the best of the information from the two directions.

(a) (b)

(c) (d)

Figure 1. An example of the domain adaptation. We show the source images and the target images
which are obtained from different satellites, the label of the target image and the prediction of
DeeplabV3+. In the label and the prediction, black and white pixels represent background and
buildings respectively. (a) Source image. (b) Target image. (c) Label of the target image. (d) Prediction
for the target image.

However, solving the aforementioned problems presents a few challenges. First, the
transformed images and their corresponding original images must have the same semantic
contents with the original images. For instance, if the image-to-image translation model
replaces buildings with bare land during the translation, the labels of the original images
cannot match the transformed images. As a result, semantic changes in any directions
will affect our models. If the semantic changes occur in the source-to-target direction, the
target domain classifier will have poor performance. If the approach replaces some objects
with others in the target-to-source direction, the predicted labels of the source domain
classifier would be unsatisfactory. Secondly, when we transfer the source images to the
target domain, the data distributions of the pseudo-target images should be as similar as
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possible to the data distributions of the target images and the data distributions of the
pseudo-source and source images should be similar as well. Otherwise, the transformed
images of one domain cannot represent the other domain. Finally, the predicted labels
of the two directions complement each other and the method of combining the labels is
crucial because it will affect the final predicted labels. Simply combining the two predicted
labels may leave out some correct objects or add some wrong objects.

In this article, we propose a new bidirectional model to address the above challenges. This
framework involves two opposite directions. In the source-to-target direction, we generate
pseudo-target transformed images which are semantically consistent with the original
images. For this purpose, we propose a bidirectional semantic consistency loss to maintain
the semantic consistency during the image translation. Then we employ the labels of the
source images and their corresponding transformed images to adapt the segmentation
model to the target domain. In the target-to-source direction, we optimize the source
domain classifier to predict labels for the pseudo-source transformed images. These two
classifiers may make different types of mistakes and assign different confidence ranks to
the predicted labels. Overall the two classifiers are complementary instead of alternative.
We make full use of them with a simple linear method which fuses their probability output.

Our contributions are as follows:

(1) We propose a new unsupervised bidirectional domain adaptation method, coined
BiFDANet, for semantic segmentation of remote sensing images, which conducts
bidirectional image translation to minimize the domain shift and optimizes the classi-
fiers in two opposite directions to take full advantage of the information from both
domains. At test stage, we employ a linear combination method to take full advantage
of the two complementary predicted labels which further enhances the performance
of our BiFDANet. As far as we know, BiFDANet is the first work on unsupervised
bidirectional domain adaptation for semantic segmentation of remote sensing images.

(2) We propose a new bidirectional semantic consistency loss which effectively supervises
the generators to maintain the semantic consistency in both source-to-target and
target-to-source directions. We analyze the bidirectional semantic consistency loss by
comparing it with two semantic consistency losses used in the existing approaches.

(3) We perform our proposed framework on two datasets, one consisting of satellite
images from two different satellites and the other is composed of aerial images from
different cities. The results indicate that our method can improve the performance of
the cross-domain semantic segmentation and minimize the domain gap effectively. In
addition, the effect of each component is discussed.

This article is organized as follows: Section 2 summarizes the related works. Section 3
presents the theory of our proposed framework. Section 4 describes the data set, the
experimental design and discusses the obtained results, Section 5 provides the discussion
and Section 6 draws our conclusions.

2. Related Work

2.1. Domain Adaptation

Tuia et al. [8] explained that in the research literature the adaptation methods could be
grouped as: the selection of invariant features [18–21], the adaptation of classifiers [22–27],
the adaptation of the data distributions [28–31] and active learning [32–34]. Here we
focus on the methods of aligning the data distributions by performing image-to-image
translation [35–39] between the different domains [40–43]. These methods usually match
the data distributions of different domains by transferring the images from the source
domain to the target domain. Next, the segmentation model is trained on the transferred
images to classify the target images. In the fields of computer vision, Gatys et al. [40]
raised a style transfer method to synthesizes fake images by combining the source contents
with the target style. Similarly, Shrivastava et al. [41] generated realistic samples from
synthetic images and the synthesized images could train a classification model on real
images. Bousmalis et al. [42] learned the source-to-target transformation in the pixel
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space and transformed source images to target-like images. Taigman et al. [44] proposed
a compound loss function to enforce the image generation network to transfer images
from target to themselves. Hoffman et al. [14] used CycleGAN [17] to transfer the source
images into the target style alternatively and transformed images were input into the
classifier to improve its performance in the target domain. Zhao et al. [45] transformed fake
images to the target domain which performed pixel-level and feature-level alignments with
sub-domain aggregation. The segmentation model trained on such transformed images
with the style of the target domain outperformed several unsupervised domain adaptation
approaches. In remote sensing, Graph matching [46] and histogram matching [47] were
employed to perform abovementioned image-to-image translation. Benjdira et al. [16]
generated the fake target-like images by using CycleGAN [17], then the target-like images
are used to adapt the source classifier to segment the target images. Similarly, Tasar et al.
proposed ColorMapGAN [48], SemI2I [49] and DAugNet [50] to perform image-to-image
translation between satellite image pairs to reduces the impact of domain gap. All the above
mentioned methods focus on adapting the source segmentation model to the target domain
without taking into account the opposite target-to-source direction that is beneficial.

2.2. Bidirectional Learning

Bidirectional learning was used to approach the neural machine translation problem [51,52],
which train a language translation system in opposite directions of a language pair. Com-
pared with unidirectional learning, it can improve the performance of the model effectively.
Recently, bidirectional learning was applied to image-to-image translation problems as
well. Li et al. [53] learned the image translation model and the segmentation adaptation
model alternatively with a bidirectional learning method. Chen et al. [54] presented a
bidirectional cross-modality adaptation method that aligned different domains from feature
and image perspectives. Zhang et al. [55] adapted the model by minimizing the pixel-level
and feature-level gaps. The theses method does not optimize the segmentation model in the
target-to-source directions. Yang et al. [56] proposed a bi-directional generation network
that trained a simple framework for image translation and classification from source to
target and from target to source. Jiang et al. [57] proposed a bidirectional adversarial train-
ing method which performs adversarial trainings with generating adversarial examples
from source to target and back. These methods only use bidirectional learning techniques
in training process, but at test time, they do not make full use of two domains even if they
have optimized the classifiers in both directions. Russo et al. [58] proposed a bidirectional
image translation approach which trained two classifiers on different domains respectively
and finally fuses the classification results. However, semantic segmentation task is more
sensitive to pixel category while classification task focuses on image category. This pro-
posed method can only be used to deal with the classification tasks, which can’t apply to
semantic segmentation tasks directly because it may not preserve the semantic contents.

3. Materials and Methods

The unsupervised domain adaptation assumes that the labeled source domain (XS,YS)
and unlabeled target domain XT are available. The goal is to train a framework which
correctly predicts the results for unlabeled target domain XT .

The proposed BiFDANet consists of bidirectional image translation and bidirectional
segmentation adaptation. It learns to transfer source images to the target domain and
transfer target images to the source domain, and then optimizes the source classifier FS and
the target classifier FT in two opposite directions. In this section, we detail how we transfer
images between the source and target domain. And then we introduce how we adapt
the classifier FT to the target domain and optimize the classifier FS in the target-to-source
direction. Thereafter, we describe how we combine the two predicted results of the two
classifiers FS and FT . Finally, we illustrate the implementations of the network architectures.
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3.1. Bidirectional Image Translation

To perform bidirectional image translation between different domains, we use two gen-
erators and two discriminators based on GAN [12] architecture and we add two classifiers
to extract the contents from the images. GS→T denotes the target generator which generates
pseudo-target images, GT→S denotes the source generator which generates pseudo-source
images. DS, DT denote the discriminators and FS, FT are the classifiers.

First of all, we want the source images xs and the pseudo-source images GT→S(xt)
to be drawn form similar data distributions, while the target images xt and the pseudo-
target images GS→T(xs) have similar data distributions. To deal with these issues, we
enforce the data distributions of the pseudo-target images GS→T(xs) and the pseudo-
source images GT→S(xt) to be similar to that of the target domain and the source domain
respectively by applying adversarial learning (see Figure 2 blue portion). The discriminator
DS discriminates between the source images and the pseudo-source images while the
discriminator DT distinguishes the pseudo-target images from the target domain. We train
the generators to fool the discriminators while the discriminators DT and DS attempt to
classify the images from the target domain and the source domain. The adversarial loss
for the target generator GS→T and the discriminator DT in the source-to-target direction is
as follows:

LS→T
adv (DT , GS→T) = Ext∼XT [log DT(xt)] +Exs∼XS [log(1− DT(GS→T(xs)))] (1)

where Exs∼XS , Ext∼XT are the expectation over xs and xt drawn by the distribution described
by XS and XT respectively. GS→T tries to generate the pseudo-target images GS→T(xs)
which have data distributions similar to the that of the target images xt, while DT learns to
discriminate the pseudo-target images from the target domain.

Figure 2. BiFDANet, training: The top row (black solid arrow) shows the source-to-target direction
while the bottom row (black dashed arrow) shows the target-to-source direction. The colored dashed
arrows correspond to different losses. The generator Gs→T transfers the images to the pseudo-target
images while the generator GT→S transfers the images to the source domain. DS and DT discriminate
the images from the source domain and the target domain. FS and FT segment the images which are
drawn from source domain and target domain, respectively.
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This objective ensures that the pseudo-target images GS→T(xs) will resemble the
images drawn from the target domain XT . We use a similar adversarial loss in the target-to-
source direction:

LT→S
adv (DS, GT→S) = Exs∼XS [log DS(xs)] +Ext∼XT [log(1− DS(GT→S(xt)))] (2)

This objective ensures that the pseudo-source images GT→S(xt) will resemble the
images drawn from the source domain XS. We compute the overall adversarial loss for the
generators and the discriminators as:

Ladv(DS, DT , GS→T , GT→S) = LS→T
adv (DT , GS→T) + LT→S

adv (DS, GT→S) (3)

Another purpose is to maintain the original images and transformed images semanti-
cally consistent. Otherwise, the transformed images won’t match the labels of the original
images, and the performance of the classifiers would significantly decrease. To keep the
semantic consistency between the transformed images and the original images, we define
three constraints.

Firstly, we introduce a cycle-consistency constraint [17] to preserve the semantic
contents during the translation process (see Figure 2 red portion). We encourage that
transferring the source images from source to target and back reproduces the original
contents. At the same time, transferring the target images from target to source and back
to the target domain reproduces the original contents. These constraints are satisfied by
imposing the cycle-consistency loss defined in the following equation:

Lcyc(GS→T ,GT→S) =

Exs∼XS [‖GT→S(GS→T(xs))− xs‖1] +Ext∼XT [‖GS→T(GT→S(xt))− xt‖1]
(4)

Secondly, we require that GT→S(xs) for the source images xs and GS→T(xt) for the
target images xt will reproduce the original images, thereby enforcing identity consistency
(see Figure 2 orange portion). Such constraint is implemented by the identity loss defined
as follows:

Lidt(GS→T , GT→S) =

Ext∼XT [‖GS→T(xt)− xt‖1] +Exs∼XS [‖GT→S(xs)− xs‖1]
(5)

The identity loss Lidt can be divided into two parts: the source-to- target identity
loss Equation (6) and the target-to-source identity loss Equation (7). These two parts are
as follows:

LS→T
idt (GS→T) = Ext∼XT [‖GS→T(xt)− xt‖1] (6)

LT→S
idt (GT→S) = Exs∼XS [‖GT→S(xs)− xs‖1] (7)

Thirdly, we enforce the transformed images to be semantically consistent with the orig-
inal images. CyCADA [14] proposed the semantic consistency loss to maintain the semantic
contents. The source images xs and the transformed images GS→T(xs) are fed into the
source classifier FS pretrained on labeled source domain. However, since the transformed
images GS→T(xs) are drawn from the target domain, the classifier trained on the source
domain could not extract the semantic contents from the transformed images effectively.
As a result, computing the semantic consistency loss in this way is not conducive to the
image generation. In ideal conditions, the transformed images GS→T(xs) should be input
to the target classifier FT . However, it is impractical because the labels of the target domain
aren’t available. Instead of using the source classifier FS to segment the transformed images
GS→T(xs), MADAN [45] proposed to dynamically adapt the source classifier FS to the
target domain by taking the transformed images GS→T(xs) and the source labels as input.
And then, they employed the classifier trained on the transformed domain as FT , which
performs better than the original classifier. The semantic consistency loss computed by
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FT would promote the generator GS→T to generate images that preserve more semantic
contents of the original images. However, MADAN only considers the generator GS→T
but ignores the generator GT→S which is crucial to the bidirectional image translation. For
bidirectional domain adaptation, we expect both source generator GT→S and target gener-
ator GS→T to maintain semantic consistency during image-to-image translation process.
Therefore, we propose a new bidirectional semantic consistency loss (see Figure 2 green
portion). The proposed bidirectional semantic consistency loss is:

Lsem(GS→T , GT→S, FS, FT) =

Exs∼XS KL(FS(xs)‖FT(GS→T(xs))) +Ext∼XT KL(FT(xt)‖FS(GT→S(xt)))
(8)

where KL(·‖·) is the KL divergence.
Our proposed bidirectional semantic consistency loss can be divided into two parts:

source-to-target semantic consistency loss Equation (9) and target-to-source semantic con-
sistency loss Equation (10). These two parts are as follows:

LS→T
sem (GS→T , FT) = Exs∼XS KL(FS(xs)‖FT(GS→T(xs))) (9)

LT→S
sem (GT→S, FS) = Ext∼XT KL(FT(xt)‖FS(GT→S(xt))) (10)

3.2. Bidirectional Segmentation Adaptation

Our adaptation includes the source-to-target direction and the target-to-source direc-
tion as shown in Figure 2.

3.2.1. Source-to-Target Adaptation

To reduce the domain gap, we train the generator GS→T with LS→T
adv Equation (1), Lcyc

Equation (4), LS→T
idt Equation (6) and LS→T

sem Equation (9) to map the source images xs to the
pseudo-target images (see Figure 2, top row). Note that the labels of the transformed images
GS→T(xs) won’t be changed by the generator GS→T . Therefore, we can train the target
classifier FT with the transformed images GS→T(xs) and the ground truth segmentation
labels of the original source images xs (see Figure 2 gray portion). For C-way semantic
segmentation, the classifier loss is defined as:

LFT (GS→T(xs), FT) =

−EGS→T(xs)∼GS→T(XS)

C

∑
c=1

I[c=ys ] log(so f tmax(F(c)
T (GS→T(xs))))

(11)

where C denotes the category number of categories and I[c=ys ] represents the corresponding
loss only for class c.

Above all, the framework optimizes the objective function in the source-to-target
direction as follows:

min
GS→T

FT

max
DT

λ1Ladv(GS→T , DT) + λ2Lcyc(GS→T , GT→S)

+ λ3LS→T
idt (GS→T) + λ4LS→T

sem (GS→T , FT) + λ5LFT (GS→T(xs), FT)

(12)

3.2.2. Target-to-Source Adaptation

We take into account the opposite target-to-source direction and employ a symmet-
rical framework (Figure 2, black dashed arrow). In this direction, we optimize the gen-
erator GT→S with LT→S

adv Equation (2), Lcyc Equation (4), LT→S
idt Equation (7) and LT→S

sem
Equation (10) to map the target images xt to the pseudo-source images GT→S(xt) (see
Figure 2, bottom row). Then, we use the source classifier FS to segment the pseudo-source
images GT→S(xt) to compute the semantic consistency loss Equation (10) instead of the
classifier loss because the ground truth segmentation labels for the target images are not
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available. The segmentation model FS are trained using the labeled source images xs with
following classifier loss (see Figure 2 gray portion):

LFS(XS, FS) = −Exs∼XS

C

∑
c=1

I[c=ys ] log(so f tmax(F(c)
S (xs))) (13)

Collecting the above components, the target-to-source part of the framework optimizes
the objective function as follows:

min
GT→S

FS

max
DS

λ1Ladv(GT→S, DS) + λ2Lcyc(GT→S, GS→T)

+ λ3LT→S
idt (GT→S) + λ4LT→S

sem (GT→S, FS) + λ6LFS(XS, FS)

(14)

3.3. Bidirectional Domain Adaptation

Combining above two directions, we conclude with the complete loss function of BiFDANet:

LBiFDANet(GS→T , GT→S,DS, DT , FS, FT) =

λ1Ladv + λ2Lcyc + λ3Lidt + λ4Lsem + λ5LFT + λ6LFS

(15)

where λ1, λ2, λ3, λ4, λ5 and λ6 control the interaction of the six objectives.
The training process corresponds to solving for the generators GS→T and GT→S, the

source classifier FS and the target classifier FT according to the optimization:

G∗S→T , G∗T→S, FS
∗, FT

∗ = arg min
FS ,FT

min
GS→T
GT→S

max
DS ,DT

LBiFDANet (16)

3.4. Linear Combination Method

The target classifier FT is trained on the pseudo-target domain which have data
distributions similar to the target domain and segment the target images. The source
segmentation model FS is optimized on the source domain and segment the pseudo-
source images GT→S(xt). These two classifiers make different types of mistakes and assign
different confidence ranks to the predicted labels. All in all, the predicted labels of the
two classifiers are complementary instead of alternative. When addressing fusion, it is
important to stress that we should remove the wrong objects from both predicted labels as
much as possible and preserve the correct objects at the same time. For this purpose, we
design a simple method which linearly combines their probability output as follows:

output = λFS(GT→S(xt)) + (1− λ)FT(xt) (17)

where λ is a hyperparameter in the range (0, 1).
Then, we convert the probability output to the predicted labels. A schematic illustra-

tion of the linear combination method is shown in Figure 3.

3.5. Network Architecture

Our proposed BiFDANet consists of two generators, two discriminators and two classifiers.
We choose DeeplabV3+ [7] as the segmentation model and use ResNet34 [59] as

the DeeplabV3+ backbone. The encoder applies atrous convolution at multiple scales to
acquire multi-scale features. The decoder module which is simple yet effective provides
the predicted results. We use dropout in the decoder module to avoid overfitting. Figure 4
shows the architecture of the classifier.

As shown in Figure 5, we use nine residual blocks for the generators which are
used in [17]. Four convolutional layers are used to downsample the features, while four
deconvolutional layers are applied to upsample the features. We use instance normalization
rather than batch normalization and we apply ReLU to activate all layers.
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Figure 3. BiFDANet, test: the target classifier FT and the source classifier FS are used to segment the
target images and the pseudo-source images respectively. And then the probability outputs are fused
with a linear combination method and converted to the predicted labels.

Figure 4. The architecture of the classifier (DeeplabV3+ [7]). The encoder acquires multi-scale features
from the images while the decoder provides the predicted results from the multi-scale features and
low-level features.

Similar to the discriminator in [17], we use five convolution layers for discriminators
as shown in Figure 6. The discriminators encode the input images into a feature vector.
Then, we compute the mean squared error loss instead of using Sigmoid to convert the
feature vector into a binary output (real or fake). We use instance normalization rather than
batch normalization. Unlike the generator, leaky ReLU is applied to activate the layers of
the discriminator.
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Figure 5. The architecture of the generator. ks, s, p and op correspond to kernel size, stride, padding
and output padding parameters of the convolution and deconvolution respectively. ReLU and IN
stand for rectified linear unit and instance normalization. The generator uses nine residual blocks.

Figure 6. The architecture of the discriminator. LReLU and IN correspond to leaky rectified linear
unit and instance normalization respectively. We use mean squared error loss instead of Sigmoid.

4. Results

In this section, we introduce the two datasets, illustrate the experimental settings, and
analyse the obtained results both quantitatively and qualitatively.

4.1. Data Set

To conduct our experiments, we employ the Gaofen Satellite dataset and the ISPRS
(WGII/4) 2D semantic segmentation benchmark dataset [60]. In the rest of this paper, we
abbreviate the Gaofen Satellite data and the ISPRS (WGII/4) 2D semantic segmentation
benchmark dataset to the Gaofen dataset and the ISPRS data set to simplify the description.

4.1.1. Gaofen Data Set

The Gaofen dataset consists of the Gaofen-1 (GF-1) satellite images and the Gaofen-1B
(GF-1B) satellite images, which are civilian optical satellites of China and equipped with two
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sets of multi-spectral and panchromatic cameras. We reduce spatial resolution of the images
to 2 m and convert the images to 10 bit. The images from both satellites contain 4 channels
(i.e., red, green, blue and near-infrared). The labels of buildings are provided. We assume that
only the labels of the source domain can be accessed. We cut the images and their labels into
512 × 512 patches. Table 1 reports the number of patches and the class percentages belonging
to each satellite. Figure 7a,b show samples from the GF-1 satellite and the GF-1B satellite.

Table 1. Statistics For Data Set.

Image # of Patches Patch Size Class Percentages

GF-1 2039 512 × 512 12.6%
GF-1B 4221 512 × 512 5.4%

Potsdam 4598 512 × 512 28.1%
Vaihingen 459 512 × 512 26.8%

(a) (b)

(c) (d)

Figure 7. Example patches from two datasets. (a) GF-1 satellite image of the Gaofen dataset. (b) GF-1B
satellite image of the Gaofen dataset. (c) Potsdam image of ISPRS dataset. (d) Vaihingen image of the
ISPRS dataset.

4.1.2. ISPRS Data Set

This ISPRS dataset includes aerial images acquired from [61,62], which have been
publicly available to the community. The Vaihingen dataset consists of images with a spatial
resolution of 0.09 m and the spatial resolution of Potsdam dataset is 0.05 m. The Potsdam
images contain red, green and blue channels while the Vaihingen images have 3 different
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channels (i.e., red, green and infrared). All images in both datasets are converted to 8 bit. Some
images are manually labeled with land cover maps and the labels of impervious surfaces,
buildings, trees, low vegetations and cars are provided. We cut the images and their labels
into 512 × 512 patches. Table 1 reports the number of patches and the class percentages for
the ISPRS dataset. Figure 7c,d show samples from each city.

4.1.3. Domain Gap Analysis

The domain shift between different domains is caused by many factors such as illumi-
nation conditions, camera angle, imaging sensors and so on.

In terms of the Gaofen data set, the same objects (e.g., buildings) have similar struc-
tures, but the colors of the GF-1 satellite images are different from the colors of the GF-1B
satellite images as shown in Figure 7a,b. What’s more, we depict the histograms to represent
the data distributions of the two datasets. There are some differences between the his-
tograms of the GF-1 satellite images and the GF-1B satellite images as shown in Figure 8a,b.

Figure 8. Color histograms of the Ganfen data set and the ISPRS data set. Different colors represent
the histograms for different channels. (a) GF-1 images. (b) GF-1B images. (c) Potsdam images.
(d) Vaihingen images.

In terms of the ISPRS dataset, the Potsdam images and the Vaihingen images have
many differences, such as imaging sensors, spatial resolutions and structural represen-
tations of the classes. The Potsdam images and the Vaihingen images contain different
kinds of channels due to the different imaging sensors, which results in the same objects
in the two datasets being of different colors. For example, the vegetations and trees are
green in the Potsdam dataset while the vegetations and trees are red color because of
the infrared band. Besides, the Potsdam images and the Vaihingen images are captured
using various spatial resolutions, which leads to the same objects being of different sizes.
What’s more, the structural representations of the same objects in the Potsdam dataset and
Vaihingen dataset might be different. For example, there may be some differences between
the buildings in different cities. At the same time, we depict the histograms to represent
the data distributions of the Potsdam dataset and Vaihingen dataset as well. As shown in
Figure 8c,d, the histograms of the Potsdam images are quite different from the histograms
of the Vaihingen images.
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4.2. Experimental Settings

We train BiFDANet in two stages. First, the training process minimizes the overall
objective LBiFDANet(GS→T , GT→S, DS, DT , FS, FT) without the bidirectional semantic con-
sistency loss by setting λ4 parameters in Equation (15) to 0. This is because, without a
trained target segmentation model, the bidirectional semantic consistency loss would not
be helpful in training process. The λ1, λ2, λ3, λ5 and λ6 parameters in Equation (15) are
set to 1, 10, 5, 10 and 10, respectively. We have found these values through repeated exper-
iments. We train the framework for 100 epochs in this step. Second, after we obtain the
well-trained target classifier, we add the bidirectional semantic consistency loss by setting
λ4 to 10 and the λ1, λ2, λ3, λ5 and λ6 parameters in Equation (15) are the same as in the first
step. We then optimize the network for 200 epochs. For all the methods, the networks are
implemented in the PyTorch framework. We trained the models with Adam optimizer [63],
using a batch size of 12. The learning rates for the generators, the discriminators and the
classifiers are all set to 10−4. At test time, the parameters to combine the segmentation
models are λ ∈ [0, 0.05, 0.1, 0.15, 0.2, ..., 0.95, 1] chosen on the validation set of 20% patches
from the target domain.

4.3. Methods Used for Comparison

(1) DeeplabV3+ [7]: We do not apply any domain adaptation methods and directly seg-
ment the unlabeled target images with a DeeplabV3+ trained on the labeled source domain.

(2) Color Matching: For each channel of the images, we adjust the average bright-
ness values of the source images to that of the target images. Then, we train the target
segmentation model on the transformed domain.

(3) CycleGAN [17]: This method uses two generators G and F to perform image
translation. The generator G learns to transfer the source images to the target domain
while F learns to transfer the target images to the source domain. This method forces the
transferring from source to target and back and transferring from target to source and back
reproduce the original contents. Then the generated target-like images are used to train the
target classifier.

(4) For BiFDANet, besides the full approach, we also give the results obtained by the
segmentation models FS and FT before the linear combination method. At the same time, to
show the effectiveness of the linear combination method, we also show the results obtained
by simply taking the intersection or union of the two results.

For the above approaches, we use the same training parameters and architecture to
make a fair comparison.

4.4. Evaluation Metrics

To evaluate all the methods quantitatively and comprehensively, we use scalar metrics
included Precision, Recall, F1-score (F1) and IoU [64] defined as follows:

Precision =
TPb

TPb + FPb
(18)

Recall =
TPb

TPb + FNb
(19)

F1 =
2× Precision× Recall

Precision + Recall
(20)

IoU =
TPb

TPb + FNb + FPb
(21)

where b denotes the category. FP (false positive) is the number of pixels which are classified
as category b but do not belong to category b. FN (false negative) corresponds to the
number of pixels which are category b but classified as other categories. TP (true positive)
is the number of pixels which are correctly classified as category b and TN (true negative)
corresponds to the number of pixels which are classified as other categories and belong to
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other categories. The aforementioned evaluation metrics are computed for each category
(except the background). Especially, because we only segment buildings in our experiments,
all the evaluation results we reported in tables are corresponding to the building (category).

4.5. Quantitative Results

To report fair and reliable results, we repeat training our framework and the compari-
son methods with the same parameters and architecture five times and depict the average
precision, recall, F1-score and IoU values in Tables 2 and 3. Tables 2 and 3 show the com-
parison results on the Gaofen dataset and the ISPRS dataset, respectively. The DeeplabV3+
row includes results are corresponding to the no-adaptation case. For BiFDANet, we report
the results obtained by the source classifier FS and the target classifier FT separately before
the linear combination method and obtained by simply taking the intersection or union of
the predicted results of the two classifiers FS and FT .

Table 2. Comparison results on Gaofen dataset. The best values are in bold.

Method
Source: GF-1, Target: GF-1B Source: GF-1B, Target: GF-1

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

DeeplabV3+ 74.78 16.60 27.16 15.72 2.14 70.07 4.17 2.13
Color matching 53.82 55.65 54.72 37.66 49.00 83.64 61.80 44.71

CycleGAN 54.72 67.31 60.37 43.24 60.74 75.12 67.17 50.57

BiFDANet FS 58.56 69.34 63.50 46.52 71.65 72.21 71.93 56.17
BiFDANet FT 61.82 67.00 64.31 47.39 71.81 73.69 72.74 57.16

FS ∩ FT 57.12 70.99 63.31 46.31 67.90 75.77 71.62 55.79
FS ∪ FT 60.92 68.11 64.32 47.40 71.94 73.88 72.90 57.36

BiFDANet 63.31 65.70 64.48 47.58 75.57 70.58 72.99 57.47

Table 3. Comparison results on ISPRS dataset. The best values are in bold.

Method
Source: Vaihingen, Target: Potsdam Source: Potsdam, Target: Vaihingen

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

DeeplabV3+ 30.10 17.81 22.37 12.59 29.64 33.16 31.30 18.55
Color matching 39.27 54.28 45.57 29.51 42.61 36.13 39.11 24.30

CycleGAN 61.13 55.86 58.38 41.22 49.75 66.44 56.90 39.76

BiFDANet FS 68.82 61.62 65.02 48.17 59.00 75.39 66.20 49.47
BiFDANet FT 56.90 62.39 59.52 42.37 60.44 76.70 67.60 51.06

FS ∩ FT 52.35 69.27 59.63 42.48 53.60 79.67 64.09 47.15
FS ∪ FT 73.37 57.63 64.55 47.66 59.95 77.12 67.46 50.90

BiFDANet 66.37 64.03 65.18 48.35 65.83 73.33 69.38 53.12

4.6. Visualization Results

Figures 9–12 depict the predicted results for DeeplabV3+, CycleGAN, color match-
ing and BiFDANet. Our proposed BiFDANet which considers distribution alignment
and bidirectional semantic consistency obtains the best predicted results, and the con-
tours of the predicted buildings are more accurate than those acquired by color matching
and CycleGAN.
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Figure 9. Segmentation results in GF-1 → GF-1B experiment. White and black pixels represent
buildings and background. (a) GF-1B. (b) Label. (c) DeeplabV3+. (d) Color matching. (e) CycleGAN.
(f) BiFDANet.

Figure 10. Segmentation results in GF-1B → GF-1 experiment. White and black pixels represent
buildings and background. (a) GF-1. (b) Label. (c) DeeplabV3+. (d) Color matching. (e) CycleGAN.
(f) BiFDANet.

Figure 11. Segmentation results in Potsdam → Vaihingen experiment. White and black pixels
represent buildings and background. (a) Vaihingen. (b) Label. (c) DeeplabV3+. (d) Color matching.
(e) CycleGAN. (f) BiFDANet.
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Figure 12. Segmentation results in Vaihingen → Potsdam experiment. White and black pixels
represent buildings and background. (a) Potsdam. (b) Label. (c) DeeplabV3+. (d) Color matching.
(e) CycleGAN. (f) BiFDANet.

5. Discussion

In this section, we compare our results with the compared methods in detail, and
discuss the effect of our proposed bidirectional semantic consistency (BSC) loss and the
roles of each component in our BiFDANet.

5.1. Comparisons with Other Methods

As shown in Tables 2 and 3, the DeeplabV3+ method which directly apply the source
segmentation model to classify the target images performs worst in all settings. Color
matching obtains a better performance than the DeeplabV3+ method, which indicates the
effectiveness of domain adaptation for semantic segmentation of remote sensing images.
CycleGAN perform better than both DeeplabV3+ and Color matching. Among all the
compared methods, BiFDANet achieves the highest F1-score and IoU score in all settings.
And the separate segmentation models FS and FT also significantly outperform the other
adaptation methods. When combing the two segmentation models with the linear combina-
tion method, the performance of BiFDANet is further enhanced. Moreover, in the Vaihingen
→ Potsdam experiment, BiFDANet FS performs much better than BiFDANet FT . Because
transferring from Vaihingen to Potsdam is more difficult than transferring from Potsdam
to Vaihingen. There are far more Potsdam images than Vaihingen images, in some ways,
the widely variable target domain (Potsdam) contains more variety of shapes and textures,
and therefore it is more difficult to adapt the classifier from Vaihingen to Potsdam. Thanks
to its bidirectionality which is disregarded in previous methods, BiFDANet achieves a
performance gain of +7 percentage points while the gain in performance of BiFDANet FT is
only +1 percentage points. In this experiment, our proposed method makes full use of the
information from the inverse target-to-source translation to produce much better results.

5.1.1. BiFDANet versus DeeplabV3+

There is no doubt that BiFDANet performs much better than DeeplabV3+ for all four
cases. Because of the domain gap, there are some significant differences between the source
domain and target domain. Without domain adaptation, the segmentation model cannot
deal with the domain gap.

5.1.2. BiFDANet versus CycleGAN

In order to reduce the domain gap, CycleGAN and BiFDANet perform image-to-image
translation to align data distribution of different domains. Figures 13–16 show some original
images and the corresponding transformed images generated by color matching, CycleGAN
and BiFDANet. As shown in Figures 13 and 14, it is obvious that the semantic contents of the
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images are changed by CycleGAN because there are no constraints for CycleGAN to enforce
the semantic consistency during the image generation process. For instance, during the
translation, CycleGAN replaces the buildings with bare land as shown in Figures 13 and 14
yellow rectangles. Besides, when generating transformed images, CycleGAN produces
some buildings which do not exist before, as indicated in Figures 13 and 14 green rectangles.
By contrast, the pseudo images transformed by BiFDANet and their corresponding original
images have the same semantic contents and the data distributions of the pseudo images are
similar to the data distributions of the target images. Similarly, as shown in Figure 15, we
observe that there are some objects which look like red trees on the rooftops of the buildings
as highlighted by green rectangles. At the same time, the pseudo images transformed
by CycleGAN generates a few artificial objects in the outlined areas in Figure 15. What’s
more, in Figure 16, the pseudo images transformed by CycleGAN transfer the gray ground
to the orange buildings, as highlighted by cyan rectangles. On the contrary, we do not
observe aforementioned artificial objects and semantic inconsistency in the transformed
images generated by BiFDANet in the vast majority of cases. Because the bidirectional
semantic consistency loss enforces the classifiers to maintain semantic consistency during
the image-to-image translation process. For CycleGAN, because the transformed images
do not match the labels of the original images, the segmentation model FT learns wrong
information in training progress. Such wrong information may affect the performances
of classifiers significantly. As a result, the domain adaptation methods with CycleGAN
performs worse than our proposed method at test time, as confirmed by Figures 13–16.

5.1.3. BiFDANet versus Color Matching

Figures 13 and 14 illustrate that color matching can efficiently reduce the color differ-
ence between different domains. At the first sight, color matching works well. It preserves
the semantic contents of the original source images in the transformed images, and the color
of the target images is transferred to the transformed images. Besides, the transformed
images generated by color matching look similar to the images generated by BiFDANet in
Figure 14. However, in Tables 2 and 3, we can see that there are relatively big gaps between
the performances of BiFDANet and color matching. The quantitative results for color
matching are worse than the results for CycleGAN which can not keep semantic contents
well. To better understand why there is such a difference in performance, we further
analyse the differences between BiFDANet and color matching. The main problem of color
matching is that it only tries to match the color of the images instead of considering the
differences in features and data distributions. On the contrary, BiFDANet learns high-level
features of the target images by using the discriminators to distinguish the features and
data distributions of the pseudo-target transformed images from that of the original target
images. In other word, the generators of BiFDANet generate pseudo-target transformed im-
ages whose high-level features and data distributions are similar to that of the target images.
For this reason, our proposed BiFDANet outperforms color matching substantially.

Furthermore, to prove our point, we show color histograms of the GF-1 images, the
pseudo GF-1 images generated by color matching and BiFDANet, and the GF-1B images,
the pseudo GF-1B images generated by color matching and BiFDANet in Figure 17. And
we depict color histograms of the Potsdam images, the pseudo Potsdam images generated
by color matching and BiFDANet, and the Vaihingen images, the pseudo Vaihingen images
generated by color matching and BiFDANet in Figure 18. Since the source domain and the
target domain are drawn from different data distributions, the histograms of the pseudo-
target images and the target images can’t be exactly the same. However, we want them to
be as similar as possible. Although color matching tries to match the color of the source
images with the color of the target images, it doesn’t learn the data distributions so that the
histograms of the pseudo-target images are quite different from that of the target images.
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Figure 13. GF-1 to GF-1B: Original GF-1 images and the transformed images which are used
to train the classifier for GF-1B images. (a) GF-1 images. (b) Color matching. (c) CycleGAN.
(d) BiFDANet (ours).

Figure 14. GF-1B to GF-1: Original GF-1B images and the transformed images which are used
to train the classifier for GF-1 images. (a) GF-1B images. (b) Color matching. (c) CycleGAN.
(d) BiFDANet (ours).
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Figure 15. Potsdam to Vaihingen: Original Potsdam images and the transformed images which
are used to train the classifier for Vaihingen images. (a) Potsdam images. (b) Color matching.
(c) CycleGAN. (d) BiFDANet (ours).

Figure 16. Vaihingen to Potsdam: Original Vaihingen images and the transformed images which
are used to train the classifier for Potsdam images. (a) Vaihingen images. (b) Color matching.
(c) CycleGAN. (d) BiFDANet (ours).
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Figure 17. Color histograms of the Gaofen dataset. (a) GF-1. (b) Pseudo GF-1 transformed by color
matching. (c) Pseudo GF-1 transformed by BiFDANet. (d) GF-1B. (e) Pseudo GF-1B transformed by
color matching. (f) Pseudo GF-1B transformed by BiFDANet.

Figure 18. Color histograms of the ISPRS dataset. It is worth noting that Potsdam and Vaihingen
have different kinds of bands. (a) Potsdam. (b) Pseudo Potsdam transformed by color matching.
(c) Pseudo Potsdam transformed by BiFDANet. (d) Vaihingen. (e) Pseudo Vaihingen transformed by
color matching. (f) Pseudo Vaihingen transformed by BiFDANet.

As shown in Figures 17 and 18, color matching does not match the data distributions
of the pseudo-target images with the data distributions of the target images. For Gaofen
dataset, there are still some differences between the histograms of the pseudo-target images
generated by color matching and the real target images as shown in Figure 17. In contrast,
the histograms of the pseudo-target images transformed by BiFDANet are similar to that
of the real target images as shown in Figure 17. Thus the performances of BiFDANet are
better than color matching. For ISPRS dataset, the histograms of the pseudo-target images
generated by color matching are much different from the histograms of the target images
as shown in Figure 18. In comparison, BiFDANet effectively matches the histograms of
pseudo-target images with the histograms of the real target images, as shown in Figure 18.
Therefore, the performance gap between BiFDANet and color matching becomes larger as
confirmed by Figures 13–16.
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5.1.4. Linear Combination Method versus Intersection and Union

In the GF-1→ GF-1B, Vaihingen→ Potsdam and Potsdam→ Vaihingen experiments,
simply taking the intersection or union of the results of the two classifiers FS and FT obtains
the highest precision values or recall values, these results prove that the two opposite
directions are complementary instead of alternative. However, the F1-score values and IoU
values can’t achieve the highest by the intersection and union operation. In the Vaihingen
→ Potsdam and Potsdam → Vaihingen experiments, simply taking the intersection or
union of the outputs of the two classifiers FS and FT results in performance degradation.
It shows that the intersection operation and union operation of the two predicted results
aren’t always stable, because these methods may leave out some correct objects or introduce
some wrong objects during the combination process. In comparison, the linear combination
method leads to further improvements for all four experiments because the combination of
probability output is more reliable.

5.2. Bidirectional Semantic Consistency Loss

We replace the bidirectional semantic consistency (BSC) loss in BiFDANet with seman-
tic consistency (SC) loss [14] and dynamic semantic consistency (DSC) loss [45], and report
the evaluation results in Tables 4 and 5.

As shown in Tables 4 and 5, we can see that for all adaptations in both directions
on Gaofen data set and ISPRS data set, our proposed bidirectional semantic consistency
loss achieves better results. It is worth noting that our framework with SC loss [14] and
DSC loss [45] also performs well in the source-to-target direction, but the performance
of BiFDANet FS degrades. This illustrates the necessity of the proposed bidirectional
semantic consistency loss when optimizing the classifier FS in the target-to-source direction.
What’s more, our framework with the proposed bidirectional semantic consistency (BSC)
loss outperforms our framework with the dynamic semantic consistency (DSC) loss in the
source-to-target direction even if the semantic constraints are the same in this direction.
It shows that keeping semantic consistency in the target-to-source direction is helpful to
maintain the semantic consistency in the source-to-target direction. At the same time, the
source classifier FS in our framework with semantic consistency loss [14] and dynamic
semantic consistency loss [45] perform better than the source classifier FS in our framework
without semantic consistency loss even though there are no semantic constraints for these
methods in the target-to-source direction. It means that the semantic consistency constraints
in the source-to-target direction are also beneficial to preserve the semantic contents in the
target-to-source direction. In conclusion, these two transferring directions promote each
other to keep the semantic consistency.

5.3. Loss Functions

We study the roles of each part in BiFDANet in the Vaihingen→ Potsdam experiment.
We start from the base source-to-target GAN model with the adversarial loss Ladv and
the classification loss LFT . Then we test the symmetric target-to-source GAN model with
the adversarial loss Ladv and the classification loss LFS . We combine the two symmetric
models that form a closed loop. In the next steps, we add the cycle consistency loss Lcyc
and the identity loss Lidt in turn. Finally, the framework is completed by introducing the
bidirectional semantic consistency loss Lsem. The results are shown in Table 6. We can
observe that all components help our framework to achieve better IoU and F1 scores, and the
proposed bidirectional semantic consistency loss could further improve the performance of
the models, which demonstrates the effectiveness of our bidirectional semantic consistency
loss again.
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Table 4. Evaluation results of different semantic consistency loss on Gaofen dataset. The best values
are in bold.

Method
Source: GF-1, Target: GF-1B Source: GF-1B, Target: GF-1

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

BiFDANet w/o
FS 55.68 62.07 58.70 41.55 65.36 67.21 66.27 49.68
FT 52.97 70.69 60.56 43.43 65.80 70.63 68.13 51.53

BiFDANet 54.83 68.83 61.04 43.92 67.10 69.86 68.45 51.87

BiFDANet w/SC
FS 50.84 73.68 60.16 43.02 69.43 68.36 68.89 52.33
FT 57.76 68.39 62.63 45.59 65.28 74.48 69.58 53.35

BiFDANet 56.10 71.21 62.76 45.73 66.67 73.20 69.78 53.59

BiFDANet w/DSC
FS 53.66 69.36 60.51 43.38 68.14 70.36 69.23 52.84
FT 59.90 66.69 63.11 46.11 70.44 73.24 71.81 56.02

BiFDANet 58.47 70.23 63.81 46.86 72.34 71.93 72.13 56.41

BiFDANet w/BSC
FS 58.56 69.34 63.50 46.52 71.65 72.21 71.93 56.17
FT 61.82 67.00 64.31 47.39 71.81 73.69 72.74 57.16

BiFDANet 63.31 65.70 64.48 47.58 75.57 70.58 72.99 57.47

Table 5. Evaluation results of different semantic consistency loss on ISPRS dataset. The best values
are in bold.

Method
Source: Vaihingen, Target: Potsdam Source: Potsdam, Target: Vaihingen

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

BiFDANet w/o
FS 49.37 72.12 58.62 41.46 45.81 71.71 55.91 38.80
FT 44.60 73.89 55.63 38.53 47.30 72.32 57.19 40.05

BiFDANet 51.39 68.75 58.81 41.66 48.41 72.67 58.11 40.96

BiFDANet w/SC
FS 52.72 72.96 61.21 44.10 53.69 69.82 60.70 43.58
FT 49.71 72.20 58.88 41.73 56.05 72.89 63.37 46.38

BiFDANet 53.83 71.97 61.59 44.50 60.35 67.40 63.68 46.71

BiFDANet w/DSC
FS 58.93 67.35 62.86 45.84 58.01 68.30 62.74 45.70
FT 50.66 70.76 59.05 41.89 60.53 74.44 66.77 50.11

BiFDANet 53.03 77.84 63.08 46.07 62.75 73.13 67.54 50.99

BiFDANet w/BSC
FS 68.82 61.62 65.02 48.17 59.00 75.39 66.20 49.47
FT 56.90 62.39 59.52 42.37 60.44 76.70 67.60 51.06

BiFDANet 66.37 64.03 65.18 48.35 65.83 73.33 69.38 53.12

Table 6. Evaluation results of each component on ISPRS dataset.

Source: Vaihingen, Target: Potsdam

S → T T → S
F1 (%) IoU (%)LFT Ladv Lcyc Lidt Lsem LFS Ladv Lcyc Lidt Lsem

� � 35.67 18.65
� � 39.84 23.63

� � � � 40.17 24.08

� � � 55.24 38.16
� � � 56.73 39.64

� � � � � � 57.04 40.06

� � � � 54.36 37.83
� � � � 57.74 40.12

� � � � � � � � 58.81 41.66

� � � � � 58.44 41.54
� � � � � 63.96 47.08

� � � � � � � � � � 65.18 48.35
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6. Conclusions

In this article, we present a novel unsupervised bidirectional domain adaptation
framework to overcome the limitations of the unidirectional methods for semantic segmen-
tation in remote sensing. First, while the unidirectional domain adaptation methods do
not consider the inverse adaptation, we take full advantage of the information from both
domains by performing bidirectional image-to-image translation to minimize the domain
shift and optimizing the source and target classifiers in two opposite directions. Second,
the unidirectional domain adaptation methods may perform badly when transferring from
one domain to the other domain is difficult. In order to make the framework more general
and robust, we employ a linear combination method at test time, which linearly merge
the softmax output of two segmentation models, providing a further gain in performance.
Finally, to keep the semantic contents in the target-to-source direction which was neglected
by the existing methods, we propose a novel bidirectional semantic consistency loss and
supervise the translation in both directions. We validate our framework on two remote
sensing datasets, consisting of the satellite images and the aerial images, where we perform
a one-to-one domain adaptation in each dataset in two opposite directions. The experimen-
tal results confirm the effectiveness of our BiFDANet. Furthermore, the analysis reveals
the proposed bidirectional semantic consistency loss performs better than other semantic
consistency losses used in the previous approaches. In our future work, we will redesign
the combination method to make our framework more robust and further improve the
segmentation accuracy. What’s more, in practical terms, the huge number of remote sensing
images usually contain several domains, we will extend our approach to multi-source and
multi-target domain adaptation.
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Abstract: Forest fire is a ubiquitous disaster which has a long-term impact on the local climate
as well as the ecological balance and fire products based on remote sensing satellite data have
developed rapidly. However, the early forest fire smoke in remote sensing images is small in area
and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant
frequency bands and remote sensing index for remote sensing satellite data will have an interference
on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency
for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing
satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote
sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions
and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based
on an improved Unet combined with the attention mechanism and residual block, was proposed.
Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the
algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are
sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke
pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could
effectively segment the smoke pixels in remote sensing images. This proposed method under the
RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote
sensing index and makes an early alarm of forest fire smoke.

Keywords: forest fire; remote sensing; smoke segmentation; Smoke-Unet; attention mechanism;
residual block; Landsat-8; band sensibility

1. Introduction

The forest system, which occupied almost one third of the total land area, provides a
variety of critical ecological services such as natural habitat, water conservation, timber
products and maintaining biodiversity [1]. It also plays a central role in global carbon circle
and energy balance [2,3]. However, the areas of global forests sharply declined at a rate
of roughly 10 million hectares per year [4]. Wildfire is the principal threat in terrestrial
ecosystems, and many evidences have proved that recent global warming and precipitation
anomalies have made forests more susceptible to burning [5,6]. In the period of 2019–2020,
the Amazon and South Australia faced the most severe wildfires, and these events have
caused wide public concerns because of their considerable ecological and socioeconomic
consequences such as consuming generous quantities of tropical rainforest, emitting great
volumes of greenhouse gas and aerosols and altering the composition of the atmosphere.

Because smoke appeared at the earliest phase in wildfires, earlier detection and rapid
identification of initial wildfire smoke are crucial for wildfire suppression and management
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to avoid the damages and negative impacts of wildfires [7]. Wildfire smoke is usually
identified by means of manual observation, patrol of forest rangers, infrared and optical
sensors of fire lookout towers and aviation monitoring. However, these techniques have
shown ineffective, unsystematic, and geographical limit. Wildfires, caused by natural
events (e.g., lightening and spontaneous combustion) or human-forcing activities, occurred
in the remote regions, making it difficult and cost-consuming for accessibility and sup-
pression. However, data from remote sensing satellites can provide continuous, frequent,
and numerous systematic information with various spatial and temporal resolution at
global scales, which may overcome several limitations of the conventional wildfire smoke
observation methods [8].

Currently, the widely used remote sensing monitoring algorithms are mostly based
on satellite remote sensing data of low and medium resolution (>250 m) [9,10], such as
Advanced Very High Resolution Radiometer (AVHRR) [11–13], Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [14–16], etc., which has become an important business
method to detect wildfire smoke for daily wildfire disaster monitoring in many countries
around the world. However, the satellites with lower spatial resolution are unable to
capture relevant information effectively at the early stage of forest fires due to too small
initial burning area, and thus would cause the detection of early fire spots to be missed.
Therefore, high-resolution satellite data are urgently needed to improve the accuracy of fire
detection. Landsat-8 data can be publicly obtained and the resolution has increased by an
order of magnitude, reaching 30 m, compared with Suomi National Polar-orbiting Partner-
ship (S-NPP) and Visible Infrared Imaging Radiometer Suite (VIIRS) [17–20]. In addition,
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) mounted on Landsat-8
can provide a new data source and capability allowing as small as 1 m2 active fire to
be observed [21]. Therefore, Landsat-8 data were used for wildfire smoke detection in
this paper.

The satellite can carry many multispectral sensors and provide large amounts of multi-
spectral data with more valuable information than RGB. Wildfire smoke presents different
characteristics in different spectral ranges of remote sensing data and the choice of bands is
crucial to smoke recognition. The wildfire smoke detection algorithms [22,23] of AVHRR
mainly derived from band 3 (centered at 3.7 μm), band 4 (centered at 10.8μm) and band 5
(centered at 12 μm). The family of products [24,25] based on MODIS sensors primarily used
two MIR bands (band 21 and band 22, centered at 3.96 μm) and TIR band 31 (centered at
11 μm). Data from band 4 (centered at 3.55~3.93 μm) and band 5 (centered at 10.5~12.4 μm)
of VIIRS are used for tracking active fires [26–28]. Nevertheless the Landsat-8 wildfire
smoke detection algorithm was based on the reflectance of band 7 (SWIR, centered at
2.2 μm), that is sensitive to thermal abnormality [29]. Therefore, the selection of the spectral
range of remote sensing data is very important for smoke identification based on different
spectral properties.

Due to the development of machine learning and data mining, several studies focused
on the automatic retrieving smoke pixels. Li et al. [30] facilitated a neural network algo-
rithm using AVHRR data to search smoke plumes but it failed when smoke pervades in the
downwind area. As a powerful and popular machine learning approach, Support Vector
Machine (SVM) is widely used in remote sensing task. The SVM classifiers can take advan-
tage of combination of texture, color and other features of the remote sensing scene, and
successfully distinguish the pixels contained smoke from non-smoke pixels [31–33]. Other
machine learning techniques, such as K-means clustering, fisher linear classification [34]
and BPNN algorithm [35], were used to discriminate smoke pixels. Nevertheless, it is
still a challenge to extract smoke areas because of the wide range of shapes, color, texture,
luminance and heterogeneous component of aerosol as well as diversity of cover types.
In addition, with the development of remote sensing technology, a dramatically increasing
satellites archive makes it no longer suitable for hand-crafted features of remote sensing
data, and it is urgent to develop more automatic detection algorithms.
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Deep learning, in the specific area of Convolutional Neural Networks (CNNs), is
inspired by the working way of the human brain and recently has acquired many impressive
achievements in many scientific fields such as image classification, object detection, and
image segmentation. CNN can automatically extract features from data using a structure of
multilayers. They are iteratively learning by forward propagation and backward derivation
and updating parameters of kernels through complex nonlinear functions. The accuracies
can be further improved by providing great amounts of input data, so it would be the best
candidate for remote automated detection tasks. CNNs have successfully been employed
in variety remote sensing fields such as road detection [36], cloud detection [37] and
smoke classification [38]. Recent Unet-based methods [39] have also made good progress
in the field of remote sensing [40,41]. However, remote sensing satellite data have many
redundant bands so that too much information causes the wildfire smoke detection accuracy
drop after the first rise and the detection efficiency decrease. How to reduce the interference
of redundant information and make full use of the correlation of feature channels is a key
problem on wildfire smoke detection based on remote sensing data.

The objective of this study was to propose a wildfire smoke detection algorithm of
Landsat-8 satellite remote sensing imagery at the scene of a wildfire using multispectral
data. First, a multispectral smoke dataset of Landsat-8 satellite at global scale, including
the information from visible to TIRS1 infrared bands, was built in this paper. Second, a
deep learning model, Smoke-Unet, based on Unet architecture incorporating with residual
block [42] and attention mechanism [43], was proposed. Then, the performance of this
algorithm on different region and various scale of wildfire smoke was evaluated by the
experiments based on the abovementioned multispectral smoke dataset. Finally, to better
extract the features of remote sensing smoke and reduce the redundancy of remote sensing
data, the sensitivity of multiple bands was analyzed.

The main parts of this paper are structured as follows. Section 2 introduces the
establishment of a multispectral smoke dataset of Landsat-8 satellite at a global scale, and a
proposed deep learning model, Smoke-Unet, based on the Unet architecture incorporating
with Attention mechanism and residual block, is presented in Section 3. To reduce the
disturbance of the redundant information, the influence of different band combinations
of multispectral data and remote sensing parameters on the accuracy of the algorithm are
analyzed and the band sensitivity are evaluated in Section 4, and the conclusion is made
in Section 5.

2. Data

2.1. Landsat-8 Multispectral Data

Landsat-8, carrying the OLI and the TIRS, was launched in 2013, and is operated by the
US Geological Survey (USGS). As seen in Table 1, OLI is a nine-spectral-band push-broom
sensor with spatial resolution of 30 m and 15 m for the panchromatic band, including near-
infrared band (NIR) and Panchromatic (Pan). Standard terrain-corrected data (Level 1T)
from OLI were used in this study.

2.2. Study Area

As shown in Figure 1, the various fire-prone ecosystems all over the world were
selected as the study areas in this research, containing: (i) needleleaf trees of boreal forests
in high latitude regions, such as Canada and Siberia; (ii) subtropical evergreen hard-leaved
forest mixed conifer-broadleaf forests in Western America; (iii) dry sclerophyll woodland
and open forest in Eastern Australia; (iv) tropical rainforest in the Amazon and Southeastern
Asia; (v) tropical grasslands and savannas in Africa.
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Table 1. Landsat-8 Satellite Parameters.

Payload Name Band Number Band Name Spectral Range(nm) Resolution(m)

OLI

1 Coastal 433~453 30
2 Blue 450~515 30
3 Green 525~600 30
4 Red 630~680 30
5 NIR 845~885 30
6 SWIR1 560~660 30
7 SWIR2 100~300 30
8 Panchromatic 500~680 15
9 Cirrus 1360~1390 30

TIRS
10 TIRS1 1060~1119 60
11 TIRS2 1150~1251 60

Figure 1. Spatial distribution of study regions in the datasets.

As seen in Figure 2, the study areas are located in Asia, North America, South America,
Africa, etc. Considering that the frequent occurrence of wildfires in these areas is represen-
tative, the fire-prone regions in the USA, Canada, Brazil and Australia were selected as the
primary research areas.

Figure 2. Different intercontinental data distribution.

206



Remote Sens. 2022, 14, 45

As seen in Figure 3, the land cover data have 4 types, including ocean, city, bare soil
and different kinds of vegetation (agricultural land, grassland, forest.)

Figure 3. Different land cover types of datasets. (a) Ocean; (b) City; (c) Bare soil; (d) Agricultural
land; (e) Grassland; (f) Forest. Different intercontinental data distribution.

2.3. Fire Seasons

Forest fires usually occur in the early stages of springs, autumns and winters due to
the influence of climate. As a result of human activity, the wildfire occurrence in summers is
dramatically increasing in North America and the Amazon [44,45]. In this study, the period
of fire occurrence covered from 2013 to 2019, including different fire seasons, as shown
in Figure 4.

2.4. Proportion of Smoke Pixel

Smoke concentration and the proportion of smoke pixels in one image are different
with forest fire stage. At the beginning of fire, thin scattered smoke pixels account for a
small amount in the image; however, in the middle stage of fire, the entire image is nearly
occupied by densely spread smoke. The proportion distribution of smoke pixels is shown
in Figure 5.

207



Remote Sens. 2022, 14, 45

Figure 4. Period of fire occurrence.

Figure 5. The proportion of smoke pixels of different images.

2.5. Training and Validation Dataset

To reduce overfitting, data augmentation was performed, including random cropping,
vertical and horizontal mirroring operations on the images. As a result, the dataset in this
study contains a total of 47 multispectral forest fire smoke images, composed of RGB, NIR,
SWIR and mid-infrared bands. Thirty-four images are randomly selected as training data,
5 images are used as verification data, and 8 images are used as test data.
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3. Methods

As a dense prediction problem, the task of smoke classification in satellite image is to
make a prediction at each pixel. Based on the Unet network structure, Smoke-Unet, fused
into residual blocks and attention model, was put forward to segment smoke in satellite
images in this paper.

As seen in Figure 6, Smoke-Unet consists of a contraction path on the left side and an
expansive path on the right side. The contracting path follows the typical architecture of a
convolutional network. It consists of the repeated application of two 3 × 3 convolutions
(padded convolutions), each followed by a linear unit (ELU) and a 2 × 2 max pooling
operation with stride 1 for downsampling. At each downsampling step, we double the
number of feature channels. Every step in the expansive path consists of an upsampling of
the feature map followed by a 2× 2 convolution (“up-convolution”) that halves the number
of feature channels, a concatenation with the correspondingly cropped feature map from
the contracting path, and two 3 × 3 convolutions, each followed by a ELU. The cropping
is necessary due to the loss of border pixels in every convolution. Because the resolution
of the remote sensing image is smaller (one pixel for Landsat with a resolution of 30 m),
downsampling will have a catastrophic effect on these local small target features, resulting
in the problem of vanishing gradients for many network layers. Therefore, Smoke-Unet is
designed to only downsample three times. The steps of convolution and downsampling
are alternately performed three times to obtain a high-dimensional feature map and then
the spatial resolution is restored through the three-time symmetrical convolution and
upsampling operations. The feature map with the same resolution was fused through a
skip connection to compensate for the loss of detail caused by downsampling.

Figure 6. Smoke-Unet.

In order to improve the feature learning ability of the network, ResBlock, a residual
block is added to the convolution block to enhance the feature extraction ability. The
residual block with skip connection structure can enhance the robustness of the network
and improve the performance of the network. The skips structure between layers can fuse
coarse semantic and local appearance information. This skip feature is learned end-to-end
to improve the semantics and spatial precision for the output. Remote sensors onboard
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satellite have so many spectral channels that too much irrelevant information leads to
difficulty in extracting feature. In order to emphasize effective information and reduce
the interference of invalid band information, the SEBlock module based on the attention
mechanism is added to the Smoke-Unet network structure. In the attention model, the focus
process can be imitated by setting the weight coefficient. The key attention areas can be set
with larger weight coefficients, which represent the importance of the information in these
areas, while other areas can be set with smaller coefficients to filter invalid information.
Through considering different degree of importance for information, the efficiency and
accuracy of information processing can be greatly improved. At the final layer, a 1 × 1
convolution is used to map each 16-component feature vector to final smoke class. In total,
the network has 15 convolutional layers.

4. Results and Discussion

In this section, three kinds of semantic segmentation experiments were made on our
dataset. By comparing the experimental results, the performance of Smoke-Unet was
evaluated and the sensitivity of band and remote sensing parameters was analyzed.

4.1. Experimental Environment

The network structure uses the Keras architecture and several related image processing
libraries, the programming language uses Python 3.5. The specific configuration is shown
in Table 2.

Table 2. Deep learning environment configuration.

Programming Environment Auxiliary Library Hardware Configuration Other Software

Python3.5 Shapely CPU:InterE5-2620v3@2.4 GHz
Tensorflow1.9 Opencv2.2 GPU:NVDIA TITAN X ENVI5.3

CUDA8.0 Tifffile0.12 RAM:16 GB ArcGIS10.3
cuDNN10.0 Rasterio1.1.2 Numba0.26.0 Scikit_image0.12.3
Keras2.2.0 h5py2.6.0

4.2. Implementation Details

The input of the Smoke-Unet network is the multichannel remote sensing image and
the index of the multi-remote sensing feature. The data have 13 channels, as shown in
Table 3. The schematic diagram of the network is shown in Figure 6.

Table 3. Bands and remote index.

Number Data Type Item Band

1 Band Data Multispectral Band 1–7, 10
2 Band Data Panchromatic Band 8
3 Remote Sensing Index EVI /
4 Remote Sensing Index NBR /
5 Remote Sensing Index AOD /
6 Remote Sensing Index BT /

During the model training, the back-propagation optimization algorithm uses the
stochastic gradient descent (SGD) algorithm, the learning rate is 1 × 10−3, the momentum
is 0.9, the learning rate attenuation is 0.1, the loss function is the joint loss function, and
the evaluation function is Jaccard similarity function. The batch size is 128. Considering
the computing resources, there are 25 iterations in total, and shuffle is used to disrupt the
order of training samples in each epoch. After each round of iteration is completed, the
Jaccard coefficient, Accuracy, F1 and other indicators of the training set and the validation
set are calculated.
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4.3. Implementation Details

In the field of deep learning image segmentation, the similarity coefficient is an
important indicator to measure the accuracy of image segmentation. Jaccard similarity
coefficient is used in this paper to evaluate the similarity and difference between image
targets. The larger the value of Jaccard, the more similar the two targets. For two sets
A and B, the Jaccard coefficient is the ratio of the intersection and the union of the two,
defined as:

J(A, B) =
|A ⋂

B|
|A ⋃

B| =
|A ⋂

B|
|A|+ |B| − |A ⋂

B| , (1)

0 ≤ J(A, B) ≤ 1, (2)

4.4. Ablation and Comparative Analysis

In order to verify the role of residual block and attention mechanism of Smoke-Unet,
the ablation experiments were made in wildfire smoke segmentation based on remote
sensing satellite images. As shown in Table 4, Res-Unet means the network combined Unet
with the residual module. Atten-Res-Unet means the network integrated the attention
mechanism module with Res-Unet. The results of semantic segmentation were evaluated
by metrics such as Jaccard, Accuracy, Recall and F1. In order to validate the effectivity more
extensively, other common semantic segmentation networks such as FCN [46], Segnet [47]
and PSPnet [48] have been compared. The results are compared in Table 4 and Figure 7.

Table 4. Ablation and comparative analysis of different models.

Network Dataset Loss Jaccard Accuracy Recall F1

Unet
Train 0.844 0.657 0.801 0.753 0.773

Validation 1.889 0.699 0.694 0.781 0.735

Res-Unet
Train 0.851 0.690 0.805 0.829 0.813

Validation 1.636 0.59 0.701 0.944 0.805

Atten-Res-Unet
Train 1.514 0.703 0.835 0.816 0.823

Validation 1.926 0.654 0.696 0.894 0.782

FCN
Train 1.479 0.735 0.845 0.852 0.844

Validation 1.974 0.58 0.711 0.811 0.758

Segnet Train 1.532 0.712 0.831 0.835 0.828
Validation 1.708 0.665 0.761 0.841 0.799

PSPnet
Train 1.406 0.748 0.845 0.871 0.851

Validation 1.901 0.581 0.751 0.812 0.765

Smoke-Unet
Train 0.759 0.752 0.923 0.917 0.918

Validation 1.134 0.644 0.725 0.838 0.775

It can be seen from Table 4 that Jaccard coefficient, accuracy, recall rate, F1 and other
indicators of Smoke-Unet have been improved to varying degrees. Compared with the
original Unet network architecture, the Jaccard coefficient on the training set is increased by
14.46% and the Jaccard coefficient on the verification set is reduced to a certain extent. The
accuracy on the training set is increased by 15.23% and the accuracy on the validation set
is increased by 4.47%. The recall rate on the training set was increased by 21.78% and the
recall rate on the verification set was increased by 7.30%. F1 on the training set is increased
by 18.76% and F1 on the validation set is increased by 5.44%. It can be concluded that the
proposed network performs better than the original Unet network, and it can be seen from
Table 4 that Smoke-Unet is better than other common semantic segmentation networks.
The specific segmentation image is shown in Figure 7.

211



Remote Sens. 2022, 14, 45

Figure 7. The results of segmentation of different networks. (a) Image acquired over British Columbia,
Canada, on 4 August 2017, the smoke is depicted in red line area; (b) The segmentation results of
smoke over British Columbia, the smoke pixels are depicted in aqua color; (c) Image acquired over
New Zealand area, on 7 Feb 2019, the smoke is depicted in red line area; (d) The segmentation results
of smoke over New Zealand area, the smoke pixels are depicted in aqua color.
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In Figure 7a, the smoke contains a wide range of dense smoke and scattered diffuse
thin smoke, and the land cover includes vegetation, bare soil, and some cirrus clouds.
In Figure 7c, the smoke, located near the fire point, is thin and has a relatively small range,
and the land cover includes sea water, seashore, bare land, vegetation and so on.

It can be seen from Figure 7b,d that the Unet network can roughly segment the smoke
pixels in different images. In Figure 7b, Res-Unet can effectively segment the smoke pixels,
because the number of smoke pixels in the diffusion area at the upper left of Figure 7b has
increased, while in Figure 7d there is an over-segmentation by Res-Unet, and some pixels
are incorrectly segmented as the smoke pixel. In Figure 7b, Atten-Res-Unet can effectively
segment the smoke pixels, as the number of smoke pixels in the diffusion area at the upper
left of Figure 7b has increased, while the under-segmentation exists in Figure 7d, resulting
that some pixels are not identified. The segmentation effects using FCN, SegNet and PSPnet
are worse than Unet-based methods. It can be seen from Figure 7b,d that the Smoke-Unet
network has a better recognition performance than the other networks when segmenting a
wide range of dense smoke and a small area of thin smoke.

4.5. Sensitivity Analysis

With the increasing number of high-resolution images and dimensional channels of
data, the information redundancy generated by high-dimensionality makes it difficult
to effectively utilize the rich information of remote sensing images. Based on the above-
mentioned forest fire smoke detection algorithm, this section will analyze and discuss
the influence of different band combinations of multispectral data and remote sensing
parameters on the accuracy of the algorithm.

4.5.1. Sensitivity of Bands

In order to evaluate the band sensitivity, the segmentation experiments based on dif-
ferent band combination were made on our dataset. The data source distribution is shown
in Table 5. The test images contain a large proportion of smoke, small proportion of smoke,
the land cover includes bare land, vegetation, seashores and highly reflective ground.

Table 5. Details of different bands combination.

Number Data Type Data Dimension Band

1 RGB 3 Band 2~4
2 RGB + NIR 4 Band 2~5
3 RGB + TIRS1 4 Band 2~4,10
4 RGB + SWIR2 4 Band 2~4,7
5 RGB + SWIR1 + SWIR2 5 Band 2~4,6,7
6 RGB + SWIR1 + NIR 5 Band 2~6
7 RGB + TIRS1 + SWIR2 5 Band 2~4,7,10
8 TIRS1 1 Band 10
9 NIR + SWIR1/2 + TIRS1 4 Band 5~7,10
10 SWIR1 + NIR + Blue 3 Band 2,5,6
11 Multiple 8 Band 1~7, Band 10
12 Multiple + Pan 9 Band 1~7, Band 10~11
13 All data 11 Band 1~11

From Table 6, Figures 8 and 9, it can be found that the segmentation result of smoke
is the best when the input band is RGB and SWIR2. Compared to all the data bands as
the input, Jaccard with the input of RGB and SWIR2 increases by 6.5%. When the input
is all data source, it can effectively segment a wide range of smoke. However, compared
with the segmentation result of the RGB data source, the smoke pixel with the input of all
band data has the problem of under-segmentation for a small area of smoke, especially in
the downwind diffusion area. It shows that too much data will interfere with the network
parameter learning and degrade the performance of the network.
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Figure 8. Cont.
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Figure 8. The first line shows true-color composition RGB images of smoke plumes. (a1–a14) Siberia
area, Russia, on 17 March 2018; (b1–b14) British Columbia, Canada, on 4 August 2017; (c1–c14)
Amazon region, Brazil, on 9 August 2019; (d1–d14) New Zealand area, on 7 Feb 2019; (e1–e14)
Zambia, on 26 June 2017; (f1–f14) Liangshan region, China, on 21 May 2019. All rows except the
first are segmentation results of smoke with different input data, the smoke pixels are depicted in
aqua color.
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(a) (b)

Figure 9. The segmentation results of smoke with variety bands combination. (a) The result of Jaccard
and Accuracy; (b) The result of recall and F1.

Table 6. The segmentation results of different bands combination.

Number Data Type Jaccard Accuracy Recall F1

1 RGB 0.692 0.701 0.980 0.818
2 RGB + NIR 0.623 0.809 0.730 0.767
3 RGB + TIRS1 0.535 0.653 0.747 0.697
4 RGB + SWIR2 0.748 0.759 0.982 0.856
5 RGB + SWIR1 + SWIR2 0.701 0.707 0.988 0.824
6 RGB + SWIR1 + NIR 0.737 0.753 0.970 0.848
7 RGB + TIRS1 + SWIR2 0.700 0.709 0.981 0.823
8 TIRS1 0.294 0.585 0.371 0.455
9 NIR + SWIR1/2 + TIRS1 0.479 0.852 0.522 0.648
10 SWIR1 + NIR + Blue 0.305 0.322 0.855 0.468
11 Multiple 0.646 0.658 0.814 0.784
12 Multiple + Pan 0.673 0.701 0.844 0.804
13 All data 0.683 0.801 0.825 0.809

In order to better distinguish smoke from clouds, the spectral characteristics of smoke
and cloud in different bands were compared. As shown in Figure 10, the image contains
smoke (heavy smoke numbered 2; smoke near the fire point numbered 5; thin smoke in the
diffusion area numbered 3 and 4) and clouds (numbered 1). To highlight the features, the
logarithmic transformation was made to the image. The spectral characteristics of different
objects in each band of the multispectrum are shown in Figure 11.

It can be seen from Figure 11a,b that clouds and dense smoke have very similar
spectral characteristics in the RGB band (Band 3~5); therefore, it is difficult to distinguish
dense smoke with clouds by the naked eye. However, the pixel values of the two are quite
different in the SWIR2 band (Band 8), which may be the reason why the smoke pixels can
be better distinguished by using RGB and SWIR2. From Figure 11b,c, it shows that the
spectral characteristics of heavy smoke and thin smoke are greatly different, which makes
the task of smoke recognition challenging.

4.5.2. Sensitivity of Remote Sensing Parameters

In order to evaluate the sensitivity of different remote sensing feature indexes to forest
fire smoke, EVI, NBR, BT and AOD were respectively combined with RGB and SWIR2 as
shown in Table 7 to evaluate the impact on the smoke segmentation.
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(a) (b)

Figure 10. The image of smoke acquired over British Columbia, Canada, on 4 August 2017. (a) The
true-color composition image. (b) The image of smoke after logarithmic transformed. Different
targets are marked with numbers 1 through 8. (1) The cloud; (2) The heavy smoke; (3) The thin smoke
over area 3; (4) The thin smoke over area 4; (5) The smoke over the hot spot; (6) The soil; (7) The
water; (8) The vegetation.

 
(a) (b) (c) 

 
(d) (e) 

Figure 11. The spectral profile of different objects. (a) The profile of cloud on area 1; (b) The profile of
heavy smoke on area 2; (c) The profile of thin smoke over the area 3; (d) The profile of thin smoke
over the area 4; (e) The profile of smoke over the hot spot (the fire point) on area 5.
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Table 7. Fusion of different remote sensing features.

Number Data Type Data Dimension

1 RGB + SWIR2 + EVI 5
2 RGB + SWIR2 + NBR 5
3 RGB + SWIR2 + BT 5
4 RGB + SWIR2 + AOD 5

As shown in Figure 12, both EVI and NBR do not contribute to forest fire smoke
segmentation and BT help to identify high temperature abnormal points, resulting in
under-segmentation of smoke pixels.

Figure 12. The first line is true-color composition RGB images of smoke plumes. (a1–a5) Siberia
area, Russia on 17 Mar 2018; (b1–b5) British Columbia, Canada, on 4 August 2017; (c1–c5) Amazon
region, Brazil, on 9 August 2019; (d1–d5) New Zealand area, on 7 February 2019; (e1–e5) Zambia,
on 26 June 2017; (f1–f5) Liangshan region, China, on 21 May 2019. All rows except the first are
segmentation results of smoke with multiple bands and remote sensing indexes, the smoke pixels are
depicted in aqua color.
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In Figure 12(c5), the upper left area is the smoke plume diffusion area, and a large
number of smoke pixels that could not be identified by visual interpretation were seg-
mented. This may be a result from the increasing aerosol concentration in this area due
to the large amount of carbon oxides and nitrogen oxides contained in forest fire smoke.
In Figure 12(f5), some mis-segmentation was made because much smaller smoke area
and fewer smoke pixels are prone to be mis-recognized by image noise. Therefore, it can
be concluded that the segmented smoke pixels significantly increase, especially for the
thin smoke in the downwind diffusion zone, when AOD is added as the input of RGB
and SWIR2.

5. Conclusions

In order to solve the difficulty of detecting forest fire smoke in remote sensing images,
this study proposed the Smoke-Unet network to segment forest fire smoke and analyzed
the sensitivity of remote sensing satellite data and remote sensing index used for wildfire
detection. This paper first constructed a multispectral remote sensing smoke dataset
containing different years, seasons, regions and land cover. Second, Smoke-Unet, which
combined an improved Unet network with attention mechanism and residual block, was
put forward in this paper and verified by comparing with other methods on the experiments.
Third, the sensitivity of different spectral band combinations of multispectral data and the
remote sensing index to the wildfire smoke segmentation were analyzed by the experiments.
The results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is
3.1% higher than that of Unet and RGB, SWIR2 and AOD bands are verified as the sensitive
band combination and the remote sensing index for wildfire smoke segmentation, which
could effectively segment the smoke pixels in remote sensing images. This proposed
method under the RGB, SWIR2 and AOD bands can help to segment smoke by using
high-sensitivity band and remote sensing index and makes an early alarm of forest fire
smoke. However, some problems need to be further solved in subsequent studies. A large
amount of mixed spectrum phenomenon in the diffusion area makes it much difficult to
label thin smoke plume in the downwind direction by visual interpretation. How to exploit
the feature-extraction advantages of deep learning methods to better interpret remote
sensing images requires a lot of exploration.
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Abstract: Image super-resolution (SR) technology aims to recover high-resolution images from
low-resolution originals, and it is of great significance for the high-quality interpretation of remote
sensing images. However, most present SR-reconstruction approaches suffer from network training
difficulties and the challenge of increasing computational complexity with increasing numbers of
network layers. This indicates that these approaches are not suitable for application scenarios with
limited computing resources. Furthermore, the complex spatial distributions and rich details of
remote sensing images increase the difficulty of their reconstruction. In this paper, we propose the
pyramid information distillation attention network (PIDAN) to solve these issues. Specifically, we
propose the pyramid information distillation attention block (PIDAB), which has been developed
as a building block in the PIDAN. The key components of the PIDAB are the pyramid information
distillation (PID) module and the hybrid attention mechanism (HAM) module. Firstly, the PID
module uses feature distillation with parallel multi-receptive field convolutions to extract short-
and long-path feature information, which allows the network to obtain more non-redundant image
features. Then, the HAM module enhances the sensitivity of the network to high-frequency image
information. Extensive validation experiments show that when compared with other advanced
CNN-based approaches, the PIDAN achieves a better balance between image SR performance and
model size.

Keywords: attention mechanism; feature distillation; remote sensing; super-resolution

1. Introduction

High-resolution (HR) remote sensing imagery can provide rich and detailed infor-
mation about ground features and this has led to it being widely used in various tasks,
including urban surveillance, forestry inspection, disaster monitoring, and military object
detection [1]. However, it is difficult to guarantee the clarity of remote sensing images
because it can be restricted by the imaging hardware, transmission conditions, and other
factors. Considering the high cost and time-consuming research cycle of hardware sensors,
the development of a practical and inexpensive algorithm for HR imaging technology in
the field of remote sensing is in great demand.

Single-image super-resolution (SISR) [2] aims to obtain an HR image from its corre-
sponding low-resolution (LR) counterpart by using the intrinsic relationships between the
pixels in an image. Traditional SISR methods can be roughly divided into three main cate-
gories: Interpolation- [3,4], reconstruction- [5,6], and example learning-based methods [7,8].
However, these approaches are not suitable for image SR tasks in the remote sensing field
because of their limited ability to capture detailed features and the loss of a large amount
of high-frequency information (edges and contours) in the reconstruction process.

With the flourishing development of deep convolutional neural networks (DCNNs)
and big-data technology, promising results have been obtained in computer vision tasks.

Remote Sens. 2021, 13, 5143. https://doi.org/10.3390/rs13245143 https://www.mdpi.com/journal/remotesensing223



Remote Sens. 2021, 13, 5143

Because of their end-to-end training strategy and powerful feature-reconstruction abil-
ity, DCNNs have been extensively applied in the domain of SR reconstruction in recent
years [9–14]. Dong et al. [9] successfully introduced a CNN into the SR reconstruction
task using a simple three-layer neural network, and they demonstrated that CNNs can
directly learn end-to-end nonlinear mappings from LR images to their corresponding HR
counterparts, achieving good results without the need for the manual features required by
traditional methods. Kim et al. [10] proposed a 20-layer network for predicting residual
images, and they verified that the SR model performance improves significantly when
the number of structure layers is increased. Furthermore, Lim et al. [11] expanded the
network to 69 layers by stacking more residual blocks, and this uses more features from
each convolution layer to restore the image. Zhang et al. [12] designed a network using
more than 400 layers, and this achieved obvious improvements for SISR by embedding a
channel attention mechanism (CAM) [15] module into the residual block. Inspired by [9],
Zeng et al. [14] employed two autoencoders to automatically extract hidden representations
in LR and HR image patches. These methods have obtained promising results in SISR tasks
however, there are still some limitations among CNN-based methods for the task of remote
sensing SR reconstruction.

Firstly, the depth of the CNNs is important for image SR however, deeper networks
are more difficult to train and require much greater computing resources. Moreover, this
may result in the SR effect becoming saturated or even degraded, which illustrates that it
is crucial to design a rational and efficient network that has a good balance between SR
quality and model complexity.

Secondly, remote sensing images are more complex in terms of the spatial distribution
of features and are richer in detailed information than natural images; moreover, the
objects in remote sensing images have a relatively wide range of scales, which results in a
requirement for the model to have a high restoration ability in high-frequency regions [16].
However, most existing CNN-based methods ignore the differing importance of different
spatial areas, and this hinders the recovery of high-frequency information.

Thirdly, as the depth of a CNN increases, the feature information obtained in the
different convolutional layers will be hierarchical in different receptive fields. Traditionally,
a small-sized convolution kernel can extract low-frequency information, but this is not
sufficient for the extraction of more detailed information. The work of [17] shows that
applying convolutional layers with different receptive fields in the same layer can ensure
the acquisition of low-frequency and high-frequency details of the source image. Therefore,
the selection of suitable of receptive field and better utilization of hierarchical features
should be considered when designing an SR network.

To address the urgent issues noted above, we propose a novel remote sensing SR
image reconstruction network called a pyramid information distillation attention network
(PIDAN), which includes a carefully designed pyramid information distillation attention
block (PIDAB) that was inspired by information distillation networks (IDNs) [18]. An IDN
reduces the network parameters by compressing the dimensions of its feature map, which
increases the speed of processing while guaranteeing the restoration results. However, the
ability of an IDN to differentially exploit different locations and channel features is still
insufficient [19], which limits the further improvement of SR performance. Considering
this, the PIDAB adopts a strategy of feature distillation, and its structure combines a
pyramid convolution block and an attention mechanism.

A PIDAN consists of a shallow feature-extraction part, several PIDABs, and a re-
construction part. Each PIDAB is a single deep feature-extraction unit, and this contains
a pyramid information distillation (PID) module, a hybrid attention mechanism (HAM)
module, and a single channel compression (CC) unit. The PID can extract both deep and
shallow features, and the HAM can restore high-frequency detailed information. The PID
module utilizes an enhancement unit (EU) and a pyramid convolution channel split (PCCS)
operation to gradually integrate the local short- and long-path features for reconstruction.
The EU can be divided into two levels according to the inference order. In the first level, we

224



Remote Sens. 2021, 13, 5143

use a shallow convolution network to obtain local short-path features. After the first level,
the PCCS extracts the refined features by using convolution layers with different receptive
fields in parallel. Then, a split operation is placed after each convolution layer, and this
divides the feature channel into two parts: One for further enhancement in the second
level to obtain long-path features, and another to represent reserved short-path features. In
the second level of the EU, the HAM utilizes the short-path feature information by fusing
a CAM and a spatial attention mechanism (SAM). Specifically, unlike the structure of a
convolutional block attention module (CBAM) [20], in which the spatial feature descriptors
are generated along the channel axis, our CAM and SAM are parallel branches that operate
on the input features simultaneously. Finally, the CC unit is used for achieving a reduction
of the channel dimensionality by taking advantage of a 1 × 1 convolution layer, as used in
an IDN.

In summary, the main contributions of this work are as follows:

(1) Inspired by IDNs, we constructed an effective and convenient end-to-end trainable
architecture, PIDAN, which is designed for SR reconstruction of remote sensing
images. Our PIDAN structure consists of a shallow feature-extraction part, stacked
PIDABs, and a reconstruction part. Compared with an IDN, a PIDAN recovers more
high-frequency information.

(2) Specifically, we propose the PIDAB, which is composed of a PID module, a HAM module,
and a single CC unit. Firstly, the PID module uses an EU and a PCCS operation to
gradually integrate the local short- and long-path features for reconstruction. Secondly,
the HAM utilizes the short-path feature information by fusing a CAM and SAM in
parallel. Finally, the CC unit is used for achieving channel dimensionality reduction.

(3) We compared our PIDAN with other advanced SISR approaches using remote
sensing datasets. The extensive experimental results demonstrate that the PIDAN
achieves a better balance between SR performance and model complexity than the
other approaches.

The remainder of this paper is organized as follows. Section 2 introduces previous
works on CNN-based SR reconstruction algorithms and attention mechanism methods.
Section 3 presents a detailed description of the PIDAN, Section 4 presents a verification of
its effectiveness by experimental comparisons, and Section 5 concludes our work.

2. Related Works

2.1. CNN-Based SR Methods

The basic principle of SR methods based on deep learning technology is to establish a
nonlinear end-to-end mapping relationship between an input and output through a multi-
layer CNN. Dong et al. [9] were the first to apply a CNN to the image SR task, producing a
system named SRCNN. This uses a bicubic interpolation operation to enlarge an LR image
to the target size, then it fits the nonlinear mapping using three convolution layers before
finally outputting an HR image. The SRCNN system provides great improvement in the SR
quality when compared with traditional algorithms, but its training speed is very low. Soon
after this, Dong et al. [21] reported the Faster-SRCNN, which increases the speed of SRCNN
by adding a deconvolution layer. Inspired by [9], Zeng et al. [14] developed a data-driven
model named, coupled deep autoencoder (CDA), which automatically learns the intrinsic
representations of LR and HR image patches by employing two autoencoders. Shi et al. [22]
investigated how to directly input an LR image into the network and developed the efficient
sub-pixel convolutional neural network (ESPCN), which reduces the computational effort
of the network by enlarging the image through the sub-pixel convolution layer, and this
improves the training speed exponentially. The network structures of the above algorithms
are simple and easy to implement. However, due to the use of a large convolution kernel,
even a shallow network requires the calculation of a large number of parameters. Training
is therefore difficult when the network is deepened and widened, and the SR reconstruction
is thus not effective.
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To reduce the difficulty of model training, Kim et al. [10] deepened the network to
20 layers using a residual-learning strategy [23]; their experimental results demonstrated
that the deeper the network, the better the SR effect. Then, Kim et al. [24] proposed a
deeply recursive convolutional network (DRCN), which applies recursive supervision
to make the deep network easier to train. Based on DRCN, Tai et al. [25] developed a
deep recursive residual network (DRRN), which introduces recursive learning into the
residual branch, and this deepens the network without increasing computational effort
and speeds up the convergence. Lai et al. proposed the deep Laplacian super-resolution
network (LapSRN) [26], which predicts the sub-band residuals in a coarse-to-fine fashion.
Tong et al. [27] employed the dense connected convolutional networks, which allows
the reuse of feature maps from preceding layers, and alleviates the gradient vanishing
problem by facilitating the information flow in the network. Zhang et al. [28] proposed
a deep residual dense network (RDN), which combines the residual skip structure with
the dense connections, and this fully utilizes the hierarchical features. Lim et al. [11] built
an enhanced deep SR network (EDSR), which constructs a deeper CNN by stacking more
residual blocks, and this takes more features from each convolution layer to restore the
image. The EDSR expanded the network to 69 layers and won the NTIRE 2017 SR challenge.
Yu et al. [29] proposed a wide activation SR (WDSR) network, which shows that simply
expanding features before the rectified linear unit (ReLU) activation results in obvious
improvements for SISR. Based on EDSR, Zhang et al. [12] built a deep residual channel
attention network (RCAN) with more than 400 layers, and this achieves promising results
by embedding the channel attention [15] module into the residual block. It is noteworthy
that while increasing the network’s depth may improve the SR effect, it also increases
the computational complexity and memory consumption of the network, which makes it
difficult to apply these methods to lightweight scenarios such as mobile terminals.

Considering this issue, many researchers have focused on finding a better balance
between SR performance and model complexity when designing a CNN. Ahn et al. [30] pro-
posed a cascading residual network (CARN), which was designed to be a high-performing
SR model that implements a cascading mechanism to fuse multi-layer feature information.
The IDN, which is a concise but effective SR network, was proposed by Hui et al. [18],
and this uses a distillation module to gradually extract a large number of valid features.
Profiting from this information distillation strategy, IDN achieves good performance at
a moderate size. However, IDN treats different channel and spatial areas equally in LR
feature space, and this restricts its feature representation ability.

2.2. Attention Mechanisms

For human perception, attention usually refers to the human visual system focusing
on salient regions and adaptively processing visual information. Recently, many visual
recognition tasks have tended to embed attention modules with networks to improve their
performance. Hu et al. [15] proposed the squeeze-and-excitation network (SENet), which
captures feature relationships by explicitly modeling interdependencies between channels.
This ranked first in the ILSVRC 2017 classification competition. Motivated by SENet,
Woo et al. [20] created the CBAM, which includes a SAM that can adaptively allocate
weights in different spatial locations. Using the classical non-local means method [31],
Wang et al. [32] developed a non-local (NL) block that can be plugged into a neural network.
This uses a self-attention mechanism to directly model long-range dependencies instead of
adopting multiple convolutions to obtain feature information with a larger receptive field.
The NL block can thus provide rich semantic information for a network. Cao et al. [33]
developed a global context block, which combines the simplified NL block and the squeeze-
and-excitation (SE) block of SENet to reduce the computational effort while making full
use of global contextual information.

Recently, several works have focused on introducing attention mechanisms to the
SISR task. Inspired by SENet [15], Zhang et al. [12] produced the RCAN, which enhances
the representation ability by using the channel attention mechanism to differentially treat
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the feature channels in each layer so that the reconstructed image contains more texture
information. Zhang et al. [34] built a very deep residual non-local attention network, which
includes residual local and non-local attention blocks as the basic building modules. This
improves the local and non-local information learning ability using the hierarchical features.
Anwar et al. [35] proposed a densely residual Laplacian network, which replaces the CAM
with a proposed Laplacian module to learn features at multiple sub-band frequencies.
Guo et al. [36] proposed a novel image SR approach named the multi-view aware attention
network. This applies locally and globally aware attention to unequally deal with LR
images. Dai et al. [37] proposed a deep second-order attention network, in which a
second-order channel attention mechanism captures feature inter-dependencies by using
second-order feature statistics. Hui et al. [38] proposed a contrast-aware channel attention
mechanism, and this is particularly suited to low-level vision tasks such as image SR
and image enhancement. Zhao et al. [39] proposed a pixel attention mechanism, which
generates three-dimensional attention maps instead of a one-dimensional vector or a two-
dimensional map, and this achieves better SR results with fewer additional parameters.
Wang et al. [40] built a spatial pyramid pooling attention module via integrating the
channel-wise and multi-scale spatial information, which is beneficial for capturing spatial
context cues and then establishing the accurate mapping from low-dimension space to
high-dimension space.

Considering that the previous promising results have benefited from the introduc-
tion of an attention mechanism, we propose PIDAN, which also includes an attention
mechanism, to focus on extracting high-frequency details from images.

3. Methodology

In this section, we will describe PIDAN in detail. An overall graphical depiction of
PIDAN is shown in Figure 1. Firstly, we will give an overview of the proposed network
architecture. After this, we will present each module of the PIDAB in detail. Finally, we
will give the loss function used in the training process. Here, we denote an initial LR input
image and an SR output image as ILR and ISR, respectively.

Figure 1. Overview of the PIDAN network structure.

3.1. Network Architecture

As shown in Figure 1, the PIDAN approach consists of a shallow feature-extraction
part, a deep feature-extraction part (stacked PIDABs), and a reconstruction part. As with
the operation of an IDN, the shallow features F0 are extracted from the LR input via two
convolutional layers:

F0 = HSF(ILR), (1)

where HSF(·) denotes two convolutional layers with a kernel size of 3 × 3 to extract C
initial feature maps. The resulting F0 contributes to the next deep feature-extraction part
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using the PIDABs. Moreover, the proposed PIDAB can be regarded as a basic component
for residual feature extraction. The operation of the n-th PIDAB can be defined as:

Fb,n = HPIDAB,n(Fb,n−1), (2)

where HPIDAB,n(·) denotes the function of the n-th PIDAB, and Fb,n−1 and Fb,n are the
inputs and outputs of the n-th PIDAB, respectively.

After obtaining the deep features of the LR images, an up-sampling operation aims
to project these features into the HR space. Previous approaches, such as EDSR [11],
RCAN [12], and the information multi-distillation network (IMDN) [38] have shown that
a sub-pixel [22] convolution operation can reserve more parameters and achieve a better
SR effect than other up-sampling approaches. Considering this, we used a transition layer
with a 3 × 3 kernel and a sub-pixel convolution layer as our reconstruction part. This
operator can be expressed as:

Fup = Hsubpixel(HA(Fb,N)), (3)

where HA(·) denotes a convolutional layer with a convolution kernel size of 3 × 3,
Hsubpixel(·) denotes a sub-pixel convolution, Fb,N is the output of the last PIDAB, and
Fup is the upscaled feature maps.

Finally, using the idea of global residual learning [23], the output of the PIDAN ISR is
estimated by combining the up-sampled image Fup with the interpolated image using an
element-wise summation. This can be formulated as:

ISR = Fup + Hbicubic(ILR), (4)

where Hbicubic(·) denotes the bicubic interpolation operation.

3.2. PIDAB

In this section, we will present a description of the overall structure using a PIDAB.
Figure 2 compares the PIDAB with the original IDB in an IDN. As noted, the PIDAB was
developed using a PID module, a HAM module, and a CC unit. The PID module can
extract both deep and shallow features, and the HAM module can restore high-frequency
detailed information.

Figure 2. Illustrations of (a) original IDB structure of an IDN and (b) the PIDAB structure in a PIDAN.
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3.2.1. PID Module

As shown in Figure 2b, the PID module consists of two parts: An EU and a PCCS com-
ponent. The EU can be roughly divided into two modules, the upper shallow convolution
network and the lower shallow convolution network. Each module has three cascaded
convolutional layers with a convolution kernel size of 3 × 3; each of these is followed by a
leaky rectified linear unit (LReLU) activation function, which is omitted here. We label the
feature map dimensions of the i-th layer as Mi (i = 1, · · · , 6), and the relationship among
the upper three convolutions can be formulated as:

M3 − M1 = M1 −M2 = m, (5)

where m denotes the difference between the first layer and second layer or between the first
layer and third layer. Simultaneously, the relationship among the lower three convolution
layers can be described as:

M4 − M5 = M6 −M4 = m, (6)

where M4 = M3. Supposing the input of this module is Fb,n−1, we have:

Pn
1 = Ca(Fb,n−1), (7)

where Fb,n−1 denotes the output of the (n − 1)-th PIDAB (which is also the input of the n-th
PIDAB), Ca(·) denotes the upper shallow convolution network in the enhancement unit,
and Pn

1 denotes the output of the upper shallow convolution network in the n-th PIDAB.
As shown in Figure 2a, in the original IDN, the output of the upper cascaded convo-

lutional layers is split into two parts: One for further enhancement in the lower shallow
convolution network to obtain the long-path features, and another to represent reserved
short-path features via concatenation with the input of the current block. In PIDAN,
to obtain more non-redundant and extensive feature information, a feature-purification
component with parallel structures was designed.

The convolutional layers in the CNN can extract local features from a source image by
automatically learning convolutional kernel weights during the training process. There-
fore, choosing an appropriate size of convolution kernel is crucial for feature extraction.
Traditionally, a small-sized convolution kernel can extract low-frequency information, but
this is not sufficient for the extraction of more detailed information. Considering this, the
PCCS component is proposed to extract the features of multiple receptive fields. In the
pyramid structure, the size of the convolution kernel of each parallel branch is different,
which allows the network to perceive a wider range of hierarchical features. As presented
in Figure 3, the PCCS component is built from three parallel feature-purification branches
and two feature-fusion operations.

