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Emotional intelligence is essential to maintaining human relationships in communi-
ties, organizations, and societies. By definition, emotional intelligence refers to how well
emotion is recognized and expressed. The level of emotional intelligence of an AI is mainly
determined by its ability to accurately and reliably recognize its human counterpart; that is,
all next-generation AI devices and services involving VR, AR, and social robots are able to
quantitatively track and recognize emotion in real-time during an interaction with a human.

Emotion has been quantified by sensing facial expressions, gestures, and physiological
signals such as EEG, ECG, and EDA. In addition, emotion could be more accurately
recognized by considering the emotional context, including spatiotemporal variability, the
congruency of implicit and explicit responses, the consistency of human action, and human
relationships in society. Human emotion includes not only short-term but also long-term
responses to patterns and trends in daily life. Lab studies with the aim of sensing emotion
should extend to smart sensing, which monitors and tracks emotional variation with a
predictable pattern.

This Special Issue explores empirical studies of emotional mechanisms, qualitative
and quantitative measurements of emotion, the recognition of emotional contexts, and the
application of emotion. Fourteen papers were accepted for publication in this Special Issue
entitled “Emotion Intelligence Based on Smart Sensing”, which includes papers ranging
from lab-based studies aimed at understanding emotional mechanisms to applying emotion
recognition in the real world (e.g., in driving, games, education, and virtual avatars). They
are summarized below.

The review paper in [1] presents a detailed analysis of over 600 papers related to sen-
sors and methods to understand affective-, emotional-, and physiological-state recognition.
Facial action coding and facial expression analysis are long-studied fields, as represented
by four articles in our SI. While facial recognition systems in the real world (i.e., in an
uncontrolled environment) have evolved with performance improvements, [2] proposed a
multi-spectral facial recognition system that overcomes the limitation of a single spectral
band in the visible spectrum. The multi-spectral facial recognition system is robust to
occlusions (e.g., fog or plastic materials) and low- or no-light environments. The authors
of [2] achieved 99.5% (pose variation) and 99.6% (expression variation) Rank-1 scores in
the TUFTS multi-spectral database. As AI technology evolves rapidly, so does the facial
expression recognition algorithm. The authors of [3] proposed a multi-depth network that
classifies facial expressions by being fed reinforced features. A multi-rate-based 3D convo-
lutional neural network (CNN) built on a multi-rate signal process scheme was suggested,
and they achieved 96.23% accuracy with the CK+ dataset.

Building an emotionally intelligent system requires a better understanding of human
facial expression characteristics. The authors of [4] investigated the differences in the
intensity of facial expressions between older (n = 56) and younger adults (n = 113). The
participants’ facial expressions were elicited using facial expression stimuli. The results
indicated that the older adults strongly expressed some negative and neutral emotions.
In addition, older adults used more facial muscles than younger adults across emotions.
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Human facial expressions include facial micromovements, which provide insights into
fake expressions. The authors of [5] investigated the characteristics of real and fake facial
expressions representing emotions by analyzing participants’ facial micromovements. The
results indicated significant differences in the micromovement feature variables between
the real and fake expression conditions. The differences varied according to facial regions
as a function of emotions.

This issue also includes a speech-emotion-recognition study [6] that proposed a multi-
path and group-loss-based network (MPGLN) for emotion recognition to support multi-
domain adaptation. The authors proposed a model that includes a bidirectional long
short-term memory-based temporal feature generator and a transferred feature extractor
from the pre-trained VGG-like audio classification model (VGGish). The model learns
simultaneously based on multiple losses according to the association of emotion labels in
the discrete and dimensional models.

The simultaneous activation of brain regions (i.e., brain connection features) is an
essential mechanism of brain activity in emotion recognition, and this issue presents
three EEG-based studies that advance such science. The authors of [7] investigated the
relationship between brain connectivity (strength and directionality) and eye movement
features (left and right pupils, saccades, and fixations) when participants (n = 47) viewed
emotion-eliciting content. They found that the connectivity eigenvalues of the long-distance
prefrontal lobe, temporal lobe, parietal lobe, and center were related to cognitive activity
involving high valance. In addition, saccade movement was correlated with long-distance
occipital–frontal connectivity. The authors of [8] investigated model-free functional connec-
tivity metrics along with deep learning to efficiently classify human cognitive workload.
They achieved state-of-the-art multi-class classification accuracy of 80.87% using a combi-
nation of MI (Mutual Information) and CNN, followed by 75.88% using a combination of
PLV (Phase Locking Value) and CNN (at), and 71.87% using MI with LSTM. The authors
of [9] constructed a learning emotion EEG dataset (LE-EEG) which captures physiological
signals reflecting the emotions of boredom, neutrality, and engagement during learning,
and proposed an EEG emotion classification network based on attention fusion (ECN-AF).
On the LE-EEG dataset, the proposed model achieved the highest accuracy of 95.87%,
demonstrating a 21.49% increase compared to the baseline models.

Biological hormones are relatively less explored, but could provide insights into
negative emotions such as fear or panic. The authors of [10] investigated catecholamines,
which are hormones released in the body in response to physical or emotional stress. They
analyzed physiological signals in reference to catecholamine through an experimental
task whereby 21 female volunteers received audiovisual stimuli through an immersive
virtual-reality environment.

The essence of emotional intelligence overlaps with empathy, a psychological construct.
A system that analyzes whether a human is empathizing is paramount. The authors of [11]
suggested a non-contact method for measuring empathy by evaluating the synchronization
of facial micro-movements between consumers and people in the media. Their study
shows that the non-contact ballistocardiography (BCG) method can be complementary to
subjective empathy scales.

Finally, this issue also extends to studies applicable to the real world (e.g., in driving,
games, and virtual agents). The authors of [12] proposed a data collection system that
collects multimodal emotion datasets during real-world driving. The proposed system
includes a self-reportable HMI application into which a driver directly inputs their current
emotion state. To demonstrate the collected dataset’s validity, the paper provides case
studies for statistical analysis, driver face detection, and personalized driver emotion
recognition. The authors of [13] used electrocardiograms (ECGs) to investigate heart
rate variability (HRV) parameters that can quantitatively characterize game addiction.
The participants played the game League of Legends, and the experimenter performed ECG
measurements during the game at various window sizes and specific events. The correlation
and factor analyses were used to find the most effective parameters. The most accurate
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set of parameters was found to be pNNI20, RMSSD, and LF within 30 s after the “being
killed” event. The authors of [14] investigated elements that may affect a the participant’s
social perceptions (similarity, familiarity, attraction, liking, and involvement) of customized
virtual avatars engineered considering the user’s facial characteristics. The results indicated
that participants felt that the avatar that embodied their habitual expressions was more
similar to them than the avatar that did not.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Affective, emotional, and physiological states (AFFECT) detection and recognition by
capturing human signals is a fast-growing area, which has been applied across numerous domains.
The research aim is to review publications on how techniques that use brain and biometric sensors
can be used for AFFECT recognition, consolidate the findings, provide a rationale for the current
methods, compare the effectiveness of existing methods, and quantify how likely they are to address
the issues/challenges in the field. In efforts to achieve the key goals of Society 5.0, Industry 5.0,
and human-centered design better, the recognition of emotional, affective, and physiological states
is progressively becoming an important matter and offers tremendous growth of knowledge and
progress in these and other related fields. In this research, a review of AFFECT recognition brain and
biometric sensors, methods, and applications was performed, based on Plutchik’s wheel of emotions.
Due to the immense variety of existing sensors and sensing systems, this study aimed to provide
an analysis of the available sensors that can be used to define human AFFECT, and to classify them
based on the type of sensing area and their efficiency in real implementations. Based on statistical and
multiple criteria analysis across 169 nations, our outcomes introduce a connection between a nation’s
success, its number of Web of Science articles published, and its frequency of citation on AFFECT
recognition. The principal conclusions present how this research contributes to the big picture in the
field under analysis and explore forthcoming study trends.

Keywords: review; human emotions; affective and physiological states; Plutchik’s wheel of emotions;
sensors; methods and applications; statistical and multiple criteria analysis; country success and
publications maps of the world

1. Introduction

Global research in the field of neuroscience and biometrics is shifting toward the
widespread adoption of technology for the detection, processing, recognition, interpretation
and imitation of human emotions and affective attitudes. Due to their ability to capture and
analyze a wide range of human gestures, affective attitudes, emotions and physiological
changes, these innovative research models could play a vital role in areas such as Industry
5.0, Society 5.0, the Internet of Things (IoT), and affective computing, among others.

For hundreds of years, researchers have been interested in human emotions. Reviews
on the applications of affective neuroscience include numerous related topics, such as the

Sensors 2022, 22, 7824. https://doi.org/10.3390/s22207824 https://www.mdpi.com/journal/sensors5
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mirror mechanism and its role in action and emotion [1], the neuroscience of under-standing
emotions [2], consumer neuroscience [3], the role of positive emotions in education [4],
mapping the brain as the basis of feelings and emotions [5], the neuroscience of positive
emotions and affect [6], the cognitive neuroscience of music perception [7], and social
cognition in schizophrenia [8]. Applications in neuroscience also include the analysis of
cognitive neuroscience [9–11], and brain sensors [12,13], and works in the literature also
discuss the recognition of basic emotions using brain sensors [14].

Studies of the applications of affective biometrics can be found in the literature in the
fields of brain biometric analysis [15], predictive biometrics [16], keystroke dynamics [17],
applications in education [18], consumer neuroscience [19], adaptive biometric systems [20],
emotion recognition from gait analyses [21], ECG databases [22], and others. Several works
on affective states have integrated multiple biometric and neuroscience methods, but none
have included an integrated review of the application of neuroscience and biometrics and
an analysis of all of the emotions and affective attitudes in Plutchik’s wheel of emotions.

Scientists analyzed various brain and biometric sensors in the reviews [23–26]. Curtin
et al. [23], for instance, state that both fNIRS and rTMS sensors have changed significantly
over the past decade and have been improved (their hardware, neuronavigated targeting,
sensors, and signal processing), thus clinicians and researchers now have more granular
control over the stimulation systems they use. Krugliak and Clarke [26], da Silva [24], and
Gramann et al. [27] analyzed the use of EEG and MEG sensors to measure functional and
effective connectivity in the brain. Khushaba et al. [25] used brain and biometric sensors to
integrate EEG and eye tracking for assessing the brain response. Other scientists [28–33]
used the following biometric sensors in their studies: heart rate, pulse rate variability,
odor, pupil dilation and contraction, skin temperature, face recognition, voice, signature,
gestures, and others.

Indeed, the biometrics and neuroscience field has been the focus of studies by many
researchers who have achieved significant results. A number of neuroscience studies have
analyzed the detection and recognition of human arousal [34], valence [35,36], affective
attitudes [36,37], emotional [38–41], and physiological [42] states (AFFECT) by capturing
human signals.

Though most neuroimaging approaches disregard context, the hypothesis behind situ-
ated models of emotion is that emotions are honed for the current context [43]. According
to the theory of constructed emotion, the construction of emotions should be holistic, as a
complete phenomenon of brain and body in the context of the moment [44]. Barrett [45]
argues that rather than being universal, emotions differ across cultures. Emotions are not
triggered—they are created by the person who experiences them. The combination of the
body’s physical characteristics, the brain (which is flexible enough to adapt to whatever
environment it is in), and the culture and upbringing that create that environment, is
what causes emotions to surface [45]. Recently, there have been attempts in the academic
community to supply contextual (from cultural and other circumstances) analysis [46,47].

Various theories and approaches (positive psychology [48–50], environmental psy-
chology [51–53], ergonomics—human factors science [54–56], environment–behavior stud-
ies, environmental design [57–59], ecological psychology [60,61], person–environment–
behavior [62], behavioral geography [63], and social ecology research [64] also emphasize
emotion context sensitivity.

The objective of this research is to provide an overview of the sensors and methods
used in AFFECT (affective, emotional, and physiological states) recognition, in order to
outline studies that discuss trends in brain and biometric sensors, and give an integrated
review of AFFECT recognition analysis using Plutchik’s [65] wheel of emotions as the
basis. Furthermore, the research aim is to review publications on how techniques that use
brain and biometric sensors can be used for AFFECT recognition. In addition, this is a
quantitative study to assess how the success of the 169 countries impacted the number of
Web of Science articles on AFFECT recognition techniques that use brain and biometric
sensors that were published in 2020 (or the latest figures available).
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In this paper, we identify the critical changes in this field over the past 32 years by
applying text analytics to 21,397 articles indexed by Web of Science from 1990 to 2022. For
this review, we examined 634 publications in detail. We have analyzed the global gap in the
area of neuroscience and affective biometric sensors and have aimed to update the current
big picture. The aforementioned research findings are the result of this work.

When emotions as well as affective and physiological states are determined by recog-
nition sensors and methods—and, later, when such studies are put to practice—a number
of issues arise, and we have addressed these issues in this review. Moreover, our research
has filled several research gaps and contributes to the big picture as outlined below:

• A fairly large number of studies around the world apply biometric and neuroscience
methods to determine and analyze AFFECT. However, there has been no integrated
review of these studies.

• Another missing piece is a review of AFFECT recognition, classification, and analysis
based on Plutchik’s wheel of emotions theory. We have examined 30 emotions and
affective states defined in the theory.

• Information on diversity attitudes, socioeconomic status, demographic and cultural
background, and context is missing from many studies. We have therefore identified
real-time context data and integrated them with AFFECT data. The correct assessment
of AFFECT and predictions of imminent behavior are becoming very important in a
highly competitive market.

• To demonstrate a few of the aforementioned new research areas in practice, we have
developed our own metric, the Real-time Vilnius Happiness Index (Section 4), among
other tools. These studies have used integrated methods of biometrics and neuro-
science, which are widely applied in various fields of human activity.

• In this research, we therefore examine a more complex problem than any prior studies.

The following sections present the results of this study, a discussion, the conclusions
we can draw, and avenues for future research. The method is presented in Section 2.
Section 3 summarizes the emotion models. In Section 4, we discuss about brain and
biometrics AFFECT sensors, classifications of biometric and neuroscience methods and
technologies, emotions and explores the use of traditional, non-invasive neuroscience
methods (Section 4) and widely used and advanced physiological and behavioral biomet-
rics (Section 4). Section 4 also summarizes prior research and studies techniques for the
recognition of arousal, valence, affective attitudes, and emotion-al and physiological states
(AFFECT) in more detail. We summarize existing research on users’ demographic and
cultural backgrounds, socioeconomic status, diversity attitudes, and the context in Section 5.
We present our research results in Section 6, evaluation of biometric systems in Section 7,
and finally, a discussion and our conclusions in Section 8.

2. Method

The research method we used can be broken down as follows: (1) formulating the
research problem; (2) examining the most popular emotion models, identifying the best
option among them for our research (Section 3), and creating the Big Picture for the
model; (3) carrying out a review of publications in the field (Section 4); (4) raising and
confirming two hypotheses; (5) collecting data; (6) using the INVAR method for multiple
criteria analysis of 169 countries; (7) determining correlations; (8) developing three maps to
illustrate the way the success of the 169 countries impacts the number of Web of Science
articles on AFFECT (emotional, affective, and physiological states) recognition and their
citation rates; (9) developing three regression models; and (10) consolidating the findings,
providing a rationale for the current methods, comparing the effectiveness of existing
methods, and quantifying how likely they are to address the issues and challenges in
the field. The following ten steps of the method describe the proposed algorithm and its
experimental evaluation in detail.

Furthermore, the research aim is to review publications on how techniques that use
brain and biometric sensors can be used for AFFECT recognition, consolidate the findings,
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provide a rationale for the current methods, compare the effectiveness of existing methods,
and quantify how likely they are to address the issues/challenges in the field (Step 1). We
have analyzed the global gap in the area of neuroscience and affective biometric sensors
and have set the goal of updating the current big picture. The findings of the research
above framed the problem.

Step 2 of the research was to examine the most popular emotion models (Section 3)
and identify the best option among them for our research. We have chosen the Plutchik’s
wheel of emotions and one of the main reasons is that the model enables integrated analysis
of human emotional, affective, and physiological states.

Step 3 was to review sensors, methods, and applications that can be used in the
recognition of emotional, affective, and physiological states (Section 4). We have identified
the major changes in the field over the past 32 years through a text analysis of 21,397 articles
indexed by Web of Science from 1990 to 2022. We searched for keywords in three databases
(Web of Science, ScienceDirect, Google Scholar) to identify studies investigating the use
of both neuroscience and affective biometric sensors. A total of 634 studies that used
both neuroscience and affective biometric sensor techniques in the study methodology
were included, and no restrictions were placed on the date of publication. Studies which
investigated any population group were at any age or gender were considered in this work.

A set of keywords related to biometric and neuroscience sensors were used for the
above search of three databases. Two main sets of keywords “sensors + biometrics +
emotions” and “sensors + neuroscience/brain + emotions” were used in our main search.
More specific search terms related to biometrics (i.e., eye tracking, blinking, iris, odor,
heart rate), neuroscience/brain techniques (i.e., EEG, MEG, TMS, NIRS, SST) and their
components (i.e., algorithms, functionality, performance) were also used to refine the
search. For each candidate article, the full text was accessed and reviewed to determine its
eligibility. The primary results and article conclusions were identified, and discrepancies
were resolved by way of discussion. The studies differed significantly in terms of protocol
design, signal processing, stimulation methods, the equipment used, the study population,
and statistical methods.

In Step 4, two central hypotheses were raised and confirmed:

Hypothesis 1. There is an interconnection between a country’s success, its number of Web
of Science articles published, and its citation frequency on AFFECT recognition. When there
are changes in the country’s success, its number of Web of Science articles published, and its
citation times on AFFECT recognition, the countries’ 7 cluster boundaries remain roughly the same
(Section 6).

Hypothesis 2. Increases in a country’s success usually go hand in hand with a jump in its number
of Web of Science articles published and its citation times on AF-FECT recognition.

Next, in Step 5, we collected data. The determination of the success of 169 countries
and the results obtained are described in detail in a study by Kaklauskas et al. [66]. This
study used data [66] from the framework of variables taken from a number of databases and
websites, such as the World Bank, Eurostat-OECD, the World Health Organization, Global
Data, Global Finance, Transparency International, Freedom House, Knoema, Socioeconomic
Data and Applications Center, Heritage, the Global Footprint Network, Climate Change
Knowledge Portal (World Bank Group, Washington, DC, USA), the Institute for Economics
and Peace, and Our World in Data; global and national statistics and publications were
also used. We based our research calculations on publicly available data from 2020 (or the
latest available).

We used the INVAR method [67] to conduct a multi-criteria examination of the
169 nations—the outcomes can be found in Section 6 (Step 6). This method determines a
combined indicator for whole nation success. This combined indicator is in direct propor-
tion to the corresponding impact of the values and significances of the specified indicators
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on a nation’s success. The INVAR method was used to conduct multiple criteria analyzes
of different groups of countries, such as the former Soviet Union [68], Asian countries [69],
and the global analysis of 169 [66] and 173 [70] countries.

The study’s 7th step presents the median values of the correlations for 169 countries,
its publications, and citations (Section 6). It was found that the median correlation of the
dependent variable of the Publications—Country Success model with the independent
variables (0.6626) is higher than in the Times Cited—Country Success model (0.5331).
Therefore, it can be concluded that the independent variables in the Publications—Country
Success model are more closely related to the dependent variable than in the Times Cited—
Country Success model.

In Step 8, we developed three maps that illustrate the way the success of the 169 coun-
tries impacts the number of Web of Science articles on AFFECT (emotional, affective, and
physiological states) recognition and their citation rates. The Country’s Success and AF-
FECT Recognition Publications (CSP) Maps of the World are a convenient way to illustrate
how the three predominant CSP dimensions (a country’s success, the numbers of publica-
tions, and the frequency of articles being cited) are interconnected for the 169 countries,
while the CSP models allow for these connections to be statistically analyzed from various
perspectives. It also allows for CSP dimensions to be forecast based on the country’s
success criteria. In other words, the CSP models give us a more detailed analysis of the CSP
dimensions through statistical and multi-criteria analysis, while the CSP maps (Section 6)
are more of a way to present the results in a visual manner. The amount of data available
is gradually increasing, as is the knowledge gained from research conducted around the
world. As a result, the CSP models are becoming better and better, and providing a clearer
reflection of the actual picture. This means that they can effectively facilitate research and
innovation policy decisions.

In Step 9, we created two regression models (Section 6). For the multiple linear
regressions, we used IBM SPSS V.26 to build two regression models on 15 indicators of
country success [66] and the three predominant CSP dimensions (Section 6). Step 9 entailed
the construction of regression models for the number of publications and their citation
rates, and the calculation of the effect size indicators describing them. Two dependent
variables and 15 independent variables were analyzed to construct these regression models.
The process was as follows:

• Construction of regression models for the numbers of publications and their citations.
• Calculation of statistical (Pearson correlation coefficient (r), standardized beta coef-

ficient (β), coefficient of determination (R2), standard deviation, p-values) and non-
statistical (research context, practical benefit, indicators with low values) effect size
indicators describing these regression models.

It was found that changes in the values of the Country Success variable explain the
variance of the Publications variable by 89.5%, and the variance of the Times Cited variable
by 54.0%. Additionally, when the value of the Country Success variable increases by 1%,
the value of Publications increases by 1.962% and Times Cited—by 2.101%. As the success
of a country increased by 1%, the numbers of Web of Science articles published and their
citations grew by 1.962% and 2.101%, respectively. A reliability analysis of the compiled
regression models allows us to conclude that the models are suitable for analysis (p < 0.05).
The 15 country success indicators explained 69.4% and 51.18% of the number of Web of
Science articles published and their citations, respectively.

Step 10 was to assess the biometric systems under analysis: the rationale behind the
available biometric and brain approaches was outlined, the efficacy of existing methods
compared, and their ability to address issues and challenges present in the field determined
(Section 7).
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3. Emotion Models

First, this chapter will discuss emotion models in more detail. Then, we will choose the
best option for our research and look at the Big Picture, i.e., the links between the selected
emotion model and biometric and brain sensors, and the trends.

Emotional responses are natural to humans, and evidence shows they influence
thoughts, behavior, and actions. Emotions fall into different groups related to various
affects, corresponding to the current situation that is being experienced [71]. People en-
counter complex interactions in real life, and respond to them with complex emotions that
often can be blends [72]. Emotional responses are the way for our brain and body to deal
with our environment, and that is why they are fluid and depend on the context around
us [73].

Two fundamental viewpoints form the basis in approaches to the classification of
emotions: (a) emotions are discrete constructs and they have fundamental differences,
and (b) emotions can be grouped and characterized on a dimensional basis [74]. These
classifications (emotions as discrete categories and dimensional models of emotion) are
briefly analyzed next.

In word recognition, alternative models have so far received little interest, and one
example is the discrete emotion theory [75]. This theory posits that there is a limited set of
universal basic emotions hardwired through evolution, and that each of the wide variety
of affective experiences can essentially be categorized into this limited set [76,77]. The
discrete emotion theory states that many emotions can be distinguished on the basis of
expressive, behavioral, physiological, and neural features [78]. The definition of emotions
provided by Fox [79] states they are consistent and discrete responding processes that
can include verbal, physiological, behavioral, and neural mechanisms. They are triggered
and changed by external or internal stimuli or events and respond to the environment.
Russell and Barrett [80] argue that, unlike the discrete emotion theory, their alternative
models can account for the rich context-sensitivity and diversity of emotions. Emotion
blends could be of three kinds: (a) Positive-blended emotions were blends of only positive
emotions; (b) negative-blended emotions were blends of only negative emotions; and (c)
mixed emotions were blends of both positive and negative emotions, as well as neutral ones.
The way teachers have described blended emotions reflects that mathematics teaching
involves many and complex tasks, where the teacher has to continuously keep gauging the
level of progress [81].

Emotional dimensions represent the classes of emotion. Categorized emotions can
be characterized in a dimensional form, with each emotion located in a different location
in space, for example in 2D (the circumplex model, “consensual” model of emotion, and
vector model) or 3D (the Lövheim cube, the pleasure–arousal–dominance (PAD) emotional
state model, and Plutchik’s model) [82].

The circumplex model [83] proposes that two independent neurophysiological sys-
tems: One of the systems is related to arousal (activated/deactivated) and to valence
(a pleasure–displeasure continuum), and the other to valence (a continuum from pleasure
to displeasure) and to arousal (activation–deactivation) [84]. Each emotion can be under-
stood as having varying valence and arousal, and is a linear combination of these two
dimensions, or as varying valence and arousal [83,85]. We already applied the Russel’s
circumplex model of emotions to perform a review of the human emotion recognition of
sensors and methods [85].

The vector model comprises two vectors. The model holds that there is an underlying
dimension of arousal with a binary choice of valence that determines direction, and an
underlying dimension of arousal. This results in there being two vectors that, both starting
at zero arousal and neutral valence and zero arousal, proceed as straight lines, one in a
positive, and one in the direction of negative valence and the other in the direction of
positive valence. Typically, the vector model uses direct scaling of the dimensions of each
individual stimulus individually in this model [86,87].
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The positive activation–negative activation (PANA) or “consensual” model of emotion,
also known as positive activation/negative activation (PANA), assumes that there are two
separate systems—positive affect and negative affect. In the PANA model, the vertical axis
represents low to high positive affect, and the horizontal axis of this model represents low
to high negative affect (low to high). The vertical axis represents positive affect (low to
high) [88]. There are two uncorrelated and independent dimensions: Positive Affect (PA),
represents the extent (from low to high) to which a person shows enthusiasm for life. The
second factor is Negative Affect (NA), and NA represents the extent to which a person is
feeling upset or unpleasantly aroused. Positive Affect and Negative Affect are independent
and uncorrelated dimensions [89].

The Pleasure–Arousal–Dominance (PAD) Emotional-State Model, offers a general three-
dimensional approach to measuring emotions [90]. This 3D model captures emotional re-
sponse, and includes the three dimensions of pleasure–displeasure (P), arousal–nonarousal (A),
and dominance–submissiveness (D) as basic factors of emotional response [91]. The initials
PAD stand for pleasure, arousal, and dominance, which span different emotions. For instance,
pleasure can be happy/unhappy, hopeful/despairing, satisfied/unsatisfied, pleased/annoyed,
content/melancholic, and relaxed/bored. Arousal can be excited/calm, stimulated/relaxed,
wide-awake/sleepy, jittery/dull, frenzied/sluggish, and aroused/unaroused. Dominance can
be important/awed, dominant/submissive, influential/influenced, controlling/controlled, in
control/cared-for, and autonomous/guided [92]. The neuro-decision and neuro-correlation
tables, the inverted U-curve theory, the PAD emotional state model, neuro-decision making,
and neuro-correlation tables are used to evaluate the impact of digital twin smart spaces
(such as indoor air quality, a level of the lighting intensity and colors, learning materials,
images, smells, music, pollution, and others) on users, and track their response dynamics
in real time, and to then react to this response [93].

The PAD is composed of three different subscales, reflecting pleasure, arousal, and
dominance. These can represent different emotions; for example, the pleasure states in-
clude happy (unhappy), pleased (annoyed), satisfied (unsatisfied), contented (melancholic),
hopeful (despairing) and relaxed (bored), while the arousal states include stimulated (re-
laxed), excited (calm), frenzied (sluggish), jittery (dull), wide awake (sleepy) and aroused
(unaroused), and the dominance states include controlling (controlled), influential (influ-
enced), in control (cared for), important (awed), dominant (submissive), and autonomous
(guided) [92]. The affective space model makes it possible to visualize the distribution of
emotions along the two axes of valance (V) and arousal (A). Using this model, different
emotions can be identified, such as happiness, calmness, fear, and sadness [94].

Swedish neurophysiologist Lövheim proposed that a cube of emotion is the direct rela-
tion between certain specific combinations of the levels of the three signal substances (sero-
tonin, noradrenaline, and dopamine) and eight basic emotions [95]. A three-dimensional
model, the Lövheim cube of emotion, was presented where there is a model with each of
the signal substances of form represented as the axes of a coordinated system, and each
corner of this 3D space holding one of the eight basic emotions is placed in the eight corners.
In this model, anger is produced by the combination of high noradrenaline, high dopamine,
and low serotonin [96].

The eight main categories of emotions defined by Robert Plutchik in 1980s include
two equal groups opposite to each other: half are positive emotions and the other half are
negative ones [97]. To visualize eight primary emotion dimensions, which are fear, trust,
surprise, anticipation, anger, joy, disgust and sadness, eight sectors have been isolated [98].
The Emotion Wheel shows each of the eight basic emotions highlighted with a recognizable
color [99]. When we add another dimension, the Wheel of Emotions becomes a cone with
its vertical dimension representing intensity. Moving from the outside towards the wheel’s
center emotions intensify and this fact is highlighted by the indicator color. The intensity of
emotions is decreasing towards the outer edge and the color, correspondingly, becomes
less intense [98,99]. When feelings intensify one feeling can turn into another: annoyance
into rage, serenity into ecstasy, interest into vigilance, apprehension into terror, acceptance
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into admiration, pensiveness into grief, distraction into amazement, and, if left unchecked,
boredom can become loathing [98]. Some emotions have no color marking. They are
a mix of two primary emotions [98,99]. Joy and anticipation, for instance, combine to
become optimism. When anticipation combines with anger it becomes aggressiveness. The
combination of trust and fear is submission, joy and trust combine to become love, surprise
and fear become awe, the pair of disgust and anger becomes contempt, sadness and disgust
combine to become remorse, and surprise and sadness become disapproval [100].

After the analysis of the said emotion models, we have made the decision to choose
Plutchik’s wheel of emotions for our research. The ability to analyze human emotional,
affective, and physiological states in an integrated manner offered by this model is one of
the main reasons of our choice. The wheel is briefly discussed below.

Several ways to classify emotions have been proposed in the field of psychology. For
that purpose, the basic emotions are first identified and then they allow clustering with any
other more complex emotion [101]. Plutchik [65] proposed a classification scheme based
on eight basic emotions arranged in a wheel of emotions, similar to a color wheel. Just
like complementary colors, this setup allows the conceptualization of primary emotions
by placing similar emotions next to each other and opposites 180 degree apart. Plutchik’s
wheel of emotions classifies these eight basic emotions grounded on the physiological
aim [102]. Emotions are coordinated with the body’s physiological responses. For example,
when you are scared, your heart rate typically increases and your palms become sweaty.
There is ample empirical evidence that suggests that physiological responses accompany
emotion [103]. Another parallel with colors is the fact that some emotions are primary
emotions and other emotions are derived by combining these primary emotions. The two
models share important similarities, and such modelling can also serve as an analytical tool
to understand personality. In this case, a third dimension has been added to the circumplex
model to represent the intensity of emotions. The structural model of emotions is, therefore,
shaped like a cone [104]. Figure 1 demonstrates Plutchik’s wheel of emotions, biometrics
and brain sensors, and trends and interdependence in this Big Picture stage. At the center
of the circles is Plutchik’s wheel of emotions. Plutchik’s wheel of emotions also includes
affective attitudes (interest, boredom). Plutchik [65] notes that the same instinctual source of
energy is discharged as part of the emotion felt and the underlying peripheral physiological
process. Emotions can be of various levels of arousal or degrees of intensity [105]. Looking
at the intensity of Plutchik’s eight basic emotions, Kušen et al. [106] identified variations
in emotional valence. The first circle, therefore, analyses, directly or indirectly, human
arousal, valence, affective attitudes, and emotional and physiological states (AFFECT).
Human AFFECT can be measured by means of neuroscience and biometric techniques.
The market and global trends are a constant force affecting neuroscience and biometric
technologies and their improvement. Based on the analysis of global sources [107–110] and
our experience, Figure 1 presents brain and biometric sensors, as well as technique trends.
Sensors will be able to integrate more and more new technologies and collect a greater
variety of data, as they will become more accurate, more flexible, cheaper, smaller, greener,
and more energy-efficient [108–110]. Network neuroscience, a new explicitly integrative
approach towards brain structure and function, seeks new ways to record, map, model,
and analyze what constitutes neurobiological systems and what interactions happen inside
them. The computational tools and theoretical framework of modern network science,
as well as the availability of new empirical tools to map extensively and record the way
shifting patterns link molecules, neurons, brain areas and social systems, are two trends
enabling and driving this approach [107].
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Figure 1. Plutchik’s wheel of emotions, biometrics and neuroscience sensors, and trends.

Figure 2 shows numerous sciences and areas in which neuroscience and biometrics
analyze the AFFECT. According to Sebastian [111], neuroeconomics is the study of the
effect of anticipating money decisions on our brain. It has solidified as an entirely aca-
demic and unifying field that ventures to describe the techniques of the decision-making
process; and reiterates economic behavior and decision-making process with economic
disposition. The procedure of neuroeconomics involves the integration of behavioral ex-
periments and brain imaging in order to more clearly appreciate the workings behind
individual and collective decision-making [112]. Serra [113] reported that neuroeconomics
researchers utilize neuroimaging devices such as functional magnetic resonance imaging
(fMRI), magnetic resonance imaging (MRI), transcranial magnetic stimulation (rTMS), and
transcranial direct-current stimulation (tDCS), positron emission tomography (PET) and
electroencephalography (EEG). The majority of challenges probed by neuroeconomics re-
searchers are basically similar to the problems a marketing researcher would acknowledge
as aspects of their functional domain [114]. Kenning and Plassmann [115] has also defined
neuroeconomics as the implementation of neuroscientific methods in the evaluation and
appreciation of economically significant behavior.
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Figure 2. Neuroscience and biometric branches analyzing AFFECT in various sciences and fields.

According to Wirdayanti and Ghoni [116], neuromanagement entails psychology,
the biological aspect of humans for decision-making in management sciences. As stated
Teacu Parincu et al. [117], neuromanagement is targeted at investigating the acts of the
human brain and mental performances whenever people are confronted with management
challenges, using cognitive neuroscience, in addition to other scientific disciplines and tech-
nology, to evaluate economic and managerial problems. Its focal point is on neurological
activities that are related to decision-making and develops personal as well as organiza-
tional intelligence (team intelligence). It also centers on the planning and management of
people (for example, selection, training, group interaction and leadership) [118].

Neuro-Information Science can be defined as the science that observes neurophysiolog-
ical reactions that are connected with the peripheral nervous system; that is then connected
to conventional cognitive activities. Michalczyk et al. [119] stated that neuro-information-
systems research has developed into a conventional approach in the information systems
(IS) discipline for evaluating and appreciating user behavior. Riedl et al. [120] and Michal-
czyk et al. [119] concluded that Neuro-information-systems comprise studies that are
centered on all types of neurophysiological techniques, such as functional magnetic res-
onance imaging (fMRI), electroencephalograhy (EEG), fNIRS (functional near-infrared
spectroscopy), electromyography (EMG), hormone studies, or skin conductance and heart
rate evaluations, as well as magnetoencephalography (MEG) and eye-tracking (ET).
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Neuro-Industrial Engineering brought about by the synergy between neuroscience
and industrial engineering has afforded resolutions centered on the physiological status
of people. Ma et al. [121] reported that NeuroIE secures its objective and real data by ana-
lyzing human brain and physiological indexes with advanced brain AFFECT devices and
biofeedback technology, evaluating the data, adding neural activities as well as physiologi-
cal status in the process of evaluation; as new constituents of operations management, and
finally understanding better human–machine integration by modifying work environment
and production system in line with people’s reaction to the system, preventing mishaps
and enhancing efficiency and quality. According to Ma et al. [121], Neuro-Industrial En-
gineering is centered on humans and lays hold of human physiological status data (e.g.,
EEG, EMG, GSR and Temp). Zev Rymer [122] also stated that the application of Neuro-
Industrial Engineering is multidisciplinary in that it cuts across the neurological sciences
(particularly neurology and neurobiology) in addition to different fields of engineering
disciplines such as simulation, systems modeling, robotics, signal processing, material
sciences, and computer sciences. The area encompasses a range of topics and applications;
for example, neurorobotics, neuroinformatics, neuroimaging, neural tissue engineering,
and brain–computer interfaces.

As soon as a user contacts an insurer, a bank or any other call center, a version of
Cogito’s software known as Dialog could be active in the background, assisting the client
service agent to deal with the client. Should the user become upset or angry, the client
service agent can ensure that necessary actions are taken to satisfy the client. According
to Cogito, this service is known as “digital intuition”. Its usefulness in call centers cannot
be overemphasized as it can give feedback about real-time communications. The speed at
which speeches are made by the callers as well as the dynamic range of their voices can also
be analyzed by the software. For example, significant variations in pitch and stresses in
caller’s tones could signify excitement or anger. Less significant dynamism, a monotonous
flat tone, could imply a lack of interest or unconcern. Some companies make use of the
software to assist their employees engage new patients for healthcare projects that help
control health challenges such as obesity or asthma. Cogito is among recent profit-based
research companies whose focus are on the evaluation of signals subconsciously given off
by people which exposes their mindset. The evaluation of these kinds of social-signals is
beneficial beyond call centers and meeting rooms. According to Hodson [123], keeping
track of conversations during surgeries or plane cockpits could assist surgeons and pilots
to be aware of whether their colleagues are really attentive to their directives, possibly
preserving lives.

Several areas where we can apply the technology of recognizing emotions from speech
include human–computer interactions and call centers [124].

4. Brain and Biometric AFFECT Sensors

4.1. Classifications

Globally, several classifications of biometric and neuroscience methods and technolo-
gies are used. Our research focuses on neuroscience methods that are non-invasive. The
use of non-invasive brain stimulation is widespread in studies of neuroscience [125]. The
non-invasive neuroscience methods are: transcranial magnetic stimulation (TMS), electroen-
cephalography (EEG), magnetoencephalography (MEG), positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), near infrared spectroscopy (NIRS),
diffusion tensor imaging (DTI), steady-state topography (SST), and others [126–134]. These
non-invasive neuroscience methods are described in detail in Section 3. In the future, the
authors of this article plan to analyze invasive neuroscience methods, too.

Biometrics can be physical or behavioral. In the first case, emotions can be identified
by their physical features, including face, and in the second case by their behavioral
characteristics, including gait, voice, signature, and typing patterns [135]. Various sensors
can measure physiological signals, known as biometrics, capturing the response of bodily
systems to things that are experienced through our senses, but also things imagined, by
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tracking sleep architecture, heart rate variability (HRV), respiratory rate (RR), and heart
rate (RHR) [136].

Scientific literature classifies biometrics into certain types. Stephen and Reddy [137]
and Banirostam et al. [138], for instance, classify biometrics into three categories: physio-
logical, behavioral, and chemical/biological. Yang et al. [139] distinguish physiological
and behavior traits. Kodituwakku [140] believes biometric technology can be classified
into two general categories: physiological biometric techniques and behavioral biometric
techniques. Jain et al. [141] and Choudhary and Naik [142] also classify biometrics into two
categories: physiological and behavioral. In the literature, not only signature, voice, and
gait are considered behavioral biometric features, but also ECG, EMG, and EEG [143], while
other authors distinguish cognitive biometrics [144,145], including electroencephalography
(EEG), electrocardiography (ECG), electrodermal response (EDR), blood pulse volume
(BVP), near-infrared spectroscopy (NIR), electromyography (EMG), eye trackers (pupil-
lometry), hemoencephalography (HEG), and related technologies [145]. Some scientific
sources claim that eye tracking is a behavioral biometric [146], while others claim that it
is a measurement in physiological computing [147]. Physiological biometrics measures
the physiological signals to determine identity as well as authenticating and analyzing
users emotions. Respiration, perspiration, heartbeat, eye-reactions to light, brain activ-
ity, emotions, and even body odor can be measured for numerous purposes, including
physical and logical access control, payments, health monitoring, liveness detection, and
neuromarketing among them [136].

Scientists identify the following AFFECT biometric types [139–142,148–150]:

• Physiological features: facial patterns, odor, pupil dilation and contraction, skin
conductance, heart rate, respiratory rate, temperature, blood volume pulse, and others.

• Behavioral features: gait, keystroke, mouse tracking, signature, handwriting, speech/voice,
and others.

• The authors of this article have used the classification of biometrics proposed by the
abovementioned authors (physiological and behavioral features).

Biometric technologies are usually divided into those of first and second genera-
tion [151]. First-generation biometrics can confirm a person’s identity in a quick and
reliable way, or authenticate them in different contexts, and law enforcement is one of
the areas where such solutions are employed in practice [152]. The primary purpose of
first-generation biometrics is identity verification, such as facial recognition, and the tech-
nology is built around simple sensors that capture physical features and store them for
later use [153]. Second-generation biometrics can also be used to detect emotions, with
electro-physiologic and behavioral biometrics (e.g., based on ECG, EEG, and EMG) as
examples of such technologies [154]. Second-generation biometrics measure individual
patterns of learned behavior or physiological processes, rather than physical traits, and
are also known as behavioral biometrics [155]. Second-generation biometrics usage has
the ability to analyze/evaluate emotions and detect intentions [156]. The use of second-
generation biometrics enables wireless data collection regarding the body. The data can
then be used to infer an individual’s intent and emotions, as well as emotion tracking across
spaces [151,157]. We examine only physiological effects affected by emotional reactions
(i.e., second-generation biometrics), and the use of biometric patterns for the identification
of individuals is not discussed in this study.

A diverse range of AI algorithms have been applied for AFFECT recognition, for
example machine learning, artificial neural networks, search algorithms, expert systems,
evolutionary computing, natural language processing, metaheuristics, fuzzy logic, genetic
algorithms, and others. Some of the most important supervised (classification, regression),
unsupervised (clustering), and reinforcement learning algorithms of machine learning are
common as tools in biometrics or neuroscience research to detect emotions and affective
attitudes, and are listed below:
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• Among classification algorithms the most common choices are: naïve Bayes [158–160],
Decision Tree [161–163], Random Forest [164–166], Support Vector Machines [167–169],
and K Nearest Neighbors [170–172].

• Among regression algorithms the usual choices are: linear regression [173–175], Lasso
Regression [176,177], Logistic Regression [178–180], Multivariate Regression [181,182],
and Multiple Regression Algorithm [183,184].

• Among clustering algorithms the most common choices in biometrics or neuroscience
research are: K-Means Clustering [185–187], Fuzzy C-means Algorithm [188,189],
Expectation-Maximization (EM) Algorithm [190], and Hierarchical Clustering Algo-
rithm [188,191,192].

• Among reinforcement learning algorithms the most common choices are: deep rein-
forcement learning [193–195] and inverse reinforcement learning [196].

4.2. Brain AFFECT Devices and Sensors

Neuroscience is associated with multiple fields of science, for example chemistry, com-
putation, psychology, philosophy, and linguistics. Various research areas of neuroscience
include behavioral, molecular, operative, evolutionary, cellular, and therapeutic features
of the neurotic system. The neuroscience market encompasses technology (electrophysiol-
ogy, neuro-microscopy, whole-brain imaging, neuroproteomics analysis, animal behavior
analysis, neuro-functional study, etc.), components (services, instrument, and software)
and end-users (healthcare centers, research institutions and academic, diagnostic labora-
tories, etc.) [197]. Global Industry Analysts Inc. (San Jose, CA, USA) [197] has previously
grouped the global neuroscience market into instrument, software, and services based on
components.

Neuroscience provides valuable perceptions concerning the structural design of the
brain and neurological, physical, and psychological activities. It helps neurologists to
appreciate the various components of the brain that can assist in the development of
medications and techniques to handle and avoid many neurological anomalies. The
rising death rate as a result of several neurological disorders, such as Parkinson’s disease,
Alzheimer’s, schizophrenia, and other brain-related health challenges, represents the
basic factor controlling the neuroscience market growth [198]. According to Neuroscience
Market [198], the increasing request for neuroimaging devices and the progressive brain
mapping research and evaluation projects are other crucial growth-inducing factors.

Neuroscience covers a whole range of branches, such as, neuroevolution, neuroanatomy,
developmental neuroscience, neuroimmunology, cellular neuroscience, neuropharmacol-
ogy, clinical neuroscience, cognitive neuroscience, nanoneuroscience, molecular neuro-
science, neurogenetics, neuroethology, neurochemistry, neurophysics, paleoneurobiology,
neurology, and neuro-ophthalmology.

Other branches of neuroscience analyze AFFECT in various related sciences and fields,
such as affective neuroscience [199,200], neuroinformatics [201,202], neuroimaging [203,204],
systems neuroscience [205,206], computational neuroscience [207,208], neurophysiolo-
gy [51,209], behavioral neuroscience [210,211], neural engineering [212,213], neuroeco-
nomics [214,215], neurolinguistics [216,217], neuropsychology [218–220], neurophiloso-
phy [221–223], neuroaesthetics [224–226], neurotheology [227–229], neuropolitics [230–232],
neurolaw [233–235], social neuroscience [236,237], cultural neuroscience [238,239], neurolit-
erature [240–242], neurocinema [243–245], neuromusicology [246–248], and neurogastron-
omy [249,250].

For example, Lim [251] identifies the following neuroscientific techniques for neuro-
marketing:

• Electromagnetic methods, including magnetoencephalography (MEG), electroen-
cephalography (EEG), and steady-state topography (SST). MEG involves the magnetic
fields produced by the brain (its natural electrical currents) and is used to track the
changes that occur when participants see or interact with various presentation outputs.
EEG is related to the ways in which brainwaves change and is used to detect changes
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when participant see or interact with various promoting outputs (an electrode band
or helmet is used for this purpose). SST measures a steady-state visually evoked
potential, and is used to determine how brain activities change depending on the task;

• Metabolic methods, including positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI). PET is used to examine the metabolism of glucose
within the brain with great accuracy by tracing radiation pulses, while fMRI is used to
measure blood flow in the brain to determine changes in brain activity;

• Electrocardiography (ECG), which uses external skin electrodes to measure electrical
changes related to cardiac cycles;

• Facial electromyography (fEMG), which amplifies tiny electrical impulses to record
the physiological properties of the facial muscles;

• Transcranial Magnetic Stimulation (TMS), which is used to observe the effects of pro-
moting output on behavior by temporarily disrupting specific brain activities. TMS is
a non-invasive, safe brain stimulation method. By means of a strong electromagnet,
this technique momentarily generates a short-lived virtual lesion, i.e., disrupts infor-
mation processing in one of brain regions. If stimulation interferes with performing a
certain task, the affected brain region is, then, necessary for normal performance of
the task [252].

Table 1 demonstrates traditional non-invasive neuroscience methods.

Table 1. Traditional non-invasive neuroscience methods.

Methods Author(s) Description

Electroencephalography
(EEG) [111,253–266]

EEGs capture brainwave variations, using recorded amplitudes to
monitor mental states that include alpha waves (relaxation), beta waves
(wakefulness), delta waves (sleep), and theta waves (calmness) [255].

An EEG signal comprises five brain waves and measuring the activity
of certain brain areas can reveal the state of the subject’s cortical

activation. Each wave is characterized by different amplitudes and
frequencies, and corresponds to distinct cognitive states [265].

Magnetoencephalography
(MEG) [111,253–256,259,260,267]

Using magnetic potentials, an MEG records brain activity at the scalp
level. A helmet with sensitive detectors is placed on the subject’s head

to track the signal [255], and the MEG detects the magnetic fields
produced by electromagnetic fields [111].

Transcranial Magnetic
Stimulation (TMS)

(Figure 3)

[111,251,253,255,258,260,
267]

TMS modulates the activity of certain brain areas located 1–2 cm below
the skull, without reaching the neocortex, using magnetic

induction [255]. When TMS is used, short electromagnetic impulses are
applied at the scalp level. This instrument can stimulate or inhibit a

particular cortical area [111].

Near Infrared
Spectroscopy (NIRS) [267–269]

NIRS measures hemodynamic alterations accompanying brain
activation and is a simple bedside technique [269]. NIRS makes use of

the near-infrared region of the electromagnetic spectrum (about
700–2500 nm). Measurements are taken of light scattered from the

surface of and through a sample, and NIR reflectance spectra can give
rapid insight into the properties of a material without altering the

sample [268].

Steady-State Topography
(SST) [251,253,255,256,260]

SST can be applied to track high-speed changes and measure the
activity of the human brain. This tool is very commonly used in

neuromarketing research and cognitive neuroscience [255].
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Table 1. Cont.

Methods Author(s) Description

Functional Magnetic
Resonance Imaging (fMRI)

(Figure 4)

[111,251,253–256,258–
261,263,264,266,267]

fMRI is suitable for use within neuromarketing studies, as brain
activity can be measured in subjects performing certain tasks or

experiencing marketing stimuli. It allows for the observation of deep
brain structures, and hence can reveal patterns [255]. fMRI can also

measure increases in oxygen levels in the blood flow to the brain and
can detect the active cortical regions [111].

Positron Emission
Tomography (PET)

(Figure 4)

[111,251,253,254,256,259–
261,267]

The subject is injected with a radioactive substance, and the flow of the
substance is then measured. Significant increases in the flow are seen in

activated areas [111].

Diffusion Tensor Imaging
(DTI) (Figure 5) [267,270,271]

This is an MRI-based neuroimaging technique that allows the user to
estimate the location, anisotropy and orientation of the brain’s white

matter tracts [271]. DTI makes it possible to visualize and characterize
white matter fasciculi in two and three dimensions [270].

For clarity, several descriptions of traditional neuroscience methods are presented below.
Wearable healthcare devices store a lot of sensitive personal information which makes

the security of these devices very essential. Sun et al. [272] proposed an acceleration-
based gait recognition method to improve gait-based elderly recognition. Gait is also a
good indicator in health assessment, Majumder et al. [273] created a simple wearable gait
analyzer for the elderly to support healthcare needs.

Lim [251] states that neuroscientific methods and tools include those that track, chart,
and record the activity of a person’s neural system and brain in relation to a certain behavior,
and neurological representations of this activity can then be generated to shed light on
how an individual’s brain and nervous system respond when the person is exposed to
a stimulus. In this way, neuroscientists can observe the neural processes as they happen
in real time. There are three main types of neuroscientific method: those that track what
is happening inside the brain (metabolic and electromagnetic activity); those that track
what is happening at the neural level outside the brain; and those that can influence neural
activity (Table 1, Figure 1).

Non-invasive neuroscience technical information is provided in detail in various
research literature about the origin of the measured signal and the engineering/physical
principle of the sensors for EEG [274–276], MEG [277–279], TMS [280–282], etc.

Gannouni et al. [283] have proposed a new approach with EEG signals used in emo-
tion recognition. To achieve better emotion recognition using brain signals, Gannouni
et al. [283] applied a novel adaptive channel selection method. The basis of this method
is the acknowledgment that different persons have unique brain activity that also differs
from one emotional state to another. Gannouni et al. [283] argue that emotion recognition
using EEG signals needs a multi-disciplinary approach, encompassing areas such as psy-
chology, engineering, neuroscience, and computer science. With the aim of improving the
reproducibility of emotion measurement based on EEG, Apicella et al. [35] have proposed
an emotional valence detection method for a system based on EEG, and their experiments
proved an accuracy of 80.2% in cross-subject analysis and 96.1% in within-subject anal-
ysis. Dixson et al. [284] have pointed out that facial hair may interfere with detection of
emotional expressions in a visual search. However, facial hair may also interfere with
the detection of happy expressions within the face in the crowd paradigm, rather than
facilitating an effect of anger superiority as a potential system for threat detection.

Wang et al. [285] introduced an EEG-based emotion recognition system to classify four
emotion states (joy, sadness, fear, and relaxed). Their experiments used movie elicitation
to acquire EEG signals from their subjects [285]. The way in which meditation influences
emotional response was investigated via EEG functional connectivity of selected brain
regions as the subjects experienced happiness, anger, sadness or were relaxed, before and
after meditation.
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Neurometrics is a quantitative EEG method. Looking at individual records, this
method provides a reproducible, precise estimate of deviations from normal. Only suffi-
cient amount of good quality raw data transformed for Gaussian distributions, correlated
with age, and corrected taking into account intercorrelations among measures ensure
meaningful and reliable results [286]. Businesses, government agencies, and individuals
use neurometric information when they need timely and profitable decisions. Techniques
based on neurometric information are applied to make profitable business decisions. These
techniques are based on biometric information, eye tracking, facial action coding and
implicit response testing, and are used to understand and record human sentiments and
other related feedback [161].

The fronto-striatal network is involved in a range of cognitive, emotional, and motor
processes, such as decision-making, working memory, emotion regulation, and spatial
attention. Practice shows that intermittent theta burst transcranial magnetic stimulation
(iTBS) modulates the functional connectivity of brain networks. Treatments of mood
disorders usually involve high stimulation intensities and long stimulation intervals in
transcranial magnetic stimulation (TMS) (Figure 3) therapy [287].

Figure 3. Resting state TMS brain scan image [287].

One of imaging techniques is FDG-PET/fMRI (simultaneous [18F]-fluorodeoxyglucose
positron emission tomography and functional magnetic resonance imaging). This technique
makes it possible to image the cerebrovascular hemodynamic response and cerebral glucose
uptake. These two sources of energy dynamics in the brain can provide useful information.
Another greatly useful technique for characterizing interactions between distributed brain
regions in humans has been resting-state fMRI connectivity, while metabolic connectivity
can be a complementary measure to investigate the dynamics of the brain network. Func-
tional PET (fPET), a new approach with high temporal resolution, can be used to measure
fluoro-D-glucose (FDG) uptake and looks like a promising method to assess the dynamics
of neural metabolism [288]. Figure 4 shows raw images of signal intensity variation across
the brain for one individual subject.

Figure 4. Raw images of fPET and fMRI scans [288].
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Many biological tissues comprised of fibers, which are groups of cells aligned in a
uniform direction, have anisotropic properties. In the human brain, for instance, within
its white matte regions, axons usually form complex fiber tracts that enable anatomical
communication and connectivity. Non-invasive tools can show the groups of axonal fibers
visually. One of them is diffusion tensor magnetic resonance medical imaging (DTI), which
is one particular method or application of the broader Diffusion-Weighted Imaging (DWI).
The basic principle behind this technique is that water diffuses more slowly as it moves
perpendicular to the preferred direction, whereas in the direction aligned with the internal
structure the diffusion is more rapid. The DTI outputs can be further used to compute
diffusion anisotropy measures such as the fractional anisotropy (FA). The principal direction
of the diffusion tensor can also be used to obtain estimates related to the white matter
connectivity in the brain. Figure 5 shows an example of DTI tractography, or visualization
of the white matter connectivity [289].

Figure 5. DTI can be used to construct a transversely isotropic model by overlaying axonal fiber
tractography on a finite element mesh: (a) DTI-informed Finite Element Model; tractography shows
complex fibers from (b) the dorsal view, (c) the right lateral side view, and (d) the posterior view.
Cartography of the tracts’ position, direction by color: red for right-left, blue for foot-head, green for
anterior-posterior [289].

4.3. Physiological and Behavioral Biometrics

Physiological biometrics (as opposed to behavioral biometrics) is a category of ap-
proaches that refers to physical measurements of the human body, including face, pupil
constriction and dilation [290]. When a recognition system is based on physiological charac-
teristics it can ensure a comparatively high accuracy [291]. The ubiquity of electronics such
as cell phones and computers, and evolving sensor technology offer human beings new
possibilities to track their behavioral and physiological features and evaluate the associated
biometric results. Advances in mobile devices mean they now have many efficient and
complex sensors. Biometric technology often contributes to mobile application growth,
including online transaction efficiency, mobile banking, and voting. The global market for
biometric systems is wide and comprises many different segments such as healthcare, trans-
portation and logistics, security, military and defense, government, consumer electronics,
and banking and finance [292].

Table 2 presents widely used physiological and behavioral biometrics.
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Table 2. Physiological and behavioral biometrics.

Technique Author(s) Description

Physical/Physiological Features

Eye Tracking (ET)
(Figure 6) [111,251,253–261,264–267]

ET determines the areas at which the subject is looking and for how
long, and also tracks the movement of the subject’s eyes and changes in
pupil dilation while the subject looks at stimuli. With this technique,

behavior and cognition can be studied without measuring brain
activity [255]. By measuring eye movements and visual attention, an

eye tracker determines the point of regard [265].

Blinking [261,264,293]

Eye blinking forms the basis of the new biometric emotions identifier
proposed by Abo-Zahhad et al. [293]. These authors outline where eye
blinking signals come from and give an overview of the features of the

EOG signals from which the eye blinking waveform is extracted.

Iris characteristics

User-oriented examinations were applied to find the relationships
between personality and three common iris characteristics: pigment
dots, crypts, and contraction furrows [294]. Dark-eyed individuals
typically have higher scores for neuroticism and extraversion [295],

sociability [296], and ease of emotional arousal [297].

Facial Action Coding
(FC)/Facial Expression

Analysis Surveys
(Figure 7)

[253–258,260,261,263–
265,298]

FC uses a video camera to track micro-expressions that correspond to
certain subconscious reactions. The activity of the facial muscles is

tracked [255]. Scientists and practitioners have developed various open
data datasets (KaoKore Dataset, CelebFaces At-tributes Dataset, etc.)

and applied elicitation techniques (gamification, virtual reality) in
practice.

Facial Electromyography
(fEMG) (Figure 8)

[251,253–256,259–
263,298,299]

fEMG is used in measuring and evaluating the physiological properties
of facial muscles [255].

Odor [300]
This a method of emotion recognition based on an individual’s

odor [300]. An emotional mood, for example a period of depression,
may affect body odor [301].

Keystroke dynamics and
mouse movements

(Figure 9)
[302] AFFECT states can be determined by how a person moves a computer

mouse while sitting at a computer.

Skin Conductance
(SC)/Galvanometer or

Galvanic Skin Response
(GSR)

[111,251,253,255,256,258,
260–262,264,265,267]

SC is highly correlated with the rate of perspiration, and is often linked
to stress as well as to the processes happening in the nervous

system [261]. SC methods measure arousal based on tiny changes in
conductance that occur when something activates the autonomic

nervous system [255].
The sympathetic branch of the autonomic nervous system controls the

skin’s sweat glands, and the activity of the glands determines the
galvanic skin response [265].

Heart rate
(HR)/Electrocardiogram

(ECG)
[19,111,251,256,261,303]

An ECG is used to measure the electrical activity of the heart [261]. An
ECG relies on cardiac electrical activity and measures the electrical

impulses that travel through the heart with each beat, causing the heart
muscle to pump blood. In ECGs of a normal heartbeat, the timing of

the lower and top chambers of the heart is charted [303].

Respiratory Rate
Assessment (RRA) [111,261,304]

Respiratory rate, one of fundamental vital signs, is sensitive to various
pathological situations (clinical deterioration, pneumonia, adverse

cardiac events, etc.), as well as stressors [304].

Skin temperature (SKT) [305]

SKT data can be used to measure the thermal responses of human skin.
SKT depends on the complex relationship between blood perfusion in
the skin layers, heat exchange with the environment, and the central

warmer regions of the skin [305]
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Table 2. Cont.

Technique Author(s) Description

Photoplethysmography
(PPG) or Blood volume

pulse (BVP)
[305]

Changes in the amplitudes of PPG signals are related to the level of
tension in a human being. PPG is a simple, non-invasive method of

taking measurements of the cardiac synchronous changes in the blood
volume [305].

Trapezium
electromyogram [306]

EMG is a technique that can be used to evaluate and record the
electrical activity generated by skeletal muscle [306], for example the

trapezius muscle [307].

Neurotransmitter (NT) [251,308]

Brain neurotransmitters are particular chemical substances that act as
messengers in chemical synaptic transmissions and can transmit

emotive information. They have excitability and inhibitive
abilities [308].

Voice/Speech/Voice Pitch
Analysis (VPA) [263,267,300,309,310] This is a method of emotion recognition that relies on the

person’s voice.

Implicit Association Test
(IAT) [255,264,311]

IAT measures individual behavior and experience by assessing the
reaction times of subjects to determine their inner attitudes. The

subjects are given two cognitive tasks, and measurements are taken of
the speed at which they associate two distinct concepts (brands,

advertisements, etc.) with two distinct assessed features. IATs can be
used to identify hierarchies of products by means of comparisons [255].

Mouse Tracking (MT) [257,312]

Recognition of a user’s emotions is possible based on their mouse
movements. Users can be classified by extracting features from raw

data on mouse movements and employing complex machine learning
techniques (e.g., a support vector machine (SVM)) and basic machine

learning techniques (e.g., k-nearest neighbor) [312].

Signature (Figure 9) [298–300,309] Emotions can be identified by their handwriting style, and in particular
their signature.

Gait (Figure 9) [298–300,309] This method allows for emotions recognition based on a person’s
walking style or gait [300].

Lip Movement [299]
Lip movement measurements are a recently developed form of

biometric emotions recognition that is very similar to the way a deaf
person determines what is being said by tracking lip movements [299].

Gesture [298,309] Gesture recognition is used to identify emotions rather than a person,
and gestures are grouped into certain categories [298].

Keystroke/Typing
Recognition (Figure 9) [169,300] In this method, the unique characteristics of a person’s typing style are

used for emotions identification purposes [300].

Most of today’s eye tracking systems are video-based, with an eye video camera and
infrared illumination. Eye tracking systems can be categorized as tower-mounted, mobile,
or remote based on how they interface with the environment and the user (Figure 6) and
different video-based eye tracking systems are required depending on the experiment,
the environment, and the type of activity to be studied [313]. Researchers have used
eye-tracking for behavioral research.
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Figure 6. Sample of various kinds of eye-tracking tools: (a) eye-tracking glasses [314]; (b) helmet-
mounted [315]; (c) remote or table [316].

The left image in Figure 7 shows the last frame of an expression showing surprise on a
sample face from Cohn–Kanade database and highlights the trajectories (the bright lines
that change color from darker to brighter from their start to end) followed by each tracked
feature point. Figure 7. The application of the dense flow method (right) and the result of
applying the feature optical flow on the subset of 15 points (left) [317].

Figure 7. Facial expression recognition: (a) feature point tracking; (b) dense flow tracking [317].

A group of participants were tested to record the facial EMG (fEMG) activity. Fol-
lowing the guidelines for fEMG placement recommended by Fridlund and Cacioppo, two
4-mm bipolar miniature silver/silver chloride (Ag/AgCl) skin electrodes were placed on
their left corrugator supercilii and zygomaticus major muscle regions (Figure 7) [318]. To
avoid bad signals or other unwanted influences, the BioTrace software (on NeXus-32) was
used to visualize and, if necessary, correct the biosignals before each recording. Figure 8
shows the arrangement of fEMG electrodes on the M. zygomaticus major and M. corrugator
supercilii. An example of a filtered electromyography (EMG) signal is shown on the right
side [319].

Figure 8. Placement of fEMG electrodes and a sample of a filtered EMG signal [319].
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Humans have a range of biometric traits that can be a basis for various biometric
recognition systems (Figure 9). The other biometrics traits are iris, face thermogram, gait,
keystroke pattern, voice, face, and signature. They can have different significance. For
example, iris scan has high accuracy, medium long term stability and medium security
level, while voice recognition has low accuracy, low long term stability and low security
level [320]. The choice of the biometric traits, however, invariably depends on the availabil-
ity of the dataset’s samples, the application, the value of tolerance accepted, and the level
of complexities [150].

Figure 9. Other examples of biometric traits.

Biometric sensors are transducers that change the biometric traits of a person, such
as face, voice, and other characteristics, into an electrical signal. These sensors read or
measure speed, temperature, electrical capacity, light, and other types of energy. Different
technologies are available with digital cameras, sensor networks, and complex combina-
tions. One type of sensor is required in every biometric device, and biometric sensors are a
key feature of emotions recognition technology. Biometrics can be used in a microphone
for voice capture or in a high-definition camera for facial recognition [321].

Jain et al. [141] state that enrolment and emotions recognition are two main phases
in biometric emotions recognition systems. The enrolment phase means acquiring an
individual’s biometric data to be stored in the database along with the emotions recognition
details. The recognition phase uses the stored data to compare the data with the re-acquired
biometric data of the same individual, to determine emotions. A biometric system is,
therefore, a pattern recognition system consisting of a database, sensors, a feature extractor,
and a matcher.

Loaiza [322] states that overall physiological effects related to emotional reactions
depend on three types of autonomic variables: (1) the cardiac system, including blood
pressure, cardiac cycles, and heart rate variability; (2) respiration, including amplitude, res-
piration period, and respiratory cycles; and (3) electrodermal activity, including resistance,
responses, and skin conductance levels. Ekman [77] report that different emotions can have
very different autonomic variables. For instance, in contrast to someone in a happy state,
an angry person had a higher heart rate and temperature. Furthermore, the feeling of fear
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was also accompanied by higher heart rate. Pace-Schott et al. [323] argue that the ability
to regulate physiological state and regulation of emotion are two inseparable features.
Physiological feelings contribute to emotion regulation, reproduction, and survival.

Many works have focused on emotion detection using different techniques [35,283,284,
324–327]. Specific tasks (e.g., WASSA-2017, SemEval) have also included emotion detection
tasks that cover four categories of emotions (anger, fear, sadness, and joy) [320]. According
to Saganowski et al. [326], the most common approach to the use of physiological signals
in emotion recognition is to (1) collect and clean data; (2) to preprocess, synchronize, and
integrate signal; (3) to extract and select features; and (4) to train and validate machine
learning models.

Signals are a natural expression of the human body; they can be used with great
success in the classification of emotional states. EEGs, temperature measurements, or
electrocardiograms (ECGs) are examples of such physiological signals. They can help us
to classify emotional states such as anger, sadness, or happiness, and can be captured by
different sensors to identify individual differences. The goal of all of these physiological
methods is to evaluate consumer attention and to obtain a particular message noticed,
and their performance in this area is commendable. The advantages of these techniques
include their creative and versatile placement, the stimulation of interest through novel
means that capture attention, the ability to directly target and personalize messages, and
lower implementation costs [328]. To study marketing trends, Singh et al. [328] recommend
avoiding costly research methods such as fMRI and EEG, and instead using smaller and
cheaper galvanic readings and eye tracking (ET) to investigate brain responses. These
authors also propose a fuzzy rule-based algorithm to anticipate consumer behavior by
detecting six facial expressions from still images.

Various organizations are contributing to the progress of biometric standards, such
as international standards organizations (International Electrotechnical Commission, ISO-
JTC1/SC37, London, UK), national standards bodies (American National Standards Insti-
tute, New York, NY, USA), standards-developing organizations (International Committee
for Information Technology Standards, American National Institute of Standards and Tech-
nology, Information Technology Laboratory), and other related organizations (International
Biometrics and Identification Association, International Biometric Group, Biometric Con-
sortium, Biometric Center of Excellence) [329]. De Angel et al. [330] give rise to numerous
recommendations to begin improving the generalizability of the research and generating a
more standardized approach to sensing in depression.

• Sample recommendations include reporting on recruitment strategies, sampling
frames and participation rates; increasing the diversity of the study population by
enrolling participants of different ages and ethnicities; reporting basic demographic
data such as age, gender, ethnicity, and comorbidities; and measuring and reporting
participant engagement and acceptability in terms of attrition rates, missing data,
and/or qualitative data.

• Furthermore, in machine learning models—describing the model selection strategy,
performance metrics and parameter estimates in the model with confidence intervals
or nonparametric equivalents.

• Recommendations for data collection and analysis include using established and
validated scales for depression assessment; presenting any available evidence on the
validity and reliability of the sensor or device used; describing in sufficient detail so
as to enable replication, data processing and feature construction; and providing a
definition and description of how missing data is handled.

• Recommendations for data sharing include making the code used for feature extraction
available within an open science framework and sharing anonymized datasets in data
repositories.

• The key recommendation is recognizing the need for consistent reporting in this area.
The fact that many studies—especially in the field of computer science—fail to report
basic demographic information. A common framework should be developed that has
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standardized assessment and analysis tools and reliable feature extraction and missing
data descriptions, and has been tested in more representative populations.

Neuromarketing, neuroeconomics, neuromanagement, neuro-information systems,
neuro-industrial engineering, products, services, call centers studies use various instru-
ments and techniques to measure user psychological states. Some of these tools are more
complex than others, and the results that are produced can vary widely [331]. They fall into
three major categories: the first two contain tools used for neuroimaging (medical devices
offering in vivo information on the nervous system) and use techniques that measure brain
electrical activity and neuronal metabolism, while the third contains tools used to evaluate
neurophysiological indicators of the mental states of an individual. Leading neuroimaging
tools such as fMRI and PET fall into the first category, while EEG, MEG, and other less in-
vasive and cheaper neuroimaging devices that measure electrical activity in the brain [332]
fall into the second category, and tools that track and record individual signals of broader
physiological reaction and response measurements (e.g., electro-dermal activity, ET, etc.)
fall into the third category.

Next, we overview the literature and examine the various types of arousal, valence,
affective attitudes, and emotional and physiological states (AFFECT) recognition methods
in more detail. A summary of the outcomes is provided in Table 3.

The combination of several different approaches to the recognition and classification
of emotional state (also known as multimodal emotion recognition) is currently a research
area of great interest, especially since the use of different physiological signals can provide
huge amounts of data. Since each physiological can make a significant impact on the ability
to classify emotions [333]. Table 3 presents an overview of studies related to the recognition
of valence, arousal, emotional states, physiological states, and affective attitudes (affect). A
brief overview of some of these studies follows.

Table 3. An overview of studies on arousal, valence, affective attitudes, and emotional and physio-
logical states (AFFECT) recognition.

Stimulus AFFECT Methods Reference

Recording of dances, video Anger, fear, grief, and joy GSR, eye movement (Figure 6) [334]

Neurophysiological research from
2009 to 2016

Overview of the existing works in
emotion EEG [335]

Affective stimuli Surprise, disgust, anger, fear,
happiness, and sadness EEG [336]

The visual stimuli, black and white
photographs of 10 different models Happy, sad MEG [337]

20 face actors, each displaying
happy, neutral, and fearful facial

expressions
Happy, neutral, fearful MEG [338]

Task-irrelevant emotional and
neutral pictures Pleasant, unpleasant TMS [339]

A subset of music videos from the
Dataset for Emotions Analysis

using Physiological signals (DEAP)
dataset

Valence, arousal fNIRS, EEG [340]

Emotional faces for the emotion
perception test Pleasant, unpleasant, neutral fMRI [341]

- Stress PET [342]

Video
Happiness, sadness, disgust,
anxiety, pleasant, unpleasant,

neutral
PET [343]
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Stimulus AFFECT Methods Reference

Facial Emotion Selection Test (FEST) Positive, negative DTI [344]

Real time biometric-emotional data
collection from depersonalized

passersby

Neutral, happiness, sadness,
surprised, anger, scared, valence,

arousal, disgust, interest, confusion,
boredom

Emotional, Affective and
Biometrical States Analytics of the

Built Environment Method
[345]

Real time data collection Happy, sad, angry, surprised,
scared, disgusted, valence, arousal

Method of an Affective Analytics of
Demonstration Sites [346]

Scanning a human-centered built
environment, real time data

collection

Sadness, disgust Happiness, anger,
fear surprise, boredom, neutral,
arousal, valence, confusion, and

interest

Affect-Based Built Environment
Video Analytics [347]

Remote real time data Happiness, arousal, valence Video Neuro-advertising Method [93,348]

Smelling strips

Happy, radiant, well-being,
soothed, energized, romantic,

sophisticated, sensual, adventurous,
comforted, amused, interested,

nostalgic, revitalized, self-confident,
surprised, free, desirable, daring,

excited

IRT [349]

Text Positive and negative valence Eye tracking (ET) [350]

21 video fragments High/low arousal,
high/moderate/low valence Eye tracking (ET) [351]

Crypts
Feelings, tendermindedness,
warmth, trust and positive

emotions
Iris [294]

The simulation environment
Wellness/malaise,
relaxation/tension,
fatigue/excitement

Retina [352]

Colors Surprise, Happiness, Disgust,
Anger, Sadness and Fear Blinking, heart rate [353]

HSV color space Fear, disgust, surprise, joy,
anticipation, sadness, anger, trust Blinking [354]

Review of existing
novel facial expression recognition

systems

Anger, disgust, fear, happiness,
sadness, surprise and

neutral
Facial expression recognition [355]

Destination promotional videos Pleasure, arousal Skin conductance, facial
electromyography [355]

Games scenario between a human
user

and a 3D humanoid agent

Arousal, valence, fear, frustrated,
relaxed, joyful, excited

Electromyography, skin
conductance [356]

Dramatic film Real-time emotion estimation EEG, Heart Rate, Galvanic Skin
Response [357]

Emotional state of a driver while in
an automobile Happy, anger Electrocardiogram (ECG) [358]

Music Pleasure, unpleasure Heart and respiratory rates [359]

Trier Social Stress Test Stress, relax Respiratory rate and heart rate [360]

Voice- and speech-pattern analysis Normal, angry, panic Voice, speech [361]

Implicit anxiety-related self-concept Shame, guilt proneness, anxiety,
anger-hostility Implicit Association Test [362]
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Stimulus AFFECT Methods Reference

Case studies Self-control, happiness, anger, fear,
sadness, surprise, and anxiety Mouse Tracking [302]

Academic study website Neutral, positive, negative Mouse Tracking [363]

Motor improvisation task Joy, sadness, and a neutral control
emotion Signature [364]

- Neutral, joy, anger, sadness Gait [365]

Text Neutral, joy, surprise, fear, anger,
disgust, sadness Lip Movement [366]

Dataset Anger, disgust, fear, happiness,
sadness, and surprise Keystroke dynamics [367]

Recall of past emotional life
episodes Valence, arousal EEG [368]

Physiological emotional database
for real participants Valence, arousal Peripheral signals, EEG [369]

Data from wearable sensors on
subject’s skin

High/neutral/low arousal and
valence

ECG, EEG, electromyography
(EMG) [370]

Real time heartbeat rate and skin
conductance High/low arousal and valence GSR, temperature, breathing rate,

blood pressure, EEG [371]

Multimedia contents based on IPTV,
mobile social network service, and

blog service
Pleasant, unpleasant GSR, skin temperature, heart rate [372]

Stress stimuli High/low valence, high/low
arousal GSR, heart rate, ECG [373]

CCD-capture human face, measure
user’s physiological data Pleasant, unpleasant GSR, photoplethysmogram (PPG),

skin temperature [374]

Music videos High/low arousal, high/low
valence EEG [375]

Detect the current mood of subjects High/low arousal, high/low
valence EEG [376]

DEAP database Joy, fear, sadness, relaxation EEG, back-propagation neural
network [377]

Hjorth features, statistics features,
high order crossing features Happy, calm, sad, scared EEG, CNN, LSTM recurrent neural

networks [378]

Thirty film clips
Serenity, hope, joy, awe, love,

gratitude, amusement, interest,
pride, inspiration

EEG [379]

Transcendental meditation Ecstasy EEG [380]

Ultimatum game Acceptance EEG [381]

Driving a car equipped Trust EEG, GSR [382]

12 prototypes that were designed
based on the framework of

diachronic opposite emotions
Amazement, happiness EEG, SD tests [383]

Audio-visual emotion database Pleasure, irritation, sorrow,
amazement, disgust, and panic - [384]

Sleep measures Grief EEG [385]

Real episodes from subjects’ lives Grief, anger EEG [386]
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Stimulus AFFECT Methods Reference

Virtual environment consisting of
three types of cues

Pensiveness relaxation, non-arousal,
stress EEG [387]

Patient with dramatic, episodic,
seizure-related rage and violence Rage and aggression Video-EEG recording [388]

DEAP database Rage EEG, multiclass-common spatial
patterns [389]

Brainstem auditory evoked
potentials Rage and self-injurious behavior EEG, brainstem evoked potentials

(BAEPs) [390]

Acoustic annoyance Annoyance EEG [391]

70 dBA white noise and pure tones
at 160 Hz, 500 Hz and 4000 Hz Annoyance EEG [392]

30 pictures from International
Affective Picture System

Neutral, joy, sadness anger,
surprise, valence (positive and

negative), contempt, fear, disgust
EEG [393]

Movie clips Anger, fear, anxiety, disgust,
contempt, joy, happiness EEG [394]

Emotional factor Aggressiveness EEG [395]

Buss–Durkee questionnaire Aggressiveness EEG [396,397]

Reward anticipation Anticipation EEG [398]

Structured Clinical Interview for
DSM-IV Anticipation EEG, fMRI [399]

DEAP database High/low valence and arousal EEG [400–405]

Reading and reflection task about
Muslims Disapproval EEG, ANOVA [406]

Simulated train driving Fatigue and distraction EEG, Multi-type feature extraction,
CatB-FS algorithm [407]

Faces (the participant’s own face,
the face of a stranger, and a

celebrity’s face)
Admiration

EEG, 18-Items Narcissistic
Admiration and Rivalry

Questionnaire
[408]

Presentation of 12 virtual agents Acceptance EEG and the virtual agent’s
acceptance questionnaire (VAAQ) [409]

English prosocial and opposite
antisocial words in a sentence Approval and disapproval EEG, ANOVA [410]

Data from Facebook comments

Enjoyment (peace and ecstasy),
sadness (disappointment and

despair), fear (anxiety and terror),
anger (annoyance and fury),
disgust (dislike and loathing)

surprise, other (neutral)

Natural language processing (NLP);
convolutional neural network
(CNN) and long short-term

memory (LSTM); Random Forest
and support vector machine (SVM),
standard Vietnamese social media

emotion corpus (UIT-VSMEC)

[411]

Video clips
Pride, love, amusement, joy,

inspiration, gratitude, awe, serenity,
interest, hope

fNIRS [412]

User’s interaction with a web page Arousal/valence
anxiety and aggressiveness

Facial expressions, Facial Action
Coding System, specialized

questionnaires
[413]

An investment game that uses
artificial agents Trust EEG [285]

30



Sensors 2022, 22, 7824

Table 3. Cont.

Stimulus AFFECT Methods Reference

Simulated autonomous system Trust EEG and GSR [382]

The iCV-MEFED dataset. For each
subject in the iCV-MEFED dataset,
five sample images were captured.

Neutral, angry, contempt, happy,
happily surprised, surprisingly

fearful, surprised

Facial emotion recognition
(Figure 7), CNN; Inception-V3

network
[414]

Dynamic emotional facial
expressions were generated by

using FACSGen
Contempt, disgust, sadness, neutral ANOVA, Participants completed

emotion scales [415]

Film clips
Pride, love, amusement, joy,

inspiration, gratitude, awe, serenity,
interest, hope

EEG, multidimensional scaling
(MDS), intra-class correlation

coefficients (ICCs)
[379]

Simulated driving system Vigilance
EEG and forehead

electrooculogram (EOG), eye
tracking (Figure 6)

[416]

DEAP dataset Optimism, pessimism, calm EEG, CNN [166]

Music
Relaxing-calm, sad-lonely,

amazed-surprised, quiet-still,
angry-fearful, happy-pleased

Binary relevance (BR), label
powerset (LP), random k-label sets

(RAKEL), SVM
[417]

Music Happiness, love, anger and sadness
EEG, SVM, Multi-Layer Perceptron

(MLP), and K-nearest Neighbor
(K-NN)

[418]

Three sets of pictures Anticipation

Facial emotions (Figure 7), action
observation network (AON),
two-alternative forced-choice

procedure, Reaction times (RT),
ANOVA

[419]

Individuals enacted aggressive
actions, angry facial

expressions and other
non-aggressive emotional gestures

Aggressive actions and anger

Kinect infrared sensor camera:
hand movement, body posture,

head gesture, face (Figure 9), and
speech. SVM

and the rule-based features

[420]

Images of faces from the Ekman
and Friesen series of Pictures of

Facial Affect
Grief Facial Expression of Emotion Test

(Figure 7) [421]

Music Soothing, engaging, annoying and
boring

FBS fusion of three-channel
forehead biosignals, ECG [422]

Films Amusement, anger, grief, and fear Fingertip blood oxygen saturation
(OXY), GSR, HR [423]

Polish emotional database, database
consists of 12 emotional states

Rage, anger, annoyance, grief,
sadness, pensiveness, ecstasy, joy,
serenity, terror, fear, apprehension

Speech, KNN Algorithm [424]

Video Nonverbal behaviors signaling
dominance and submissiveness

Implicit association test, body
language, MANOVA [425]

Music High/low valence, high/low
arousal EMG, EEG, HRV, GSR [426]

The external auditory canal is
warmed or cooled with water or air High and low arousal Electrodermal activity (EDA), HRV,

activity tracker, EMG, SKT [427]

After-image experiments, direct
visual observation, photography of
the eyes, recording of the corneal

reflex

High/low valence, high/low
arousal GSR, EMG [428]
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Assessment of emotional states
experienced by racing drivers

Sadness, fear, anger, surprise,
happiness, and disgust ECG, EMG, respiratory rate, GSR [429]

Dataset of standardized facial
expressions

Happiness,
sadness, anger, disgust, fear, and

surprise
Facial Action Coding (FC) [430]

Neighbor sounds Arousal, valence fEMG, heart rate (HR),
electrodermal activity (EDA) [431]

Audio visual stimuli Joy, sadness, anger, fear ECG [432]

Playing with the infant to elicit
laughter Joy Skin temperature (SKT) [433]

Two different kinds of video
inducing happiness and sadness Happiness, sadness Photoplethysmography (PPG), skin

temperature (SKT) [434]

International Affecting Picture
System (IAPS) pictures

Joy, sadness, fear, disgust, neutrality,
amusement

Electromyogram signal (EMG),
respiratory volume (RV), skin

temperature (SKT), skin
conductance (SKC), blood volume

pulse (BVP), heart rate (HR)

[435]

Movie and music video clips Arousal, valence
Electrooculogram (EOG),
electrocardiogram (EEG)

trapezium electromyogram (EMG)
[436]

Audio/visual Anger, happiness, sadness, pleasure GSR, EMG, respiratory rate, ECG [437]

Many scientists and practitioners have earned acclaim and honor for their research in
areas such as diagnostics, large-scale screening, analysis, monitoring, and categorizations
of people by COVID-19 symptoms. Their work relied on early warning systems, wearable
technologies, the Internet of Medical Things, IoT based systems, biometric monitoring
technologies, and other tools that can assist in the COVID-19 pandemic. Javaid et al. [438]
review how different industry 4.0 technologies (e.g., AI, IoT, Big data, Virtual Reality,
etc.) can help reduce the spread of disease. Kalhori et al. [439] and Rahman et al. [440]
discuss the digital health tools to fight COVID-19. Various sensors and mobile devices
to detect the disease, reduce its spread, and measure different symptoms are also widely
discussed. Rajeesh Kumar et al. [441] propose a system to identify asymptotic patients
using IoT-based sensors, measuring blood oxygen level, body temperature, blood pressure,
and heartbeat. Stojanović et al. [442] propose a phone headset to collect information about
respiratory rate and cough, Xian et al. [443] present a portable biosensor to test saliva.
Chamberlain et al. [444] presented distributed networks of Smart thermometers track
COVID-19 transmission epicenters in real-time.