Figure 3. Structure of PCCS component.
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For a PCCS component, assuming that the given input feature map is Pn
1 ∈ RC×W×H ,

the pyramid convolution layer operation is applied to the extraction of refined features
with different kernel sizes. The split operation is performed after each feature-refinement
branch, and this can split the channel into two parts. The process can be formulated as:

Fn
distilled_1, Fn

remaining_1 = Split(CL3
1(Pn

1 )), (8)

Fn
distilled_2, Fn

remaining_2 = Split(CL5
2(Pn

1 )), (9)

Fn
distilled_3, Fn

remianing_3 = Split(CL7
3(Pn

1 )), (10)

where: CLk
j (·) denotes the j-th convolution layer (including an LReLU activation unit) with

a convolution kernel size of k × k; Split(·) denotes a channel-splitting operation similar to
that used in an IDN; and Fn

distilled_j denotes the j-th distilled features; Fn
remaining_j denotes

the j-th coarse features that will be further processed by the lower shallow convolution
network in the n-th PIDAB, specifically, the number of channels of Fn

distilled_j is defined as
C
s , therefore the number of channels of Fn

remianing_j is set to
(

c− C
s

)
.

All the distilled features and remaining features are then respectively added together:

Fn
distilled = Fn

distilled_1 + Fn
distilled_2 + Fn

distilled_3, (11)

Fn
remaining = Fn

remaining_1 + Fn
remaining_2 + Fn

remianing_3. (12)

Then, as shown in Figure 2b, Fn
distilled will be concatenated with the input of the current

PIDAB to obtain the retained short-path features:

Rn = fconcat(Fn
distilled, Fb,n−1), (13)

where fconcat(·) denotes the concatenation operator, and Rn denotes partially retained local
short-path information. We take Fn

remaining as the input of the lower shallow convolution
network, which obtains the long-path feature information:

Pn
2 = Cb(Fn

remaining), (14)

where Pn
2 and Cb(·) denote the output and cascaded convolution layer operations of the

lower shallow convolution network, respectively. As shown in Figure 2a, in the initial
IDB structure of an IDN, the reserved local short-path information and the long-path
information are summed before the CC unit. In PIDAN, to fully utilize the local short-path
feature information, we embed an attention mechanism module to enable the network
to focus on more useful high-frequency feature information and improve the SR effect.
Therefore, before the CC unit, the fusion of short-path and long-path feature information
can be formulated as:

Pn = Pn
2 + HAM(Rn), (15)

where HAM(·) denotes the hybrid attention mechanism operation, which will be illustrated
in detail in the next subsection.

3.2.2. HAM Module

In an IDN, the information distillation module is used to gradually extract a large
number of valid features, and the intention of the channel-split operation is to combine
short- and long-path hierarchical information. However, an IDN treats different channels
and spatial areas equally in LR feature space, which restricts the feature representation
ability of the network. Moreover, if sufficient features are not extracted in the short path,
information learned later will also become inadequate. Considering that an attention
mechanism can make a network pay more attention to high-frequency information, which
is beneficial for the SR reconstruction task, we further utilize the extracted short-path
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features by fusing a CAM and SAM to construct a HAM, which makes the split operation
yield better performance. Specifically, unlike the structure of a CBAM [20], in which the
spatial feature descriptors are generated along the channel axis, our SAM and CAM are
parallel branches that operate on the input features simultaneously. In this way, our HAM
makes maximum use of the attention mechanism through self-optimization and mutual
optimization of the channel and spatial attention during the gradient back-propagation
process. The formula of the HAM is:

HAMF(F) = CAM(F) ⊗ SAMF(F) + F, (16)

where: F denotes the input of the HAM; and CAM(·), SAM(·), and HAM(·) respectively
denote the CAM, SAM, and HAM functions. Here ⊗ denotes element-wise multiplication
between the CAM and SAM functions. Like an RCAN, short-skip connections are added
to enable the network to directly learn more complex high-frequency information while
improving the ease of model training. The structure of the HAM is presented in Figure 4.

Figure 4. Overview of the HAM.

Channel Attention Mechanism

The high performance of CNNs for feature extraction has been demonstrated however,
the standard convolution kernel treats different channels equally and is restricted by its
convolutional calculation being translation invariant. This makes it difficult for the network
to use contextual information to effectively learn features. A previous report has shown
that the attention mechanism can help capture channel correlations between features [15].
In PIDAN, by following RCAN [12], we consider channel-wise information by using the
global pooling average operation, which can transform the information in the global space
into channel descriptors.

Suppose the input features F have C channels with size H×W (as shown in Figure 4).
The global average pooling operation is adopted to obtain the channel descriptor (one-
dimensional feature vector) of each feature map:

GAP(C, 1, 1) =
1

H ×W

H

∑
i=1

W

∑
j=1

F(C, H, W). (17)

After the pooling operation, we use a similar perceptron network as that used in a
CBAM [20] to fully learn the nonlinear interactions between different channels. Specifi-
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cally, we replace ReLU with LReLU activation. The calculation process of the CAM can
be described:

CAM(F) = Sigmoid[W1×1
U (LReLU(W1×1

D (GAP(F))))]⊗ F, (18)

where: W1×1
D and W1×1

U denote the weight matrices of two convolution layers with a
kernel size of 1 × 1, in which the channel dimensions of the features are defined as C/r
and C, respectively; SIGMOID[·] and LReLU(·) denote the sigmoid and LReLU functions,
respectively; and ⊗ denotes element-wise multiplication.

Spatial Attention Mechanism

Generally, the LR images have rich low-frequency information and valuable high-
frequency information components. The difference between low-frequency information
and high-frequency information is that the former is generally flat, while the latter is
usually filled with edges, textures, and details in certain areas. Compared to low-frequency
information, high-frequency information is usually more difficult to restore in the image
SR task. Moreover, remote sensing images are more complex in their spatial distribution
and richer in detailed information than natural images, which means that the designed SR
network needs to show adequate perception of the high-frequency information regions.
However, existing CNN-based algorithms usually ignore the variability of different spatial
locations, and this tends to weaken the weight of high-frequency information. Considering
this, in PIDAN, the SAM is designed to emphasize the attention to high-frequency areas,
thus improving the accuracy of the SR algorithm.

As shown in Figure 4, we produce two efficient two-dimensional spatial feature
descriptors by performing average-pooling and max-pooling operations:

AvgPool(1, H, W) =
1
C

C

∑
k=1

F(C, H, W), (19)

MaxPool(1, H, W) = max
k={1,··· ,k,··· ,C}

F(C, H, W). (20)

These two spatial feature descriptors are then concatenated and convolved by a
standard convolution layer, producing the spatial attention map. The calculation process
of the SAM can be described as:

SAM(F) = Sigmoid[W7×7
C (Concat(AvgPool(F), MaxPool(F)))], (21)

where: Concat(·) denotes the feature-map concatenation operation; W7×7
C (·) denotes the

weight matrix of a convolution layer with a kernel size of 7 × 7, which reduces the channel
dimensions of the spatial feature maps to one; Sigmoid[·] denotes the sigmoid function;
and ⊗ denotes element-wise multiplication.

3.2.3. CC Unit

We realize the channel dimensionality reduction by taking advantage of a 1 × 1
convolution layer. Thus, the compression unit can be expressed as:

Fb,n = W1×1
CU (Pn), (22)

where: Pn denotes the result of the fusion of short- and long-path feature information in
the n-th PIDAB; Fb,n denotes the output of the n-th PIDAB; and W1×1

CU ⊗ denotes the weight
matrix of a convolution layer with a kernel size of 1 × 1, which compresses the number of
channels of features to be consistent with the input of the n-th PIDAB.

Table 1 presents the network structure parameter settings of a PIDAB. It should be
noted that: C is defined as 64 in line with an IDN; in the PID module, we set m as 16, and

232



Remote Sens. 2021, 13, 5143

we define s as 4; and in the HAM module, the reduction ratio r is set as 16, consistent with
an RCAN.

Table 1. PIDAB block parameter settings.

Structure Component Layer Input Output

M1 Conv3 × 3 H ×W × 64 H ×W × 48
M2 Conv3 × 3 H ×W × 48 H ×W × 32
M3 Conv3 × 3 H ×W × 32 H ×W × 64

PCCS

Conv3 × 3 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Conv5 × 5 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Conv7 × 7 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Sum H ×W × 48, H ×W × 48, H
×W × 48 H ×W × 48

Sum H ×W × 16, H ×W × 16, H
×W × 16 H ×W × 16

Concat H ×W × 64, H ×W × 16 H ×W × 80

HAM

GAP H ×W × 80 1 × 1 × 80
Conv1 × 1 1 × 1 × 80 1 × 1 × 5
Conv1 × 1 1 × 1 × 5 1 × 1 × 80
Multiple H ×W × 80, 1 × 1 × 80 H ×W × 80

AvgPool H ×W × 80 H ×W × 1
MaxPool H ×W × 80 H ×W × 1
Concat H ×W × 1, H ×W × 1 H ×W × 2

Conv7 × 7 H ×W × 2 H ×W × 1
Multiple H ×W × 80, H ×W × 1 H ×W × 80

Sum H ×W × 80, H ×W × 80, H
×W × 80 H ×W × 80

M4 Conv3 × 3 H ×W × 48 H ×W × 64
M5 Conv3 × 3 H ×W × 64 H ×W × 48
M6 Conv3 × 3 H ×W × 48 H ×W × 80

Sum H ×W × 80, H ×W × 80 H ×W × 80

CC unit Conv1 × 1 H ×W × 80 H ×W × 64

3.3. Loss Function

In our approach, the gradient is updated by minimizing the difference between the
reconstruction result and the real image. The loss function is one of the key factors affecting
the performance of the network, and there are two commonly used loss functions in
CNN-based SR algorithms, namely the L1 norm [11,18] and L2 norm [27]. Compared to
the L2 norm, the L1 norm loss function tends to perceive more high-frequency detailed
information and results in higher-quality test metrics. In line with the IDN approach [18],
the minimum loss function was formulated as:

L(Θ) =
1
N

N
Σ

i=1
‖HPIDAN(Yi; Θ)− Xi‖1, (23)

where: N denotes the number of input images; HPIDAN(·) denotes the PIDAN network
reconstruction process; Yi denotes the reconstructed image; Θ = {Wi,bi}, which denote the
weight and bias parameters that the network needs to learn; Xi denotes the corresponding
HR image; and ‖·‖1 denotes the L1 norm.
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4. Experiments and Results

In this section, firstly, we demonstrate the experimental settings, including datasets,
evaluation metrics, and training implementation details. Then, we report the experimental
results and correlation analysis.

4.1. Settings
4.1.1. Dataset Settings

Following the previous work [41], we used the recently popular Aerial Image Dataset
(AID) [42] for training. We augmented our training dataset using horizontal flipping,
vertical flipping, and 90◦ rotation strategies. During the tests, to evaluate the trained
SR model, we used two available remote sensing image datasets, namely, the NWPU
VHR-10 [43] dataset and the Cars Overhead With Context (COWC) [44] dataset. In our
experiments, the AID, NWPU VHR-10, and COWC datasets consisted of 10,000, 650, and
3000 images, respectively. Specifically, for the fast validation of the convergence speed of
SR models, we constructed a new data set called FastTest10, which consists of 10 randomly
selected samples from the NWPU VHR-10 dataset. The LR images were obtained by
downsampling the corresponding HR label samples through bicubic interpolation with
×2, ×3, and ×4 scale factors. Some examples from each of these remote sensing datasets
are shown in Figure 5.

Figure 5. Examples of images in the three remote sensing datasets. In order, the top–bottom lines show samples from the
AID, NWPU VHR-10, and COWC datasets.

4.1.2. Evaluation Metrics

We adopted the average peak signal-to-noise ratio (PSNR) [45] and structural similarity
(SSIM) [46] as the SR reconstruction evaluation metrics. The PSNR measures the quality of
an image by calculating the difference in pixel values between the reconstructed image and
original HR image. The PSNR indicator mainly judges the similarity of the images from the
perspective of the signal, and it is not completely consistent with human visual perception.
Therefore, the SSIM was adopted because it models image distortion as a combination of
three factors—luminance, contrast, and structure—so as to estimate the degree of similarity
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between two images from the perspective of overall image composition. Larger PSNR and
SSIM values indicate a better SR image reconstruction result that is closer to the original
image. Following the previous work in this field [9], SR is only performed on the luminance
(Y) channel of the transformed YCbCr space.

4.1.3. Implementation Details

All experiments adopted the deep-learning framework PyTorch, and four Nvidia
GTX-2080Ti GPUs were used to train all CNN models. The SR network was optimized
with Adam [47] by setting β1 = 0.9, β2 = 0.999, and ε = 10−8. We set the initial learning
rate to 10−4, and this was decreased by a factor of 10 after every 500 epochs. The training
for PIDAN was iterated for 1500 epochs in total. The batch size was set to 16. Patches
with a size of 48 × 48 were randomly cropped from LR images as the input of the model,
and the corresponding input HR label images were divided into 96 × 96, 144 × 144, and
192 × 192 sizes according to upscaling factors of ×2, ×3, and ×4, respectively.

4.2. Results and Analysis
4.2.1. Comparison with Other Approaches

We compared our PIDAN with the bicubic interpolation, SRCNN [9], very deep super
resolution (VDSR) [10], LapSRN [26], DRCN [24], pixel attention network (PAN) [39],
DRRN [25], WDSR [29], CARN [30], residual feature distillation network (RFDN) [48],
IDN [18], and IMDN [38] approaches. Specifically, for a fair comparison, the number
of PIDABs was set to four in line with the IDN approach. Table 2 shows quantitative
comparisons using the NWPU VHR-10 and COWC datasets. The best performances are
indicated in bold, and the second-best performances are indicated with an underline. Our
PIDAN performed better than all other approaches in most datasets with upscaling factors
of ×2, ×3, and ×4.

Table 2. Quantitative evaluation of PIDAN and other advanced SISR approaches. Bold indicates the optimal performance,
and an underline indicates the second-best performance.

NWPU VHR-10 COWC
Method PSNR/SSIM PSNR/SSIM

×2 ×3 ×4 ×2 ×3 ×4

Bicubic 32.76031/0.8991 29.90444/0.8167 28.28280/0.7524 32.87844/0.9180 29.53540/0.8384 27.72172/0.7725
SRCNN 34.03260/0.9136 30.97869/0.8400 29.20195/0.7793 35.05635/0.9341 31.14172/0.8661 28.99814/0.8058
VDSR 34.46067/0.9196 31.46934/0.8517 29.62497/0.7931 35.81885/0.9401 31.89712/0.8788 29.62051/0.8220

LapSRN 34.24569/0.9169 31.26756/0.8468 29.67748/0.7942 35.48608/0.9375 31.62203/0.8741 29.70046/0.8236
DRCN 34.36621/0.9181 31.31746/0.8476 29.51012/0.7887 35.65558/0.9387 31.67424/0.8751 29.46399/0.8180
PAN 34.48577/0.9199 31.53275/0.8529 29.75737/0.7967 35.86121/0.9403 31.98120/0.8800 29.80853/0.8262

DRRN 34.57956/0.9213 31.59945/0.8548 29.85024/0.8002 36.01337/0.9417 32.08846/0.8820 29.85881/0.8272
WDSR 34.56984/0.9210 31.65636/0.8558 29.87613/0.8003 36.01360/0.9416 32.17758/0.8832 30.00641/0.8305
CARN 34.54988/0.9208 31.59971/0.8545 29.83102/0.7990 35.97727/0.9413 32.07578/0.8817 29.93067/0.8289
RFDN 34.55302/0.9207 31.61688/0.8548 29.81638/0.7984 35.99849/0.9413 32.14530/0.8826 29.91353/0.8285
IDN 34.56317/0.9210 31.61978/0.8550 29.83245/0.7989 35.99732/0.9415 32.12127/0.8823 29.92513/0.8286

IMDN 34.55570/0.9207 31.62651/0.8549 29.81952/0.7984 36.02204/0.9415 32.17454/0.8829 29.95087/0.8291
PIDAN 34.59635/0.9215 31.66433/0.8559 29.87914/0.8005 36.09257/0.9423 32.23239/0.8840 30.00399/0.8303

We take the NWPU VHR-10 dataset as an example. Compared with other SISR
approaches, the PIDAN produces superior PSNR and SSIM values. Under the SR upscaling
factor of ×2, the PSNR of the PIDAN is 0.01679 dB higher than that obtained with the
second-best DRRN method and 0.03318 dB higher than that of the basic IDN; the SSIM of
the PIDAN is 0.0002 higher than that obtained with the second-best DRRN method and
0.0005 higher than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the
PIDAN is 0.00797 dB higher than that of the second-best WDSR method and 0.04455 dB
than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of the second-best
WDSR method and 0.0009 higher than that of the IDN. Under the SR upscaling factor of×4,
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the PSNR of the PIDAN is 0.00301 dB higher than that of the second-best WDSR method
and 0.04669 dB than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of
the WDSR method and 0.0006 higher than that of the IDN.

We take the NWPU VHR-10 dataset as an example. Compared with other SISR
approaches, the PIDAN produces superior PSNR and SSIM values. Under the SR upscaling
factor of ×2, the PSNR of the PIDAN is 0.01679 dB higher than that obtained with the
second-best DRRN method and 0.03318 dB higher than that of the basic IDN; the SSIM of
the PIDAN is 0.0002 higher than that obtained with the second-best DRRN method and
0.0005 higher than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the
PIDAN is 0.00797 dB higher than that of the second-best WDSR method and 0.04455 dB
than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of the second-best
WDSR method and 0.0009 higher than that of the IDN. Under the SR upscaling factor of×4,
the PSNR of the PIDAN is 0.00301 dB higher than that of the second-best WDSR method
and 0.04669 dB than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of
the WDSR method and 0.0006 higher than that of the IDN.

Next, we consider the COWC dataset as an example. Under the SR upscaling factor of
×2, the PSNR of the PIDAN is 0.07053 dB higher than that obtained with the second-best
IMDN method and 0.09525 dB higher than that of the basic IDN; the SSIM of the PIDAN is
0.0006 higher than that obtained with the second-best DRRN method and 0.0008 higher
than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the PIDAN is
0.05481 dB higher than that of the second-best WDSR method and 0.11112 dB higher than
that of the IDN; the SSIM of the PIDAN is 0.0008 higher than that of the second-best WDSR
method and 0.0017 higher than that of the IDN. Under the SR upscaling factor of ×4,
the PSNR and SSIM of the PIDAN are both second-best, and the PSNR of the PIDAN is
0.00242 dB lower than that of the optimal WDSR method and 0.07886 dB higher than that
of the IDN; the SSIM of the PIDAN is 0.0002 lower than that of the optimal WDSR method
and 0.0017 higher than that of the IDN.

Figure 6 shows a comparison of the PSNR values between the PIDAN and DRRN,
WDSR, CARN, RFDN, IDN, and IMDN networks using the FastTest10 dataset in the epoch
range of 0 to 100. Compared to the other methods, the PIDAN converges faster and
achieves better accuracy.

4.2.2. Model Size Analyses

We compared the model sizes of our PIDAN with other DCNN-based approaches.
The results of an upscaling factor of ×2 SR on the COWC test set are shown in Figure 7.
The x axis denotes the SR model size, with M indicating the number of parameters in
millions, and the y axis denoting the average PSNR score. It can be concluded that our
proposed PIDAN achieves an optimal PSNR score with a model parameter that is less
than one-third of that of DRRN. This finding demonstrates that our PIDAN is relatively
lightweight while ensuring a promising SR reconstruction performance.

4.2.3. Visual Effect Comparison

In addition to the comparison of the objective indicators, we also conducted evalu-
ations in terms of the visual results. Figure 8 presents a visual comparison between the
PIDAN and other advanced approaches using image samples from the COWC test sets
with three upscaling factors, ×2, ×3, and ×4. Specifically, in each case, we enlarged a small
rectangle area for a clearer presentation and comparison. As can be seen, the images recon-
structed by the bicubic interpolation algorithm are the most blurred. Figure 8a shows that
the PIDAN obtains more promising results with fewer jaggies and ringing artifacts, and
meanwhile reconstructs clearer image contours than the compared advanced approaches.
In Figure 8b, the reconstructed vehicle result obtained using PIDAN restores sharper edge
details and maintains the maximum structural integrity with less distortion. Figure 8c
shows that the PIDAN can reconstruct the parallel lines more completely and precisely
than the other approaches. The PIDAN also obtains the highest quantitative analysis values
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when compared with the other advanced SISR approaches. These visual results indicate
that our model recovers feature information with rich high-frequency details, producing
better SR results.

Figure 6. Performance curves for PIDAN and other methods using the FastTest10 dataset with scale factors of (a) ×2,
(b) ×3, and (c) ×4.

Figure 7. Comparison of model parameters and mean PSNR values of different DCNN-based methods.
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Figure 8. Cont.
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Figure 8. Visual comparison of SR results using samples from the COWC dataset with (a) upscaling factor ×2, (b) upscaling factor ×3,
and (c) upscaling factor ×4.

4.2.4. Analysis of PIDAB

The PIDAB is the most critical aspect of the PIDAN. To demonstrate the necessity of the
PCCS operation and the HAM in the PIDAB, we carried out a set of ablation experiments
on the NWPU VHR-10 and COWC datasets. As shown in Table 3, when we removed
PCCS and HAM, the PSNR scores on the two datasets were 34.55616 and 35.99601 dB,
respectively. When we added the PCCS component, the PSNR scores were 34.58637 and
36.03984 dB; when we added the HAM module, the PSNR scores were 34.57436 and
36.03683 dB, respectively. With the addition of both PCCS and HAM, the PSNR scores
for images from the NWPU VHR-10 and COWC datasets were 34.59635 and 36.09257 dB,
respectively. We can conclude from Table 3 that the network structure with both PCCS and
HAM yields optimal SR reconstruction results.

Table 3. Results of ablation study of PCCS and HAM. Bold indicates optimal performance.

Scale PCCS HAM
NWPU VHR-10 COWC

PSNR/SSIM PSNR/SSIM

×2

× × 34.55616/0.9209 35.99601/0.9415
√ × 34.58637/0.9214 36.03984/0.9419
× √ 34.57436/0.9211 36.03683/0.9417
√ √ 34.59635/0.9215 36.09257/0.9422

The PCCS uses three convolution layers with different kernel sizes in parallel to obtain
more non-redundant and extensive feature information from an image. Table 3 indicates that
the PCCS component leads to performance gains (e.g., 0.03021 dB on NWPU VHR-10 and
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0.04383 dB on COWC). This is mainly due to the PCCS, which makes the network flexible in
processing feature information at different scales. Furthermore, we explored the influence of
different convolution kernel settings in the PCCS components on the SR performance. Table 4
shows the experimental results of different convolution kernel settings with an upscaling
factor of ×2. Broadly, the models with multiple convolutional kernels achieve better results
than those with only a single convolutional kernel, and our PCCS obtains the best results
owing to its three parallel progressive feature-purification branches.

Table 4. Results of comparison experiments using different convolution kernel settings in the PID
component. Bold indicates optimal performance.

Scale
Kernel Size NWPU VHR-10 COWC

3 5 7 PSNR/SSIM PSNR/SSIM

×2

× × × 34.55616/0.9209 35.99601/0.9415
√ × × 34.57641/0.9212 36.02632/0.9418
× √ × 34.57483/0.9212 36.01945/0.9418
× × √ 34.57012/0.9212 36.02009/0.9418
√ √ × 34.57821/0.9212 36.02750/0.9418
√ × √ 34.58540/0.9213 36.03357/0.9419
× √ √ 34.58416/0.9214 36.02602/0.9419
√ √ √ 34.58637/0.9214 36.03984/0.9419

HAM generates more balanced attention information by adopting a structure that has
both channel and spatial attention mechanisms in parallel. Table 3 indicates that the PCCS
component leads to performance gains (e.g., 0.01820 dB on NWPU VHR-10 and 0.04082 dB
on COWC). To further verify the effectiveness of the proposed HAM, we compared HAM
with the SE block [15] and CBAM [20]. The SE block comprises a gating mechanism that
obtains a completely new feature map by multiplying the obtained feature map with the
response of each channel. Compared to the SE block, CBAM includes both channel and
spatial attention mechanisms, which requires the network to be able to understand which
parts of the feature map should have higher responses at the spatial level. Our HAM also
includes channel and spatial attention mechanisms however, CBAM connects them serially
while HAM accesses these two parts in parallel and combines them with the input feature
map in a residual structure. As can be seen from Table 5, the addition of attention modules
can improve the performance to different degrees. The effects of the dual attention modules
are better than that of the SE block, which only adopts a CAM. Moreover, compared with
CBAM, our HAM component leads to performance gains (e.g., 0.01000 dB on NWPU
VHR-10 and 0.00662 dB on COWC). This finding illustrates that connecting a SAM and
CAM in parallel is more effective for feature discrimination. These comparisons show that
HAM in our PIDAB is advanced and effective.

Table 5. Results of comparison experiments using different attention modules. Bold indicates
optimal performance.

Scale Approach
NWPU VHR-10 COWC

PSNR/SSIM PSNR/SSIM

×2

/ 34.55616/0.9209 35.99601/0.9415
SE block 34.56088/0.9209 36.02749/0.9416
CBAM 34.56436/0.9211 36.03021/0.9416
HAM 34.57436/0.9211 36.03683/0.9417

4.2.5. Effect of Number of PIDABs

In this subsection, we report the results of adjusting the depth of the network by
simply increasing the number of PIDAB. Specifically, numbers of PIDABs ranging from 4
to 20 were used. Figure 9 shows the performance with different numbers of PIDABs using
the FastTest10 dataset in the epoch range 0 to 100. When simply increasing the value of N
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to 20, the improvement increases, and a gain of approximately 0.08 dB is achieved when
compared to the basic network (N = 4) with a scaling factor of ×2, which demonstrates
that the PIDAN can achieve a higher average PSNR with a larger number of PIDABs.

Figure 9. Performance curve for PIDAN with different numbers of PIDABs using the FastTest10
dataset with a scale factor of ×2.

5. Conclusions

To achieve SR reconstruction of remote sensing images more efficiently, based on the
IDN, we proposed a convenient but very effective approach named pyramid information
distillation attention network (PIDAN). The main contribution of our work is the pyramid
information distillation attention block (PIDAB), which is constructed as the building block
of the deep feature-extraction part of the proposed PIDAN. To obtain more extensive and
non-redundant image features, the PIDAB includes a pyramid information distillation
module, which introduces a pyramid convolution channel split to allow the network to
perceive a wider range of hierarchical features and reduce output feature maps, decreasing
the model parameters. In addition, we proposed a hybrid attention mechanism module
to further improve the restoration ability for high-frequency information. The results of
extensive experiments demonstrated that the PIDAN outperforms other comparable deep
CNN-based approaches and could maintain a good trade-off between the factors that affect
practical application, including objective evaluation, visual quality, and model size. In
future, we will further explore this approach in other computer vision tasks in remote
sensing scenarios, such as object detection and recognition.
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Abstract: As satellite observation technology rapidly develops, the number of remote sensing (RS)
images dramatically increases, and this leads RS image retrieval tasks to be more challenging in terms
of speed and accuracy. Recently, an increasing number of researchers have turned their attention
to this issue, as well as hashing algorithms, which map real-valued data onto a low-dimensional
Hamming space and have been widely utilized to respond quickly to large-scale RS image search
tasks. However, most existing hashing algorithms only emphasize preserving point-wise or pair-
wise similarity, which may lead to an inferior approximate nearest neighbor (ANN) search result.
To fix this problem, we propose a novel triplet ordinal cross entropy hashing (TOCEH). In TOCEH,
to enhance the ability of preserving the ranking orders in different spaces, we establish a tensor
graph representing the Euclidean triplet ordinal relationship among RS images and minimize the
cross entropy between the probability distribution of the established Euclidean similarity graph
and that of the Hamming triplet ordinal relation with the given binary code. During the training
process, to avoid the non-deterministic polynomial (NP) hard problem, we utilize a continuous
function instead of the discrete encoding process. Furthermore, we design a quantization objective
function based on the principle of preserving triplet ordinal relation to minimize the loss caused by
the continuous relaxation procedure. The comparative RS image retrieval experiments are conducted
on three publicly available datasets, including UC Merced Land Use Dataset (UCMD), SAT-4 and
SAT-6. The experimental results show that the proposed TOCEH algorithm outperforms many
existing hashing algorithms in RS image retrieval tasks.

Keywords: remote sensing image retrieval; hashing algorithm; binary code; triplet ordinal relation
preserving; cross entropy

1. Introduction

With the rapid development of satellite observation technology, both the amount and
the quality of remote sensing (RS) images have improved dramatically. An era of remote
sensing image big data has arrived. An increasing number of researchers are focusing
on the task of large-scale RS image retrieval, due to its broad applications, such as disas-
ter prevention, soil erosion monitoring, disaster rescue scenario and short-term weather
forecasting [1–5]. The content-based image retrieval (CBIR) [6,7] method extracts feature
information representing RS image content and finds similar RS images by comparing
the distance values among their feature information. However, the feature information
in CBIR is always represented as high dimensional float point data and it is difficult to
directly compute the similarity relationship based on the original high dimensional feature
information. Fortunately, hashing methods [1–5,8,9] can map high dimensional float point
data into compact binary codes and return the approximate nearest neighbors according
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to Hamming distance; this measure effectively improves the retrieval speed. In summary,
the content-based image retrieval method assisted by hashing algorithms enables the
efficient and effective retrieval of target remote sensing images from a large-scale dataset.

In recent years, many hashing algorithms [10–14] have been proposed to achieve
the approximate nearest neighbor (ANN) search task, due to its advantage of compu-
tation and storage. According to the learning framework, the existing hashing algo-
rithms can be roughly divided into two types: the shallow model [12–14] and the deep
model [10,11,15,16]. Conventional shallow hashing algorithms, such as locality sensitive
hashing (LSH) [14], spectral hashing (SH) [17], iterative quantization hashing (ITQ) [13]
and k-means hashing (KMH) [12], have been applied to various approximate nearest
neighbor search tasks, including image retrieval. Locality sensitive hashing [14] is a kind
of data-independent method, which learns hashing functions without a training process.
LSH [14] randomly generates linear hashing functions and encodes data into binary codes
according to their projection signs. Spectral hashing (SH) [17] utilizes a spectral graph
to represent the similarity relationship among data points. The binary codes in SH are
generated by partitioning a spectral graph. Iterative quantization hashing [13] considers
the vertexes of a hyper cubic as encoding centers. ITQ [13] rotates the principal component
analysis (PCA) projected data and maps the rotated data to the nearest encoding center.
The encoding centers in ITQ are fixed and they are not adaptive to the data distribution [12].
To fix this problem, k-means hashing [12] learns the encoding centers by simultaneously
minimizing the quantization error and the similarity loss. KMH [12] encodes the data as the
same binary code as the nearest center. For the image search task, the shallow model first
learns the high dimensional features, such as scale-invariant feature transform (SIFT) [18]
or a holistic representation of the spatial envelope (GIST) [19], then retrieves similar im-
ages by mapping these features into the compact Hamming space. In contrast, the deep
learning model enables end-to-end representation learning and hash coding [10,11,20–22].
In particular, the deep learning to hash, such as deep Cauchy hashing (DCH) [11] and twin-
bottleneck hashing (TBH) [10], proves crucial to jointly learn, thereby similarly preserving
the representations and control quantization error of converting continuous representa-
tions to binary codes. Deep Cauchy hashing [11] defines a pair-wise similarity preserving
restriction based on Cauchy distribution and it heavily penalizes the similar image pairs
with large Hamming distance. Twin-bottleneck hashing [10] proposes a code-driven graph
to represent the similarity relationship among data points and aims to minimize the loss
between the original data and decoded data. These deep learning to hash methods have
shown state-of-the-art results for many datasets.

Recently, many hashing algorithms have been applied to the large-scale RS im-
age search task [1–5]. Partial randomness hashing [23] maps RS images into a low di-
mensional Hamming space by both the random and well-trained projection functions.
Demir et al. [24] proposed two kernel-based methods to learn hashing functions in the
kernel space. Liu et al. [25] fully utilized the supervised deep learning framework and
hashing learning to generate the binary codes of RS images. Li et al. [25] carried out a
comprehensive study of DHNN systems and aimed to introduce the deep neural network
into the large-scale RS image search task. Fan et al. [26] proposed a distribution consistency
loss (DCL) to capture the intra-class distribution and inter-class ranking. Both deep Cauchy
hashing [11] and the distribution consistency loss functions [26] employ pairwise simi-
larity [15] to describe the relationship among data. However, the similarity relationship
among RS images is more complex. In this paper, we propose the triplet ordinal cross
entropy hashing (TOCEH) to deal with the large-scale RS image search task. The flowchart
of the proposed TOCEH is shown in Figure 1.
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Figure 1. Flowchart of the proposed TOCEH algorithm. Firstly, to represent the image content, we use the Alexnet,
including five convolutional (CONV) networks and two fully connected (FC) networks, to learn the continuous latent
variable. Secondly, the triplet ordinal relation is computed by the tensor product of the similarity and dissimilarity
graphs. Thirdly, two fully connected layers with the activation function of ReLU are utilized to generate the binary code.
To guarantee the performance, we define the triplet ordinal cross entropy loss to minimize the inconsistency between the
triplet ordinal relations in different spaces. Furthermore, we design the triplet ordinal quantization loss to reduce the loss
caused by the relaxation mechanism.

As shown in Figure 1, the TOCEH algorithm consists of two parts: the triplet ordinal
tensor graph generation part and the hash code learning part. In part 1, we first utilize
the AlexNet [27] pre-trained on the ImageNet dataset [28] to extract the 4096-dimension
image feature information of the target domain RS images. Then, we separately compute
the similarity and dissimilarity graph among the high dimensional features. Finally,
we establish the triplet ordinal tensor graph representing the ordinal relation among any
triplet RS images. Part 2 utilizes two fully connected layers to generate binary codes.
During the training process, we define two excellent objection functions, including the
triplet ordinal cross entropy loss and the triplet ordinal quantization loss to guarantee the
performance of the obtained binary codes and utilize the back-propagation mechanism to
optimize the variables of the deep neural network. The main contributions of the proposed
TOCEH are summarized as follows:

1. The learning procedure of TOCEH takes into account the triplet ordinal relations,
rather than the pairwise or point-wise similarity relations, which can enhance the per-
formance of preserving the ranking orders of approximate nearest neighbor retrieval
results from the high dimensional feature space to the Hamming space.

2. TOCEH establishes a triplet ordinal graph to explicitly indicate the ordinal relation-
ship among any triplet RS images and preserves the ranking orders by minimizing
the inconsistency between the probability distribution of the given triplet ordinal
relation and that of the ones derived from binary codes.

3. We conduct comparative experiments on three RS image datasets: UCMD, SAT-4 and
SAT-6. Extensive experimental results demonstrate that TOCEH generates highly
concentrated and compact hash codes, and it outperforms some existing state-of-the-
art hashing methods in large-scale RS image retrieval tasks.

The rest of this paper is organized as follows. Section 2 introduces the proposed
TOCEH algorithm. Section 2.1 shows the important notation. The hash learning problem
is stated in Section 2.2. The tensor graph representing the triplet ordinal relation among
RS images is introduced in Section 2.3. We provide the formulation of triplet ordinal
cross entropy loss and triplet ordinal quantization loss in Sections 2.4 and 2.5, respectively.
The extensive experimental evaluations are presented in Section 3. Finally, we set out a
conclusion in Section 4.
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2. Triplet Ordinal Cross Entropy Hashing

2.1. Notation

In this paper, we use the letters B and X to separately represent the data matrix in the
Hamming and Euclidean spaces. The columns in the data matrix are denoted as the letters
with subscript. The important notations are summarized in Table 1.

Table 1. The important notations used in this paper.

Notation Description

B Compact binary code matrix
Bi, Bj, Bk The i-th, j-th, k-th column in B

H(·) Hashing function
X Data matrix in the Euclidean space

xi, xj, xk The i-th, j-th, k-th column in X
G Triplet ordinal graph in the Euclidean space
Ĝ Triplet ordinal relation in the Hamming space

gijk The entry (i, j, k) in G
S Similarity graph

DS Dissimilarity graph
N The number of training samples
L The number of k-means centers

P(·) Probability distribution function
dh(·,·) Hamming distance function

M Binary code length
1 The binary matrix with all values of 1

2.2. Hashing Learning Problem

The purpose of the hashing algorithm [3,10,11] is to learn the hashing function H(·),
mapping the high dimensional float point data x into the compact Hamming space as
defined in Equation (1). B(x) represents the compact binary code of x.

B(x) = (sign(H(x)− 0.5) + 1)/2 (1)

With the assistance of the obtained hashing function H(·), we can encode RS image
content as compact binary code and efficiently achieve RS image search task according
to their Hamming distances [1–5,23–25]. Furthermore, to guarantee the quality of the
RS image search result, we expect the triplet ordinal relation among RS images in the
Hamming space to be consistent with that in the original space [29,30]. To illustrate this
requirement, a simple example is provided below. Here, xi, xj and xk separately represent
RS image content information. In the original space, the image pair (xi, xj) is more similar
than the image pair (xj, xk). After mapping them into the Hamming space, the Hamming
distance of the data pair (xi, xj) should be smaller than that of the data pair (xj, xk). This
constraint is defined as in Equation (2).∣∣∣∣H(xi)− H(xj)

∣∣∣∣1 ≤∣∣∣∣H(xk)− H(xj)
∣∣∣∣

1
s.t.

∣∣∣∣xi − xj
∣∣|22 ≤∣∣∣∣xk − xj

∣∣|22 (2)

The constraint in Equation (2) guarantees that the ranking order of the retrieval result
in the Hamming space is consistent with that in the Euclidean space. Thus, the hashing
algorithm, satisfying the triplet ordinal relation preserving constraint, can achieve RS image
ANN search tasks [31–35].

2.3. Triplet Ordinal Tensor Graph

To learn the triplet ordinal relation preserving hashing functions, the first problem is
how to efficiently compute the probability distribution of the triplet ordinal relation among
the training set in the original space.
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Generally, we select the triplet data (xi, xj, xk) from the training set to compute their
ordinal relation, where the data pair (xi, xj) has a small Euclidean distance value and (xj, xk)
is considered as the dissimilar data pair. However, this mechanism needs to randomly
select triplet samples and compare the distance values among all data points. It has a high
time complexity and costly memory. Furthermore, it is difficult to define the similar and
dissimilar data pairs for the problem without supervised information.

In this paper, to solve the above problem, we employ a tensor ordinal graph G to repre-
sent the ordinal relation among the triplet images (xi, xj, xk). We establish the tensor ordinal
graph G by tensor production and each entry in G is calculated as G(ij, jk) = S(i, j)·DS(j, k).
S(i, j) is the similarity graph as defined in Equation (3). A larger value of S(i, j) means the
data pair (xi, xj) is more similar. DS(i, j) is the dissimilarity graph and its value is calculated
as DS(i, j) = 1/S(i, j).

S(i, j) =

{
0, i = j

e−||xi−xj ||22/2σ2
, otherwise

(3)

We further process G to obey the binary distribution as in Equation (4). gijk is the entry
of G(i, j, k). {

gijk = 1, G(i, j, k) > 1
gijk = 0, G(i, j, k) ≤ 1

(4)

Given N training samples, the size of the similarity graph and dissimilarity graph is
N × N. The tensor product of the two graphs is shown in Figure 2, and its size is N 2 × N 2.
However, the proposed TOCEH only concerns the relative similarity relationship among
the data pairs (xi, xj) and (xj, xk). The corresponding elements are marked blue. There are
N rectangles and each rectangle contains N × N elements. We pick up these elements and
restore them into a matrix with the size of N × N × N.

Figure 2. The marked elements are picked up to restore in a matrix with the size of N × N × N.

Finally, the ordinal relation among any triplet items can be represented by the triplet
ordinal graph G, as defined in Equation (5).{

S(i, j) > S(k, j), gijk = 1
S(i, j) ≤ S(k, j), gijk = 0

(5)

To illustrate the cases defined in Equation (5), a simple explanation is provided below. For the
triplet item (xi, xj, xk), the value of the (ij, kj)-th entry is G(ij, kj) = S(i, j)·DS(k, j) = S(i, j)/S(k, j).
If the triplet ordinal relation is S(i, j) > S(k, j), we have G(ij, kj) > 1 and gijk = 1; otherwise,
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we have G(ij, kj) ≤ 1 and gijk = 0. Thus, the value in G can correctly indicate the true ordinal
relation among any triplet items.

As described above, we can establish a tensor ordinal graph G with size N3 to represent
the triplet ordinal relation among N images. In practice, during the training procedure,
we use L (L� N) k-means centers to establish the tensor ordinal graph, which can reduce
the training time complexity.

2.4. Triplet Ordinal Cross Entropy Loss

In this section, we define Ĝ as RS images’ triplet ordinal relation in the Hamming space.
As discussed in Section 2.2, an ideal hashing algorithm should minimize the inconsistency
between Ĝ and G. In this paper, the above requirement is achieved by minimizing the cross
entropy value, as defined in Equation (6).

minCEH(G,
�
G) = min− P(G) log P(

�
G) (6)

P(G) defined in Equation (7) computes the probability distribution of RS images’ triplet
ordinal relation in the Euclidean space.{

wijk =
T1
T gijk = 1

wijk =
T0
T gijk = 0

(7)

The definitions of T1, T0 and T are shown in Equation (8). T1 is the number of samples
with a value of 1 in the matrix G and T0 is the number of samples with a value of 0 in the
matrix G. T is the total number of the elements in the matrix G.

T1 =
N
∑

i,j,k=1
gi,j,k

T0 =
N
∑

i,j,k=1
(1− gi,j,k)

T =
N
∑

i,j,k=1

∣∣∣2 · gi,j,k − 1
∣∣∣

(8)

P(Ĝ) is a conditional probability of the triplet ordinal relation with given binary codes.
As the samples are independent from each other, we calculate P(Ĝ) by Equation (9).

P(
�
G) = ΠN

i,j,k=1P(gijk

∣∣∣∣Bi, Bj, Bk) (9)

P(gijk|Bi, Bj, Bk) is the probability of the triplet images satisfying the ordinal relation
gijk, and the samples’ are assigned the binary codes (Bi, Bj, Bk). The definition is shown in
Equation (10).

P(gijk|Bi, Bj, Bk) =

{
φ(dh(Bk, Bj)− dh(Bi, Bj)), gijk = 1

1− φ(dh(Bk, Bj)− dh(Bi, Bj)), gijk = 0
(10)

We further rewrite the definition of P(gijk|Bi, Bj, Bk) as in Equation (11).

P(gijk|Bi, Bj, Bk) = φ(dh(Bk, Bj)− dh(Bi, Bj))
gijk (1− φ(dh(Bk, Bj)− dh(Bi, Bj)))

1−gijk (11)

dh(·,·) returns the Hamming distance and φ(·) computes the probability value. If gijk = 1,
the probability value should be close to 1 as dh(Bk, Bj)-dh(Bi, Bj) gets larger and the proba-
bility value should be close to 0 as dh(Bk, Bj)-dh(Bi, Bj) gets smaller. The characteristic of the
function (·) is shown in Figure 3.
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Figure 3. The characteristic of the function (·).

In this paper, the sigmoid function is considered as the function (·) as in Equation (12).

φ(dh(Bk, Bj)− dh(Bi, Bj)) =
1

1 + e−α(dh(Bk ,Bj)−dh(Bi ,Bj))
(12)

By merging Equations (7), (9), (11) and (12) into Equation (6), we reach the final triplet
ordinal relation preserving objective function, as shown in Equation (13).

L = −wijk log ΠN
i,j,k=1P(gijk

∣∣∣Bi, Bj, Bk)

=
N
∑

i,j,k=1
−wijk log P(sijk

∣∣∣Bi, Bj, Bk)

=
N
∑

i,j,k=1
−wijk log ( 1

1+e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))
)

gijk (1− 1
1+e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))

)
1−gijk )

=
N
∑

i,j,k=1
wijk(gijk log(1 + e−α(dh(Bk ,Bj)−dh(Bi ,Bj))) + (1− gijk) log(1 + 1

e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))
))

=
N
∑

i,j,k=1
wijk(gijk log(e−α(dh(Bk ,Bj)−dh(Bi ,Bj))) + log(1 + 1

e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))
))

(13)

2.5. Triplet Ordinal Quantization Loss

Generally, the sign function is adopted to map the real-valued data output by the
last layer of deep neural network into binary codes. However, it generates discrete
values and makes the objective function non-deterministic polynomial (NP) hard for
optimization [20,36]. To fix this problem, the continuous tanh(·) function is utilized instead
of the sign(·) function in this paper. Furthermore, to minimize the quantization loss caused
by the continuous relaxation procedure, we expect the output of the tanh(·) function to be
close to ±1. Here, we utilize the triplet ordinal cross entropy to formulate the quantization
loss. We define the binary code obtained by the tanh(·) function as Bi

tah. Bref is the reference
binary code. The ideal encoding result is 1. Thus, we formulate the quantization loss Q as
in Equation (14).

Q =
N
∑

i=1
− log P(1|(||Bi

tah||, 1, ||Bre f ||))

=
N
∑

i=1
− log φ(−dh(||Bi

tah||, 1) + δ)

=
N
∑

i=1
log(1 + e−α(−dh(||Bi

tah ||,1)+δ))

(14)

In Equation (14), the triplet ordinal relation among (||Bi
tah ||, 1 and ||Bref||)

is defined as 1 and it indicates that the data pair (||Bi
tah ||, 1) is more similar than
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the data pair (1, ||Bref||). Therefore, to minimize the quantization loss, the Hamming
distance of the data pair (||Btah||, 1) should be smaller than the Hamming distance
δ = dh(||Bref||, 1). During the training procedure, we tune the value of δ to balance the
optimization complexity and the approximation performance. A small δ value let the
encoding results be close to the output of sign function and the training process will
become hard. In contrast, a large δ value creates low optimization complexity, but it leads
to poor approximation results.

After applying the continuous relaxation mechanism, we compute the Hamming
distance of one data pair by Equation (15). ⊗ computes the sum of bitwise production
value. f 8(·) represents the output of the deep neural network’s last layer.

dh(Bi, Bj) =
1
2
(M− tanh( f8(xi))⊗ tanh( f8(xj))) (15)

Finally, we utilize the back propagation mechanism to optimize the variables of
the deep neural network by simultaneously minimizing the triplet ordinal relation cross
entropy loss in Equation (13) and the quantization loss in Equation (14).

3. Experimental Setting and Results

In this section, we introduce the comparative experimental setting and evaluate the
approximate nearest neighbor search performance of the proposed TOCEH and some
state-of-the-art hashing methods.

3.1. Datasets

The comparative experiments are conducted on three large-scale RS image datasets, in-
cluding UC Merced land use dataset (UCMD) [37], SAT-4 dataset [38] and SAT-6 dataset [38].
The details of these three RS image datasets are introduced below.

1. UCMD [37] stores aerial image scenes with a human label. There are 21 land cover
categories, and each category includes 100 images with the normalized size of
256 × 256 pixels. The spatial resolution of each pixel is 0.3 m. We randomly choose
420 images as query samples and the remaining 1680 images are utilized as training
samples.

2. The total number of images in SAT-4 [38] is 500k and it includes four broad land cover
classes: barren land, grass land, trees and other. The size of images is normalized
to 28 × 28 pixels and the spatial resolution of each pixel is 1 m. We randomly select
400k images to train the network and the other 100k images to test the ANN search
performance.

3. The SAT-6 [38] dataset contains 405k images covering barren land, buildings, grass-
land, roads, trees and water bodies. These images are normalized to 28 × 28 pixels
size and the spatial resolution of each pixel is 1 m. We randomly select 81k images as
query set and the other 324k images as training set.

Some sample images of the above three datasets are shown in Figures 4–6, and the
statistics are summarized in Table 2.

3.2. Experimental Settings and Evaluation Matrix

To verify the ANN search performance of the proposed TOCEH method, many state-of-
the-art hashing methods, including locality sensitive hashing (LSH) [14], spectral hashing
(SH) [17], iterative quantization hashing method (ITQ) [13], k-means hashing (KMH) [12],
partial randomness hashing (PRH) [23], deep variational binaries (DVB) [39], deep hashing
(DH) [40], DeepBit [41], deep Cauchy hashing (DCH) [11] and twin-bottle neck hashing
(TBH) [10] are utilized as the baseline methods. LSH [14], SH [17], ITQ [13] and KMH [12]
belong to the shallow methods. During the ANN search experiments, we extract the content
information from RS images by AlexNet and the features are represented as 4096-dimension
float point data. Then, these shallow hashing methods map the 4096-dimension features
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into the compact Hamming space and achieve the ANN search task according to the
Hamming distance. DCH [11], TBH [10], DVB [39], DH [40], DeepBit [41] and the proposed
TOCEH are deep learning hashing methods. They directly generate the RS image’s binary
feature using an end-to-end mechanism.

Figure 4. Sample images of the UCMD dataset.

Figure 5. Sample images of the SAT-4 dataset.

Figure 6. Sample images of the SAT-6 dataset.

Table 2. Statistics and several parameter settings of three datasets.

UCMD SAT4 SAT6

Class Number 21 4 6
Image Size 256 × 256 28 × 28 28 × 28

Dataset Size 2100 500,000 405,000
Training Set 1470 400,000 360,000
Query Set 630 100,000 45,000

Ground Truth 100 1000 1000

The training process and comparative experiments are conducted on a high-performance
computer with GPU Tesla T4 16 GB, CPU Intel Xeon 6242R 3.10 GHz and 64 GB RAM.

To evaluate the ANN search performance, two widely used standards, mean average
precision (mAP) and recall curves, are employed in this paper.

The recall curve represents the fraction of the positive samples that are successfully
retrieved. The definition of recall is shown in Equation (16). #(·) returns the number
of samples.

recall =
#(retrieved positive samples)

#(all positive samples)
(16)

Mean average precision value expresses the return rate of positive samples as defined
in Equation (17). |total| is the total number of retrieved samples. Ki returns the number of
positive samples of the i-th query sample. rank(j) is the ranking number of the j-th positive
sample in the retrieved results.

mAP =
1

|total|
|total|
∑
i=1

1
Ki

Ki

∑
j=1

j
rank(j)

(17)
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3.3. Experimental Results
3.3.1. Qualitative Analysis

In this section, we show the qualitative image search results on the UCMD dataset [37].
The proposed TOCEH and the other seven state-of-the-art methods separately map the
image content information into 64-, 128- and 256-bit binary code. The images with minimal
Hamming distance to the query sample are returned as retrieval results and the false
images are marked with red rectangles, as shown in Figures 7–9.

Figure 7. The RS image retrieval results on the UCMD dataset, and the length of the binary code is
64. The false images are marked with red rectangles.

Figure 8. The RS image retrieval results on the UCMD dataset, and the length of the binary code is
128. The false images are marked with red rectangles.

Figure 9. The RS image retrieval results on the UCMD dataset, and the length of the binary code is
256. The false images are marked with red rectangles.

From the RS image retrieval results, we intuitively know that TOCEH owns the best
retrieval results. When encoding RS image content as a 64-bit binary code in Figure 6,
TOCEH and TBH [10] return two false positive images. Correspondingly, the number of
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false images retrieved by the other six methods is larger than two. Furthermore, the false
RS images’ ranking position in TOCEH is higher than that in TBH [10], which gives TOCEH
a larger mAP value. In Figure 7, the length of the binary code is 128. One RS image is
incorrectly returned by TOCEH, TBH [10], DCH [11] and PRH [23], and the false image
has a relatively higher ranking position in TOCEH. As the number of binary bits increases
to 256, only TOCEH and TBH [10] retrieve no false image, as shown in Figure 8.

3.3.2. Quantitative Analysis

In this section, we adopt recall curves and mAP to quantitatively analyze the ANN search
performance of the proposed TOCEH and the other seven state-of-the-art hashing methods.
These hashing methods separately generate 64-, 128-, and 256-bit binary code to represent the
image content. The mAP values are in Tables 3–5. The recall curves are shown in Figures 10–12.

Table 3. Comparison of mAP with different binary code lengths on UCMD.

TOCEH TBH DVB DCH DeepBit PRH DH KMH ITQ SH LSH

64-bit 0.3914 0.3415 0.3261 0.2917 0.2657 0.2462 0.2296 0.2135 0.1986 0.1724 0.1637
128-bit 0.5479 0.4638 0.4259 0.3963 0.3781 0.3527 0.3467 0.2816 0.2462 0.2015 0.1842
256-bit 0.5837 0.4975 0.4757 0.4319 0.4197 0.3746 0.3528 0.3168 0.2673 0.2351 0.2148

Table 4. Comparison of mAP with different binary code lengths on SAT-4.

TOCEH TBH DVB DCH DeepBit PRH PRH KMH ITQ SH LSH

64-bit 0.7011 0.5768 0.5271 0.4862 0.4522 0.4361 0.4139 0.3946 0.3657 0.3482 0.3407
128-bit 0.7236 0.6124 0.5537 0.4986 0.4794 0.4528 0.4385 0.4173 0.3856 0.3724 0.3615
256-bit 0.7528 0.6345 0.6149 0.5128 0.5068 0.4857 0.4653 0.4361 0.4285 0.4152 0.3986

Table 5. Comparison of mAP with different binary code lengths on SAT-6.

TOCEH TBH DVB DCH DeepBit PRH DH KMH ITQ SH LSH

64-bit 0.7124 0.5826 0.5446 0.4936 0.4725 0.4586 0.4352 0.4125 0.3764 0.3695 0.3628
128-bit 0.7351 0.6268 0.5841 0.5174 0.4921 0.4795 0.4596 0.4281 0.3927 0.3864 0.3752
256-bit 0.7842 0.6527 0.6261 0.5394 0.5175 0.4972 0.4628 0.4516 0.4359 0.4238 0.4175
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Figure 10. The recall curves of all comparative methods on UCMD; the data are separately encoded
as (a) 64-, (b) 128- and (c) 256-bit binary code.

Figure 11. The recall curves of all comparative methods on SAT-4 and the data are separately encoded
as (a) 64-, (b) 128- and (c) 256-bit binary code.
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Figure 12. The recall curves of all comparative methods on SAT-6 and the data are separately encoded
as (a) 64-, (b) 128- and (c) 256-bit binary code.

From the quantitative results, we know TOCEH achieves the best ANN search perfor-
mance. LSH [14], the data-independent hashing algorithm, randomly generates hashing
projection functions without a training process. As a result, the ANN search performance
of LSH cannot drastically improve as the number of binary bits increases [9]. In contrast,
the proposed TOCEH and the other nine comparative hashing methods utilize a machine
learning mechanism to obtain the hashing functions, which are adaptive to the training
data distribution. Thus, these machine-learning-based hashing algorithms achieve a better
ANN search performance than LSH. SH [17] establishes a spectral graph to measure the
similarity relation among samples, and divides the samples into different cluster groups by
spectral graph partition. Then, SH [17] assigns the same code to the samples in the same
group. For a large-scale RS image dataset, the time complexity of establishing a spectral
graph would be high. Both ITQ [13] and KMH [12] first learn encoding centers, then assign
the samples as the same binary code as their nearest center. ITQ [13] considers the fixed
vertexes of a hyper cubic as centers, but they are not well adapted to the training data
distribution. KMH [12] learns the encoding centers with minimal quantization loss and
similarity loss by a k-means iterative mechanism. This measure effectively helps KMH
improve the ANN search performance. To balance the training complexity and ANN search
performance, PRH [23] employs the partial randomness and partial learning strategy to
generate hashing functions. LSH [14], SH [17], ITQ [13], KMH [12] and PRH [23] belong to
the shallow hashing algorithms, and their performances relate to the quality of the inter-
mediate high dimensional features. To eliminate this effect, TOCEH, TBH [10], DVB [39],
DH [40], DeepBit [41] and DCH [11] adopt a deep learning framework to learn the end-to-
end binary feature, which can further boost the ANN search performance. The classical
DH [40] proposes three constraints at the top layer of the deep network: the quantization
loss, balance bits and independent bits. However, the pair-wise similarity preserving
or the triplet ordinal relation preserving is not considered in DH. This may lead a poor
performance of DH. The same problem also exists in DeepBit [41]. However, DeepBit
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augments the training data with different rotations and further updates the parameters of
the network. This measure helps DeepBit to obtain a better ANN search performance than
DH. For most deep hashing, it is hard to unveil the intrinsic structure of the whole sample
space by simply regularizing the output codes within each single training batch. In contrast,
the conditional auto-encoding variational Bayesian networks are introduced in DVB to
exploit the feature space structure of the training data using the latent variables. DCH [11]
pre-trains a similarity graph and expects that the probability distribution in the Hamming
space should be consistent with that in the Euclidean space. TBH [10] abandons the process
of the pre-computing similarity graph and embeds it in the deep neural network. TBH aims
to preserve the similarity between the original data and the data decoded from the binary
feature. Both TBH [10] and DCH [11] aim to preserve the pair-wise similarity, and it is
difficult to capture the hyper structure among RS images. TOCEH establishes a tensor
graph representing the triplet ordinal relation among RS images in both Hamming space
and Euclidean space. During the training process, TOCEH expects that the triplet ordinal
relation graphs have the same distribution in different spaces. Thus, it can enhance the
ability of preserving the Euclidean ranking orders in the Hamming space. As discussed
above, TOCEH can achieve the best RS image retrieval results.

3.3.3. Ablation Experiments

To guarantee the ANN search performance of the obtained binary codes, the TOCEH
algorithm proposes two key components: the triplet ordinal cross entropy loss and the
triplet ordinal quantization loss. Here, we conduct the comparative experiments to analyze
these two components. TOCEL only utilizes the triplet ordinal cross entropy loss as the
objective function for deep learning binary code. The deep hashing TOQL only employs
the triplet ordinal quantization loss as the objective function. TOCEH, TOCEL and TOQL
separately map the data into 64- and 128-bit binary code. The ANN search results are
shown in Figures 13–15.

Figure 13. The ablation experiments on UCMD. The data are separately encoded as (a) 64- and (b) 128-bit binary code.
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Figure 14. The ablation experiments on SAT-4. The data are separately encoded as (a) 64- and (b) 128-bit binary code.

Figure 15. The ablation experiments on SAT-6. The data are separately encoded as (a) 64- and (b) 128-bit binary code.

From the comparative results, we know that both the triplet ordinal cross entropy loss
and the triplet ordinal quantization loss play important roles in improving the performance
of TOCEH. The triplet ordinal cross entropy loss minimizes the inconsistency between the
probability distributions of the triplet ordinal relations in different spaces. For example,
the data pair (xi, xj) is more similar than data pair (xj, xk) in the Euclidean space. Then,
to minimize the triplet ordinal cross entropy loss, it should be a larger probability to
assign xi and xj as similar binary codes. Without the triplet ordinal cross entropy loss,
TOQL randomly generates the samples’ binary codes. LSH algorithm also randomly
generates the hashing functions. Thus, the ANN search performance of TOQL is almost
the same as that of LSH. To fix the NP hard problem of the objective function, we apply
the continuous relaxation mechanism to the binary encoding procedure. Furthermore,
we define the triplet ordinal quantization loss to minimize the loss between the binary
codes and the corresponding continuous variable. Without the triplet ordinal quantization
loss, the difference between the optimized variables and the binary encoding results would
become larger in TOCEL. Thus, TOCEL has a relatively inferior ANN search performance.
As discussed above, both the triplet ordinal cross entropy loss and the triplet ordinal
quantization loss are necessary for the TOCEH algorithm.

4. Conclusions

In this paper, to boost the RS image search performance in the Hamming space,
we propose a novel deep hashing method called triplet ordinal cross entropy hashing
(TOCEH) to learn an end-to-end binary feature of an RS image. Generally, most of the
existing hashing methods place emphasis on preserving point-wise or pair-wise similarity.
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In contrast, TOCEH establishes a tensor graph to capture the triplet ordinal relation among
RS images and defines the triplet ordinal relation preserving problem as the formulation of
minimizing the cross entropy value. Then, TOCEH achieves the aim of preserving triplet
ordinal relation by minimizing the inconsistency between the probability distributions of
the triplet ordinal relations in different spaces. During the training process, to avoid the NP
hard problem, we apply continuous relaxation to the binary encoding process. Furthermore,
we define a quantization function based on the triplet ordinal relation preserving restriction,
which can reduce the loss caused by the continuous procedure. Finally, the extensive
comparative experiments conducted on three large-scale RS image datasets, including
UCMD, SAT-4 and SAT-6, show that the proposed TOCEH outperforms many state-of-the-
art hashing methods in RS image search tasks.
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Abstract: Remote sensing image object detection and instance segmentation are widely valued
research fields. A convolutional neural network (CNN) has shown defects in the object detection of
remote sensing images. In recent years, the number of studies on transformer-based models increased,
and these studies achieved good results. However, transformers still suffer from poor small object
detection and unsatisfactory edge detail segmentation. In order to solve these problems, we improved
the Swin transformer based on the advantages of transformers and CNNs, and designed a local
perception Swin transformer (LPSW) backbone to enhance the local perception of the network and to
improve the detection accuracy of small-scale objects. We also designed a spatial attention interleaved
execution cascade (SAIEC) network framework, which helped to strengthen the segmentation
accuracy of the network. Due to the lack of remote sensing mask datasets, the MRS-1800 remote
sensing mask dataset was created. Finally, we combined the proposed backbone with the new
network framework and conducted experiments on this MRS-1800 dataset. Compared with the Swin
transformer, the proposed model improved the mask AP by 1.7%, mask APS by 3.6%, AP by 1.1%
and APS by 4.6%, demonstrating its effectiveness and feasibility.

Keywords: instance segmentation; object detection; Swin transformer; remote sensing image; cascade
mask R-CNN

1. Introduction

With the continuous advancement of science and technology, remote sensing technol-
ogy is eagerly developing. The feature information contained in remote sensing images has
become more abundant, and a large amount of valuable information can be extracted from
it and used for scientific and technological research. Machine learning based on probability
and statistics usually requires complex feature description and suffers from obvious defi-
ciencies when dealing with complex object detection and segmentation problems [1,2]. The
deep structure and feature learning capabilities of deep learning achieved great success in
the field of image processing, and a large number of scholars also applied it to the field of
remote sensing object detection and instance segmentation [3,4]. Remote sensing image
object detection and segmentation tasks have an important research significance and value
for the development of aviation and remote sensing fields, and have broad application
prospects in many practical scenarios, such as marine monitoring, ship management and
control, and ground urban planning. In urban planning, the extraction of relevant urban
metrics is important for characterizing urban typologies, and image segmentation based
on deep learning is optimal for the extraction of road features in marginal areas located in
urban environments [5].

Instance segmentation has become an important, complex and challenging field in
machine vision research. Instance segmentation can be defined as a technology that
simultaneously solves the problem of object detection and semantic segmentation. As with
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semantic segmentation, it not only has the characteristics of pixel level classification, but
also has the characteristics of object detection, where different instances must be located,
even if they are of the same type. Figure 1 shows the differences and relationships among
object detection, semantic segmentation and instance segmentation.

Figure 1. Examples of remote sensing image (a), object detection (b), semantic segmentation (c), and
instance segmentation (d).

Since the emergence of the two-stage object detection algorithm, various object detec-
tion and segmentation algorithms based on convolutional neural networks (CNNs) have
emerged, such as the region-based CNN (R-CNN), Faster R-CNN [6], and Mask R-CNN [7].
In recent years, although there are many excellent algorithms, such as the path aggregation
network (PANet) [8], Mask Score R-CNN [9], Cascade Mask R-CNN [10] and segmenting
objects by locations (SOLO) [11], typical problems remain, such as inaccurate segmenta-
tion edges and the establishment of global relations. If the long-range dependencies are
captured by dilated convolution or by increasing the number of channels, dimensional
disasters will occur due to the expansion of the model.

CNNs are useful for extracting local effective information, but they lack the ability to
extract long-range features from global information. Inspired by the use of self-attention in
the transformer [12] and in order to mine long-range correlation dependencies in text, many
computer vision tasks propose the use of self-attention mechanisms to effectively overcome
the limitations of CNNs. Self-attention mechanisms can obtain relationships between
long-range elements faster and attend over different regions of the image and integrate
information across the entire image. Vision transformer (ViT) [13] is a representative
state-of-the-art (SOTA) work in the field of image recognition. It only uses a self-attention
mechanism, which makes the image recognition rate far higher than models based on
CNNs. End-to-end object detection with transformers (DETR) [14] first involved the use of
transformers in high-level vision. This adds positional information to supplement image
features and inputs them in the transformer structure to obtain the predicted class label
and bounding box. Although transformer-based algorithms have greatly improved the
object detection effect, there are still serious problems in the CV field:

1. Low detection performance for small-scale objects, and weak local information acqui-
sition capabilities.
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2. The current transformer-based framework is mostly used for image classification, but
it is difficult for a single-level transformer to produce good results for the instance
segmentation of densely predicted scenes. This has a great impact on object detection
and instance segmentation in remote sensing images with a high resolution, a complex
background, and small objects.

In order to solve these problems, there are a few works applying ViT models to the
dense vision tasks of object detection and semantic segmentation via direct upsampling or
deconvolution but with a relatively lower performance [15,16]. Wang et al. [17] proposed a
backbone transformer for dense prediction, named “Pyramid Vision Transformer (PVT)”,
which designed a shrinking pyramid scheme to reduce the traditional transformer’s se-
quence length. However, its calculation complexity is too large, which is quadratic to image
size. Therefore, we chose the Swin transformer [18] as the prototype for our design of the
backbone network. The Swin transformer builds a hierarchical transformer and performs
self-attention calculations in the window area without overlap. The computational com-
plexity is greatly reduced, and it is linearly related to the size of the input image. As a
general-purpose visual backbone network, the Swin transformer achieves SOTA perfor-
mance in tasks such as image classification, object detection, and semantic segmentation.
However, the impact of the Swin transformer on context information encoding is limited; it
needs to be improved for remote sensing image tasks.

In this paper, we first designed a local perception block and inserted it into each
stage. Through the characteristics of dilated convolution, the block extracts a large range
of local information from the image, and strengthens the network’s learning of local
correlation and structural information. We call the improved backbone network the “Local
Perception Swin Transformer” (LPSW for short). Secondly, in order to enhance the object
detection and instance segmentation of remote sensing images, inspired by the hybrid
task cascade (HTC) [19], we designed the spatial attention interleaved execution cascade
(SAIEC) network framework. We applied the ideas of the interleaved execution and mask
information flow into Cascade Mask R-CNN. Both bounding box regression and mask
prediction were combined in a multi-tasking manner. We also added an improved spatial
attention module to the mask head, which helps the mask branch to focus on meaningful
pixels and suppress meaningless pixels. Finally, we combined the designed LPSW backbone
network with the SAIEC framework to form a new network model that achieves a higher
accuracy in remote sensing object detection and instance segmentation tasks.

The main contributions of this paper can be summarized as follows:

1. In order to overcome the shortcomings of CNNs’ poor ability to extract global in-
formation, we chose the Swin transformer as a basic backbone network to build a
network model for remote sensing image object detection and instance segmentation.

2. According to the characteristics of remote sensing images, we propose a local percep-
tion Swin transformer (LPSW) backbone network. The LPSW combines the advan-
tages of CNNs and transformers to enhance local perception capabilities and improve
the detection accuracy of small-scale objects.

3. The spatial attention interleaved execution cascade (SAIEC) network framework is
proposed. The mask prediction of the network is enhanced through the multi-tasking
manner and the improved spatial attention module. Finally, the LPSW is inserted into
the designed network framework as the backbone to establish a new network model
that further improves the accuracy of model detection and segmentation.

4. Based on the shortage of existing remote sensing instance segmentation datasets, we
selected a total of 1800 multi-object types of images from existing public datasets for
annotation and created the MRS-1800 remote sensing mask dataset as the experimental
resource for this paper.
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2. Related Works

In this section, we introduce some previous works related to object detection and
instance segmentation. For comparative analysis, we divide the content into CNN-based
and transformer-based object detection and segmentation-related network models.

2.1. CNN-Based Object Detection and Instance Segmentation

In recent years, CNN-based object detection models have developed rapidly. The
current object detection algorithms based on deep learning can be divided into two-stage
object detection algorithms and single-stage object detection algorithms. Two-stage object
detection is mainly represented by a series of regional convolutional neural network
(Region-CNN, R-CNN) algorithms: the spatial pyramid pooling network (SPP-Net) [20]
solves the problem of redundant operations; Fast R-CNN [21] based on R-CNN and SPP-
Net proposes the concept of an region of interest (ROI) pooling layer, which can map the
feature maps of different sizes of candidate regions to fixed-size feature maps; Faster R-
CNN [6] uses the CNN-based region proposal network (RPN) to replace the selective search
algorithm. The RPN can take an image feature map as an input, and then output a series
of candidate regions. The single-stage object detection algorithm directly uses a single
network to predict the category and location of the object of interest, mainly represented by
the you only look once (YOLO) [22] series of algorithms. The single-shot multibox detector
(SSD) [23] uses multiple-scale feature maps to perform detection tasks. On the basis of a
feature pyramid network (FPN) [24], Tsung-Yi Lin et al. proposed Retinanet [25], which
further improved the performance of the single-stage object detection algorithm.

At present, CNN-based instance segmentation algorithms can be divided into two
main types: The top-down method and the bottom-up method. Compared with the
top-down instance segmentation algorithm, the bottom-up algorithm usually has lower
accuracy and more computation, such as the Proposal-Free [26] network.

The top-down method is based on the object detection algorithm. First, the object
detection algorithm is used to find the bounding box of the object, semantic segmentation
is then performed within the bounding box of each object, and, finally, each segmentation
result is output as an instance. In the single-stage instance segmentation algorithm, inspired
by YOLO, SOLO [11] directly decouples the instance segmentation problem into category
prediction and instance mask generation problems. There is no need to generate bounding
boxes during the prediction process. SOLO V2 [27] makes a further adjustment; Center-
Mask [28] adds a head network to predict the mask to the single-order end object detection
algorithm, FCOS [29], to complete instance segmentation. Although these methods have
a certain speed advantage over the two-step method, they are usually unable to achieve
the accuracy of the two-step method. In terms of the two-stage algorithm, He Kaiming
et al. proposed Mask R-CNN [7], a simple and effective instance segmentation framework.
Mask R-CNN adds a mask branch to the head network of Faster R-CNN. Additionally, the
original classification branch and regression branch are juxtaposed with the mask branch.
Inspired by Mask R-CNN, Shu Liu [8] et al. proposed PANet, which makes full use of
shallow network features for instance segmentation; Mask Scoring R-CNN [9], on the basis
of the Mask R-CNN, expands with an additional mask branch in order to obtain a more
accurate mask. Cascade Mask R-CNN [10] combines Mask R-CNN with Cascade R-CNN,
which slightly improves detection accuracy, but it is still unsatisfactory in mask prediction.
The key reason for this is that the ability of the CNN to capture long-range features is
relatively weak, and the problem of establishing the global relations in the image has not
been solved.

2.2. Transformer-Based Object Detection and Instance Segmentation

Transformers are deep neural networks mainly based on the self-attention mecha-
nism [12], and were originally applied in the field of natural language processing and later
extended to computer vision tasks. Compared with the CNN network, the advantage of
the transformer lies in the use of self-attention to capture global contextual information to
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establish a long-range dependence on the object, thereby extracting more powerful features.
The structure of the self-attention mechanism is shown in Figure 2. For each element in the
input sequence, it will generate Q (query), K (key), and V (value) through three learning
matrices. In order to determine the relevance between an element and other elements in
the sequence, the dot product is calculated between the Q vector of this element with the
K vectors of other elements. The results determine the relative importance of patches in
the sequence. Then, the results of the dot product are then scaled and fed into a softmax.
Finally, the value of the vector for each patch embedding is multiplied by the output of the
softmax to find the patch with the high attention scores.

Figure 2. Structure of self-attention mechanism.

In 2020, Carion et al. [14] combined the CNN and the transformer to propose a com-
plete end-to-end DETR object detection framework, applying transformer architecture to
object detection for the first time. Zhu [30] et al. proposed the Deformable DETR model
that draws on the variable convolutional neural network. Zheng et al. [31] proposed the
end-to-end object detection with adaptive clustering transformer (ACT) to reduce the
computational complexity of the self-attention module. DETR can naturally extend the
panoramic segmentation task by attaching a mask head to the decoder and obtaining
competitive results. Wang et al. [32] proposed a transformer-based video instance segmen-
tation (VisTR) model, which takes a series of images as inputs and generates corresponding
instance prediction results. Although these models perform well in object detection tasks,
they still have many shortcomings. For example, the detection speed of the DETR series
models is slow, and the detection performance of small objects is not effective.

For remote sensing images, the image resolution is high, which increases the cal-
culation size of the transformer models. Remote sensing images usually have complex
background information and variable object scales, and the training effect of a single-
level transformer network is not effective. Based on the above problems, the Swin trans-
former [18] was proposed to solve the problems of a high amount of computation and the
poor detection effect of dense objects, but it still has weak local information acquisition ca-
pabilities.

Therefore, for the object detection and instance segmentation of remote sensing images,
we need to exploit both the advantages of CNNs to address the underlying vision and
those of transformers to address the relationship between visual elements and objects. We
need to then design a novel backbone network and detection framework and focus on
enhancing the mask prediction ability to improve the detection and segmentation accuracy
of remote sensing images.
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3. Materials and Methods

This section focuses on the designed network structure. As shown in Figure 3, the
model feeds the input image to the local perception Swin transformer (LPSW) backbone
network. After the feature map is generated, it is sent to the spatial attention interleaved
execution cascade (SAIEC) network model after the FPN structure. The back-end of
the model performs feature map classifications, bounding box regression, and instance
segmentation tasks. In our model, each bounding box is divided into object and non-object
regions. The detailed information of each module is introduced below:

Figure 3. Flow chart of the designed model, which combines the proposed local perception Swin
transformer (LPSW) backbone network with the spatial attention interleaved execution cascade
(SAIEC) network framework and includes feature pyramid network (FPN) and region of interest
(ROI) structures. The new network model can accurately complete remote sensing image object
detection and instance segmentation tasks.

3.1. Local Perception Swin Transformer (LPSW) Backbone

The flow chart of the proposed local perception Swin transformer (LPSW) backbone
network is shown in Figure 4. The Swin transformer provides four versions of the model,
which, from large to small [18], are Swin-T, Swin-S, Swin-B and Swin-L. Taking into
account the particularity and computational complexity of remote sensing images, this
paper introduces Swin-T. Each stage has 2, 2, 6, and 2 blocks, respectively.

Similar to ViT, it first splits an input RGB image into non-overlapping patches by patch
partition layer. Each patch is treated as a “token” and its feature is set as a concatenation
of the raw pixel RGB values. The Swin transformer contains four stages to produce a
different number of tokens. Given an image with a size of H ×W, a token is a raw pixel
concatenation vector of an RGB image patch with the size of 4 × 4. A linear embedding
is employed on this token to map it in a vector with the dimension C. Stages 1, 2, 3, and
4 produce H

4 × W
4 , H

8 × W
8 , H

16× W
16 , and H

32× W
32 tokens, respectively. Each stage consists of

a patch merging block (a combination of a patch partition layer and a linear embedding
layer), local perception block, and some Swin transformer blocks.
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Figure 4. The architecture of the local perception Swin transformer (LPSW). (a) The detailed structure of the local perception
block; (b) the detailed structure of the Swin transformer block.

3.1.1. Swin Transformer Block

The Swin transformer block is the core part of the Swin transformer algorithm. The
detailed structure is shown in Figure 4b. The block is composed of window multi-head self-
attention (W-MSA), shifted windows multi-head self-attention (SW-MSA) and multilayer
perceptron (MLP). Inserting a layernorm (LN) layer in the middle makes the training more
stable and uses a residual connection after each module. This part can be expressed as
Equation (1):

X̂l = W −MSA
(

LN
(

Xl−1
))

+ Xl−1

Xl = MLP
(

LN
(

X̂l
))

+ X̂l

X̂l+1 = SW −MSA
(

LN
(

Xl
))

+ Xl

Xl+1 = MLP
(

LN
(

X̂l+1
))

+ X̂l+1

(1)

3.1.2. W-MSA and SW-MSA

Compared with the Multi-Head Self Attention (MSA) [12] in the traditional ViT, the
W-MSA in the Swin transformer block controls the calculation area in a window as a unit
(window size is set to 7 by default). This reduces the amount of network calculations and
reduces the complexity to a linear ratio of the image size, as shown in Figure 5. MSA lacks
connections across windows. The position of SW-MSA is connected to the W-MSA layer.
Therefore, SW-MSA is required to provide a different window segmentation method after
W-MSA to realize cross-window communication.
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Figure 5. The mechanism of action of the shifted windows. (a) The input image; (b) Window segmentation (window size is
set to 7) of the input image through the window multi-head self-attention (W-MSA); (c) Action of the shifted windows;
(d) A different window segmentation method through the shifted windows multi-head self-attention (SW-MSA).

The result of window segmentation of the input image through W-MSA is shown in
Figure 5b. Each cycle of the image is moved up and left by half the size of the window,
and the blue and red areas in Figure 5c are then moved to the lower and right sides of the
image, respectively, as shown in Figure 5d. On the basis of these shifts, the window is
divided according to W-MSA, and SW-MSA has a window segmentation method different
from W-MSA.

3.1.3. Local Perception Block (LPB)

Position encoding in a transformer can easily fail to detect the local correlation and
structural information of the image. Although the Swin transformer has a shift window
scheme of sequential layers in a hierarchical structure, a large range of spatial context
information is still not well encoded. In order to alleviate this problem, we proposed the
local perception block (LPB), which is inserted in front of the Swin transformer block. The
composition of the local perception block is shown in Figure 4a.

Considering that the data flow in the Swin transformer consists of vectors instead of
feature maps in traditional CNNs, in the LPB, it firstly reshapes a group of vector features
into a spatial feature map. For example, a token (B, H * W, C) is reshaped as a feature map
(B, C, H, W). A layer of 3 × 3 dilated convolution (dilation = 2) and a GELU activation
function is then added, and a residual connection is used to increase the extraction of
spatial local features while keeping the receptive field sufficiently large. Finally, the feature
map is reshaped to (B, H, W, C) and sent to the Swin transformer block.

Through the characteristics of dilated convolution, the receptive field of the spatial
image is increased, such that a large range of contextual information can be coded well
at different scales. Dilated convolution was proposed by Yu and Koltun [33] in 2015.
Compared with the traditional convolution operation, dilated convolution supports the
expansion of the receptive field. It is worth noting that the traditional 3 × 3 convolutions
each have a 3 × 3 field. If it is a dilated convolution (dilation = 2) with the same kernel size,
the receptive field is 7 × 7. Therefore, dilated convolution can extend the corresponding
field without a loss of feature resolution.

3.2. Spatial Attention Interleaved Execution Cascade (SAIEC)

The proposal of Cascade R-CNN mainly defines the input intersection over union
(IoU) threshold of positive and negative samples at different stages. The detector pays
more attention to the positive samples within the threshold because of the difference in
IoU input at each stage. The output IoU threshold is better than the input IoU threshold,
which provides better positive samples for the next stage. Each stage is in a progressive
relationship, such that the detector effect can gradually improve. Cascade Mask R-CNN is
a product that directly combines Mask R-CNN and Cascade R-CNN. Although it improves
in box AP, it does not improve significantly in mask AP. Therefore, inspired by the HTC
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algorithm, we improve Cascade Mask R-CNN and propose the spatial attention interleaved
execution cascade (SAIEC), a new framework of instance segmentation. The specific
improvement methods are as follows.

3.2.1. Interleaved Execution and Mask Information Flow

We improved the network head of Cascade Mask R-CNN, as shown in Figure 6.
Although Cascade R-CNN forces two branches into each stage, there is no interaction
between the two branches during the training process, and they are executed in parallel.
Therefore, we propose the interleaved execution; that is, in each stage, the box branch is
executed first, and the updated bounding box predictions are then passed to the mask
branch to predict the mask, as shown in Figure 6b. In the figure, F represents the features
of the backbone network, P is the ROI Align or ROI pooling, and Bi and Mi denote the box
and mask head at the i-th stage. This not only increases the interaction between different
branches in each stage, but also eliminates the gap between training and testing processes.

Figure 6. The Cascade Mask R-CNN network head improvement process. (a) The Cascade Mask
R-CNN network head; (b) The addition of the interleaved execution in the network head; (c) The
final network head structure after adding Mask Information Flow.

At the same time, in the Cascade Mask R-CNN, only the current stage in the box
branch has an impact on the next stage, and the mask branch between different stages
does not have any direct information flow. In order to solve this problem, we added a
connection between adjacent mask branches, as shown in Figure 6c. We provided mask
information flow for the mask branch so that Mi+1 could obtain the features of Mi. The
specific implementation is shown above in the red part of Figure 7. We used the feature of
Mi to perform feature embedding through a 1 × 1 convolution, and then entered it into
Mi+1. In this way, Mi+1 could obtain the characteristics of not only the backbone, but also
the previous stage.
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Figure 7. Structure of the spatial attention mask head. It includes the improved spatial attention module, which helping to
focus on objects and suppressing noise.

3.2.2. Spatial Attention Mask Head

The attention method [34] helps one to focus on important features and suppress
unnecessary noise. Inspired by the spatial attention mechanism [35], we designed the
spatial attention mask head, using the spatial attention module to guide the mask head, in
order to highlight meaningful pixels and suppress useless pixels. As shown in Figure 7, we
improved on the original mask head. We designed an improved spatial attention module
and inserted it before transposed convolution. In the spatial attention mask head, the
resized local features need to pass through four 3 × 3 convolution layers with 256 channels,
and then pass through the improved spatial attention module. The improved spatial
attention module first generates pooled features Pmax and Pavg by both average and max
pooling operations, respectively, along the channel axis, and then aggregates them via
concatenation. This is followed by a 3 × 3 dilated convolution layer and is normalized by
the sigmoid function. The computation process is summarized as follows:

Xsa = Xi ⊗ sigmoid(D3×3(Pmax ◦ Pavg)) (2)

where ⊗ denotes element-wise multiplication, Xsa is the attention-guided feature map,
D3×3 is the 3 × 3 conv layer, and ◦ represents the concatenate operation. Afterwards, 2 × 2
deconv is used for upsampling and 1 × 1 conv is used to predict the category of the specific
mask. By combining the above structures, we completed the design of the mask branch in
the SAIEC framework. The spatial attention mask head not only effectively improves the
cross-stage information communication in the network, but also adds a spatial attention
mechanism to help with focusing on objects and suppressing noise.

4. Results

4.1. Dataset

There are many conventional object detection datasets. Models that are trained based
on conventional datasets do not perform well on remote sensing images. The main reason
is the particularity of remote sensing images, and few datasets are related to remote sensing
image object detection and instance segmentation. Therefore, we selected images from
three public datasets (Object Detection in Optical Remote Sensing Images (DIOR) [36], High
Resolution Remote Sensing Detection (HRRSD) [37], and convolutional neural networks for
object detection in VHR optical remote sensing images (NWPU VHR-10) [38]) to produce
new remote sensing image object detection and instance segmentation datasets. The
research group of the Western University of Technology proposed a large-scale benchmark
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dataset “DIOR” for object detection in optical remote sensing images, which consists of
23,463 images and 190,288 object examples and is based on deep learning. The image size is
800× 800 pixel, and the resolution ranges from 0.5 m to 30 m. The aerospace remote sensing
object detection dataset “NWPU VHR-10,” annotated by Northwestern Polytechnical
University, has a total of 800 images, including 650 of the objects and 150 background
images. Objects include: airplanes, ships, oil tanks, baseball fields, and nets. There are
10 categories of courts, basketball courts, track and field arenas, ports, bridges, and vehicles.
HRRSD is a dataset produced by the Optical Image Analysis and Learning Center of the
Xi’an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences for research on
object detection in high-resolution remote sensing images. The image resolution ranges
from 500 × 500 pixels to 1400 × 1000 pixels.

We selected high-resolution images from these three public datasets for manual an-
notation, and performed data enhancement on the labeled dataset by vertically flipping,
horizontally flipping, rotating, and cutting to create the MRS-1800 remote sensing mask
dataset. We merged these three classic remote sensing datasets together, which can be
regarded as a means of data enhancement and expansion. This approach allowed our
dataset to contain more styles and sizes of remote sensing images, making the dataset more
challenging. Training our model in this way can help overcome the overfitting problem,
thereby improving the robustness and generalization ability of the model.

The MRS-1800 dataset has a total of 1800 remote sensing images. The size of the
images varies and the dataset contains a variety of detection objects. The detection objects
are divided into three categories: planes, ships, and storage tanks. The specific information
of the dataset is shown in Table 1.

Table 1. Number distribution of datasets and class.

Dataset Dior Hrrsd Nwpu Vhr-10 Statistics

Number 403 1093 304 1800
Class Plane Ship Storage tank

Number 674 687 557

Figure 8 shows part of the images and mask information of the MRS-1800 dataset.
Different sizes of high-resolution images contain different types of objects. We used
LabelMe 4.5.9 (Boston, MA, USA) to mark the image with mask information and generate
the corresponding “json” files. The dataset contains planes, ships, and storage tanks of
different sizes. A total of 16,318 objects were collected, and the object sizes include three
types: large, medium and small (ranging from 32 × 32 pixels to 500 × 500 pixels), and
the numbers of these types are evenly distributed. We used 1440 images as the training
set, 180 images as the validation set, and 180 images as the test set, according to the 8:1:1
allocation ratio.

4.2. Experiments and Analysis

Throughout the experiment, we used a computer equipped with a Geforce RTX 3060
GPU (12 G) as the hardware platform for the experiment. We used pytorch as the DL
framework, and the compilation environment was python 3.8 and pytorch 1.8.1. We used
multiple classic frameworks such as Mask R-CNN [7], Sparse R-CNN [39], Cascade Mask
R-CNN [10], DETR [14], and so on. Additionally, we used Resnet-50 (R-50), the Swin
transformer and LPST backbone networks. Suitable pre-training models were chosen to
train the self-made dataset, MRS-1800.

We used the same settings in training for the proposed models: multi-scale training
(the input size was adjusted so that the short side was between 480 and 800, and the long
side was, at most, 1333), the AdamW [40] optimizer (the initial learning rate was 0.00001,
the weight decay was 0.05, and the batch size was 1), and 3× scheduling (50 epochs with
the learning rate decayed by 10× at 27 epochs). We chose some deep learning indicators as
our experimental evaluation criteria, such as frames per second (FPS), ARS (the average
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recall measurement value of object frames smaller than 32 × 32 pixels), average precision
(AP), AP50 (AP measurement value when the IoU threshold is 0.5), AP75 (AP measurement
value when the IoU threshold is 0.75), APS (the AP measurement value of object frames
smaller than 32 × 32 pixel), and their mask counterparts: mask AP, mask AP50, mask
AP75, and mask APS. AP and AR are averaged over multiple intersection over union (IoU)
values, where the IoU threshold value ranges from 0.5 to 0.95, with a stride of 0.05. Mask
AP is used to comprehensively evaluate the effectiveness of the instance segmentation
model. The difference from box AP is only that the objects of the IoU threshold are different.
The box AP functions in the standard ordinary ground truth and the IoU value of the
prediction box, while the mask AP functions in the ground truth mask and the mask IoU of
the prediction mask.

Figure 8. MRS-1800 dataset display. The top row is the remote sensing images of different sizes
randomly selected in the dataset, and the next row contains corresponding mask images produced
with LabelMe.

Figure 9 shows the mask loss function graph during the training of the network model
we designed. It can be seen that the network model is still under-fitting during the first
38 k steps (27 epochs), and the loss function fluctuates greatly. We adjusted the learning
rate in time after 38 k steps to avoid overfitting. The training loss value after the final step
was 0.03479.

Figure 9. The training mask loss function diagram of the LPSW backbone using the SAIEC framework
on the dataset.
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4.3. Ablation Experiment

We performed a number of ablation experiments to gradually verify each component
in the proposed method in this section. We analyzed and compared the data trained on the
MRS-1800 dataset. The specific experiments are as follows:

4.3.1. Study for Optimizer and Initial Learning Rate

The optimizer plays an important role in deep learning. We first conducted ablation
experiments on the selection of the optimizer and the corresponding parameter values.
Commonly used optimizers for object detection are the SGD [41] and the AdamW [40].
We chose Cascade Mask R-CNN as the network framework and the Swin transformer as
the backbone network, using the SGD and the AdamW optimizers for experiments. At
the same time, in order to explore the influence of the optimizer’s initial learning rate
parameters on the experiment, we set the initial learning rate to 1 × 10−4, 1 × 10−5, and
1 × 10−6 for comparison experiments.

It can be seen from Table 2 that the overall performance of the AdamW is better than
that of the SGD, and AP can increase by more than 8% by replacing the optimizer. In
addition, it can be drawn from the table that when the initial learning rate is 1 × 10−5, the
model can achieve the highest detection accuracy. Therefore, we can conclude that the
Swin transformer can achieve a better performance when the AdamW optimizer is used
for model training and the initial learning rate is 1 × 10−5.

Table 2. The results of optimizers and learning rate ablation study.

Method Optimizer Learning Rate APbox APmask

Swin-T

SGD
1 × 10−4 60.1 33.9
1 × 10−5 69.2 52.1
1 × 10−6 53.6 41.5

AdamW
1 × 10−4 73.9 58.0
1 × 10−5 77.2 60.7
1 × 10−6 75.0 58.4

4.3.2. Experiment for the Swin Transformer and LPST Backbone

We inserted the Swin transformer (Swin-T) and LPST as a new backbone network into
typical object detection frameworks: Mask R-CNN and Cascade Mask R-CNN, for object
detection and instance segmentation experiments. We compared them with traditional
convolutional networks (Sparse R-CNN, PANet, and Mask Scoring R-CNN) and previous
transformer networks (DETR). The experimental results are shown in Table 3.

Table 3. Detection and segmentation performance of different methods.

Various Frameworks

Method Backbone APbox APbox
50 APbox

75 APbox
s APmask APmask

50 APmask
75 APmask

s ARS FPS

Mask
R-CNN

R-50
Swin-T
LPST

69.0
75.5
75.8

91.5
92.8
93.1

83.3
88.1
88.0

31.6
44.6
46.6

57.2
60.9
60.4

90.5
91.7
92.1

58.9
66.6
65.8

25.0
34.1
36.2

44.1
47.2
49.2

11.5
8.6
8.1

Cascade
Mask

R-CNN

R-50
Swin-T
LPST

72.1
77.2
77.4

91.0
92.7
93.0

83.3
87.6
88.0

31.3
41.5
46.7

56.6
60.7
61.3

90.3
91.4
91.7

57.7
66.3
68.3

32.9
31.7
36.8

38.5
45.5
50.0

8.4
5.4
5.1

Mask
Scoring R-50 71.9 91.5 84.5 40.3 60.7 90.4 67.4 32.4 43.5 11.4

Sparse
R-CNN R-50 73.9 91.0 83.8 35.4 39.4 13.4

PANet R-50 71.6 91.8 84.5 35.3 38.3 12.1
DETR R-50 65.3 86.7 74.3 21.4 29.7 15.1

275



Remote Sens. 2021, 13, 4779

Table 3 shows that, compared with the traditional CNN models, in each framework,
the use of the Swin transformer and the LPSW as the backbone network has a greater
improvement in the various indicators of the experimental results. Compared with the
previous transformer network, the experimental result of Swin-T based on Cascade Mask
R-CNN is 11.9% AP and 20.1% APs higher than DETR, which is sufficient to prove the
superiority of the Swin transformer. It overcomes the shortcoming of the transformer’s
poor small-scale objects detection and slow convergence.

At the same time, we compared the LPSW with Swin-T using the same basic frame-
work. The experimental results show that, after using the LPSW, the experimental indica-
tors are improved: when using the Cascade Mask R-CNN framework, APs increased by
5.2%, mask APS increased by 5.1%, ARs increased by 4.5%, and mask AP and AP increased
by 0.6% and 0.2%, respectively. The data show that, for the Swin transformer, the LPSW
significantly improved the detection and segmentation of small-scale objects without a
significant reduction in the inference speed. Due to the large number of small objects in
remote sensing images, this improvement was exactly what was necessary.

The result generated by the traditional Cascade Mask R-CNN, the Swin-T, and LPSW
are shown in Figures 10–12. Compared with the traditional CNN network, the Swin
transformer pays more attention to the learning of global features; particularly, the detection
ability of image edge objects was greatly improved. As shown in the enlarged images on
the right side of Figures 10 and 11, Cascade Mask R-CNN has a low confidence in terms of
the detection of ships in the upper right of the image, and false detection objects appeared.
The Swin transformer does not detect false objects for the same edge detection area, and
the confidence of object detection increases.

Compared with the Swin transformer, the LPSW pays more attention to local features.
As shown in Figures 11 and 12, the most obvious difference between the two images is that
the LPSW eliminates the false detection of white buildings in the lower part of the image.
In addition, the number of real objects detected by the LPSW increases, and the confidence
of object detection also improves.

Figure 10. The results of Cascade Mask R-CNN using the Resnet-50 backbone.
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Figure 11. The results of Cascade Mask R-CNN using the Swin transformer backbone.

Figure 12. The results of Cascade Mask R-CNN using the LPSW backbone.

4.3.3. Experience for SAIEC and the New Network Model

We used the newly designed SAIEC network framework to perform object detection
and instance segmentation on remote sensing images. The MRS-1800 dataset was used,
and the backbone network used the LPSW and Swin-T. In order to verify the effectiveness
of the improved model designed, we compared the experimental results with data in
Section 4.3.1. At the same time, we compared and analyzed the designed model with the
current SOTA object detection model on the COCO dataset (the Swin transformer using an
HTC framework) [18].