Neurotransmitters (NT) are billions of molecules constantly needed to keep human
brains functioning. They are chemical messengers that carry, balance, and boost signals
travelling between nerve cells (neurons) and other cells in the body. Many different psy-
chological and physical functions can be affected by these chemical messengers, including
fear, appetite, mood, sleep, heart rate, breathing rate, concentration and learning [445].
Lim [251] has also outlined new ways of exploiting neuromarketing research to achieve a
better understanding of the brain and neural activity and hence advance marketing science.
Lim [251] highlighted three main aspects: (i) antecedents (such as the product, physical
evidence, the price of the product, the place where everything is happening, promotion,
the process involved, people); (ii) the process; and (iii) the consequences for the target
market (behavioral outcomes before, during and after the act of buying) and the marketing
organization (visits, sales, awareness, equity). Agarwal and Xavier [253] described the
most popular neuromarketing tools, including event-related potential (ERP) (P300), EEG,
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and fMRI, and explained how these tools could be applied in marketing. A business
and marketing article [256] lists the three categories of neuroscientific techniques that are
applied in business and advertising research (Tables 1 and 2, Figure 1) as follows:

1. Methods that monitor what is happening in the brain (i.e., the physiological activity
of the CNS);

2. Methods that record what is happening elsewhere in the body (i.e., the physiological
activity of the PNS);

3. Other techniques for tracking behavior and conduct.

Ganapathy [260] groups neuromarketing tools into three categories (Tables 1 and 2).
Farnsworth [258] gives information that can be essential when deciding on the best neuro-
marketing method or technique to help stakeholders understand research methods relating
to human behavior at a glance, while Saltini [264] gives a short list of neuromarketing tools
(Tables 1 and 2). A system developed by CoolTool [257] allows several neuromarketing
tools to be used separately or combined.

Although individual neuroscientific tools for neuromarketing, neuroeconomics, neu-
romanagement, neuro-information systems, neuro-industrial engineering, products, ser-
vices, call centers have been developed by many researchers (for example [111,251,253–
270,293,298–300,303,309,311,312,328,446–448], a review and analysis of the complete range
of tools used in neuromarketing, neuroeconomics, neuromanagement, neuro-information
systems, neuro-industrial engineering, products, services, call centers research has not
yet been carried out. Thorough examinations of the range of research tool alternatives
that are available for neuroscience are also often missing from research in this area. We
have therefore compiled a complete list of neuroscience techniques for neuromarketing,
neuroeconomics, neuromanagement, neuro-information systems, neuro-industrial engi-
neering, products, services, call centers. Humans experience emotions and their associ-
ated feelings (e.g., gratitude, curiosity, fear, sadness, disgust, happiness, and pride) on a
daily basis. Yet, in case of affective disorders such as depression and anxiety, emotions
can become destructive. Thus the focus on understanding emotional responsiveness is
not surprising in neuroscience and psychological science [449]. So neuroscience tech-
niques analyze emotional, affective and physiological states tracking neural/electrical
activity [335–340,450,451] or neural/metabolic activity [341–344,349,447,452,453] within
the brain. This is also presented in Table 3.

For example, neuromarketing techniques can complement business decisions and
make them more profitable, using the automated mining of opinions, attitudes, emotions
and expressions from speech, text, emotions, neuron activity and other database-fed sources.
Advertisements that are adjusted based on such information can engage the target audience
more effectively and make a better impact on the audience, and this may translate into better
sales and higher margins. In an attempt to enhance corporate branding and advertising
routines, various factors have been studied, such as emotional appeal and sensory branding,
to ensure that companies deliver the right message and that customers perceive the right
message [171].

Affect recognition is widely used in gaming to create affect-aware video games and
other software. Alhargan et al. [454] present affect recognition in an interactive gaming
environment using eye-tracking. Szwoch and Szwoch [455] give a review of automatic
multimodal affect recognition of facial expressions and emotions. Krol et al. [456] combined
eye-tracking and brain–computer interface (BCI) and created a completely hands-free
game Tetris clone where traditional actions (i.e., block manipulation) are performed using
gaze control. Elor et al. [457] measure heart rate and galvanic skin response (GSR) with
Immersive Virtual Reality (iVR) Head-Mounted Display (HMD) systems paired with
exercise games to show how exercise games can positively affect physical rehabilitation.

Stress is a relevant health problem among students, so Tiwari, Agarwal [458] present a
stress analysis system to detect stressful conditions of the student, including measurement
of GSR and electrocardiogram (ECG) data. Nakayama et al. [459] suggest measuring heart
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rate variability as a method to evaluate nursing students stress during simulation to provide
a better way to learn.

A literature review can reveal the most popular types of traditional and non-traditional
neuromarketing methods. According to Sebastian [111], focus groups are one of the more
traditional marketing methods, while various neuroscience techniques have also been
applied to record the metabolic activity of the body and the electrical activity of the
brain (transcranial magnetic stimulation (TMS), electroencephalography (EEG), functional
magnetic resonance imaging, magnetoencephalography (MEG), and positron-emission
tomography (PET)).

Electronic platforms are not the only possibility for non-traditional marketing, and
Tautchin and Dussome [460] believe that traditional media can also be reimagined in
new forms, such as guerrilla marketing, local displays, vehicle wraps, scaffolding, and
even bubble cloud ads or aerial banners. In addition to giving high-quality feedback
data, non-traditional techniques can also help in the evaluation of business decisions and
conclusions [328].

Based on factors such as skin texture, gender, and SC, wearable biometric GSR sensors
could be used to identify whether a person is in a sad, neutral, or happy emotional state.
To understand marketing strategies better and to improve ads, other biometric sensors
such as pulse oximeters and health bands could be used in the future to make automated
predictions of emotions [461]. The galvanic skin response (GSR) method has an important
limitation—it does not provide information on valence. The usual way to address this issue
is to use other emotion recognition methods. They provide additional details and thus
enable detailed analysis. Table 3 lists studies where GSR is used to measure emotions.

Eye tracking (ET) is used to record the frequencies of choices; sensor features are
extracted and matched with certain preference labels to determine mutual dependences
and to discover which brain regions are active when a certain choice task is performed.
High values for alpha, beta and theta waves have been reported in the occipital and frontal
brain regions, with a high degree of synchronization. A hidden Markov model is a popular
tool for time-series data modeling, and researchers have successfully used this approach to
build brain–computer-interface tools with EEG signals, counting mental task classification,
medical applications and eye movement tracking [462].

A classification model based on SVM architecture, developed by Lakhan et al. [463],
can predict the level of arousal and valence in recorded EEG data. Its core is a feature
extraction algorithm based on power spectral density (PSD).

Multimodal frameworks that combine several modalities to improve results have
recently become popular in the domain of human–computer interaction. A combination
of modalities can give a more efficient user experience since the strengths of one modality
can offset the weaknesses of another and the usability can be increased. These systems
recognize and combine different inputs, taking into account certain contextual and temporal
constraints and thus facilitating interpretation. Kong et al. [464] created a way of using two
different sensors and calibrating them to achieve simultaneous gesture recording. Hidden
Markov Model (HMM) was used for all single- and double-handed gesture recognition.
Multimodality means that several unimodal solutions are combined into a system, meaning
that multiple solutions can be combined into a single best solution using optimization
algorithms [464].

The automatic emotion recognition system proposed by El-Amir et al. [465] uses a
combination of four fractal dimensions and detrended fluctuation analysis, and is based on
three bio-signals, GSR, EMG, and EEG. Using two emotional dimensions, the signals were
passed to three supervised classifiers and assigned to three different emotional groups,
with a maximum accuracy for the valence dimension of 94.3% and a maximum accuracy
for the arousal dimension of 94%. This approach is based on external signals such as facial
expressions and speech recognition, which means that it is simple and that no special
equipment is required. The limitations of this approach are that emotions can be faked, and
that these types of recognition methods fail with disabled people and people with certain
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diseases. Other approaches are based on electromyography, ECGs, SC, EEGs, and other
physiological signals that are spontaneous and cannot be consciously controlled [465].

Plassmann et al. [466] as well as Perrachione and Perrachhione [467] carried out
exciting studies in an attempt to determine how marketing stimuli lead to buying decisions.
They applied neurosciences to marketing in order to create better models and to understand
of how a buyer’s brain and emotions operate. Gruter [468] states that a wide range
of techniques and tools are used to measure consumer responses and behavior. Three
approaches that are used in neuromarketing can give access to the brain: input and output
models, internal reflexes, and external reflexes.

Leon et al. [469] present a real-time recognition and classification method based on
physiological signals to track and detect changes in emotions from a neutral state to either
a positive or negative (i.e., non-neutral) state. They used the residual values of auto-
associative neural networks and the statistical probability ratio test in their approach.
When the proposed methodology was implemented to process a recognition level of 71.4%
was achieved [469]. Monajati et al. [470] also investigated the recognition of negative
emotional states, using the three physiological signals of galvanic skin response, respiratory
rate and heart rate. Fuzzy-ART was applied to analyze the physiological responses and
to recognize negative emotions. An overall accuracy of 94% was achieved in determining
which emotions were negative as opposed to neutral [470].

Andrew et al. [471] described investigations of brain responses to modern outdoor
advertising, focusing on memorability, visual attention, desirability, and emotional intensity.
They also described ways in which the latest imaging tools and methods could be applied
to monitor subconscious emotional responses to outdoor media in many forms, from
multisensory advertising screens to simple paper posters. Andrew et al. [471] explained the
cognitive processes behind their success, not solely in the context of the advertising to which
people are typically exposed outside their homes, but also in the broader digital world.
Andrew et al. findings have fundamental implications for media campaign planning,
design, and development, identifying the possible role of outdoor advertising compared to
other media, and possible ways of combining different media platforms and making them
work for the benefit of advertisers.

Kaklauskas et al. [472] integrated Damasio’s somatic marker hypothesis with biometric
systems, multi-criteria analysis techniques, statistical investigation, a neuro-questionnaire,
and intelligent systems to produce the INVAR neuromarketing system and method. INVAR
can measure the efficiency of both a complete video advertisement and its separate frames.
This system can also determine which frames make viewers interested, confused, disgusted,
happy, scared, surprised, angry, sad, bored, or confused; can identify the utmost positive
or negative video advertisement; measure the consequence of a video advertisement on
long-term and short-term memory; and perform other functions.

Lajante and Ladhari [473] applied peripheral psychophysiology measures in their re-
search, based on the assumption that measures of emotion and cognition such as SC responses
and facial EMGs could make a significant contribution to new ideas about consumer decision
making, judgments and behaviors. These authors believe that their approach can help in
applying affective neuroscience to the field of consumer services and retailing.

Michael et al. [474] aimed to understand the ways in which unconscious and direct
cognitive and emotional responses underlie preferences for particular travel destinations.
A 3×5 factorial design was run in order to better understand the unconscious responses
of consumers to possible travel destinations. The factors considered in this study were
the type of stimulus (videos, printed names, and images) and the travel destination (New
York, London, Hong Kong, Abu Dhabi, and Dubai). ET can provide reliable tracking of
cognitive and emotional responses over time. The authors suggested that decisions on
travel destinations have both a direct and an unconscious component, which may affect or
drive overt preferences and actual choices.

Harris et al. [448] investigated ways of measuring the effectiveness of social ads of
the emotion/action type, and then of making these ads more effective using consumer
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neuroscience. Their research offers insights into changes in behavioral intent brought about
by effective ads and gives an improved understanding of ways of making good use of
social messages regarding a certain action, challenge or emotion that may be needed to
help save lives. It can also reduce spending on social marketing campaigns that end up
being ineffectual.

Libert and Van Hulle [475] argue that the development of economically practicable
solutions involving human–machine interactions (HMI) and mental state monitoring,
and neuromarketing that can benefit severely disabled patients has put brain–computer
interfacing (BCI) in the spotlight. The monitoring of a customer’s mental state in response
to watching an ad is interesting, at least from the perspective of neuromarketing managers.
The authors propose a method of monitoring EEGs and predicting whether a viewer will
show interest in watching a video trailer or will show no interest, skipping it prematurely.
They also trained a k-nearest neighbor (kNN), a support vector machine (SVM), and a
random forest (RF) classifier to carry out the prediction task. The average single-subject
classification accuracy of the model was as follows: 73.3% for viewer interest and 75.803%
for skipping using SVM; 78.333% for viewer interest and 82.223% for skipping using kNN;
and 75.555% for interest and 80.003% for skipping using RF.

Jiménez-Marín et al. [476] showed that sensory marketing tends to accumulate user
experiences and then exploit them to bring the users closer to the product they are evalu-
ating, thus motivating the final purchase. However, several issues need to be considered
when these techniques are applied to reach the desired outcomes, and it is important to
be aware of recent advances in neuroscience. The authors explore the concept of sensory
marketing, pointing out its possibilities for application and its various typologies.

Cherubino et al. [477] highlighted the new technological advances that have been
achieved over the last decade, which mean that research settings are now not the only
scenarios in which neurophysiological measures can be employed and that it is possible to
study human behavior in everyday situations. Their review aimed to discover effective
ways to employ neuroscience technologies to gain better insights into human behavior re-
lated to decision making in real-life situations, and to determine whether such applications
are possible.

Monica et al. [478] explored the cognitive understanding and usability of banking
web pages. They reviewed the theoretical literature on user experience in online banking
services research, with a focus on ET as a research tool, and then selected two Romanian
banking websites to study consumer attention, while consumers were navigating the
sites, and memory, after their visits. The research findings showed that the layout and
information display can make web pages more or less usable and can have an effect on
cognitive understanding.

Singh et al. [328] discussed various methods of feature extraction for facial emotion
detection. The algorithm they proposed could detect a total of six facial emotions, using a
fuzzy rule-based system. During their experiment, neurometrics were recorded using a
system comprising MegaMatcher software, Grove-GSR Sensor V1.2, and a 12-megapixel
Hikvision IP camera. The participants were asked to watch a set of video ads for a range
of well-known cosmetic products and wore SC sensors and sat in front of a camera that
monitored their responses. Singh et al. [328] analyzed the cognitive processes of university
students in relation to advertising and compliance with the code of self-regulation. A
quantitative and qualitative methodology based on facial expressions, ET techniques and
focus groups was used for this purpose. The results suggested that online game operators
could be clearly identified. A high interaction of the public within the exhibition of
supposed skills of the successful player and welcome bonuses also exists, and there was
shown to be a lack of knowledge of the visual elements of awareness, a trivialization of
compulsive gambling, and sexist attitudes towards women attracting public attention. A
positive public attitude towards gaming was also observed by Singh et al. [328]; it was seen
as a healthy form of leisure that was compatible with family and social relationships.

36



Sensors 2022, 22, 7824

Goyal and Singh [461] proposed the use of research-based approaches for the automatic
recognition of human affective facial expressions. These authors created an intelligent
neural network-based system for the classification of expressions from extracted facial
images. Several basic and specialized neural networks for the detection of facial expressions
were used for image extraction.

Electromyography measures and assesses electric potentials in muscle cells. In medical
settings, this method is used to identify nerve and muscle lesions, while in emotion
recognition this method is used to look for correlations between emotions and physiological
responses. Most EMG-based studies examine facial expressions drawing on the hypothesis
that facial expressions take part in emotional responses to various stimuli. The hypothesis
was first proposed by Ekman and Friesen in 1978; they described the relationships between
basic emotions, facial muscles, and the actions they trigger. Morillo et al. [479] used low-
cost EEG headsets and applied discrete classification techniques to analyze scores given by
subjects to individual TV ads, using artificial neural networks, the C4.5 algorithm and the
Ameva discretization algorithm. A sample of 1400 effective advertising campaigns was
studied by Pringle et al. [480], who determined that promotions with exclusively emotional
content achieved around double (31% vs. 16%) success as those with only rational content,
while compared to campaigns with mixed emotional and rational content, the exclusively
emotional campaigns performed only slightly better (31% vs. 26%).

According to Takahashi [481] some of the available emotion recognition systems in
facial expressions or speech look at several emotional states such as fear, teasing, sadness,
joy, surprise, anger, disgust, and neutral. Takahashi [481] investigated emotion recognition
based on five emotional states (fear, anger, sadness, joy, and relaxed).

The authors [353,355–357,359,360,371–374] carried out an in-depth analysis of how
blood pressure, SC, heart rate and body temperature depend on stress and emotions.
Figures suggest that work-related stress costs the EU countries at least EUR 20 billion
annually. Stress experienced at work can cause anxiety, depression, heart disease and
increased chronic fatigue which can have a considerable negative impact on creativity,
competitiveness and work productivity.

Research worldwide shows that people exposed to stress can experience higher blood
pressure and heart rate. Light et al. [482] analyzed cases of daily elevated stress levels and
looked at the effects on fluctuations in systolic and diastolic blood pressure. Gray et al. [483]
investigated how systolic and diastolic blood pressure can be affected by psychological
stress, while Adrogué and Madias [484] described the effects of chronic, emotional and
psychological stress on blood pressure. The unanimous conclusion of research in this area is
that diastolic and systolic blood pressure and heart rate depend on stress and can increase
depending on the level of stress.

Blair et al. [485] analyzed the effect of stress on heart rate and concluded that heart
rate rises sharply within three minutes of the onset of stress and starts to fall only after
another five to six minutes. Gasperin et al. [486] concluded that high blood pressure was
affected by chronic stress. A number of studies have shown that patients with heart rates
higher than 70 beats per minute are more likely to develop cardiovascular diseases and to
die from them; tests show that a rapid heartbeat increases the risk of heart attack by 46%,
heart insufficiency by 56% and death by 34%.

Sun et al. [487] proposed an activity-aware detection scheme for mental stress. Twenty
participants took part in their experiment, and galvanic skin response, ECG, and accelerom-
eter data were recorded while they were sitting, standing, and walking. Baseline physiolog-
ical measurements were first taken for each activity, and then for participants exposed to
mental stressors. The accelerometer was used to track activity, and the data gave a classifi-
cation accuracy between subjects of 80.9%, while the 10-fold cross-validation accuracy for
the classification of mental stress reached 92.4%. This study focused on physiological sig-
nals for example photoplethysmography and galvanic skin response. The neural network
configurations (both recurrent and feed forward) were examined and a comprehensive
performance analysis showed that the best option for stress level detection was layer recur-
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rent neural networks. For a sample of 19 automotive drivers, this evaluation achieved an
average sensitivity of 88.83%, a precision of 89.23% and a specificity of 94.92% [488].

Palacios et al. [489] applied a new process involving two databases containing utter-
ances under stress by men and women. Four classification methods were used to identify
these utterances and to organize them into groups. The methods were then compared in
terms of their final scores and quality performance.

Fever occurs when the body’s thermoregulatory set point increases, and many findings
suggest that the rise in core temperature induced by psychological stress can be seen as fever.
A fever of psychological origin in humans might then be a result of this mechanism [490].

Wu and Liang [491] presented a training and testing procedure for emotion recognition
based on semantic labels, acoustic prosodic information and personality traits. A recognition
process based on semantic labels was applied, using a speech recognizer to identify word
sequences, and HowNet, a Chinese knowledge base, was used as the source for deriving the
semantic word sequence labels. The emotion association rules (EARs) of the word sequences
were then mined by applying a text-based mining method, and the relationships between the
EARs and emotional states were characterized using the MaxEnt model. In a second approach
based on acoustic prosodic information, emotional salient segments (ESSs) were detected in
utterances and their prosodic and acoustic features were extracted, including pitch-related,
formant, and spectrum attributes. The next step was the construction of base-level classifiers
using SVM, gaussian mixture models (GMM) and MLP, which were then combined (using
MDT) by selecting the most promising option for emotion recognition based on acoustic
prosodic information. The process ended when the final emotional state was determined.
A weighted product fusion method was applied to combine the outputs produced by the
two types of recognizers. The personality traits of the specific speaker, as determined from
the Eysenck personality questionnaire, were then taken into consideration to examine their
impact and personalize the emotion recognition scheme [491].

A hybrid analysis method for online reviews proposed by Nilashi et al. [492] allows
for the ranking of factors affecting the decisions of travelers in their choice of green hotels
with spa services. This method combined text mining, predictive learning techniques and
multiple criteria decision-making methods, and was proposed for the first time in the
context of hospitality and tourism, with an emphasis on green hotel customer grouping
based on online customer feedback. Nilashi et al. [492] used the latent Dirichlet analysis
method to analyze textual reviews, a self-organizing map for cluster analysis, the neuro-
fuzzy method to measure customer satisfaction, and the TOPSIS method to rank the
features of hotels. The proposed method was tested by analyzing travelers’ reviews of
152 Malaysian hotels. The findings of this research offer an important method of hotel
selection by travelers, by means of user-generated content (UGC), while hotel managers
can use this approach to improve their marketing strategies and service quality.

A neuromarketing method for green, energy-efficient and multisensory homes, pro-
posed by Kaklauskas et al. [493], can be used to determine the conditions that are required.
The multisensory dataset (physiological and emotional states) collected as part of this
research contained about 200 million data points, and the analysis also included noise
pollution and outdoor air pollution (volatile organic compounds, CO, NO2, and PM10).
This article discussed specific case studies of energy-efficient and green buildings as a
demonstration of the proposed method. The results matched findings from both current
and previous studies, showing that the correlation between age and environmental respon-
siveness has an inverse U shape and that age is an important factor affecting interest in
eco-friendly, energy-efficient homes.

The VINERS method and biometric techniques developed by Kaklauskas et al. [494]
for the analysis of emotional states, physiological reactions and affective attitudes were
used to determine which locations are the best choice and then to show neuro ads of
available homes offered for sale. Homebuyers were grouped into rational segments, taking
into account consumer psychographics and behavior (happy, angry or sad, and valence
and heart rate) and their demographic profiles (age, gender, marital status, children or no
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children, education, main source of income). A rational video ad for the respective rational
segment was then selected. This study aimed to combine the somatic marker hypothesis,
neuromarketing, biometrics and the COPRAS method, and to develop the VINERS method
for use with multi-criteria analysis and the neuromarketing of the best places to live. The
case study presented in the article demonstrated the VINERS method in practice.

Etzold et al. [495] examined the case of users booking appointments online, and the
ways in which they interacted with the webpage interface and visualizations. The main
point was to determine whether a new interface for online booking was easy to navigate
and successful in attracting user attention. In this study, the authors particularly wanted to
determine whether a new, more expensive customer website was seen as more user-friendly
and supportive than the older, cheaper alternative. An empirical study was carried out by
tracking users eye movements as they were navigating the existing website of Mercedes-
Benz, a car manufacturer, and then a new, updated version of the same company’s website.
A total of 20 people were observed, and evaluations of their ET data suggested that the
new service appointment booking interface could be further improved. Scan-paths and
heatmaps demonstrated that the old website was superior [495].

In recent years, many different emotional values, such as the net emotional value
(NEV), the service encounter emotional value (SEEVal), and others, have been analyzed.
Attempts have been also made to put them into practice [496–503]. These studies are
overviewed below. To calculate NEV, the average score for negative emotions (stressed,
dissatisfied, frustrated, unhappy, irritated, hurried, disappointed, neglected) is subtracted
from the average score for positive emotions (cared for, stimulated, happy, pleased, trusting,
valued, focused, safe, interested, indulgent, energetic, exploratory). The average score
obtained this way can be used to characterize a client’s feelings about a service or a
product [499]. A higher value of NEV indicates that the relationships forged by a business
are more reliable. One advantage of the NEV is that it characterizes the total balance of a
consumer’s feelings related to products or services, and thus reveals the value drivers. The
relationship between NEV and client satisfaction is linear [500].

The NEV can be used to highlight both aspects that need to be improved, and those
that are positive. Since the NEV is calculated based on a subtraction, the result may be
either a negative or a positive number. The overall score can indicate what is happening
with the client at an emotional level, and suggest ways to use this to gain competitive
advantage [501].

The SEEVal is another measure proposed by Bailey et al. [504], and is the sum of
the NEV experienced by the client and the NEV experienced by the product or service
provider’s employee. The client’s end results linked to SEEVal are typically loyalty, satis-
faction, pleasure, and voluntary benevolence [504]. The IGI Global Dictionary defines an
emotional value as a set of positive moods (feeling good or being happy) resulting from
products or services and contained in the value gain from the customers’ emotional states
or feelings when using the products or services (IGI Global Dictionary). Emotional value
acts as a moderator, and has significant effects on the roles of social, functional, epistemic,
conditional and environmental values [497].

Zavadskas et al. [505] examined data on potential buyers to analyze the hedonic value
in one-to-one marketing situations. They used the neutrosophic PROMETHEE technique to
examine arousal, valence, affective attitudes, emotional and physiological states (AFFECT),
and argued that hedonic value is tied to several factors including customers’ social and
psychological data, client satisfaction, criteria of attractiveness, aesthetics, and economy,
the sales site rental price, emotional factors, and indicators of the purchasing process. Their
research showed that an analysis of the aforementioned data on potential buyers can make
an important contribution to more effective one-to-one marketing. The case study cited
in this work concerned two sites in Vilnius and intended to calculate the hedonic value of
these sites during the Kaziukas Fair.

The ROCK Video Neuroanalytics and associated e-infrastructure were established as
part of the H2020 ROCK project. This project tracked passers-by at ten locations across
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Vilnius. One of our outputs is the real-time Vilnius Happiness Index (Figure 10 and
https://api.vilnius.lt/happiness-index, accessed on 5 September 2022). The project also
involved a number of additional actions (https://Vilnius.lt/en/category/rock-project/,
accessed on 5 September 2022).

The intensity of the most intense negative emotion (scared, disgusted, sad, angry)
subtracted from the intensity of “happiness” equals valence [430]. This way the single score
of valence combines both positive and negative emotions. Our pool of data comprised
208 million data points analyzed using SPSS Statistics, a statistical software suite. Figure 10b
presents the average values of valence per hour on weekdays. Every hour, the changes of
average valence among Vilnius passers-by were recorded. Valence was measured every
second and these values were accumulated by weekdays (marked in the chart with specific
colors) at 95% confidence intervals. The y-axis shows the average values of valence (which
fluctuates between −1 to 1) for each full day, for seven days, and the x-axis shows the hour
starting at midnight [348].

Figure 10. Real-time Vilnius Happiness Index (a) and the mean magnitudes of valence, by the hour,
on weekdays (b).

5. Users’ Demographic and Cultural Background, Socioeconomic Status, Diversity
Attitudes, and Context

Emotions are a means to engage in a relationship with others: Anger means that
the person refuses to accept a specific treatment from others and expresses that they feel
entitled to something more. Anger is expressed with the aim of influencing, controlling,
and fixing the behavior of others [506].

Through emotions, people can adaptively respond to opportunities and demands they
face around them [507–509]. When people face everyday stressors, stressful transitions,
ongoing challenges, and acute crises, the adaptive function of emotions is evident in all
of these situations. Emotions also depend on context [510]. This means that emotions are
most effective when people express them in the situational contexts for which the emotions
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most likely evolved. In addition, they are specifically most likely to promote adaptation in
such scenarios. The experience of anger, for instance, is adaptive because it motivates the
focus of energies and the mobilization of resources toward an effective response. When
a person expresses anger, adaptive mechanisms are also at work because it shows the
person’s willingness, and perhaps even ability, to defend themselves. Emotional responses
are sensitive to contexts, and are therefore, an integral part of our ways to adapt to daily
life and the environment [511].

The ability to modify emotion responses according to changing context may be an
important element of psychological adjustment [510]. An individual’s capacity to modify
emotion responses taking into account the demands of changing contexts (i.e., environmen-
tal or interpersonal) is particularly relevant. This mechanism is known as emotion context
sensitivity [511].

Cultural and gender differences in emotional experiences have been identified in previous
research [512]. For instance, these authors used the Granger causality test to establish how a
person’s cultural background and situation affect emotion. The conclusions drawn by [513]
propose a top-down mechanism where gender and age can impact the brain mechanisms
behind emotive imagery, either directly or by interacting with bottom-up stimuli.

Cultural neuroscientists are studying how cultural traits such as values, beliefs, and
practices shape human affective, emotional, and physiological states (AFFECT) and be-
havior. Hampton and Varnum [514] have reviewed theoretical accounts on how culture
impacts internal experiences and outward expressions of emotion, as well as how people
opt to regulate them. They also analyze cultural neuroscience research that investigates
how emotion regulation varies in different cultural groups.

Thus far, differences between nations have largely been the focus in studies of culture
in social neuroscience. Culture impacts more than just our behavior—it also plays a role
in how we see and interpret the world [515]. For instance, socioeconomic factors such as
education, occupation, and income have a significant impact on how a person thinks. In one
study, working-class Americans were shown to exhibit a more context-dependent thought
process, similar to the collectivist patterns seen in other countries. Individuals of a lower
social class in terms of their socio-economic status agreed with contextual explanations of
economic trends, broad social outcomes, and emotions [516].

Gallo and Matthews [517] looked at the indirect evidence that socioeconomic status is
associated with negative emotions and cognition, and that negative emotions and cognition
are associated with target health status. They also proposed a general framework for under-
standing the roles of cognitive–emotional factors, arguing that low socioeconomic status
causes stress, and impairs a person’s reserve capacity for managing it, thus heightening
emotional and cognitive vulnerability.

Choudhury et al. [518] explore critical neuroscience, a field of inquiry that probes the
social, cultural, political, and economic contexts and assumptions that form the basis for
behavioral and brain science research.

Numerous studies have illustrated that depending on the specific demographic back-
ground, there are major differences between users’ emotions, behavior, and perceived
usability. According to Goldfarb and Brown [519], scientific research is characterized by
racial, cultural, and socioeconomic prejudices, which lead to demographic homogeneity in
participation. This in turn spurs inaccurate representations of neurological normalcy and
leads to poor replication and generalization.

According to Freud, the unconscious is a depository for socially unacceptable ideas,
wishes or desires, traumatic memories, and painful emotions that psychological repression
had pushed out of consciousness [520]. HireVue, which is a global front-runner in AI
technologies, is one of the top emotional AI companies that is now turning to biosensors
that read non-conscious data in lieu of facial coding methods to measure emotions [521].

The ideas of what it means to have good relationships and to be a good person differ
in different cultural contexts [522]. People’s emotional lives are closely related to these
different ideas of how people see themselves and their relationships: Emotions usually
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match the cultural model [523,524]. Therefore, rather than being random, cultural variation
in emotions matches the cultural ideals of ways to be a good person and to maintain good
relationships with other people [506].

Aside from being biologically driven, emotion is also influenced by environment, as
well as cultural or social situations. Culture can constrain or enhance the way emotions are
felt and are expressed in different cultural contexts, and it can influence emotions in other
ways. Studies have consistently shown cross-cultural differences in the levels of emotional
arousal. Eastern culture, for instance, is related to low arousal emotions, whereas Western
culture is related to high arousal emotions [525]. Many findings in cross-cultural research
suggest that decoding rules and cultural norms influence the perception of anger [526].
Scollon et al. [527] look at five cultures (Asian American, European American, Hispanic,
Indian, and Japanese) to assesses the way emotions are experienced in these cultures. Pride
shows the greatest cultural differences [527]. As emotions are fundamentally genetically
determined, different ones are perceived in similar ways throughout most nations or
cultures [528].

6. Results

The present article aims to bridge the affective biometrics and neuroscience gap in
existing knowledge, in order to contribute to the overall knowledge in this area. We also
aim to provide information on the knowledge gaps in this area and to chart directions for
future research.

We conclude this review by discussing unanswered questions related to the next
generation of AFFECT detection techniques that use brain and biometric sensors.

By performing text analytics of 21,397 articles that were indexed by Web of Science
from 1990 to 2022, we examined the key changes in this area within the last 32 years.
Scientific output relating to AFFECT detection techniques using brain and biometric sensors
is steadily increasing. As this trend suggests, there has been continuous growth in the
number of papers published in the field, with the total number of articles appearing
between 2015 and 2021 nearing the total number of articles published over the previous
25 years (1990 to 2014). In light of the increasing commercial and political interest in brain
and biometric sensor applications, this trend is likely to continue.

With ground-breaking emerging technologies and the growing spread of Industry
5.0 and Society 5.0, AFFECT should be analyzed by taking into account demographic and
cultural background, socioeconomic status, diversity attitudes, and context. Advanced
computational models will be needed for this approach.

Quite a few biometric and neuroscience studies have been performed in the world,
where AFFECT detection takes into account demographic and cultural background (age,
gender, ethnicity, race, major diagnoses, and major medical history); socioeconomic status
(education, income, and occupation); diversity attitudes; and context. Yet, to the best of
our knowledge, none of the technologies available in the world offer AFFECT detection
that incorporates political views, personality traits, gender, race, diversity attitudes, and
cross-cultural differences in emotion.

Sometimes confusion exists in the spirit of some research about physiological effects
due to emotional reactions and biometric patterns with regard to individual identification.
To resolve this confusion, we analyze only physiological effects caused by emotional
reactions (i.e., second generation biometrics; Section 3) in the part of the review discussing
biometrics. Biometric patterns for individual identification are not analyzed in this research.

Human emotions can be determined by physiological signals, facial expressions,
speech, and physical clues, such as posture and gestures. However, social masking—
when people either consciously or unconsciously hide their true emotions—often renders
the latter three ineffective. Physiological signals are therefore often a more accurate and
objective gauge of emotions [529]. For instance, researchers [530,531] performed many
studies to analyze physiological signals and unconscious emotion recognition. Nonetheless,
our years of research experience have proven that in public spaces, facial expressions,
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speech, and physical clues, such as posture and gestures, are much more convenient
and effective.

Emotion recognition can be more accurate when human expressions are analyzed look-
ing at multimodal sources such as texts, physiological signals, videos, or audio content [532].
Integrated information from signals such as gestures, body movements, speech, and facial
expressions helps detect various emotion types [533]. Statistical methods, knowledge-based
techniques, and hybrid approaches are three main emotion classification approaches in
emotion recognition [534].

The emotional dimensions follow the approach of representing the emotion classes.
Categorized emotions can be represented in a dimensional form with each emotion placed in
a distinct position in space: either 2D (Circumplex model, “Consensual” Model of Emotion,
Vector Model,) or 3D (Lövheim Cube, Pleasure-Arousal-Dominance [PAD] Emotional-State
Model, Plutchik’s model, PAD Emotional-State Model), with each emotion occupying a
distinct position in space. Most dimensional models have dimensions of valence and arousal
or intensity or arousal dimensions: Valence dimension indicates how much and to what degree
an emotion is pleasant or unpleasant, whereas arousal dimension differentiates between
showing its state, either that of activation or deactivation [82]. The objectives of our study
were most in line with Plutchik’s ‘wheel of emotions’ model, which we used in this research.

The use of artificial intelligence to recognize emotions and affective attitudes is a
comparatively promising field of investigation. To make the most of artificial intelligence,
multiple modalities in context should be generally used. Artificial intelligence has enabled
biometric recognition and the efficient unpacking of human emotions and affective and
physiological responses and has contributed considerably to advances in the field of pattern
recognition in biometrics, emotions, and affective attitudes. Many different AI algorithms
are used in the world, such as machine learning, artificial neural networks [535–537],
search algorithms [166,538,539], expert systems [540,541], evolutionary computing [542,543],
natural language processing [544,545], metaheuristics, fuzzy logic [546–548], genetic algo-
rithm [549–551], and others.

Based on our review, presented in Sections 1–5, we find that investigators should
develop procedures to guarantee that AI models are appropriately used and that their
specifications and results are reported consistently. There is a need to create innovative AI
and machine learning techniques.

Based on the review (Sections 1–5), investigators should develop procedures to guarantee
that AI models are appropriately used and that their specifications and results are reported
consistently. There is a necessity to create innovative AI and machine learning techniques.

The existing emotion recognition approaches all need data, but the training of ma-
chine learning algorithms requires annotated data, and obtaining such data is usually
a challenge [552]. The use of AI models may become less complex, and AI algorithms
faster when certain database techniques are applied. These techniques can also provide
AI capability inside databases. Supporting AI training inside databases is a challenging
task. One of the challenges is to store a model in databases, so that its parallel training is
possible with multiple tenants involved in its training and use, at the same that security
and privacy issues are taken care of. Another challenge is to update a model, especially
in case of dynamic data updates [553]. The following datasets can help with the task of
classifying different emotion types from multimodal sources such as physiological sig-
nals, audio content, or videos: BED [554], MuSe [555], MELD [544,556], UIT-VSMEC [411]
HUMAINE [557], IEMOCAP [558], Belfast database [559], SEMAINE [560], DEAP [561],
eNTERFACE [384], and DREAMER [562]. Github [563], for instance, provides a list of all
public EEG-datasets such as High-Gamma Dataset (128-electrode dataset from 14 healthy
subjects with about 1000 four-second trials of executed movements, 13 runs per subject),
Motor Movement/Imagery Dataset (2 baseline tasks, 64 electrodes, 109 volunteers), and
Left/Right Hand MI (52 subjects).

The findings also suggest that the development of more powerful algorithms cannot
address the perception, reading, and evaluation of the complexity of human emotions,
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by making an integrated analysis of users’ demographic and cultural background (age,
gender, ethnicity, race, major diagnoses, and major medical history); socioeconomic status
(education, income, and occupation); diversity attitudes; and context. We can only hope
that the future will bring further research to address this issue and help to develop more
advanced AFFECT technologies that can better cope with issues such as demographic
and cultural background (age, gender, ethnicity, race, major diagnoses and major medical
history); socioeconomic status (education, income and occupation); diversity attitudes; and
context (weather conditions, pollution, etc.).

Worldwide research has yet to resolve several problems, and additional research areas
have arisen, such as missing data analysis, potential bias reduction, a lack of stringent data
collection and privacy laws, application of elicitation techniques in practice, open data
and other data-related issues. Olivas et al. [564] for instance, analyze various methods for
handling missing data:

• Missing data imputation techniques: analysis of the variable containing missing data
(Mean, Regression, Hot Deck, Multiply Imputation) and analysis of relationships
between variables for a case containing missing data (Imputation based on Machine
Learning: Neural Network, Self-organizing map, K-NN, Multilayer perceptron);

• Case deletion (Listwise Deletion (Complete-case), Pairwise Deletion);
• Approaches that take into account data distributions (Bayesian methods, Model-based

likelihood, Maximum Likelihood with EM).

It was found that the median correlation of the dependent variable of the Publications—
Country Success model with the independent variables (0.6626) is higher than in the
Times Cited—Country Success model (0.5331). Therefore, it can be concluded that the
independent variables in the Publications—Country Success model are more closely related
to the dependent variable than in the Times Cited—Country Success model (Figure 11).

Figure 11. Distribution of correlations based on 15 criteria applied to 169 countries, their publications,
and citations, as a CSP map.

The CSP maps of the world that have been compiled for this research provide a vi-
sualization of two aspects. A country’s success (x-axis) is one of the aspects, while the
publications dimensions (CSPN and CSPC; y-axis) are the other (Figures 12 and 13). The
publications (x-axis) are one of the aspects, while the publications times cited dimensions
(y-axis) are the other in Figure 14. The CSP maps group the countries into the same eight
clusters as the Inglehart–Welzel 2020 Cultural Map of the World (English-speaking, Catholic
Europe, Protestant Europe, Orthodox Europe, West and South Asia, African-Islamic, Con-
fucian, and Latin America) [565]. Two clusters—English-speaking and Protestant Europe—
have been merged into one because of their shared history, religion, cultures, and degree
of economic development. The parallels between the two aforementioned clusters have
been confirmed by numerous studies [566]. The Inglehart–Welzel 2020 Cultural Map of the
World includes many institutional, technological, psychological, and economic variables
that demonstrate strong perceptible correlations [567]. The country success indicators in
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the CSP maps can be characterized as a large set of variables within the criteria system,
such as politics, human development and well-being, the environment, macroeconomics,
quality of life, and values based.

Figure 12. CSP map showing the success of countries in terms of the numbers of publications on
AFFECT recognition (CSPN) in Web of Science journals with impact factor.
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Figure 13. CSP map showing the success of countries in terms of the number of citations of their
publications on AFFECT recognition (CSPC) in Web of Science journals with impact factor.
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Figure 14. CSP map showing the number of articles on AFFECT recognition and the numbers of
citations in Web of Science journals with impact factor.
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In addition, this is a quantitative study to assess how the success of the 169 countries
impacted the number of Web of Science articles published in 2020 on AFFECT recognition
techniques that use brain and biometric sensors (or the latest figures available).

For the multiple linear regressions, we used IBM SPSS V.26 to build two regression
models on 15 indicators of country success and the two predominant CSP dimensions. Two
CSP regression models were developed based on an analysis of 15 independent variables
and two dependent variables. The 15 independent variables and the two regression models
are summarized in Tables 4–8. Table 4 contains descriptive statistics for two of the CSP
models. The minimum and maximum values indicate the value range for each variable in
the set of values that the variable in question can take. The average value of the full range
that each variable can take is the mean and is usually equal to the arithmetical average. The
standard deviation is a measure of the dispersion in the values of the variable in relation
to the mean. Kurtosis is a measure of whether the values are heavy-tailed or light-tailed
relative to the center of the distribution, whereas skewness is a measure of the symmetry
of the distribution of the values. Acceptable values are considered to be between −3 and
+3 for skewness, and between −10 and +10 for kurtosis. When the skewness is close to
zero and kurtosis is close to three, the distribution of the values of the variable within the
specified value range is in line with a normal distribution.

Step 9 entailed the construction of regression models for the number of publications
and their citation rates, and the calculation of the ES indicators describing them. Two depen-
dent variables and 15 independent variables were analyzed to construct these regression
models. The process was as follows:

• Construction of regression models for the numbers of publications and their citations.
• Calculation of statistical effect size (ES) indicators describing these regression models.

ES is a value used in statistics to measure the strength of the relationship between two
variables, or to calculate a sample-size estimate of that amount [568]. An ES may reflect
the regression coefficient in a regression, the correlation between two variables, the
mean difference, or the risk of a specific event occurring [569]. Guidelines developed
by Durlak [570] provide advice on the ESs to use in research, and how to calculate and
interpret them. We used these guidelines, and applied the following five measures of
ES, as these indicators are crucial for meta-analysis and could be computed from our
measurements:

� Pearson correlation coefficient (r): Beta weights and structure coefficients r are
the two sets of coefficients that can provide a more perceptive stereoscopic
view of the dynamics of the data [571]. Interpretation may be also improved
through the use of other results (e.g., [572]).

� Standardized beta coefficient (β): Theoretically, the highest-ranking variable is
the one with the largest total effect, since β is a measure of the total effect of the
predictor variables [573].

� Coefficient of determination (R2): This is a measurement of the accuracy of
a CSP model. The outcome is represented by the dependent variables of the
model. The closer the coefficient of determination to one, the more variability
the model explains. R2 can therefore be used to determine the proportion of
the variation in the dependent variable that can be predicted by examining the
independent variables [573].

� Standard deviation: If this is too high, it will render the measurement virtually
meaningless [574].

� p-values. There is no direct relationship between the p-value and the size,
and a small p-value may be associated with a small, medium, or large effect.
There is also no direct relationship between the ES and its practical or clinical
significance: a lower ES for one outcome may be more important than a higher
ES for another outcome, depending on the circumstances [570].

• Calculation of non-statistical ES measures, which may better indicate the significance
of the relationships between pairs of variables in our two models:
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� Research context: Durlak [570] argues that ESs must be interpreted in the
context of other research.

� Practical benefit: As this is an intuitive measure, practical benefit can allow
stakeholders to make more accurate assessments of whether the research find-
ings published can significantly improve their ongoing projects [575].

� Indicators with low values: These are usually easier to improve than indicators
with high values.

Table 4. Descriptive statistics for the dependent variables of two models.

Descriptive
Statistics

Descriptive Statistics of 2 Models Dependent Variables

Publications—Country Success Times Cited—Country Success

Model 1 (CSPN) Model 2 (CSPC)

Mean 0.1354 0.9279
Median 0.0785 0.3297

Maximum 0.7642 7.7034
Minimum 0.0015 0.0000

Standard Deviation 0.1557 1.3893
Skewness 1.5533 2.4316
Kurtosis 5.3614 9.8641

Observations 166 165

Based on the results of descriptive statistics, it can be concluded that the values of
the dependent variables of the models used in the study demonstrate normal distribution
(skewness < 10 and kurtosis < 10), which allows for the use of parametric analysis methods
in the analysis.

Table 5. Goodness-of-fit testing for two models.

Independent Variables
Dependent Variables

Publications—Country Success Times Cited—Country Success

Model 1 (CSPN) Model 2 (CSPC)

GDP per capita 0.7725 ***
(1.2062)

0.6368 ***
(7.1524)

GDP per capita in PPP 0.6975 ***
(8.4298)

0.6467 ***
(7.3418)

Ease of doing business ranking −0.4821 ***
(−4.7652)

−0.4390 ***
(−4.2317)

Corruption perceptions index 0.7624 ***
(1.5319)

0.6341 ***
(7.1014)

Human development index 0.6717 ***
(7.8530)

0.5347 ***
(5.4799)

Global gender gap 0.4797 ***
(4.7348)

0.3354 ***
(3.0834)

Happiness index 0.7037 ***
(8.5774)

0.5315 ***
(5.4340)

Environmental performance index 0.6939 ***
(8.3444)

0.5166 ***
(5.2256)

Freedom and control −0.5808 ***
(−6.1782)

−0.3832 ***
(−3.5932)

Economic freedom 0.6535 ***
(7.4765)

0.5801 ***
(6.1681)

Democracy Index 0.6227 ***
(6.8912)

0.4429 ***
(4.2777)

Unemployment rate −0.1860
(−1.6398)

−0.1642
(−1.4412)

Healthy life expectancy 0.6312 ***
(7.0471)

0.5194 ***
(5.2635)

Fragile state index −0.7229 ***
(−9.0606)

−0.5405 ***
(−5.5634)

Economic decline index −0.6358 ***
(−7.1339)

−0.5597 ***
(−5.8487)

Standardized beta coefficients: *** significant at α = p < 0.001.
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A correlation analysis found that the strongest relationship in the Publications—
Country Success model is between the dependent variable Publications and the inde-
pendent variable GDP per Capita. Meanwhile, in the Times Cited—Country Success model,
the strongest relationship is between the variables of Times Cited and GDP per Capita
in PPP. It was also found that in both models, the relationships between the dependent
variables and the independent variables are statistically significant (p < 0.001), except for
the relationships between the dependent variables and the Unemployment Rate variable.

Table 6. Descriptive statistics for two models.

Descriptive Statistics
Descriptive Statistics of 2 Models

Publications—Country Success Times Cited—Country Success

Model 1 (CSPN) Model 2 (CSPC)

Pearson’s correlation coefficient (|r|) 0.6272 0.5142
Coefficient of determination (R2) 0.6943 0.5114

Adjusted R2 0.6191 0.3912
Standard deviation 0.1557 1.3693

p values (probability level) 0.0000 0.0000
F 9.2356 4.2570

A reliability analysis of the compiled regression models allows us to conclude that the
models are suitable for analysis (p < 0.05). It was also found that the changes in the values
of the independent variables used in the models explain the variance of the Publications
variable by 69.4%, and the variance of the Times Cited variable by 51.1%.

Table 7. Standardized beta coefficient values of the dependent variables.

Independent Variables

Standardized Beta Coefficient Values of the Dependent Variables

Publications—Country Success Times Cited—Country Success

Model 1 (CSPN) Model 2 (CSPC)

1 GDP per capita 0.7735 ** −0.0853
2 GDP per capita in PPP −0.5123 * 0.5304 *
3 Ease of doing business ranking 0.2535 0.1599
4 Corruption perceptions index 0.2392 0.3633
5 Human development index 0.1697 −0.1836
6 Global gender gap −0.0228 0.0703
7 Happiness index 0.0800 −0.0916
8 Environmental performance index −0.0601 **/ 0.1819
9 Freedom and control −0.0299 0.0846
10 Economic freedom 0.4558 0.3239
11 Democracy Index −0.1524 0.0577
12 Unemployment rate 0.0353 0.0552
13 Healthy life expectancy 0.0047 0.0696
14 Fragile state index −0.0008 0.0246
15 Economic decline index 0.0147 −0.0301

Standardized beta coefficients: * significant at—p < 0.1, ** significant at p < 0.01.

An analysis of the standardized coefficients of the model allows us to conclude that
changes in the GDP per Capita variable have the biggest impact on changes in the Pub-
lications variable. The GDP per Capita in PPP variable also have a significant impact.
Meanwhile, the Times Cited variable is most affected by the GDP per Capita in PPP
variable, which has a statistically significant effect on the dependent variable.
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Table 8. How country success and its factors influence the two indicators.

Publications—Country Success Times Cited—Country Success

Model 1 (CSPN) Model 2 (CSPC)

When a country’s success increases by 1%, the indicator improves by
1.962% 2.101%

The 17 independent variables explain the dependent variable under analysis by
89.5% 54.0%

To confirm Hypothesis 1, we built two CSP models, which are formal representations
of the CSP maps. These models demonstrate that on average, an increase of 1% in a
country’s success leads to an average improvement by 0.203% in the country’s two CSPN
and CSPC dimensions. As the success of a country increased by 1%, the numbers of Web
of Science articles published and their citations grew by 1.962% and 2.101%, respectively.
Figures 12 and 13 also illustrate that an increase in a country’s success goes hand in hand
with a jump in its CSPN and CSPC dimensions, thus confirming Hypothesis 1.

Hypothesis 2 was based on the results of the analysis pertinent to the CSP models, as
well as on the correlations found between the 169 countries and the 15 indicators [66]. A
clear visual confirmation of Hypotheses 1 and 2 are also provided by Figures 12 and 13,
which show the specific groupings of countries in the seven clusters examined in this study.
These models may be of major significance for policy makers, R&D legislators, businesses,
and communities.

7. Evaluation of Biometric Systems

In this chapter, we outline the rationale behind the current biometrics and brain
approaches, compare the efficacy of existing methods, and determine whether or not they
are capable of addressing the kinds of issues and challenges associated with the field (with
figures). Biometric systems have several drawbacks in terms of their precision, acceptability,
quality, and security. They are generally evaluated based on aspects such as (1) data quality;
(2) usability; (3) security; (4) efficiency; (5) effectiveness; (6) user acceptance and satisfaction;
(7) privacy; and (8) performance.

Data quality measures the quality of biometric raw data [576,577]. This type of
assessment is generally used to quantify biometric sensors and can also be used to enhance
the system performance. According to the International Organization for Standardization
ISO 13407:1999 [578], usability is defined as “[t]he extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a
specified context of use” [579]:

• In this context, efficiency means that users must be able to accomplish the tasks easily
and in a timely manner. It is generally measured as task time;

• Here, effectiveness means that users are able to complete the desired tasks without
excessive effort. This is generally measured by common metrics such as the completion
rate and number of errors, for example the failure-to-enroll rate (FTE) [580];

• User satisfaction measures the user’s acceptance of and satisfaction with the system. It
is generally measured by looking at a number of characteristics, such as ease of use
and trust in the system. Even if the performance of one biometric system exceeds that
of another in terms of performance, this will not necessarily mean that it will be more
operational or acceptable.

Security measures the robustness of a biometric system (including algorithms, archi-
tectures, and devices) against attack. The International Organization for Standardization
ISO/IEC FCD 19792 [581] specifically addresses processes for evaluating the security of
such systems [579].

Unlike traditional methods, biometric systems do not provide a 100% reliable answer,
and it is almost impossible to obtain such a response. In a secure biometric system, there
is a trade-off between recognition performance and protection performance (security and
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privacy). The reason behind this trade-off arises from the unclear concept of security,
which requires a more standardized framework for evaluation purposes. If this gap can be
closed, an algorithm could be developed that would jointly reduce both of them. ISO 19795
contained standards for performance metrics and evaluation methodologies for traditional
biometric systems. In addition to performance testing, it provided metrics related to the
storage and processing of biometric information [582]. ISO/IEC 24745 specifies that, unlike
privacy, security is delivered at the system level. In general, the ability of a system to
maintain the confidentiality of information with the use of the provided countermeasures
(such as access control, integrity of biometric references, renewability, and revocability) is
referred as its security factor. When seeking to bypass the security of a biometric system,
an invader may impersonate a genuine user to gain access to and control over various
services and sensitive data. Privacy refers to secrecy at the information level. The following
criteria were proposed in ISO/IEC 24745 for the purpose of evaluating the privacy offered
by biometric protection algorithms: irreversibility, unlinkability, and confidentiality [583].

The discriminating powers of all biometric technologies rely on the extent of entropy,
with the following used as performance indicators for biometric systems [584–587]: False
match rate (FMR); False non-match rate (FNMR); Relative operating characteristic or
receiver operating characteristic (ROC); Crossover error rate or equal error rate (CER or
EER); Failure to enroll rate (FER or FTE), and Failure to capture rate (FTC).

Specific advantages and disadvantages are characteristic to each biometric technology.
Table 9 shows these comparisons.

Table 9. Benefits and limitations of biometric technologies.

Tool Benefits Limitations

Electroencephalography (EEG)

Can be used to measure rapid changes in neural
activity by the millisecond [588]

Minimally invasive and/or commercial research
packages are available [588]

Participants can move around and benefit from
enriched/social environments [588]

Uses portable instruments and natural environments;
there is long tradition of well-controlled experiments;
measurement processes requiring several hours are

possible in practice [589]

It is difficult to pinpoint neural signals from
particular brain areas (poor spatial resolution) [588]
Measurements from structures deep within the brain

(e.g., nucleus accumbens) are not possible [588]
Published studies on biometrics based on this signal

have used high-cost medical equipment [590]
Subjects have reported discomfort since it is
necessary to apply scalp neck gel to improve

conduction between electrodes [590]

Functional magnetic resonance
imaging (fMRI)

Has the ability to observe activity in small
structures [588]

Differentiates signal from neighboring areas [588]
Measurements of the whole brain are possible [588]

Physically restrictive; participants lie on their back in
the scanner and cannot move around [588]

Expensive, and equipment is in high demand [588]
Equipment cannot be removed from the laboratory;

the sequence of the activities is difficult to
monitor [589]

MEG (magnetoencephalography)

Some MEG study protocols are quite well suited for
design studies; there is a long tradition of

well-controlled experiments based on EEG; optimal
space-time-resolution [589]

Equipment cannot be removed from the laboratory;
the location of existing brain activity is relatively

difficult to determine [589]

Electrocardiogram (ECG)

Highly reliable source providing precise features of
the electrical and physiological activity taking place
with an individual; high performance has been noted
in prior research on this signal [591]; it can easily be

fused with other signals [592]

One of the great difficulties listed in the literature is a
lack of user acceptance, as its implementation at the
physical level makes it fairly uncomfortable [593];
body posture can also affect cardiac signals [594]

MRI (magnetic resonance
imaging) [589] Good for studies comparing groups of people Equipment cannot be removed from the laboratory

PET (positron emission
tomography) [589]

Good for comparing groups of people or natural
tasks

Radioactive tracer is injected into participants;
equipment cannot be removed from the laboratory

Eye tracking [588]
Offers strong nuanced data on visual attention and

gaze pathways, and can be integrated with
pupillometry

Does not measure inferences, the valence of the
response, thoughts, or emotions

Iris [595] Unique data; input is stable throughout lifetime;
non-intrusive

Large data template; images are frequently
improperly focused; single-source; high cost
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Table 9. Cont.

Tool Benefits Limitations

NIRS (near-infrared
spectroscopy) [589]

Uses portable instruments and natural environments;
some NIRS study protocols are well suited for design

studies; measurement processes requiring several
hours are possible in practice

Difficulties in determining the location of brain
activity; few groups are using NIRS for cognitive

studies as yet

Transcranial magnetic stimulation
(TMS/tDCS) [588] Can be used to show causality

Limited to investigating the function of brain
surface areas

Can generally only lessen (TMS/tDCS) or increase
(tDCS) neural activity in a general sense; cannot test

for specific levels of activity or influence
specific circuits

Forehead electrooculogram (EOG) These signals are low cost, and are not invasive [596]

Electrodes used for the acquisition of the signals can
present instability to eye flicker [597]; signals are

highly affected by noises in the immediate
vicinity [596]

Skin conductance response (SCR),
heart rate, pupil dilation [588]

Simple; well validated
Unobtrusive equipment; allows for more natural

interactions with the environment

Cannot distinguish between positive and
negative arousal

Lips [598]
Easy acquisition and lip characteristics; it is possible
to extract the outline even if the person has a beard

or a moustache

An image of the lips cannot be acquired when they
are moving

Facial electromyography (fEMG),
facial affective coding [599]

This is a precise and sensitive method for measuring
emotional expression

Unlike self-reports, fEMG does not depend on
language and does not require cognitive effort

or memory
Yields large amounts of data and is continuous and

scalable (hence more credible)
Dynamic tracking of emotional (potentially

unconscious) responses to ongoing
stimuli/information

Can measure facial muscle activities for the sake of
balancing weakly evocative emotional stimuli

Less intrusive than other physiological measures
such as fMRI and EEG

Automatic facial encoding software/algorithms
are available

The technique is intrusive and may alter natural
expression

The number of muscles that can be triggered is
limited by how many electrodes can be attached to

the face
Requires electrodes to be directly attached to the face

(in a lab)
Certain medicines that act on the nervous system,
such as muscle relaxants and anticholinergics, can
impact the final electromyography (EMG) result

Gait Convenient and non-intrusive (2D); subjects can be
evaluated covertly, without their knowledge [595]

During the assessment stage, light affects the results;
clothing may affect detection [46]

Data may alter throughout a lifetime (injuries,
training, footwear); specialist personnel required for

data processing; large data template [595]

Body motion [595] Unique and various sources of data, small
template size

Time consuming; subject must cooperate with reader;
specialist personnel required for data processing

Upon completing the literature analysis, we then compared biometric technologies
looking at the following seven parameters: universality, distinctiveness/uniqueness, per-
manence, collectability, performance, acceptability, and circumvention (Table 10). Another
set of comparisons was the strengths and weaknesses characteristic to biometric technolo-
gies and related to their ease of use, error incidence, accuracy, user acceptance, long term
stability, cost, template sizes, security, social acceptability, popularity, speed, and whether
or not they have been socially introduced (Table 11). The working characteristics of various
biometrics differ, as does their accuracy, and depend on the design of their operation.
The level of security and the kinds of possible errors are also different in each biometric
approach; the denial of access to the biometric sample holders is possible caused by various
factors such as aging, cold, weather conditions, physical damages, and so on [600,601].
Other researchers also look at FAR, FRR, CER, and FTE in their comparisons of biometric
technologies (Table 12).
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Table 12. Comparison of performance metrics for biometric technologies by various authors.

FAR FRR CER FTE

Iris/pupil
0.94% [603]

0.0001–0.94 [613]
2.4649% [614]

0.99% [603]
0.99–0.91 [613]
2.4614% [614]

0.01% [603] 0.50% [603]

Face 1% [603]
16% [614]

10% [603]
16% [614] 3.1% [615]

Keystroke dynamics
and mouse

movements, Mouse
Tracking

7% [603]
0.01% [614]

0.10% [603]
4% [614] 1.80% [603]

Voice/Speech/Voice
Pitch Analysis (VPA)

2% [603,613]
7% [614]

10% [603,613]
7% [614] 6% [603] 0.5% [615]

Multimodal biometric systems take advantage of multiple sensors or biometrics to
remove the restrictions of unimodal biometric systems [616]. While unimodal biometric
systems are restricted by the integrity of their identifier, the change of several unimodal
systems having the same restrictions is low [617]. Multimodal biometric systems can fuse
these unimodal systems sequentially, simultaneously, both ways, or in series, meaning
sequential, parallel, hierarchical, and serial integration modes, respectively. For instance,
final results of decision level fusion of multiple classifiers are joined using methods such as
majority voting [616]. This multimodal analysis will assist in identifying the actual reasons
of such issues with the current biometrics and brain approaches, as well as the restrictions
of the existing state-of-the-art approaches and technologies.

An efficient way to combine multiple classifiers Is needed when an array of classifiers
outputs is developed. Various architectures and schemes have been proposed for joining
multiple classifiers. The most popular methods are majority vote and weighted majority
vote. In majority vote, the right class is the one most selected by various classifiers. If all
the classifiers show different classes or in the event of a tie, then the one with the highest
overall output is chosen to be the right class. Vote averaging method averages the separate
classifier outputs confidence for every class over the entire ensemble. The class output
with the highest average value is selected to be the right class [618]. The vote averaging
method has been used to measure the efficacy of existing biometrics methods (Tables 10
and 11). In our case, High (Very High) was assigned 3 points, Medium was assigned 2, and
Low was assigned 1. The calculations did not evaluate some qualitative indicators, such
as error incidence and socially introduced. Additionally, not all biometrics technologies
had data on the analyzed indicators. As a result, eye tracking we not evaluated in this
case due to a lack of data. The highest average number of points was collected by Skin
temperature-thermogram (2.57), Iris/pupil (2.43), Face (2.30), and Signature (2.09). Many
of the metrics for biometric technologies in Tables 9–12 are analyzed in detail throughout
the article.

8. Discussion and Conclusions

Nevertheless, there are still unanswered questions that need to be addressed. We
evaluated the evidence available to find a relationship between brain and biometric sensor
data and AFFECT in order to determine the primary digital signals for AFFECT. The
multidisciplinary literature used was from the disciplines of engineering, computer science,
neuroscience, physiology, psychology, mathematical modeling, and cognitive science. The
distinct conventions of these disciplines resulted in certain variegations, depending on the
features and characteristics of the research results being focused on. The literature under
analysis has small sample sizes, short follow-up times, and significant differences in the
quality of the reports, which limits the interpretability of the pooled results. On average,
the current AFFECT detection techniques that use brain and biometric sensors achieved a

56



Sensors 2022, 22, 7824

classification accuracy greater than 70%, which seems sufficient for practical applications.
As part of this review, several issues that need to be addressed were identified, as well as
numerous recommendations and directions for future AFFECT detection and recognition
research being suggested. They are listed below:

• Many studies fail to report information on demographic and cultural background,
socioeconomic status, diversity attitudes, and context, and AFFECT papers often have
limited descriptions of feature extraction and analysis. This has a significant impact
on the interpretation of their findings. Sample recommendations include reporting
on participant enrolment and selection approaches and analysis of demographic and
cultural background (age, gender, ethnicity, race, major diagnoses, and major medical
history); socioeconomic status (education, income and occupation), diversity attitudes,
and context. In order to improve the ability of researchers to assess the strength of
evidence, one of the first steps should be the development of this kind of consistent
reporting.

• Behavioral traits (e.g., gesture, keystroke, voice) change over time, and therefore are
less stable. Multiple interactions are typically required to set a reliable baseline. Injury,
illness, age, and stress can also cause changes in behavioral traits. Many of the studies
on AFFECT recognition examined brain and biometric data under different AFFECT
while overlooking the baseline (spontaneous) brain and biometric data.

• The literature did not contain brain and biometric sensor-based AFFECT recognition
of mixed emotions (parallel involvement of negative and positive emotions). We study
the 30 primary, secondary, and tertiary dyads of Plutchik’s wheel of emotions, creating
mixed emotions.

• Researchers need a set of guidelines to ensure AI models (artificial neural networks,
evolutionary computing, natural language processing; metaheuristics, fuzzy logic,
genetic algorithm) are correctly applied, and that their specifications and results
are consistently reported (the model selection strategy, parameter estimates in the
model with confidence intervals, performance metrics, etc.). There is also a need to
further develop advanced AI and machine learning techniques (multi-modal learning,
neuroscience-based deep learning, automated machine learning, self-supervised deep
learning, Quantum ML, Tiny ML, System 2 deep learning).

• More results are also needed to identify which of the elicitation techniques applied in
practice are effective, and in which cases they work best, taking into account the type
of information obtained, the stakeholders’ (developers, end-users, etc.) characteristics,
the context, and other factors. More data sets need to be created that use active
elicitation techniques, such as various games, as these are better at mimicking real-life
experiences and bringing about emotions. Gamification is a current trend that uses
game methods for real-life AFFECT elicitation.

• Recommendations also state that the two sources of potential bias (AFFECT interpre-
tation algorithmic biases, data sources and input) in multi-feature studies should be
reduced, and a wider variety of multimodal samples should be used.

• Missing data analysis has some gaps, for example missing data descriptions and how
missing data is handled, and most appropriate methods should be applied in AFFECT
recognition. As far as missing data goes, the literature had major shortcomings.

• As algorithms improve, accuracy is growing, but this significantly depends on the data
sets used. Some gaps and a lack of discussion have also been noted concerning the
question of whether the integrated brain and biometric sensors used in this research
are reliable and appropriate for AFFECT detection.

• A trend related to emotional AI businesses (Realeyes, Affectiva, etc.) that expand their
global operations in regions with less stringent data collection and privacy laws has
not been sufficiently examined globally.

• The recommendations for open science include the proposal to share and reuse open
multimodal AFFECT data, information, knowledge, and science practices (publica-
tions and software) by preparing a Data Management Plan that would address any
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important aspects of making data findable, accessible, interoperable, and reusable,
or FAIR. Open data analysis should also include recognized and validated scales for
AFFECT evaluation; any accessible confirmation on the reliability and validity of the
AFFECT device and sensor applied should be presented. The open datasets have
usually sought to obtain higher accuracy by using different sets of stimuli and groups
of participants.

Emotional acculturation, happens when people, on contact with a different culture,
learn new ways to express their emotions [619], incorporate new cultural values in their
existing set, and then adjust their emotions to suit these new values [620–623]. This
may be a research area in affective computing that needs more studies and focus. With
growing global integration, emotional acculturation will become increasingly important,
and advanced computational models will be needed to simulate the related processes.
M.-T. Ho et al. [624] believe that this may be a key thematic change in the decades to
come. The findings also suggest that developing more powerful algorithms cannot solve
the perception, reading and evaluation of the complexity of human emotions. Instead,
the complex modulators that affective and emotional states stem from need to be better
understood by the scientific community. We can only hope that the future will bring further
research that will remedy this and help develop more advanced technologies that can better
cope with issues such as gender, race, diversity attitudes, and cross-cultural differences in
emotion [624].

The substantial improvements in the development of affordable and simple to utilize
sensors for recognizing AFFECT have resulted in numerous studies being conducted. For
this review, we studied in detail 634 articles. We focused on recent state-of-the-art AFFECT
detection techniques. We also took existing data sets into account. As this review illustrates,
exploring the relationship between brain and biometric signals and AFFECT is a formidable
undertaking, and novel approaches and implementations are continually being expanded.

The evaluation of the intensity of human AFFECT is a complex process which requires
the use of a multidirectional approach. The main difficulties of this process include vari-
ations in the nature of human beings, social aspects, etc., due to these methods, which
fits for average evaluation of customers majority, but shows poor results in personalized
cases and vice versa. Moreover, the reliability of evaluations of human emotions strongly
depends on the number of biometric parameters used, and the measurement methods and
sensors applied. It is well known that a higher reliability of recognition can be achieved
by increasing the number of parameters, but this will also increase the need for certain
equipment and will slow down the evaluation process. The selection of measurement
methods and sensors is no less important in the successful recognition of emotions. Contact
measurement methods give the most reliable results, but their implementation is relatively
complicated and may even be frightening for potential customers. The best solution in this
case is non-contact measurement methods, that is, contact methods which do not require
special preparation and allow measurements to be taken without the knowledge of the
customer.

Future research possibly could focus on areas of reaction to emotion development
stage, while sensing and evaluation became faster than emotion recognition by person itself.

This research has addressed the various issues that emerge when affective and physio-
logical states, as well as emotions, are determined by recognition methods and sensors and
when such studies are later applied in practice. The manuscript presents the key results on
the contribution of this research to the big picture. These results are summarized below:

• Many studies around the world apply neuroscience and biometric methods to identify
and analyze human valence, arousal, emotional and physiological states, and affective
attitudes (AFFECT). An integrated review of these studies is, however, yet missing.

• In view of the fact that no reviews of AFFECT recognition, classification and analysis
based on Plutchik’s wheel of emotions theory are available, our study has examined
the full spectrum of thirty affective states and emotions defined in the theory.
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• We have demonstrated the identification and integration of contextual (pollution,
weather conditions, economic, social, environmental, and cultural heritage) [342] and
macro-environmental [568] data with data on AFFECT states.

• The authors of the article have presented their own Real-time Vilnius Happiness
Index (Figure 10a) and other systems and outputs to demonstrate several of the
aforementioned new research areas in practice.

Information on diversity attitudes, socioeconomic status, demographic and cultural
background, and context is missing in many studies. In this study, we have identified
real-time context [347] data and have integrated them with AFFECT data. For example, the
ROCK Video Neuroanalytics system and associated e-infrastructure were established as
part of the H2020 ROCK project, in which passers-by were tracked at 10 locations across
Vilnius [348]. One of the outputs was the real-time Vilnius Happiness Index (Figure 10 and
https://api.vilnius.lt/happiness-index, accessed on 5 September 2022), and the project also
involved a number of additional activities (https://Vilnius.lt/en/category/rock-project/,
accessed on 5 September 2022) [625,626].

The analysis of the global gap In the area of affective biometric and brain sensors
presented in this study and our aim of contributing to the current state of research in this
area have led to the aforementioned research results.

Based on the evaluation of biometric systems performed in Section 7 and the conclu-
sions presented in Chapter 8, future AFFECT biometrics and neuroscience development
directions and guidelines are visible. We performed the above analysis by extensively
discussing biometric and neuroscience methods and domains in the article.

Additionally, Sections 2 and 6 present statistical and multiple criteria analysis across
169 nations, our outcomes demonstrate a connection between a nation’s success, its number
of Web of Science articles published, and its frequency of citation on AFFECT recognition.
This analysis demonstrates which country’s success metrics significantly influence future
AFFECT biometrics and neuroscience development.

Advancements in the development of biometric and neuroscience sensors and their
applications are summarized in this review. Regardless of the encouraging progress and
new applications, the lack of replicated work and the widely divergent methodological
approaches suggest the need for further research. The interpretation of current research
directions, the technical challenges of integrated neuroscience and affective biometric
sensors, and recommendations for future works are discussed. The reviewed literature
revealed a host of traditional and recent challenges in the field, which were examined in
this article and are presented below.

Biometric research aims to provide computers with advanced intelligence so that
they can automatically detect, capture, process, analyze, and identify digital biometric
signals—in other words, so they can “see and hear”. In addition to being one of the basic
functions of machine intelligence, this is also one of the most significant challenges that we
face in theoretical and applied research [627].

There are still many challenging issues in terms of improving the accuracy, efficiency,
and usability of EEG-based biometric systems. There are also problems concerning the
design, development and deployment of new security-related BCI applications, such as
personal authentication for mobile devices, augmented and virtual reality, headsets and
the Internet [628]. Albuquerque et al. [628] have presented the recent advances of EEG-
based biometrics and addressed the challenges in developing EEG-based biometry systems
for various practical applications. They have also put forth new ideas and directions for
future development, such as signal processing and machine learning techniques; data
multimodal (EEG, EMG, ECG, and other biosignals) biometrics; pattern recognition tech-
niques; preprocessing, feature extraction, recognition and matching; protocols, standards
and interfaces; cancellable EEG biometrics; security and privacy; and information fusion for
biometrics involving EEG data, virtual environment applications, stimuli sets and passive
BCI technology.
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Some of these challenges (accuracy, efficiency, usability, etc.) are analyzed in the article.
Each of these features can be examined in more detail. For example, Fierrez et al. [629]
analyzed five challenges in multiple classifiers in biometrics: design of robust algorithms
from uncooperative users in unconstrained and varying scenarios; better understanding
about the nature of biometrics; understanding and improving the security; integration with
end applications; understanding and improving the usability. “Design of robust algorithms
from uncooperative users in unconstrained and varying scenarios” is a challenge that has
been a major focus of biometrics research for the past 50 years [2], but the performance
level for many biometric applications in realistic scenarios is still not adequate [629].

Recently, new challenges in the field have been appearing; some of which are pre-
sented below as an example. Sivaraman [630] argues that in the age of AI and machine
learning, cyberattacks are more powerful and are sometimes able to crack biometric sys-
tems. Additionally, these attacks will become more frequent. Multimodal biometrics are
increasingly important, where a combination of biometrics is used for greater security.
The pandemic has resulted in changes to the biometric algorithm of various modalities.
Facial recognition algorithms have been improved to recognize people wearing masks and
cosmetics. Updates like these may improve the accuracy of biometrics systems. Biometric
devices will take web and cloud-based applications to the next level, as many organizations
will continue to operate remotely [630].

Furthermore, a few problems have not been solved, and additional research fields
have emerged, namely: biometric and neuroscience technologies lack privacy, are invasive
and persons do not like to share their personal data and be identified; lack of protection
from hacking; lack of accuracy; a quite expensive life cycle (brief, design, development,
set up, running, operation, etc.); lack of capability to read some human features; customer
satisfaction is not always guaranteed; human figure form recognition and examination of
figure fragments, examination of head vibrations, and human electrical fields are inefficient.
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Abbreviations

AFFECT arousal, valence, affective attitudes, emotional and physiological states
AI Artificial Intelligence
AISs artificial intelligence subsystems
AON action observation network
BAEPs brainstem evoked potentials
BCI brain–computer interface
BIM4Ren Building Information Modelling based tools and technologies toward

fast and efficient RENovation of residential buildings
BNCI brain/neuronal computer interaction
BR binary relevance
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BTL below the line
CNCP model Collective Neuromarketing Consumer Persuasion Model
CNN convolutional neural network
DEAP Dataset for Emotions Analysis using Physiological signals
DTI diffusion tensor imaging
DWI diffusion-weighted imaging
EARs emotion association rules
ECG electrocardiography
EDA electrodermal activity
EEG electroencephalography
EMG electromyography
EMSs engagement marketing subsystems
EOG electrooculogram
ERP event-related potential
ESSs emotional salient segments
ET eye tracking
FA fractional anisotropy
FC facial action coding
FDG fluoro-D-glucose
FDG-PET/fMRI simultaneous [18 F]-fluorodeoxyglucose positron emission tomography

and functional magnetic resonance imaging
fEMG facial electromyography
fMRI functional magnetic resonance imaging
fNIRS functional near-infrared spectroscopy
fPET functional positron emission tomography
GMM gaussian mixture models
GSR galvanometer or galvanic skin response
HMI human–machine interactions
HMM hidden Markov model
HR heart rate
HVAC heating, ventilation, and air conditioning
ICCs intra-class correlation coefficients
IoT Internet of Things
IRT implicit reaction time
IS information systems
iTBS intermittent theta burst transcranial magnetic stimulation
K-NN K-nearest neighbor
LP label powerset
LSTM long short-term memory
MDS multidimensional scaling
MEG magnetoencephalography
MLP multi-layer perceptron
MRI magnetic resonance imaging
MT mouse tracking
N5PSC neuromarketing, neuroeconomics, neuromanagement,

neuro-information systems, neuro-industrial engineering, products,
services, call centers

NEV net emotional value
NIRS near infrared spectroscopy
NLP natural language processing
NT neurotransmitter
PET positron emission tomography
PPG photoplethysmogram
PSD power spectral density
RAKEL random k-label sets
RF random forest
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ROCK Regeneration and Optimization of Cultural heritage in creative and
Knowledge cities

RRA respiratory rate assessment
RT reaction times
rTMS transcranial magnetic stimulation
SC skin conductance
SD tests SDS denaturation test
SEEVal the service encounter emotional value
SST steady-state topography
SVM support vector machine
tDCS transcranial direct-current stimulation
TMS transcranial magnetic stimulation
UIT-VSMEC standard Vietnamese social media emotion corpus
VAAQ virtual agent’s acceptance questionnaire
VPA voice pitch analysis
VR virtual reality

References

1. Rizzolatti, G.; Sinigaglia, C. The Mirror Mechanism: A Basic Principle of Brain Function. Nat. Rev. Neurosci. 2016, 17, 757–765.
[CrossRef] [PubMed]

2. Spunt, R.P.; Adolphs, R. The Neuroscience of Understanding the Emotions of Others. Neurosci. Lett. 2019, 693, 44–48. [CrossRef]
[PubMed]
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Abstract: This work proposes a multi-spectral face recognition system in an uncontrolled envi-
ronment, aiming to identify or authenticate identities (people) through their facial images. Face
recognition systems in uncontrolled environments have shown impressive performance improve-
ments over recent decades. However, most are limited to the use of a single spectral band in the
visible spectrum. The use of multi-spectral images makes it possible to collect information that is not
obtainable in the visible spectrum when certain occlusions exist (e.g., fog or plastic materials) and
in low- or no-light environments. The proposed work uses the scores obtained by face recognition
systems in different spectral bands to make a joint final decision in identification. The evaluation
of different methods for each of the components of a face recognition system allowed the most
suitable ones for a multi-spectral face recognition system in an uncontrolled environment to be
selected. The experimental results, expressed in Rank-1 scores, were 99.5% and 99.6% in the TUFTS
multi-spectral database with pose variation and expression variation, respectively, and 100.0% in
the CASIA NIR-VIS 2.0 database, indicating that the use of multi-spectral images in an uncontrolled
environment is advantageous when compared with the use of single spectral band images.

Keywords: deep neural networks; multispectral imaging; face recognition; in the wild

1. Introduction

The sense of sight allows us to observe dangers, identify objects, and recognize people.
This last task is fundamental for human beings as social beings. It enables us to differentiate
the level of trust someone can give to a specific person, with this being at the base of the
construction of communities. Such is the importance of this task that it has become one
of the main topics of research with the emergence of machine learning, thus allowing
machines to incorporate this biological capacity.

Multi-spectral images have several military applications, from detection of camou-
flaged people [1], classification of vegetation types in military regions [2], landmine de-
tection [3] and face recognition [4]. The current face recognition systems operating in the
visible (VIS) domain have reached a significant level of maturity. It is possible to observe
their wide use nowadays, from security mechanisms to unlocking electronic devices such
as smartphones and personal computers to population control systems [5].

However, most current face recognition systems [6] require the cooperation of the user
to ensure that pictures are taken in favorable conditions (frontal postures, good illumina-
tion, no occlusion) and have trouble dealing with uncontrolled scenarios. Uncontrolled
environment scenarios, such as riots and violent demonstrations, can often be used by
criminals and terrorist cell members to move around and cause damage to Homeland
Security, as this type of environment adds difficulty to their detection. The uncontrolled
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environment is mainly characterized by a variety of lighting, pose, facial expressions and
the existence of occlusions [5]. These features are challenges to face recognition systems
due to the multiple intrapersonal variations they provide, making it difficult to correctly
identify an individual’s identity based on a collaborative image of the individual.

This work has as its main objective the development of a multi-spectral face recognition
system in an uncontrolled environment. To achieve this goal, the solutions used by current
recognition systems and the evaluation of the benefits of using multi-spectral images are
explored. The developed face recognition system is evaluated in public multi-spectral
image datasets with pose and expression variability.