Since this paper improves Cascade Mask R-CNN and the Swin transformer, respec-
tively, we considered Swin-T using the Cascade Mask R-CNN framework as the baseline.
It can be concluded from Table 4 that, compared with the baseline, the object detection
and instance segmentation model we designed (the SAIEC network framework using the
LPSW backbone) saw an improvement in all indicators. Among them, mask AP increased
by 1.7%, mask AP75 increased by 4.0%, mask APS increased by 3.6%, AP increased by 1.1%,
APS increased by 4.6%, and ARS increased by 7.7%.
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Table 4. Performance comparison of each part of the improved model.

Method APbox APbox
50 APbox

75 APbox
s APmask APmask

50 APmask
75 APmask

s ARS FPS

Cascade Mask R-CNN
(Swin-T) baseline 77.2 92.7 87.6 41.5 60.7 91.4 66.3 31.7 45.5 5.4

Cascade Mask R-CNN
(LPSW) 77.4 93.0 88.0 46.7

(+5.2) 61.3 91.7 68.3 36.8
(+5.1) 50.0 5.1

HTC (Swin-S [18]) 77.8 93.3 88.1 46.6 61.9 92.4 68.8 35.9 51.8 4.6
HTC (Swin-T) 77.4 92.7 88.2 41.7 61.6 91.9 69.7 31.4 49.6 5.4

SAIEC (Swin-T) 77.8 93.2 88.7 43.4 62.3 92.0 69.4 33.7 50.0 5.5
SAIEC (LPSW)

(ours)
78.3

(+1.1) 93.0 88.7 46.1
(+4.6)

62.4
(+1.7) 92.3 70.3

(+4.0)
35.3

(+3.6)
53.2

(+7.7) 5.1

The data show that the network model we designed greatly improved the detection
and segmentation of small-scale objects in remote sensing images. The increase in the
detection rate of small-scale objects affects the improvement of AP75 and mask AP75. Com-
pared with the current SOTA network (the Swin transformer using an HTC framework),
the indicators of the model designed in this article are similar or even surpassed, and the in-
ference speed is higher (5.1 FPS vs. 4.6 FPS). The above experimental data demonstrate the
advantages of the model proposed in this paper in remote sensing image object detection
and instance segmentation.

Figure 13 shows the remote sensing image segmentation results of traditional Cascade
Mask R-CNN, the Swin transformer using Cascade Mask R-CNN and the network pro-
posed in this paper. It can be seen from the figure that Cascade R-CNN is not ideal in terms
of overall segmentation effect or edge detail processing. Although the Swin transformer is
optimized for the overall segmentation effect, it does not accurately present the details of
the edge. In contrast, it can be seen from the figure that the network model proposed in
this paper shows good results in remote sensing images, and the details at the edges are
well segmented.

Figure 13. Segmentation results of remote sensing images by various networks. (a–c) Detection results of the traditional
Cascade Mask R-CNN, the Swin transformer using Cascade Mask R-CNN and the LPSW using SAIEC.
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5. Discussion

Because convolutional neural networks (CNN) have shown defects in the object
detection of remote sensing images. We innovatively introduced the Swin transformer
as the basic detection network, and designed the LPSW backbone network and SAIEC
network framework for improvement. Experimental results show that the new network
model we designed can greatly improve the detection effect of small-scale objects in
remote sensing images and can strengthen the segmentation accuracy of multi-scale objects.
However, it is worth noting that our experiment was only conducted on the MRS-1800
dataset due to the lack of mature and open remote sensing mask datasets, which may be
limited in number and type. Moreover, our research on the improvement and promotion
of the model inference speed is not sufficient. Generally, the processed images will be
affected by uncertain factors [42]; however, it is also necessary to use fuzzy preprocessing
techniques on images. In future research, we will focus on solving the above problems.
First, we will search for and create more remote sensing mask datasets containing more
object types, and use more realistic and representative datasets to validate our new models.
Secondly, designing a lightweight network model to improve the inference speed without
the loss of detection accuracy will be our next research direction.

6. Conclusions

Remote sensing image object detection and instance segmentation tasks have impor-
tant research significance for the development of aviation and remote sensing fields, and
have broad application prospects in many practical scenarios. First, we created the MRS-
1800 remote sensing mask dataset, which contains multiple types of objects. Second, we
introduced the Swin transformer into remote sensing image object detection and instance
segmentation. This paper improved the Swin transformer based on the advantages and
disadvantages of transformers and CNNs, and we designed the local perception Swin
transformer (LPSW) backbone network. Finally, in order to increase the mask prediction
accuracy of remote sensing image instance segmentation tasks, we designed the spatial
attention interleaved execution cascade (SAIEC) network framework. Experimental con-
clusions can be drawn for the MRS-1800 remote sensing mask dataset: (1) According to
experiments, the SAIEC model using the LPSW as the backbone can improve mask AP by
1.7%, mask APS by 3.6%, AP by 1.1%, and APS by 4.6%. (2) The innovative combination of
CNNs and transformers’ advantages in capturing local information and global information
can significantly improve the detection and segmentation accuracy of small-scale objects.
Inserting the interleaved execution structure and the improved spatial attention module
into the mask head can help to suppress noise and enhance the mask prediction of the
network. (3) Compared with the current SOTA model in the COCO dataset, the model
proposed in this paper also demonstrates important advantages.
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Abstract: To meet the need for multispectral images having high spatial resolution in practical
applications, we propose a dense encoder–decoder network with feedback connections for pan-
sharpening. Our network consists of four parts. The first part consists of two identical subnetworks,
one each to extract features from PAN and MS images, respectively. The second part is an efficient
feature-extraction block. We hope that the network can focus on features at different scales, so we
propose innovative multiscale feature-extraction blocks that fully extract effective features from
networks of various depths and widths by using three multiscale feature-extraction blocks and
two long-jump connections. The third part is the feature fusion and recovery network. We are
inspired by the work on U-Net network improvements to propose a brand new encoder network
structure with dense connections that improves network performance through effective connections
to encoders and decoders at different scales. The fourth part is a continuous feedback connection
operation with overfeedback to refine shallow features, which enables the network to obtain better
reconstruction capabilities earlier. To demonstrate the effectiveness of our method, we performed
several experiments. Experiments on various satellite datasets show that the proposed method
outperforms existing methods. Our results show significant improvements over those from other
models in terms of the multiple-target index values used to measure the spectral quality and spatial
details of the generated images.

Keywords: convolutional neural network; double-stream structure; feedback; encoder–decoder
network; dense connections

1. Introduction

Satellite technology has developed rapidly since the last century, and remote sensing
satellite images have gained widespread attention and applications in many fields. They
provide an important reference for applications in digital maps, urban planning, disaster
prevention and control, emergency rescue, and geological observations [1–4].

In most practical applications, remote sensing images with high spatial resolution and
high spectral resolution are required. Given the physical structure of satellite sensors, a
single sensor is unable to achieve this. Earth-observation satellites, such as Quick-Bird,
IKONOS, and World-View, are equipped with sensors for obtaining high-spatial-resolution
images for single bands and multispectral sensors for obtaining low-spatial-resolution
images for multiple bands, which are acquired as panchromatic (PAN) and multispectral
(MS) images, respectively.

In order to fully utilise all of the information available in the two types of images, PAN
and MS images are usually fused using a pan-sharpening algorithm to simultaneously
generate images having PAN image spatial resolution as well as the corresponding MS
image spectral resolution. This results in images with high spatial resolution and high
spectral resolution, which practical applications need.

Owing to the need for high-quality remote sensing images in practical applications,
many researchers have studied varied directions related to pan-sharpening algorithms:
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(1) component substitution (CS) [5–8], (2) multiresolution analysis (MRA) [9–13] (3) model-
based algorithms [14–20], and (4) algorithms for deep learning. The representative CS
algorithms are principal component analysis (PCA) [5], intensity-hue-saturation (IHS)
transform [6], Gram–Schmidt (GS) sharpening [7], and partial substitution (PRACS) [8].
These methods all adopt the core idea of the CS method, namely to first rely on the
MS image in another space to separate the spatial-structure component and the spectral-
information component, then match the PAN image and spatial-structure component
using histograms and complete the replacement or partial replacement. This makes the
PAN image have the same mean and variance as the spatial component. Finally, the pan-
sharpening task is completed through an inverse transformation operation. These methods
can achieve good results when PAN images are highly correlated with MS images, but
owing to spectral differences between MS and PAN images, CS methods often encounter
spectral-preservation problems and suffer from spectral distortion. Methods based on
MRA are more straightforward than CS-based methods; these extract details from the PAN
images and then inject them into the upsampled MS images. This approach makes the
quality of the output image sensitive to the details of the injection, which makes the image
blurred, while excessive detail injection leads to artifacts and spectral distortion. Decimated
wavelet transform [9], atrous wavelet transform [10], Laplacian Pyramid [11], curvelet [12],
and non-subsampled contourlets transform [13] are examples of this approach. The hybrid
method combines the advantages of the CS and MRA methods to improve the spectral
distortion and fuzzy spatial-detail deficiencies, resulting in better fusion results.

Model-based methods are mainly based on the mapping relationship between MS
images, PAN images, and the desired high-resolution multispectral (HRMS) images. If
pan-sharpening can be viewed as an inverse problem, the PAN and MS images can be
understood as degraded versions of the HRMS images and can be recovered through opti-
mization procedures. As considerable information is lost during the degradation process,
this is an unsettled problem. The general practice is to introduce prior constraints and regu-
larization methods into formulas to fuse the images and thus to solve this ill-posed inverse
problem. Representative algorithms include sparsity regularization [14], Bayesian posterior
probability [15], and variational models [16]. A hierarchical Bayesian model to fuse many
multiband images with various spectral and spatial resolutions is proposed [17]. An online
coupled dictionary learning (OCDL) [18], and two fusion algorithms [19] that incorporate
the contextual constraints into the fusion model via MRF models have been proposed. As
these methods are highly dependent on regularization terms, the resulting solutions are
sometimes unstable [20]. These methods have much more temporal complexity than many
other algorithms, but they can make immense progress in gradient information extraction.

In recent years, with the rapid development of artificial intelligence, algorithms based
on deep learning methods have achieved impressive results in various image-processing
domains. In the field of computer vision, CNNs have been successfully applied to a large
number of domains, including target detection [21], medical segmentation [22], image
fusion [23], and image reconstruction [24]. Due to the superior feature-representation capa-
bilities of deep convolutional neural networks, many researchers have used the technique
for pan-sharpening [25,26].

To some extent, image super-resolution reconstruction is a task associated with whole-
chromatic sharpening, as super-resolution and euchromatic sharpening are both designed
to improve image resolution. However, there are some differences between them, as the
former is usually a single-input, single-output process, while the latter is a multiple-input,
single-output case. Therefore, in earlier work, the PAN image and the MS image are
usually cascaded together in the input grid for training, treating the pan-sharpening task
as an image-regression task. Inspired by the super-resolution work based on CNN [27],
Masi et al. [28] followed the three-layer CNN architecture in SRCNN to implement pan-
sharpening and increase input by introducing nonlinear radiation exponents. This is the
first application of pan-sharpening in the generalised sharpening field. In light of the signifi-
cant improvement of the network training effect due to the residual structure, Rao et al. [29]
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proposed RCNNP, a residual convolutional neural network for pan-sharpening, which
continued to use a three-layer network structure when the idea of jump connections was
introduced to help the network with training. Wei et al. [30] designed a deep residual
network (DRPNN) to complete the pan-sharpening task, and they extended the depth
of the network to eleven layers, which improved the network performance. Based on
these three papers, He et al. [31] proposed two networks employing detail-injection ideas
while clarifying the role of CNN in the pan-sharpening task from a theoretical perspective
and clearly explaining the effectiveness of adding residual structure for pan-sharpening
network improvement.

Although earlier CNN-based methods achieved better results than previous methods,
they did not take into account the importance of spatial and spectral retention in the fusion
process, treating it as a black-box learning process. To enhance the network’s ability to retain
both spatial and spectral information, Yang et al. [32] proposed a deep network architecture
for pan-sharpening (PanNet), which differs from the other methods. To preserve the
spectral information, they propose a method, called spectral mapping, that directly mapps
the upsampled multispectral images to the network output for lossless propagation. To
enhance the network’s focus on the spatial structure in PAN images, PanNet, unlike the
previous work, chose to train the network in high-frequency domains. This idea from an
earlier work helped them achieve remarkable results, but it had some limitations. It is
generally believed in the pan-sharpening field that PAN and MS images contain different
information. PAN images are the carriers of geometric-detail (spatial) information, while
MS images provide the spectral information required to fuse the images. Although PanNet
trains the network in the high-frequency domain, it still inputs PAN images and MS images
after cascading into the network. This operation prevents the network from completely
extracting different features contained in PAN and MS images and allows the network
to effectively utilise varied spatial information and spectral information. Concurrently, it
only uses a simple residual structure that complements the extraction of image features at
various scales and lacks the ability to more efficiently recover details from the features. As
the network outputs the fusion results directly through a convolutional layer, the network
cannot make full use of all the features extracted by various residual blocks, affecting the
final fusion effect.

In this study, we are inspired by the ideas of the detail-injection network and image
super-resolution reconstruction network. We propose a dense encoder–decoder network
with feedback connections for pan-sharpening. As the CNN methods in earlier works
either viewed euchromatic sharpening as a super-resolution problem [29,30] or used a CNN
as a tool to extract spatial details [31,32], they generate results with good visual quality, but
spectral distortion or artifacts still exist. This is mainly because it is almost impossible to
individually extract features representing spatial or spectral information from the input
network by stacking the PAN image and the MS information together. To address this issue,
we choose to perform image fusion at the feature level rather than at the pixel level, as in
earlier works. We use a dual-stream network structure to extract features from the PAN and
MS images separately, which allows the network to efficiently extract the desired spatial
information and spectral information without interference. To extract richer and efficient
multiscale features from images, we input efficient multiscale feature-extraction modules
from the two-stream network. Given the powerful multilevel feature-extraction, fusion,
and reconstruction capabilities of the encoder–decoder, the extracted multiscale features
are encoded and decoded based on the idea of dense connections. The shallow networks
are limited by the receptive field size and can only extract coarse features, which we have
repeated in subsequent networks, owing to the idea of dense connections, which partly
limits the learning power of the network. We, therefore, introduce a feedback-connectivity
mechanism that transfers deep features back to the shallow network through long-jump
connections to optimise coarse low-level features and improve early reconstruction capabil-
ity by completing preliminary reconstructed-image correction for some incorrect features
in the early network. Concurrently, we follow the idea of detail injection, using the fusion
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results of the network as the detail branch and low resolution multispectral (LRMS) images
as the approximate branch. Both can help the network obtain excellent HRMS images.

In conclusion, the main contributions of this study are as follows:

1. We propose a multiscale feature-extraction block with an attention mechanism to
address the issue of insufficient network extraction ability to extract diverse scales,
which can not only effectively extract multiscale features but also utilise feature
information between multiple channels. In addition, the spatial and channel-attention
mechanisms can effectively enhance the acquisition of important features to the
network so as to help the fusion and reconstruction of the later network.

2. We propose an efficient feature-extraction block with two-way residuals, which stacks
three multiscale feature-extraction blocks, enables the network to extract multiscale
features at different depths, and maps low-level features to high-level space with two
jump connections for the purpose of collecting more information.

3. We use a network structure with a multilayer encoder and decoder combined with
dense connections to complete the task of integrating and reconstructing the extracted
multiscale spatial and spectral information. As the task of the deep network is to
encode the semantic information and abstract information of images, it is difficult
for the network to recover texture, boundary, and colour information directly from
advanced features, but shallow networks are excellent at identifying such detailed
information. We inject low-level features into high-level features via long-jump
connections, making it easier for the network to recover fine real images, while
numerous dense connection operations bring the feature graph at the semantic level
in the encoder closer to the feature graph in the decoder.

4. We inject HRMS images from the previous subnetwork into the shallow structure of
the latter subnetwork, complete the feedback connectivity operation, and attach the
loss function to each subnetwork to ensure that correct deep information can be trans-
mitted backwards in each iteration and the network can obtain better reconstruction
capabilities earlier.

The rest of this article is arranged as follows. We present the relevant CNN-based work
that inspired us in Section 2 and analyse networks that have achieved significant results in
the current pan-sharpening work based on CNN. Section 3 introduces the motivation of
our proposed dense encoder–decoder network with feedback connections and explains in
detail the structure of each part of the network. In Section 4, we show the experimental
results and compare them with other methods. We discuss the validity of the various
structures in the network in Section 5 and summarise the paper in Section 6.

2. Background and Related Work

2.1. Convolutional Neural Networks

Based on work in other fields, it is shown that better results can be obtained by
increasing the depth and width of the network [33,34]. However, blindly increasing the
depth of the network does not improve the network effectively. Worse, the problem of
gradient explosion and gradient extinction occurs during training with increasing network
depth, hampering networks with deeper and more complex structures. To overcome this
difficulty, He et al. [35] proposed a residual learning framework to reduce the difficulty of
network optimization and reduce degradation problems so that a deeper network structure
could be used in the task. The advent of ResNet made network optimization simpler and
allowed researchers to design deeper and more complex network structures to improve
results. Based on this work, Huang et al. [36] proposed the intensive connection network
(DenseNet) by fully injecting simple features of shallow networks into deep networks,
achieving better performance than ResNet but requiring fewer parameters and lower
computational costs.

Olaf et al. [23] proposed a U-Net network with a fully symmetrical encoder–decoder
structure. The encoder structure in the first half of the network obtains multiscale features
by reducing the spatial dimension, and the decoder structure in the second half progres-
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sively recovers the details and spatial dimensions of the image. The loss of information
during downsampling is compensated for by adding a shortcut connection between the
encoder and the decoder, which helps the decoder to better fix the details of the target. This
network structure has provided immense inspiration to other researchers. Zhou et al. [37]
proposed the U-Net++ network based on the U-Net network, introducing the idea of dense
connectivity into the network. They took advantage of long and short connections to allow
the network to grasp various levels of features and integrate them through a feature super-
position manner while adding a shallower U-Net structure to ensure smaller differences
in feature-graph scaling at fusion. Huang et al. [38] improved the U-Net structure from
another angle, and U-Net 3+ redesigned the jump connection compared to U-Net and
U-Net++. To enhance the network’s ability to explore full-scale information, they proposed
full-scale jump connections, where each decoder layer in U-Net 3+ incorporates feature
maps from small-scale and same-scale features in the encoder and large-scale features
from the decoder, where fine-grained and coarse-grained semantics enable the network to
produce more accurate location perception and boundary-enhanced images.

These network structures, which have achieved remarkable results in other fields,
have considerably inspired researchers performing pan-sharpening work and have been
applied to the core ideas of these networks in recent CNN-based pan-sharpening work,
achieving good results.

2.2. CNN-Based Pan-Sharpening

Inspired by the idea of traditional pan-sharpening methods to improve the struc-
tural consistency of fusion images by using the Qualcomm information of PAN images,
Yang et al. [32] proposed a network structure called PanNet. Inspired by enhanced network
performance in U-Net [37], RBDN [39] and GoogLeNet [34] that enhanced the multiscale
feature grasping of networks, Fu et al. [40] presented an improved approach based on
the original structure of PanNet. As the introduction of extensive pooling operations
to obtain abstract features results in irreparable loss of spatial information, the network
used to perform pan-sharpening does not expand the receptive field after downsampling
images by pooling operations to obtain multiscale features. However, removing pooling
operations slows down the increase in receptive fields. Simultaneously, because PanNet
uses high-frequency information as input, it is equivalent to only fine details and edges
being input into the network, and extracting multiscale features in a hierarchical way leads
to limited multiscale representation ability of the network. To overcome this difficulty, they
proposed a grouped multiscale expansion block based on expansion convolution [41] to
extract the multiscale representation at the fine-granular level.

As PAN images are the carriers of spatial information in pan-sharpening work while
MS images provide spectral information, recent work abandoned the practice of stack-
ing PAN images and MS input networks as in earlier works [28–32], instead extracting
features separately and choosing to fuse images in the feature domain rather than the
pixel domain. Liu et al. [42] proposed a dual-stream fusion network for pan-sharpening
where, to make full use of the spatial and spectral information in the image, they used
two identical subnetworks to extract complementary information and features of PAN
and MS images. To recover fine and realistic details from the extracted features, they
introduced the encoder–decoder structure from U-Net [37] into pan-sharpening. Further-
more, to enhance the network to utilise all levels of features, the encoder was added to the
decoder and connected to the corresponding feature maps to inject more details lost during
downsampling. In a subsequent work, Liu et al. [43] proposed an improvement on TFNet,
called ResTFNet, that further improves the performance of the proposed network by using
basic residual blocks instead of the continuous convolutional layer in TFNet. Inspired
by the dual-stream network structure, Fu et al. [44] proposed a network structure called
TPNwFB that, after extracting spatial and spectral information, introduces a feedback
connectivity mechanism to implement a subnetwork iterative process using recurrent
structures, which allows strong-deep feature backflow to modify poor low-level features.

287



Remote Sens. 2021, 13, 4505

In TPNwFB, input features are iteratively upsampled and downsampled in TPNwFB to
achieve a reverse projection mechanism, enabling feature-extraction blocks to generate
more powerful features. As early networks using MSE loss-constraint networks made
images too smooth and lost edge information, TFNet, ResTFNet, and TPNwFB were trained
using MAE loss-constraint networks.

Liu et al. [45] used a dual-stream network to extract PAN and MS image features and
an encoder–decoder structure for fusion and reconstruction of images. They also introduces
the idea of generating an adversarial network for the first time in pan-sharpening work,
proposing a network called PSGAN. In this GAN-based model, the generator attempts
to generate images similar to the ground truth values, while the discriminator attempts
to distinguish between the generated images and the HRMS images. PSGAN builds
a generator through a dual-stream network that generates high-quality HRMS images
using encoders and decoders, and then introduces a five-layer structured network as
a discriminator. Shao et al. [46] reference a PSGAN network by proposing a network
structure called RED-cGAN. Unlike the former, RED-cGAN discards the operation of
up and downsampling in the network and replaces additional constraints as an input
discriminator from an LRMS image for a PAN image. The two models differ from other
methods by using multiple loss functions to constrain network learning rather than network
training using MSE or MAE loss functions alone.

Zhang et al. [47] proposed a multilevel dense neural network for pan-sharpening.
They made some modifications to the original DenseNet to enable it to complete the
pan-sharpening task. They combined dual-stream and densely connected networks. To
make full use of spatial and spectral information, the network in the hierarchical feature
extraction and image reconstruction fraction consists of up to 83 convolutional layers, deep
networks that have never been used in other pan-sharpening work. Li et al. [48] proposed
to obtain higher performance HRMS images by using a network structure called MDECNN.
They adopted a similar idea to PanNet to train the network in the high-frequency domain
and enhance the spectral information of the image by spectral mapping but used a two-
stream network to extract features for the PAN and MS images separately. Moreover, in
their network, the feature information of the PAN image is extracted by using a multiscale
feature-extraction module, and a parallel expansion of convolutional blocks is used to
obtain the features of the various receptive fields of the image. MDECNN encodes and
decodes U-Net-like structures and designs dense encoding blocks to comprehensively
image deep images with a symmetric structure with the same number of encoders and
decoders but discards upsampling and downsampling operations in the U-Net network
and replaces the jump connections in the encoder and decoder for dense connections
between all convolutional layers. The network is constrained by a mixed loss function,
which is a combination of MSE loss and MAE loss. The loss of spectral information is
constrained by MSE loss, and MAE is used as a constraint on spatial loss.

3. Proposed Network

In this section, we detail the specific structure of the DEDwFB model presented
in this study. As we use a detail-injection network, our proposed network has clear
interpretability. The use of dense and feedback connections in the network gives the
network excellent early ability to reconstruct images, while effective feature reuse helps the
network alleviate the challenge of gradient disappearance and gradient explosion during
gradient transmission, giving the network very good performance against overfitting. We
give a detailed description of each part of the proposed network framework. As shown
in Figures 1 and 2, our model consists of two branches. One includes the LRMS image-
approximation branch, which provides most of the spectral information and a small amount
of spatial information needed to fuse the images, while the other is the detailed branch
used to extract spatial details. This structure has clear physical interpretability, and the
presence of approximate branching forces CNN to focus on learning the section information
needed to complement LRMS images, which would reduce uncertainty in network training.
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The detail branch has a structure similar to the encoder–decoder system, consisting of a
two-path network, multiscale feature-extraction networks, feature-fusion and recovery
networks, feedback connectivity structures, and image-reconstruction networks.

Figure 1. Detailed structure of the proposed multistage dense encoder–decoder network with feedback connections. Red
lines denote the feedback connections.

Figure 2. Specific structure of each subnet.

3.1. Two-Path Network

In pan-sharpening, it is widely accepted that the PAN and MS images contain different
information. PAN images are the carriers of geometrical detail information, while MS
images provide spectral information for the fusion images. The goal of pan-sharpening is
to combine spatial details and spectral information to generate new HRMS images.

Although PAN images are considered carriers of spatial information, they may also
contain spectral information. Similarly, the spatial information required for the HRMS
image is also present in the MS image. To make full use of the information of PAN and
MS images, we rely on CNN to fully extract the varied spatial and spectral information in
the images and to perform feature-fusion reconstruction and image-recovery work in the
feature domain.

We used two identical network results to extract features from the PAN and MS
images separately. One network took single-band PAN images (size H ×W × 1) as input,
while the other network used multiband MS images (size H × W × N) as input. Before
entering the network, we upsampled the MS images by transposition convolution to
make them the same size as the PAN image. Each subnetwork consists of two separate
convolutional layers and a subsampling layer, each followed by a parametric rectified linear
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unit (PReLU). The downsampling operation improves the robustness of the input image to
certain perturbations while obtaining features of translation invariance, rotation invariance,
and scale invariance and reduces the risk of overfitting. Most CNN architectures utilise
maximum or average pooling for downsampling, but pooling results in an irreparable loss
of spatial information, which is unacceptable for pan-sharpening. Therefore, throughout
the network, we use a convolutional kernel of step 2 for downsampling rather than simple
pooling. The two-path network consists of two branches, each including two Conv3,64(·)
layers and one Conv2,32(·) layer. We use Conv f ,n(·) to represent convolution layers with
size f × f convolution kernels and n channels and use δ(·) to represent the PReLU activation
function, fMS, while fPAN represents the extracted MS and PAN image features, respectively,
and ⊗ represents the concatenation operation:

fMS = δ(Conv2,32(δ(Conv3,64(δ(Conv3,64(ILRMS)))))), (1)

fPAN = δ(Conv2,32(δ(Conv3,64(δ(Conv3,64(IPAN)))))), (2)

fP+M = fMS ⊗ fPAN , (3)

3.2. Multiscale Feature-Extraction Network

Remote sensing images contain a large number of large-scale objects, such as buildings,
roads, vegetation, mountains, and water bodies, as well as vehicles, ships, pedestrians, and
municipal facilities. In order to obtain more accurate HRMS images, our network needs
to have the ability to fully capture features having different scales from the PAN and MS
images. The depth and width of the network have a clear effect on the network’s ability
to acquire multiscale features. With a deeper network structure, the network can learn
richer feature information and context-related mapping. Owing to the emergence of the
ResNet [35] network structure, optimizing the network training process by adding skip
connections effectively solves the issues of gradient explosion, gradient disappearance,
and training difficulties as the network structure deepens, ensuring that we can use deeper
networks to obtain features at various scales. The inception structure proposed by an
earlier study [34] fully extends the width of the network so that the network can acquire
features of various scales at the same depth.

Inspired by the idea of enhancing network feature extraction by extending network
depth and width, we propose an efficient feature-extraction block (EFEB) to help the
network efficiently acquire features at various scales. As shown in Figure 3, EFEB consists
of three identical multiscale feature-extraction blocks (MFEB) with attention mechanisms
and two jump connections. MFEB can help the network acquire local multiscale features
by extending network width at a single depth, while EFEB uses multiple MFEB features
at various depths. As each MFEB output contains different features and makes full use of
these different hierarchical features, we use a simple hierarchical feature-fusion structure
that maps low-level features to advanced space through two jump connections, giving
EFEB more efficient multiscale feature grasping.

Figure 3. Specific structure of the efficient feature-extraction block.
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Inspired by GoogLeNet, MFEB was designed to expand the ability of the network
to obtain multiscale features using a structure shown in Figure 4. To obtain features at
different scales in the same level of the network, we used four parallel branches for separate
feature extraction. On each clade, we used convolutional nuclei of sizes 3 × 3, 5 × 5, 7 × 7,
and 9 × 9, respectively, to obtain receptive fields at different scales. However, this results in
high computational costs, which increases the training difficulty of the network. Inspired
by the structural improvement work of PanNet in a study [40], we chose to similarly
use the dilated convolution [41] operation to expand the receptive field of small-scale
convolutional kernels without additional parameters. As void convolution is a sparse
sampling method, with a mesh effect when multiple void convolutions are superimposed,
some pixels are not utilised at all while losing the continuity and correlation of information.
This results in a lack of correlation between features obtained from distant convolution,
which severely affects the quality of the last-obtained HRMS images. To mitigate this
concern, we introduce Res2Net [49]’s idea to improve the dilated convolution.

We used a dilated convolution block on each branch to gain more contextual informa-
tion using a 3 × 3 layer and set the expansion rate to 1, 2, 3, and 4, equivalent to our use of
convolutional kernels of sizes 3 × 3, 5 × 5, 7 × 7, and 9 × 9 but using a minimal number
of parameters. To further expand the receptive field and obtain more sufficient multiscale
features, we processed the features using a convolutional layer of 3 × 3 on each clade.

To mitigate the issue of grid effects caused by dilated convolution and the lack of
correlation between the extracted features, we connected the output of the former branch
to the next branch by jumping, which is repeated several times until the outputs of all
branches are processed. This allows for different scale features to be effectively complemen-
tary and the loss of detailed features and semantic information to be avoided as large-scale
convolutional kernels can be dominated by multiple small-scale convolutional cores. Jump
connections between branches allow each branch to have continuous receptive fields of 3,
5, 7, and 9, respectively, while avoiding information loss from continuous use of dilated
convolution. Finally, we fused the results from the four pathway cascades through a 1 × 1
convolutional layer. We then used spatial and channel-attention mechanisms through
compressed spatial information to measure channel importance and compressed channel
information to obtain measures of spatial location importance. Indicators indicate the
importance of different feature channels and spatial locations that can help the network
enhance features more important to the current task. To better preserve intrinsic infor-
mation, the output features are fused to the original input in a similar manner, and the
jump connections across the module effectively reduce training difficulty and possible
degradation. This procedure can be defined as:

x = δ(Conv1,64( f3×3 ⊗ f5×5 ⊗ f7×7 ⊗ f9×9)), (4)

FCSE(x) = σ(Conv1,64(δ(Conv1,32(μ(x))))), (5)

FSSE(x) = σ(Conv1,1(x)), (6)

FMFEB = FCSE(x) ∗ x + FSSE(x) ∗ x + x, (7)

We use Conv f ,n(·) to represent convolution layers with size f × f convolution kernels
and n channels.δ(·),δ(·), and μ(·) represent the sigmoid activation functions, PReLU activa-
tion function, and global average pooling layer, respectively. FCSE(x) and FSSE(x) represent
the measures of channel importance and the measures of spatial location importance, re-
spectively. Furthermore, x represents multiscale features extracted from four branches with
different-scale receptive fields, and ⊗ represents the concatenation operation.
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Figure 4. Detailed structure of the multiscale feature-extraction block.
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3.3. Feature Fusion and Recovery Networks

To effectively fuse the various levels of extracted multiple-scale features and recover
high-quality HRMS images, we propose a feature-fusion and recovery block (FFRB) com-
posed of densely connected encoders and decoders. The concrete structures of the FFRB
and residual block are shown in Figure 5. CNN-based pan-sharpening approaches, such
as TFNet [42], ResTFNet [43], PSGAN [45], and RED-cGAN [46] adopt a fully symmetric
encoder–decoder framework structure and achieve remarkable results. Unlike these works
on network design based on the U-Net [23] infrastructure, we are inspired by U-Net++ [37]
and U-Net3+ [38] to propose more complex but more efficient encoder–decoder structures.

Figure 5. Structure of the proposed residual block and the feature-fusion recovery block.

Owing to the different size of the receptive field, the shallow structure of the network
focuses on capturing some simple features, such as boundary, colour, and texture infor-
mation, whereas deep structures are good at capturing semantic information and abstract
features. The downsampling operation improves the robustness of the input image to
certain perturbations while obtaining features of translation invariance, rotation invariance,
and scale invariance and reducing the risk of overfitting. Continuous downsampling can
increase the receptive-field size and help the network fully capture multiscale features.
The downsampling operation helps the encoder fuse and encode features at different
levels, the edge and detail information of the image are recovered through the upsampling
operation and decoder, and the reconstruction of the fusion image was initially completed.
However, multiple downsampling and upsampling operations can cause edge information
and small-scale object loss. The complex-encoded semantic and abstract information also
poses substantial difficulties for the decoder.

As shown in Figure 5, we used four residual blocks and three downsampling opera-
tions to compose the encoder network. Unlike other fully symmetrical encoder–decoder
structures in the work, we used six residual blocks to constitute the decoder network and
add an upsampling layer before each decoder. In the network, we doubled the number of
channels of the feature graph by each subsampled layer and halve the number of feature-
graph channels at each upsampled layer. As we changed the number of channels after
each downsampling and upsampling, given that the jump connection of the residual block
requires input and output with the same number of channels, we changed the number of
channels via a 1 × 1 convolutional layer.
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To effectively compensate for the information lost in multiple downsampling and
upsampling operations and to reduce the difficulty for the decoder to recover features from
highly complex and abstract information, we introduced the idea of dense connectivity in
the encoder-decoder structure, adding dense connectivity between encoders and decoders
with the same size of the feature graph, which not only places the encoder and decoder at
a similar semantic level but also improves the ability of the network to resist overfitting.
Different levels of features focus on different information but are consistent with the
importance of completing pan-sharpening, and in order to obtain higher precision images
while enhancing the ability of the network to explore full-scale information and make full
use of all levels of features, we also added dense connections between decoders acting on
the same encoder. The input to each decoder is composed of feature maps in encoders and
decoders with the same scale and large scale that capture fine-grained and coarse-grained
semantics at the full scale.

3.4. Feedback Connection Structure

Li et al. [50] carefully designed a feedback block to extract powerful high-level rep-
resentations for low-level computer-vision tasks and transmit high-level representations
to perfect low-level functions. Fu et al. [44] added this feedback connection mechanism
for super-resolution tasks to the network for pan-sharpening. They enable the feature-
extraction block to generate more powerful features by iterating the information in each
subnetwork to the same module of the next subnetwork, iteratively up and downsampling
the input features to achieve the feedback connectivity mechanism.

Our proposed network has a similar structure to that of TPNwFB, which consists of
four identical subnetworks, each with a specific structure, as shown in Figure 2. Compared
to feedforward connections, each network layer can only accept information from the previ-
ous layer, and the shallow network cannot access useful information from the deep network,
so it can only extract the underlying features, lacking sufficient context information and
abstract fields. Feedback connections can input features that have already completed
the initial reconstruction as depth information into the next subnetwork. The high-level
information transmitted can complement the semantic and abstract information lacking in
low-level features, correct the misinformation carried in low-level features, correct some
previous states, and provide the network with significant early reconstruction capability.

3.5. Image Reconstruction Network

We reconstructed the images from the recovered features using a residual block and
a convolution layer of 3 × 3. We upsampled the recovered features to the same scale as
the PAN image and injected them into the residual block after they were stacked with the
features extracted by the two-path network, which helps compensate for the information
lost by the network during convolution while effectively reducing the training difficulty
of the network. Finally, the detailed features needed to complement the LRMS images
were recovered by a convolutional layer and interacted with the LRMS in the approximate
branch to generate high-quality HRMS images. This procedure can be defined as:

Iout = ILRMS + δ(Conv3,4(FRB(Deconv2,64(FFEEB(·))⊗ fPAN ⊗ fMS))), (8)

We use ⊗ to represent cascading operations. Conv f ,n(·) and Deconv f ,n(·) represent
convolutional and deconvolutional layers, respectively, and f and n represent the size and
number of channels of convolutional kernels. FRB(·) and FFEEB(·) represent the residual
blocks and the feature-fusion reconstruction blocks, respectively.

3.6. Loss Function

The L2 loss function may cause local minimization problems and result in artifacts in
the image-smoothing region. Simultaneously, the L1 loss function yields a good minimum,
and the L1 loss function retains the spectral information, such as colour and brightness,
better than the L2 loss function. Therefore, we chose the L1 loss function to optimise
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the parameters of the proposed network. We attached the loss function to each subnet,
ensuring that the information passed to the latter subnetwork in the feedback connection
is valid:

loss =
1
N

N

∑
i=1
|Φ(X(i)

p , X(i)
m ; θ)− Y(i)|1, (9)

where X(i)
p , X(i)

m and Y(i) represent a set of training samples; X(i)
p and X(i)

m refer to the
PAN image and low-resolution MS image, respectively; Y(i) represents high-resolution MS
images; Φ represents the entire network; and θ is the parameter in the network.

4. Experiments and Analysis

In this section, we demonstrate the effectiveness and superiority of the proposed
method through experiments on the QuickBird, WorldView-2, WorldView-3, and IKONOS
datasets. In early experiments, the best model is selected for experiments by comparing
and evaluating the training and test results of various network parameter models. Finally,
the visual and objective metrics of our best model are compared with several existing
traditional algorithms and CNN methods to demonstrate the superior performance of the
proposed method.

4.1. Datasets

For QuickBird data, the spatial resolution of the MS image is 2.44 m, the spatial
resolution of the PAN image is 0.61 m, and the MS image has four bands, i.e., blue,
green, red, and near-infrared (NIR) bands, with a spectral resolution of 450–900 nm. For
WorldView-2 and WorldView-3 data, the spatial resolutions of the MS images are 1.84 m
and 1.24 m, respectively, the spatial resolutions of the PAN images are 0.46 m and 0.31 m,
respectively, the MS image has eight bands, i.e., coastal, blue, green, yellow, red, edge, NIR
and NIR 2 bands, and the spectral resolutions of the images are 400–1040 nm. For IKONOS
data, the spatial resolution of the MS image is 4 m, the spatial resolution of the PAN image
is 1 m, and the MS image has four bands, i.e., blue, green, red, and near-NIR bands, with a
spectral resolution of 450–900 nm.

The network architecture in this study was implemented using the PyTorch deep
learning framework and trained on an NVIDIA RTX 2080Ti GPU. The training time for the
entire program was approximately eight hours. We used the Adam optimisation algorithm
to minimise the loss function and optimise the model. We set the learning rate to 0.001 and
the exponential decay factor to 0.8. The LRMS and PAN images were both downsampled by
Wald’s protocol in order to use the original LRMS images as the ground truth images. The
image patch size was set to 64 × 64 and the batch size to 64. To facilitate visual observation,
the red, green, and blue bands of the multispectral images were used as imaging bands of
RGB images to form colour images. The results are presented using ENVI. In the calculation
of image-evaluation indexes, all the bands of the images were used simultaneously.

Considering that different satellites have different properties, the models were trained
and tested on all four datasets. Each dataset is divided into two subsets, namely the training
and test sets, between which the samples do not overlap. The training set was used to
train the network, and the test set was used to evaluate the performance. The sizes of the
training and test sets for the four datasets are listed in Table 1. We used a separate set of
images as a validation set to assess differences in objective metrics and to judge the quality
of methods from a subjective visual perspective, each consisting of original 256 × 256 MS
images and original 1024 × 1024 PAN images.
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Table 1. Size of training and test sets for different satellite datasets.

Dataset Total Numbers Train Set Validation Set

QuickBird 950 750 200
WorldView-2 750 600 150
WorldView-3 1300 1000 300

IKONOS 160 144 16

4.2. Evaluation Indexes

We contrast the performance of different algorithms through two different types of
experiments, i.e., simulation experiments with HRMS images as a reference and real exper-
iments without HRMS images as a reference, because in the actual application scenarios of
remote sensing images, there is often a lack of HRMS images. In order to more objectively
evaluate and analyse the performance of different algorithms in different aspects of differ-
ent datasets, we selected ten objective evaluation indicators according to the characteristics
of simulation experiments and real experiments. Depending on whether or not reference
images are used, they can be divided into reference indicators and non-reference indicators.

The universal image quality index [51], averaged over the bands (Q_avg) and its
four-band extension, Q4 [52] represents the quality of each band and the quality of all the
bands, respectively. The relative global dimensional synthesis error (ERGAS) [32], also
known as the relative overall two-dimensional comprehensive error, is generally used as
the overall quality index. The relative average spectral error (RASE) [42] estimates the
overall spectral quality of the pan-sharpened image. Structural similarity (SSIM) [53] is a
measure of similarity between two images. The correlation coefficient (CC) [43] is a widely
used index for measuring the spectral quality of pan-sharpened images. It calculates
the correlation coefficient between the generated image and the corresponding reference
image. The spectral angle mapper (SAM) [54] measures the spectral distortion of the pan-
sharpened image compared with the reference image. It is defined as the angle between
the spectral vectors of the pan-sharpened image and the reference image in the same pixel.
The closer Q_avg, Q4, SSIM, and SCC are to 1, the better the fusion results, while the lower
SAM, RASE, and ERGAS are, the better the fusion quality.

To evaluate these methods in the full-resolution case, we used the reference-free
mass index (QNR) [55] and its spatial index (DS), as well as the spectral index (Dλ) for
quantitative evaluation. QNR primarily reflects the fusion performance with no real
reference values and is composed of Ds and Dλ. The Ds index being close to 0 indicates
good structural performance; the Dλ index being close to 0 shows good fusion in the
spectrum; and a QNR value close to 1 indicates the original full-colour pan-sharpening
performance. As these metrics rely heavily on raw MS and PAN images, often, quantifying
the similarity of certain components in the fusion images to low-resolution observations
would bias these indicator estimates, and for this reason, some methods can generate
images with high QNR values but poor quality.

4.3. Simulated Experiments and Real Experiments

To verify the effectiveness and reliability of the proposed network, we performed
simulated and real experiments on different datasets. Some representative traditional
and deep learning-based algorithms were selected from four datasets, and performance
was compared between different methods by subjective visual and objective metrics. The
selected traditional algorithms include the CS-based methods, such as IHS [5], PRACG [8],
HPF [56], and GS [7]. Among the MRA-based methods, DWT [9] and GLP [57] were
considered. One model-based method, PPXS [58], was considered. We selected five deep
learning-based methods as contrast objects, including PNN [28], DRPNN [30], PanNet [40],
ResTFNet [43], and TPNwFB [44].
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4.3.1. Experiment with QuickBird Dataset

The fusion results using the QuickBird dataset with four bands are shown in Figure 6.
Figure 6a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 6d–j shows the fusion results of the traditional algorithms, and Figure 6k–p shows
the fusion results of the deep learning methods.

Figure 6. Results using the QuickBird dataset with four bands (resolutions of 256× 256 pixels): (a) reference image; (b) PAN;
(c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet; (n) ResTFNet;
(o) TPNwFB; (p) ours.

Based on the analysis of all the fused and contrast images, it can be intuitively ob-
served that the fused images of the seven non-deep learning methods have obvious colour
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differences. These images have distinct spectral distortions, with some ambiguity in the
edges of the image. Significant artifacts appear around moving objects. Among these
methods, the spectral distortion of the DWT image is the most severe. The IHS fusion
image has an obvious detail loss in the obvious part of the changing spectral information.
The spatial distortion of the PPXS is the most severe, and the fusion image presents a very
vague effect. GLP and GS present significant edge blur in the spectral distortion region,
and the PRACS method presents artifacts in the image edges, while HPF images show
slight blur and edge-texture blur on the image. The deep learning methods show good
fidelity to spectral and spatial information on the QuickBird dataset, and it is difficult to
determine the texture details of image generation through subjective vision. Therefore,
we further compared the following metrics and objectively analysed the advantages and
disadvantages of each fusion method. Table 2 lists the results of objective analysis of each
method according to the index values.

Table 2. Evaluations using the QuickBird dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 7.3370 29.2116 0.6930 7.7931 0.9245 0.8383 0.6968

PRACS 6.6502 27.0441 0.6985 7.2882 0.9287 0.8693 0.7003
HPF 6.1590 26.5007 0.7199 7.1123 0.9308 0.8795 0.7177
GS 6.7736 28.6871 0.6995 7.6727 0.9282 0.8421 0.7047

DWT 12.6372 39.1140 0.5688 9.9968 0.8361 0.7731 0.5492
GLP 6.2712 26.1510 0.7300 7.0190 0.9329 0.8872 0.7305
PPXS 6.3972 37.0457 0.4738 9.8349 0.8606 0.7126 0.4433
PNN 4.8988 20.4170 0.7949 5.4583 0.9612 0.9259 0.8060

DRPNN 4.0506 16.5490 0.8340 4.4543 0.9738 0.9527 0.8519
PanNet 3.8544 14.0295 0.8497 3.7743 0.9808 0.9627 0.8664

ResTFNet 2.9400 12.1735 0.8834 3.2852 0.9858 0.9739 0.9031
TPNwFB 2.5072 10.0468 0.9072 2.7214 0.9909 0.9822 0.9263

ours 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

Objective evaluation metrics show that deep learning-based methods show signif-
icantly better performance than conventional methods in terms of evaluating spectral
information as well as the metrics for measuring spatial quality. Among traditional meth-
ods, the HPF method achieves the best results on the overall metrics, but there is still a huge
gap compared to those using deep learning. The HPF and GLP methods differ only slightly
in other metrics, but the HPF method outperforms the GLP method in maintaining spectral
information, while GLP’s spatial details are better. With extremely severe spectral distor-
tion and ambiguous spatial detail, the DWT band exhibits extremely poor performance
across all metrics. The PPXS RASE index evaluation outperforms only the serious DWT,
shows spatial distortion, and the fusion image is fuzzy. However, it has a good retention
of spectral information. In CNN-based methods, affected by the network structure, the
more complex networks can achieve better results in general. As only the three-layer
network structure was used, even when the nonlinear radiation metrics were introduced
with added input, PNN showed the worst performance in the deep learning-based ap-
proach. Networks using dual-stream structures achieve significantly superior performance
over PNN, DRPNN, and PanNet, bringing the texture details and spectral information
of the fused images closer to the original image. Although our proposed network and
TPNwFB use feedback connectivity, we use a more efficient feature-extraction structure.
Therefore, whether one indicator evaluates spatial or spectral information, the proposed
neural network outperforms all compared fusion methods, without obvious artifacts or
spectral distortion in the fusion results. These results demonstrate the effectiveness of our
proposed method.
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4.3.2. Experiment with WorldView-2 Dataset

The fusion results using the WorldView-2 dataset with four bands are shown in Figure 7.
Figure 7a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 7d–j shows the fusion results of the traditional algorithms, and Figure 7k–p shows
the fusion results of the deep learning methods.

Figure 7. Results using the WorldView-2 dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image;
(b) PAN; (c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet;
(n) ResTFNet; (o) TPNwFB; (p) ours.
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It is intuitively seen from the graph that the fusion images of non-deep learning
methods have distinct colour differences compared to the reference images, and the results
of traditional methods are affected by more serious spatial blurring than deep learning-
based methods. PRACS and GLP partially recover better spatial details and spectral
information, obtaining better subjective visual effects than other conventional methods.
However, it is still affected by spectral distortion and artifacts. Through visual observation,
it is intuitive that deep learning-based methods do better in the preservation of spectral
information than conventional methods.

Table 3 presents the results of objective analysis of each method according to the index
values. On the WorldView-2 dataset, images produced using conventional algorithms and
fusion images produced based on deep learning algorithms do not show significant gaps
in various metrics, but the latter still performs better from all perspectives.

Table 3. Evaluations using the WorldView-2 dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 5.6371 25.9189 0.7103 6.4711 0.9003 0.8176 0.6712

PRACS 4.9892 24.8504 0.7471 6.0704 0.9056 0.8615 0.7070
HPF 4.7316 23.7913 0.7413 5.8646 0.9115 0.8643 0.6950
GS 5.1635 25.6432 0.7210 6.3201 0.9030 0.8286 0.6827

DWT 8.0542 31.1777 0.6142 7.8327 0.8368 0.7677 0.5529
GLP 4.8826 23.4767 0.7563 5.7863 0.9163 0.8732 0.7124
PPXS 5.0452 29.1005 0.5384 7.2093 0.8638 0.7565 0.4580
PNN 4.4631 20.0271 0.8148 4.9370 0.9390 0.9055 0.7846

DRPNN 4.3753 19.8093 0.8161 4.8780 0.9404 0.9075 0.7851
PanNet 4.4901 20.6826 0.8078 5.1074 0.9343 0.9003 0.7765

ResTFNet 4.2802 18.9940 0.8213 4.6836 0.9447 0.9107 0.7912
TPNwFB 4.0258 17.9753 0.8413 4.4353 0.9505 0.9216 0.8124

ours 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407

Unlike other methods, PanNet chose to train networks in the high-frequency domain,
still inevitably causing a loss of information, even with spectral mapping. Owing to
the differences between datasets, it is harder to train deep learning-based methods on
WorldView-2 datasets than on other datasets. This results in PanNet failing to achieve
satisfactory results on the objective evaluation indicators. Notably, the networks using the
feedback connectivity mechanism yielded significantly better results than other methods,
with better objective evaluation of metrics, indicating that the fusion images are more
similar to ground truth. On each objective evaluation metric, our proposed method exhibits
good quality in terms of spatial detail and spectral fidelity.

4.3.3. Experiment with WorldView-3 Dataset

The fusion results using the WorldView-3 dataset with four bands are shown in Figure 8.
Figure 8a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 8d–j shows the fusion results of the traditional algorithms, and Figure 8k–p shows
the fusion results of the deep learning methods. Table 4 presents the results of objective
analysis of each method according to the index values.

On the WorldView-3 dataset, non-deep learning methods are still affected by spectral
distortion, which is particularly evident with buildings. The DWT fusion images exhibit
the most severe spectral distortion and a loss of spatial detail. The IHS fusion images show
partial details of some spectral distortion regions and fuzzy artifacts of the road-vehicle
regions. The HPF, GS, GLP, and PRACS methods show good performance in the overall
spatial structure, but they show distortion and ambiguity in spectrum and detail. The HPF
and GS methods can show colours closer to the reference image, but the edges and details
of the house are accompanied by artifacts visible to the naked eye. Spectral distortion in
non-deep learning methods leads to local detail loss, with distortion and blurring of vehicle
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and building edges. Deep learning-based methods all reflect a better retention of spectral
and spatial information as a whole.

Figure 8. Results using the WorldView-3 dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image;
(b) PAN; (c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet;
(n) ResTFNet; (o) TPNwFB; (p) ours.
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Table 4. Evaluations using the WorldView-3 dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 3.9227 20.0131 0.8249 5.0851 0.9532 0.9167 0.7991

PRACS 3.9758 17.9972 0.8500 4.4154 0.9577 0.9437 0.8194
HPF 3.3183 17.7482 0.8369 4.4816 0.9580 0.9407 0.8002
GS 3.5870 19.7825 0.8341 5.0001 0.9546 0.9229 0.8091

DWT 7.4893 29.8107 0.6770 7.5423 0.8853 0.8337 0.6257
GLP 3.3455 16.9436 0.8564 4.2733 0.9652 0.9489 0.8255
PPXS 3.5409 24.1764 0.7045 6.1892 0.9202 0.8763 0.6456
PNN 3.0606 11.3623 0.9219 2.8347 0.9828 0.9752 0.9095

DRPNN 2.9469 11.0848 0.9276 2.7820 0.9836 0.9774 0.9157
PanNet 2.6216 10.9912 0.9288 2.7574 0.9840 0.9773 0.9170

ResTFNet 2.6916 11.3202 0.9317 2.8295 0.9831 0.9764 0.9207
TPNwFB 2.6904 11.1373 0.9257 2.7867 0.9835 0.9769 0.9125

ours 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

To further compare the performance of the various methods, we analysed them using
objective evaluation measures for different networks. Although PPXS achieved good
evaluation on SAM, it has an obvious gap in terms of other metrics and other methods.
The HPF and GLP methods show performance similar to that of deep learning methods on
SAM metrics, achieving good results in preserving spatial information and yielding better
spectral information in the fused results over other non-deep learning methods. However,
they still have a large gap on RASE and ERGAS and the methods using CNN, indicating
that there are more detailed blurs and artifacts in the fused images.

Among the CNN methods, PanNet showed the best performance, with superior re-
sults using high-frequency domains on the WorldView-3 dataset. ResTFnet and TPNwFB
achieved similar performance, in addition to TPNwFB, still showing better performance in
SSIM indicators, which shows that feedback connection operations in the network still play
an important role. Compared with all the contrast methods, our proposed network more
effectively retains the spectral and spatial information in the image, yielding good fusion re-
sults. Based on all the evaluation measures, the proposed method significantly outperforms
the existing fusion methods, demonstrating the effectiveness of the proposed method.

4.3.4. Experiment with the IKONOS Dataset

The fusion results using the IKONOS dataset with four bands are shown in Figure 9.
Figure 9a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 9d–j shows the fusion results of the traditional algorithms, and Figure 9k–p shows
the fusion results of the deep learning methods. Table 5 presents the results of objective
analysis of each method according to the index values.

Table 5. Evaluations using the IKONOS dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 3.1691 13.8400 0.3860 3.1599 0.9427 0.4741 0.4089

PRACS 2.8249 12.7932 0.4800 2.6011 0.9513 0.6675 0.5197
HPF 2.7730 13.5253 0.4683 2.7728 0.9458 0.6389 0.4950
GS 2.8089 14.0234 0.4487 2.8821 0.9411 0.6032 0.4896

DWT 9.4846 22.7378 0.3183 5.4503 0.8553 0.2945 0.3417
GLP 2.7788 13.5999 0.4852 2.8028 0.9455 0.6458 0.5083
PPXS 2.7693 12.7035 0.4065 2.5701 0.9535 0.6351 0.4725
PNN 2.4621 8.2089 0.7088 1.8787 0.9801 0.8057 0.7508

DRPNN 2.3908 8.6174 0.7147 1.9280 0.9786 0.8121 0.7521
PanNet 1.8269 5.6283 0.7899 1.3172 0.9909 0.8862 0.8210

ResTFNet 0.6309 1.4935 0.9512 0.4399 0.9994 0.9747 0.9659
TPNwFB 1.2008 3.3423 0.8842 0.8731 0.9968 0.9375 0.9069

ours 0.4096 1.0310 0.9680 0.2973 0.9997 0.9824 0.9802
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Figure 9. Results using the IKONOS dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image; (b) PAN;
(c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet; (n) ResTFNet;
(o) TPNwFB; (p) ours.

All conventional methods produce images with apparent spectral distortion and
blur or loss of edge detail. It is clear from the figure that the images obtained using the
PNN and DRPNN methods have significant spectral distortion. At the same time, given
that the spatial structure is too smooth and a lot of edge information is lost, the index
value objectively shows the advantages and disadvantages of various methods, and the
overall effect of deep learning is significantly better than that of traditional methods. These
data suggest that networks with an encoder–decoder structure have better performance
than other structures. ResTFNet obtained significantly superior results using this dataset.
Through our proposal that the network-generated images closest approach the original
image, the evaluation metrics clearly show the effectiveness of the method.
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4.3.5. Experiment with WorldView-3 Real Dataset

For the full-resolution experiment, we used the model trained by the reduced-resolution
experiment and the real data as the input to generate fused images. In this experiment, we
directly input MS and PAN images into models without any resolution reduction, which
guarantees the ideal full-resolution experimental results and follows a similar approach to
those used by the other models.

The fusion results using the WorldView-3 Real dataset with four bands are shown in
Figure 10. Figure 10a,b shows the LRMS and PAN (with a resolution of 256 × 256 pixels),
Figure 10c–i shows the fusion results of the traditional algorithms, and Figure 10j–o shows
the fusion results of the deep learning methods. Table 6 presents the results of objective
analysis of each method according to the index values.

Figure 10. Results using the WorldView-3 Real dataset with four bands (resolutions of 256 × 256 pixels): (a) LRMS;
(b) PAN; (c) IHS; (d) PRACS; (e) HPF; (f) GS; (g) DWT; (h) GLP; (i) PPXS; (j) PNN; (k) DRPNN; (l) PanNet; (m) ResTFNet;
(n) TPNwFB; (o) ours.

By observing the fusion images, it is found that DWT and IHS show obvious spectral
distortion. Although in the GS and GLP methods, the overall spatial structure information
is well preserved, local information is lost. The merged images in the PRACS method were
too smooth, resulting in severe loss of edge detail.

TPNwFB and our proposed method have the best overall performance and can demon-
strate practical utility in using feedback connection operations in the network. An analysis
of objective data shows that the index values of PPXS are significantly better than other
methods in Dλ but decreased slightly in QNP and Ds. Deep learning-based methods show
a certain performance gap in non-deep learning methods. However, given the extremely
simple network structure of PNN and DRPNN, satisfactory results are not achieved. Con-
sidering three indicators, our proposed network achieves better results in full-resolution
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experiments, conclusively demonstrating that the proposed innovation plays a positive
role in generalised sharpening.

Table 6. Evaluations using the WorldView-3 Real Dataset (best result is in bold).

Method QNP↑ Dλ↓ Ds↓
IHS 0.6315 0.0794 0.3140

PRACS 0.8041 0.0287 0.1721
HPF 0.6710 0.1067 0.2488
GS 0.6426 0.0708 0.3084

DWT 0.6119 0.2875 0.1412
GLP 0.6755 0.1082 0.2425
PPXS 0.8936 0.0063 0.1008
PNN 0.7134 0.1080 0.2003

DRPNN 0.7515 0.0715 0.1907
PanNet 0.8052 0.0790 0.1257

ResTFNet 0.8805 0.0509 0.0723
TPNwFB 0.9116 0.0511 0.0393

ours 0.9213 0.0201 0.0598

4.3.6. Experiment with QuickBird Real Dataset

The fusion results using the QuickBird Real dataset with four bands are shown in
Figure 11. Figure 11a,b shows the LRMS and PAN (with a resolution of 256 × 256 pixels),
Figure 11c–i shows the fusion results of the traditional algorithms, and Figure 11j–o shows
the fusion results of the deep learning methods. Table 7 presents the results of objective
analysis of each method according to the index values.

Figure 11. Results using the QuickBird Real dataset with four bands (resolutions of 256 × 256 pixels): (a) LRMS; (b) PAN;
(c) IHS; (d) PRACS; (e) HPF; (f) GS; (g) DWT; (h) GLP; (i) PPXS; (j) PNN; (k) DRPNN; (l) PanNet; (m) ResTFNet; (n) TPNwFB;
(o) ours.
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Table 7. Evaluations using the QuickBird Real Dataset (best result is in bold).

Method QNP↑ Dλ↓ Ds↓
IHS 0.6096 0.1173 0.3093

PRACS 0.8293 0.0374 0.1384
HPF 0.6468 0.1216 0.2636
GS 0.6418 0.0920 0.2932

DWT 0.5647 0.3273 0.1605
GLP 0.6512 0.1198 0.2601
PPXS 0.8743 0.0061 0.1203
PNN 0.7766 0.1871 0.0446

DRPNN 0.8178 0.0979 0.0935
PanNet 0.8236 0.0817 0.1031

ResTFNet 0.9211 0.0426 0.0379
TPNwFB 0.9090 0.0495 0.0437
Proposed 0.9311 0.0205 0.0494

PRACS and PPXS obtain better visual effects in non-deep learning methods with
sufficient retention of spectral information but still lack effective retention of detail com-
pared to deep learning methods. Among the deep learning methods, ResTFNet and our
proposed method achieved the best results on the whole, with full and effective retention of
spatial details and spectral colour and comprehensive analysis of three objective evaluation
indicators. The use of encoder–decoder structure in the network structure can effectively
improve the performance of the network in real experiments.

4.3.7. Processing Time and Model Size

As shown in Table 8, for different deep learning methods, our proposed method had
the longest processing time in the test mode. Our method also has a far greater number
of parameters than the other methods. The data clearly show that the more complex
the model, the more time it takes to generate a single fusion image; however, a more
complex structure can achieve better performance results. Our method is mainly designed
to optimize the structure from the perspective of improving the effect of the fusion result.
The issue of optimizing the network runtime was not considered.

Table 8. Different deep learning methods for processing time and model size.

Method Time (S) Model Size (MB)

PNN 1.92 0.31
DRPNN 2.08 3.19
PanNet 2.22 2.06

ResTFNet 2.49 8.55
TPNwFB 2.82 52.3
Proposed 3.13 210

5. Discussion

5.1. Discussion of EFEB

In this subsection, we examine the influence of each part of the model through ablation
learning in order to obtain the best performance of the model. To obtain high-quality HRMS
images, we propose a dense encoder–decoder network with feedback connections for pan-
sharpening. In the network, we use an efficient feature-extraction module to fully capture
features at different scales in networks of different depths and widths. To increase the
depth of the network, we used three MFEBs. In each MFEB, we increased the width of the
network by using four branches with different receptive fields.

To validate the effectiveness of our proposed EFEB and to explore the impact of
combinations using different receptive field branches on the fusion results, we performed
comparative experiments on them using four datasets. We performed experiments using
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convolutional kernel combinations with different receptive field sizes while retaining three
MEFB and four branches in each block, from which the best receptive field scale was
selected for combination. Experiments demonstrate that the highest-performing multiscale
modules can be obtained by using structures with an expansion rate of {1,2,3,4}. We used
four branches with receptive field sizes of 3, 5, 7, and 9, separately, although if we increased
the parameters and the number of calculations, we would obtain noticeably better results.
The experimental results are presented in Table 9.

Table 9. Quantitative evaluation results of multiscale feature-extraction modules with different
combinations are shown in bold.

Scale SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
1123 2.0460 7.4101 0.9369 2.0083 0.9949 0.9897 0.9498
1124 2.0284 7.4482 0.9425 1.9891 0.9948 0.9899 0.9539
1125 2.1016 7.3502 0.9356 1.9812 0.9949 0.9897 0.9485
1223 2.1681 7.6609 0.9295 2.0630 0.9944 0.9890 0.9453
1224 2.2350 7.8802 0.9207 2.1199 0.9941 0.9879 0.9402
1225 2.0571 7.2789 0.9379 1.9671 0.9949 0.9903 0.9509
1233 1.9660 6.6951 0.9392 1.8075 0.9958 0.9913 0.9532
1234 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577
1235 1.8182 6.6792 0.9487 1.7930 0.9958 0.9914 0.9579
1333 2.1834 7.6122 0.9229 2.0516 0.9945 0.9889 0.9424
1334 1.9818 7.1717 0.9431 1.9291 0.9952 0.9906 0.9543
1335 2.2714 8.0409 0.9193 2.1526 0.9940 0.9879 0.9391

To validate the effectiveness of EFEB across the model, we compared the networks
using EFEB to those not using this module on four datasets. The objective evaluation
indicators are listed in Table 10. Using EFEB increases the width and depth of the network
to extract richer feature information and to identify additional mapping relationships that
meet expectations. Elimination of multiscale modules results in a lack of multiscale feature
learning and detail learning, which hampers the extraction of more efficient features in the
current task, thus reducing image-reconstruction capabilities. EFEB demonstrates the effec-
tiveness of multiple-enhancing network performance in experiments on all four datasets.

Table 10. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network without EFEB. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.4643 8.5049 0.9135 2.2910 0.9932 0.9863 0.9335
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 3.8236 16.6670 0.8622 4.1180 0.9578 0.9332 0.8386
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.4399 10.2544 0.9402 2.5637 0.9861 0.9804 0.9302
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.4096 1.0310 0.9680 0.2973 0.9997 0.9824 0.9802
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

5.2. Discussion of FFRB

In the network, we used a network structure with a multilayer encoder and decoder
combined with dense connections to complete the task of integrating and reconstructing
the extracted multiscale spatial and spectral information. In contrast with other two-stream
networks for pan-sharpening, which used encoder–decoder structures to decode only the
results after the last level encoding, we decoded the results after each level encoding. We
also added sufficient dense connections between the encoder and the decoder, which is a
further improvement of the conventional symmetric encoder–decoder structure.

To demonstrate that the dense connection between the encoder and the decoder is
valid, we retrained a network for comparison on four datasets that retained the same
number of encoders and decoders as our proposed network but did not use the dense
connection operation. The experimental results are presented in Table 11.
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Table 11. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network is used. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.8675 10.8443 0.8930 2.9372 0.9888 0.9788 0.9152
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 3.8805 17.6535 0.8488 4.3531 0.9529 0.9260 0.8222
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.4125 10.2680 0.9396 2.5737 0.9860 0.9803 0.9294
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.7847 1.9036 0.9430 0.5412 0.9990 0.9689 0.9582
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

Through objective indicators on four datasets, it is clear that we injected low-level
features into advanced features through long-jump connections, improved the ability of the
network to make full use of all features, reduced information loss during upsampling and
downsampling, reduced differences in semantic feature level in the encoder and decoder,
reduced the difficulty of network training, and improved the network’s ability to recover
fine real images.

5.3. Discussion of Feedback Connections

In the network, to obtain better reconstruction power earlier, we introduced feedback
connectivity operations to refine deep features in the previous subnetwork by iterating
exactly the same network four times into the shallow network structure. As the number of
iterations of the subnet had significant effects on the final result, we evaluated the network
with different numbers of iterations using the QuickBird dataset. The experimental results
are presented in Table 12.

Table 12. Results of the network quantitative evaluation with different iterations. The best perfor-
mance is shown in bold.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

1 2.7088 9.1094 0.9039 2.4473 0.9923 0.9841 0.9276
2 2.4039 8.4655 0.9214 2.2745 0.9931 0.9861 0.9361
3 2.0831 7.3411 0.9402 1.9763 0.9948 0.9898 0.9509
4 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577
5 2.0550 7.1303 0.9379 1.9180 0.9952 0.9903 0.9504

We trained a network with the same four subnet structures and attached the loss
function to each subnet, but we disconnected the feedback connection between each
subnetwork. A comparison of the resulting indexes is presented in Table 13. Although
the two networks trained under exactly the same conditions, there is a clear gap in their
relative performance, and the feedback connection significantly improves performance and
gives the network good early reconstruction capability.

Table 13. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.6883 8.7127 0.9040 2.3564 0.9927 0.9854 0.9274
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 4.2092 18.5268 0.8379 4.5671 0.9489 0.9198 0.8102
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.5027 9.9731 0.9384 2.4939 0.9869 0.9813 0.9284
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.6362 1.6218 0.9557 0.4448 0.9993 0.9750 0.9691
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748
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6. Conclusions

In this paper, we proposed a dense encoder–decoder network with feedback connec-
tions for pan-sharpening based on the practical demand for high-quality HRMS images. We
adopted a network structure that has achieved remarkable results in other image-processing
fields for pan-sharpening and combined it with knowledge in the remote sensing image
field to effectively improve the network structure. Our proposed DEDwFB structure,
which significantly improves the depth and width of the network, improves its ability
to grasp large-scale features and reconstruct images, effectively improving the quality of
fusion images.

We aimed to achieve two goals: spectral information preservation and spatial infor-
mation preservation in pan-sharpening. PAN and LRMS were therefore chosen to process
separate images using dual-stream structures, without interference, taking advantage
of diverse information in the two images. Efficient feature-extraction blocks sufficiently
increase the network’s ability to grab features from different scales of receptive fields and
fully recover higher-quality images from scratch-to features through an encoder–decoder
network with dense connectivity mechanisms. Feedback mechanisms help networks refine
low-level information through powerful deep features and help shallow networks obtain
useful information from coarse reconstructed HRMS.

Experiments on four datasets demonstrate that the structure we used in the network
is very efficient for obtaining higher-quality fusion images than other methods. As our
proposed network has replicated feature extraction and image fusion reconstruction struc-
tures, the network can obtain better results when processing images with more complex
information. The method is better at processing spectroscopic and spatially informative im-
ages, and complex network structures and dense jump connections can efficiently capture
rich features from dense buildings, dense vegetation, and large amounts of transportation,
which helps to produce satisfactory high-quality fusion images.
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Abstract: Rapid progress on disaster detection and assessment has been achieved with the develop-
ment of deep-learning techniques and the wide applications of remote sensing images. However, it
is still a great challenge to train an accurate and robust disaster detection network due to the class
imbalance of existing data sets and the lack of training data. This paper aims at synthesizing disaster
remote sensing images with multiple disaster types and different building damage with generative
adversarial networks (GANs), making up for the shortcomings of the existing data sets. However,
existing models are inefficient in multi-disaster image translation due to the diversity of disaster
and inevitably change building-irrelevant regions caused by directly operating on the whole image.
Thus, we propose two models: disaster translation GAN can generate disaster images for multiple
disaster types using only a single model, which uses an attribute to represent disaster types and a
reconstruction process to further ensure the effect of the generator; damaged building generation
GAN is a mask-guided image generation model, which can only alter the attribute-specific region
while keeping the attribute-irrelevant region unchanged. Qualitative and quantitative experiments
demonstrate the validity of the proposed methods. Further experimental results on the damaged
building assessment model show the effectiveness of the proposed models and the superiority
compared with other data augmentation methods.

Keywords: GAN; image generation; data augmentation; remote sensing disaster image

1. Introduction

Rapid detection and assessment after the occurrence of disaster play a very important
role in humanitarian assistance and disaster recovery. The applications of deep-learning
models in remote sensing have attracted much attention recently. Among them, as the
building damage assessment data set represented by the xBD data set [1] has been open
source, researchers have proposed several building detection and damage assessment
models based on deep neural networks (DNNs) [2–4]. DNNs such as convolutional neural
networks (CNNs) need a substantial amount of training data. Compared with the large
data sets of natural images, the limited labeled remote sensing data becomes an obstacle to
train a DNN well, especially in building damage data sets. Moreover, there is an obvious
class imbalance in the xBD data set; specifically, the sample size of the damaged buildings
in the three categories (minor damage, major damage, and destroyed) is far less than that
of the no-damage buildings [1]. This problem makes it difficult for the model to extract the
features of buildings damaged by different types of disasters, thus affecting the accuracy of
the assessment model.

The fact proves that, among the existing models of damage building assessment
based on the xBD data set, the accuracy of minor damage and major-damage categories is
obviously lower than that of the no-damage category, which means that minor damage and
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major damage classes belong to the hard classes [1–4]. To address this problem, scholars
also put forward several data augmentation strategies to improve the class imbalance.
To be more specific, Shen et al. [2] apply the CutMix as a data augmentation method
that combines the hard-classes images with random images to reconstruct new samples,
Hao et al. [3] adopt the common data augmentation method such as horizontal flipping
and random cropping during training, and Boin et al. [4] mitigate class imbalance with
oversampling. Although the aforementioned methods have a certain effect on improving
the accuracy of hard classes, in fact, these are deformation and reorganization of the
original samples; more seriously, these may degrade the quality of images, thus affecting
the rationality of the features extracted by the feature extractor. Essentially, the above
methods do not add new samples and rely on human decisions and manual selection of
data transformations, whereas it takes much manpower and material resources to collect
and process remote sensing images of damaged buildings to make new samples.

Recently, generative adversarial networks (GANs) [5] and their variants have been
widely used in the field of computer vision, such as image-to-image translation [6–8]
and image attribute editing [9–12]. GANs aim to fit the real distribution of data by a
Min-Max game theory. The standard GAN contains two parts: the generator G and
discriminant D, by adversarial training, making the generator generate images gradually
close to the real images. In this way, GAN has become an effective framework to generate
random data distribution models so that scholars naturally associate that GAN can learn
the data distribution of data samples and generate samples as close as possible to the
training data distribution. In fact, this trait can be used as the data augmentation method.
It is not uncommon to generate images using GAN as a data augmentation strategy
currently [13–16], which also has been proven effective in different computer vision tasks.

Moreover, scholars also use GAN-based models to translate or edit satellite images
in remote sensing fields [17–19]. Specifically, Li et al. [17] designed a translation model
based on GAN to translate optical images to SAR images, which reduces the gap between
two types of images. Benjdira et al. [18] design an algorithm that reduces the domain shift
influence using GAN, considering that the images in the target domain and source domain
are usually different. Moreover, Iqbal et al. [19] propose domain adaptation models to
better train built-up segmentation models, which is also motivated by GAN methods.

The remote sensing images in xBD [1] data set have unique characteristics, which are
quite different from natural images or other satellite images data sets. First, the remote
sensing images include seven different types of disasters, and each class of disaster has its
own traits, such as the way to destroy buildings. Second, the remote sensing images are
collected from different countries and different events so that the density and damage level
of buildings may be various. In order to design effective image generation models, we need
to consider the disaster types and the traits of damaged buildings. However, the existing
GAN-based models are inefficient in the multi-attribute image translation task; specifically,
it is generally necessary to build several different models for every pair of image attributes.
This problem is not conducive to the rapid image generation of multiple disaster types.
In addition, most existing models directly operate on the whole image, which inevitably
changes the attribute-irrelevant region. Nevertheless, the data augmentation for specific
damaged buildings typically needs to consider the building region. Thus, to solve both
problems in existing GAN-based image generation and more adapt to remote sensing
disaster image generation tasks, we try to propose two image generation models that aim
at generating disaster images with multiple disaster types and concentrating on different
damaged buildings, respectively.

In recent image generation studies, StarGAN [6] has proven to be effective and efficient
in multi-attribute image translation tasks; moreover, SaGAN [10] can only alter the attribute-
specific region with the guidance of the mask in face. Inspired by these, we propose the
algorithm called DisasterGAN, including two models: disaster translation GAN and
damaged building generation GAN. The main contributions of this paper are as follows:
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(1) Disaster translation GAN is proposed to realize multiple disaster attributes image
translation flexibly using only a single model. The core idea is to adopt an attribute
label representing disaster types and then take in as inputs both images and disaster
attributes, instead of only translating images between two fixed domains such as the
previous models.

(2) Damaged building generation GAN implements specified damaged building attribute
editing, which only changes the specific damaged building region and keeps the rest
region unchanged. Exactly, mask-guided architecture is introduced to keep the model
only focused on the attribute-specific region, and the reconstruction loss further
ensures the attribute-irrelevant region is unchanged.

(3) To the best of our knowledge, DisasterGAN is the first GAN-based remote sensing
disaster images generation network. It is demonstrated that the DisasterGAN method
can synthesize realistic images by qualitative and quantitative evaluation. Moreover,
it can be used as a data augmentation method to improve the accuracy of the building
damage assessment model.

The rest of this paper is organized as follows. Section 2 shows the related research
about the proposed method. Section 3 introduces the detailed architecture of the two
models, respectively. Then, Section 4 describes the experiment setting and shows the
results quantitatively and qualitatively, while Section 5 discusses the effectiveness of the
proposed method and verifies the superiority compared with other data augmentation
methods. Finally, Section 6 makes a conclusion.

2. Related Work

In this section, we will introduce the related work from four aspects, which are close
to the proposed method.

2.1. Generative Adversarial Networks

Since GANs [5] has been proposed, GANs and their variants [20,21] have shown re-
markable success in a variety of computer vision tasks, specifically, image-to-image transla-
tion [6], image completion [7,8,12], face attribute editing [9,10], image super-resolution [22],
etc. GANs aim to fit the real distribution of data by a Min-Max game theory. The standard
GAN consists of a generator and a discriminator, and the idea of GANs training is based on
adversarial learning to train generator and discriminator simultaneously. The goal of the
generator is to generate realistic images, whereas the discriminator is trained to distinguish
the generated images and true images. For the original GAN, it has problems that the
training process is unstable, and the generated data is not controllable. Therefore, scholars
put forward conditional generative adversarial network (CGAN) [23] as the extension
of GAN. Additional conditional information (attribute labels or other modalities) was
introduced in the generator and the discriminator as the condition for better controlling
the generation of GAN.

2.2. Image-to-Image Translation

GAN-based image-to-image translation task has received much attention in the re-
search community, including paired image translation and unpaired image translation.
Nowadays, image translation has been widely used in different computer vision fields
(i.e., medical image analysis, style transfer) or the preprocessing of downstream tasks (i.e.,
change detection, face recognition, domain adaptation). There have been some typical mod-
els in recent years, such as Pix2Pix [24], CycleGAN [7], and StarGAN [6]. Pix2Pix [24] is the
early image-to-image translation model, which learns the mapping from the input and the
output through the paired images. It can translate the images from one domain to another
domain, and it is demonstrated in synthesizing photos from label maps, reconstructing
objects from edge maps tasks. However, in some practical tasks, it is difficult to obtain
paired training data, so that CycleGAN [7] is proposed to solve this problem. CycleGAN
can translate images without paired training samples due to the cycle consistency loss.
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Specifically, CycleGAN learns two mappings: G : X → Y (from source domain to target
domain) and the inverse mapping F : Y → X (from target domain to source domain),
while cycle consistency loss tries to enforce F(G(X)) ≈ X. Moreover, scholars find that the
aforementioned models can only translate images between two domains. So StarGAN [5] is
proposed to address the limitation, which can translate images between multiple domains
using only a single model. StarGAN adopts attribute labels of the target domain and extra
domain classifier in the architecture. In this way, the multiple domain image translation
can be effective and efficient.

2.3. Image Attribute Editing

Compared with the image-to-image translation, we also need to focus on more detailed
part translation in the image instead of the style transfer or global attribute in the whole
image. For example, the above image translation models may not apply in the eyeglasses
and mustache editing in the face [25]. We pay attention to face attribute editing tasks
such as removing eyeglasses [9,10] and image completion tasks such as filling the missing
regions of the images [12]. Zhang et al. [10] propose a spatial attention face attribute editing
model that only alters the attribute-specific region and keeps the rest unchanged. The
model includes an attribute manipulation network for editing face images and a spatial
attention network for locating specific attribute regions. In addition, as for the image
completion task, Iizuka et al. [12] propose a global and locally consistent image completion
model. With the introduction of the global discriminator and local discriminator, the model
can generate images indistinguishable from the real images in both overall consistency and
details.

2.4. Data Augmentation

Training a suitable deep-learning model is inseparable from a large amount of labeled
data, especially in supervised learning. However, it is difficult to collect large data in
some tasks. Standard data augmentation is usually based on geometric transformations,
such as color transformations, cropping, flipping [13]. Moreover, using GANs to generate
images as a data augmentation has attracted much attention recently, which is common
in person re-identification [14,15], license plate recognition [16], few-shot classifier [13].
The GAN-based data augmentation model can directly learn the data distribution, which
generates samples that are enforced to be close to the training data distribution [13]. To
be more exact, Zhong et al. [10] use CycleGAN [7] to transfer labeled training images to
each camera. In this way, the original training data set has been augmented. The model is
demonstrated effective, which can be used as a data augmentation method to eliminate
camera style differences in person re-identification. Wu et al. [16] propose PixTextGAN,
which can generate synthetic license plate images with reasonable text details to enrich
the existing license plate data set, thus improving the license plate recognition accuracy.
Similar to the above tasks, adequate remote sensing images that used for training building
damage assessment model is difficult to collect. In order to model the complex traits of
damage, a large amount of damaged building data is indispensable. That is the motivation
of our research, proposing a reasonable GAN model as a data augmentation strategy.

In conclusion, we introduce these four aspects of related work in order to make readers
better understand the motivation and background of our proposed method. Specifically,
the proposed method DisterGAN includes disaster translation GAN and damaged building
generation GAN, which may be regarded as image-to-image translation and image attribute
editing tasks, respectively. Moreover, we also try to generate damaged building images to
make up for the limitation of the existing data as a data generation method.

3. Methods

In this section, we will introduce the proposed remote sensing image generation
models, including disaster translation GAN and damaged building generation GAN. The
aim of disaster translation GAN is to generate the post-disaster images with disaster
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attributes, while the damaged building generation GAN is to generate post-disaster images
with building attributes.

3.1. Disaster Translation GAN

We first describe the framework of disaster translation GAN. The architecture is
shown in Figure 1. Our model is inspired by StarGAN [6], which is introduced simply in
Section 2.2. Then, we discuss the objective function and architecture in detail.

Figure 1. The architecture of disaster translation GAN, including generator G and discriminator D. D has two objectives,
distinguishing the generated images from the real images and classifying the disaster attributes. G takes in as input both
the images and target disaster attributes and generates fake images, with the inverse process that reconstructing original
images with fake images given the original disaster attributes.

3.1.1. Proposed Framework

The goal of disaster translation GAN is to learn mapping functions between disaster
images among different disaster attributes. As shown in Figure 1, pre-disaster images X and
post-disaster images Y are the paired images. Each image has the corresponding disaster
attribute Cd. Cd means the disaster type of the image; thus, the Cd of the X can be defined
as 0 uniformly, and the Cd of Y can be defined as Cd = {1, 2, 3, 4, 5, 6, 7} according to 7
types of disasters, respectively. The detailed information of Cd can be seen in Section 4.1. As
for the generator, the mapping G(X, Cd)→ Y translates X into Y conditioned on the target
disaster attribute Cd. In addition, we introduce the discriminator Dsrc with an auxiliary
classifier Dcls, where Dsrc aims to distinguish between Y and generated images and X′ and
Dcls aims to classify the images.

To achieve this, we train the D and the G with the following training process. (a)
Train D to distinguish between true images and fake images and classify the images. (b) G
takes as input both the X and the target attributes Cd, then outputs fake images. (c) G tries
to generate images indistinguishable from the real images and classifiable as the target
attributes by D. (d) G tries to reconstruct the original images from the fake images and the
original attributes.

3.1.2. Objective Function

Disaster translation GAN is trained with the objective function including three types
of loss function, i.e., the adversarial loss, the attribute classification loss, and the reconstruct
loss, which are introduced as follows, respectively.

Adversarial Loss. To make the generated images indistinguishable from the real images,
we adopt the strategy of adversarial learning to train the generator and the discriminator
simultaneously. The adversarial loss is defined as

Ladv = EX [log Dsrc(X)] + EX,Cd [log(1− Dsrc(X′))], (1)
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where the Dsrc(X) is the probability distribution over sources given by D. The generator
G and the discriminator D are adversarial to each other. The training of the G makes the
adversarial loss as small as possible, while the D tries to maximize it.

Attribute Classification Loss. As mentioned above, our goal is to translate the pre-
disaster images into the generated images of attributes Cd. Therefore, the attributes not
only need to be correctly generated but also need to be correctly classified. To achieve
this, we adopt attribute classification loss when we optimize both the generator and the
discriminator. Specifically, we adopt the real images and their true corresponding attributes
to optimize the discriminator and use the target attributes and the generated images to
optimize the generator. The specific formula is shown below.

LD
cls = EX,Cd [− log Dcls(Cd|Y)] , (2)

where Dcls(cd|Y ) represents a probability distribution over attribute labels computed by D.
In the experiment, the X and Y are both real images, in order to simplify the experiment,
only the Y are inputted as the real images, and the corresponding attributes are target
attributes. By optimizing this objective function, the classifier of discriminator can learn to
identify the attribute.

Similarly, we use the generated images X′ to optimize the generator so that it can
generate images that can be identified as the corresponding attribute, as defined below

LG
cls = EX,Cd [− log Dcls(Cd

∣∣X′)] . (3)

Reconstruction Loss. With the use of adversarial loss and attribute classification loss,
the generated images can be as realistic as true images and be classified to their target
attribute. However, these losses cannot guarantee that the translation only takes place in
the attribute-specific part of the input. Based on this, construction loss is proposed to solve
this problem, which is also used in CycleGAN [15].

Lrec = EX,Cg
d ,Cd

[
∥∥∥X− G(G(X, Cd), Cg

d )
∥∥∥

1
] (4)

Here, Cg
d represents the original attribute of inputs. G is adopted twice, first to translate

an original image into the one with the target attribute, then to reconstruct the original
image from the translated image, for the generator to learn to change only what is relevant
to the attribute.

Overall, the objective function of the generator and discriminator are shown as below:

minLD = −Ladv + λclsLD
cls (5)

minLG = Ladv + λclsLG
cls + λrecLrec, (6)

where the λcls, λrec is the hyper-parameters to balance the attribute classification loss and
reconstruction loss, respectively. In this experiment, we adopt λcls = 1, λrec = 10.

3.1.3. Network Architecture

The specific network architecture of G and D are shown in Tables 1 and 2. I, O, K, P,
and S, respectively, represent the number of input channels, the number of output channels,
kernel size, padding size, and stride size. IN represents instance normalization, and ReLU
and Leaky ReLU are the activation functions. The generator takes as input an 11-channel
tensor, consisting of an input RGB image and a given attribute value (8-channel), then
outputs RGB generated images. Moreover, in the output layer of the generator, Tanh is
adopted as an activation function, as the input image has been normalized to [−1, 1].
The classifier and the discriminator share the same network except for the last layer. For
the discriminator, we use the output structure such as PatchGAN [24], and we output a
probability distribution over attribute labels by the classifier.
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Table 1. Architecture of the generator.

Layer Generator, G

L1 Conv(I11, O64, K7, P3, S1), I N, ReLU
L2 Conv(I64, O128, K4, P1, S2), IN, ReLU
L3 Conv(I128, O256, K4, P1, S2), IN, ReLU
L4 Residual Block(I256, O256, K3, P1, S1)
L5 Residual Block(I256, O256, K3, P1, S1)
L6 Residual Block(I256, O256, K3, P1, S1)
L7 Residual Block(I256, O256, K3, P1, S1)
L8 Residual Block(I256, O256, K3, P1, S1)
L9 Residual Block(I256, O256, K3, P1, S1)

L10 Deconv(I256, O128, K4, P1, S2), IN, ReLU
L11 Deconv(I128, O64, K4, P1, S2), IN, ReLU
L12 Conv(I64, O3, K7, P3, S1), Tanh

Table 2. Architecture of the discriminator.

Layer Discriminator, D

L1 Conv(I3, O64, K4, P1, S2), Leaky ReLU
L2 Conv(I64, O128, K4, P1, S2), Leaky ReLU
L3 Conv(I128, O256, K4, P1, S2), Leaky ReLU
L4 Conv(I256, O512, K4, P1, S2), Leaky ReLU
L5 Conv(I512, O1024, K4, P1, S2), Leaky ReLU
L6 Conv(I1024, O2048, K4, P1, S2), Leaky ReLU

L7 src: Conv(I2048, O1, K3, P1, S1);
cls: Conv(I2048, O8, K4, P0, S1) 1;

1 src and cls represent the discriminator and classifier, respectively. These are different in L7 while sharing the
same first six layers.

3.2. Damaged Building Generation GAN

In the following part, we will introduce the damaged building generation GAN in
detail. The whole structure is shown in Figure 2. The proposed model is motivated by
SaGAN [10].

Figure 2. The architecture of damaged building generation GAN, consisting of a generator G and a discriminator D. D
has two objectives, distinguishing the generated images from the real images and classifying the building attributes. G
consists of an attribute generation module (AGM) to edit the images with the given building attribute, and the mask-guided
structure aims to localize the attribute-specific region, which restricts the alternation of AGM within this region.
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3.2.1. Proposed Framework

The training data of the model includes pre-disaster images X, post-disaster images Y,
and the corresponding building attributes Cb. Among them, Cb means whether the image
contains damaged buildings; specifically, the Cb of the X can be defined as 0 uniformly
while the Cb of Y is expressed as Cb = {0, 1} according to whether there are damaged
buildings in the image. The specific information of data can refer to Section 4.1.

We train generator G to translate the X into the generated images Y′ with target
attributes Cb, formula as below:

Y′ = G(X, Cb) (7)

As Figure 2 shows, we can see the attribute generation module (AGM) in G, which
we define as F. F takes as input both the pre-disaster images X and the target building
attributes Cb, outputting the images YF, defined as:

YF = F(X, Cb) (8)

As for the damaged building generation GAN, we only need to focus on the change of
damaged buildings. The changes in the background and undamaged buildings are beyond
our consideration. Thus, to better pay attention to this region, we adopt the damaged
building mask M to guide the damaged building generation. The value of the mask M
should be 0 or 1; specially, the attribute-specific regions should be 1, and the rest regions
should be 0.

As the guidance of M, we only reserve the change of attribute-specific regions, while
the attribute-irrelevant regions remain unchanged as the original image, formulated as
follows:

Y′ = G(X, Cb) = X·(1−M) + YF·M (9)

The generated images Y′ should be as realistic as true images. At the same time, Y′
should also correspond to the target attribute Cb as much as possible. In order to improve
the generated images Y′, we train discriminator D with two aims, one is to discriminate
the images, and the other is to classify the attributes Cb of images, which are defined as
Dsrc and Dcls respectively. Moreover, the detailed structure of G and D can be seen in
Section 3.2.3.

3.2.2. Objective Function

The objective function of damaged building generation GAN includes adversarial
loss, attribute classification loss, and reconstruction loss. We will cover that in this section.
It should be emphasized that the definitions of these losses are basically the same as these
in Section 3.1.2, so we provide a simple introduction in this section.

Adversarial Loss. To generate synthetic images indistinguishable from real images, we
adopt the adversarial loss for the discriminator D

LD
src = EY[log Dsrc(Y)] + EY′

[
log(1− Dsrc(Y′))

]
, (10)

where Y is the real images, to simplify the experiment, we only input the Y as the real
images, Y′ is the generated images, Dsrc(Y) is the probability that the image discriminates
to the true images.

As for the generator G, the adversarial loss is defined as

LG
src = EY′

[− log Dsrc(Y′)
]
, (11)

Attribute Classification Loss. The purpose of attribute classification loss is to make the
generated images closer to being classified as the defined attributes. The formula of Dcls
can be expressed as follows for the discriminator

LD
cls = EY,Cg

b

[
− log Dcls(c

g
b |Y)

]
(12)
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where Cg
b is the attributes of true images, and Dcls(c

g
b |Y ) represents the probability of an

image being classified as the attribute Cg
b . The attribute classification loss of G can be

defined as
LG

cls = EY′ [− log Dcls(cb
∣∣Y′ )] (13)

Reconstruction Loss. The goal of reconstruction loss is to keep the image of the attribute-
irrelevant region mentioned above unchanged. The definition of reconstruction loss is as
follows

LG
rec = λ1EX,cg

b ,cb
[(
∥∥∥X− G(G(X, cb), cg

b)
∥∥∥

1
] + λ2EX,cg

b
[(
∥∥∥X− G(X, cg

b)
∥∥∥

1
] (14)

where cg
b is the attribute of the original images, while cb is the target attribute and λ1, λ2 are

the hyper-parameters. We adopt λ1 = 1, λ2 = 10 in this experiment. To be more specific,
the first part can be understood that the input image returns to the original input after
being transformed twice by the generator; that is, the first generated images Y′ = G(X, cb)
input the generator again to make G(Y′, cg

b) as close as possible to X. The second part is to
guarantee that input image X is not modified when edited by its own attribute cg

b .
Overall, the objective function of the generator and discriminator are shown below

minLG = LG
src + LG

cls + LG
rec (15)

minLD = LD
src + LD

cls (16)

3.2.3. Network Architecture

The specific network architecture of the attribute generation module (AGM) and D
are shown in Tables 3 and 4. The definition of I, O, K, P, S, IN, ReLU, and Leaky ReLU can
be seen in Section 3.1.3. The AGM takes as input a 4-channel tensor, including an input
RGB image and a given attribute value, then outputs RGB generated image.

Table 3. Architecture of attribute generation module (AGM).

Layer Attribute Generation Module, AGM

L1 Conv(I4, O32, K7, P3, S1), I N, ReLU
L2 Conv(I32, O64, K7, P3, S1), I N, ReLU
L3 Conv(I64, O128, K4, P1, S2), IN, ReLU
L4 Conv(I128, O256, K4, P1, S2), IN, ReLU
L5 Residual Block(I256, O256, K3, P1, S1)
L6 Residual Block(I256, O256, K3, P1, S1)
L7 Residual Block(I256, O256, K3, P1, S1)
L8 Residual Block(I256, O256, K3, P1, S1)
L9 Deconv(I256, O128, K4, P1, S2), IN, ReLU

L10 Deconv(I128, O64, K4, P1, S2), IN, ReLU
L11 Deconv(I64, O32, K4, P1, S2), IN, ReLU
L12 Conv(I32, O3, K7, P3, S1), Tanh

Table 4. Architecture of the discriminator.

Layer Discriminator, D

L1 Conv(I3, O16, K4, P1, S2), Leaky ReLU
L2 Conv(I16, O32, K4, P1, S2), Leaky ReLU
L3 Conv(I32, O64, K4, P1, S2), Leaky ReLU
L4 Conv(I64, O128, K4, P1, S2), Leaky ReLU
L5 Conv(I128, O256, K4, P1, S2), Leaky ReLU
L6 Conv(I256, O512, K4, P1, S2), Leaky ReLU
L7 Conv(I512, O1024, K4, P1, S2), Leaky ReLU

L8 src: Conv(I1024, O1, K3, P1, S1);
cls: Conv(I1024, O1, K2, P0, S1) 1;

1 src and cls represent the discriminator and classifier, respectively. These are different in L8 while sharing the
same first seven layers.

321



Remote Sens. 2021, 13, 4284

4. Experiments and Results

In this section, we first introduce the data set, then illustrate implementation de-
tails and show the visualization results of the models, respectively. Next, we perform a
quantitative evaluation index (FID) to evaluate the generated images.