This paper is organized into six sections. The Introduction section describes the moti-
vation for the work, the objectives and the structure of the paper. The Background section
explains important concepts, such as how a face recognition system works, what multi-
spectral images are and what their advantages are. The Related Work section presents the
study of the art of multispectral face recognition methods in an uncontrolled environment
and of public multispectral databases. The Methodology section defines the proposed
method in order to achieve the objectives. The Results and Discussion section describes
the multispectral databases used, several experiments are also performed with the various
modules proposed in the methodology, each experiment is accompanied by its respective
analysis and discussion. The Conclusions section presents the conclusions of this work,
thus consolidating the proposed objectives.

2. Background

2.1. Face Recognition

In general, a face recognition system is described in several phases. The first phase
consists of acquiring the facial images and pre-processing them, such as locating the faces
and cropping them. In a second phase, the features are extracted from the facial image, for
instance, the position of facial landmarks, eye distance or even the face tones. Finally, these
features are used in a classifier for identification or verification purposes.

Face recognition can be performed in a controlled or uncontrolled environment. The
controlled environment, also known as consent recognition, is one in which the user
cooperates in the recognition by facilitating it through correct and static posture in a place
with good lighting. In the uncontrolled environment, recognition is dynamic, without the
user cooperating in acquiring an image, making the face recognition process very difficult
due to the diversity of the surrounding environment (e.g., low visibility), facial poses
and expressions.

2.2. Multispectral Imaging in an Uncontrolled Environment

The databases of the VIS domain and the use of image synthesizers, which generate
multiple poses and facial expressions from the obtained images, have allowed the dif-
ficulties associated with the variety of poses and facial expressions to be circumvented.
However, two points have proved more difficult to overcome: the change of illumination
and occlusions. This has led to the use of multiple spectral bands, with particular emphasis
on the infrared (IR) spectral band, which can acquire images in environments with little
or no brightness and overcome occlusions such as smoke and fog. In short, multispectral
analysis allows a face recognition system to extract facial features that would be impossible
to obtain with images from the VIS spectral band.

The IR bands can be categorized according to several spectral bands [7]. The active
bands are the near-infrared (NIR) and short-wavelength infrared (SWIR). To acquire images
in these bands, the object must receive illumination, even if scarce, because it is through
reflection that the image is acquired. Such a fact means these images are commonly used
in night vision devices. The NIR band allows the difficulties posed by the variation of
illumination to be overcome, while the SWIR has the advantage of obtaining images
through smoke and fog. The passive bands are the mid-wavelength infrared (MWIR) and
long-wavelength infrared (LWIR). Unlike the active bands, the passive bands allow us to
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acquire images using only the thermal radiation emitted by a body, commonly known as
thermal images.

The use of IR images for automatic face recognition is not without challenges, as these
images are sensitive to the emotional, physical and health conditions of the individual,
as well as the surroundings, and do not serve as an absolute alternative to the use of
the VIS spectrum, but rather as a complement [8]. Another difficulty arises from the low
number of public databases with images from both spectral ranges and in an uncontrolled
environment [9], which limit the creation of rich classification models and the ability to
characterize the performance of those systems in realistic conditions.

3. Related Work

Multi-spectral face recognition in an uncontrolled environment can be subdivided into
two areas. The first is face recognition in an uncontrolled environment, which is already
challenging. The second is multi-spectral face recognition, i.e., using different spectral
bands in face recognition. This section briefly reviews the progress made in these two areas.

3.1. Face Recognition in an Uncontrolled Environment

The uncontrolled environment, strongly characterized by pose-light-expression fac-
tors, emerges as a problem for current recognition systems. A significant step was taken
towards solving this type of problem by introducing very large databases to train Deep
Convolutional Neural Networks (DCNN) in combination with the emergence of image
synthesis methods [5]. The two main image synthesis methods are: (i) one-to-many aug-
mentation, which consists of generating different poses of a face from a canonical face
image; (ii) many-to-one normalization, which consists of normalizing any pose of the face to
a canonical face pose [5]. The use of Generative Adversarial Networks (GAN), introduced
by Goodfellow et al. [10], is characterized by the use of a generator and a discriminator (see
Figure 1). The generator is responsible for producing samples given an input image so that
the discriminator cannot discern which of the samples is real and which is false.

 

Figure 1. Schematic of the training of a GAN. The dashed line shows the process of sample generation.

Since their appearance in face normalization, with DR-GAN [11], GANs have taken
the lead in solving the problem of pose and facial expression variation. As for one-to-many
augmentation using GANs, as is the case with the DA-GAN network [12], their image
production power also gives them an advantage compared to other algorithms.

Normalization of many-to-one images is an extreme image synthesis problem due
to the pose differences of a face. Cao et al. [13] proposed HF-PIM, normalizing the face
to a frontal pose through a texture fusion deformation procedure leveraging a dense
matching field to interconnect the 2D and 3D surface spaces. Qian et al. [14] presented
Face Normalization Module (FNM), which encodes images using a pre-trained network for
feature extraction and generates realistic images.

One-to-many augmentation is another approach to achieve face recognition regardless
of the pose. Tran et al. [15] synthesized different poses through 3D modeling and then
trained a DCNN to perform face recognition with varied poses. The DA-GAN proposed by
Zhao et al. [12] created 2D images through 3D modeling and then refined the obtained 2D
images to be as realistic as possible, using a GAN to try to preserve the identity of the face.
Thus, the DA-GAN network was also used to augment the training data.
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3.2. Multispectral Face Recognition

The main multi-spectral face recognition methods can be characterized by three im-
portant features: Image Synthesis Methods, Fusion Methods and Loss Functions.

Fusion methods are subdivided into feature fusion and score fusion. In the first,
a fusion of features from the different spectral bands of the facial image is performed,
allowing the most relevant features to be extracted from the different bands and joining
them in a vector. The second method combines the scores obtained from each classifier
uni-band (e.g., a classifier operating only in the LWIR band and another operating only in
the NIR band) [16].

The image synthesis methods allow an image of a spectral band to be transformed into
another, helping to compare two images. The main advantage of image synthesis is that it
enables an image to be passed from any spectral band to the VIS band, making it possible
to use classifiers implemented to process images of the VIS spectrum [17]. One of the most
recent works in this area synthesizes VIS images from NIR images using GANs [18].

Finally, all neural networks have cost functions for the training moment to update
the network weights. However, certain cost functions have been proposed to proceed
specifically to the classification of multi-spectral images. Examples of these cost functions
are the Scatter Loss [19] and the Wasserstein Distance [20].

3.3. Gaps

Although several scientific works address multi-spectral face recognition, few of these
demonstrate its power in an uncontrolled environment due to the limitations in current
databases of multi-spectral face images. In existing datasets, the variations of conditions
are not extreme, as they are usually semi-controlled environments and not in the wild
(uncontrolled environment). For example, the most studied database in multi-spectral face
recognition, CASIA NIR-VIS 2.0 [21], uses images in which the pose has few deviations from
the frontal position, which does not reliably characterize the uncontrolled environment.
Thus, the fact that these databases are incomplete (compared to those of the VIS band) is
still a barrier to improving the capability of multi-spectral face recognition systems in an
uncontrolled environment.

The present work proposes a system that integrates the capabilities of current face
recognition systems in an uncontrolled environment in the VIS spectrum at the pose
variation level and the capabilities of multi-spectral face recognition systems to surpass
illumination variation.

4. Methodology

The proposed multi-spectral face recognition system consists of three tasks: Face
Detection and Alignment, Image Synthesis and Face Recognition. In Figure 2, the general
operation of the proposed face recognition system is shown, including the steps performed
in each task.

 

Figure 2. Schematic of the operation of the proposed face recognition system.
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In the initial phase of the system, it is necessary to acquire multi-spectral images,
which can be obtained through mono-spectral equipment (collects the image in only one
spectral band) or multi-spectral (collects the image in different spectral bands). After image
acquisition, the Face Detection and Alignment module aims to obtain an aligned and
centered facial image with predefined dimensions. To achieve this goal, it is necessary to
detect the presence of human faces and then perform a face marking, detecting essential
landmarks of the face, such as eyes and nose, allowing a correct alignment of the face and
clipping around it. The following task is Image Synthesis, which aims to obtain a frontal
facial image. The next task is Face Recognition, where facial image features are extracted
through a CNN and a one-shot learning methodology is followed for the classification task,
obtaining similarity scores for each spectral band. These scores are combined using a score
fusion method, and the predicted identity is the one with the highest combined score.

4.1. Face Detection and Alignment

Face detection, in conjunction with face alignment, aims to detect the faces presented
in the input image and identify facial landmarks so that faces are centered, aligned and
equally sized. Since face detection algorithms detect faces in rectangular areas without
rotating the image, a face landmark detection algorithm is needed to apply a rotation so
that the face is aligned on the horizontal plan, using the imaginary eye line. Thus, the
procedure of face detection and alignment module (see Figure 3) does the following: is
given an image, identifies the different faces present, extracts the facial landmarks and
processes the image to produce facial images where the face is centered and aligned.

 

Figure 3. Flowchart of the steps of a facial detection and alignment module.

The face detection algorithms explored in this work are based on SSD (single-shot
multibox detector), a deep learning architecture for object detection [22]. The basic idea of
the SSD is to generate scores for the presence of each object category in each predefined box
and produce adjustments to the box to match the shape of the object. In this work, three SSD
based methods are tested: (i) the S3FD algorithm [23], (ii) the facial detection deep neural
network of OpenCV [24] and (iii) the DSFD algorithm [25]. The S3FD has contributions to
better cope with scaling variations with a single deep network. The DSFD uses a feature
enhancement module to extend the single-shot detector to a dual-shot detector, obtaining
more robust and discriminable features.

As for the facial landmark detection algorithms, the DLIB library’s 68 landmark
network, adapted from Khazemi and Sullivan [26], and Bulat’s 2D-FAN [27], also with
68 landmarks, were tested. The latter one uses an Hour-Glass [28] based architecture to
estimate the human pose. Both networks receive an image of a person and produce, as
output, the position of the different facial landmarks around the face.

All the algorithms addressed in this subsection were trained in databases that only
contain images in the spectral band of the VIS. To achieve data normalization, it is nec-
essary to (i) rotate the image to align the eye line with the horizontal, (ii) crop the image
to center the face image, and (iii) resize the image so that all output images have the
specified dimensions.
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4.2. Image Synthesis

To overcome the problems related with image acquisition in an uncontrolled environ-
ment, such as variation in lighting, occlusions and changes of poses, a face normalization
module is used. This module aims to synthesize (create) an image of a face with frontal
pose and neutral expression from a non-frontal face image.

To exemplify the expected behavior, Figure 4 shows an input face image in a non-
frontal pose, with which the image synthesis module produces a frontal face image. Thus,
it is intended that the image acquired helps obtain the identity features present in the facial
image. The models FNM [14] and FFWM [29] are analyzed.

 

Figure 4. Input and output of the Image Synthesis module (intended function, not the result of a
real experiment).

FNM is a GAN with two new features. First, it uses a network specialized in obtaining
facial features to build the generator and provide the ability to preserve facial identity.
Second, facial discriminators are used to refine local textures. Their authors claim that this
model produces a face in the canonical pose without expression, which directly improves
the performance of a face recognition system.

The normalization method of the FFWM model consists of using a deformation
module, aiming to synthesize realistic frontal images with illumination preservation. For
frontal image synthesis, it presents a module responsible for reducing pose discrepancy at
the facial features level, thus preserving more details of profile images. The FFWM model
uses pairs of face images for the training phase: one with a non-frontal pose and another
with a frontal pose of the same person in the same conditions. Differently, the FNM model
uses non-pair face images, where the images are not of the same person.

4.3. Face Recognition

This last module aims to identify the person present in an input face image, following
the flowchart presented in Figure 5. For this purpose, it is necessary to perform two tasks:
feature extraction and classification.

 

Figure 5. Schematic of the Face Recognition Module.

The extraction of representative features from a facial image is performed through
a version of Light CNN [30] with 29 convolutional layers (Light CNN-29). To use this
network for feature extraction in spectra other than VIS, transfer learning is used. According
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to [31], several models for biometric recognition are based on transfer learning when the
databases are limited. Thus, one should use the Light CNN-29 model with the weights
obtained by training on the VIS databases and fine tune with the facial image databases
in spectra other than the VIS. At the end of the feature extraction phase, B vectors of
256 dimensions are generated, with B being the number of spectral bands in which the
facial image was acquired.

The classification process applied by the one-shot learning technique determines the
degree of similarity of the feature set extracted from the input image with the features sets
extracted from the images of each class present in the support set, which is constituted by
one example per class. The similarity functions to be used are the Euclidean distance and
the cosine similarity. After obtaining the similarity values for each identity in the different
spectral bands, a fusion of the obtained scores is performed, inspired by [27]:

Sic =
B

∑
b=1

SibWb (1)

where Sic is the combined score for each identity i and Sib is the score obtained for each
band b for each identity i. Wb is the weight of each spectral band. The weights associated
with each band are fixed, determined by the accuracy obtained when classifying with only
that band. In this way, the band that usually obtains the most reliable similarity scores to
classify will have a greater weight in the fusion of scores. The prediction is then made by
choosing the identity i of the support set that has the highest combined similarity score:

prediction = max(Sic) ∀i ∈ [1, . . . , N] (2)

5. Results and Discussion

5.1. Databases

We performed both qualitative and quantitative evaluations of the proposed methods.
These images are in the VIS, NIR and LWIR bands. Two multi-spectral databases were
used for quantitative evaluation: TUFTS [9] and CASIA NIR-VIS 2.0 [19]. The TUFTS
database has facial images in the VIS, NIR and LWIR bands of 113 people with different
poses and different illumination conditions. The TUFTS database has different subsets,
divided into TUFTS-Pose (facial images with nine different poses per individual, in visible,
NIR and LWIR) and TUFTS-Exp (four facial images with different expressions and one with
sunglasses per individual, in visible and LWIR) to study pose variation and expression
variation separately. CASIA NIR VIS 2.0 comprises 17,489 facial images of 715 people in
VIS and NIR spectral bands under different light conditions.

5.2. Metrics

The metrics used are Rank-1, Rank-5 and TAR@FAR = 0.001. When using a generic
expression Rank-n, given an image of a face as input, the classifier obtains the n most
probable identities, one of which is the correct identity. TAR (true accept rate) is defined as
the percentage of faces that, compared to the corresponding gallery identity, are identified
as matches, while FAR (false accept rate) is the percentage of incorrect identities to which a
face is matched.

5.3. Face Detection and Alignment
5.3.1. Face Detection

Regarding the qualitative results presented in Figure 6, all algorithms produced similar
results in the VIS band. This was expected since they were all trained in databases of the
spectral band of the VIS. In the LWIR spectral band, a failure of the OpenCV network was
observed in the second facial pose, where it cannot detect any face. In addition, when
OpenCV and S3FD detect the faces, there is a variation in the rectangle area compared to
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the VIS spectral band. The DSFD maintained the same results, which is a good indicator of
its ability to extract characteristics even in the LWIR spectral band.

 

Figure 6. Results obtained by facial detection methods in the spectral bands of VIS (a–e), NIR (f–j)
and LWIR (k–o). S3FD—red, DSFD—blue, OpenCV—green.

The quantitative results are presented in Table 1. It can be observed that the OpenCV
network results are lower than the others, especially in infrared bands. Comparing results
between the S3FD network and the DSFD, it is observed very similar results in the spectral
band of the VIS and NIR. However, the results in LWIR are about 8 percentage points better.
We observe that the DSFD maintains a very high accuracy for the different spectral bands,
thus being the best network for face detection in a multispectral facial analysis system.

Table 1. Accuracy of the different face detection algorithms in the TUFTS database.

Method
Accuracy at Different Spectral Bands (%)

VIS NIR LWIR

OpenCV 99.2 90.4 77.7
S3FD 99.9 100.0 90.8
DSFD 99.9 100.0 98.8

5.3.2. Landmark Detection and Facial Alignment

The results for face landmark detection are shown in Figures 7 and 8. For the more
challenging poses, we can see that the DLIB network fails, even in the VIS band (right eye,
in Figure 7c), as it tends to maintain the shape of a near-frontal face. One possible cause of
this behavior is that the face landmark detection model was trained in a dataset without
significant variations at the pose level. The DLIB network reveals even more difficulties in
the spectral band of LWIR.

2D-FAN reveals a good extraction of landmarks in any of the poses, including the LWIR
band, where the results are somewhat like those obtained in the VIS band (Figure 8). In the
case of Figure 8n, although it looks like there was a total failure, it is possible to observe
that the eyes are correctly identified. 2D-FAN, unlike DLIB, was trained on a database
with pronounced pose variations (including profile images), which is the justification for
achieving better results.

Given the previous considerations, we decided to use the 2D-FAN over the DLIB’s
network due to two factors: (i) it shows better results with face pose variation, and (ii) it
is the only one capable of producing positive results in the LWIR spectral band. After the
face detection with DSFD and landmark face detection with 2D-FAN, the align, crop and
resize phase took place, which aligned the imaginary eye line of all detected faces with the
horizontal, centered the faces in the images, cropped them and resized to the same size,
resulting in the results presented in Figure 9. The alignment effect is strongly noticeable on
the rightmost facial image. This normalization of the facial images can help a multispectral
face recognition system in an uncontrolled, where faces can be presented in several poses.
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Figure 7. Results achieved by DLIB in the spectral bands of VIS (a–e), NIR (f–j) and LWIR (k–o).
Yellow—jawline, green—eyes and mouth, purple—nose, blue—eyebrows.

 

Figure 8. Results achieved by 2D-FAN in the spectral bands of VIS (a–e), NIR (f–j) and LWIR (k–o).
Yellow—jawline, green—eyes and mouth, purple—nose, blue—eyebrows.

 

Figure 9. Results achieved by the proposed facial detection and alignment module in the different
spectral bands. The images on the top are the originals in the VIS, before processing. Remain
images correspond to facial alignment and detection in the spectral bands of VIS (a–e), NIR (f–j) and
LWIR (k–o).

93



Sensors 2022, 22, 4219

5.4. Image Synthesis

For all images used in the qualitative and quantitative evaluations, the images were
previously processed to be properly centered, aligned and scaled. The FFWM model needs
to receive the facial images with certain facial landmarks always in the same coordinates.
Therefore, the face detection and alignment module provided by the authors of FFWM was
used to obtain the results. The images used by the FNM model were processed by the face
detection and alignment module developed by the authors of this work. The rightmost
images used in the previous tasks were replaced by ones with a strong expression, to
evaluate the capacity of the models to normalize expressions.

5.4.1. Selecting the Best Model

In Figure 10, the results obtained by the FFWM are shown. One of the images of
the dataset could not be detected by the module provided by the authors of FFWM (see
Figure 10n). It is possible to see that the performance of FFWM has a sharp drop as it moves
away from the VIS band. Analyzing only the spectral band of the VIS and the images with
pose variation (Figure 10b,c), a suitable normalization of the pose in Figure 10c is present.

 

Figure 10. Results achieved by the FFWM in the different spectral bands. The images on the top
are the originals in the VIS. The images (a–e), (f–j), and (k–o) were generated by the proposed
methodology when it receives as input the images from the VIS, NIR and LWIR bands, respectively.

In Figure 10b, the FFWM produces a deformed face when the person looks upwards.
The exclusive use of the Multi-PIE database [32] in training the FFWM means that it can
only normalize the face where the pose varies along the horizontal plane.

The FNM presents more satisfactory results (see Figure 11) in the NIR spectral band,
where the facial images are more realistic than those of the FFWM. It should be noted that
with the FNM model, identities change, i.e., the person in the output face image appears
to be different from the person in the input face image. However, the use of a face feature
extractor by the FNM model allows the most relevant features in the output face image
to be kept. It is also relevant to point out that the FNM normalizes pose and expression,
eliminates face masks, as is the case of the surgical mask, and normalizes to the VIS spectral
band. However, this normalization does not produce realistic results with the LWIR images
due to the difference between the LWIR and VIS spectral bands.
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Figure 11. Results achieved by the FNM in the different spectral bands. The images on the top are the
originals in the VIS. The images (a–e), (f–j), and (k–o) were generated by the proposed methodology
when it receives as input the images from the VIS, NIR and LWIR bands, respectively.

Given the previous considerations, we decided to use the FNM instead of the FFWM
due to two factors: (i) the FFWM requires a specific face detection and alignment module
and that the face is perpendicular to the horizontal, while the FNM is more robust to pose
variations in the input image; (ii) all images normalized by the FNM tend to maintain the
face proportions, without deforming them, in the NIR and VIS spectral bands.

5.4.2. Evaluation of Selected Model

Identification with and without the use of FNM was performed to verify its advantage.
For this purpose, the Light CNN-29 was used for feature extraction, and the identification
was performed based on the score obtained by cosine similarity.

The results presented in Table 2 show that, without using the FNM, the use of the
NIR spectral band produces better results than the VIS band in all metrics analyzed. A
possible explanation is that the images obtained in the NIR band are not so affected by the
illumination variation (due to pose variation), thus not causing as many occlusions as in
the VIS band. The results improve with the use of the FNM in the VIS and NIR spectral
bands, with increases in performance in Rank-1 of 15.9% and 0.7%, respectively. In the
remaining metrics, it is also observed better values with the use of the normalization model.
This shows that the apparent identity change in the qualitative tests (see Figure 11) does
not have a negative impact. The results in the LWIR spectral band indicate that using the
FNM does not improve the performance in any of the metrics.

Table 2. Results (in %) with and without FNM on the TUFTS-Pose database, using the Light CNN-29
and cosine similarity score.

Rank-1 Rank-5
TAR

@FAR = 0.001

w/o w/ w/o w/ w/o w/

VIS 80.3 96.2 91.0 99.5 60.8 87.2
NIR 98.3 99.0 99.5 99.8 90.4 91.9

LWIR 41.8 34.9 58.2 57.8 28.7 14.0
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Due to FNM’s ability to normalize facial expression, tests were performed with TUFTS-
Exp to verify whether normalization of expression allowed Light CNN-29 to extract more
representative facial features. The results presented in Table 3 show that the sets of features
extracted by Light CNN-29 without facial expression normalization are already repre-
sentative enough, obtaining a Rank-1 of 99.6% in the VIS and 67.5% in the LWIR and a
TAR@FAR = 0.001 of 99.4% in the VIS band and 57.0% in the LWIR band. The use of FNM
impairs the feature extraction and consequently the results, especially in the LWIR spectral
band, where FNM has more difficulties in generating realistic images. Analyzing the results
obtained, the FNM model is used only to normalize facial images from the TUFTS-Pose
database in the VIS and NIR spectral bands.

Table 3. Results (in %) with and without FNM on the TUFTS-Exp database, using the Light CNN-29
and cosine similarity score.

Rank-1 Rank-5
TAR

@FAR = 0.001

w/o w/ w/o w/ w/o w/

VIS 99.6 93.3 100.0 98.5 99.4 82.9
LWIR 67.5 42.7 83.3 48.2 57.0 23.9

Table 4 presents the results obtained for Rank-1 with the variation of the quantized
pose. The values achieved in the VIS band show a significant improvement in the Rank-1
metric with the use of the FNM, resulting in an increase from 77.5% to 97.7% with pose
variations of 45◦ and from 43.3% to 87.4% with pose variations of 60. In the NIR, there
is only an improvement when the pose variation is 60◦, where the results go from 93.4%
to 96.5%. The results obtained prove the ability of the FNM network regarding the pose
normalization, where a higher pose variation results in a higher benefit of using it.

Table 4. Results (in %) of rank-1 with and without FNM on TUFTS-Pose database with quantification
of pose variation, using the Light CNN-29 and cosine similarity score.

Pose Variation

±60◦ ±45◦ ±30◦ ±15◦

VIS
w/o 43.3 77.5 100.0 100.0
w/ 87.4 97.7 99.5 100.0

NIR
w/o 93.4 99.7 100.0 100.0
w/ 96.5 99.4 100.0 100.0

5.5. Face Recognition
5.5.1. Network Training

For the training phase, and considering the results presented above, it was decided
to make only one fine adjustment to the LWIR band feature extraction network, because
the results obtained in this band are considerably lower, due to the network having been
trained in the visible. Thus, the fine-tuning aims for the network to learn to extract more
representative features from facial images in the LWIR spectral band. In order to train
the Light CNN-29 with identities (people) different from the test ones, a last connected
layer was added for training purposes and the LWIR spectral band images from the IRIS
database [33] were used. This last layer is used as the input of the softmax cost function
and is simply set to the number of training set identities, as proposed by [30].

The optimization algorithms SGD and SGD with Nesterov were used, along with
the Cross-Entropy loss function. Table 5 summarizes the parameters used during the
training phase.
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Table 5. Parameters used in the training procedure.

Parameter Value

Batch Size 16
Learning Rate 10−4

Momentum 0.9
Epoch Number 10

The objective of the training is that Light CNN-29 learns to extract representative
features from facial images and not only to classify them. In this way, Light CNN-29 can
be applied to other databases to extract features from facial images to be used as input for
similarity functions. Thus, all the following processes make use of the 256-dimensional
feature set obtained by Light CNN-29. Table 6 shows the results achieved by the original
model and the models trained on the LWIR spectral band, using as similarity function the
cosine similarity.

Table 6. Rank-1 results (in %) achieved by different models for extraction of LWIR band features.

Original SGD SGD Nesterov

TUFTS-Pose 41.8 55.5 54.3
TUFTS-Exp 67.5 79.6 75.9

With the results achieved, it is seen that the fine-tuning allowed the network to learn
to extract more representative features of facial images of the LWIR spectral band. It is also
noticeable that the model that achieved the best results was the SGD without Nesterov,
which was chosen for the remaining experiments.

5.5.2. Similarity Functions and Score-Level Fusion

At this stage, we have three Light CNN-29 models, each responsible for extracting
features from a specific band. Only the Light CNN-29 responsible for the extraction of fea-
tures from the LWIR spectral band underwent a fine-tuning. To proceed with classification,
it was necessary to find the similarity function that best fits the face recognition task.

Table 7 present the results achieved with the similarity functions cosine similarity and
Euclidean distance. The results show that the cosine similarity function is the one that
obtains the best score, which is in agreement with [34,35].

Table 7. Rank-1 results (in %) achieved in the face recognition task with the cosine similarity (CSim)
and Euclidean Distance (EDis).

TUFTS-Pose TUFTS-Exp
CASIA

NIR-VIS 2.0

CSim EDis CSim EDis CSim EDis

VIS 96.2 95.3 99.6 99.4 99.9 99.8
NIR 99.0 96.6 - - 99.3 99.1

LWIR 55.5 42.0 79.6 69.6 - -

It is now possible to use the scores obtained by each spectral band to proceed to the
final classification. A fusion of the achieved scores was performed using (1). Two studies
were conducted, with different weights of each band (Wb of Equation (1)) as shown in
Tables 8 and 9.
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Table 8. Wb values to be used for each spectral band in the different studies.

Study 1 Study 2

VIS 1.0 1.0
NIR 1.0 1.0

LWIR 1.0 0.7

Table 9. Results (in %) obtained in the face recognition task, in the TUFTS-Pose database.

Rank TAR
@FAR = 0.0011 2 3 4 5

Study1 99.4 99.8 99.9 100.0 100.0 90.5
Study2 99.5 99.8 100.0 100.0 100.0 93.5

VIS 96.2 98.7 99.1 99.4 99.5 87.4
NIR 99.0 99.7 99.7 99.8 99.8 93.1

LWIR 55.6 62.2 66.7 69.9 72.6 30.5

In study 1, the previously obtained test results are not considered; thus, the same
weight is used in all spectral bands. The final score is a simple arithmetic mean of the
scores of the individual bands, which assumes that all spectral bands have the same
classification capacity.

The Wb values in study 2 are derived from the mean of the Rank-1 average precision
of each of the spectral bands in the tests performed on the TUFTS-Pose, TUFTS-Exp and
CASIA NIR-VIS 2.0 databases (results obtained with the cosine similarity function in Table 7)
rounded to tenths. Thus, in study 2, the final score was obtained as weighted arithmetic
mean, where each band presents different weights reflecting its classification accuracy.

Tables 9–11 show our final face recognition results using both the individual bands
and the combination of bands with the two different weight sets (Study 1 and Study 2).

Table 10. Results (in %) achieved in the face recognition task, using the TUFTS-Exp database.

Rank TAR
@FAR = 0.0011 2 3 4 5

Study1 99.6 100.0 100.0 100.0 100.0 98.7
Study2 99.6 100.0 100.0 100.0 100.0 99.3

VIS 99.6 99.6 99.8 100.0 100.0 99.4
LWIR 79.6 86.3 88.5 90.4 91.6 54.9

Table 11. Results (in %) achieved in the face recognition task, using the CASIA NIR-VIS 2.0 database.

Rank TAR
@FAR = 0.0011 2 3 4 5

Study1 100.0 100.0 100.0 100.0 100.0 100.0
VIS 99.9 100.0 100.0 100.0 100.0 100.0
NIR 99.6 99.7 99.9 99.9 99.9 99.1

Table 9 presents the results obtained with the TUFTS-Pose database. These results
show that study 2 achieved better results than study 1, in the Rank-1 and Rank-3 metrics
by 0.1 percentage points, and the TAR@FAR = 0.001 metric by 3 percentage points. The
superiority of the results obtained by study 2 compared to study 1 shows that the weight
assigned to the LWIR spectral band should be lower than the weight assigned to the others
because the characteristics obtained in the LWIR spectral band are the least representative
of the identity.

Analyzing the results of the different spectral bands separately, the NIR spectral band
achieved the best results due to its robustness towards the variation of illumination present
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in the TUFTS-Pose database. Despite the promising results of the NIR band when used
solo, study 2 obtained superior results in all metrics, with particular emphasis on Rank-1
(from 99.0% to 99.5%) and TAR@FAR = 0.001 (from 93.1% to 93.5%). It is relevant to point
out that only the results obtained with score fusion reached the 100% accuracy rate in the
assessed Ranks (Rank-4 for study 1 and Rank-3 for study 2).

Table 10 shows the results obtained with the TUFTS-Exp database. An analysis of the
results allows us to see that the face recognition results obtained are better with score fusion,
where both studies obtained the same result as the VIS spectral band in Rank-1 (99.6%) but
managed to achieve a higher result in Rank-2 (100% against 99.6% of the VIS spectral band).
However, the best result for TAR@FAR = 0.001 is obtained using only the VIS spectral band,
with 99.4%, while the second-best result was obtained in study 2, with 99.3%.

The results achieved using the CASIA NIR-VIS 2.0 database (Table 11) show that study
1 reached a value of 100% in Rank-1. Using the VIS and NIR spectral bands separately, the
results were 99.9% and 99.6%, respectively, using the same metric. It should be noted that
study 2 was not performed for the CASIA NIR-VIS 2.0 database, as the difference between
study 1 and study 2 is the weight assigned to the LWIR spectral band, which it does not
have. In the TAR@FAR = 0.001 metric, study 1 matches the result for the VIS spectral band
with 100%.

Performing a global analysis of all results, we can observe that the fusion of scores
mainly favors cases where the results obtained by the different spectral bands separately
were less satisfactory. Looking at the results obtained with the TUFTS-Exp and CASIA-
NIR-VIS 2.0 databases (Tables 10 and 11), it is clear that the VIS spectral band already
obtains very high values in all metrics. This fact makes the fusion of scores not so effective.
However, despite a decrease of the TAR@FAR = 0.001 in Table 10, the results obtained by
the fusion of scores, in general, were higher than those obtained by the spectral bands
separately. The results obtained thus demonstrate the benefit of using multi-spectral images
in a face recognition system.

6. Conclusions

In this paper, a multi-spectral face recognition system in an uncontrolled environ-
ment has been proposed, aiming to make a decision with the largest amount of data
available, i.e., using the facial images obtained by the different spectral bands. The sys-
tem is composed of three modules: (i) face detection and alignment, (ii) image synthesis
and (iii) face recognition.

The state of the art regarding face recognition systems in an uncontrolled environment
has led to the conclusion that image synthesis methods, mainly with GANs, have been
used to combat intrapersonal variations, such as the difference in pose and facial expres-
sion. On the other hand, in the area of multispectral face recognition, with a plurality of
solutions presented by the use of multispectral images, fusion methods are those that make
the most use of images captured in different spectral bands in order to make a decision.
The main problem encountered is the limited number of images (and people) in multi-
spectral databases in an uncontrolled environment, which makes it challenging to train
convolutional neural networks, which are the most used method for feature extraction.

Several techniques were implemented to validate them in different multi-spectral
bands, since all of them were trained on visible databases, as well as to analyze the influence
of facial image features (pose, illumination and expression). This analysis aimed to select
the most appropriate technique for each module of the proposed face recognition system.

For the face detection task, three networks were evaluated qualitatively and quantita-
tively, which allowed us to conclude that the DSFD network was the most appropriate since
it maintained a high accuracy in the different spectral bands. For the landmark detection
task, three networks were evaluated qualitatively, and it was concluded that the 2D-FAN
network was the best fit due to its ability to correctly identify facial landmarks in different
spectral bands with a diversity of facial poses. Such evaluations allowed us to select the
methods that are best suited for these tasks with multispectral images in an uncontrolled
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environment. Thus, this work presents an efficient face detection and face alignment
module for a multispectral face recognition system in an uncontrolled environment.

The present work also performed evaluations of different face normalization methods,
through image synthesis, to produce face images with a frontal pose. The FFWM and FNM
models were analyzed, where the FNM model produced the most realistic facial images for
the visible and NIR spectral bands, maintaining the proportions of the face and the most
relevant facial features. Further analysis of the FNM model allowed us to conclude that:
(i) the greater the pose variation, the greater the advantage in using the FNM model and
(ii), the NIR images allow us to obtain a better identification/verification than the visible
images because pose variation can entail variations in illumination, to which the NIR band
is resistant.

The analysis of the performance of the different models allowed the selection of the
most suitable one for a multispectral face recognition system in an uncontrolled environ-
ment, as well as the identification of the most advantageous situations for its use.

The extraction of the feature sets of the facial images from the different spectral bands is
performed using Light CNN-29 [30], with a fine adjustment to the network weights for the
LWIR spectral band since it was trained on the visible spectral band. For the classification
phase, identification is performed in the different spectral bands, each producing different
scores for each identity. These scores are computed by the similarity between the feature
sets of each identity and the feature set of the input facial image. In this work, two different
studies were performed for score fusion, which allowed us to conclude that: (i) simply
using the different spectral bands to identify is advantageous (study 1) and (ii) a weighted
average is beneficial when the different classifiers (of each spectral band) have different
levels of reliability (study 2).

On the multi-spectral TUFTS database, with pose variation and expression variation,
the results obtained in Rank-1 by the proposed system and with score fusion with a
weighted average (study 2) were 99.5% and 99.6%, with the best results obtained using
only one spectral band being 99.0% and 99.6%. On the TAR@FAR = 0.001 metric, the results
obtained by weighted average are 93.5% and 99.3%, while with only one spectral band
93.1% and 99.4% were obtained. In the CASIA NIR-VIS 2.0 database, score fusion achieved
the results of 100.0% in the Rank-1 and TAR@FAR = 0.001 metrics, where without score
fusion, 99.9% and 100.0% in Rank-1 and TAR@FAR = 0.001, respectively, are obtained as
the best result.

The original contributions of this work include the analysis of several techniques for
different tasks, which allowed: (i) the presentation of an efficient face detection and align-
ment module to be used by any multi-spectral face analysis system, (ii) the identification
of the situations in which the FNM model should be used to normalize facial images and
(iii) the selection of a similarity function and the weights to be used in the fusion of scores
to identify/verify identities. From the experimental results, it is also concluded that the
proposed system allows us to obtain high results in multi-spectral face recognition in an
uncontrolled environment, where the use of the scores obtained from different spectral
bands allows us, in general, to achieve results that are superior to using only the scores
obtained by one spectral band.

After performing the work described in this paper, the authors suggest as future work
several relevant hypotheses. The first suggestion consists of the creation of a multispectral
database to overcome the limitations in the public multispectral databases that currently
exist. The second suggestion is to create a prototype and put it to work for access control
in high security areas. The third suggestion for future work consists of the adaptation
of the image input, to be able to process images obtained by drones with cameras in the
spectrum of visible, NIR, SWIR and LWIR, having as an objective the processing of images
in real time.
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Abstract: In recent years, the importance of catching humans’ emotions grows larger as the artificial
intelligence (AI) field is being developed. Facial expression recognition (FER) is a part of under-
standing the emotion of humans through facial expressions. We proposed a robust multi-depth
network that can efficiently classify the facial expression through feeding various and reinforced
features. We designed the inputs for the multi-depth network as minimum overlapped frames so
as to provide more spatio-temporal information to the designed multi-depth network. To utilize a
structure of a multi-depth network, a multirate-based 3D convolutional neural network (CNN) based
on a multirate signal processing scheme was suggested. In addition, we made the input images to be
normalized adaptively based on the intensity of the given image and reinforced the output features
from all depth networks by the self-attention module. Then, we concatenated the reinforced features
and classified the expression by a joint fusion classifier. Through the proposed algorithm, for the CK+
database, the result of the proposed scheme showed a comparable accuracy of 96.23%. For the MMI
and the GEMEP-FERA databases, it outperformed other state-of-the-art models with accuracies of
96.69% and 99.79%. For the AFEW database, which is known as one in a very wild environment, the
proposed algorithm achieved an accuracy of 31.02%.

Keywords: deep learning; facial expression recognition (FER); 3D convolutional neural network (3D
CNN); multirate signal processing; minimum overlapped frame structure; self-attention; multi-depth
network

1. Introduction

Communication skills have been developed based on the senses that play an important
role in human interaction. There are five human senses: sight, sound, touch, taste, and
smell. There is no doubt that sight is the most important one of the five senses for most
people, since up to 80% of all senses are recognized through sight [1].

In recent years, the importance of human–computer interaction (HCI) grows larger as
the artificial intelligence (AI) field develops. The basic goal of the HCI field is to improve the
interaction between human and computer systems by making the computers more useful
and accessible to humans. Additionally, the ultimate goal of the AI technology is to allow
the machine to catch the user’s intentions or emotions by itself, thereby reducing the burden
of the user and making it more enjoyable. Therefore, understanding the feelings and the
action of the human becomes important in various human-centric services. This technology
based on the human face is called facial expression recognition (FER) technology.

FER technology has many applications in customer service [2], the automotive indus-
try [3], entertainment [4], and home appliances [5]. There are good examples including:
games with different modes based on classifications of the user’s facial expression [6],
identifying the driver’s drowsiness and instructing an appropriate response [7,8], automat-
ically collecting vast amounts of data necessary for the study of human emotional behavior
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patterns [9], detecting the emotional state of the patient and predicting the situation in
need of help [10,11], and establishing an adaptive learning guidance strategy by grasping a
student’s psychological state using facial expressions and words that are used [12–14]. In
recent years, interest and research on the development of intelligent home appliances and
software that respond to the user’s emotional state have been focused on.

One of the main technologies for emotion recognition is to recognize a user’s emotional
state from facial expression from an image sensor. Among various fields of biometrics, the
face is a very important element that can be easily encountered in daily life. The emotional
state that appears in the facial emotions is sufficient to be used as a human interface when
sharing opinions with other people in the process of communicating with each other or
conveying one’s feelings. Reflecting this importance, many studies related to FER have
been conducted. In the field of psychology, many studies on facial analysis and recognition
have been done for many years.

According to a study by psychologist Ekman and Friesen, six emotions of a person,
happiness, sadness, anger, surprise, disgust, and fear, have been classified as basic emotions
that are perceived in common without being influenced by each culture [15,16]. Based
on this, many studies have classified six emotions or seven emotions adding neutral ex-
pressions to identify emotional states. In recent years, research targets are expanding to
expressions including not only depression, pain, and sleepiness but also expressions repre-
senting mental states such as agreement, concentration, interest, thinking, and confusion.
In addition, research is also being conducted on the recognition of natural facial expressions
and not only the research through an ideal database containing exaggerated expressions to
the limited environment. However, despite these efforts, FER technology is still at a level
that can be applied only in limited circumstances.

The FER system that recognizes facial expressions consists of three steps. The first
step is to detect a person’s face. This step is to detect a face area from an input image and
to detect face elements such as the eyes, nose, or mouth. Representative algorithms include
Adaboost [17], Haar-cascade [18,19], and the histogram of oriented gradients (HOG) [20].
Second, facial features are extracted from the recognized face using a geometric feature-
based method or an appearance feature-based method. Finally, there is a classification step
in which emotions are classified using the method based on the extracted features.

Facial expression recognition is a field with high dependency on datasets. There are
two types of factors that influence facial expression recognition. The first type of external
factors is uniqueness of each person such as gender, race, and age. The second type of
external factors is the environment such as lighting, poses, resolution, and noise. However,
many facial-expression datasets were created in controlled environments, so the second
type of external factors were affected less than the first type. To overcome this problem,
the dataset must be rich enough to accommodate these factors. Therefore, we used data
augmentation to supply various information. Another method is to create a cross dataset
that uses multiple datasets. This is to learn and test by combining different datasets under
the same conditions. Through this, there is an advantage that facial expressions in a more
diverse environment can be generalized.

Datasets used for FER are largely divided into two types according to the type of
dataset. A static dataset consists of static images, and a dynamic dataset consists of dynamic
images, which are called videos. In order to apply the FER in practice, we need to use a
dynamic dataset, which is found in real life. In general, the accuracy of a dynamic dataset
is lower than a static dataset, because dynamic images have different features such as facial
movements over time. Therefore, temporal dynamics must be considered. Through the 2D
convolutional neural network (2D CNN) [21], only spatial features can be identified within
an image. Therefore, to classify the facial expressions in dynamic images through this 2D
CNN, there is a limitation in processing temporal motion.

To solve this problem, a network dealing with the time axis is needed. Recurrent
neural networks (RNN) are a type of artificial neural network that forms a circular structure
in which hidden nodes are connected by directional edges. Data appearing sequentially
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can be usefully processed through RNN [22]. However, if the distance between the relevant
information and the point where the information is used is long, the gradient gradually
decreases during back-propagation, leading to a problem that the learning ability is greatly
degraded. This is called the vanishing gradient problem. The long short-term memory
(LSTM) [23] was devised to overcome this problem. LSTM is a structure in which the cell
state is added to the hidden state of the RNN. Another method is the use of 3-dimensional
convolution neural networks (3D CNN) [24]. Unlike conventional 2D CNN, 3D CNN uses
a 3D convolution kernel to extract features not only for the space domain but also for the
time domain.

In [25,26], they used geometric features such as landmarks, and the reference of a facial
expression such as neutral expression was required while extracting features. However,
in the case of real-life FER, no reference is given, and it cannot be guaranteed that the
face of the neutral expression will be given. Therefore, a model that can recognize facial
expressions without a reference is needed to use FER in practice.

We proposed a new facial expression recognition model to solve these problems. First,
a 3D CNN structure that can simultaneously extract spatial and temporal features was
used to obtain more accurate facial expression recognition results. Second, we used multi-
networks with different frame rates to extract various features. The frames used for inputs
entering each network should not overlap as much as possible, so we can utilize more
spatio-temporal information. Third, we applied self-attention to the features that were
extracted from each network, to make more reinforced features. The facial expressions
were classified by combining these features through a joint fusion classifier.

In order to make a facial expression recognition model, the most relevant contributions
are as follows:

• We defines a multi-depth network based on multi-frame rate input.
• A structure that minimizes the overlapping between input frames to each model was

designed.
• The proposed scheme reinforced the features that are the result of the networks by

self-attention, and it showed a better result than each network’s result.
• We verified the robustness of the multi-depth network on the variation of dataset and

different facial expression acquisition conditions.

The rest of the article is organized as follows. The related works for facial expression
recognition are introduced in Section 2. Section 3 introduces a detailed description of the
facial expression recognition algorithm composed of five main steps. Section 4 provides
several experimental results and the performance comparison results with the latest models.
Finally, the concluding remarks of this article are given in Section 5.

2. Related Works

2.1. The Facial Expression Recognition Methods

2.1.1. Classical Feature-Based Approaches

Features representing facial expressions are divided into the permanent facial features
(PFF), which expresses permanent facial features such as the eyes and nose, and the tran-
sient facial features (TFF), which expresses wrinkles or protrusions that occur temporarily
as facial muscles move [27]. In face recognition, the proportion of the PFF is large, but in
the field of facial expression recognition, the TFF also plays an important role as well as
the PFF. Representative methods of expressing these facial features in an image include a
geometric feature-based method and an appearance feature-based method. Analyzing the
existing studies in terms of expressing facial features is as follows:

Geometric Feature-Based Method

Systems based on geometric features express changes in the shape and expression
of a face by using the positions of various facial elements and the relationships between
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them. Since the positions and movements of the mechanical features of the face are
changed according to the difference between the shape of the face and the facial expression,
an intuitive expression recognition method can be used by using dynamic information
obtained by tracking these features from a video image. The difficult point of the geometric
feature-based method is that because each person has a different face shape, the location
of the feature cannot be used as it is. To solve this problem, the facial parts are modeled
with the active appearance model (AAM) [28] or action unit (AU) [29] according to facial
expressions, and based on the information extracted from the image, they are tracked to
obtain the relative distance between the parts.

The geometric feature has the advantage of being able to implement a system that
requires less memory and can easily adapt to changes in the position, size, and orientation
of the face because the motion of the feature can be simply expressed with a few factors.
On the other hand, since it is difficult to express the TFF that appears temporarily while the
expression occurs, the geometrical features are similar, but there is a limit to distinguishing
expressions with different facial textures such as wrinkles.

Appearance Feature-Based Method

The facial expression recognition method based on appearance features can accommo-
date both permanent features such as the eyes and mouth according to facial expressions
and temporary features such as wrinkles for the entire image or the regional image. The
appearance feature-based method is divided into a holistic image-based approach and a
local image-based approach according to the size of the image used for feature extraction.

Holistic Feature-Based Method The holistic feature-based method considers each
pixel constituting a face image as one feature element and expresses the entire image as one
feature vector. Therefore, when the number of pixels constituting the face image is large,
the size of the feature vector becomes excessively large, and the amount of calculation
increases accordingly. As a solution to this problem, the linear subspace method (LSM) was
proposed. LSM [30] improved the overall processing speed and accuracy by expressing the
feature vector composed of the pixels of the face image as a low-dimensional spatial vector
through linear transformation. Representative LSMs include principal component analysis
(PCA) [31], linear discriminant analysis (LDA) [32], and independent component analysis
(ICA) [33].

This holistic feature-based method is simple because it targets the entire image without
going through a separate feature extraction process, but it has a disadvantage in that its
performance is poor in a dynamic environment in which the face pose, lighting, and facial
expressions move.

Local Feature-Based Method The regional feature-based method constructs a fea-
ture vector representing the overall face shape by setting a regional window in a region
where changes can occur due to facial expressions in a face image and extracting features
based on the brightness distribution within the window. In general, since the lighting of
an image or changes in facial expressions appear in a part of the facial image, the regional
feature-based method sets a local window only in the area where changes in the face can
occur. Therefore, it has the advantage of being relatively less sensitive to these changes
compared to the global feature-based method. Representative methods based on regional
features include the Gabor filter [34], the Haar-like feature [18], and the local binary pattern
(LBP) [35].

2.1.2. Deep-Learning-Based Approaches

Most facial expression recognition algorithms used in recent studies use deep learning-
based methods. When AlexNet showed a performance improvement in the ImageNet
challenge [36], many researchers began to apply the 2D CNN structure to various fields,
and it was also applied to the FER [37,38]. There have been many attempts to apply 2D
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CNN to the video frames. However, 2D CNN has structural limitations because they
cannot provide temporal information to the neural network.

Many studies use two architectures to overcome this problem. First, 3D CNN was
designed by transforming the structure of 2D CNN [24]. 3D CNN uses a 3D convolution
operation, which has three-dimensional convolution filters. Therefore, the feature map
generated by one filter is also three-dimensional, and 3D CNN can learn temporal learning
of successive frames from the convolution filter. This structure enabled spatio-temporal-
feature learning for short-term input frames. Second, a hybrid method that combines
multiple networks was also used. A CNN-RNN or CNN-LSTM [39,40] structure is one of
the examples. It learns spatial features with CNN and then learns temporal features by
RNN or LSTM.

A hybrid method is also used for improving accuracy as well as solving 2D CNN
problems. In [26,41], they used two networks to extract temporal appearance and geometric
features from image sequences and facial landmark points. They combined these two
networks with a new integration method to make the two models cooperate with each
other and improve the performance. Based on these methods, a hybrid method that
combines multiple-depth networks based on 3D CNN is suggested.

2.2. Multirate Filter Bank

In [42], multi-rate filter banks produced multiple output signals by filtering and sub-
sampling a single input signal or, conversely, generating a single output by up-sampling
and interpolating multiple inputs. An analysis filter bank divides the signal into M-filtered
and sub-sampled versions. A synthesis filter bank generates a single signal from M-up-
sampled and interpolated signals. The proposed algorithm looks like a sub-band coder,
which was combined by an analysis filter bank and a synthesis filter bank.

We divided the input video (dynamic image) into multiple outputs, which have
different frame rates, and put them into networks, which have different network-depth
models. By using this structure, we could construct various spatio-temporal features. These
features were combined into one feature, and we classified it by a joint fusion classifier.

2.3. Self-Attention

Attention is a methodology that started from the perspective of “let the model learn
even the parts that need to be learned intensively for better performance.” It makes
network-to-weight features and uses the weighted features to help achieve the task. It is
widely used in natural language processing (NLP), multivariate time series, and machine
translation.

The attention mechanism was first devised for sequence learning [43]. It figures
out which output sequence of the encoder is most associated with the particular output
sequence of the decoder.

The attention itself is almost similar to the transformer [44]. The transformer can be
divided into self-supervision and self-attention. By self-supervision, it is possible to train a
model with an unlabeled dataset and learn generalizable representations. Self-attention
calculates the attention by itself, and it assumes a minimum inductive bias unlike models
such as CNN and RNN.

The self-attention method has been applied in computer vision tasks such as [45–49].
In [45], they inserted an attention block between convolutional layers to improve image
feature creation performance. In [46], the attention was performed per channel through
a dot product on the channel characteristic vector, and the authors used a channel and
spatial attention block in [47]. Figure 1 shows some examples of the visual attention.
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Figure 1. The examples of attending to the correct object (white indicates the attended regions, and
underlining indicates the corresponding objects).

3. Proposed Scheme

This section introduces the proposed method in detail. Section 3.1 introduces the
method of how we pre-processed the input images before feeding them into the networks.
Additionally, we describe the data augmentation process in Section 3.2. Section 3.3 elabo-
rates the network that was used to extract the feature maps. Section 3.4 goes into detail
about how to reinforce the features and the joint fusion classifier, which classifies the facial
expressions with the reinforced features.

Figure 2 shows the overall structure of the proposed algorithm based on multirate
inputs and multi-depth networks to make a robust scheme.

Figure 2. The process of the proposed facial expression recognition scheme.

3.1. Data Pre-Processing

The environments of each database such as resolution, brightness, and pose are
changeable. In order to have a general environment, a data pre-processing step is required,
and Figure 3 shows the entire process of input with one sequence.
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Figure 3. The entire process of making input dataset with a sequence.

We augmented the pre-processed dataset to avoid the overfitting problem. Then, each
network received those dataset as input since CNN requires the fixed size of the input.
Through this process, unnecessary sequence parts were removed, and important features
were highlighted, so that the network can extract informative features efficiently.

3.1.1. Image Pre-Processing

In order to have a general condition of the input, we went through four steps. The
flowchart of the image pre-processing algorithm is shown in Figure 4.

Figure 4. Architecture of data pre-processing algorithm.

3.1.1.1. Face Detection

For FER, we needed to detect the face area first. Then, we cropped the detected face
area not to be affected by unnecessary parts such as hair or accessories.

We used the FaceBoxes module [50] to detect the face region. It consists of the rapidly
digested convolution layers (RDCL), the multiple scale convolution layers (MSCL), and
the divide and conquer Head (DCH).

3.1.1.2. Face Alignment

Through facial landmarks, we checked whether the face is frontal or not and aligned
the askew frontal face in order to fix the posture. We used the style-aggregated network
(SAN) module [51] to extract the landmark of the face. We tilted the face by aligning the x
axis of the tip of the nose and the x axis of the center of the eyes vertically. The tip of the
nose was the 34-th landmark, and the center of the eyes was the average of the 37-th to
46-th landmark—refer to Figure 5a.

After alignment, the face was judged to be front if the 34-th landmark, which is the
tip of the nose, was between the 40-th landmark and the 43-th landmark, which are the
nearest points from the nose of the left and right eye. The example of this part is shown in
Figure 5b. After the face alignment process, we cropped the minimized face area without
empty data again. Then, we resized the image into 128 × 128 in order to make the same
resolution. This alignment process can be considered as a kind of affine transformation
based on two points. This had two constraints as: (1) the images of the two lines were also
parallel, and (2) translations are isometries.

109



Sensors 2021, 21, 6954

Figure 5. Aligning the face: (a) 68 facial landmarks; (b) face alignment with the landmarks.

3.1.1.3. Image Normalization

There are two ways to normalize an image. The first is to normalize the size of
the image. In general, when using CNN, the dimension of an input image or feature
needs to be fixed. Therefore, we resized all the input images into the same size 128 × 128.
This accelerates the convergence of the network. The second is to normalize the image
numerically. It means we normalized the pixel distribution of the original image. Through
Equation (1), which has been reported in [35], the values followed the standard normal
distribution standardized by the Z-score. The standard conversion formula for this is as
follows:

x′ = x − μ

σ
. (1)

Here, x is the pixel value of the original image, and x′ is the new value of the converted
image. In addition, μ is the average pixel value of the image through calculation, and σ is
the pixel standard deviation value of the image through calculation. The data subjected to
Z-score standardization showed a normal distribution with an average of 0 and a deviation
of 1 approximately. This intensity normalization can give better features than using one by
255.

In most of the deep learning approaches, an input image is given into the designed
deep neural network after normalizing it by 255, to make robustness in illumination change.
However, it always gives an intensity range as (0, 1.0). That is, this normalization by 255
compresses into too small an intensity range. However, the suggested Z-score maintains a
larger range as (−1.0, +1.0) by the standard deviation of illumination in the given image.
Through experiment, we verified the suggested normalization to be more effective to make
features in convolution neural networks.

3.1.1.4. Feature Extraction Using LBP

We extracted features from the resized image to reduce the computational complexity
and to emphasize facial characteristics. In this study, facial features were extracted through
an LBP. The LBP classifies the texture of the image and is widely used in fields such as
facial recognition and gender, race, and age classification [52,53]. Additionally, the LBP
function was used to eliminate the effect of lighting.

In [54], Timo et al. proposed a method of applying LBP to facial recognition problems
for the first time. This showed a better result than many of the existing approaches.

In order to have the LBP feature value for one pixel, a 3 × 3 size block was used, and
it is shown in Figure 6. Each pixel value except the center was compared with the pixel
value located in the center, and if it was brighter than the center, it was encoded as 1; if it
was darker than the center, it was encoded as 0. The formula is as follows:
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LBP(x, y) =
N−1

∑
n=0

s(po − pc)× 2n, (2)

where

s(x) =

{
1, if x > 0,
0, otherwise.

(3)

The value of the center point s(x) was converted to a binary number 0 and 1 through
Equation (3) where x refers to the difference between the center pixel pc and the other pixel
po. As value of the center pixel pc, a different 8-bit binary string was generated if N is
8. Then, the binary code was converted to decimal LBP(x, y) by Equation (2). The LBP’s
capabilities help reduce computational complexity compared to the original image. It also
emphasizes the main texture of the face in the image.

Figure 6. The LBP feature extraction.

3.1.2. Minimum Overlapped Frame Structure

The proposed model extracts features from multiple networks, whose inputs are
various using different input frame rates, and classifies facial expression by combining
extracted features. Therefore, we thought that it would be more efficient to learn if various
information is given.

In the conventional structure, frames are extracted with regular intervals. This assumes
that the expression of the sequence goes from the neutral to the peak. When the number of
the sequence is n, then the structure of the number of N input frames S(N) is made from
the X sequence as follows:

S(N) = {X[1], X[2], ..., X[N]}, (4)

where
X[i] = X[round(

n − 1
N − 1

× (i − 1))]. (5)

However, in this case, the first X[1] and the last X[N] images are always given as
an input into each network. Additionally, middle part of the input can be overlapped.
Then, the same information is overlapped into each network. As a result, the same spatial
features are extracted. This is not good situation to learn the given input sequences. The
example of the original structure of picking 3, 5, and 7 input frames is in Figure 7.

Figure 7. The example of the original structure of selecting input frames.
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As in Figure 7, when n = 22, which means the sequence has 22 image frames, 3 frames
of input are selected as S(3) = {X[0], X[11], X[21]}. In the case of 5 frames of input, S(5) is
chosen as {X[0], X[5], X[11], X[16], X[21]}, and 7 frames of input sequence are constructed
as S(7) = {X[0], X[4], X[7], X[11], X[14], X[18], X[21]}. All of them have the same images
of X[0], X[11], and X[21] when constructing input sequences. In terms of information, the
overlapped portion is not desirable to make reliable learning.

In order to solve this problem, we designed an input frame structure that can make a
minimized overlapped between the generated input sequences. We extracted frames with
regular intervals the same as the existing structure, but it made a different condition by
making the start and end points different. The equation for the structure of the number
of 3, 5, and 7 input frames S(N) from the original X sequence where the number of the
sequence is n as follows:

S(N) = X[1], X[2], ..., X[N], (6)

where

X[i] =

⎧⎪⎪⎨
⎪⎪⎩

X[0 + round( (n−1)−2
3−1 × (i − 1)], N = 3 input frames.

X[2 + round( (n−1)−2
5−1 × (i − 1)], N = 5 input frames.

X[1 + round( (n−1)−2
7−1 × (i − 1)], N = 7 input frames.

(7)

The start and end point of the seven input frames were set between the start and end
points of the three and five input frames. In our example, seven frames was the largest
number of the selected frames in a sequence with the number of n. If the start and the end
point of seven input frames is shifted by one order from other input frames, the probability
of overlap may be decreased. The example of the designed minimum overlapped frame
structure, which selects three, five, and seven of input frames, is shown in Figure 8.

Figure 8. The example of selecting input frames through the minimum overlapped frame structure.

When n = 22, three frames of input have S(3) = {X[0], X[10], X[19]}. Five frames of
the input sequence can be selected as S(5) = {X[2], X[7], X[12], X[16], X[21]}, and seven
frames of input are constructed by S(7) = {X[1], X[4], X[8], X[11], X[14], X[17], X[20]}. None
of the input images overlap as shown in Figure 8. The proposed structure can give more
spatio-temporal information to extract features in the neural network. With the suggested
three multi-depth network, full frames cannot be utilized. However, if we add one or two
more different depth networks, then we can utilize almost-full frames with a larger frame
rate for our FER task.

3.2. Data Preparation
3.2.1. Data Augmentation

For FER, we needed enough datasets of human faces. However, most of the FER
databases have been labeled with a well-controlled environment, and it needs a high-
cost task. Therefore, there are not enough datasets for the experiment in most cases.
When training through deep learning with insufficient datasets, the network can be easily
overfitted. Therefore, most researchers use data augmentation to solve this overfitting
problem.
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Data augmentation is largely divided into two types. The first method is to utilize
some deep learning technologies such as autoencoder (AE) [22,55] or generative adversarial
networks (GAN) [56]. Usually, autoencoder (AE) [22,55] with generative adversarial
networks (GAN) [56] together could be used for input data augmentation. The second
method is augmentation through image pre-processing like rotation, skewing, and scaling.
Flipping horizontally is also effective in increasing the dataset. This is effective to increase
the number of data while maintaining the geometric relationship between the eyes of
the face image and important parts of the face such as the nose and mouth. Another
method is to add noise to the image. This method includes salt and pepper noise, speckle
noise, and Gaussian noise. In [57], the amount of the dataset was increased by 14 times
through horizontal flipping and rotation. Figure 9 shows data augmentation using image
pre-processing.

Figure 9. The example of data augmentation.

In this experiment, the second data augmentation method was used to increase the
amount of the dataset. Table 1 shows the number of the original input dataset in each
database. The CK+ database contains images labeled with “contempt,” but other databases
do not have this label [58,59]. Therefore, we excluded sequences labeled with “contempt”
to establish the same experimental conditions. For the MMI dataset [60], we separated
frames for each emotion before making inputs.

In the case of the GEMEP-FERA database [61], the total number of the emotion class
was 5. However, one of them was not “neutral” but had a label of “relief.” We changed
the label of “relief” into “neutral.” In Table 1, the first row is an abbreviation for the
emotion classes such as neutral, anger, disgust, fear, happiness, sadness, and surprise in
that order. The AFEW database [62] has already been divided into training, validation, and
test datasets. However, the test dataset had no annotation about the expression. Therefore,
we used the provided train dataset for the train, and the validation dataset was used for
the test stage.

Table 1. The number of the original input datasets.

Neu. Ang. Dis. Fea. Hap. Sad. Sur. Total

CK+ 0 45 56 24 69 28 78 300
MMI 0 33 32 28 42 32 41 208
FERA 31 32 − 30 31 31 − 155

AFEW(Train+Val.) 143 146 77 80 156 119 74 795
AFEW(Test) 63 61 39 41 60 54 43 361

The expression input data set was constructed in the following way. First, several
frames were extracted from the input sequence through the minimum overlapped fame
structure. If there was a separate sequence with the neutral label in the database, the neutral
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label dataset was also configured in the same way. However, in the case of a database
where the neutral label was not specified, the neutral dataset was created through the first
three frames of each sequence.

In the case of CK+ databases, there were no neutral labeled sequences. Therefore, a
labeled emotion dataset was created through the minimum overlapped frame structure
method, and an neutral dataset was created through the first three frames of each sequence.
Because of this, datasets labeled with neutral existed in all sequences. Since each emotion-
labeled dataset can only be created in a specific labeled sequence, the difference between
the amount of neutral datasets and the other emotion datasets became large. In order to
avoid the overfitting problem that can be caused by insufficient and biased distribution of
the datasets, it was necessary to increase the emotion-labeled dataset.

Data augmentation was mainly performed to increase the amount of the emotion-
labeled dataset so that the dataset was evenly distributed. For the created neutral expression
dataset, each image was flipped horizontally to increase two times. For the other dataset,
each image was flipped horizontally and rotated by {−7.5◦, −5◦, −2.5◦, 2.5◦, 5◦, and 7.5◦}.
Through this process, the emotion-labeled dataset increased 14 times. Table 2 shows the
specific values of the increased datasets for the CK+, MMI, and GEMEP-FERA datasets. In
particular, we augmented two times for the neutral dataset, which was created from all
emotion-labeled sequences due to no neutral emotion in the MMI dataset. The ‘−‘ symbol
in Table 2 means that the class does not exist in the GEMEP-FERA dataset.

Table 2. The number of the augmented input datasets.

Neu. Ang. Dis. Fea. Hap. Sad. Sur. Total

CK+ 600 630 784 336 966 392 1092 4800
MMI 416 462 448 392 588 448 574 3328
FERA 434 448 − 420 434 434 − 2170

AFEW(Train+Val.) 572 584 308 320 624 476 296 3180
AFEW(Test) 126 122 78 82 120 108 86 722

The provided AFEW train dataset, which was used as a train and validation dataset
in our experiment, was augmented four times. We flipped horizontally and rotated by
{−2.5◦, 2.5◦}. The provided AFEW validation dataset, which was used as a test dataset
in our experiment, was augmented two times by flipping horizontally. The result of the
augmented AFEW dataset is in the fifth and sixth rows of Table 2.

3.2.2. Making Neutral Label of Dataset

The CK+ database is composed of images to go from neutral to the peak of expression.
Thus, the neutral sequence in the CK+ database is at the beginning of the video. To make
three consecutive frames as inputs, the first three frames were assigned to the frames
labeled as neutral. Input consisted by five frames was made by using the first frame once,
the second frame twice, and the third frame twice among the first three consecutive frames.
Input consisted by seven frames was created by using the first frame twice, the second
frame twice, and the third frame three times among the first three consecutive frames.
Figure 10 shows an example of a “neutral” label frame extracted from a sequence.
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Figure 10. The method of creating a neutral dataset where the neutral label is not specified.

Unlike the CK+ database, the MMI database had an emotion flow, which was “neutral”
to one of the peaks of expression and then to “neutral.” We judged that the peak of the
emotion was in the middle of the video. Therefore, the dataset was created using only
the half that was the first to middle sequence out of the total sequence. Then, it had the
same emotion flow like in the CK+ database as the “neutral” emotion to the peak of one
expression. The dataset for the neutral expression was made through the same method,
which created the neutral dataset from the CK+ database.

On the other hand, the GEMEP-FERA database did not have a label for “neutral” but
a label for “relief.” In order to match the conditions with other databases, we defined the
“relief” as the “neutral” label.

3.3. 3D Convolutional Neural Network (3D CNN)

Spatial and temporal information was simultaneously captured using a 3D convo-
lution and a 3D input dataset. Unlike the kernel used in 2D CNN, 3D CNN has a 3D
cube-shaped convolution kernel, which has one more depth in the time axis. This preserves
the time information of the input sequence and creates an output that forms the volume.
Therefore, motion information can be obtained by connecting the feature map of the convo-
lutional layer from multi-frames as input. Additionally, it considers adjacent pixels within
the frame like the operation of 2D convolution at the same time. Therefore, spatial and
temporal information can be simultaneously extracted through 3D convolution.

Shuiwang et al. [24] have explained 3D CNN mathematically. The value at position
(x, y, z) on the j-th feature map in the i-th layer is given by:

vxyz
ij = tanh(bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m ), (8)

where (p, q) is the spatial dimension index, r is the temporal dimension index of the kernel,
wpqr

ijm is the (p, q, r)-th value of the kernel connected to the m-th feature map in the previous
layer, and Ri is the size of the 3D kernel. tanh() assumed that activation function is the
hyperbolic tangent, so other activation function can also be used.

In this study, we used a 3D CNN from study [26], which is called an “Appearance
Network,” as a basic model to capture spatio-temporal information. Figure 11 shows the
detailed configuration of the network.

Figure 11. The architecture of 3D CNN from study [26], which has five 3D convolution layers.
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First, the 3D convolutional layer extracts spatial and temporal features. All convolu-
tional layers use a 5 × 5 × 3 kernel and a restricted linear unit (ReLU) activation function.
In addition, 3D pooling is applied to reduce the number of parameters and cope with
changes in the position of image elements. In this case, the pooling layer is max pooling
that transfers only the maximum value of the volume area. After the maxpooling operation,
the size of the feature map is reduced. Due to 3D pooling, dimension reduction on the time
axis also occurs. The maximum value of 2 × 2 × 2 blocks is mapped to a single pixel of the
output 3D feature map.

After max pooling layers, a batch normalization layer follows. Batch normalization is
one of the ideas for preventing the disappearance or explosion of the gradient [63]. During
deep learning training, if the hierarchy is deep and the number of epochs increases, the
slope may explode or disappear. This problem arises because the scale of the parameters
is different. This means the distribution of input to each layer or activation function of
the network would be better to be controlled in the signal scale. To solve this problem,
the input distribution needs to be normalized. However, this method is very complicated
because the covariance matrix and the inverse matrix must be calculated. Instead, through
batch normalization, the mean and standard deviation are obtained from each feature
rather than the entire dataset, and they are normalized for each feature.

At the end of the network, emotions are classified as consecutive values through the
softmax function. However, this classification module is not used in this study because we
designed different joint fusion classifier based on the self-attention.

3.4. Joint Fusion Classifier Using Self-Attention

In this section, a joint fusion classifier is designed for a combination of multiple
networks. This classifier serves to classify facial expressions based on various pieces of
information by combining features extracted from each different input frame. In other
words, it is possible to obtain more accurate results by supplementing the results of each
network. Here, feature vector 1, ..., N were extracted to make the final 3D features from
each depth network in Figure 11. In this study, there were three features since we employed
three depth networks. When we extended this up to the N depths network, we could
obtain N number of features before the classification module.

Additionally, we employed a squeeze-and-excitation network (SENet) for self-
attention [46]. For any given transformation Ftr : X → U, X ∈ RH′×W ′×C′

, U ∈ RH×W×C

(e.g., a convolution or a set of convolutions), we employed the squeeze-and-excitation (SE)
block [46] to perform feature re-calibration as follows. In this structure, the features U
are first passed through a squeeze operation, which aggregates the feature maps across
spatial dimensions H × W to produce a channel descriptor. This descriptor embeds the
global distribution of channel-wise feature responses, enabling information from the global
receptive field of the network to be leveraged by its lower layers. This is followed by an
excitation operation, in which sample-specific activation, learned for each channel by a
self-gating mechanism based on channel dependence, govern the excitation of each channel.
The feature maps U are then re-weighted to generate the output of the SE block, which can
then be fed directly into subsequent layers.

Therefore, we could obtain emphasized and reinforced features through self-attention.
Those features were concatenated in one-dimension and fed into the joint fusion classifier,
which is depicted in Figure 12.
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Figure 12. The architecture of the joint fusion classifier using self-attention.

In Figure 12, a joint fusion classifier was composed as follows: fully connected (FC)
layer one and fully connected (FC) layer two of each network use ReLU. Fully connected
(FC) layer three uses the softmax as an activation function. Additionally, cross entropy
was used as the loss function, and loss was reduced by using the Adam optimizer. This
determined the final emotion and used the same training dataset for each network to use it.

As mentioned in the above, we designed a multi-depth network based on multi-rate
feature fusion for efficient facial expression recognition. Additionally, we developed a new
image normalization and different depth networks as frame rates to give more robustness
for various datasets. We verified the robustness and effectiveness of the proposed algorithm
through experiments.

4. Experimental Results and Discussion

This section introduces the experiment and its environment in detail. We present and
analyze the performance through several experimental results. Additionally, we compare
the proposed FER algorithm with other latest algorithms. To train this network, the Adam
optimizer was used with the default parameter setting [64]. We implemented all methods
on a GPU server with Intel i-7 CPU and GTX 1080 Ti 11G memory.

4.1. Ablation Study
4.1.1. Performance of Image Normalization

This experiment confirmed the better performance when the image was normalized
as described in Section 3.1.1.3. In the AFEW dataset, most of the image sequences were
not taken from the controlled environment but were the same as in real-life conditions.
Therefore, the brightness of the images varied, even being too dark or too bright. By using
image normalization, we could overcome such problems, and the result of using image
normalization is shown in Figure 13.

Figure 13. Examples of applying image normalization in AFEW dataset.
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The results of image normalization in CK+, MMI, GEMEP-FERA, and AFEW datasets
is in Table 3. In MMI and GEMEP-FERA datasets, this method mostly showed a better
result than not using image normalization. The bold letter in the Table 3 means a better or
same accuracy than not using image normalization. In the CK+ database, the employed
image normalization was 0.14% better on average. However, in MMI, GEMEP-FERA, and
AFEW datasets, most of the results using image normalization showed better performances
of 0.7%, 0.61%, and 0.23% on average.

Table 3. The results of image normalization.

Datasets
Input

Frames
Depth of
Network

Image
Normalization

Not Used Used

CK+ 3
5 98.65 98.02

10 98.02 98.33
15 97.92 97.81

MMI 3
5 95.58 96.19

10 94.97 97.1
15 94.40 93.75

FERA 3
5 98.85 100
10 99.77 99.77
15 99.31 100

AFEW 3
5 28.32 28.95

10 26.59 27.49
15 23.41 23.89

4.1.2. Correlation between Depth of the Network and Frame Rate of Input

This experiment was to find out the correlation between the depth of the network
model and the number of the input frame. We took the experiment with applying and trans-
forming the depth of the base model (5 layers) based on the 3D appearance network [26].
We gave three, five, and seven frames input into the 3D CNN with 5 (base model), 10, 15,
20, and 25 layers. As mentioned, we gave the depths of the models as 5 layers, 10 layers,
15 layers, 20 layers, and 25 layers to check on the relationship.

We used CK+, MMI, and GEMEP-FERA datasets to deduce the relationship. The
results of the experiment by combining each depth of the network and input frame rate are
shown in Table 4. The bold face denotes the maximum accuracy for each network depth
according to input frame rate. In Figure 14, it was converted into a graph to visually show
the results of Table 4. The dotted lines indicate the trend line.The result shows that if the
depth of the model and the frame rate of the input are proportional, then the accuracy is
inclined to increase. This means the accuracy is higher as the depth of the model is large
and the number of frames of the input increases. Additionally, as the depth of the model is
shallow and the number of frames of the input is smaller, the accuracy tends to be high.
We utilize this observation to design our multirate-based network model.
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Table 4. The results of correlation between the depth of network and frame rate of the input.

Datasets
Depth of
Network

Input
Frames

Image
Normalization

3 98.45
5 98.345
7 98.23
3 98.89
5 97.9010
7 98.31
3 97.90
5 97.23

CK+

15
7 98.45
3 96.65
5 95.8810
7 93.75
3 89.84
5 92.9915
7 94.67
3 90.85
5 89.94

MMI

20
7 92.84
3 100
5 99.545
7 99.54
3 100
5 10015
7 99.77
3 98.85
5 99.77

FERA

25
7 99.77

Figure 14. The graph of correlation between the depth of network and frame rate of the input.

4.1.3. Performance of the Minimum Overlapped Frame Structure

In this experiment, when creating the input dataset structure that is used in multiple
networks, we verified that more various temporal information is helpful for learning. The
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minimum number of frames in the dataset was set to nine frames. Previously, the input
dataset entering each network was determined as follows. If there is an arbitrary sequence
of images, the total number of images is divided by equal intervals to obtain the required
number of input frames. In this case, the beginning and end of three frames of input,
five-frames of input, and seven frames of input always contained the same image. It
means that the probability of overlapping the intermediate image was also high. In order
to compensate for this problem, the method described in Section 3.1.2 was designed to
create an input frame that does not overlap as much as possible. Because of the minimum
overlapped frame structure, it was possible to give more various information when the
network was learning.

Based on the correlation between the depth of the network and the frame rate of the
input in Section 4.1.2, we fed 3 frames of input into the 3D CNN with 5 layers, 5 frames
input into the 3D CNN with 10 layers, and 7 frames input into the 3D CNN with 15 layers.
We obtained the feature from the networks without using image normalization and LBP
feature extraction. Through Table 5, it can be seen that providing a variety of information
to the network improves the performance in all of the databases. In the CK+, MMI, and
GEMEP-FERA datasets, better performances of about 1.97%, 1.53%, and 0.46%, respectively,
were shown. Moreover, the network using a minimum overlapped frame structure showed
an improvement of 0.97% in the AFEW database.

Table 5. The results of using minimum overlapped frame structure.

Datasets
Minimum Overlapped

Frame Structure
Not Used Used

CK+ 96.88 98.85
MMI 89.48 91.01
FERA 99.31 99.77
AFEW 27.70 28.67

4.1.4. Performance of Self-Attention Module

We also fed 3 frames into the 3D CNN with 5 layers, 5 frames into the 3D CNN with 10
layers, and 7 frames into the 3D CNN with 15 layers using a minimum overlapped frame
structure, and we did not use the image normalization and LBP feature extraction. When
the features came out from each network, we reinforced the feature using the self attention.
Then, we concatenated the reinforced features into one-dimension and fed them into the
joint fusion classifier.

We checked whether the self-attention module reinforced the features or not by com-
paring between the concatenated feature without the self-attention module and the concate-
nated feature with the self-attention module. The result is shown in Table 6. We can see that
the self-attention module reinforced the feature and improved the FER performance in most
of the databases. In the CK+, MMI, and GEMEP-FERA databases, the proposed scheme
showed about 0.21%, 0.91%, and 0.23% better performances, respectively. Additionally, in
the AFEW database, it showed a 0.42% better performance with the self-attention module.

Table 6. The results of the performance using self-attention.

Datasets
Self-Attention

Not Used Used

CK+ 98.85 99.06
MMI 91.01 91.92
FERA 99.77 100.00
AFEW 28.67 29.09
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4.1.5. Effectiveness of Multi-Depth Network Structure

To show the effectiveness of the proposed multi-depth network structure, we tested a
single layer network, which was from [26], as shown in Figure 11. We set three frames as
the input sequence. For obtaining the results, we used a 10-fold validation approach.

Table 7 summarizes the number of trainable parameters of the proposed three-depths
network model. It was assumed that three frames were given as input. It is also showed
only the layers with trainable parameters in the entire network. As shown in the table, the
number of layers in the individual network increased to a multiple of fie according to the
number of frames given as input, and the number of parameters increased significantly
accordingly. The outputs of each network were finally combined into the last three FC-
layers, with the total number of parameters including them reaching about 237 million. If
we extend the proposed network with more depths, then the complexity will be further
increased.

Table 7. Summary of trainable parameters of the proposed multi-depth network (input shape = (3, 128,
128, 1)).

Depth Network 1 Depth Network 2 Depth Network 3

Structure Layers Params Layers Params Layers Params

14,720
307,520

14,720 307,520
307,520 615,040
615,040 1,229,440

14,720 1,229,440 1,229,440
Conv3d 615,040 2,458,880 2,458,880

+MaxPool 5 2,458,880 10 4,916,480 15 4,916,480
+BatchNorm 9,832,960 9,832,960 4,916,480

19,663,360 19,663,360 9,832,960
19,663,360 19,663,360
19,663,360 19,663,360

19,663,360
19,663,360
19,663,360

Self-attention 1 32,065 1 32,065 1 32,065

1,537,024
Fully connected 512,500

3,507

Total params 237,244,586

For the CK+ dataset, the proposed multi-depth network gave slightly better accuracy
than the single network in Table 8. Additionally, we observed up to 7% of the accuracy
in the MMI and GEMEP-FERA datasets. From these results, we can conclude that the
proposed multi-depth network was effective for the facial expression recognition task.

Table 8. The performance results of the proposed network (multi-depth network) and single net-
work (%).

Datasets CK+ MMI GEMEP-FERA

Single Network 96.11 92.52 93.38
Proposed (Multi-depth network) 96.23 96.69 99.79

4.2. Overall Accuracy Performance of the Proposed Scheme

In this section, we demonstrate that the proposed scheme shows competitive perfor-
mance compared with the recent existing methods. Among various techniques for facial
expression recognition, we compared with spatio-temporal network approaches or hybrid
network approaches. Table 9 shows input construction and model setting of the recent
existing methods, which were compared with the proposed method.
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Table 9. Analysis of the recent existing methods for performance comparison.

Method Datasets
Input

Construction
Models

3DIR [65] CK+, MMI,
GEMEP-FERA

Multiple frames,
facial landmarks

3D CNN, LSTM,
Inception-ResNet

STCNN-CRF [66] CK+, MMI,
GEMEP-FERA Multiple frames 2D CNN, CRF,

Inception-ResNet

CNN-CTSLSTM [67] CK+, MMI,
AFEW

Multiple frames,
facial landmarks

VGG-CTSLSTM,
LEMHI-VGG

DDL [68] CK+, MMI Multiple frames DFEM, DDM

DJSTN [26] CK+, MMI,
GEMEP-FERA

Multiple frames,
facial landmarks

Hybrid network
(App., Geo.)

FDRL [69] CK+, MMI Multiple frames ResNet-18,
FDN, FRN

MC-DCN [70] CK+, MMI,
GEMEP-FERA Multiple frames Hybrid network

(C3Ds)

For experiments, we used three datasets: the CK+, MMI, and GEMEP-FERA datasets.
The number of image sequences in each dataset was listed in Table 2. We used 3 frames,
5 frames, and 7 frames as input, and the multi-depth network was composed of 5 layers,
10 layers, and 15 layers. We used self-attention to reinforce the features, which came from
each network and fed into the joint fusion classifier.

The results from the 10-times trial on the CK+ dataset are in Table 10. “Without Pre-
processing” means that we did not use the image normalization, the LBP feature extraction,
the minimum overlapped frame structure, and the self-attention module. In contrast,
“With Pre-processing” means that we used all proposed image pre-processing methods,
including the minimum overlapped frame structure and the self-attention module. The
average accuracy was shown as the bold face in each processing. For the CK+ dataset, the
network performance of “Without Pre-processing” showed better results—about 1.11%
on average. This CK+ dataset is a very static one. However, the proposed scheme was
based on several video frames to extract more temporal information. This means that the
proposed algorithm works well for more dynamic video sequences.

The accuracy comparisons of each method using the CK+ database is shown in
Table 11. For the CK+ database, the proposed scheme which was denoted as the bold face,
did not get the best result compared with some existing methods [26,68–70].

Table 10. Overall accuracy and improvement on the CK+ dataset (%).

Without Preprocessing With Preprocessing

1 96.88 95.31
2 97.08 95.52
3 97.60 95.94
4 97.71 96.15
5 97.60 96.25
6 97.81 96.77
7 97.71 97.40
8 97.08 95.63
9 96.88 96.67
10 97.08 96.67

Average 97.33 96.23
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Table 11. Comparison results of accuracy in the CK+ dataset (%).

Methods Accuracy

3DIR [65] 93.21
STCNN-CRF [66] 93.04

CNN-CTSLSTM [67] 93.90
DDL [68] 99.16

DJSTN [26] 99.21
FDRL [69] 99.54

MC-DCN [70] 95.50
Proposed Scheme 96.23

The results from the 10-times trial on the MMI dataset are in Table 12. The proposed
scheme showed a better result by about 4.79% on average (as the bold face) than “Without
Preprocessing.” The comparison of experimental results showed the outperformed results
for the MMI dataset in Table 13. Here, the bold face denotes the performance of the
proposed scheme.

Table 12. Overall accuracy and improvement on the MMI dataset (%).

without Preprocessing with Preprocessing

1 89.48 97.87
2 92.07 98.02
3 92.23 95.27
4 92.53 96.95
5 93.29 97.26
6 91.31 95.12
7 92.53 95.43
8 89.18 95.88
9 92.99 97.25
10 93.45 94.35

Average 91.91 96.69

Table 13. Comparison results of accuracy in the MMI dataset (%).

Methods Accuracy

3DIR [65] 77.50
STCNN-CRF [66] 68.51

CNN-CTSLSTM [67] 78.4
DDL [68] 83.67

DJSTN [26] 87.88
FDRL [69] 85.23

MC-DCN [70] 78.6
Proposed Scheme 96.69

Additionally, the proposed method outperformed in the GEMEP-FERA dataset. The
result from the 10-times trial on the GEMEP-FERA dataset is displayed in Table 14. The
network performance of “With Pre-processing” showed better results of about 0.64% in
average (as the bold face) than “Without Pre-processing.” Table 15 shows the comparison
of experimental results in the GEMEP-FERA dataset. The proposed scheme (the bold face
in average) achieved an improvement of 8%, at least compared to the recent methods.
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Table 14. Overall accuracy and improvement on the GEMEP-FERA dataset (%).

Without Preprocessing With Preprocessing

1 99.31 100.00
2 99.77 100.00
3 98.62 99.54
4 99.54 99.77
5 99.54 100.00
6 98.16 99.77
7 97.24 99.54
8 99.54 100.00
9 99.77 99.54

10 100.00 99.77
Average 99.15 99.79

Table 15. Comparison results of accuracy in the GEMEP-FERA dataset (%).

Methods Accuracy

3DIR [65] 77.42
STCNN-CRF [66] 66.66

DJSTN [26] 91.83
MC-DCN [70] 78.3

Proposed Scheme 99.79

The proposed method showed a little weak performance on the CK+ dataset. However,
in the MMI and GEMEP-FERA datasets, it showed the highest performance. According
to the results of the CK+, MMI, and GEMEP-FERA datasets, the proposed model showed
better performance in the more complex dataset.

In the AFEW dataset, the result is shown in Table 16. The AFEW dataset is well
known as data capture in a very wild environment. The network performance of “With
Pre-processing” showed a result that was about 3.32% better than “Without Pre-processing”
by using only video data. From this result, we can expect that the proposed scheme can
improve the recognition accuracy of the facial expression in real environments.

Table 16. Overall accuracy and improvement on the AFEW dataset (%).

Without Preprocessing With Preprocessing

Accuracy 27.70 31.02

For the processing time of the proposed scheme, the inference time was measured. This
inference time contained the consumed time of the data pre-processing, the construction
of frame structures, and the prediction for the final decision. When testing the proposed
multi-depth network (three layers and three, five, and seven frames of input), the inference
time was measured by about 102.0 ms on our GPU server with an Intel i7 CPU and GTX
1080 Ti 11G memory. In terms of the frame processing rate, a value of 9.8 frames per second
(FPS) was obtained. When we used a single0layer network with an input of three frames,
as shown in Figure 11, 49.3 ms was measured due to a very small network structure.

5. Conclusions

We proposed a robust facial expression recognition algorithm on the variation of
datasets and different facial expression acquisition conditions. The proposed scheme
extracted various features by combining several networks based on external features and
classified them by putting them in a joint fusion classifier. This network simultaneously
extracted spatial and temporal features using 3D CNN to overcome the problem of the
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existing 2D CNN model trained only with spatial features. In addition, in order to obtain a
various features, we designed a multi-depth network structure by multiple input frames
which were the least overlapped and composed of LBP features. The features extracted
from each network were reinforced through the self-attention module. Then, these were
combined and fed into the joint fusion network to newly learn and classify the emotions.

Through experiments, we found the correlation between the number of input frames
and the depth of the network. When the number of frames increases, the network depth
increases. When the number of frames decreases, the shallower the network depth, which
showed the better performance. Through comparative analysis, we proved that the pro-
posed multirate feature fusion scheme could achieve more accurate results than the state-of-
the-art methods. The performance of the proposed model enhanced by 96.23%, 96.69%, and
99.79% the average accuracy of the CK +, MMI, and GEMEP-FERA datasets, respectively.
Additionally, a 31.02% accuracy was achieved in the AFEW dataset through the features
enhanced by the self-attention module and the proposed multi-depth network structure.
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Abstract: Facial expressions are well known to change with age, but the quantitative properties of
facial aging remain unclear. In the present study, we investigated the differences in the intensity of
facial expressions between older (n = 56) and younger adults (n = 113). In laboratory experiments, the
posed facial expressions of the participants were obtained based on six basic emotions and neutral
facial expression stimuli, and the intensities of their faces were analyzed using a computer vision
tool, OpenFace software. Our results showed that the older adults expressed strong expressions
for some negative emotions and neutral faces. Furthermore, when making facial expressions, older
adults used more face muscles than younger adults across the emotions. These results may help to
understand the characteristics of facial expressions in aging and can provide empirical evidence for
other fields regarding facial recognition.

Keywords: facial action unit; facial aging; facial expression; posed emotion

1. Introduction

Expression and recognition of emotions through facial expressions are fundamen-
tal functions of basic communication. Facial expressions are critical for communicating
with one’s surroundings in terms of their role to convey the primary meaning of social
information [1,2]. People can communicate and convey their emotions in diverse manners;
however, facial expressions can be used in the most flexible way [3]. Investigating how
facial movements are controlled and how people recognize others’ facial expressions, there-
fore, is an essential way to understand the nature of human beings as social beings and can
also facilitate emotional functioning.

It has been well established that emotional expression and recognition skills through
facial expressions change with age [4,5]. A previous study showed older and young
people a variety of facial expressions and confirmed how they recognized them [6]. Young
and old people were both aware of expressions of positive emotion, while older people
were less aware of negative facial expressions. In addition, the performance of the older
group declined in sadness facial expression recognition but improvement in disgust facial
expression recognition [7–9]. The older people were also more inclined to think that they
felt happy when they were shown smiles [10]. A recent meta-analysis demonstrated that
older adults showed lower performance on emotional face identification than a younger
group of adults [11].

Sensors 2021, 21, 4858. https://doi.org/10.3390/s21144858 https://www.mdpi.com/journal/sensors129
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Owing to physical aging, sarcopenia, such as atrophy of facial skeleton, malposition
of fatty muscles, and loss of soft tissue happen most commonly in the areas of the maxilla,
mandible, and anterior nasal spine [12]. A previous study showed that human facial aging
demonstrated a common pattern of morphological, chronological, and dermatological
changes in various biomedical studies [13]. In an aspect of neuromuscular mechanism,
voluntary facial expressions (i.e., posed facial expressions) using the lower part of the
face are prominently controlled by the left hemisphere and vice versa [14–16]. Specifically,
aging of the orofacial motor cortex, which involves involuntary facial expressions, can
cause a decline in cognitive control for the lower part of the face [17,18]. While facial
aging is natural and inevitable for most people, multiple studies have suggested there
are several markers of facial expression and recognition in neuropathological changes
including epilepsy [19], Parkinson’s disease [20], Alzheimer’s disease [21], and other
neurocognitive disorders [22]. Despite this, identifying the quantitative characteristics of
facial aging is still limited.

The posed facial expression, which is commonly exhibited on portrayal of other’s
facial expression, has distinct characteristics compared to spontaneous facial expression
in aspects of neuromotor system and display rules. Whereas posed facial expression is
generated cognitively within the pyramidal system, spontaneous facial expression exhibits
independent motor control and is driven by extrapyramidal system [15,23]. The move-
ments inherent to posed facial expression tend to display intended emotions in the context
of social interactions (i.e., display rules), while spontaneous facial expression correspond
to a primary emotional system [15,24]. Although, several studies have pointed out the limi-
tations of the characteristic of the posed facial expression for its artificiality by actor’s and
variability by experimental conditions [25–27], research leveraging posed facial expression
has clear advantages. For interpretability, posed facial expression is less ambiguous than
spontaneous facial expression [28] and is also universal across the basic emotion [29]. Such
universality has also been identified in recent study for East Asian population [27]. Since
cumulative literatures have studied the pose facial expression [30], posed facial expression
is may expected to be a valid indicator for investigating aging.

Quantitative measurements of facial expressions and their analyses has been an
active research topic in behavioral science. Among several studies, a facial action coding
system (FACS) [31,32] is the most widely used in this area. A series of facial muscle
movements that represent facial expressions, termed as action units (AUs), can help a
facial recognition-based analysis to be more standardized [33]. Since AUs were originally
developed from basic emotion theory and manually rated by highly trained coders, the
FACS-based AUs have had limited accessibility for standardization. Recently, automated
computer vision and multidiscipline study for facial expression analysis have emerged [34].
These studies enable scaling facial expressions more feasible; facial aging study remains in
three-dimensional (3D) morphometric [13,35] or electromyography (EMG) studies [36,37].
In that regard, little is known about quantitative facial aging.

Given that facial expressions are crucial indicators of human health status [38,39],
applying machine learning algorithm techniques to facial expressions, such as computer-
aided diagnosis (CAD) in the biomedical signal [40], and the medical imaging field [41],
can contribute to digital health. This technique is often used in facial paralysis [42,43], face
transplant [44], pain detection through facial expression [45], and neurologic studies such
as those involving autism [46], Turner syndrome [47], and Parkinson’s disease [48]. Since
language production and discourse decrease with aging [49], identifying the characteris-
tics of facial expressions in the older adults is a promising and challenging research area
in gerontology, which can diagnose disease regardless of patient communication skills.
Moreover, the uniqueness of facial expressions has led to consistent studies in the area
of personal identification for health records [50], to improve performances on CAD and
identification using facial expressions, to develop the algorithm, and to provide inter-
pretable results for facial expressions with aging. Although there has been much work on
automatic facial expression recognition in computer vision research, the algorithms have
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been experimentally validated primarily on younger faces. For facial expressions to be
better used as digital markers related to aging, finding quantitative differences in facial
changes with aging should be studied.

The aim of this study was to identify the characteristics of facial expressions based
on the basic emotion theory and to compare the differences in facial expressions between
younger and older adults for each basic emotion and AU, respectively. Additionally, a
feature-selection approach was used to identify multivariate patterns of the changes in facial
expressions related to aging. Finally, the predictive ability for selected AUs was evaluated.

2. Materials and Methods

2.1. Ethics Statement

This study was approved by the Institutional Review Board of the SMG-SNU Boramae
Medical Center (IRB No. 30-2017-63), and all participants submitted written consent for
participating in the study.

2.2. Participants

A total of 61 older adults and 115 younger adults were recruited for this study. The
older adults were between 62 and 84 years old and recruited from the Alzheimer’s disease
research center of the SMG-SNU Boramae hospital. Healthy young participants were
recruited from the university student participant pool and aged between 18 to 39. None
of them had a history of psychiatric disorder. Major medical diseases, severe head injury,
and visual impairment were excluded in all groups. Especially, all the older adults were
free from the diagnosis criteria of Alzheimer’s disease and depressive spectrum disor-
der with DSM-IV [51]. All medical judgements were determined by a board-certified
psychiatrist (J.-Y.L.).

To screen the potential emotion related problems such as depression, anxiety, and
alexithymia, participants were asked to answer self-reported measures: Beck Depression
Inventory (BDI), Beck Anxiety Inventory (BAI), and Toronto Alexithymia Scale (TAS). The
Korean version of BDI involves 21 questions to evaluate the severity of depression, with
scores ranging from 0 to 63 [52,53]. A higher score indicates severe depressive symptoms,
and the cutoff score is 18 in the Korean version [54]. The Korean version of BAI utilizes
21 questions to measure the severity of anxiety, with scores ranging from 0 to 63 [55].
A higher BAI score indicates severe anxiety symptoms with a cutoff score of 19 [56]. A
twenty-item TAS was developed and validated to measure the severity of alexithymia.
A score ranging from 20 to 100 [57,58], with a cutoff score at 61 was used for the Korean
version [59]. The TAS is made up of three subscales: Difficulty identifying feeling, difficulty
describing feeling, and externally oriented thinking. Neither group had an abnormal level
of emotional problems (Table 1).

Table 1. Demographic characteristics across the groups.

Younger Adults (n = 113) Older Adults (n = 56)

Mean ± SD Mean ± SD

Age 21.9± 2.91 72.2± 4.72

Education 14.5± 1.10 9.8± 4.47

Sex, n (%)

Male 57 (50.4) 27 (48.2)
Female 56 (49.6) 29 (51.8)

Usage of botox, n (%) 2 (1.8) 1 (1.7)

Left-handed, n (%) 8 (7.1) 1 (1.7)
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Table 1. Cont.

Younger Adults (n = 113) Older Adults (n = 56)

Mean ± SD Mean ± SD

BDI 10.7±6.88 14.4± 11.04

BAI 25.1 4.28 25.3 ± 6.22
TAS 45.3± 10.52 50.3± 8.95

Note. Botox, botulinum toxin; BDI, Beck Depression Inventory; BAI, Beck Anxiety Inventory; TAS, Toronto
Alexithymia Scale; SD, standard deviation; BOLD indicates statistically significant differences.

Since data for five older adults and two younger adults failed to pass the quality check,
169 of 176 participants were included in the analysis. Table 1 summarizes the demographic
and clinical characteristics of the participants. Significant differences were found in age,
education, left-handed, BDI score, and TAS score. Except for age, these variables were
adjusted in further analyses.

2.3. Procedures

A series of photos containing six basic emotions and a neutral facial expression were
presented to participants, which consisted of seven stimuli and had been selected by
researchers from a photography dataset used in a previous study [50]. Instructions were
given in both verbal and visual form, and the participants were asked to answer verbally
for stimuli. Then, participants performed posed facial expressions for the given list of
six basic emotions and the neutral emotion. For example, for happy facial expression,
a photograph of a person with a happy face was presented; participants were asked to
identify the emotion conveyed; and “make a happy face for 15 s towards the camera” to be
video recorded. The facial stimuli were given once participants were fully aware of the
instruction of the study. Examples of stimuli are shown in Figure 1. Each facial stimulus
was presented for a maximum of 7 s; the researcher moved on to the next stimulus when
the participant made a verbal response. Facial expressions were acquired for a total of 105 s
for each emotion.

 

Figure 1. The facial stimuli representing the six basic emotions and the neutral emotion, adapted
from [60].

2.4. Data Acquisition

The participants’ video recordings of posed facial expressions were administered with
a Canon EOS 70D DSLR Camera with a 50 mm prime lens, 720 p resolution, and 60 fps frame
rate. The camera was positioned on a fixed stand approximately 120–140 cm above the floor
to correctly capture the entire face of the participants. The posed facial expressions were
recorded for 15 s after a clear instruction to imitate a previously recognized emotional face.
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For each frame of the recorded videos, the presence and intensity were estimated
using OpenFace 2.0, an open-source toolkit for facial behavior analysis, which consists
of four pipelines: (1) facial landmark detection and tracking, (2) head pose estimation,
(3) eye gaze estimation, and (4) facial expression recognition [34]. For analyzing facial
expressions, OpenFace 2.0 recognizes facial expressions by detecting AU intensity and
presence according to FACS [31]. Without using all the AUs listed in FACS, OpenFace
2.0 offers a subset of 18 AUs by cross-dataset learning, specifically, 01, 02, 04, 05, 06, 07,
09, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45. The occurrences and intensities in AUs are
estimated by using machine learning algorithms. The methods for AU estimation and
analysis are described in more detail elsewhere [61]. In the present study, AU intensities
were used to derive measures of individual emotional facial expression and six basic
emotions were created according to emotional FACS (EMFACS) [62]. The EMFACS were
based on the FACS that have been proven to have significant reliability for the assessment
of human facial movements [63,64]. The highest intensity for each AU was calculated
as the maximum score across all the video frames, which is validated in prior work [65].
Examples of each AU and emotion are shown in Table 2.

Table 2. Action unit descriptions and combination of each emotion.

No. FACS Name Facial Muscle (Location)

1 Inner brow raiser Frontalis, pars medialis (U)
2 Outer brow raiser Frontalis, pars lateralis (U)
4 Brow lowering Depressor glabellae, depressor supercilli, currugator (U)
5 Upper lid raiser Levator palpebrae superioris (U)
6 Cheek raiser Orbicularis oculi, pars orbitalis (U)
7 Lid tightener Orbicularis oculi, pars palpebralis (U)
9 Nose wrinkle Levator labii superioris alaquae nasi (L)
10 Upper lip raiser Levator labii superioris, caput infraorbitalis (L)
11 Nasolabial deepener Zygomatic minor (L)
12 Lip corner puller Zygomatic major (L)
14 Dimpler Buccinator (L)
15 Lip corner depressor Depressor anguli oris (triangularis) (L)
17 Chin raiser Mentalis (L)
20 Lip stretcher Risorius (L)
23 Lip tightener Orbicularis oris (L)
25 Lip parting Depressor labii, relaxation of mentalis, orbicularis oris (L)
26 Jaw drop Masetter, temporal and internal pterygoid relaxed (L)
45 Blink Levator palpebrae superioris, orbicularis oculi (U)

Emotion AU combination

Angry 04 + 05 + 07 + 23
Disgust 09 + 15
Fear 01 + 02 + 04 + 05 + 20 + 26
Happy 06 + 12
Sad 01 + 04 + 15
Surprise 01 + 02 + 05 + 26

Note. AU, action unit; FACS, facial action coding system; L, lower face; U, upper face.

2.5. Statistical Analysis

Descriptive statistics for demographic variables were calculated as mean scores and
standard deviations. The difference in AU was compared, applying for multiple com-
parisons (followed by Bonferroni correction). Chi-squared tests were used to compare
categorical outcomes such as sex and usage of botulinum toxin (botox). The correlation
between age and the AU intensity was investigated. To explain multivariate profiles with
respect to input features that were accurately distinguished from the older group, the adap-
tive least absolute shrinkage and selection operator (LASSO) ML algorithm were applied
to the dataset [66]. The adaptive LASSO, which is a regularized regression method with
L1-norm penalty [67] is a popular technique for simultaneous estimation and consistent
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variable selection [66]. It is a powerful model that performs regularization and feature
selection, and it can provide model interpretability by excluding irrelevant features that are
not related to the class from the model. L1 regularization, which penalizes elements of re-
dundant complexity, focuses on the most significant features, and thus prevents overfitting
of the data and is supported by well-grounded theoretical analysis [68]. The regression
coefficients of unimportant variables shrank to 0 upon implementing the adaptive LASSO.
In that regard, the adaptive LASSO algorithm provided interpretable results related to the
older adults. Due to its high accessibility and low computational complexity as compared
with other feature selection models, recently, this approach has been highly recommended
in behavioral science [69].

In order to avoid the overfitting issue and to evaluate the generalizability of the results
from the ML algorithms, 10-fold cross-validation was applied during the variable selection
process [70]. First, the data were randomly split into a training set (66.7% of the data)
and a test set (33.4% of the data). All the ML models were fitted using the training set,
and classifications were separately made on the test and training datasets. The optimal
parameter, lambda, was determined across 1000 iterations of 10-fold cross-validation to
minimize the deviance of the model. Then, predictions were made on the test set based on
the ML models trained in the training set. All reported p values have been adjusted for
multiple comparison analyses.

3. Results

3.1. The Differences in Facial Expression between the Older Adults and Younger Adtuls

Figures 2 and 3 demonstrate the AU values of the older and younger adults for the
neutral and emotional face. The results applied for multiple comparisons are presented
in Table 3. In AU 06, 07, 12, and 14, older adults showed higher intensity compared to
younger adults. For AU 45, older adults showed lower intensity than younger adults.

 
Figure 2. Prevalence of AU values by groups for neutral face. AU, action unit.
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Figure 3. Prevalence of emotional AU values by groups for emotional face. AU, action unit.

Table 3. AU comparisons by groups for six basic emotions.

Variables Younger Adults Older Adults Direction Location p-Value

Mean ± SD Mean ± SD

AU06 (ang) 0.42 ± 0.58 1.36 ± 0.85 Y < O U <0.001
AU06 (dis) 0.58 ± 0.54 1.22 ± 0.73 Y < O U 0.0276
AU06 (neu) 0.05 ± 0.14 0.62 ± 0.45 Y < O U <0.001
AU06 (sad) 0.29 ± 0.45 1.11 ± 0.59 Y < O U <0.001
AU06 (sur) 0.25 ± 0.50 0.88 ± 0.59 Y < O U <0.001
AU07 (neu) 0.94 ± 0.70 1.80 ± 0.83 Y < O U <0.001
AU07 (sad) 1.50 ± 0.94 2.37 ± 1.03 Y < O U <0.001
AU07 (sur) 1.29 ± 0.94 2.27 ± 0.97 Y < O U 0.0105
AU10 (ang) 0.43 ± 0.58 1.25 ± 0.61 Y < O L <0.001
AU10 (dis) 0.49 ± 0.50 1.11 ± 0.62 Y < O L <0.001
AU10 (fea) 0.38 ± 0.49 0.95 ± 0.58 Y < O L <0.001
AU10 (neu) 0.03 ± 0.13 0.57 ± 0.47 Y < O L <0.001
AU10 (sad) 0.20 ± 0.34 0.95 ± 0.55 Y < O L <0.001
AU10 (sur) 0.26 ± 0.46 0.96 ± 0.61 Y < O L <0.001
AU12 (ang) 0.38 ± 0.56 1.23 ± 0.83 Y < O L <0.001
AU12 (neu) 0.06 ± 0.15 0.43 ± 0.40 Y < O L <0.001
AU12 (sad) 0.29 ± 0.43 0.79 ± 0.65 Y < O L <0.001
AU14 (ang) 0.41 ± 0.63 1.12 ± 0.81 Y < O L 0.0255
AU14 (neu) 0.04 ± 0.15 0.31 ± 0.38 Y < O L <0.001
AU14 (sad) 0.20 ± 0.41 0.64 ± 0.60 Y < O L 0.0036
AU45 (hap) 2.09 ± 0.70 1.23 ± 0.63 Y > O U 0.0029
AU45 (neu) 2.41 ± 0.69 1.22 ± 0.55 Y > O U <0.001
AU45 (sad) 1.95 ± 0.75 1.18 ± 0.61 Y > O U 0.0495
AU45 (sur) 2.34 ± 0.77 1.46 ± 0.73 Y > O U 0.0022

Note: AU, action unit; BOLD, indicates significant p-values; ang, angry; dis, disgust; fea, fear; hap, happy; neu,
neutral; sur, surprise; L, lower face; U, upper face. Comparisons were adjusted for covariates. p-values were
adjusted for multiple comparisons.

To explore the relationship between age and each AU, a correlation analysis was
conducted. The patterns of the results were similar to differences in group comparisons
(Figure 4). For AU 06, 07, 12, 10, and 14, positive correlations between AU and age were
found, while negative correlation were found in AU 45 across the emotions.
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Figure 4. Correlation plot for age and AUs. AU, action unit; ang, angry; dis, disgust; fea, fear; hap,
happy; neu, neutral; sur, surprise. p-values were adjusted for multiple comparisons.

3.2. Feature Selection for Predicting Age

The adaptive LASSO model was implemented to identify significant features for
distinguishing the older group among the input variables. Demographics (education, sex,
left-handed, and botox), self-reported measure (TAS and BDI), and all AUs were assessed
for their ability to classify the older adults. Figure 5 shows the multivariate profiles for
distinguishing the older adults from the participants in the current study. Demographics
and self-reported measure were not significant in the adaptive LASSO result. Among
the total 119 AUs, only 11 AUs remain significant: AU 10 in angry; AU 02, 10, 14, and
45 in sad; AU 05 and 14 in surprise; AU 06, 10, 20, and 45 in neutral, respectively. The
receiver operating characteristic (ROC) demonstrated an AUC of 0.924 for the adaptive
LASSO model.

Figure 5. The adaptive LASSO results. AU, action unit; ang, angry; neu, neutral; sur, surprise.

4. Discussion and Conclusions

The purpose of the present study was to investigate the differences in facial expressions
of older and younger adults and to examine how facial muscles contributed to aging
through AUs for six basic emotion and neutral facial expression. Throughout the emotions
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and AUs, the older adults appeared to exhibit greater intensity in facial expression than
the younger adults. In some area, the older adults showed lower facial intensity than the
younger adults.

4.1. Degenerative Changes in Facial Expression Differences with Age

The main findings show that the older adults have higher AU values than young
people for neutral and negative emotion (i.e., angry and sad). An increasing amount of the
literatures has demonstrated that aging is associated with dramatic reductions in muscle
strength (i.e., dynapenia) and motor control [71–73]. With advancing age, decreased neuro-
muscular changes may result in deficits in voluntary activation for facial activities [73,74].
In that regard, the facial expressions of older adults can naturally differ from those of
younger adults [75].

Given that the cortex, spinal cord, and neuromuscular junction are functionally cor-
related, and they influence voluntary activation of muscle fibers [76], voluntary facial
expressions can be addressed by neurological evidence [77]. For older adults to make facial
expressions as intended, therefore, it is necessary to utilize their brain in the top-down
processing format to ensure that the commands from the brain are correctly delivered
to the facial muscles. In addition to facial aging due to sarcopenia, this suggests that
changes in the motor cortex with aging can cause changes in facial expressions in the older
adults [78,79].

Regarding the expression of strong negative emotions in the older adults representing
our results, age differences are reported between the older and the young adults when
they discriminate negative emotion. A previous study demonstrated that older adults had
more difficulty distinguishing low intensity negative emotions [80]. They may tend to
make facial expressions excessively because the older adults themselves may not be able to
identify low intensity negative emotions.

Previous studies well support the differences in AUs intensity between the two groups.
On upper facial expression, namely AU 06 and 07, the older adults can show greater
intensity than the younger adults. Increased activity in orbicularis oculi muscle [81], deeply
set of eye [82], and changes in eyelid due to poor visual acuity [83] may have affected the
changes in upper facial expression. For lower facial expression, AU 10, 12, 14, the strength
of the face may have been further tapped due to the highlighted facial contour caused by
loss of subcutaneous fill around the nose and mouth in the older adults [84]. In AU 45,
the older adults rather showed reduced AUs than the younger people. Elevated duration
of eye blink may explain this reason. Duration of the eye-blinking decreases with aging,
apparently reflecting decreased intensities in AU 45 [85], since the deterioration of the
orbicularis oculi muscle can affect the complete eye closure rate [86].

As for the adaptive LASSO, the result was shown to be similar to the comparisons
between two groups, expect for the AU 02, 05, and 20. The increase in AU 02 in sad
condition, as previously mentioned, may have resulted in increased activity in the eyebrow
and strong representation of negative representations [80,81]. For the AU 05 in surprise
condition, the reduction of muscles may also involve in eye activity have affected the
weaker construction of surprise facial expressions [85,86]. For the AU 20, aging may lead
to the relaxation of the lip stretcher owing to decreased muscle around the mouth [17,87].

4.2. Limitations and Future Direction

There are several limitations in the current study. First, we employed only posed
emotions. Given that the mechanisms of the posed emotions and the spontaneous facial
expressions differ [88], further studies are needed to compare the difference between two
distinct facial expressions. Secondly, we did not employ physiological assessment. The
OpenFace software, unlike EMG, could not measure sensitive intensities in facial muscles
at a physiological level. However, since the OpenFace library is based on FACS and
provides reliable results along with recent technological advances, measurement errors are
not likely to be a problem. In addition, recent study on the difference between computer
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vision and EMG has demonstrated only a few differences among the two techniques with
respect to accessing overt facial expressions, and that computer vision showed better
performance as compared with human [89]. Thirdly, age group is less continuous. Thus,
future studies should be designed for providing normative data for facial aging with
respect to demographics, such as age and sex. Lastly, the presence of the imbalanced
class between the younger group and older group can be a potential limitation of the
current study. This issue may not be critical, if the ratios between two classes are not too
different. An experimental study showed that low class imbalance ratios do not cause
significant performance loss [90], where the class ratio of 40:60, which is similar to our study
(Table 2), seemed to converge to nearly zero with respect to performance loss. Another
study used metabolomics data and showed that a false positive ratio even decreases as
the class-imbalanced ratio rises, due to the prevention of over selection in identifying
biomarker features with the LASSO algorithm [91]. Despite these studies, our findings
should be interpreted with caution.

With the above limitations, our study has the following strengths. Our findings
regarding posed emotions, which require conscious effort of facial muscles, can be used
as an evidence to censor individuals who deliberately deceive others, especially for lie
detection [92]. In situations where biophysiological assessment is limited, computer vision-
based face recognition tools would be beneficial. In a clinical setting, our findings can be
used for detecting frailty and other senile changes in muscle. For computer vision-based
facial recognition, our findings may also provide researchers with empirical evidence for
the characteristics of a human aging face, which would help develop the service and/or
product for recognizing the faces of older adults. Notably, so far, there has been little
attempt for facial expression recognizing study that compares the characteristics between
the younger and the older. Our findings can provide interpretable evidence and explainable
features for aging faces. This could provide an important basis for CAD studies for older
people in the future.

4.3. Conclusions

Taken together, the present study is the first to investigate the differences in posed
facial expressions between older adults and younger adults using a computer analysis
method. Our findings provide evidence for implications in facial expression intensity
based on FACS-AU-derived emotional faces. The older adults expressed more intense
expressions in neutral and negative emotions than younger adults and tended to use more
muscles when they were making facial expressions. In some part of the facial expression,
the older adults showed weaker intensity than the younger adults. Our findings may
suggest that changes in the muscles around the eyes and mouth due to aging can be
indicators of the characteristics for identifying the aging face. The results of this study
were obtained quantitatively from a normal population, which has several strengths as
compared with previous studies of facial expression based on EMG, 3D morphometry,
or subjective rating. They can be used as a basic methodology for analyzing and for
identification of the characteristics of facial aging. We hope that the various features of the
posed emotions of the older adults in this study can be a significant contribution to other
scientific fields with respect to facial expressions, such as criminological research using lie
detection, behavioral medicine, and computer vision research based on facial recognition.
Future studies are needed for investigating other attributes in facial expressions regarding
dynamic emotions, natural environments, and diverse groups.
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Abstract: People tend to display fake expressions to conceal their true feelings. False expressions
are observable by facial micromovements that occur for less than a second. Systems designed
to recognize facial expressions (e.g., social robots, recognition systems for the blind, monitoring
systems for drivers) may better understand the user’s intent by identifying the authenticity of the
expression. The present study investigated the characteristics of real and fake facial expressions of
representative emotions (happiness, contentment, anger, and sadness) in a two-dimensional emotion
model. Participants viewed a series of visual stimuli designed to induce real or fake emotions and
were signaled to produce a facial expression at a set time. From the participant’s expression data,
feature variables (i.e., the degree and variance of movement, and vibration level) involving the facial
micromovements at the onset of the expression were analyzed. The results indicated significant
differences in the feature variables between the real and fake expression conditions. The differences
varied according to facial regions as a function of emotions. This study provides appraisal criteria for
identifying the authenticity of facial expressions that are applicable to future research and the design
of emotion recognition systems.

Keywords: facial micromovement; emotion recognition; emotion authenticity

1. Introduction

Humans utilize both verbal and nonverbal communication channels. The latter
category includes facial expressions, gestures, posture, gait, gaze, distance, and tone
and manner of voice [1]. Facial expressions, which account for up to 30% of nonver-
bal expressions, are the most rapidly processed type of expression by visual recogni-
tion [2]. Facial expressions project the communicator’s intentions and emotions [3].
However, people may conceal their true feelings and produce fake expressions [4]. Such false
expressions are exhibited for a very short time with only subtle changes [5], and it is ex-
tremely difficult to detect their authenticity with eyesight [6]. Identifying fake expressions
is paramount to counter deception and recognize users’ true intent in advanced intelligent
systems (e.g., social robots and assistive systems).

Early research involving facial expressions focused on establishing a quantitative
classification framework to recognize emotions. Ekman built a facial action coding system
(FACS), a computation system that encodes facial features’ movements to taxonomize
emotions from facial expressions. Analysis of facial expressions also spurred interest in the
authenticity of expressions.

Researchers have found asymmetric intensity in facial expressions. Dopson revealed
that the intensity of expressions in the left face was stronger than that in the right face in the
case of voluntary expressions [7]. Conversely, the intensity was weaker than that in the right
face in the case of involuntary expressions. These results suggest that the comparison of
both sides may identify the authenticity of expressions. The sensitivity of left-face expressions
is because facial movements are connected to the right hemisphere of the brain. Patients with

Sensors 2021, 21, 4616. https://doi.org/10.3390/s21134616 https://www.mdpi.com/journal/sensors143



Sensors 2021, 21, 4616

right-brain injuries are reported to experience significant degradation in recognizing emotions
from facial expressions compared with patients with left-brain injuries [8].

Studies have also found differential activation of facial muscles between real and fake
expressions. Duchenne experimented on facial muscular contractions with electrical probes
to understand how the human face produces expressions [9]. He observed that participants
produced a genuine smile with a unique contraction of the Orbicularis oculi muscle [10].
This “smiling with the eyes” is called the Duchenne smile, in his honor.

Ekman analyzed human false expressions and identified minute vibrations or sponta-
neous changes in the facial muscles responsible for emotional expression [11]. Such mi-
cromovements are observed in false (e.g., deception) or pretended (e.g., to be polite)
expressions [5]. Facial micromovement is also called microexpression. Micromovement oc-
curs with less than a second of movement and with vibration lasting between 0.04 and
0.5 s [12–14]. Simultaneously, in a typical interaction, an emotional expression begins
and ends with a macroexpression that occurs in less than 4 s [15]. The degree of move-
ment or the vibration of the facial muscles between real and fake expressions can be
significantly different [11].

Recent advances in AI technology have led to research on identifying the authenticity
of facial expressions using repetitive training with paired data of facial expressions and
visual content (an image and a video clip) [16,17]. Microexpression recognition (MER)
researchers have put massive effort into open innovation (e.g., facial microexpressions
grand challenge [18,19]) to improve the state-of-the-art algorithm. Academic challenges
include all aspects of MER sequences such as data collection, preprocessing (face detection
and landmark detection), feature extraction, microexpression recognition, and emotion
classification within the computer vision domain (for a comprehensive review, see [20]
and [21]). Similar to other AI domains, convolutional neural networks (CNNs) have been
used the most for MER [22]. A generative adversarial network (GAN), with a generator
and an adversarial discriminator model, has been used for feature extraction [23] and facial
image synthesis [24]. Most recently, extended local binary patterns on three orthogonal
plans (ELBPTOP) were introduced to counter information loss and computational burden
of the previous dominant descriptors, LBPTOP [25].

While researchers continue to pursue better algorithms to improve MER accuracy and
reliability, in the most recent survey of facial microexpression analysis [20], Xie observed
that MER literature on facial asymmetrical phenomena is scarce and limited. While re-
searchers have found an asymmetric intensity in facial expressions, less is known regarding
where in the facial region such microexpressions are the most salient and how they interact
with different emotions. Specifically, feature variables (i.e., the degree and variance of
movement, and vibration level) of emotions that are primarily expressed with the relax-
ation of facial muscles (e.g., contentment, sadness) may have weaker intensity in the real
condition. Systematic research identifying reliable indicators of authenticity per facial
region as a function of emotion is imperative.

Physiological data, including electrocardiogram (ECG), are powerful signals for emo-
tion identification [26]. ECG correlates with the contraction of the heart muscles and
varies as a function of emotion [27]. In order to achieve a deeper understanding of MER,
facial vision data should be fused with cardio signals [20]. To the best of our knowledge,
no research has combined the two.

In summary, the study hypothesized that (1) there is a significant difference in the
micromovements at the onset of expression between real and fake conditions, and (2) such
differences vary by representative emotions (happiness, sadness, contentment, anger).
The findings were cross-validated with neurological measurements (ECG).

2. Methods

2.1. Experiment Design

The present study used a 2 × 4 within-subject design. The authenticity factor had two
levels (real and fake), and the emotion factor had four levels (happiness, sadness, anger,
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and contentment). The visual stimulus consisted of a still photo and a video clip. The still
photo depicted a facial expression of the target emotion. The video clip, which was shown
after the still photo, was a recording that was designed to induce either the target emotion
shown in the still photo or a neutral emotion.

The participants were then asked to produce a facial expression that the participant
felt while watching the still photo. The real condition was manipulated by showing the
two materials, the still photo and the video clip, congruently. The false condition was
manipulated by having the video clip induce a neutral emotion. In this case, participants
were forced to produce a facial expression based on the photo that they viewed earlier. If a
different emotion was induced other than neutral, the participant’s emotion may have been
compounded, which made the measurements difficult to explain. After every 30 s during
the video, participants were signaled with a visual cue to produce a facial expression.

The dependent measurements involved micromovements in the face. That is, the av-
erage movement, standard deviation, and variance of the facial muscle movements were
measured. Facial vibration was analyzed with the dominant frequency elicited by the fast
Fourier transform (FFT).

2.2. Participants

Fifty university students were recruited as participants. The participants’ average
age was 22.5 years (SD = 2.13) with an even ratio in gender. We selected participants with
corrective vision of 0.7 or above to ensure the participants’ reliable recognition of visual
stimuli. The participants were not allowed to wear glasses. All participants were briefed
on the purpose and procedure of the experiment and signed a consent form. Participants
were compensated with participation fees.

2.3. Procedure and Materials

Figure 1 illustrates the experimental procedure. Each participant’s neutral facial
expression was captured for 210 s before the main task. This was considered as the
individual’s reference expression. Participants were then exposed to eight combinations
of visual stimuli—four sets (happiness, sadness, anger, and contentment) to elicit real
emotions and four sets to elicit fake emotions. The order was randomized to counter order
and learning effects. A set of stimuli consisted of a still photo and a video clip. A set used to
induce real emotion had congruent emotions between the two materials. Conversely, a set
to induce false emotions had inconsistent emotions between the two materials. In this case,
the video clip induced a neutral emotion.

Figure 1. Experimental procedure.

After viewing the visual stimuli, the participants were given a resting period of 60 s.
During this period, participants reported their current emotional state with a subjective
evaluation. Participants reported their (1) emotional state (happiness, sadness, anger,
disgust, fear, surprise, and contentment), (2) degree of arousal, and (3) degree of pleasant-
ness. The latter two were rated on a five-point Likert scale. (1) We provided a comprehen-
sive set of seven emotions to select from to exclude any data from participants who felt
nothing or had a different emotion from the target emotion. The exclusion was determined
for each condition, even for neutral video clips, to eliminate any compounding factors from
the data.
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The participant’s facial data were acquired using a webcam. A Logitech c920 webcam
(Logitech, Lausanne, Switzerland) was used to obtain image data with a resolution of
1280 × 980 at 30 frames per second. To analyze the activation level of the autonomic
nervous system (ANS) when participants were exposed to visual stimuli, participants’
heart rate variability (HRV) and electrocardiogram (ECG) data were acquired. The latter
was obtained through a Biopac (Biopac, Goleta, CA, USA) system with a frequency of
500 Hz.

Figure 2 shows the experimental setup. Participants were asked to sit and view the
experiment monitor at a distance of 60 cm. A webcam, which acquired facial data from the
participant, was placed on top atop the monitor.

Figure 2. Experimental setting.

2.4. Statistical Analysis

The present study compared the differences in the micromovement of facial expres-
sions between real and fake emotions. From the participant’s expression data, feature vari-
ables (i.e., the degree and variance of movement, as well as vibration level) obtained at
4 s (macromovement), 1 s, and 0.5 s (micromovements) after the onset (t) of facial ex-
pression were analyzed. For each representative emotion (happiness, contentment, anger,
and sadness), a t-test was used to compare the differences between the feature variables
in the two conditions (real and fake) for all 11 AUs responsible for emotional expression.
The following section explains how the feature variables were extracted and how the ECG
data were obtained.

3. Analysis

Figure 3 outlines the analysis process. To analyze the data, we established an op-
erational definition of facial expression muscles and extracted facial movement data for
such muscles. In total, 40 datasets were analyzed; participants who had excessive facial
movements or participants who did not display emotion were excluded. That is, the exper-
imenter screened each recorded video clip and excluded participants who had turned their
faces, clearly looking at an object outside of the screen, or when the system had failed to
track their faces. To minimize the exclusion, we had instructed the participants to reduce
the facial movement and look straight ahead.

The expression onset segment was defined ( 2© in Figure 3) based on the threshold of
facial movement. Feature variables were then extracted by comparing the rate of change in
action units (AUs) between data frames. The effective feature variables were selected by
comparing the feature variables of real and fake expressions for each emotion.
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Figure 3. Data analysis process.

3.1. Operational Definition of Facial Muscles

The present study recognized the participants’ emotions by identifying the activation
of anatomical regions that represent a particular emotion. The AUs were extracted using
facial landmarks through a Python program. Figure 4 depicts the extraction process.

Figure 4. Facial muscle extraction process.

Each frame obtained from the webcam was analyzed. First, the location of the face
in the image was identified using a face detection model, the Haar cascade classifier [28].
Face detection models extracted the target object’s features from the dataset and compared
the features from the pretrained data to identify the object. Specifically, the present system
used the Haar-like feature to detect the region of a face (region of interest (ROI)) by
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identifying the location of the nose and eyes. The system then identified 68 facial landmarks
by tracking the eye, eyebrows, nose, lips, and chin line using the Dlib library [29], which was
trained with a massive quantity of data. The differential facial muscles per facial expression
were predefined and utilized to extract 11 muscle areas (i.e., coordination). Eleven facial
muscle units (AUs) involving the brow, eyes, cheeks, chin, and lips responsible for facial
expressions were predefined and extracted from the participant’s dataset (see Table 1).
Figure 5 visualizes the relative locations of action units.

Table 1. Action Unit Definitions.

Action Units Description Muscular Basis Landmark

AU4_M Brow depressor
Depressor glabella

21, 22, 27Depressor supercilii
Corrugator supercilii

AU5_L Upper Lip raiser Lavator palpebrae
superioris

23, 25, 44
AU5_R 18, 20, 37

AU6_L Cheek raiser
Orbicularis oculi

15, 26, 45
AU6_R Lip tightener 1, 17, 36

AU12_L Lip corner puller Zygomaticus major 14, 35, 54
AU12_R 2, 31, 48

AU15_L Lip corner depressor Depressor anguli oris 10, 11, 54
AU15_R 5, 6, 48

AU23_L Lip tightener Orbicularis oris
52, 53, 63

AU23_R 49, 50, 61

Figure 5. The relative locations of action units.

These 11 AUs are the centroid values of the three corresponding facial landmarks,
computed as follows:

A(x1, y1), B(x2, y2), C(x3, y3)

P( x1+x2+x3
3 , y1+y2+y3

3 )
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For further analysis, facial data from the last 30 s were extracted and analyzed.
That is, we defined the first 180 s as time for the visual content to sufficiently “sink in” for
the participants.

3.2. Feature Variable Extraction

To extract feature variables involving facial micromovement, we developed a mi-
cromovement extraction program built by LabVIEW 2016 for massive data processing.
From the last 30 s of the participant’s dataset, 11 AUs (Table 1) were calculated. A threshold
was used, the average movement of an AU, using the following min-max algorithm to
determine the onset of facial expressions. The micromovement section before the onset
was extracted.

Threshold =
(Max + Min)

2
The expression section after the onset consisted of one macromovement section (4 s)

and two micromovement sections (1 s, 0.5 s). These three sections may overlap. The move-
ment data from the three sections were extracted. That is, the degree of change (delta) in
the coordination of an AU between the current and previous frames was computed as
follows, which was performed to analyze the degree of facial vibration.

xn = prevAU[n]·x − currAU[n]·x
yn = prevAU[n]·y − currAU[n]·y

Finally, we extracted feature values by analyzing the delta value. That is, the average
and standard deviation of the delta and FFT values were extracted. The former two were
used to analyze the degree and variance of the change. The latter was used to analyze the
degree of facial vibration through the dominant frequency obtained by the FFT.

3.3. Heart Rate Variability Analysis

In addition to the facial data, ECG data were measured while the visual stimuli were
shown for 210 s. The participants’ time-series data were transformed into a frequency band
using FFT. This enabled measurement of the ANS responses of participants exposed to
emotion-inducing stimuli [30,31]. Table 2 outlines the HRV variables used in this study.
To measure the change in the serial heart rate data, a 180-s sliding window was used.

Table 2. Heart Rate Variability Variables.

Variable Unit Definition Frequency Range

VLF ms2 The power value in
the VLF frequency 0.003~0.04 Hz

LF ms2 The power value in
the LF frequency 0.04~0.15 Hz

HF ms2 The power value in
the HF frequency 0.15~0.4 Hz

VLF (%) % VLF divided by the
overall power value

LF (%) % LF divided by the
overall power value

HF (%) % HLF divided by the
overall power value

4. Results

The current study analyzed changes in facial micromovements between real and
fake expressions of representative emotions. A t-test was used to compare the differences
between the participants’ facial expressions in the two conditions. The feature variables
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obtained at 4 s (macromovement), 1 s, and 0.5 s (micromovements) after the onset (t) of
facial expression were analyzed.

Figure 6 shows the template used to visualize the results. The blank squares on the
right indicate the 11 AUs (Table 1) representing the facial muscles responsible for facial
expressions. The statistical difference between the real and fake conditions are color coded
in Figures 7, 9, 11 and 13 in three levels: p < 0.001: *** ; p < 0.01: ** ; p < 0.05: * .

Figure 6. (a) Eleven AU regions (red dots) for feature variable extraction; (b) visualization framework
for reporting the results.

In the HRV analysis, we compared the difference in ANS activation between the real
and fake conditions.

4.1. Authenticity of Happiness

The results of the analysis of micromovement involving expressions of happiness are
as follows. Figure 7 depicts the differential movement of the facial regions between the
two conditions through the visualization of a face. All 11 AUs had at least one significant
difference in the dependent variables (dominant peak frequency, average, and standard
deviation of movement).

Figure 7. Statistical differences between real and fake happiness expressions (AVG = Average,
SD = Standard Deviation).

The average at t + 0.5 (0.5 s after the onset) showed a significant difference in all AUs,
whereas only partially significant differences appeared at t + 1, mostly in the left face.
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This implies that expressions of happiness may be most prominent in the early stage (0.5
s) of a microexpression but persist until t + 1 in the left face. Further regression analysis
on average movement showed that the time segment factor enters the regression equation
(R2 = 0.97), p < 0.001, along with the authenticity factor, p < 0.05.

However, for the standard deviation, the values at t + 1 significantly differed in all
11 AUs. The domain peak frequency also showed a significant difference at t + 1 in all
AUs. The domain peak frequency at t + 0.5 showed a significant difference in the lips,
left eyebrows, and brow.

Figure 8 presents a statistical comparison between dependent variables for each AU,
collapsing data from the three sections (t + 0.5, t + 1, and t + 4). The measured values were
higher in real expressions in almost all regions.

Figure 8. Comparison between feature variables of happiness expressions.

4.2. Authenticity of Contentment

The results of the analysis of micromovements involving expressions of contentment
are as follows. Figure 9 depicts the differences in the movement of facial regions between
the two conditions.
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Figure 9. Statistical differences between real and fake contentment expressions (AVG = Average,
SD = Standard Deviation).

At t + 1, except for the left eyelid, all 10 AUs were found to have a significant average
difference. Similar results were observed for the standard deviation. At t + 0.5, nine AUs
were reported to have a significant average difference. This indicates that the microex-
pression of contentment, compared to happiness, may persist longer. Further regression
analysis on average movement showed that the time segment factor enters the regression
equation (R2 = 0.97), p < 0.001, along with the authenticity factor, p < 0.001 and the face
side factor, p < 0.001.

The vibration of the macromovement (dominant peak frequency at t + 4) was signifi-
cantly different in many facial regions, including the mouth tail and eyelid of the right side
and the eye tail, eyelid, and mouth tail of the left side. Similar results were observed for
the standard deviation in the same regions.

As shown in Figure 10, similar to the happiness condition, the average was signif-
icantly higher in the real condition, but the dominant peak frequency was significantly
higher in the fake condition. That is, there was more facial movement in the real condition
but more facial vibration in the fake condition.
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Figure 10. Comparison between feature variables of contentment expressions.

4.3. Authenticity of Anger

The results of the analysis of micromovement involving expressions of anger are as
follows. Figure 11 depicts the differences in the movement of facial regions between the
two conditions.

Similar to the results in the happiness condition, micromovements at t + 0.5 had a
statistical difference in all regions, 11 of them at p < 0.001. Unlike with happiness, however,
the differential micromovements of anger persisted through t + 1, except for in two of
the facial regions. Further regression analysis on average movement showed that the
time segment factor entered the regression equation (R2 = 0.96), p < 0.001, along with the
authenticity factor, p < 0.001 and the face side factor, p < 0.05.
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Figure 11. Statistical differences between real and fake anger expressions (AVG = Average, SD = Stan-
dard Deviation).

A significant difference in dominant peak frequency was found in all regions except
for the right eye tail and the left eyelid in all time segments.

As shown in Figure 12, similar to the happiness condition but unlike the content-
ment condition, all three measurements were higher in the real condition than in the
fake condition.

Figure 12. Comparison between feature variables of anger expression.
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4.4. Authenticity of Sadness

The results of the analysis of micromovement involving the expression of sadness are
as follows. Figure 13 depicts the differential movement of the facial regions between the
two conditions.

Figure 13. Statistical differences between real and fake sadness expression (AVG = Average,
SD = Standard Deviation).

The significant differences were not dominant in all facial regions compared to other
emotion conditions, but instead concentrated on the left side of the face. Specifically, sim-
ilar results were found in the micromovements (t + 1 and t + 0.5) in the left eyelid and
mouth tail. Further regression analysis on average movement showed that the face side
(left or right) factor enters the regression equation (R2 = 0.96), p < 0.001, along with the
authenticity factor, p < 0.001 and the time segment factor, p < 0.001.

A significant difference was found in the mouth region in all segments with respect to
the dominant peak frequency. However, the difference in vibration was prominent and
salient at t + 4 and t + 0.5.

As shown in Figure 14, when the data are collapsed, similar to the contentment
condition, the standard deviation and the dominant peak frequency were higher in the
fake condition than in the real condition.
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Figure 14. Comparison between feature variables of sadness expressions.

4.5. Analysis of Heart Rate Variability

The HRV data of the fake condition were compared to those of the real condition of
the three frequency bands (very low, low, and high) (see Figure 15). This was performed
to compare the ANS response, independent of emotions. Except for the LF (%) variable,
a significant difference was found in all variables (p < 0.001). Specifically, VLF and VLF (%)
were higher in the real condition than in the fake condition. Conversely, HF and HF (%)
were higher in the fake condition than in the real condition. LF was significantly higher in
the fake condition.

Figure 15. Comparison of frequency domain.
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5. Conclusions and Discussion

The present study compared the differences in the micromovement of facial expressions
between real and fake emotions. The study utilized 11 AUs based on anatomical muscle
location responsible for emotional expression. That is, we identified the difference in the
feature variables (average and standard deviation of movement, as well as dominant peak
frequency) between the real and fake conditions by facial regions for each representative emo-
tion (happiness, contentment, anger, and sadness). In conclusion, the study showed that the
degree of activation is higher if the expression is authentic, implying more micromovement.

The study analyzed the feature variables in three time segments (0.5, 1, and 4 s) after
the onset (t) of facial expression for each representative emotion. Results indicated that
micromovements are more informative at an early stage (less than a second) of expression.
In the case of t + 1 and t + 0.5, a significant difference between the real and fake conditions
was observed in the left face than the right in the happiness condition. The asymmetric
difference in the activation of the face can be explained by activation of the right brain
region [32]. Campbell found that the left face expresses more than the right in voluntary
expressions. Conversely, the left face expresses less than the right in involuntary expres-
sions [33]. In the anger condition, compared with other emotions, the brow had the highest
number of feature variables that were significantly different between the real and fake
conditions. This was a result of muscle movement from the participant’s frowning.

At t + 4, compared to the time segments in which less than a second had elapsed,
less statistical differences were observed between the two conditions for all four emo-
tions. This confirms that measurements at t + 4 cannot reliably capture the differential
micromovements between real and fake expressions. The data at t + 4 also include the
macromovements of facial muscles and hence may not be sensitive enough to identify
abrupt changes in facial movements (i.e., micromovements).

Collapsing the data across time segments, all three feature variables (average, stan-
dard deviation, and dominant peak frequency) of the real condition were significantly higher
than those of the fake condition in the happiness and anger conditions. Conversely, in the
contentment and sadness conditions, the standard deviation and dominant peak frequency of
the fake condition were significantly higher. That is, emotions that are primarily expressed
with the relaxation of facial muscles, such as contentment and sadness, were observed with
weaker intensity in the real condition. The results support the hypothesis that the degree of
expression differs between the real and fake conditions as a function of emotions.

Our findings were cross-validated with neurological measurements involving the
PSNS and ANS. In the HRV analysis, both HF and HF (%) indicators for the parasympa-
thetic nervous system (PSNS) were higher in the fake condition than in the real condition.
Conversely, both VLF and VLF (%) indicators for the ANS were higher in the real condition
than in the fake condition. LF (%), an indicator that involves both the PSNS and ANS,
did not show a significant difference. In conclusion, the stimuli in the real condition led to
the activation of the ANS, which implies an increase in the participant’s arousal. In addi-
tion, the stimuli in the fake condition led to the activation of the PSNS, which implies the
participant’s relaxation.

The study acknowledges the individual variance in participants’ emotions when they
were exposed to visual stimuli. To minimize this difference, a target facial expression
was provided. In the fake condition, to ensure that other emotions did not interfere,
visual content inducing a neutral emotion was used. That is, participants had to pretend
an expression while the stimuli conveyed neutrality. We acknowledge the limitations of
this experimental design, which may lower the ecological validity. However, future studies
may investigate when a real emotion is replaced by another emotion and study the change
in microexpressions.

Follow-up studies may introduce experimental treatments that are congruent with
real-world settings. Specifically, micromovements of expressions in complex emotions
merit further analysis. In addition, the study was limited to four representative emo-
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tions. Although not related to emotion authenticity, Adegun and Vadapalli analyzed
microexpressions to recognize seven universal emotions with machine learning [34].

Another limitation of the study involves facial landmark detection. Proper land-
mark detection is necessary to secure recognition accuracy [20]. We have identified 68
facial landmarks by tracking the eye, eyebrows, nose, lips, and chin line using the Dlib
library [29]. However, recent state-of-the-art methods, including tweaked convolutional
neural networks (TCNN), may improve the robustness of facial landmark detection [35].

The breakdown of feature variables may be used as an appraisal criterion to authen-
ticate facial data with emotional expressions. This study identified that data at less than
one second is critical for analysis of the authenticity of an expression, which may not be
reportable by the participants.

Systems capable of recognizing human emotions (e.g., social robots, recognition
systems for the blind, monitoring systems for drivers) may use the authenticity of the user’s
facial expression to provide a useful and practical response. Recognizing fake expressions
is imperative in security interfaces and systems that counter crime. For a social robot to
provide effective services, identifying the user’s intent is paramount. A recent human-robot
interaction study applied deep neural networks to recognize a user’s facial expressions in
real time [36]. Further recognition of the user’s false (e.g., deception) or pretended (e.g.,
to be polite) expressions might introduce more social, rich, and effective interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21134616/s1, Python Code_AU Extraction.
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Abstract: Speech emotion recognition (SER) is a natural method of recognizing individual emotions
in everyday life. To distribute SER models to real-world applications, some key challenges must
be overcome, such as the lack of datasets tagged with emotion labels and the weak generalization
of the SER model for an unseen target domain. This study proposes a multi-path and group-
loss-based network (MPGLN) for SER to support multi-domain adaptation. The proposed model
includes a bidirectional long short-term memory-based temporal feature generator and a transferred
feature extractor from the pre-trained VGG-like audio classification model (VGGish), and it learns
simultaneously based on multiple losses according to the association of emotion labels in the discrete
and dimensional models. For the evaluation of the MPGLN SER as applied to multi-cultural domain
datasets, the Korean Emotional Speech Database (KESD), including KESDy18 and KESDy19, is
constructed, and the English-speaking Interactive Emotional Dyadic Motion Capture database
(IEMOCAP) is used. The evaluation of multi-domain adaptation and domain generalization showed
3.7% and 3.5% improvements, respectively, of the F1 score when comparing the performance of
MPGLN SER with a baseline SER model that uses a temporal feature generator. We show that the
MPGLN SER efficiently supports multi-domain adaptation and reinforces model generalization.

Keywords: speech emotion recognition; domain adaptation; SER generalization; Korean Emotional
Speech Database; ensemble model; multi-path; group-loss; BLSTM network

1. Introduction

Human speech is a natural communication method in human–computer interaction
(HCI) and human–robot interaction (HRI). Speech emotion recognition (SER), which is
based on natural human language, is a key method used to recognize individual emotions
in everyday speech. SER uses the acoustic features of a speech segment, not the lexical
features having the semantic information of the segment [1]. Hence, it recognizes subjects’
emotions from “how” they speak rather than the content of their words. The predicted
emotional context of a target speaker can then be used as an important factor for decision
making in intelligent HCI and HRI services [2,3].

Prior to deploying SER models in real applications, the lack of SER databases tagged
with emotion labels must be addressed, because they are not sufficient for training deep-
SER models. Another challenge is the limited generality of the SER model, owing to the
high variability of the acoustic signals of the emotional speech samples.

Emotions have characteristics of high subjectivity and diversity, depending on the
individual or culture. Therefore, it is time-consuming and expensive to build a large-
scale emotional database annotated with reliable gold-standard emotion labels via human
observation. Most SER datasets having gold-standard labels contain thousands of speech
samples collected from a limited number of speakers in a specific environment [4–7].
Therefore, the performance of an SER model trained on single-domain samples is inherently
degraded when applied to unseen domain samples that reflect different languages, cultures,
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speakers, genders, microphone types, positions, and signal-to-noise ratios [8–10]. This
study defines a single SER domain dataset collected using one collection procedure at one
place using the same collection device.

Many studies have effectively utilized limited emotion databases to improve the SER
performance. In addition to the typical augmentation methods of speech samples [11,12],
there exists a domain adaptation method that utilizes speech datasets already established
in the unknown target domain [8–10,13–16]. In comparison with the results of data aug-
mentation in a single domain, it is difficult to guarantee good performance because of
the high variability of the acoustic features of the emotional speech samples in the do-
main [8–10,13,14]. However, domain adaptation based on multi-domain datasets can be
used to construct better SER models to support such generalities without overfitting.

We propose a multi-path and group-loss-based network (MPGLN) for SER, which
supports supervised domain adaptation in multi-domain datasets acquired from multiple
environments. The proposed MPGLN for SER (MPGLN SER) is based on an ensemble learn-
ing structure for multi-level embedding vector learning for speech segments. It includes
a temporal embedding feature generator, transferred feature extractor, and prediction
function network that classifies the emotion labels based on the generated and extracted
feature vectors. The bidirectional long short-term memory (BLSTM)-based temporal feature
generator network learns an embedding vector as a 74-D input of handcrafted low-level
descriptions (LLD) of a speech segment. The transferred feature extractor creates feature
vectors from the pre-trained VGG-like audio classification model (VGGish) [17], and the
proposed MPGLN SER is trained based on multiple losses by the association between the
discrete and continuous dimensional emotion labels [1] of the multi-domain samples.

The proposed MPGLN SER is evaluated over five multi-domain SER datasets: the
benchmark English Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [7],
which was widely used in previous studies for SER model evaluation, and the four Korean
Emotional Speech Database (KESD) datasets that are built for this study.

In our evaluation, we use an SER model comprising a BLSTM-based temporal feature
generator and the MPGLN predicting network, excluding transferred features, as our base-
line model. We then verify the reliability of the baseline SER model using the IEMOCAP
dataset. Comparing it with the performance of the baseline SER model, it is confirmed that
the proposed MPGLN SER is effective in supporting supervised multi-domain adaptations
and reinforcing generalizations [18] of the SER model in multi-domain datasets.

This paper is organized as follows. In Section 2, we present a brief overview of related
SER and domain adaptation works. Section 3 describes the proposed MPGLN, which
supports multi-domain adaption of SER in multi-domain datasets. Section 4 details the
evaluation results of the MPGLN SER, and Section 5 concludes this study and suggests
future works.

2. Related Works

Recent SER models based on deep-learning architectures [19–30] have demon-
strated state-of-the-art performance with an attention mechanism [19,20,22,23,25,26].
The deep-learning architectures adopted in previous studies included recurrent neural
networks (RNN) [19], convolutional neural networks (CNN) [24], and convolutional
RNNs (CRNN) [20,26]. Liu et al. [21] presented an SER model of a decision tree for an
extreme learning machine having a single hidden-layer feed-forward neural network,
using a mixture of deep learning and typical classification techniques.

The input features for deep-learning-based SER models are generally extracted from
the time or spectrum axis in units of speech segments or frames. There are various LLDs
and high-level statistical functions of the LLD single features [19,20,31–33]. The spectrum
LLD features of speech signals include logMel filter-banks and mel-frequency cepstral
coefficients (MFCC). Zero-crossing rates and signal energies are representative time-domain
features [27–30], whereas spectral roll-off and spectral centroid are classified as spectral
parameters [33]. A set of multiple single features for acoustic signal processing, such as
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the extended Geneva Minimalistic Acoustic Parameter Set [34] and the INTERSPEECH
2010 Paralinguistic Challenge (IS10) dataset [35], is now accessible from open-source
frameworks, such as OpenSmile [36]. Some studies have investigated the mechanism of
modeling and integrating of temporal acoustic features to improve the performance of
speech emotion recognition or audio classification [31,32]. Jing et al. [37] presented an
evaluation of multiple acoustic feature sets that combined features generated from the
pre-trained acoustic model [15,17,38,39].

A typical deep-learning model requires large-scale samples for training. Unfortunately,
SER datasets annotated with emotion labels are scarce. Furthermore, collecting SER speech
samples and tagging them with emotion labels is time-consuming and expensive. Thus,
to overcome the limitations of volume and diversity of labeled speech samples for deep-
learning SER models, studies have been performed using data augmentation [11,12,40–42],
active learning [12,43] based on collected datasets, and domain adaptation [8–10,13–16] to
adapt the existing SER datasets to the target domains.

Park et al. [11] presented a data augmentation experiment for speech samples using
warping and masking in a frequency channel with a time step. Chatziagapi et al. [40]
proposed a method that used generative adversarial networks [44] to extract artificial
spectrograms of augmented data to balance each emotion class.

Active-learning methods have been used to present greedy selection methods of
speech samples to construct an initial SER model suitable for a target speaker based on
limited samples [12,43]. Abdelwahab et al. [43] proposed the active learning of greedy
sampling to select the most informative samples to improve the performance of DNN-based
SER models. In a study by Bang et al. [12], samples that were close to the target speaker’s
samples in the embedding space were selected; the synthetic minority oversampling
technique was applied to increase the number of samples of the minority class.

Domain adaptation techniques are actively being studied in the field of visual clas-
sification [18,45]. Metric-based learning is a representative method of learning distances
containing the features of inter-domain and -class samples to minimize domain mismatches
between the source and target domains. Gao et al. [46] proposed an acoustic model based
on ResNet [47] for acoustic scene classification; its learning process is such that it is difficult
to distinguish the domain to which a sample belongs.

The domain adaptation for SER models based on multi-domain datasets has the pur-
pose of building an SER model that is not overfitted to a specific dataset and is generalized
for unknown target-domain speech data. However, the SER model based on multi-domain
datasets has a different applicability from the case that applies data augmentation by
oversampling a single domain dataset. It does not guarantee the SER performance im-
provement, even if several multi-domain speech samples are used to train the SER model,
because there is high domain discrepancy in the speech signal, which depends on the
collection environments [8–10,13,14].

Liang et al. [9] proposed a structure that learned emotion-salient features based on
audio and video data through an adversarial learning framework, generating embedding
features for the purpose of reducing domain discrepancies. Huang et al. [13] presented a
network model that aligned the distribution shift in the intermediate feature space between
the source and target domains. Neumann et al. [14] introduced an adaptive technique to
fine-tune the weights of SER neural networks trained in the source domain using a small
number of samples from the target. By using the transferred features from the pre-trained
model, Li et al. [15] demonstrated improvements in the SER performance using additional
embedding vectors extracted from the pretrained VGGish in AudioSet [48]. Lee et al. [16]
presented the generalization effect of emotion recognition by applying dropout and nor-
malization methods in multilingual heterogeneous datasets.

3. Ensemble Learning Model for SER in Multi-Domain Datasets

We propose an ensemble learning model to improve the performance of SER general-
ization in multi-domain datasets. The operational flow of the supervised multi-domain
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adaptation of the proposed MPGLN SER is shown in Figure 1. We denote speech-input
samples and class-label spaces as X and Y, respectively, and the domain datasets are
D = {D1, D2, . . . , Dk }. This study assumes a supervised learning environment wherein
each domain sample has common emotion labels. In this study, each domain dataset

consists of pairs Dk =
{(

Xk
i , (yk

i_d, yk
i_v)

)}Nk

i=1
, where Nk is the number of speech samples

of the k-th domain dataset, and datasets in each speech sample have multiple Y labels. The
discrete emotion label is yk

i_d (e.g., “happy” and “sad”), and that of the valence-level is yk
i_v

in the continuous dimensional emotion model.

Figure 1. Supervised multi-domain adaptation of the multi-path and group-loss-based network (MPGLN) speech emotion
recognition (SER). The model generates the temporal embedding feature and the transferred embedding feature for the
speech segment and learns based on multiple losses.

The source-domain dataset used for model training is domain Ds, and the domain to
which test samples to be predicted belong is the target domain, Dt. There are variant shifts
and domain discrepancies of the feature distribution, d

(
XS) and d

(
XT), of data samples of

different domain datasets, Ds and Dt, respectively [45].
The goal of the SER model is to learn the classifier function, f : X → Y , in the target

domain. Function f consists of the composition of two functions, f = h ◦ g, where g is an
embedding feature generator from the input data space, X, to an embedding feature space,
and h is the function used to predict the embedding feature to label-space Y.

Figure 2 shows the architecture of the proposed MPGLN SER, which generates the
multi-level embedding vectors from the multi-path generators. The BLSTM-based feature
generator, gBLSTM, generates a temporal embedding vector, and the transferred feature
extractor, gvgg, extracts a transferred embedding vector from the pre-trained VGGish
model [17].

In the prediction function, h, of the proposed ensemble structure, discrete emotional
labels are classified based on the fusion of multi-path embedding vectors from gBLSTM
and gvgg. It also includes a dimensional valence-level classification function based on the
temporal embedding feature generated by gBLSTM.
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Figure 2. Architecture of the multi-path and group-loss-based network for SER. The MPGLN SER model comprises a
bidirectional long short-term memory (BLSTM)-based temporal embedding generator and a transferred feature extractor
from the VGG-like audio classification model (VGGish) and its prediction function.

3.1. Multi-Path Embedding Features

In this study, the speech segments of an utterance unit are embedded in the feature
space through gBLSTM, a temporal feature generator of the ensemble structure, and gvgg, a
transmitted feature extractor. In Figure 2, the temporal feature generator, gBLSTM, of the
BLSTM architecture reflects a characteristic of the temporal relevance of before-and-after
speech features. The 74-D LLD-per-frame speech segment comprises a 13-D MFCC and
40-D Mel-spectrogram, along with 21-D time- and frequency-domain LLDs such as zero-
crossing rate, energy, spectral centroid, and spectral roll-off. The 74-D LLD are extracted by
the frame that applies sliding windows of 200 ms with a 50% shift in the speech segment.
Each speech segment is padded with a zero value to have a fixed number of 100 frames,
and the sequence of 100 × 74 per segment is input to gBLSTM. The padded input sequence
is fed into the gBLSTM, comprising 128 cells in each direction, and gBLSTM produces a 256-D
feature vector.

The feature generator, gBLSTM, adopts an attention mechanism and focuses on those
more discriminative parts of the BLSTM output sequence before activation of the final
emotion classification. The attention mechanism for SER assumes that there are certain
words and salient parts that express emotions well in the speech segment. Using the
attention method, it gives more weight to relevant speech frames of an utterance-level
segment for emotion recognition.

The attention layer focuses on relevant parts of the output sequence of the BLSTM
by giving different weight scores and generates the high-level features (h f ). It computes
weight αt using the softmax function via the attention layer (see Equation (1)), where the

BLSTM output vector is ht = [
→
ht,

←
ht] at time t. It produces the high-level feature, h f , which

is the weighted sum, ht, obtained by multiplying the weights, αt (see Equation (2)). The
generated h f is transited again to an embedding feature vector of R64 through the two
fully-connected (FC) layers in the MPGLN.

αt =
exp(W·ht)

∑T
t=1 exp(W·ht)

(1)
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h f =
T

∑
t=1

αt·ht, (2)

The temporal feature generator, gBLSTM : X → R
64 , generates a 64-D embedding

vector from the input of the 74-D LLD in units of speech-segment frames. The feature
generator, gBLSTM, in the MPGLN SER can operate as an SER model alone by combining
the prediction function, hbaseline

d : R64 → Y(yk
i_d ), without using the transferred features

from the VGGish. This study uses the BLSTM-based SER model as a baseline for the
evaluation of the MPGLN SER.

The transferred feature extractor, gvgg : X → R
VGGish , extracts the transferred feature

vector of data-sample X using the VGGish model. The input speech segment is divided
into non-overlapping 960 ms time-unit frames, and 64 mel-spaced spectrogram features
that apply a 25 ms window every 10 ms in each frame are extracted using the VGGish
model [17]. Using the transferred feature extractor, gvgg, it generates a 128-D embedding
feature vector from the VGGish model for the speech segment by inputting a frame-by-
frame spectrogram in units of 96 × 64. The extracted 128-D embedding vector passes
through the fattening and FC layers and is transited to a 64-D embedding vector.

3.2. Group Loss

Equation (3) shows how classifier f is trained on the classification loss, Lc( f ), of the
emotion labels Y of the speech samples X, where � is an appropriate loss function similar
to cross-entropy for multi-class classification [45,49].

Lc( f ) = �( f (X), Y) (3)

The proposed MPGLN SER is trained to simultaneously minimize multiple losses,
which are induced by the association of multi-dimensional emotion labels. The discrete
emotion labels are intuitive for expressing the emotion, but it has difficulty in expressing
complex emotions. The dimensional emotion labels are capable of normalized expressions
of complex emotions. However, doing so, it is difficult to intuitively distinguish emotions
at similar positions (e.g., “fear” and “anger”) in the arousal-valence axis [1]. This study
derives an association between discrete and dimensional valence-level labels based on real
SER domain datasets and applies a method of simultaneously learning the loss for each
emotion-label classification in the MPGLN model.

As shown in Figure 2, the MPGLN SER learns simultaneously based on the two losses:
Lcv for the valence-level label using the R

64 feature vector generated from gBLSTM and Lcd
for predicting the discrete emotion label.

The primary loss, Lcd, is used for the predicting function, fd = hd
◦ (gBLSTM ⊕ gVGGish),

where hd :
(
R

64 ⊕R
VGGish

)
→ Y(yk

i_d ) predicts the discrete emotion label of yk
i_d via the

combination of two embedding vectors. The complementary loss, Lcv, is that of the
predicting function, fv = hv

◦gBLSTM, which classifies the valence-level labels, where
hV : R64 → Y(yk

i_v ). Equation (4) shows that the proposed MPGLN SER is trained to
minimize group loss Lg about the prediction functions, fd and fv:

Lg = Group(Lcd( fd), Lcv( fv)). (4)

4. Evaluation

4.1. Datasets

We evaluated the proposed model using five multi-domain datasets contained in
three real SER databases. For the evaluation of the MPGLN SER based on multi-cultural
datasets, two KESD databases (i.e., KESDy18 and KESDy19) constructed for this study, and
the IEMOCAP are used. KESDy18 and KESDy19 comprise two domain datasets based on
heterogeneous microphone devices.

In the IEMOCAP dataset, data were collected from the scenarios for inducing the five
target emotions (“happy”, “sad”, “neutral”, “angry”, and “frustration”), and annotators
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selected one of the six basic emotions (“angry”, “sad”, “happy”, “disgust”, “fear”, and
“surprise”) [50] along with “frustration”, “excited”, and “neutral” as the discrete emotion
labels. Numerous data were annotated with the emotion categories such as “fear” and
“disgust”, which do not belong to the target emotions in IEMOCAP [7]. Even in the
KESD database, considering the subjectivity and diversity of human emotion perception,
the categorical emotion label was tagged as one of the six basic emotion labels along
with “neutral”.

The KESDy18 comprises speech samples in which 30 voice actors uttered 20 sentences
while expressing the four given emotions of “angry”, “happy”, “neutral”, and “sad”.
The six external taggers evaluated the speech segments while listening to the recorded
utterances as shown in Figure 3a. The annotators tagged one of the seven categorical
emotion labels comprising the six basic emotions [50] in addition to “neutral”, whose
tagged labels are more diverse than the classification of the actor’s expressed emotion.
They tagged labels of arousal and valence-level on a five-point scale for each segment.
The final categorical emotion label was determined by majority vote. The label of arousal
and the valence-level were determined from the average value of the levels tagged by
the evaluators. KESDy18 simultaneously collected speech data from two heterogeneous
microphones (i.e., a cell-phone’s built-in microphone (PM) and an external microphone
(EM) connected to a computer). According to the type of microphone devices, KESDy18
comprised the KESDy18_PM dataset plus the KESDy18_EM dataset.

Figure 3. External annotator tags the emotion labels for speech segments using the tagging application while watching the
recorded video and listening to the Emotional Speech Database (KESD) speech segments: (a) evaluating emotional labels of
KESDy18 via the tagging application; (b) evaluation of the KESDy19 speech segments looking at the recorded video.

The KESDy19 includes the speech samples of 40 voice-actors who speak Korean as
their native language using collection scenarios similar to those of the IEMOCAP. KESDy19
consists of 20 sessions collected from speech and electrocardiogram signals produced
during the dyadic acting of two voice actors, the process of acting was recorded. Each
session consists of 10 plays having lengths of 4–10 min. Six plays were based on scenarios
written to induce specific emotions, and the other four were improvised during the dyadic
interactions. Each speech segment per speaker was tagged using one of seven categorical
emotion labels, and the average value of the five-point scale of arousal and valence-level
was annotated by 10 external taggers using the same tagging application as shown in
Figure 3b. KESDy19 comprises a KESDy19_EM dataset that used an external microphone
and a KESDy19_PM dataset that simulated the KESDy19_EM dataset via a cell-phone’s
microphone.

The IEMOCAP is a widely used SER performance evaluation model organized into
five sessions of multi-modal audio, visual, and textual data taken from interactive dyadic
interactions performed by 10 voice actors. In each session, two voice actors emotionally per-
formed improvisations or scripted scenarios. The speech segments of their utterance-levels
were tailored to discrete emotion labels of “happy,” “sad,” “neutral,” “angry,” “surprise,”
“frustration,” “excited,” “disgust,” or “fear” based on the majority opinions of three exter-
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nal human annotators. The IEMOCAP data were also tagged with labels of arousal and
valence based on a five-point dimensional emotion scale [39,51]. The IEMOCAP database
provides the re-rounded average score of the evaluations of arousal and valence-levels
according to the five-point scale based on evaluations by six external evaluators. Many
prior studies evaluated SER performance using the IEMOCAP database to classify the four
emotion categories of “happy,” “sad,” “neutral,” and “angry.”

Figure 4 shows the distribution of four discrete emotion and arousal/valence-level
labels on the five-point scales of IEMOCAP, KESDy18, and KESDy19. As shown in
Figure 4a–c, the speech samples of the “happy” class are distributed at the highest va-
lence level, and the “neutral” samples are in the middle. The speech data labeled with
“sad” and “angry” classes show a distribution of low-level valences across all three SER
databases. The association between discrete emotion labels and those of arousal-level
shows more irregularities in Figure 4d–f. The speech samples tagged with the “sad” class
are distributed in the overall arousal-level, and the samples of the IEMOCAP with the
“happy” label are distributed in the overall level of arousal, unlike the other two KESD.

Figure 4. Cont.
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Figure 4. Distribution between discrete and dimensional emotion labels of the five-point scale: (a) distribution of discrete
and valence-level labels of Interactive Emotional Dyadic Motion Capture database (IEMOCAP); (b) distribution of discrete
and valence-level of KESDy18; (c) distribution of discrete and valence-level of KESDy19; (d) distribution of discrete and
arousal-level of IEMOCAP; (e) distribution of discrete and arousal-level of KESDy18; and (f) distribution of discrete and
arousal-level of KESDy19.

In Figure 4, the speech samples corresponding to the discrete emotion classes con-
stitute roughly three distribution groups across the label of valence-level. The three
distribution groups are “happy,” “neutral,” and “sad” or “angry.”

In this study, we mapped the valence-level labels of the five-point scale to a three-point
scale using the induced association between discrete and dimensional emotion labels, as
shown in Table 1 and Figure 4. Each valence-level (i.e., 1, 2, and 3) of the three-point
scale represents “negative”, “neutral”, and “positive” emotional states, respectively. For
the conversion to the valence-level of the three-point scale, this study assigned sample
labels of valences less than 2.5 to the first valence-level, samples of 4.0 or higher to the
third, and the others to the second, respectively. Table 1a shows the mean and standard
variation of arousal and valence-levels on a five-point scale for each discrete emotion
category. Table 1b shows the confidences of association [52] of the speech samples of
four discrete emotion classes included in the valence levels of the three-point scale. The

confidence Con f .
(
Ci → Vj

)
=

NCi∪Vj
NCi

, where Ci is the discrete emotion label, 1 ≤ i ≤ 4,

and Vj denotes the valence-level, 1 ≤ j ≤ 3.

Table 1. Association properties of discrete emotion labels and valence-levels in multi-domain SER datasets: (a) Mean and
standard variation of arousal and valence levels on a five-point scale for each discrete emotion category; (b) Confidence of
discrete emotion labels and valence-level of three-point scale.

Index Association Property IEMOCAP KESDy18 KESDy19

(a)

Valence
Mean ± variation

angry 1.89 ± 0.52 2.11 ± 0.21 1.78 ± 0.37
happy 3.94 ± 0.47 4.42 ± 0.34 4.33 ± 0.36
neutral 2.95 ± 0.49 3.23 ± 0.53 2.94 ± 0.60

sad 2.24 ± 0.57 2.00 ± 0.33 1.89 ± 0.52

Arousal
Mean ± variation

angry 3.69 ± 0.66 3.93 ± 0.46 3.81 ± 0.58
happy 3.16 ± 0.61 3.92 ± 0.36 3.90 ± 0.53
neutral 2.79 ± 0.53 3.08 ± 0.38 2.99 ± 0.33

sad 2.61 ± 0.61 2.60 ± 0.44 2.63 ± 0.64

(b) Confidence

Conf.({Ci = angry}->{V1}) 0.8 0.95 0.95
Conf.({Ci = sad}->{V1}) 0.58 0.9 0.86
Conf.({Ci = neutral }->{V2}) 0.85 0.83 0.71
Conf.({Ci = happy}->{V3}) 0.77 0.93 0.86
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Table 2 shows properties of the five domain datasets of three SER databases used for
the evaluation, where we used speech segments having lengths of 2 s or longer as one of
four categories of emotion labels, “angry”, “happy”, “neutral”, and “sad.”

Table 2. Properties of multi-domain SER datasets.

Property IEMOCAP KESDy18 KESDy19 2

Language English Korean Korean

Speakers 10 (5 male, 5 female) 30 (15 male, 15 female) 40 (20 male, 20 female)

Utterance type Acted
(Scripted/Improvised)

Acted
(Scripted)

Acted
(Scripted/Improvised)

Datasets (Mic.) IEMOCAP
(2 Mic. of the same type)

KESDy18_PM (Galaxy S6),
KESDy18_EM 1 (Shure S35)

KESDy19_PM (Galaxy S8),
KESDy19_EM (AKG C414)

angry 947 431 1628
happy 507 157 1121
neutral 1320 1193 2859
sad 966 467 694

Total 3740 2248 6302
1 KESDy18_EM is available online at https://nanum.etri.re.kr/share/kjnoh/SER-DB-ETRIv18?lang=eng (accessed on 7 January 2021).
2 The collecting process of the KESDy19 was approved by the Institutional Review Board of Korea National Institute for Bioethics Policy
(approval number P01-201907-22-010 and 22 July 2019).