4.1. Data Set

Our research is based on the open-source xBD data set [1], which is the largest dam-
aged building remote sensing data set for building damage assessment so far. The as-
sessment of building damage is a joint evaluation standard based on the existing disaster
assessment standard [26,27], which classifies the damaged buildings into four categories
(no damage, minor damage, major damage, destroyed). The data source of the xBD data set
comes from Maxar/DigitalGlobe open data program, consisting of remote sensing images
with RGB bands, a resolution equal to or less than 0.8 m GSD. For better generalization of
the model, developers choose seven different types of disaster events in various parts of
the world. The complete xBD data set contains 22,068 remote sensing images with the size
of 1024 × 1024, covering 19 different disaster events and 850,736 buildings, seeing more
information in the work of [1].

To adapt to the model training in this study, we have performed a series of processing
on the xBD data set and obtained two new data sets (disaster data set and building data set).
First, we crop each original remote sensing image (size of 1024× 1024) to 16 remote sensing
images (size of 256 × 256), getting 146,688 pairs of pre-disaster and post-disaster images.
Then, labeling each image with the disaster attribute according to the types of disasters,
specifically, the disaster attribute of the pre-disaster image is 0 (Cd = 0), and the attribute of
the post-disaster image can be seen in Table 5 in detail. In the disaster translation GAN,
we do not need to consider the damaged building, so the location and damage level of
buildings will not be given in the disaster data set. The specific information of the disaster
data set is shown in Table 5, and the samples of the disaster data set are shown in Figure 3.

Table 5. The statistics of disaster data set.

Disaster
Types

Volcano Fire Tornado Tsunami Flooding Earthquake Hurricane

Cd 1 2 3 4 5 6 7
Number/

Pair 4944 90,256 11,504 4176 14,368 1936 19,504

Figure 3. The samples of disaster data set, (a,b) represent the pre-disaster and post-disaster images according to the seven
types of disaster, respectively, each column is a pair of images.

Based on the disaster data set, in order to train damaged building generation GAN,
we further screen out the images containing buildings, then obtain 41,782 pairs of images.
In fact, the damaged buildings in the same damage level may look different based on
the disaster type and the location; moreover, the data of different damage levels in the
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xBD data set are insufficient, so we only classify the building into two categories for our
tentative research. We simply label buildings as damaged or undamaged; that is, we label
the building attributes of post-disaster images (Cb) as 1 only when there are damaged
buildings in the post-disaster image. Moreover, we label the other post-disaster images and
the pre-disaster image as 0. Then, comparing the buildings of pre-disaster and post-disaster
images in the position and damage level of buildings to obtain the pixel-level mask, the
position of damaged buildings is marked as 1 while the undamaged buildings and the
background are marked as 0. Through the above processing, we obtain the building data
set. The statistical information is shown in Table 6, and the samples are shown in Figure 4.

Table 6. The statistics of building data set.

Damage Level Including Damaged Buildings Undamaged Buildings

Cb 1 0
Number/Pair 24,843 16,948

Figure 4. The samples of building data set. (a–c) represent the pre-disaster, post-disaster images, and
mask, respectively, each row is a pair of images, while two rows in the figure represent two different
cases.

4.2. Disaster Translation GAN
4.2.1. Implementation Details

To stabilize the training process and generate higher quality images, gradient penalty
is proposed and has proven to be effective in the training of GAN [28,29]. Thus, we
introduce this item in the adversarial loss, replacing the original adversarial loss. The
formula is as follows. For more details, please refer to the work of [22,23].

Ladv = EX [Dsrc(X)]− EX,Cd [Dsrc(G(X, Cd))]− λgpEx̂[(‖�x̂Dsrc(x̂)‖2 − 1)2] (17)

Here, x̂ is sampled uniformly along a straight line between a pair of real and generated
images. Moreover, we set λgp = 10 in this experiment.

We train disaster translation GAN on the disaster data set, which includes 146,688
pairs of pre-disaster and post-disaster images. We randomly divide the data set into
training set (80%, 117,350) and test set (20%, 29,338). Moreover, we use Adam [30] as an
optimization algorithm, setting β1 = 0.5, β2 = 0.999. The batch size is set to 16 for all
experiments, and the maximum epoch is 200. Moreover, we train models with a learning
rate of 0.0001 for the first 100 epochs and linearly decay the learning rate to 0 over the next
100 epochs. Training takes about one day on a Quadro GV100 GPU.
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4.2.2. Visualization Results

Single Attributes-Generated Image. To evaluate the effectiveness of the disaster trans-
lation GAN, we compare the generated images with real images. The synthetic images
generated by disaster translation GAN and real images are shown in Figure 5. As shown in
this, the first and second rows display the pre-disaster image (Pre_image) and post-disaster
image (Post_image) in the disaster data set, while the third row is the generated images
(Gen_image). We can see that the generated images are very similar to real post-disaster
images. At the same time, the generated images can not only retain the background of pre-
disaster images in different remote sensing scenarios but also introduce disaster-relevant
features.

Figure 5. Single attributes-generated images results. (a–c) represent the pre-disaster, post-disaster
images, and generated images, respectively, each column is a pair of images, and here are four pairs
of samples.

Multiple Attributes-Generated Images Simultaneously. In addition, we visualize the mul-
tiple attribute synthetic images simultaneously. The disaster attributes in the disaster
data set correspond to seven disaster types, respectively (volcano, fire, tornado, tsunami,
flooding, earthquake, and hurricane). As shown in Figure 6, we get a series of generated
images under seven disaster attributes, which are represented by disaster names, respec-
tively. Moreover, the first two rows are the corresponding pre-disaster images and the
post-disaster images from the data set. As can be seen from the figure, there are a variety of
disaster characteristics in the synthetic images, which means that model can flexibly trans-
late images on the basis of different disaster attributes simultaneously. More importantly,
the generated images only change the features related to the attributes without changing
the basic objects in the images. That means our model can learn reliable features universally
applicable to images with different disaster attributes. Moreover, the synthetic images are
indistinguishable from the real images. Therefore, we guess that the synthetic disaster
images can also be regarded as the style transfer under different disaster backgrounds,
which can simulate the scenes after the occurrence of disasters.
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Figure 6. Multiple attributes-generated images results. (a,b) represent the real pre-disaster images
and post-disaster images. The images (c–i) belong to generated images according to disaster types
volcano, fire, tornado, tsunami, flooding, earthquake, and hurricane, respectively.
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4.3. Damaged Building Generation GAN
4.3.1. Implementation Details

Same to the gradient penalty introduced in Section 4.2.1, we have made corresponding
modifications in the adversarial loss of damaged building generation GAN, which will not
be specifically introduced.

We train damaged building generation GAN on building data set, which includes
41,782 pairs of pre-disaster and post-disaster images. We randomly divided building data
set into a training set (90%, 37,604) and test set (20%, 4178). We use Adam [24] to train our
model, setting β1 = 0.5, β2 = 0.999. The batch size is set to 32, and the maximum epoch
is 200. Moreover, to train the model stably, we train the generator with a learning rate of
0.0002 while training the discriminator with 0.0001. Training takes about one day on a
Quadro GV100 GPU.

4.3.2. Visualization Results

In order to verify the effectiveness of damaged building generation GAN, we visualize
the generated results. As shown in Figure 7, the first three rows are the pre-disaster
images (Pre_image), the post-disaster images (Post_image), and the damaged building
labels (Mask), respectively. The fourth row is the generated images (Gen_image). It
can be seen that the changed regions of the generated images are obvious, meanwhile
preserving attribute-irrelevant regions unchanged such as the undamaged buildings and
the background. Furthermore, the damaged buildings generate by combining the original
features of the building and the surrounding, which are also as realistic as true images.
However, we also need to point out clearly that the synthetic damaged buildings are
lacking in textural detail, which is the key point of model optimization in the future.

Figure 7. Damaged building generation results. (a–d) represent the pre-disaster, post-disaster images,
mask, and generated images, respectively. Each column is a pair of images, and here are four pairs of
samples.

4.4. Quantitative Results

To better evaluate the images generated by the proposed models, we choose the com-
mon evaluation metric Fréchet inception distance (FID) [31]. FID measures the discrepancy
between two sets of images. Exactly, the calculation of FID is based on the features from
the last average pooling layer of the ImageNet-pretrained Inception-V3 [32]. For each test
image from the original attribute, we first translate it into a target attribute using 10 latent
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vectors, which are randomly sampled from the standard Gaussian distribution. Then,
calculate FID between the generated images and real images in the target attribute. The
specific formula is as follows

d2 = ‖μ1 − μ2‖2 + Tr(C1 + C2 − 2(C1C2)
1/2), (18)

where (μ1, C1) and (μ2, C2) represent the mean and covariance matrix of the two distribu-
tions, respectively.

As mentioned above, it should be emphasized that the model calculating FID bases
on the pretrained ImageNet, while there are certain differences between the remote sensing
images and the natural images in ImageNet. Therefore, the FID is only for reference, which
can be used as a comparison value for other subsequent models of the same task.

For the models proposed in this paper, we calculate the FID value between the
generated images and the real images based on the disaster data set and building data set,
respectively. We carried out five tests and averaged the results to obtain the FID value of
disaster translation GAN and damaged building generation GAN, as shown in Table 7.

Table 7. FID distances of the models.

Evaluation Metric Disaster Translation GAN Damaged Building Generation GAN

FID 31.1684 21.7873

5. Discussion

In this part, we investigate the contribution of data augmentation methods, consid-
ering whether the proposed data augmentation method is beneficial for improving the
accuracy of building damage assessment. To this end, we adopt the classical building
damage assessment Siamese-UNet [33] as the evaluation model, which is widely used
in building damage assessment based on the xBD data set [3,34,35]. The code of the as-
sessment model (Siamese-UNet) has been released at https://github.com/TungBui-wolf/
xView2-Building-Damage-Assessment-using-satellite-imagery-of-natural-disasters, last
accessed date: 21 October 2021).

In the experiments, we use DisasterGAN, including disaster translation GAN and
damaged building generation GAN, to generate images, respectively. We compare the
accuracy of Siamese-UNet, which trains on the augmented data set and the original data
set, to explore the performance of the synthetic images. First, we select the images with
damaged buildings as augmented samples. Then, we augment these samples into two
samples, that is, expanding the data set with the corresponding generated images that take
in as input both the pre-disaster images and the target attributes. The damaged building
label of the generated images is consistent with the corresponding post-disaster images.
The building damage assessment model is trained by the augmented data set, and the
original data set is then tested on the same original test set.

In addition, we try to compare the proposed method with other data augmentation
methods to verify the superiority. Different data augmentation methods have been pro-
posed to solve the limited data problem [36]. Among them, geometric transformation
(i.e., flipping, cropping, rotation) is the most common method in computer vision tasks.
Cutout [37], Mixup [38], CutMix [39] and GridMask [40] are also widely adopted. In
our experiment, considering the trait of the building damage assessment task, we choose
geometric transformation and CutMix as the comparative methods. Specifically, we follow
the strategy of CutMix in the work of [2], which verifies that CutMix on hard classes (minor
damage and major damage) gets the best result. As for geometric transformation, we use
horizontal/vertical flipping, random cropping, and rotation in the experiment.

The results are shown in Table 8, where the evaluation metric F1 is an index to evaluate
the accuracy of the model. F1 takes into account both precision and recall. It is used in
the xBD data set [1], which is suitable for the evaluation of samples with class imbalance.
As shown in Table 8, we can observe that further improvement for all damage levels in
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the data augmentation data set. To be more specific, the data augmentation strategy on
hard classes (minor damage, major damage, and destroyed) boosts the performance (F1)
better. In particular, major damage is the most difficult class based on the result in Table 8,
while the F1 of major damage level is improved by 46.90% (0.5582 vs. 0.8200) with the
data augmentation. Moreover, the geometric transformation only improves slightly, while
the results of CutMix are also worse than the proposed method. The results show that
the data augmentation strategy is clearly improving the accuracy of the building damage
assessment model, especially in the hard classes, which demonstrates that the augmented
strategy promotes the model to learn better representations for those classes.

Table 8. Effect of data augmentation by disaster translation GAN.

Evaluation
Metric

Original
Data Set

(Baseline)

Geometric
Transformation

CutMix
Disaster

Translation
GAN

Improvement

F1_no-
damage 0.9480 0.9480 0.9490 0.9493 0.0013

(0.14%)
F1_minor-
damage 0.7273 0.7274 0.7502 0.7620 0.0347

(4.77%)
F1_major-
damage 0.5582 0.5590 0.6236 0.8200 0.2618

(46.90%)

F1_destoryed 0.6732 0.6834 0.7289 0.7363 0.0631
(9.37%)

As for the building data set, the data is enhanced in the same way as above by the
damaged building generation GAN. Then, we obtain the augmented data set and the
original data set. It needs to be noted that we only classify the damage level of the building
into damaged and undamaged. The minor damage, major damage, and destroyed class in
the original data are classified as damaged uniformly. The building damage assessment
model is trained in the original data set, and the augmented data set is then tested on
the same original test set. The results are shown in Table 9. We can clearly observe that
there is an obvious improvement in damaged classes compared with the undamaged
class. Compared with the geometric transformation and CutMix, the proposed method has
proven effectiveness and superiority.

Table 9. Effect of data augmentation by damaged building generation GAN.

Evaluation Metric
Original Data Set

(Baseline)
Geometric

Transformation
CutMix

Damaged Building
Generation GAN

Improvment

F1_undamaged 0.9433 0.9444 0.9511 0.9519 0.0086
(0.91%)

F1_damaged 0.7032 0.7432 0.7553 0.7813 0.0781
(11.11%)

6. Conclusions

In this paper, we propose a GAN-based remote sensing disaster images generation
method DisasterGAN, including the disaster translation GAN and damaged building
generation GAN. These two models can translate disaster images with different disaster
attributes and building attributes, which have proven to be effective by quantitative and
qualitative evaluations. Moreover, to further validate the effectiveness of the proposed
models, we employ these models to synthesize images as a data augmentation strategy.
Specifically, the accuracy of hard classes (minor damage, major damage, and destroyed) are
improved by 4.77%, 46.90%, and 9.37%, respectively, by disaster translation GAN. damaged
building generation GAN further improves the accuracy of damaged class (11.11%). More-
over, this GAN-based data augmentation method is better than the comparative method.

328



Remote Sens. 2021, 13, 4284

Future research can be devoted to combined disaster types and subdivided damage levels,
trying to optimize the existing disaster image generation model.
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Abstract: Semantic segmentation of remote sensing images is always a critical and challenging task.
Graph neural networks, which can capture global contextual representations, can exploit long-range
pixel dependency, thereby improving semantic segmentation performance. In this paper, a novel
self-constructing graph attention neural network is proposed for such a purpose. Firstly, ResNet50
was employed as backbone of a feature extraction network to acquire feature maps of remote sensing
images. Secondly, pixel-wise dependency graphs were constructed from the feature maps of images,
and a graph attention network is designed to extract the correlations of pixels of the remote sensing
images. Thirdly, the channel linear attention mechanism obtained the channel dependency of images,
further improving the prediction of semantic segmentation. Lastly, we conducted comprehensive
experiments and found that the proposed model consistently outperformed state-of-the-art methods
on two widely used remote sensing image datasets.

Keywords: self-constructing graph; semantic segmentation; remote sensing

1. Introduction

Semantic segmentation of remote sensing images aims to assign each pixel in an
image with a definite object category [1], which is an urgent issue in ground object in-
terpretation [2]. It has become one of the most crucial methods for traffic monitoring [3],
environmental protection [4], vehicle detection [5], and land use assessment [6]. Remote
sensing images are usually composed of various objects, highly imbalanced ground, and
intricate variations in color texture, which bring challenges to the semantic segmentation of
remote sensing images. Before the time of deep learning to display the distribution of vege-
tation and land cover, the superpixel was often used as measure for drawing features from
multi-spectral images. However, hand-crafted descriptors are challenging tthe flexibility of
these indices.

The convolutional neural network (CNN) [7] is widely used for the semantic seg-
mentation of images. To achieve a better performance, CNN-based models regularly use
multi-scale and deep CNN architectures to acquire information from multi-scale receptive
fields and derive local patterns as much as possible. Owing to the restriction of the convo-
lutional kernel, CNN-based models can only capture the dependency of pixels from the
limited receptive field rather than the entire image.

CNN-based models have no ability to model the global dependency of each two pixels.
However, a graph includes the connection of two nodes, so a graph neural network-based
(GNN-based) model can capture the long-range global spatial correlation of pixels. There
is no doubt that the traditional form of an image can be converted to a graph structure [8].
In this way, the graph can model the spatial relationship of each two pixels. In contrast,
CNN can only obtain information from the limited receptive field. The adjacency matrix of
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GNNs can represent the global relationship of images, which can contain more information
than CNN-based models. Hence, we adopted a GNN to carry out semantic segmentation.

Nevertheless, a GNN does not ultimately demonstrate a strong point and is seldom
used for dense prediction tasks because of the lack of prior knowledge of the adjacency
matrix. Previous attempts [9–11] used prior knowledge-based manually generated static
graphs, which did not fit each image well. A graph obtained by a neural network, is called
”A self-constructing graph”. Compared with these methods, a self-constructing graph can
adjust itself and reflect the features of each remote sensing image.

Attention mechanisms [12] are added within the convolutional frameworks to improve
the semantic segmentation performance in remote sensing images. Every true color image
has RGB channels, and the RGB channels of objects have a potential correlation, which
can be used to get a better semantic segmentation. The convolutional block attention
module (CBAM) [13] adopts two kinds of non-local attention modules to the top of the
atrous convolutional neural network: channel attention and spatial attention, respectively.
CBAM achieves a competitive segmentation performance in the corresponding dataset. The
channel attention mechanism can acquire the correlation among channels, improving the
performance of semantic segmentation in remote sensing images. Every pixel has several
channels, and each has a different importance for different kinds of pixels. Our channel
attention mechanism could model the channels correlation to a large extent, inhibiting or
enhancing the corresponding channel in different tasks, respectively.

In this paper, we propose a self-constructing graph attention neural network (SGA-
Net) to implement the semantic segmentation of remote sensing images to model global
dependency and meticulous spatial relationships between long-range pixels. The main
contributions of this paper are as follows:

• Incorporating GATs into self-constructing graphs enhances long-range dependencies
between pixels.

• A channel linear attention mechanism to catch th correlation among channel outputs
of the graph neural network and further improve performance of the proposed GNN-
based model.

• Comprehensive experiments on two widely used datasets in which our framework
outperformed the state-of-the-art approaches on the F1 score and mean IoU .

The rest of this paper is organized as follows, the related work is showed in Section 2.
Section 3 presents that the details of our architecture SGA-Net. The experiments and
corresponding analyses are showed in Section 4, and Section 5 presents the conclusion.

2. Related Work

2.1. Semantic Segmentation

The rise of convolutional neural networks (CNNs) marks a significant improvement
in semantic segmentation. The fully convolutional network (FCN), which widely consists
of the encoder–decoder module has dominated pixel-to-pixel semantic segmentation [14].
The FCN dominates semantic segmentation, and one with an encoder-decoder module can
segment images at the pixel level by deconvolutional and upsampling layers, promoting
the development of semantic segmentation. Compared with the FCN, the U-Net [15]
applies multi-scale strategies to withdraw contextual patterns and perform semantic seg-
mentation better. Owing to the use of multi-scale context patterns, U-Net can derive a
better prediction result than the FCN. Segnet [16] proposes max-pooling indices to enhance
location information, which can improve segmentation performance. Deeplab V1 [17]
proposes atrous convolutions, which can enlarge the receptive field without increasing
the number of parameters. Compared with Deeplab V1, Deeplab V2 [18] presents atrous
spatial pyramid pooling (ASPP) modules that consist of atrous convolutions with different
sampling rates. Because it uses information from a multi-scale rates receptive field, Deeplab
V2 has better prediction than Deeplab V1. The above methods are all supervised models.
FESTA [19] is a semi-supervised learning CNN-based model that encodes and regularizes
image features and spatial relations. Compared to FESTA, our proposed method extracts
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long-range spatial dependency and channels correlation to perform segmentation, and
our proposed method is a GNN-based model. There are also models of non-grid convo-
lutions for semantic segmentation. Deformable convolution [20] adds 2D offsets to the
regular grid sampling locations in the standard convolution, which enhances the geometric
transformation modeling capability of CNN. Deformable convolution is still limited in
capturing long-range structured relationships. DGMN [21] obtains long-range structured
relationships by constructing a dynamic graph. Our proposed model also adopts the
idea of a dynamic graph to obtain global long-range correction of remote sensing images.
HG-CNNs [22] is a heterogeneous grid convolutional neural network that constructs a data-
adaptive graph structure from the convolutional layer by microclustering and assembling
features into the graph. Our proposed model also constructs a data-adaptive graph, but the
graph structure is extracted by convolutional operation from the high-level feature map.

2.2. Graph Neural Network

Recently, the GNN has become popular due to its success in many fields, such as
natural language processing [23], social networks [24], reinforcement learning [25], com-
puter vision [26]. There are lots of natural datasets of graph structures, recommender
systems [27], protein networks [28] and knowledge graphs [29]. More and more GNN
variants are produced and applied to various fields. In the beginning, only datasets in
the form of graphs [10,30] were entered into graph neural networks. However, in a GNN
neatly arranged matrix forms like remote sensing images can be extracted and transformed
into diffferent kinds of graph structures [8]: convolutional networks, auto-encoders, atten-
tion networks (GATs) and isomorphism networks [31]. A GAT [32] and GCN are crucial
branches of a GNN. Gao et al. [33] performed action recognition by using structured
prior knowledge in the form of knowledge graphs. Yan et al. [34] completed skeleton-
based action recognition with spatial-temporal graph convolutional networks (STGCNs)
that auto-learn spatial and temporal patterns. Wang et al. [35] proposed a graph-based,
language-guided attention mechanism that can clearly reveal inter-object properties and
relationships with flexibility. GNN-based models (ASTGCN) [36] are used to predict traffic
flow. Liu et al. [8] adopted a GCN to conduct experiences of semantic segmentation in
remote sensing images, and the GCN adjacency matrix is built by neural networks. A GCN
can simultaneously perform end-to-end learning of node feature information and struc-
ture information. In comparison, a GAT proposes a weighted summation of neighboring
node features using an attention mechanism. The weights of neighboring node features
entirely depend on the node features and are independent of the graph structure. Graph-
SAGE [37] solves the GCN and GAT memory explosion problem by neighbori sampling
for the large-scale graph. GNN-based models are used in a variety of applications.

2.3. Attention Mechanisms

With the publication of the paper in [12], attention mechanisms became more and
more popular and attractive. Fu et al. [38] propose a dual attention network (DANet)
that can adaptively learn local and global dependency to conduct semantic segmentation.
Huang et al. [39] propose channelized axial attention (CAA) to integrate channel and axial
attention seamlessly. CAA is similar to DANet in double-attention mechanisms, and these
models have a competitive result in the corresponding dataset. CAA pays attention to
channel and axial attention, DANet focuses on local and global attention. Compared with
multi-attention mechanism, Tao et al. [40] propose a multi-scale attention mechanism that
improves the accuracy of semantic segmentation. Transformer [12] is used to solve natural
language processing, which is entirely based on the multi-head self-attention mechanism.
Dosovitskiy et al. [41] adopt a transformer into the task of image classification, achieving
excellent prediction results in many small- and medium-image recognition benchmarks.
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3. Methods

In this section, we introduce the details of the model SGA-Net. An overview of the
framework is presented in Figure 1 and consists of a feature maps extraction network,
self-constructing graph attention network and a channel linear attention mechanism. The
four SGA-Nets are shared weights. First, ResNet50 was employed as the backbone of
the feature extraction network to acquire feature maps of remote sensing images, and
X was denoted as the feature maps. Second, to ensure geometric consistency, feature
maps were rotated by several degrees—90, 180 and 270. In addition, X90, X180 and X270
indicated the feature maps multi-views, where the index was the degree rotation. Third,
multi-view feature maps were used to obtain self-constructing graphs A0, A1, A2 and A3 by
a convolution neural network, separately. Fourth, these self-constructing graphs were fed
into a neural network based on a GAT to extract the long-range dependency of pixels. Fifth,
This network is called the self-constructing graph attention network and the outputs were
used for inputs into channel linear attention, the ouputs of which were added to predict
the final results. The adjacency matrix A is a high-level feature map of the corresponding
remote sensing image feature map, and the projected remote sensing features maps in a
specific dimension are defined as nodes. Therefore, the features maps X are defined as the
features of nodes. Aij indicating the weight of the edge between node i and node j. We
focused on the SGA-Net below.

3.1. Self-Constructing Graph Attention Network

The self-constructing graph is an undirected graph that shows the spatial similarity
relationship of feature maps in remote images. The self-constructing graph is extracted by
a neural network, instead of prior knowledge. Every image is unique; thus, models based
on a self-constructing graph can be fitted for each remote sensing image very well.

The input image is denoted as I, where I ∈ RC×H×W , H and W present the hight and
width of corresponding image respectively, and C denotes the number of channels. The

high-level feature maps is used as X, where X ∈ RH
′×W

′×C
′
, H

′
, W

′
and C

′
indicate that

the number of height, width and channels, respectively. Next, we applied a convolutional
neural network and dropout layer to extract the latent embedding space S of every remote
sensing image, where S ∈ RN×E, N = H

′ ×W
′
, where E is the number of the classification.

As we can see from Figure 2, which shows the latent embedding space S of buildings,
cars, roads, trees and grass, respectively. S of buildings indicated that they are brighter
than other objects: the higher the gray value, the greater the spatial similarity. In general,
the same kind of features have the greatest spatial similarity relationship. The adjacency
matrix was defined as A = ReLU(matmul(S, ST)), which highlighted and enhanced the
differences between the target class and other categories. Since it does not arise from
prior knowledge, but directly from the output of neural network the adjacency matrix is
called the ”self-constructing adjacency matrix ”, which captures the distributions of the
features in remote sensing images. Our model followed the convention of the variational
auto-encoder [42] to learn the mean matrix M and the standard deviation matrix D, where
M ∈ RN×E and D ∈ RN×E, and E denotes the number of the classification. The details of
the mean matrix M and logarithm of the standard deviation matrix D are as follows:

M′ = Flatten
(

Conv3×3, padding =1(X)
)

M = Dropout(p = 0.2)(M′)
(1)

D′ = Flatten (Conv1×1)(X)

log(D) = Dropout(p = 0.2)(D′)
(2)

334



Remote Sens. 2021, 13, 4201

Figure 1. In the flow chart of our model for semantic segmentation, ResNet50 was selected as the feature maps extraction
network of our model; Conv3×3 means the convolution operation with kernel size 3; SGA-Net denotes the self-constructing
graph attention network and channel linear attention mechanism; GAT is graph attention network, and Q, K, V of channel
linear attention mechanism indicate query, key and value, respectively. X denotes the feature input, X90, X180 and X270

indicate the feature maps multi-views, where the index is the rotation degree, and A0, A1, A2 and A3 present the adjacency
matrix of the self-constructing graph of corresponding feature maps. �hi means initial feature vector of each node, where i ∈
[1, 3];�α represents the correlation coefficient; Concat denotes a concatenating operation; P indicates the number of channels,
and�h

′
i indicates the output of self-constructing graph attention neural network.

The latent embedding space S = M + log(D) · α, where α ∈ RN×E is an auxiliary
noise variable that obeys standard normal distribution (α ∼ NN×E(0, I)). The adjacency
matrix A was generated by an inner product operation between the transpose of the latent
space embedding ST and itself S, where A ∈ RN×N and Aij denotes the spatial similarity
relationship between node i and j.

A = ReLU(matmul(S, ST)) (3)

A therefore can indicate the spatial similarity relation of each two nodes of the latent
embedding space S. However, the CNN receptive field was restricted by the kernel size,
and the CNN did not have the ability to present a spatial similarity relation between each
two nodes. A in our model is not traditional binary but weighted and undirected.

The calculation of the SGA-Net was the same as for all kinds of attention mechanisms.
The first step was computing the attention coefficient, and the last was aggregating the sum
of weighted features [12]. For node i, the similarity coefficient between its neighbour nodes
j and itself was calculated, where i ∈ N and j ∈ N. The details of the similarity coefficient
are as follows:

eij = a([U ·�hi, U ·�hj]) (4)
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where U is the learnable weight matrix, �hi indicates the node feature of node i, h =

(�h1,�h2, · · · ,�hN), �hi ∈ RN×F, where F denotes the number of features in each node and
�h = X, and a indicates the operation of self-attention, which is inner product, and the self-
constructing adjacency matrix A is set as a mask. Thus, eij ∈ RN×N . Next, we computed
the attention coefficient�αij as follows:

�αij =
exp

(
LeakyReLU

(
eij

))
∑k∈N exp(LeakyReLU(eik))

(5)

We applied an 8-head graph attention network to enhance the predictive capability of
the model and make it more stable iduring training to improve the framework performance.

�h′i = ‖L
l=1σ

(
∑

j∈Ni

�αk
ijU

k�hj

)
(6)

where ‖ indicates the operation of concatenating, and L is the number of attention, sigma
is the activate function sigmoid, and Ni indicates some neighborhood nodes of the node
i in the graph, and�αk

ij is the normalized attention coefficients computed by the kth atten-

tion mechanism a(k), and the U(k) indicates the kth corresponding input weight matrix.
Specifically, L = 8 and we use an 8-head graph attention network in the work.

Figure 2. Latent embedding space of buildings, cars, roads, trees and low-vegetation present the
latent embedding space of these categories separately.

3.2. Channel Linear Attention

Each channel of the high level features could be regarded as the special response of
a category, and different responses have intrinsic independencies. The channels of each
category had their own distinctive feature and correlations. Exploiting the inter-correlations
among channels of images can improve the performance of specific semantic features.
Therefore, we adopted a channel attention module to explore correlations among channels.

Suppose the query matrix is Q, the key matrix is K and the value matrix is V. In
addition, all of Q, K and V ∈ RK×P, where P = H×W, and these are learnable parameters.
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In addition, suppose the output of SGA-Net is �H, where �H ∈ RK×P. The detail of the
channel linear attention is as follows:

D(Q, K, V) = �H +

V +
(

Q
‖Q‖2

)((
K
‖K‖2

)T
V
)

N +
(

Q
‖Q‖2

)(
K
‖K‖2

)T (7)

where N denotes the number of nodes. D(Q, K, V) ∈ RK×P. The equation highlights the
input of a GAT, and emphasizes the importance of the K, Q and V at the same time. The
channel linear attention can model the importance of different channels in a different task.

3.3. Loss Function

There is no doubt that Aii ought to be greater than 0 and close to 1; hence, we intro-
duced a diagonal log regularization term to improve the prediction which was defined as:

γ =

√
1 +

n
∑n

i=1 Aii + ε
(8)

Ldl = − γ

n2

n

∑
i=1

log
(
|Aii|[0,1] + ε

)
(9)

where the subscript [0, 1] indicates that Aii is clamped to [0, 1], and ε is a fixed and small
positive tiny parameter and (ε = 10−5). We adopted the Kullback–Leibler divergence,
which measures the difference between the distribution of latent variables and the unit
Gaussian distribution [42] to be the part of loss function, and the details of Kullback–Leibler
divergence were as follows:

Lkl = − 1
2NK

N

∑
i=1

K

∑
j=1

(
1 + log

(
Dij

)2 −M2
ij −

(
Dij

)2
)

(10)

where D is the standard deviation matrix. In addition, we adopted an adaptive multi-class
weighting (ACW) loss function [26] to address the highly imbalanced distribution of the
classes. The detail of Lacw is as follows:

Lacw =
1
|Y| ∑

i∈Y
∑
j∈C

w̃ij · pij − log
(
MEAN

{
dj | j ∈ C

})
(11)

where Y includes all the labeled pixels and dj denotes the dice coefficient:

dj =
2 ∑i∈Y yijỹij

∑i∈Y yij + ∑i∈Y ỹij
(12)

where yi,j and ỹi,y denote the ijth ground truth and prediction of class j respectively. pij is
positive and negative balanced factor of node i and node j and its detail as follows:

p = (y− ỹ)2 − log(
1− ((y− ỹ)2)

1 + (y− ỹ)2 ) (13)

w̃ij is a weight about the frequency of all categories, and the detail of it as follows:

w̃ij =
wt

j

∑j∈C

(
wt

j

) · (1 + yij + ỹij
)

(14)
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wt
j =

MEDIAN
({

f t
j | j ∈ C

})
f t
j + ε

(15)

f t
j =

f̂ t
j + (t− 1) · f t−1

j

t
(16)

where ε is a fixed parameter and ε = 10−5; C indicates the number of class; t is the
iteration number; f t

j represents the pixel sum of class j at the tth training step, which can

be computed as
SUM(yj)

∑j∈C SUM(yj)
, and when t = 0, f t

j = 0.

For refining the final prediction result, we adopted the sum of three kinds of loss func-
tion as the final loss function in our framework, which are Lkl , Ldl , and Lacw respectively.
The loss function can be formulated as below:

Loss = Lkl + Ldl + Lacw (17)

4. Experiments

4.1. Datasets

We used two public benchmark the ISPRS 2D semantic labeling contest datasets as
our datasets. The ISPRS datasets consisted of aerial images in two German cities: Potsdam
and Vaihingen. They are labeled with six common land cover classes:impervious surfaces,
buildings, low vegetation, trees, cars and clutter.

• Potsdam: The Potsdam datasets (https://www2.isprs.org/commissions/comm2/wg4
/benchmark/2d-sem-label-potsdam/, accessed on 3 September 2021) comprised 38
tiles of a ground resolution of 5 cm with size 6000 × 6000 pixels. Moreover, these
tiles consisted of four channel images—Red-Green-Blue-Infrared (RGB-IR)—and the
dataset contained both digital surface model (DSM) and normalized digital surface
model (nDSM) data. Of these tiles, 14 were used as hold-out test images: 2 were used
as validation images, and 12 were used as training data. Furthermore, to compare
with other models fairly, we only used RGB images as experience data in this paper.

• Vaihingen: The Vaihingen dataset (https://www2.isprs.org/commissions/comm2
/wg4/benchmark/2d-sem-label-vaihingen/, accessed on 3 September 2021) consists
of 33 tiles of varying size with a ground resolution of 9cm, of which 17 tiles are used
as hold-out test images, 2 tiles are used as validation set, and the rest tiles are taken
as training set. In addition, these tiles contain Infrared-Red-Green (IRRG) 3-channel
images. In addition, the dataset includes DSM and nDSM. To compare other works
fairly, we only apply 3-channel IRRG data in these frameworks in this paper.

4.2. Evaluation Metrics

To acquire reasonable and impartial results, we adopted the mean Intersection over
Union (mIoU), the F1 score (F1) and accuracy (Acc) to evaluate performance, all of which
are widely applied in semantic segmentation. In addition, based on the accumulated
confusion matrix, these evaluation indicators were computed as:

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

, (18)

F1 = 2× precision × recall
precision + recall

, (19)

Acc =
∑N

k=1 TPk + TNk

∑N
k=1 TPk + FPk + TNk + FNk

(20)
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where TPk, FPk, TNk, and FNk are the true positive, false positive, true negative, and false
negatives, respectively, and k indicates the number of object index. Acc was computed for
all categories except for clutter.

4.3. Experimental Setting

We achieved the proposed SGA-Net as well as all baselines working with PyTorch on a
Linux cluster. Models were trained in a single Nvidia GeForce RTX 3090 with a batch size of
5. We applied AMSGrad [43] with adam as the optimizer with weight decay 2× 10−5. The
weight decay was used in all learnable parameters except batch-norm and bias parameters.

Polynomial learning rate (LR) decay was
(

1− cur−iter
max−iter

)0.9
with the maximum iterations of

108, and learning rate decay set to 0.9. The learning rate of the bias parameters is 2 × LR.
The initial learning rate was set to 1.5 × 10−4√

3
. We sampled the patches of size 512× 512 as

input, and set the node size of graph to 1024× 1024.

4.4. Baselines and Comparison

Our model was compared with several works as follows:

• DDCM [44]: This is a CNN-based model that consists of dense dilated convolutions
merged with varying dilation rates. It can enlarge the receptive fields effectively.
Moreover, this model can obtain fused global and local context information to raise
the discriminative capability for the surroundings.

• MSCG-Net [26]: This method is a self-constructing graph convolutional network
that applies neural networks to build graphs from the input of high-level features
instead of prior knowledge. In addition, it is a GNN-based model. The feature maps
extraction network of our entire framework was similar to a MSCG-Net, but our
model used a self-constructing graph to input a GAT, and its outputs were input
channel linear attention.

• DANet [45]: This framework includes the position and the channel attention mecha-
nisms. The position attention mechanism can learn the spatial relationship of features,
and the channel attention mechanism can obtain the channel dependency of images.
It is an attention-based method.

• DUNet [46]: The model uses redundancy in the label space of semantic segmentation
and can recover the pixel-level prediction from low-resolution results of CNNs. It is a
CNN-based model.

• DeeplabV3 [47]: This method captures multi-scale backgrounds by multi-scale cas-
cading or parallel dilated convolution, which can improve the prediction of semantic
segmentation. In addition, it is a CNN-based framework.

4.4.1. Prediction on Potsdam Dataset

We compared our model with five baselines on the Potsdam dataset. Table 1 presents
the evaluation metrics of prediction in semantic segmentation. Obviously, Table 1 shows
that the proposed SGA-Net outperformed the other models.

The SGA-Net was 3.4% higher than the MSCG-Net in mean F1 score, because a self-
constructing graph attention network can acquire long-range global spatial dependency
of images and channel linear attention to obtain a correlation among all channels. In
addition, the proposed framework outperformed other model, which showed that the
self-constructing graph had the ability to extract the spatial dependency of images well. In
fact, we applied a self-constructing graph, obtained by neural network rather than prior
knowledge, to a GAT. Our model performed better than DANet for prediction in all cate-
gories, indicating that a self-constructing graph attention neural network can dig the global
long-range spatial correlation of nodes for the channel linear attention. Moreover, the
multiviews of feature maps in remote sensing images can ensure the geometric consistency
of spatial patterns. The reasons for the 3% improvement in average F1 score and 2.6%
improvement in mIoU of SGA-Net over Deeplab V3 were that the self-constructing graph
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neural network obtaied the spatial similarity of each two nodes, and the channel linear
attention mechanism captured the correlation among the channel outputs of the graph
neural network. The GAT modeled the dependencies between each two nodes, thereby
increasing information entropy about spatial correlation. The channel linear attention
mechanism enhanced or inhibited the corresponding channel in different tasks. Further-
more, multi-views also can get more information about initial images, which has the ability
to support predicting remote sensing images.

Table 1. The experimental results on the Potsdam dataset (bold: best; underline: runner-up).

Method Road Surf Buildings Low Veg. Trees Cars Mean F1 Acc mIoU

MSCG-Net (GNN-based) 0.907 0.926 0.851 0.872 0.911 0.893 0.959 0.807

DANet (Attention-based) 0.907 0.922 0.853 0.868 0.919 0.894 0.959 0.807

Deeplab V3 (CNN-based) 0.905 0.924 0.850 0.870 0.939 0.897 0.958 0.806

DUNet (CNN-based) 0.907 0.925 0.853 0.869 0.935 0.898 0.959 0.808

DDCM (CNN-based) 0.901 0.924 0.871 0.890 0.932 0.904 0.961 0.808

SGA-Net (GNN-based) 0.927 0.958 0.886 0.896 0.968 0.927 0.964 0.832

Figure 3 shows the ground truth and predictions of all methods in tile5_15, and
trhat the SGA-Net overmatched all baselines in the Potsdam dataset. The figure shows
the overall predicting capability of our method in remote sensing images. For example,
our model predicted surfaces better than that of MSCG-Net, while the proposed model
outperformed all baselines in predicting buildings. The above phenomena illustrated
that our framework modeled regularly shaped grounds well. Figure 4 is the result of
predicting details from all baselines and the SGA-Net. The black boxes highlight the
difference of results among ground truth, baselines and the SGA-Net. The first row shows
that the proposed framework did much better predicting buildings compared to the other
models, demonstrating that the SGA-Net can model global spatial dependency and channel
correlation of remote sensing images.

The second row shows that the SGA-Net outperformed all baselines in predicting
trees and buildings, which indicates that the SGA-Net can extract channel correlation in
images well. The third row shows that the SGA-Net surpassed the other frameworks in
predicting surfaces and low-vegetation. In addition, the last row shows that our model was
superior to the other models for predicting trees and low-vegetation. The above phenomena
illustrate that self-constructing graph attention network can capture long-range global
spatial dependency of images, and the channel linear attention mechanism can acquire a
correlation of images among channels. In addition, multiviews feature maps can ensure
geometric consistency, improving the performance of predicting semantic segmentation in
remote sensing images.

In conclusion, Figure 4 shows that the SGA-Net had a better performance predicting
buildings, trees, low-vegetation, cars and surfaces in detail, demonstrating SGA-Net has
powerful prediction in the semantic segmentation of remote sensing images.

4.4.2. Prediction on Vaihingen Dataset

We compared our framework with these five baselines on Vaihingen dataset, Table 2
presents the evaluation metrics of prediction in all models. The result showed that the
mean F1 score of the SGA-Net was higher than that of the other methods, indicating the
powerful ability of prediction in remote sensing images.

To be specific, the F1 score of our model for road surfaces, buildings and cars exceeded
all baselines, and accuracy was higher than in other models. Because the SGA-Net contains
a self-constructing graph attention neural network and a channel linear attention mecha-
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nism, the framework can model the spatial dependency and channel correlation of remote
sensing images. Furthermore, because the self-constructing graph attention neural network
has the ability to obtain a long-range global spatial correlation of the regular grounds, the
predicting result of buildings and cars from the SGA-Net surpassed all baselines. The
reason for bad performance on low-vegetation and trees is that the two kinds of grounds
are surrounded by many others, leading to poor extraction of spatial dependency by the
self-constructing graph. The similarity of tree colors to low-vegetation and the fact that
the SGA-Net captures long-range dependencies results in a segmentation performance for
trees that is slightly worse than some other methods. The distribution of low-vegetation is
more scattered than other objects, and the proposed model cannot extract a very complex
spatial relationship of low-vegetation, leading to a poorer performance than DDCM in
semantic segmentation.

Table 2. The experimental results on the Vaihingen dataset (bold: best; underlined: runner-up).

Method Road Surf Buildings Low Veg. Trees Cars Mean F1 Acc mIoU

MSCG-Net (GNN-based) 0.906 0.924 0.816 0.887 0.820 0.870 0.955 0.796

DANet (Attention-based) 0.905 0.934 0.833 0.887 0.761 0.859 0.955 0.797

Deeplab V3 (CNN-based) 0.911 0.927 0.819 0.886 0.818 0.872 0.956 0.800

DUNet (CNN-based) 0.910 0.927 0.817 0.887 0.843 0.877 0.955 0.801

DDCM (CNN-based) 0.927 0.953 0.833 0.890 0.883 0.898 0.963 0.828

SGA-Net (GNN-based) 0.932 0.955 0.826 0.884 0.928 0.905 0.965 0.826

Figure 3. Visualization of tile5_15 in the Potsdam dataset.
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Figure 4. Visualization of prediction detail in the Potsdam dataset.
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In addition, Figure 5 shows that the proposed model had a good overall prediction
performance. In particular, this figure distinctly indicates that the predicting results of
buildings and cars from the SGA-Net surpassed all models, showing that multi-views
feature maps can enhance prediction capability, and a self-constructing graph can mine
long-range spatial dependency for each image. Additionally, Figure 6 shows the details
of the prediction results of the Vaihingen dataset. Because the self-constructing graph
attention network can acquire the spatial dependency of each two nodes, the top three
rows of Figure 6 indicate that the predictive buildings of the SGA-Net performed better
than all baselines, and the last row shows that the predicting trees of our model were much
better than other frameworks.

Figure 5. Visualization of tile35 in the Vaihingen dataset.

4.5. Ablation Studies

We conducted ample ablation experimentation to prove the effectiveness of the self-
constructing graph neural network and channel linear attention mechanism (SGA-Net) in
the proposed framework. Following the main experience as closely as possible, ResNet50
was selected as the baseline and feature extraction layers in our framework. To research
the effectiveness of each model component further, we compared the SGA-Net with its
variants as follows:

• ResNet50 [48]: a CNN-based neural network adopted as the feature extraction compo-
nent of the proposed model.

• SGA-Net-ncl: To validate the effectiveness of the self-constructing graph neural network,
we directly removed the channel linear attention mechanism from the framework.

• SGA-Net-one: To validate the effect of geometric consistency, we removed the branch
roads of X90, X180 and X270.

• SGA-Net: our whole SGA-Net framework .

As can be seen from Table 3, the performance of the SGA-Net-ncl significantly over-
matched the baseline of ResNet50, thereby showing how effectively a self-constructing graph
can model the long-range global spatial correlation of images and get a competitive result.
The SGA-Net outperformed ResNet50 and SGA-Net-ncl in two datasets, which shows that
channel linear attention has ability to derive a correlation among channel outputs of a graph
neural network, and further improve performance of the proposed model. The SGA-Net
surpassed SGA-Net-one in predicting remote sensing images, showing that the rotation of
images can keep geometric consistency, which improves image prediction performance.
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Figure 6. Visualization of prediction detail in the Vaihingen dataset.
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Table 3. The ablation study about SGA-Net.

Dataset Method Mean F1 Acc mIoU

ResNet50 0.826 0.944 0.753

Vaihingen
SGA-Net-ncl 0.849 0.946 0.761

SGA-Net-one 0.876 0.948 0.798

SGA-Net 0.905 0.965 0.826

ResNet50 0.873 0.934 0.783

Potsdam
SGA-Net-ncl 0.906 0.960 0.821

SGA-Net-one 0.912 0.957 0.825

SGA-Net 0.927 0.964 0.832

From Figures 7 and 8, we know that the performance of the SGA-Net-ncl surpassed
ResNet50 and that the SGA-Net outperformed the baselines of the ablation study in two
real-world datasets. Owing to long-range global spatial dependency extraction by a self-
constructing graph attention network, the SGA-Net-ncl had a better prediction result than
ResNet50. Moreover, channel linear attention acquired a correlation among the channel
outputs of the graph neural network, which is why the SGA-Net was superior to the
SGA-Net-ncl in semantic segmentation.

From Figure 9, we know the target object had a strong similarity with the same object.
On the right of Figure 9, the target object is a building, and the color of the building region is
red, meaning that the target pixel had a strong similarity with these pixeles of the building
region. On the left of Figure 9, the target objects are low-vegetation and road, and the
color of all cars is blue, indicating a low similarity. This picture shows that our attention
mechanism works.

Figure 7. Visualization in the ablation study of Potsdam dataset.
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Figure 8. Visualization in the ablation study of Vaihingen dataset.

Figure 9. Visualization of the attention mechanism. The black dot is the target pixel or object. The
red pixel color indicates that the target pixel is very similar to this pixel, and the blue color indicates
that the target pixel is strongly different to this pixel.

5. Conclusions

In this paper, we proposed a novel model, SGA-Net, which includes a self-constructing
graph attention network and a channel linear attention. The Self-constructing graph was
obtained from feature maps of images rather than prior knowledge or elaborately designed
manual static graphs. In this way, the global dependency of pixels can be extracted
efficiently from high-level feature maps and present pixel-wise relationships of the remote
sensing images. Then, a self-constructing graph attention network was proposed that
aligned with the actual situation by using current and neighboring nodes. After that,
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a channel linear attention mechanism was designed to obtain the channel dependency
of images and further improve the prediction performance of semantic segmentation.
Comprehensive experiments were conducted on the ISPRS Potsdam and Vaihingen datasets
to prove the effectiveness of our whole framework. Ablation studies demonstrated the
validity of the self-constructing graph attention network to extract the spatial dependency
of remote sensing images and the usefulness of channel linear attention mechanisms for
mining correlation among channels. The SGA-Net achieved competitive performance for
semantic segmentation in the ISPRS Potsdam and Vaihingen datasets.

In future research, we will re-evaluate the high-level feature map and the attention
mechanism to improve the segmentation accuracy. Furthermore, we would like to employ
our model to train other remote sensing images.
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Abstract: This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN),
a generative model of high resolution satellite imagery to support image segmentation. Based on
spatially adaptive denormalization modules (SPADE) that modulate the activations with respect
to segmentation map structure, in addition to global descriptor vectors that capture the semantic
information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a
carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis
with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the
generation not only with respect to the desired structure, but also with respect to a geographic area.

Keywords: aerial image generation; satellite image generation; generative adversarial network; deep
learning; structure map; style vector; high resolution image

1. Introduction

The commercialization and the advancement of the geospatial industry has led to
an explosive amount of remote sensing data being collected to characterize our changing
planet Earth. Public and private industries are taking advantage of this increasing avail-
ability of information in order to perform analytics and obtain more precise information
about geographic areas in order to support decisions and automatize technology. Due to
the increasing revisiting frequency of recently launched satellites and a fine pixel resolution
(up to 30 cm per pixel, commercial ones), satellite imagery has become of interest because
computer vision algorithms can capture the presence of objects in an automatic and efficient
manner at a large scale. Commonly studied computer vision tasks, such as semantic and
instance segmentation, object detection or height estimation, aim to address problems
such as land cover classification, precision agriculture, flood detection, building, road or
car detection, and at the same time help to provide information about geographic zones
that can improve agriculture, navigation, retail, smart city technologies, 3D precise world
reconstruction or even assistance after natural disasters.

State-of-the-art methods comprise mostly of deep learning algorithms. With the
presentation of AlexNet [1] in 2012 as the winner of the ImageNet LSVRC-2012 competition
by a large margin, deep networks have dominated the scene of computer vision. Due to
their large number of parameters, they present a high complexity that means they require
a high volume of data to correctly extract latent features from imagery, key to achieving
outstanding results.

Particularly, in the field of geo-informatics and remote sensing, datasets are usually
sparse, expensive and difficult to collect when it comes to tasks that require high to very
high resolution images (from 1 to 0.05 m). To overcome this situation of the scarcity of
images, a commonly used technique is transfer learning. This approach to training consists
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of using pre-trained weights as a starting point in order to improve performance and
decrease training time. Pre-training is done with a highly varied high-volume dataset, so
the network can extract low-level features of the world. Then, this pre-trained model is
trained again with a smaller task-specific available dataset that is known as fine-tuning.
This tuning can be performed by a variety of strategies that range from the most basic ones,
such as freezing most of the low level layers (layers that have learnt primitive low level
features) and only tuning the shallow layers, to more complex schemes that apply different
learning rates to different layers.

The idea is the model to take advantage of low-level extracted features to learn more
easily task-specific features in the fine-tuning. Generally, public pre-trained models are
trained in datasets such as ImageNet [2] or similar ones that consist of labeled images
used in visual recognition tasks (ground level visualization). Those pre-trained models are
applied in totally different domains, obtaining an increment in performance with respect
to training the network from scratch. For example ImageNet presents completely different
visual features with respect to satellite images. Aerial-imagery contains the presence of
high-frequency details and a background clutter that heavily depends on the environment,
geographic zone, weather conditions, illumination, sensors and pixel resolutions. Those
factors constitute a challenge itself for computer vision models to work well in a variety of
cities, countries, regions, continents or even pixel resolutions.

The performance of algorithms varies markedly across geographies, image qualities
and resolutions. The performance of a model applied in new areas depends, on one hand,
on the target texture and topology related to cultural regions and countries [3]. Other
crucial characteristics present in the image are the geographic location, weather and type
of terrain. An image taken from a rural area totally differs from an urban area or from the
coast. Even a specific rural area contains a different biome from a rural area of a different
country/region. These points explain why it is really difficult to train a general deep
network that works well with images of different locations. Additionally to the image
content characteristics, there are image technical characteristics related to the methodology
of extraction, such as the type of sensor, radiometry, off-nadir angle, or the atmospheric
conditions at the top layers of the atmosphere.

Supervised learning techniques that use deep networks are usually trained with a
large number of classes that can go from tens to thousands of labels. Thus, labeling satellite
imagery is a fundamental step in the training of deep networks. Depending on the quality
of labels and the resolution of the images, the cost of annotating scenes varies. Generally,
the most quality satellite imagery labeling is performed by trained professionals with
knowledge of GIS and geographic imagery, making this demanding annotation process
slow and costly. Even the cost is tightly related to the resolution of the images; as the spatial
resolution of the image increases, the cost of annotation grows accordingly. This produces
a scarcity of public datasets and a bias towards most developed urban regions that have
enough resources to afford this data acquisition. Scientists should make a careful selection
and analysis of the datasets before starting the data annotation phase and they should also
pay special attention to the quality of the labels.

When a study or research presents a model claiming to efficiently extract and detect a
specific target, it usually implies that they are presenting a model trained with a dataset
with specific geographic, cultural and quality conditions that perform well. In order to
overcome such necessity, one possibility can be to generate a large collection of diverse
synthetic images with their corresponding labels. In this case, it would be necessary to
contemplate the different characteristics mentioned before, so the resulting satellite images
can augment efficiently in those desired directions.

In this work, we present Satellite Style and Structured Generative Adversarial Network
(SSSGAN) to generate realistic synthetic imagery (see Figure 1) based on publicly available
ground truth (to get access to the models and code, please contact the authors). Particularly,
we propose the use of a conditional generative adversarial network (GAN) model capable
of generating synthetic satellite images constrained by two components: (1) a semantic
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style description of the scene; and (2) a segmentation map that defines the structure of
the desired output in terms of object classes. By this way the structure and the style
constraint are decoupled so the user can easily generate novel synthetic images by defining
a segmentation mask of the desired foot print labels and then selecting the proportion of
semantic classes expressed as number of a vector in addition to the selection of the region
or city. With this generation rule the model can capture and express variability present in
the satellite imagery while at the same time provides an easy-to-use generation mechanism
with high expressiveness. In this work, our key contributions are as follows:

• Development of a GAN model capable of producing highly diverse satellite imagery;
• Presentation of a semantic global vector descriptor dataset based on Open Street Maps

(OSM). We analyse and categorize a set of 11 classes that semantically describes the
visual features that are present in satellite imagery, leveraging the public description
of this crowdsourced database;

• Evaluation and study that describe the different effects of the proposed mechanisms.

Figure 1. Synthetic images generated by SSSGAN.

1.1. Related Work

Synthetic image generation is an active research topic in the field of computer vision.
A vast variety of models have been developed in the past years since the presentation in
2014 of generative adversarial networks (GAN) [4]. Even though, before and after GANS,
there were numerous classical and deep learning methods, the increasing support and
improvement of GAN models made this state-of-the-art technique achieve outstanding
results where the synthetic generated images are hardly distinguishable from the real ones.

As mentioned before, Generative Adversarial Networks (GANS) have stated the
baseline for deep generative learning. The model consists of two parts: a generator and
a discriminator. The generator learns to generate synthetic, realistic images while it is
trying to fool the discriminator that is responsible for distinguishing between real or fake
generated images. This learning process consists of finding equilibrium in a two-player
minimax game where each iteration of the generator G gets better at capturing the real
data distribution thanks to the feedback of the discriminator D, which at the same time is
also learning important features that help to distinguish whether the input image came
from the training distribution or not. Mathematically, the generator G learns to map a
latent random vector z to a generated sample tensor and tries to maximize the probability
D of making a mistake, that is to say, minimizes log(1− D(G(z))). On the other hand ,
the opposite happens to D; it tries to maximize the probability of assigning the correct label
log(D(x)) and log(1− D(G(z))), where x is a real image and z is the latent vector

minGmaxDLGAN(G, D) = E
x∼pdata(x)

[logD(x)] + E
z∼pz(x)

[log(1− D(G(z)))]. (1)
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From a slightly different point of view, this process can be seen as minimizing the
distance between distributions. In other words, the generator tries to approximate to the
real latent distribution of images by mapping from a completely random distribution.
During the training process, the Jhensen–Shannon distance is applied, measuring how
far the approximated distribution is from the real one. As it is optimizing the models
using gradient descent, this gradient information is back-propagated to the generator.
Despite the fact that they mathematically demonstrate that there is a unique solution
where D outputs 0.5 for every output and G recovers the latent training data distribution,
these models are unstable during training, making it laborious to train. The problem
arises due to the unfair competition between generator and discriminator generating mode
collapse problems, discriminators shielding infinity predictions and generators producing
blank images or always producing the same sample [5]. Moreover, the basic algorithm is
capable of generating up to 64 × 64 images but runs into instabilities if the size is increased.
Resolution of the generated image is an important topic to address since most of the
geographic and visual properties are better expressed in high-resolution so it can be used
in remote-sensing applications.

Having presented the cornerstone and basics of GANs, multiple models and different
variations and flavours came up, providing novel techniques, loss functions, layers or
applications. Particularly, some studies such as DCGAN [6], which immediately came
after the original GANs paper, added a convolutional neural network layer (CNN) in
order to increase the stability of synthetic image generation. Despite it proving to generate
larger images of 128 × 128 pixels, studies such as [7] report that it is not sufficient due to
insufficient detail in satellite images. They also include a similar analysis to that of [4] about
the input latent space, demonstrating that generators are capable of disentangling latent
space dimensions by mapping particular dimensions to particular features of the generated
images. Advanced techniques, such as in [5], provide new methods for training such as
feature matching included in the loss, changing the objective of the loss function from
maximizing the discriminator output to reducing the distance between intermediate feature
maps of the discriminator extracted from real images and generator images. By doing
this, the generator is forced to generate samples that produce the same feature maps in
the discriminator as the real images, similar to perceptual losses [8]. They also further
analyse the problem of mode collapse by proposing many strategies, such as the mini batch
discriminator, where the discriminator has information from other images included in the
batch, and they also propose historical averaging that adds weight to the costs and they
even suggest a semi-supervised technique that trains the discriminator with labeled and
unlabeled data.

Progressive Growing GAN (PGGAN) [9] proposes a method that gradually trains the
generator and the discriminator until they are capable of producing large resolution images
of 512 × 512 and 1024 × 1024. Their method starts by training the generator on images
of 4 × 4 pixels, and by gradually adding new layers to double the generated resolution
until it is capable of generating high-res images. In addition, they propose a couple of
techniques that further stabilize the training and provide variation such as a minibatch
standard deviation layer at the end of the discriminator, helping it to compute statistics
of the batch, they propose a weight initialization and a scaling factor during runtime,
and, inspired by [10], they implement a Wasserstein gradient penalty as a loss function.
They propose a novel metric called Sliced Wasserstein Distance (SWD) that allows the
performance of a multi scale statistical similarity between distributions of local real and
fake image patches drawn from a Laplacian pyramid, providing granular quantitative
results at different scales of the generated image.

In addition to the generation of large images, researchers propose novel architectures
for more complex applications such as image-to-image translation, mapping from an
image to an output image (conditioned generation). Pix2Pix [11] and Pix2PixHD [12]
are among the first to address both problems—the image-to-image translation and high-
resolution generation. Ref. [11] proposes a PatchGAN discriminator that is highly involved
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in posterior GAN research. The PatchGAN discriminator is applied in patches at different
scales and then its outputs are averaged to produce one scalar. In combination with L1
loss that captures low-frequency information, this model, which uses fewer parameters,
focuses on the high frequencies contained in each patch. Its successor, Pix2PixHD [12],
is able to produce images up to 2048 × 1024 pixels with a novel multi-scale generator
and discriminator, and by retaking the ideas of [5] by adding perceptual pre-trained loss.
Similar to [9], they divide the training in what they refer to as a coarse-to-fine generator.
This generator G is divided into two U-Net models—global generator G1 and local enhancer
G2. First, G1 is trained in order to learn global characteristics at the 1024 × 512 scale. In the
second phase, G2 is added with the particularity that the encoder part is added at the
beginning of G1 and the decoder part is added at the end, leaving the G1 in the middle.
In this case, D is divided into three PatchGANs that operate at different scales. The image
is downsampled in order to generate a pyramid of three scales. Then, each Di operates at
different scales with different receptive fields, the coarse scale with a large receptive field
leads to global images while the finer scale leads to finer details. The final contribution is
the instance level feature embedding, a mechanism to control the generation. First, they
train an encoder to find a low-dimension feature vector that corresponds to a real image.
Then, they train G and D with this vector and the instance map as the conditional input.
After a K-means analysis to find the cluster descriptor of each feature, the user is able
to control the generation in coordination of the interpretation that the G is assigned to
each dimension.

CycleGAN [13] proposes a model that learns to translate an image from one source
domain to a target domain, distressing the necessity of having two paired source and
target datasets. This is done by adding an inverse mapping model in the loss that reverts
the first transformation applied to the input, called cycle consistency. Additionally, they
reuse PatchGAN [11] as a discriminator. They conclude that, by applying the cycle loop
in addition to PatchGAN, they are able to reach higher image sizes. PSGAN Progressive
Structured GAN [14] is a work that adds conditionally to PGGAN. Their network is able
to generate high-resolution anime characters by providing the skeleton structure of the
character as an input. They take up the progressing growth by imposing the skeleton map at
different scale levels while the generator and the discriminator are growing. StyleGAN [15]
is GAN designed for style transfer purposes that can deal with higher resolutions and
control the generation by learning high-level attributes and stochastic variations, allowing
the control of the style of synthesis. They use a progressive training in conjunction with
Adaptive Instance normalization layers and Wassertein gradient penalty in addition to the
original GAN loss. This adapted generator learns a latent space domain and how to control
features at different scales. The Perceptual Adversarial network, PAN, [16] is a general
framework that is also capable of performing high-resolution image-to-image translation.
Their proposal also relies on feature matching of the D, encouraging the generated images
to have similar high-level features to the real ones while at the same time they use the
output of D as the classical GAN loss.

Finally, we describe SPADE [17], a model that generates photorealistic imagery given
a semantic map. They propose a spatially adaptive denormalization module (SPADE
module), a conditional normalization layer that uses the input segmentation map to
modulate the activation of the normalization layer at different scales of the generation.
They demonstrate that batch normalization layers drown the signal, so they de-normalize
the signal at each scale level by using SPADE layers. These layers consist simply of a
convolutional layer that extracts the features of the input map and then learn by two other
convolutional layers the scaling parameter at each spatial position and the scale and bias
according to the input map structure. By the addition of this simple modulation and
residual blocks, they obtain consistent local semantic image translations that outperform
previous models such as pix2pixHD and at the same time they remove the necessity of
using an encoder–decoder network. They also comment that taking a progressive growing
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approach makes no difference in their technique. As a discriminator, they reuse the multi-
scale PatchGAN [12] with the last term replaced by Hinge loss.

In the field of remote sensing, there are not many studies focused generally on
image-to-image translation using GAN. In [7], the authors described the process of ap-
plying PGAN to synthetically generate satellite images of rivers and the necessity of
high-resolution image generation for remote sensing applications that can capture particu-
lar high-frequency details of this kind of image that we mentioned at the beginning of this
work. Most of the work that uses GAN for remote sensing applications is conducted for
cloud removal [18] or super resolution applications with GAN [19] and without GAN [20]
that put special emphasis in the usage of dense skip or residual connections to propagate
high-frequency signals that is particularly present in this kind of image. Works such as [21]
evaluated models trained with synthetic images and demonstrated the improvement of
adding them, but they do not delve into synthetic image generation techniques.

At the moment of this work, there are no vast formal studies specifically applied to the
image-to-image translation of generating satellite images conditioned into the segmentation
map. Despite there being works that conduct similar tasks [11,13], they rely on generally
translating satellite footprints to real images as a usage example rather than conducting a
complete study of these challenging tasks. It is important to remark that there are a couple
of companies, such as OneView.ai (https://one-view.ai/, accessed on 3 October 2021),
that base their entire business model on providing synthetic image generation services for
enriching training datasets by including in their pipeline their own developed GAN model
to generate synthetic images from small datasets.

1.2. Problem Formulation

Before going deeper with more complex concepts and ideas, we first provide a high-
level introduction about the principal ideas around this work. Let us start by considering
we have C = [0, . . . , K], which represents K possible classes and 0 for the background. Let
m ∈ LHxW be a segmentation map, a matrix where each position (x, y) contains a k ∈ L the
index of a class and H and W are the height and width of the image, respectively. Let s = (v :
r) a the (V + R)-dimensional semantic global vector, where each dimension of the first V-
dimensional represents a proportion of one of V semantic global classes. The remaining R-
dimensional vector is a categorical (one-hot encoding) vector that represents the categorical
class of the region. In this way, each scene is represented by a matrix M and a vector s.
We present a deep neural network G that is capable of generating a satellite image I by
receiving as an input M and s. Each pixel position (i, j) of the resulting I corresponds to the
label of position (x, y) of m. Particularly, in this work, we simplify the problem by choosing
one class segmentation map despite the fact that it could be easily adapted to more classes.
We decided that M would be a building footprint map due to dataset availability and it
was more than enough to validate the model and demonstrate the simplicity of generation.
For the first V-dimensional part of the semantic global vector, we carefully defined 17
classes that express the number of visual cues, land use and styles relative to classes such
as forest, industrial, road, and so forth (in the following sections we will explain this more
in detail). We selected four cities, with remarked style, cultural and geographic properties
for the second categorical R-dimensional part of the vector. We ended up with a model
that—given a binary M mask with the shape and position of the buildings and a global
semantic vector s that defines content related to style such as number of roads, forests,
industrial land use zones and so forth, and the city/region—is capable of generating a
satellite image that contains all the stylish visual cues in addition to buildings with the
exact same position and shape as defined by the mask. With this control mechanism, a user
can define their own segmentation mask, or can even modify the region or the amount of
semantic classes for the same mask, helping it to efficiently augment a dataset with varied
region/culture synthetic satellite imagery.

Finally, the model consists of a generator G of a GAN that is modified from a SPADE
model [17] and a discriminator D Figure 2. Mask m and vector s are passed to generator G
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for generating a synthetic scene to fool the discriminator that is responsible for discerning
between synthetic images and real ones.

Figure 2. SPADE high level diagram. The generator takes the building footprint mask (m matrix) and the semantic global
vector. It generates the synthetic image I and it is passed to the discriminator to determine if it is fake or real.

1.3. Research Questions

The objective of this work is to propose a simple mechanism that leverages the
information of public geographic databases to enhance the geographic properties of a
synthetic image generated via a GAN model. While defining this mechanism, we wanted
to evaluate if that enhancement would help to enrich satellite synthetic generation with
finer details and properties, using a simple representation such as a 17-dimensional vector.
Therefore, the main research question we address in this work is:

How can a GAN model be modified to accept rich style satellite specific properties while at the
same time this information comes in a small-dimensional representation?

Additionally, this work responds to the following subsequent questions:

• How to leverage public annotation resources such as Open Street Maps to provide style
information?

• How to define visual distinct land cover properties?
• Is the prior knowledge of region and style improving expressiveness of the GAN model?

2. Datasets

In this section, we describe in detail the datasets we used for training the GAN model
and for the development of the semantic global vector descriptor.

2.1. Inria Aerial Image Labeling Dataset

Inria Aerial Image Labeling Dataset (Inria) [22] is a high-resolution dataset designed
for pixel-wise building segmentation (Figure 3). It consists of high-resolution objectified
color imagery with spatial resolution of 0.3 m/pixel that covers 810 km2 of 5 cities (inn the
training dataset):

• Vienna, Austria
• Lienz, Austria
• Chicago, USA
• Kitsap county of Washington, USA
• Austin, Texas, USA

Segmentation maps are binary images where a 1 in position (i, j) means that the pixel
belongs to a building and 0 that it belongs to the background class. This dataset became
of interest because besides containing the structure segmentation map of buildings, its
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images cover a large variety of dissimilar urban and not-urban areas with different types of
population, culture and urbanisation, ranging from highly urbanized Austin, Texas to the
rural Tyrol region in Austria. The dataset was designed with the objective of evaluating the
generalization capabilities of training in a region and extending it to images with varying
illuminations, urban landscapes and times of the year. As we were interested only in
the labeled images, we discarded the test set and focused on the above-mentioned cities.
In consequence, our dataset consisted of 45 images of 3000 × 3000 pixels.

Figure 3. Inria building datasets sample [23].

2.2. Open Street Map (OSM)

In 2005, OpenStreetMap (OSM) [24] was created as an open and collaborative database
that provides geodata and geo-annotations. In the past few years, OSM has been widely
used in several applications in geosciences, Earth observation and environmental sci-
ences [25–27]. Basically, it consists of a free editable map of the world that allows its
more than two million users to annotate it or to provide collected data to enrich the OSM
geo-information database. Its data primarily consist of annotations at multiple semantic
levels that are expressed in keys (categories) and values. Under each key they provide
finer grained information in different formats depending on the object of the annotation.
For example, they provide annotations of land use that describe the human usage of an
area as a polygon in a geojson. Another example is the annotation of roads; they structure
the road network as a graph. There are many ways to access its data such as an API
or dedicated public or private geo-servers that digest and renderize the data. In our case,
we decided to use a public open source server that renders and compiles all the interested
information for a specific area.

Therefore, we decided to download the render for each of the images using a rasterized
tile server rasterized tile server (https://github.com/gravitystorm/openstreetmap-carto/)
that provides cartographic style guidelines, see Section 3.3 for more details). As we have
the source code of the server, we have the mapping between pixel colour and category. We
ended up listing more than 200 categories present in the render and we were capable of
reducing it to only 11 classes for the global semantic vector. We will explain this procedure
more in detail in the following section.

3. Methods

This section explains the methods used in this study. We will start from a more
detailed analysis of the baseline model SPADE [17]. Then, we will delineate the proposed
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architecture modifications in order to develop SSSGAN. Next, we describe the creation of
the global semantic vector. Finally, we present the metrics we used for evaluation.

3.1. SPADE

As previously explained, SPADE [17] proposed a conditional GAN architecture capa-
ble of generating high-resolution photorealistic images from a semantic segmentation map.
They stated that, generally, image-to-image GANS receive the input at the beginning of the
network, and consecutive convolutions and normalizations tend to wash away semantic
and structural information, producing blurry and unaligned images. They propose to
modulate the signal of the segmentation map at different scales of the network, producing
better fidelity and alignment with the input layouts. In the following subsections, we will
explain different key contributions of the proposed model.

Spatially-Adaptive Denormalization

The Spatially-Adaptive Layer is the novel contribution of this work. They demon-
strated that spatial semantic information is washed away due to sequences of convolutions
and batch normalization layers [28]. In order to avoid this, they propose to add these
SPADE blocks that denormalize the signal in the function of the semantic map input, help-
ing to preserve semantic spatial awareness such as semantic style and shape. Let m ∈ LHxW

be the segmentation mask whereas H and W are the height and width, respectively, and L

is a set of labels that refers to each class. Let hi be the activation of the i-th layer of a
CNN. Let Ci, Hi and Wi be the channels, height and width of the i-th layer, respectively.
Assuming that the batch normalization layer is applied channel wise, and obtainμi

c and σi
c

for each channel c ∈ Ci and i-th layer. The SPADE layer denormalization operation could
be expressed as follows, if we consider y ∈ Hi, x ∈ Wi and n ∈ N be the batch size:

γi
c,y,x(m)

hi
n,c,y,x − μi

c

σi
c

+ βi
c,y,x(m), (2)

where μi
c and σi

c are the batch normalization parameters computed channel-wise for the
batch N:

μi
c =

1
NHiWi ∑

n,y,x
hi

n,c,y,x (3)

σi
c =

√
1

NHiWi ∑
n,y,x

(hi
n,c,y,x − (μi

c)
2). (4)

The role of the SPADE layer is to learn the scale γi
c,y,x(m) and bias term βi

c,y,x(m) with
respect to the mask m, which they call modulation parameters in Figure 4. It is interesting
to put special emphasis on the fact that modulation parameters depend on the location
(x, y), thus providing spatial awareness. This spatial awareness is what differentiates this
modulation with respect to batch normalization that does not consider spatial information.
Those modulation parameters are expressed as a functional because the SPADE layer
passes m through a series of two convolutional layers in order to learn these spatially aware
parameters. The structure of layers can be seen in Figure 4.

Having defined the SPADE block, the authors reformulate the common generator
architecture that uses encoder–decoder architectures [11,12]. They remove the encoder layer
since the mask is not fed in the beginning of the architecture. They decided to downsample
the segmentation at different scales, and fed them via SPADE blocks after each batch
normalization. Then they divided the network into four upscaling segments, where the last
one generates an image with the size of the mask. Each segment that defines a scale level
is composed of convolutional and upscaling layers followed by SPADE residual blocks.
Each SPADE residual block consists of two consecutive blocks of SPADE layers (that ingest
segmentation masks that have the same dimensions as the assigned to the SPADE residual
block), followed by the RELU activation layer and a 3 × 3 convolution (Figure 5). In this
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way, they removed the encoder and ingested information about the shape and structure of
the map at each scale, obtaining a lightweight generator with fewer parameters.

Figure 4. (a) SPADE block internal architecture. (b) SPADE Residual block (SPADE ResBlk).

Figure 5. SPADE main architecture.

As a discriminator, they decided to use a Pix2PixHD multiscale PatchGAN discrimi-
nator [12]. The task of differentiating high-resolution real images from fake ones represents
a special challenge for D, since it needs to have a large receptive field that would increase
network complexity. To address this problem, they used three identical PatchGAN dis-
criminators at three different scales (factor of 2) D1, D2 and D3. The one that operates at
the coarsest scale has larger global knowledge of the image while the one that operates at
the finest scale forces the generator to produce finer details, hence the loss function is the
following, where k refers to the index of the three different scales:

min
G

max
D

L(G, D) = ∑
k=1,2,3

LGAN(G, Dk). (5)
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Another particularity is that they did not use the classical GAN loss function. Instead,
they used the least squared loss [29] term modification in addition to Hinge loss [30], and
were demonstrated to provide more stable training and to avoid the vanishing gradient
problems provided by the usage of the logistic function. Therefore, their adapted loss
function is shown as follows:

LD(G, D) = Ex∼pdata(x)[min(0,−1 + D(x))] +Ez∼p(z)[min(0,−1− D(G(z)))] (6)

LG(G, D) = Ez∼p(z)[D(G(z)).] (7)

Additionally, they used feature matching loss functions that we will not use in our ex-
periments.

Finally, PatchGAN [11] is the lightweight discriminator network that is used at each
scale Figure 6. It was developed with the idea that the discriminator focuses on high-
frequency details while L1 focuses on low frequencies. In consequence, they restricted the
discriminator to look at particular N×N patches to decide if it is real or fake. Consequently,
the discriminator is convolved through the image by averaging its prediction of each N×N
patch into a single scalar. This allows the discriminator to have fewer parameters and
focus on granular details and composition of the generated image. In fewer words, this
discriminator is a simple ensemble of lightweight discriminators that reduce the input to a
unique output that defines the probability of being real or fake. The authors interpreted
this loss as a texture/style loss.

Figure 6. PatchGAN diagram [31]. The entire discriminator is applied to N × N patches. Then,
the model is convolved over the image and their results are averaged in order to obtain a single
scalar.

3.2. SSSGAN

Having studied the principal component of SPADE in detail, we were able to spot
its weak points for being used in our study. The key idea of SPADE is to provide spatial
semantic modulation through the SPADE layers. That property is useful for guaranteeing
spatial consistency in the synthesis related to the structural segmentation map, which in
our case is the building footprint, it does not apply to the global semantic vector. Our
objective is to ingest global style parameters through the easy-to-generate global semantic
vector, which allows the user to define the presence of semantic classes while avoiding the
necessity of generating a mask with the particular location of these classes. As the semantic
vector does not have spatial applicability, it cannot be concatenated, neither fed through
the SPADE layer. On the other hand, we can think of this vector as a human-interpretable
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and already disentangled latent space. Hence, we force the network to adapt this vector as
a latent space.

We replace the latent random space generator of the SPADE model for a sequence of
layers that receives the global semantic vector as an input (Figure 7). In order to ingest
this information, we first generate the global vector by concatenating the first V classes,
the 17 visual classes and the one hot encoding vector that defines the region or area (R-
dimensional). The vector goes through three consecutive multi layer perceptron (MLP)
blocks of 256, 1024 and 16,384 neurons followed by an activation function. The resulting
activations are reshaped to an 1024 × 4 × 4 activation volume tensor. That volume is
passed to a convolutional layer and a batch normalization layer. The output is then
passed to a SPADE layer that modulates this global style information with respect to the
structure map. Ref. [17] suggests that the style information tends to be washed away
as the network goes deeper. As a consequence, we decided to add skip connections
between each of the scale blocks in channel-wise concatenation, similar to DenseNet [32].
In this way each scale block can receive the collective knowledge of previous stages,
allowing the flow of the original style information . At the same time, it allows us to
divide information in the way the SPADE block can focus on high-frequency spatial details,
extremely important in aerial images, while the skip branch allows the flow of style and low-
frequency information [20,20]. In addition, reduction blocks are added (colored in green
in Figure 7) that reduce the channel dimension, which is increased by the concatenation.
This helps to stack more layers for the dense connections without a significant increment
of memory. Thus, it is extremely important to add those layers. Besides all of that, this
structure helps to establish the training process because the dense connections also allow
the gradient to be easily propagated to the lower layers, even allowing deeper network
structures. This dense connection is applied by passing the volume input of each scale
block with the output volume of the SPADE layer block. As the concatenation increases the
channel (hence the complexity of the model), a 1 × 1 convolution layer is applied to reduce
the volume.

Figure 7. SSSGAN architecture. Every linear layer is followed implicitly by Relu activation. The structure mask is
downsampled to its half resolution each time it is fed to a SPADEResBlock ( referenced by ‘%2’ label).

3.3. Global Semantic Vector

In this section, we describe the creation of the global semantic vector. The key idea is
to obtain a semantic description of the image that may help the generator to distinguish and
pay attention to key properties present on the satellite image and it also helps to modify the
image generation. In order to obtain a description, the principal idea of this work is that
it can be easily generated from the OSM tags. This crowdsource tagged map is available
publicly and it offers tags named by category for land use, roads, places, services. First,
we download tags related to the areas of interest: Chicago, Vienna, Austin, Kitsap and
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Tyrol. These tags come in multiple formats, for example, land use is defined by polygons
while roads are defined as a graph. We obtained more than 150 values so we decided to
rasterize these tags and then to define the value that corresponds to each pixel. After that
process, we analysed the results and we found different problems regarding the labels.
The first problem is that urban zones were more densely and finely detailed tagged than
urban zones. For example, Vienna had much more detail in tags that even individual trees
were tagged (Figure 8a), while in the Tyrol region there were zones that were not even
tagged. The second and more important problem was that there was no homogeneous
definition of one tag in the same region or image. For example, in Chicago there were
zones tagged as residential, while at the other side of the road—which has the same visual
appearance—it was tagged as land (Figure 8b). Moreover, we noticed that all images of
Kitsap were not annotated at all, there were roads and residential zones that were missed
(Figure 8c). Finally, we come up with similar conclusions to [3], a work that only used
land use information. Labels refer to human activities that are performed in specific zones.
Those activities sometimes may be expressed with different visual characteristics at ground
level, but from the aerial point of view those zones do not contain visual representative
features. The clear example is the distinction between commercial and retail. The official
definition in OSM is ambiguous, commercial refers to areas for commercial purposes, while
retail is for zones where there are shops. Besides this ambiguity in definition, both areas
express buildings with flat grey roofs in the aerial perspective.

Figure 8. (a) Detailed annotation of the urban area of Vienna (b) Residential area from Chicago, from one side of the
annotated road is defined as residential and the other side is not annotated, despite both belongs to the same visual
residential cues (c) Area of Kitsap without annotation.

Having studied all of these problems in detail, we decided to perform a manual
inspection of the data and we defined a series of conventions that help to aid the previously
mentioned problems. The principal idea is to create a vector in an automatic way that
digests all semantic visual information so it facilitates the model to put attention on
particular visual characteristics. For that reason, we decided to group all of these categories
in 17 classes that have a clear visual representation despite the use. In that case, classes
such as commercial and retail will constitute the same class, since while we were doing
the manual visual inspection we decided that those classes are visually indistinguishable.
We manually corrected zones that were not labeled and we defined a unique label for
ambiguous zones, fixing the problem with residential and land labeled zones. Finally, we
decided to remove images from the Kitsap region from the detest due to the scarcity in
label information.

At the end of this process, we ended with the 17 classes expressed in Table 1. In order
to compute the vector, we defined an index or position to each class in the vector. Having
this grouping rule of classes, we processed each image by counting the amount of pixels that
belong to each class (taking into account the priority of the class) and then we normalized
the vector to sum 1, obtaining a distribution of classes.

More conclusions were obtained from this analysis that also coincide with the ones
expressed in [3]. A specific land use, such as residential or commercial, varies in visual
characteristics from region to region due to architectural and cultural factors. In order to
help the network to distinguish these cultural properties, and at the same time control the
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generation, we added to this vector a one hot encoding selector that defines the region:
Chicago, Austin, Vienna or Tyrol.

Table 1. CNN Performance Long Format.

Semantic Category OSM Tag Index

grass grass, heath, golf_course, farmland, ... 1
forest forest, forest-text, orchard, scrub, . . . 2
residential residential, residential-line, land-color, . . . 3
commercial commercial, commercial-line, retail, . . . 4
industrial industrial, industrial-line, wastewater_plant, . . . 5
parking garages, parking, . . . 6
construction construction, construction_2, built-up-z12, quarry, . . . 7
sports pitch 8
highway motorway, primary, secondary, . . . 9
rail motorway, primary, secondary, . . . 10
road living_street, residential, . . . 11
footway footway, pedestrian, . . . 12
religious cemetery, religius, . . . 13
motorway motorway, trunk, . . . 14
water water, . . . 15
allotments allotments, . . . 16
block block, . . . 17

3.4. Metrics

We decided to employ two state-of-the-art perceptual metrics used in [9,17]. Since
there is no ground truth, the quality of generated images is difficult to evaluate. Perceptual
metrics try to provide a quantitative answer of how close the generator managed to
understand and reproduce the target distribution of real images. The following metrics
provide a scalar that represents the distance between distributions, and indirectly they are
accessing how perceptually close the generated images are to the real ones.

3.4.1. Frechet Inception

Frechet Inception Distance (FID) [17,33] is commonly used in GAN works for mea-
suring their image quality generation. It is a distance that measures the distance between
synthetically generated images and the real distribution. Its value refers to how similar
two sets of images are in terms of vector features extracted by Inception V3 model [34]
trained for classification. Each image is passed through the Inception V3, and the last
pooling layer prior to the output classification is extracted obtaining a feature vector of 2048
activations. These vectors are summarized as a multivariate Gaussian, computing the mean
and covariance of each dimension for each image in each group. Hence, a multivariate
Gaussian is obtained for each group, real and synthetic images. The resulting Frechet
distance between these Gaussian distributions is the resulting score for FID. A lower score
means that the two distributions are close, the generator has managed to efficiently emulate
the latent real distribution.

3.4.2. Sliced Wasserstein

Sliced Wasserstein Distance (SWD) is an efficient approximation to the earth mover
distance between distributions. Briefly speaking, despite being computationally inefficient,
earth mover distance provides the vertical distance difference between distribution, giving
an idea of the differences between densities. Ref. [9] comments that metrics such as
MS-SSIM are useful for detecting coarse errors such as mode collapse, but fails to detect
fine-detailed variations in color and textures. Consequently, they propose to build a
Laplacian pyramid for each of the real and generated images, from 16 × 16 pixel and
doubling resolution until the pyramid reaches the original dimensions. Basically, each level
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of the pyramid is a downsampled version of the upper level. This pyramid was constructed,
having in mind that a perfect generator will synthesize similar image structures at different
scales. Then, they select 16,384 images for each distribution and extract 128 patches of
7 × 7 with three RGB channels (descriptors) for each Laplacian level. This process ends
up with 2.1 M of descriptors for each distribution. Each patch is normalized with respect
to each color channel’s mean and standard deviation. After that, the Sliced Wasserstein
Distance is applied to both sets, real and generated. Lowering the distance means that
patches between both distributions are statistically similar.

Therefore, this metric provides a granular quality description at each scale. Patches
at 16 × 16 similarity indicate if the sets are similar in large-scale structures, while larger
scale provides more information of finer details, color or textures similarities and pixel-
level properties.

4. Results

In this section, we show quantitative and qualitative results using the INRIA dataset
along with our global semantic vector descriptor. We start in Section 4.1 by describing
the setup of the experiment. In Section 4.2, we show the quantitative results by perform-
ing a simple ablation study. Finally, in Section 4.3, we present some qualitative results,
by showing how a change in the global vector changes the style of synthesised images.

4.1. Implementation Details

The original SPADE was trained on an NVIDIA DGX1 with eight 32 GB V100 GPUs [17].
In our case, we train our network with our network with eight NVIDIA 1080Ti of 11 GB
each one. This difference in terms of computational resources made us reduce the batch
down to 24 images, instead of 96. Usually, training with larger batch sizes should help
stabilize the training and produce better results. Regardless of this aspect, we show our
approach is able to improve the generation´s expressiveness and variety with respect to
the baseline, while changing the style and domain of the generated images.

We applied a learning rate of 0.0002 to both, the generator and the discriminator.
We used ADAM optimizer with β1 = 0 and β2 = 0.9. Additionally we applied data a
few data augmentation that consisted of simply random 180º and 90º rotations. Original
images were cropped to 256 × 256 patches with an overlap of 128 pixels that provide more
variability. We trained each network for the same amount of 50 epochs.

4.2. Quantitative Analysis

We trained the original SPADE implementation as a baseline, which we used for
referencing any quantitative improvement provided by our proposal. Then, we decided
to evaluate our main architecture by using only the global semantic vector. Finally, we
conducted the full approach that uses the global semantic vector and the dense connections
scheme. We applied our two aforementioned metrics, Frechet (FID) Inception Metric
and Sliced Wasserstein distance (SWD), for obtaining quantitative results. Table 2 shows
the comparison results between different versions of the model. By a great margin, we
can appreciate that the full implementation of SSSGAN, which uses the complete global
semantic vector, outperforms the original baseline. The model could reduce, by more than
a half, almost all the metrics. The reduction of the FID from 53.19 to 22.35 suggests that
the generation was closer to estimating the latent distribution of the real images than the
original baseline in general and global features. Moreover, it provides a more granular and
detailed perspective about the generator performance at different scales. SSSGAN was able
to reduce by a 56% at the original scale, an impressive 76.5% at 128 × 128 scale, a 67.6% at
a 64 × 64 scale, a 64.3% at a 32 × 32 scale and a 45.8% at 16 × 16 scale the SWD score. Our
hypothesis is that, by forcing the generator to understand the already disentangled space
for humans, we are providing more prior knowledge about the real distribution of the real
images. During the training process, the generator can assign a correlation between the
presence of particular features of the image and an increment of the global vector value.
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In this way the generator could produce more variable synthetic images generations and it
could capture finer details structures at different scales. The generator not only reduces
each metric, it could reach a constant performance in almost every scale, by learning how
to generate closer to reality scale specific features.

Intermediate results that use only the semantic vector suggest that this approach
provides variability to the image generation. Even though the absence of dense connections
considerably reduced every score, the signal of the style that is fed into the beginning
of the networks gets washed out by consistently activations modulation performed by
SPADE blocks, that modulates activation only with respect to the structure of the buildings.
The addition of dense connections before the modulation helps to propagate the style signal
efficiently to each of the scales.

Table 2. Performance different SSSGAN versions with respect to SPADE baseline.

Model FID SWD-256 SWD-128 SWD-64 SWD-32 SWD-16

baseline 53.19 338.53 474.08 486.17 474.08 665.29
semantic(ours) 38.17 207.64 206.29 241.29 232.02 404.96
semantic+dense(ours) 22.36 148.93 111.89 153.75 173.86 355.16

Model comparison. Baseline refers to the original SPADE implementation [17]. While “semantic” refers to the
SSSGAN with only style vector and “semantic+dense” is the full model SSSGAN with global semantic vector and
dense connection structure.

4.3. Qualitative Analysis

In this section, we show a comparison between SPADE baseline, SSSGAN with only
semantic information, and the full version of SSSGAN. From Figures 9–16, we see those
networks compared in addition to the segmentation building mask, the semantic map to
provide an idea of the proportion of the semantic classes and the three most influential
classes of the semantic global vector. Qualitatively speaking, the full version of SPADE
was able to perform a simple relation between shape of buildings and region in order to
generate more consistent scenes. For example, when a structure mask is presented with the
characteristic shape of Vienna’s building (Figure 16), SSSGAN can infer from the shape
of building besides the information of the global vector and the region of the intended
image, and generate region-specific features of the region like tree shapes, illumination,
and the characteristic orange roof. Most of the time, SPADE generated flat surfaces with
an absence of fine details, textures and illumination (Figure 9, Figure 10, Figure 14 or
Figure 15). Another aspect to remark on relates to the style of the region is that SSSGAN
was able to remarkably capture Tyrol style images (Figures 14 and 15) with large light
green meadows, trees, illumination and roads.

Figure 9. Visual comparison of Austin area. Mask of building footprint and main semantic classes of
the vector are shown as reference.

Figure 10. Visual comparison of Austin area. Mask of building footprint and main semantic classes
of the vector are shown as reference.
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Figure 11. Visual comparison of Austin area. Mask of building footprint and main semantic classes
of the vector are shown as a reference.

Generally speaking, SSSGAN demonstrated its vast ability to capture style and context
related to each of the four regions. For example, in contrast to the baseline, SSSGAN was
able to produce a detailed grass style of Tyrol and differentiate subtle tree properties of
Austin and Chicago. In general, visual inspection of the generated images suggest that
SSSGAN was able to capture railway track, roads and even the consistent generation of
cars as in Figure 9.

Figure 12. Visual comparison of Chicago area. Mask of building footprint and main semantic classes
of the vector are shown as reference.

Another remarkable point is the consistent shadowing of the scenes; it can be appreci-
ated in every scene that the network is able to generate consistent shadows among every
salient feature such as trees or buildings. Finally, we can see that networks have difficulties
in generating long rectified lines. The reason is that the building mask contains imperfect
annotated boundaries that the networks reproduce and the adversarial learning procedure
does not detect and therefore do not know how to overcome.

Figure 13. Visual comparison of Chicago area. Mask of building footprint and main semantic classes
of the vector are shown as a reference.

Figure 14. Visual comparison of Tyrol area. Mask of building footprint and main semantic classes of
the vector are shown as a reference.

Figure 15. Visual comparison of Tyrol area. Mask of building footprint and main semantic classes of
the vector are shown as a reference.
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Figure 16. Visual comparison of Vienna area. Mask of building footprint and main semantic classes
of the vector are shown as a reference.

In Figure 17, we show the generation capabilities. We increment the presence of four
categories while diminishing the others in a Chicago building footprint. At the same time,
we show how this generation mechanism is expressed in each region by changing the one
hot encoded area vector. Efficiently, we see how each row contains a global style color
palette related to the region. For example, the row of the Tyrol region in Figure 17 presents
a global greenish style that is common in that region, while the trow of Chicago presents
brownish and diminished colors. The increment of forest efficiently Figure 18 increases
the presence of trees while the increment of industrial category tends to generate grey flat
roofs over the buildings. It is important to remark that the style of the semantic category
is captured, despite it does not show enough realism due to incompatibilities of building
shapes with this specific style. For instance, when increasing industrial over a mask of
residential houses of Chicago, the network is able to detect buildings and provide them a
grey tonality, but is not providing finer details to these roofs because it is not relating the
shape and dimensions of that building with respect to the increased style. Nevertheless,
we can efficiently corroborate changes in style and textures by manipulating the semantic
global vector.

Figure 17. Original building footprint is from Chicago. Each row shows the generation for that
Chicago footprint mask in different regions. First column uses the original global semantic vector.
Second column the grass category is increased. Third column forest class is increased. Finally,
the fourth column industrial class is increased.
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Figure 18. Finer observation of the increment of grass class and forest class.

Finally, we show in Figure 19 some negative results. In Figure 19a, we show two
different cases using our semantic+dense model. On the left, the model fails at generating
cars. The top example marked in red seems to be a conglomerate of pixels rather than a row
of cars. On the other side, the bottom example marked in red seems like an uncompleted car.
On the right image, the transition between buildings and the ground is not properly defined.
Figure 19b shows a clear example where the semantic model is actually performing better
than the semantic+dense version. In the latter case, the division that usually splits the roof
in half (in a Vienna-scenario) tends to disappear along the roof. Moreover, one can hardly
see the highway. Figure 19c shows an example where both semantic and semantic+dense,
fail at properly generating straight and consistent roads. Thus, although in general, the
results look promising, small objects and buildings geometry could be further improved.
Hence, to mitigate some of the failures we were describing above, a geometrical constraint
for small objects and buildings could be incorporated into the model, either during the
training phase or as a post-processing stage.

(a) (b)

(c)
Figure 19. Negative results. (a) Two different generated images using our semantic+dense model.
(b) Two generated images using the same footprint input, semantic model output on the left, seman-
tic+dense output on the right. (c) Two generated images using the same footprint input, semantic
model output on the left, semantic+dense model output on the right.
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4.4. Conclusions

Global high resolution images with corresponding ground truth are difficult to obtain
due to the infrastructure and cost required to acquire and label them, respectively. In order
to overcome this issue, we present a novel method, SSSGAN, which integrates a mechanism
capable of generating realistic satellite images, improving the semantic features generation
by leveraging publicly available crowd sourced data from OSM. These static annotations,
which purely describe a scene, can be used to enhance satellite image generation by
encoding it in the global semantic vector. We also demonstrate that the use of this vector,
in addition to the architecture proposed in this work, permits SSSGAN to effectively
increase the expressiveness capabilities of the GAN model. In the first place, we manage to
outperform the SPADE model in terms of FID and SWD metrics, meaning the generator
was able to better approximate the latent real distribution of real images. By evaluating
the SWD metric at multiple scales, we further show the consistent increment in terms
of diversity at different scale levels of the generation, from fine to coarse details. In the
qualitative analysis, we perform a visual comparison between the baseline and our model,
comparing the increment in diversity and region-culture styles. We finish our analysis by
showing the effectiveness of manipulating the global semantic vector. This brings to light
the vast potential of the proposed approach. We hope this work will encourage future
synthetic satellite image generation studies that will help with a better understanding of
our planet.
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Abstract: High-quality three-dimensional (3-D) radar imaging is one of the challenging problems
in radar imaging enhancement. The existing sparsity regularizations are limited to the heavy
computational burden and time-consuming iteration operation. Compared with the conventional
sparsity regularizations, the super-resolution (SR) imaging methods based on convolution neural
network (CNN) can promote imaging time and achieve more accuracy. However, they are confined
to 2-D space and model training under small dataset is not competently considered. To solve these
problem, a fast and high-quality 3-D terahertz radar imaging method based on lightweight super-
resolution CNN (SR-CNN) is proposed in this paper. First, an original 3-D radar echo model is
presented and the expected SR model is derived by the given imaging geometry. Second, the SR
imaging method based on lightweight SR-CNN is proposed to improve the image quality and speed
up the imaging time. Furthermore, the resolution characteristics among spectrum estimation, sparsity
regularization and SR-CNN are analyzed by the point spread function (PSF). Finally, electromagnetic
computation simulations are carried out to validate the effectiveness of the proposed method in
terms of image quality. The robustness against noise and the stability under small are demonstrate
by ablation experiments.