4.2. Evaluation of the BLSTM-Based Baseline SER

As shown in Table 2, the five domain SER datasets used for evaluation were un-
balanced in the number of samples of the discrete emotion classes. We did not apply
oversampling, data augmentation [11], or weighted loss methods [46] to minority classes
for objective verification of the proposed MPGLN SER.

Speech samples of each class in the multi-domain datasets were trained in the SER
model by the units of the speech segment, which consisted of the voiced part of the vocal-
cord vibrations and unvoiced parts such as a silence section between voiced parts [53].
This study did not remove the unvoiced region from any speech segment. However, it
framed the entire voiced and unvoiced parts of the segment as input to the model.

We present four performance metrics in consideration of the sample imbalance of each
emotion class: weighted accuracy (WA), unweighted accuracy (UA), precision (PR), and F1
score. WA is the overall accuracy, calculated as the ratio of the total number of test data
and the number of samples accurately predicted by the actual label. UA is calculated as the
average of the recall values of four classes and is an important performance indicator in
the evaluation of the SER model based on imbalanced datasets [19,20,26].

This study applied z-normalization [1] of the means and standard deviations of each
dataset to reduce the fluctuations of the speaker and speech signals. We evaluated the
speaker-independent leave-p-subjects-out (LpSO) validation technique, where p is the
number of subjects to leave out when training the model. For training, we used separated
samples belonging to speakers accounting for 80% of the total number in each dataset;
samples of the remaining 20% were evaluated as test data.

For the evaluation of IEMOCAP, we used a leave-two-subjects-out evaluation that
applied speech data from two speakers participating in one session as the test data, which
was the leave-one-session-out (LOSO) validation. KESDy18 was evaluated as a leave-six-
subjects-out sample from the set of 30 speakers. The evaluation of KESDy19 was conducted
as a leave-eight-subjects-out sample for four sessions of the 20 sessions played in pairs by
40 speakers. The training and test data separated for speaker-independent evaluation in
each dataset were equally applied to the evaluation of a single domain, multi-domain, or
domain generalization, as shown in Tables 3 and 4 and Tables 6–8.
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Table 3. Performance of the baseline BLSTM-based SER model according to the input low-level descriptions (LLD) feature
set in SER datasets.

Model Dataset Input LLDs WA UA PR F1

Our baseline
(SPSL: single-path-

single-loss)

IEMOCAP

MFCC 0.616 0.588 0.576 0.559
Mel-spec 0.534 0.525 0.504 0.491

MFCC + Mel-spec 0.608 0.58 0.574 0.562
MFCC + Mel-spec + TimeSpectral 0.611 0.59 0.58 0.575

KESDy18_EM

MFCC 0.742 0.712 0.715 0.71
Mel-spec 0.62 0.57 0.553 0.556

MFCC + Mel-spec 0.762 0.736 0.719 0.724
MFCC + Mel-spec + TimeSpectral 0.774 0.738 0.737 0.734

KESDy19_EM

MFCC 0.613 0.563 0.581 0.567
Mel-spec 0.56 0.483 0.518 0.491

MFCC + Mel-spec 0.617 0.562 0.579 0.568
MFCC + Mel-spec + TimeSpectral 0.643 0.595 0.608 0.599

Table 4. Performance of the baseline BLSTM-based SER model.

Model Dataset WA UA PR F1

Our baseline
(SPSL)

IEMOCAP 0.611 0.59 0.58 0.575
KESDy18_PM 0.776 0.739 0.739 0.736
KESDy18_EM 0.774 0.738 0.737 0.734
KESDy19_PM 0.624 0.574 0.589 0.58
KESDy19_EM 0.643 0.595 0.608 0.599

In the evaluation of this study, a model based on the temporal embedding features
and the learning loss, Lcd, without the transferred embedding feature was assumed to
be the baseline SER model. It can be seen that this baseline operated using a single-path-
single-loss (SPSL) scheme. In the evaluation, the proposed MPGLN and the baseline SPSL
SER model were trained with a batch size of 200 samples at 25 epochs using an Adam
optimizer and a drop rate of 0.6 to the last two FC layers. The learning rate of the optimizer
was 1.10−3. The model was evaluated over 10 iterations of training and testing, and the
final value of each performance metric was calculated as the average value.

The baseline SPSL SER model uses the 74-D LLD integration per-frame of speech
segment, which comprises 13-D MFCC and 40-D Mel-spectrogram (Mel-spec), along with
21-D time- and spectral-domain (TimeSpectral) LLDs such as zero-crossing rate, energy,
spectral centroid, and spectral roll-off. We evaluated the performance of each combination
of LLDs with our baseline SER model based on multiple SER datasets. Table 3 summarizes
the performance evaluation according to the input feature set of the LLDs used in this
study, as shown in the evaluation results based on the IEMOCAP, KESDy18_EM, and
KESDy19_EM datasets. It can be observed that MFCC is the dominant feature of SER from
the results in Table 3. The SER performance improved from 1.6% to 3.2% based on the F1
score in comparison with the single input of MFCC when using the input combination of
MFCC and Mel-spectrogram, along with TimeSpectral LLDs.

Table 4 shows the results of the speaker-independent evaluation of the BLSTM baseline
SPSL when classifying the four discrete emotion labels in each of the five domain datasets.
The evaluation based on KESDy19 showed similar performance results as IEMOCAP. In the
evaluation of KESDy18, it showed higher performance results than the other two databases.

A previous study by Zheng et al. [54] demonstrated the performance of 40% WA of
the CNN-based SER model for the five emotion classes based on IEMOCAP. For a fair
comparison of the SER performance, this study performed a comparison with the previous
RNN-based SER models that presented the UA performance of the four emotion classes
based on IEMOCAP, which was the test environment in many previous SER studies.
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In Table 5, we compare the performance results of previous RNN-based SER models
and the SPSL baseline model in the LOSO evaluation to classify the four emotion labels
based on the IEMOCAP dataset. These studies present a UA metric of the average recall
for each emotion class, considering the imbalance of the number of samples. As shown in
Table 5, our baseline BLSTM SER model achieved a competitive performance of UA 59% in
the LOSO validation based on IEMOCAP.

Table 5. Performance results reported in previous recurrent neural networks (RNN)-based studies of
SER model and our baseline model based on IEMOCAP.

Researches Features Network UA Emotions

Mirsamadi [19] 32 LLD RNN 0.585 4
Chen 1 [20] logMel CRNN 0.647 ± 0.054 4
Mu [26] Spectrogram CRNN 0.564 4
Our baseline (SPSL) 74 LLD RNN 0.59 ± 0.08 4

1 This study used only the improvisation data of female speakers as test data.

4.3. Evaluation of Multi-Domain Adaptation

As shown in Tables 6–8, evaluations were performed using a single-domain evaluation,
a multi-domain adaptation, and a multi-domain generalization according to the source
and target domains participating in training and evaluation. The division of training and
testing data separated for speaker-independent evaluation in each dataset used the same
configurations as those used in Tables 3–8. In Tables 6–8, the highest F1 scores are highlighted.

Table 6. Evaluation results in a single domain dataset. Single-path-single-loss (SPSL) is the baseline
SER model that learns by the temporal embedding features and the loss Lcd; Multi-path-single-loss
(MPSL) is that model learns using the multi-path embedding vectors and loss Lcd without the loss
Lcv; MPGL is the model that learns based on multi-path embedding vectors and the group loss Lg.

Index Domain Model WA UA PR F1

(a) IEMOCAP
SPSL 0.611 0.59 0.58 0.575
MPSL 0.611 0.606 0.576 0.583
MPGL 0.619 0.607 0.582 0.588

(b) KESDy18_PM
SPSL 0.776 0.739 0.739 0.736
MPSL 0.781 0.753 0.747 0.746
MPGL 0.814 0.778 0.771 0.773

(c) KESDy18_EM
SPSL 0.774 0.738 0.737 0.734
MPSL 0.788 0.756 0.732 0.741
MPGL 0.797 0.768 0.761 0.762

(d) KESDy19_PM
SPSL 0.624 0.574 0.589 0.58
MPSL 0.625 0.581 0.594 0.586
MPGL 0.637 0.586 0.607 0.594

(e) KESDy19_EM
SPSL 0.643 0.595 0.608 0.599
MPSL 0.629 0.581 0.591 0.584
MPGL 0.642 0.592 0.608 0.598
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Table 7. Evaluation results of multi-domain adaptation.

Index Multi-Domain Model WA UA PR F1

(a)
KESDy18_PM,
KESDy18_EM

SPSL 0.774 0.749 0.722 0.731
MPSL 0.799 0.764 0.753 0.756
MPGL 0.806 0.773 0.766 0.768

(b)
KESDy19_PM,
KESDy19_EM

SPSL 0.618 0.581 0.584 0.581
MPSL 0.626 0.58 0.589 0.584
MPGL 0.631 0.585 0.595 0.589

(c)
KESDy18_PM,
KESDy18_EM,
KESDy19_PM,
KESDy19_EM

SPSL 0.653 0.628 0.63 0.628
MPSL 0.664 0.639 0.642 0.639

MPGL 0.663 0.63 0.639 0.634

(d)
KESDy18_PM,
KESDy18_EM,

IEMOCAP

SPSL 0.683 0.649 0.63 0.637
MPSL 0.706 0.675 0.654 0.66
MPGL 0.713 0.677 0.656 0.664

(e)
KESDy19_PM,
KESDy19_EM,

IEMOCAP

SPSL 0.599 0.577 0.575 0.573
MPSL 0.602 0.583 0.576 0.578
MPGL 0.616 0.587 0.59 0.588

Table 8. Evaluation results of multi-domain generalization.

Index
Source

Domain
Target

Domain
Model WA UA PR F1

(a)
KESDy18_PM,
KESDy18_EM,
KESDy19_EM

KESDy19_PM
SPSL 0.594 0.532 0.563 0.539
MPSL 0.592 0.53 0.559 0.536
MPGL 0.606 0.543 0.573 0.551

(b) KESDy18_EM,
IEMOCAP

KESDy18_PM
SPSL 0.682 0.69 0.652 0.658
MPSL 0.688 0.704 0.643 0.658
MPGL 0.718 0.74 0.677 0.693

(c) KESDy19_EM,
IEMOCAP

KESDy19_PM
SPSL 0.572 0.55 0.538 0.538
MPSL 0.577 0.552 0.545 0.542
MPGL 0.596 0.555 0.561 0.554

Table 6 shows the evaluation results when classifying four discrete emotion classes based
on each of the five domain datasets. The evaluation was conducted in three experimental
environments according to the type of SER model: The baseline SPSL model learns from the
temporal embedding features and the single-loss Lcd. Multi-path-single-loss (MPSL) uses
multi-path embedding vectors and is trained only on Lcd without the complementary loss,
Lcv, for valence-level classification. Multi-path-group-loss (MPGL) learns from multi-path
embedding vectors and the group loss, Lg, consisting of Lcd and Lcv.

When compared with the harmonic-mean F1 score based on the KESDy18_PM dataset
shown in Table 6b, the performance of the SER of the MPSL using a single-loss Lcd showed
an improvement of 1% over that of the baseline SPSL. The SER MPGL model trained on
the loss group, Lg, showed an F1 improvement of up to 3.7% over the SPSL’s F1.

Table 7 shows the results of multi-domain adaptation evaluation when the SER model
was trained with samples aggregated from multiple-domain SER datasets collected from
various environments. The separated test samples for about 20% of the speakers were
evaluated for speaker-independent evaluation. As shown in Table 7a, regarding KESDy18,
which consisted of two datasets collected simultaneously via heterogeneous devices, the
proposed SER model trained on the group-loss Lg of MPGL achieved an F1 improvement
of up to 3.7% over the baseline SPSL.

Table 8 presents the evaluation results of the proposed MPGLN SER for supporting
multi-domain generalization. In the evaluation of Table 8a, the SER model was trained
with the aggregated samples of KESDy18_PM, KESDy18_EM, and KESDy19_EM datasets
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and was evaluated against the separated test samples of the KESDy19_PM domain, which
was not used for training but was collected from the same language culture. The evaluation
results of Table 8a shows that the F1 score of the MPGL model improved by 1.2% compared
with the baseline SPSL. In the evaluation of Table 8b, when the SER model was trained
on KESDy18_EM and IMEOCAP datasets, which were from different language cultures,
the model was evaluated using the Korean KESDy18_PM domain dataset. The proposed
MPGLN SER showed an F1-score improvement of about 3.5% over the baseline model.

Figure 5 shows the changes in losses from Table 8b, including the loss, Lcd, of the
baseline SPSL model and losses Lcd and Lcv of the MPGL SER model. These losses were
measured every 25 epochs during training using aggregated KESDy18_EM and IEMOCAP
samples. The loss, Lcd, of the MPGL model, which learned two losses simultaneously,
trained faster than did the Lcd of the baseline SER model. This shows that the other
complementary loss, Lcv, of the proposed MPGLN, used to predict the valence-level label,
decreased similarly to the loss, Lcd, of the baseline SPSL.

Figure 5. Change in losses of the baseline SER and the proposed MPGLN SER in Table 8b. The loss,
Lcd, of the baseline SPSL model and losses Lcd and Lcv of the SER model of MPGL.

Figure 6 shows the distribution of the 64-D embedding vectors of the test data reduced
to a 2-D embedding space via t-stochastic neighbor embedding (t-SEN). The 64-D embed-
ding vectors were generated in the FC layer just prior to the MPSL and MPGL softmax
activations of the evaluation in Table 8b.

Figure 6. Distribution of reduced embedding vectors (the 64-D embedding vectors of the test data in the last fully-connected
(FC) layer in the ensemble network) that are reduced to 2-D via t-stochastic neighbor embedding (t-SEN) dimension
reduction: (a) embedding space for MPSL in Table 8b; (b) embedding space for MPGL in Table 8b.
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Figure 6a shows the distribution of the embedding feature vector in the MPSL trained
by the loss, Lcd, only without the complementary loss, Lcv. Figure 6b displays the dis-
tribution of the MPGL model based on the loss group, Lg, of the two losses: Lcd and
Lcv. Figure 6b shows the MPGLN SER model that learns from multi-path embedding
vectors and the loss group, Lg, where the samples belonging to the “happy” class were
more closely grouped, and the samples of the “angry” and “sad” classes are located closer
together compared with the MPSL distribution shown in Figure 6a.

5. Conclusions

We determined that it is essential to improve the generalization of the SER model for
deployment to real applications. This paper proposed the MPGLN for SER in support of
supervised multi-domain adaptation and generalization based on multi-domain datasets.
The proposed MPGLN SER includes a temporal feature generator for the BLSTM network
using the input of handcrafted LLD features of a speech sample. Additionally, we leveraged
the transferred feature extractor from the pre-trained VGGish model for the MPGLN. The
proposed MPGLN SER learned simultaneous multiple losses induced by associations
between discrete emotion and dimension labels.

The proposed MPGLN SER was evaluated using five real SER datasets of various
speaker domains, language cultures, collecting devices, and procedural environments.
This included KESDy18 and KESDy19 databases. KESDy18 comprised speech samples
delivered by voice actors who uttered Korean short sentences by expressing specific dis-
crete emotions. The KESDy18 database consisted of KESDy18_PM and KESDy18_EM
datasets from heterogeneous devices and environments with different device locations.
The KESDy19 database comprised KESDy19_EM and KESDy19_PM, which contained the
collected speech sample voices acted using a similar procedure as that of the IEMOCAP and
that of the simulated dataset based on the cell-phone’s built-in microphone, respectively.

This study assumed that the SER model was trained only with the BLSTM-based tem-
poral embedding feature generator included with MPGLN without transferred feature as
the baseline SER model. We verified the performance reliability of the baseline SER model
using the IEMOCAP. The BLSTM-baseline SER model showed competitive UA results
of 59% when classifying the four categorical emotion labels. The multi-domain adapta-
tion and domain generalization evaluation of the proposed MPGLN SER was performed
using the English-speaking IEMOCAP and the Korean KESDy18 and KESDy19 datasets
by comparing the performances of the baseline model according to various evaluation
environments.

The proposed MPGLN SER model trained on multiple losses showed an F1 perfor-
mance improvement of up to 3.7% over the baseline model when classifying four emotion
labels in a single domain dataset. The performance evaluation of the MPGLN SER for
supervised multi-domain adaptation, which trained and tested on the SER model using the
aggregated speech samples of the multi-domain datasets, also showed an improvement of
up to 3.7% over the baseline F1 score. From the evaluation of the multi-domain generaliza-
tion of the proposed MPGLN SER, the F1 score enjoyed an improvement of 3.5% over the
baseline SER when using samples from other language cultures not used for training. From
these results, we found that our MPGLN SER, which supports supervised multi-domain
adaptations, is also effective in reinforcing the generalization of the SER model based on
multi-domain datasets.

For future works, we plan to derive the differences in acoustic features of emotional
expressions based on multi-cultural SER datasets and study the learning method for the
deep-learning-based SER model considering the domain discrepancy. Furthermore, we
will continue enhancing our model’s generalizability through evaluations of speech data in
the wild by deploying the proposed MPGLN SER to real applications.
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Abstract: Simultaneous activation of brain regions (i.e., brain connection features) is an essential
mechanism of brain activity in emotion recognition of visual content. The occipital cortex of the brain
is involved in visual processing, but the frontal lobe processes cranial nerve signals to control higher
emotions. However, recognition of emotion in visual content merits the analysis of eye movement
features, because the pupils, iris, and other eye structures are connected to the nerves of the brain.
We hypothesized that when viewing video content, the activation features of brain connections are
significantly related to eye movement characteristics. We investigated the relationship between
brain connectivity (strength and directionality) and eye movement features (left and right pupils,
saccades, and fixations) when 47 participants viewed an emotion-eliciting video on a two-dimensional
emotion model (valence and arousal). We found that the connectivity eigenvalues of the long-distance
prefrontal lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving
high valance. In addition, saccade movement was correlated with long-distance occipital-frontal
connectivity. Finally, short-distance connectivity results showed emotional fluctuations caused by
unconscious stimulation.
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1. Introduction

Studies have shown that different brain regions participate in various perceptual and
cognitive processes. For example, the frontal lobe is related to thinking and consciousness,
whereas the temporal lobe is associated with processing complex stimulus information,
such as faces, scenes, smells, and sounds. The parietal lobe integrates a variety of sensory
inputs and the operational control of objects, while the occipital lobe is related to vision [1].

The brain is an extensive network of neurons. Brain connectivity refers to the syn-
chronous activity of neurons in different regions and may provide useful information on
neural activity [2]. Mauss and Robinson [3] suggested that emotion processing occurs in
distributed circuits, rather than in specific isolated brain regions. Analysis of the simulta-
neous activation of brain regions is a robust pattern-based analysis method for emotional
recognition [4]. Researchers have developed methods to capture asymmetric brain activity
patterns that are important for emotion recognition [5].

Users search massive amounts of information until they find something useful [6].
However, although the information is presented visually, users do not recognize it, because
of a lack of attention. The cortical area known as the frontal eye field (FEF) plays a vital
role in the control of visual attention and eye movements [7].

Eye tracking is the process of measuring eye movements. Eye tracking signals imply
the user’s subconscious behaviors and provide essential clues to the context of the subject’s
current activity [8], which allow us to determine what elicits users’ attention.

The brain activity is significantly related to eye movement features involving pupil,
saccade, and fixation. Our pupils change their size accordingly [9] when one is stimulated
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from resting to emotional states. The saccade is a decision made every time we move our
eyes [10,11]. Decisions are influenced by one’s expectations, goals, personalities, memories,
and intentions [12].

A gaze is a potent social cue. For example, mutual gaze often implies threat or evasion,
signaling submission or avoidance [13–16]. Eye gaze processing is one of the bases for
social interactions, because the neural substrate for gaze processing is an essential step in
developing neuroscience for social cognition [17,18].

By analyzing eye movement data, such as gaze position and gaze time, researchers
can obtain explanations for multiple cognitive operations involving multiple behaviors [19].
For example, language researchers can use eye-tracking to analyze how people read and
understand spoken language. Consumer researchers can study how shoppers make pur-
chases. Researchers can gain a better cognitive understanding by integrating eye tracking
with neuroimaging technologies (e.g., fMRI and EEG) [20].

Table 1 compares the few studies on eye movement features and EEG signals with
an interest in producing a robust emotion-recognition model [21]. Wu et al. [22] integrated
functional features from EEG and eye movements with deep canonical correlation analysis
(DCCA). Their classification achieved 95.08% ± 6.42% accuracy on SEED public emotion
EEG datasets [23]. Zheng et al. [24] used a multimodal depth neural network to incor-
porate eye movement and EEG signals to improve recognition performance. The results
demonstrated that modality fusion with deep neural networks significantly enhances the
performance compared with a single modality. Soleymani [25] learned that the decision-
level fusion strategy is more adaptive than feature-level fusion when incorporating EEG
signals and eye movement data. They also found that user-independent emotion recogni-
tion can perform better than individual self-reports for arousal assessment. While studies
focused on improving recognition accuracy, currently, there is a lack of understanding of the
relationship between brainwave connectivity and eye movement features (fixation, saccade,
and left and right pupils). Specifically, we do not know how the functional relationship
varies according to visual content’s emotional characteristics (valence, arousal).

Table 1. Comparison of previous and proposed methods.

Methods Strengths Weaknesses

Deep canonical correlation analysis
(DCCA) of integrated functional

features [22]

Applied machine learning and
incorporated and analyzed brain

connectivity and eye movement data.

The statistical significance of brain
connectivity and eye movement feature

variables was not analyzed.

Designed a six-electrode placement to
collect EEG and combined them with eye
movements to integrate internal cognitive

states and external behaviors [24].

Demonstrated the effect of modality
fusion with a multimodal deep neural

network. The mean accuracy was 85.11%
for four emotions (happy, sad, fear,

and neutral).

The study did not analyze the functional
relationship between brainwave

connectivity and eye movements.

User-independent emotion recognition
method to identify affective tags for

videos using gaze distance, pupillary
response, and EEG [25].

Investigated pupil diameter, gaze
distance, eye blinking, and EEG and

applied modality fusion strategy at both
feature and decision levels.

The experimental session limited the
number of videos shown to participants.

The study did not investigate
brainwave connectivity.

Recognition of emotion by brain
connectivity and eye movement

(proposed method).

Explored the characteristics of brainwave
connectivity and eye movement

eigenvalues and the relationship between
the two in a two-dimensional

emotional model.

Did not apply machine learning to
formulate a model. The analysis was

based on one stimulus for each of the four
quadrants in the two-dimensional model.

In this study, our research question involves the functional characteristics of brainwave
connectivity and eye movement eigenvalues in valence-arousal emotions in a two-dimensional
emotional model. We hypothesized that when viewing video content, the activation features
of brain connections are significantly related to eye movement characteristics. We divided
and analyzed brainwave connectivity into three groups: (1) long-distance occipital-frontal

180



Sensors 2022, 22, 6736

connectivity, (2) long-distance prefrontal and temporal, parietal, and central connectivity,
and (3) short-distance connectivity, including frontal-temporal, frontal-central, temporal-
parietal, and parietal-central connectivity. We applied k-means clustering to distinguish
emotional feature responses, and eye movement eigenvalues were further differentiated.
We then analyzed the relationship between eye movements and brain wave connectivity,
depicting the differential characteristics of a two-dimensional emotional model.

2. Materials and Methods

We adopted Russell’s two-dimensional model [26], where emotional states can be
defined at any valence or arousal level. We invited participants to view emotion-eliciting
videos with varying valences (i.e., from unpleasant to pleasant) and arousal levels (i.e.,
from relaxed to aroused). To understand brain connectivity and causality of brain regions
according to different emotions, we used supervised learning to classify emotional and non-
emotional states, and extract eye movement feature values associated with such different
emotional states to analyze the relationship between brain activity and eye movement.

2.1. Stimuli Selection

We edited 6-min video clips (e.g., dramas or films) to elicit emotions from the partici-
pants. The content used to induce emotional conditions (valence and arousal) was collected
in a two-dimensional model. To ensure that the emotional videos were effective, we con-
ducted a stimulus selection experiment prior to the main experiment. We selected 20 edited
dramas or movies containing emotions; five video clips were used for each quadrant in the
two-dimensional model. Thirty participants viewed the emotional videos and responded
to a subjective questionnaire. They received USD 20 for their participation in the study.
Among the five video clips, the most representative video for each of the four quadrants in
the two-dimensional model was selected (see Figure 1). Four stimuli were selected for the
main experiment.

Figure 1. Video stimulus for each quadrant on a two-dimensional model.

2.2. Experiment Design

The main experiment had a factorial design of two (valence: pleasant and unpleasant)
× two (arousal: aroused and relaxed) independent variables. The dependent variables
included participants’ brainwaves, eye movements (fixation, saccade, and left and right
pupils), and subjective responses to a questionnaire.
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2.3. Participants

We conducted an a priori power analysis using the program G*Power with the power
set at 0.8 and α = 0.05, d = 0.6 (independent t-test), two-tailed. These results suggest
that an N value of approximately 46 is required to achieve appropriate statistical power.
Therefore, 47 university students were recruited for the study. Participants’ ages ranged
from 20 to 30 years (mean = 28, STD = 2.9), with 20 (44%) men and 27 (56%) women.
We selected participants with a corrective vision ≥ 0.8, without any vision deficiency, to
ensure reliable recognition of visual stimuli. We recommended that the participants sleep
sufficiently and refrain from smoking and consuming alcohol and caffeine the day before
the experiment. As the experiment required valid recognition of the participant’s facial
expression, we limited the use of glasses and cosmetic makeup. All participants were
briefed on the purpose and procedure of the experiment, and signed consent was obtained
from them. They were then compensated for their participation by payment of a fee.

2.4. Experimental Protocol

Figure 2 outlines the experimental process and the environment used in this study.
The participants were asked to sit 1 m away from a 27-inch LCD monitor. A webcam was in-
stalled on the monitor. Participants’ brainwaves (EEG cap 18 Ch) and eye movements (gaze
tracking device) were acquired, in addition to subjective responses to a questionnaire. We
set the frame rate of the gaze-tracking device to 60 frames per second. Participants viewed
four emotion-eliciting videos and responded to a questionnaire after each viewing session.

Figure 2. Experimental protocol and configuration.

3. Analysis

Our brain connectivity analysis methods were based on Jamal et al. [27], as outlined
in Figure 3. The process consisted of seven stages: (1) sampled EEG signals at 500 Hz,
(2) removed the noise through pre-processing, (3) conducted fast Fourier transform (FFT)
at 0–30 Hz, (4) conducted band pass filter with delta (0 Hz–4 Hz), theta (4 Hz–8 Hz),
alpha (8 Hz–12 Hz), and beta (12 Hz–30 Hz), (5) processed continuous wavelet transform
(CWT) with complex Morlet wavelet, (6) computed the EEG frequency band-specific
pairwise phase difference, and (7) determined the optimal number of states in the data
using incremental k-means clustering.

We used the CWT with a complex Morlet wavelet as the basis function to analyze the
transient dynamics of phase synchronization. In contrast to the discrete Fourier transform
(DFT), it has a short vibration signal and an expiration date for the vibration wave. Figure 4
shows the Morlet wavelet graph. The CWT operates with a signal with scaled and shifted
versions of a basic wavelet.
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Figure 3. The process of brain connectivity analysis.

Figure 4. The Morlet wavelet graph.

Therefore, it can be expressed as the formula below in Equation (1), where a is a scale
factor and b is a shift factor. Being continuous, infinite wavelets can be shifted and scaled:

Xw(a, b) =
1

|a| 1
2

∫ ∞

−∞
x(t)ϕ

(
t − b

a

)
dt (1)

4. Results

We will present the results of the participants’ subjective evaluation and brain connec-
tivity analysis, followed by the results of eye movement analysis.

4.1. Subject Evaluation

We compared the subjective arousal and valence scores between the four emotion-
eliciting conditions (pleasant-aroused, pleasant-relaxed, unpleasant-relaxed, and unpleasant-
aroused). We conducted a series of ANOVA tests on the arousal and valence scores. Post-
hoc analyses using Tukey’s HSD were conducted by adjusting the alpha level to 0.0125 per
test (0.05/4).

The mean arousal scores were significantly higher in the aroused conditions (pleasant-
aroused, unpleasant-aroused) than in the relaxed conditions (pleasant-relaxed, unpleasant-
relaxed) (p < 0.001), as shown in Figure 5. The pairwise comparison of the mean arousal
scores indicated that the scores were significantly different from one another, as shown in
Table 2. The results indicate that participants reported congruent emotional arousal with
the target emotion of the stimulus.

The results indicated that the mean valence scores were significantly higher in the
pleasant conditions (pleasant-aroused, pleasant-relaxed) than in the unpleasant conditions
(unpleasant-aroused, unpleasant-relaxed), p < 0.001, as shown in Figure 6. The pairwise
comparison of the mean valence scores indicated that the scores were significantly different
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from one another, except for two comparisons, as shown in Table 3. The results indicate that
participants reported congruent emotional valence with the target emotion of the stimulus.

 
Figure 5. Analysis of the arousal values between the four emotion-eliciting conditions.

Table 2. Multiple comparisons of mean arousal scores using Tukey HSD.

Emotion
Condition 1

Emotion
Condition 2

Mean
Difference

Lower Upper Reject

Pleasant-aroused Pleasant-relaxed −2.2083 −2.8964 −1.5202 True
Pleasant-aroused Unpleasant-aroused 0.9375 0.2494 1.6256 True
Pleasant-aroused Unpleasant-relaxed −0.7083 −1.3964 −0.0202 True
Pleasant-relaxed Unpleasant-aroused 3.1458 2.4577 3.8339 True
Pleasant-relaxed Unpleasant-relaxed 1.5 0.8119 2.1881 True

Unpleasant-aroused Unpleasant-relaxed −1.6458 −2.3339 −0.9577 True

 

Figure 6. Analysis of the valence values between the four emotion-eliciting conditions.

Table 3. Multiple comparisons of mean valence scores using Tukey HSD.

Emotion
Condition 1

Emotion
Condition 2

Mean
Difference

Lower Upper Reject

Pleasant-aroused Pleasant-relaxed −0.125 −0.6531 0.4031 False
Pleasant-aroused Unpleasant-aroused −3.625 −4.1531 −3.0969 True
Pleasant-aroused Unpleasant-relaxed −3.1042 −3.6322 −2.5761 True
Pleasant-relaxed Unpleasant-aroused −3.5 −4.0281 −2.9719 True
Pleasant-relaxed Unpleasant-relaxed −2.9792 −3.5072 −2.4511 True

Unpleasant-aroused Unpleasant-relaxed −1.6458 −2.3339 −0.9577 True
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4.2. Brain Connectivity Features

We computed the EEG frequency band-specific pairwise phase differences for each
emotion-eliciting condition, as shown in Figures 7–10. A total of 153 pairwise features
were analyzed. If the power differences between the two brain regions are lower than
the mean power value, the connectivity is relatively strong. Such cases were marked

as unfilled ( ).
We further analyzed the long- and short-distance connectivity of the extracted features.

The connectivity of the frontal and occipital lobes can predict the process of information
transmission to the occipital lobe after emotion is generated (marked in green in Figure 11).
The eigenvalue was the average (N = 47) of the connectivity sum of the two channels
defined by the long-distance O-F connectivity.

The prefrontal cortex is involved in emotion regulation, recognition, judgment, and
reasoning. The connectivity of the prefrontal lobe to the temporal lobe, parietal lobe, and
center helps to understand the information processing process of visual-emotional stimuli
(marked in yellow in Figure 11). The eigenvalue was the average (N = 47) of the connectivity
sum of the two channels defined by the long-distance prefrontal connectivity.

Long- and short-range connectivity features have been extensively studied for their
ability to process social emotions and interactions. Short-distance connectivity characteris-
tics can determine the brain’s different states during negative emotions, especially those
related to the central-parietal lobe connectivity. We considered a distance of less than 10 cm
as short connectivity (marked pink in Figure 11). The eigenvalue was the average (N = 47)
of the connectivity sum of the two channels defined by the short-distance connectivity.

Figure 7. The brain connectivity map in the pleasant-aroused condition.

Figure 8. The brain connectivity map in the pleasant-relaxed condition.
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Figure 9. The brain connectivity map in the unpleasant-relaxed condition.

Figure 10. The brain connectivity map in the unpleasant-aroused condition.

Figure 11. The three distance connectivity groups in the brain connectivity map.

4.2.1. Characteristics of Three Distance Connectivity

Figure 12 depicts the long-distance connectivity of the occipital and frontal lobes
(LD_O-F connectivity) of the beta wave in the visual comparison diagram of the two-
dimensional model. O-F connectivity in the unpleasant-aroused condition had the strongest
connectivity. In the pleasant-relaxed condition, bi-directional connectivity was observed
between the left frontal and occipital lobes. In the unpleasant-relaxed condition, bidi-
rectional connectivity was observed from the right occipital to the frontal lobe. In the

186



Sensors 2022, 22, 6736

pleasant-aroused condition, cross-hemispheric connectivity was observed between the
frontal and occipital lobes.

Figure 12. The long-distance connectivity of the occipital and frontal lobes (LD_O-F connectivity) of
the beta wave.

Figure 13 depicts the long-distance connectivity of the prefrontal and temporal lobes,
parietal lobes, and central (LD_pF connectivity) beta waves in the visual comparison
diagram of the two-dimensional model. In pleasant-aroused and unpleasant-relaxed
conditions, the right prefrontal lobe was strongly connected to the central, parietal, and
temporal lobes of both hemispheres. In the pleasant-relaxed condition, there was strong
connectivity in the left prefrontal–temporal, left prefrontal–central, and left prefrontal–
parietal regions. In the unpleasant-aroused condition, the prefrontal–temporal, prefrontal–
parietal, and prefrontal–central regions showed the weakest connectivity.

Figure 13. The long-distance connectivity of the prefrontal and temporal lobes, parietal lobes, and
central (LD_pF connectivity) of the beta wave.
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Figure 14 depicts the short-distance connectivity (SD connectivity) of the beta waves
in the visual comparison diagram of the two-dimensional emotional model. In the aroused
conditions (pleasant-aroused, unpleasant-aroused), strong frontal–temporal–central con-
nectivity was observed. However, in the relaxed conditions (pleasant-relaxed, unpleasant-
relaxed), strong central–parietal connectivity was observed.

Figure 14. The short-distance connectivity of the prefrontal-temporal lobes, central-parietal lobes,
and parietal-temporal lobes (SD connectivity) of the beta wave.

In summary, the analysis suggests a strong frontal activity in the unpleasant-aroused
condition, indicating intense information processing and transfer involving the frontal
cortex. In pleasant conditions, feedback is sent to the parietal, temporal, and central regions
after the prefrontal cortex processes the information. In the unpleasant-relaxed condition,
brain connectivity implies the control of the participant’s eye movement.

4.2.2. Power Value Analysis in Three Distance Connectivity

To further understand the strength and directionality of brainwave connectivity, sta-
tistical analysis was performed on the power value using ANOVA, followed by post hoc
analyses (see Figures 15–20).

Figure 15 depicts the eigenvalues (i.e., mean power value) of the occipital and frontal
lobe connectivity. The plus-minus sign of the eigenvalue determines the causality. In the
unpleasant-aroused condition, more information is processed in the frontal lobe, indicating
more activity in the occipital lobe than in primary visual processing.

 

Figure 15. The eigenvalues in the long-distance O-F connectivity.
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Figure 16 shows the absolute values of the mean (|mean|). The pleasant-relaxed and
unpleasant-aroused conditions exhibited high occipital-frontal connectivity, whereas the
pleasant-relaxed condition exhibited left hemisphere-frontal activation (see Figure 12).

 

Figure 16. The absolute value in the long-distance O-F connectivity.

Figure 17 depicts the eigenvalues (i.e., the mean power value) of prefrontal connectivity.
The plus-minus sign of the eigenvalue determines the causality. The results showed that activity
in the prefrontal lobe in pleasant conditions (pleasant-aroused, pleasant-relaxed) was greater
than that in other regions. Conversely, in the unpleasant conditions (unpleasant-aroused,
unpleasant-relaxed), activity in the other regions was stronger than that in the prefrontal lobe.

 

Figure 17. The eigenvalues in the long-distance prefrontal connectivity.

Figure 18 shows the absolute values of the mean (|mean|). The unpleasant-relaxed
condition exhibited the strongest connectivity.

 

Figure 18. The absolute value in the long-distance prefrontal connectivity.
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Figure 19 depicts the eigenvalues (i.e., mean power value) of the short-distance con-
nectivity in frontal–temporal, frontal–central, and temporal–parietal connections in the four
emotion-eliciting conditions. Overall, connectivity in the relaxed condition was stronger
than that in the aroused condition. Specifically, central–parietal connectivity showed
stronger activity than frontal–temporal and frontal–central connectivity (see Figure 14).

 

Figure 19. The eigenvalues in the short-distance connectivity.

Figure 20 shows the absolute values of mean (|mean|). The relaxed conditions (pleasant-
relaxed and unpleasant-relaxed) showed stronger connectivity, specifically stronger P-O
connectivity. Conversely, the aroused conditions (pleasant-aroused, unpleasant-aroused)
showed weaker connectivity, but stronger F-T connectivity. In particular, the unpleasant-
aroused, pleasant-aroused, and pleasant-relaxed conditions showed substantial premotor
cortical PMDr (F7) connections associated with eye movement control. This was consistent
with the saccade results.

Through statistical analysis, we found that connectivity in the pleasant-relaxed condi-
tion was the highest, while connectivity in the unpleasant-relaxed condition was higher
than that in the pleasant-aroused and unpleasant-aroused conditions.

 
Figure 20. The absolute value in the short-distance connectivity.

By comparing the three extracted brainwave connectivity eigenvalues with subjective
evaluations, we found that the long-distance prefrontal connectivity eigenvalues have simi-
lar characteristics to the valence score measures of subjective evaluations. The prefrontal
cortex (PFC) makes decisions and is responsible for cognitive control. Positive valence
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increases the neurotransmitter dopamine, enhancing cognitive control [28–30]. This may
explain prefrontal activation in pleasant conditions (see Figure 15).

In summary, in the unpleasant-aroused condition, the frontal lobe showed a stronger
activation than the occipital lobe. Overall, in pleasant conditions, the prefrontal lobe
showed a stronger activation than other regions. Conversely, in unpleasant conditions, the
prefrontal lobe showed a weaker activation than other regions.

4.3. Clustering Eye Movement Features

The statistical results showed that the short-distance connectivity eigenvalue and sub-
jective evaluation arousal score had similar characteristics. Connectivity in the unpleasant-
relaxed condition was the strongest (Figure 16). Specifically, central-parietal connectivity
showed stronger connectivity than frontal–temporal and frontal–central connectivity. Un-
pleasant emotions are known to activate central–parietal connectivity [31].

The three eigenvalues of the extracted EEG can be used to distinguish the four emo-
tions in the two-dimensional emotional model. We conducted an unsupervised K-means
analysis in chronological order using these three eigenvalues. We distinguished the emo-
tional and non-emotional states of each participant while viewing the emotional video. The
emotional and non-emotional states of the eye movement data were then distinguished.
Figure 21 shows an instance of a participant’s K-means results. Group 1 indicates the
non-emotional states, whereas Group 2 indicates the emotional states. The figure implies
that the participant’s state changes from a non-emotional state (i.e., 0.0) to an emotional
state (i.e., 1.0) as a function of time.

Figure 21. An instance of a participant’s k-Means results.

Figures 22 and 23 depict the post-hoc analysis of the left and right pupils between
the two-dimensional emotional model conditions. From the statistical results of the eye
movement eigenvalues, the characteristics of the right pupil and left pupil did not change
much between the four conditions; the pupil of the pleasant-aroused condition had the
largest change, followed by the pleasant-relaxed and unpleasant-relaxed conditions. The
least difference was observed in the unpleasant-aroused condition.

However, in relaxed conditions (pleasant-relaxed and unpleasant-relaxed), the right
pupil of the unpleasant-relaxed condition was larger than the left pupil. From the first eigen-
value long-distance O-F connectivity of brain wave connectivity, we found two locations
with high connectivity: the right occipital lobe and the left and right prefrontal lobes.

Figure 24 shows the results of the post hoc analysis of the fixation between the two-
dimensional emotional model conditions. The fixation feature in the unpleasant-relaxed
condition was larger than that in the other three conditions.
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Figure 22. The post hoc analysis of the left pupil. ** p < 0.05. *** p < 0.001.

 

Figure 23. The post hoc analysis of the right pupil. ** p < 0.05. *** p < 0.001.

 
Figure 24. The post hoc analysis on the fixation. ** p < 0.05. *** p < 0.001.

Figure 25 shows the results of the post hoc analysis of the saccade between the two-
dimensional emotional model conditions. The results showed the lowest change in the
unpleasant-relaxed condition, and the greatest change in the pleasant-relaxed condition.
The characteristics of the saccades were similar to those of the short-distance connectiv-
ity eigenvalues. Short-distance connectivity also showed weak brain connections in the
unpleasant-relaxed condition (see Figure 14). After the frontal lobe makes a cognitive
judgment, it gives instructions to the occipital lobe, causing saccadic eye movements.
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Figure 25. The post hoc analysis on the saccade. *** p < 0.001.

5. Conclusions and Discussion

This study aimed to understand the relationship between brain wave connectivity and
eye movement characteristic values using a two-dimensional emotional model. We divided
brainwave connectivity into three distinct groups: long-distance occipital–frontal connec-
tivity, long-distance prefrontal connectivity between the prefrontal lobe and temporal lobe,
parietal lobe, and central lobe, and short-distance connectivity including the characteristic
relationships between the frontal lobe–temporal lobe, frontal lobe-central lobe, temporal–
parietal lobe, and parietal lobe–central. Then, through unsupervised learning of these three
eigenvalues, the emotional response was divided into emotional and non-emotional states
in real time using K-means analysis. The two states were used to extract the feature values
of the eye movements. We analyzed the relationship between eye movements and brain
wave connectivity using statistical analyses.

The results revealed that the connectivity eigenvalues of the long-distance prefrontal
lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving
high valence. The prefrontal lobe occupies two-thirds of the human frontal cortex [32]
and is responsible for recognition and decision-making, reflecting cognitive judgment
from valence responses [33,34]. Specifically, the dorsolateral prefrontal cortex (dlPFC) is
involved with working memory [35], decision making [36], and executive attention [37].
However, most recently, Nejati et al. [32] found that the role of dlPFC extends to the
regulation of the valence of emotional experiences. Second, the saccade correlated with
long-distance occipital-frontal connectivity. After making a judgment, the frontal lobe
provides instructions to the occipital lobe, which moves the eye. Electrical stimulation of
several areas of the cortex evokes saccadic eye movements. The prefrontal top-down control
of visual appraisal and emotion-generation processes constitutes a mechanism of cognitive
reappraisal in emotion regulation [38]. The short-distance connectivity results showed
emotional fluctuations caused by the unconscious stimulation of audio-visual perception.

We acknowledge some limitations of the research. First, the results of our study are
from one stimulus for each of the four quadrants in the two-dimensional model. Future
studies may use multiple stimuli, possibly controlling the type of stimuli. Second, although
pupillometry is an effective measurement for understanding brain activity changes related
to arousal, attention, and salience [39], we did not find consistent and conclusive results
between pupil size and brain connectivity. The size of pupils changes according to ambient
light (i.e., pupillary light reflex) [40,41], which may have confounded the results. Future
studies should control extraneous variables more thoroughly to find the main effect of pupil
characteristics. Third, our analysis is based on participants of local university students,
limiting the age range (i.e., 20 to 30 years). Age and culture may influence the results, so
future studies may consider a broader range of demographic populations and conduct
a cross-cultural investigation.
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The study purposely analyzed brain connectivity and changes in eye movement in
tandem to establish a relational basis between neural activity and eye movement features.
We took the first step in unraveling such a relationship, albeit fell short in achieving
a full understanding, such as the pupil size characteristics. Because the eyes’ structures
are connected to the brain’s nerves, an exclusive analysis of eye features may lead to
a comprehensive understanding of the participant’s emotions. A non-contact appraisal of
emotion based on eye feature analysis may be a promising method applicable to metaverse
or media art.
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Abstract: Cognitive workload is a crucial factor in tasks involving dynamic decision-making and
other real-time and high-risk situations. Neuroimaging techniques have long been used for estimating
cognitive workload. Given the portability, cost-effectiveness and high time-resolution of EEG as com-
pared to fMRI and other neuroimaging modalities, an efficient method of estimating an individual’s
workload using EEG is of paramount importance. Multiple cognitive, psychiatric and behavioral
phenotypes have already been known to be linked with “functional connectivity”, i.e., correlations be-
tween different brain regions. In this work, we explored the possibility of using different model-free
functional connectivity metrics along with deep learning in order to efficiently classify the cognitive
workload of the participants. To this end, 64-channel EEG data of 19 participants were collected while
they were doing the traditional n-back task. These data (after pre-processing) were used to extract
the functional connectivity features, namely Phase Transfer Entropy (PTE), Mutual Information (MI)
and Phase Locking Value (PLV). These three were chosen to do a comprehensive comparison of
directed and non-directed model-free functional connectivity metrics (allows faster computations).
Using these features, three deep learning classifiers, namely CNN, LSTM and Conv-LSTM were
used for classifying the cognitive workload as low (1-back), medium (2-back) or high (3-back). With
the high inter-subject variability in EEG and cognitive workload and recent research highlighting
that EEG-based functional connectivity metrics are subject-specific, subject-specific classifiers were
used. Results show the state-of-the-art multi-class classification accuracy with the combination of
MI with CNN at 80.87%, followed by the combination of PLV with CNN (at 75.88%) and MI with
LSTM (at 71.87%). The highest subject specific performance was achieved by the combinations of
PLV with Conv-LSTM, and PLV with CNN with an accuracy of 97.92%, followed by the combination
of MI with CNN (at 95.83%) and MI with Conv-LSTM (at 93.75%). The results highlight the efficacy
of the combination of EEG-based model-free functional connectivity metrics and deep learning in
order to classify cognitive workload. The work can further be extended to explore the possibility of
classifying cognitive workload in real-time, dynamic and complex real-world scenarios.

Keywords: CNN; cognitive workload; functional connectivity analysis; LSTM; mental workload;
mutual information; phase locking value; phase transfer entropy

1. Introduction

Cognitive workload is the measure of the amount of mental effort required to complete
any task [1]. Working memory is required to process information for short periods of time,
while long-term memory is associated with storing information for long periods of time [2].
Tasks such as arithmetic operations, reading and learning require efficient use of working
memory. Cognitive workload can be defined as the amount of mental activity utilized by
working memory to complete any task. Assessment of an individual’s cognitive workload
is an essential component in most human-machine collaboration tasks. A major application
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of this lies in the defense domain. Operations like driving under high-stress environmental
conditions, monitoring air traffic control, piloting an aircraft or operating an unmanned
vehicle are excellent examples. The optimal level of cognitive workload is pivotal in high-
risk scenarios where important decisions are supposed to be made in real-time. The rate at
which the information is processed determines the workload induced in any individual
while performing any task. A high workload can lead to unplanned and disproportionate
hazards, and too little workload can lead to being disengaged from the task. This points
to the importance of maintaining optimal cognitive workload in high-risk scenarios to
perform the task satisfactorily. With respect to cognitive workload, emotional intelligence
and stability are regarded as essential components. An individuals’ cognitive load will be
affected by emotional valence as it will interfere with parallel cognitive processing. Studies
show a positive relation between emotional intelligence and some cognitive tasks [3,4].
Therefore, classification of cognitive workload can be an essential indicator of emotional
intelligence and stability.

Although the assessment of cognitive workload is important, it is not a trivial task.
Traditional methods of the evaluation of cognitive workload included subjective measures
such as interviews or questionnaire-based approaches where the participants self-reported
the amount of workload caused/induced during the task. Various research groups such
as Hart et al. [5] and Malekpour et al. [6] contribute towards the assessment of cognitive
workload with the use of subjective methods, primarily in the form of self-assessment
questionnaires, like NASA-TLX (National Aeronautics and Space Administration Task
Load Index), MCH (Modified Cooper-Harper Scale) and SWAT (Subjective Workload
Assessment Test). Such questionnaires generally record the various metrics involved in
performing the task, such as demand (mental, physical and temporal), effort, pressure,
concentration, frustration, etc., to evaluate their connection with performance during the
task. These methods prove to be subjective to the individual participant, however, and can
be biased and prove to be unreliable as a distinct and coherent metric for the evaluation
and estimation of cognitive workload in general as they depend on the participant recalling
past engagement. Another drawback of using post-task questionnaire is that it does not
allow for real-time evaluation of cognitive workload.

In contrast to the subjective questionnaire based methods, the evaluation based on
neuro-physiological signals present an opportunity for an objective and real time assess-
ment of cognitive workload. However, this method of evaluation comes at the expense
of limited availability of equipment, trained operators and high costs. To obtain better
efficacy and efficiency, physiological measures such as Electroencephalography(EEG),
Event-Related Potential (ERP), Eye Tracking (gaze entropy), and Heart Rate Variability
(HRV) can be utilized [7–9]. EEG is highly accepted as a measure to assess cognitive
workload in real-time [10–12]. Various EEG features including time, frequency, time-
frequency, and spatial domain features extracted from raw EEG data are effective ways to
gain information from EEG signals. Time domain features mainly include Event Related
Potentials (ERP) [13], statistical features (mean, standard deviation, variance, etc.), higher-
order crossing analysis [14], and Hjorth parameter. Frequency domain features include
decomposing the frequency in multiple sub-bands such as delta, theta, alpha, beta, and
gamma bands which are mainly associated with deep sleep, drowsy, relaxed, engaged,
conscious, and active states, respectively [15]. Such features are commonly used for classi-
fication of workload in various machine learning experiments. Recent advancements in
the application of deep learning in various domains such as emotion recognition, pattern
recognition and prediction makes it an excellent choice to be used with EEG signals for
classification [16–19]. EEG signals can be used to decode and classify the human cognitive
state. Various studies have carried out research in the area with different combinations of
EEG features and machine learning models. Bashivan et al. [20] demonstrates the use of
fast Fourier transform to convert EEG data into the frequency domain and map the 3D
spatial positions of electrodes to 2D, according to the distribution of the electrodes. Using
theta, alpha and beta frequency bands, 3-channel spectral maps are generated and sent
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to CNN model for classification of mental load. Kwak et al. [21] propose a multi-level
feature fusion method based on CNN to learn the spectral, spatial, as well as local and
global information. Li et al. [22] reviews some deep learning models (e.g., RNN and CNN)
and their applications for EEG data to decode brain activities and diagnose brain diseases.

Substantial research for estimation of cognitive workload from EEG using machine
learning and deep learning is limited. Most of the studies perform binary classification
of workload into high and low by extracting compute expensive EEG features from the
raw data, making these non ideal to be used in real life conditions or in real time. Das
et al. [23] reports an accuracy of 86.33% and 82.57% for binary and three class classification,
respectively, using a BLSTM-LSTM based architecture in a subject independent study.
Appriou et al. [24] performs subject specific and subject independent studies for binary
classification of workload, achieving the highest mean accuracy of 72.7% and 63.7% using
CNN for subject-specific and subject independent cases, respectively. In the study by
Zhang et al. [25], the authors achieved an accuracy of 88.9% in binary classification using
a combination of RNN and 3D CNN models with EEG topographic maps as features
for classification. Using a similar technique of topographic maps in combination with a
modified CNN model, highest accuracy of 91.9% in subject specific three class classification
is reported [26]. However, more informative features regarding an individual’s brain
can be obtained from EEG data. Information acquired from signals originating from a
specific brain region can be regarded to represent the brain activity of that region. This
allows the study of separate brain regions in isolation when evaluating characteristics
relevant to a specific cognitive state and this methodology has been adopted by various
researchers. However, neuronal activity is not this straightforward as different regions of
the brain contribute to the completion of a task, while different regions are still dominantly
responsible for specific functions required for the completion of the task. This implores the
necessity of examining the inter-regional interactions to understand the collaboration of
the different brain regions. More formally, this analysis is termed as brain connectivity.

Brain Connectivity has been used to study the nature of the cerebrum in the past.
Based on the attributes of connections, it can be classified into three types: structural
connectivity (biophysical connections between neurons or neural elements), functional
connectivity (statistical relations between anatomically un-connected cerebral regions) and
effective connectivity (directional causal effects from one neural element to another) [27].
This study focuses on the exploration of functional brain connectivity as a measure to
assess different levels of workload. Brain functional connectivity has been linked with
cognitive deficient psycho-physiological diseases. Strong patters on connectivity in resting
state EEG are evident in autism spectrum disorders as reported by [28]. Slower and less
efficient connectivity is found in schizophrenia patients as reported by [29]. Another study
suggested a relation between high frequency connectivity neural pattern and recurrent
illness course of major depressive disorder [30]. However, few studies have investigated
the links between cognitive workload and brain functional connectivity networks. Dim-
itrakopoulos et al. [31] is one such study that has used brain connectivity measure as a
feature for classification of workload. This study uses correlation as a method of brain
connectivity and achieved an accuracy of 88% for binary classification using SVM clas-
sifier. Another study by Islam et al. [32] explores the use of Mutual Information based
functional connectivity for binary classification of drivers’ mental workload using the SVM
classifier and obtained an accuracy of 82%. There are only a limited number of studies that
explore functional connectivity as a feature for classification of workload. Therefore, in this
study we explore different functional brain connectivity methods as features to be used
for classification of levels of cognitive workload. EEG data is known to have high inter-
subject variability [33,34]. Various researchers such as Byrne et al. [35] and Pang et al. [36]
study the inter-subject variability. Nentwich et al. [37] report the subject-specific nature of
EEG-based functional connectivity. Given this evidence, subject specific classification of
workload has been aimed at in this study. In Zhang et al. [38], the authors compared the
subject-dependent and independent approach and highlighted that variations in feature
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distribution of EEG across subjects reduces the generalization ability of a classifier and at
the same time subject-dependent approach provides a promising way to solve the problem
of personalized classification. In Neto et al. [39], the authors discussed various subject
specific characteristics and data splitting techniques for EEG data. A possible advantage of
subject specific classification is that the classifier can learn subject-dependent features and
it can be really useful in building robust and effective BCI systems [40,41].

The contributions of this paper can be summarized as follows:

• A novel method of cognitive workload estimation using EEG, functional brain connec-
tivity and deep learning is proposed. Our pipeline included cleaning 64-channel EEG
data, selecting 16 electrodes based on brodmann area, extracting a 16 × 16 connectivity
matrix and using deep neural networks for classifying workload into low, medium
and high classes.

• We chose model-free functional connectivity metrics (Mutual Information (MI), Phase
Lag Value (PLV) and Phase Transfer Entropy (PTE) to classify workload using simple
yet effective deep learning architectures (CNN, LSTM and Conv-LSTM) in near real-
time.

• The proposed method achieved state-of-the-art accuracy for three class workload
classification. We achieved an average accuracy of 80.87% for three class workload
classification problems using MI and CNN. PLV and PTE also perform better with
CNN as compared to the other architectures with a average classification accuracy of
74.07% and 71.16%, respectively. CNN outperforms the other architectures because of
the high spatial information in the input connectivity matrix.

• The efficacious results highlight the promise of using functional connectivity features
of EEG for real-time workload classification.

The rest of the paper is organized as follows. Section 2 presents the materials and
methods used for in the experiment. Section 3 discusses the results obtained in various
experiments and Section 4 presents the implications of the reported results and the possible
future directions and possible extensions of the current work.

2. Materials and Methods

2.1. Participants

A total of 19 participants (11 male and 8 females, mean age = 20.1 years, standard
deviation = 1.2 years, minimum age = 19 years, maximum age = 23 years) at the Department
of Biomedical Engineering, Institute of Nuclear Medicine and Allied Sciences, Delhi,
India participated in this study. An institutional ethical committee approved the study
at the Institute of Nuclear Medicine and Allied Sciences. Participation in the study was
voluntary, and the subjects gave written consent before participating in the study. Out
of 19 participants, 18 participants were right-handed, and one was left-handed. None
of the participants reported neurological/psychological/mental history of any kind. All
the participants hailed from a Science/Engineering/Technology/Mathematics (STEM)
background. All the participants received a flat payment of INR 50, irrespective of their
performance in the study.

2.2. The N-Back Task

The modern version of the n-back task [42] was designed using OpenSesame v
3.3.6 [43]. The n-back task is one of the most used psychological tests for inducing cognitive
workload. In the task, the participants were required to observe a sequence of single digits
separated by a small interval of time and for each letter they were required to identify
whether the stimuli are a target (identical of the digit that has appeared ‘n’ digits back in
the sequence) (see Figure 1). During a session/block the value of ‘n’ is kept constant. An
increase in the value of ‘n’ induced cognitive workload according to [43]. The participants
were required to interact with the appeared stimuli depending on the value of ‘n’.
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Figure 1. Schematic of the n-back task used for the cognitive workload classification. The participants
were required to observe a sequence of single digits and determine whether the stimuli was a target.
A target is the digit which is identical to the digit that appeared ’n’ digits back in the sequence. For
example, in the 2-back scenario 5 is the target as the sequence of digits were 9,5,2,5.

A total of 339 sessions were presented to each participant in a randomized manner
with 113 sessions each for 1, 2 and 3 back. The sessions were initialized with an instruction
set that was displayed for 5 seconds, where the participants were informed about the nature
of session (type of ‘n’). After the instruction block, the set of digits (1–9) appeared on the
screen in sequence. The digits stayed on the screen for 500 ms, the participants were given
1500 ms to respond. The participants had to press space-bar in case the digit appeared
was a target in accordance with the session. The inter-stimulus interval was 2000 ms (with
500 ms where the stimuli was displayed and 1500 ms given for response). The task was
designed in accordance with standard n-back format. The n-back stimuli occurred within a
visual angle of about 40° horizontally and about 4.50° vertically so the stimuli fall within
the participants’ visual field and for minimal eye movement. The stimuli were presented
using OpenSesame [43], an open-source experiment builder. The target missed was also
considered as an incorrect response in this case. The first three session of each conditions
(n-back) were removed from further data analysis.

2.3. Physiological Data Acquisition and Pre-Processing

Sixty-four channel EEG were recorded through Ag/AgCl electrodes conforming with
the extended 10–20 electrode system of placement. An eegoTMmylab amplifier (ANT Neuro,
Enschede, The Netherlands) was used in the data acquisition. Electrooculogram (EOG)
data was acquired from a single electrode placed below the right eye. All channels were
grounded to channel CPz. Impedances were kept below 20 kΩ. The EEG data were sampled
at 2048 Hz. The data were later downsampled to 256 Hz. During the recording process the
participants were requested to sit in a relaxed posture to avoid potential contamination of
data with movement artifacts. The data was referenced to linked mastoids in the further
analyses. For pre-processing, DC offset was applied followed by band-pass with 0.1–45 Hz
and finally we used ICA to get rid of the ocular and other artifacts. The data was then
segmented according to the three conditions (1, 2 and 3 back) for all the 19 subjects.

2.4. Feature Extraction

Different cognitive tasks activate different specialized brain areas where the brain
could dynamically coordinate the information flow to achieve the task [44]. Functional
Connectivity is a method of quantifying these neuronal interactions. There exist many
different algorithms for calculating these interactions using electrophysiological data. These
algorithms can be divided into different domains based on the direction of the interaction
among brain regions and interdependence of the signals [45]. In this study, we chose three
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connectivity metrics namely Mutual Information (MI), Phase Locking Value (PLV) and
Phase Transfer Entropy (PTE). The reason for choosing these three metrics was to compare
directed and non-directed model-free measures. One goal of the study was to build a near
real-time framework for workload estimation using EEG, which is why only model-free
connectivity measures were chosen. Therefore, we used only the raw (cleaned) EEG data
to calculate the metrics.

Another important aspect for making the system fast was to select the dimensions
of the connectivity matrix. To that end, 16 electrodes were chosen from the available
64. Choosing the 16 electrodes was done with brodmann areas in mind as functional
connectivity implies interaction between different brain regions. In his article, Kaiser [46]
defined a mapping between the EEG electrodes and different brodmann areas; therefore,
we selected the same 16 EEG electrodes. The electrodes were Fp1, Fp2, F7, F3, F4, F8, T7,
C3, C4, T8, P7, P3, P4, P8, O1 and O2. The closest associated brodmann areas with these
electrodes are 10, 10, 47, 8, 8, 45, 42, 2, 1, 21, 37, 39, 39, 37, 18 and 18, respectively. This
electrode placement is also supposed to be the most optimal for source localization [46].
We used the pre-processed EEG data to calculate these 16 × 16 functional connectivity
metrics. Next, the different connectivity measures are discussed.

2.4.1. Mutual Information (MI)

In information theory, MI is used to quantify the interdependence between two time
series [47]. For a pair of discretized random variables x and y that are recorded from time
series with their respective probability distribution functions P(x) and P(y), and joint
probability function P(x, y), the MI between x and y can be defined as:

MIxy = ∑
x∈X,y∈Y

P(x, y) log
P(x, y)

P(x)P(y)
. (1)

MI was proposed as a measure to quantify the strength of functional connectivity between
a pair of time series data.

2.4.2. Phase Locking Value (PLV)

Phase locking value (PLV) is a measure to quantify the synchronization of phase of
different signals as acquired from separate brain areas. The analytical representations of
two signals originating from brain regions, k and l, sk(t) and sl(t), are obtained by the
Hilbert transform and expressed as [48,49]:

zk = Ak(t)ejϕk(t), (2)

zl = Al(t)ejϕl(t), (3)

The differences in phase are then calculated at each time point by

Δϕk,l(t) = ϕk(t)− ϕl(t). (4)

Thereafter, by averaging over all time points (nt being the number of time points) the PLV
between the brain regions k and l is represented as:

PLV(k, l) =
1
nt

∣∣∣∣∣
nt

∑
t=1

ejΔϕk,l(t)

∣∣∣∣∣, (5)

The PLV ranges between 0 (which reflects no phase synchronization) and 1 (which reflects
perfect phase synchronization). After the PLV calculation is repeated for all brain regions,
it is assembled to form a connectivity matrix.
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2.4.3. Phase Transfer Entropy (PTE)

The flow of information between neuronal regions are quantified by the estimation of
causal influence one region exercise on another. There is a plethora of methods to quantify
the neuronal interactions, out of which PTE is the only measure that is phase-specific and
directed in nature. For a connectivity metric to quantify the interactions amicably it should:

1. be robust to noise and linear mixing of signals [50,51]
2. computationally efficient
3. limit the number of a priori parameters
4. be able to detect transient frequency band from short data samples
5. allow the testing of statistical significance by constructing surrogate data from the

experimental samples

PTE [52] is a method of quantifying directed phase interaction across trials as well as
continuous data using binning methods for state-space reconstruction based on the same
principle as Wiener-Granger causality [53]. In the framework of Information Theory, the
Wiener-Granger causality can be re-written as: “a source signal has causal influence on
the target signal, if the uncertainty of the target signal conditioned by the source signal
and its own past is smaller than the uncertainty of the target signal conditioned by its own
past” [54]. The instantaneous phase and amplitude of a signal x(t) can be expressed by
its analytic associate as expressed in Equation (1). The PTE for an analysis lag θ can be
defined as:

PTEXY = H(ϕy(t), ϕy(t′)) + H(ϕy(t′), ϕx(t′))− H(ϕy(t′))− H(ϕy(t), ϕy(t′), ϕx(t′)), (6)

where ϕx(t′) and ϕy(t′) are the past states at lag θ, i.e., ϕx(t′) = ϕx(t − θ) and ϕy(t′) =
ϕy(t − θ). The marginal and the joint entropies can then be defined as [55]:

H(ϕy(t), ϕy(t′)) = −∑ p(ϕy(t), ϕy(t′)) log p(ϕy(t), ϕy(t′)), (7)

H(ϕy(t′), ϕx(t′)) = −∑ p(ϕy(t′), ϕx(t′)) log p(ϕy(t′), ϕx(t′)), (8)

H(ϕy(t′)) = −∑ p(ϕy(t′)) log p(ϕy(t′)), (9)

H(ϕy(t), ϕy(t′), ϕx(t′)) = −∑ p(ϕy(t), ϕy(t′), ϕx(t′)) log p(ϕy(t), ϕy(t′), ϕx(t′)), (10)

where the probabilities are computed by histograms of occurrences of single, pairs or
triplets of phase estimates in an epoch. The prediction delay θ and the number of bins
in the histogram was set as ((L × CH))/N± and e0.626+0.4 ln(L−θ−1) respectively, where L
is the length of the epoch in sample count, CH is the number of channels and N± is the
number of times the phase changed its sign across time and channels. The PTE values
were normalized between 0 and 1 with 0.5 < PTExy < 0.5 implying an information flow
of x → y, 0 < PTExy < 0.5 implying information flow preferentially of x ← y and 0.5
implying no preferential flow of information.

2.5. Classification

The classification of workload is implemented using three different variants of convo-
lution and recurrent neural networks that provide different feature extraction and learning
capabilities and a comparison of the performance is presented. The input to all the three
networks were the connectivity matrices MI, PLV and PTE as described above. The shape of
each of the matrix was 16× 16. The networks were trained using Python 3.9 and Tensorflow
2.4 on Nvidia DGX server at Indian Institute of Technology, Roorkee. For processing the
input and feeding it to the model, we used Tensorflow Datasets API and used 70,15,15
split for training, validation and testing data. As mentioned earlier, the n-back task was
composed of 339 sessions, hence, we calculated a matrix corresponding to each session
giving rise to 339 matrices for each participant. With the split of 70-15-15, there were 237, 51
and 51 matrices for training, validation and testing, respectively, for each of the 19 subjects.
We used a batch size of 64 trained each model for 1000 epochs. During the training, early
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stopping [56] and learning rate scheduler [57] were used to improve the convergence time.
The motivation and details of the networks used are as follows; The CNN classifier [58] was
chosen based on the similarity that the input (which is a weighted square adjacency matrix)
has to an image, as it’s ability to extract spatial features is superior unlike the primitive
ANNs. We used a Regular CNN (Table 1) (consisting of the usual 2D convolution, pooling
and batchnorm layers). For all the convolution layers of the models, stride of 1, ‘same’
padding, and ReLU [59] as activation was used. The last dense layer consisted of 3 units
and softmax activation [60] for classifying the three levels of workload. Similarly, in LSTM
(Table 2), the input was flattened and all LSTM layers make use of ReLU activation. In
Conv-LSTM (Table 3), all Conv2D layers have ReLU activation. After reshaping the output,
they are followed by LSTM layers, followed by 2 dense layers and a softmax layer same
as the above models. The overview of the classification framework can be visualized as
shown in Figure 2. Additionally, Figure 3 shows the architecture of the CNN, LSTM and
the Conv-LSTM models used.

Figure 2. Overview of the classification workflow using EEG signals.

Table 1. Configuration of CNN Architectures used for the ablation study. C-A, C-B and C-C refers
to the three variations of CNN Networks. The bottom half of the table is common to all the three
variations.

C-A C-B C-C

Input [16, 16, 1] Input [16, 16, 1] Input [16, 16, 1]
Conv2D (32, 5 × 5) Conv2D (32, 5 × 5) Conv2D (32, 5 × 5)
Conv2D (64, 3 × 3) Conv2D (64, 3 × 3) Conv2D (64, 5 × 5)
MaxPooling (2 × 2) MaxPooling (2 × 2) MaxPooling (2 × 2)
Conv2D (128, 5 × 5) Conv2D (128, 5 × 5) Conv2D (128, 3 × 3)

Conv2D (128, 5 × 5)

Flatten
Dense (64)

Dropout (0.25)
Dense (16)
Dense (3)
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(a) (b) (c)
Figure 3. Model architectures for (a) CNN C-A (b) LSTM L-A (c) Conv-LSTM CL-A.
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Table 2. Configurations of LSTM Architectures used for the ablation study. L-A, L-B and L-C refers to
the three variations of LSTM Networks. The bottom half of the table is common to all three variations.

L-A L-B L-C

Input [256, 1] Input [256, 1] Input [256, 1]
LSTM (64) LSTM (64)

LSTM (32) LSTM (32) LSTM (32)
LSTM (16) LSTM (16) LSTM (16)
LSTM (8) LSTM (8) LSTM (16)

Flatten
Dense (64)

Dropout (0.25)
Dense (16)
Dense (3)

Table 3. Configuration of Conv-LSTM Architectures used for the ablation study. CL-A, CL-B and
CL-C refers to the three variations of Conv-LSTM Networks. The bottom half of the table is common
to all the three variations.

CL-A CL-B CL-C

Input [16, 16, 1] Input [16, 16, 1] Input [16, 16, 1]
Conv2D (32, 3 × 3) Conv2D (16, 3 × 3) Conv2D (32, 3 × 3)
Conv2D (32, 3 × 3) Conv2D (16, 3 × 3) Conv2D (32, 3 × 3)
MaxPooling (2 × 2) MaxPooling (2 × 2) MaxPooling (2 × 2)
Conv2D (64, 3 × 3) Conv2D (64, 3 × 3) Conv2D (64, 3 × 3)
Conv2D (64, 3 × 3) Conv2D (64, 3 × 3) Conv2D (64, 3 × 3)

Reshape (256, 1) Reshape (256, 1) Reshape (256, 1)
LSTM (32) LSTM (64) LSTM (64)
LSTM (16) LSTM (16) LSTM (32)

LSTM (16)

Flatten
Dense (64)

Dropout (0.25)
Dense (16)
Dense (3)

3. Results and Discussion

In this research, the efficacy of three different functional brain connectivity analysis
methods (MI, PLV and PTE) to classify cognitive workload into high, medium and low
using three different deep learning architectures (CNN, LSTM and Conv-LSTM) was
investigated. Nineteen participants executed the the modern version of the n-back task on
a computer screen with three levels of cognitive workload, high, medium and low.

The input to the deep learning networks was 16 × 16 connectivity metrics. Sixteen
brain regions were chosen from the brodmann atlas [61] to cover the different brain regions
and at the same time keep the computations as fast as possible. Figure 4 shows the
differences (for a random participant) between low, medium and high workloads of MI,
PTE and PLV, respectively. Although the differences among the three connectivity metrics
are visible, there are no explicit and visible differences among the three workload conditions,
i.e., low, medium and high.

However, in the statistical analysis, significant differences were found among the
three conditions. The mean accuracy (in percentage) for the three n-back condition was-
75.42 (SD = 16.10), 62.27 (SD = 15.64), 37.84 (SD = 14.18) for 1-back, 2-back and 3-back,
respectively. There were significant differences among the groups (F(2, 75) = 40.22, p < 0.01,
η2 = 0.56). Similarly we found significant differences in the reaction time as well (1-back =
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492.58 (SD = 91.1), 2-back = 673.58 (SD = 150.57), 3-back = 824.84 (SD = 147.32), ANOVA =
F (2, 75) = 40.98, p < 0.01, η2 = 0.48). Differences between all possible combinations (1 vs. 2,
1 vs. 3, 2 vs. 3) across both mean accuracy (in percentage) and mean reaction time (in ms)
were also found to be significant (p < 0.01).

Based on the statistical results, we hypothesized that there will be differences in the
brain connectivity matrices (although not visible to the naked eye) in the three workload
settings and the deep learning classifiers will be able to utilize these differences for success-
ful classification. It was expected that PTE would perform best in terms of connectivity
metric, with it being directed and phase-specific.

Several experiments (ablation study) were performed to find best hyperparameter
settings for the three deep learning architectures. The results of the ablation study are
compiled in Table 4. As shown in Table 4, for MI, a mean accuracy of 80.87% was achieved
with CNN, 71.87% was achieved with LSTM and 71.16% was achieved with Conv-LSTM.
Similarly, for PLV a mean accuracy of 75.88% was achieved with CNN, 71.82% was achieved
with LSTM and 69.68% was achieved with Conv-LSTM. Lastly, for PTE a mean accuracy
of 71.16% was achieved with CNN, 69.63% was achieved with LSTM and 69.74% was
achieved with Conv-LSTM. The highest accuracy (among all subjects) was achieved with
the combination of PLV with Conv-LSTM and CNN at 97.92%. This is followed by MI with
CNN at 95.83%. Besides the accuracy, Precision, Recall and F1-score of the classifiers are
also reported in Table 5. Figure 5 shows the box-plot containing the accuracy and statistical
results (standard error, quartiles, and outliers) of all the classifiers in combination with
different functional connectivity methods. The combination of CNN and MI indicates the
best classification performance. The achieved accuracy outperforms the state-of-the-art in
multi-class classification in the context of workload classification in the n-back task with
various EEG features and machine-learning algorithms. The comparison of the proposed
method with others is given in Table 6. Since, the number of trials for the three workload
settings were balanced, accuracy was indicative of the performance of the classifiers.
Nevertheless, we reinforced the results with the analysis of the confusion matrices and
ROC curves. Figure 6 shows the confusion matrix and Figure 7 shows the ROC curves for
all combinations of the classifiers and the connectivity metrics of the best subject. From
these figures, it can be substantiated that the classification performance of the models is
high for the multiclass-classification problem as the true positive rate is high. The high
value class-wise area under the curve shows that the classifier is able to learn and classify
each class separately with high accuracy.

Figure 8 shows the features learned by the CNN when MI was given as an input. MI
was chosen as it gave the highest accuracy and similarly, input image of medium workload
was chosen since the recall of medium workload was highest. It is visible that the filters
are actually learning similar activation as in the input image indicating that the classifier
was successful. Overall, given the consistent performance of the classifiers across all the
metrics and the significant differences found in the statistical tests, it can be concluded that
the classifier was successful.

Although state-of-the-art results were obtained, the study had some limitations. One
important limitation of the study is the hypothesis itself. We hypothesized that there will
be differences in the connectivity matrices in the three workload conditions. However, the
study was limited to calculating the connectivity using raw(cleaned) EEG data. This was
done to test whether all inclusive connectivity (not band limited) would yield conceivable
differentiation in workload or not. This would have implications in making the entire
framework close to real-time since band-limiting the signals would have increased the
computational complexity. In the future we will consider doing a comparison with our
approach and investigations in connectivity with different frequency bands to make a
comprehensive and exhaustive hypothesis. Another limitation was the subject-dependent
classification. The subject-dependent classifiers can extract subject-dependent features
and can effectively tackle the issue of accuracy and generalization encountered in subject-
independent EEG classifiers. However, it also gives rise to the issues of long collaboration
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sessions and collection of large quantities of data [38,39]. Lastly, the choice of 16 brain
regions for computing the connectivity matrices. The choice of the brain regions could
have been empirical instead of hypothesis and use-case driven. Exhaustive search and
feature selection algorithms could be used in the future for validating the selection of brain
regions empirically.

(a) MI Low (b) MI Medium (c) MI High

(d) PTE Low (e) PTE Medium (f) PTE High

(g) PLV Low (h) PLV Medium (i) PLV High
Figure 4. Brain connectivity maps of a random subject obtained through MI, PTE, and PLV for
different workload states (low, medium, and high) using Brodmann atlas [61].

208



Sensors 2021, 21, 6710

Table 4. Ablation Study of different variations of the hyper-parameter combinations for used
classifiers as described in Tables 1–3.

Methods
Best Subject Average Accuracy ± Std. Dev.

MI PLV PTE MI PLV PTE

CNN

C-A 93.75 89.58 85.42 80.87 ± 10.24 74.07 ± 08.28 71.16 ± 06.38
C-B 91.67 89.58 83.33 80.87 ± 10.29 71.49 ± 10.85 71.05 ± 10.85
C-C 95.83 97.92 79.17 80.21 ± 11.26 75.88 ± 11.01 70.72 ± 05.34

LSTM

L-A 87.50 91.67 79.17 71.87 ± 06.56 71.82 ± 08.15 69.63 ± 05.66
L-B 85.42 79.17 81.25 69.52 ± 07.77 65.24 ± 07.79 67.00 ± 08.47
L-C 87.50 89.58 79.17 70.29 ± 07.30 69.41 ± 08.30 67.76 ± 06.80

Conv-LSTM

CL-A 93.75 97.92 81.25 71.16 ± 10.03 69.68 ± 10.46 67.32 ± 05.05
CL-B 87.50 87.50 79.17 70.61 ± 08.27 68.64 ± 07.23 68.09 ± 04.73
CL-C 91.67 89.58 79.17 67.49 ± 07.12 67.87 ± 07.50 69.74 ± 05.54

Table 5. Precision, recall and F1-score for the different architectures used in the ablation study as
described in Tables 1–3.

Methods
Precision Recall F1-Score

MI PLV PTE MI PLV PTE MI PLV PTE

CNN

C-A 94.31 88.79 86.93 94.23 88.46 84.62 94.22 88.44 84.07
C-B 92.39 89.74 81.44 92.31 88.46 80.77 92.19 88.35 80.45
C-C 96.54 98.18 79.33 96.15 98.08 78.85 96.13 98.08 78.74

LSTM

L-A 87.09 92.63 77.35 86.54 92.31 76.92 86.40 92.27 76.54
L-B 84.51 80.33 80.00 84.62 80.33 83.00 84.36 80.33 83.00
L-C 91.35 90.33 80.00 88.46 90.33 78.66 88.05 90.33 78.33

Conv-LSTM

CL-A 95.05 98.18 81.44 94.23 98.08 80.77 94.17 98.07 80.45
CL-B 88.46 87.21 80.12 88.46 86.54 78.85 88.46 86.47 78.50
CL-C 90.48 90.44 78.85 90.38 90.38 78.85 90.38 90.26 78.81

(a) CNN (b) LSTM (c) Conv-LSTM

Figure 5. Box Plots representing the range of accuracy (with standard error) achieved by different
subjects with deep learning architectures used (a) CNN (b) LSTM and (c) Conv-LSTM.
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Table 6. Comparison of the proposed work with state-of-the-art results. The comparison includes different features and
classifiers used for EEG-based cognitive workload classification in the n-back task. The proposed work achieves the highest
accuracy in multi-class classification.

Paper Feature Classifier Accuracy Subject Dependency
Number of
Classes

Appriou et al. [24] Preprocessed EEG CNN 72.7% Subject Specific 2 Classes63.7% Subject Independent

Dimitrakopoulous
et al. [31]

Functional
Connectivity (Pearson
Correlation)

SVM classifier (RBF
kernel and Least Squares
Learning Method)

88% Subject Independent 2 Classes

Zhang et al. [25] Topographic Maps RNN and 3D CNN
structures (R3DCNN) 88.9% Subject Independent 2 Classes

Zhang et al. [26] Topographic Maps Modified CNN 91.9% Subject Specific 3 Classes

Proposed
Functional
Connectivity (PLV) Conv-LSTM, CNN 97.92% Subject Specific 3 Classses

(a) CNN MI (C-C) (b) CNN PLV (C-C) (c) CNN PTE (C-A)

(d) LSTM MI (L-A) (e) LSTM PLV (L-A) (f) LSTM PTE (L-B)

(g) Conv-LSTM MI (CL-A) (h) Conv-LSTM PLV (CL-A) (i) Conv-LSTM PTE (CL-A)

Figure 6. Confusion Matrix for the best performing subject for different combinations of the deep
learning architectures (CNN, LSTM, and Conv-LSTM) and the functional connectivity metrics (MI,
PLV and PTE).
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(a) CNN MI (C-C) (b) CNN PLV (C-A) (c) CNN PTE (C-A)

(d) LSTM MI (L-A) (e) LSTM PLV (L-A) (f) LSTM PTE (L-B)

(g) Conv-LSTM MI (CL-A) (h) Conv-LSTM PLV (CL-A) (i) Conv-LSTM PTE (CL-A)

Figure 7. ROC (Receiver Operating Characteristics) curves for the best performing subject for
different combinations of the deep learning architectures (CNN, LSTM, and Conv-LSTM) and
functional connectivity metrics (MI, PLV and PTE).

(a) Medium Workload MI matrix (b) 64 Filters of the 2nd Conv2D layer.

Figure 8. (a) Input given to the CNN network (b) Visualization of feature maps of the convolution
layer in the CNN network.

4. Conclusions

Workload Classification can be used as an indicator of the Emotional Intelligence and
stability. The aim of the study was to build a fast and accurate workload classifier which
can be extended to real-time workload classification. Real-time workload classification
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is an important and very useful cognitive construct for the development of robust BCI
systems [62] and useful in several other domains like Virtual Reality [63] and Human-
Machine Teaming [64]. In this research, EEG was chosen as the neuroimaging modality
with its advantages of being cheap, portable and having high time resolution [65]. Model-
free functional connectivity was chosen for the feature extraction with the concomitant
advantages of being fast and associated with cognitive control in the context of mental
workload [66]. Also, it has been shown that there are subject-specific differences in EEG-
based functional connectivity measures [37].

Thereby, a combination of various directed/non-directed model-free brain functional
connectivity algorithms and state-of-the-art deep learning algorithms were utilized for
efficient subject-specific classification of cognitive workload into three levels, high, medium
and low. Three functional brain connectivity algorithms (Mutual Information, Phase Trans-
fer Entropy and Phase Locking Value) were used to generate the functional connectivity
networks, which represents the neuronal interactions between the different regions of
the brain. These connectivity networks are used as inputs to the classification models to
classify different levels of workload. We employed three different deep learning architec-
tures (CNN, LSTM and Conv-LSTM) for classification of cognitive workload. Intra-subject
method of classification was applied on the data of 19 participants. The best classification
performance was obtained with CNN in combination of each of the three connectivity
networks over LSTM and Conv-LSTM. CNN outperforms the other two deep learning
architectures because of the spatial information provided by the connectivity analysis in
the form of input data upon which the classification is being performed. With CNN, MI
produces the best classification results with an accuracy of 80.87%, followed by CNN with
PLV with an accuracy of 75.88% and LSTM with MI with an accuracy of 71.87%.

We achieved state-of-the-art accuracy for multi-class workload classification using
EEG and functional connectivity. From the results, it can be concluded that indeed EEG-
based model-free functional connectivity metrics, when combined with deep-learning,
provides an accurate, reliable and fast method of classifying cognitive workload. Although
there is not much literature available on this, it was hypothesized that the connectivity
method PTE will outperform MI and PLV as PTE is the only connectivity measure that
is phase-specific and directed in nature. However, in our experiments MI outperformed
PTE in the classification performance. This can be due to the fact that this study had
lesser number of participants’ and the choice of brain regions. Therefore, no significant
conclusions can be made about which model-free connectivity measure is the best. A future
study can be performed with higher number of participants and different permutations
and combinations of brain regions to make better and clear conclusions regarding the
comparative analysis of the different connectivity measures.

Since these brain connectivity methods enable extremely rapid (specially MI) and
accurate connectivity matrix generation from raw EEG data, the proposed architecture
(a combination of MI/PLV/PTE and state-of-the-art CNN) can be used for effective and
efficient cognitive state monitoring and other BCI applications. In addition to that, brain
connectivity coupled with hybrid deep learning architectures can be used to classify higher-
order cognitive processes like executive functioning and complex decision-making in the
future. The subject-specific classification also sanctions the analysis and extraction of
subject-specific features. Together, this could enable BCIs to become more reliable and
efficient exponents of effective state monitoring in complex real world scenarios.
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Abstract: Understanding learners’ emotions can help optimize instruction sand further conduct
effective learning interventions. Most existing studies on student emotion recognition are based on
multiple manifestations of external behavior, which do not fully use physiological signals. In this
context, on the one hand, a learning emotion EEG dataset (LE-EEG) is constructed, which captures
physiological signals reflecting the emotions of boredom, neutrality, and engagement during learning;
on the other hand, an EEG emotion classification network based on attention fusion (ECN-AF) is
proposed. To be specific, on the basis of key frequency bands and channels selection, multi-channel
band features are first extracted (using a multi-channel backbone network) and then fused (using
attention units). In order to verify the performance, the proposed model is tested on an open-
access dataset SEED (N = 15) and the self-collected dataset LE-EEG (N = 45), respectively. The
experimental results using five-fold cross validation show the following: (i) on the SEED dataset,
the highest accuracy of 96.45% is achieved by the proposed model, demonstrating a slight increase
of 1.37% compared to the baseline models; and (ii) on the LE-EEG dataset, the highest accuracy of
95.87% is achieved, demonstrating a 21.49% increase compared to the baseline models.

Keywords: EEG; learning emotions; emotion recognition; attention; convolutional neural network;
multi-channel band features

1. Introduction

As a high-level psychological state, emotion is composed of many kinds of feelings,
thoughts, and other factors, and has been broadly used in the medical, educational, and
other related fields because of its capability to reflect people’s real psychological reactions to
different things. With the rapid development of artificial intelligence, emotion recognition
research has become a hotspot. Generally speaking, the existing research in the field of
emotion recognition is carried out from one of the two following aspects. The first type of
research is a variety of manifestations (e.g., voice, text, and images) based on external behav-
ior, which is acquired through non-contact methods. For example, in 2005, Burkhardt et al.
established a speech dataset, called the Berlin database, which contained seven emotions [1].
In 2016, Lim et al. converted the original speech signal in this dataset into a spectrogram
by time–frequency analysis and proposed a shallow convolutional neural network (CNN)
and long short-term memory (LSTM) fusion network to identify the seven emotions [2].
Socher et al. built a text dataset containing the five emotions of very positive, positive,
neutral, negative, and very negative [3], while Kim et al. used CNN to learn sentence
feature vectors from this dataset and identify the emotions [4]. Anderson et al. proposed
that facial muscle movements can represent emotional states, in which the support vector
machine (SVM) was used to identify six basic emotions commonly associated with facial
expressions [5]. The second type of research is based on the neurophysiological state, that
is, the acquisition of various physiological signals [6–10], such as electrocardiogram (ECG),
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photoplethysmography (PPG), and electroencephalogram (EEG), among many others. Al-
though this type of research requires subjects to wear certain appropriate physiological
signal acquisition equipment, compared with the former external behavioral research,
focusing on neurophysiological states is a more objective method of representing emotions.
The collected physiological signals address better the problems associated with facial ex-
pression deception, and among them, the EEG signal is a focus of great concern [11]. A
number of researchers previously constructed their own EEG signal datasets to study the
basic emotions (i.e., anger, disgust, fear, happiness, sadness, and surprise) proposed by
Ekman et al. [12]. For example, Petrantonakis et al. developed an EEG dataset in an attempt
to distinguish the six basic emotional states proposed by Ekman et al. [13]. Schaaff et al.
developed an EEG dataset in an attempt to distinguish three emotions (including pleasant,
neutral, and unpleasant) [14]. Duan et al. created the SEED dataset to distinguish between
negative, neutral, and positive emotions in subjects [15]. Koelstra et al. created the DEAP
dataset, which measures two types of emotional states obtained from potentiation and
arousal [16]. D’Mello et al. pointed out that, although the six basic emotions proposed
by Ekman et al. [12] are common in our daily life, most of them do not exist for the study
time of 30 min to 2 h; hence, six learning emotions (i.e., boredom, engagement, confusion,
frustration, delight, and surprise) are defined and further ranked in an ascending order
of persistence on a time scale: (delight = surprise) < (confusion = frustration) < (boredom
= engagement) [17]. Meanwhile, Graesser et al. proposed that, for college students, the
main emotions centered on learning include confusion, frustration, boredom, engagement,
curiosity, anxiety, delight, and surprise [18].

Distinguishing the learners’ emotions in an intelligent educational environment is very
important; thus, in recent years, research on learning emotions has gradually attracted the
attention of scientists. For instance, Tonguc et al. recorded the facial expressions of students
during their speech process and recognized seven different types of learning emotions [19].
Sharma et al. studied students’ engagement states in conjunction with their eye, head, and
facial muscle movements in an online learning scenario [20]. Actually, in a real learning
scenario, students mostly showed their normal emotions, i.e., it is quite difficult to capture
the facial expressions at that moment, due to the fact that the facial muscles possessed
small amplitudes and short durations. In addition, facial expressions showed defects
(such as falsifiability) that cannot truly reflect emotions, bringing challenges to learning
emotion recognition. Therefore, the present study attempts to explore the learning emotion
classification algorithm based on EEG signals. Although EEG causes a lot of inconveniences
due to contact measurement, its ability to capture and represent real learning emotions for
students is quite helpful. In our preliminary research, the six learning emotions proposed
in [17] were taken into account initially; however, considering the time scale and the
probability of emotion occurrence, it was found that the chances of recognizing confusion,
delight, and curiosity are small. Therefore, in this study, a learning emotion EEG dataset
(LE-EEG) is constructed, which only focuses on three emotions (i.e., boredom, neutrality,
and engagement) that can last for a longer time. The main contributions of this study are
as follows:

(1) An EEG emotional classification network based on the attentional fusion (ECN-AF)
of multi-channel band features is proposed, focusing on the relationship among the
frequency bands, channels, and time series features.

(2) An induction experiment of an online learning scenario is designed, resulting in the
self-collected LE-EEG dataset with relatively large sample size (N = 45).

(3) The cross-dataset validation demonstrates that the proposed ECN-AF model outper-
forms the baseline models, showing not only a good performance on the public data
SEED, but also significant advantages on the self-collected LE-EEG dataset.

The remainder of this paper is organized as follows: Section 2 introduces the com-
monly used emotion classification algorithms; Section 3 presents the framework of the
proposed ECN-AF model; Section 4 discusses the experimental design; Section 5 analyzes the
experimental results; and Section 6 makes a summary and lists the future research directions.
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2. Related Works

To realize emotion classification, the key methods of feature extraction based on
EEG signals tend to be developed around the three aspects of time, frequency, and time–
frequency domains [21]. First, the time domain methods focus on the EEG signals’ temporal
information, including the typical features of Hjorth parameters, fractal dimensional fea-
tures, and higher-order crossover features. Second, the frequency domain methods often
convert the collected EEG signals (0–50 Hz) into five sub-bands (i.e., delta (1–4 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (31–50 Hz)) [22] and extract fea-
tures, such as power spectral density, differential entropy and asymmetry, and rational
asymmetry in different frequency bands [15]. Meanwhile, the time–frequency domain
method combines the characteristics of both time and frequency domains, converting the
EEG signals into sub-bands and using the windowing method for emotion classification.

Typical EEG emotion recognition methods tend to extract features and adopt machine
learning, such as Support vector machines (SVM), k-nearest neighbor (KNN), and other
algorithms for classification and recognition [23–25]. For example, Arnau-Gonzalez et al.
conducted emotion classification experiments on the DEAP dataset, where frequency
domain features (e.g., PSD) and mutual information in each frequency band of the channel
were extracted, and a final classification accuracy of 66.7% for valence and 69.6% for
arousal was obtained using the SVM [23]. Li et al. conducted experiments on the SEED
dataset by extracting features (such as peak-to-peak average, alignment entropy, and Hjorth
parameters), and their average classification accuracy using the SVM reached 83.3% [24].
Algumaei et al. used linear discriminant analysis (LDA), achieving an average accuracy of
90.93% on the SEED data set [25].

Compared with traditional machine learning models, deep neural networks show
a more efficient performance [26–29]. They can not only automatically extract effective
features, but also mark key frequency bands and brain regions. Therefore, more and more
researchers use deep learning models to study EEG-based emotion classification. For
example, on the SEED dataset, Zheng et al. proposed an emotion classification model using
SVM and deep belief networks (DBN), and investigated the effect of the combinations
of different frequency bands on emotion classification accuracy. Their final experimental
results showed that the accuracy under the 12-channel combination could surpass that
under the 62-channel combination. In addition, the direct concatenation of the DE features
of five frequency bands under the DBN network led to an average classification accuracy
of 86.08% [30]. Many researchers have improved the emotion recognition accuracy by
developing advanced convolutional networks, such as the self-organizing graph neural
network (SOGNN) [31] and dynamic graph convolutional neural network (DGCNN) [32],
which respectively achieved 86.81% and 90.4% classification accuracy. To be specific,
Li et al. proposed SOGNN, which constructs inter-channel correlations from self-organizing
graphs, and explores the aggregation of these inter-channel connections and time–frequency
features in frequency bands. The final experimental average accuracy (ACC) and the
standard deviation (STD) were 86.81% and 5.79%, respectively [31]. Song et al. proposed
DGCNN, which uses a graph to model the multi-channel EEG features and dynamically
learn the intrinsic relationship between different EEG channels. As a result, they achieved
90.4% highest accuracy and 8.49% STD [32].

By contrast, studying emotion classification by exploring frequency bands and their
correlation has made fruitful achievements. Yang et al. did not distinguish between
the sub-bands on the SEED dataset to study the channel combination, but proposed the
usage of directional RNNs to extract independent features of left and right brain regions.
Consequently, they acquired 93.12% ACC and 6.06% STD [33]. Wang et al. improved the
bidirectional long- and short-term memory network by proposing a similarity-learning
network, achieving a classification accuracy of 94.62% on the SEED dataset [34]. Shen et al.
proposed a four-dimensional convolutional recurrent neural network (4D_CRNN) that
converted full EEG channels into a two-dimensional picture. They superimposed all sub-
bands to convert the features into three dimensions and finally extracted the channel and
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band features using 2DCNN, as well as the temporal features using LSTM. They acquired
94.08% ACC and 2.55% STD [35].

The attention mechanism [36,37] was successfully introduced into neural networks,
which greatly improved the performance of classification models. Researchers in the
field of EEG emotion recognition found that the attention mechanism is like the idea of
focusing on emotion-related brain regions and started to try using this in the field of EEG
emotion recognition to improve the model performance. For instance, Li et al. proposed
the transferable attention neural network (TANN) with 93.34% ACC and 6.64% STD,
which used two directed RNN modules to extract features from whole brain regions
and global attention layer fusion features to highlight the key brain regions for emotion
classification [38].

In summary, existing research faces the following problems: (1) the exploration of
multiple channel combinations for emotion classification fails to combine well the five
sub-band features; and (2) exploring band correlations to synthesize all-channel studies is a
mainstream method; however, not all brain regions of EEG signals contain valid emotion
information, and thus this approach fails to focus on capturing the important emotion
channels. To address these problems, in this study, ECN-AF is proposed, focusing on
specific channels and some frequency bands for the fusion of attention units.

3. Methodology

3.1. Model Framework

Figure 1 depicts the framework of the proposed ECN-AF model consisting of the
following three main modules:

Figure 1. ECN-AF framework diagram.

(1) Module 1: frequency band division and channel selection module. In this module,
first, the acquired EEG signal were divided into raw segments by a sliding window
with a window size 10 s and a step size 2 s; second, five different frequency bands
were extracted by passing the raw segments through bandpass filters; third, the final
segments were generated, which were the optimal combinations of EEG channels
obtained by multi-channel filtering operation.
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(2) Module 2: frequency band attention feature extraction module. This module com-
prised a multi-channel convolutional backbone network with a frequency band at-
tention fusion unit. First, the EEG sequences output from Module 1 were put into
the multi-channel convolutional backbone network, which extracted not only the
channel and time series features but also the features in different frequency bands.
Second, the features extracted from different frequency bands were further put into a
frequency band attention fusion unit, which performed the fusion of the channels and
time series features across different frequency bands.

(3) Module 3: feature fusion and classification module. In this module, the combined
features obtained from the fusion unit were taken as the input to the classification
network; subsequently, the fused features were extracted using the depth network
and then input to the fully connected layer, giving the final classification results.

3.2. Module 1: Frequency Band Division and Channel Selection Module

After data cleaning, the SEED dataset contained 62 channels of EEG signals from
15 subjects with a sampling rate of 200 Hz [15]. The LE-EEG dataset contained 32 channels
of EEG signals from 45 subjects with a sampling rate of 128 Hz. Both the SEED and LE-EEG
datasets were divided using a window

W = T × C (1)

In Equation (1), W is the segment size, T is the time duration after splitting, and C is
the number of channels. The datasets were all segmented using a sliding window with a
window length of 10 s and a step size 2 s. In the SEED and LE-EEG datasets, W values are
2000 × 62 and 1280 × 32, respectively.

S = {W1, W2, W3, . . . Wi, . . . Wn−1, Wn} (2)

Y = {Y1, Y2, Y3, . . . , Yi, . . . , Yn−1, Yn}, Yi ∈ {−1, 0, 1} (3)

In Equations (2) and (3), S denotes a subject’s dataset, Wi denotes the sequential
segment data, n denotes the total number of samples, Y denotes a subject’s sentiment label
set, and Yi denotes the label of the ith segment data.

Finally, a sample size of 4896 for each subject and a total sample size of 73,440 for all
the 15 subjects were collected in the SEED dataset. Meanwhile, a sample size of one subject
ranging from 1082 to 1650 and a total sample size of 60,376 for all the 45 subjects were
collected in the LE-EEG dataset.

|H(w)|2 =
1

1 +
(

W
Wf1∼ f2

)2Nf
(4)

H(S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sδ, w ∈ (1, 4)
Sθ , w ∈ (4, 7)

Sα, w ∈ (8, 13)
Sβ, w ∈ (13, 30)
Sγ, w ∈ (31, 50)

(5)

In Equations (4) and (5), a fourth-order Butterworth bandpass filter was used to filter
the EEG signal into five wave sub-bands [39–42]. Nf is the order of the filter, i.e., Nf = 4. W
is the frequency; Wf1∼ f2 is the normalized frequency band; and the range of frequencies
f 1 to f 2 is the passband interval of the bandpass filter. H(S) is the EEG signal filtered by
the fourth-order Butterworth bandpass filter, w is the frequency band, and δ, θ, α, β, and γ

denote the data of the five different frequency bands.

S f =
H(S)− AVG(H(S))

STD(H(S))
, f ∈ {δ, θ, α, β, γ} (6)
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In Equation (6), Sf is the normalized EEG segment data; f is one of the five sub-bands;
H denotes the five different frequency band EEG signals of one subject; AVG is the average
value; STD is the standard deviation.

Previous studies have found that, a combination of frequency channels can improve
the recognition performance. For example, Zheng et al. used six channel combinations of
“FT7,” “FT8,” “T7,” “T8,” “TP7,” and “TP8” for emotion classification [43]. Zheng et al.
designed four different electrode placement patterns based on the peak characteristics
of the weight distribution and the asymmetry of the emotion processing, finally “FT7,”
“T7,” “TP7,” “P7,” “C5,” “CP5,” “FT8,” “T8,” “TP8,” “P8,” “C6,” and “CP6” were used,
achieving the best result of 86.65% classification accuracy. This confirmed that it is possible
to achieve better experimental results with fewer channel combinations than full-channel
recognition [30]. Combining the abovementioned studies, we obtain the following setting:

X f
C =

{
S f

C1

S f
C2 f ∈ {δ, θ, α, β, γ} (7)

In Equation (7), X f
C is the EEG signal at f frequency under the Cth channel combi-

nation; C is the channel combination method; and in our study, C1 and C2 are taken as
C1 = {“FT7,” “FT8,” “T7,” “T8,” “TP7,” “TP8”} and C2 = {“FT7,” “T7,” “TP7,” “P7,” “C5,”
“CP5,” “FT8,” “T8,” “TP8,” “P8,” “C6,” “CP6”}, respectively.

3.3. Module 2: Frequency Band Attention Feature Extraction Module

This section presents the combination of two sub-modules, a multi-channel convolu-
tional backbone network and a band attention fusion unit.

3.3.1. Multi-Channel Convolutional Backbone Network

The backbone network was built using two layers of CNN, AvgPool1D, BatchNormal-
ization, and SpatialDropout1D, with the parameters shown in Table 1. We used the X f

C in
Module 1 input to the multichannel convolutional backbone network to extract channel
and time features.

FC
f = ReLU

(
( f ∗ g)×2

(
XC

f

))
, f ∈ {δ, θ, α, β, γ} (8)

FC =
{

FC
f

}
, f ∈ {δ, θ, α, β, γ} (9)

Table 1. Multi-channel convolutional backbone network construction.

Stage Stage Setting Output

Conv-1 32, strides = 2, activation = “relu” (1000,32)
Conv-2 64, strides = 2, activation = “relu” (498,64)
Pool_1 2, AvgPool (249,64)

Batch_norm1 BatchNormalization (249,64)
Drop_1 Dropout1D (249,64)

In Equations (8) and (9), FC
f is the feature of the output of the convolutional network in

the f -band under the Cth channel combination, and FC is the set of different band features
extracted by the convolutional backbone network under the Cth channel combination.

3.3.2. Frequency Band Attention Fusion Unit

The feature FC was used as the input of the band attention fusion unit. First, the
bands were selected from the feature FC for combination. Next, the attention weights
were generated by the sigmoid function using the feature vector. Finally, the weights were
attached to the corresponding features to finally obtain the channel, time, and band fusion
features. This three-step process is expressed as follows, also see Figure 2:
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Weightk = Sigmoid
(

qT Mult
(

Select
(

FC
)
×n

))
(10)

F′ = Mult
(

Select
(

FC
)
×n

)
× Weightk (11)

 
Figure 2. Band attention fusion unit.

3.4. Module 3: Feature Fusion and Classification Module

After the band attention feature extraction module, we input the fused features F′
into the classification network built by CNN, AvgPool1D, BatchNormalization, Spatial-
Dropout1D, GlobalAvgPool1D, Dropout, and Dense. Table 2 lists the specific parameters.
We used convolution to extract the depth features in the upper layers of the classification
network. The fully connected layer output the triple classification results. We set the
BatchNormalization behind the convolutional network to normalize the segment data and
transform the features in a state with zero mean and a variance of 1. It not only sped up the
convergence speed but also effectively prevented gradient explosion and disappearance.

Table 2. Classification network construction.

Stage Stage Setting Output

Conv-1 128, strides = 2, activation = “relu” (245,128)
Conv-2 128, strides = 2, activation = “relu” (245,128)
Pool_1 2, AvgPool (122,128)

Batch_norm1 BatchNormalization (122,128)
Drop_1 Dropout (122,128)
Conv-3 256, strides = 2, activation = “relu” (118,256)
Conv-4 256, strides = 2, activation = “relu” (118,256)
Pool_2 GlobalAvgPool (256)
Drop_2 Dropout (256)
Dense Activation = “softmax” (3)

4. Experiments

4.1. Experimental Materials

We want to control the following variables: take a graduate student majoring in big
data artificial intelligence as the subject’s educational background; ensure that the video
duration is not much different; and select popular courses and the knowledge points of the
selected courses which cover multiple disciplines.

4.1.1. Sources of Emotional Materials

At this stage, no standardized learning emotion induction course video is available
in China. Hence, we used the well-known domestic learning websites https://www.
icourse163.org/ (accessed on 21 March 2021) (Chinese University MOOC Network) and
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https://www.bilibili.com/ (accessed on 21 March 2021) (Learning section in Bilibili). The
lessons were selected from these two sites according to the learners’ comments about en-
gagement and boredom-related vocabulary. With computer-related courses as the academic
background, 50 learning videos of computer majors and science-, literature-, history-, and
philosophy-related learning courses were finally selected to induce learning clips with
focused and boring emotional labels. Note that the China University MOOC is the largest
online classroom in China. Its course categories are classified according to the students’
professional background (e.g., computer, foreign language, and science). Bilibili.com is a
popular video platform used by young people in China to learn knowledge, exchange ideas,
and spread culture. The website contains many excellent user-uploaded learning resources.

4.1.2. Emotional Material Clipping

Fifty videos were collected through the abovementioned means, among which 18 videos
were marked as engaging, 17 videos were marked as boring; and 15 videos were marked as
neutral. To clip a knowledge point in the videos, all acquired course videos were edited
using Cut Screening for Windows Professional, which ensured that the content of the clip
was complete, and the video length was not excessively long. The clipped video clips
were edited into MP4 format video files, with a resolution of 1920 × 1080 px (30 fps). The
clipping video duration was 76–293 s, with an average of 166 s. The emotion-inducing
materials mainly consisted of Chinese materials and explanations. A few of them were
English clips with Chinese subtitles.

4.1.3. Evaluation of Emotional Materials

In this study, 49 graduate students were recruited as subjects for the emotional material
assessment experiment. The participants were 23 male students and 26 female students
aged 20–25 years, with an average of (22 ± 1.19) years. All subjects were physically healthy,
right-handed, and free of significant emotional problems and mental illness. Forty-nine
subjects were taking majors in computer and science technology, electronic information,
educational information technology, and educational technology. To avoid the subjects’
prior knowledge from interfering with the emotion induction results, those who previously
participated in rating the emotion material did not participated in the current data collection
experiment.

For the experiment, all subjects were given a “Self-assessment of Learning Status”
questionnaire. After each video clip was shown, the subjects were asked to report their
actual feelings and score the questionnaire. Each question was scored using a 5-point scale:

◦ 0: really boring, I don’t want to listen at all;
◦ 1: a little boring;
◦ 2: average;
◦ 3: not boring, can keep up with the teacher’s rhythm;
◦ 4: not boring, very focused.

According to careless/insufficient effort (C/IE) detection (see Appendix A), finally
44 valid questionnaires were collected in this study. All data were imported into SPSS
27.0 statistical software according to the required SPSS format. The data were statistically
analyzed by descriptive statistics, correlation analysis, reliability analysis, group analysis,
and analysis of variance.

Figure 3 shows the 5-point scoring of 22 video clips marked as boredom and en-
gagement by 44 subjects. The X-axis depicts 22 target videos. The Y-axis represents the
ratings of the 44 subjects for each target video. The set of red dots indicates the rating
of the 14 engaging emotional clips, while the set of green dots implies the rating of eight
boring clips. Lighter scatters represent fewer subjects giving a score with the y-axis value,
and darker scatters represent more subjects giving a score with the y-axis value. Figure 4
represents the mean scores of 44 subjects after the 5-point scoring for the 28 selected target
video clips. The X-axis shows 28 target videos. The Y-axis is the mean score of 44 subjects
for each target video. The blue bars indicate the mean scores of the 14 engaging emotion
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clips, while the red bars illustrate the mean scores of six neutral clips. The orange bars
show the mean scores of eight boring emotion clips.

Figure 3. 5-point scale score of the subjects.

Figure 4. Description statistics of the 28 target videos, with 0–4 ratings.
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Gross et al. pointed out that the indicators for judging the success of emotion in-
duction include the intensity and discreteness of emotion induction [44]. Intensity refers
to the average score of different emotional segments. The greater the intensity of the
emotional response, the higher the average score. The discreteness was judged by the hit
rate (hit rate = the type of video discriminated by the subjects/the number of all emotions
discriminated). The higher the hit rate, the better the singleness of the emotions induced
by the emotional video clips. Figures 3 and 4 depict the dispersion and the intensity of
the subject’s response induced by the target video clip. According to the discrete scoring
points in Figure 3, the hit rate of the engaging emotion was 79.48 ± 4.54%, while that of
the boredom emotion was 81.73 ± 16.03%, proving that the singleness induced by the
two emotions was good. In Figure 4, the average score of the input emotion was 2.873,
while those of the boredom emotion and the neutral segments were 1.256 and 2.036, re-
spectively. These results proved that the intensity of the induced emotional response was
high. Finally, according to 44 valid questionnaires, 28 videos were effectively distinguished
from the three emotions. We had 14 engaging segments, 8 boring emotional segments, and
6 neutral segments.

4.2. Experimental Procedure and Signal Pre-Processing
4.2.1. Experimental Procedure

In the experiment, we selected seven each of the engagement and boredom clips and
six neutral videos as the target emotions from the 28 induced emotion materials. After each
video clip was shown, all subjects were asked to answer the questionnaire, report their
actual feelings, and rate the questionnaire. The questionnaire consisted of nine questions,
each of which was scored on a 5-point (0–4) scale, except for the first two questions. The
more intense the subject’s concentration, the closer the question score was to 4. The more
intense the boredom, the closer the question score was to 0.

We used a pseudo-randomized approach to play the induction video to prevent the
boredom caused by the subjects watching the same emotional video for a long time. After
the researcher played a video clip, the subjects were given 1 min to fill out the questionnaire
and take a short break. The process was repeated for 20 times, with a 10 min break until all
video clips had been studied.

The hardware device used to collect the data in this experiment was the EPOC Flex
Saline Sensor Kit. The software device was EmotivPRO v2.0. During the experimental
acquisition, we asked the subjects to keep their limbs still and try to avoid continuous
blinking to minimize the presence of artifacts. The final experiment collected 940 segments
of EEG data and 940 assessment questionnaires, of which 777 questionnaires were identified
as valid data based on the subjects’ completion and the researcher’s screening. All valid
questionnaires were labeled as boredom, neutrality, and engagement. The EEG data
collected for the sentiment classification contained 745 segments because of the equipment
acquisition failures and other reasons.

4.2.2. Signal Pre-Processing

The pre-processing and removal of artifacts from the EEG signals are a demanding
step in the EEG processing process. In Figure 5, the LE-EEG dataset was preprocessed
using MATLAB R2020b, eeglab toolbox [45], ICLab [46–49], and adjusted [50] for bandpass
filtering and automatic artifact processing of EEG signals. After the artifacts were processed
using the automatic toolkit, some of the bad data were manually removed by visual
inspection to finally obtain relatively clean EEG data.
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Figure 5. Experimental flow of the LE-EEG dataset.

5. Results and Analysis

We trained the model on an NVIDIA GTX 1080 GPU. The model learning rate was set
to 0.001. The learning rate decay was set to 0.00001. The optimization function was set to
Adam optimization. The loss function was set to categorical_crossentropy. The number of
multi-channel convolutional backbone network settings depended on the number of band
combinations. We conducted experiments on the SEED and LE-EEG dataset separately.
The ACC and the STD were used as the evaluation criteria for all subjects in the dataset,
dividing the data into training and test sets in a ratio of 8:2 in each fold of cross validation.
On the SEED dataset, we performed the subject-dependent experiments, we performed
a comparison with several baseline models using cross-validation to assess the model
performance. On the LE-EEG data, we cited the paper containing the code for comparison
with the model in this paper. In contrast to the approach to the SEED dataset prediction,
we fused all subject data for data partitioning.

5.1. Ablation Study

We conducted two sets of ablation study experiments on the SEED dataset to validate
the effectiveness of the combined band and attention fusion units in the model for sentiment
classification. One experiment explored the effects of split-band prediction and combined
band prediction on emotion classification to validate the importance of integrating the
band features. Another experiment discussed multiple fusion approaches to validate the
need for attentional fusion units.

5.1.1. Sub-Band Prediction and Combined Band Prediction

In our experiments, we compared the emotional classification accuracy in two cases:
one uses a single-channel backbone network to extract the sub-band features, while the
other uses a multi-channel backbone network combination to extract the sub-band features.
Table 3 shows the experimental results on the two datasets. First, on the SEED dataset, C1
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and C2 are different channel combination methods, as described in Section 3.2. We recall
that C1 represents the combination of “FT7,” “FT8,” “T7,” “T8,” “TP7,” “TP8,” and C2
represents the combination of “FT7,” “T7,” “TP7,” “P7,” “C5,” “CP5,” “FT8,” “T8,” “TP8,”
“P8,” “C6,” and “CP6.” Second, on the LE-EEG dataset, All_band indicates that all available
EEG channels are used instead of C1 and C2. This is because the number of available EEG
channels from the two datasets are not consistent, which are 64 and 32 for the SEED and
LE-EEG datasets, respectively. Furthermore, in Table 3, in order to ensure the consistency of
the algorithm migration benchmark and further make a fair comparison, C3 was proposed
as the combination of “T7,” “P7,” “CP5,” “T8,” “P8”and “CP6,” as shown in Figure 6. In
Figure 6a, the scatter points shown are all 62 electrode points used in the seed data set, of
which the blue scatter points are C1 combined electrodes; In Figure 6b, the scatter points
shown are the electrical poles used in the LE-EEG data set, and the blue scatter points
are C3 combined electrodes. Notably, the channels involved in C3 (see the blue points in
Figure 6b) aimed to match the locations of the channels involved in C2 (see the blue points
in Figure 6a) as closely as possible.

Table 3. Accuracy comparison (i.e., ACC/STD) of different frequency bands (average 5-fold cross
validation results).

Frequency Band
SEED LE-EEG

C1 C2 C3 All_Band

δ 83.18/2.42 84.23/2.85 93.69/0.40 95.22/0.49
θ 67.05/7.71 69.88/7.52 93.06/0.45 94.64/1.15
α 77.55/6.82 82.68/5.58 93.09/1.11 94.64/0.63
β 81.46/7.27 87.09/4.17 93.56/0.44 94.97/0.51
γ 83.60/4.91 90.90/4.38 93.83/0.48 95.52/0.62

β + γ 84.14/6.12 92.10/4.02 - -
β × γ 91.30/4.56 93.39/2.42 - -

Attention (β, γ) 90.03/3.40 94.20/2.38 - -

 
(a) (b) 

Figure 6. Channel selection maps: (a) C2 on the SEED dataset; (b) C3 on the LE-EEG dataset.

Table 3 shows the classification accuracy of the five sub-bands (i.e., δ, θ, α, β, and γ) in
the SEED. β+γ means the add fusion method. β × γ means the multiply fusion method.
These two operations have been widely used in deep learning network design. Specifically,
the add fusion method is described as having the corresponding elements of the feature
matrix (which outputs from the multi-channel convolutional network) for each sub-band
be added together. Similarly, the multiplicative fusion method is described as having the
corresponding elements of the feature matrix for each sub-band be multiplied. Attention
(β, γ) indicates that the attention fusion unit is used for the feature-level fusion. Take C2
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(see the third column of Table 3) as an example. Based on the experimental results of the
single-channel network, on the SEED dataset, we found that the β and γ bands performed
a better prediction than the other bands, the accuracy of these two bands were 87.09% and
90.90%, respectively. Therefore, we combined the β and γ frequency bands, input them to
the multi-channel backbone network to extract features, and adopted three feature-level
fusion methods for emotion prediction. The final experimental results showed that the
fusion of the frequency band information (i.e., Attention (β, γ)) could improve the model
accuracy; the resulting accuracy was 94.20%.

Furthermore, on the LE-EEG dataset, the emotion classification accuracy in each
sub-band was high. We believe that the possible reasons for this phenomenon include
(i) compared with the SEED dataset (N = 15), the LE-EEG dataset had relatively larger
sample size (N = 45); (ii) after data fusion, the training samples (of the LE-EEG dataset)
became even larger, which results in better model performance after the training. In
addition, from the comparison between the last two columns in Table 3, we can see that
the performance of All_band has higher classification accuracy than the C3 combination
of channels in each sub-band, so the channel selection does not yield better classification
results. We believe that the reason for this phenomenon is that the types of emotions on
the two datasets were different. To be specific, the SEED data were designed to explore
three basic emotions containing negative, neutral, and positive, while the LE-EEG dataset
explored three learned emotions of engagement, neutrality, and boredom. Therefore, the
relevant channels for studying basic emotions may not be applicable to the study of learning
emotions, and at this stage, there is no past reference literature regarding learning emotion
channel studies, so in future work, learning emotion-related channel exploration should be
the research focus. In this paper, the optimal combination of channels for learning emotions
will not be discussed for the time being.

5.1.2. Comparison of the Results of Fusion Methods

In this subsection, we verified the effectiveness of combining frequency band features
to improve the model performance. This subsection focuses on analyzing the impact of
multiple fusion methods on the model accuracy and verifying the necessity of attention
fusion units. We compared three fusion methods, namely feature summation fusion, feature
multiplication fusion, and attention weight fusion, which are denoted as Add, Mult, and
Attention in Table 4, respectively. Table 4 shows the classification accuracy of the five
sub-bands (i.e., δ, θ, α, β, and γ) in the SEED dataset after inputting different frequency
band combinations into the multi-channel backbone network to extract features.

Table 4. Accuracy comparison (i.e., ACC/STD) of various fusion methods validated on SEED dataset
(average 5-fold cross validation results).

Method
C1 C2

Add Mult Attention Add Mult Attention

α, β 72.34/10.70 72.54/11.50 72.75/7.54 83.16/4.84 87.63/7.67 89.80/4.13
α, γ 69.48/12.10 78.84/10.22 79.26/7.10 80.56/8.80 95.04/3.80 90.77/4.59
δ, β 94.81/2.20 77.62/11.56 93.77/2.27 94.68/3.45 95.36/3.96 87.40/4.41
δ, γ 95.03/2.45 82.41/8.30 95.63/1.92 92.00/2.26 95.60/2.75 95.70/3.67
β, γ 84.14/6.12 91.30/4.56 90.03/3.40 92.10/4.02 93.39/2.42 94.20/2.38

δ, α, β 94.79/3.22 95.11/3.60 94.95/2.73 94.24/3.32 96.09/3.00 95.87/4.17
θ, β, γ 94.10/4.50 92.23/4.99 92.46/6.92 95.44/2.35 95.77/3.90 94.89/4.06
α, β, γ 92.70/5.52 95.17/4.27 93.84/3.63 95.31/3.21 94.66/5.43 96.02/5.54
δ, β, γ 95.17/2.17 95.13/3.67 95.32/3.53 95.78/3.45 96.15/2.13 96.45/3.56

δ, α, β, γ 94.28/5.46 87.07/12.96 77.0/16.81 94.68/2.72 80.99/14.82 86.49/17.90
Notably, Add means to directly add and fuse the features; Mult means that the features are multiplied and fused;
Attention means that the attention fusion unit is used for feature-level fusion, and Bold indicates the best accuracy
achieved using different fusion methods (for a given channel combination, C1 or C2).
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Our experiments revealed that first, the proposed attention fusion unit pair model has
a better performance on more frequency band combinations in general; however, more
frequency band combinations cannot always guarantee a higher performance of emotion
classification. For example, compared with the sub-band combinations shown in the other
rows of Table 4, in the case of the sub-band (δ, α, β, γ) shown in the last row of Table 4, (i) the
model performance using the fusion mode of Add decreased (see the 2nd and 5th columns
of the last row in Table 4), but remained relatively stable; (ii) the model performance using
fusion mode of either Mult or Attention (see the 3rd and 6th columns or the 4rd and 7th
columns of the last row in Table 4) was seriously degraded. The reason for this might
include that when the model was trained, the fusion method of Mult and Attention made
the model training parameters exponentially increase, resulting in severe overfitting caused
by model overtraining.

Second, we can see that, the best performance obtained by C2 (see the 5th–7th columns
of Table 4) was always higher than that of C1 (see the 2nd–4th columns of Table 4). For
clarification, let us take the sub-band (δ, γ) as an example. From the 4th row in Table 4,
we can see that, (i) regarding C1, the best performance with 95.63% was achieved using
the fusion method of Attention; (ii) regarding C2, the best performance with 95.70% was
achieved again using the fusion method of Attention, i.e., compared with C1, 0.07% accuracy
improvement was achieved by C2.

Third, regarding C2, the top two performances were achieved by the sub-bands
(α, β, γ) and (δ, β, γ) using the fusion method of Attention, which were 96.02% and 96.45%,
respectively (see the 2nd and 3nd last rows of the last column in Table 4). Take the sub-
band (δ, β, γ) as an example. Compared with Add and Mult, 0.67% and 0.30% accuracy
improvements were obtained by the fusion method of Attention. This demonstrated that
the classification performance can be improved using the fusion method of Attention, due
to those more important features were assigned by attention weights.

5.2. Comparison

Based on above experiments, we take δ, β, and γ bands and attention fusion to
complete comparison. On the SEED dataset, the model herein was compared with the
baseline models. Table 5 presents the results. Compared with that of the optimal baseline
model (see the row of “DCCA [39]” in Table 5), the performance of our model was improved
by 1.37%.

Table 5. Accuracy comparison (i.e., ACC/STD) versus baseline models (average 5-fold cross validation results).

Method SEED LE-EEG

SVM [24] 83.30/— —
DBN [30] 86.08/— —

SOGNN [31] 86.81/5.79 74.38/1.50
LDA [25] 90.93/— —

DGCNN [32] 90.40/8.48 —
BiHDM [33] 93.12/6.06 —
TANN [38] 93.34/6.64 —

3DCNN-BiLSTM [27] 93.38/2.66 —
4D_CRNN [35] 94.08/2.55 67.48/0.39

RGNN [51] 94.24/5.95 —
DE-CNN-BiLSTM [26] 94.82/— —

DCCA [39] 95.08/6.42 —
ECN-AF (C1) 95.32/3.53 —
ECN-AF (C2) 96.45/3.56 —
ECN-AF (C3) — 94.80/0.57

ECN-AF (All_band) 95.7/4.71 95.87/0.38

Dotted line (i.e., “—”) indicates that data was not provided; and bold indicates the best accuracy achieved for a
given dataset.
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Referring to the baseline models on the SEED dataset, two baseline models 4D_CRNN [35]
and SOGNN [31] that can be reproduced with the shared code were selected for compar-
ison when validating on the LE-EEG dataset. Table 5 presents the comparison with the
baseline models. Compared with that of these two baseline models, the performance
of our model was improved by 28.39% and 21.49% (see the 3rd column of the rows of
“4D_CRNN [35],” “SOGNN [31],” and “ECN-AF(All_band)” in Table 5), confirming that
the network was robust across datasets. Figure 7 shows the validation set accuracy of the
three different models during the training process. We still find that the ECN-AF model
yields a better performance.

Figure 7. Accuracy of the model’s validation set.

6. Conclusions

In this study, we collected the EEG signals of 45 subjects while they were watching
learning materials. We established the LE-EEG dataset and tried to use the EEG signals
to recognize learning emotions. The proposed ECN-AF first extracted the frequency band
features through a multi-channel backbone network, and then fused the frequency band
features with attention, which could effectively improve the model performance. Using
the complementarity of the frequency band combination effectively improved the model’s
accuracy and robustness and yielded better results compared to a single sub-band. This is a
conclusion similar to that of previous studies [30,31]. The ablation experiments performed
herein also demonstrated the necessity of multi-channel backbone blocks and attention
blocks. The experiments on the SEED and LE-EEG datasets showed that the proposed
model outperforms baseline models with a better cross-dataset performance.

Our future work will focus on the expansion of the LE-EEG dataset and on the
construction of a physiological signal dataset for multimodal learning emotion recognition.
At the same time, the learning of emotion-related frequency bands and related brain regions
and channels must be continuously explored and optimized, e.g., to further improve the
performance by exploring the optimal combination of EEG channels on the LE-EEG dataset.
The accuracy of the proposed model still needs improvement in across-participant research.
The generalization ability and robustness of the algorithm must also be further improved.
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Appendix A

Referring to [52–57], a questionnaire is taken as invalid if one or more than one of the
six factors in Table A1 is/are involved.

Table A1. Summary of methods of careless/insufficient effort (C/IE) detection.

Index Method Type Description

1 bogus or infrequency [52–55] check items Odd items placed in scale to solicit particular responses.

2 long-string analysis [52–55] invariance Length of longest sequential string of the same response

3 self-report data [52–55] self-report Items which ask the participant how much effort they
applied or how they judge the quality of their data

4 semantic antonyms/synonyms [52–55] consistency Within-person correlations on sets of semantically matched
pairs of items with opposite or similar meaning

5 instructional manipulation checks [52–55] check items Items with extended instructions which include instructing
participant to answer in unique manner

6 polytomous guttman errors [52] consistency
Count of the number of instances where a respondent

broke the pattern of monotonically increasing response on
the set of survey items ordered by difficulty.

References

1. Burkhardt, F.; Paeschke, A.; Rolfes, M.; Sendlmeier, W.F.; Weiss, B. A database of German emotional speech. In Proceedings of the
9th European Conference on Speech Communication and Technology (INTERSPEECH2005), Lisbon, Portugal, 4–8 September
2005; pp. 1517–1520.

2. Lim, W.; Jang, D.; Lee, T. Speech emotion recognition using convolutional and recurrent neural networks. In Proceedings of the
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA2016), Jeju, Korea, 13–16
December 2016; pp. 1–4.

3. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic compositional-
ity over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
(EMNLP2013), Seattle, WA, USA, 18–21 October 2013; pp. 1631–1642.

4. Kim, Y. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP2014), Doha, Qatar, 25–29 October 2014; pp. 1746–1751.

5. Anderson, K.; Mcowan, P.W. A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst.
Man. Cybern. B Cybern. 2006, 36, 96–105. [CrossRef] [PubMed]

6. Kim, K.H.; Bang, S.W.; Kim, S.R. Emotion recognition system using short-term monitoring of physiological signals. Med. Biol.
Eng. Comput. 2004, 42, 419–427. [CrossRef]

7. Bulagang, A.F.; Weng, N.G.; Mountstephens, J.; Teo, J. A review of recent approaches for emotion classification using electrocar-
diography and electrodermography signals. Inform. Med. Unlocked 2020, 20, 100363. [CrossRef]

8. Suzuki, K.; Laohakangvalvit, T.; Matsubara, R.; Sugaya, M. Constructing an emotion estimation model based on eeg/hrv indexes
using feature extraction and feature selection algorithms. Sensors 2021, 21, 2910. [CrossRef] [PubMed]

9. Fujii, A.; Murao, K.; Matsuhisa, N. disp2ppg: Pulse wave generation to PPG sensor using display. In Proceedings of the ACM
International Symposium on Wearable Computers (ISWC2021), Virtual Event, 21–26 September 2021; pp. 119–123.

10. Tong, Z.; Chen, X.X.; He, Z.; Kai, T.; Wang, X. Emotion Recognition Based on Photoplethysmogram and Electroencephalogram. In
Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC2018), Tokyo, Japan, 23–27
July 2018; pp. 402–407.

11. Coan, J.A.; Allen, J.J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–49. [CrossRef]
[PubMed]

12. Ekman, P. Expression and the nature of emotion. Approaches Emot. 1984, 3, 319–344.
13. Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion recognition from brain signals using hybrid adaptive filtering and higher order

crossings analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [CrossRef]
14. Schaaff, K.; Schultz, T. Towards emotion recognition from electroencephalographic signals. In Proceedings of the Third Interna-

tional Conference and Workshops on Affective Computing and Intelligent Interaction(ACII2009), Amsterdam, The Netherlands,
10–12 September 2009; pp. 1–6.

232



Sensors 2022, 22, 5252

15. Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 6th
International IEEE/EMBS Conference on the Neural Engineering (NER2013), San Diego, CA, USA, 6–8 November 2013;
pp. 81–84.

16. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A database for
emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [CrossRef]

17. D’mello, S.; Graesser, A. Emotions during learning with AutoTutor. In Adaptive Technologies for Training and Education; Cambridge
University Press: Cambridge, UK, 2012; pp. 117–139.

18. Graesser, A.C.; D’mello, S. Emotions during the learning of difficult material. Psychol. Learn Motiv. 2012, 57, 183–225.
19. Tonguc, G.; Ozkara, B.O. Automatic recognition of student emotions from facial expressions during a lecture. Comput. Educ. 2020,

148, 103797. [CrossRef]
20. Sharma, P.; Joshi, S.; Gautam, S.; Maharjan, S.; Filipe, V.; Reis, M.J. Student engagement detection using emotion analysis, eye

tracking and head movement with machine learning. arXiv 2019, arXiv:1909.12913.
21. Jenke, R.; Peer, A.; Buss, M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 2017,

5, 327–339. [CrossRef]
22. Davidson, R.J. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biol. Psychol.

2004, 67, 219–233. [CrossRef] [PubMed]
23. Arnau-González, P.; Arevalillo-Herráez, M.; Ramzan, N. Fusing highly dimensional energy and connectivity features to identify

affective states from EEG signals. Neurocomputing 2017, 244, 81–89. [CrossRef]
24. Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG features in cross-subject emotion recognition. Front. Neurosci.

2018, 12, 162. [CrossRef]
25. Algumaei, M.; Hettiarachchi, I.T.; Veerabhadrappa, R.; Bhatti, A. Wavelet packet energy features for eeg-based emotion recognition.

In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC2021), Melbourne, Australia, 17–20
October 2021; pp. 1935–1940.

26. Cui, F.; Wang, R.; Ding, W.; Chen, Y.; Huang, L. A Novel DE-CNN-BiLSTM Multi-Fusion Model for EEG Emotion Recognition.
Mathematics 2022, 10, 582. [CrossRef]

27. Xing, M.; Hu, S.; Wei, B.; Lv, Z. Spatial-Frequency-Temporal Convolutional Recurrent Network for Olfactory-enhanced EEG
Emotion Recognition. J. Neurosci. Methods 2022, 376, 109624. [CrossRef]

28. Li, J.; Wu, X.; Zhang, Y.; Yang, H.; Wu, X. DRS-Net: A spatial–temporal affective computing model based on multichannel EEG
data. Biomed. Signal Process. Control. 2022, 76, 103660. [CrossRef]

29. Toraman, S.; Dursun, Ö.O. GameEmo-CapsNet: Emotion Recognition from Single-Channel EEG Signals Using the 1D Capsule
Networks. Traitement Signal 2021, 38, 1689–1698. [CrossRef]

30. Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural
networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [CrossRef]

31. Li, J.; Li, S.; Pan, J.; Wang, F. Cross-subject EEG emotion recognition with self-organized graph neural network. Front. Neurosci.
2021, 15, 611653. [CrossRef] [PubMed]

32. Song, T.Z.W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect.
Comput. 2020, 3, 532–541. [CrossRef]

33. Li, Y.; Wang, L.; Zheng, W.; Zong, Y.; Qi, L.; Cui, Z.; Zhang, T.; Song, T. A novel bi-hemispheric discrepancy model for EEG
emotion recognition. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 354–367. [CrossRef]

34. Wang, Y.; Qiu, S.; Li, J.; Ma, X.; Liang, Z.; Li, H.; He, H. EEG-based emotion recognition with similarity learning network.
In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC2019),
Berlin, Germany, 23–27 July 2019; pp. 1209–1212.

35. Shen, F.; Dai, G.; Lin, G.; Zhang, J.; Kong, W.; Zeng, H. EEG-based emotion recognition using 4D convolutional recurrent neural
network. Cogn. Neurodyn. 2020, 14, 815–828. [CrossRef] [PubMed]

36. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. IEEE Trans. Pattern. Anal. Mach. Intell. 2020, 42,
2011–2023. [CrossRef]

37. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 15th European
Conference on Computer Vision (ECCV2018), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018;
Volume VII, pp. 3–19.

38. Li, Y.; Fu, B.; Li, F.; Shi, G.; Zheng, W. A novel transferability attention neural network model for EEG emotion recognition.
Neurocomputing 2021, 447, 92–101. [CrossRef]

39. Wu, X.; Zheng, W.L.; Li, Z.; Lu, B.L. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition.
J. Neural Eng. 2022, 19, 016012. [CrossRef]

40. Keelawat, P.; Thammasan, N.; Numao, M.; Kijsirikul, B. A comparative study of window size and channel arrangement on
EEG-emotion recognition using deep CNN. Sensors 2021, 21, 1678. [CrossRef]

41. Garg, N.; Garg, R.; Parrivesh, N.S.; Anand, A.; Abhinav, V.A.S.; Baths, V. Decoding the neural signatures of valence and arousal
from portable EEG headset. bioRxiv 2021. [CrossRef]

42. Kasim, Ö.; Tosun, M. Effective removal of eye-blink artifacts in EEG signals with semantic segmentation. Signal Image Video
Processing 2022, 16, 1289–1295. [CrossRef]

233



Sensors 2022, 22, 5252

43. Zheng, W.L.; Liu, W.; Lu, Y.; Lu, B.L.; Cichocki, A. EmotionMeter: A multimodal framework for recognizing human emotions.
IEEE Trans. Cybern. 2019, 49, 1110–1122. [CrossRef] [PubMed]

44. Gross, J.J.; Levenson, R.W. Emotion elicitation using films. Cogn. Emot. 1995, 9, 87–108. [CrossRef]
45. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent

component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]
46. Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component

classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [CrossRef] [PubMed]
47. Zhang, H.; Zhao, M.; Wei, C.; Mantini, D.; Li, Z.; Liu, Q. Eegdenoisenet: A benchmark dataset for deep learning solutions of eeg

denoising. J. Neural Eng. 2021, 18, 056057. [CrossRef]
48. Klug, M.; Gramann, K. Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary

experiments. Eur. J. Neurosci. 2021, 54, 8406–8420. [CrossRef]
49. Plechawska-Wójcik, M.; Tokovarov, M.; Kaczorowska, M.; Zapała, D. A three-class classification of cognitive workload based on

EEG spectral data. Appl. Sci. 2019, 9, 5340. [CrossRef]
50. Leach, S.C.; Morales, S.; Bowers, M.E.; Buzzell, G.A.; Debnath, R.; Beall, D.; Fox, N.A. Adjusting ADJUST: Optimizing the ADJUST

algorithm for pediatric data using geodesic nets. Psychophysiology 2020, 57, e13566. [CrossRef]
51. Zhong, P.; Wang, D.; Miao, C. EEG-based emotion recognition using regularized graph neural networks. IEEE. Trans. Affect.

Comput. 2020. [CrossRef]
52. Curran, P.G. Methods for the detection of carelessly invalid responses in survey data. J. Exp. Soc. Psychol. 2016, 66, 4–19.

[CrossRef]
53. DeSimone, J.A.; Harms, P.D.; DeSimone, A.J. Best practice recommendations for data screening. J. Organ. Behav. 2015, 36, 171–181.

[CrossRef]
54. DeSimone, J.A.; Harms, P.D. Dirty data: The effects of screening respondents who provide low-quality data in survey research.

J. Bus. Psychol. 2018, 33, 559–577. [CrossRef]
55. Murana, S.; Rahimin, R. Application of SPSS software in statistical learning to improve student learning outcomes. Indo-MathEdu

Intellect. J. 2021, 2, 12–23. [CrossRef]
56. Maison, M.; Kurniawan, D.A.; Anggraini, L. Perception, attitude, and student awareness in working on online tasks during the

covid-19 pandemic. J. Pendidik. Sains Indones. 2021, 9, 108–118. [CrossRef]
57. Chen, C. Research on teaching effect and course evaluation based on spss and analysis of influencing factors. In Proceedings of

the 2021 4th International Conference on E-Business, Information Management and Computer Science, Hong Kong, China, 29–31
December 2021; pp. 229–234.

234



Citation: Gutiérrez-Martín, L.;

Romero-Perales, E.; de Baranda

Andújar, C.S.; F. Canabal-Benito, M.;

Rodríguez-Ramos, G.E.; Toro-Flores,

R.; López-Ongil, S.; López-Ongil, C.

Fear Detection in Multimodal

Affective Computing: Physiological

Signals versus Catecholamine

Concentration. Sensors 2022, 22, 4023.

https://doi.org/10.3390/s22114023

Academic Editor: Mincheol Whang

Received: 30 April 2022

Accepted: 18 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fear Detection in Multimodal Affective Computing:
Physiological Signals versus Catecholamine Concentration

Laura Gutiérrez-Martín 1,2, Elena Romero-Perales 1,2, Clara Sainz de Baranda Andújar 1,3,

Manuel F. Canabal-Benito 1,2, Gema Esther Rodríguez-Ramos 1, Rafael Toro-Flores 4, Susana López-Ongil 4

and Celia López-Ongil 1,2,*

1 UC3M4Safety Team, Universidad Carlos III de Madrid, c/Butarque, 15, 28911 Madrid, Spain;
lagutier@ing.uc3m.es (L.G.-M.); eleromer@ing.uc3m.es (E.R.-P.); cbaranda@hum.uc3m.es (C.S.d.B.A.);
mcanabal@ing.uc3m.es (M.F.C.-B.); gerodrig@pa.uc3m.es (G.E.R.-R.)

2 Departamento de Tecnología Electrónica, c/Butarque, 15, 28911 Madrid, Spain
3 Departamento de Comunicación, c/Madrid, 126, 28903 Madrid, Spain
4 Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Ctra,

Alcalá-Meco s/n, 28805 Madrid, Spain; rafael.toro@uah.es (R.T.-F.); slorgil@salud.madrid.org (S.L.-O.)
* Correspondence: celia@ing.uc3m.es

Abstract: Affective computing through physiological signals monitoring is currently a hot topic in
the scientific literature, but also in the industry. Many wearable devices are being developed for
health or wellness tracking during daily life or sports activity. Likewise, other applications are being
proposed for the early detection of risk situations involving sexual or violent aggressions, with the
identification of panic or fear emotions. The use of other sources of information, such as video or audio
signals will make multimodal affective computing a more powerful tool for emotion classification,
improving the detection capability. There are other biological elements that have not been explored
yet and that could provide additional information to better disentangle negative emotions, such
as fear or panic. Catecholamines are hormones produced by the adrenal glands, two small glands
located above the kidneys. These hormones are released in the body in response to physical or
emotional stress. The main catecholamines, namely adrenaline, noradrenaline and dopamine have
been analysed, as well as four physiological variables: skin temperature, electrodermal activity, blood
volume pulse (to calculate heart rate activity. i.e., beats per minute) and respiration rate. This work
presents a comparison of the results provided by the analysis of physiological signals in reference to
catecholamine, from an experimental task with 21 female volunteers receiving audiovisual stimuli
through an immersive environment in virtual reality. Artificial intelligence algorithms for fear
classification with physiological variables and plasma catecholamine concentration levels have been
proposed and tested. The best results have been obtained with the features extracted from the
physiological variables. Adding catecholamine’s maximum variation during the five minutes after
the video clip visualization, as well as adding the five measurements (1-min interval) of these levels,
are not providing better performance in the classifiers.

Keywords: multimodal affective computing; catecholamines; emotion classification; wearable devices

1. Introduction

Affective computing, the study, analysis, and interpretation of human emotional
reactions by means of artificial intelligence [1], has become a hot topic in the scientific
community. Possible applications include accurate neuromarketing techniques, more
efficient human-machine interfaces and new wellness and/or healthcare practices, with
innovative therapies for phobias and mental illnesses [2–6]. Recently, the prevention of
violent attacks on vulnerable people by means of the early detection of fear or panic
emotional reactions is under research in this area [7].
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In affective computing, many research areas merge to provide efficient and accurate
systems capable of classifying the emotion felt by a person. Apart from psychology,
neuroscience and physiology, other disciplines are required to automate the emotion
detection process as well as to allow in-depth data analysis and useful feedback.

Human emotions are the consequence of biochemical reactions in the brain. External
stimuli are processed in certain brain regions such as the amygdala, insula and prefrontal
cortex [8–10]. These areas activate the autonomic nervous system, which triggers physi-
ological changes as an emotional response. From the global emotional response, we can
distinguish conscious and unconscious processes. The cognitive component in the emotion
obtains a high degree of consciousness and can feedback the physiological reactions chain.

The measuring and processing of these physiological reactions allow automatizing the
emotion detection and classification process, known as affective computing. If this detection
involves several sources of information, it is known as multimodal affective computing.
Validity and corroboration issues have made physiological variables the most attractive to
researchers. Multimodal recordings commonly used are Galvanic Skin Response (GSR),
ElectroMyoGraphy (EMG) (frequency of muscle tension), Heart Rate (HR), Respiration
Rate (RR), ElectroEncephaloGraphy (EEG), functional Magnetic Resonance Imaging (fMRI),
and Positron Emission Tomography (PET) [11], even though behavioural measurements
such as facial expressions, voice, movement, and subjective self-reporting can also be useful
for experimental purposes.

In this sense, some authors have related non-external physiological variables with
emotional reactions [12]. For example, the levels of neurotransmitters in the brain or
circulating catecholamines vary depending on a person’s emotional state, affecting activity
of physiological variables. Although their measures are very invasive, the relation between
physiological variable changes and the concentration of these molecules makes them
interesting in some applications of affective computing. For example, in risk situations, this
early detection of fear or panic emotions would trigger a protection response for the person
in danger. To date, there is no study using catecholamine concentration in blood plasma for
emotion detection that includes an experimental sample in humans, just theoretical studies.

The concentration of catecholamines is usually measured in urine to diagnose or
rule out the presence of certain tumours such as pheochromocytoma or neuroblastoma
because these tumours raise the levels significantly. However, in basal conditions, the
levels are low and can be detected in blood by high-performance liquid chromatography
(HLPC) techniques.

Continuous and autonomous measurement of these molecules is not available cur-
rently, but if they prove useful, wearable analysis devices could be designed and developed,
similar to insulin micropumps [13].

In this work, a methodology and protocol are proposed to connect the elicitation
of human emotions with the variation of plasma catecholamine concentration. For this
first test, fear is chosen as the target emotion for two main reasons. On the one hand,
the relationship between neurotransmitters and stress or fear is well documented in the
literature, as they are responsible for the activation of the body’s fight or flight mechanisms.
On the other hand, the protection of women against gender-based violence has been
chosen as a target application. For this purpose, the objective is to be able to detect fear
automatically so that an alarm is triggered to protect women in danger. Although there is
already work in this area, so far only physiological variables have been used. In order to
validate if the inclusion of catecholamine plasma concentration improves the results, an
immersive virtual reality environment has been arranged to provoke realistic situations
where the volunteer could have intense emotional reactions. Continuous monitoring of
physiological variables, with a research toolkit system (for the sake of comparison with
other affective computing research works), is connected with the virtual environment,
as well as to an interface for the classification of the emotions elicited. The detection of
emotions in humans through the plasma concentration of catecholamines has been analysed
and compared with externally measured physiological variables, such as SKT, HR and
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EDA. The main obtained results are very positive with regard to physiological variables
while they are not conclusive for the levels of catecholamine concentration in blood plasma.

The main contributions of this work can be summarized as:

• The design of a methodology for plasma catecholamine concentration measurement
along with physiological variables under audiovisual stimuli for automatic fear detection.

• An experimental test involving 21 volunteers where dopamine, adrenaline and nora-
drenaline are measured along with blood volume pulse, skin temperature, galvanic
skin response, respiration rate, and electromyography.

• An analysis of the data collected, including both physiological variables and cate-
cholamine concentration separately and also combined.

• An implementation and comparison of three artificial intelligence methods for fear
detection using the measurements collected in the experimental test in order to validate
the convenience of including plasma catecholamine concentration in fear detection
systems.

The rest of this paper is organized as follows: Section 2 provides a review of the state of
the art regarding emotion theory, automatic emotion detection, and physiological response
related to catecholamines and emotion. As result, we can formulate the hypothesis of this
work. Section 3 describes the methodology used in this work for the experimental setup,
including the sample description, the design of the study, the stimuli used, the labelling
method, and the collected measurements. Section 4 presents the experimental results
(for labelling, physiological variables and catecholamine concentration). Additionally, we
present an artificial intelligence algorithm analysis in order to validate the hypothesis
formulated previously. The discussion is presented in Section 5, and finally, Section 6
concludes the work.

2. State of the Art: Emotions, Physiological Response and Affective Computing

2.1. Emotions

Emotions are fundamental for human beings since they play an important role in
individual and social behaviour and mental processes, such as decision making, percep-
tion, memory, attention, etc. [14]. However, they have been partially ignored in the past,
generally due to the difficulties they intrigue for experimental methodology.

The identification and classification of emotions for improving people’s lives have
gained interest in recent years as several fields can take advantage of the results in this
area [15–17]. such as mental health, human-machine interfaces, learning and teaching
methods, video games or neuromarketing. In psychology, emotions are described as “psy-
chological states that include three components: subjective personal experience, associated
physiological response, and behaviours” [18,19].

Within the literature and the state of the art in emotion identification and classification,
there are two trends: (1) the classification of emotions as discrete elements, and (2) their
inclusion in a continuous vector space. Within the first option, different classifications
have been proposed. The first classification was presented by Ekman [20] using six ba-
sic emotions (happiness, sadness, disgust, fear, surprise, and anger). Since then, other
classifications have been presented, adding emotions, or changing some of them [21,22].
Within the second option, we find the representation in the affective space. This consists
of the multidimensional representation (usually within two or three axes) of the emotion
so that the affective space becomes a continuous space in which every emotional state is
represented by two or three coordinates. The most lately used space [23] proposes three
dimensions (valence, arousal, and dominance). In this space, valence-pleasure (P) indicates
positive or negative emotions; arousal (A) ranges from calm to high excitement levels; and
finally, dominance (D) denotes the ability to control the emotion [24]. Several studies [25]
of emotion classification use only a 2-dimensional space (PA space) using the valence and
arousal axes previously described. That generates four quadrants in the space for locating
emotions (Q1, Q2, Q3, and Q4). Some authors [26,27] have tried to place the discrete
emotions in the quadrants according to the valence and arousal presumably experienced
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by each of them (see Figure 1a). Adding the third dimension (D) allows for differentiating
discrete emotions sharing similar values in the PA space, such as fear and anger in Q2.

  
(a) (b) 

Figure 1. (a) Discrete emotion mapping in PA space in the literature. (b) Results extracted from
Spanish study [28].

Both emotion classification systems present difficulties when applied to the auto-
matic identification of emotions and their experimental validation. On the one hand, the
use of discrete emotions is considerably biased by the sociocultural environment of the
person [28], especially the background and the country of origin. In addition, there is
reasonable dependence on the correct understanding of the description of the emotion or its
nuances when identifying it [29]. In an attempt to address this, several emotions have been
added to the list making it longer, but this also leads to problems for automatic emotion
classification methods (as they add subtle differences in the responses). On the other hand,
PAD affective space systems are often also related to the difficulty in understanding the
three classification axes.

2.2. Emotion Detection

Affective computing has emerged to shed light on the gap where technology and
emotions converge. One of the goals of this field is trying to model emotional response to a
wide variety of stimuli by evaluating emotional states. These states become measurable
regarding subjective self-reports, physiological variables and behaviour.

The main elements involved in affective computing systems are the emotions the-
ory [30] which connects human affective reactions to external stimuli, attending to intrinsic
and extrinsic factors, with externally measurable physical and physiological changes; col-
lecting data with smart sensors, first through emotion elicitation experiments in the lab and
secondly through live in-the-wild monitoring; and the generation, training and integration
of artificial intelligence algorithms in autonomous systems [3].

In affective computing, those changes are objectively measured in the person to
determine the emotion felt. External (behavioural) aspects, such as facial expression,
voice, movement, etc., are voluntary and biased through culture and society, making them
difficult to apply to user-independent emotion detection. On the other hand, physiological
changes (involuntary reactions) with an external effect (it is possible to measure them
in a non-invasive way), have been preferred [31]. Typical variables used in affective
computing include galvanic skin response, which increases linearly with a person’s level
of arousal [32,33] electromyography (frequency of muscle tension), which is correlated
with emotions of negative valence [34]; heart rate, which increases with negative valence
emotions like fear [35,36]; respiration rate(how deep and fast the breath is), which becomes
irregular with more aroused emotions like anger [37]; electroencephalography [38,39] and
functional magnetic resonance imaging [40].

All these variables differ in many aspects, some of them are ease of measurement,
which is related to how internal or external the target signal is; consciousness, because some
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variables can be consciously controlled and altered by the individual; and invasiveness,
which means that some variables can be measured with low/high invasiveness for the
individual. Many affective computing systems combine several variables in order to
increase the performance of the application integrating solutions known as multimodal
affective computing [41–43]. This allows combining several features from different sources
making the automatic detection usually more complex but also with higher accuracy.

Intelligent algorithms should be trained with these measured physiological variables
together with subjective perceived emotion during stimuli application. Among the different
available options, we can feature according to the literature [44] those used in constrained
devices as: Support Vector Machine (SVM) [45], K-Nearest Neighbours (KNN) [46] and
Ensemble Methods (ENS) [47]. For training and research purposes, there are different
databases compiling all these data for helping in the generation of affective computing
systems [48,49].

The measurement of these physiological variables with wearable devices during daily
life is associated with a high amount of noise due to interferences and users’ movements [50].
There are several works proposing solutions to eliminate or reduce this noise, through
filters, algorithms, and even, fuzzy logic [51], but these techniques are expensive in terms
of power consumption, the time required, and computation effort.

In order to try to overcome this problem, other variables could be tested in order to
validate its inclusion pertinence. Among them, catecholamines’ presence in blood plasma,
saliva or sweat could be an interesting option, even if its measurement is more invasive, as
they could be more robust against artifacts.

2.3. Chatecolamines in Emotion Detection

Since the first half of the 20th century, explanatory theories emerged to explain the
physiological changes caused by stressful stimuli that altered the body’s homeostasis.
These theories somehow evolved from the ”stress non-specificity” approach to the ”stress
specificity” approach [52]. This means that the first theories of stress regarded this response
relatively independent of the type of threat. Whether it was exposure to cold, haemorrhage
or distressing emotional encounters, the stress response would be essentially the same [53].
However, recent data and observations indicate the probable existence of a variety of
stressors with different targets and different effects on homeostasis [54]. These theories
tend to explain the stress response by considering that it has a primitive type of specificity,
with differential responses of the sympathetic nervous and adrenomedullary hormonal
systems, depending on the type and intensity of the stressor perceived by the organism and
interpreted in the light of experience [55]. The activation of the adrenomedullary hormonal
system has been linked to glucoprivation and emotional distress such as fear. There is some
evidence to confirm an accumulated association between noradrenaline and active escape,
avoidance or attack, and a link between adrenaline and passive, immobile fear [56].

Catecholamines are hormones made in nerve tissue, the brain, and the adrenal glands.
If they are found in the synapses of the nervous system, they are classified as neurotrans-
mitters, and if they are found in the bloodstream, they are classified as hormones. The
adrenal glands produce large amounts of catecholamines in response to acute stress or
elevated arousal [57]. The main catecholamines are adrenaline (epinephrine), noradrenaline
(norepinephrine) and dopamine. Catecholamines help the body to respond to stress or
fear and prepare the body for “fight or flight” reactions [58]. This reaction to states of
threat or high arousal results in a general discharge of catecholamines from three peripheral
systems: the sympathetic branch of the autonomic nervous system, the adrenomedullary
hormonal system and the autocrine/paracrine dopaminergic system. The activation of
these systems favours the secretion of catecholamines into the bloodstream, where they
trigger a cascade of physiological changes in peripheral tissues after binding to their recep-
tors. Catecholamines increase heart rate, blood pressure, respiratory rate, muscle strength,
and alertness. They also reduce the amount of blood going to the skin and intestines and
increase blood going to major organs, such as the brain, heart, and kidneys [59].
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Theoretical studies such as [12] propose that there is a direct relationship between
neurotransmitter levels (dopamine, noradrenaline, and serotonin) and emotions. In this
model, for example, fear is related to a combination of a low level of serotonin, a low level
of noradrenaline and a high level of dopamine, (see Figure 2).

Figure 2. Loveheim cube showing correspondence among catecholamines and emotions (based
on [12]).

Loveheim’s study describes a theoretical framework that, if measurable, could improve
multimodal affective computing systems for the automatic identification and classification
of emotions. In fact, the study proposes to continue this research with a further experimen-
tal test that allows validating his proposal. Walker also proposes a theoretical framework
that includes cortisol (a hormone produced in the adrenal gland) as an indicator related
to fear and stress [60]. Again, this work suggested validating this framework with experi-
mental tests. There are no results for catecholamines and human emotions experiments,
although some previous tests have been performed in cats [61]. Directly measuring the
presence of neurotransmitters is very invasive and nearly impossible on a day-to-day
basis, so measuring catecholamines’ presence in blood plasma in an experimental setup
in order to confirm whether there is a relationship between this presence associated with
different emotional states is a good starting point for future developments in affective
computing research.

2.4. Hypotheses

Once the state of the art is reviewed, it can be stated that there is a lack of experimental
studies that validate the relationship and convenience of using the concentration of plasma
catecholamine in affective computing. So, in this work, the authors propose that:

• The emotional states of fear and no-fear can be discriminated through the plasma
catecholamine concentration levels

• Using catecholamine concentration level improves the results for fear detection pro-
vided by the use of solely physiological variables.

If this hypothesis is proved correct, an automatic system for early detection of emo-
tional states of fear can be implemented, reducing the effect of interferences and noise in
the measured signals. Better protection for people in dangerous situations will be provided
through the activation of early protective responses.

3. Material and Methods

In this section, we present the proposed methodology for data collection of both
physiological variables and catecholamines in an immersive environment for emotion
elicitation. Since the design of this experiment involves the extraction of blood samples
for the analysis of catecholamines in blood plasma, and the number of samples cannot be
high, fear has been chosen as the target emotion, since, as discussed in Section 2, it is highly
related to the release of catecholamines.
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In addition, some considerations have to be taken into account. As stated before, one
of the objectives of the authors is to apply multimodal affective computing to the protection
of women victims of gender-based violence. For this reason, the sample of this study is
entirely composed of women, and the proposed final application also influences the choice
of one of the audio-visual stimuli, which is directly related to gender violence.

3.1. Sample of the Study

The study population consisted of 21 volunteers, all of them apparently healthy
women. All of them were Spanish women, and healthcare workers. Study subjects were
not allowed to perform strenuous exercise, smoke, eat some foods, or take drugs or some
medicines (Table 1) at least 24 h before analysis, to avoid interference with catecholamines
measurement.

Table 1. Foods, drinks, and drugs can interfere with the analysis of catecholamines.

Food Drinks Drugs Medicines

Cocoa Coffee Amphetamine Paracetamol

Citric Fruits Tea Caffeine Phenoxybenzamine, phenothiazine

Walnuts Chocolate Nicotinic Acid Levodopa

Beans Beer Cocaine Monoamine oxidase inhibitors

Avocado, Banana Red wine Reserpine

Vanilla Pseudoephedrine

Main data of female volunteers are registered in Table 2. The mean age of the volun-
teers is 36. Only 5 of them had one child, and 13 volunteers were single. With regard to
Body Mass Index (BMI), only 4 volunteers presented values between 25 and 30, overweight
indicative. Finally, 4 volunteers are in their menopause. Some volunteers (6) were taking
treatments for chronic illnesses (hypertension, chronic pain, heart failure, ulcerative colitis,
anaemia, and diabetes).

Table 2. Characteristics of women volunteers.

Parameter Mean ± Std Deviation (SD)/Nb.

Age (year) 36.19 ± 13.43

Weight (kg) 61.20 ± 8.68

Height (cm) 164.29 ± 5.09

BMI (kg/m2) 22.75 ± 3.56

Food, drinks, drugs Citric fruits (3), coffee (11), tea (2) and alcohol (1)

Medicines reported Analgesic (5), chronic illness treatment (3), contraceptives (1),
and vitamin (1)

Stress situation 5

Intense exercise 2

The study conforms to the ethical principles outlined in the Declaration of Helsinki.
Design of the study was approved by the Research Ethics Committee (REC) of Principe de
Asturias Hospital with protocol number: CLO (LIB 10/2019). All participants received a
detailed description of the purpose and design of the study and signed informed consent
approved by the REC.

3.2. Design of the Study

The study consisted in measuring the physiological variables of a set of volunteers
while they were watching a set of 4 emotion-related videos in an immersive virtual reality
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environment. Additionally, several blood extractions were performed after the visual-
ization of three of these videos to analyse the plasma catecholamine levels (dopamine,
adrenaline, and nor-adrenaline). Besides, after every video watching, the volunteer labelled
the emotions elicited during the visualization.

Each participant fasted at least twelve hours before the experiment. Previously to the
experiment, the participant filled in a form providing information such as personality traits,
sex, age group, recent physical activity, or medication (which could alter the participant’s
physiological response), self-identified emotional loads, and mood bias (fears, phobias, or
traumatic experiences), summarized in Table 2. This information could be relevant and
informative to the emotional reactions of the participants during the experiment, affecting
their cognition, appraisal, and attention.

The experiment was designed to last globally 2 h. In Figure 3, the schedule of the
experiment is shown. After the interview, filling in the questionnaire, and signing the
informed consent, the test schedule and protocol were explained to every volunteer and
some demo was performed in relation to the virtual reality environment. Then, the sensors
for measuring the physiological variables were located. The BioSignalPlux® research
toolkit system was used to register the physiological variables evolution throughout the
study, such as forearm skin temperature, galvanic skin response, finger blood volume
pulse (BVP), trapezoidal electromyogram, and chest respiration. The system is placed
in different locations in the volunteer’s body (arm, hand, chest, and finger), (Figure 4).
These physiological signals were selected because they could be easily implemented in an
inconspicuous and comfortable wearable device, avoiding any disadvantage to the user.
There are smartwatches that already integrate BVP, GSR, and SKT sensors. Respiration and
EMG could be integrated into a patch or band. This characteristic is mandatory for this
type of application.

Figure 3. Schedule of the experiment for each volunteer.

Figure 4. Electrodes and sensors position for experiment.

Once explained how to handle the equipment to label each video, the nurse proceeded
to put a via in the antecubital vein to extract blood samples at different time points of the
study, at the beginning (basal point) and after each video (5 samples). Each subject watched
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four unexpected videos related to different emotions that had to be labelled according to
what she was feeling at that moment. Just after finishing each video a blood sample was
taken. After videos 2, 3 and 4, five samples were collected, separated 1 min each, to monitor
the changes in catecholamine levels, (Figure 5).

 

Figure 5. Volunteer ready to start the experiment.

3.3. Audiovisual Stimulus

Every subject watched four videos, two of them related to the emotion of fear, one
related to calm and the other one related to joy. The schedule is Calm Fear Joy Fear. The
order of fear-related videos is randomly set for each volunteer.

The video clips used for the experiment were selected from the UC3M4Safety Database
of audiovisual stimuli aimed to elicit different emotional reactions through an immersive
virtual reality environment [62] (see Figure 6). Most of the clips were 360-degree scenes
providing more realistic experiences.

  

Figure 6. Screenshots for fear and calm video visualization.

The Oculus™ Rift S Headset was used under an application built on Unity™ that
connects the video clips projection to the physiological monitoring system and records the
emotion labelling. The whole data recording system was initiated by the virtual reality
environment that manages both video stimuli and sensor measurement. A TCP/IP port
connection was created at the beginning of the trial to communicate with the OpenSignals
application. The information storage was divided by scenes, meaning each file contained
the information collected between two timestamps (start and end of each screen) set by the
environment, thus enabling synchronization.

The four video clips were V1, V2, V3, and V4, aimed to provoke calm, fear (gender-
based violence related), joy and fear, respectively.

• V1: “Nature”—calm
• V2: “Refugiado”—fear related to gender-based violence
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• V3: “Don’t stop me now”—joy
• V4: “Inside chamber of horrors”—general fear

These videos obtained a very good unanimity in discrete emotion, higher in the case
of women for the fear and joy clips while the mean and standard deviations in the PAD
affective space dimension are also closer than expected for fear clips and for women,
(Table 3). In this table, the discrete emotion labelled for every video is shown for the
experiment detailed in [28], as well as the three dimensions of the PAD affective space. As
it could be seen, V2 has a very high unanimity in the discrete emotion of fear in women,
and also V4. Regarding PAD variables, the dispersion and the mean are complying with
the expected ranges.

Table 3. Emotional Labelling of the video clips used in the experiment [28].

Video
Clip

Target
Emotion

Duration
Unanimity (Discrete)

Men Women
PAD (Mean/SD)

Men Women

V1 Calm 60 s 78% 74,4%
V: 7.3 (1.7)
A: 2.1 (1.1)
D: 6.8 (1.8)

V: 7.7 (1.7)
A: 2.0 (1.7)
D: 6.6 (2.4)

V2
Fear

Gender-based
violence

93 s 62.1% 93.2%
V: 2.5 (1.8)
A: 7.1 (1.2)
D: 4.2 (1.7)

V: 1.7 (0.7)
A: 7.7 (0.9)
D: 3.4 (1.6)

V3 Joy 101 s 71.9% 83.3%
V: 7.3 (1.6)
A: 4.6 (2.1)
D: 6.6 (2.0)

V: 7.8 (1.3)
A: 4.5 (2.2)
D: 7.2 (1.9)

V4 Fear 119 s 75.0% 84.2%
V: 2.9 (1.7)
A: 6.6 (1.7)
D: 4.3 (2.3)

V: 2.7 (1.6)
A: 6.9 (1.7)
D: 4.3 (2.2)

3.4. Labelling

In order to try to overcome the problems related to labelling method mentioned above,
in this work, we have decided to include both a discrete classification of emotions (joy,
hope, surprise, attraction, tenderness, calm, tedium, contempt, sadness, fear, disgust, and
anger), plus an indicator of emotional intensity to be able to detect more nuances, and the
classification in the PAD affective space using the SAM methodology [63] (see Figure 7). As
depicted in Figure 3, the labelling is carried out just after the blood sample collection.

  

Figure 7. Labelling screen used in the experiment.

3.5. Measurement of Dopamine, Adrenaline and Noradrenaline

We have carried out the determination of catecholamines in 3 mL of plasma by high-
performance liquid chromatography (HPLC). Blood samples were collected in pre-chilled
EDTA-treated tubes, in the morning after a 12-h overnight fast and resting period. As
several samples had to be taken every few times after watching each video, a via was
placed to assist sample collection from each point of the study. Plasmas were immediately
separated, to prevent catecholamines degradation, by centrifugation at 2000× g for 15 min
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at 4 ◦C. After that, the plasma was collected in clean and pre-chilled tubes and then stored
at −80 ◦C until measured. All plasmas were properly submitted to Reference Laboratory
S.A. (L’Hospitalet de Llobregat, Barcelona, Spain) to measure by HPLC the adrenaline,
noradrenaline and dopamine in each sample.

Measurement of serotonin requires serum instead of plasma, needing the extraction of
additional 5 mL blood samples from each volunteer. Apart from the extra cost, equivalent
to measuring the other three catecholamines, the large number of samples required has
prevented the authors from analysing the evolution of serotonin concentrations during
the study.