Keywords: three-dimensional radar imaging; convolution neural network; super-resolution;
side-lobe suppression; terahertz radar

1. Introduction

Three-dimension (3-D) radar imaging can prominently reflect the 3-D spatial structure
of the target with respect to conventional 2-D radar imaging and serve as a significant
application such as geological hazard monitoring and forewarning [1], ecological applica-
tions [2], and military reconnaissance [3]. Typical 3-D radar imaging systems encompass
the interferometric synthetic aperture radar (InSAR) [4], multiple-input multiple-output
inverse SAR (MIMO ISAR) [5], and tomographic SAR [6]. According to the difference in
elevation dimension imaging, 3-D radar imaging systems are mainly divided into two
categories. First-class imaging systems utilize the interferometry technique and equivalent
geometry to retrieve target height information [7]. The interferometry imaging handles
phase differences from multiple SAR/ISAR images produced by multiple receivers of
different views. However, this method is limited to distinguish scatterers located at the
same Range-Doppler unit. Second-class imaging systems obtain the full 3-D radar echo
data, which can form the synthetic aperture in azimuth and elevation dimension. Tomo-
graphic SAR is the representative of the second class [8], which develops azimuth aperture
by flying a linear trajectory in a spotlight mode while the synthetic aperture in elevation
dimension is formed by multiple closely spaced tracks. However, tomographic SAR is
limited to multiple equivalent flights and cannot meet real-time requirements. Different
from tomographic SAR, 3-D imaging based on different configurations of antenna arrays
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can be an efficient and fast substitute. The matter that 3-D radar imaging based on cross-
array could optimize the beam width and enhance the image quality was demonstrated
theoretically [9]. The premise for array radar imaging was based on high isolation array
antennas. Nevertheless, the coupling problem of antennas array cannot be ignored in
real-world radar imaging [10], which is straightforwardly related to the beamforming
of MIMO signal. Mutual coupling reduction method for patch arrays was designed and
achieved around 22.7-dB reduction [11]. A wideband linear array antenna based on the new
reflector slot-strip-foam-inverted patch antennas was validated to improve the bandwidth
gain effectively [12]. The development of these antenna decoupling techniques will further
promote the practical application of MIMO 3-D radar imaging.

Antenna systems are strongly associated with radar transmitting and receiving signal.
In recent years, this has been further developed and has boosted radar imaging techniques
for both microwave and terahertz (THz) radar [13–18]. Compared with 3-D imaging using
microwave radars, THz radars take advantages of a higher carrier frequency and wider
absolute bandwidth, which can form higher range resolution and reach better azimuth
resolution with smaller rotating angel conspicuously [19–25]. THz radar imaging will no
longer be limited to some isolated points, and attain the high-resolution image with the
obvious target outline. Accordingly, it is meaningful for studying high resolution 3-D
imaging in the THz band.

Since the high side-lobe degrade the image quality in high-resolution radar imag-
ing, especially 3-D Thz radar imaging, it is necessary to research the imaging method of
enhancing radar image quality and suppressing the side-lobe. The traditional imaging
methods based on spectrum estimation suffer from limited resolution and high side-lobes.
Because the Fourier transform (FFT) of the window function would inevitably bring Sinc
function with the high side-lobe. Sparsity regularizations have been proposed to solve
high side-lobe and image quality by imposing sparsity constraints on imaging processing.
Cetin et al. in [26] utilized L0 regularization to improve 3-D radar image quality during
signal reconstruction process. Austin et al. in [27] further improved L0 regularization and
applied an iterative shrinkage-thresholding algorithm to avoid falling into local optima.
Wang et al. used the Basis Pursuit Denoising (BPDN) method [28] to achieve side-lobe sup-
pression effectively. BPDN transformed the imaging process into an iterative optimization
process, i.e., x̂ = argmin‖y− Ax‖2

2 + ε‖x‖1, where x and y denotes the reflectivity of imag-
ing area and radar echo, respectively. A denotes corresponding imaging dictionary matrix.
In essence, these methods avoid falling into ill-conditioned solution by adding sparse prior
and attain the high-quality images. However, sparsity regularization depends on iterative
optimization process, which are computationally intensive and time-consuming. This is
because it is involved in solving the inverse of the matrix. In addition, the final image qual-
ity depends on different and accurate parameters setting for different targets. Compress
sensing (CS) can obtain relatively high-quality image. However, this superiority is based
on the sacrifice of enormous computation and storage cost [29], especially for the dictionary
matrix A in 3-D cases. For example, considering the sizes of radar echo and imaging
grids are 50× 50× 50 and 100× 100× 100, respectively, the total memory would be as
large as 1.82T [30], which poses serious requirements for memory and storage. Although
many improved techniques such as slice [31], patch [32], and vectorization [33] have been
proposed to improve the efficiency of CS, it is suboptimal to enhance image quality.

With the rapid development of convolution neural network (CNN), CNN has demon-
strated superior performance in many fields such as SAR target recognition [34], radar
imaging enhancement [35], and time-frequency analysis [36]. Radar imaging enhancement
based on CNN can overcome high side-lobe of spectrum estimation and time-consuming
iteration of sparse regularization. Gao et al. [37] validated the feasibility of transforming
complex data into dual-channel data for CNN and proposed a simple forward complex
CNN to enhance 2-D radar image quality. Qin et al. [38] further improved loss function and
integrated it into generative adversarial networks (GAN), which can boost the extraction
of weak scattering centers caused by the minimum square error (MSE) function. In fact,
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the network architecture of GAN is complex, and it is difficult to reach convergence in
the case of small datasets. Zhi et al. [39] applied CNN into a 2-D MIMO virtual array
radar imaging enhancement, but the phase information of the output was not adequately
considered. Overall, these methods are confined to 2-D space, and the problem of net-
work training under small datasets has not been adequately studied in the field of 3-D
imaging enhancement.

To solve time-consuming iterative operation and instability under small datasets, a
fast and high-quality 3-D super-resolution (SR) imaging network, namely SR-CNN, is
proposed. The network architecture is designed to be lightweight to meet the demand of
small datasets. The proposed method is free from manual annotation datasets and the
model trained by simulated data can be utilized in real data commendably. The main
contributions of this paper are as follows.

(1) A fast and high-quality 3-D SR imaging method is proposed. Compared with the
method based on sparsity regularization, the imaging time is reduced by two orders
of magnitude and imaging quality is improved obviously.

(2) A lightweight CNN is designed, which reduces the model parameters and compu-
tation significantly. The training model can achieve satisfactory convergence under
small datasets and the accuracy can reasonably improve.

(3) The input and output of SR-CNN both are complex data. The phenomenon that the
performance of dividing complex data into real part and imaginary part is better than
that of amplitude and phase is found.

This paper is organized as follows. In Section 2, the data generation of input and
output for SR-CNN is derived. Then, the lightweight network structure and train details
are described in detail. In Section 3, resolution characteristics of different methods are
compared and electromagnetic simulation data are used to validate the effectiveness of the
proposed method. The discussion about advantages of the proposed method and further
work is presented in Section 4. Section 5 concludes this paper.

2. Methodology

In this section, the detailed processing of 3-D SR imaging method is given. The main
structure of the proposed method consists of three main parts: input and output data
generation of SR-CNN, lightweight network structure, and train details. These three parts
are explained in detail below.

2.1. Input and Output Data Generation of SR-CNN

The 3-D radar imaging geometry of the general spotlight mode is shown in Figure 1.
The imaging geometry could be equivalent to the circular SAR and turntable ISAR with a
few modifications [40]. First, it is assumed that there is an ideal point target and a reference
point target in the imaging scene. Then, the azimuth angle θ and the elevation angle 90− ϕ
with the z-axis denote the radar illumination. Rt and Rre f denote the range of the ideal
point target and reference point away from the radar, respectively. The echo of point target
st can be described as

st(t, ta) = At · rect
(

t− 2Rt/c
Tp

)
· exp

(
j2π

[
fc(t− 2Rt/c) +

1
2

γ(t− 2Rt/c)2
])

(1)

where At denotes the amplitude of target signal. Tp denotes the signal time window.
c denote the speed of light. t and ta denote the fast-time and the slow-time, respectively. fc
and γ denote the carrier frequency and the frequency modulation rate, respectively.
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Figure 1. The imaging geometry.

The echo of the reference point is similar with (1), and it can be expressed as

sre f (t, ta) = Ar · rect
( t− 2Rre f /c

Tp

)
· exp

(
j2π

[
fc

(
t− 2Rre f /c

)
+

1
2

γ(t− 2Rre f /c)2
])

(2)

For the convenience of derivation, we redefine the fast time as t = t− 2Rre f /c. The
signal is received by de-chirp, and the expression of the de-chirp signal is

s(t, ta) = st(t, ta)/sre f (t, ta)

= A · rect
(

t−2RΔ/c
Tp

)
· exp

(
−j 4π

c γ
(

t− 2Rre f /c
)

RΔ −j 4π
c fcRΔ + j 4πγ

c2 R2
Δ

) (3)

where A = At/Ar and RΔ = Rt − Rre f . After the procedure of ramp phase and residual
video-phase (RVP) correction, the de-chirp signal can be rewritten as

s(t, ta) = IFT
(
FT(s(t, ta)) · exp

(−jπ f 2/γ
))

= A · rect
(

t
Tp

)
· exp(−j4π( fc + γt)RΔ/c)

(4)

where FT and IFT denote Fourier transform and inverse Fourier transform, respectively. In (4),
supposing the range alignment and phase correction have already been accomplished for
moving target, RΔ can be expressed with Taylor expansion under plane-wave approximation,

RΔ ≈ Rc − Rre f − x cos θ cos ϕ− y sin θ cos ϕ− z sin ϕ

≈ −x cos θ cos ϕ− y sin θ cos ϕ− z sin ϕ
(5)

where Rc denotes the range between the radar to the imaging center. To facilitate subse-
quent processing, the signal model is discretized. N, M, and L are the number of samples
along frequency, azimuth, and elevation dimension, respectively. P, Q and K are the num-
ber of image grid points in range, azimuth, and elevation direction, respectively. Under
the condition of far-field plane wave, the wave number along three coordinates axes can
expressed as ⎧⎪⎨⎪⎩

kx(n, m, l) = 4π fn
c cos θm cos ϕl

ky(n, m, l) = 4π fn
c sin θm cos ϕ7

kz(n, m, I) = 4π fn
c sin ϕl

(6)
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where fn, θm, and ϕl denote the discrete values of frequency, azimuth angle, and elevation
angle, respectively. Based on the point spread function (PSF), the radar echo in wave
number domain can be written as

y
(
kx, ky, kz

)
=

M
∑

m=1

N
∑

n=1

L
∑

l=1
σ(x, y, z)exp(−j4π fnRΔ/c)

=
M
∑

m=1

N
∑

n=1

L
∑

l=1
σ(x, y, z)exp

(−j
(
kxx + kyy + kzz

)) (7)

where σ(x, y, z) denotes the reflectivity of the point target.
Under the condition of small rotating angles, the 3-D imaging results can be obtained

by applying 3-D IFT to radar echo y
(
kx, ky, kz

)
in the wave number domain:

I(p, q, k) =
P

∑
p=1

Q

∑
q=1

K

∑
k=1

(
k2

x + k2
y + k2

z

)
· cos(θ) · y(kx, ky, kz

) · ej(kx x+kyy+kzz) (8)

where I(p, q, k) denotes actually the input image of SR-CNN. According to nonparametric
spectral analysis, the imaging resolutions of range (x direction), azimuth (y direction), and
elevation (z direction) can be approximated as

Rx =
c

2B
, Ry =

λ

4 sin(Δφ/2)
, Rz =

λ

4 sin(Δθ/2)
(9)

where B denotes the bandwidth. λ denotes the wavelength. Δφ and Δθ denote the rotating
angles along azimuth and elevation dimension, respectively.

Based on the given imaging geometry and PSF, we extend the model in [37] into
3-D space and apply phase to output images. The expected SR output can be expressed
as following:

O(p, q, k) =
N

∑
n=1

M

∑
m=1

L

∑
l=1

σ(x, y, z) · exp
(
−x2/σ2

x − y2/σ2
y − z2/σ2

z

)
· exp

(−j
(
kxx + kyy + kzz

))
(10)

where σx, σy, and σz control the width of PSF along three coordinates axes, respectively.
exp(−j(kxx + kyy + kzz)) denotes the corresponding phase of each scattering center. Ac-
cording to −3 dB definition, the imaging resolution along these three dimensions for
expected output images can be deduced as:

R′x = 1.18σx, R′y = 1.18σy, R′z = 1.18σz (11)

where R′x, R′y, R′z denote the resolution of expected SR output along three coordinate
axes, respectively.

2.2. Network Structure of SR-CNN

For lightweight CNN, computational cost and model depth are the two most important
factors to be considered. The computational cost mainly concerns the number of network
parameters and floating-point operations per second (FLOPs). The number of network
parameters in traditional direction connection of convolution layers is enormous in the
case of 3-D convolution. Due to the fact that the channel features in high dimension space
are redundant, channel compression is an important way to reduce the number of network
parameters. Inspired by [41], Figure 2 shows the direct connection of convolution layers
and the designed convolution ‘Fire’ module. The mathematical formulas on the blue box
and orange box represent the feature of corresponding size and convolution layers with
specific kernel size, respectively. For example, H ×W × D× C1 denotes the height, width,
depth, and channel numbers of four-dimension tensor, respectively. Conv.S1@1× 1× 1
denotes convolution layer of kernel size 1 and channel number S1.
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(a) (b) 

Figure 2. Schematic diagram of local network structure. (a) Direct connection of convolution layers (b) ‘Fire’ module.

Both connections achieve the same aim where the input feature of size H ×W × D× C1
is transformed into the output feature of size H ×W × D× (E1 + E2) by a series of con-
volution layers. For the traditional direct connection, the feature of size H ×W × D× C1
is passed into one convolution layer with kernel size 3 to obtain the feature of size
H ×W × D× (E1 + E2). For the ‘Fire’ module, it contains two stages: the ‘Squeeze’ stage
and the ‘Expand’ stage. For the ‘Squeeze’ stage, the feature of size H×W×D×C1 is passed
into one convolution layer with kernel size 1 to obtain the feature of size H ×W × D× S1.
Thus, this feature is fed into two different convolution layers with kernel size 1 and 3 to
obtain two feature of size H ×W × D × E1 and H ×W × D × E2, respectively. Finally,
these two features are concatenated in channel dimension subsequently in the ‘Expand’
stage, which attain the final feature of size H ×W × D× (E1 + E2).

Based on the experience of lightweight network design, the ‘Fire’ module needs to
meet two conditions: (1) S1 = C1/2; and (2) E1 = E2. It is easy to calculate the number
of parameters for the ‘Fire’ module are 33 × E2 × S1 + E1 × S1 + C1 × S1, while that of
the traditional direction connection is 33 × C1 × (E1 + E2). It means that the number of
local network parameters can reduce to about 1/4. Considering the feature size keeping

unchanged, the Flops can also reduce to about 1/4 ≈ (33×E2×S1+E1×S1+C1×S1)×H×W
33×C1×(E1+E2)×H×W . These

reason why the number of network parameter for the latter reduces to 1/4 is that the
latter ingeniously utilizes the convolution layer with kernel size 1 to reduce parameters.
In addition, the ‘Fire’ module can protract the depth and augment complexity of the
network structure.

The whole network structure of SR-CNN is constructed as an end-to-end framework
with supervised training. The specific structure adopts on the modified structure of full
CNN [35], which can yield high performance with few training data set. The detailed
network structure is shown in Figure 3. First, for the input and output of SR-CNN, we treat
complex data as dual-channel data, which represents real and imaginary part, respectively,
rather than amplitude and phase. It is because experiments have found that the latter is
difficult to converge. We guess that the feature of amplitude and phase channel is huge
and far from an image in conventional sense, which lead the convolution layer hardly to
extract effective features. Then, the main difference between original full CNN and our
modified structure is that the original direct connections of convolution layers are replaced
by the ‘Fire’ module. In addition, the stride sizes of max pooling layers are 2 and 5 in turn,
while the sizes of corresponding transpose convolution (Trans. conv) layers are reversed.
Moreover, these features are concatenated in channel dimension by skip connection. The
detailed size of each layer output is displayed on the top of the cubes. According to these
sizes and conditions that the ‘Fire’ module needs to meet, it is easy to calculate the size of
parameters S1, E1 and E2.
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Figure 3. The whole network structure of SR-CNN.

The existing SR imaging methods based on CNN mainly consist of [37,38]. A simple
forward SR imaging was designed in [37], but it did not consider the number of network
parameters and multi-scale features for 3-D case. Hence, it was not optimal in terms of
efficiency. Ref [38], based on GAN, argues that it is difficult to achieve 3-D SR imaging due
to the limitation of small datasets. The proposed method combines full CNN and local
network module ‘Fire’. The ‘Fire’ module can reduce the network parameters significantly.
Full CNN can improve the stability of the network training by multi-scale feature con-
catenation. A comparison about the proposed method [37] is shown in Section 3.5, which
validates that the chosen architecture is best.

2.3. Simution and Training Details

The inputs and outputs of SR-CNN are generated, respectively, through (8) and
(10). The imaging parameters are set as following: frequency ranges from 213.6 GHz to
226.4 GHz with 51 evenly sampling points, azimuth angle, and elevation angle both ranging
from −1.68◦ to 1.68◦ with evenly 51 sampling points. It means that N = M = L = 51. As
shown, P = Q = K = 100. According to (9), it is easy to calculate the resolutions in range,
azimuth and elevation dimensions are 1.17 cm, 1.15 cm and 1.15 cm, respectively. For the
expected SR output, σx, σy, and σz are set as 0.4 cm. According to (11), the resolutions in all
three dimensions can be calculated as 0.47 cm, so the expected SR ratio is about 2.5 times in
three directions.

Given the 3-D imaging space, the positions of hundreds of scattering centers are
randomly generated according to the uniform distribution. Corresponding scattering
intensities are also randomly generated and obey a complex Gaussian distribution, i.e.,
N(0, 1)+ jN(0, 1). Although the distribution of scattering intensity varies in high frequency,
the experimental performance for other distribution is not different. It is worth noting
that these random operations are used to imitate the possible distribution of targets as
realistically as possible. In order to intuitively understand the training and test data, we
randomly select one group of input and output samples for interpretation. As shown in
Figure 4, the 3-D image and 2-D image profiles of input data suffer from high side-lobe
and low image quality relatively. Different from the input images, the output images own
no side lobe and the ratio of the original scattering amplitude is maintained.
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(a) (b) 

  
(c) (d) (e) 

(f) (g) (h) 

Figure 4. Three-dimensional images and two-dimensional image profiles of the input and output sample. Three-dimensional
image of (a) Input and (b) Output sample. Two-dimensional image profiles of (c–e) Input and (f–h) Output sample.

For the regression problem based on supervised training, the MSE function can
measure the difference between input and output. The loss function is shown in the
following equation:

L =
1
N

N

∑
n=1

(Pn −On)
2 (12)

where N denotes the total number of the train dataset and Pn denotes the predicted image
under the input image In.

Based on the lightweight network structure, we do not need as much data as we used
to need, which will be explained in Section 3.4. The total training samples are reduced to
500 and the division ratio of the training set and validation set is 9:1. The test dataset for
Section 3.3 consists of an additional 100 samples. The batch size and the maximum training
epochs are set to 4 and 30, respectively. Adam optimization is applied with a learning rate
of 0.002.
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3. Results

In this section, imaging resolutions of spectral estimation, sparsity regularization, and
SR-CNN along three directions are analyzed, and 3-D imaging results of aircraft A380
are compared. Additionally, anti-noise ability and an ablation study of different network
structures are provided to validate the effectiveness of the proposed method. Experiments
are carried out with both MATLAB platform and Pytorch framework on a NVIDIA GeForce
RTX 2080 Ti GPU card.

3.1. EXP1: Resolution Analysis of Different Methods

PSF is used to analyze resolution characteristics and side-lobe suppression. For
convenience of explanation, the point target located at (0, 0, 0) is selected as an example to
intuitively analyze the SR performance. Figure 5a–d show the 3-D imaging results by 3D-
IFFT without windowing (IFFT wo win), 3D-IFFT with windowing (IFFT w win), BPDN,
and SR-CNN, in turn. These images are displayed in log magnitude and the dynamic
range is 30 dB. First, Figure 5a belongs to spectrum estimation in essence. It can be found
that the conventional imaging method by 3D-IFFT without windowing prompts high
side-lobe compared with the ground-truth image in Figure 5e. The reasons why spectrum
estimation suffers from high side-lobe is that the imaging resolution is limited by the
Rayleigh criterion. These side-lobes will degrade the quality of the image. In addition,
the side-lobes of strong scattering centers may tend to shelter from the weak scattering
centers in the image. Then, traditional windowing is the simplest way to suppress the
side-lobes, but window function will inevitably cause the expansion of the main lobe
shown in Figure 5b. The window function chooses the typical Taylor window and the
maximum of second side-lobe is −30 dB. From this figure, it can be found that, though the
side-lobe disappears, the main-lobe will be widened obviously as expected.

Figure 5c,d show the imaging results of BPDN and SR-CNN. Both achieve image
quality enhancement and a certain degree of SR compared with spectrum estimation, which
are similar to the ground-truth. The detailed difference of BPDN and SR-CNN will be
analyzed in details below.

To compare the difference between BPDN and SR-CNN intuitively, the contours
images are chosen, which can reflect the side-lobe and fined contour structure. Figure 6
displays the azimuth–elevation contour images at range 0 m. The analysis of Figure 6a,b is
consistent with the above and will not be repeated here. Comparing with Figure 6c,d, it
can be found that BPDN achieves side-lobe suppression, but the contour is relatively more
uneven than SR-CNN. The main reason may be that the optimization principle of BPDN is
based on L1 regularization, where the stop conditions usually are met in the coordinate
axes direction. In addition, since the expected output of SR-CNN owns smooth edges, the
final prediction results of SR-CNN in supervised training do not exist in this problem. We
also note that the prediction by SR-CNN is not completely consistent with the ground-truth,
which means that SR ratio does not actually reach 2.5.

To further measure the performance of SR ratio directly, high resolution range profile
(HRRP) is selected to compare −3 dB width. Figure 7 shows the HRRP at azimuth 0m
and elevation 0 m. Observing the −3 dB line of the local amplification image in Figure 7b,
the widths of main lobe are among these five range profiles are about 1.17 cm, 1.50 cm,
0.98 cm, 0.6 cm, and 0.47 cm, in turn. These numerical are consistent with the theoretical
analysis. It can be calculated easily that adding window suffers from about 1.28 times
main-lobe widening. BPDN reaches about 1.2 times SR while SR-CNN achieves 2 times.
Furthermore, the EXP1 in Table 1 compares the time needs for four methods. Due to the
speedup of GPU parallel and lightweight network, SR-CNN just needs less than 1 s while
BPDN needs more than 130 s. This is because once the network model has already trained,
the prediction process just depends on a simple forward convolution process rather than
iterative optimization.
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(a) (b) 

  
(c) (d) (e) 

Figure 5. Three-dimensional images of point target (0, 0, 0) by (a) 3D IFFT without windowing, (b) 3D IFFT with windowing,
(c) BPDN, (d) SR-CNN, (e) Ground-truth.

  
(a) (b) 

  
(c) (d) (e) 

Figure 6. Azimuth-elevation images at range 0 m by (a) 3D IFFT without windowing, (b) 3D IFFT with windowing,
(c) BPDN, (d) SR-CNN, (e) Ground-truth.
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(a) (b) 

Figure 7. Range profiles of the target imaging result at azimuth 0 m and elevation 0 m. (a) Original results.
(b) Local amplification.

Table 1. Comparison of time needs for different methods in two experiments.

Method
Time Needs (s)

EXP 1 EXP 2

IFFT wo win 0.064 0.084
IFFT w win 0.064 0.084

BPDN 130.144 227.142
SR-CNN 0.906 0.965

3.2. EXP2: Electromagnetic Computation Simulation of Aircraft A380

Electromagnetic computation simulation conducted by FEKO are used to further
validate the performance of the SR-CNN on a real target. The simulation parameters of
radar imaging are consistent with the above. Figure 8 shows the computer-aided design
(CAD) model of aircraft A380. The material of A380 is set to the perfect electric conductor
(PEC). The solver chooses large element physical optics based on full ray tracing.

Figure 8. CAD model of aircraft A380.

Figure 9 shows three-dimensional imaging results of the aircraft A380 by above four
different methods. We can find that the imaging quality in Figure 9a degrades due to high
side-lobe, especially the side-lobes of some strong scattering centers are even stronger
than that of weak scattering centers. Figure 9b shows the imaging results of adding the
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Taylor window. It is difficult to identify the target details from the image since the main
lobe is widened obviously. Furthermore, some adjacent weak scattering centers may be
submerged and image quality deteriorates accordingly. Both BPDN and SR-CNN enhance
the resolution and suppress the side-lobes. However, by intuitively observing their visual
quality, it can be found apparently that the image quality predicted by SR-CNN is superior
to that of BPDN obviously. The outline of the aircraft can be clearly found in Figure 9d,
which is conducive to the further refined recognition. For BPDN, there is still part of side-
lobes around strong scattering centers due to L1 regularization, and it lost two scattering
centers located wing edges of targets.

(a) (b) 

(c) (d) 

Figure 9. Three-dimensional images of aircraft A380 by (a) 3D IFFT without windowing, (b) 3D IFFT with windowing,
(c) BPDN, (d) SR-CNN.

Figure 10 shows the range–azimuth profiles, range–elevation profiles, and azimuth–
elevation profiles of above 3-D imaging results. These images are displayed in log magni-
tude and the dynamic range is 30 dB. It can be found that BPDN has a poorer ability on
recovering weak scattering centers than SR-CNN. The reason is that the reconstruction of
BPDN is based on the minimum of residual decomposition in the sense of orthogonal sense.
The minimum loss is apt to fall into local optimum when most of the strong scattering
centers are retained. Comparing the time needs of BPDN and SR-CNN in Table 1, SR-CNN
can improve the imaging speed by about 230 times and the time need about prediction
is stable.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

Figure 10. Two-dimension image profiles of aircraft A380 by (a–c) 3-D IFFT without windowing, (d–f) 3-D IFFT with
windowing, (g–i) BPDN, (j–l) SR-CNN. First column is the range–azimuth profile. Second column is the range–elevation
profile. The last column is the azimuth–elevation profile.

To understand the position of scattering centers accurately, Figure 11a shows 3-D
imaging results of SR-CNN profiled on the CAD model. It can be found that the image after
SR remarkably fits to the real structure of the target. Prudentially observing two-dimension
profiles shows that these position mainly come from the discontinuities of the fuselage,
the wings, the nose, the engines, etc. On the one hand, these strong scattering centers are
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caused by the specular reflection of the main components. On the other hand, the cavity
represented by the engine is second main source. These facts are consistent with the reality.
Since the ground truth is hard to define for real targets, qualitative comparisons can hardly
be conducted and assessed. Nevertheless, recent results have shown the superiority of the
proposed method in terms of image quality and imaging time.

 
(a) (b) 

 
(c) (d) 

Figure 11. Three-dimension Images profiled on the CAD model. (a) Three-dimension image. (b) Range–azimuth profile.
(c) Range–elevation profile. (d) Azimuth–elevation profile.

3.3. Performance Analysis for Anti-Noise Ability and Imaging Time

With the anti-noise ability and time needs for sparsity estimation, BPDN and SR-CNN
are compared. The signal-noise-ratio (SNR) chooses −10, 0, and 10 dB. It is worth noting
that 100 independent repeated tests are carried out for each SNR and each method. The
root mean square error (RMSE) is used as a quantitative performance index to evaluate the
accuracy. It is defined as follows:

RMSE =

√
1
N ∑

n
∑
p

∑
q

∑
k
(On(p, q, k)− Pn(p, q, k))2 (13)

As shown in Figure 12a, the RMSEs of SR-CNN are smallest among all methods in
different SNRs. It is because spectrum estimation suffers from high-lobe or main-lobe
widening and BPDN may exist weak side-lobe. We notice that RMSEs of the first method
are less than that of second method. We speculate that there are two reasons mainly:
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(1) The ground-truth produced by (10) encourages images to be sparse; and (2) main-lobe
broadening by window function will inflate the image. Figure 12b shows the average
time needs for different methods. SR-CNN is slightly larger than spectrum estimation
and reduces about two orders of magnitude than sparsity-regularization BPDN. The
superiority of the proposed method in terms of anti-noise ability and imaging time is
further demonstrated.

 
(a) (b) 

Figure 12. Comparison of (a) RMSE and (b) Average time needs among four different methods.

3.4. Ablation Experiments of Lightweight Network Structure

In order to further evaluate the effectiveness of the proposed lightweight network
structure, the ablation experiments with different connection of convolution layers and
dataset sizes are conducted. The details of the ablation experiments are listed in Table 2.
Fire-500 represents that the structure of the proposed method utilizes the ‘Fire’ module and
the size of dataset is 500. Direct connection represents the connection in (a).

Table 2. Structures of different networks.

Network
Connection Dataset Size

Direct Connection Fire Module 500 2000

Direct-500
√ √

Fire-500
√ √

Direct-2000
√ √

Fire-2000
√ √

Figure 13 presents the evolution of the RMSE of different network versus epochs.
Comparing results of network with different connection, we can find that the networks
based on the ‘Fire’ module can acquire higher accuracy than that of direct connection and
achieve faster convergence accordingly. It is mainly because the ‘Fire’ module can reduce
the number of network parameters and add the complexity of network. Then, we compare
the performance of different dataset size for lightweight network. From the figure, we
can find that, with larger datasets, the accuracy of the network is close to that of small
datasets. It validates that the proposed lightweight network can reduce the required data
for training while maintain high prediction performance.
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(a) (b) 

Figure 13. Evolution of the RMSE of different networks versus epoch. (a) Original image. (b) Local amplification.

3.5. Comparison with Methods Based on Neural Network

To further compare the performance of the proposed method with neural network-
based methods, we select the existing method in [37], which is an efficient method to
achieve SR. We convert the 2-D convolution layer to the 3-D convolution layer and use it
as a comparison reference. The training parameters remain the same, and both optimal
network models are selected to evaluate RMSE under SNR −10 dB, 0 dB, and 10 dB. The
size of training dataset is 500. The RMSE of both methods are listed in Table 3. It can be
found that the RMSE of SR-CNN is smaller than that of the method in [37]. In addition,
RMSE of SR-CNN is relatively unstable under a small number of training samples. An
important reason lies in the lightweight network structure. Therefore, the superiority of
lightweight SR-CNN under small datasets is validated.

Table 3. Comparison with neural network-based method.

Method
RMSE × 1000

(SNR = −10 dB)
RMSE × 1000
(SNR = 0 dB)

RMSE × 1000
(SNR = 10 dB)

The method in [37] 5.46 4.81 4.48
SR-CNN 4.63 4.46 4.32

4. Discussion

A terahertz 3-D SR imaging method based on lightweight SR-CNN is proposed in
this paper. First, the original 3-D radar echoes are derived based on the given imaging
geometry, and corresponding expected SR images are designed using PSF. Then, training
datasets are generated by randomly placing scattering centers within the given imaging
region. Thus, considering the high computing demand of 3-D data and the limitation of
small datasets, an effective lightweight network structure should be designed and improve
the efficiency of supervised training. Using the compression of channels, we design the
‘Fire’ module to replace the traditional direct connection of convolution layers, which can
significantly reduce the number of network parameters and FLOPs. Finally, combining
the ‘Fire’ module with full CNN, a lightweight and efficient network structure SR-CNN
is provided.

The advantages of the proposed method are as follows. (1) In terms of time needs,
experimental results show that the time needs of SR-CNN can reduce two orders of
magnitude compared with sparsity regularization. Because once the training of the model
is completed, the prediction process of SR-CNN only consists of simple matrix addition
and multiplication. However, for sparse regularization, the iteration process involves
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solving the inverse of the matrix, which increases the time needs drastically. (2) In terms
of image quality, the proposed method achieves the best image quality compared with
methods based-spectrum estimation and the methods-based sparse regularization. Since
the expected output is sparse, the training final aim of the network is to become the output
in the supervised training method. Therefore, the predicted result by SR-CNN is closest to
the output. It needs to be pointed out that the setting of output is in line with real needs.
In addition, the imaging sparsity by BPDN is dependent on effective parameter settings.
(3) The proposed method has strong and stable anti-noise performance. This is because
high-dimensional features extracted by SR-CNN are sparse. This sparsity is similar to the
sparse sampling of CS; therefore, high-dimensional stable features of the target can be
obtained accurately under different SNRs.

Future work can be considered in the following directions. (1) Considering that the
current imaging parameters are known in advance, the imaging of moving targets with
estimation of unknown motion parameters is an interesting direction. (2) The basis of a
signal model is established with PSF, but the scattering characteristics of many structures
do not satisfy PSF in reality. For example, the imaging results of a thin metal rod changes
with the angle of observation. It is appealing to establish a theoretical prior model that is
more in line with reality. (3) The input of the network is the complex image. Although
the time needs are less than 1 s, it is worth studying whether it can directly learn from the
original radar echo to reach imaging, which will observably accelerate the imaging speed
in the field of 3-D radar imaging.

5. Conclusions

A fast and high-quality three-dimension SR imaging based on lightweight SR-CNN
was proposed in this paper, which broke the limit of time consumption in the conventional
sparsity-regularization method and outstood the SR imaging based on CNN. Based on the
imaging geometry and PSF, the original 3-D echo and expected SR images were derived.
By the designed lightweight network ‘Fire’ module and effective supervised training, the
complete training framework of SR-CNN was provided in detail. In terms of resolution
characteristic, the proposed method achieved at least two times SR in three dimensions
compared with spectrum estimation. Additionally, the time of enhancing imaging can
obtain two orders of improved magnitude compared with sparsity regularization BPDN.
The effectiveness of the proposed method in terms of image quality was demonstrated by
electromagnetic simulation, and the robustness against noise and the advantages of time
need were verified as well. In the future, we will combine compressed sensing with neural
networks, and design a fast and high-quality imaging method from the raw radar echoes
promptly, which we have been already working on.
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Abstract: To detect rotated objects in remote sensing images, researchers have proposed a series
of arbitrary-oriented object detection methods, which place multiple anchors with different angles,
scales, and aspect ratios on the images. However, a major difference between remote sensing images
and natural images is the small probability of overlap between objects in the same category, so the
anchor-based design can introduce much redundancy during the detection process. In this paper, we
convert the detection problem to a center point prediction problem, where the pre-defined anchors
can be discarded. By directly predicting the center point, orientation, and corresponding height and
width of the object, our methods can simplify the design of the model and reduce the computations
related to anchors. In order to further fuse the multi-level features and get accurate object centers, a
deformable feature pyramid network is proposed, to detect objects under complex backgrounds and
various orientations of rotated objects. Experiments and analysis on two remote sensing datasets,
DOTA and HRSC2016, demonstrate the effectiveness of our approach. Our best model, equipped
with Deformable-FPN, achieved 74.75% mAP on DOTA and 96.59% on HRSC2016 with a single-stage
model, single-scale training, and testing. By detecting arbitrarily oriented objects from their centers,
the proposed model performs competitively against oriented anchor-based methods.

Keywords: object detection; remote sensing image; anchor free; oriented bounding boxes; deformable
convolution

1. Introduction

With the development of modern remote sensing technology, a large number of remote
sensing images with higher spatial resolution and richer content have been produced [1–4].
Object detection in remote sensing images has broad application prospects in many fields,
such as environmental monitoring [5–7], disaster control [8,9], infrared detection [10,11],
and the military. Benefiting from deep convolutional neural networks, considerable results
have been achieved for the object detection task in natural images. However, due to the
complex background, variable object scales, arbitrary orientations and shooting angles,
object detection in aerial images is still a hot topic in the field of computer vision [12–16].

Compared with natural image datasets [17,18], remote sensing image detection mainly
faces the following differences and challenges (Illustrated in Figure 1):

1. Low overlap and Densely arranged. Remote sensing images are usually captured by
satellite, radar, and so on, from a vertical view. Unlike object detection for natural
images, where overlap between objects is typically present, the rotated objects in
remote sensing images have a low probability of overlapping each other, especially for
objects in the same category. Furthermore, objects usually appear in densely arranged
forms in some categories, such as ships and vehicles, which leads to difficulties for the
detector to distinguish between adjacent objects;

2. Arbitrary orientations. Objects usually appear in the image with various directions.
Compared to the widely used horizontal bounding boxes (HBBs) in natural image
detection, oriented bounding boxes (OBBs) can better depict objects with arbitrary
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orientations and aspect ratios than horizontal bounding boxes in remote sensing
images. This not only requires the detector to correctly locate and classify the object of
interest, but also to accurately predict its direction;

3. Complex background and Drastic scale changes. Compared to natural images, remote
sensing images have higher resolution, with more complex and variable backgrounds.
A lot of objects to be detected are easily submerged in the background, which requires
the detector to be effectively focused on areas of interest. Meanwhile, the scales of
objects vary drastically in remote sensing images; for example, some vehicles and
bridges are only within a few pixels, while soccer fields can comprise thousands of
pixels in aerial images.

Figure 1. Examples of Low overlap and Densely arranged (Left), Arbitrary orientations of objects
(Middle), and Drastic scale changes (Right) in remote sensing images.

The above difficulties make remote sensing image detection more challenging and
attractive, while requiring natural image object detection methods to be adapted to rotated
objects. However, most rotated object detectors place multiple anchors per location to get a
higher IoU between pre-set anchors and object bounding boxes. Dense anchors ensure the
performance of the rotation detectors while having a higher computational burden. Can
these anchors be discarded in the rotated object detection process, in order to improve the
computational efficiency and simplify the design of the model? We find that one major
difference between remote sensing images and natural images is the small probability of
overlap between objects having the same category. So, the large overlap between adjacent
objects per location is rare in this situation, especially when using oriented bounding boxes
to represent the rotated objects. Therefore, we hope the network could directly predict
the classification and regression information of the rotated object from the corresponding
position, such as an object center, which can improve the overall efficiency of the detector
and avoid the need for manual designs of the anchors. Meanwhile, the networks need
to have robust feature extraction capabilities for objects with drastic scale changes and
accurately predict the orientation of rotated objects.

To discard anchors in the detection process, we convert the rotation object detection
problem into a center point prediction problem. First, we represent an oriented object by
the center of its oriented bounding box. The network learns a center probability map to
localize the object’s center through use of a modulated focal loss. Then, inspired by [19], we
use the circular smooth label to learn the object’s direction, in order to accurately predict the
angle of an object and avoid regression errors due to angular periodicity at the boundary.
A parallel bounding-box height and width prediction branch is used to predict the object’s
size in a multi-task learning manner. Therefore, we can detect the oriented objects in an
anchor-free way.

Further, to accurately localize the object center under drastic scale changes and various
object orientations, a deformable feature pyramid network (Deformable-FPN) is proposed,
in order to further fuse the multi-level features. Specifically, deformable convolution [20,21]
is used to reduce the feature channels and project the features simultaneously. After
mixing the adjacent-level features using an add operation, we perform another deformable
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convolution to reduce the aliasing effect of the add operation. By constructing the FPN in a
deformable manner, the convolution kernel can be adaptively adjusted, according to the
scale and direction of the object. Experiments show that our Deformable-FPN can bring
significant improvements to detecting objects in remote sensing images, compared to FPN.

In summary, the main contributions of this paper are as follows:

1. We analyze that one major difference between remote sensing images and natural
images is the small probability of overlap between objects with the same category and,
based on the analysis, propose a center point-based arbitrary-oriented object detector
without pre-set anchors;

2. We design a deformable feature pyramid network to fuse the multi-level features for
rotated objects, which can get a better feature representation for accurately localizing
the object center;

3. We carry out experiments on two remote sensing benchmarks—the DOTA and
HRSC2016 datasets—to demonstrate the effectiveness of our approach. Specifically,
our center point-based arbitrary-oriented object detector achieves 74.75% mAP on
DOTA and 96.59% on HRSC2016 with a single-stage model, single-scale training, and
testing.

The remainder of this paper is organized as follows. Section 2 first describes the
related works. Section 3 provides a detailed description of the proposed method, including
center-point based arbitrary-oriented object detector and Deformable-FPN. The experiment
results and settings are provided in Section 4 and discussed in Section 5. Finally, Section 6
summarizes this paper and presents our conclusions.

2. Related Work

2.1. Object Detection in Natural Images

In recent years, horizontal object detection algorithms in natural image datasets, such
as MSCOCO [17] and PASCAL VOC [18], have achieved promising progress. We classify
them as follows:

Anchor-based Horizontal Object Detectors: Most region-based two-stage methods [22–26]
first generate category-agnostic region proposals from the original image, then use category-
specific classifiers and regressors to classify and localize the objects from the proposals.
Considering their efficiency, single-stage detectors have drawn more and more attention
from researchers. Single-stage methods perform bounding box (bbox) regression and
classification simultaneously, such as SSD [27], YOLO [28–30], RetinaNet [31], and so
on [32–35]. The above methods densely place a series of prior boxes (Anchors) with
different scales and aspect ratios on the image. Multiple anchors per location are needed
to cover the objects as much as possible, and classification and location refinement are
performed based on these pre-set anchors.

Anchor-free Horizontal Object Detectors: Researchers have also designed some com-
parable detectors without complex pre-set anchors, which are inspiring to the detection
process. CornerNet [36] detects an object bounding box as a pair of keypoints, demon-
strating the effectiveness of anchor-free object detection. Further, CenterNet [37] models
an object as a single point, then regresses the bbox parameters from this point. Based on
RetinaNet [31], FCOS [38] abandoned the pre-set anchors and directly predicts the distance
from a reference point to four bbox boundaries. All of these methods have achieved great
performance and have avoided the use of hyper-parameters related to anchor boxes, as
well as complicated calculations such as intersection over union (IoU) between bboxes
during training.

2.2. Object Detection in Remote Sensing Images

Object detection also has a wide range of applications in remote sensing images.
Reggiannini et al. [5] designed a sea surveillance system to detect and identify illegal
maritime traffic. Almulihi et al. [7] propose a statistical framework based on gamma
distributions and demonstrate the effectiveness for oil spill detection in SAR images.
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Zhang et al. [8] analyze the frequency properties of motions to detect living people in
disaster areas. In [10], a difference maximum loss function is used to guide the learning
directions of the networks for infrared and visible image object detection.

Based on the fact that rotation detectors are needed for remote sensing images, many
excellent rotated object detectors [19,39–46] have been developed from horizontal detection
methods. RRPN [39] sets rotating anchors to obtain better region proposals. R-DFPN [47]
propose a rotation dense feature pyramid network to solve the narrow width problems of
the ship, which can effectively detect ships in different scenes. Yang et al. [19] converted
an angle regression problem to a classification problem and handled the periodicity of the
angle by using circular smooth label (CSL). Due to the complex background, drastic scale
changes, and various object orientations problems, multi-stage rotation detectors [41–43]
have been widely used.

3. Method

In this section, we first introduce the overall architecture of our proposed center
point-based arbitrary-oriented object detector. Then, we detail how to localize the object’s
center and predict the corresponding angle and size. Finally, the detailed structure of
Deformable-FPN is introduced.

3.1. Overall Architecture

The overall architecture of our methods, based on [37], is illustrated in Figure 2.
ResNet [48] is used as our backbone, in order to extract multi-level feature maps (denoted
as C3, C4, C5). Then, these features are sent to deformable feature pyramid networks to
obtain a high-resolution, strong semantic feature map, P2, which is responsible for the
following detection task. Finally, four parallel sub-networks are used to predict the relevant
parameters of the oriented bounding boxes. Specifically, the Center Heatmap branch is used
to predict the center probability, for localizing the object’s center. A refined position of the
center is obtained from the Center offset branch. The Orientation branch is responsible for
predicting the object’s direction by using the Circular Smooth Label, and the corresponding
height and width are obtained from the Object size branch.

Figure 2. Overall architecture of our proposed center-point based arbitrary-oriented object detector.
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3.2. Detecting Arbitrary-Oriented Object by Its Center Point
3.2.1. Center Point Localization

Let W and H be the width and height of the input image. We aim to let the network

predict a category-specific center point heatmap Ŷ ∈ [0, 1]
W
R × H

R×C, based on the features
extracted from the backbone, where R is the stride between the input and feature P2 (as
shown in Figure 2), and C is the number of object categories (C = 15 in DOTA, 1 in
HRSC2016). R was set to four, following [37]. The predicted value Ŷ = 1 denotes a detected
center point of the object, while Ŷ = 0 denotes background.

We followed [36,37] to train the center prediction networks. Specifically, for each
object’s center (px, py) of class c, a ground-truth positive location ( p̃x, p̃y) = (� px

R �, �
py
R �) is

responsible for predicting it, and all other locations are negative. During training, equally
penalizing negative locations can severely degrade the performance of the network; this is
because, if a negative location is close to the corresponding ground-truth positive location,
it can still represent the center of the object within a certain error range. Thus, simply
dividing it as a negative sample will increase the difficulty of learning object centers. So,
we alleviated the penalty for negative locations within a radius of the positive location.
This radius, r, is determined by the object size in an adaptive manner: a pair of diagonal
points within the radius can generate a bounding box exceeding a certain Intersection over
Union (IoU) with the ground-truth box; the IoU threshold is set to 0.5 in this work. Finally,

the ground-truth heatmap Y ∈ [0, 1]
W
R × H

R×C used to reduce the penalty is generated as
follows: We split all ground truth center points into Y and pass them through the Gaussian
kernel Kxyc:

Kxyc = exp(− (x− p̃x)2 + (y− p̃y)2

2σp2 ) (1)

σp = r/3. (2)

We use the element-wise maximum operation if two Gaussians of the same class over-
lap. The loss function for center point prediction is a variant of focal loss [31], formulized as:

Lcenter = − 1
N ∑

x,y,c

{
(1− Ŷ(x, y, c))αlog(Ŷ(x, y, c)) i f Y(x, y, c) = 1
(1−Y(x, y, c))βŶ(x, y, c)αlog(1− Ŷ(x, y, c)) otherwise,

(3)

where N is the total number of objects in the image, and α and β are the hyperparameters
controlling the contribution of each point (α = 2 and β = 4, by default, following [37]).

As the predicted Ŷ has a stride of R with the input image, the center point position
obtained by Ŷ will inevitably have quantization error. Thus, a Center offset branch was

introduced to eliminate this error. The model predicts ô ∈ [0, 1]
W
R × H

R×2, in order to refine
the object’s center. For each object’s center p = (px, py), smooth L1 loss [26] is used
during training:

Lo f f set =
1
N ∑

p
SmoothL1(ô p̃,

p
R
− � p

R
�). (4)

Then, combining Ŷ and ô, we can accurately locate the object’s center.

3.2.2. Angle Prediction for Oriented Objects

In this section, we first introduce the five-parameter long side-based representation
for oriented objects and analyze the angular boundary discontinuity problem. Then, we
detail the circular smooth label, in order to solve the boundary discontinuity problem and
predict the angles of oriented objects.

Representations for Oriented Objects. As we discussed in Section 1, the use of
oriented bounding boxes can better depict objects in remote sensing images. We use five-
parameter long side-based methods to represent the oriented objects. As shown in Figure 3,
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five parameters (Cx, Cy, h, w, θ) were used to represent an OBB, where h represents the
long side of the bounding box, the other side is referred to as w, and θ is the angle between
the long side and x-axis, with a 180◦ range. Compared to the HBB, OBB needs an extra
parameter, θ, to represent the direction information.

Figure 3. Five-parameter long side-based representation for oriented objects.

As there are generally various angles of an object in remote sensing images, accurately
predicting the direction is important, especially for objects with large aspect ratios. Due
to the periodicity of the angle, directly regressing the angle θ may lead to the boundary
discontinuity problem, resulting in a large loss value during training. As illustrated
in Figure 4, two oriented objects can have relatively similar directions while crossing
the angular boundary, resulting in a large difference between regression values. This
discontinuous boundary can interfere with the network’s learning of the object direction
and, thus, degrade the model’s performance.

Figure 4. An example of discontinuous angular boundary based on the five-parameter long side
representation.

Circular Smooth Label. Following [19], we convert the angle regression problem into
a classification problem. As the five-parameter long side-based representation has 180◦
angle range, each 1◦ degree interval is referred to a category, which results in 180 categories
in total. Then, the one-hot angle label passes through a periodic function, followed by a
Gaussian function to smooth the label, formulized as:

CSL(x) =
{

g(x) θ − rcsl < x < θ + rcsl
0 otherwise,

(5)
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where g(x) is the Gaussian function, which satisfies g(x) = g(x + kT), k∈N, T = 180; and
rcsl is the radius of the Gaussian function, which controls the smoothing degree of the angle
label. For example, when rcsl = 0, the Gaussian function becomes to pulse function and
the CSL degrades into the one-hot label. We illustrate the CSL in Figure 5.

Figure 5. Visualization of the circular smooth label.

The loss function for the CSL is not the commonly used Softmax Cross-Entropy loss; as
we use a smooth label, Sigmoid Binary Cross-Entropy is used to train the angle prediction

network. Specifically, the model predicts θ̂ ∈ [0, 1]
W
R × H

R×180 for an input image, and the
loss function is:

LCSL =
1
N ∑

p
BCE(θ̂ p̃, θp), (6)

where θp is the circular smooth label for object p in the image.

3.2.3. Prediction of Object Size

We have that (Cx, Cy, h, w, θ) represents the OBBs, using the center location and di-
rection of each object obtained in Sections 3.2.1–3.2.2. The rest (i.e., the long side h and
short side w) are predicted through the Object size branch shown in Figure 2. The model
outputs Ŝ ∈ R

W
R × H

R×2 for the object size. For each object p, with corresponding size label
sp = (hp, wp), smooth L1 loss is used:

Lsize =
1
N ∑

p
SmoothL1(Ŝp̃, ln(

sp

R
)). (7)

Note that the smooth L1 loss used in this paper is (δ = 1
9 by default):

SmoothL1(x) =
{ 1

2δ x2 i f |x| < δ

x− δ
2 otherwise.

(8)

The overall training objective for our arbitrary-oriented object detector is:

L = Lcenter + λangleLCSL + λsizeLsize + λo f f setLo f f set, (9)

where λangle, λsize, and λo f f set are used to balance the weighting between different tasks.
In this paper, λangle, λsize, and λo f f set are set to 0.5, 1, and 1, respectively.
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3.3. Feature Enhancement by Deformable FPN

We aim to better localize the object’s center and corresponding direction by building a
pyramidal feature hierarchy on the network’s output features. The feature maps extracted
by the backbone are referred to as C3, C4, and C5, shown in Figure 2. These feature maps
have different spatial resolutions and large semantic gaps. Low-resolution maps have
strong semantic information, which has great representational capacity for object detection,
especially for large objects (e.g., Soccer fields) in aerial images, while high resolution maps
have relatively low-level features but can provide more detailed information, which is
very important for detecting small objects. Due to the various orientations and large scale
differences of objects in remote sensing images, the standard FPN [25] used to fuse these
feature maps may not work well in this situation. The standard convolution kernel appears
in a regular rectangular manner, which has the characteristic of translation invariance.
Meanwhile, the resolutions of these feature maps differ, and the semantic information of
objects is not strictly aligned to these feature maps. Therefore, using standard convolution
to project these features before the add operation may harm the representation ability of
oriented objects, which is essential to accurately localize the object’s center and direction.
However, Deformable convolution (DConv) can learn the position of convolution kernels
adaptively, which can better project the features of oriented objects in the feature pyramid
network. We detail the structure of Deformable FPN in the following, and demonstrate its
effectiveness in Section 4.

3.3.1. Structure of Deformable FPN

To verify the effectiveness of our method, we introduce three kinds of necks, including
our Deformable FPN, to process backbone features to P2, which are subsequently sent
to the detection head. Figure 6 shows detailed architectures of the three necks, using
ResNet50 [48] as a backbone. A direct Top-down pathway is constructed without building
the feature pyramid structure (Figure 6) but, instead, using deformable convolutions, as
originally used by [37] for ResNet. Our proposed Deformable FPN is shown in Figure 6,
while a commonly used FPN structure is shown in Figure 6. We keep the same channels
of features in each stage, which are 256, 128, and 64 for features with stride 16, 8, and
4, respectively.

Figure 6. Different kinds of necks to process the backbone features: (a) A direct Top-down pathway
without the feature pyramid structure; (b) our proposed Deformable FPN; and (c) standard FPN.
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• Direct Top-down pathway As shown in Figure 6, we only use the backbone feature
C5 from the last stage of ResNet to generate P2. A direct Top-down pathway was
used, without constructing a feature pyramid structure on it. Deformable convolution
is used to change the channels, and transposed convolution is used to up-sample the
feature map. We refer to this Direct Top-down Structure as DTS, for simplicity.

• Deformable FPN Directly using C5 to generate P2 for oriented object detection may
result in the loss of some detailed information, which is essential for small object
detection and the accurate localization of object centers. As the feature C5 has a
relatively large stride (of 32) and a large receptive field in the input image, we construct
the Deformable FPN as follows: we use DConv 3 × 3 to reduce the channels and
project the backbone features C3, C4, and C5. Transposed convolution is used to
up-sample the spatial resolution of features by a factor of two. Then, the up-sampled
feature map is merged with the projected feature from the backbone of same resolution,
by using an element-wise add operation. After merging the features from the adjacent
stage, another deformable convolution is used to further align the merged feature and
reduce its channel simultaneously. We illustrate this process in Figure 6b.

• FPN A commonly used feature pyramid structure is shown in Figure 6c. Conv 1 × 1
is used to reduce the channel for C3, C4, and C5, and nearest neighbor interpolation is
used to up-sample the spatial resolution. Note that there are two differences from [25],
in order to align the architecture with our Deformable FPN. First, the feature channels
are reduced along with their spatial resolution. Specifically, the channels of features in
each stage are 256, 128, and 64 for features with a stride of 16, 8, and 4, respectively,
while [25] consistently set the channels to 256. Second, we added an extra Conv 3 × 3
after the added feature map, in order to further fuse them.

Comparing our Deformable FPN with DTS, we reuse the shallow, high-resolution
features of the backbone, which provide more detailed texture information to better localize
the object center and detect small objects, such as vehicles and bridges, in remote sensing
images. Compared with FPN, by using deformable convolution—which adaptively learns
the position of convolution kernels—it can better project the features of oriented objects.
Moreover, applying transposed convolution, rather than nearest neighbor interpolation, to
up-sample the features can help to better localize the centers.

3.3.2. Deformable Groups

As we use deformable convolution in the feature pyramid structure, we discuss how
larger Deformable groups in DConv can further enhance the representation power of the
network in this section.

The deformable convolution used in this paper is DCNv2 [21]. For a convolutional
kernel and K sampling locations, the deformable convolution operation can be formulized
as follows:

y(p) =
K

∑
k=1

ωk·x(p + pk + Δpk )·Δmk , (10)

where x(p) and y(p) denote the feature at location p on input feature map x and output
feature map y, respectively; the pre-set convolution kernel location is denoted as pk and
ωk is the kernel weight; and Δpk and Δmk are the learnable kernel offset and scalar weight
based on input feature, respectively. Take a 3 × 3 deformable convolutional kernel as
an example: there are K = 9 sampling locations. For each location k, a two-dimensional
vector(Δpk ) is used to determine the offsets in the x- and y-axes, and a one-dimensional
tensor is used for the scalar weight (Δmk ). So, the network first predicts offset maps, which
have 3K channels based on the input features, then uses the predicted offsets to find K
convolution locations at each point p. Finally, Equation (10) is used to calculate the output
feature maps. We illustrate this process in Figure 7a.
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Figure 7. Illustration of 3 × 3 deformable convolution: (a) One deformable group; and (b) n
deformable groups.

Note that all channels in the input feature maps share one group of offsets when the
number of deformable groups is set to 1 (as shown in Figure 7a). Input features share these
common offsets to perform the deformable convolution. When the number of deformable
groups is n (n > 1), the networks first output n× 3K-channel offset maps, the input feature
(C channels) is divided into n groups, where each group of features has C/n channels,
and the corresponding 3K-channel offset maps are used to calculate the kernel offsets (as
shown in Figure 7b). Finally, the output feature will be obtained by deformable convolution
on the input feature. Different from the groups in the standard convolutional operation,
each channel in the output features will be calculated on the entire input features only,
with different kernel offsets. Increasing the number of deformable groups can enhance the
representation ability of DConv, as different groups of input channels use different kernel
offsets, and the network can generate a unique offset for each group of features, according
to the characteristics of the input features.

4. Experiments

4.1. Data Sets and Evaluation Metrics
4.1.1. DOTA

DOTA is a large-scale dataset for object detection in remote sensing images. The
images are collected from different sensors and platforms. There are 2806 images, with
scales from 800 × 800 to 4000 × 4000 pixels. The proportions of the training set, validation
set, and testing set in DOTA are 1

2 , 1
6 , and 1

3 , respectively. The DOTA dataset contains 15
common categories, with 188,282 instances in total. The full names (short names) for the
categories are: Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track field (GTF),
Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC),
Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool
(SP), and Helicopter (HC).
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4.1.2. HRSC2016

HRSC2016 is a dataset for ship detection in aerial images. The HRSC2016 dataset
contains images of two scenarios, including ships at sea and ships inshore at six famous
harbors. There are 436, 181, and 444 images for training, validation and testing, respec-
tively. The ground sample distances of images are between 2 m and 0.4 m, and the image
resolutions range from 300 × 300 to 1500 × 900.

4.1.3. Evaluation Metrics

The Mean Average Precision (mAP) is commonly used to evaluate the performance of
object detectors, where the AP is the area under the precision–recall curve for a specific
category, which ranges from [0, 1]. It is formulized as:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

mAP =
1
C

C

∑
c=1

∫
Pc(Rc)dRc, (13)

where C is the number of categories, and TP, FP, and FN represent the numbers of correctly
detected objects, incorrectly detected objects, and mis-detected objects, respectively.

4.2. Implementation Details
4.2.1. Image Pre-Processing

The images in the DOTA dataset always have a high resolution. Directly training on
the original high-resolution images does not reconcile with the hardware, due to limited
GPU memory. Therefore, we cropped the images into sub-images of size 1024 × 1024, with
an overlap of 256 pixels, and obtained 14,560 labeled images for training. We introduce
two methods for testing in this paper. In the first method, we crop the testing images using
the same size as used in the training stage (1024 × 1024 pixels) and, after inference on all
sub-images, the final detection results are obtained by splicing all sub-image results. This
method is commonly used for inference on the test images in the DOTA dataset; however, it
may generate some false results at the cutting edge, leading to poor performance especially
for some categories with large sizes (e.g., Ground field track and Soccer field). The second
method involves cropping the testing images with a relatively high resolution (3200 pixels i
this paper) during inference. We simply padded the images if the size of the original image
is smaller than the crop size. By cropping the testing images at a relatively high resolution,
a large number of images will not be cut and, so, the model can detect objects based on the
complete instance, thus obtaining a more accurate evaluation result. Note that the only
difference between the two methods is the crop size used for testing.

For the HRSC2016 dataset, we resized the long side of images to 640 pixels and kept
the same aspect ratio as the original images. Thus, the short side of each image was
different and smaller than 640 pixels. Then, we uniformly padded the resized images to
640 × 640 pixels, both for training and testing.

4.2.2. Experimental Settings

All experiments were implemented in PyTorch. ImageNet [49]-pretrained ResNets
were used as our default backbone. We used the Adam [50] optimizer to optimize the
overall networks for 140 epochs. We set a batch size of 12 for DOTA and 32 for HRSC2016.
The initial learning rates were 1.25× 10−4 and 2× 10−4 for DOTA and HRSC2016, with
the learning rate dropped by 10 × at 100 and 130 epochs. We used a single-scale training
strategy with input resolution of 1024 for DOTA and 640 for HRSC2016, as mentioned
before, and the stride R was set to 4. The Gaussian radii rcsl for CSL were set to 4 and 6 for
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DOTA and HRSC2016, respectively. Our data augmentation methods included random
horizontal and vertical flipping, random graying, and random rotation. We did not use
multi-scale training and testing augmentations in our experiments.

4.3. Results
4.3.1. Effectiveness of Deformable FPN

Due to the wide variety of object scales, orientations and shapes, we chose DOTA as
our main dataset for validation. We implemented a standard feature pyramid network
(FPN), a direct Top-down structure (DTS), and our proposed Deformable FPN (De-FPN) as
necks to process features from the ResNet50 backbone.

Results are shown in Table 1. We give the average precision of each category and total
mAP. HRT denotes the high resolution testing discussed in Section 4.2.1. The building
detector from FPN achieved 69.68% mAP, which is already a good performance for the
DOTA dataset. However, the direct Top-down structure had 1.2% higher mAP than the
FPN structure. Note that the DTS does not build a feature hierarchical structure inside
the network, but had a better performance than FPN, indicating that the deformable
convolution can better project features for rotating objects. Furthermore, the interpolation
operation used to up-sample the features may harm the representation power for predicting
object centers exactly.

Our Deformable FPN achieved a remarkable improvement of 1.23% higher mAP,
compared with DTS, which indicates that Deformable FPN can better fuse the multi-level
features and help the detector to accurately localize the rotating objects. Compared with
FPN, the advantages of building a feature hierarchical structure in our way are evident.
The improvement of up to 2.43% higher mAP was obtained through use of deformable
convolution and transposed convolution within the FPN structure. Further, by using
original high-resolution images during testing, our detector could obtain a more accurate
evaluation result. Specifically, the high-resolution test boosted the mAP by 1.79%, 2.39%,
and 1.65% for FPN, DTS, and De-FPN, respectively.

Table 1. Three kinds of necks are used to build arbitrary-oriented object detectors: Feature pyramid network (FPN), direct
Top-down structure (DTS), and Deformable FPN(De-FPN). HRT denotes using High-Resolution crop during Testing. All
models use ImageNet-pretrained ResNet50 as a backbone.

Neck HRT PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FPN 88.36 78.03 45.35 57.90 76.52 78.24 85.12 90.63 78.89 82.23 39.04 61.21 62.56 70.64 50.50 69.68
DTS 88.79 82.99 42.75 59.31 76.53 77.15 85.17 90.76 79.84 82.27 49.59 59.68 63.98 68.15 56.28 70.88

De-FPN 88.73 80.71 46.36 67.10 78.16 80.51 86.32 90.67 79.84 81.66 45.91 63.66 66.89 71.22 53.87 72.11

FPN
√

89.15 78.98 47.07 59.17 76.78 79.14 86.89 90.80 79.51 83.67 46.60 60.83 66.81 72.77 53.84 71.47
DTS

√
89.70 84.72 45.00 67.62 76.64 78.23 86.60 90.78 79.66 83.59 54.91 59.84 67.08 70.29 64.32 73.27

De-FPN
√

89.47 81.96 46.89 70.72 77.01 81.44 87.32 90.81 80.06 83.68 46.27 63.55 73.62 72.91 60.62 73.76

4.3.2. Results on DOTA

We compared our results with other state-of-the-art methods in the DOTA dataset.
We used ResNet50, ResNet101, and ResNet152 as backbones to construct our Arbitrary-
oriented anchor-free based object detector, denoted as CenterRot. The results are shown
in Table 2. The DOTA dataset contains complex scenes, wherein object scales change
drastically. Two-stage methods are commonly used in DOTA, in order to handle the
imbalance between foregrounds and backgrounds in these complex scenes, such as ROI
Transformer [42] and CAD-Net [51], which have achieved 69.59% and 69.90% mAP, re-
spectively, when using ResNet101 as a backbone. Meanwhile, extremely large and small
objects can appear in one image (as shown in Figure 1), such that multi-scale training and
testing technologies are used to obtain a better performance, such as FADet [52], which
obtained 73.28% mAP using ResNet101, and MFIAR-Net [53], which obtained 73.49% mAP
using ResNet152 as the backbone. However, multi-scale settings need to infer one image

404



Remote Sens. 2021, 13, 3731

multiple times at different sizes and merge all results after testing, which leads to a larger
computational burden during inference.

Our CenterRot converts the oriented object detection problem to a center point lo-
calization problem. Based on the fact that remote sensing images have less probability
of overlap between objects with the same category, directly detecting the oriented object
from its center can lead to a comparable performance with oriented anchor-based methods.
Specifically, CenterRot achieved 73.76% and 74.00% mAP on the OBB task of DOTA, when
using ResNet50 and ResNet101 as the backbone, respectively. Due to the strong representa-
tion ability of our Deformable FPN for rotated objects , CenterRot, equipped with larger
deformable groups (n = 16 in Deformable FPN), achieved the best performance (74.75%
mAP) when using ResNet152 as the backbone, surpassing all published single-stage meth-
ods with single-scale training and testing. Detailed results for each category and method
are provided in Table 2.

Table 2. State-of-the-Art comparison with other methods in the oriented object detection task in the DOTA test set. AP for
each category and overall mAP on DOTA are provided (the best result is highlighted in bold), where MS denotes multi-scale
training and testing and * denotes that larger deformable groups (n = 16 in Deformable FPN) were used.

Method Backbone MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

SSD [27] VGG16 41.06 24.31 4.55 17.10 15.93 7.72 13.21 39.96 12.05 46.88 9.09 30.82 1.36 3.50 0.00 17.84
YOLOv2 [29] Darknet19 52.75 24.24 10.60 35.50 14.36 2.41 7.37 51.79 43.98 31.35 22.30 36.68 14.61 22.55 11.89 25.49

FR-H [22] ResNet50 49.74 64.22 9.38 56.66 19.18 14.17 9.51 61.61 65.47 57.52 51.36 49.41 20.80 45.84 24.38 39.95
FR-O [1] ResNet50 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13

RetinaNet-
R [43] ResNet50 88.90 67.70 33.60 56.80 66.10 73.30 75.20 90.90 74.00 75.10 43.80 56.70 51.10 55.70 21.50 62.00

RetinaNet-
H [43] ResNet50 88.90 74.50 40.10 58.00 63.10 50.60 63.60 90.90 77.90 76.40 48.30 55.90 50.70 60.20 34.20 62.20

RSDet [54] ResNet50 89.30 82.70 47.70 63.90 66.80 62.00 67.30 90.80 85.30 82.40 62.30 62.40 65.70 68.60 64.60 70.80
CenterRot

(Ours) ResNet50 89.47 81.96 46.89 70.72 77.01 81.44 87.32 90.81 80.06 83.68 46.27 63.55 73.62 72.91 60.62 73.76

R-FCN [24] ResNet101 39.57 46.13 3.03 38.46 9.10 3.66 7.45 41.97 50.43 66.98 40.34 51.28 11.14 35.59 17.45 30.84
R-DFPN [47] ResNet101 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN [55] ResNet101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [39] ResNet101 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01
ICN [41] ResNet101

√
81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

ROI
Trans [42] ResNet101

√
88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.34 62.83 58.93 47.67 69.56

CAD-Net [51] ResNet101 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
RSDet [54] ResNet101 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20

BBAVectors [56] ResNet101
√

88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32
SCRDet [57] ResNet101

√
89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

SARD [58] ResNet101 89.93 84.11 54.19 72.04 68.41 61.18 66.00 90.82 87.79 86.59 65.65 64.04 66.68 68.84 68.03 72.95
GLS-Net [59] ResNet101 88.65 77.40 51.20 71.03 73.30 72.16 84.68 90.87 80.43 85.38 58.33 62.27 67.58 70.69 60.42 72.96

FADet [52] ResNet101
√

90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
CenterRot

(Ours) ResNet101 89.74 83.57 49.53 66.45 77.07 80.57 86.97 90.75 81.50 84.05 54.14 64.14 74.22 72.77 54.56 74.00

MFIAR-
Net [53] ResNet152

√
89.62 84.03 52.41 70.30 70.13 67.64 77.81 90.85 85.40 86.22 63.21 64.14 68.31 70.21 62.11 73.49

R3Det [43] ResNet152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
RSDet-

Refine [54] ResNet152 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10

CenterRot *
(Ours) ResNet152 89.69 81.42 51.16 68.82 78.77 81.45 87.23 90.82 80.31 84.27 56.13 64.24 75.80 74.68 56.51 74.75

4.3.3. Results on HRSC2016

The HRSC2016 dataset has only one category—ship—where some of them have
large aspect ratios and various orientations. Therefore, it is still a challenge to detect
ships in this dataset. The results are shown in Table 3, from which it can be seen that
our CenterRot achieved state-of-the-art performance consistently, without the use of a
more complicated architecture, compared with the other methods. Specifically, CenterRot
achieved 90.20% and 96.59% for mAP 07 and 12, respectively, where mAP 07 denotes using
the 2007 evaluation metric, while mAP 12 denotes using the 2012 evaluation metric.
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Table 3. State-of-the-art comparison of HRSC2016. mAP 07(12) means using the 2007(2012) evaluation
metric.

Method Backbone mAP 07 mAP 12

RoI-Trans [42] ResNet101 86.20 -
RetinaNet-R [43] ResNet101 89.18 95.21

R3Det [43] ResNet101 89.26 96.01
R3Det-DCL [60] ResNet101 89.46 96.41

CenterRot (Ours) ResNet50 90.20 96.59

4.3.4. Visualization

The visualization results are presented using our CenterRot. The results for DOTA are
shown in Figure 8 and those for HRSC2016 are shown in Figure 9.

Figure 8. Visualization of detection results on DOTA.
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Figure 9. Visualization of detection results on HRSC2016.

5. Discussion

The proposed CenterRot achieved prominent performance in detecting rotated objects
for both of the DOTA and HRSC2016 datasets. Objects with the same category have a
lower probability of overlapping each other, so directly detecting rotated objects from
their center is effective and efficient. We selected several categories in order to further
analyze our method. As shown in Table 4, small vehicle, large vehicle, and ship were the
most common rotated objects in DOTA, which always appeared in a densely arranged
manner. Anchor-based methods operate by setting anchors with different angles, scales
and aspect ratios per location, in order to cover the rotated objects as much as possible.
However, it is impossible to assign appropriate anchors for each object, due to the various
orientations in this situation. Our methods performed well in these categories especially,
due to the fact that we converted the oriented bounding box regression problem into a
center point localization problem. Less overlap between objects means fewer collisions
between object centers, such that the networks can learn the positions of rotated objects
from their center easier. We also visualized some predicted center heatmaps, as shown
in Figure 10. Moreover, since the deformable FPN can better project features for rotated
objects and the use of CSL to predict the object direction, our methods still performed well
for objects with large aspect ratios, such as harbors and ships in HRSC2016.

Table 4. Comparison of selected categories in DOTA. All methods use ResNet152 as a backbone.

Method SV LV SH HA SBF RA

MFIAR-Net 70.13 67.64 77.81 68.31 63.21 64.14
R3Det 70.92 78.66 78.21 68.16 61.81 63.77

RSDet-Refine 70.20 78.70 73.60 66.10 64.30 68.20

CenterRot (Ours) 78.77 81.45 87.23 75.80 56.13 64.24

However, as we cut the original images, some large objects were incomplete during
training, such as the soccer ball field, which may confuse our detector when localizing
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the exact center, resulting in relatively poor performance in these categories. Due to this,
we use the five-parameter long side-based representation for oriented objects, which will
create some ambiguity when representing the square-like objects (objects with small aspect
ratio). So, the model will produce a large loss value when predicting the angle and size of
these objects and perform poorly in these categories, such as roundabout. Other oriented
representations, such as the five-parameter acute angle-based method [19], will avoid this
problem while suffering EoE problems. Therefore, it is still worth studying how to better
represent the rotated objects.

Future works will mainly involve improving the effectiveness and robustness of the
proposed methods in real-world applications. Different from the classical benchmark
datasets, the objects in input images can vary much more frequently and can be affected by
other conditions, such as angle of insolation. Moreover, as cloudy weather is very common,
the cloud can occlude some objects. The anchor-free rotated object detection problem in
such a circumstance is also worth studying.

Figure 10. Visualization of predicted center heatmaps for some categories.

6. Conclusions

In this paper, we found that objects within the same category tend to have less overlap
with each other in remote sensing images, and setting multiple anchors per location to
detect rotated objects may not be necessary. We proposed an anchor-free based arbitrary-
oriented object detector to detect the rotated objects from their centers and achieved great
performance without pre-set anchors, which avoids complex computations on anchors,
such as IoU. To accurately localize the object center under complex backgrounds and
the arbitrary orientations of rotated objects, we proposed a deformable feature pyramid
network to fuse the multi-level features and obtained a better feature representation for
detecting rotated objects. Experiments on DOTA showed that our Deformable FPN can
better project the features of rotated objects than standard FPN. Our CenterRot achieved a
state-of-the-art performance, with 74.75% mAP on DOTA and 96.59% on HRSC2016, with
a single-stage model, including single-scale training and testing. Extensive experiments
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demonstrated that detecting arbitrary-oriented objects from their centers is, indeed, an
effective baseline choice.
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Abstract: Oriented object detection in remote sensing images (RSIs) is a significant yet challenging
Earth Vision task, as the objects in RSIs usually emerge with complicated backgrounds, arbitrary
orientations, multi-scale distributions, and dramatic aspect ratio variations. Existing oriented object
detectors are mostly inherited from the anchor-based paradigm. However, the prominent perfor-
mance of high-precision and real-time detection with anchor-based detectors is overshadowed by the
design limitations of tediously rotated anchors. By using the simplicity and efficiency of keypoint-
based detection, in this work, we extend a keypoint-based detector to the task of oriented object
detection in RSIs. Specifically, we first simplify the oriented bounding box (OBB) as a center-based
rotated inscribed ellipse (RIE), and then employ six parameters to represent the RIE inside each
OBB: the center point position of the RIE, the offsets of the long half axis, the length of the short
half axis, and an orientation label. In addition, to resolve the influence of complex backgrounds
and large-scale variations, a high-resolution gated aggregation network (HRGANet) is designed to
identify the targets of interest from complex backgrounds and fuse multi-scale features by using a
gated aggregation model (GAM). Furthermore, by analyzing the influence of eccentricity on orien-
tation error, eccentricity-wise orientation loss (ewoLoss) is proposed to assign the penalties on the
orientation loss based on the eccentricity of the RIE, which effectively improves the accuracy of the
detection of oriented objects with a large aspect ratio. Extensive experimental results on the DOTA
and HRSC2016 datasets demonstrate the effectiveness of the proposed method.

Keywords: oriented object detection; rotated inscribed ellipse; remote sensing images; keypoint-
based detection; gated aggregation; eccentricity-wise

1. Introduction

With the fast-paced development of unmanned aerial vehicles (UAVs) and remote
sensing technology, the analysis of remote sensing images (RSIs) has been increasingly ap-
plied in fields such as land surveying, environmental monitoring, intelligent transportation,
seabed mapping, heritage site reconstruction, and so on [1–6]. Object detection in RSIs is
regarded as a high-level computer vision task with the purpose of pinpointing the targets
in RSIs. Due to the characteristics of remote sensing targets, such as complex backgrounds,
huge aspect ratios, multiple scales, and variations of orientations, remote sensing object
detection remains a challenging and significant research issue.

In recent years, due to their outstanding learning abilities, the most advanced detection
models have been developed by using deep convolutional neural networks (DCNNs).
Existing natural image object detection approaches [7–18] usually leverage the horizontal
detection paradigm, which has evolved into a well-established area. Nevertheless, remote
sensing images are typically taken with bird’s-eye views, and horizontal-detection-based
methods will experience significant performance degradation when applied directly to
remote sensing images, largely owing to the distinctive appearances and characteristics
of remote sensing objects. For instance, compared with the detection of objects in images
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of natural scenes, the task of remote sensing object detection tends to encompass more
challenges, such as complex backgrounds, arbitrary orientations, multi-scale distributions,
and large aspect ratio variations. When we take the horizontal bounding box (HBB) in the
top half of Figure 1a to represent the objects of a remote sensing image, it will introduce
massive numbers of extra pixels outside of the targets, seriously damaging the accuracy
of positioning. Meanwhile, the HBB used for densely arranged remote sensing oriented
objects may generate a larger intersection-over-union (IoU) with adjacent boxes, which
tends to introduce some missed ground-truth boxes that are restrained by non-maximum
suppression (NMS), and the missed detection rate increases. To tackle these challenges,
oriented object detection methods that utilize an oriented bounding box (OBB) to compactly
enclose an object with orientations are preferred in RSIs.

(a) (b) (c) (d)

Figure 1. Some RSIs in the DOTA and HRSC2016 datasets. (a) The direction of objects in RSIs is always arbitrary. The
HBB (top) and OBB (bottom) are two representation methods in RSI object detection. (b) Remote sensing images tend to
contain complex backgrounds. (c) The scales of objects in the same remote sensing image may also vary dramatically, such
as with small vehicles and track fields on the ground. (d) There are many objects with large aspect ratios in RSIs, such as
slender ships.

Existing oriented object detectors are mainly inherited from the anchor-based detec-
tion paradigm. Nevertheless, anchor-based oriented object detectors that rely on anchor
mechanisms result in complicated computations and designs related to the rotated anchor
boxes, such as those of the orientations, scales, number, and aspect ratios of the anchor
boxes. Therefore, research works on anchor-free detection methods that liberate the de-
tection model from massive computations on the anchors have drawn much attention in
recent years. Specifically, as an active topic in the field of anchor-free object detection,
keypoint-based methods (e.g., CornerNet [13], CenterNet [14], and ExtremeNet [15]) pro-
pose forsaking the design of anchors and directly regressing target positions by exploring
the features of correlative keypoints either on the box boundary points or the center point.
To the best of our knowledge, many works that were built upon the keypoint-based detec-
tion pipeline have achieved great success in the RSI object detection field. For example,
P-RSDet [19] converted the task of detection of remote sensing targets into the regres-
sion of polar radii and polar angles based on the center pole point in polar coordinates.
GRS-Det [20] proposed an anchor-free center-based ship detection algorithm based on a
unique U-shape network design and a rotation Gaussian Mask. The VCSOP detector [21]
transformed the vehicle detection task into a multitask learning problem (i.e., center, scale,
orientation, and offset subtasks) via an anchor-free one-stage fully convolutional network
(FCN). Due to the bird’s-eye views in RSIs, center-based methods that have fewer ambigu-
ous samples and vivid object representation are more suitable for remote sensing oriented
object detection. Notably, center-based methods usually extend the CenterNet [14] to the
oriented object detection task by introducing an accessional angle θ together with the width
w and height h. However, due to the periodicity of the angle, angle-based approaches
that represent the oriented object with the angle-oriented OBB will encounter boundary
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discontinuity and regression uncertainty issues [22], resulting in serious damage to the
detection performance. To address this problem, our work explores an angle-free method
according to the geometric characteristics of the OBB. Specifically, we describe an OBB as a
center-based rotated inscribed ellipse (RIE), and then employ six parameters to describe the
RIE inside each OBB: the center point position of the RIE (center point (x, y)), the offsets
of the long half axis (δx, δy), the length of the short half axis b, and an orientation label ψ.
In contrast to the angle-based approaches, our angle-free OBB definition guarantees the
uniqueness of the representation of the OBB and effectively eliminates the boundary case,
which dramatically improves the detection accuracy.

On the other hand, trapped by the complicated backgrounds and multi-scale ob-
ject distribution in RSIs, as shown in Figure 1b,c, keypoint-based detectors that utilize a
single-scale high-resolution feature map to make predictions may detect a large number of
uninteresting objects and omit some objects with multiple scales. Therefore, it is momen-
tous to enhance the feature extraction capability and improve the multi-scale information
fusion of the backbone network. In our work, we design a high-resolution gated aggre-
gation network (HRGANet) that better distinguishes the objects of interest from complex
backgrounds and integrates the features with different scales by using a parallel multi-scale
information interaction and gated aggregation information fusion mechanisms. In addition,
because large aspect ratios tend to make a significant impact on the orientation error and
the accuracy of the IoU, it is reasonable to assign penalties on the orientation loss based
on the aspect ratio information. Taking the perspective that the eccentricity of the RIE can
better reflect the aspect ratio from the side, we propose an eccentricity-wise orientation
loss (ewoLoss) to penalize the orientation loss based on the eccentricity of the RIE, which
effectively takes into consideration the effect of the aspect ratio on the orientation error and
improves the accuracy of the detection of slender objects.

In summary, the contributions of this article are four-fold:

• We introduce a novel center-based OBB representation method called the rotated
inscribed ellipse (RIE). As an angle-free OBB definition, the RIE effectively eliminates
the angle periodicity and address the boundary case issues;

• We design a high-resolution gated aggregation network to capture the objects of
interest from complicated backgrounds and integrate different scale features by imple-
menting multi-scale parallel interactions and gated aggregation fusion;

• We propose an eccentricity-wise orientation loss function to fix the sensitivity of the
eccentricity of the ellipse to the orientation error and effectively improve the accuracy
of the detection of slender oriented objects with large aspect ratios;

• We perform extensive experiments to verify the advanced performance compared
with state-of-the-art oriented object detectors on remote sensing datasets.

The rest of this article is structured as follows. Section 2 introduces the related work in
detail. The detailed introduction of our method is explained in Section 3. In Section 4, we
explain the extensive comparison experiments, the ablation study, and the experimental
analysis at length. Finally, the conclusion is presented in Section 5.

2. Related Works

In this section, relevant works concerning deep-learning-based oriented object detec-
tion methods and anchor-free object detection methods in RSIs are briefly reviewed.

2.1. Oriented Object Detection in RSIs

Considering the rotation characteristics of remote sensing objects, it is more suitable
to employ a rotated bounding box to represent objects with multiple orientations and to
devise advanced oriented object detection algorithms that adapt to remote sensing scenes.

Recent advances in oriented object detection have mainly been driven by the improve-
ments and promotion of general object detection methods that use horizontal bounding
boxes to represent remote sensing objects. In general, the mainstream and classical oriented
object detection algorithms in RSIs can be roughly divided into anchor-based paradigms
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and anchor-free object detection methods. The anchor-based detectors (e.g., YOLO [10],
SSD [11], Faster-RCNN [9], and RetinaNet [12]) have dominated the field of object detection
for many years. Specifically, for a remote sensing image, the anchor-based detectors first
utilize many predetermined anchors with different sizes, aspect ratios, and rotation angles
as a reference. Then, the detector either directly regresses the location of the object bound-
ing box or generates region proposals on the basis of anchors and determines whether
each region contains some category of an object. Inspired by this kind of ingenious anchor
mechanism, a large number of oriented object detectors [22–41] have been proposed in
the literature to pinpoint oriented objects in RSIs. For example, Liu et al. [23] used the
Faster-RCNN framework and introduced a rotated region of interest (ROI) for the task of
the detection of oriented ships in RSIs. The method in [24,25] used a rotation-invariant con-
volutional neural network to address the problem of inter-class similarity and intra-class
diversity in multi-class RSI object detection. The RoI Transformer [30] employed a strategy
of transforming from a horizontal RoI to an oriented RoI and allowed the network to obtain
the OBB representation with a supervised RoI learner. With the aim of application for
rotated ships, the R2PN [31] transformed the original region proposal network (RPN) into a
rotated region proposal network (R2PN) to generate oriented proposals with orientation in-
formation. CAD-Net [32] used a local and global context network to obtain the object-level
and scene contextual clues for robust oriented object detection in RSIs. The work in [33]
proposed an iterative one-stage feature refinement detection network that transformed
the horizontal object detection method into an oriented object detection method and effec-
tively improved the RSI detection performance. In order to predict the angle-based OBB,
SCRDet [34] applied an IoU penalty factor to the general smooth L1 loss function, which
cleverly addressed the angular periodicity and boundary issues for accurate oriented object
detection tasks. S2A-Net [35] realized the effect of feature alignment between the horizontal
features and oriented objects through an one-stage fully convolutional network (FCN).

In addition to effective feature extraction network designs for oriented objects men-
tioned above, some scholars have studied the sensitivity of angle regression errors to
anchor-based detection methods and resorted to more robust angle-free OBB represen-
tations for oriented object detection in RSIs. For instance, Xu et al. [36] represented an
arbitrarily oriented object by employing a gliding vertex on the four corners based on the
HBB, which refrained from the regression of the angle. The work in [37] introduced a
two-dimensional vector to express the rotated angle and explored a length-independent
and fast IoU calculation method for the purpose of better slender object detection. Further-
more, Yang et al. [22] transformed the task of the regression of an angle into a classification
task by using an ingenious circular smooth label (CSL) design, which eliminated the an-
gle periodicity problem in the process of regression. As a continuation of the CSL work,
densely coded labels (DCLs) [38] were used to further explore the defects of CSLs, and a
novel coding mode that made the model more sensitive to the angular classification dis-
tance and the aspect ratios of objects was proposed. ProjBB [39] addressed the regression
uncertainty issue caused by the rotation angle with a novel projection-based angle-free
OBB representation approach. Not singly, but in pairs, the purpose of our work is also
to explore an angle-free OBB representation for better oriented object detection in remote
sensing images.

2.2. Anchor-Free Object Detection in RSIs

Recently, as an active theme in the field of remote sensing object detection, anchor-free
methods have been put forward to abandon the paradigm of anchors and to regress the
bounding box directly through a sequence of convolution operations. In general, anchor-
free methods can be classified into per-pixel point-based detectors and keypoint-based
detectors. The per-pixel point-based detectors (e.g., DenseBox [16], FoveaBox [17], and
FCOS [18]) detect objects by predicting whether a pixel point is positive and the offsets
from the corresponding per-pixel point to the box boundaries of the target. DenseBox [16]
first attempted to employ an anchor-free pipeline to directly predict the classification
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confidence and bounding box localization with an FCN. FCOS [18] detected an object
by predicting four distances from pixel points to four boundaries of the bounding box.
Meanwhile, FCOS also introduced a weight factor, Centerness, to evaluate the importance
of the positive pixel points and steer the network to distinguish discriminative features
from complicated backgrounds. FoveaBox [17] located the object box by directly predicting
the mapping transformation relation between center points and two corner points, and it
learned the object category of confidence. Inspired by this paradigm of detection, many
researchers began to explore per-pixel point-based oriented object detection approaches
for RSIs. For example, based on the FCOS pipeline, IENet [42] proposed an interacting
module in the detection head to bind the classification and localization branches for
accurate oriented object detection in RSIs. In addition, IENet also introduced a novel
OBB representation method that depicted oriented objects with an outsourcing box of
the OBB. Axis Learning [43] used a per-pixel point-based detection model that detected
the orientated objects by predicting the axis of an object and the width perpendicular to
the axis.

Differently from per-pixel point-based methods, keypoint-based methods (e.g., Cor-
nerNet [13], CenterNet [14], and ExtremeNet [15]) pinpoint oriented objects by capturing
the correlative keypoints, such as the corner point, center point, and extreme point. Cor-
nerNet is the forerunner of the keypoint-based methods; it locates the HBB of an object
through heatmaps of the upper-left and bottom-right points. It groups the corner points of
the box by evaluating the embedding distances. CenterNet captures an object by using a
center keypoint and regressing the width, height, and offset properties of the bounding box.
ExtremeNet detects an object through an extreme point (extreme points of four boundaries)
and center point estimation network. In the remote sensing oriented object detection field,
many works have based themselves upon the keypoint-based detection framework. For
example, combining CornerNet and CenterNet, Chen et al. [44] utilized an end-to-end
FCN to identity an OBB according to the corners, center, and corresponding angle of a ship.
CBDA-Net [45] extracted rotated objects in RSIs by introducing a boundary region and
center region attention module and used an aspect-ratio-wise angle loss for slender objects.
The work in [46] proposed a pixel-wise IoU loss function that enhances the relation between
the angle offset and the IoU and effectively improves the detection performance for objects
with high aspect ratios. Pan et al. [47] introduced a unified dynamic refinement network
to extract densely packed oriented objects according to the selected shape and orientation
features. Meanwhile, there are also some works that have integrated the angle-free strategy
into the keypoint-based detection pipeline for RSIs. O2-DNet [48] utilized a center point
detection network to locate the intersection point and formed an OBB representation with a
pair of internal middle lines. X-LineNet [49] detected aircraft by predicting and clustering
the paired vertical intersecting line segments inside each bounding box. BBAVectors [50]
captured an oriented object by learning the box-boundary-aware vectors that were dis-
tributed in four independent quadrants of the Cartesian coordinate system. Continuing
this angle-free thought, the method proposed in this article uses a center-based rotated
inscribed ellipse to represent the OBB. At the same time, our method provides a strong
feature extraction network to extract objects from complex backgrounds and implements
an aspect-ratio-wise orientation loss for slender objects, which effectively boosts the perfor-
mance in oriented object detection in RSIs. A more detailed introduction of the proposed
method will be provided in Section 3.

3. Materials and Methods

The architecture of the proposed method is illustrated in Figure 2. The network frame-
work mainly includes a feature extraction network—namely, a high-resolution gated aggre-
gation network (HRGANet) and a multitask prediction head. The HRGANet is designed to
tackle the problems of extensive multi-scale distributed objects and complex backgrounds
in RSIs. The HRGANet can be divided into the backbone, the high-resolution network
(HRNet) [51], and the gated aggregation model. The HRNet is a parallel-interaction high-
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resolution network that is utilized to fuse multi-resolution feature representations and
render high-resolution representations for richer semantic information and more precise
spatial positioning information. The gated aggregation module (GAM) is proposed to
adaptively fuse different resolution feature maps for multi-scale objects through a gated
aggregation mechanism. Meanwhile, there are five subnetworks for the center heatmap,
center offset, long half-axis offset, eccentricity, and orientation prediction in the oriented
object detection head. Finally, oriented objects are detected by predicting the inscribed
ellipse with orientation information inside each OBB. In addition, we utilize ewoLoss to pe-
nalize the orientation loss based on the eccentricity of the rotated inscribed ellipse for better
slender object detection. We will introduce the network from three perspectives: (1) the
high-resolution gated aggregation network; (2) the rotated inscribed ellipse prediction
head; (3) the eccentricity-wise orientation loss.

Figure 2. Framework of the our method. The backbone network, HRGANet, is followed by the RIE prediction model. The
HRGANet backbone network contains HRNet and GAM. Up samp. represents a bilinear upsampling operation and a 1 × 1
convolution. Down samp. denotes 3 × 3 convolution with a stride of 2. Conv unit. is a 1 × 1 convolution.

3.1. High-Resolution Gated Aggregation Network

As illustrated in Section 1, the objects in remote sensing images tend to have the
characteristics of large-scale variations and complicated backgrounds. Therefore, it is
necessary to design an effective feature extraction network that fully exploits the multi-
resolution feature representations and fuses multi-scale information for robust multi-
scale feature extraction. From this point of view, we introduce a high-resolution gated
aggregation network (HRGANet) to make good use of the multi-resolution feature maps.
As shown in Figure 2, the HRGANet is composed of two components: the high-resolution
network (HRNet) and gated aggregation model (GAM).

3.1.1. High-Resolution Network

The backbone network for feature extraction in our method uses HRNet, which
performs well in keypoint detection. In contrast to the frequently used keypoint extraction
networks (e.g., VGG [52], ResNet [53], and Hourglass [54]) that concatenate the multi-
resolution feature maps in series, HRNet links different-resolution feature maps in parallel
with repeated multi-scale fusion. The whole procedure of keypoint extraction in HRNet
efficiently keeps high-resolution features while replenishing the high- and low-resolution
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information, which enables it to obtain abundant multi-scale feature representations. The
brief sketch of HRNet is illustrated in Figure 2. First, the input image is fed into a stem,
which consists of two 3× 3 convolutions with a stride of 2. Then, the resolution is decreased
to 1/4. The overall structure of HRNet has four main stages, which gradually add high-to-
low resolution stages in succession. The structure of these four stages can be simplified, as
indicated in the following formula:

S11 → S21 → S31 → S41

↘ S22 → S32 → S42

↘ S33 → S43

↘ S44

(1)

where {(Sij)|i, j ∈ 1, 2, 3, 4} represents the ith sub-stage and j ∈ {1, 2, 3, 4} denotes that
the resolution of feature maps in the corresponding sub-stage is 1

2(j+1) of the original
feature maps. Meanwhile, through repeated multi-resolution feature fusion and parallel
high-resolution feature maintenance, HRNet can better extract multi-scale features, and
then obtain richer semantic and spatial information for RSI objects. The detailed network
structure of HRNet is shown in Table 1. Note that we used HRNet-W48 in our experiments.