4. Experimental Results

The experiments were performed from December 2020 to January 2021, on 12 and
9 volunteers, respectively.

4.1. Emotion Labeling

As it was already mentioned, emotional labelling is a complex task, not only because
sometimes the target emotions are not the ones that are elicited to the volunteers, but also
because of the terminology.

For that reason, at first, it is important to analyse the distribution of the labels reported
during the experiment and study how well the clips have been eliciting their target emotions.

Taking into consideration discrete classification, (Figure 8), the clip targeting general
fear emotion (V4) is the one with the highest agreement among the volunteers, 95% of them
labelled it as fear. In the case of the clips of calm (V1) and joy (V3), a unique emotion does
not obtain a clear majority; however, if the quadrants of PAD space are analysed, these
videos show 76% and 90% of agreement, respectively.

 

Figure 8. Emotion labelling distribution (0.00–1.00) between emotions reported by the volunteers
w.r.t. each video clip visualized.

On the other hand, V2 shows the highest dispersion, although fear is the most used
label (48%), anger (19%), and sadness (19%) represent approximately 40% of the reported
classifications. This scattering is mainly due to the scenes presented in the clip. As we have
already found in previous works [28], gender-based violence videos elicit this variety of
emotions depending on the volunteer’s perspective (first person or external).

As regards continuous labelling, independently from the dispersion found in discrete
labelling, both fear clips are represented in their theoretical ideal position in the PAD space,
low-valence, low-dominance and high-arousal corner.

The same occurs with the calm and joy clips which are placed at spots of high-valence,
medium-high dominance, and medium-low arousal, with the joy clip being slightly above
in terms of arousal.

Looking at previous results, and to observe the intercorrelation between volunteers
when classifying all the clips, the correlation coefficient is computed considering all con-
tinuous reported labels. As result, a high positive relationship is obtained between all the
volunteers, except for V002 and V005, who barely correlate with the rest, Figure 9. These
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results allow us to check that the emotions elicited are not only close to the original target
(at least in the quadrant) but also inter-volunteer.

Figure 9. Correlation matrix between volunteers considering continuous reporting labelling.

4.2. Physiological Variables

From the physiological variables measured, the authors extracted features from the
forearm skin temperature, skin conductance (GSR), finger blood volume pulse (BVP), and
respiration. These variables have been measured throughout the whole experiment for
every volunteer. First, a global analysis of the whole group of volunteers was carried
out, for every video clip watched and, consequently, for every emotion. Later, temporal
evolution of every physiological variable was also performed to find patterns of evolution
during the visualization of the different emotion-related video clips.

4.2.1. Median and Quartile Distribution of Extracted Features per Video Clip

This analysis has been performed on the measurements from all the volunteers, con-
sidering the target labels of emotion, normalizing every volunteer with respect to their
own values.

Although Clip 2 (V2) and Clip 4 (V4) have the same fear label, V2 includes gender-
based violence and the emotional reactions are very different from the reactions on V4, as it
has been detailed in the previous section.

The extracted features from the physiological variables are Inter-Bit-Interval (IBI) and
Heart Rate Variability (HRV) extracted from BVP, which are very related to the degree of
arousal, and the phasic peaks of GSR and the mean of GSR, which have been identified with
the variables that work better for artificial intelligent algorithms in affective computing.
These features are computed in 60 s windows.

As it can be observed in the Figure 10, the median and quartile distribution (box
plots) IBI (a) and HRV (d) are the physiological features that better differentiate fear-related
emotions, while the mean (c) and peaks (b) of GSR are clearly different for fear emotions
(V4). Even, gender-based violence (V2) reactions are not distinguishable from calm or joy
in terms of median values.
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(a) (b) 

 
(c) (d) 

Figure 10. Normalized physiological features per video. (a) IBI. (b) number of phasic GSR peaks.
(c) mean of GSR. (d) HRV rmssd.

The statistical analysis ANOVA on the features extracted from the physiological
variables has provided some differences in the effect of different emotions elicited. In
Table 4, the p-values for the comparison between videos are shown. We have observed
significant values for the comparison between the effect of video clip V1 (calm) and video
clips V2 and V4, for the mean of GSR. Additionally, there are significant differences in the
effect of V1 and V4 for the IBI, and V3 and V4 for the number of peaks of GSR.

Table 4. p-values results from Kruskal-Wallis one-way ANOVA test for physiological data grouped
by video clip.

Group A Group B GSR_mean GSR_npeaks HRV IBI

V1 V2 0.22291 0.99970 0.63272 ** 0.00155

V1 V3 1 0.75762 0.97703 0.66276

V1 V4 ** 1.82 × 10−7 0.03096 0.07931 ** 0.00119

V2 V3 0.22578 0.70152 0.86245 0.06034

V2 V4 * 0.00163 0.04035 ** 0.00196 0.99989

V3 V4 ** 1.89 × 10−7 ** 0.00111 0.02655 0.05052
NOTE: Significant codes: ‘**’ 0.001 ‘*’ 0.01 ‘ ’ 0.05.

4.2.2. Temporal Evolution of Physiological Variables

Temporal evolution analysis provides information about the evolution of the emo-
tional state during the video. It should be noted that videos are labelled according to
the prevailing emotion, but the same video could elicit more than one emotion, and the
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intensity could be non-homogeneous. This is a limitation of this type of experiment where
continuous labelling is not possible. The result is dispersion/noise in the data, hindering
their classification and modelling. Figure 11 shows the mean evolution of the four features
used in the previous section.

 
(a) (b) 

 

(c) (d) 

Figure 11. Temporal evolution of normalized features. (a) IBI. (b) Number of phasic GSR peaks.
(c) Mean GSR. (d) HRV.

The four videos present a high variation of the selected features, especially V4. These
variations correlate with scenes in the videos. In Figures 12 and 13, details on the scenes
of both videos, V2 and V4, related to the fear emotion, are provided. As it could be seen,
the most intense period of stress-fear in V2 is between seconds 32 and 58 when the boy is
trying to open the bathroom’s door. In Figure 11, features extracted from physiological
variables present a very different behaviour in this period of time that, in some cases, it
is maintained untill the end of the video due to the empathizing effect with the escaping
mother and boy. Until they discover the aggressor is not in the lift, second 90, the climax is
maintained.

 
Figure 12. V02 main stressful events. “Refugiado” Diego Lerma 2014. Available at [62].
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Figure 13. V04 main stressful events. “Chamber of horrors” Inside 360 VR Prod 2018. Available
at [62].

With regard to V4, all the scenes are stressful but peak instants are when lights go
off (seconds 38 and 88) and there are screams or sudden hits/blows (seconds 12, 22, 63,
and 105). The worst moment is when two people appear suddenly in front of the viewer,
no-faced, with loud music and screams (105); all features show a change of behaviour
around this final scare that has been under preparation right from second 63.

4.3. Catecholamine Concentration

The concentration of adrenaline, dopamine and nor-adrenaline catecholamines, has
been measured as detailed in Section 3, with the HPLC technique. In Table 5 the concentra-
tion values for these catecholamines are detailed per volunteer. A global analysis of these
values has been performed to determine the relationship between the emotional reaction
and these concentrations. First, the box plots of mean and quartile for every video clip were
obtained, Figure 14. Second, to analyse the temporal evolution of these concentrations,
temporal graphs were plotted, in Figures 15 and 16.

 
(a) (b) 

 
(c) 

Figure 14. Normalized concentrations for dopamine, adrenaline and nor-adrenaline (a–c) for every
video clip.
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Table 5. Plasma catecholamine concentration levels for every volunteer for every sample (pg/mL),
for adrenaline (A), dopamine (DA) and noradrenaline (NA).

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 5 Volunteer 6 Volunteer 7

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 12 11 274 15 12 503 16 9 292 45 13 309 31 13 338 32 29 566 41 52 331

Video 2:
Refugee

(Fear GBV)

2 47 11 492 13 25 480 59 9 434 42 37 346 16 13 270 29 10 454 30 24 538
3 48 12 379 23 16 614 32 11 455 44 22 371 26 11 336 22 11 579 37 34 591
4 29 10 287 22 17 456 29 10 500 45 21 411 32 15 249 26 12 467 40 27 642
5 30 11 360 23 11 604 32 8 520 32 21 310 29 11 294 31 19 500 25 20 601
6 23 29 232 32 16 547 43 13 434 42 28 424 29 17 231 40 10 435 32 16 491

Video 3:
Queen (Joy)

7 17 31 335 19 25 445 21 9 373 26 30 362 33 11 247 23 10 415 25 31 267
8 21 20 302 24 10 569 38 9 396 46 29 368 24 22 234 12 11 451 49 28 376
9 22 23 344 14 11 633 23 12 375 40 32 415 30 13 238 37 8 402 21 32 337
10 37 11 300 28 14 542 50 9 363 30 17 313 38 18 237 12 10 446 43 49 371
11 22 13 302 33 18 469 21 9 351 40 26 410 38 22 201 19 9 333 13 13 376

Video 4:
Inside de

chamber of
horror (Fear)

12 10 27 284 27 11 492 58 9 289 46 26 413 28 16 300 14 13 474 21 47 279
13 11 14 374 20 16 520 37 9 402 48 17 442 30 14 298 41 8 451 28 40 414
14 32 17 410 29 15 558 28 11 330 46 21 415 36 13 273 21 12 446 45 34 343
15 42 11 280 25 14 595 30 9 426 39 30 397 27 14 264 52 9 338 27 41 267
16 20 20 368 19 15 623 17 13 450 31 21 361 26 15 271 29 11 478 14 37 293

Volunteer 8 Volunteer 9 Volunteer 10 Volunteer 11 Volunteer 12 Volunteer 13 Volunteer 14

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 19 15 363 27 16 144 28 14 475 23 13 233 27 12 233 39 31 225 24 14 315

Video 2:
Refugee

(Fear GBV)

2 26 9 437 17 11 129 20 9 406 17 13 238 23 17 229 16 16 242 14 12 370
3 18 9 475 13 11 114 34 16 289 28 19 239 21 18 212 41 34 268 12 14 387
4 20 18 492 37 16 137 22 13 576 28 11 212 27 9 253 20 24 278 13 15 449
5 17 10 481 11 12 108 27 13 521 33 16 270 25 8 183 17 16 256 14 9 280
6 13 9 642 21 17 95 16 8 419 28 18 299 14 9 239 14 16 244 16 10 279

Video 3:
Queen (Joy)

7 16 8 311 35 17 125 42 11 421 22 16 319 31 10 210 35 20 241 33 11 239
8 15 10 375 29 33 107 25 20 370 16 16 267 29 22 239 22 47 468 19 13 458
9 12 9 375 23 13 119 13 14 619 30 22 277 20 9 235 19 33 240 11 9 328
10 19 15 233 23 20 108 11 10 615 13 9 250 26 12 197 26 42 348 14 31 420
11 20 12 243 12 13 100 22 11 148 33 30 256 35 19 226 25 43 303 19 9 416

Video 4:
Inside de

chamber of
horror (Fear)

12 22 9 380 21 12 114 14 11 160 11 15 228 35 18 178 15 46 452 18 9 675
13 13 12 370 17 18 121 13 21 255 12 12 247 20 9 253 23 38 429 13 12 423
14 21 13 338 18 20 141 35 11 296 17 12 229 23 14 280 16 45 453 11 15 530
15 14 11 246 26 41 212 44 17 476 11 11 217 23 13 293 17 27 333 17 13 554
16 43 14 322 27 13 171 41 16 295 31 14 251 30 16 238 16 18 457 31 11 643

Volunteer 15 Volunteer 16 Volunteer 17 Volunteer 18 Volunteer 19 Volunteer 20 Volunteer 21

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 49 13 153 38 20 447 31 15 288 29 15 333 33 16 627 15 16 359 23 18 312

Video 2:
Refugee

(Fear GBV)

2 33 10 147 31 17 609 15 18 138 24 10 297 28 12 710 22 20 332 17 11 324
3 43 15 187 24 14 539 26 14 150 26 10 286 26 25 704 12 11 438 24 13 302
4 38 19 186 34 17 481 20 12 160 21 16 388 26 12 630 25 10 285 24 13 407
5 29 13 171 39 12 586 29 17 143 35 30 259 23 14 462 12 17 300 16 14 335
6 33 11 159 31 12 519 39 18 143 17 22 284 27 11 552 19 14 278 16 11 318

Video 3:
Queen (Joy)

7 33 13 186 43 15 516 11 21 167 31 52 288 16 15 411 18 16 391 12 18 325
8 48 15 204 40 10 498 14 13 223 21 19 375 13 15 583 44 14 331 13 16 347
9 37 10 228 46 19 496 15 16 243 25 33 578 30 11 606 27 11 220 15 19 247
10 27 14 211 33 14 643 30 15 147 19 29 383 25 11 575 36 14 233 14 16 270
11 39 11 191 37 11 624 35 12 166 19 16 323 36 12 516 17 13 310 14 11 301

Video 4:
Inside de

chamber of
horror (Fear)

12 44 14 255 31 17 508 12 17 239 30 18 306 27 15 604 14 19 395 41 20 367
13 45 33 199 39 19 433 17 10 285 22 11 444 22 13 483 35 16 387 22 11 345
14 47 28 282 30 14 594 11 11 192 19 11 418 36 10 603 15 18 240 29 29 298
15 23 40 234 27 14 387 13 12 203 20 19 280 41 14 600 33 18 187 38 26 312
16 35 20 259 26 14 368 21 14 222 19 11 435 30 11 496 34 15 282 21 15 401
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(a) (b) 

 
(c) 

Figure 15. Temporal evolution of normalized concentrations for dopamine, adrenaline and nor-
adrenaline (a–c) for every video clip, mean for all volunteers.

4.3.1. Catecholamine Concentration and Quartile Distribution

Data was collected per video clip, normalized per volunteer, and mean values were
calculated for all the volunteers.

The obtained values do not show differences in catecholamine concentrations for
different emotion-related video clips, especially for adrenaline and dopamine. Further-
more, for these catecholamines (A and DA), the gender-based violence fear video clip (V2)
presents very dispersed values, while the fear video clip (V4) provides higher dispersion
just for dopamine, Figure 14.

The statistical analysis ANOVA of the plasma concentration level has not provided
a clear difference between the effects of different emotions elicited for the three cate-
cholamines measured. In Table 6 the p-values for the comparison between the videos are
shown. No significant values have been obtained for any pair compared.

Table 6. p-values results from Kruskal-Wallis one-way ANOVA test for catecholamine concentration
data grouped by video clip.

Group A Group B Adrenaline Noradrenaline Dopamine

V1 V2 0.82591 0.90859 0.62776

V1 V3 0.65790 0.99983 0.97443

V1 V4 0.76604 0.95005 0.99913

V2 V3 0.95784 0.56652 0.53611

V2 V4 0.99743 0.99573 0.25316

V3 V4 0.98951 0.71117 0.95883
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(a) 

 
(b) 

 
(c) 

Figure 16. Temporal evolution of normalized catecholamine concentration for video clips 2, 3 and 4
for DA (a), A (b) and NA (c).
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4.3.2. Temporal Evolution of Catecholamines after Video Clip Watching

Figure 15 shows the temporal evolution of dopamine (a), adrenaline (b) and nora-
drenaline (c) for video clips V2, V3 and V4, related to fear (gender-based violence related),
joy and fear, respectively. The graphs represent the concentration of catecholamines, per
sample (five per video per volunteer), as well as the mean value (continuous line) and the
mean plus/minus standard deviation (dashed lines) for all the volunteers. Catecholamine
concentration values have been normalized with respect to the mean value of every volun-
teer. For the sake of clarity, and for comparison with respect to the behaviour of physiolog-
ical variables, in Figure 15 the temporal evolution of the mean value (for all volunteers)
has been plotted for the three catecholamines. Dopamine concentrations show a slightly
different evolution after watching the video clips related to fear with gender-based violence
than in those related to joy or fear, where a final drop can be appreciated, (Figure 15a).
Adrenaline concentration shows a continuous rising tendency for the fear-related clip
(V4) while for joy (V3), a stabilization is observed in the final samples (Figure 15b). In
the gender-based violence clip (V2), the stressful/relieving situation may provoke a rise
and a drop in the adrenaline’s concentration. Finally, in the noradrenaline’s concentration
(Figure 15c), a similar evolution can be observed in V2 and V3 (fear with gender-based
violence and joy) with a final drop in the normalized value, while V4 (intense fear) is not
presenting the final drop, since the stressful situation continues to get even more stressful
until the end of the clip.

4.4. Artificial Intelligent Algorithms

Considering our goal, which is to study the improvement that catecholamines mea-
surements can bring to our fear/not-fear detection model and compare the results with
physiological models, the data were normalized, reorganized, and grouped by clip for
both data types to generate supervised techniques and evaluate performance metrics
individually and together.

In this work the standardization selected is a modified version of self-dependent
z-score; it consists of subtracting the mean value and dividing by the standard deviation of
the complete experiment for each volunteer independently.

The algorithms tested to classify the data were support vector machine (SVM), k-
nearest neighbour (KNN), and ensemble (ENS). This selection was based on the target
application, a wearable device with memory and computation power constraints. In
addition, these methods are the most common ones used in the literature [44].

Each model’s hyper-parameters were tuned using Bayesian optimization to minimize
the misclassification rate over iterations and supported by 5 k-fold cross-validation strategy.
Specifically, the selected technique is a sequential model-based optimization, which has
shown substantial improvements over combinational space approaches [64]. Besides, this
training and validation scheme was based on previous works and results in [7]. The
performance values presented were the mean validation results of 10 iterations. No testing
was carried out due to the lack of data.

Table 7 shows the characteristics of the different models used to generate classifiers
regarding the information source, number of features, and windowing. A detailed expla-
nation is provided in the next subsections. Videos V02, V03, and V04 were considered in
all cases.

The metrics selected to evaluate the classifiers’ performance are geometrical mean
(Gmean) between Sensitivity (true positive rate, TPR) and Specificity (true negative rate,
TNR) according to Equation (1). The TPR is the ratio between true positive (TP) and the
sum of true positive and false negative (FN). The TNR is the ratio between true negative
(TN) and the sum of true negative and false positive (FP).

Gmean =
√
(Sensitivity ∗ Speci f icity =

√(
TP

TP + FN

)
∗
(

TN
TN + FP

)
(1)
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Table 7. Characteristics of each configuration.

Nb. Configs Physio Cat. Observations Features Window Size Overlap

1 � - 63 47 60 s -

2 � - 315 47 20 s 10 s

3 - � 63 15 - -

4 - � 63 3 - -

5 � � 63 48 60 s -

6 � � 315 48 20 s 10 s

4.4.1. Physiological Supervised Models

The classification of physiological data with supervised machine learning techniques
is a common approach in affective computing due to the complex relationships that implies.
The models presented in this work are user-independent because there is not enough data
for user-dependent solutions.

Two configurations were tested with the same number of features but with a different
window size and overlapping. The features used are 22 for BVP, 7 for GSR, 6 for SKT,
and 12 for respiration. The segmentation and windowing were applied following two
strategies. Firstly, the configuration 1 used a 60 s window per video clip aiming to reduce
data dispersion in the video. The second one has five windows per video, 20 s with
10 s overlap. This strategy helped algorithm training by providing more data and more
temporal resolution; however, this could also lead to information redundancy.

The results in Table 8 showed that it is possible to classify the data between fear and no
fear generally (Gmean above 0.5). The best performance was achieved by ENS (Adaboost)
with the first model.

Table 8. Performance metrics for physiological configurations.

Nb. Config Algorithm G. Mean TPR TNR

1

SVM 0.59 0.83 0.51

KNN 0.74 0.83 0.67

ENS 0,91 0.83 1.00

2

SVM 0.56 0.86 0.45

KNN 0.64 0.83 0.50

ENS 0.74 0.83 0.66

4.4.2. Catecholamines Supervised Models

As in the physiological section, three algorithms KNN, SVM, and ENS (RandomForest)
were applied (Table 9).

Table 9. Performance metrics for catecholamines models.

Nb. Config Algorithm G. Mean TPR TNR

3

SVM 0.49 0.47 0.55

KNN 0.53 0.51 0.58

ENS 0.45 0.47 0.50

4

SVM 0.33 0.29 0.73

KNN 0.37 0.25 0.64

ENS 0.44 0.42 0.53
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Firstly, each observation was associated with a clip and each feature to a sample of
that clip, resulting in a data matrix of 63 rows (21 volunteers × 3 clips) and 15 columns
(5 samples per clip × 3 catecholamines).

After achieving in almost all cases overfitted models or poor-quality metrics, a trans-
formation of the data was applied to compute the maximum in-video variations, consid-
ering the sign positive if this variation was increasing (minimum previous maximum)
or negative if it was decreasing (maximum previous minimum). This variable was ob-
tained and then normalized for each catecholamine, resulting in a data matrix of 63 rows
(21 volunteers × 3 clips) and 3 columns (1 maximum variation per clip × 3 catecholamines).

As in previous models and mainly due to the lack of enough data and an imbalanced
configuration, overfitted models were achieved and performance results worsened (Gmean
values between 0.33 and 0.44) and showed the model would work randomly, such as
flipping a coin.

4.4.3. Fusion Models

The data fusion applied followed two strategies based on physiological configurations.
The first configuration was merged with the variation in plasma catecholamine concentra-
tion levels, per video clip, as explained previously (Model 5) and the physiological variables
in a unique 60 s window. The second one used the plasma catecholamine concentration
level directly, five samples per video clip. Each sample was paired with a 20 s physio
window.

Table 10 shows the performance metrics obtained with the fusion models. The results
were slightly worse than physiological models alone, i.e., the model was not learning from
this data.

Table 10. Performance metrics for merged models.

Nb. Config Model G. Mean TPR TNR

5

SVM 0.57 0.88 0.46

KNN 0.72 0.81 0.65

ENS 0.90 0.81 1.00

6

SVM 0.52 0.88 0.41

KNN 0.64 0.82 0.52

ENS 0.74 0.82 0.67

5. Discussion

The study conducted in this work presents four main results. First, a methodology
and protocol have been defined to connect the elicitation of human emotions with the
variation of plasma catecholamine concentration. An immersive virtual reality environ-
ment has been arranged to provoke realistic situations where the volunteer could have
intense emotional reactions. A continuous monitoring of physiological variables, with a
research toolkit system (for the sake of comparison with other affective computing research
works), is connected with the virtual environment, as well as a labelling procedure for
discrete emotions and continuous PAD affective space dimensions. These three elements
have been presented in previous works by the authors [65]. The novelty added to this
method is to determine whether a person’s emotions can be reliably recorded, assessing
the differences or similarities between recording different physiological variables and mea-
suring plasma catecholamine levels. The blood extraction must be performed after the
video clip visualization to not interfere in the emotion elicitation but as soon as possible to
detect the concentration peaks and valleys due to the emotion processed in the brain, which
provokes a change in plasma catecholamine concentration. A pattern in the concentration
variation has been looked for, as well as different classifiers, typical in affective computing,
to determine the feasibility of using catecholamines for detecting fear emotions in a person.

255



Sensors 2022, 22, 4023

Second, the emotion labels obtained during the study guaranteed the elicitation of
the target emotions. The video clips selected were those with the best scores in terms of
unanimity, in discrete and continuous emotions classifications, from the UC3M4Safety
database [62]. The video clips’ durations were between 60 s and 119 s. The 21 volunteers
labelled the emotion felt during the video clip visualization in a very close way to the
target emotion, especially for video clips V04 (fear) and V01 (calm), while for the other
clips, at least the PA quadrant is maintained, (Figure 8). Every video clip provoked the
target emotions, and, except for two volunteers, every volunteer labelling process matched
with the rest of them, (Figure 9). Therefore, the variation in the measures of physiological
variables and plasma catecholamine concentration per video clip, whatever they were, can
be associated with a specific emotion.

Third, the physiological variables measured during the study, and the features ex-
tracted from them (IBI, GSR number of peaks, GSR mean and HRV) present similar be-
haviour as in previous works [7,65]. Statistically representative differences between fear-
related video clip V04 and joy and calm clips (V03 and V01) were found for the GSR mean,
as well as between V01 (calm), V02 (fear related to Gender-based violence) and V04 (fear)
for IBI. The classifiers applied to generate an artificial intelligence algorithm to detect fear
emotional reactions present good results for windows of 20 s and 60 s, although the results
were better for wider windows, and ENS model, with a True Negative Rate of 1 and a True
Positive Rate of 0.83, (Table 8).

It should be noted that the amount of data compiled during the experiment was large
due to the sampling frequency (200 Hz), making easier the training and testing processes
for affective computing tasks.

Finally, the plasma catecholamine concentration measurements provided data with
apparently no connection with the emotion elicited. The ANOVA analysis provided
no significant differences between the levels of catecholamines in blood plasma after
visualizing the video clips of the different emotions. Besides, the clustering analysis
(fear/no-fear emotions) on the data obtained from the 21 volunteers did not produce a
valid result. Moreover, the classifiers selected as artificial intelligence algorithms to detect
fear emotional reactions present poor-quality metrics, mainly due to the lack of enough
data for training, testing and generalizing.

This problem of insufficient data on plasma catecholamine concentration (only five
samples per video, i.e., per emotion) is difficult to solve. Even in an experimental study, the
ethical research advises to not make volunteers suffer unnecessarily. Sixteen blood samples
per session per volunteer, although taken through a via, while visualizing emotional
intensive video clips within a virtual reality environment, are a fairly good number to test
the hypothesis of the research work. In the literature, up to our knowledge, there is no
similar study, with most of the proposals being theoretical hypotheses and/or based on
analysing previous experimental results for other purposes.

However, the data obtained should have provided some patterns of responses to
different target emotions and, although in the temporal evolution of the concentration
levels of adrenaline and nor-adrenaline a similar behaviour can be observed after both V02
and V04 fear-related clips, neither statistically significant relations have been found nor
affective computing classifiers provided good results.

It is true, that the plasma catecholamine levels are altered by the effect of some foods,
drinks, and medicines or drugs, as well as by strong physical exercise and/or recent intense
stressful episodes. Amines found in banana, avocado, walnuts, beans, cheese, beer and
red wine can modify the concentration of these hormones in the blood. Additionally,
foods/drinks with cocoa, coffee, tea, chocolate, liquorice, or vanilla, as well as drugs
(nicotine, cocaine and ethanol) and medicines (aspirin, tricycle antidepressants, tetracycline,
theophylline, blood pressure control agents, and nitro-glycerine) have similar effects.

Besides, the emotional response is altered by prior experiences during a lifetime, and so
does the emotional response to stress and the conditioned response to fear. Traumatic stress-
induced fear memories may affect the physiological response and plasma catecholamine
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levels. There is strong evidence supporting that central catecholamines are involved in the
regulation of fear memory, by activation of the sympathetic nervous system with elevated
basal catecholamine levels are common in patients suffering from post-traumatic stress
disorder (PTSD).

In the study presented, attention is paid to the activity of the volunteers before the
experiment, as well as the different substances taken and, also, previous traumatic stressful
experiences.

Although we previously informed about the recommendations, the volunteers re-
ported the following data. With regard to medicines as regular treatment, six volunteers
reported five chronic diseases: diabetes mellitus (1), hypertension (2), cardiac failure (1),
ulcerative colitis (1), anaemia (1), and chronic pain (1). Additionally, one volunteer was
taking contraceptives. On the other hand, four volunteers were taking ibuprofen or another
type of anti-inflammatory drugs for the two days prior to the experiment. Respect to avoid-
ing stimulants in food, drinks and drugs in the 24 h prior to the experiment, 13 volunteers
took coffee or tea in that period of time, and one volunteer drank alcohol. Additionally,
three of them ate citric fruits in that period.

Only four volunteers (v06, v11, v13, v19) exactly complied with the recommendations
with regard to avoiding stimulant foods, drinks and drugs; and did not take any medication.
They were young women with ages 23, 30, 29, and 23, respectively. Likewise, three volun-
teers (v01, v04, and v17) only had a coffee, complying with the rest of the recommendations,
and did not take any medication either. Their ages were 21, 55, and 24 respectively. There
are seven volunteers that only took a coffee and medicaments not presenting differences
in the levels of catecholamine concentrations (v02, v05, v09, v12, v14, v15, and v20). In
summary, we can consider that 14 volunteers were fully compliant and 7 could have some
objection with respect to regular catecholamine activity.

Regarding prior stressful experiences, or specific fears, seven volunteers reported
some previous traumas that activate themselves in situations like video clips V02 and V04,
(v01, v03, v04, v12, v15, v16, and v20). Two of them identified as gender-based violence
victims. However, the evolution of their plasma catecholamine concentration levels were
not different from the other volunteers’, (Figures 15 and 16).

Apart from the extrinsic and intrinsic factors that can be affecting the results of the
study, the authors wish to highlight the low levels of the concentration of these cate-
cholamines present in the blood plasma. We tested the technique ELISA that produced
worse results in terms of sensitivity of these catecholamines. Nine women volunteers
followed a similar experimental study, and 15 blood samples per volunteer were analysed
with ELISA kits.

With respect to the hypothesis stated in this work, the measurement of the levels
of dopamine, noradrenaline and adrenaline concentration in blood plasma is neither
providing better classifications nor a more accurate differentiation of fear-emotion reactions
in women.

6. Conclusions

In this work, a methodology and a protocol have been proposed to connect the
elicitation of human emotions with the variation of plasma catecholamine concentration.
For them, an immersive virtual reality environment has been arranged to provoke realistic
situations where the volunteer could have intense emotional reactions. A continuous
monitoring of physiological variables, with a research toolkit system (for the sake of
comparison with other affective computing research works) was connected to the virtual
environment, as well as a labelling procedure for discrete emotions and continuous PAD
affective space dimensions.

Using this methodology, an experimental study with 21 volunteers has been con-
ducted, using fear as a target emotion, thus provoking fear and non-fear while measuring
physiological variables and extracting blood samples after the visualization of every video
stimulus. In this first study, 16 blood samples have been extracted per volunteer; 1 for basal
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measure and 5 after the three emotion-related video clips (fear (gender-based violence
related), joy and fear). These samples have been extracted in 1-min intervals after the
visualization of the video clip. Along with the blood sample for catecholamine plasma
analysis, physiological variables have been measured during the visualization of the video
clips. Skin temperature, galvanic skin response, blood volume pulse, respiration, and
Trapezoidal Electromyogram were the selected variables, measured with a commercial
research toolkit.

Additionally, the emotion labelling for every video clip by all the volunteers has
been analysed and there is a high degree of agreement in the discrete emotion, which was
even better in the PAD affective space dimensions, especially for fear-related video V04.
Therefore, we can affirm that the selected video clips are meaningful for the experiment.

The results for the evolution of the features extracted from the physiological variables,
as well as an ANOVA statistical analysis, are in accordance with previous works. Dif-
ferences between features measured during fear-related and during calm and joy-related
video clips have been found for the mean of GSR (60 s windows). Additionally, differences
have been found between calm-related and fear/gender-based-violence fear-related video
clips for the IBI (for heart rate,). Furthermore, the temporal evolution of these features has
been analysed and correlated with the fear-related video clips, identifying precise moments
where the features’ behaviour can be associated with the scene development.

We can conclude that there are no significant p-values (ANOVA statistical analysis
performed) that allow differentiating the emotion elicited using only the evolution of
the plasma catecholamine concentration levels as a variable. Additionally, the temporal
evolution of these levels has been analysed, not identifying precise patterns for fear-related
video clips different from the joy-related video clip.

Finally, artificial intelligence algorithms for fear classification with physiological vari-
ables and plasma catecholamine concentration levels (separately and together) have been
tested. The best results have been obtained with the features extracted from the physiologi-
cal variables. Adding the maximum variation of catecholamines during the five minutes
after the video clip visualization, as well as adding the five measurements (1-min interval)
of these levels, do not provide better performance in the classifiers.

The small number of samples together with the low concentration of catecholamines
in blood plasma make it not possible to use these data for machine learning techniques for
fear classification in this experiment.

Finally, we can state that research on this topic should continue considering the
following future actions:

1. Although it is true that the results of this study show that the measurement of cate-
cholamine concentration does not improve the detection and identification of emo-
tions, it would be desirable to have a larger sample of volunteers in order to detect
patterns of variation in this concentration that validate this conclusion.

2. Following Lovehëim’s theory work, adding the measurement of blood serotonin
concentration would be recommendable since it could allow us to improve the classi-
fication of fear from joy, which are both emotions with a high theoretical degree of
activation. For this study, although its inclusion was considered, adding the serotonin
measurement entailed the use of another analysis technique, which meant extracting
twice as many samples from each volunteer, which was not recommended from an
ethical point of view.

3. In the search for non-invasive emotion detection systems, it would be interesting to
analyse the effect of the concentration of catecholamine in sweat (cortisol) or in saliva
(alpha-amylase). If significant differences were found, it would be possible to include
these variables in automatic emotion detection systems design.

4. However, in the search for any other extra information, instead of clustering fear and
not-fear emotions, a behaviour pattern for each volunteer was examined according
to Khrone [66] which suggests that there are two main strategies in stress reaction:
vigilance and avoidance. From an unsupervised standpoint and after applying k-
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means algorithms four clear groups were observed, two of them being a symmetrical
representation of the other two. In two of the groups, the third clip contains a negative
variation, which is below the other two clips. On the other hand, the other two groups
have a peak in the third clip (V3) which is above the values representing the other
two videos.
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Abstract: Tracking consumer empathy is one of the biggest challenges for advertisers. Although
numerous studies have shown that consumers’ empathy affects purchasing, there are few quantitative
and unobtrusive methods for assessing whether the viewer is sharing congruent emotions with the
advertisement. This study suggested a non-contact method for measuring empathy by evaluating
the synchronization of micro-movements between consumers and people within the media. Thirty
participants viewed 24 advertisements classified as either empathy or non-empathy advertisements.
For each viewing, we recorded the facial data and subjective empathy scores. We recorded the
facial micro-movements, which reflect the ballistocardiography (BCG) motion, through the carotid
artery remotely using a camera without any sensory attachment to the participant. Synchronization
in cardiovascular measures (e.g., heart rate) is known to indicate higher levels of empathy. We
found that through cross-entropy analysis, the more similar the micro-movements between the
participant and the person in the advertisement, the higher the participant’s empathy scores for the
advertisement. The study suggests that non-contact BCG methods can be utilized in cases where
sensor attachment is ineffective (e.g., measuring empathy between the viewer and the media content)
and can be a complementary method to subjective empathy scales.

Keywords: video content empathy; micro-movement synchronization; non-contact empathy
measurement; empathic advertisement

1. Introduction

Empathy, a crucial factor in successful digital content marketing [1], is generally
conceptualized as a multidimensional construct that includes both cognitive and affective
responses to others in dyadic interactions [2–4]. However, empathy for digital content
involves the emotional engagement of a viewer with a character in a causal and probable
narrative [5]. For example, eliciting a consumer’s emotions congruent to content emotions
may maximize an advertisement’s effect. Viewers empathizing with content tend to better
understand the story and have more positive attitudes. They are more attentive and
engaged [6–8], feel favorably toward products and brands [9,10], and are less likely to skip
an advertisement [11,12]. Moreover, heightened empathy promotes the consumption of
content in addition to attitudinal acceptance [13,14]. Such behavioral acceptance implies
that viewer empathy is a critical predictor of the success of media content.

Empathy has been measured to predict the success of commercials. Escalas and Stern
developed a battery of scale items to measure empathy toward advertisements, which has
been widely used in consumer research [15]. Other prominent subjective measures include
Schlinger’s Viewer Response Profile [16–18], the Balanced Emotional Empathy Scale [19],
the Empathy Quotient [20], the Toronto Empathy Questionnaire [21], the Interpersonal
Reactivity Index [22,23], the Basic Empathy Scale [24], and the Hogan Empathy Scale [25].
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However, such subjective evaluations cannot measure the dynamics of empathy over
time. Empathic questionnaires are limited to assessing dispositional empathy, which refers
to an individual’s capability (i.e., personality trait) to empathize with others.

The dynamics of empathy when consuming digital content require a novel measure-
ment that can capture the fluctuation of emotions over time. The ever-changing interplay
between the viewer’s emotions and the content emotions demands a more direct, sensi-
tive, and real-time measurement, such as physiological measures, to properly assess the
degree of empathy. The unconscious level of empathy that is not verbally reportable (i.e.,
subjective evaluation) can be acquired through more direct physiological measures.

1.1. Psychophysiological Basis of Empathy

Empathy includes motor mimicry and emotional contagion associated with auto-
nomically activated neural mechanisms of the other’s feelings [26–29]. It also includes
mirroring responses between people, in which explicit and implicit physiology become
synchronized [30–32]. Explicit responses from empathy involve the synchronization of
faces, gestures, and body movements. Changes in body motion synchronization are as-
sociated with the degree of empathy during face-to-face communication [33,34]. Greater
synchronization of head motion was observed when a listener empathized with a speaker
in a lecture [35]. In addition, body synchronization was reported between counselors and
clients when they shared empathy [36,37].

Such observable synchronized behavior is a result of an implicit empathic response.
The implicit process constitutes the synchronization of physiological activities between
individuals [38], which can be measured through electroencephalography (EEG) [39,40],
electrocardiography (ECG) [41–44], and skin conductance [45,46]. For example, the syn-
chronization of electrodermal activities (i.e., skin response) between a therapist and a
patient correlates to the patient’s perceived empathy toward the therapist [47,48].

Neuroscientific bases have been identified for the synchronization of brain activity
among participants during empathic communication [49–51]. Empathy researches using
EEG have been mainly focused on understanding the sharing of painful experiences.
Several asymmetries or activations in the pain-related brain areas have been reported,
which were elicited by empathy. The left frontal asymmetry has been related to the
suffering of the other, and the right frontal asymmetry has been associated with the pain
and sorrow of the other [52]. Moreover, empathy-related activation in fronto-insula and
anterior cingulate cortices was reported, which have been related to pain [53]. Peng et al.
have shown that brain-to-brain synchronization could be triggered by sharing painful
experiences and could strengthen social bonds [54].

1.2. Cardiovascular Measures of Empathy

Measures of cardiovascular activity reflect both attentional and affective states [55].
Cardiovascular measures can be achieved using a piezoelectric transducer, ECG, or anal-
ysis of facial micromovements. Cardiovascular activity in empathy research has been
understudied compared to other physiological measures [56], but recent advances in vi-
sion technology have shed light on novel and innovative methodologies such as remote
ballistocardiography (rBCG).

Kodama et al. [57] examined a psychotherapy session between a counselor and a client
and found synchronization in heart rate, suggesting a promising indicator that leads to
the building of rapport and empathy. Salminen et al. [58] found that higher synchrony
in respiration rates, which has a positive relationship with heart rate, is associated with
higher empathy. The synchronization of the heart rate can also enhance closeness [59] and
intimacy [60].

However, the measurement of synchronization between the cardiovascular activities
of viewers and people in media content has been less studied, mainly due to multiple
technical issues.
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First, viewers need a sensor attachment to capture physiological measurements, which
is a significant barrier to general adoption. Second, to evaluate empathy, measuring dyadic
synchronization is paramount. The cardiovascular information of both the viewer and
the person in the media content must be obtained and analyzed. Obviously, acquiring the
latter is impossible with sensor attachment because it is digital content.

However, advances in vision technology for cardiac measurements, such as remote
photoplethysmography (rPPG) and rBCG, suggest promising methods for overcoming
these challenges. The rPPG evolved to detect changes in blood volume remotely without
direct contact between the photosensor (i.e., PPG) and the skin [61]. Non-contact data
acquisition is possible through various means, including infrared [62], thermal [63], and
RGB [64] cameras. The rPPG uses band-pass filters to eliminate motion components
in images [65] but has less effect on cardiovascular activities that include the motion
itself, referred to as ballistocardiography motion [66]. The rBCG is a measurement of
ballistocardiographic head movements through remote means using a camera and vision-
based analysis. These vision technologies have improved considerably in recent years,
enabling the estimation of the heartbeat signals of both the viewer and the person in the
digital content without needing skin contact.

Specifically, BCG motion causes microscopic vibration (i.e., micro-movement), which
appears in the face through the carotid artery [67]. Micro-movement implies the subtle
movement of a face that the human eye cannot easily see. This is caused by regular
vibrations from the heart that are transmitted to the face. Micro-movement can be obtained
by filtering the frequency corresponding to the regular heart rate band from the frontal
facial video capture [68–71]. Analyzing the similarity of micro-movement between viewers
and digital content (e.g., advertisements) may provide insights into whether the viewer is
empathizing with the content. We intended to analyze the similarity of micro-movements
through cross-entropy analysis and compare it to the participants’ subjective empathy
through a questionnaire. To our knowledge, no study has investigated the relationship of
micro-movements through an rBCG method for a participant and a person in real-world
media content, such as an advertisement.

2. Materials and Methods

2.1. Research Hypothesis

This study sought to verify the following hypothesis:

Hypothesis 1 (H1). The more similar the micro-movements between the participant and the person
in the advertisement, the higher the participant’s empathy scores for the advertisement.

The following section explains our operational definition of micro-movement signals,
how the signals were measured from the participant and the advertisement, and how the
participant’s subjective assessment of empathy was acquired.

2.2. Experimental Design

The main experiment was a one-factor design (empathy factor) with two levels (em-
pathy and non-empathy). Each participant viewed two empathy conditions (i.e., within-
subject design), manifested in an empathy or non-empathy advertisement, and responded
to an empathy questionnaire. The design of the stimuli (i.e., advertisement) and the
questionnaire are explained in Section 2.3.

The dependent measurements involved the similarity of micro-movements between
the participant and the stimulus, specifically, the similarity between the micro-movement
signals extracted from the participant and those from the person in the advertisement.
Cross-entropy was used as a similarity metric. Cross-entropy is suitable for the comparison
of periodic distributions. The more similar the two distributions, the closer the cross-
entropy is to zero [72]. This study extracted the micro-movement signals by filtering the
power spectrum between 0.75 Hz and 2.5 Hz corresponding to 45~150 bpm when static.
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However, this filtering range may vary according to the context, situation, and use cases.
The details of the analysis are explained in Section 3.

2.3. Participants

Thirty participants (15 males and 15 females) voluntarily participated in the exper-
iment. The mean age of participants was 22 (±2) years. None of the participants had a
medical history of cardiovascular disease. The participants had an uncorrected or corrected
visual acuity of 0.6 or better and were able to wear soft contact lenses but not glasses.
Written informed consent was obtained from all the participants prior to the experiment.
All participants were compensated for their participation.

Empathy varies with demographic characteristics, such as age [28], race [73], educa-
tion [74], and gender [75]. Researchers have suggested an inverse-U-shaped pattern as a
function of age, with middle-aged adults showing higher empathy than young adults [28].
Meta-analyses of gender differences in empathy support that women have more empathy
than men [28,75,76]. One study reported a decline in empathy among undergraduate
nursing students as they advanced through training [74]. The empathic neural response is
increased for members of the same race, but not for other races [73]. Due to such demo-
graphic variance, the most recent (2021) massive survey (n = 3486) on the experience of
empathy [77] quota sampled to reflect the U.S. population on demographic parameters.
However, all empirical lab studies on empathy, including ours, have limitations when
generalizing. We balanced the N of gender (15) and confirmed that gender did not have an
effect on the dependent measures and ensured that the ethnicity of the participants (i.e.,
Korean) was consistent with the characters in the video stimuli. However, we acknowledge
the limitation for generalizing the findings, such that the results may only apply to younger
adults. Further studies are needed to confirm this hypothesis.

2.4. Procedures and Materials

The experimental procedure is shown in Figure 1. The participants stared at the blank
screen for four minutes to stabilize their physiological state. For each stimulus, participants
viewed an advertisement video and responded to a self-report questionnaire. Each condi-
tion (empathy and non-empathy) had 12 stimuli, so participants viewed 24 advertisements
in total. The stimuli were presented in random order.

 

Figure 1. Experimental procedure.

Participants’ frontal views, which were necessary for extracting the micro-movement
signals, were recorded at 30 fps, 1920 × 1080 pixels, using a web camera installed on the
monitor while they viewed the stimuli, as shown in Figure 2.

2.4.1. Video Stimuli (Advertisements)

Marketing researchers have explored empathy as a construct for estimating advertising
effects. Escalas and Stern suggested that well-developed stories elicit higher levels of
empathy than poorly developed ones [15]. Classical drama advertisements that have
clear causality have been better able to hook viewers into commercials than vignettes.
Emotionally driven advertisements have a positive impact on consumers’ engagement
and empathy [8,78,79]. In short, advertisements that elicit viewers’ empathy tend to
provide a clear context behind the story, in addition to an emotional appeal [14,79,80]. As a
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result, we chose three criteria for selecting the video stimuli: (1) causality of the storyline,
(2) advertising appeal type, and (3) the degree of empathy.

 

Figure 2. Experimental environment.

Nine emotion researchers viewed and assessed 50 candidate advertisements. The
candidates were limited to those targeting the younger generation in their 20 s and 30 s,
consistent with the participant pool. For each criterion related to the candidate, the re-
searchers responded from −3 to +3 on a six-point Likert scale. Per criteria 1, researchers
scored from −3 (ambiguous causality) to +3 (clear causality) for the story of the adver-
tisement. Per criteria 2, they scored from −3 (rational appeal) to +3 (emotional appeal)
for the advertising appeal type. Finally, according to criteria 3, they scored from −3 (not
empathetic) to +3 (empathetic).

We classified the candidates into empathy advertisements if the average score for
the evaluators was above zero for all three criteria. Conversely, we classified them into
non-empathy advertisements if the score was below zero. For each advertisement group
(empathy and non-empathy), we sorted the advertisements into four product advertise-
ments (energy boosters, snacks, computer peripheral devices (e.g., printer)) and selected the
three best advertisements for each product group. That is, we selected 12 advertisements
for each condition (empathy and non-empathy).

Empathy advertisements tend to be longer than non-empathy advertisements because
the viewer requires some time for the narrative to “sink in”. In contrast, non-empathy
advertisements focus on the presentation of prominent models and products. For example,
an energy booster’s empathy advertisement has a story involving a student exhausted
from studying being revitalized after drinking an energy drink. The non-empathy adver-
tisement, however, featured a character dancing with an energy drink and did not have a
particular narrative.

2.4.2. Subjective Evaluations

As empathy is a multifaceted construct that includes both cognitive and affective
processes, we adopted a comprehensive and empirically validated questionnaire with
the participants’ ethnicity (i.e., Korean). We used the Consumer Empathic Response to
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Advertising Scale [81,82], which consists of 11 items, as shown in Table 1. The factor
loading exceeded 0.4 and Cronbach’s alpha exceeded 0.8. The questionnaire included three
empathy factors: cognitive empathy, affective empathy, and identification empathy. The
dependent variable for analysis was the sum of all 11 items.

Table 1. Questionnaire about Empathy to Video Contents.

Questionnaire Empathy Factor

1 I understood the characters’ needs.

Cognitive empathy2 I understood how the characters were feeling.
3 I understood the situation of the video.
4 I understood the motives behind the characters’ behavior.
5 I felt as if the events in the video were happening to me.

Affective empathy6 I felt as if I was in the middle of the situation.
7 I felt as if I was one of the characters.

8 I experienced many of the same feelings that the
characters portrayed. Identification

empathy9 I felt the characters’ needs were similar to mine.
10 The events in the video were similar to my experience.
11 I felt as if the events in the video could happen to me.

All questions were rated on a seven-point Likert scale. We asked for the degree of
agreement with each empathy statement, with the lowest scale labeled “strongly disagree”
and the highest scale labeled “strongly agree”. The survey was collected through a web
survey rather than a paper questionnaire.

3. Analysis

This study aimed to analyze whether the similarity of micro-movement signals be-
tween participants and advertisements differs according to the user’s perceived empathy
(i.e., subjective evaluation) with the advertisement video. The signal processing to filter
only the micro-movements caused by the heartbeat is described in detail in Section 3.1. In
addition, a method for calculating the cross-entropy, an indicator of similarity between the
two signals, is described. Section 3.2 describes the statistical difference in the similarity
between the participant and advertisement measured by cross-entropy according to the
empathy score.

3.1. Signal Processing

The micro-movement signals were measured from the participant’s facial videos, as
shown in Figure 3. Ballistocardiographic changes are reflected to the face and can be
measured at a distance, as validated by Balakrishnan [68]. The face was detected from
the facial video using the Viola-Jones face detector and was defined as a region of interest
(ROI). As the forehead and nose were more robust to facial expressions than other facial
regions, the ROI was divided into multiple ROIs by cropping to the middle 60% of the
width and top 12% of the height (i.e., forehead region) and the middle 10% of the width
and middle 30% of the height (i.e., nose region).

Determining the feature point within multiple ROIs was necessary to measure the
movements induced by the BCG. Although several studies on remote BCG employed the
good-feature-to-track (GFTT) algorithm [83,84], their feature point numbers were not fixed
because the algorithm determined the feature points based on the solid edge components.
It was difficult to employ the GFTT algorithm in this study because the feature points
needed to be re-determined quickly owing to the frequent change of the screen and the
face movement.
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Figure 3. Signal processing of the micro-movements [71]. (a) Face detection using Viola-Jones algorithm; (b) Area selection
using the forehead and nose defined as ROIs; (c) Feature extraction using the GFTT algorithm; (d) Feature tracking
using the KLT tracker; (e) Bandpass filtering for signals in 30 s window buffer using the second order Butterworth filter;
(f) Decomposition of noise using PCA.

Thus, the ROIs of the forehead and nose regions were divided into cells using 16 × 2
and 2 × 8 grids, respectively. This study employed 48 feature points by determining the
centroid of each cell as a feature point. The movements were measured by tracking the
y-coordinate difference between frames of each feature point using the Kanade-Lucas-
Tomasi (KLT) tracker because the BCG movements were generated up and down by the
heartbeat [85–87].

The movements measured from the face are a combination of facial expressions, vol-
untary head movements, and micro-movements. Therefore, it is essential to remove motion
artifacts due to facial expressions and voluntary head movements from the measured
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movements. First, the movements were filtered by a second order Butterworth bandpass
filter with a cut-off 0.75–2.5 Hz corresponding to 45–150 bpm. Then, the movements were
normalized from their mean value (i.e., μ) and standard deviation (σ) by z-score. If the
movements exceeded the μ + −2σ, they were determined to be noise, due to the subtle
movements, and their mean value (i.e., μ) was corrected. Finally, principal component
analysis (PCA) was performed to estimate the micro-movement from the mixed move-
ments by decomposing the noise from facial expressions and voluntary head movements.
This study extracted five components using PCA and then selected one component with
the highest peak in their power spectrum converted using a fast Fourier transform. The
selected component was finally determined to be micro-movements.

3.2. Statistical Analysis

As empathy is an individualized experience, the manner in which each stimulus
affects each participant varies. Individualized response is affected by factors, such as
the individual’s empathy capability, predisposed tendency, and past experience (for an
extensive review of empathy as a concept, see [88]). The observer’s (i.e., the person who
empathizes) mood and personality are also an important modulating factor [89]. Such
individual differences mean that, in our study, the empathy stimuli selected by the emotion
experts do not necessarily elicit empathy from the participants. Therefore, we applied
an inclusion criterion to the participants’ subjective empathy scores to select response
sets from certain stimuli for analysis. We selected data obtained from stimuli that scored,
on average (i.e., the mean of all 30 participants), on or higher than four for the empathy
condition. In the seven-point Likert scale, four was the middle point, labeled as “Neutral”.
Conversely, we selected data obtained from stimuli that scored less than four on average
for the non-empathy condition. This selection process yielded response sets from four out
of the original 12 stimuli in the empathy condition and six out of the original 12 stimuli in
the non-empathy condition.

In short, we analyzed 60 samples (30 participants in two empathy conditions) consist-
ing of subjective empathy scores and cross-entropy data. A paired t-test was used to test
this hypothesis.

4. Results

The study analyzed differences in the micro-movement similarity between empathy
and non-empathy conditions using a t-test. The results showed that there was a significant
difference in the subjective empathy score between empathy and non-empathy conditions
induced by advertisements (t(29) = −11.754, p < 0.001), as shown in Figure 4. The subjective
empathy score was significantly higher when watching empathy advertisements (μ = 5.149,
σ = 0.564) than non-empathy advertisements (μ = 3.341, σ = 0.759).

 

Figure 4. A comparison of empathy scores for non-empathy and empathy advertisements by
paired t-test.

270



Sensors 2021, 21, 7818

There was a significant statistical difference in cross-entropy between empathy and
non-empathy advertisements (t(29) = 61.019, p < 0.001), as shown in Figure 5. As predicted,
cross-entropy was significantly lower when watching empathy advertisements (μ = 0.00317,
σ = 0.00005) than non-empathy advertisements (μ = 0.00392, σ = 0.00005). This supported
hypothesis H1, which stated that the more similar the micro-movements (i.e., the lower
the cross-entropy) between the participant and person in the advertisement, the higher the
participant’s empathy scores for the advertisement (i.e., empathy advertisements).

 

Figure 5. A comparison of cross-entropy between non-empathy and empathy advertisements by
paired t-test.

The Pearson correlation indicated that cross-entropy was also significantly associated
with empathy score (r = −0.796, p < 0.001), indicating an inverse relationship between
cross-entropy and the empathy scores. That is, the lesser cross-entropy, the higher the
empathy scores.

5. Discussion

In summary, our study invited participants to view advertisements classified as empa-
thy or non-empathy advertisements by experts. During each viewing of the advertisement,
we recorded their facial data and obtained their subjective empathy scores after each view-
ing. We analyzed the cross-entropy between the participant’s and the person’s facial data
and found that it was significantly lower when viewing empathy advertisements than
when viewing non-empathy advertisements.

To the best of our knowledge, this is the first study to apply remote BCG methods to
understand empathy-based micro-movement synchronization in a real-world use case (i.e.,
viewing an advertisement). Our research confirmed that the higher the similarity of micro-
movement between the participants and the advertisements, the higher the subjective
empathy. The results validate the remote BCG methods with the accompanying analysis
process (e.g., cross-entropy analysis), suggesting an alternative or complementary method
to the subjective empathy scales.

Our findings also provide implications for understanding the empathic interactions of
human dyads. In human communication, information is shared through natural language
(i.e., explicit channels), whereas empathy is mainly shared through embodied synchrony
(i.e., implicit channels). The latter synchronization is widely observed in human com-
munication and is reflected in the harmonization of the heart rhythm. In other words,
the heartbeat tends to follow the rhythm of someone who empathizes. Such mutual en-
trainment has been defined as two interacting nonlinear oscillating systems with different
periods becoming a common period [90]. Although challenging, advances in technology
enable us to tap into heartbeat traces through the carotid artery, reflected in the facial
micro-movement. Our study confirmed that microscopic vibration is a valid indicator of
dyadic empathy synchronization in an ecologically valid scenario.
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In previous studies that measured empathy based on unconscious physiological
responses [41,43], it was also verified that the correlation between the heartbeat patterns of
two people was higher in the empathy condition than in the non-empathy condition. They
measured heart rate patterns by attaching an ECG sensor to the participant’s skin. The task
of eliciting empathy was overly simplified, such as facing each other, and only momentary
emotions were of concern, resulting in limitations to generalization. Although they can
effectively elicit a definite empathic response, the emotion dynamics were not considered.

In addition, there were fewer applications measuring empathy for digital content
because of the challenge in solving the barrier of obtrusive measurement and consideration
of the dynamic nature of empathy. This study suggested a practical method for measuring
empathy that complements the issue of contact-based empathy measurement that obstructs
users’ immersion in the content.

The hypothesis of the present study was tested under experimental conditions by
manipulating product advertisements. This study acknowledges that there were large
differences among the durations of the stimuli, and the stimuli were only focused on
product commercials. However, the differences in time duration among stimuli did not
affect the similarity because the similarity between the two signals was analyzed in the
frequency domain. That is, because the similarity of the periodicity of the two signals was
analyzed, the time length of the signal did not have a significant effect. Even if there was
an effect, the empathy stimuli, which had a long duration, were difficult to make similar
to the non-empathy stimuli, which had a short duration, because they had to vibrate at a
similar frequency for a longer period of time.

This study suggests an application framework for evaluating empathy in interaction
(e.g., viewing) with digital content. As our suggested method is non-contact and unobtru-
sive to real-life behavior (e.g., consuming media), future research agendas seem promising.
Specifically, future studies may investigate content in other media domains (e.g., movies,
TV shows, video games).

However, we acknowledge that a larger N would be needed to achieve the appropriate
power to completely rule out false positives. We acknowledge that our N is small (30) and,
as such, we conducted a post hoc power analysis with the program G*Power [91] with
power set at 0.8 and α = 0.05, d = 0.5, two-tailed. The results suggest that an N value of
approximately 34 would be needed to achieve appropriate statistical power.

Empathy is a multifaceted social psychological construct that is affected by many
factors, such as the relationship and history between the observer (i.e., empathizer) and
the observed. Such social relationships are also shaped by intimacy, while favorability also
comes into play. As empathy is dependent on context and task [89,92], our study has an
inherent limitation in generalization.

We also acknowledge that empathic expression is a result of a combination of many
nonverbal modalities (e.g., voice, facial expression, posture). We focused on a singular
modality, the facial movements captured from the involuntary heartbeat, because such
measures could also be confounded by noise. Moreover, there can be a gap between the
actual emotion the actor felt and the physiological measurement we acquired. Such a
gap can be measured through a combination of expressive measures (facial muscle move-
ment, gestures) and implicit measures (heart rate, GSR). Future studies may investigate
multimodal recognition of empathy, in addition to facial micro-movements.

We strived to filter out the signals that represent empathy from the signal spectrum as
closely as possible to the target population by guiding the participant not to move and to
refrain from exaggerating facial expressions. We did not include any participants who may
have made significant movements that would confound our results, such as participants
with Tourette syndrome or a person with bruxism.

Privacy issues that may arise from identifying individuals can be crucial in research
that considers prosocial behaviors. However, the suggested method of recognizing empathy
can enhance privacy by not saving personal identification data (i.e., original record video)
in the database. Only the processed secondary data (i.e., micro-movement signals) can
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be saved in the database by analyzing video frames in real-time without recording the
face images. Then, the synchronization data can be analyzed if only a key can match (i.e.,
random number) an advertisement and a viewer. The analyzed micro-movement features
are hardly restored to the original facial image, so it is impossible to identify its data.
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Abstract: As vehicles provide various services to drivers, research on driver emotion recognition
has been expanding. However, current driver emotion datasets are limited by inconsistencies in
collected data and inferred emotional state annotations by others. To overcome this limitation, we
propose a data collection system that collects multimodal datasets during real-world driving. The
proposed system includes a self-reportable HMI application into which a driver directly inputs
their current emotion state. Data collection was completed without any accidents for over 122 h
of real-world driving using the system, which also considers the minimization of behavioral and
cognitive disturbances. To demonstrate the validity of our collected dataset, we also provide case
studies for statistical analysis, driver face detection, and personalized driver emotion recognition. The
proposed data collection system enables the construction of reliable large-scale datasets on real-world
driving and facilitates research on driver emotion recognition. The proposed system is avaliable
on GitHub.

Keywords: driver emotion recognition; multimodal; self-report; real-world driving

1. Introduction

In recent decades, the use of data-driven state-of-the-art techniques such as deep
learning has increased interest in and performance of human affect recognition [1]. This
has increased interest in the development of driver emotion recognition systems. Since
driving is significantly affected by the driver’s emotions [2–4], driver emotion recognition
studies have been conducted for various purposes such as driving safety, adjusting vehicle
dynamics, and emotion elicitation of drivers [4–6]. All studies are affected by the quality
and quantity of data. Therefore, research on quantitative and qualitative datasets for driver
emotion recognition is being actively conducted [7–14].

Although large-scale and high-quality datasets are collected through various studies,
the collection conditions vary significantly. First, the experimental environment is largely
divided into simulation and real-world driving. Second, the modalities of collected signals
are also diverse. When broadly classified, there are video, audio, bio-physiological, and con-
troller area network (CAN) data. In detail, the position of cameras and microphones differ,
and the collection list of biophysiological or CAN data is not unified. Lastly, the annotation
of emotional states is various, which is critical for emotion recognition. The simplest way to
classify a driver’s emotional state is by driving experiments (e.g., assume that heavy traffic
on the urban is high stress, and light traffic on the highway is low stress) [7–9]. There is also
an approach in which external annotators judge a driver’s emotional state based on the
collected information about the driver. However, this approach has limitations in that it has
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a high-cost and requires others to report their emotional states [10,11]. In the self-reporting
approach, drivers report their emotional states, but this should not interfere with the main
task of driving. Hence, it is restricted to experiments through simulation or they have to
report their emotional states after the completion of the experiments [12–14]. As previously
stated, since data collection environments, measured data types, and annotation methods
very, Zepf et al. have argued that a consistent dataset is needed to facilitate research on
driver emotion recognition [15].

In this paper, we propose a data collection system that can be used for a variety of
driver emotion recognition studies. The proposed system collects multimodal datasets
such as videos from various views, audio, biophysiological, CAN data, and drivers’
emotional states, which are data representatively used for driver emotion recognition.
A driver’s emotional state is collected by a driver self-reporting their emotional state while
driving through a human–machine interaction (HMI) application. To realize a universal
dataset, the collection experiment should be conducted in the real world environment,
not through a simulator. To conduct a real-world driving experiment, it is necessary to
prevent the behavioral and cognitive disturbances of drivers in advance to avoid potential
traffic accidents. To prevent behavioral disturbance, the proposed system collects bio-
physiological data using wearable sensors, instead of biometric sensors attached to the
body. The self-reporting application for minimizing cognitive disturbances comprises a
haptic, acoustic response, and graphical user interface (GUI) based on user experience (UX).
In addition, there are concerns about the reflection of strong bias during self-reporting
due to false memories or the desire to impress others [15]. To address these concerns, we
focused on making the self-reporting interaction occur periodically. All considerations for
reliable data are detailed in Section 3. The data collection system is installed on a vehicle,
and data collection is performed under real-world driving conditions. Figure 1 shows the
data collection vehicle driving during real-world driving.

Figure 1. A scene in which a driver’s emotional state data is being collected during real-world
driving using the proposed data collection system. The driver is self-reporting their emotional state
by touching the HMI application mounted on the vehicle center fascia. The screenshot on the right is
the English translation of the GUI of the HMI application implemented in Korean.

According to the real-world data collection experiment results using the proposed sys-
tem, the experiment was completed without any accidents over four months. A large-scale
dataset of over 122 h, 4446 km, and 787 GB was collected, along with 6356 self-reporting
data points of drivers while driving. Through the statistical analysis of the collected data,
the imbalance of self-reported emotion labels and the need for personalized driver emotion
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recognition were confirmed. In addition, case studies of driver face detection and personal-
ized single and multimodel driver emotion recognitions are presented, and comprehensive
understanding is provided.

Our main contributions can be described as follows:

• We proposed a data collection system that can collect the multimodal data of drivers
during real-world driving tasks. The proposed system is capable of collecting real-
world driving big data for driver emotion recognition while considering the minimiza-
tion of behavioral disturbances.

• The proposed system comprises an HMI application through which drivers can report
their emotional states. This application is designed to collect selected emotional states
from the driver without cognitive disturbance during real-world driving by utilizing
the haptic, acoustic response, and GUI, and eliminating the bias problem that may
occur with the self-reporting by setting the interaction period.

• We deployed the proposed system on a vehicle and collected high-quality multimodal
sensor data without any accidents during real-world driving experiments for over
122 h. To demonstrate the validity of our collected dataset, we provided various case
studies such as statistical analysis, driver face detection, and personalized single and
multimodal driver emotion recognition.

The rest of this paper is organized as follows. Section 2 introduces related works on
the data collection system for driver emotion recognition. Section 3 discusses the proposed
data collection system in real-world driving. Section 4 provides data collection experiments,
analysis of collected data, and case studies using the collected data. Section 5 concludes
this work and describes further work. Appendix A describes details of terminologies and
variables used in this paper.

2. Related Works

Driver state recognition research is being conducted from various viewpoints, from the
recognition of inattention [16], distraction [17], stress [5], and behavior [18] for safety to readi-
ness [19] for autonomous driving. This has resulted in research on driver emotion recognition,
along with the improvement of data-based human emotion recognition performance [20–22].
Data used for driver emotion recognition is classified into video [11], audio [10], biophysio-
logical [12], and CAN data [15]. In most cases, these data are not used alone but are fused
to recognize driver’s emotional states [6–9]. However, real-world driving data resources
that account for data types do not exist. Ma et al. [11] only collected the video of a driver’s
face, and CIAIR [23] and DriveDB [7] collected video, audio, and biophysiological data,
excluding CAN data. UTDrive DB collected various CAN data, along with video and
audio but did not collect bio-physiological data [8]. In this study, we propose the various
multimodal data collection system in real-world driving.

Emotion annotation data are as important as sensor data in driver emotion recognition.
To annotate a driver’s emotional state, three major methods are employed: experimental
context, external annotators, and self-reports. The experimental context is the simplest
way to annotate an emotional state by estimating the driver’s emotional state with the
driving situation or environment, e.g., annotate the driver’s stress level by road type or
congestion level [7–9]. Since this approach presupposes strong assumptions, there are
limitations in annotating an accurate emotional state. Although using external annotators
requires additional manpower and cost, it enables objective annotation. Jones and Jonsson
recorded a driver’s speech while driving using a simulator, and an external annotator
annotated the driver’s emotional state by listening to the recorded speech for driver emotion
recognition [10]. Ma et al. developed an annotation tool to allow external annotators to
annotate two emotion categories at five levels each based on driver face images collected
during real-world driving [11]. This approach also has limitations in that experienced and
trained annotators are required. Because self-reporting is an approach to self-report how
drivers feel while driving, it can overcome the limitations of other approaches. However,
driving is a task that requires considerable concentration, and drivers’ self-reporting while
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driving affects the experiment. Hence, most self-reporting is performed immediately after
the driving experiments. Taib et al. [13] and Ihme et al. [14] conducted a driving simulation
experiment for driver frustration and asked participants who drove for self-reporting
information after the experiment. Taib et al. used a 9-point Likert scale and Ihme et al.
used a self-assessment manikin (SAM) [24] for self-reporting. Kato et al. proposed a self-
report application that can visualize data and selected the driver’s emotional state while
driving [12]. The proposed application enables a driver’s self-reporting to be performed
in real time while driving, not after the experiment. This application was only used in a
simulation experiment, and to use it in real-world driving experiments, additional safety
considerations are required. In addition, concerns about subjective biases that may be
included in self-reports are another challenge to overcome [15]. In this study, we propose
an HMI application that allows drivers to safely report their emotional states while real-
world driving.

3. Proposed Work

In this section, a system that enables the simultaneous collection of videos, audio,
biophysiology, and CAN data during real-world driving is described. The system also in-
cludes an HMI application that interacts with the driver and collects the driver’s emotional
state. In other words, this section demonstrates methods for developing hardware and
software systems for a multimodal dataset based on self-reporting in real-world driving
for driver emotion recognition. All systems are built into the vehicle, as the data collection
is performed under driving conditions. We used an IONIQ 1.6 Hybrid vehicle (Hyundai,
Seoul, KR, https://www.hyundai.com/, accessed on 31 March 2022) shown in Figure 2a as
the base environment for building the proposed system. Figure 3 shows the flowchart of
the entire system. When the system starts, the first thing to check is whether the vehicle
is ignited. The system is designed to start after the vehicle is ignited because the surge
voltage generated when the vehicle is ignited can reduce the quality of data collected using
electronic sensors. In addition, for safety reasons, whether the vehicle is stopped before
starting and ending the system is checked (blue rhombus in Figure 3). This prevents the
driver from operating the system while driving. After confirming that data collection is
possible, two types of metadata are requested before the main data collection. One is the
name of the driver, which must be input by the driver manually. The other is the current
odometer, which can be obtained automatically via vehicle CAN data. After obtaining
the current odometer and treating it as the starting odometer, the main data collection
process starts. The main data collection process uses multiprocessing to efficiently collect
different multimodel data (orange rectangle in Figure 3). When a suitable end request is
input into the system by the driver, the main data collection process is terminated, and if
the vehicle is stopped, the vehicle odometer is obtained once more and treated as the
ending odometer. Finally, all data, metadata, and collected data (green box in Figure 3)
are integrated into one dataset (red rectangle in Figure 3) , and the entire system is shut
down. All processes in the proposed system are performed using a computer, shown
as Figure 2d. The proposed system is released as an open source repository on GitHub
(https://github.com/KMUIMLAB/DMS, accessed on 27 May 2022) and the details of each
data type for multimodal data collection are discussed in the following sections.

3.1. Video

We use two RealSense D435i cameras (Intel, Santa Clara, CA, USA, https://www.intel.
com/, accessed on 31 March 2022) to collect video data composed of various modalities.
The RealSense camera provides a maximum of three video modalities: red, green, and blue
(RGB), infrared (IR), and depth. In addition to the RGB image, the IR image, which is
robust to environment changes, such as illumination changes, is essential in real-world
driving. One camera is installed on the dashboard to capture the driver’s face, as shown in
Figure 2b, and the other is installed on the top of the passenger seat window to capture
the driver’s posture, as shown in Figure 2c. Since the sample rate of the camera can be set,
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we set it as Rv Hz. Alternatively, each camera sequentially captures Rv individual images
per second.

(a) (b)

(c) (d)
Figure 2. Figures of the dataset collection system hardware interface build in the vehicle. (a) Vehicle
exterior; (b) Inside view of the vehicle center fascia; (c) Inside view of the vehicle passenger seat;
(d) Vehicle trunk. Two cameras are installed to collect the image data of a driver’s face and posture
(green). A microphone is installed on the right side of the driver seat’s headrest to collect audio
data in the cabin (blue). Wristband-type wearable sensor is worn on the driver’s wrist to collect the
driver’s bio-physiological data, and the collecting status can be monitored through a smartphone
(orange). The CAN interface device supports the collection of vehicle CAN data (red). The monitor
installed on the center fascia is a touch screen for interaction with the driver (yellow). The computer
installed in the trunk of the vehicle integrates the collected data (magenta).

Figure 3. Flow chart of the proposed data collection system during real-world driving.

3.2. Audio

The CVM-VM10 II microphone (CoMica Technology, Shenzhen, Guangdong, CN,
https://www.comica-audio.com/, accessed on 31 March 2022) was used to collect audio
information in the cabin while driving. To collect data with audio information similar to
what the driver hears, the cardioid condenser microphone was selected and placed close to
the driver’s ear. To minimize noise and vibrations that occur during real-world driving,
the microphone was installed on the right side of the driver’s seat headrest, along with
the shock mount and wind muff, as shown in Figure 2c. The audio data collection system
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collects Ra audio data samples per second until the system stops according to the sample
rate, Ra Hz.

3.3. Biophysiological

To collect biophysiological data of the driver, the biometric sensor must be in contact
with the driver’s body. The attached sensor may cause behavioral disturbances, resulting
in potential accidents. For safe biophysiological data collection during real-world driving,
it is necessary to prevent behavioral disturbances in advance, and we used an E4 wristband
(Empatica, Boston, MA, USA, https://www.empatica.com/, accessed on 31 March 2022),
as a solution. The E4 wristband (E4) is a wearable biometric sensor and is used as an
alternative sensor while exhibiting similar data quality 85% of the time compared to the
clinician standard device [25]. As a result of comparing the E4 and laboratory biometric
sensor data in terms of emotion recognition performance, similar accuracy was realized [26].
Hence, we used the E4 for biophysiological data collection during real-world driving. E4
provides skin temperature, electrodermal activity (EDA), photoplethysmography (PPG),
and 3-axis acceleration of the band, along with interbeat interval (IBI) and heart rate (HR)
through postprocessing. As shown in Figure 2b, biophysiological data collection is possible
by simply wearing E4 on the wrist while driving, and real-time monitoring is also possible
using a mobile device through the application provided by E4. Unlike video or audio data,
E4 collects each data at an optimized sampling rate, so no separate setting is required. Each
sample rate is shown in Table 1.

3.4. CAN

The method of mounting additional sensors or collecting on-board diagnostics (OBD)
signals can also be used to access vehicle signals; however, since we can access vehicle CAN,
we can collect vehicle signals with the CAN interface device. CAN is a message-based
protocol designed to allow vehicle controllers to communicate with each other. The USBcan
Pro 2xHS v2 (KVASER, Mission Viejo, CA, USA, https://www.kvaser.com/, accessed on
31 March 2022) is a CAN interface device used to access vehicle CAN signals to collect
vehicle data. As shown in Figure 2d, the device is located in the trunk of the vehicle and
connects the vehicle CAN line to the computer. Among the many signals on CAN, we
select key signals closely related to the driver. Since the selected key signals are updated
according to the set cycle time, the sample rate of CAN data, Rc, is set according to the
cycle time. The collected key data and the sample rate are presented in Table 1.

3.5. HMI

Drivers’ emotion annotation is essential in datasets for driver’s emotion recognition.
Although external annotators or the experimental context can be employed to estimate and
annotate drivers’ emotional states, we focused on annotating the driver’s emotional state
using reports from the driver rather than via estimation. This method is called self-report
and will be performed in real-world driving experiments. It must be designed with an
emphasis on safety. Requiring drivers to report driving conditions may cause cognitive
disturbances, probably leading to severe traffic accidents on the road.

To minimize cognitive disturbances, we proposed the HMI application that period-
ically interacts with the driver through haptic and acoustic response and receives the
emotional state response from the driver. We used a TFX133T DEX monitor (HANSUNG,
Seoul, KR, https://www.monsterlabs.co.kr/, accessed on 31 March 2022), and the touch
screen has a built-in speaker to realize haptic and acoustic responses. The screen was
installed on the center fascia of the vehicle, as shown in Figure 2b. When data collection
starts, the HMI application requests that the driver report their emotional state with a
sound announcement as follows: “Please enter your current state”. If there is no response
from the driver for Irr seconds from the request, the application requests once more with
the same sound announcement. If there is no response from the driver within Is seconds
from the first request, not to disturb the driver, it is treated as a nonresponse with a sound
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announcement as follows: “The input is delayed, so it enters in a nonresponse state”.
This skipping process is essential as frequent response requests can interfere with safe
driving. The driver can input an answer by only touching the screen, and when the input
is completed, the input emotional state is displayed on the screen in large fonts; and at the
same time, a sound announcement is provided as follows: “Your input is complete”. This
feedback minimizes confusion for the driver.

In addition to cognitive disturbances, self-reported emotion labels have limitations in
that they reflect strong bias because of false memories or the desire to impress other
people [15]. Repeated sampling in real-time is necessary to minimize this bias [27].
That is, the self-reporting requests should be continuously made at periodic intervals.
Hence, the proposed HMI application continuously requests the response at an interval,
Ir, from when driving starts to when it ends. The interval between response requests,
Ir, is tuned through test driving. Moreover, our system allows the driver to report their
emotional states at any time by touching the screen even between response intervals. This
feature enables logging drivers’ rapidly changing emotional changes in real-world varying
driving conditions.

The proposed HMI application can apply any representative emotional states as long
as they are discretely expressed states. However, since the driver has to choose the most
similar to their current emotional state among them, cognitive disturbances can occur if
there is difficulty in choosing an emotion no matter how well the interaction with the driver
is completed. Therefore, the discrete representative emotional states should be simple, not
numerous, and suitable for the driving situation.

3.6. GUI

We propose a GUI design to reduce drivers’ cognitive disturbance in self-reporting
through HMI while driving. To propose UX-based GUI of the HMI application, the fol-
lowing four representative driver emotional states by referring to the emotions that can be
induced in a driving situation [28] are suggested.

• Happy|Neutral;
• Excited|Surprised;
• Angry|Disgusting;
• Sad|Fatigued.

The proposed GUI designs are shown in Figure 4. There are two factors to consider in
the GUI design: the layout and color of the emotional states. The layout of the emotional
states refers to the valence–arousal plane, a popular concept used in emotional representa-
tion [29]. Based on the division of the x-axis into pleasure and misery in the valence–arousal
plane, we placed “Happy|Neutral” and “Angry|Disgusting” on the right and left of the
screen: “Happy|Neutral” is on the right and “Angry|Disgusting” is on the left. Based
on the division of the y-axis into arousal and sleepiness in the valence–arousal plane, we
placed “Excited|Surprised” and “Sad|Fatigued” on the top and bottom of the screen:
“Excited|Surprised” is on the top and “Sad|Fatigued” is on the bottom. The overall layout
of the emotional states is in the form of a rhombus, as shown in Figure 4. In the GUI shown
in Figure 4, each emotional state is expressed in different colors. The correlation between
basic colors and human psychological state was identified, and states that can be felt by
humans were classified according to color characteristics [30]. Based on this, appropriate
colors were used for each emotional state. The GUI design provides not only a default
GUI, as shown in Figure 4a, but also a touch GUI, as shown in Figure 4b. Therefore, when
the driver inputs the current emotional state by touching the screen, it provides visual
feedback, as shown in Figure 4c, along with the sound announcement. The UX-based
GUI of the HMI application gives the driver more accurate intuition about the proposed
representative emotional states.
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(a) (b) (c)
Figure 4. GUI of HMI application for self-reporting of driver emotional state. (a) GUI in default;
(b) GUI in touch; (c) GUI example where “Angry|Disgusting” state is touched.

4. Experiments

This section presents the details of the data collection experiment conducted on the
basis of the proposed data collection system and some case studies based on the collected
data from the experiment.

4.1. Data Collection Experiment

Motivated by the need for a dataset in real-world driving, the data collection experi-
ment with the proposed system described in Section 3 was conducted on the road. During
real-world driving, the cameras are used to capture RGB and IR modalities at the sample
rate, Rv, of 15 Hz, and audio data are collected at the sample rate, Ra, of 44,100 Hz. Biophys-
iological data are collected, as described in Section 3.3. The following CAN data signals are
collected: accelerator pedal position, brake pedal position, steering wheel angle, yaw rate,
longitudinal acceleration, and lateral acceleration. All CAN data are collected at the sample
rate, Rc, of 100 Hz. The self-reportable application collected the driver’s emotional state
in five states involving four representative emotional states mentioned in Section 3.5 and
nonresponse. The response request time interval, Ir, is set to 60 s, and then the sample rate
of self-reported emotion label, Rs, is 1

60 Hz. Because the driver is encouraged to self-report
whenever there is a change in their emotional state even without that response request,
the self-reported emotional state annotation includes information on the driver’s emotional
change for unexpected or urgent events. The rerequest time interval, Irr, and the skip
time interval, Is, are set to 10 and 20 s, respectively. All interval times have been adjusted
through several test drives in real-world driving, so that there is no safely issue. Details,
including save format and unit for all data collected through the experiment, are described
in Table 1.

To address the lack of long-term datasets, the experiment was conducted with a few
people who could participate continuously for a long period. Four males participated in
the experiment for four months from July 2021 to October 2021. The detailed information
of these participants is described in Table 2.

During these four months, a large-scale dataset was collected by the participants’
driving in wild, uncontrolled conditions. The weather conditions were divided into four
categories, and the proportions are as follows: Sunny: 20.4%, Cloudy: 40.6%, Overcast:
11.8%, Rainy: 27.3%. Because safety is considered in the proposed data collection system,
no accidents occurred during this period, and according to the data collection experiment
results, the total experiment time was 122 h 15 min, the total driving mileage was 4446 km,
the total number of self-reported emotion labels was 6356, and 787 GB data were collected.
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Table 1. Details of data collected by experiment.

Data Sample Rate (Hz) Format Unit

Video
RGB-front 15 .avi -
RGB-side 15 .avi -
IR-front 15 .avi -
IR-side 15 .avi -

Audio - 44,100 .wav -

Bio-physiological

Skin temperature 4 .csv °C
EDA 4 .csv μS
PPG 64 .csv nW
IBI - .csv s
HR 1 .csv bpm
3-axis acceleration 32 .csv 1

64 g

CAN

Accelerator pedal position 100 .csv %
Brake pedal position 100 .csv %
Steering wheel angle 100 .csv °
Yaw rate 100 .csv rad/s
Longitudinal acceleration 100 .csv m/s2

Lateral acceleration 100 .csv m/s2

Self-reported emotions Emotional state no less than 1
60 .csv -

Table 2. Detailed information of participated drivers.

Gender Age (Year) Driving Experience (Year) Experiment Time (h) Driving Mileage (km)

Driver A Male 27 more than 15 38 1375
Driver B Male 32 between 11–15 43 1449
Driver C Male 26 between 6–10 21 852
Driver D Male 28 less than 5 20 770

4.2. Case Studies

This section presents some case studies using the collected multimodal dataset for
driver emotion recognition. Section 4.2.1 discusses the detailed analysis of the dataset
collected in real-world driving. Sections 4.2.2 and 4.2.3 present case studies of driver
emotion recognition using single-modal or multimodal inputs.