Table 1. The structure of the backbone network of HRNet. It mainly embodies four stages. The 1st (2nd, 3rd, and 4th) stage
is composed of 1 (1, 4, and 3) repeated modularized blocks. Meanwhile, each modularized block in the 1st (2nd, 3rd, and
4th) stage consists of 1 (2, 3, and 4) branch(es) belonging to a different resolution. Each branch contains four residual units
and one fusion unit. In the table, each cell in the Stage box is composed of three parts: The first part ([·]) represents the
residual unit, the second number denotes the iteration times of the residual units, and the third number represents the
iteration times of the modularized blocks. ≡ in the Fusion column represents the fusion unit. C is the channel number of
the residual unit. We set C to 48 and represent the network as HRNet-W48. Res. is the abbreviation of resolution.

Res. Stage1 Fusion Stage2 Fusion Stage3 Fusion Stage4 Fusion

1
4

⎡⎣ 1× 1, 64
3× 3, 64
1× 1, 256

⎤⎦× 4× 1
≡

[
3× 3, C
3× 3, C

]
× 4× 1 ≡

[
3× 3, C
3× 3, C

]
× 4× 4 ≡

[
3× 3, C
3× 3, C

]
× 4× 3 ≡

1
8

≡
[

3× 3, 2C
3× 3, 2C

]
× 4× 1 ≡

[
3× 3, 2C
3× 3, 2C

]
× 4× 4 ≡

[
3× 3, 2C
3× 3, 2C

]
× 4× 3 ≡

1
16

≡
[

3× 3, 4C
3× 3, 4C

]
× 4× 4 ≡

[
3× 3, 4C
3× 3, 4C

]
× 4× 3 ≡

1
32

≡
[

3× 3, 8C
3× 3, 8C

]
× 4× 3 ≡

3.1.2. Gated Aggregation Model

In a conventional keypoint or object detection network, the feature aggregation pattern
is carried out by directly stacking or concatenating the feature maps. Nevertheless, to
the best of our knowledge, feature maps with different resolutions contain serious seman-
tic dissimilarities. In general, low-resolution feature maps provide richer semantics for
object category recognition, whereas high-resolution feature maps contain more spatial
information for object localization. Some works [21,50] directly up-sampled low-resolution
feature maps ( 1

8 , 1
16 , and 1

32 feature maps) to a 1
4 spatial resolution, and then fused these

feature maps through a concatenation operation. This kind of fusion strategy does not con-
sider that some of these features are meaningless or a hindrance to the inference of object
identification and positioning. To enhance valuable feature representations and restrain
invalid information, we designed a gated aggregation mechanism (GAM) to evaluate the
availability of pixels in each feature map and effectively fuse multi-resolution feature rep-
resentations. The details of the GAM are presented in Figure 3. As shown in Figure 2, the

inputs {Fi ∈ R
W

2i+1× H
2i+1×2i−1C, i ∈ {1, 2, 3, 4}} of the GAM are the output feature maps of
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the HRNet, where W ,H, and C represent the width, height, and channel number of the fea-
ture maps, respectively. In Figure 3, F2, F3, and F4 are up-sampled to the same 1

4 resolution

as F1. We can obtain the feature maps of the same scale {Xi ∈ R
W
4 × H

4 ×2i−1C, i ∈ {1, 2, 3, 4}}.
Then, Xi is fed into a weight block to adaptively assign the weight of pixels in different
feature maps and to generate the weight maps {Wi ∈ R

W
4 × H

4 ×1, i ∈ {1, 2, 3, 4}}. Wi can be
defined as

Wi = σ(BN(Conv1×1(Xi))) (2)

where Conv1×1 represents the 1× 1 convolution operation in which the number of kernels
is equal to 1, BN denotes the batch normalization operation, and σ is the ReLU activation
function. These three parts compose a weight block. Then, we employ a SoftMax operation
to obtain the normalized gate maps {Gi ∈ R

W
4 × H

4 ×1, i ∈ {1, 2, 3, 4}} as:

Gi =
eWi

∑4
j=1 eWj

(3)

where Gi ∈ (0, 1) is the important gated aggregation factor. Finally, by means of these
gate maps, the gated aggregation feature maps output Y ∈ R

W
4 × H

4 ×15C for the following
prediction head, which can be calculated as:

Y =
4

∑
i=1

Gi ⊗ Xi (4)

where the summation symbol represents the concatenation operation ⊕. The feature maps
are concatenated along the channel direction. Note that we perform a 1 × 1 convolution to
reconcile the final feature maps and integrate the feature maps into the 256 channels after
Y. With this gated aggregation strategy, meritorious feature representations are distributed
to higher gate factors, and unnecessary information will be suppressed. As a result, our
feature extraction network can provide more flexible feature representations in detecting
remote sensing objects of different scales from complicated backgrounds.

Figure 3. The network structure of the GAM. W, H, and C represent the width, height, and channel number of the feature
maps, respectively. ⊗ represents the broadcast multiplication operation. ⊕ denotes the concatenation operation. Conv1× 1
is a convolution operation with 1 × 1 kernels, BN is a batch normalization operation, and ReLU is the ReLU activation
function. A weight block is composed of a 1 × 1 convolution operation, a BN operation, and a ReLU operation.
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3.2. Rotated Inscribed Ellipse Prediction Head

To capture the objects in RSIs, some works [21,45] described the OBB with a rotated
rectangular box (RRB) representation (x, y, w, h, θ). As shown in Figure 4a, x, y, w, h, and θ
represent the center abscissa, center ordinate, width, height, and angle. This representation
method has some pros and cons. On the bright side, this definition method can ensure the
conciseness and uniqueness of the OBB representation. Nevertheless, there still exist some
problems in some extreme conditions. For example, in Figure 4a, the rotation angle θ of the
RRB is defined as the angle between the horizontal axis (x-axis) corresponding to the lowest
point of the RRB and the first edge encountered when it rotates counterclockwise. The first
edge encountered is the width and the other is the height, which are not defined in terms of
length. This angular representation has a range of angles of [0, 90). However, a boundary
problem emerges due to the angular periodicity when this representation encounters an
angular boundary. In Figure 4a, the blue rectangle denotes the angle θ, which is equal to
0. When this rectangle is subjected to a slight jiggle, two very different conditions appear.
When we rotate the blue box by a small angle�θ towards the upper-right corner to reach
the position of the red box, the angle of rotation is defined as�θ. However, when we rotate
the blue box by a small angle�θ towards the bottom-right corner to reach the position of
the green box, the angle of rotation is defined as (90−�θ). This kind of rotation angle
representation method causes a large jump in the angle’s value during the rotation of the
rectangular box from the top-right corner to the bottom-right corner, and the regression
of the angle parameter is discontinuous and has serious jitter problems. In addition, for
the red box, the long side is the width and the short side is the height. However, for the
green box, the short side is the width and the long side is the height. For these two boxes in
close proximity, the width and height are abruptly swapped, which makes the regression
in terms of width and height less effective. In this condition, a tiny change in the rotation
angle would lead to a large change in the regression target, which seriously hinders the
training of the network and deteriorates the performance of the detector.

(a) (b)

Figure 4. (a) RRB representation (x, y, w, h, θ), where (xc, yc), w, h, and �θ represent the center point, width, height,
and small angle jitter, respectively. (b) RIE representation of the target used in our method. (xc, yc), (xv, yv), and
{(xi, yi)|i = 1, 2, 3, 4} are the center point, long half-axis vertex, and four outer rectangle vertices of the RIE. e and ψ

represent the eccentricity and orientation label, respectively. Yellow lines b denote the short half axis. Red, blue, and green
lines (δx, δy) represent the offsets of the long half axis a.

To address the above-mentioned problems, we propose a new angle-free OBB rep-
resentation. We transform the OBB regression task into the corresponding RIE regres-
sion problem. First, as shown in Figure 4b, we represent the OBB as four vertices
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{(xi, yi)|i = 1, 2, 3, 4}, where the order of the four vertices is based on the values of xi, i.e.,
(x1 ≤ x2 < x3 ≤ x4). Then, we can calculate the coordinate of the long half-axis vertices
{xv = (x3 + x4)/2, yv = (y3 + y4)/2|x3 < x4}. When x3 is equal to x4, the bounding box
is the HBB. The coordinates of the HBB’s long half-axis vertices are defined as:

(xv, yv) =

{
( (x3+x4)

2 , (y3+y4)
2 ), |y4 − yc| ≤ |x4 − xc|

( (x2+x4)
2 , (y2+y4)

2 ), |y4 − yc| > |x4 − xc|
(5)

where (xc = ∑4
i=1 xi/4, yc = ∑4

i=1 yi/4) is the coordinate of the center point. Therefore,
we can obtain the long half-axis offsets (δx = |xv − xc|, δy = |yv − yc|). By predicting the
offsets between the long half-axis vertices and the center point, we can obtain the long

half-axis length value a =
√
(δx)2 + (δy)2. Meanwhile, to obtain the complete size of the

RIE, we also implement a sub-network to predict the short half-axis length b. In addition,
as shown in Figure 4b, it is not well established to represent a unique RIE by predicting the
center point (x, y), long half-axis offsets (δx, δy), and short half axis b because there are two
obscure RIEs with mirror symmetry on the x-axis. To remove this ambiguity, we design an
orientation label ψ, and the ground truth of ψ is defined as:

ψ =

{
0, (xv = xc | yv > yc)
1, (xv > xc & yv ≤ yc)

(6)

When the long half-axis vertex is located in the 1st quadrant or y-axis, ψ is equal
to 0. Meanwhile, when the long half-axis vertex is located in the 4th quadrant or x-axis,
ψ is equal to 1. By using such a classification strategy, we can effectively ensure the
uniqueness of the RIE representation and eliminate the ambiguity of the definition. Finally,
the representation of the RIE can be described by a 6-D vector (x, y, δx, δy, b, ψ). As shown
in Figure 2, we introduce an RIE prediction head to obtain the parameters of the RIE. First,
a 3× 3× 256 convolutional unit is employed to reduce the channel number of the gated
aggregated feature maps Y to 256. Then, five parallel 1× 1 convolutional units follow to
generate a center heatmap (H ∈ R

W
4 × H

4 ×K), a center offset map (C ∈ R
W
4 × H

4 ×2), a long
half-axis offset map (L ∈ R

W
4 × H

4 ×2), a short-half axis length map (S ∈ R
W
4 × H

4 ×1), and an
orientation map (O ∈ R

W
4 × H

4 ×1), where K is the number of categories of the corresponding
datasets. Note that the output orientation map is finally processed by a sigmoid function.
For the sake of brevity, we have not shown final sigmoid function in Figure 2.

3.3. Eccentricity-Wise Orientation Loss

In addition to the characteristics of complex backgrounds, arbitrary orientations, and
multi-scale distributions, large aspect ratio variations are also salient characteristics of RSI
objects. For example, the aspect ratios of a baseball diamond and a storage tank in RSIs
approach 1, but the aspect ratios of long and narrow objects, such as bridges and ships, are
even higher than 50. Therefore, it is worthwhile to explore the effects of objects’ aspect
ratios on the accuracy of the detection of rotated objects. As shown in Figure 5a, we first
fix the width, height, and center point of the ground-truth rotated bounding box and the
predicted rotated bounding box. Then, we record the IoU value between the ground truth
and the predicted box with different angle biases and aspect ratios. We can see from the
observation that the sensitivity of the IoU to the angle bias varies considerably for different
aspect ratios. First, for the same aspect ratio, the IoU between two rotated boxes decreases
as the angle bias increases. Meanwhile, under the same angle bias, the larger the aspect
ratio is, the smaller the IoU is. That is, generally, more slender and narrow objects have
greater sensitivity to angle deviations. For long and narrow objects, a small angle bias will
lead to a large IoU variation. In addition, eccentricity {e = c

a ∈ [0, 1)} is another important
index that can reflect the degree of narrowness of an object. The narrower an object is,
the larger the eccentricity is. As shown in Figure 5b, we also record the IoU values under
different orientation offsets and the eccentricity of the RIE. Under the same orientation
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offsets, the larger the eccentricity is, the smaller the IoU is. To take full account of the
effect of the aspect ratio on the angle prediction bias, we introduce an eccentricity-wise
orientation loss (ewoLoss) that utilizes the eccentricity e of the RIE to represent the aspect
ratio, and it effectively eliminates the influence of large aspect ratio variations on detection
accuracy. First, we propose the utilization of the cosine similarity of the long half axis
between the predicted RIE and the ground-truth RIE to calculate the orientation offset.
Specifically, with the aid of the ground-truth long half-axis offsets (δ∗x , δ∗y ) and the predicted
long half-axis offsets (δx, δy), we can calculate the orientation offset | �Θ| between the
predicted long half axis and ground-truth long half axis:

| �Θ| = arccos(
δ2

x + δ2
y + (δ∗x)2 + (δ∗y )2 − (δx − δ∗x)

2 −
(

δy − δ∗y
)2

2
√

δ2
x + δ2

y ∗
√
(δ∗x)2 + (δ∗y )2

)

= arccos(
δx ∗ δ∗x + δy ∗ δ∗y√

δ2
x + δ2

y ∗
√
(δ∗x)2 + (δ∗y )2

)

(7)

arccos denotes the inverse cosine function. | �Θ| indicates the angle error between
the predicted RIE and ground-truth RIE. Then, considering that the orientation offsets
under different eccentricities have varying influences on the performance of rotated target
detection, we hope that the orientation losses under different eccentricities are different, and
the orientation losses of targets with greater eccentricities should be larger. The ewoLoss is
calculated as:

Lewo =
N

∑
i=1
{(1 + exp(ei − 1))}| �Θ| (8)

where i is the index value of the target, and exp represents the exponential function. ei is
the eccentricity in object i, α is a constant to modulate the orientation loss, and N is the
object number in one batch.

(a) (b)

Figure 5. (a) IoU curves under different height–width ratios and angle biases. a/b represent the height–width ratio, i.e., the
aspect ratio of the object. (b) IoU curves under different orientation offsets and RIE eccentricities.

3.4. Loss Functions

Our total loss function is a multi-task loss and is composed of five parts. The first
part is the center heatmap loss. A heatmap is a commonly used technical tool applied
to keypoint detection tasks in general images. In our work, we inherit the center point
heatmap method from the CenterNet [14] network to detect the center points of oriented
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objects in RSIs. As described in Figure 2, the center heatmap H ∈ R
W
4 × H

4 ×K in the RIE
prediction head has K channels, with each belonging to one target category. The value of
each predicted pixel point in the heatmap denotes the confidence of detection. We apply a

2-D Gaussian exp(−
(xh−x̄c)2+(yh−ȳc)2

2s2 ) around the heatmap of the object’s center point (x̄c, ȳc)

to form the ground-truth heatmap H∗ ∈ R
W
4 × H

4 ×K, where (xh, yh) denotes the pixel point
in heatmap H∗, and s represents the standard deviation of the adapted object size. Then,
following the idea of CornerNet [13], we utilize the variant focal loss to train the regression
of the center heatmap:

Lh = − 1
N ∑

i

{
(1− hi)

γ log(hi), h∗i = 1(
1− h∗i

)ηhγ
i log(1− hi), otherwise

(9)

where h∗ and h represent the ground-truth and predicted values of the heatmap, N is the
number of targets, and i denotes the pixel location in the heatmap. The hyper-parameters
γ and η are set to 2 and 4 in our method to balance the ratio of positive and negative
samples. The second part of our loss is the center offset loss. Because the coordinates
of the center keypoint on the heatmap are integer values, the ground-truth values of the
heatmap are generated by down-sampling the input image through the HRGANet. The
size of the ground-truth heatmap is reduced compared to that of the input image, and
the discretization process will introduce rounding errors. Therefore, as shown in Figure 2,
we introduce center offset maps C ∈ R

W
4 × H

4 ×2 to predict the quantization loss (�x,�y)
between the integer center point coordinates and quantified center point coordinates for
the mapping of the center point from the input image to the heatmap:

c = (�x,�y) =
( xc

4
−

⌊ xc

4

⌋
,

yc

4
−

⌊yc

4

⌋)
(10)

Smooth L1 loss is adopted to optimize the center offset as follows:

Lc =
1
N

N

∑
k=1

SmoothL1(ck − c∗k ) (11)

where N is the number of targets, c∗ and c are the ground-truth and predicted values of the
offsets, and k denotes the object index number. The smooth L1 loss can be calculated as:

Smooth L1(x) =

{
0.5x2, |x| < 1
|x| − 0.5, otherwise

(12)

The third part of our loss is the box size loss. The box size is composed of the long
half-axis offsets (δx, δy) and the short half-axis length b. We describe the box size with a
3-D vector B = (δx, δy, b). We also use a smooth L1 loss to regress the box size parameters:

Lb =
1
N

N

∑
k=1

SmoothL1(Bk − B∗k ) (13)

where N is the number of targets, B∗ and B are the ground-truth and predicted box size
vectors, and k denotes the object index number. The fourth part of our loss is the orientation
loss. As shown in Figure 2, we use an orientation label to determine the orientation of the
RIE. We use the binary cross-entropy loss to train the orientation label loss as follows:

Lψ = − 1
N

N

∑
i=1

(ψ∗i log(ψi) + (1− ψ∗i ) log(1− ψi)) (14)
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where N is the number of targets, ψ∗ and ψ are the ground-truth and predicted orientation
labels, and i denotes object index number. The last part is the eccentricity-wise orientation
loss Lewo. Finally, we use the weight uncertainty loss [55] to balance the multi-task loss,
and the final loss used in our method is designed as follows:

L =
1
σ2

1
Lh +

1
σ2

2
Lb +

1
σ2

3
Lc +

1
σ2

4
Lψ +

1
σ2

5
Lewo + 2 log σ1σ2σ3σ4σ5 (15)

where σ1, σ2, σ3, σ4, and σ5 are the learnable uncertainty indexes for balancing the weight of
each loss. The uncertainty loss can automatically learn the multitask weights from training
data. The detailed introduction of this multitask loss can be found in [55].

4. Experiments and Analysis of the Results

In this section, we first introduce two public remote sensing image datasets, DOTA [56]
and HRSC2016 [57], as well as the evaluation metrics used in our experiments. Then, we
analyze the implementation details of the network training and the inference process of our
detector. Next, we analyze the experimental results on two datasets in comparison with
the state-of-the-art detectors. Finally, some ablation study results and promising detection
results are displayed.

4.1. Datasets
4.1.1. DOTA

DOTA [56] is composed of 2806 remote sensing images and 188,282 instances in
total. Each instance is annotated with oriented bounding boxes consisting of four vertex
coordinates, which are collected from multiple sensors and platforms. The images of this
dataset mainly contain the following categories: storage tank (ST), plane (PL), baseball
diamond (BD), tennis court (TC), swimming pool (SP), ship (SH), ground track field
(GTF), harbor (HA), bridge (BR), small vehicle (SV), large vehicle (LV), roundabout (RA),
helicopter (HC), soccer-ball field (SBF), and basketball court (BC). In Figure 6, we present
the proportion distribution of numbers and the size distribution of the instances of each
category in the DOTA dataset. We can see that this multi-class dataset contains a large
number of multi-scale oriented objects in RSIs with complex backgrounds, so it is suitable
for experiments. In the DOTA dataset, the splits of the training, validation, and test sets are
1/2, 1/6, and 1/3, respectively. The size of each image falls within the range of 0.8 k × 0.8 k
to 4 k× 4 k pixels. The median aspect ratio of the DOTA dataset is close to 2.5, which means
that the effects of various aspect ratios on the detection accuracy can be well evaluated.

4.1.2. HRSC2016

HRSC2016 [57] is a challenging dataset developed for the detection of oriented ship
objects in the field of remote sensing imagery. It is composed of 1070 images and 2970 in-
stances in various scales, orientations, and appearances. The image scales range from
300 × 300 to 1500 × 900 pixels, and all of the images were collected by Google Earth from
six famous ports. The median aspect ratio of the HRSC2016 dataset approaches 5. The
training, validation, and test sets contain 436, 181, and 444 images, respectively. In the
experiments, both the training set and validation set were utilized for network training.
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(a) (b)

Figure 6. (a) The proportion distribution of the numbers of instances in each category in the DOTA dataset. The outer ring
represents the number distribution of 15 categories. The internal ring denotes the total distribution of small (green), middle
(blue), and large instances (yellow). (b) The size distribution of instances in each category in the DOTA dataset. We divided
all of the instances into three splits according to their OBB height: small instances for heights from 10 to 50 pixels, middle
instances for heights from 50 to 300 pixels, and large instances for heights above 300 pixels.

4.2. Evaluation Metrics

In this article, three common evaluation metrics—the mean average precision (mAP),
F1 score, and frames per second (FPS)—were adopted to evaluate the accuracy and speed of
the oriented object detection methods. First, two fundamental evaluation metrics, precision
and recall, are indispensable before calculating the metric of the mAP. The precision metric
represents the ratio of true positive samples to all positive samples. The recall metric
denotes the ratio of true positive samples to all predicted positive samples. They are
defined as follows:

Precision =
TP

TP + FN

Recall =
TP

TP + FP

(16)

where TP, FP, and FN represent the number of predictions of true positive samples, the
number of predictions of false positive samples, and the number of predictions of false
negative samples. In addition to the precision and recall, we can obtain the comprehensive
evaluation metric, the F1 score, which is used for single-category object detection.

F1 score = 2/(
1

precision
+

1
recall

) =
2× Precision× Recall

Precision + Recall
(17)

Meanwhile, utilizing the precision and recall, we can calculate the corresponding
average precision (AP) in each category. By calculating the AP values of all of the categories,
we obtain the mean AP (i.e., mAP) value for multi-class objects as follows:

mAP =
1

Nc

Nc

∑
i=1

∫ 1

0
Pi(Ri)dRi (18)

where Nc indicates the number of categories in the multi-class dataset (e.g., 15 for the
DOTA dataset). Pi and Ri denote the precision and recall rates of the i-th class of predicted
multi-class objects in the dataset. In addition, we use a general speed evaluation metric,
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FPS, which is calculated with the number of images that can be processed per second in
order to measure the speed of object detection.

4.3. Implementation Details

The experimental environment of the proposed method was implemented with the
PyTorch [58] deep learning framework. For the DOTA and HRSC2016 datasets, we cropped
the input image resolution to 800 × 800 pixels and 512 × 512 pixels, respectively. We
applied data augmentation strategies to enrich the datasets in the network training process,
which included random rotation, random flipping, color jittering, and random scaling in
the range of [0.8, 1.2]. We trained the network on two NVIDIA GTX 1080 Ti GPUs with a
batch size of 8 and utilized Adam [59] with an initial learning rate of 1.5× 10−4 to optimize
the network. In total, we trained the network for 120 epochs on the DOTA dataset and
140 epochs on the HRSC2016 dataset. The learning rate was reduced by a learning rate
decay factor of 10 after the 80th and 100th epochs.

4.4. Network Inference

During network inference, the peaks in the heatmap are extracted as the center points
for each class object by applying an NMS operation (3× 3 max-pooling operation). The
heatmap value is considered as the detected category confidence score. When the category
confidence score is higher than 0.1, it is considered as a correct object center point. Then, we
take out the predicted center offsets c = (�x,�y), long half-axis offsets (δx, δy), the short
half axis b, and the orientation label ψ at the selected heatmap center point (x̄c, ȳc). We
first add the center offsets (�x,�y) to adjust the heatmap center point (x̄c, ȳc) and obtain
the modified heatmap center point (x̂c, ŷc) = (x̄c +�x, ȳc +�y). Finally, we can obtain
the predicted rescaled center point location (xc, yc) = (4x̂c, 4ŷc) in the input image. The
coordinates {(vx

i , vy
i , )|i ∈ {1, 2, 3, 4}} for four vertexes of the predicted RIE at the center

point of (xc, yc) can be formulated as follows:

vx
1 = xc + δx, vy

1 = yc + γ× δy

vx
2 = xc − δx, vy

2 = yc − γ× δy

vx
3 = xc + b× δy/

√
(δ2

x + δ2
y), vy

3 = yc − b× γ× δx/
√
(δ2

x + δ2
y)

vx
4 = xc − b× δy/

√
(δ2

x + δ2
y), vy

4 = yc + b× γ× δx/
√
(δ2

x + δ2
y)

(19)

where γ is an orientation guiding factor, and γ is defined as follows:

γ =

{
1, ψ > 0.5
−1, ψ ≤ 0.5

(20)

where ψ denotes the predicted orientation label value. In addition, in the post-processing
stage, there is still a large number of highly overlapping oriented boxes, which improves
the false detection rate. In this situation, we employed the oriented NMS strategy from [21]
to calculate the IoU between two OBBs and filter out the redundant boxes.

4.5. Comparison with State-of-the-Art Methods

In our experiments, to verify the effectiveness of our method, we compared it with
state-of-the-art detectors on the task of oriented object detection in two remote sensing
datasets: the DOTA [56] dataset and the HRSC2016 [57] dataset.

4.5.1. Results on DOTA

We compared our method with state-of-the-art anchor-based and anchor-free methods
on the DOTA dataset. The results of the comparison of precision on the DOTA dataset are
presented in Table 2. For a fair comparison, data augmentations were adopted for all of
the compared methods. First, we compared the AP in fifteen categories of objects in the

427



Remote Sens. 2021, 13, 3622

DOTA dataset and the mAP values of fourteen anchor-based detectors. FR-O [56] is the
official baseline method proposed in the DOTA dataset. Based on the Faster-RCNN [9]
framework, R-DFPN [26] adds a parameter of angle learning and improves the accuracy of
the baseline from 54.13% to 57.94%. R2CNN [27] proposes a multi-scale regional proposal
pooling layer followed by a region proposal network and boosts the accuracy to 60.67%.
RRPN [28] introduces a rotating region of interest (RROI) pooling layer and realizes the
detection of arbitrarily oriented objects, which improves the performance from 60.67% to
61.01%. ICN [29] designs a cascaded image network to enhance the features based on the
R-DFPN [26] network and improves the performance of detection from 61.01% to 68.20%.
Meanwhile, we report the detection results of nine other advanced oriented object detectors
that were mentioned above, i.e., RoI Trans [30], CAD-Net [32], R3Det [33], SCRDet [34],
ProjBB [39], Gliding Vertex [36], APE [37], S2A-Net [35], and CSL [22]. It can be noticed
that our method of the RIE with the backbone of HRGANet-W48 obtained a 75.94% mAP
and outperformed most of the anchor-based methods with which it was compared, except
for S2A-Net [35] (76.11%) and CSL [22] (76.17%). In comparison with the official baseline
of DOTA (FR-O [56]), the improvement in accuracy was 21.81%, which demonstrates
the advantage of the RIE. Meanwhile, it is worth noting that the use of the RIE under
HRGANet-W48 outperformed all of the reported anchor-free methods. Specifically, the
RIE outperformed IENet [42], PIoU [46], Axis Learning [43], P-RSDet [19], O2-DNet [48],
BBAVector [50], DRN [47], and CBDA-Net [45] by 18.8%, 15.44%, 9.96%, 6.12%, 4.82%,
3.62%, 2.71%, and 0.2% in terms of mAP. Moreover, the best and second-best AP values
for detection in 15 categories of objects are recorded in Table 2. Our method achieved the
best performance on objects with large aspect ratios, such as the large vehicle (LV) and
harbor (HA), and the second-best performance on the baseball diamond (BD), bridge (BR),
and ship (SH) with complicated backgrounds. In addition, we present the visualization
of the detection results for the DOTA dataset in Figure 7. The detection results in Figure 7
indicate that our method can precisely capture multi-class and multi-scale objects with
complex backgrounds and large aspect ratios.
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Figure 7. Visualization of the detection results of our method on the DOTA dataset.
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4.5.2. Results on HRSC2016

To demonstrate the superiority of our method, we also evaluated the RIE on the
HRSC2016 ship dataset and compared the RIE with sixteen other oriented object detectors,
as shown in Table 3. BL2 [23], RC1, and RC2 [40] are the official baselines of the HRSC2016
dataset, achieving 69.60% AP and 75.70% AP. RRD [41] introduces an activate rotating filter
(ARF) and boosts the performance to 82.89% AP. In addition to these three ship detectors,
we also compared our method with six other state-of-the-art anchor-based ship detectors,
which were introduced in Section 2, i.e., R2CNN [27], RRPN [28], R2PN [31], RoI Trans [30],
R3Det [33], and S2A-Net [35]. It can be noticed that the RIE outperformed all of the anchor-
based methods with which it was compared in terms of AP. Specifically, our method
boosts the performance of ship detection from the baselines of BL2 [23] (69.60%), RC1, and
RC2 [40] (75.70%) to 91.27% in terms of the AP, which indicates the remarkable performance
improvement for the ship identification task. Meanwhile, compared with the state-of-the-
art anchor-free methods, i.e., IENet [42], Axis Learning [43], BBAVector [50], PIoU [46],
GRS-Det [20], and CBDA-Net [45], the RIE outperformed them by 16.26%, 13.12%, 2.67%,
2.07%, 1.7%, and 0.77% in terms of AP. In addition, as shown in Figure 8, the ships with
a large aspect ratio and multi-scale distributions could be effectively detected, and the
objects could be tightly surrounded by the predicted oriented bounding boxes. These
experimental results illustrate that our method can effectively capture ships in complex sea
and land backgrounds.

Table 3. Comparison of the results of accuracy and parameters on the HRSC2016 dataset.

Model Backbone Resolution AP (%) Parameters

BL2 [23] ResNet101 - 69.60 -
R2CNN [27] ResNet-101 800 × 800 73.07 -

RC1&RC2 [40] VGG-16 800 × 800 75.70 -
RRPN [28] ResNet-101 800 × 800 79.08 181.5 MB
R2PN [31] VGG-16 - 79.60 -
RRD [41] VGG-16 384 × 384 82.89 -

RoI Trans [30] ResNet-101-FPN 512 × 800 86.20 273.8 MB
R3Det [33] ResNet-101-FPN 800 × 800 89.26 227.0 MB

S2A-Net [35] ResNet-101-FPN 512 × 800 90.17 257.0 MB

IENet [42] ResNet-101-FPN 1024 × 1024 75.01 212.5 MB
Axis learning [43] ResNet-101-FPN 800 × 800 78.15 -

BBAVector [50] ResNet-101 608 × 608 88.60 276.3 MB
PIoU [46] DLA-34 [61] 512 × 512 89.20 -

GRS-Det [20] ResNet-101 800 × 800 89.57 200.0 MB
DRN [47] Hourglass-104 768 × 768 92.70 -

CBDA-Net [45] DLA-34 [61] - 90.50 -

RIE HRGANet-W48 800 × 800 91.27 207.5 MB

4.6. Accuracy–Speed Trade-Off

As shown in Figure 9, we plotted the results of the comparison of the accuracy and
speed trade-off with our method and twelve other advanced oriented object detectors
for the HRSC2016 dataset. Note that the circular sign denotes the anchor-based methods,
while the triangular sign represents the anchor-free methods. The results show that the
proposed method can obtain a 91.27% mAP and 20.7 FPS. For the accuracy performance,
our method outperformed all of the recorded methods in Figure 9, except for the accuracy
of 92.70% achieved by the DRN [47]. However, the DRN [47] under Hourglass-104 [54]
runs at a slower detection speed of 5.7 FPS, while under HRGA-Net-W48, our method can
run at a faster speed of 20.7 FPS. It is worth noting that our detection speed was faster
than those of all other methods with which it was compared, except for the CBDA-Net [45]
(50 FPS) and PIoU [46] (55 FPS), which use a more lightweight DLA-34 [61] backbone as the
backbone network. At the same time, our method outperformed the two fastest detection
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methods, CBDA-Net [45] and PIoU [46], by 2.07% and 0.77% in terms of AP. Therefore, this
confirms that our method can achieve an excellent accuracy–speed trade-off, which boosts
its practical value.

Figure 8. Visualization of the detection results of our method on the HRSC2016 dataset.

Figure 9. Accuracy versus speed on the HRSC2016 dataset.

4.7. Ablation Study

We implemented an ablation study in terms of the GAM and ewoLoss on the
HRSC2016 [57] dataset, as shown in Table 4. The RIE without the GAM and ewoLoss
was adopted as the baseline in the first row of Table 4. It can be seen that the baseline
only achieved 81.19% and 86.15% in terms of the F1-score and mAP, respectively. For
ewoLoss, we observed 4.29% and 2.48% increases in terms of the F1-score and mAP, as
shown in the second row of Table 4. Furthermore, by adding the GAM, the experimental
results show a 5.53% improvement in the F1-score and a 3.75% improvement in the mAP.
It should be noticed that our method achieved a salient improvement in terms of precision
while maintaining a higher recall metric. That indicates that our improved backbone,
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HRGANet-W48, can capture more robust multi-scale features of the objects with the help of
the GAM, while HAGANet-W48 filters the complex background interference and further
improves the detection performance. When we added the GAM and ewoLoss at the same
time, the F1-score and mAP reached 87.94% and 91.27%, which are 6.75% and 5.12% higher
than the baseline. Meanwhile, as shown in Table 2, we recorded the detection results of our
method on the DOTA [56] dataset both with and without ewoLoss. The results indicate
that the performance of the detection of objects with large aspect ratios, such as the bridge
(BR), large vehicle (LV), ship (SH), and harbor (HA), was dramatically improved by adding
the ewoLoss. This indicates that the proposed ewoLoss exactly boosts the accuracy of the
detection of slender oriented objects with large aspect ratios. In addition, as shown in
the last column of Table 4, by adding the GAM and ewoLoss, the detection results had a
maximal 4.05% improvement in the mAP. These experimental results demonstrate that the
GAM and ewoLoss are both conducive to the performance of oriented object identification.
When both the GAM and ewoLoss are adopted, the performance is the best.

Table 4. Ablation study of the RIE. All of the models were implemented on the HRSC2016 and DOTA datasets.

Model GAM ewoLoss Recall Precision F1-Score HRSC2016 mAP DOTA mAP

Baseline - - 91.76 72.81 81.19 86.15 71.89

- � 93.18 78.95 85.48 (+4.29) 88.63 (+2.48) 73.71 (+1.82)
RIE � - 94.21 80.33 86.72 (+5.53) 89.90 (+3.75) 74.83 (+2.94)

� � 95.11 81.78 87.94 (+6.75) 91.27 (+5.12) 75.94 (+4.05)

As shown in Table 5, to further explore the impacts of different representation methods, as
described in Section 3.2, we compared the RIE-based representation method (x, y, δx, δy, b, ψ)
with the angle-based representation method (x, y, w, h, θ) on the DOTA and HRSC2016
datasets. Meanwhile, we chose three backbone networks, i.e., ResNet-101, HRNet-W48,
and HRGANet-W48, to strengthen the contrast and further prove the effectiveness of the
GAM. Table 5 shows the results of the comparison between the angle-based and RIE-based
representation methods. The bold part represents the increment of F1-score and mAP
values. On the DOTA dataset, our RIE-based representation obtained a remarkable increase
of 4.41%, 3.79%, and 4.48% in the mAP under the same implementation configuration based
on the ResNet-101, HRNet-W48, and HRGANet-W48 backbone networks. At the same time,
on the HRSC2016 dataset, our RIE-based representation achieved a salient improvement
of 4.23%, 4.30%, and 3.80% in the mAP under the same implementation configuration
based on the ResNet-101, HRNet-W48, and HRGANet-W48 backbone networks. These
improvement effects under different backbone networks further prove the effectiveness
and robustness of our RIE-based representation method. In addition, from Table 5, we can
conclude that HRGANet-W48 with the GAM can produce more improvement for each
model compared with the original HRNet-W48, which further verifies the effectiveness of
the GAM.

4.8. Complexity Analysis

In our method, we designed a gated aggregation model (GAM) and ewoLoss to
boost the detection accuracy. Our backbone network, HRGANet-W48, increased some
additional parameters and memory compared with the original HRNet-W48, which is
mainly attributed to the GAM. Therefore, as shown in Table 6, we analyzed the complexity
of the GAM and presented the parameters of the GAM in detail. It can be noticed that
the GAM has a total of 18,504 parameters, which spend about 0.7059 MB of memory. We
can see that the lightweight and efficient GAM contributes to the performance of our
method with negligible computational complexity. In addition, we also recorded the total
parameters of our method and several other state-of-the-art methods, such as RRPN [28],
RoI Trans [30], R3Det [33], S2-Net [33], IENet [42], BBAVector [50], and GRS-Det [20], in
Table 3. Our method took only approximately 207.5 MB of memory for the parameters,
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which is lighter than all of the other reported methods, except for the RRPN [28] and
GRS-Det [20].

Table 5. Results of the comparison between the angle-based and RIE-based representation methods
on the DOTA and HRSC2016 datasets based on three backbone networks.

Dataset Representation Method Backbone mAP (%)

ResNet-101 68.87
DOTA Angle-based HRNet-W48 70.36

HRGANet-W48 71.46

ResNet-101 73.28 (+4.41)
DOTA RIE-based HRNet-W32 74.15 (+3.79)

HRGANet-W48 75.94 (+4.48)

ResNet-101 83.40
HRSC2016 Angle-based HRNet-W48 85.60

HRGANet-W48 87.47

ResNet-101 87.63 (+4.23)
HRSC2016 RIE-based HRNet-W48 89.90 (+4.30)

HRGANet-W48 91.27 (+3.80)

Table 6. Statistical results of the GAM parameters.

GAM Architecture GAM Layers Parameters Memory (MB)

Conv1 × 1 1 × (1 × 1 × 48) = 48
Weight block 1 BN 2 1.9× 10−4

ReLU 0

Conv1 × 1 1 × (1 × 1 × 48 × 2) = 96
Weight block 2 BN 2 3.7× 10−4

ReLU 0

Conv1 × 1 1 × (1 × 1 × 48 × 4) = 192
Weight block 3 BN 2 7.4× 10−4

ReLU 0

Conv1 × 1 1 × (1 × 1 × 48 × 8) = 384
Weight block 4 BN 2 1.47× 10−3

ReLU 0

Fusion Conv1 × 1 256 × (1 × 1 × 48 × 15) =
184,320 0.7031

Softmax softmax function 0 0

total - 185,048 0.7059

4.9. Applications and Limitations

The method proposed in this article mainly aims at the detection of objects in remote
sensing images. We only evaluated the proposed method in terms of the oriented object
detection task on the DOTA and HRSC2016 remote sensing image datasets. To our knowl-
edge, oriented object detectors can also be used in oblique text detection, synthetic aperture
radar (SAR) image object detection, UAV target detection, seabed pockmark detection, and
so on. The application prospects of our method are very broad. We will perform some
experiments on these tasks to verify the superiority of our method in the future. Mean-
while, there are still many limitations in the proposed method. First, the detection speed of
our method only approaches 20 FPS, which is far from reaching the standard of real-time
detection. Therefore, reducing the parameters of the model and speeding up the calculation
speed are the focus of the next study. Second, from the detection results on the DOTA
dataset, we can see that the detection performance of our method on some objects with
inter-class similarity (e.g., BC and TC) is not satisfactory. Meanwhile, our method cannot
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identify targets with intra-class diversity, such as different categories of ships. The overall
category discrimination ability of this model is not strong. We will utilize the attention
mechanism to boost the discrimination ability of our method in future work. Third, due to
cloud occlusion during remote sensing image shooting, the detection performance of our
method will be greatly affected. Therefore, the removal of cloud occlusion while detecting
is an important research direction.

5. Conclusions

In this article, we designed a novel anchor-free center-based oriented object detector
for remote sensing imagery. The proposed method abandons the angle-based bounding
box representation paradigm and uses instead a six-parameter rotated inscribed ellipse
(RIE) representation method (x, y, δx, δy, b, ψ). By learning the RIE in each rectangular
bounding box, we can address the boundary case and angular periodicity issues of angle-
based methods. Moreover, aiming at the problems of complex backgrounds and large-
scale variations, we propose a high-resolution gated aggregation network to eliminate
background interference and reconcile features of different scales based on a high-resolution
network (HRNet) and a gated aggregation model (GAM). In addition, an eccentricity-wise
orientation loss function was designed to fix the sensitivity of the RIE’s eccentricity to the
orientation loss, which prominently improves the performance in the detection of objects
with large aspect ratios. We performed extensive comparisons and ablation experiments
on the DOTA and HRSC2016 datasets. The experimental results prove the effectiveness of
our method for oriented object detection in remote sensing images. Meanwhile, the results
also demonstrate that our method can achieve an excellent accuracy and speed trade-off.
In future work, we will explore more efficient backbone networks and more ingenious
bounding box representation methods to boost the performance in oriented object detection
in remote sensing images.
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Abstract: Impact craters are the most prominent features on the surface of the Moon, Mars, and
Mercury. They play an essential role in constructing lunar bases, the dating of Mars and Mercury, and
the surface exploration of other celestial bodies. The traditional crater detection algorithms (CDA) are
mainly based on manual interpretation which is combined with classical image processing techniques.
The traditional CDAs are, however, inefficient for detecting smaller or overlapped impact craters.
In this paper, we propose a Split-Attention Networks with Self-Calibrated Convolution (SCNeSt)
architecture, in which the channel-wise attention with multi-path representation and self-calibrated
convolutions can generate more prosperous and more discriminative feature representations. The
algorithm first extracts the crater feature model under the well-known target detection R-FCN
network framework. The trained models are then applied to detecting the impact craters on Mercury
and Mars using the transfer learning method. In the lunar impact crater detection experiment, we
managed to extract a total of 157,389 impact craters with diameters between 0.6 and 860 km. Our
proposed model outperforms the ResNet, ResNeXt, ScNet, and ResNeSt models in terms of recall
rate and accuracy is more efficient than that other residual network models. Without training for
Mars and Mercury remote sensing data, our model can also identify craters of different scales and
demonstrates outstanding robustness and transferability.

Keywords: crater detection algorithm (CDA); R-FCN; self-calibrated convolution; split attention
mechanism; transfer learning; remote sensing

1. Introduction

Impact craters are considered to be one of the most important features of the Moon,
Mars, and Mercury [1]. They gradually evolve because of colliding objects, such as mete-
orites, satellites, or massive asteroids [2]. Most of the impact craters on the lunar surface
have circular pit structures with different sizes and uneven aggregations.

The impact craters on the surface of deep space stars contain significant geological
data. This is because they are the product of the meteorite’s high-speed movement, impact
on the surface of celestial bodies, and lava eruption inside heavenly bodies. Therefore,
such data can be used to retrieve the geological age of the stars [3], analyze the tectonic
history of the lead [4], and explore the existence of iced water [5]. In addition, it can be
used for autonomous navigation [6], landing site selection [7], base selection, and other
missions of deep space probs.

The precise and rapid discovery of impact craters has always been a priority for deep
space exploration since the beginning of the Moon and Mars exploration activities. Several
deep space star surface impact crater extraction algorithms have also been proposed. These
algorithms are broadly classified as (i) traditional algorithms, which use image processing
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technology to identify impact craters, and (ii) automatic algorithms [8–11], which use deep
learning models to extract impact craters [12–14].

The traditional automatic feature extraction algorithms for impact crater morphology
are mainly based on classical image processing methods, including Hough transform,
feature matching, curve fitting, and other recognition techniques. For example, [15] used
the Hough Transform to obtain more than 75 percent of the current impact craters with a
diameter greater than 10 km based on data from the Mars Orbiter Laser Altimeter (MOLA).
Hough transform is the most widely used method in this area which is efficient for impact
crater identification and recognition of the discontinuous edges. However, for irregular
shapes, the computational complexity of such methods is very high. Further, [16] used
the conic curve-fitting approach to automatically classify asteroid impact craters to aid
optical navigation of the spacecraft to solve this problem. The proposed method in [15]
successfully identified about 90% of impact craters with an error rate of less than 5%.
Based on the Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and
High-Resolution 3D Camera (HRSC)), [9] proposed a least-squares fitting method (DLS)
for the identification of Mars impact craters. By comparing the recognition results of the
Hough ring transform algorithm, they then showed that the conic fitting method is more
reliable, but its computational complexity is higher.

The construction and matching of data quality and crater characteristics are central to
traditional crater recognition algorithms. The main goals are to create a more accurate crater
function model and a faster template matching algorithm. Nonetheless, the geomorphic
features of impact craters are many. The impact craters in an area may also be nested and
overlapped. The available data samples are also insufficient in many cases.

Artificial intelligence has developed rapidly by introducing deep learning models
in recent years. Among deep learning techniques, convolutional neural networks (CNN)
are shown to offer significant practical advantages for image processing. CNN have been
successfully applied to many classic image processing problems, such as image denoising,
super-resolution image reconstruction, image segmentation, target detection, and object
classification. Crater detection and segmentation of the image data can be used to solve the
problem of crater recognition.

Cohen [17] considered the classification of meteorite craters, proposing a meteorite
crater identification and classification algorithm based on a genetic algorithm. Yang [3]
also proposed an impact crater detection model on the lunar surface based on the target
detection R-FCN model and further studied the lunar age estimation. Furthermore, [12]
suggested the DeepMoon model for lunar surface impact crater identification based on the
U-Net model of image semantic segmentation in deep learning. They then transferred their
model to the Mercury surface impact crater recognition and achieved reasonable results.
The DeepMoon model’s structure was applied to the impact craters on Mars’ surface in [18],
and the DeepMars model was proposed to achieve rapid detection of impact craters on
Mars’ surface. Jia [19] also improved the model and suggested a need-attention-aware
U-NET (NAU-NET) in the DEM impact crater trial and obtained Recall and Precision of
0.791 and 0.856, respectively.

Intelligent impact crater identification methods based on deep learning are more
efficient than the traditional identification methods in recognizing significant differences in
the radius of the impact crater and their complex morphological characteristics. However,
due to the variety of deep space objects, the recognition model based on single star surface
impact craters offers a poor generalization ability, especially in recognizing overlapping
and small impact craters. To address this issue, in this paper, we consider the deep space
star surface impact crater and combine the existing Moon image and DEM data of the
Moon, Mars, and Mercury surfaces to establish a deep learning-based deep space star
surface impact crater intelligent identification framework. The proposed model improves
the model generalization ability through transfer learning. An improved residual network
and multi-scale target extraction are introduced to accelerate the model convergence and
improve the accuracy of feature extraction. In addition, a more efficient pooling operation
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and Soft-NMS algorithm are proposed, which effectively reduces false-negative errors of
the detection model.

The main contributions of this paper are as follows:

1. We propose a SCNeSt architecture in which the channel-wise attention with multi-
path representation and self-calibrated convolutions provide a higher detection and
estimation accuracy for small impact craters.

2. To address the issues caused by a single data source with low resolution and insuffi-
cient impact crater features, we extract the profile and curvature of the impact crater
from Chang ’e-1 DEM data, integrated it with Chang ’e-1 DOM data, and combined it
with International Astronomical Union (IAU) impact crater database, and constructed
the VOC data set.

3. The lunar crater model is trained, and transfer learning is used to detect the impact
craters on Mercury and Mars. This is shown to increase the model’s generaliza-
tion ability.

The rest of this paper is organized as follows. In Section 2, we introduce the R-FCN
network for target detection and SCNeSt, RPN, and ROI Pooling. The model is then applied
for impact crater detection on Mercury and Mars surfaces using transfer learning. Section 3
then introduces the experimental data, evaluation indexes, and experimental conditions.
Furthermore, Section 4 evaluates the lunar impact crater detection results and compares the
proposed network with other existing networks. Finally, Section 5 provides our conclusions
and offers insights on the direction of future work.

2. Methods

We adopted a combination of deep learning and transfer learning, as shown in Figure 1.
In the first stage, CE-1 images of 4800 × 4800 pixels and 1200 × 1200 pixels were used
(image fusion method referred to 3.1), achieving a recall rate of 95.82%, where almost all
identified craters in the test set were recovered. In the second stage, we transferred the
detection model of the first stage to the SLDEM [20] images without any training samples.
The learning process in the second stage followed transfer learning, hence extracts the
learning features and knowledge from the SLDEM data with a recall rate of 91.35%. We
finally found 157,389 impact craters on the Moon, ranging in size from 0.6 to 860 km.
The number of detected craters was almost 20 times larger than the known craters, with
91.14 percent of them smaller than 10 km in diameter.

For the meteorite craters that were in both CE-1 and SLDEM, we selected D ≥ 20 km
for CE-1 detection, and D < 20 km for SLDEM data detection. The average detection time
of an image was 0.13 s.

2.1. SCNeSt Backbone Network

Inspired by the ResNeSt network framework and the self-calibrated convolution in
the ScNet [21], in this paper, we improved the ResNeSt. To enhance the diversity of output
features, self-calibrated convolution in the ScNet was substituted with the second convo-
lution layer of the ResNeSt Block to obtain more features and more efficient classification
performance. Meanwhile, in a split-attention radix group of ResNeSt, we used the method
of combining MaxPooling and AvgPooling to replace the original GlobalPooling. This
enabled obtaining more texture features at the same time. MaxPooling reduces useless
information, and AvgPooling obtains the texture information.

The SCNeSt Block structure is shown in Figure 2. The self-calibrated Conv evenly
divided the input into four parts and then performed different operations for each position.
First, the input X was evenly divided into and various functions that process the input
X. Then, X1 was sent up to the first branch (self-calibrated branch) and X2 to the second
branch (conventional transform branch). Finally, the processed features were concatenated
as the output.
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Figure 1. Deep space impact crater detection framework based on the improved R-FCN.

442



Remote Sens. 2021, 13, 3193

Figure 2. The SCNeSt block. The blue module represents vanilla convolutions, and the red module describes self-
calibrated convolutions.

In the self-calibrated branch, for input X1, average subsampling, convolution feature
transformation, and bilinear up-sampling were performed. The input was then added to
obtain the attention feature map at the spatial level. The acquired spatial attention map
was fused with the transformed X1. The process is described as:{

X′
1 = Up(T1) = Up(T1 × K2) = Up(Down(X1)× K2)

Y′
1 = F3(X1) + σ(X1 + X′

1)
(1)

The schematic diagram of the self-calibrated Conv module is shown in Figure 3. The
self-calibrated Conv proposed in this paper has the following three advantages:

(1) Self-calibrated branching significantly increases the receptive field of the output
features and acquires more features.

(2) The self-calibrated branch only considers the information of the airspace position,
avoiding the information of the unwanted region, hence uses resources more effi-
ciently.

(3) Self-calibrated branching also encodes multi-scale feature information and further
enriches the feature content.
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Figure 3. The schematic diagram of the self-calibrated Conv module. In self-calibrated convolutions, the original filters
were separated into four portions, each in charge of different functionality. This makes self-calibrated convolutions quite
different from traditional convolutions or grouped convolutions performed homogeneously.

2.2. Multi-Scale Feature Extractor

Although the external network detects small targets, the external network has weak
semantics. If we only carried out the deconvolution operation without feature fusion,
part of the information would be lost after repeated convolution and deconvolution. This
is more harmful to detecting the small targets. To address this issue, we synchronized
with the deconvolution process, and the high-level features were successively fused with
the shallow elements. This preserved the semantic information and resolution of the
feature layer.

The FPN [22] consisted of three parts, as shown in Figure 4d. The first part was
the feature extraction using the feedforward process of the general convolutional neural
network from bottom to top.

Figure 4. The multi-scale detection methods.
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In the second part, we first selected the upper-level feature graphs with more vital
semantic information in the feature graphs obtained in the first part. Then, they were
up-sampled from top to bottom to strengthen the upper-level features. This also equalized
the sizes of the feature graphs in the adjacent layers. In the third part, the feature graphs
of the first two steps were combined using horizontal connections. Through these three
parts, the high- and low-level features were connected to enrich the semantic information
of each scale.

The whole FPN network was embedded into the RPN to generate features of different
scales. These features were then fused as the input of the RPN network to improve the
accuracy of the two-stage target detection algorithm, as shown in Figure 5.

Figure 5. RPN network with FPN.

2.3. Position-Sensitive ROI Align

The ROI Pooling layer [23] improves the detection accuracy and speeds up the training
and testing process. Nevertheless, two rounds of quantization operations were required,
generating the candidate box and determining the corresponding grid position. The
first step was to round up the two sampling points selected in the original ROI Pooling
layer. This ensured that the generated sampling points were aligned with the standard
coordinate points, and the subsequent Pooling operations would round up again. Since the
feature map obtained by the CNN was 16 times smaller than that of the original image,
X/16 needed to be used for the calculation in the corresponding process. Hence, there
existed floating-point numbers with decimals in the calculations. The coordinate point
deviation on the feature map caused by the two-step rounding operation corresponded to
the pixel deviation on the original image, which was 16 times. The pixel deviation led to
mismatching between the image and the feature map so that the ROI on the feature map
could not correspond to the original image. This, however, had an impact on the regression
positioning of the back layer.

To avoid the round-off operation of the floating-point numbers by two rounds quan-
tization, a bilinear difference pair was introduced to improve the alignment method. A
particular region of the feature map corresponding to the ROI was divided into 2 × 2 region
blocks. Each region block was then quartered, and each small grid center was taken as
the sampling point. As illustrated in Figure 6, the coordinates of the 16 sampling points
in vertices A, B, C, D, and the evenly divided 2 × 2 region were not integers. After deter-
mining the sampling points, the bilinear difference evaluation was directly mapped to the
feature map, and each sampling point was evaluated in the X and Y directions. After the
difference was completed, the maximum pooling operation was carried out, and the final
feature map was obtained by analogy. The whole procedure did not operate on specific
coordinate values. The decimal was retained in the coordinate calculation process to avoid
the discrete quantization error of the two ROI round-off operations and make the final
detection box position more accurate.
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Figure 6. The improved RoI Pooling using bilinear interpolation.

A Position Sensitive ROI Align algorithm was implemented by porting ROI Align into
PS-ROI Pooling. The PS-ROI Align improved the detection performance of the model and
significantly improved the perception ability for the small objects.

2.4. Soft-NMS

After obtaining the detection box by the R-FCN model, we used the non-maximum
suppression (NMS) [24] algorithm to accurately convey the best coordinates of the target
and remove the repeated boundary box. For the same object, multiple detection scores
were generated as the detection windows were overlapped. In such cases, the NMS kept
the correct detection box (with the highest confidence). The remaining detection boxes
were removed from the optimal position (with the confidence reduced to 0) to obtain the
most accurate bounding box. The NMS can be expressed by the score reset function:

Qi =

{
Qi, iou(M, bi) < Nt
0, iou(M, bi) ≥ Nt

(2)

where Qi is the confidence of the detection box, M is the position of the detection box with
the highest confidence, bi is the position of the detection box, Nt is the set overlap threshold,
and iou(M, bi) is the overlap rate between M and bi.

Note that non-maximum suppression may cause a critical issue by forcing the scores
of adjacent detection boxes to 0. In such cases, if different impact craters appear in the
overlapping area, the detection of impact craters will fail. This reduces the detection rate of
the algorithm, as in Figure 7a.

Soft non-maximum suppression algorithm (Soft-NMS) [25] replaces the score reset in
the NMS algorithm with:

Qi ← Qi f (iou(M, bi)) (3)

Noting that the impact craters were rectangular targets in the image, and considering
overlapping impact craters, a linear weighted fraction resetting function was used as
the following:

Qi =

{
Qi, iou(M, bi) < Nt
Qi(1− iou(M, bi)), iou(M, bi) ≥ Nt

(4)

In Figure 7b, the confidence of the dashed line detection box was changed to 1.0,
indicating that Soft-NMS can effectively avoid missing the impact craters in the overlapping
areas. This significantly improved the detection rate of the model.
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Figure 7. Comparison of NMS and Soft-NMS algorithms.

3. Experiments

Our algorithm was divided into two parts. First, the features of impact craters were
extracted under the Structure of the R-FCN network based on the SCNeSt network skeleton,
and the data were DOM and DEM fusion data from CE-1. Multi-scale Feature Extractor
and Position-Sensitive ROI Align could better detect impact craters of different scales. They
were combined with the Soft-NMS algorithm to accurately convey the best coordinates
of the target and remove the repeated boundary box. In the first stage, the craters with
D > 20 km were mainly extracted. In the second stage, the trained model was applied to
SLDEM data to extract small craters with D < 20 km. What is more, the trained models
were then applied to detecting the impact craters on Mercury and Mars using the transfer
learning method.

3.1. Dataset

The area studied on the Moon was latitude −65◦~65◦, longitude −180◦~65◦, and
longitude 65◦~180◦. The DOM and DEM data adopt equiangular cylindrical projection.
During the crater exploration mission, DEM data from CE-1 was resampled to 120 m/pixel.
The slop information and profile curvature were also extracted from DEM data. DOM data
was integrated with DEM data. The crater in the study area was marked by using the lunar
data set published by the IAU impact crater VOC dataset generated by combining with
Labelimg. The CE-1 fusion data were then clipped into 1200 × 1200, 4800 × 4800 images
at a 50% overlap rate, 8000, 1000, and 1000 images were randomly selected and used for
training, validation, and testing, respectively. Due to the low resolution of CE-1 data, we
used it to identify large impact craters ranging from 20 km to 550 km in diameter. The
detailed data generation was shown in Figure 8.

The SLDEM from the Lunar Reconnaissance Orbiter (LRO) and the Kaguya merged
digital elevation model had a resolution of 59 m/pixel and spans ±60 degrees latitude
(and the maximum range in longitude). The Plate Carree projection was used to create this
global grayscale map, which had a resolution of 184,320 × 61,440 pixels and a bit depth of
16 bits per pixel. We cropped it into 1000× 1000-pixel images to detect small impact craters.
The SLDEM data has a high resolution and has a good identification effect for small impact
craters and degraded impact craters. We used it to identify impact craters with a diameter
less than 20 km.
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Figure 8. Deep space impact craters data: ((a) CE-1 data fusion process. (b). Mercury and Mars DEM data. (c). The CE-1
fusion dataset).

The Mercury MESSENGER Global DEM has a resolution of 665 m per pixel and spans
±90 degrees latitude and Longitude range from 0◦ to 360◦, which is different from our
Moon DEM in terms of image properties. This global grayscale map is an Equirectangular
projection with a resolution of 23,040 × 11,520 pixels. Mercury differs from the Moon in
gravitational acceleration, surface structure, terrain, and impact background.

The Mars HRSC and MOLA Blended Global DEM had a resolution of 200 m per pixel
and spans ±90 degrees latitude (and the maximum range in longitude). This global grayscale
map was a Simple Cylindrical projection with a resolution of 106,694 × 53,347 pixels. We also
cropped it into 1000 × 1000-pixel images to detect small impact craters.

3.2. Evaluation Metrics

Computer configuration in the experiment comprised two NVIDIA GeForce 2080 Ti
RTX GPUs, 64 Gb of memory, Ubuntu16.04 operating system, Cuda10.0, Cudnn7.5, and
Opencv3.5.6, and used Caffe framework for training.

The Precision–Recall (P-R) curve and Average Precision (AP) values were used in this
experiment to objectively test the accuracy of the target detection algorithm.

P =
Ntp

Ntp + Nf p
(5)

where Ntp is the number of correctly detected crater targets in the formula, and Nfp is
the number of miss-detected targets. The Recall in the P-R curve represents the missed
detection rate of the algorithm:

R =
Ntp

Ntp + Nf n
(6)

where Nfn is the missed meteorite crater target.
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With Precision as the longitudinal axis and Recall as the horizontal axis, the P-R curve
was then fitted by changing the threshold condition. In addition, for the target detection
task, the IOU of the predicted location and the actual location of the target were considered
when calculating the P-R curve. This was to reflect the accuracy of the target location
prediction. In this experiment, IOU was set to 0.5.

The F1 value is a statistical index used to measure the accuracy of the dichotomous
model. This index takes into account both the accuracy and recall rate of the classification
model. The F1 value can be defined as a weighted average of model accuracy and recall
rate as:

F1 = 2 ∗ PR
P + R

(7)

where P and R are the accuracy and recall rates, respectively.

3.3. Training Details

In training the convolutional neural network, it is necessary to set some super parame-
ters, e.g., learning rate, training iteration volume, selection of loss function. The parameter
settings are shown in Table 1.

Table 1. The model super parameters.

Parameter Value

Learning rate 0.0001
Training batches 10,000
Training wheels 1000

Objective function Cross-entropy and MSE

We used the Adam algorithm for optimization with the momentum of the SGD gradi-
ent descent algorithm. We used the first-moment estimation and second-order moments of
the gradient vector to estimate the dynamic adjustment of each parameter. In each iteration
update, the iteration vector had a specific scope to stabilize the parameter. The introduction
of the near iterative gradient direction of the penalty term improved the convergence speed
of the models.

The objective function was divided into classification and regression. The Mean Square
Error (MSE) algorithm realized the target location by calculating the lowest square value of
the predicted site and the actual location. The cross-entropy function also calculated the
probability difference between the prediction confidence of the target classification and
the essential target category. Furthermore, having the cross-entropy as the loss function
prevented the learning rate reduction in the MSE loss function in the case of gradient
descent. Therefore, we set

C = − 1
N ∑

n
y ln a + (1− y) ln(1− a) (8)

to be optimized where y is the expected output, a denotes the actual output, N is the total
number of training data, n represents the input sample.

4. Results and Discussion

4.1. Analysis of the Lunar Impact Crater Detection Results

In Figure 9, we compare the proposed model in this paper with the identified crater
distribution. As it is seen, the number of identified lunar craters was significantly higher
than that of the number of identified craters with diameters between 1 and 100 km. This
indicates that the proposed model identified many craters in the small and medium
diameter ranges. Despite the irregular, severely eroded, and scattered nature of the major
lunar craters, the proposed model recognized 46 craters with diameters ranging from 200
to 550 km.
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Figure 9. Comparison of the distribution of lunar craters with different diameters identified by the
IAU. (The yellow column represents the number of craters recognized by the model. The blue column
represents the number of identified craters.).

We also studied the detected craters to ensure their authenticity. We compared them
to three databases of artificially acquired lunar craters:

(1) Head et al. [26], where a total of 5185 craters with a diameter of D ≥ 20 km was
obtained by the Digital Terrestrial Model (DTM) of the Lunar Reconnaissance Orbiter
(LRO) Lunar Orbiter Laser Altimeter (LOLA);

(2) Povilaitis et al. [27], in which the previously described database was expanded to
22,746 craters with D = 5–20 km;

(3) The Robbins database [28] holds over 2 million lunar craters, including 1.3 million
with D ≥ 1 km. This database contains the largest number of lunar craters.

In addition, three kinds of automatic crater directories were considered:

(4) Salamunićcar et al. [29], in which LU78287GT was generated based on Hough transform;
(5) Wang et al. [30], which was based on CE-1 data, and included 106,016 impact craters

with D > 500 m;
(6) Silburt et al. [12], which was based on the DEM data from CNN and LRO and

generated a meteorite crater database.
(7) Yang et al. [3] adopted the CE-1 and CE-2 data and compiled 117,240 impact craters

with D ≥ 1–2 km.

Figure 10 shows the comparison results of the number of matched craters at different
scales. For manual annotation, it is seen that the matching degree of Povilaitis et al. is
consistent with that obtained in our model for craters with diameters of 5–550 km. For the
manually annotated Robins database, the number of craters between 1 and 2 km is close
to the number identified by our model. This is because of the efficiency of the proposed
model in the identification of smaller craters. However, the number of craters between 2
and 20 km is far greater than that of our model. This is because degradation of craters and
other reasons leads to insufficient feature extraction. For the overall matching percentage
of manually annotated data, the consistency of our recognition results reaches 88.78% for
craters with diameters between 5–550 km.
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Figure 10. Comparison results of the number of the matched craters at different scales.

For the automatically labeled database and Yang’s database, and the impact craters
diameter D ranging from 1 to 5 km, our model outperformed the others. This is because we
used CE-1 fusion data and SLDEM data, and the trained designed network had a higher
identification efficiency for smaller impact craters. According to Wang et al., the number of
impact craters with diameters between 1 and 5 km is less than the number of identified
craters. Again, the number of impact craters with larger diameters was less than that of the
identified craters. At 100 km, they almost overlap, and there is also no global correction.
Wang et al.’s crater center location has a different offset from the rest of the databases. Only
the craters detected in CE-1 were used for comparison, which accounted for 15% of the
total number of craters seen.

According to the initial study results, the accuracy of most of the craters derived from
CE-1 data was D = 10~50 km. For the Sliburt et al. Impact Crater Database, the identification
number was small for D ≤ 3 km and D ≥ 50 km. This indicates that compared with the
deep learning method, the transfer learning-based detection identified a larger number of
craters in the small and large diameter ranges with fuzzy and severe degradation. Note
that it is challenging to detect the secondary craters using the automated methods.

4.2. Network Performance Comparison
4.2.1. Comparison of Crater Detection Performance of Different Networks

We trained a total of 2 groups of 10 residual network modules in the R-FCN models,
including the groups with different residual network depths of 50 and 101 layers. Using
random seeds to divide data into the training set and verification set, each model operated
three different sources for training. The results for each model in the validation set are
shown in Table 2. The Precision, Recall, F1 Score, test time of each image, and the required
memory size of the models were considered as the performance measure.

As it is seen in Table 2, for the network depth of 50 layers, the detection accuracy and
recall rate increased by using various improved ResNet modules. The SCNeSt-50-FPN
model achieved an accuracy rate of 89.6 and a recall rate of 81.2, which was 3% higher
than that of the ResNeSt-50-FPN model. It can also be seen that adaptive convolution
and different pooling methods resulted in more accurate crater contour extraction. By
increasing the depth of the network, the performance of each residual network was also
improved. Compared with other residual networks, the accuracy rate and recall rate of
the SCNeSt-101-FPN reached 92.7 and 90.1, respectively, and its F1 total score reached 91.3,
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which suggests an excellent detection result. Compared with the ResNeSt, the memory
requirement of our proposed model was reduced, and the time to detect a picture was
about 0.125 s.

Table 2. Detection index results for different networks.

Backbone
Precision

(%)
Recall (%)

F1 Score
(%)

Times (s)
Params

(M)

ResNet-50-FPN 79.2 63.5 70.4 0.140 25.6
SCNet-50-FPN 80.1 75.6 77.7 0.141 25.6

ResNeXt-50-FPN 84.2 79.3 81.6 0.132 25.0
ResNeSt-50-FPN 86.3 80.1 83.1 0.141 27.5
SCNeSt -50-FPN 89.6 81.2 85.2 0.136 27.5
ResNet-101-FPN 80.2 69.8 74.6 0.134 44.5
SCNet-101-FPN 82.5 83.2 82.9 0.135 44.6

ResNeXt-101-FPN 87.9 85.3 86.5 0.121 44.2
ResNeSt-101-FPN 89.3 88.3 88.7 0.136 48.2
SCNeSt -101-FPN 92.7 90.1 91.3 0.125 48.1

The P-R curve of the training process is shown in Figure 11. The SCNeSt model
achieved the highest performance on the test dataset. This is mainly due to its improve-
ments in pooling and the self-calibrated branch, which completed the seamless fusion of
multi-scale features.

Figure 11. The P-R curves for different models.

To further demonstrate the results of each model, we chose 3 CE-1 fusion images and
2 SLDEM images in the verification set to compare the products, as shown in Figure 12.

Figure 12 shows samples of the impact crater detection. It is seen that the proposed
model in this paper had a better detection effect on craters of different scales. Compared
with the impact crater detection results of different models in Figure 12b, other models
cannot detect small and prominent impact craters. It can also be seen in Figure 12c that
ResNext can identify large impact craters, which is attributed to the Group Convolution.
As shown in Figure 12d, some small impact craters could be accurately detected, which
means that self-calibrated Conv can establish small space and inter-channel dependency
around each spatial location. Therefore, it can help CNN generate feature expressions
with more discriminant ability because it has more abundant information. Figure 12e also
shows that large impact craters and some minor impact craters were efficiently detected
but many small impact craters were still missed. In Figure 12f, impact craters of different
scales can be effectively detected. Thanks to the combination of adaptive convolution and
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split attention, more features can be extracted. To further test the influence of the PS-ROI
Align module and Soft-NMS on the performance of the R-FCN network, two groups of
control tests were conducted. The results are presented in Tables 3 and 4.

Figure 12. Comparison of the impact crater detection for different models: (a) Origin DEM, (b) ResNet, (c) ResNeXt,
(d) ScNet, (e) ResNeSt, and (f) Our model.

Table 3 shows that the PS-ROI Align was superior to ROI Pooling in terms of accuracy,
recall rate, and F1 score at different network depths. This means that the ROI Align
cancels the quantization operation. The pixels with floating-point coordinates in the
quantization process were calculated by bilinear interpolation, which resulted in higher
detection accuracy for small impact craters. Table 4 further shows the experimental results
of the Soft-NMS and NMS detection boxes. It is seen that the improved Soft-NMS offered
a higher detection performance than that of NMS. It is worth noting that the Soft-NMS
needed no further training and was simple to implement. It is also simple to incorporate
into any object detection operation.

4.2.2. Performance Comparison of Multi-Scale Impact Crater Networks

To verify the robustness and obtain the portability of the model, four lunar remote
sensing data with different resolutions were selected for detection. They were SLDEM
data with a resolution of 118 m/piex and 59 m/piex, LRO DEM data with a resolution of
29 m/pix, and DOM data with 7 m/pix. The test results are presented in Figure 13.

Table 3. Added ROI network parameter comparison.

Basic Net
Target

Detection
Network

ROI
Pooling

PS-ROI
Align

Recall (%)
Recall

(%)
F1

SCNeSt-50 R-FCN
1 0 85.3 79.6 82.3

0 1 86.3 80.1 83.1

SCNeSt-101 R-FCN
1 0 90.7 87.1 88.8

0 1 92.7 90.1 91.3
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Table 4. Added Soft-NMS network parameter comparison.

Basic Net
Target

Detection
Network

NMS Soft-NMS Recall (%)
Recall

(%)
F1

SCNeSt-50 R-FCN
1 0 85.4 79.6 80.3

0 1 86.3 80.1 83.1

SCNeSt-101 R-FCN
1 0 91.2 88.7 82.9

0 1 92.7 90.1 91.3

Figure 13. Cont.
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Figure 13. Crater detection results for data with different resolutions.

It is seen that the LRO DEM 29 m/pix results were more accurate in crater detection
for different sensor resolutions. However, for more precise illumination data, the detection
performance was rather low. Although some impact craters with high pixel points could
be detected, most of them were not detected. This may be because DOM data is affected by
illumination, which is not ideal for our model detection. For high-resolution DEM data,
however, our model provided high detection performance.

4.3. Transfer Learning in Mars and Mercury Impact Crater Detection Analysis

Identifying the secondary impact craters is a critical step in the crater counting pro-
cess for surface age determination. Failure to take these factors into account may re-
sult in a significant overestimation of the measured crater density, leading to incorrect
model ages. We applied our model to Mars and Mercury data to examine the robust-
ness of our model. The MARS_HRSC_MOLA_BLENDDEM_GLOBAL_200m and MER-
CURY_MESSENGER_USGS_DEM_GLOBAL_665m datasets were selected for Mars and
Mercury, respectively. The results are shown in Figure 14.
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Figure 14 shows that the detection recall rate for medium and small impact craters
on Mars was 96.8, and multi-scale impact craters were detected. For Mercury, due to
the resolution of the dataset and the irregular shape of the craters, some craters were
miss-detected. Note that the model trained using the lunar data was applied to Mars and
Mercury. In terms of the overall test results, our model achieved a high level of robustness,
especially for multi-scale Mars craters.

5. Conclusions

In this study, a new deep-space crater detection network model was proposed, which
was trained end-to-end for lunar, Mars, and Mercury data. The CE-1 DEM and DOM data
were used as the training data. Based on the R-FCN network architecture, self-calibrated
Conv and split attention mechanisms were used for feature extraction. Combined with
the multi-scale RPN model, our proposed model efficiently extracted the features of the
large, medium, and small impact craters. We further introduced a Position-Sensitive
ROI Align network structure that can effectively remove the contour of irregular impact
craters. Combined with the improved Soft-NMS framework, the overlapping craters can be
efficiently detected. Our model evaluated the proposed network on four resolution lunar
data and Mars and Mercury data through transfer learning, and the results demonstrated
its advantages for crater-detection missions. Therefore, we will continue to look for small
impact craters (D < 1 km) to lay the groundwork for lunar and Mars lander landings and
navigation applications.

Author Contributions: Data curation, R.Y.; Funding acquisition, G.W.; Project administration, Y.W.
(Yitian Wu); Resources, J.W.; Software, L.L.; Validation, Y.W. (Ying Wang); Visualization, N.X.;
Writing—original draft, Y.J.; Writing—review & editing, Y.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: In this study, using Chang-E data download address for Chinese lunar
exploration data and information system, web site for https://moon.bao.ac.cn/moonGisMap.search
(accessed on 4 July 2021). In addition, the use of the LRO DEM data and SLDEM data, as well as Mars
and Mercury in the USGS DEM data, download website, https://planetarymaps.usgs.gov/mosaic/
(accessed on 4 July 2021). International Astronomical Union. https://planetarynames.wr.usgs.gov/
Page/MOON/target (accessed on 4 July 2021).

Acknowledgments: The authors would like to thank Space Engineering University for its hardware
support and NASA’s Lunar digital elevation model data. In addition, the author is incredibly grateful
to Zhao Haishi for his advice.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CDA Crater detection algorithm
LRO Lunar Reconnaissance Orbiter
MOLA Mars Orbiter Laser Altimeter
MOC Mars Orbiter Camera
HRSC High Resolution Stereo Camera
CNN Convolutional neural networks
IAU International Astronomical Union
RPN Region proposal network
NMS Non-maximum suppression
RoI Region of interest
FPN Feature pyramid network
DEM Digital Elevation Model
DTM Digital Terrestrial Model
DOM Digital Orthophoto Map
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Abstract: Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have
been widely used in hyperspectral image classification (HSIC) tasks. However, the generated HSI
virtual samples by VAEs are often ambiguous, and GANs are prone to the mode collapse, which
lead the poor generalization abilities ultimately. Moreover, most of these models only consider
the extraction of spectral or spatial features. They fail to combine the two branches interactively
and ignore the correlation between them. Consequently, the variational generative adversarial
network with crossed spatial and spectral interactions (CSSVGAN) was proposed in this paper,
which includes a dual-branch variational Encoder to map spectral and spatial information to different
latent spaces, a crossed interactive Generator to improve the quality of generated virtual samples,
and a Discriminator stuck with a classifier to enhance the classification performance. Combining
these three subnetworks, the proposed CSSVGAN achieves excellent classification by ensuring the
diversity and interacting spectral and spatial features in a crossed manner. The superior experimental
results on three datasets verify the effectiveness of this method.

Keywords: hyperspectral image classification; variational autoencoder; generative adversarial
network; crossed spatial and spectral interactions

1. Introduction

Hyperspectral images (HSI) contain hundreds of continuous and diverse bands rich
in spectral and spatial information, which can distinguish land-cover types more efficiently
compared with ordinary remote sensing images [1,2]. In recent years, Hyperspectral images
classification (HSIC) has become one of the most important tasks in the field of remote
sensing with wide application in scenarios such as urban planning, geological exploration,
and agricultural monitoring [3–6].

Originally, models such as support vector machines (SVM) [7], logistic regression
(LR) [8] and and k-nearest neighbors algorithm (KNN) [9], have been widely used in
HSI classification tasks for their intuitive outcomes. However, most of them only utilize
handcrafted features, which fail to embody the distribution characteristics of different ob-
jects. To solve this problem, a series of deep discriminative models, such as convolutional
neural networks (CNNs) [10–12], recurrent neural network (RNN) [13] and Deep Neural
Networks (DNN) [14] have been proposed to optimize the classification results by fully
utilizing and abstracting the limited data. Though having gained great progress, these
methods only analyze the spectral characteristics through an end-to-end neural network
without full consideration of special properties contained in HSI. Therefore, the extraction
of high-level and abstract features in HSIC remains a challenging task. Meanwhile, the
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jointed spectral-spatial features extraction methods [15,16] have aroused wide interest in
Geosciences and Remote Sensing community [17]. Du proposed a jointed network to extract
spectral and spatial features with dimensionality reduction [18]. Zhao et al. proposed a hy-
brid spectral CNN (HybridSN) to better extract double-way features [19], which combined
spectral-spatial 3D-CNN with spatial 2D-CNN to improve the classification accuracy.

Although the methods above enhance the abilities of spectral and spatial features
extraction, they are still based on the discriminative model in essence, which can neither
calculate prior probability nor describe the unique features of HSI data. In addition, the
access to acquire HSI data is very expensive and scarce, requiring huge human resources
to label the samples by field investigation. These characteristics make it impractical to
obtain enough markable samples for training. Therefore, the deep generative models
have emerged at the call of the time. Variational auto encoder (VAE) [20] and generative
adversarial network (GAN) [21] are the representative methods of generative models.

Liu [22] and Su [23] used VAEs to ensure the diversity of the generated data that
were sampled from the latent space. However, the generated HSI virtual samples are
often ambiguous, which cannot guarantee similarities with the real HSI data. Therefore,
GANs have also been applied for HSI generation to improve the quality of generated
virtual data. GANs strengthen the ability of discriminators to distinguish the true data
sources from the false by introducing “Nash equilibrium” [24–29]. For example, Zhan [30]
designed a 1-D GAN (HSGAN) to generate the virtual HSI pixels similar to the real ones,
thus improving the performance of the classifier. Feng [31] devised two generators to
generate 2D-spatial and 1D-spectral information respectively. Zhu [32] exploited 1D-GAN
and 3D-GAN architectures to enhance the classification performance. However, GANs are
prone to mode collapse, resulting in poor generalization ability of HSI classification.

To overcome the limitations of VAEs and GANs, VAE-GAN jointed framework has
been proposed for HSIC. Wang proposed a conditional variational autoencoder with an
adversarial training process for HSIC (CVA2E) [33]. In this work, GAN was spliced with
VAE to realize high-quality restoration of the samples and achieve diversity. Tao et al. [34]
proposed the semi-supervised variational generative adversarial networks with a collabora-
tive relationship between the generation network and the classification network to produce
meaningful samples that contribute to the final classification. To sum up, in VAE-GAN
frameworks, VAE focuses on encoding the latent space, providing creativity of generated
samples, while GAN concentrates on replicating the data, contributing to the high quality
of virtual samples.

Spectral and spatial are two typical characteristics of HSI, both of which must be taken
into account for HSIC. Nevertheless, the distributions of spectral and spatial features are not
identical. Therefore, it is difficult to cope with such a complex situation for a single encoder
in VAEs. Meanwhile, most of the existing generative methods use spectral and spatial
features respectively for HSIC, which affects the generative model to generate realistic
virtual samples. In fact, the spectral and spatial features are closely correlated, which
cannot be treated separately. Interaction between spectral and spatial information should
be established to refine the generated virtual samples for better classification performance.

In this paper, a variational generative adversarial network with crossed spatial and
spectral interactions (CSSVGAN) was proposed for HSIC, which consists of a dual-branch
variational Encoder, a crossed interactive Generator, and a Discriminator stuck together
with a classifier. The dual-branch variational Encoder maps spectral and spatial information
to different latent spaces. The crossed interactive Generator reconstructs the spatial and
spectral samples from the latent spectral and spatial distribution in a crossed manner.
Notably, the intersectional generation process promotes the consistency of learned spatial
and spectral features and simulates the highly correlated spatial and spectral characteristics
of true HSI. The Discriminator receives the samples from both generator and original
training data to distinguish the authenticity of the data. To sum up, the variational Encoder
ensures diversity, and the Generator guarantees authenticity. The two components place
higher demands on the Discriminator to achieve better classification performance.
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Compared with the existing literature, this paper is expected to make the follow-
ing contributions:

• The dual-branch variational Encoder in the jointed VAE-GAN framework is devel-
oped to map spectral and spatial information into different latent spaces, provides
discriminative spectral and spatial features, and ensures the diversity of generated
virtual samples.

• The crossed interactive Generator is proposed to improve the quality of generated
virtual samples, which exploits the consistency of learned spatial and spectral features
to imitate the highly correlated spatial and spectral characteristics of HSI.

• The variational generative adversarial network with crossed spatial and spectral
interactions is proposed for HSIC, where the diversity and authenticity of generated
samples are enhanced simultaneously.

• Experimental results on the three public datasets demonstrate that the proposed
CSSVGAN achieves better performance compared with other well-known models.

The remainder of this paper is arranged as follows. Section 2 introduces VAEs and
GANs. Section 3 provides the details of the CSSVGAN framework and the crossed inter-
active module. Section 4 evaluates the performance of the proposed CSSVGAN through
comparison with other methods. The results of the experiment are discussed in Section 5
and the conclusion is given in Section 6.

2. Related Work

2.1. Variational Autoencoder

Variational autoencoder is one variant of the standard AE, proposed by Kingma et al.
for the first time [35]. The essence of VAE is to construct an exclusive distribution for each
sample X and then sample it represented by Z. It brings Kullback–Leibler [36] divergence
penalty method into the process of sampling and constrains it. Then the reconstructed data
can be translated to generated simulation data through deep training. The above principle
gives VAE a significant advantage in processing hyperspectral images with expensive
and rare samples. VAE model adopts the posterior distribution method to verify that
ρ(Z|X) rather than ρ(Z) obeys the normal distribution. Then it manages to find the mean
μ and variance σ of ρ(Z|Xk)) corresponding to each Xk through the training of neural
networks (where Xk represents the sample of the original data and ρ(Z|Xk) represents
the posterior distribution). Another particularity of VAE is that it makes all ρ(Z|X) align
with the standard normal distribution N ∼ (0, 1). Taking account of the complexity of
HSI data, VAE has superiority over AE in terms of noise interference [37]. It can prevent
the occurrence of zero noise, increase the diversity of samples, and further ensure the
generation ability of the model.

A VAE model is consists of two parts: Encoder M and Decoder N. M is an approxima-
tor for the probability function mτ(z|x), and N is to generate the posterior’s approximate
value nθ(x, z). τ and θ are the parameters of the deep neural network, aiming to optimize
the following objective functions jointly.

V(P, Q) = −KL(mτ(z|x)‖pθ(z|x)) + R(x), (1)

Among them, R is to calculate the reconstruction loss of a given sample x in the VAE
model. The framework of VAE is described in Figure 1, where ei represents the sample of
standard normal distribution, corresponding with Xk one to one.
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Figure 1. The framework of VAE.

2.2. Generative Adversarial Network

Generative adversarial network is put forward by Goodfellow et al. [24], which trains
the generation model with a minimax game based on the game theory. The GAN has gained
remarkable results in representing the distribution of latent variables for its special structure,
which has attracted more attention from the field of visual image processing. A GAN
model includes two subnets: the generator G, denoted as G(z; θg) and the discriminator D,
denoted as G(x; θd), and θg and θd are defined as parameters of the deep neural networks.
G shows a prominent capacity in learning the mapping of latent variables and synthesizing
new similar data from mapping represented by G(z). The function of D is to take the
original HSI or the fake image generated by G as input and then distinguish its authenticity.
The architecture of GAN is shown in Figure 2.

Figure 2. The architecture of GAN.

After the game training, G and D would maximize log-likelihood respectively and
achieve the best generation effect by competing with each other. The expression of the
above process is as follows:

minGmaxGV(G, D) = Ex∼P(x)[logD(x)] + Ex∼Pg(z)
[log(1− D(G(z)))], (2)

where P(x) represents the real data distribution and Pg(z) means the samples’ distribution
generated by G. The game would reach a global equilibrium situation between the two
players when P(x) equaling to Pg(z) happened. In this case, the best performance of D(x)
can be expressed as:

D(x)max = P(x)+Pg(x)
, (3)
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However, the over-confidence of D would cause inaccurate results of GAN’s identifi-
cation and make the generated data far away from the original HSI. To tackle the problem,
endeavors have been made to improve the accuracy of HSIC by modifying the loss, such
as WGAN [38], LSGAN [39], CycleGAN [40] and so on. Salimans [41] raised a deep convo-
lutional generative adversarial network (DCGAN) to enhance the stability of the training
and improve the quality of the results. Subsequently, Alec et al. [42] proposed a one-side
label smoothing idea named improved DCGAN, which multiplied the positive sample
label by alpha and the negative sample label by beta, that is, the coefficients of positive and
negative samples in the objective function of D were no longer from 0 to 1, but from α to
β. (β in the real application could be set to 0.9). It aimed to solve the problems described
as follows:

D(x) =
αP(x) + βPg(x)

P(x) + Pg(x)
, (4)

In this instance, GAN can reduce the disadvantage of overconfidence and make the
generated samples more authentic.

3. Methodology

3.1. The Overall Framework of CSSVGAN

The overall framework of CSSVGAN is shown in Figure 3. In the process of data
preprocessing, assuming that HSI cuboid X contains n pixels; the spectral band of each
pixel is defined as px; and X can be expressed as XεRn∗px . Then HSI is divided into several
patch cubes of the same size. The labeled pixels are marked as X1 = x1

i εR(s∗s∗px∗n1), and
the unlabeled pixels are marked as X2 = x2

i εR(s∗s∗px∗n2). Among them, s, n1 and n2 stand
for the adjacent spatial sizes of HSI cuboids, the number of labeled samples and the number
of unlabeled samples respectively, and n equals to n1 plus n2.

Figure 3. The overall framework of the variational generative adversarial network with crossed spatial and spectral
interactions (CSSVGAN) for HSIC.

It is noteworthy that HSI classification is developed at the pixel level. Therefore, in
this paper, the CSSVGAN framework uses a cube composed of patches of size 9× 9× px as
the inputs of the Encoder, where p denotes the spectral bands of each pixel. Then a tensor
represents the variables and outputs of each layer. Firstly, the spectral latent variable Z1
and the spatial latent variable Z2 are obtained by taking the above X1 as input into the dual-
branch variational Encoder. Secondly, these two inputs are taken to the crossed interactive
Generator module to obtain the virtual data F1 and F2. Finally, the data are mixed with
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X1 into the Discriminator for adversarial training to get the predicted classification results
Ŷ = ŷi by the classifier.

3.2. The Dual-Branch Variational Encoder in CSSVGAN

In the CSSVGAN model mentioned above, the Encoder (Figure 4) is composed of a
dual-branch spatial feature extraction E1 and a spectral feature extraction E1 to generate
more diverse samples. In the E1 module, the size of the 3D convolution kernel is (1× 1× 2),
the stride is (2, 2, 2) and the spectral features are marked as Z1. The implementation details
are described in Table 1. Identically, in the E2 module, the 3D convolution kernels, the
strides and the spatial features are presented by (5× 5× 1), (2, 2, 2) and Z2 respectively, as
described in Table 2.

Figure 4. The dual-branch Encoder in CSSVGAN.

Table 1. The implementation details of the Spectral feature extraction E1.

Input Size Layer Operations Output Size

(9× 9× 80, 1) Conv3D (1× 1× 2, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (1× 1× 2, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (1× 1× 2, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Dense (512)− BN − LeakyReLU (2× 2× 10, 512)
(2× 2× 10, 512) Flatten (, 20, 480)

(, 20, 480) Dense (1024) (, 1024)
(, 1024) Dense (1024)− Tanh (, 1024)
(, 1024) Lambda (Sampling) (, 1024)

Table 2. The implementation details of the Spatial feature extraction E2.

Input Size Layer Operations Output Size

(9× 9× 80, 1) Conv3D (5× 5× 1, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (5× 5× 1, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (5× 5× 1, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Dense (512)− BN − LeakyReLU (2× 2× 10, 512)
(2× 2× 10, 512) Flatten (, 20, 480)

(, 20, 480) Dense (1024) (, 1024)
(, 1024) Dense (1024)− Tanh (, 1024)
(, 1024) Lambda (Sampling) (, 1024)
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Meanwhile, to ensure the consistent distribution of samples and original data, KL
divergence principle is utilized to constrain Z1 and Z2 separately. Assuming that the mean
and variance of Zi are expressed as Zmeani and Zvari(i = 1, 2), the loss function in the
training process is as follows:

Li(θ, ϕ) = −KL(qϕ(zi|x)‖pθ(zi|x)), (5)

where p(zi|x) is the posterior distribution of potential eigenvectors in the Encoder module,
and its calculation is based on the Bayesian formula as shown below. But when the
dimension of Z is too high, the calculation of P(x) is not feasible. At this time, a known
distribution q(zi|x) is required to approximate p(zi|x), which is given by KL divergence.
By minimizing KL divergence, the approximate p(zi|x) can be obtained. θ and ϕ represent
the parameters of distribution function p and q separately.

Li(θ, ϕ) = Eqϕ(zi ,x)[log pθ (x,zi)
qϕ(zi ,x)

]− Eq(x)[logq(x)], (6)

Formula (6) in the back is provided with a constant term logN, the entropy of empirical
distribution q(x). The advantage of it is that the optimization objective function is more
explicit, that is, when pθ(zi, x) is equal to qϕ(zi, x), KL dispersion can be minimized.

3.3. The Crossed Interactive Generator in CSSVGAN

In CSSVGAN, the crossed interactive Generator module plays a role in data restoration
of VAE and data expansion of GAN, which includes the spectral Generator G1 and the
spatial Generator G2 in the crossed manner. G1 accepts the spatial latent variables Z2 to
generate spectral virtual data F1, and G2 accepts the spectral latent variables Z1 to generate
spatial virtual data F2.

As shown in Figure 5, the 3D convolution of spectral Generator G1 is (1× 1× 2) that
uses (2, 2, 2) strides to convert the spatial latent variables Z2 to the generated samples.
Similarly, the spatial Generator G2 with (5× 5× 1) convolution uses (2, 2, 2) strides to
transform the spectral latent variables Z1 into generated samples. Therefore, the correlation
between spectral and spatial features in HSI can be fully considered to further improve the
quality and authenticity of the generated samples. The implementation details of G1 and
G2 are described in Tables 3 and 4.

Table 3. The implementation details of spectral Generator G1.

Input Size Layer Operations Output Size

(, 1024) Dense (2 ∗ 2 ∗ 10 ∗ 256) (10, 240)
(, 10, 240) Reshape (2× 2× 10× 256)BN − LeakyReLU (2, 2, 10, 256)

(2, 2, 10, 256) Conv3DTranspose (1× 1× 2, 128)BN − LeakyReLU (4, 4, 20, 128)
(4, 4, 20, 128) Conv3DTranspose (1× 1× 2, 64)BN − LeakyReLU (8, 8, 40, 64)
(8, 8, 40, 64) Conv3DTranspose (1× 1× 2, 1)LeakyReLU − Tanh (9, 9, 80, 1)

Table 4. The implementation details of spatial Generator G2.

Input Size Layer Operations Output Size

(, 1024) Dense (2 ∗ 2 ∗ 10 ∗ 256) (, 10, 240)
(, 10, 240) Reshape (2× 2× 10× 256)BN − LeakyReLU (2, 2, 10, 256)

(2, 2, 10, 256) Conv3DTranspose (5× 5× 1, 128)BN − LeakyReLU (4, 4, 20, 128)
(4, 4, 20, 128) Conv3DTranspose (5× 5× 1, 64)BN − LeakyReLU (8, 8, 40, 64)
(8, 8, 40, 64) Conv3DTranspose (5× 5× 1, 1)LeakyReLU − Tanh (9, 9, 80, 1)
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Figure 5. The Crossed Interactive Generator in CSSVGAN.

Because the mechanism of GAN is that the Generator and Discriminator are against
each other before reaching the Nash equilibrium, the Generator has two target functions,
as shown below.

MSELoss_i =
1
n ∑(yij − ȳij)2, (7)

where n is the number of samples, i = 1, 2, yj means the label of virtual samples, and ȳj
represents the label of the original data corresponding to yj. The above formula makes the
virtual samples generated by crossed interactive Generator as similar as possible to the
original data.

BinaryLoss_i = − 1
N

N

∑
j=1

yij · log(p(yij)) + (1− yij · (1− p(yij))), (8)

BinaryLoss is a logarithmic loss function and can be applied to the binary classification
task. Where y is the label (either true or false), and p(y) is the probability that N sample
points belonging to the real label. Only if yj equals to p(yi), the total loss would be zero.

3.4. The Discriminator Stuck with a Classifier in CSSVGAN

As shown in Figure 6, the Discriminator needs to specifically identify the generated
data as false and the real HSI data as true. This process can be regarded as a two-category
task using one-sided label smoothing: defining the real HSI data as 0.9 and the false
as zero. The loss function of it marked with Binary(LossD) is the same as the Formula
(10) enumerated above. Moreover, the classifier is stuck as an interface to the output of
Discriminator and the classification results are calculated directly through the SoftMax
layer, where C represents the total number of labels in training data. As mentioned
above, the Encoder ensures diversity and the Generator guarantees authenticity. All
these contributions place higher demands on Discriminator to achieve better classification
performance. Thus, the CSSVGAN framework yields a better classification result.
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Figure 6. The Discriminator stuck with a classifier in CSSVGAN.

The implementation details of the Discriminator in CSSVGAN are described in Table 5
with the 3D convolution of (5× 5× 2) and strides of (2, 2, 2). Identifying C categories
belongs to a multi-classification assignment. The SoftMax method is taken as the standard
for HSIC. As shown below, the CSSVGAN method should allocate the sample x of each
class c to the most likely one of the C classes to get the predicted classification results. The
specific formula is as follows:

yi = S(xi) =
exi

∑C
j=1 exj

, (9)

Then the category of X can be expressed as the formula below:

class(c) = arg max
i

(yi = S(xi)), (10)

where S, C, X, Yi signify the SoftMax function, the total number of categories, the input of
SoftMax, and the probability that the prediction object belongs to class C, respectively. Xi
similar with Xj is a sample of one certain category. Therefore, the following formula can be
used for the loss function of objective constraint.

CLoss = −
n

∑
i=1

p(yi1) · log yi1 + p(yi2) · log(yi2) + · · ·+ p(yic) · log(yic), (11)

where n means the total number of samples, C represents the total number of categories,
and y denotes the single label (either true or false) with the same description as above.

Table 5. The implementation details in Discriminator.

Input Size Layer Operations Output Size

(9× 9× 80, 1) BN − LeakyReLU (9× 9× 80, 1)
(9× 9× 80, 1) Conv3D (5× 5× 2, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (5× 5× 2, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (5× 5× 2, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Flatten (, 10, 240)

(, 10, 240) Dense (16) (, 16)

3.5. The Total Loss of CSSVGAN

As illustrated in Figure 3, up till now, the final goal of the total loss of the CSSVGAN
model can be divided into four parts: two KL divergence constraint losses and a mean-
square error loss from the Encoder, two binary losses from the Generator, one binary loss
from the Discriminator and one multi-classification loss from the multi classifier. The
ensemble formula can be expressed as:
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LTotal = σ1L1(θ, ϕ) + σ2L2(θ, ϕ) + σ3MSELoss1_2︸ ︷︷ ︸
Encoder_Loss

+ σ4BinaryLoss1 + σ5BinaryLoss2︸ ︷︷ ︸
Generator_Loss

+ Binary_LossD︸ ︷︷ ︸
Discrminator_Loss

+ CLoss︸ ︷︷ ︸
Classi f ier_Loss

,
(12)

where L1 and L2 represent the loss between Z1 or Z2 and the standard normal distribution
respectively in Section 3.2. MSELoss1 and MSELoss2 signify the mean square error of y1 and
y2 in Section 3.3 separately. MSELoss1_2 calculates the mean square error between y1 and
y2. The purpose of BinaryLoss1 and BinaryLoss2 is to assume that the virtual data F1 and F2
(in Section 3.3) are true with a value of one. BinaryLossD denotes that the Discriminator
identifies F1 and F2 as false data with a value of zero. Finally, the CLoss is the loss of multi
classes of the classifier.

4. Experiments

4.1. Dataset Description

In this paper, three representative hyperspectral datasets recognized by the remote
sensing community (i.e., Indian Pines, Pavia University and Salinas) are accepted as
benchmark datasets. The details of them are as follows:

(1) Indian pines (IP): The first dataset was accepted for HSI classification imaged by
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in Northwestern Indiana in the
USA. It includes 16 categories with a spatial resolution of approximately 20 m per pixel.
Samples are shown in Figure 7. The spectral of AVIRIS coverage ranges from 0.4 to 2.5 μm
and includes 200 bands for continuous imaging of ground objects (20 bands are influenced
by noise or steam, so only 200 bands are left for research), bring about the total image
size of 145× 145× 200. However, since it contains a complex sample distribution, the
category samples of training labels were very imbalanced. As some classes have more
than 2000 samples while some have less than 30 merely, it is relatively difficult to achieve a
high-precision classification of IP HSI.

(2) Pavia University (PU): The second dataset was a part of the hyperspectral image
data of the Pavia city in Italy, photographed by the German airborne reflective optics
spectral imaging system (Rosis-03) in 2003, containing 9 categories (see Figure 8). The
resolution of this spectral imager is 1.3 m, including continuously 115 wavebands in the
range of 0.43–0.86 μm. Among these bands, 12 bands were eliminated due to the influence
of noise. Therefore, the images with the remaining 103 spectral bands in size 610× 340 are
normally used.

(3) Salinas (SA): The third dataset recorded the image of Salinas Valley in California,
USA, which was also captured by AVIRIS. Unlike the IP dataset, it has a spatial resolution
of 3.7 m and consists of 224 bands. However, researchers generally utilize the image of
204 bands after excluding 20 bands affected by water reflection. Thus, the size of the Salinas
is 512× 217, and Figure 9 depicts the color composite of the image as well as the ground
truth map.
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Figure 7. Indian Pines imagery: (a) color composite with RGB, (b) ground truth, and (c) category
names with labeled samples.

Figure 8. Pavia University imagery: (a) color composite with RGB, (b) ground truth, and (c) class
names with available samples.

Figure 9. Salinas imagery: (a) color composite with RGB, (b) ground truth, and (c) class names with
available samples.
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4.2. Evaluation Measures

In the experiments, the available data of these datasets were randomly divided into
two parts, a small part for training and the rest for testing. Whether the training samples
or the testing samples were arranged according to the pixels, whose size was in 1× px
(px is selected as 80 in this paper). Each pixel can be treated as a feature of a certain class,
corresponding to a unique label and classified by the classifier stuck to the Discriminator.
Tables 6–8 list the sample numbers for the training and testing of three datasets.

Table 6. The samples for each category of training and testing for the Indian Pines dataset.

Number Class Train Test Total

1 Alfalfa 3 43 46
2 Corn-notill 71 1357 1428
3 Corn-mintill 41 789 830
4 Corn 11 226 237
5 Grass-pasture 24 459 483
6 Grass-trees 36 694 730
7 Grass-pasture-mowed 3 25 28
8 Hay-windrowed 23 455 478
9 Oats 3 17 20

10 Soybean-notill 48 924 972
11 Soybean-mintill 122 2333 2455
12 Soybean-clean 29 564 593
13 Wheat 10 195 205
14 Woods 63 1202 1265
15 Buildings-Grass-Trees-Drives 19 367 386
16 Stone-Steel-Towers 4 89 93

Total 510 9739 10,249

Table 7. The samples for each category of training and testing for the Pavia University dataset.

Number Class Train Test Total

1 Asphalt 66 6565 6631
2 Meadows 186 18,463 18,649
3 Gravel 20 2079 2099
4 Trees 30 3034 3064
5 Painted metal sheets 13 1333 1345
6 Bare Soil 50 4979 5029
7 Bitumen 13 1317 1330
8 Self-Blocking Bricks 36 3646 3682
9 Shadows 9 938 947

Total 423 42,353 42,776
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Table 8. The samples for each category of training and testing for the Salinas dataset.

Number Class Train Test Total

1 Broccoli_green_weeds_1 20 1989 2009
2 Broccoli_green_weeds_2 37 3689 3726
3 Fallow 19 1960 1976
4 Fallow_rough_plow 13 1381 1394
5 Fallow_smooth 26 2652 2678
6 Stubble 39 3920 3959
7 Celery 35 3544 3579
8 Grapes_untrained 112 11,159 11,271
9 Soil_vineyard_develop 62 6141 6203

10 Corn_senesced_green_weeds 32 3236 3278
11 Lettuce_romaine_4wk 10 1058 1068
12 Lettuce_romaine_5wk 19 1908 1927
13 Lettuce_romaine_6wk 9 909 916
14 Lettuce_romaine_7wk 10 1060 1070
15 Vineyard_untrained 72 7196 7268
16 Vineyard_vertical_trellis 18 1789 1807

Total 533 53,596 54,129

Taking the phenomenon of “foreign matter of the same spectrum in surface cover” [15,43]
into consideration, the average accuracy was reported to evaluate the experiment results
quantitatively. Meanwhile, the proposed method was contrasted with the comparative
method by three famous indexes, i.e., overall accuracy (OA), average accuracy (AA) and
kappa coefficient (KA) [44], which can be denoted as below:

OA = sum(diag(M))/sum(M), (13)

AA = mean((diag(M)./(sum(M, 2)), (14)

Kappa =
OA− sum(M, 1)× sum(M, 2)/(sum(M))2

1− sum(M, 2)/(sum(M))2 , (15)

where m represents the number of land cover categories and MεR(m×n) symbolizes the
confusion matrix of the classification results. Then, diag(M)εRm×1 comes to be a vector of
diagonal elements in M, sum()εR1 proves to be the sum of all elements of matrices, where
(, 1) means each column and (, 2) means each row. Finally, the mean()εR1 describes the
mean value of all elements along with the ./, which implies the element-wise division.

4.3. Experimental Setting

In this section, for the sake of verifying the effectiveness of CSSVGAN, several classical
hyperspectral classification methods such as SVM [45], Mulit-3DCNN [46], SS3DCNN [47],
SSRN [15] and certain deep generative algorithms like VAE, GAN and some jointed VAE-
GAN models like the CVA2E [33] and the semisupervised variational generative adversarial
networks (SSVGAN) [34] were used for comparison.

To ensure the fairness of the comparative experiments, the best hyperparameter set-
tings were adopted for each method based on their papers. All experiments were executed
on the NVIDIA GeForce GTX 2070 SUPER GPU with a memory of 32 GB. Moreover,
Adam [48] was used as the optimizer with an initial learning rate of 1× 10−3 for Generator
and 1× 10−4 for Discriminator, and the training epoch was set to 200.
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4.4. Experiments Results

All experiments in this paper were randomly selected train samples from the la-
beled pixels, and the accuracies of three datasets were reported to two decimal places in
this chapter.

4.4.1. Experiments on the IP Dataset

The experimental test on IP Dataset was performed to evaluate the proposed CSSV-
GAN model quantitatively with other methods for HSIC. For the labeled samples, 5% of
each class was randomly selected for training. The quantitative evaluation of various meth-
ods is shown in Table 9, which describes the classification accuracy of different categories
in detail, as well as the indicators including OA, AA and kappa for different methods. The
best value is marked in dark gray.

Table 9. The classification results for the IP dataset with 5% training samples.

Num/IP ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Alfalfa 58.33 0.00 0.00 100.00 100.00 60.29 67.35 90.00 50.00
2 Corn-notill 65.52 34.35 39.61 89.94 73.86 90.61 90.61 90.81 90.61
3 Corn-mintill 73.85 17.83 33.75 93.36 97.66 92.97 93.56 94.77 92.30
4 Corn 58.72 9.40 10.41 82.56 100.00 93.48 98.91 98.47 95.29
5 Grass-pasture 85.75 33.46 32.33 100.00 82.00 98.03 96.48 97.72 87.27
6 Grass-trees 83.04 90.68 82.10 95.93 91.98 93.69 95.69 90.49 97.60
7 Grass-pasture-mowed 88.00 0.00 0.00 94.73 0.00 0.00 100.00 82.76 93.33
8 Hay-windrowed 90.51 87.70 85.29 95.68 100.00 97.22 98.70 99.34 91.71
9 Oats 66.67 0.00 0.00 39.29 100.00 50.00 100.00 100.00 100.00

10 Soybean-notill 69.84 37.46 51.53 79.08 92.88 80.04 94.77 86.52 94.74
11 Soybean-mintill 67.23 57.98 64.71 88.80 92.42 94.40 88.56 98.51 95.75
12 Soybean-clean 46.11 21.08 21.26 94.43 84.48 80.84 81.30 84.03 84.48
13 Wheat 87.56 83.33 41.18 99.45 100.00 77.63 98.99 94.20 100.00
14 Woods 85.95 83.00 85.04 95.26 98.38 97.62 98.19 87.67 98.04
15 Buildings-GT-Drives 73.56 34.16 31.43 97.18 100.00 91.35 95.63 83.49 97.08
16 Stone-Steel-Towers 100.00 0.00 0.00 93.10 98.21 96.55 98.72 90.14 91.30

OA(%) 72.82 53.54 56.23 91.04 90.07 91.01 92.48 91.99 93.61

AA(%) 75.02 34.48 33.57 89.92 73.82 82.47 85.69 89.49 91.16

Kappa(%) 68.57 45.73 49.46 89.75 88.61 89.77 91.40 90.91 93.58

First of all, although SVM achieves good exactitude, there is still a certain gap from
the exact classification because of the IP dataset containing high texture spatial information,
which leads to bad performance. Secondly, some conventional deep learning methods (such
as M3DCNN, SS3DCNN) does not perform well in some categories due to the limitation
of the number of training samples. Thirdly, the algorithms with jointed spectral-spatial
feature extraction (like SSRN, etc.) show a better performance, which indicate a necessity to
combine spectral information and spatial information for HSIC. Moreover, it is obvious that
the generated virtual samples by VAE tend to be fuzzy and cannot guarantee similarities
with the real data. While GAN lacks sampling constraints, leading to the low quality of
the generated samples. Contrasted with these two deep generative models, CSSVGAN
overcomes their shortcomings. Finally, compared with CVA2E and SSVGAN, the two
latest jointed models published in IEEE, CSSVGAN uses dual-branch feature extractions
and crossed interactive method, which proves that these manners are more suitable for
HSIC works. It can increase the diversity of samples and promote the generated data more
similar to the original.
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Among these comparative methods, CSSVGAN acquires the best accuracy in OA, AA
and kappa, which improves by 2.57%, 1.24% and 3.81% respectively, at least. In addition,
although all the methods have different degrees of misclassification, CSSVGAN achieves
perfect accuracy in “Oats” “Wheat” and so on. The classification visualizations on the
Indian Pines of comparative experiments are shown in Figure 10.

Figure 10. Classification maps for the IP dataset with 5% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

From Figure 10, it can be seen that CSSVGAN reduces the noisy scattering points and
effectively improves the regional uniformity. That is because CSSVGAN can generate more
realistic images from diverse samples.

4.4.2. Experiments on the PU Dataset

Differ from the IP dataset experiments, 1% labeled samples were selected for training
and the rest for testing. Table 10 shows the quantitative evaluation of each class in compar-
ative experiments. The best accurate value is marked in dark gray to emphasize, and the
classification visualizations on the Pavia university are shown in Figure 11.

Table 10. The classification results for the PU dataset with 1% training samples.

Num/PU ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Asphalt 86.21 71.39 80.28 97.24 87.96 97.13 86.99 90.18 98.78
2 Meadows 90.79 82.38 86.38 83.38 86.39 96.32 96.91 94.90 99.89
3 Gravel 67.56 17.85 33.76 93.70 93.46 58.95 87.91 78.30 97.70
4 Trees 92.41 80.24 87.04 99.51 93.04 78.38 97.86 95.11 98.91
5 Painted metal sheets 95.34 99.09 99.67 99.55 99.92 93.50 96.86 96.70 99.70
6 Bare Soil 84.57 25.37 51.71 96.70 98.15 99.64 98.48 98.00 99.42
7 Bitumen 60.87 47.14 49.60 98.72 75.06 52.11 75.25 86.92 99.47
8 Self-Blocking Bricks 75.36 44.69 68.81 86.33 62.53 84.06 72.50 91.17 96.03
9 Shadows 100.00 88.35 97.80 100.00 82.86 42.57 97.13 82.53 99.14

OA(%) 86.36 68.43 76.59 89.27 85.08 87.58 91.97 92.93 99.11
AA(%) 83.68 53.00 64.14 95.01 73.45 83.58 89.32 87.83 98.47

Kappa(%) 81.76 56.60 68.80 85.21 79.58 83.67 85.64 90.53 98.83

Table 10 shows that, as a non-deep learning algorithm, SVM has been able to improve
the classification result to 86.36%, which is wonderful to some extent. VAE shows good
performance in the training of the “Painted metal sheets” class but low accuracy in the “Self-
blocking bricks” class, which leads to the “fuzzy” phenomenon of a single VAE network
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in the training of individual classes. SSRN achieves a completely correct classification in
“shadows,” but it lost to the CSSVGAN overall. In the index of OA results, CSSVGAN
improved 12.75%, 30.68%, 22.52%, 9.83%, 14.03%, 11.53%, 7.14% and 6.18% respectively
and in the index of Kappa results, CSSVGAN improved 17.07%, 42.23%, 30.03%, 13.62%,
19.25%, 15.16%, 13.19% and 8.3% respectively compared with the other eight algorithms.

Figure 11. Classification maps for the PU dataset with 1% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

In Figure 11, the proposed CSSVGAN has better boundary integrity and better clas-
sification accuracy in most of the classes because the Encoder can ensure the diversity of
samples, the Generator can promote the authenticity of the generated virtual data, and the
Discriminator can adjust the overall framework to obtain the optimal results.

4.4.3. Experiments on the SA Dataset

The experimental setting on the Salinas dataset is the same as PU. Table 11 shows the
quantitative evaluation of each class in various methods with dark gray to emphasize the
best results. The classification visualization of the comparative experiments on Salinas is
shown in Figure 12.

Table 11 shows that in the index of OA, AA and Kappa, CSSVGAN improved 0.57%,
1.27% and 0.62% at least compared with others. Moreover, it has a better performance in the
“brocoli-green-weeds-1” and “stubble” class with a test accuracy of 100%. For the precisions
of other classes, although SSRN, VAE or SSRN prevails, CSSVGAN is almost equal to them.
It can be seen that CSSVGAN has smoother edges and the minimum misclassification in
Figure 12, which further proves that the proposed CSSVGAN can generate more realistic
virtual data according to the diversity of extracted features of samples.
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Table 11. The classification results for the SA dataset with 1% training samples.

Num/SA ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Broccoli_green_weeds_1 99.95 94.85 56.23 100.00 97.10 100.00 100.00 100.00 100.00
2 Broccoli_green_weeds_2 98.03 65.16 81.56 98.86 97.13 62.32 99.34 97.51 99.92
3 Fallow 88.58 40.61 92.40 99.40 100.00 99.78 100.00 93.74 98.99
4 Fallow_rough_plow 99.16 97.04 95.63 96.00 98.68 93.91 99.76 91.88 99.35
5 Fallow_smooth 90.38 89.31 95.08 95.11 99.26 97.67 99.30 94.08 99.08
6 Stubble 99.64 95.64 98.78 99.69 99.24 94.36 90.53 99.31 100.00
7 Celery 98.58 75.75 98.90 99.32 97.98 98.93 99.39 99.54 99.66
8 Grapes_untrained 77.58 65.28 81.87 89.16 96.55 96.87 89.36 93.57 92.79
9 Soil_vineyard_develop 99.50 96.04 96.20 98.33 99.74 89.66 89.85 98.53 99.56

10 Corn_sg_weeds 95.01 44.82 84.13 97.67 96.79 91.71 95.71 92.44 97.81
11 Lettuce_romaine_4wk 94.00 44.66 79.64 96.02 100.00 87.95 96.82 91.62 97.76
12 Lettuce_romaine_5wk 97.40 36.69 96.19 98.45 90.89 98.73 100.00 99.42 99.32
13 Lettuce_romaine_6wk 95.93 12.17 91.50 99.76 99.87 100.00 91.97 96.78 99.67
14 Lettuce_romaine_7wk 94.86 79.53 66.83 97.72 95.83 94.14 100.00 95.85 99.71
15 Vineyard_untrained 79.87 40.93 69.11 83.74 88.09 57.33 85.41 85.17 91.75
16 Vineyard_vertical_trellis 98.76 57.78 85.09 97.07 99.61 97.32 97.00 99.11 99.66

OA(%) 90.54 66.90 85.14 94.40 96.43 86.97 95.06 94.60 97.00
AA(%) 94.20 56.78 78.89 96.65 95.87 92.17 97.08 95.50 98.35

Kappa(%) 89.44 62.94 83.41 93.76 96.03 85.50 94.48 94.00 96.65

Figure 12. Classification maps for the SA dataset with 1% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

5. Discussions

5.1. The Ablation Experiment in CSSVGAN

Taking IP, PU and SA datasets as examples, the frameworks of ablation experiments
are shown in Figure 13, including NSSNCSG, SSNCSG and SSNCDG.

As shown in Table 12, compared with NSSNCSG, the OA of CSSVGAN on IP, PU and
SA datasets increased by 1.02%, 6.90% and 4.63%, respectively.
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Figure 13. The frameworks of ablation experiments: (a) NSSNCSG (b) SSNCSG (c) SSNCDG
(d) CSSVGAN.

Table 12. The OA(%) of Ablation experiments.

Name
Dual

Branch
Crossed

Interaction
Single

Generator
Double

Generator
IP PU SA

NSSNCSG × × √ × 92.59 92.21 92.07
SSNCSG

√ × √ × 92.62 98.54 96.61
SSNCDG

√ × × √
92.36 98.67 96.26

CSSVGAN
√ √ × √

93.61 99.11 97.00

It shows that the effect of using dual-branch special-spatial feature extraction is better
than not using it because the distributions of spectral and spatial features are not identical,
and a single Encoder cannot handle this complex situation. Consequently, using the dual-
branch variational Encoder can increase the diversity of samples. Under the constraint of
KL divergence, the distribution of latent variables is more consistent with the distribution
of real data.

Contrasted with SSNCSG, the OA index on IP, PU and SA datasets increase by 0.99%,
1.07% and 0.39% respectively, which means that the result of utilizing the crossed interac-
tive method is more effective, and further influences that the crossed interactive double
Generator can fully learn the spectral and spatial information and generate spatial and
spectral virtual samples in higher qualities.

Finally, a comparison is made between SSNCDG and CSSVGAN, where the latter
can better improve the authenticity of virtual samples by crossed manner. All these
contributions of both the Encoder and the Generator put forward higher requirements to
the Discriminator, optimizing Discriminator’s ability to identify the true or false data and
further achieve the final classification results more accurately.

5.2. Sensitivity to the Proportion of Training Samples

To verify the effectiveness of the proposed CSSVGAN, three datasets were taken as
examples. The percentage of training samples was changed for each class from 1% to
9% at 4% intervals and added 10%. Figures 14–16 shows the OAs of all the comparative
algorithms with various percentages of training samples.
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Figure 14. Sensitivity to the Proportion of Training Samples in IP dataset.

Figure 15. Sensitivity to the Proportion of Training Samples in PU dataset.
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Figure 16. Sensitivity to the Proportion of Training Samples in SA dataset.

It can be seen that the CSSVGAN has the optimal effect in each proportion of training
samples in three datasets because CSSVGAN can learn the extracted features interactively,
ensure diverse samples and improve the quality of generated images.

5.3. Investigation of the Proportion of Loss Function

Taking the IP dataset as an example, the proportion σi (i = 1, 2, . . . 5) of loss functions
and other super parameters of each module are adjusted to observe their impact on
classification accuracy and the results are recorded in Table 13 (the best results are marked
in dark gray). Moreover, the learning rate is also an important factor, which will not be
repeated here. It can be obtained by experiments that using 1× 10−3 for Generator and
1× 10−4 for Discriminator are the best assignments.

Table 13. Investigation of the proportion σi of loss functions in IP dataset with 5% training samples.

σ1 σ2 σ3 σ4 σ5 IP_Result

0.25 0.25 0.15 0.15 0.2 91.88
0.3 0.3 0.15 0.15 0.1 91.23
0.3 0.3 0.1 0.1 0.2 92.87

0.35 0.35 0.05 0.05 0.2 92.75
0.35 0.35 0.1 0.1 0.1 93.61

Analyzing Table 13 reveals that when σ1∼σ5 are set as 0.35, 0.35, 0.1, 0.1 and 0.1
respectively, the CSSVGAN model achieves the best performance. Under this condition,
the Encoder can acquire the maximum diversity of samples. The Discriminator is able
to realize the most accurate classification, and the Generator is capable of generating the
images most like the original data. Moreover, the best parameter combination σ1∼σ5 on
the SA dataset is similar to IP, while in the PU dataset, they are set as 0.3, 0.3, 0.1, 0.1
and 0.2.

6. Conclusions

In this paper, variational generative adversarial network with crossed spatial and
spectral interactions (CSSVGAN) is proposed for HSIC. It mainly consists of three modules:
a dual-branch variational Encoder, a crossed interactive Generator, and a Discriminator
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stuck with a classifier. From the experiment results of these three datasets, it showed
that CSSVGAN can outperform the other methods in the index of OA, AA and Kappa in
its abilities because of the dual-branch and the crossed interactive manners. Moreover,
using the dual-branch Encoder can ensure the diversity of generated samples by mapping
spectral and spatial information into different latent spaces, and utilizing the crossed
interactive Generator can imitate the highly correlated spatial and spectral characteristics
of HSI by exploiting the consistency of learned spectral and spatial features. All these
contributions made the proposed CSSVGAN give the best performance in three datasets. In
the future, we will develop towards to realize lightweight generative models and explore
the application of the jointed “Transformer and GAN” model for HSIC.

Author Contributions: Conceptualization, Z.L. and X.Z.; methodology, Z.L., X.Z. and L.W.; software,
Z.L., X.Z., L.W. and Z.X.; validation, Z.L., F.G. and X.C.; writing—original draft preparation, L.W. and
X.Z.; writing—review and editing, Z.L., Z.X. and F.G.; project administration, Z.L. and L.W.; funding
acquisition, Z.L. and L.W. All authors read and agreed to the published version of the manuscript.

Funding: This research was funded by the Joint Funds of the General Program of the National Natural
Science Foundation of China, Grant Number 62071491, the National Natural Science Foundation of
China, Grant Number U1906217, and the Fundamental Research Funds for the Central Universities,
Grant No. 19CX05003A-11.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study , which can
be found here: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes, latest accessed on 29 July 2021.

Acknowledgments: The authors are grateful for the positive and constructive comments of editor
and reviewers, which have significantly improved this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

References

1. Chen, P.; Jiao, L.; Liu, F.; Zhao, J.; Zhao, Z. Dimensionality reduction for hyperspectral image classification based on multiview
graphs ensemble. J. Appl. Remote Sens. 2016, 10, 030501. [CrossRef]

2. Shi, G.; Luo, F.; Tang, Y.; Li, Y. Dimensionality Reduction of Hyperspectral Image Based on Local Constrained Manifold Structure
Collaborative Preserving Embedding. Remote Sens. 2021, 13, 1363. [CrossRef]

3. Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major
information needs. Remote Sens. 2013, 5, 949–981. [CrossRef]

4. Sun, Y.; Wang, S.; Liu, Q.; Hang, R.; Liu, G. Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral
images. Remote Sens. 2017, 9, 506. [CrossRef]

5. Abbate, G.; Fiumi, L.; De Lorenzo, C.; Vintila, R. Evaluation of remote sensing data for urban planning. Applicative examples by
means of multispectral and hyperspectral data. In Proceedings of the 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing
and Data Fusion over Urban Areas, Berlin, Germany, 22–23 May 2003; pp. 201–205.

6. Yuen, P.W.; Richardson, M. An introduction to hyperspectral imaging and its application for security, surveillance and target
acquisition. Imaging Sci. J. 2010, 58, 241–253. [CrossRef]

7. Tan, K.; Zhang, J.; Du, Q.; Wang, X. GPU parallel implementation of support vector machines for hyperspectral image classification.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4647–4656. [CrossRef]

8. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image classification using soft sparse multinomial logistic
regression. IEEE Geosci. Remote Sens. Lett. 2012, 10, 318–322.

9. Tan, K.; Hu, J.; Li, J.; Du, P. A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood
information and classifier combination. ISPRS J. Photogramm. Remote Sens. 2015, 105, 19–29. [CrossRef]

10. Gao, Q.; Lim, S.; Jia, X. Hyperspectral image classification using convolutional neural networks and multiple feature learning.
Remote Sens. 2018, 10, 299. [CrossRef]

11. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

12. Zhang, B.; Zhao, L.; Zhang, X. Three-dimensional convolutional neural network model for tree species classification using
airborne hyperspectral images. Remote Sens. Environ. 2020, 247, 111938. [CrossRef]

479



Remote Sens. 2021, 13, 3131

13. Chen, Y.C.; Lei, T.C.; Yao, S.; Wang, H.P. PM2. 5 Prediction Model Based on Combinational Hammerstein Recurrent Neural
Networks. Mathematics 2020, 8, 2178. [CrossRef]

14. Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree species classification of drone hyperspectral and
rgb imagery with deep learning convolutional neural networks. Remote Sens. 2020, 12, 1070. [CrossRef]

15. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep
learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [CrossRef]

16. Xu, Y.; Zhang, L.; Du, B.; Zhang, F. Spectral–spatial unified networks for hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens. 2018, 56, 5893–5909. [CrossRef]

17. Liu, G.; Gao, L.; Qi, L. Hyperspectral Image Classification via Multieatureased Correlation Adaptive Representation. Remote Sens.
2021, 13, 1253. [CrossRef]

18. Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep
learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

19. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral
image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [CrossRef]

20. Belwalkar, A.; Nath, A.; Dikshit, O. Spectral-Spatial Classification of Hyperspectral Remote Sensing Images Using Variational
Autoencoder and Convolution Neural Network. In Proceedings of the International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Dehradun, India, 20–23 November 2018.

21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. arXiv 2014, arXiv:1406.2661v1.

22. Liu, X.; Gherbi, A.; Wei, Z.; Li, W.; Cheriet, M. Multispectral image reconstruction from color images using enhanced variational
autoencoder and generative adversarial network. IEEE Access 2020, 9, 1666–1679. [CrossRef]

23. Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Chakravortty, S. DAEN: Deep autoencoder networks for hyperspectral unmixing.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 4309–4321. [CrossRef]

24. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.
25. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. CVAE-GAN: Fine-grained image generation through asymmetric training. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2745–2754.
26. He, Z.; Liu, H.; Wang, Y.; Hu, J. Generative adversarial networks-based semi-supervised learning for hyperspectral image

classification. Remote Sens. 2017, 9, 1042. [CrossRef]
27. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.
28. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by

information maximizing generative adversarial nets. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, Kyoto, Japan, 16–21 October, 2016; pp. 2180–2188

29. Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative adversarial networks based on collaborative learning and
attention mechanism for hyperspectral image classification. Remote Sens. 2020, 12, 1149. [CrossRef]

30. Zhan, Y.; Hu, D.; Wang, Y.; Yu, X. Semisupervised hyperspectral image classification based on generative adversarial networks.
IEEE Geosci. Remote Sens. Lett. 2017, 15, 212–216. [CrossRef]

31. Feng, J.; Yu, H.; Wang, L.; Cao, X.; Zhang, X.; Jiao, L. Classification of hyperspectral images based on multiclass spatial–spectral
generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5329–5343. [CrossRef]

32. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

33. Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. CVA2E: A conditional variational autoencoder with an adversarial training process for
hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5676–5692. [CrossRef]

34. Wang, H.; Tao, C.; Qi, J.; Li, H.; Tang, Y. Semi-supervised variational generative adversarial networks for hyperspectral
image classification. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium,
Yokohama, Japan, 28 July–2 August 2019; pp. 9792–9794.

35. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
36. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
37. Wu, C.; Wu, F.; Wu, S.; Yuan, Z.; Liu, J.; Huang, Y. Semi-supervised dimensional sentiment analysis with variational autoencoder.

Knowl. Based Syst. 2019, 165, 30–39. [CrossRef]
38. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
39. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the

IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802.
40. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
41. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural

Inf. Process. Syst. 2016, 29, 2234–2242.
42. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv 2015, arXiv:1511.06434.

480



Remote Sens. 2021, 13, 3131

43. Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current
trends and challenges. Inf. Fusion 2020, 59, 59–83. [CrossRef]

44. Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens. 2019, 58, 3232–3245. [CrossRef]

45. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 1778–1790. [CrossRef]

46. He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings
of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908.

47. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote
Sens. 2017, 9, 67. [CrossRef]

48. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.

481





remote sensing 

Article

An Attention-Guided Multilayer Feature Aggregation Network
for Remote Sensing Image Scene Classification

Ming Li 1, Lin Lei 1,*, Yuqi Tang 2, Yuli Sun 1 and Gangyao Kuang 1

Citation: Li, M.; Lei, L.; Tang, Y.; Sun,

Y.; Kuang, G. An Attention-Guided

Multilayer Feature Aggregation

Network for Remote Sensing Image

Scene Classification. Remote Sens.

2021, 13, 3113. https://doi.org/

10.3390/rs13163113

Academic Editors: Fahimeh

Farahnakian, Jukka Heikkonen and

Pouya Jafarzadeh

Received: 21 June 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The College of Electronic Science and Technology, National University of Defense Technology,
Changsha 410073, China; liming17@nudt.edu.cn (M.L.); sunyuli@mail.ustc (Y.S.);
kuangyeats@hotmail.com (G.K.)

2 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
yqtang@csu.edu.cn

* Correspondence: alaleilin@163.com

Abstract: Remote sensing image scene classification (RSISC) has broad application prospects, but
related challenges still exist and urgently need to be addressed. One of the most important challenges
is how to learn a strong discriminative scene representation. Recently, convolutional neural networks
(CNNs) have shown great potential in RSISC due to their powerful feature learning ability; however,
their performance may be restricted by the complexity of remote sensing images, such as spatial
layout, varying scales, complex backgrounds, category diversity, etc. In this paper, we propose an
attention-guided multilayer feature aggregation network (AGMFA-Net) that attempts to improve the
scene classification performance by effectively aggregating features from different layers. Specifically,
to reduce the discrepancies between different layers, we employed the channel–spatial attention on
multiple high-level convolutional feature maps to capture more accurately semantic regions that
correspond to the content of the given scene. Then, we utilized the learned semantic regions as
guidance to aggregate the valuable information from multilayer convolutional features, so as to
achieve stronger scene features for classification. Experimental results on three remote sensing scene
datasets indicated that our approach achieved competitive classification performance in comparison
to the baselines and other state-of-the-art methods.

Keywords: convolutional neural networks (CNNs); multilayer feature aggregation; attention mecha-
nism; remote sensing image scene classification (RSISC)

1. Introduction

With the rapid development of remote sensing imaging technology, a large amount
of high-resolution remote sensing images, captured from space or air, can provide rich
detail information, e.g., spatial layout, shape, and texture, about the Earth’s surface. This
information is a significant data source and has been used to many applications, such as
land use classification [1,2], land use change detection and management [3,4], geospatial
object detection [5], etc. As a fundamental and challenging task in remote sensing image
understanding, remote sensing image scene classification (RSISC) has already become one
of the hot topics in research in recent years, the main purpose being to automatically assign
one or multiple predefined tags (e.g., airport, river, bridge) to a given remote sensing scene
according to its semantic content. In this paper, we mainly concentrated on the single-label
remote sensing image scene classification problem.

Due to the imaging characteristics of high-resolution remote sensing images, a remote
sensing scene is usually composed of different land use units, and different combinations
of them may generate different scene categories. As shown in Figure 1, a remote sensing
scene labeled “bridge” consists of five different land cover units including vehicle, trees,
ship, river, and bridge. However, to classify this scene, we only need to pay more attention
to the “bridge” regions, i.e., the red-box-covered region; the other regions can be considered
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as interference. In addition, imaging viewpoint, spatial resolution, illumination, and scale
variation also significantly influence the final classification accuracy [6]. Therefore, how to
learn discriminative and robust feature representation is very crucial for improving scene
classification performance.

Figure 1. The characteristics of a remote sensing scene image. A remote sensing scene consists of
many types of land cover units. However, to classify this scene, we only need to pay more attention
to the key regions, i.e., bridge, while other regions can be regarded as interference.

To address the RSISC problem, the traditional approaches mainly rely on some hand-
crafted visual features, for example the color histogram [7], texture [8], scale-invariant
feature transformation [9], or the histogram of oriented gradients [10], and try to extract
discriminative scene representation for the classification. However, the performance of
these methods was compromised by the limited expressive capacity of the hand-crafted
features, especially when dealing with some complex scenes.

Recently, deep learning techniques, especially convolutional neural networks (CNNs),
have achieved state-of-the-art performance in all kinds of computer vision tasks, e.g., image
classification [11,12], object detection [13], and semantic segmentation [14], due to their
powerful feature learning ability. Compared with the hand-crafted features, deep features
have richer semantic information, which is more suitable for describing the true content of
images. Starting from the earliest convolutional neural network, i.e., AlexNet [11], many
high-performance CNNs, such as VGGNet [12], ResNet [15], and DenseNet [16], have been
developed and successfully employed in many other domains.

In the task of remote sensing scene classification, capturing scene representation with
sufficient discriminative ability is important to improve the classification accuracy. In recent
years, deep learning has also shown great potential on this task and a large number of
deep-learning-based approaches [17–22] have been developed. Among them, considering
the complementarity features of different layers of a convolutional neural network is an
effective strategy to improve scene classification accuracy [6,23–25]. To comprehensively
utilize different layers’ convolutional features, the simplest way is to directly concatenate
them together [25]. The other solution is to concatenate them after using a certain feature
selection mechanism. However, these methods have some limitations. First, the direct
concatenation strategy can simply merge the features in different layers, but it suffers from
a limited ability to suppress feature redundancy and interference information, which is not
conducive to highlight discriminative features. Second, some current methods generally
operate under the belief that features from the last convolutional layer can best represent
the semantic regions of the given scene, so they usually utilize the last convolutional
features to guide the multilayer feature fusion. However, by referencing some research
conclusions and convolutional feature visualization experiments, we found that the last
convolutional features can only extract the most discriminative features while ignoring
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other crucial information that is also important for classification. In other words, only using
the last convolutional features may lack semantic integrity. Third, in order to maximize the
fusion feature’s representation ability, the multilayer feature aggregation operation should
follow certain rules, that is, for different layers’ convolutional features, we should only fuse
those valuable regions of different layers and selectively suppress irrelevant information.
Through this adaptive selection mechanism, more powerful scene representation can finally
be obtained.

Inspired by this, we propose an attention-guided multilayer feature aggregation net-
work (AGMFA-Net). Specifically, we first extracted multiple convolutional feature maps
with different spatial resolutions from the backbone network. Then, the channel–spatial
attention was adopted on multiple high-level convolutional feature maps to obtain com-
plete semantic regions that were consistent with the given scene as accurately as possible.
Third, in order to integrate the valuable information from different convolutional layers
and alleviate the impacts of discrepancies between them, we used the learned semantic
regions to guide the multilayer feature aggregation operation. Finally, the aggregated
features were fed into the classifier to perform remote sensing scene classification.

The main contributions of this paper are listed as follows:
(1) We propose an attention-guided multilayer feature aggregation network, which

can capture more powerful scene representation by aggregating valuable information from
different convolutional layers, as well as suppressing irrelevant interference between them;

(2) Instead of only considering discriminative features from the last convolutional
feature map, we employed channel–spatial attention on multiple high-level convolutional
feature maps simultaneously to make up for information loss and capture more com-
plete semantic regions that were consistent with the given scene,. The visualization and
qualitative results in the experiments demonstrated its effectiveness;

(3) We evaluated the proposed AGMFA-Net on three widely used benchmark datasets,
and the experimental results showed that the proposed method can achieve better classifi-
cation performance in comparison to some other state-of-the-art methods.

The rest of the paper is organized as follows. Related work is reviewed in Section 2,
followed by the detailed presentation of the proposed method in Section 3. Experiments
and the analysis are presented in Section 4. Section 5 is the conclusion.

2. Related Works

Over the past few years, many RSISC approaches have been proposed. Among them,
deep-learning-based methods have gradually become the main stream. In this section, we
mainly review the relevant deep learning methods and then briefly describe some attention
methods that are related to the proposed AGMFA-Net. As for the traditional RSISC
approaches based on hand-crafted features, we recommend reading the papers [17,18].

2.1. Deep-Learning-Based Remote Sensing Image Scene Classification

The advent of deep learning techniques, especially convolutional neural networks,
has brought huge performance gains to remote sensing image scene classification. In
comparison to the hand-crafted features, deep features contain more abstract and discrimi-
native semantics, which can describe the given scene more precisely. In this subsection, we
summarize the existing deep-learning-based scene classification methods as follows.

2.1.1. Fine-Tuning Methods

In the early stage, it is generally acknowledged that fully training a new CNN model
on the target remote sensing datasets is a good strategy. However, compared with nat-
ural image datasets, e.g., ImageNet [26], the available remote sensing scene datasets are
relatively insufficient, which cannot train a good model because they easily suffer from
the overfitting problem. Therefore, some works [17,27] attempted to directly fine-tune the
parameters of pretrained CNN models (e.g., AlexNet [11], GoogLeNet [28]) for remote
sensing image scene classification. Although good performance has been witnessed, these
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methods commonly use the features from fully connected layers for classification, while
ignoring the spatial information in remote sensing scenes, which is also crucial.

2.1.2. Deep Feature Encoding Methods

Instead of directly using the features from a pretrained CNN as the final scene repre-
sentation, deep feature encoding methods regard the deep CNN as a feature extractor to
capture various different levels of features, then encode these features using some unsuper-
vised feature encoding techniques. Zhao and Du [29] utilized bag of words (BoW) [30] to
encode local spatial patterns into a new scene representation. Zheng et al. [31] extracted
multiscale local feature information from the last convolutional layer using the proposed
multiscale pooling strategy and then generated the holistic scene representation with the
Fisher vector (FV) [32]. Several methods attempt to encode multilayer convolutional fea-
tures to capture more discriminative scene features due to the complementarity between
them. Wang et al. [33] used the vectors of locally aggregated descriptors (VLADs) [34] to
aggregate multilayer convolutional features. He et al. [35] presented a covariance pooling
algorithm to integrate multilayer convolutional features and achieved great performance.

2.1.3. Multiple Feature Fusion Methods

It is generally believed that features from different scales have different representation
abilities to describe the given scene. Therefore, fusing different features is a good solution
to improve classification performance. According to the types of features used, existing
multiple feature fusion methods can be roughly classified into two categories: the methods
fusing both deep and hand-crafted features and the methods fusing different deep features.
For the former, hand-crafted features have been proven to be effective in describing some
special scenes; thus, some works [36,37] attempted to combine hand-crafted features with
deep features to improve the feature representation ability. For example, Lu et al. [36]
proposed a bidirectional adaptive fusion model to effectively fuse SIFT features and deep
features together and successfully addressed the problem of scale and rotation variability.
Yu et al. [37] proposed two feature-level fusion architectures, which used the mapped
local binary pattern (LBP) and saliency coded networks as two auxiliary streams and then
separately integrated them with the raw RGB network for further enhancing the scene
representation capacity. The second category of methods have been popular in recent years,
which mainly fuse multilayer deep features from a single CNN [6,23–25,38] or multilevel
deep features from multiple different CNN branches [39–42] to obtain diverse features
for classification.

In addition, to solve the scale variation of the objects in remote sensing imagery,
Liu et al. [43] proposed a dual-branch multiscale CNN architecture. Furthermore,
Zhang et al. [44] utilized the attention mechanism to extract discriminative features at
different scales and then fused them for classification.

2.1.4. Other Methods

Recently, a variety of new ideas and theories have been introduced into the remote
sensing image scene classification task, such as the attention mechanism [45–47], Cap-
sNet [48], GAN [49], loss function optimization [50], deep bilinear transformation [51],
neural architecture search [52], meta learning [53], etc. It should be noted that these ap-
proaches aim to solve specific issues, such as capturing discriminative scene representation,
solving the problem of small training samples, searching the optimal network architecture
for classification, etc.

2.2. Attention in CNNs

Inspired by the human sensing process, attention mechanisms have been studied
extensively in computer vision (CV) [54–56] and natural language processing (NLP) [57].
The basic idea of attention is to construct a constraint mechanism that can selectively
emphasize and reserve the key regions to extract the important features while depreciat-
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ing other harmful interference information. Currently, many attention mechanisms have
been proposed and successfully applied in various fields. Hu et al. [54] presented the
squeeze-and-excitation network (SENet) to model correlations between different channels
for capturing the importance of different feature channels. In addition, CBAM [55] consid-
ers capturing feature information from spatial and channel attention simultaneously, which
significantly improves the feature representation ability. Recently, the nonlocal neural net-
work [56] has been widely used in salient object detection [58], image superresolution [59],
etc. Its main purpose is to enhance the features of the current position by aggregating
contextual information from other positions and solve the problem that the receptive field
of a single convolutional layer is ineffective to cover correlated regions. Compared with
the typical convolution operation, the nonlocal structure can capture global receptive field
information and further improve the feature discrimination. Later, some improved algo-
rithms were proposed, such as the GCNet [60] and the CCNet [61], to address the problem
of computational complexity. Recently, some studies [62,63] introduced the self-attention
mechanism into remote sensing image scene classification and achieved promising results.
Benefiting from the advantages of the attention mechanism, we introduced the channel and
spatial attention in this paper simultaneously in order to capture more accurate semantic
regions for multilayer feature aggregation.

3. The Proposed Method

In this section, we first introduce the overall architecture of the proposed AGMFA-Net
in Section 3.1. Section 3.2 gives the details of the multilayer feature extraction module.
Finally, the implementation of the multilayer feature aggregation module is provided in
Section 3.3.

3.1. Overall Architecture

The goal of the proposed method is to learn discriminative feature representation
for remote sensing image scene classification. Figure 2 illustrates the overall architecture
of AGMFA-Net, which consists of three main components: feature extraction module,
multilayer feature aggregation module, and classification module. Our network was built
on ResNet-50 [15] as the backbone. Firstly, the input image is fed into the backbone to
generate a series of convolutional feature maps that contain different levels of information
about the given scene; we denote them as Res2, Res3, Res4_1, Res4_2, and Res4_3. Then,
the multilayer feature aggregation module is utilized to fuse these features to generate
a new feature with more powerful scene representation ability. Concretely, in order to
achieve semantic regions corresponding to the given scene as accurately as possible, the
channel–spatial attention module was simultaneously employed on multiple high-level
feature maps, i.e., Res4_1, Res4_2, and Res4_3, and a new attention mask is generated.
Then, we used this mask to guide the multilayer feature aggregation procedure. Through
this process, discriminative information of different feature maps will be well fused to
generate a more powerful scene representation, as well as suppress some interference
or useless information caused by low-level feature maps. After that, a block operation
(including convolution, ReLU, normalization) was employed to merge the information of
the aggregated features among the channel. Finally, a fully connected layer and a softmax
layer followed to predict the label of the input scene. In the following subsections, we
introduce each component in detail.
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Figure 2. The overall architecture of our proposed AGMFA-Net.

3.2. Multilayer Feature Extraction

Limited by the scarcity of training samples in remote sensing images, many existing
methods capture multilayer convolutional features using the pretrained CNN models.
Currently, many famous CNN architectures have been developed, e.g., AlexNet, VGGNet,
ResNet, etc. Considering the excellent classification performance of ResNet on ImageNet,
in this paper, we used the modified ResNet-50 to extract multilayer convolutional feature
maps from remote sensing scenes. For the ResNet-50 model, it starts with an initial
convolutional layer with a kernel of size 7 × 7 and a stride of 2. Then, a max-pooling
layer is added with a 3 × 3 window and a stride of 2. The later portion is composed of
four residual blocks; we denote the outputs of each residual block as Res1, Res2, Res3,
and Res4, respectively. Because we only extracted multilayer feature maps, we deleted all
layers after Res4. In addition, to retain more spatial information, we changed the stride
of Res4 from 2 to 1. Assuming the size of the input image is 3 × 224 × 224, the sizes of
Res2, Res3, and Res4 are 512 × 28 × 28, 1024 × 14 × 14, and 2048 × 14 × 14, respectively.
At the same time, the size of high-level convolutional feature maps (e.g., Res4_1, Res4_2,
and Res4_3) was the same, i.e., 512 × 14 × 14. It is worth noting that Res4 and Res4_3
denote the same feature map; they both represent the output of the last residual block of
ResNet-50. To ensure that the size of each feature map is consistent, we downsampled
Res2 to change its size to 512 × 14 × 14 by using a max-pooling operation. The main
motivation to extract multilayer convolutional features was that they can complement each
other, which has been proven to be helpful for improving the remote sensing image scene
classification accuracy.
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3.3. Multilayer Feature Aggregation

In general, the features from deeper layers can describe the semantic information
of the given scenes better, while the features from lower layers have rich appearance
information; they are both important for classification. Thus, fusing features from different
layers has become a commonly used strategy to obtain a more comprehensive scene
representation. However, directly aggregating multilayer features without considering the
discrepancies between them, e.g., feature redundancy, semantic ambiguity, and background
interference, may result in reducing the discriminative ability. To aggregate multilayer
convolutional features more effectively and obtain more valuable information of each
feature map, an attention-guided multilayer feature aggregation module was designed,
as shown in Figure 2. It mainly consists of two parts: semantic region extraction and
multilayer feature aggregation.

To reduce the impacts of semantic interference, feature redundancy, etc., between
different convolutional layers, we followed a rule that only aggregates multilayer features
corresponding to the semantic regions of the given scene. Therefore, there are two key
issues that need to be considered: (1) how to accurately obtain the semantic regions of
the input scenes; (2) how to fuse different levels of feature maps based on the learned
semantic regions?

3.3.1. Semantic Region Extraction

For the first issue, a commonly used solution is to only use the last convolutional
activation as the semantic regions. However, this solution is not effective because the
semantic regions are incomplete and ignore other discriminative regions, which are also
important for scene classification. To address this problem, we first analyzed the activation
characteristics of different high-level convolutional feature maps in the last residual block
of ResNet-50, and the visualization results are shown in Figure 3 by using the gradient-
weighted class activation mapping (Grad-CAM) algorithm [64]. It can be observed that a
single convolutional feature map usually only activates the most discriminative regions of
the given scene, while ignoring the importance of other semantic areas. In addition, the
activation regions of different convolutional feature maps are different, but also overlap.
Furthermore, multiple convolutional feature maps can compensate each other to achieve
more complete activation regions.

Figure 3. Grad-CAM visualization results. We compare the visualization results of our proposed
channel–spatial attention with three other high-level convolutional feature maps of the last residual
block of ResNet-50.

In order to capture more semantic regions of the given scene accurately, we proposed to
simultaneously aggregate multiple high-level convolutional features based on the channel–
spatial attention mechanism. Recently, benefiting from the human visual system, various
attention mechanisms have been developed and have achieved great success in many fields,
which aim to selectively concentrate on the prominent regions to extract the discriminative
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features from the given scene while discarding other interference information. Among
them, the CBAM [55] algorithm is excellent and has been introduced in remote sensing
scene classification. CBAM considers two different dimensions of the channel and spatial
information simultaneously to capture important features and suppress useless features
more effectively. Therefore, we employed CBAM in this paper to obtain important semantic
regions from each high-level convolutional feature map.

Suppose Res4_1 ∈ RC×H×W , Res4_2 ∈ RC×H×W , and Res4_3 ∈ RC×H×W denote
three high-level convolutional feature maps from the last residual block of ResNet-50,
respectively. C, H, and W represent the channel number, height, and width of each feature
map. As shown in Figure 2, each high-level convolutional feature map is first separately
passed to the channel–spatial attention module to generate three different attention masks,
and these masks are then multiplied to obtain the final semantic regions.

Figure 4 demonstrates the detailed workflow of the channel–spatial attention opera-
tion, which consists of two components: the channel stream and the spatial stream. Let
the input feature map be X ∈ RC×H×W , where C, H, and W are the number of channels,
height, and width, respectively. Firstly, two pooling operations, i.e., global max pooling
and global average pooling, are employed to aggregate the spatial information of X and
generate two C × 1 × 1 spatial contextual descriptors; we denote them as XC

max ∈ RC×1×1

and XC
avg ∈ RC×1×1, respectively. Then, two descriptors are fed into a shared network

with a hidden layer and multilayer perception. To reduce the computational overhead, the
activation size of the hidden layer is RC/r×1×1, where r is the reduction ratio. After that,
two output features of the shared network are added after a sigmoid activation function to
obtain the channel attention map MC ∈ RC×1×1. Finally, the refined feature X

′
is obtained

by multiplying MC with the input feature map X. In summary, the entire process of channel
attention can be expressed as follows:

X
′
= Mc(X)⊗ X (1)

where ⊗ represents elementwise multiplication and Mc(X) denotes the channel attention
map, which can be described as:

MC(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X)))
= σ(W1(W0(XC

avg)) + W1(W0(XC
max)))

(2)

where σ denotes the sigmoid function, MLP represents the multi-layer perceptron, AvgPool
and MaxPool denote the global average pooling and global max pooling, respectively, and
W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights of the MLP.

Figure 4. Diagram of the channel–spatial attention module.

Different from channel attention, spatial attention aims to utilize the interspatial
relationships of features to generate a spatial attention map, which mainly focuses on
the discriminative areas. To obtain the spatial attention map MS ∈ RH×W , the average
pooling and max pooling operations are adopted along the channel dimension at first to
generate two 1 × H ×W channel descriptors, which are denoted as XS

avg ∈ R1×H×W and
XS

max ∈ R1×H×W . Then, these two channel descriptors are concatenated to generate a new
descriptor. After that, a 7 × 7 convolution and sigmoid function are used to capture a
spatial attention map MS, which can highlight the important regions of the given scenes
while suppressing other interference regions. It should be noted that we only need to
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generate the spatial attention map, instead of reweighting the input feature map X
′

to
generate a refined feature map. Therefore, the spatial attention is computed as:

MS(X
′
) = σ( f 7×7concat[AvgPool(X

′
); MaxPool(X

′
)])

= σ( f 7×7concat[XS
avg; XS

max])
(3)

where σ and concat denote the sigmoid function and concatenation operation, respectively,
f 7×7 represents a convolution operation with a filter size of 7 × 7, and AvgPool and
MaxPool represent the average pooling and max pooling along the channel dimension.
By referring to [55], we connected channel attention and spatial attention in a sequential
arrangement manner, which can more effectively focus on important semantic regions of
the given scene.

For high-level convolutional feature maps, Res4_1, Res4_2, and Res4_3, we separately
pass them into the channel–spatial attention module to capture different attention masks,
denoted as M4_1, M4_2, and M4_3. It is worth noting that each mask mainly concentrates
on discriminative regions, but they complement each other. To obtain a more accurate
semantic region mask, we conducted the matrix multiplication operation on the above
three masks, and the newly generated semantic region mask is denoted as M. Compared
with the discriminative mask only using the last convolutional features of ResNet-50, our
method makes full use of the information from multiple high-level convolutional feature
maps to obtain a more efficient and complete semantic region mask, as shown in the last
column in Figure 3. The expression of this procedure can be written as follows.

M = M4_1⊗M4_2⊗M4_3 (4)

where ⊗ denotes the elementwise multiplication operation.

3.3.2. Multilayer Feature Aggregation

It is acknowledged that convolutional features extracted from different layers can de-
scribe different levels of information of the given scene; some published research [6,33,38]
has also proven that fusing multiple convolutional features can significantly promote the
scene classification performance. However, integrating multilayer convolutional features
indiscriminately may be easily affected by the differences, e.g., semantic ambiguity, feature
redundancy, and background interference, resulting in the discrimination of the learned
scene representation being insufficient. To solve this problem, we designed a novel mul-
tilayer feature fusion strategy. Specifically, we first obtained semantic regions in terms
of the semantic region extraction operation, then used the learned semantic regions to
guide the process of multilayer feature aggregation. Compared with other fusion strategies,
e.g., fusion by addition, our method not only fuses valuable feature information of each
convolutional layer effectively, but also avoids the interference of unfavorable factors.

As shown in Figure 2, Res2, Res3, and Res4 are three different convolutional feature
maps captured from the backbone network. M represents the semantic region mask.
To aggregate multilayer convolutional features, we separately multiply Res2, Res3, and
Res4 by M to generate new features; we present them as Res2

′
, Res3

′
, and Res4

′
. By this

step, different convolutional layers’ important information, which is consistent with M, is
selected for the subsequent fusion procedure. After that, these features are concatenated
along the channel dimension. Specifically, in order to reduce the feature dimension and
merge the information of the concatenated features among the channels, a 1× 1 convolution
operation and a ReLU operation are followed; we denote the output features as Y. Therefore,
we can use the formula to express this as follows:

Res2
′
= Res2⊗M

Res3
′
= Res3⊗M

Res4
′
= Res4⊗M

Y = δ( f 1×1concat[Res2
′
; Res3

′
; Res4

′
])

(5)
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where ⊗ denotes the elementwise operation, δ represents the ReLU function, f 1×1 de-
notes a convolution operation with the filter size of 1 × 1, and concat represents the
concatenation operation.

After obtaining Y, it is sent into the classifier for scene classification.

3.4. Loss Function

During training, the cross entropy loss function is used to minimize a weighted
cumulation loss. Suppose that I={(x1, y1), ..., (xN , yN)} is a training batch of N images,
where yi, a one-hot vector, is the label of the i-th image xi. pi is a vector in which the j-th
element is the probability that image xi is classified into the j-th class. Then, the cross
entropy loss can be formulated as follows:

L = − 1
N

N
∑

i=1

(
yi

I log(pi)
)

(6)

4. Experiments

In this section, we conduct a series of experiments to verify the effectiveness of the
proposed AGMFA-Net.

4.1. Datasets

To evaluate the performance of the proposed method, the following commonly used
remote sensing scene classification datasets were employed: the UC Merced Land Use
dataset [30], the more challenging large-scale Aerial Image Dataset (AID) [18], and the
NWPU-RESISC45 dataset [17].

(1) UC Merced Land Use dataset (UCML): The UCML dataset is a classical benchmark
for remote sensing scene classification. It consists of 21 different classes of land use images
with a pixel resolution of 0.3 m. It contains a total of 2100 remote sensing images with 100
samples for each class. These samples are all annotated from a publicly available aerial
image, and the size of each sample is 256 × 256 pixels. The example images of each class
are shown in Figure 5.

Figure 5. Examples of the UCML dataset.

(2) Aerial Image Dataset (AID): The AID dataset has 10,000 remote sensing scene
images, which are divided into 30 different land cover categories. Each category’s number
varies from 220 to 420. The size of each image is 600 × 600 pixels, and the spatial resolution
ranges from about 8 m to 0.5 m. It is noted that the AID dataset is a relatively large-scale
remote sensing scene dataset and is challenging for classifying. Some examples of each
category are presented in Figure 6.
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Figure 6. Examples of the AID dataset.

(3) NWPU-RESISC45 dataset: This dataset is more complex and challenging compared
with the above three datasets. It contains a total of 31,500 images divided into 45 different
scenes. Each scene has 700 images with an image size of 256 × 256 pixels. Because of the
more diverse scenes, the spatial resolution of the images varies from 0.2 m to 30 m. Figure 7
shows some examples of this dataset.

Figure 7. Examples of the NWPU-RESISC45 dataset.

To ensure a fair comparison, we employed the commonly used training ratios to
divide each dataset. For the UCML dataset, we set the training ratio to 80% and the rest of
the samples (20%) for testing. For the AID dataset, we set two training–testing ratios, i.e.,
20–80% and 50–50%, respectively. Similarly, two training ratios, i.e., 10–90% and 20–80%,
were used for the NWPU-RESISC45 dataset.

4.2. Implementation Details

All experiments were completed using the PyTorch [65] deep learning library. We
employed ResNet-50 as the backbone network. To verify the scalability of the proposed
method, we also conducted experiments with the VGGNet-16 network. All networks were
trained using one NVIDIA GeForce RTX 2070 Super GPU. To make the network converge
quickly, all the experimental networks were first pretrained on the ImageNet and then
fine-tuned with the above three benchmark datasets. Our proposed network was optimized
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by the stochastic gradient descent (SGD) algorithm with the momentum as 0.9, the initial
learning as 0.001, and the weight decay penalty as 1 ×10−5. After every 30 epochs, the
learning rate decayed by 10 times. The batch size and maximum training iterations were
set to 32 and 150, respectively. In the training stage, data augmentation was adopted to
improve the generalization performance. Concretely, the input images were first resized to
256 × 256 pixels, then randomly cropped to 224 × 224 pixels as the network input after
random horizontal flipping.

4.3. Evaluation Metrics

To comprehensively evaluate the classification of the proposed method, three evalua-
tion metrics were used in this paper. They include the overall accuracy and the confusion
matrix. Each evaluation metric is explained as follows:

(1) Overall accuracy (OA): The OA is defined as the ratio between the number of
correctly classified images and the total number of testing images;

(2) Confusion matrix (CM): The CM is a special matrix used to visually evaluate the
performance of the algorithm. In this matrix, the column represents the ground truth and
the row denotes the prediction. From it, we can observe the classification accuracy of each
scene, as well as the categories that are easily confused with each other.

4.4. Ablation Study

In our proposed method, we mainly improved the discriminative capability of the mul-
tilayer feature aggregation from two aspects. To separately demonstrate the effectiveness
of each component, we conducted ablation experiments on the AID and NWPU-RESISC45
datasets using ResNet-50 as the backbone network.

4.4.1. The Effectiveness of Semantic Region Extraction

We conducted experiments to qualitatively analyze the effectiveness of semantic region
extraction. In the following, we compare the following network architectures, i.e., ResNet-
50, ResNet-50+DA (direct aggregation), ResNet-50+WA (without attention), ResNet-50+SA
(spatial attention), Ours (low-level features), Ours (multiple high-level features). Specifi-
cally, ResNet-50 was the baseline network. ResNet-50+DA represents directly aggregating
multiple high-level convolutional feature maps indiscriminately. ResNet-50+WA denotes
aggregating multiple high-level convolutional feature maps without using attention. In-
stead, we employed the method in [66], which captures semantic regions by utilizing
multiple high-level convolutional feature maps in an unsupervised way. ResNet-50+SA
represents using the spatial attention following each high-level convolutional feature map,
then aggregating them to generate new semantic regions. Ours (low-level features) and
Ours (high-level features) are two methods that adopt channel attention and spatial at-
tention separately on low-level and high-level features to capture semantic regions. More
intuitively, we illustrate the activation maps of the aggregated features between different
compared methods using the Grad-CAM algorithm in Figure 8. It can be observed that the
above six methods can activate the discriminative regions, which are consistent with the
semantic label of the scenes; however, the activation regions of our proposed method are
more complete and can accurately cover the overall discriminative regions.

4.4.2. The Effectiveness of Multilayer Feature Aggregation

We also conducted experiments on the AID and NWPU-RESISC45 datasets to quanti-
tatively evaluate the performance of the proposed multilayer feature aggregation strategy,
and the results are shown in Table 1. From Table 1, we can make the following conclu-
sions: (1) For the AID and NWPU-RESISC45 datasets, the multilayer feature aggregation
methods can further promote the classification accuracy when compared with the baseline.
This observation verified that fusing features from different layers can indeed achieve
better results. (2) The classification accuracy of ResNet-50+DA and ResNet-50+WA was
similar. We considered the reason is partly that ResNet-50+WA employs an unsupervised
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method to obtain semantic regions, which cannot suppress the impacts of complex back-
grounds, resulting in worse accuracy. (3) The methods based on attention were better
than ResNet-50+DA and ResNet-50+WA, except the training ratio of the NWPU-RESISC45
dataset was 10%. We also respectively compared the classification performance when
obtaining semantic regions based on low-level and high-level features in our method. (4)
We found that when using low-level features, its classification performance on the AID
and NWPU-RESISC45 datasets was better than the baseline, but lower than other methods.
We considered the reason to be that the use of low-level revolutionary features cannot
effectively reduce the interference of background noise and semantic ambiguity, resulting
in the captured semantic regions being inaccurate, which further reduces the performance
of multilayer feature fusion. (5) When using multiple high-level convolutional features to
capture semantic regions, our method can achieve optimal classification accuracy because
we used channel and spatial attention together to obtain more accurate semantic regions.
Therefore, the final aggregated features have better discrimination.

Figure 8. Grad-CAM visualization results. We compare the visualization results of the proposed
AGMFA-Net (ResNet-50) with the baseline (ResNet-50) and three other multilayer feature aggregation
methods. The Grad-CAM visualization is computed for the last convolutional outputs.

Table 1. Ablation experimental results on two datasets with different training ratios.

Method
AID NWPU-RESISC45

20% 50% 10% 20%

ResNet-50 (Baseline) 92.93 ± 0.25 95.40 ± 0.18 89.06 ± 0.34 91.91 ± 0.09
ResNet-50+DA 93.54 ± 0.30 96.08 ± 0.34 90.26 ± 0.04 93.21 ± 0.16
ResNet-50+WA 93.66 ± 0.28 96.15 ± 0.28 90.24 ± 0.07 93.08 ± 0.04
ResNet-50+SA 93.77 ± 0.31 96.32 ± 0.18 90.13 ± 0.59 93.22 ± 0.10
Ours (low-level features) 93.51 ± 0.51 95.98 ± 0.20 89.16 ± 0.36 92.76 ± 0.11
Ours (high-level features) 94.25 ± 0.13 96.68 ± 0.21 91.01 ± 0.18 93.70 ± 0.08

4.5. State-of-the-Art Comparison and Analysis
4.5.1. Results on the UCML Dataset

UCML is a classical dataset for evaluating the performance of remote sensing image
scene classification. To illustrate the superiority of our proposed method, we compared
it with some state-of-the-art scene classification methods that are reviewed in Section 2,
and the comparison results are shown in Table 2. As can be seen from Table 2, our method,
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which employed ResNet-50 as the backbone, achieved the optimal overall classification
accuracy. In addition, when using VGGNet-16, our method also surpassed most of the
methods and obtained a competitive classification performance. It is worth noting that the
overall accuracy of most of the compared methods reached above 98%, but our method
still showed good superiority and demonstrated its effectiveness.

Table 2. The OA (%) and STD (%) of different methods on the UCML dataset.

Methods Accuracy

VGGNet-16 [12] 96.10 ± 0.46
ResNet-50 [15] 98.76 ± 0.20

MCNN [43] 96.66 ± 0.90
Multi-CNN [41] 99.05 ± 0.48
Fusion by Addition [25] 97.42 ± 1.79
Two-Stream Fusion [39] 98.02 ± 1.03
VGG-VD16+MSCP [35] 98.40 ± 0.34
VGG-VD16+MSCP+MRA [35] 98.40 ± 0.34
ARCNet-VGG16 [45] 99.12 ± 0.40
VGG-16-CapsNet [48] 98.81 ± 0.22
MG-CAP (Bilinear) [22] 98.60 ± 0.26
MG-CAP (Sqrt-E) [22] 99.00 ± 0.10
GBNet+global feature [38] 98.57 ± 0.48
EfficientNet-B0-aux [50] 99.04 ± 0.33
EfficientNet-B3-aux [50] 99.09 ± 0.17
IB-CNN(M) [51] 98.90 ± 0.21
TEX-TS-Net [37] 98.40 ± 0.76
SAL-TS-Net [37] 98.90 ± 0.95
ResNet-50+EAM [47] 98.98 ± 0.37

Ours (VGGNet-16) 98.71 ± 0.49
Ours (ResNet-50) 99.33 ± 0.31

Figure 9 shows the confusion matrix of our proposed method when the training ratio
was 80%. It can be seen that almost all scenes can be accurately classified except for some
easily confused categories, such as freeway and overpass, medium residential and dense
residential, and forest and sparse residential. This is because some scenes are composed
of multiple different land use units (e.g., sparse residential contains forest and building
together) or show different spatial layout characteristics (e.g., freeway and overpass both
contain road, but they have different spatial layouts). These issues make them difficult
to classify.

4.5.2. Results on the AID Dataset

AID is a larger and more challenging dataset than the UCML dataset. We compared
our method with other scene classification methods with two training ratios, 20% and 50%.
For both training ratios, our method performed better than other competitors, as shown in
Table 3. For a training ratio of 50%, our method with VGGNet-16 as the backbone surpassed
almost all the compared methods that use the same backbone, such as Fusion by Addi-
tion [25], VGG-16+MSCP [35], ARCNet-VGG16 [45], MF2Net [6], VGG-16-CapsNet [48],
etc. Similarly, when using ResNet-50 as the backbone, our method achieved the highest
classification accuracy, which exceeded other methods that use ResNet or more advanced
network as the backbone. For example, our method increased by 0.06% over ResNet-
50+EAM [47], 0.11 over IB-CNN (M) [51], and 0.12 over EfficientNet-B3-aux [50]. For a
training ratio of 20%, our method that used VGGNet-16 showed mediocre performance;
however, when using ResNet-50 as the backbone, our method performed better than all
the other methods. Specifically, our method was slightly higher than EfficientNet-B3-aux
and IB-CNN(M) by 0.16% and 0.02% and exceeded ResNet-50+EAM by 0.16%.
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Figure 9. Confusion matrix of the proposed method on the UCML dataset with a training ratio of 80%.

The CMs of different training ratios are illustrated in Figures 10 and 11, respectively.
For a training ratio of 50% in Figure 10, most of the categories achieved a classification
accuracy higher than 95%, except the scenes of resort (92%) and school (93%). Specifically,
the most difficult scenes to classify were resort and park, because they are composed of
some similar land use units and also have the same spatial structures. In addition, school
is easily confused with square and industrial. For a training ratio of 20% in Figure 11,
our method can also obtain excellent classification accuracy, except for the following four
scenes: center (87%), resort (79%), school (84%), and square (86%).

4.5.3. Results on the NWPU-RESISC45 Dataset

For the larger NWPU-RESISC45 dataset, the comparison results are shown in Table 4.
For two training ratios, our methods obtained remarkable performance. When the training
ratio was 20%, our method that used ResNet-50 as the backbone exceeded all the com-
petitors. Specifically, in comparison to the baselines, our method separately improved by
1.79% (ResNet-50) and 2.86% (VGGNet-16) when using different networks. When using
VGGNet-16 as the backbone, we surpassed other methods that use the same backbone,
e.g., Two-Stream [39], VGGNet16+MSCP, MF2Net, and VGG-16-CapsNet. In addition, our
method achieved the highest classification accuracy when using ResNet-50, higher than
ResNet-50+EAM by 0.19% and higher than IB-CNN (M) by 0.37%. For the training ratio of
10%, our methods can also obtain excellent classification performance.
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Table 3. Overall accuracy and standard deviation (%) of different methods on the AID dataset.

Method
Training Ratio

20% 50%

VGGNet-16 [12] 88.81 ± 0.35 92.84 ± 0.27
ResNet-50 [15] 92.93 ± 0.25 95.40 ± 0.18

Fusion by Addition [25] - 91.87 ± 0.36
Two-Stream Fusion [39] 80.22 ± 0.22 93.16 ± 0.18
Multilevel Fusion [40] - 95.36 ± 0.22
VGG-16+MSCP [35] 91.52 ± 0.21 94.42 ± 0.17
ARCNet-VGG16 [45] 88.75 ± 0.40 93.10 ± 0.55
MF2Net [6] 91.34 ± 0.35 94.84 ± 0.27
MSP [31] 93.90 -
MCNN [43] - 91.80 ± 0.22
VGG-16-CapsNet [48] 91.63 ± 0.19 94.74 ± 0.17
Inception-v3-CapsNet [48] 93.79 ± 0.13 96.32 ± 0.12
MG-CAP (Bilinear) [22] 92.11 ± 0.15 95.14 ± 0.12
MG-CAP (Sqrt-E) [22] 93.34 ± 0.18 96.12 ± 0.12
EfficientNet-B0-aux [50] 93.69 ± 0.11 96.17 ± 0.16
EfficientNet-B3-aux [50] 94.19 ± 0.15 96.56 ± 0.14
IB-CNN(M) [51] 94.23 ± 0.16 96.57 ± 0.28
TEX-TS-Net [37] 93.31 ± 0.11 95.17 ± 0.21
SAL-TS-Net [37] 94.09 ± 0.34 95.99 ± 0.35
ResNet-50+EAM [47] 93.64 ± 0.25 96.62 ± 0.13

Ours (VGGNet-16) 91.09 ± 0.30 95.10 ± 0.78
Ours (ResNet-50) 94.25 ± 0.13 96.68 ± 0.21

Figure 10. Confusion matrix of the proposed method on the AID dataset with a training ratio of 50%.
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Figure 11. Confusion matrix of the proposed method on the AID dataset with a training ratio of 20%.

Table 4. Overall accuracy and standard deviation (%) of different methods on the
NWPU-RESISC45 dataset.

Method
Training Ratio

10% 20%

VGGNet-16 [12] 81.15 ± 0.35 86.52 ± 0.21
ResNet-50 [15] 89.06 ± 0.34 91.91 ± 0.09

Two-Stream [39] 80.22 ± 0.22 83.16 ± 0.18
VGG-16+MSCP [35] 85.33 ± 0.17 88.93 ± 0.14
MF2Net [6] 85.54 ± 0.36 89.76 ± 0.27
VGG-16-CapsNet [48] 85.08 ± 0.13 89.18 ± 0.14
Inception-v3-CapsNet [48] 89.03 ± 0.21 92.60 ± 0.11
MG-CAP (Bilinear) [22] 89.42 ± 0.19 91.72 ± 0.16
MG-CAP (Sqrt-E) [22] 90.83 ± 0.12 92.95 ± 0.13
EfficientNet-B0-aux [50] 89.96 ± 0.27 92.89 ± 0.16
IB-CNN(M) [51] 90.49 ± 0.17 93.33 ± 0.21
TEX-TS-Net [37] 84.77 ± 0.24 86.36 ± 0.19
SAL-TS-Net [37] 85.02 ± 0.25 87.01 ± 0.19
ResNet-50+EAM [47] 90.87 ± 0.15 93.51 ± 0.12

Ours (VGGNet-16) 86.87 ± 0.19 90.38 ± 0.16
Ours (ResNet-50) 91.01 ± 0.18 93.70 ± 0.08

Figures 12 and 13 are the confusion matrix results for the training ratios of 20% and
10%, respectively. It can be observed that when setting the training ratio to 20%, almost all
the scenes can achieve above 90% classification accuracy, except two scenes, i.e., church
(83%) and palace (83%), which are very easily confused with each other. In addition, for the
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training ratio of 10%, most of the scenes can be classified well; the scenes with the lowest
classification accuracy still remain church (77%) and palace (75%).

Figure 12. Confusion matrix of the proposed method on the NWPU-RESISC45 dataset with a training ratio of 20%.
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Figure 13. Confusion matrix of the proposed method on the NWPU-RESISC45 dataset with a training ratio of 10%.

5. Conclusions

One of the crucial challenges of remote sensing image scene classification is how to
learn a powerful scene representation. To address this problem, we presented a novel
attention-guided multilayer feature aggregation network in this paper, which consisted of
three parts: the multilayer feature extraction module, the multilayer feature aggregation
module, and the classification module. Concretely, we first used the backbone network
to extract multiple convolutional feature maps with different spatial resolutions. Then, a
semantically guided multilayer feature aggregation module was used to integrate features
from different convolutional layers to reduce the interferences of useless information
and at the same time improve the scene representation capacity. Specifically, to capture
semantic regions that were consistent with the given scene accurately, we employed
channel–spatial attention to make full use of the feature information of multiple high-
level convolutional feature layers. Compared with the semantic regions captured from
a single convolutional layer, our method showed better results. Finally, the aggregated
features were fed into the classifier for scene classification. Experiments on three benchmark
datasets were conducted, and the results demonstrated that our proposed method can
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achieve promising classification performance and outperform other remote sensing image
scene classification methods.
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Abstract: Object tracking from LiDAR point clouds, which are always incomplete, sparse, and
unstructured, plays a crucial role in urban navigation. Some existing methods utilize a learned
similarity network for locating the target, immensely limiting the advancements in tracking accuracy.
In this study, we leveraged a powerful target discriminator and an accurate state estimator to
robustly track target objects in challenging point cloud scenarios. Considering the complex nature of
estimating the state, we extended the traditional Lucas and Kanade (LK) algorithm to 3D point cloud
tracking. Specifically, we propose a state estimation subnetwork that aims to learn the incremental
warp for updating the coarse target state. Moreover, to obtain a coarse state, we present a simple yet
efficient discrimination subnetwork. It can project 3D shapes into a more discriminatory latent space
by integrating the global feature into each point-wise feature. Experiments on KITTI and PandaSet
datasets showed that compared with the most advanced of other methods, our proposed method can
achieve significant improvements—in particular, up to 13.68% on KITTI.

Keywords: point clouds; 3D tracking; state estimation; Siamese network; deep LK

1. Introduction

Single object tracking in point clouds aims to localize the time-varying target repre-
sented by point clouds with the supervision of a 3D bounding box in the first frame. It is a
challenging yet indispensable task in many real-world applications, such as autonomous
driving [1,2] and mobile robot tracking [3,4]. Generally, object tracking encompasses two
subtasks, target discrimination and state estimation, which are the fundamental steps for
an agent to sense the surrounding environment and conduct motion planning [5]. Over the
last few years, 2D single object tracking task has been explored extensively [6–9]. Inspired
by that success, many RGB-D based methods refer to the pattern of 2D tracking to conduct
3D tracking [10–13]. Although working well in the conventional 2D domain, these methods
rely heavily on the RGB modality. They hence may fail when color information is low-
quality or even unavailable. In this work, we focus on the 3D vehicle tracking task using
deep learning in point clouds, which is still in the development stage due to several factors,
such as self-occlusion, disorder, density change, and the difficulty of the state estimation.

Recently, the high-end sensors for LiDAR (light detection and ranging) have attracted
much attention, since they have high accuracy and are less sensitive to weather conditions
than most other sensors. More importantly, it can capture the structure of a scene by
producing plenty of 3D point clouds to provide reliable geometric information from far
away. However, the source data constitute the unstructured representation, where the
standard convolution operation is not applicable. This hampers the application of deep
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learning models in 3D object tracking. To overcome this barrier, some studies projected
point clouds onto planes from a bird’s-eye view (BEV), and then discretized them into 2D
images [5,14,15].

Although they could conduct tracking by detecting frame by frame, the BEV loses
abundant geometric information. Consequently, starting from source point clouds,
Giancola et al. [2] proposed SiamTrack3D to learn a generically template matching func-
tion which is trained by the shape completion regularization. Qi et al. [16] leveraged deep
Hough voting [17] to produce potential bounding boxes. It is worth mentioning that the
aforementioned approaches merely focus on determining the best proposal from a set of ob-
ject proposals. In other words, they thoroughly ignore the importance of comprehensively
considering both the target discrimination and the state estimation [18].

To address this problem, we elaborately designed a 3D point cloud tracking framework
with the purpose of bridging the gap between target discrimination and state estimation. It
is mainly comprised of two components, a powerful target discriminator and an accurate
target state estimator, which realize their respective functions through the Siamese network.
The state estimation subnetwork (SES) is proposed to estimate a optimal warp using the
template and candidates extracted from the tracked frame. This subnetwork extends the
2D Lucas and Kanade (LK) algorithm [19] to the 3D point cloud tracking problem by
incorporating it into a deep network. However, it is non-trivial, since the Jacobian matrix
from the first-order Taylor expansion cannot be calculated as in the RGB image, where the
Jacobian matrix can be split into two partial terms using the chain rule. The reason is that
the gradients in x, y, and z cannot be calculated, as connections among points are lacking in
3D point clouds. To circumvent this issue, we thoughtfully present an approximation-based
solution and a learning-based solution. By integrating them into a deep network in an
end-to-end manner, our state estimation subnetwork can take a pair of point clouds as
inputs to predict the incremental warp parameters. Additionally, we introduce an efficient
target discrimination subnetwork (TDS) to remedy the deficiency of the SES. In order to
project 3D shapes into a more discriminatory latent space, we designed a new loss that
takes global semantic information into consideration. During online tracking, by forcing
these two components to cooperate with each other properly, our proposed model could
cope with the challenging point cloud scenarios robustly.

The key contributions of our work are three-fold:

• A novel state estimation subnetwork was designed, which extends the 2D LK algo-
rithm to 3D point cloud tracking. In particular, based on the Siamese architecture, this
subnetwork can learn the incremental warp for meliorating the coarse target state.

• A simple yet powerful discrimination subnetwork architecture is introduced, which
projects 3D shapes into a more discriminatory latent space by integrating the global
semantic feature into each point-wise feature. More importantly, it surpasses the 3D
tracker using sole shape completion regularization [2].

• An efficient framework for 3D point cloud tracking is proposed to bridge the perfor-
mance difference between the state estimation component and the target discrimina-
tion component. Due to the complementarity of these two components, our method
achieved a significant improvement, from 40.09%/56.17% to 53.77%/69.65% (suc-
cess/precision), on the KITTI tracking dataset.

2. Related Work

2.1. 2D Object Tracking

In this paper, we focus on single object tracking problem, which can be divided into
two subtasks: target discrimination and state estimation [18]. Regarding 2D visual tracking,
some discrimination-based methods [7,20] have recently shown outstanding performance.
In particular, the family of the correlation filter trackers [8,20] have enjoyed great popularity
in the tracking research community. These methods leverage the properties of circulant
matrices, which can be diagonalized by discrete Fourier transformation (DFT) to learn a
classifier online. With the help of the background context and the implicit exhaustive convo-
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lution in a 2D-grid, correlation filter methods achieve impressive performance. In addition,
other discrimination approaches based on deep learning have achieved competitive results
on 2D tracking benchmarks [21,22]. For instance, MDNet [7] first learns general feature
representation in a multi-domain way, and then it captures domain-specific information
via online updating. CFNet [23] creatively integrates the correlation filter into SiamFC [24].
However, the majority of these approaches put attention into developing a powerful dis-
criminator and simply rely on brute-force multi-scale searching to adjust the target state.
There also exist several special methods such as DeepLK [19] and GONTURN [25] which
are merely derived from state estimation, but these obtain merely passable performances.
To sum up, the situation is that most approaches for tracking the target start only with one
aspect of the two subtasks.

To mitigate this situation, Danelljan et al. [18] designed a tracker called ATOM that
seamlessly combines the intersection-over-union (IoU) network [26] with the fast online
classifier. Taking ATOM as baseline, Zhao et al. [27] proposed an adaptive feature fusion
and obtained considerable improvements. Their method takes into account both state
estimation and target discrimination, thereby achieving better accuracy and robustness.
Afterwards, following the same state estimation component presented in ATOM [18],
Bhat et al. [28] proposed an efficient discriminator which resorts to a target predictor em-
ploying an iterative optimization technique. Our work is motivated to bridge the gap
between state estimation and target discrimination via deep network, and can be thought
of as 3D counterpart of them. However, utilizing a deep network to exert the potentiality
of the unstructured point cloud is still challenging in 3D tracking tasks. In this work,
we present a unified framework to track the target in point cloud with a dedicated state
estimation subnetwork (Section 3.2) and discrimination subnetwork (Section 3.3).

2.2. 3D Point Cloud Tracking

Point cloud is a prevalent trend for representing objects in the real 3D world. A number of
advanced algorithms based on point clouds have been flourishing in object classification [29,30],
detection [17,31,32], registration [19], and segmentation [33,34]. Nevertheless, point cloud
tracking based on deep learning has been untapped. As we all know, many algorithms
dedicated to RGB-D data have been widely studied [10,12,13,35], but most of them are
mainly used to boost the 2D tracking methods with the depth channel and are not good
at tackling the long-range scenario. Therefore, designing an effective pattern for tracking
those partial point clouds is a very promising problem.

In the past few years, there has emerged some approaches to track the target in 3D
spatial data [2,5,14,36–38]. For instance, Held et al. [36] used color-augmented search align-
ment algorithm to obtain the separated vehicle’s velocity. Subsequently, combining shape,
color, and motion information, Held et al. [37] utilized the dynamic Bayesian probabilistic
model to explore the state space. However, these methods is bound to segmentation and
data association algorithms. Different from them, Xiao et al. [39] simultaneously detect
and track pedestrian using motion prior. All these traditional methods only obtain point
segments instead of 3D orientated bounding boxes. Recently, some deep-learning-based
methods infused new energy into point cloud tracking. For example, AVOD [14], FaF [5],
and PIXOR [15] are designed for object detection based on BEV inputs, but can be applied
tracking task in a tracking-by-detection manner. Specially for 3D tracking, Giancola et al. [2]
introduced completion regularization to train a Siamese network. Subsequently, in light of
the limitation of candidate box generation, Qi et al. [16] designed a point-to-box network,
Zou [40] reduced redundant search space using a 3D frustum, and Fang et al. extended
the region proposal network into pointNet++ [41] for 3D tracking. Nevertheless, all of
above methods put more emphasis on distinguishing the target from a lot of proposals.
We aimed to deal with both target discrimination and state estimation, with a dedicated
Siamese network and extended LK algorithm.
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2.3. Jacobian Matrix Estimation

Many tasks involve the estimation of the Jacobian matrix. As we know, the visual ser-
voing field [42,43] usually relies on approximating the inverse Jacobian to control an agent
favorably. In addition, for facial image alignment, Xiong et al. [44] proposed a supervised
descent method (SDM), which avoids the calculation of the Jacobian and Hessian matrices
with a sequence of learned descent directions based on hand-crafted feature. Lin et al. [45]
proposed the conditional Lucas-Kanade algorithm to improve the SDM. Subsequently,
Han et al. [46] dealt with the image-to-image alignment problem by jointly learning the
feature representation for each pixel and partial derivatives. In this work, we innovatively
estimate the Jacobian of extended LK algorithm in point cloud tracking.

3. Method

3.1. Overview

The proposed 3D point cloud tracking approach not only discriminates the target
from distractors but also estimates the target state in a unified framework. Its pipeline is
shown in Figure 1. Firstly, the template cropped from the reference frame and the current
tracked frame are fed into the target discrimination subnetwork (TDS). It can select the
best candidate in terms of the confidence score. Then, such selected candidate and the
template are fed into the state estimation subnetwork (SES) to produce a incremental warp
parameters Δρ. These parameters are applied to the rough state of the best candidate,
leading to a new state. Next, the warped point cloud extracted by the new state is sent into
the SES again, producing Δρ together with the template. This procedure is implemented
iteratively until the terminal condition is satisfied. We use the same feature backbone but
train the TDS and SES separately. In Section 3.2, we first present our SES in detail, which
extends the LK algorithm for 2D tracking to 3D point clouds. In Section 3.3, the powerful
TDS is introduced. Finally, in Section 3.4, we describe an online tracking strategy that
illustrates how two components cooperate with each other.

Figure 1. Overview of the proposed method for 3D point cloud tracking. During online tracking, the
TDS first provides a rough state of the best candidate. Afterwards, provided with the template from
the reference frame, the SES produces the incremental warp of the rough state. It is implemented itera-
tively until the terminal condition (‖Δρ‖ < ε) is satisfied. The state estimation subnetwork (SES) and
the target determination subnetwork (TDS) are separately trained using the KITTI tracking dataset.

3.2. State Estimation Subnetwork

Our state estimation subnetwork (SES) is designed to learn the incremental warp
parameters between the template cropped from the first frame and candidate point clouds,
so as to accommodate any motion variations. We took inspiration from DeepLK [19] and

508



Remote Sens. 2021, 13, 2770

extended it to the 3D point cloud tracking task. To describe the state estimation subnetwork,
we briefly revisit the inverse compositional (IC) LK algorithm [47] for 2D tracking.

The IC formulation is very ingenious and efficient because it avoids the repeated
computation of the Jacobian on the warped source image. Given a template image T and a
source image I, the essence of IC-LK is to solve the incremental warp parameters Δρ on T
using sum-of-squared-error criterion. Therefore its objective function for one pixel x can
be formulated as follows:

min
Δρ
‖I(x)− T(W(x; ρ + Δρ))‖2

2, (1)

where ρ ∈ RD×1 are currently known state parameters, Δρ is the number of increments the
state parameters are to go through, x = (x, y) are the pixel coordinates, andW is the warp
function. More concretely, if one considers the location shift and scale, i.e., ρ = (δx, δy, δs) ,
the warp function can be written as W(x; ρ) = (δsx + δx, δsy + δy) ∈ R2×1. Using the
first-order Taylor expansion at the identity warp ρ0, the Equation (1) can be rewritten as

min
Δρ

∥∥∥∥I(x)− T(W(x; ρ0))−∇T
∂W(x; ρ0)

∂ρ
Δρ

∥∥∥∥2

2
, (2)

where W(x, ρ0) = x is the identity mapping and ∇T =
(

∂T
∂x , ∂T

∂y

)
∈ R1×2 represents the

image gradients. Let the Jacobian J = ∇T ∂W(x;ρ0)
∂ρ ∈ R1×D. We hence can obtain Δρ by

minimizing the above Equation (2); namely,

Δρ = (J J)−1 J [I(x)− T(W(x; ρ0))]. (3)

Compared with 2D visual tracking, 3D point cloud tracking has an unstructured data
representation and high-dimensional search space for state parameters. Let PT ∈ R3×N

denote the template point cloud. PI ∈ R3×N denotes the source point cloud in the tracked
frames, which is extracted by a bounding box with inaccurate center and orientation. Note
that we set the quantities of both PT and PI to N, and when their totals of points are less
than N, we repeat sampling from existing points. In this work, we treat the deep network
φ : R3×N "→ RK×1 as a learnable “image” function. In light of this, the template point
cloud PT and the source point cloud PI can obtain their descriptors using the network
φ after transforming them into the canonical coordinate system. In addition, we regard
the rigid transformation G ∈ R3×4 between PT and PI as the “warp” function. In this
way, we can apply the philosophy of IC-LK to the 3D point cloud tracking problem. In
practice, the 3D bounding box is usually utilized to represent the target state which can
be parametrized by S = (x, y, z, h, w, l, θ) in the LiDAR system, as shown in Figure 2.
Therein, (x, y, z) is the target center coordinate, (h, w, l) represents the target size, and θ is
the rotation angle around the y-axis. Due to the target size remaining almost unchanged
in 3D spatial space, it is sufficient to focus only on the state variations in the angle and x,
y, and z axes. Consequently, the transformation G will be represented by four warping
parameters ρ = (x, y, z, θ) . More concretely, it can be simplified as follows:

G(ρ) =

⎛⎝ cos(θ) 0 − sin(θ) x
0 1 0 y

sin(θ) 0 cos(θ) z

⎞⎠. (4)

Now the state estimation problem in 3D tracking can be transformed to find G(ρ)
satisfying φ(G(ρ) ◦ PT) = φ(PI), where (◦) is the warp operation on the homogeneous
coordinate with G(ρ). Being analogous to the aforementioned IC-LK in Equation (2), the
objective of state estimation can be written as

min
Δρ

∥∥∥∥φ(PI)− φ(PT)− ∂φ(G(ρ0) ◦ PT)

∂ρ
Δρ

∥∥∥∥2

2
. (5)
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Figure 2. Object state representation in the sensor coordinate system. An object can be encompassed
with a 3D bounding box (blue). Therein, (x, y, z) represents the object center location in the LiDAR
coordinate system. (h, w, l) are the height, width, and length of object, respectively. θ is the radian
between the motion direction and x-axis. The right-bottom also exhibits different views of object
point clouds produced by LiDAR.

Similar to the Equation (2), we could solve the incremental warp Δρ = ( Ĵ Ĵ)−1 Ĵ [φ(PI)−
φ(PT)] with the Jacobian matrix Ĵ = ∂φ(G(ρ0) ◦ PT)/∂ρ. Unfortunately, this Jacobian
matrix cannot be calculated like the classical image manner. The core obstacle is that the
gradients in x, y, and z cannot be calculated in the scattered point clouds due to the lack of
connections among points or another regular convolution structure.

We introduce two solutions to circumvent this problem. One direct solution is to
approximate the Jacobian matrix through a finite difference gradient [48]. Each column of
the Jacobian matrix Ĵ can be computed as

Ĵi =
φ(Gi ◦ PT)− φ(PT)

μi
(6)

where μi are infinitesimal perturbations of the warp parameters Δρ, and Gi is a transfor-
mation involving only one of the warp parameters. (In other words, only the i-th warp
parameter has a non-zero value μi. Please refer to Appendix A for details).

On the other hand, we treat the construction of Ĵ as a non-linear function F with
respect to φ(PT). We hence propose an alternative: to learn the Jacobian matrix using a
multi-layer perceptron, which consists of three fully-connected layers and ReLU activation
functions (Figure 3). In Section 4.4, we report the comparison experiments.

Based on the above extension, we can analogously solve the incremental warp Δρ of
the 3D point cloud in terms of Equation (3) as follows:

Δρ = J†[φ(PI)− φ(PT)], (7)

where J† = ( Ĵ Ĵ)−1 Ĵ is a Moore–Penrose inverse of Ĵ. Afterwards, the source point cloud
cropped from the coming frame can adjust its state by the following formula

SI ← Compose(SI , Δρ), (8)

where Compose is the inverse compositional function and SI is the state representation of
the source point cloud PI .

Network Architecture. Figure 3 summarizes the architecture of the state estimation
subnetwork. Owing to the inherent complexity of the state estimation, it is non-trivial to
train a powerful estimator on the fly under the sole supervision of the first point cloud
scenario. We hence train the SES offline to learn general properties for predicting the
incremental warp. It is natural that we opt to adopt a Siamese architecture for producing
the incremental warp parameters between the template and candidate. In particular, our
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network contains two branches sharing the same feature backbone, each of which consists of
two blocks. As shown in Figure 3, Block-1 first generates the global descriptor. Then Block-2
consumes the aggregation of the global descriptor and the point-wise features to generate
the final K-dimensional descriptor, based on which the Jacobian matrix Ĵ can be calculated.
Finally, the LK module jointly considers φ(PI), φ(PT), and Ĵ to predict Δρ. It is notable
that this module theoretically provides the fusion strategy, namely, φ(PI)− φ(PT), between
two features produced by the Siamese network. Moreover, we adopt the conditional LK
loss [19] to train this subnetwork in an end-to-end manner. It is formulated as

Lses =
1
M ∑

m
L1

(
J†(m)[φ(P(m)

I )− φ(P(m)
T )], Δρ

(m)
gt

)
, (9)

where Δρgt is the ground-truth warp parameter, L1 is the smooth L1 function [49], and
M is the number of paired point clouds in a mini-batch. This loss can propagate back to
update the network when the derivative of the batch inverse matrix is implemented.

Figure 3. Illustration of the proposed state estimation subnetwork (SES). Firstly, the SES extracts the
shape descriptors of the paired point clouds using the designed architecture. Its details are shown
in the bottom dashed box. Subsequently, the Jacobian matrix is computed by one of the solutions:
approximation-based or learning-based. Its details are shown in the right dashed box. Finally, the LK
module generates the incremental warp parameters Δρ.

3.3. Target Discrimination Subnetwork

In the 3D search space, how to efficiently determine the presence of the target is very
critical for an agent to conduct state estimation. In this section, considering that the SES
lacks discrimination ability, we present the design of a target discrimination subnetwork
(TDS) to realize a strong alliance with the SES. It aims to distinguish the best candidate
from distractors, thereby providing a rough target state. We leverage the matching function
based method [2] to track the target. Generally, its model can be written as

Ψ(PT , PI) = g(ψ(PT), ψ(PI)), (10)

where Ψ is the confidence score function, ψ : R3×N "→ RK×1 is the feature extractor, and
g is a similarity metric. Under this framework, the candidate with the highest score is
selected as the target.

In this work, to equip the model with global semantic information, we incorporate
the intermediate features generated by the first block to point-wise features, and then pass
them to the second block, as shown in Figure 4. Consequently, our TDS could project 3D
partial shapes into a more discriminatory latent space, which allows an agent to distinguish
the target more accurately from distractors.
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Figure 4. The scheme of our TDS. Its feature backbone is composed of two blocks as same as the
SES. Particularly, the global feature generated from Block-1 is repeated and concatenated with each
point-wise feature. Afterwards, the intermediate aggregation feature is further fed into Block-2.
Finally, we use the combination of similarity loss, global semantic loss, and regularization completion
loss to train the TDS.

Network Architecture. We trained the TDS offline from scratch with an annotated KITTI
dataset. Based on the Siamese network, the TDS takes paired point clouds as inputs and
directly produces their similarity scores. Specifically, its feature extractor also consists
of two blocks the same as in the SES. As can be seen in Figure 4, Block-1 ψ1 generates
the global descriptor, and Block-2 ψ2 utilizes the aggregation of the global point-wise
features to generate the more discriminative descriptor. As for the similarity metric g,
we conservatively utilize hand-crafted cosine function. Finally, the similarity loss, global
semantic loss, and regularization completion loss are combined in order to train this
subnetwork; i.e.,

Ltds = L2(g(ψ2(PT), ψ2(PI)), s) + λ1L2(g(ψ1(PT), ψ1(PT)), s) + L3(P̂T , PT), (11)

where L2 is mean square error loss, s is the ground-truth score, λ1 is the balance factor, and
L3 is the completion loss for regularization [2], where P̂T represents each template point
cloud predicted via shape completion network [2].

3.4. Online Tracking

Once trained offline, the two subnetworks can be combined for online tracking. We
denote our whole framework SETD. For one scenario (frame) Ft, t ∈ {1, 2, · · · , Q}, where
Q is the total number of frames, we first sampled a collection of candidates Ct in terms of
Kalman filter as SiamTrack3D does, and then passed them into the TDS, which provided
the rough state representation S (0)

t of the optimal candidate. Afterwards, it was adjusted
iteratively by the SES until the termination condition ε was satisfied, and the best state St

was thus determined. Finally, the template point cloud P(0)
T was updated by appending

the selected candidate to itself. Algorithm 1 shows the whole process in detail.
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Algorithm 1: SETD online tracking.

Input: Frames:{Ft|t = 1, · · · , Q}, Template: P(0)
T

Output: Target state: {St}
1 for t = 1, · · · , Q do
2 Ct ← Sample(Ft)

3 S (0)
t ← TDS(Ct, P(t−1)

T )

4 P(0)
I ← Crop(Ft,S (0)

t )
5 for i = 1, · · · , Niter do

6 Δρ ← SES(P(i−1)
I , P(t−1)

T )
7 if ‖Δρ‖ ≤ ε then
8 Break

9 else

10 S (i)
t ← Compose(S (i−1)

t , Δρ)

11 P(i)
I ← Crop(Ft,S (i)

t )
12 end

13 end

14 St ← BestState({S (i)
t })

15 P(t)
T ← Update(P(t−1)

T , Crop(Ft,St))
16 end
17 *Crop means getting the points inside the 3D bounding box parameterized by S .

4. Experiments

KITTI [50] is a prevalent dataset of outdoor LiDAR point clouds. Its training set of
contains 21 scenes (over 27,000 frames), and each frame has about 1.2 million points. For
a fair comparison, we followed [2] to divide this dataset into a training set (scene 0–16),
a validation set (scene 17–18), and a testing set (scene 19–20). In addition, to validate the
effectiveness of different trackers, we also evaluated them on another large-scale point
cloud dataset—PandaSet [51]. It covers complex driving scenarios, including lighting
conditions at day time and night, steep hills, and dense traffic. In this dataset, more than
25 scenes were collected for testing, and the tracked instances are split into three levels
(easy, middle, and hard) according to the LiDAR range.

4.1. Evaluation Metrics

To evaluate the tracking results, we adopted one-pass evaluation (OPE) [21] based on
the location error and the overlap. The overlap represents the intersection-over-union (IoU)
between the predicted bounding box BP and the corresponding ground-truth bounding box
BG, i.e., volume(BT ∩ BG)/volume(BT ∪ BG). The location error measures the Euclidean
distance between the centers of BG and BT . In this paper, the success and precision metrics
are utilized as evaluation metrics. Specifically, the success metric is defined as the area-
under-curve (AUC) where the x-axis denotes the overlap threshold ranging from 0 to 1 and
the y-axis refers to the ratio above the threshold. The precision metric is defined as the
AUC where the x-axis represents the location error threshold ranging from 0 to 2 meters
and the y-axis is the ratio below this threshold.

4.2. Implementation Details

Training. We conducted experiments with PyTorch and Python 3.7 on a PC equipped
with a GTX 2080Ti, 32 GB RAM, and 4.00 GHz Intel Core i7-4790K CPU. When training our
SES, we first sampled a pair of target shapes (template and source point clouds) from the
same sequence. Additionally, these two point clouds were transformed into a canonical
coordinate system according to the respective bounding box. Assuming that the target
motion obeyed the Gaussian distribution, we randomly produced the warp parameters
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Δρgt and applied them to the source point clouds for the supervised learning. In practice,
only when the IoU between the warped bounding box and its corresponding ground truth
is larger than 0.1 can this paired data be fed into the SES. The mean of Gaussian distribution
was set to zero, and the covariance was a diagonal matrix diag(0.5, 0.5, 5.0). The dimension
K of shape descriptor generated by φ was set to 128. The network was trained from scratch
using the Adam optimizer with the batch size of 32 and the initial learning rate of 1× 10−3.

Regarding our TDS, the input data were the paired point clouds transformed into a
canonical coordinate system. The outputs were similarity scores. The ground-truth score is
the soft distance obtained by the Gaussian function. The output dimensions K of ψ were
set to 128. Our proposed loss (Equation (11)) was utilized to train it from scratch using
an Adam optimizer. The batch size and initial learning rate were set to 32 and 1× 10−3,
respectively. As for λ1, we reported its performance using several metrics in Section 4.4.
The learning rates of both subnetworks were reduced via multiplying by a ratio of 0.1 when
the loss of the validation set reached a plateau, and the maximum number of epochs was
set to 40.

Testing. During the online testing phase, the tracked vehicle instance was usually
specified in the first frame. When dealing with a coming frame, we exhaustively drew a set
of 3D candidate boxes Ct over the search space [2]. The number of Ct was set to 125. The
number of iterations Niter was set to 2, and the termination parameter ε was set to 1× 10−5.
Besides, for each frame, our SETD tracker only took about 120 ms of GPU time (50 ms for
the TDS and 70 ms for the SES) to determine the final state. We did not take into account
the time cost of the generation and normalization of the template and candidates, which
was 300 ms of CPU time, approximately.

4.3. Performance Comparison

We first compare the proposed SETD with the baseline in relation to several attributes,
such as dynamics and occlusion. Then, we evaluate the tracking performances of recent
related trackers on large-scale datasets.

4.3.1. Comparison with Baseline

SiamTrack3D [2] was the first method made to deal with this special task using the
Siamese network and gives some referential insights via adequate ablation studies. It is
a strong baseline for state-of-the-art tracking performance. We first show visualization
comparison results for different attributes in Figures 5–7, and then report quantitative
comparison results in Table 1.

Figure 5 shows a visualization of density variation. As can be seen, “Object-1” changed
from dense to sparse, and “Object-2” varied from sparse to dense. For all these scenes, our
method tracked the target accurately, whereas SiamTrack3D exhibited skewing. Figure 6
presents some tracking results for dynamic scenes. Generally, the scene is treated as
dynamic when the center distance between consecutive frames is larger than 0.709 [2].
As shown in Figure 6, our method performed better than SiamTrack3D when the target
moved quickly, which is attributed to the seamless integration of target discrimination and
state estimation. In particular, even though the target was partly occluded and moving at
high speed in the scenario presented in the second row, SETD obtained satisfying results,
whereas SiamTrack3D produced greatly varying results. Figure 7 plots the tracking results
from when the target suffered from different degrees of occlusion. As can be seen, whether
the target was visible, partly occluded, or largely occluded, our SETD performed better
than SiamTrack3D.

514



Remote Sens. 2021, 13, 2770

Table 1. Performance comparison with the baseline [2] in terms of several attributes.

Attribute
SiamTrack3D SETD

Success (%) Precision (%) Success (%) Precision (%)

Visible 37.38 55.14 53.87 68.75
Occluded 42.45 55.90 53.76 70.33

Static 38.01 53.37 54.55 70.10
Dynamic 40.78 58.42 48.46 66.34

Figure 5. Visual results on density change. We exhibit some key frames of two different objects. Compared with SiamTrack3D
(blue), our SETD (black) has a larger overlap with the ground truth (red). The number after # refers to the frame ID.

Figure 6. Visual results in terms of dynamics. We show two dynamic scenes. When the target ran at a high speed (dynamic),
our SETD obtained better results, whereas SiamTrack3D resulted in significant skewing.
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Figure 7. Visual results in terms of occlusion. The first row shows the results of a visible vehicle. The second row shows
partly occluded vehicles. The last row is a largely occluded vehicle. Our SETD performed better than SiamTrack3D in all
three degrees of occlusion.

In addition, we quantitatively compared their performances according to four condi-
tions: visible, occluded, dynamic, and static. The success and precision metrics for said at-
tributes are shown in Table 1. Overall, the proposed SETD fully outperformed SiamTrack3D.
Specifically, compared with SiamTrack3D, SETD not only significantly improved detec-
tion by 16.45%/13.61% (success/precision) in visible scenes, but also 11.31%/14.43% in
occluded scenes. Meanwhile, as shown in the last two rows of Table 1, SETD also achieved
great improvements of 7.68%/7.92% when detecting dynamic scenes, and 16.54%/16.73%
when detecting static scenes. These significant improvements on four types of scenes
thoroughly and powerfully demonstrate the effectiveness of learning incremental warp for
accurate 3D point cloud tracking.

4.3.2. Comparison with Recent Methods

Apart from SiamTrack3D, we compared with other methods—AVODTrack [14], P2B [16],
SiamTrack3D-RPN [52], and ICP&TDS—on the testing set. AVODTrack is a tracking-by-
detection method which evolved from an advanced 3D detector, AVOD [14], by equipping
it with an online association algorithm. To be more precise, it consumes point cloud BEVs
and RGB images to generate a 3D detection box for every frame; then the final box is the one
that has the highest IoU with the previous bounding box. P2B is a new, advanced method
which integrates the target feature augmentation module into deep Hough voting [17].
SiamTrack3D-RPN evolved from SiamTrack3D by jointly learning on 2D BEV images and
3D point clouds. Furthermore, to estimate the state of moving vehicles, one may intend
to obtain the motion transformation using the iterative closest point (ICP) [53], and then
apply this transformation to previous bounding box. In this work, we first leveraged the
proposed TDS to obtain a candidate point cloud and then run the ICP algorithm between
the template and this candidate in a canonical coordinate system. This method is called
ICP&TDS. In SiamTrack3D, as in the Kalman filter, the ground truth of the tracked frame is
also utilized to approximate dense sampling for further testing of a tracker’s discrimination
ability. It applies grid search centered at the tracked ground truth. We also considered
this sampling strategy for comprehensive evaluation. Note that a method with the suffix
“Dense” means that it adopts this dense sampling.

Table 2 summarizes the above methods’ performances on KITTI. In addition to con-
ducting OPE of the 3D bounding box, we also present the results of the 2D BEV box, which
was obtained by projecting the 3D box onto a rectangle from a bird’s-eye view. As shown
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in this table, SETD-Dense is superior to all other methods, given its high success and
precision metrics. Specifically, the success and precision metrics of our SETD constituted
13.68% and 13.48% improvements compared with SiamTrack3D, and our SETD-Dense
provided 5.12% and 6.77% improvements over SiamTrack3D-Dense. This demonstrates the
validity of bridging the gap between state estimation and target discrimination. ICP&TDS
and ICP&TDS-Dense obtained poor performances in these specific outdoor scenes. We
deem that ICP lacks strength for partial scanned point clouds. This also proves that the
proposed SES plays a critical role in the point cloud tracking task. In addition, even
when using multiple modalities of RGB images and LiDAR point clouds, AVODTrack was
inferior to the dense sampling models (SiamTrack3D-Dense and SETD-Dense) by large
margins. P2B obtained better performances than SiamTrack3D and SETD, because P2B
uses a learning procedure based on deep Hough voting to generate high quality candidates,
whereas SiamTrack3D and SETD only use traditional Kalman filter sampling. Hence, better
candidate generation is important for the following tracking process, and we recon that
integrating a learning-based candidate generation strategy into SiamTrack3D and SETD
will facilitate improving their accuracy.

Table 2. Performance comparison with the state-of-the-art methods on KITTI. The OPE evaluations
of 3D bounding boxes and 2D BEV boxes are reported.

Method
3D Bounding Box 2D BEV Box

Success (%) Precision (%) Success (%) Precision (%)

SiamTrack3D-
RPN 36.30 51.00 - -

AVODTrack 63.16 69.74 67.46 69.74
P2B 56.20 72.80 - -

SiamTrack3D 40.09 56.17 48.89 60.13
SiamTrack3D-

Dense 76.94 81.38 76.86 81.37

ICP&TDS 15.55 20.19 17.08 20.60
ICP&TDS-

Dense 51.07 64.82 51.07 64.82

SETD 53.77 69.65 61.14 71.56
SETD-Dense 81.98 88.14 81.98 88.14

Table 3 reports the tracking results on PandaSet. We compare the proposed method
with two advanced open-source trackers: P2B and SiamTrack3D. Their performances were
obtained by running their official code on our PC. As shown in the Table 3, our SETD
performed considerably better than P2B in all easy, middle, and hard sets, especially in
obtaining the success/precision improvements of 6.77/9.34% with the middle set. When
compared with SiamTrack3D, SETD also outperformed it by a large margin on easy and
middle sets. Nevertheless, on the hard set, SETD was inferior to SiamTrack3D. The reasons
were that: (1) there exist some extremely sparse objects in the hard set, which makes the
SES product a worse warp parameter, (2) SiamTrack3D has a better prior because it is first
trained on ShapeNet and then fine-tuned on KITTI, whereas SETD is trained only from
scratch.

Table 3. Performance comparison with the state-of-the-art methods on PandaSet. The results on
three sets of different difficulty levels are reported.

Method

Easy Middle Hard

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

Success
(%)

Precision
(%)

P2B 53.49 59.97 35.76 40.56 19.13 19.64
SiamTrack3D 51.61 62.09 40.55 49.73 25.09 30.11

SETD 54.34 65.12 42.53 49.90 24.39 28.60
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4.4. Ablation Studies

We carried out five self-contrast experiments to demonstrate the necessity of each part.
SES and TDS. In order to prove the effectiveness of the combination of the state

estimation and the target discrimination, we examined the tracking performance only using
TDS or SES. TDS-only tracks the target merely via the target discrimination subnetwork,
which selects a candidate bounding box with the highest confidence score. Based on the
state estimation subnetwork, SES-only directly rectifies the estimated bounding box of the
previous frame for tracking the target. Our SETD properly combines these two components
to make up for their performance gap.

The results are shown in Table 4. According to the success metric, our SETD achieved
10.41% and 11.28% improvements in comparison with SES-only and TDS-only, respectively.
As for the precision metric, SETD (69.65%) also significantly surpassed both SES-only
(49.70%) and TDS-only (60.19%). These improvements of SETD highlight the importance
of combining these two components. In addition, we observed that SES-only performed
worse than TDS-only according to the success and precision metrics. The main reason lies
in that (1) TDS-only selects the best one of many candidates generated by the Kalman filter,
but SES-only directly uses the previous result while lacking discrimination; (2) the previous
result used by SES often drifts due to self-occlusion and density variations, leading to far-
fetched warp parameters. This also proves our observation mentioned in Section 3.3: that
determining the presence of the target is crucial for an agent to conduct state estimation.

Table 4. Self-contrast experiments evaluated by the success and precision ratio. SETD achieved the
best performance.

Variants TDS SES Iter. Success (%) Precision (%)

TDS-only
√

43.36 60.19
SES-only

√
41.09 49.70

Iter-non
√ √

44.67 59.13
SETD

√ √ √
53.77 69.65

Moreover, Figure 8 presents some tracking results obtained without or with our
state estimation subnetwork. As can be seen when going through the state estimation
subnetwork, some inaccurate results (blue boxes), which were predicted solely via a target
discrimination subnetwork, can be adjusted towards the corresponding ground truth.

Iteration or not. We also investigated the effect of iteratively adjusting the target
state. Specifically, we designed a variant model named Iter-non, which does not apply the
iterative online tracking strategy (Algorithm 1). In other words, it directly uses the first
prediction of the SES as the final state increment. As shown in Table 4, Iter-non obtained a
44.67% success ratio and a 59.13% precision ratio on the KITTI tracking dataset. Compared
with SETD (53.77%/69.65%), Iter-non fell short by 9% in success and precision metrics,
which proves the effectiveness of our iterative online tracking strategy. In fact, the iteration
process is an explicit cascaded regression that is more effective and verifiable for tasks
solved in continuous solution spaces [19,48,54].

Jacobian Approximation or Learning. Two solutions have been provided to tackle the
Jacobi matrix issue that occurred in the SES. We can approximate it via finite difference
gradient or learn it using a multi-layer perceptron. To comprehensively compare these two
solutions, we plotted their loss curves during the training phase in addition to reporting the
success and precision metrics on the testing set. As shown in Figure 9, the learning-based
solution had a far lower cost and flatter trend than the approximation-based one. Moreover,
the last row of Table 5 shows the approximation-based solution achieved success/precision
of 49.93%/67.15%; the learning-based solution reached 53.77%/69.65%. The reason may
be that a teachable Jacobian module could be coupled with the shape descriptor φ(PT),
whereas the finite difference gradient defined by a hand-crafted formula is a hard constraint.
Please refer to Appendix B for more details.
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Figure 8. Tracking results with or without the state estimation subnetwork (SES). The black bounding boxes were obtained
with SES, and the blue bounding boxes without SES. As we can see, with the help of SES, a rough state (blue boxes) can be
favorably meliorated. The number after # is the frame ID.

Figure 9. Loss curves during the training phase, where the blue and red curves correspond to the
learning-based solution and the approximation-based solution, respectively. Obviously, the former
had a low cost and fast convergence.
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Descriptor Using Block-1 or Block-2. A cascaded network architecture is proposed for the
3D point cloud tracking problem. We explored the impact of using descriptors generated
by different feature blocks when extending the traditional LK algorithm to the 3D point
cloud tracking task. Each column of Table 5 shows that the descriptor from Block-2 is
superior that from Block-1. This benefits from the novelty that we incorporate the global
semantic information into point-wise features.

Table 5. Performance comparison between models using different solutions for the Jacobian problem.
Each row shows results using a different feature block.

Descriptor
Learning-Based Approximation-Based

Success (%) Precision (%) Success (%) Precision (%)

Block-1 51.29 66.59 46.33 61.51
Block-2 53.77 69.65 49.93 67.15

Key Parameter Analysis. In Section 3.3, in order to robustly determine the presence
of the target in a point cloud scenario, we proposed a new loss that combines similarity
loss, global semantic loss, and regularization completion loss. Therein, the parameter λ1
in Equation (11) plays a key role in the global information trade-off. In Figure 10, we
compared different values of λ1. As we can see, it obtained the best performance in success
and precision metrics when λ1 = 1× 10−4.

Figure 10. Influence of the parameter λ1. The OPE success and precision metrics for different values
of λ1 are reported.

4.5. Failure Cases

Figure 11 shows some failure cases of our proposed model. In this figure, “Object 1”
(the first row) and “Object 2” (the second row) could not be tracked accurately by our SETD
(black). The reason is that the extremely spare points could not extract an explicit pattern to
discriminate target or estimate state. “Object 3” (the last row) drifted to similar distractors
surrounding the target. This is because the previous bounding box, when applied to the
current frame, covered similar adjacent objects due to its very fast movement.
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Figure 11. Failure cases of our proposed method. The first and second rows show failure to track the
target due to extremely sparse point clouds. The last row shows failure due to similar distractors.
The number after # is the frame ID.

5. Conclusions and Future Work

This paper presents a 3D point cloud tracking framework bridging the gap between
state estimation and target discrimination subnetworks. Particularly, the traditional LK
algorithm has been creatively extended to the case of 3D tracking for accurate state esti-
mation. Meanwhile, a new loss method was proposed in the hopes of providing more
powerful target discrimination. Experiments on the KITTI and PandaSet datasets have
shown our method significantly outperforms others. Last but not least, the ablation stud-
ies fully demonstrated the effectiveness of each part and gave some key analyses of the
descriptor, iteration strategy, and Jacobian matrix calculation.

SiamTrack3D [2] is the first point cloud tracker based on the Siamese network. This
method starts with state estimation and target discrimination (inspired by 2D tracker [18,19]),
and extends them to 3D point cloud tracking. Although achieving promising performance,
it has huge room for improvement. For example, both SiamTrack3D and SETD are strug-
gling with the proposal extraction issue. To be specific, they obtain proposals via Kalman
filter or a dense sampling strategy. In light of this, in the future, it will be very important
to explore an efficient proposal extraction algorithm. Despite the recent literature [52]
providing better proposals via BEV, the joint learning on 2D BEV and 3D point cloud
Siamese networks even drops the final discrimination ability. Besides, a new feature
backbone [41,55] is also worth studying instead of using pointNet, which is used alone
in SiamTrack3D. Last but not least, it will be important to study an end-to-end network,
including the flow embedding layer [56], proposal generation, similarity metric, and
state refinement.
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Appendix A. Details of Approximation-Based Solution

After extending the LK algoritm [19] designed for 2D visual tracking to 3D point cloud
tracking task, we have the following objective

min
Δρ∈R3

∥∥∥∥φ(PI)− φ(PT)− ∂φ(G(ρ0) ◦ PT)

∂ρ
Δρ

∥∥∥∥2

2
. (A1)

As the warp parameters ρ ∈ R3×1 and φ(PT) ∈ RK×1, the Jacobian matrix Ĵ in
the Equation (A1) belongs to RK×3. The formula of the finite difference gradient [48] is
as follows:

Ĵi =
φ(Gi ◦ PT)− φ(PT)

μi
. (A2)

We use infinitesimal perturbations to approximate each column Ĵi of Ĵ. Therein, Gi,
i = 1, 2, 3, 4 corresponds to the transformation that is obtained by only perturbing the i-th
warp parameter, which can be formulated as

G1 =

⎛⎜⎜⎝
1 0 0 μ1

0 1 0 0

0 0 1 0

⎞⎟⎟⎠, G2 =

⎛⎜⎜⎝
1 0 0 0

0 1 0 μ2

0 0 1 0

⎞⎟⎟⎠, G3 =

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 μ3

⎞⎟⎟⎠, G4 =

⎛⎜⎜⎝
cos(μ4) 0 − sin(μ4) 0

0 1 0 0

sin(μ4) 0 cos(μ4) 0

⎞⎟⎟⎠. (A3)

When training the SES by approximation-based solution, we set the infinitesimal
perturbations μi to 0.1.

Appendix B. Analysis of the Jacobian Module

Our loss is defined as follows:

Lses =
1
M ∑

m
L1(J†(m)[φ(P(m)

I )− φ(P(m)
T )], Δρ

(m)
gt ). (A4)

To enable the state estimation network to be trained in an end-to-end way, the differ-
entiation of the Moore-Penrose inverse in Equation (A4) needs to be derived as [19] did.
Concretely, the partial derivative of smooth L1 function over the feature component φi(PI)
can be written as

∂L1

∂φi(PI)
= ∇L1 J†δi, (A5)

where δi ∈ {0, 1}K×1 is one-hot vector and ∇L1 is the derivative of the smooth L1 loss.
Besides, the partial derivative of smooth L1 function over the φi(PT) is
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∂L1

∂φi(PT)
= ∇L1

(
∂J†

∂φi(PT)
[φ(PI)− φ(PT)]− J†δi

)
. (A6)

Therein, the key step is to obtain the differentiation of J† = ( Ĵ Ĵ)−1 Ĵ . By the chain
rule, it can be written as

∂J†

∂φi(PT)
=

∂( Ĵ Ĵ)−1

∂φi(PT)
Ĵ + ( Ĵ Ĵ)−1 ∂ Ĵ 

∂φi(PT)
, (A7)

where

∂( Ĵ Ĵ)−1

∂φi(PT)
= −( Ĵ Ĵ)−1

(
Ĵ ∂ Ĵ

∂φi(PT)
+

∂ Ĵ 

∂φi(PT)
Ĵ
)
( Ĵ Ĵ)−1. (A8)

According to the above equation, the derivative of a batch inverse matrix can be
implemented in PyTorch such that the SES network can be trained in an end-to-end manner.

In this work, we present two solutions for calculating the Jacobian in our paper. Here
we give their back-propagation formulae to deeply compare them with each other. When
using multi-layer perceptron F (learning-based) to calculate the Jacobian, the elements of Ĵ
are related to each component of φ(PT). We hence have

∂ Ĵ

∂θ
φ
j

=
∂ Ĵ

∂φ(PT)

∂φ(PT)

∂θ
φ
j

, (A9)

where ∂ Ĵ
∂φi(PT)

= ∂F (φ(PT))
∂φi(PT)

is adaptively updated.
When using finite difference gradient (approximition-based), we have

∂ Ĵ

∂θ
φ
j

=
∂ Ĵ

∂φ(PT)

∂φ(PT)

∂θ
φ
j

+ ∑
k

∂ Ĵ
∂φ(Gk ◦ PT)

∂φ(Gk ◦ PT)

∂θ
φ
j

, (A10)

where

∂ Ĵ
∂φi(PT)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
− 1

μ1
· · · − 1

μ4
...

...
0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A11)

and

∂ Ĵ
∂φi(Gk ◦ PT)

= (amn), amn =

{
1

μk
, if m = i, n = k;

0, otherwise.
(A12)

As can be seen from the above formulae, ∂ Ĵ
∂φi(PT)

in the finite difference is fixed while
the learning function is updated adaptively in the multi-layer perception. Thus, the
learning-based solution may be more easily coupled with the feature extractor φ(PT) than
the approximation-based one.
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Abstract: Despite significant progress in object detection tasks, remote sensing image target detection
is still challenging owing to complex backgrounds, large differences in target sizes, and uneven
distribution of rotating objects. In this study, we consider model accuracy, inference speed, and
detection of objects at any angle. We also propose a RepVGG-YOLO network using an improved
RepVGG model as the backbone feature extraction network, which performs the initial feature
extraction from the input image and considers network training accuracy and inference speed. We
use an improved feature pyramid network (FPN) and path aggregation network (PANet) to reprocess
feature output by the backbone network. The FPN and PANet module integrates feature maps of
different layers, combines context information on multiple scales, accumulates multiple features, and
strengthens feature information extraction. Finally, to maximize the detection accuracy of objects
of all sizes, we use four target detection scales at the network output to enhance feature extraction
from small remote sensing target pixels. To solve the angle problem of any object, we improved the
loss function for classification using circular smooth label technology, turning the angle regression
problem into a classification problem, and increasing the detection accuracy of objects at any angle.
We conducted experiments on two public datasets, DOTA and HRSC2016. Our results show the
proposed method performs better than previous methods.

Keywords: image target detection; deep learning; multiple scales; any angle object; remote sensing
of small objects

1. Introduction

Target detection is a basic task in computer vision and helps estimate the category
of objects in a scene and mark their locations. The rapid deployment of airborne and
spaceborne sensors has made ultra-high-resolution aerial images common. However,
object detection in remote sensing images remains a challenging task. Research on remote
sensing images has crucial applications in the military, disaster control, environmental
management, and transportation planning [1–4]. Therefore, it has attracted significant
attention from researchers in recent years.

Object detection in aerial images has become a prevalent topic in computer vision [5–7].
In the past few years, machine learning methods have been successfully applied for remote
sensing target detection [8–10]. David et al. [8] used the Defense Science and Technology
Organization Analysts’ Detection Support System, which is a system developed particularly
for ship detection in remote sensing images. Wang et al. [9] proposed an intensity-space
domain constant false alarm rate ship detector. Leng et al. [10] presented a highly adaptive
ship detection scheme for spaceborne synthetic-aperture radar (SAR) imagery.

Although these remote sensing target detection methods based on machine learning
have achieved good results, the missed detection rate remains very high in complex ground
environments. Deep neural networks, particularly the convolutional neural network
(CNN) class, significantly improve the detection of objects in natural images owing to
the advantages in robust feature extraction using large-scale datasets. In recent years,
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systems employing the powerful feature learning capabilities of CNN have demonstrated
remarkable success in various visual tasks such as classification [11,12], segmentation [13],
tracking [14], and detection [15–17]. CNN-based target detectors can be divided into
two categories: single-stage and two-stage target detection networks. Single-stage target
detection networks discussed in the literature [18–21] include a you only look once (YOLO)
detector optimized end-to-end, which was proposed by Joseph et al. [18,19]. Liu et al. [20]
presented a method for detecting objects in images using a deep neural network single-shot
detector (SSD). Lin et al. [21] designed and trained a simple dense object detector, RetinaNet,
to evaluate the effectiveness of the focal loss. The works of [22–27], describing two-stage
target detection networks, include the proposal by Girshick et al. [22] of a simple and
scalable detection algorithm that combines the region proposal network (RPN) with a CNN
(R-CNN). Subsequently, Girshick et al. [23] developed a fast region-based convolutional
network (fast R-CNN) to efficiently classify targets and improve the training speed and
detection accuracy of the network. Ren et al. [24] merged the convolutional features of
RPN and fast R-CNN into a neural network with an attention mechanism (faster R-CNN).
Dai et al. [25] proposed a region-based fully convolutional network (R-FCN), and Lin
et al. [26] proposed a top-down structure, feature pyramid network (FPN), with horizontal
connections, which considerably improved the accuracy of target detection.

General object detection methods, generally based on horizontal bounding boxes
(HBBs), have proven quite successful in natural scenes. Recently, HBB-based methods
have also been widely used for target detection in aerial images [27–31]. Li et al. [27]
proposed a weakly supervised deep learning method that uses separate scene category
information and mutual prompts between scene pairs to fully train deep networks. Ming
et al. [28] proposed a deep learning method for remote sensing image object detection
using a polarized attention module and a dynamic anchor learning strategy. Pang et al. [29]
proposed a self-enhanced convolutional neural network, rotational region CNN (R2-CNN),
based on the content of remotely sensed regions. Han et al. [30] used a feature alignment
module and orientation detection module to form a single-shot alignment network (S2A-
Net) for target detection in remote sensing images. Deng et al. [31] redesigned the feature
extractor using cascaded rectified linear unit and inception modules, used two detection
networks with different functions, and proposed a new target detection method.

Most targets in remote sensing images have the characteristics of arbitrary directional-
ity, high aspect ratio, and dense distribution. Therefore, the HBB-based model may cause
severe overlap and noise. In subsequent work, an oriented bounding box (OBB) was used
to process rotating remote sensing targets [32–40], enabling more accurate target capture
and introducing considerably less background noise. Feng et al. [32] proposed a robust
Student’s t-distribution-aided one-stage orientation detector. Ding et al. [34] proposed an
RoI transformer that transforms horizontal regions of interest into rotating regions of inter-
est. Azimi et al. [36] minimized the joint horizontal and OBB loss functions. Liu et al. [37]
applied a newly defined rotatable bounding box (RBox) to develop a method to detect
objects at any angle. Yang et al. [39] proposed a rotating dense feature pyramid framework
(R-DFPN), and Yang et al. [40] designed a circular smooth label (CSL) technology to analyze
the angle of rotating objects.

To improve feature extraction, a few studies have integrated the attention mechanism
into their network model [41–43]. Chen et al. [41] proposed a multi-scale spatial and
channel attention mechanism remote sensing target detector, and Cui et al. [42] proposed
using a dense attention pyramid network to detect multi-sized ships in SAR images. Zhang
et al. [43] used attention-modulated features and context information to develop a novel
object detection network (CAD-Net).

A few studies have focused on the effect of context information in table checks, extract-
ing different proportions of context information as well as deep low-resolution high-level
and high-resolution low-level semantic features [44–49]. Zhu et al. [44] constructed a target
detection problem as an inference in a Markov random field. Gidaris et al. [45] proposed an
object detection system that relies on a multi-region deep CNN. Zhang et al. [46] proposed
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a hierarchical target detector with deep environmental characteristics. Bell et al. [47] used
a spatial recurrent neural network (S-RNN) to integrate contextual information outside
the region of interest, proposing an object detector that uses information both inside and
outside the target. Marcu et al. [48] proposed a dual-stream deep neural network model
using two independent paths to process local and global information inference. Kang
et al. [49] proposed a multi-layer neural network that tends to merge based on context.

In this article, we propose the RepVGG-YOLO model to detect targets in remote
sensing images. RepVGG-YOLO uses the improved RepVGG module as the backbone
feature extraction network (Backbone) of the model; spatial pyramid pooling (SPP), multi-
layer FPN, and path aggregation network (PANet) as the enhanced feature extraction
networks; and CSL to correct the rotating angle of objects. In this model, we increased
the number of target detection scales to four. The main contributions of this article are as
follows:

1. We used the improved RepVGG as the backbone feature extraction module. This
module employs different networks in the training and inference parts, while consid-
ering the training accuracy and inference speed. The module uses a single-channel
architecture, which has high speed, high parallelism, good flexibility, and memory-
saving features. It provides a research foundation for the deployment of models on
hardware systems.

2. We used the combined FPN and PANet and the top-down and bottom-up feature
pyramid structures to accumulate low-level and process high-level features. Simul-
taneously, we used the network detection scales to enhance the network’s ability
to detect small remote sensing targets. The pixel feature extraction portion ensures
accurate detection of objects of all sizes.

3. We used CSL to determine the angle of rotating objects, thereby turning the angle
regression problem into a classification problem and more accurately detecting objects
at any angle.

4. Compared with seven other recent remote sensing target detection networks, the
proposed RepVGG-YOLO network demonstrated the best performance on two public
datasets.

The rest of this paper is arranged as follows. Section 2 introduces the proposed model
for remote sensing image target detection. Section 3 describes the experimental validation
and discusses the results. Section 4 summarizes the study.

2. Materials and Methods

In this section, we first introduce the proposed network framework for target detection
in remote sensing images. Next, we present a formula derivation of the Backbone network
and multi-scale pyramid structure (Neck) for extracting and processing target features.
Then, we discuss the prediction structure of the proposed model and, finally, we detail the
loss function of the model.

2.1. Overview of the Proposed Model

We first perform operations such as random scaling, random cropping, and random
arrangement of the original dataset images, followed by data enhancement on the data to
balance the size and target sample ratio and segmentation of the image with overlapping
areas to retain the small target edge information. Simultaneously, we crop the original
data of the different sized segments into pictures of 608 × 608 pixels, which serve as the
input to the model. As shown in Figure 1, we first extract the low-level general features
from the processed image through the Backbone network. To detect targets of different
scales and categories, Backbone provides several combinations of receptive field size and
center step length. Then, we select the corresponding feature maps from different parts
of the Backbone input for Neck. Feature maps of varying sizes {152 × 152, 76 × 76, 38 ×
38, 19 × 19} are selected from the hierarchical feature maps to detect targets of different
sizes. By coupling the feature maps of different receptive field sizes, Neck enhances the
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network expressivity and distributes the multi-scale learning tasks to multiple networks.
The Backbone aligns the feature maps by width once, and directly outputs the feature maps
of the same width to the head network. Finally, we integrate the feature information and
convert it into detection predictions. We elaborate on these parts in the following sections.

 

Figure 1. Overall network framework model.

2.2. Backbone Feature Extraction Network

The Backbone network is a reference network for many computer tasks, often used to
extract low-level general features, such as color, shape, and texture. It can provide several
combinations of receptive field size and center step length to meet the requirements of
different scales and categories in target detection. ResNet and MobileNet comprise two
networks often used in various computer-vision tasks. The former can realize a combination
of different resolution features and extract a robust feature representation. The latter, with
its faster inference speed and fewer network parameters, finds use in embedded devices
with low computing power. The RepVGG [50] model has improved speed and accuracy
compared with Resnet34, ResNet50, ResNet101, ResNet152, and VGG-16. While MobileNet
and VGG have improved inference speed compared with models such as VGG-16, they
have lower accuracy. Therefore, considering both accuracy and inference speed, we use the
improved RepVGG as the backbone network in this study. The network improvements
arise from VGG network enhancements: identity and residual branches are added to the
VGG network block to utilize the advantages of the ResNet network. On the basis of the
RepVGG-B [50] network, we add a Block_A module at the end of the network to enhance
feature extraction and, at the same time, pass the feature map input of a specific shape to
the subsequent network. Figure 2 shows the execution process of the backbone feature
extraction network. The two-dimensional convolution in the Block_A module has a step
size of 2; thus, the feature map size will be halved after the Block_A module. Similarly,
because the two-dimensional convolution in the Block_B module has a step size of 1, the
size of the feature map remains unchanged after the Block_B module.
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Figure 2. Backbone feature extraction network.

For the input picture size of 608 × 608, Figure 2 shows the shape of the output
feature map of each layer. After each continuous Block_B module (Block_B_3, Block_B_5,
Block_B_15), a branch is output, and the high-level features are passed to the subsequent
network for feature fusion, thereby enhancing the feature extraction capability of the model.
Finally, the feature map with the shape {19, 19, 512} is passed to strengthen the feature
extraction network.

In addition, different network architectures are used in the training and inference
stages while considering training accuracy and inference speed. Figure 3 shows the training
and structural re-parameterization network architectures.

Figure 3. (a) Block_A and Block_B modules in the training phase; (b) structural re-parameterization
of Block_A and Block_B.

Figure 3a shows the training network of the RepVGG. The network uses two branch
structures: the residual structure that contains only Block_A of the Conv1*1 residual branch,
the residual structure of Conv1*1, and the identity residual; and structure Block_B. Because
the training network has multiple gradient flow paths, a deeper network model can not
only handle the problem of gradient disappearance in the deep layer of the network, but
also obtain a more robust feature representation in the deep layer.

Figure 3b shows that RepVGG converts the multi-channel training model to a single-
channel test model. To improve the inference speed, the convolutional and batch nor-
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malization (BN) layers are merged. Equations (1) and (2) express the formulas for the
convolutional and BN layers, respectively.

Conv(x) = W(x) + b (1)

BN(x) = γ∗ (x−mean)
σ

+ β (2)

Replacing the argument in the BN layer equation with the convolution layer formula
yields the following:

BN(Conv(x)) = γ∗W(x)
σ + γ∗(b−mean)

σ + β

= γ∗W(x)
σ + γ∗μ

σ + β
(3)

Here, μ, σ, γ, and β represent the cumulative average, standard deviation, scaling
factor, and deviation, respectively. We use Wk ε RC2×C1×k×k to represent the input C1, the
output C2, and the convolution kernel of the convolution of k. With M1 ε RN×C1×H1×W1

and M2 ε RN×C2×H2×W2 denoting the input and output, respectively, the BN layer of the
fusion convolution can be simplified to yield the following:

W ′
i,:,:,: =

γi
σi

Wi,:,:,:

b′i = −μiγi
σi

Wi,:,:,: + βi
BN(M ∗W,μ,σ,γ,β):, i, :,: = (M ∗W ′ ):,i,:,: + b′i

⎫⎪⎬⎪⎭ (4)

where i ranges in the interval from 1 to C2; * represents the convolution operation; and
W ′ and b′i the weight and bias of the convolution after fusion, respectively. Let C1 = C2,
H1 = H2, and W1 = W2; then, the output can be expressed as follows:

M2 = BN
(

M1 × W3 , μ3,σ3,γ3,β3
)

+ BN
(

M1 ×W1 , μ1,σ1,γ1,β1
)

+ BN
(

M1 , μ0,σ0,γ0,β0
) (5)

where μk, σk, γk, and βk represent the BN parameters obtained after the k × k convolution
and μ0,σ0,γ0, and β0 represent the parameters of the identity branch. For the output of
three different scales, we adopt the following strategy for fusion. We can regard the identity
branch structure as a 1 × 1 convolution; for the Conv1*1 and the identity branches, the 1 ×
1 convolution kernel can be filled and converted into a 3 × 3 convolution kernel; finally,
we add the three 3 × 3 convolution kernels from the three output scales to obtain the final
convolution kernel, and add the three deviations to obtain the final deviation. The Block_B
module can be represented by Equation (5); further, because the Block_A module does
not contain the identity branch structure, it can be represented by the first two items in
Equation (5).

2.3. Strengthening the Feature Extraction Network (Neck)

In the target detection task, to make the model learn diverse features and improve
detection performance, the Neck network can reprocess the features extracted by the
Backbone, disperse the learning of different scales applied to the multiple levels of feature
maps, and couple the feature maps with different receptive field sizes. In this study, we
use SPP [51], improved FPN [26], and PANet [52] structure to extract the features. Figure 4
shows the detailed execution process of the model. The SPP structure uses pooling methods
of different scales to perform multi-scale feature fusion, which can improve the receptive
field of the model, significantly increase the receiving range of the main features, and
more effectively separate the most important context features, thereby avoiding problems
such as image distortion caused by cropping and zooming the image area. The computer-
based learning (CBL) module comprises a two-dimensional convolution process, BN, and
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Leaky_ReLU activation function. The input of the CSP2_1 module is divided into two parts.
One part goes through two CBL modules and then through a two-dimensional convolution;
the other part directly undergoes a two-dimensional convolution operation. Finally, the
feature maps obtained from the two parts are spliced, then put through the BN layer and
Leaky_ReLU activation function, and output after the CBL module.

Figure 4. Strengthening the feature extraction network.

Figure 4 shows the shape of the feature map of the key parts of the entire network.
Note that the light-colored CBL module (the three detection scale output parts at the
bottom right) has a two-bit convolution step size of 2, whereas the other two-dimensional
convolutions have a step size of 1. FPN is top-down, and transfers and integrates high-level
feature information through up-sampling. FPN also transfers high-level strong semantic
features to enhance the entire pyramid, but only enhances semantic information, not
positioning information. We also added a bottom-up feature pyramid behind the FPN layer
that accumulates low-level and processed high-level features. Because low-level features
can provide more accurate location information, the additional layer creates a deeper
feature pyramid, adding the ability to aggregate different detection layers from different
backbone layers, which enhances the feature extraction performance of the network.

2.4. Target Boundary Processing at Any Angle

Because remote sensing images contain many complex and dense rotating targets, we
need to correct these rotating objects for more accurate detection of objects at any angle.
Common angle regression methods include the open source computer-vision, long edge,
and ordered quadrilateral definition methods. The predictions of these methods often
exceed the initial set range. Because the target parameters of learning are periodic, they
can be at the boundary of periodic changes. This condition can cause a sudden increase in
the loss value that increases the difficulty of learning by the network, leading to boundary
problems. We use circular smooth label (CSL) [40] to handle the angle problem, as shown
in Figure 5.

533



Remote Sens. 2021, 13, 2171

 
Figure 5. Circular smooth label.

Equation (6) expresses CSL, where g(x) is the window function.

CSL(x) =
{

g(x) , θ − r < x < θ + r
0, otherwise

(6)

where θ represents the angle passed by the longest side when the x-axis rotates clockwise,
and r represents the window radius. We convert angle prediction from a regression problem
to a classification problem and place the entire defined angle range into one category. We
choose a Gaussian function for the window function to measure the angular distance
between the predicted and ground truth labels. The predicted value loss becomes smaller
the closer it comes to the true value within a certain range. Introducing periodicity, i.e.,
the two degrees, 89 and −90, become neighbors, solves the problem of angular periodicity.
Using discrete rather than continuous angle predictions avoids boundary problems.

2.5. Target Prediction Network

After subjecting the image to feature extraction twice, we integrate the feature in-
formation and transform it into a prediction, as shown in Figure 6. We use the k-means
clustering algorithm to generate 12 prior boxes with different scales according to the labels
of the training set. Because remote sensing target detection involves detecting small targets,
to enhance the feature extraction of small pixel targets, we use four detection scales with
sizes of 19 × 19, 38 × 38, 76 × 76, and 152 × 152.

Taking the 19 × 19 detection scale as an example, we divide the input image into
multiple 19 × 19 grids. Each grid point is preset with three boxes of corresponding scales.
When these grids enclose an object, we use the corresponding grid for object detection.
Finally, the shape of the feature map output by the detection feature layer is {19, 19,
603}. The third quantity implies that each of the three anchors in the corresponding grid
consists of 201 dimension predictions. The width and height of the box and the coordinates
of the center point (x_offset, y_offset, h, w), confidence, 16 classification results, and
180 classification angles (described in Section 2.4). Based on the set loss function (described
in Section 2.6.3), iterative calculations for the backpropagation operation are performed and
the position and angle of the prediction box are continually adjusted and, finally, to attain
the highest confidence test results, non-maximum suppression screening is applied [53].
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Figure 6. Target prediction network.

2.6. Loss Function

In this section, we describe the bounding box regression loss function, the confidence
loss function with weight coefficients, and the classification loss function with increased
angle calculation.

2.6.1. Bounding Box Border Regression Loss

The most commonly used indicator in target detection, often used to calculate the
bounding box regression loss, the intersection over union (IoU) [54] value, is defined as
the ratio of the intersection and union of the areas of two rectangular boxes. Equation (7)
shows the IoU and the bounding box regression loss.

IoU =
|B∩ Bgt|
|B∪ Bgt|

LOSSIoU = 1− IoU

⎫⎬⎭ (7)

where B represents the predicted bounding box, Bgt represents the real bounding box,∣∣B∩ Bgt∣∣ represents the B and Bgt intersection area, and
∣∣B∪ Bgt∣∣ represents the B and

Bgt union area. The following problems arise in calculating the loss function defined in
Equation (7):

1. When B and Bgt do not intersect, IoU = 0, the distance between B and Bgt cannot be
expressed, and the loss function LOSS_IoU cannot be directed or optimized.

2. When the size of B remains the same in different situations, the IoU values obtained
do not change, making it impossible to distinguish different intersections of B and Bgt.

To overcome these problems, the generalized IoU (GIoU) [55] was proposed in 2019,
with the formulation shown below:

GIoU = IoU − |C (B∪ Bgt)|
|C|

LOSSGIoU = 1− GIoU

}
, (8)
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where |C| represents the area of the smallest rectangular box containing B and Bgt, and∣∣C \(B∪ Bgt)∣∣ represents the area of the C rectangle excluding
∣∣B∪ Bgt∣∣. The calculation

of the bounding box frame regression loss uses the GIoU. Compared with using the IoU,
using the GIoU improves the measurement method of the intersection scale and alleviates
the above-mentioned problems to a certain extent, but still does not consider the situation
when B is inside Bgt. Furthermore, when the size of B remains the same and the position
changes, the GIoU value also remains the same, and the model cannot be optimized.

In response to this situation, distance-IoU (DIoU) [56] was proposed in 2020. Based
on IoU and GIoU, and incorporating the center point of the bounding box, DIoU can be
expressed as follows:

DIoU = 1− IoU +
ρ2(B, Bgt)

c2

LOSSDIoU = 1− DIoU

}
, (9)

where ρ2(B, Bgt) represents the Euclidean distance between the center points of B and Bgt,
and c represents the diagonal distance of the smallest rectangle that can cover B and Bgt

simultaneously. LOSSDIoU can be minimized by calculating the distance between B and
Bgt and using the distance between the center points of B and Bgt as a penalty term, which
improves the convergence speed.

Using both GIoU and DIoU, recalculating the aspect ratio of B and Bgt, and increasing
the impact factor av, the complete IoU (CIoU) [56] was proposed, as expressed below:

CIoU = IoU − ρ2(B, Bgt)
c2 − av

a = v
1−IOU+v

v = 4
π2

(
arc tan wgt

hgt − arc tan w
h

)2

LOSSCIoU = 1− IoU +
ρ2(B, Bgt)

c2 + av

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10)

where hgt and wgt are the length and width of Bgt, respectively; h and w are the length and
width of B, respectively; a is the weight coefficient; and v is the distance between the aspect
ratios of B and Bgt. We use LOSSCIoU as the bounding box border regression loss function,
which brings the predicted bounding box more in line with the real bounding box, and
improves the model convergence speed, regression accuracy, and detection performance.

2.6.2. Confidence Loss Function

We use cross-entropy to calculate the object confidence loss. Regardless of whether
there is an object to be detected in the grid, the confidence error must be calculated. Because
only a small part of the input image may contain objects to be detected, we add a weight
coefficient (λno) to constrain the confidence loss for the image area that does not contain
the target object, thereby reducing the number of negative samples. The object confidence
loss can be expressed as follows:

LOSSConf = −∑S2

i=0 ∑B
j=0 Iij

(
Ĉi

j log Ci
j +

(
1− Ĉi

j) log
(
1− Ci

j))RIou

+
(
1− Iij

)(
Ĉi log Ci +

(
1− Ĉi

j) log(1− Ci)
)
λno.

(11)

where S is the number of grids in the network output layer and B is the number of anchors.
I j
i indicates whether the j-th anchor in the i-th grid can detect this object (the detected

value is 1 and the undetected value is 0), and the value of Ĉi
j is determined by whether

the bounding box of the grid is responsible for predicting an object (if it is responsible for
prediction, the value of Ĉi

j is 1, otherwise it is 0). Ci
j is the predicted value after parameter

normalization (the value lies between 0 and 1). RIou represents the IoU of the rotating
bounding box.
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The complete decoupling of the correlation between the prediction angle and the
prediction confidence means the confidence loss is not only related to the frame parameters,
but also to the rotation angle. Table 1 summarizes the recalculation of the IoU [35] of the
rotating bounding box as the confidence loss coefficient, along with its pseudocode.

Table 1. Rotating intersection over union (IoU) calculation pseudocode.

Algorithm 1 RIoU computation

1: Input: Rectangles R1; R2; :::; RN
2: Output: RIoU between rectangle pairs RIoU
3: for each pair <Ri; Rj> (i < j) do
4: Point set PSet ϕ
5: Add intersection points of Ri and Rj to PSet
6: Add the vertices of Ri inside Rj to PSet
7: Add the vertices of Rj inside Ri to PSet
8: Sort PSet into anticlockwise order
9: Compute intersection I of PSet by triangulation
10: RIoU[i; j] Area(I)

Area(Ri)+ Area(Rj)− Area(I)
11: end for

Figure 7 shows the geometric principle of rotating IoU calculations. We divide the
overlapping part into multiple triangles with the same vertex, calculate the area of each
triangle separately, and finally add the calculated areas to obtain the area of the overlapping
polygons. The detailed calculation principle is as follows. Given a set of rotating rectangles
R1, R2, . . . , RN, calculate the RIoU of each pair of <Ri, Rj>. First, the intersection set,
PSet, of Ri and Rj (the intersection of two rectangles and the vertices of one rectangle in
the other rectangle form a set, PSet, corresponding to rows 4–7 of Table 1); then, calculate
the intersection area, I, of PSet and, finally, calculate the RIoU according to the formula
in row 10 of Table 1 (combine the points generated by the PSet into a polygon, divide the
polygon into multiple triangles, calculate the sum of the area of the multiple triangles as
the polygon area, and finally calculate the polygon area and remove the rotation of the
polygon area; corresponding to rows 8–10 of Table 1).

Figure 7. Intersection over union (IoU) calculation for rotating intersecting rectangles: (a) intersecting graph is a quadrilat-
eral, (b) intersecting graph is a hexagon, and (c) intersecting graph is an octagon.

2.6.3. Classification Loss Function

Because we converted the angle calculation from a regression problem into a clas-
sification problem, we calculate both the category and angle loss when calculating the
classification loss function. Here, we use the cross-entropy loss function for the calculation.
When the j-th anchor box of the i-th grid is responsible for a real target, we calculate
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the classification loss function for the bounding box generated by this anchor box, using
Equation (12).

LOSSClass = −
S2

∑
i=0

B
∑

j=0
Iij ∑

c∈Class, θ∈(0,180]

(
P̂i(c + θ) log Pi(c + θ)

+
(
1− P̂i(c + θ)

)
log(1− Pi(c + θ))

) (12)

where c belongs to the target classification category; θ belongs to the angle processed by the
CSL [40] algorithm; S is the number of grids in the network output layer; B is the number
of anchors; and I j

i indicates whether the j-th anchor in the i-th grid can detect this object
(the detected value is 1 and the undetected value is 0).

The final total loss function equals the sum of the three loss functions, as shown in
Equation (13). Furthermore, the three loss functions have the same effect on the total loss
function; that is, the reduction of any one of the loss functions will lead to the optimization
of the total loss function.

LOSS = LOSSCIoU + LOSSConf + LOSSClass (13)

3. Experiments, Results, and Discussion

3.1. Introduction to DOTA and HRSC2016 Datasets
3.1.1. DOTA Dataset

The DOTA dataset [57] comprises 2806 aerial images obtained from different sensors
and platforms, including 15 classification categories: plane (PL), baseball diamond (BD),
bridge (BR), ground track (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis
court (TC), basketball court (BC), oil storage tank (ST), football field (SBF), roundabout
(RA), airport and helipad (HA), swimming pool (SP), and helicopter (HC). The image data
can be divided into 1411 training sets, 937 test sets, and 458 verification sets. The image
size ranges between 800 × 800 and 4000 × 4000 pixels. Dataset labeling consisted of a
horizontal and a directional bounding box for a total of 188,282 instances.

3.1.2. HRSC2016 Dataset

The HRSC2016 dataset [58] comes from six different ports, with a total of 1061 remote
sensing pictures. Examples of detection objects include ships on the sea and ships docked
on the shore. The images can be divided into 436 training sets (1207 labeled examples in
total), 444 test sets (1228 labeled examples in total), and 181 validation sets (541 labeled
examples in total). The image size ranges from 300 × 300 to 1500 × 900 pixels.

3.2. Image Preprocessing and Parameter Optimization

In this section, we describe image preprocessing, experimental parameter settings,
and experimental evaluation standards.

3.2.1. Image Preprocessing

Owing to the complex background of remote sensing target detection [59], large
changes in the target scale [60], special viewing angle [61–63], unbalanced categories [31],
and so on, we preprocess the original data. Directly processing the original high-resolution
remote sensing images not only increases equipment requirements, but also significantly
reduces detection accuracy. We cut the entire picture and send it to the proposed model
training module. During the test, we cut the test pictures into pictures of the same size as
those in the training set, and after the test, we splice the predicted results one by one to
obtain the total result. To ensure the loss of small target information at the cutting edge
during the cutting process, we allow the cut image to have a certain proportion of overlap
area (in this study, we set the overlap area to 30%). If the size of the original image is smaller
than the size of the cut image, we perform an edge pixel filling operation on the original
image to make its size reach the training size. In the remote sensing dataset (e.g., DOTA),
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the sample target size changes drastically, and small targets can be densely distributed
and large and small targets can be considerably unevenly distributed (the number of
small targets is much larger than the number of large targets). In this regard, we use the
Mosaic data enhancement method to splice the pictures in random zooming, cropping, and
arrangement, which substantially enriches the dataset and makes the distribution of targets
of different sizes more uniform. Mixed multiple images can have different semantics.
Enhanced network robustness occurs when the picture information allows the detector to
detect targets beyond the conventional context.

3.2.2. Experimental Parameter Settings

We evaluated the performance of the proposed model on two NVIDIA GeForce RTX
2080 Ti GPUs with 11 GB of RAM. We used the PyTorch 1.7 deep learning framework and
Python 3.7 compiler run on Windows 10. To optimize the network, we used stochastic
gradient descent with momentum, setting the learning rate momentum and weight decay
coefficients to 0.857 and 0.00005, respectively; the iterative learning rate for the first 50 K to
0.001; and the later iterative learning rate to 0.0001. The CIoU loss and classification loss
coefficients were set to 0.0337 and 0.313, respectively. The weight coefficient, λno, of the
confidence loss function was set to 0.4. The batch size was set to eight, and the epoch was
set to 500.

3.2.3. Evaluation Criteria

To verify the performance of the proposed method, two broad criteria were used to
evaluate the test results [64]: precision and recall. The accuracy rate indicates the detection
rate of the predicted true-positive samples, and the recall rate indicates the rate of correctly
identified true-positive samples. Accuracy and recall can be expressed as follows.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

TP represents a real positive sample, TN represents a real negative sample, FP is a false
positive sample, and FN is a false negative sample. This study adopts the mean average
precision (mAP) [45–47] to evaluate all methods, which can be expressed as follows:

mAP =
∑Nclass

i=1

∫
Pi(Ri)dRi

Nclass
(16)

where Pi and Ri represent the accuracy and recall rate of the i-th class of classified objects,
respectively. Nclass represents the total number of detected objects in the dataset.

3.3. Experimental Results

Figure 8 shows the precision–recall curve of the DOTA detection object category. We
focus on the interval between 0.6 and 0.9, where the recall rate is concentrated. Except for
BR, when the recall value is greater than 0.6, the decline in the curves of the other types
of objects increases. The BD, PL, and TC curves all drop sharply when the recall value is
greater than 0.8. The results show that the overall performance of the proposed method is
stable and has good detection effectiveness.
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To prove that the proposed method has better performance, we compared the pro-
posed method (RepVGG-YOLO NET) to seven other recent methods: SSD [20], joint train-
ing method for target detection and classification (YOLOV2) [19], rotation dense feature
pyramid network (R-DFPN) [39], toward real-time object detection with RPN (FR-C) [25],
joint image cascade and functional pyramid network and multi-size convolution kernel to
extract multi-scale strong and weak semantic feature framework (ICN) [36], fine FPN and
multi-layer attention network (RADET) [65], and end-to-end refined single-stage rotation
detector (R3Det) [66]. Table 2 summarizes the quantitative comparison results of the eight
methods on the DOTA dataset. The table indicates that the proposed model has achieved
the most advanced results, achieving relatively stable detection results in all categories,
with an mAP of 74.13%. SSD and YOLOV2 networks have poor detection effectiveness
and relatively low detection effectiveness on small targets; their poor feature extraction
network performance needs improvement. The FR-C, ICN, and RADET network models
achieved good detection results.

Compared with other methods, owing to the increased processing of targets at any
angle and the use of four target detection scales, the proposed model achieved good
classification results for small objects with complex backgrounds and dense distributions
(for example, SV and SH achieved 71.02% and 78.41% mAP values). Compared with the
suboptimal method (i.e., R3Det), the suggested method achieved a 1.32% better mAP value.
In addition, using the FPN and PANet structures to accumulate high-level and low-level
features helped the improvement in the detection of categories with large differences in the
target scale of the same image (for example, BR and LV on the same image), with BR and
LV achieving classification results of 52.34% and 76.27%, respectively. We also obtained
relatively stable mAP values in single-category detection (PL, BR, SV, LV, TC, BC, SBF, RA,
SP, and HC achieved the highest mAP values).

Table 3 summarizes the proposed model and five other methods (i.e., rotation-sensitive
regression for oriented scene text detection (RRD) [67], rotated region-based CNN for ship
detection (BL2 and RC2) [68], refined single-stage detector with feature refinement for
rotating object (R3 DET) [66], and rotated region proposal and discrimination networks
(R2PN) [69]). Table 3 summarizes quantitative comparison results on the HRSC2016 dataset.
The results demonstrate that the proposed method achieves an mAP detection result of
91.54, which is better than the other methods evaluated on this dataset. Compared with
the suboptimal method (R3Det), the mAP for the proposed model was better by 2.21%.
Good results were achieved for the detection of ship instances with large aspect ratios and
rotation directions. The proposed method achieved 22 frames per second (FPS), which is
more than that achieved by the suboptimal method (R3Det).

Figure 9 shows the partial visualization results of the proposed method on the DOTA
and HRSC2016 datasets. The first three rows are the visualization results of the DOTA dataset,
and the last row shows the visualization results of the HRSC2016 dataset. Figure 9 shows that
the proposed model handles well the noise problem in a complex environment, and has a
better detection effectiveness on densely distributed small objects. Good test results were also
obtained for some samples with drastic size changes and special viewing angles.

Table 2. Comparison of the results with the other seven latest methods on the DOTA dataset (highest performance is in
boldface).

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP (%)

SSD 57.85 32.79 16.14 18.67 0.05 36.93 24.74 81.16 25.10 47.47 11.22 31.53 14.12 9.09 0.00 29.86
YOLOV2 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61 39.20
R-DFPN 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.1 51.32 35.88 57.94

FR-C 80.2 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85 60.46
ICN 81.36 74.3 47.7 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

RADET 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09
R3Det 89.24 80.81 51.11 65.62 70.67 76.03 78.32 90.83 84.89 84.42 65.10 57.18 68.1 68.98 60.88 72.81

proposed 90.27 79.34 52.34 64.35 71.02 76.27 77.41 91.04 86.21 84.17 66.82 63.07 67.23 69.75 62.07 74.13
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Table 3. Comparison of the results with five other recent methods on the HRSC2016 dataset.

Method mAP (%) FPS

BL2 69.6 –
RC2 75.7 –

R2PN 79.6 –
RRD 84.3 –

R3Det 89.33 10
proposed 91.54 22

 
Figure 8. Precision-recall curve of the DOTA dataset.

 

 

Figure 9. Cont.
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Figure 9. Visualization results of the DOTA dataset and HRSC2016 dataset. The first three groupings of images are part of
the test results of the DOTA dataset, whereas the last grouping is part of the test results of the HRSC2016 dataset.

3.4. Ablation Study

We conducted a series of comparative experiments on the DOTA data set, as shown
in Table 4. We considered the influence of different combinations of the five factors of
backbone network, bounding box border regression loss (BBRL), data enhancement (DE),
multi-scale settings, and CSL on the final experimental results. We used mAP and FPS as
evaluation criteria to verify the effectiveness of our method.

Table 4. Ablation study on components on the DOTA dataset.

N Proposed Backbone BBRL DE Multi Scale CSL mAP FPS

1 � RepVGG-A DIou 66.98 25
2 � RepVGG-A CIou 67.19 25
3 � RepVGG-B DIou 68.03 23
4 � RepVGG-B CIou 69.98 23
5 � RepVGG-B CIou � 71.03 23
6 � RepVGG-B CIou � � 72.25 22
7 � RepVGG-B CIou � � � 74.13 22

From Table 4, the first row is the baseline, the improved RepVGG-A is used as the
backbone, and the DIou is used as the BBRL. The backbone network is a reference network
for many computer tasks. We set the first and third groups, and the second combination
and the fourth group of experiments to verify the backbone network. The results show
that RepVGG-B has more complex network parameters and is deeper than RepVGG-A.
Consequently, using the improved RepVGG-B as the backbone (groups 3 and 4), mAP
increased by 1.05% and 2.79%, respectively. Choosing an appropriate loss function can
improve the convergence speed and prediction accuracy of the model. Here, we set the first
group, the second group, and the third combination and the fourth group of experiments to
analyze the BBRL. Because CIou recalculated the predicted bounding box, the aspect ratio
of the bounding box and the real bounding box increased, and the influence factor increased
to align the predicted bounding box with the actual box. Under the same conditions, better
results were obtained when CIou was used as the BBRL. The objective of DE is to increase
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the number and diversity of samples, which can significantly improve the problem of
sample imbalance. According to the experimental results of the fourth and fifth groups,
mAP increased by 1.06% after the image was processed by cropping, zooming, and random
arrangement. Because different detection scales have different sensitivities to objects of
different scales, there are many detection targets with large differences in size in remote
sensing images. We can observe from the experimental results of the fifth and sixth groups
that mAP improved by 1.21% when four detection scales were used. The increased number
of detection scales enhances the detection of small target objects. Because there are many
dense rotating targets in remote sensing images, we assume that the bounding box can be
predicted more accurately. Next, we set up the sixth and seventh groups of experiments.
The results show that, after using CSL, we can change the angle prediction from a regression
problem into a classification problem, and the periodicity problem of the angle was solved.
mAP improved by 1.88% to 74.13%. We finally chose the improved RepVGG-B model as
the backbone network with CIou as the BBRL loss function, using DE, Multi scale, and CSL
simultaneously, and finally obtaining RepVGG-YOLO NET.

4. Conclusions

In this article, we introduce a method for detecting targets from arbitrary-angle geo-
graphic remote sensing. A RepVGG-YOLO model is proposed, which uses an improved
RepVGG module as the backbone feature extraction network (Backbone) of the model,
and uses SPP, feature pyramid network (FPN), and path aggregation network (PANet)
as the enhanced feature extraction networks. The model combines context information
on multiple scales, accumulates multi-layer features, and strengthens feature information
extraction. In addition, we use four target detection scales to enhance the feature extrac-
tion of remote sensing small target pixels and the CSL method to increase the detection
accuracy of objects at any angle. We redefine the classification loss function and add the
angle problem to the loss calculation. The proposed model achieved the best detection
performance among the eight methods evaluated. The proposed model obtained an mAP
of 74.13% and 22 FPS on the DOTA dataset, wherein the mAP value exceeded that of the
suboptimal method (R3Det) by 1.32%. The proposed model obtained an mAP of 91.54%
on the HRSC2016 dataset. The mAP value and the FPS exceeded that of the suboptimal
method (R3Det) by 2.21% and 13, respectively. We expect to conduct further research on
the detection of blurred, dense small objects and obscured objects.
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Abstract: Accurate detection of tropical cyclones (TCs) is important to prevent and mitigate natural
disasters associated with TCs. Deep transfer learning methods have advantages in detection tasks,
because they can further improve the stability and accuracy of the detection model. Therefore, on the
basis of deep transfer learning, we propose a new detection framework of tropical cyclones (NDFTC)
from meteorological satellite images by combining the deep convolutional generative adversarial
networks (DCGAN) and You Only Look Once (YOLO) v3 model. The algorithm process of NDFTC
consists of three major steps: data augmentation, a pre-training phase, and transfer learning. First, to
improve the utilization of finite data, DCGAN is used as the data augmentation method to generate
images simulated to TCs. Second, to extract the salient characteristics of TCs, the generated images
obtained from DCGAN are inputted into the detection model YOLOv3 in the pre-training phase.
Furthermore, based on the network-based deep transfer learning method, we train the detection
model with real images of TCs and its initial weights are transferred from the YOLOv3 trained with
generated images. Training with real images helps to extract universal characteristics of TCs and
using transferred weights as initial weights can improve the stability and accuracy of the model. The
experimental results show that the NDFTC has a better performance, with an accuracy (ACC) of
97.78% and average precision (AP) of 81.39%, in comparison to the YOLOv3, with an ACC of 93.96%
and AP of 80.64%.

Keywords: tropical cyclone detection; meteorological satellite images; deep learning; deep transfer
learning; generative adversarial networks

1. Introduction

A tropical cyclone (TC) is a kind of catastrophic weather system with enormous
destructive force [1,2]. TCs encompass hurricanes, typhoons, and cyclone equivalents, and
they pose a serious threat to the safety of people’s lives and property and cause huge losses
to agricultural production and transportation [3–7]. Therefore, accurate detection of TCs is
the key to reducing the hazards [8,9].

Traditionally, the mainstream detection methods for TCs are numerical weather predic-
tion (NWP) models, which have done a great deal of work in the development of a forecast
system to provide guidance for TC prediction based on physics parameterizations and
modeling techniques [10,11]. For example, the Met Office has been objectively providing
real-time guidance for TC prediction and detection using its global numerical weather
forecast model in recent years [12]. However, the predicted error increases because of the
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initial value dependency if numerical dynamical models try to simulate farther into the
future [13].

The significant advantage of machine learning (ML) methods over traditional detection
methods based on NWP is that ML methods do not require any assumption [14]. Decision
trees (DT) are trained to classify different levels of TCs and the accuracy of TC prediction
prior to 24 h was about 84.6% [15]. In addition, a convective initiation algorithm was
developed from the Communication, Ocean, and Meteorological Satellite Meteorological
Imager based on the DT, random forest (RF), and support vector machines (SVM) [16,17].

Recently, deep learning models, as a subset of ML methods, have had good perfor-
mance in detection tasks [18–21]. For the detection task in images, object detection models
based on deep learning are mainly divided into two streams based on different processing
stages, which are one-stage detection models and two-stage detection models. YOLO
series [22–24], SSD [25], and RetinaNet [26] are typical one-stage detection models, and
R-CNN [27], Fast R-CNN [28], and Faster R-CNN [29] are classic two-stage detection
models. Broadly speaking, two-stage detection models obtain high accuracy by region
proposal with large-scale computing resources, whereas one-stage detection models have
better performance with finite computing resources.

Additionally, deep learning models have been introduced in TC detection as well,
for example, the use of deep neural networks (DNN) for existing TC detection [30], pre-
cursor detection of TCs [31], tropical and extratropical cyclone detection [32], TC track
forecasting [33], and TC precursor detection by a cloud-resolving global nonhydrostatic
atmospheric model [34]. However, deep learning models usually require a large number of
training samples, because it is difficult to achieve high accuracy in case of finite training
samples in computer vision and other fields [35–37]. At this time, transfer learning can
effectively alleviate this problem by transferring the knowledge from the source domain to
the target domain, and further improve the accuracy of deep learning models [38–41].

Deep transfer learning studies how to make use of knowledge transferred from other
fields by DNN [42]. On the basis of different kinds of transfer techniques, there are four
main categories: instance-based deep transfer learning, mapping-based deep transfer
learning, network-based deep transfer learning, and adversarial-based deep transfer learn-
ing [42–46]. Instance-based deep transfer learning refers to selecting partial instances from
the source domain to the training set in the target domain [43]. Mapping-based deep
transfer learning refers to mapping partial instances from the source domain and target
domain into a new data space [44]. Network-based deep transfer learning refers to reusing
the partial network and connection parameters in the source domain and transferring
it to be a part of DNN used in the target domain [45]. Adversarial-based deep transfer
learning refers to introducing adversarial technologies such as generative adversarial nets
(GAN) to find transferable formulations that apply to both the source domain and the
target domain [46]. It is also worth noting that GAN has advantages in image processing
and few-shot learning [47–49].

In order to improve the accuracy of a TC detection model in case of finite training
samples, on the basis of deep transfer learning, we propose a new detection framework of
tropical cyclones (NDFTC) from meteorological satellite images by combining the deep
convolutional generative adversarial networks (DCGAN) and You Only Look Once (YOLO)
v3 model.

The main contributions of this paper are as follows:

(1) In view of the finite data volume and complex backgrounds encountered in meteoro-
logical satellite images, a new detection framework of tropical cyclones (NDFTC) is
proposed for accurate TC detection. The algorithm process of NDFTC consists of three
major steps: data augmentation, a pre-training phase, and transfer learning, which
ensures the effectiveness of detecting different kinds of TCs in complex backgrounds
with finite data volume.

(2) We used DCGAN as the data augmentation method instead of traditional data aug-
mentation methods such as flip and crop. DCGAN can generate images simulated to
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TCs by learning the salient characteristics of TCs, which improves the utilization of
finite data.

(3) We used the YOLOv3 model as the detection model in the pre-training phase. The
detection model is trained with the generated images obtained from DCGAN, which
can help the model to learn the salient characteristics of TCs.

(4) In the transfer learning phase, YOLOv3 is still the detection model, and it is trained
with real TC images. Most importantly, the initial weights of the model are weights
transferred from the model trained with generated images, which is a typically
network-based deep transfer learning method. After that, the detection model can
extract universal characteristics from real images of TCs and obtain a high accuracy.

2. Materials and Methods

The flowchart of the NDFTC in this paper is illustrated in Figure 1. The framework
can be summarized in the following steps: (1) a dataset based on meteorological satellite
images of TCs is created; (2) the dataset is divided into three sub-datasets, which are
training dataset 1, training dataset 2, and test dataset; (3) DCGAN is used as the data
augmentation method to generate images simulated to TCs; (4) the generated images
obtained from DCGAN are inputted into the detection model YOLOv3 in the pre-training
phase; and (5) the detection model is trained with real images of TCs and its initial weights
are transferred from the YOLOv3 trained with generated images.

 
Figure 1. Overview of the proposed new detection framework of tropical cyclones (NDFTC).

2.1. Deep Convolutional Generative Adversarial Networks

As one of the research hotspots of artificial intelligence, generative adversarial net-
works (GAN) have developed rapidly in recent years and are widely used in image genera-
tion [50], image repair [51], visual prediction of typhoon clouds [52], and other fields.

GAN contains a generator and a discriminator [50]. The purpose of the generator is
to make the discriminator unable to distinguish between the real images and generated
images, whereas the purpose of the discriminator is to distinguish between real and
generated images as much as possible. For the generator, an n-dimensional vector is
required for input and the output is an image. The generator can be any model that can
produce images, such as the simple fully connected neural network. For the discriminator,
the input is a picture, and the output is the label of the picture. Similarly, the discriminator
structure is similar to the generator structure, such as a network that contains convolution,
and so on.

Deep convolutional generative adversarial networks (DCGANs) are an improvement
on the original GAN [53]. The improvement does not include strict mathematical proof and
the main contents of the improvement are as follows. Both the generator and discriminator
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use convolutional neural networks (CNN). Batch normalization is used in both generators
and discriminators. Neither the generator nor the discriminator uses the pooling layer.
The generator uses ReLU as the activation function except tanh for the output layer. The
discriminator retains the structure of CNN, and the generator replaces the convolution
layer with fractionally strided convolution. All layers of the discriminator use Leaky ReLU
as the activation function.

2.2. You Only Look Once (YOLO) v3 Model

The detection model of NDFTC is the YOLOv3 model [24]. The reason why YOLOv3
is used as the detection model is that the detection speed of YOLOv3 is at least 2 times
faster than SSD, RetinaNet, and Faster R-CNN [24], which can realize real-time detection
of TCs and provide guarantee for disaster prevention and mitigation of TCs. In addition,
YOLOv3 refers to the idea of feature pyramid networks and it ensures accurate detection
of both large-size and small-size objects.

The base network of the YOLOv3 is Darknet-53. Darknet-53 uses successive 3 × 3 and
1 × 1 convolutional layers. It has 53 convolutional layers in total, as shown in Figure 1,
which is why it is called Darknet-53. In addition, a large number of residual blocks
are added to Darknet-53 to prevent the exploding gradient problem from network layer
deepening. In the model, batch normalization is placed before the activation function
Leaky ReLU, which alleviates the gradient disappearance problem. It should be noted that
the concat is not the numerical addition operation for different feature graphs, but rather a
direct concatenation. This means that the feature map is concatenated directly according to
the channel dimension.

As for the change in image size during TC detection, the input meteorological satellite
images has a size of 512 × 512 pixels. The model outputs feature maps of three sizes. The
first feature map is obtained by down-sampling 32 times, and the size is 16× 16 pixels. The
second feature map is obtained by down-sampling 16 times, and the size is 32 × 32 pixels.
The third feature map is obtained by down-sampling 8 times, and the size is 64 × 64 pixels.
The above down-sampling is done under the guidance of YOLOv3 model by Redmon
et al., which is a uniform operation of YOLOv3 and aims to obtain TC features at different
scales and thus improve the detection accuracy of different kinds of TCs. Besides, the third
dimension of these three feature maps is 18. Because there are three anchor boxes and each
box has 1-dimensional confidence values, 4-dimensional prediction values (xp, yp, wp, hp),
and 1-dimensional object class numbers, the final calculation formula is (3 × (4 + 1 + 1))
and the result is 18.

It is important to note that once the number of anchor boxes is determined, confidence
values, prediction values, and object class numbers are also determined [23]. In general, an
anchor box has 1-dimensional confidence values, because it is the IOU of the bounding box
and the prediction box, reflecting the detection effect of this anchor box [22]. An anchor box
has 4-dimensional prediction values, reflecting the coordinate information of the anchor
box [22]. An anchor box has only 1-dimensional object class numbers, because our study
only detects TC and not other objects.

2.3. Loss Function

The loss function is the error between the predicted value and the real value, which is
one of the important parameters to determine the detection performance. The loss of the
NDFTC includes the loss of DCGAN and the loss of YOLOv3.

2.3.1. Loss Function of DCGAN

The loss function of DCGAN includes the loss function of generator G and the loss
function of discriminator D. When the generator is trained, parameters of the discriminator
are fixed. When training the discriminator, parameters of the generator are fixed.

The purpose of the generator is to make the discriminator unable to distinguish
between the real TC images and the generated TC images. First, the adversarial loss is
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introduced. G(X) represents the TC images generated by the generator, Y represents the
real images corresponding to it, and D(·) represents the discriminant probability of the
generated images. The adversarial loss is as follows:

Ladv
G = log(1− D(G(X)) (1)

By minimizing Formula (1), the generator can fool the discriminator, which means
that the discriminator cannot distinguish between real images and generated images. Next,
the L1 loss function is introduced to measure the distance between generated images and
real images.

L1 =
Pw

∑
i=1

Ph

∑
j=1
||G(X)(i, j)−Y(i, j)||1 (2)

where (i, j) represents pixel coordinates, and Pw and Ph are the width and height of TC
images, respectively.

The generator’s total loss function is as follows:

LG = λ1Ladv
G + λ2L1 (3)

where λ1 and λ2 are empirical weight parameters. The generator can generate high-quality
images of TCs by minimizing Formula (3).

The purpose of the discriminator D is to distinguish between the real TC images
and the generated TC images. To achieve this goal, the adversarial loss function of the
discriminator is as follows:

Ladv
D = − log(D(Y))− log(1− D(G(X)) (4)

For Equation (4), if the real image is wrongly judged as the generated image, or the
generated image is wrongly judged as the real image, then an infinite situation will appear
in Formula (4), which means that the discriminator should still be optimized. If the value of
Formula (4) decreases gradually, it means that the discriminator is trained better and better.

2.3.2. Loss Function of YOLOv3

The loss function of YOLOv3 includes boundary box loss, confidence loss, and clas-
sification loss. The smaller the loss value, the better the performance of the model. The
parameters involved in the loss function are introduced below.

The model divides the input image into an S× S grid. Each grid cell is responsible for
detecting TCs if the center of a TC falls into a grid cell. The grid cell predicts B bounding
boxes and confidence scores. These scores reflect how confident the model is that the box
contains an object.

The first part of the total loss function is the boundary box loss, which is used to
measure the difference between the real box and the predicted box, as follows:

Lbox =
s2×B

∑
i=1

[
(

xp
i − xg

i

)2
+

(
yp

i − yg
i

)2
+

(
wp

i − wg
i

)2
+

(
hp

i − hg
i

)2
] (5)

where i is the number of bounding boxes, and
(

xp
i , yp

i , wp
i , hp

i

)
is the positional parameter

of the predicted box. xp and yp represent the center point coordinates of the predicted box,
and wp and hp represent the width and height of the predicted box, respectively. Similarly,(

xg
i , yg

i , wg
i , hg

i

)
is the parameter of the true box.
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The second part of the total loss function is the confidence loss, which reflects how
confident the model is that the box contains an object. The confidence loss is as follows:

Lcon f = −
s2×B

∑
i=1

[hi × lnci + (1− hi)× ln(1− ci)] (6)

where ci represents the probability of the object in the anchor box i. hi ∈ {0, 1} represents
whether the object is present in the anchor box i, in which 1 means yes and 0 means no.

The third part of the total loss function is the classification loss as follows:

Lclass = −
s2×B

∑
i=1

∑
k∈classes

[hik × lncik] (7)

where cik represents the probability of the object of class k in the anchor box i. hik ∈ {0, 1}
represents whether the object of class k is present in the anchor box i, in which 1 means yes
and 0 means no. In this paper, there is only one kind of object, so k = 1.

To sum up, the total loss function of the YOLOv3 model is as follows:

Ltotal = λ1Lbox + λ2Lcon f + λ3Lclass (8)

where λ1, λ2, and λ3 are empirical weight parameters, and λ1 = λ2 = λ3 = 1 in this paper.

2.4. Algorithm Process

According to the above description, the specific algorithm process is shown as follows.

Algorithm 1 The algorithm process of NDFTC.

Start

Input: 2400 meteorological satellite images of TCs; the images were collected from 1979 to 2019 in
the South West Pacific Area.
A. Data Augmentation

(1) A total of 600 meteorological satellite images are input into the DCGAN model. The selection
rule for these images is to randomly select 18 images from the TCs that occur every year
(1979–2010), which contains the common characteristics of TCs over these years.
(2) A total of 1440 generated images with TC characteristics are obtained in the DCGAN model.
These generated images are only used as training samples in the pre-training phase.
B. Pre-Training Phase

(3) The generated images obtained from step (2) are inputted into the YOLOv3 model.
(4) Feature extraction and preliminary detection of the generated images are completed.
(5) The weight trained to 10,000 times in step (4) is reserved in this phase.
C. Transfer Learning

(6) A total of 1800 meteorological satellite images are still available after step (1). A total of 80% of
these data are used as the training samples in this phase. In other words, 1440 meteorological
satellite images from 1979 to 2011 are used as training samples.
(7) The model starts to train with training samples of step (6) and weights of step (5) are initial
weights in this phase, which is a typically network-based deep transfer learning method.
(8) A total of 360 meteorological satellite images from 2011 to 2019 are used as the testing samples.
Then, the test is completed.
Output: detection results, accuracy, average precision.
End

3. Experimental Results

3.1. Data Set

The data set we used includes meteorological satellite observation images in the
Southwest Pacific area from 1979 to 2019. These images, provided by the National Institute
of Informatics, are meteorological satellite images with a size of 512 × 512 pixels. For
more details on the meteorological satellite images we used in this study [54], see the
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website: http://agora.ex.nii.ac.jp/digital-typhoon/search_date.html.en#id2 (accessed on
29 March 2021).

In this paper, a total of 2400 real TC images were used. Among them, 600 real images
were input into DCGAN model to produce 1440 generated images for training the detection
model in the pre-training phase. Additionally, 80% of the remaining 1800 real TC images,
which were from 1979 to 2011, were used to train the model. A total of 20% of the remaining
1800 real TC images, which were from 2011 to 2019, were used to test the model.

In other words, in the transfer learning phase, the selection rule for training and test
data was based on the time when the TC was captured by the meteorological satellite. A
total of 80% of the data used for training was historical data occurring from 1979 to 2011,
whereas 20% of the data used for testing was recent data occurring from 2011 to 2019. Such
a data selection method of training with historical data and testing with recent data is
effective in the application of deep learning in meteorology [55], and thus we also adopted
this data selection method.

3.2. Experiment Setup

In order to show the superiority of NDFTC in the training process and detection
results, a TC detection model for comparison was also trained, which was only based on
YOLOv3 and did not use NDFTC. In order to train and test this TC detection model for
comparison, we still used 2400 real TC images, 80% of which were used for training and
20% for testing.

For the sake of fairness, the total number of training times for both NDFTC and
YOLOv3 was 50,000. For the NDFTC, it used generated TC images to train 10,000 times,
and then it used real TC images to train 40,000 times. For the detection model only based
on YOLOv3, it was trained 50,000 times using real TC images. In the training process, the
change of loss function values of NDFTC and detection model only based on YOLOv3 are
shown in Figure 2.

  
(a) (b) 

Figure 2. (a) The change of loss function values of YOLOv3 to train real TC images; (b) the change of loss function values of
NDFTC to train real TC images.

Figure 2 visualizes the change of loss function values of YOLOv3 and NDFTC in
the training process. Compared with the TC detection model only including YOLOv3,
the NDFTC proposed in this paper had smaller loss function values and a more stable
training process.

In order to show the stability of NDFTC during the training process from another
perspective, the changes of region average IOU are also visualized in Figure 3. Region
average IOU is the intersection over union (IOU) between the predicted box and the ground
truth [22]. It is one of the most important indicators to measure the stability of models in
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the training process, and is commonly found in deep learning models such as YOLOv1 [22],
YOLOv2 [23], YOLOv3 [24], and YOLOv4 [56]. In general, the closer it is to 1, the better the
model is trained.

  
(a) (b) 

Figure 3. (a) The change in region average IOU of YOLOv3 to train real TC images; (b) the change in region average IOU of
NDFTC to train real TC images.

In Figure 3, the region average IOU of the models in the training process was generally
decreasing. However, the region average IOU of YOLOv3 oscillated more sharply when
the training reached a later stage. Compared with the TC detection model only including
YOLOv3, the NDFTC oscillated less in the whole training process. This means that the
NDFTC converged faster and was more stable in the training process.

3.3. Results and Discussion

In order to evaluate the detection effect of the NDFTC proposed in this paper, ACC
and AP were used as evaluation indexes.

ACC refers to accuracy, which means the proportion of TCs detected correctly by the
model in all images. The definition of ACC is as follows:

Accuracy =
TP

ALL
(9)

where TP refers to the number of TC images detected correctly by the model, and ALL
refers to the number of all images.

AP refers to average precision, which takes into account cases such as detection error
and detection omission phenomenon, and it is a common index for evaluating YOLO series
models such as YOLOv1, YOLOv2, and YOLOv3 by Redmon et al. [22–24]. AP is defined
by precision and recall:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

where TP refers to the number of TCs correctly recognized as TCs by the detection model,
FP refers to the number of other objects recognized as TCs by the detection model, and
FN refers to the number of TCs recognized as other objects by the detection model [57,58].
Then the P–R curve can be obtained by using the recall of TCs as the x-coordinate and the
precision of TCs as the y-coordinate [59], and the area under the curve is AP, which is the
index that evaluates the detection effectiveness of the NFDTC.
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Figure 4 shows the ACC and AP of NDFTC and other models in the test set when the
training times were 10,000, 20,000, 30,000, 40,000, and 50,000. Apparently, Figure 4 reflects
that NDFTC performed better than YOLOv3 and other models with the same training
times. Finally, the experimental results show that the NDFTC had better performance,
with an ACC of 97.78% and AP of 81.39%, in comparison to the YOLOv3, with an ACC of
93.96% and AP of 80.64%.

 

 

 

 
(a) (b) 

Figure 4. Performance of NDFTC and other models with ACC and AP: (a) ACC of NDFTC and other models; (b) AP of
NDFTC and other models.

In order to evaluate the detection effect on different kinds of TCs, all TCs in the test
set were divided into five categories. According to the National Standard for Tropical
Cyclone Grade (GB/T 19201-2006), TC intensity includes tropical storm (TS), severe tropical
storm (STS), typhoon (TY), severe typhoon (STY), and super typhoon (SuperTY). The ACC
performance of the NDFTC and other models on the test set is shown in Table 1. It shows
that the NDFTC generally had a higher ACC. The best result was from NDFTC for SuperTY
detection, and at that time the ACC reached 98.59%.

Table 1. ACC performance of the NDFTC and other models on the test set for five kinds of TCs.

Model
Typhoon

Types
10,000
Times

20,000
Times

30,000
Times

40,000
Times

50,000
Times

YOLOv3

TS 71.21 80.30 87.88 90.91 92.42
STS 83.46 86.47 89.47 90.98 94.74
TY 85.59 88.29 90.09 91.89 92.79

STY 88.75 90.00 91.25 92.50 95.00
SuperTY 88.89 91.11 93.33 93.33 94.44

NDFTC

TS 87.50 92.50 92.50 95.00 97.50
STS 88.46 91.35 92.31 93.27 98.07
TY 89.41 92.94 94.12 95.29 96.47

STY 91.67 93.33 95.00 96.67 98.33
SuperTY 91.55 94.37 95.77 97.18 98.59

Next, the AP performance of the NDFTC and other models on the test set is shown
in Table 2. It can be found that the NDFTC basically had a higher AP. The best result was
from NDFTC for STY detection, which was 91.34%.
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Table 2. AP performance of the NDFTC and other models on the test set for five kinds of TCs.

Model
Typhoon

Types
10,000
Times

20,000
Times

30,000
Times

40,000
Times

50,000
Times

YOLOv3

TS 60.91 61.24 63.96 68.26 66.85
STS 80.77 83.46 83.59 82.42 86.84
TY 79.16 76.93 79.91 80.90 78.11

STY 88.66 89.12 87.12 87.60 88.63
SuperTY 82.82 81.14 83.23 81.43 79.81

NDFTC

TS 67.16 69.12 63.55 67.96 63.89
STS 78.13 74.64 84.15 81.40 82.22
TY 79.76 83.60 81.57 86.70 83.04

STY 89.23 86.97 89.79 84.89 91.34
SuperTY 84.03 85.20 79.89 80.50 82.52

Last but not least, an example of TC detection results is shown in Figure 5, which is
the super typhoon Marcus in 2018. It can be found that the NDFTC had a more detailed
detection result, because the prediction box of NDFTC fit Marcus better. More importantly,
compared with the TC detection model only including YOLOv3, the detection result of
NDFTC was more consistent with the physical characteristics of TCs, because the spiral
rainbands at the bottom of Marcus were also included in the detection box of NDFTC.

  
(a) (b) 

Figure 5. An example of TC detection results, which is the super typhoon Marcus in 2018. (a) The detection result of
YOLOv3; (b) the detection result of NDFTC.

4. Discussion

To begin with, the complexity of NDFTC is explained here. Compared to the complex
network architecture and huge number of parameters of YOLOv3, the complexity of
DCGAN, which is a relatively simple network, could be negligible [60]. Therefore, the
complexity of the NDFTC in this paper was approximately equal to that of the YOLOv3
model, conditional on a finite data set and the same scale of computing resources. More
importantly, compared with the YOLOv3 model, NDFTC further improved the detection
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accuracy of TCs with almost no increase in complexity, which proves that NDFTC ensures
generalization performance.

Then, the way in which the generated and real images are used in different phases
needs to be emphasized again. In 2020, Maryam Hammami et al. proposed a CycleGAN
and YOLO combined model for data augmentation and used generated data and real data
to train a YOLO detector, in which generated data and real data are simultaneously input
into YOLO for training [61]. In our study, the detector was trained using only generated
images in the pre-training phase and only real images in the transfer learning phase, which
is a typically network-based deep transfer learning method. Additionally, the average IOU
and loss function values during the training process are plotted in this paper to reflect the
stability of NDFTC.

Furthermore, it is necessary to explain the proportion of the data set allocated. In
NDFTC, the initial dataset is composed of meteorological satellite images of TCs, and
when it is divided into training dataset 1, training dataset 2, and test dataset according
to Algorithm 1, then training datasets 1 and 2 must include the real images of TC. This
means that training datasets 1 and 2 must contain TC features at the same time, which is a
prerequisite for the adoption of NDFTC.

Finally, we need to explain the reason why 80% of the real images of TC were used
for training and the rest for testing. In general, for finite datasets that are not very large,
such a training and testing ratio is a common method in the field of deep learning [62,63].
It is generally believed that when the total number of images in the dataset reaches tens of
thousands or even hundreds of thousands, the proportion of the training set can exceed
90% [63]. Of course, considering that the dataset of TCs used in this paper has only
thousands of images, 80% was acceptable. More importantly, for object detection tasks
with finite datasets, setting a smaller training dataset usually leads to lower accuracy, so
we chose the common ratio of 80% over others.

5. Conclusions

In this paper, on the basis of deep transfer learning, we propose a new detection
framework of tropical cyclones (NDFTC) from meteorological satellite images by combining
the DCGAN and YOLOv3. The algorithm process of NDFTC consists of three major
steps: data augmentation, a pre-training phase, and transfer learning, which ensures
the effectiveness of detecting different kinds of TCs in complex backgrounds with finite
data volume. We used DCGAN as the data augmentation method instead of traditional
data augmentation methods because DCGAN can generate images simulated to TCs by
learning the salient characteristics of TCs, which improves the utilization of finite data.
In the pre-training phase, we used YOLOv3 as the detection model and it was trained
with the generated images obtained from DCGAN, which helped the model learn the
salient characteristics of TCs. In the transfer learning phase, we trained the detection
model with real images of TCs and its initial weights were transferred from the YOLOv3
trained with generated images, which is a typically network-based deep transfer learning
method and can improve the stability and accuracy of the model. The experimental results
show that the NDFTC had better performance, with an ACC of 97.78% and AP of 81.39%,
in comparison to the YOLOv3, with an ACC of 93.96% and AP of 80.64%. On the basis
of the above conclusions, we think that our NDFTC with high accuracy has promising
potential for detecting different kinds of TCs and we believe that NDFTC could benefit
current TC-detection tasks and similar detection tasks, especially for those tasks with finite
data volume.

Author Contributions: Conceptualization, T.S. and P.X.; data curation, P.X. and Y.L.; formal analysis,
P.X., F.M., X.T. and B.L.; funding acquisition, S.P., T.S. and D.X.; methodology, T.S. and P.X.; project
administration, S.P., D.X., T.S. and F.M.; validation, P.X.; writing—original draft, P.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program (no.
2018YFC1406201) and the Natural Science Foundation of China (grant: U1811464). The project

557



Remote Sens. 2021, 13, 1860

was supported by the Innovation Group Project of the Southern Marine Science and Engineering
Guangdong Laboratory (Zhuhai) (no. 311020008), the Natural Science Foundation of Shandong
Province (grant no. ZR2019MF012), and the Taishan Scholars Fund (grant no. ZX20190157).

Data Availability Statement: The data used in this study are openly available at the National
Institute of Informatics (NII) at http://agora.ex.nii.ac.jp/digital-typhoon/search_date.html.en#id2
(accessed on 29 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
TC Tropical cyclone
TCs Tropical cyclones
NDFTC New detection framework of tropical cyclones
GAN Generative adversarial nets
DCGAN Deep convolutional generative adversarial networks
YOLO You Only Look Once
NWP Numerical weather prediction
ML Machine learning
DT Decision trees
RF Random forest
SVM Support vector machines
DNN Deep neural networks
ReLU Rectified linear unit
TP True positive
TN True negative
FP False positive
FN False negative
ACC Accuracy
AP Average precision
IOU Intersection over union
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