4.2.1. Statistical Analysis

In this section, we discuss the detailed analysis results for the collected dataset in the
real-world driving experiment. Figure 5 depicts the self-report proportion for each driver
as a pie chart. The emotion with the highest proportion was “Happy|Neutral”. More
than 50% of the drivers’ self-reported emotion labels are “Happy|Neutral”, and they often
account for up to approximately 82%. The proportion of the other three emotions varies by
the driver, but it accounts for a small proportion compared to the “Happy|Neutral”.

(a) (b) (c) (d) (e)
Figure 5. Pie charts for self-reported emotion label proportion by driver. (a) Driver A; (b) Driver B;
(c) Driver C; (d) Driver D; (e) Legend of the pie charts.

To confirm the self-reported emotion label tendency of each emotion, the distribution
of self-reports and vehicle speed by emotion for all drivers is depicted in Figures 6 and 7.
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In Figure 6, the start and end of all individuals driving were normalized from 0 to 100 steps
and divided into 50 sections. The number of self-reported emotion labels for each section
is displayed as a histogram and kernel density estimate plot to evaluate the distribution
by emotion. “Happy|Neutral” had several distributions at the start and end of the driv-
ing, and had an even distribution throughout the driving process, as shown in Figure 6a.
Overall, “Excited|Surprised” and “Angry|Disgusting” had an irregular distribution. “Ex-
cited|Surprised” seemed to have a greater variance than “Angry|Disgusting”, as shown
in Figure 6b,c, and it is judged that “Excited|Surprised” was more maintained when the
emotion was induced than “Angry|Disgusting”. As shown in Figure 6d, the distribu-
tion of “Sad|Fatigued” emotion increases toward the middle and late stages of driving.
Figure 7 shows the number of self-reported emotion labels at that vehicle speed with a
histogram and kernel density estimate plot to evaluate the distribution of vehicle speed
by self-reported emotion labels. “Happy|Neutral” had high distributions from 0 to about
15 kph, and an even distribution throughout the driving process, as shown in Figure 7a. In
Figure 7b,c, the fact that the vehicle speed had a relatively irregular distribution compared
to “Happy|Neutral” and “Sad|Fatigued” in “Excited|Surprised” and “Angry|Disgusting”
is a common feature with the distribution of self-reported emotion labels in Figure 6. As
shown in Figure 7d, the distribution of the “Sad|Fatigued” emotion had a particularly high
distribution from 0 to about 30 kph. Based on the distribution of self-reports and vehicle
speed by emotion (especially in Figure 6a), “Happy|Neutral” was the default emotion and
the others were induced while driving.

(a) (b)(a)

(c)

(b)

(d)
Figure 6. Distribution of self-reported emotion labels in real-world driving. (a) Happy|Neutral;
(b) Excited|Surprised; (c) Angry|Disgusting; (d) Sad|Fatigued.

In addition to self-reported emotion label data, we used the statistical hypothesis test to
analyze the significance of the collected sensor data. We built the null hypothesis (H0) that
the structured data collected did not differ according to the self-reported emotion label and
confirmed the difference by the emotion of each structured data through a Kruskal–Wallis
H test [31,32]. According to the Kruskal–Wallis H test results, if the significance probability
expressed as the p-value is less than the significance level, 0.05, the null hypothesis (H0)
can be rejected and the alternative hypothesis (H1) can be accepted as true. The statistical
significance by self-reported emotion label of each data is described using the p-value and
which hypothesis was accepted as true in Table 3. If the statistical significance between
the four self-reported emotion labels is confirmed by the Kruskal–Wallis H test, it is also
necessary to confirm how many of the pairs show statistical significance through the post-
hoc test. We confirmed the statistical significance of a total of six self-reported emotion label
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pairs through the Mann–Whitney U test [33,34], a nonparametric statistical hypothesis test,
and the total number of the null hypothesis (H0) rejection pairs is also listed in Table 3. As
shown in Table 3, all collected structured data had statistically different distributions for self-
reported emotion labels, and three or more pairs out of six pairs were statistically significant.

(a) (b)

(c) (d)
Figure 7. Distribution of vehicle speed by self-reported emotion labels in real-world driving.
(a) Happy|Neutral; (b) Excited|Surprised; (c) Angry|Disgusting; (d) Sad|Fatigued.

Table 3. Statistical hypothesis test results of structured data by self-reported emotion label.

Data

Statistical Hypothesis Test Post-Hoc Test

Reject H0
Number of Reject H0 Pairs
(Total Number of Pairs is 6)

Bio-physiological

Skin temperature Yes 6
EDA Yes 5
PPG Yes 3
HR Yes 4

CAN

Accelerator pedal position Yes 5
Brake pedal position Yes 6
Steering wheel angle Yes 6
Yaw rate Yes 3
Longitudinal acceleration Yes 6
Lateral acceleration Yes 5

Although the statistical hypothesis test results can explain the significance of the
emotion recognition of the collected sensor data, another aspect that requires analysis is
whether there is a significant distribution difference according to the driver. Therefore,
the same statistical hypothesis test as above was repeated by separating the data for each
driver, and the results are shown in Table 4. EDA and steering wheel angle are the only
structured data with the same results for all drivers. Not only were the post-hoc results
different, but also the results of determining whether to reject the null hypothesis were
different for each driver. That means the collected data significantly vary from driver to
driver. This may be because each driver has a different way of expressing their emotions
while driving. Therefore, different data will be required to recognize each driver’s emotion.
In other words, emotion recognition research requires personalization.
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Table 4. Statistical hypothesis test results of structured data by self-reported emotion label according
to driver.

Data

Statistical Hypothesis Test Post-Hoc Test

Reject H0
Number of Reject H0 Pairs
(Total Number of Pairs is 6)

Driver A Driver B Driver C Driver D Driver A Driver B Driver C Driver D

Bio-physiological

Skin temperature Yes Yes Yes Yes 5 6 6 6
EDA Yes Yes Yes Yes 6 6 6 6
PPG No Yes No Yes - 1 - 3
HR Yes Yes Yes Yes 4 5 5 2

CAN

Accelerator pedal position Yes Yes Yes Yes 5 6 6 6
Brake pedal position Yes Yes Yes Yes 6 5 6 6
Steering wheel angle Yes Yes Yes Yes 6 6 6 6
Yaw rate Yes Yes Yes Yes 6 6 4 5
Longitudinal acceleration Yes Yes Yes Yes 6 5 3 6
Lateral acceleration Yes Yes Yes Yes 5 6 6 6

4.2.2. Driver Face Detection

One of the most common approaches to recognizing a driver’s emotional state is using
face images. Studies adopting this approach generally use a well-known face detector to
crop only the face image from the driver’s frontal image and use it as input data. The most
popular face detectors have proven their performance only on in-the-wild datasets such as
FDDB [35] or WIDER FACE [36]. Thus, we evaluate the performance of five popular face
detectors, Haar [37], Dlib [38], OpenCV [39], MMOD [40], and MTCNN [40], on detecting
the driver’s front image in the collected real-world driving dataset. First, the detection
results of the five detectors for the collected IR-front images were output and qualitatively
compared. Figure 8 is an example of the detection results of the five detectors. According
to the results, Haar has a high false positive rate, i.e., nonfaces are detected, and Dlib has
a high false negative rate, i.e., faces are not detected. In contrast to Haar and Dlib, other
detectors are capable of detecting the driver’s face to a similar degree.

(a) (b)

(c) (d) (e)
Figure 8. Example of the detection results of five face detectors. The bounding boxes (red) are face
detection results. (a) Haar; (b) Dlib; (c) OpenCV; (d) MMOD; (e) MTCNN.

For accurate performance comparison of the similar three face detectors, we selected
200 different images and labeled face bounding boxes. If the intersection over union (IoU)
value between the labeled bounding box and the detection bounding box is greater than
or equal to the threshold, it is considered true positive (TP); if the IoU value is less than
the threshold, it is considered false positive (FP). Figure 9 shows the precision–recall (PR)
curve drawn using the considered TP and FP. Quantitative performance comparison of face
detectors can be made with the average precision (AP) value calculated by the area under
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the PR curve. Depending on whether the threshold is 0.5, 0.75, or 0.95, AP performance is
expressed as AP50, AP75, or AP95, respectively. Refer to Table 5 for detailed comparison
results. Since the inference speed of the face detector is as important as detection accuracy,
Table 5 describes the inference speed and the GPU specifications.

(a) (b) (c)

(d) (e) (f)
Figure 9. PR curve for face detectors capable of detecting the driver’s face. The thresholds are 0.5
and 0.75. (a) OpenCV, threshold is 0.5; (b) MMOD, threshold is 0.5; (c) MTCNN, threshold is 0.5;
(d) OpenCV, threshold is 0.75; (e) MMOD, threshold is 0.75; (f) MTCNN, threshold is 0.75.

Table 5. Driver’s face detection performance comparison of face detectors.

AP50 AP75 AP95 Speed GPU

OpenCV 68.4 51.4 0.0 400 FPS Nvidia GTX 3080
MMOD 83.8 18.1 0.0 260 FPS Nvidia GTX 3080
MTCNN 81.4 72.0 0.0 4 FPS Nvidia GTX 3080

OpenCV has the fastest inference speed, but its detection performance is low. For
MMOD and MTCNN, AP50 is at a similar level, but at AP75, the detection performance
of MMOD decreases rapidly. Although the AP75 performance of MTCNN is inferior to
AP50, it is insignificant. Conversely, in the case of inference speed performance, MMOD
significantly outperforms MTCNN. Since the inference speed of MTCNN is also insufficient,
it seems appropriate to use a suitable face detector as the driver face detector depending on
the purpose or computational sources. In terms of AP95, the performance of all detectors
is 0.0. This is due to the small area occupied by the driver’s face in the driver’s front
image, and the IoU value may not exceed the threshold value of 0.95 due to differences in
determining whether only the eyes and nose are included, or including the forehead or
chin when the bounding box is labeled. Figure 10 shows an example image of the detected
and labeled driver face bounding boxes with an IoU value of 0.68, it detects the driver’s
facial expression sufficiently. In face detection for driver emotion recognition, the threshold
should not be as high as 0.5 or 0.95. Therefore, we crop the face image using the MMOD
face detector, which achieved the highest detection performance in AP50 for driver emotion
recognition, as discussed in Section 4.2.3.

289



Sensors 2022, 22, 4402

Figure 10. Example image with IoU of 0.68. Area of union (green and red) is 7441, and area of overlap
(blue) is 5040.

4.2.3. Personalized Driver Emotion Recognition

This section discusses the results of personalized driver emotion recognition utilizing
single or multimodal data. Since individual driver data are required for personalized driver
emotion recognition training, the data required to complete the training should be as small
as possible, and the performance of the trained recognition model should be preserved for
as long as possible. Therefore, the collected data are sorted in ascending order of mileage,
and the mileage for completing the collection of training data, K, is determined. The data
collected during K km driving from the initial mileage for each individual are used as
training data, and the data from thereafter to the last data are used as test data. We set the
completing mileage for the training data, K, to 500 km, and to obtain more test data than
training data, we experimented with drivers A and B, who collected data over 1000 km.

We proposed a personalized driver emotion recognition model based on deep learning
networks that recognize a driver’s emotional state using four multimodal inputs: front
and side image, biophysiological, and CAN data. The proposed model is trained and
verified using only individual data, and, as shown in Figure 11, each multimodal input
performs single-modal emotion recognition and multimodal emotion recognition through
an ensemble model. Each single-modal model and multimodal recognition model are
described as follows.

• Single-modal of front image (S f ): The single-modal recognition model of the front
image uses front IR images for 2 s from 4 s to 2 s before the driver’s self-reporting.
Because RGB images are vulnerable to changes in illuminance, IR images that can
always capture a stable image are used as input. From 2 s before self-reporting, it
shows uniform motion for self-reporting, so it is excluded from the input data. The
input images are evenly time-divided into six equal parts and input to a face detector;
the MMOD-based face detector outputs one cropped face image with the highest
confidence value for each input. The cropped images are resized to the input shape of
the feature extractor and sequentially fed into a feature extractor and a classifier based
on CAPNet [41]. Because the classification form is different from that of CAPNet,
only the number of units in the top layer of the classifier is modified to the number
of representative driver emotional states. The last activation function is softmax and
outputs the probability of each representative driver emotional state.
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• Single-modal of side image (Ss): The single-modal recognition model of the side image
uses the side IR image captured 2 s before self-reporting. The reason for using the
image from 2 s ago is the same as that for using the front image. The input image is
fed into a feature extractor based on AlphaPose [42]. The feature extractor consists
of layers up to just before outputting feature points in the form of histograms in
AlphaPose. The classifier consists of a global max pooling layer and fully connected
layers. The top layer of the classifier is the same as other classifiers to output the
probability of each representative driver emotional states.

• Single-modal of biophysiological (Sb): The single-modal recognition model of biophys-
iological data uses the PPG and EDA data for 10 s before the driver’s self-reporting.
Since PPG and EDA have different sample rates, up-sampling using linear interpola-
tion is applied to the EDA data to match the input shape. The biophysiological input
is directly fed into the classifier without a feature extractor to output the probability
of each representative driver emotional state. The classifier is composed of the fully
connected and batch normalization layers.

• Single-modal of CAN (Sc): The single-modal recognition model of CAN data uses
all collected signals for 10 s before the driver’s self-reporting. The input data are
down-sampled by a tenth before being fed into the feature extractor. The feature
extractor is an encoder of long short-term memory-based autoencoder that extracts the
feature vector for driving propensity. The classifier consists of fully connected layers
and a dropout and outputs the probability of each representative driver emotional
states by receiving the feature vector.

• Multimodal (M): The multimodal recognition model uses the input vectors of each
classifier of single-modal as input vectors. The model is a deep learning-based ensem-
ble model that outputs the probability of each representative driver emotional states by
fusing all input vectors. The feature vectors of the front image, CAN, and side image
are flattened using flatten and pooling layers. The flattened vectors are concatenated
using the concatenate layer. The concatenated vector undergoes the normalization,
fully connected layers, and softmax activation function to become the final output.
The input modalities to fuse can be chosen, and the modals are denoted by a subscript,
e.g., Mf b is the ensemble model that fuses the front image and biophysiological data.
We evaluated three or more input modal combinations for multimodal models.

Figure 11. Deep learning-based personalized driver emotion recognition model.
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It is necessary to define a loss function when training the proposed models. Be-
cause the self-reported emotion label has data imbalance, as described in Section 4.2.1, high
performance cannot be expected if a typical loss function is used such as cross entropy. We
overcome the data imbalance problem by making the precision and recall differentiable by
computing the likelihood values of TP, FP, and false negative (FN) using probabilities. The
loss function we used is shown as follows:

L(y, ŷ) = 1 − 1
N
(

pTP
1

pTP
1 + pFP

1 + ε
+

N

∑
i=2

pTP
i

pTP
i + pFN

i + ε
) (1)
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⎤
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⎡
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1.
1.
1.
1.

⎤
⎥⎥⎦− ŷ) (4)

where y and ŷ represent a one-hot vector of the self-reported emotion and predicted
emotion, respectively, where the first element of each vector represents the default emo-
tion, “Happy|Neutral”. pTP, pFP, and pFN are the likelihood values of TP, FP, and FN,
respectively, where ◦ is an element-wise product.

Equation (1) is a loss function for increasing the precision of default emotion and for
increasing the recall of induced emotions, where N represents the total number of represen-
tative emotions, and ε represents a very small value that prevents the precision or recall
values from going to infinity. This loss function, L(y, ŷ), can be used for backpropagation
by probabilistically expressing the precision and recall for each prediction class. It increases
precision for the majority class, the default emotional state, and increases recall for minority
class, inducible emotional states.

The evaluation results with test data are in terms of F1 score, precision, and recall,
and are described for each driver. As mentioned in Section 4.2.1, since the representative
driver emotional states are divided into default and inducible emotions, the recognition
performance of inducible emotions is evaluated first. Tables 6 and 7 summarize the per-
formance of inducible emotion recognition between default and inducible emotions for
each driver. The highest recognition performance is the F1 score 0.698 of Ss for Driver A
and 0.667 of Msbc for Driver B. As expected in Section 4.2.1, the input modals with the best
performance for each driver differed. Driver A achieved the best performance in a single
front image, and Driver B achieved the best in a side image, biophysiological, CAN data
combination. However, their performance was similar. Driver B had similar performance
between all evaluated models from 0.562 to 0.667. For Driver A, models without CAN data
had a similar performance from 0.613 to 0.696, but models with CAN data such as Sc, Mf sc,
Mf bc, Msbc, and Mf sbc had a significantly lower performance from 0.228 to 0.469. Driver
B can interpret that when inducible emotions are induced while driving, emotions are ex-
pressed overall in the front and side images and biophysiological, and CAN data, whereas
driver A can interpret that the induction of emotion is not expressed in CAN data. These
results may support the fact that driver emotion recognition necessitates personalization.
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Table 6. Performance of inducible emotion recognition of Driver A.

Sf Ss Sb Sc Mf sb Mf sc Mf bc Msbc Mf sbc

F1 0.696 0.698 0.619 0.355 0.613 0.430 0.469 0.469 0.228
Precision 0.541 0.537 0.478 0.248 0.446 0.280 0.311 0.314 0.231

Recall 0.975 0.998 0.879 0.630 0.982 0.923 0.950 0.927 0.225

Table 7. Performance of inducible emotion recognition of Driver B.

Sf Ss Sb Sc Mf sb Mf sc Mf bc Msbc Mf sbc

F1 0.584 0.613 0.593 0.536 0.562 0.646 0.661 0.667 0.615
Precision 0.419 0.442 0.475 0.492 0.420 0.539 0.522 0.500 0.468

Recall 0.963 1.000 0.790 0.589 0.852 0.805 0.900 1.000 0.900

The performance of driver emotion recognition among the inducible emotions for each
driver is also summarized. The recognition performance for each of the three inducible
emotions and the average of three F1 scores are described in Tables 8 and 9. Compar-
ing the recognition performance using the F1 scores of each emotion and average value,
none of the input models with the best performance matched among the drivers. The
common results, regardless of the driver, were that “Sad|Fatigued” emotion had the best
recognition performance and “Angry|Disgusting” emotion had the worst recognition
performance. “Sad|Fatigued” emotion recognition performance was 0.835 and 0.859 and
“Excited|Surprised” emotion recognition performance was 0.653 and 0.583 for Drivers
A and B, respectively. Both of which are similar performances. However, in the case
of “Angry|Disgusting” emotion, recognition performance differed, 0.571 and 0.373 for
each driver. Notably, there was very little performance difference between all evaluated
models. The difference between the highest and lowest average F1 score was 0.163 and
0.061 for Drivers A and B, respectively. This can be a fail-safe method of the driver emotion
recognition model, and each input modal will ensure each other’s redundancy.

Table 8. Performance of driver emotion recognition among inducible emotions of Driver A.

Sf Ss Sb Sc Mf sb Mf sc Mf bc Msbc Mf sbc

Average F1 0.496 0.444 0.447 0.561 0.456 0.500 0.607 0.557 0.483

Excited
|

Surprised

F1 0.359 0.301 0.362 0.653 0.344 0.487 0.444 0.465 0.417
Precision 0.591 1.000 0.563 0.593 1.000 0.950 0.800 0.909 1.000

Recall 0.258 0.177 0.267 0.727 0.208 0.328 0.308 0.313 0.263

Angry
|

Disgusting

F1 0.293 0.196 0.147 0.263 0.216 0.280 0.571 0.400 0.200
Precision 0.579 1.000 1.000 0.500 1.000 0.875 0.667 1.000 0.667

Recall 0.196 0.109 0.080 0.179 0.121 0.167 0.500 0.250 0.118

Sad
|

Fatigued

F1 0.835 0.833 0.830 0.768 0.808 0.733 0.807 0.806 0.831
Precision 1.000 1.000 1.000 0.977 0.995 1.000 0.926 1.000 1.000

Recall 0.717 0.714 0.710 0.632 0.680 0.578 0.714 0.675 0.711
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Table 9. Performance of driver emotion recognition among inducible emotions of Driver B.

Sf Ss Sb Sc Mf sb Mf sc Mf bc Msbc Mf sbc

Average F1 0.488 0.472 0.481 0.450 0.491 0.468 0.491 0.501 0.511

Excited
|

Surprised

F1 0.450 0.403 0.333 0.286 0.511 0.417 0.537 0.511 0.583
Precision 0.636 1.000 0.452 1.000 1.000 1.000 0.846 0.923 0.539

Recall 0.348 0.252 0.264 0.167 0.344 0.263 0.393 0.353 0.636

Angry
|

Disgusting

F1 0.270 0.270 0.373 0.204 0.321 0.194 0.227 0.273 0.233
Precision 1.000 1.000 0.452 1.000 0.907 0.429 1.000 1.000 1.000

Recall 0.156 0.156 0.264 0.114 0.195 0.125 0.128 0.158 0.132

Sad
|

Fatigued

F1 0.744 0.743 0.736 0.859 0.641 0.794 0.710 0.719 0.717
Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.864

Recall 0.593 0.592 0.582 0.753 0.472 0.658 0.550 0.575 0.613

5. Conclusions

Although real-world datasets for driver emotion recognition are diverse, to overcome
the limitation of the lack of consistency in collected data, we proposed a data collection
system capable of collecting multimodal datasets during real-world driving. The proposed
system was installed in a vehicle and collected the following multimodal data while driving
on the real road: videos captured from two viewpoints, audio inside the cabin, driver’s
biophysiological data, and vehicle sensor signals via CAN. We designed a self-reportable
HMI application to annotate driver emotional states, used as labels for driver emotion
recognition. This application allows the driver to select the emotion most similar to their
current emotional state among representative emotions. Thus, emotion labels are collected
as self-reported emotion labels and no longer inferred by others. In addition, continuous
and repeated report requests were made over a long-term period, making the driver’s
bias not be reflected in the self-reported emotion label. Since safety is the most important
factor in real-world driving, we focused on minimizing drivers’ behavioral and cognitive
disturbances in all processes, including sensor selection, flow, and GUI design while
designing the data collection system.

According to the results of the data collection experiment in real-world driving, more
than 122 h, 4446 km of driving, and 787 GB of data were collected without any accidents.
Through statistical analysis of the collected data, the imbalance and report characteristics
of self-reported emotion labels were identified, and default and inducible emotions were
distinguished. Based on the statistical hypothesis test, the null hypothesis (H0) that there
is no difference according to the self-reported emotion label for all collected structured
data was rejected. The significance of the difference for each driver differed, suggesting
the need for personalization of driver emotion recognition. We compared the state-of-
the-art face detectors using the collected front images and presented the most suitable
face detector and performance evaluation metric for driver face detection. Finally, we
conducted a personalized driver emotion recognition study using the collected images and
biophysiological and CAN data. The evaluation results of single-modal and multimodal
using the above data suggested that multimodal data and personalization are necessary for
driver emotion recognition.

Although several case studies were conducted by collecting a large-scale dataset
using the proposed system design, enabling safe data collection in real-world driving,
the dataset was collected by few drivers over a long period. Because the number of drivers
is insufficient to generalize the case studies, these may be treated as particular cases. Based
on further collected data, we will continue to study the generalization performance of
multimodal personalized driver emotion recognition.

294



Sensors 2022, 22, 4402

Author Contributions: Conceptualization, S.L. (Sejoon Lim) and S.L. (Sangho Lee); methodology, G.O.,
E.J. and R.C.K.; software, G.O. and E.J.; validation, J.H.Y., S.L. (Sejoon Lim) and S.L. (Sangho Lee); formal
analysis, G.O.; investigation, G.O., J.H.Y. and S.L. (Sejoon Lim); resources, G.O., J.H.Y. and S.H.; data
curation, G.O., E.J., R.C.K. and S.H.; writing—original draft preparation, G.O.; writing—review and
editing, J.H.Y. and S.L. (Sejoon Lim); visualization, G.O. and E.J.; supervision, S.L. (Sejoon Lim); project
administration, S.L. (Sejoon Lim) and S.L. (Sangho Lee); and funding acquisition, J.H.Y., S.L. (Sejoon Lim)
and S.L. (Sangho Lee). All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Hyundai Motor Group, the Knowledge Service Industry
Core Technology Development Program funded by the Ministry of Trade, Industry, and Energy of
Korea (No. 20003519), the Basic Science Research Program of the National Research Foundation
of Korea funded by the Ministry of Science, ICT, and Future Planning (No. 2021R1A2C1005433),
the BK21 Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (No. 5199990814084), and the Korea Institute of Police Technology (KIPoT) grant funded
by the Korea government (KNPA) (No. 092021C26S03000, Development of infrastructure information
integration and management technologies for real time traffic safety facility operation).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Kookmin University
(protocol code: KMU-202104-HR-264; date of approval: 2 June 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: The authors thank Junghwan Ryu, Taesan Kim, and Joonghoo Park for buil-
ing a vehicle with a data collection system and Youngdong Kwon and Myengkyu Lee for setting
representative emotions and GUI design.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAN Controller area network
HMI Human–machine interaction
GUI Graphical user interface
UX User experience
SAM Self-assessment manikin
RGB Red green blue
IR Infrared
E4 E4 wristband
EDA Electrodermal activity
PPG Photoplethysmography
IBI Interbeat interval
HR Heart rate
OBD On-board diagnostics
IoU Intersection over union
TP True positive
FP False positive
PR Presicion–recall
AP Average precision
FN False negative
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Appendix A

The part describes terminologies and variables used in the main text. Table A1 contains
details of terminologies and variables.

Table A1. Deficition of terminologies and variables used on the main text.

Expression Definition Unit

Rv Sample rate of the video data Hz
Ra Sample rate of the audio data Hz
Rs Sample rate of the self-reporting Hz
Rc Sample rate of the CAN data Hz
Ir Request time interval of HMI application s
Irr Re-request time interval of HMI application s
Is Skip time interval of HMI application s
K Mileage for completing the train data collection km
H0 Null hypothesis of the statistical hypothesis test -
H1 Alternative hypothesis of the statistical hypothesis test -
S f Single-modal recognition model of the front image -
Ss Single-modal recognition model of the side image -
Sb Single-modal recognition model of the bio-phyological -
Sc Single-modal recognition model of the CAN -
M Multimodal recognition model -
N Total number of representative emotions -
s Second -

bpm Beats per minute -
g Gravitationnal acceleration m/s2

FPS Frame per second -
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Abstract: The purpose of this study is to determine heart rate variability (HRV) parameters that can
quantitatively characterize game addiction by using electrocardiograms (ECGs). 23 subjects were
classified into two groups prior to the experiment, 11 game-addicted subjects, and 12 non-addicted
subjects, using questionnaires (CIUS and IAT). Various HRV parameters were tested to identify the
addicted subject. The subjects played the League of Legends game for 30–40 min. The experimenter
measured ECG during the game at various window sizes and specific events. Moreover, correlation
and factor analyses were used to find the most effective parameters. A logistic regression equation
was formed to calculate the accuracy in diagnosing addicted and non-addicted subjects. The most
accurate set of parameters was found to be pNNI20, RMSSD, and LF in the 30 s after the “being killed”
event. The logistic regression analysis provided an accuracy of 69.3% to 70.3%. AUC values in this
study ranged from 0.654 to 0.677. This study can be noted as an exploratory step in the quantification
of game addiction based on the stress response that could be used as an objective diagnostic method
in the future.

Keywords: HRV parameter; game addiction; League of Legends; stress response; sensitivity; specificity;
logistic regression

1. Introduction

The game industry is growing, with a market size of more than US $123.4 billion
worldwide. South Korea is ranked fifth in the world, with 6.7% of the world market
share [1], and accounts for 55.8% of Korea’s content industry exports in 2018 [2]. Ryu
and Lee [3] stated that such booming of the game industry has a positive influence on
society, including stress management, the realization of the ideal self, and physical ability
improvement. In particular, in the current COVID-19 environment, online games are
recognized as a complementary means of social distancing [4,5]. However, Internet game
players are not protected from becoming addicted to gaming. This addiction problem
could adversely affect personal life as well as family and society, and has become a serious
public health issue. Byun and Lee [6] found that Internet addiction is closely related to
the increased frequency and duration of Internet use, and leads to anxiety, fear, depres-
sion, and obsessive-compulsive disorder, with adolescents being vulnerable target users.
Koepp et al. [7] observed that dopamine is secreted from the brains of addicted adolescents
with a similar pattern to that of drug addiction.

Adverse effects on adolescents have been studied by many authors [8–10]. In partic-
ular, it is notable that the most influential factor causing Internet addiction is stress due
to excessive competition, and that adolescents exposed to excessive stress sources were
readily immersed in the Internet [11]. Adolescents often experience alienation or loneliness
when they are addicted to Internet games [12]. They relieve the stress related to daily life

Sensors 2021, 21, 4683. https://doi.org/10.3390/s21144683 https://www.mdpi.com/journal/sensors299



Sensors 2021, 21, 4683

and loneliness by using internet games, which were easily accessible [13]. The higher the
level of stress, the more they tended to fall into game addiction [14]. According to a study
by Lee [15], game addiction prevents adolescents from coping with stress sources properly,
causing various psychological problems and stress responses. Likewise, the literature
indicates that Internet game addiction and mental stress are closely related.

In recent years, heart rate variability (HRV) has been used in many studies to evaluate
stress levels [16–19]. Since stress affects the autonomic nervous system (ANS), HRV
controlled by the ANS is often referenced as a stress indicator. A number of studies on
HRV parameters have been conducted in this regard. Taelman et al. [20] and Vuksanović
and Gal [21] observed that the mean of the NN interval, which is often expressed as the RR
interval, and the standard deviation of all NN intervals (SDNN) decreased significantly
under mental stress. Taelman et al. [20] and Tharion et al. [22] showed that pNN50
(percentage of successive RR intervals greater than 50 ms) is significantly decreased under
stress. Papousek et al. [23] and Traina et al. [24] reported an increase in the low-frequency
power range (LF), a decrease in the high-frequency power range (HF), and a significant
increase in the LF/HF ratio when subjects experience stress. Park et al. [25] tested the
newly developed measuring system to examine electrocardiograms (ECGs) and found
a consistent increase in HR and SDNN as the level of addiction increased. At the same
time, the LF and LF/HF parameters showed an obvious increasing trend at a high level
of addiction.

On the other hand, Hafeez et al. [26] used EEGs to classify game addicts and non-
addicts using cluster analysis and pattern discrimination. They introduced a statistical
method to quantify the addiction phenomenon, and Hafeez et al. [27] and Kim et al. [28]
identified the theta and theta/alpha parameters of the right occipital region as the dis-
criminating variables between addicts and non-addicts. Likewise, the attempt to quantify
the particular characteristics of addiction is an ongoing topic for researchers. If such a
numerically quantifiable approach can be successful and assist physicians in identifying
an addicted patient, they will be able to treat the patient more efficiently and objectively.
Therefore, in this study, the authors are challenged to search for a quantifiable indicator
of addiction in ECG response by investigating various HRV parameters. The purpose
of this study is to extract quantitative HRV parameters that characterize the particular
stress response of game addicts. To achieve this research goal, an exhaustive approach was
performed by testing all the candidate parameters collected using window sizes of 30, 60,
90, and 120 s.

2. Methods

2.1. Subjects

A total of 23 male students participated in the experiment. The mean age was 23 years
(±3 years). Eleven participants were addicted, and 12 of them were non-addicted. They
were categorized using the Compulsive Internet Use Scale (CIUS) by Meerkerk et al. [29],
and the Internet Addiction Test (IAT) by Young and De Abreu [30]. Based on CIUS, subjects
with 2.5 or higher were categorized as addicted, and those with scores less than 1.5 were
categorized as non-addicted [31]. An IAT score of 50 or higher has been used to classify
the game-addicted by many researchers [10,32–35]. In this study, a subject was categorized
as a game addict only when the subject met both the IAT and CIUS standards. For non-
addicted subjects, an IAT score of 40 or lower was required. 14 addicted subjects and
14 non-addicted subjects were selected. 3 addicted subjects and 2 non-addicted subjects
were discarded due to a technical error in the measurement system. Controlling the
compounding effect of gender in this study, only male participants were tested in this
study. Alcohol consumption was prohibited for 24 h before the start of the experiment, and
smoking and coffee consumption were prohibited for 1 h before the start of the experiment.
A fee was paid to the participants. The experiment was conducted in accordance with the
regulations under consideration by the Institutional Review Board of Hanyang University
in the Republic of Korea (IRB approval number: HYU-2019-08-004-1).
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2.2. Apparatus

The questionnaires used to categorize subjects into two groups prior to the experiment
were the CIUS by Meerkerk et al. [29] and the IAT by Young and De Abreu [30,36].

League of Legends by Riot Games Inc. (Los Angeles, CA, USA) was chosen for the
experiment. This game was one of the most frequently played games among internet game
players [37], and the frequent battles in the game made players experience a simulated life
and death situation associated with probable stress reactions.

For data collection, an auxiliary channel of QEEG-64FX by LAXTHA Inc. (Daejeon,
Republic of Korea) was used for ECG measurements (Figure 1). A data collection program
called Telescan was used. The data sampling rate was set to 500 Hz. The experiment was
conducted in a room equipped with a computer, a table, and a chair, where other external
stimuli were restrained.

Figure 1. ECG measurement equipment. (a) Top view of experimental set-up, (b) The experimental scene.

2.3. Experimental Design

The experiment was designed to test HRV parameters to determine whether they
could differentiate subjects into two groups: addicted and non-addicted. A between-
subjects design was used in this study. The independent variables were the addiction status
of the group, and the dependent variables were 14 parameters, including 7 time-domain
variables and 7 frequency-domain variables. The time-domain parameters are NN interval
average (RR interval average), SDNN, SDSD, pNNI50, pNNI20, RMSSD, and heart rate
average (Table 1). The frequency-domain parameters are LF, HF, LF/HF ratio, LFnu, HFnu,
total power, and VLF (Table 2). This study observed specific events during gameplay,
including a “killed event”, when a player’s character was killed by an opponent, and a
“killing event”, when the player killed an opponent. The data collection window sizes for
these events were 30 s, 60 s, 90 s, and 120 s, respectively, to consider the possible delay of
the response.

2.4. Procedure

Positive electrode was placed in the V1 location (between the right rib 3 and 4), and
the negative electrode was placed in the left infraclavicular fossa according to the standard
limb guidance method [39]. The experimental procedure was briefly explained to the
subject, and the ECG sensors were attached and tested to ensure that stable signals were
obtained for 1 min while the subjects were relaxing. A “normal game”, which is a practice
game that does not affect the player’s score, was played for familiarization; a “ranked
game”, which is a competing game affecting the player’s score, was played for 30–40 min.
For players’ immersion in the game, the ranked game was played based on the individual
skill level. Subjects played a “normal game” once and a “ranked game” twice, while the
ECG was obtained. Subjects were not informed about the addiction test score; thus, they
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did not know whether they were categorized in the addicted group or not. The detailed
experimental procedure is shown in Figure 2.

Table 1. Time-domain variables for heart rate variability [38].

Variable Description Equation

Mean NNI Mean NN intervals 1
N

N

∑
i=1

RRi

SDNN Standard deviation of all NN intervals
√√√√ 1

N

N

∑
i=1

(
RRi − RR

)

SDSD Standard deviation of differences between adjacent NN intervals
√√√√ 1

N−1

N−1

∑
i=1

(|RRi − RRi+1| − RRdi f )2

pNNI50 pNN50 count divided by the total number of all NN intervals (%) ∑M
i=1{|RRi+1−RRi | > 50 ms}

N × 100

pNNI20 pNN20 count divided by the total number of all NN intervals (%) ∑M
i=1{|RRi+1−RRi | > 200 ms}

N × 100

RMSSD The square root of the mean of the sum of the squares of
differences between adjacent NN intervals

√√√√ 1
N−1

N−1

∑
i=1

(RRi+1 − RRi)
2

Mean HR Mean heart rate 1
N

N

∑
i=1

HRi

Table 2. Frequency-domain variables of heart rate variability [38].

Variable Description Frequency Range

LF Power in low-frequency range 0.04–0.15 Hz
HF Power in high-frequency range 0.15–0.4 Hz

LF/HF ratio Sympathovagal balance
LFnu LF power in normalized units: (LF/(total power − VLF)) × 100
HFnu HF power in normalized units: (HF/(total power − VLF)) × 100

Total Power The variance of NN intervals over the temporal segment Approximately ≤ 0.4 Hz
VLF Power in very low-frequency range ≤0.04 Hz

Figure 2. Experimental process.

2.5. Data Analysis

The data were analyzed in batches using Python, and time series analysis and fre-
quency analysis were performed at the same time. The parameters used for time series
analysis were extracted by using the Christov ECG R-peak segmentation algorithm. The
extracted parameters were NN interval average, SDNN, RMSSD, pNNI50, pNNI20, SDSD,
and heart rate average. The signal was also extracted and transformed into frequency
parameters using the fast Fourier transform. Welch’s periodogram was applied to estimate
the spectral properties of the HRV signals, using a Hanning window. VLF (power in very-
low-frequency ranges, 0.0033–0.04 Hz), LF (power in low-frequency ranges, 0.04–0.15 Hz),
HF (Power in high-frequency ranges, 0.15–0.4 Hz), and total power (Power in all the fre-
quency ranges, ≤0.4) were obtained by the sum of the power in the relevant frequency
range of the spectrum. Based on these power values, the values of LF/HF ratio, LFnu, and
HFnu were calculated.
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Normality was tested by using Kolmogorov–Smirnov test for individual data set. The
dataset with a low normality value was graphically examined to ensure an adequate level
of normality. During the process, illegal outliers were treated. The t-test was performed
(p < 0.1) to find the parameters and window size that statistically differentiate two groups:
the addicted and non-addicted. The statistical analysis was an exhaustive process used to
identify the set of most effective parameters and the window size. A correlation analysis
was also performed to determine the redundancy of parameters, and a factor analysis was
performed to choose the main parameters representing the characteristics of each group.
Finally, a logistic regression analysis was conducted to test the sensitivity and specificity of
the statistical model in identifying addicted or non-addicted subjects based on the current
experimental data. The analysis process is illustrated in Figure 3. Statistical analysis was
performed using SPSS Statistics 24.

Figure 3. Data analysis process.

3. Results

An elimination process was used to sort out the best combination of parameters out
of 14 parameters from 4 window sizes through statistical analyses.

3.1. The t-Test Results between Groups by Window Size

There were no significant differences in average parameter values between the ad-
dicted and non-addicted groups for the entire window sizes during the experiment (p > 0.1).

3.2. The t-Test Results between Groups after Specific Event

There was no significant difference of HRV parameters between groups for window
sizes of 30 s, 60 s, 90 s, and 120 s after “killing events” (p > 0.1). However, as shown in
Tables 3 and 4, the HRV parameters measured for window sizes of 30 s and 60 s after “killed
events” showed a significant difference in some parameters between the two groups. In
particular, pNNI20 and LF showed a significant difference (p < 0.05), and a marginally
significant difference was observed for SDSD, RMSSD, and total power (p < 0.1).

3.3. Correlation Analysis and Factor Analysis with HRV Parameters

A correlation analysis was performed to examine the redundancy of the parameters in
differentiating between the two groups. LF and pNNI20 with significant p-values (p < 0.05)
in the t-test indicated a low correlation coefficient (0.264). Both could be used to improve
statistical power in differentiating the two groups. On the other hand, SDSD and RMSSD
showed a correlation coefficient of 1.000, and the total power and LF indicated a coefficient
of 0.958. Thus, only one parameter was used to build the statistical model. Therefore,
the correlation analysis suggested that the combination of the [pNNI20, LF, SDSD] or
[pNNI20, LF, RMSSD] parameter set could be the best combination of parameters with the
least redundancy.
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Factor analysis was also performed to examine whether the selected parameters
covered various factors of the data (Figure 4). The parameters with high eigenvalues for
Factor 1 were RMSSD, SDSD, pNNI_50, and pNNI_20, and the parameters with high
eigenvalues for Factor 2 were LF, total power, and SDNN. That is, the [pNNI20, LF, SDSD]
or [pNNI20, LF, RMSSD] parameter set from the correlation analysis (Table 5) were found
to have the highest eigenvalues for both Factor 1 and Factor 2 (Table 6). Therefore, the final
combination of parameters for statistical modeling was [pNNI20, LF, RMSSD] or [pNNI20,
LF, SDSD]. In logistic regression modeling, [pNNI20, LF, RMSSD] was arbitrarily selected
to test the model performance in this study because both RMSSD and SDSD were highly
correlated with each other (r = 1.000).

Figure 4. Factor analysis results.

Table 3. The t-test results for data from 30 s window size after “killed event”; mean (±standard deviation).

Parameter Addicted Group Non-Addicted Group p-Value

MeanNNI 697.72 (±81.42) 672.16 (±82.23) 0.134
SDNN 45.31 (±14.52) 41.2 (±14.53) 0.174
SDSD 28 (±14.05) 23.35 (±12.77) * 0.093

pNNI50 7.15 (±9.41) 5.21 (±10.9) 0.368
pNNI20 37.53 (±16.67) 29.15 (±17) ** 0.018
RMSSD 28.1 (±14.04) 23.45 (±12.78) * 0.093

MeanHR 87.5 (±9.86) 90.91 (±10.72) 0.116
LF 1009.35 (±798.74) 679.67 (±596.46) ** 0.020
HF 326.26 (±312.39) 230.59 (±312.38) 0.141

LF/HF ratio 5.16 (±6.8) 6.45 (±10.06) 0.489
LFnu 71.93 (±19.13) 72.41 (±19.2) 0.904
HFnu 28.07 (±19.13) 27.59 (±19.2) 0.904

Total Power 1640.71 (±1084.45) 1260.54 (±970.6) * 0.072
** p < 0.05, * p < 0.1.
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Table 4. The t-test results for data from 60 s window size after “killed event”; mean (±standard deviation).

Parameter Addicted Group Non-Addicted Group p-Value

MeanNNI 714.36 (± 76.27) 690.67 (± 80.38) 0.154
SDNN 53.97 (± 23.08) 50.21 (± 18.52) 0.380
SDSD 29.24 (± 13.76) 28.96 (± 21.42) 0.943

pNNI50 7.84 (± 9.18) 7.14 (± 12.55) 0.768
pNNI20 37.88 (± 16.86) 32.56 (± 17.04) 0.137
RMSSD 29.29 (± 13.78) 28.98 (± 21.42) 0.939

MeanHR 85.52 (± 9.35) 88.8 (± 10.15) 0.115
LF 973.06 (± 630.72) 753.93 (± 536.36) * 0.071
HF 303.23 (± 268.49) 315.82 (± 459.75) 0.880

LF/HF ratio 4.21 (± 2.75) 4.51 (± 4.3) 0.708
LFnu 77.15 (± 8.37) 74.02 (± 14.85) 0.244
HFnu 22.85 (± 8.37) 25.98 (± 14.85) 0.244

Total Power 1781.33 (± 1129.5) 1672.64 (± 1251.71) 0.668
VLF 505.03 (± 441.69) 602.89 (± 539.92) 0.356

* p < 0.1.

Table 5. Correlation coefficients among heart rate variability parameters.

SDNN SDSD pNNI50 pNNI20 RMSSD LF HF
TOTAL
POWER

SDNN
SDSD 0.684 **

pNNI50 0.477 ** 0.639 **
pNNI20 0.405 ** 0.480 ** 0.797 **
RMSSD 0.686 ** 1.000 ** 0.639 ** 0.480 **

LF 0.614 ** 0.337 ** 0.265 ** 0.264 ** 0.337 **
HF 0.483 ** 0.608 ** 0.402 ** 0.267 ** 0.607 ** 0.545 **

Total
Power 0.731 ** 0.460 ** 0.320 ** 0.275 ** 0.461 ** 0.958 ** 0.680 **

** Correlation is significant at the 0.01 level (both sides).

Table 6. The eigenvalues from factor analysis.

Factor 1 Factor 2

SDNN 0.664 0.593
SDSD 0.860 0.064

pNNI50 0.838 −0.075
pNNI20 0.766 −0.081
RMSSD 0.860 0.066

LF 0.450 0.715
HF 0.686 0.101

Total Power 0.559 0.705

3.4. Logistic Regression Models

Logistic regression models were developed using the selected parameters. A total of
15 mathematical equations were designed to test the maximum sensitivity and specificity of
the parameters using natural logarithms and squares. In terms of identifying the addicted
group, the sensitivity was computed, and ranged from 0.324 to 0.400; the specificity ranged
from 0.828 to 0.922. The overall accuracy ranged from 67.7% to 70.3%. The model with
the highest specificity of 0.922 was constructed using pNNI20, ln(RMSSD), and LF. The
model with the highest sensitivity of 0.400 was obtained using ln(pNNI20), (RMSSD)2, and
ln(LF). The model with the highest overall accuracy of 70.3% was obtained using pNNI20,
ln(RMSSD), and LF. The second-highest overall accuracy model (69.7%) was obtained using
ln(pNNI20), ln(RMSSD), and (LF)2. The results are summarized in Table 7.
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Table 7. Summary results of four logistic regression models with the highest accuracy.

Model No. Parameter Model Equation Sensitivity Specificity Accuracy (%)

Model 1
pNNI20
RMSSD

LF

1/(1 + exp (−(−1.705 + 0.048 × pNNI20 −
0.035 × RMSSD + 0.0005 × LF))) 0.324 0.906 69.3

Model 2
ln(pNNI20)
(RMSSD)2

ln(LF)

1/(1 + exp (−(−9.911 + 2.309 × ln(pNNI20)
+ 0.0003 × (RMSSD)2 + 0.272 × ln(LF)))) 0.400 0.828 67.7

Model 3
pNNI20

ln(RMSSD)
LF

1/(1 + exp (−(1.232 + 0.054 × pNNI20 −
1.292 × ln(RMSSD) + 0.0006 × LF))) 0.324 0.922 70.3

Model 4
ln(pNNI20)
ln(RMSSD)

(LF)2

1/(1 + exp (−(−5.5417 + 2.505 × ln(pNNI20) −
1.271 × ln(RMSSD) + 0.0000002 × LF2))) 0.891 0.343 69.7

3.5. Characteristics of Distributions Affecting the Sensitivity and Specificity

The true positive rate (sensitivity) was less than 0.4 in the above analysis, which is not
good enough to provide a diagnosis of addiction for medical treatment. Such a relatively
low sensitivity could be a part of the outcome based on the logistic regression model to
maximize the total accuracy. To see the characteristics of the probability distribution of the
data, Figures 5–7 are shown under the assumption of a normal distribution. As shown,
there is a substantial overlap between distributions that could make either sensitivity
or specificity low. From the observations, the criterion beta used for decision-making
seemed to be biased to a conservative standard rather than a liberal one, considering that
the specificity was much higher than the sensitivity. For example, for Model 1, with a
maximum accuracy of 72.3%, the cut-off point associated beta value was set to 0.523, and
the sensitivity and specificity were computed as 0.324 and 0.953, respectively. If a different
cutoff value was then used, such as 0.372 in Model 2, the sensitivity and specificity can be
computed as 0.656 and 0.703, respectively, with 67.3% accuracy.

3.6. Area under the Curve (AUC) Values

Figure 8 shows the ROC curves of the four models. The AUC value of 0.677 was
for Model 1, 0.655 for Model 2, 0.673 for Model 3, and 0.654 for Model 4. According to
Hosmer and Lemeshow’s study [40], models having an AUC value of 0.5 or less have no
discriminating power. A model can be considered acceptable only if the AUC value is
between 0.7 and 0.8, and a model has excellent discriminating power if the AUC value is
between 0.8 and 0.9. Thus, the AUC value of the current logistic regression model is close
to the acceptable level, but further refinement is required for the model to be acceptable.

Figure 5. Probability density distribution of RMSSD parameter.
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Figure 6. Probability density distribution of LF parameter.

Figure 7. Probability density distribution of pNNI20 parameter.

Figure 8. Receiver operating characteristic (ROC) curves of four representative models.
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4. Discussion

The study showed that “being killed” in a virtual situation generated a greater signal
response among the addicted subjects than non-addicted subjects. Klimt et al. [41] men-
tioned that a shift in self-perception would occur while enjoying the game and identifying
oneself with the game character or when playing games experiencing flow or psychological
mastery. Turkay and Kinzer [42] stated that the customization process of avatars by players
could greatly influence players to identify themselves as game characters. Therefore, it is
reasonable to think that such an affective attachment with an avatar could psychologically
influence the players, and this phenomenon could be even more severe among addicted
subjects than non-addicted ones.

Regarding the model building, three different statistical methods were used to select
the parameters to build the best logistic regression model. Through the t-test, the pNNI20
and LF parameters were selected because they showed the most significant results (p < 0.05)
in differentiating the two groups 30 s after the “being killed” event. This means that
both time-domain and frequency-domain parameters could be effective in statistically
discriminating between the two groups. The total power parameter showed a significant
p-value (<0.072); however, it was not selected for the final logistic model because it was
highly correlated with the LF parameter (r = 0.958) to avoid redundancy. In addition, the
RMSSD (or SDSD) parameter was used for the logistic regression model because it showed
the highest eigenvalue (0.86) of Factor 1 in the factor analysis. The LF parameter with a
significant p-value in the t-test also showed the highest eigenvalue (0.715) for Factor 2,
which was used for the final logistic regression model.

The final parameters selected in this study were found to be associated with the
stress response based on previous studies. Bernardi et al. [43] evaluated HRV parameters
under the mentally stressful situation of a subject performing arithmetic while speaking
or reading, and they observed the increased power of LF when subjects were hurrying to
perform the calculation task. Huang et al. [44] found that RMSSD and the combination
of various variables had a positive correlation with mental fatigue induced by mental
stress. According to a study by Jang et al. [45], RMSSD was also found to have a marginal
correlation with tension (r = 0.268, p = 0.039), depression (r = 0.356, p = 0.005), fatigue
(r = 0.259, p = 0.041), and frustration (r = 0.304, p = 0.018). Lee et al. [46] observed changes
in HRV during physical and mental stress in patients with depression, and they reported
a significant increase in RMSSD during the stress period compared with the rest period.
Mallinani et al. [47] explained that increased sympathetic activity could be functionally
characterized by an increase in the LF component in terms of LF–HF balance. Kim et al. [48]
reviewed the function of HRV parameters and concluded that low parasympathetic activity
was frequently related to a decrease in HF and an increase in LF.

To investigate the efficacy of the regression model in diagnosing game addiction
patients, the AUC values were calculated and compared with the reference values. The
computed AUC value in this study ranged from 0.654 to 0.677, which is known to have
insufficient accuracy for field applications. This indicated that the increased stress response
of the addicted during a “killed event” was statistically meaningful, but it might not
fully reflect the symptom of addiction that the players were experiencing. Regarding the
sensitivity and specificity score, the sensitivity was computed and ranged from 0.324 to
0.400, and the specificity ranged from 0.828 to 0.922 based on the logistic regression model
with the default cut-off point used as a decision criterion. However, the values could
change when different cut-off points were used. For now, the AUC value was less than 0.7,
which could expect only less-than-accurate decision-making. Therefore, it is necessary
to test the model performance under various experimental conditions. At any rate, it is
important to understand the nature of HRV parameters among addicted game players,
who have been very responsive to stressful stimuli, which was worthwhile to investigate
further for quantification of addictive symptoms during game playing.
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5. Conclusions

In this study, the difference in HRV parameters between the addicted and non-addicted
group was measured during game playing, and it was found that pNNI20, RMSSD, and LF
reflected the difference in stress response sensitively for a window size of 30 s after a “being
killed” event. To identify the difference between the game-addicted and non-addicted sub-
jects, the AUC score was computed and found to be less than accurate. The quantification
of the psychophysiological response of the addictive game was a challenging task, as was
shown in this study, but it is worth pursuing the prevention and rehabilitation of addicted
patients in the future. For further study, various types and greater numbers of subjects need
to be tested for better representation of the addiction symptoms. Additional mathematical
exploration using artificial intelligence techniques could be another option for analyzing
bio-information with a high level of variability and probable irregularity. It would also
be intriguing to examine and compare the HRV parameters to other psychophysiological
signals to identify the unknown patterns of game addiction.
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Abstract: With the prevalence of virtual avatars and the recent emergence of metaverse technology,
there has been an increase in users who express their identity through an avatar. The research
community focused on improving the realistic expressions and non-verbal communication chan-
nels of virtual characters to create a more customized experience. However, there is a lack in the
understanding of how avatars can embody a user’s signature expressions (i.e., user’s habitual facial
expressions and facial appearance) that would provide an individualized experience. Our study
focused on identifying elements that may affect the user’s social perception (similarity, familiarity,
attraction, liking, and involvement) of customized virtual avatars engineered considering the user’s
facial characteristics. We evaluated the participant’s subjective appraisal of avatars that embodied
the participant’s habitual facial expressions or facial appearance. Results indicated that participants
felt that the avatar that embodied their habitual expressions was more similar to them than the avatar
that did not. Furthermore, participants felt that the avatar that embodied their appearance was
more familiar than the avatar that did not. Designers should be mindful about how people perceive
individuated virtual avatars in order to accurately represent the user’s identity and help users relate
to their avatar.

Keywords: virtual avatar; virtual human; virtual character; embodied conversational agent; social
interaction; empathy

1. Introduction

Humans communicate with others via verbal and non-verbal communication. Through
dyadic social interaction, people elicit the other’s intention and emotion [1]. Facial expres-
sions represent non-verbal communication channels [2]. The face is the most recognizable
region and has unique characteristics that represent an individual [3]. Humans are born
with an innate capability to sense and perceive the most important person (i.e., mother)
at the early stage of life. Infants are known to discriminate facial features starting at
two months after birth [4], and they also prefer facial features over other shapes and
forms [5]. Hiding one’s face implies the concealment of one’s identity. For example,
covering a face with a mask may be considered negative social behavior [6].

The rapid advancement of VR (Virtual Reality) technology facilitates the introduction
of expressive services tailored to the metaverse. Virtual experiences using HMD (Head-
Mounted Display) are now prevalent in households due to video games. In addition, the AR
(Augmented Reality) industry is growing through mobile platforms with the availability
of engaging entertainment services. Naturally, virtual avatars, a conduit that connects
the virtual world to the user, have gained much attention. Many users are interested in
projecting or extending their identities through avatars in the internet’s social landscape.
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There are various ways to express oneself through a virtual avatar. The most direct
way is to apply one’s physical characteristics to an avatar that embodies the user’s facial
appearance or proportions [7]. Studies are also considering the application of a user’s
habitual expressions based on facial muscle movement [8]. A virtual avatar with the user’s
unique signature may elicit social responses such as perceived similarity and familiarity.

1.1. Habitual Facial Expressions and Facial Appearance

The human face consists of 20 facial muscles. Humans communicate through an
interplay of these muscles, which produce expressions. Facial expressions enable social
communication, which abides by shared rules [9]. They are a powerful source of visual
information that embodies the individual’s emotions, behavioral predisposition, and in-
tention [10]. Humans can infer the interaction partner’s psychological state through facial
expressions and identify their traits [11]. In psychology, an individual’s traits are, by
definition, their habitual pattern of thoughts or affect.

Facial expressions are individual behavioral habits that consist of patterned muscle
movement. Such patterns include unique muscle characteristics (e.g., the intensity of the
movement of each facial muscle). As a result of these individual differences, people can
reliably discriminate themselves from others [8].

On the other hand, facial appearance provides a person’s unique identity from the
physical features, specifically face and head. Although the perception of appearance relies
on many environmental factors (e.g., head pose, lighting conditions), there are descriptive
characteristics of a particular individual, such as the location of the eye, nose, and mouth.
In our study, we used such facial landmarks to identify critical regions of the face by
defining their coordinates (x,y) on the facial image.

Visual perception plays an integral part in facial recognition, which also applies to
recognizing oneself. The easiest way to look at oneself is through a mirror. Being able to
recognize one’s own face is one of the critical prerequisites of self-consciousness and self-
identity. Only humans and a few animals may recognize themselves through a mirror [12].
For humans, this ability develops at the age of two. This ability correlates with empathic
and altruistic behavior.

Humans feel a sense of closeness to familiar entities. They also feel more intimate with
objects that they are repeatedly exposed to, even without interacting with these (i.e., mere
exposure) [13]. An object to which a person is familiarized through repetitive exposure may
elicit positive responses [14,15]. For example, stimuli such as names [16] or photos [17] may
elicit positive responses after repeated exposure. This phenomenon may also be observed
with facial perception. When participants viewed a specific face repetitively, they described
it as more familiar, similar, and attractive than those who did not [18].

Humans belong to social circles of varying size. Individuals have a higher chance of
getting exposed to a member in the same group than to a member in a different group.
When exposed to identical situations, people in the same group tend to exhibit similar
responses. The more members express different responses, the lesser the probability of
sustaining the group [19].

Exhibiting a similar response to an identical stimulus is related to empathy. In a
dyadic interaction, an empathic response is manifested by mimicking the other’s facial
expressions or gestures [20]. Sustaining a similar expression or empathic response for
a long time results in the repeated utilization of the respective muscles responsible for
empathic expressions. Repetitive use of certain muscles affects bone structure and as a
result, leads to an appearance that is similar to that of the significant other [21].

Furthermore, perceived similarity is known to entail a positive face-to-face interaction.
People are predisposed to think that in dyadic socialization, a part of their partner’s
attitude, values, and beliefs is similar to theirs [22,23]. People tend to like and trust people
who have a similar physical appearance more than those who do not [24].
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1.2. Virtual Avatar

The term avatar is derived from a Sanskrit word and connotes the incarnation of a
deity. In modern society, the user’s mental model of an avatar is that it is an alter ego of the
user that can interact with other virtual avatars in a virtual world [25]. Recently, the need
for a virtual avatar has not only come from games, movies, advertisements, and remote
collaboration but has extended to medical practice and crime investigation. Research,
design, and development explore the avatar model and how it can imitate users in real
time. Realistic animation is possible by depicting the movement based on bone and muscle
structure, considering the real-world laws of physics.

In general, the more similar the illustration of a virtual avatar is to the user, the more
immersive their experience [26,27]. Nevertheless, a very realistic but imperfect depiction of
a user may lead to negative feelings [28]. Virtual characteristics that reach a certain point
of human likeness tend to elicit a feeling of eeriness.

Much research has been conducted on the interaction channels of virtual avatars.
There has been much attention on non-verbal expressions such as the gaze, the facial
expression, and gestures of an avatar. For example, minute movements of the pupil add a
sense of immersion and social presence. Studies found that participants perceived a higher
level of social presence when communicating via richer media than through a text-based
medium [29–31].

In a virtual environment, users may use their virtual avatar to represent themselves.
Users tend to prefer an avatar that embodies their unique and exclusive characteristics
that differentiate them from the others. Some people prefer an avatar that is similar to
themselves, while others prefer their avatar to be an idealized version of themselves. Users
who adopted such avatars reported higher satisfaction and attachment [32]. Users are more
motivated to use avatars that have a facial appearance similar to theirs than those that do
not [24].

However, the majority of avatar illustrations and expressions do not consider the
individual’s facial characteristics. Applying individualized facial habits or appearances
does not require sophisticated technology and is viable with the current computer systems
available to the mass. However, software that can animate such virtual avatars needs to be
developed with investment and resources.

Another reason why individuated avatars are not prevalent involves the users. Many
users do not recognize their own facial habits and would have trouble customizing the
facial characteristics by themselves. It would be necessary for the application to capture and
analyze the user’s facial movements and suggest a personalized avatar for approval before
use. The users may feel that this is a hassle, not to mention that there is resistance from users
against taking a video of their own face. Most importantly, research lacks an understanding
of common elements applicable to individuated virtual avatars. Specifically, we do not
clearly understand the social effects of personalized virtual avatars with individualized
features. Would people prefer avatars with their appearance or habitual expressions?
Would people perceive a similarity between the avatar and themselves? Would people be
able to relate to the avatar and use it for their profile in a social networking service?

1.3. Research Goal

Humans have universally recognizable expressions. Ekman found a universal rela-
tionship between facial muscle movements and specific emotions (e.g., happiness, sadness,
anger, fear, surprise, disgust, interest) [33]. Despite the universality, individual differ-
ences exist in the intensity of each muscle movement. Researchers also found that the
asymmetrical measures of facial regions identify stable individual differences [34].

A facial habit results from a habitual personal pattern that exhibits a unique individual
signature. Facial recognition based on these individual differences in expression analyzes
the movement pattern of facial muscles to discriminate individuals [8].
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Another factor to consider is the individual’s appearance. The perception of a form is
necessary to identify an object [35]. The holistic form is a pivotal component required to
distinguish an individual [36].

In summary, our research aims to evaluate the perceived social effect of a virtual
avatar using two markers: (1) habitual facial expressions captured through the intensity
of muscle movement and (2) facial appearance identified using facial landmarks. The
research hypotheses are summarized accordingly in Table 1. We added the third hypothesis
because both facial habit and facial appearance involve the facial muscle, and therefore,
an interaction may occur. Thus, we intend to analyze whether facial habits (independent
variable) have a different effect on the social constructs (dependent variables) depending
on facial appearance (independent variable).

Table 1. Research hypotheses.

Research Hypotheses

H1

A virtual avatar that displays the participant’s habitual expressions will elicit the
following perceived social constructs more than a virtual avatar that does not:
Perceived similarity
Perceived familiarity
Perceived attraction
Perceived liking
Perceived involvement

H2

A virtual avatar that has a similar facial appearance to the participant will elicit the
following perceived social constructs more than a virtual avatar that does not:
Perceived similarity
Perceived familiarity
Perceived attraction
Perceived liking
Perceived involvement

H3 There is an interaction between the participant’s habitual expressions and facial
appearance.

In short, the study aims to evaluate people’s social perception of an avatar that
embodies the unique and individual characteristics of the user. We planned to investigate
the interaction of the two independent variables (facial appearance, facial habit) and their
respective main effects.

2. Methods

2.1. Participants

Forty-five university students were recruited as participants. The participants’ average
age was 23.78 years (SD = 2.88), with 20 males and 25 females. We recommended that the
participants get sufficient sleep the day before the experiment. We selected participants with
a corrective vision of 0.7 or above to ensure the participants’ reliable recognition of visual
stimuli. All participants were briefed on the purpose and procedure of the experiment and
signed a consent form. Participants were given participation fees as compensation.

2.2. Materials
2.2.1. Video Stimulus

The current study used a video stimulus to elicit participants’ facial responses to
produce data to create an individuated avatar. We used video materials known to evoke
emotions, which were empirically verified by an experiment conducted in and provided
by Stanford University (n = 411, [37]).

For each emotional state (positive and negative), we selected two candidate stimuli
from Stanford’s materials [37]. We conducted a manipulation check on all candidate mate-
rials. With regard to the positive stimuli, participants perceived the two video stimuli as
positive. The results did not show a significant difference from those of the Stanford study.
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However, there was no significant change in the facial expression of participants when
the negative stimuli were exposed. In a follow-up questionnaire, participants reported
having a negative emotional state but did not display a negative facial expression. Since the
current experiment requires valid participant data on emotional expression to be applied
to a virtual avatar, we decided not to include stimuli evoking a negative emotional state.

2.2.2. Video Analysis

We used Open Face, which is open-source software that enables face recognition with
deep neural networks [38]. We used AU (Action Units) as the basic unit for appraisal
from the Facial Action Code System (FACS) [39]. Figure 1 depicts the process. We first
normalized the facial region from the participants’ videos. The video was organized as a
sequence of images of fixed size (200 × 200 pixels). From this image sequence, we elicited
the intensity of AU movement and the 68 facial landmarks (see Figure 2). The landmarks
extract the coordinates (x,y) of key facial regions (e.g., the eye, eyebrows, nose, lips, and
chin). The movement and intensity of AU were identified from the AU vector data in HOG
(Histograms of Oriented Gradients) [40]. We elicited the individual’s habitual expression
data from the AU movement intensity. We elicited the individual’s facial appearance from
the landmark data.

Figure 1. The analytical process of identifying individual muscle movements and facial
appearance.

Figure 2. The 68 facial landmarks used to identify the participant’s facial appearance.

2.2.3. Virtual Avatar

We designed two baseline avatars, male and female, to embody the participant’s
expressive habits and facial appearances (see Figure 3). For the female model, we modified
a public model available from an open source [41]. To visualize the muscle movement, we
produced AU-based blend shapes using the animation software Maya (Autodeck). We
used blend shapes that morphed the lower face of the virtual avatar for a more natural
look. Table 2 shows the relationship between blend shapes and facial muscles.
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Figure 3. The baseline virtual avatar models in the study.

Table 2. The blend shape type based on the virtual avatar’s AU and facial appearance.

Blend Shape Description Muscular Basis

AU1 Inner brow raiser Frontalis, Pars medialis

AU2 Outer brow raiser Frontalis, Pars lateralis

AU4 Brow lowerer Depressor glabellae, Depressor supercilli,
Corrugator supercilli

AU5 Upper lid raiser Levator palpebrae superioris

AU6 Cheek raiser Orbicularis oculi, Pars orbitalis

AU7 Lid tightener Orbicularis oculi, Pars palpebralis

AU9 Nose wrinkler Levator labii superioris alaeque nasi

AU10 Upper lip raiser Levator labii superioris, Caput infraorbitalis

AU12 Lip corner puller Zygomaticus major

AU14 Dimpler Buccinator

AU15 Lip corner depressor Depressor anguli oris (Triangularis)

AU17 Chin raiser Mentalis

AU20 Lip stretcher Risorius

AU23 Lip tightener Orbicularis oris

AU25 Lips part Depressor labii, Relaxation of mentalis
(AU17), Orbicularis oris

AU26 Jaw drop Masseter, Temporal and Internal pterygoid
relaxed

AU28 Lip suck Orbicularis oris

AU45 Blink
Relaxation of levator palpebrae and
Contraction of orbicularis oculi, Pars

palpebralis.

Shape1 Expansion of the lower jaw
bone Mandible ramus extension

Shape2 Contraction of the lower jaw
bone Mandible ramus compression

Shape3 Expansion of the lower jaw Chin extension

Shape4 Contraction of the lower jaw Chin compression

318



Sensors 2021, 21, 5986

We used the Unity 3D engine to render and animate the virtual avatar [42]. Figure 4
depicts the two versions of the avatar with the participant’s facial signature (facial appear-
ances, habitual expression) applied. How participants viewed such variations and what
was measured will be explained in Section 2.3 (Experiment Procedure).

Figure 4. An example of the baseline virtual human morphed based on the participant’s (a) facial
appearances and (b) habitual expression.

2.2.4. Subjective Appraisal of Social Constructs

The current study investigated participants’ perceptions (similarity, familiarity, at-
traction, liking, and involvement) of virtual avatars. All constructs involve the subjective
appraisal by participants rather than an objective quantitative measurement. Table 3 de-
picts their operational definition. Each construct was measured on a 7-point Likert scale.
For example, the seven items of similarity were slightly, somewhat, and extremely toward
both ends (dissimilar and similar) with neutral in the middle.

Table 3. The operational definition of the social constructs of interest.

Social Construct Operational Definition

Similarity The degree to which the participant believes the virtual avatar’s
appearance is similar to themselves.

Familiarity The degree to which the participant is familiar with the virtual avatar’s
appearance.

Attraction The degree to which the participant is attracted to the virtual avatar.
Liking The degree to which the participant likes or dislikes the virtual avatar.

Involvement The degree to which the participant relates to or empathizes with the virtual
avatar.

Similarity connotes the degree to which the user sees themselves as similar with
the avatar. Some research includes attitudinal similarity (e.g., personality, attitude, belief
system) in the definition [18,43]. However, in this study, we limited the definition to
only include the physical likeliness to the participant and formulated the survey question
accordingly. We purposely designed the study to eliminate interaction with the virtual
avatar to investigate the effect of its mere presence without any convoluted variables that
may arise from interactions. Since there is no interaction with the virtual avatar, it is
extremely difficult to validly assess attitudinal similarity.

It is important to emphasize that we investigated perceived similarity as opposed to
actual similarity. Researchers have made a clear distinction between the two constructs [44].
Actual similarity is measurable and quantifiable using standardized personality assessment.
As the paper will discuss later, the relationship between similarity and attraction is critical.
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Some research studies suggest that only perceived similarity is a prerequisite to eliciting
attraction [45–47]; other research emphasizes the importance of actual similarity [48]. In
this study, mainly for consistency with other perceived constructs, we investigated the
perceived similarity.

Perceived familiarity was measured to assess the degree to which participants were
familiar with the virtual avatar that had the participant’s facial characteristics applied. In
interpersonal and social science literature, this construct connotes “being knowledgeable”
or acquainted with a person [18,49] or a concept [50,51]. That is, a priori knowledge is
necessary to measure perceived familiarity. For example, in psychology, after an interaction
(e.g., phone call, discussion) with a person, the participant felt subjective familiarity with
the person similar to what they would feel with a close friend [49]. Other studies measured
familiarity using objective quantitative measures, such as the amount of exposure to a
person’s photo and not just focusing on perception [18].

Some studies use the terms perceived familiarity and resemblance (perceived similar-
ity) interchangeably [49]; however, we measured the two constructs (perceived similarity
and perceived familiarity) independently. The literature suggests that the two constructs
correlate and have a causal relationship, with attraction as a mediating variable [18]. In our
study, we minimized interaction with the virtual humans (e.g., conversation) to test the
mere exposure effect.

Since the pioneering work of Byrne [52] (for a review of attraction as a research
paradigm, see [53]), researchers have investigated interpersonal attraction in relation-
ships [54]. Researchers widely accept Newcomb’s definition of attraction as the most
comprehensive one, and it is defined as follows: “Attraction refers to any direction orienta-
tion (on the part of one person toward another) which may be described in terms of sign
and intensity” (Page 6) [55].

Studies on attraction generally investigate the relationship between the independent
variables (e.g., attitudinal similarity, physical attractiveness) and the attraction response as
a dependent variable. It is critical to note that attraction is distinguished from attractiveness,
i.e., characteristics (e.g., attractive personality, good looks) that attract others [56]. In our
study, we obtained the participant’s perceived attraction (dependent variable) to the virtual
avatar, which varied according to different facial features (independent variable). The
intensity of attraction depends on many factors such as their relationship (e.g., parent–child,
wife–husband) and the duration of interaction (e.g., long-term, first acquaintance) [57].

Perceived liking, as a construct, is defined as the degree to which the participant likes
or dislikes the other person in a dyad. A causal pattern consists between the perception
of being liked and liking the other [58]. Compared to attraction, perceived liking has
a corresponding place on a like–dislike spectrum, whereas attraction is located on an
attraction–repulsion spectrum [59].

In psychology, involvement connotes approach predispositions (e.g., empathy, sym-
pathy, challenge) as opposed to distance, which refers to avoidance predispositions (e.g.,
antipathy, irritation, boredom) [24]. The two constructs are unipolar. Involvement refers to
the degree to which the participants relate to and empathize with the virtual avatar. Since
empathy is mainly dependent on the task and context [60,61]), we provided the context
that the virtual agent would be used in a profile for a social networking service.

2.3. Procedure

Figure 5 outlines the experiment procedure. The experiment was conducted twice,
with an interval of one week between the two sessions (i.e., Session #1 and Session #2).

In the first experiment, the participants were briefed about the purpose of the exper-
iment and the procedures. Then, participants viewed the two affective stimuli from the
display in a relaxed position (see Figure 6). Participants were guided not to force any
expression but display the natural expression felt from the viewing. The web camera on
display recorded a video of the participant’s facial responses for 90 s. Then, the participants
left the experiment after a brief explanation of the second experiment session.
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Figure 5. The experiment consists of two sessions, with one week in between for each participant.

Figure 6. The experiment environment.

In between the two sessions, we produced the following four virtual avatars for the
second experiment session based on the data acquired from the participants:
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(1) An avatar with both the habitual facial expression and appearance applied;
(2) An avatar with only the facial appearance applied;
(3) An avatar with only the habitual facial expression applied;
(4) Baseline avatar with none of the individual data applied.

For an avatar without any habitual facial expression applied (2 and 4), AU move-
ment based on the literature was applied instead [39]. For an avatar without any facial
appearance applied (3 and 4), the original baseline appearance of the avatar was used
(Figure 3).

Then, the participants viewed these virtual avatar stimuli. The study used a 2 × 2
within-subject design. There were two levels of habitual expression (applied or not) and
facial appearance (applied or not), respectively.

Every participant viewed all four virtual avatar types. The order of the virtual avatar
was randomized using a Latin square to counter the potential learning and fatigue effect.
After viewing the avatar for 30 s, the participant responded to a subjective questionnaire.

Interaction with the virtual human was limited to mere exposure as opposed to an
interactive one (e.g., conversation). The strength of the subjective response was contingent
on the nature of the task [62] and may have elicited a confounding effect, which would be
difficult to identify.

2.4. Statistical Analysis

To understand the effects of the two independent variables (habitual facial expression,
facial appearance), we conducted a two-way ANOVA on the participant’s subjective
evaluation of the four avatars.

Data from participants who did not exhibit any facial expressions during the exper-
iment were excluded during the acquisition process. The exclusion criteria are outlined
as follows. First, we divided the non-expression interval and the expression interval. The
latter was defined based on the average expression data. The intensities of AU 6 (Cheek
raiser) and AU 12 (Lip corner puller) during the expression interval were compared to
those of the non-expression interval. If the intensity during the expression interval was
less than the non-expression interval or non-existent, we excluded the participant’s data.
The Latin square factors were tested to examine whether the order affected the dependent
variable. The Latin square order did not affect data, so all results were collapsed over
these variables.

3. Results

3.1. Similarity

The results of analysis of subjective perception involving similarity are as follows.
Figure 7 depicts participants’ responses to the different avatars that varied according
to two factors (facial habit and facial appearance). The Y-axis indicates the average of
subjective Likert ratings. The results showed no significant interaction between Facial
Habit × Facial Appearance, F(1, 163) = 2.517, p > 0.11. Of particular importance, the results
showed that Facial Habit had a significant main effect, F(1, 81) = 5.182, p < 0.05. On the
other hand, Facial Appearance had no significant main effect, F(1, 81) = 0.576, p > 0.44.

3.2. Familiarity

The results of analysis of subjective perception involving familiarity are as follows.
Figure 8 depicts participants’ responses to the different avatars that varied according
to two factors (facial habit and facial appearance). The Y-axis indicates the average of
subjective Likert ratings. The results showed no significant interaction between Facial
Habit × Facial Appearance, F(1, 163) = 0.004, p > 0.94. Of particular importance, the results
showed that Facial Appearance had a significant main effect, F(1, 81) = 4.182, p < 0.05,
whereas Facial Habit had no significant effect, F(1, 81) = 0.966, p > 0.32.
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Figure 7. Subjective appraisal of perceived similarity.

Figure 8. Subjective appraisal of perceived similarity.

3.3. Attraction

The results of the analysis of subjective perception involving attraction are as follows.
Figure 9 depicts participants’ responses to the different avatars that varied according
to two factors (Facial Habit and Facial Appearance). The Y-axis indicates the average of
subjective Likert ratings. The results showed no significant interaction between Facial Habit
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× Facial Appearance, F(1, 163) = 2.3, p > 0.13. Both Facial Appearance, F(1, 81) = 0.047,
p > 0.82, and Facial Habit, F(1, 81) = 0.631, p > 0.42, had no significant main effect.

Figure 9. Subjective appraisal of perceived attraction.

3.4. Liking

The results of analysis of subjective perception involving liking are as follows. Figure 10
depicts participants’ responses to the different avatars that varied according to two factors
(Facial Habit and Facial Appearance). The Y-axis indicates the average of subjective Likert
ratings. There was no significant interaction between Facial Habit × Facial Appearance,
F(1, 163) = 1.165, p > 0.28. Both Facial Appearance, F(1, 81) = 0.004, p > 0.94, and Facial
Habit, F(1, 81) = 2.133, p > 0.14, had no significant main effect.

Figure 10. Subjective appraisal of perceived liking.

324



Sensors 2021, 21, 5986

3.5. Involvement

The results of analysis of subjective perception related to involvement are as follows.
Figure 11 depicts participants’ responses to the different avatars that varied according
to two factors (Facial Habit and Facial Appearance). The Y-axis indicates the average of
subjective Likert ratings. The results showed no significant interaction between Facial Habit
× Facial Appearance, F(1, 163) = 0.221, p > 0.63. Both Facial Appearance, F(1, 81) = 0.055,
p > 0.81, and Facial Habit, F(1, 81) = 0.221, p > 0.63, had no significant main effect.

Figure 11. Subjective appraisal of perceived involvement.

3.6. The Correlations between Social Perceptions

We conducted a bivariate correlation analysis to understand the relationship among
participant’s social perceptions of the virtual avatars (see Table 4). The results show a
significant correlation in all pairs of the analysis. The correlation between perceived
attraction and liking was the highest (r = 0.695, p < 0.01) (see Figure 12). The implications
of the correlation results will be discussed, integrating results from other analyses.

Table 4. The Pearson correlation coefficients between perceived social constructs (n = 164, p *** < 0.01).

Similarity Familiarity Attraction Liking Involvement

Similarity 0.425 *** 0.304 *** 0.432 *** 0.376 ***
Familiarity 0.597 *** 0.564 *** 0.500 ***
Attraction 0.659 *** 0.588 ***

Liking 0.499 ***
Involvement
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Figure 12. The correlational relationship between social constructs. *** p < 0.001

3.7. Data Categorization

Thus far, we identified that facial habit had a main effect on similarity, while facial
appearance had a main effect on familiarity. However, these variables had no effects on
attraction. As discussed in the operational definitions, attraction is based on a person’s
liking for the other, and perceived liking in the initial stage of interaction may lead to
feelings of attraction [58]. Our results also show that among the constructs, perceived
attraction and liking have the highest correlation (r = 0.695, p < 0.01).

However, attraction is a much larger and multifaceted construct [63]. Based on the
pioneering work by Byrne [64], both perceived similarity and liking lead to attraction, and
many researchers have attempted to understand the exact interplay and different weights
of the two on attraction [44]. Therefore, we conducted a two-way ANOVA on the sum
of perceived liking and similarity (i.e., data categorization) of the four avatar conditions
(see Figure 13). The Y-axis indicates the addition of the Likert ratings of perceived liking
and similarity.

Figure 13. Subjective appraisal of the sum of similarity and liking.
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The results showed that Facial Habit had a significant main effect, F(1, 81) = 4.836,
p < 0.05, whereas Facial Appearance had no significant main effect, F(1, 81) = 0.610, p > 0.69.
Furthermore, there was no significant interaction between Facial Habit × Facial Appear-
ance, F(1, 163) = 2.467, p > 0.12.

The research investigated the participant’s social perception (similarity, familiarity,
attraction, liking, and involvement) of virtual avatars engineered with the participant’s
unique facial signature (facial appearance, facial habit). In summary, the participants
perceived significant similarity to an avatar with habitual expression applied compared
to the avatar that did not (p < 0.05). In addition, habitual expressions also significantly
affected the sum of perceived similarity and perceived liking (p < 0.05). The participants
perceived familiarity with the avatar with facial appearance applied compared to the avatar
that did not (p < 0.05).

4. Discussion and Conclusions

To our knowledge, this is the first research to reveal that participants can perceive
similarity to a virtual human that had their characteristic facial movements (i.e., habitual
pattern), which has significant implications for the design of virtual agents. The virtual
human community had long researched the effects of virtual agent realism. The consensus
is that behavioral realism is more critical than visual realism in eliciting believability [27].
The suspension of disbelief refers to the deliberate avoidance of critical thinking, whereas
a reality check involves deciding what is possible or not in the real world [65,66]. Thus,
behavioral realism is more socially engaging and believable than visual realism [27].

In the context of this study, the effect of perceived similarity of a virtual agent to
oneself is consistent with research findings on believability. Specifically, while participants
did not perceive similarity in virtual avatars to which their facial appearance were applied
(i.e., visual realism), they perceived similarity in virtual avatars to which their facial
habits were applied (i.e., behavioral realism). This implies that designs may go beyond
anthropomorphic design. For example, future research may conduct studies using animal-
inspired avatars with facial features (e.g., eyes) and see if participants can perceive similarity
to these avatars when their facial movements are applied.

There is much empirical evidence that similarity, as a social construct, elicits attrac-
tion [44], and this relationship is regarded as “one of the most robust relationships in all
of the behavioral sciences (p. 281)” [67]. Researchers found a positive linear relationship
between similarity and attraction (i.e., the law of attraction) [68]. However, the various
virtual avatars had no significant effect on attraction. This may be due to interaction being
limited to one-time mere exposure. We purposely limited interaction to exclude variables
(e.g., perception of personality) that may influence the perceived measures, which may
have been brought on by prolonged interaction. Perceived similarity is influenced not only
by physical appearance [69] but also attitude [70] and personality [71]. Future studies may
add a persona to the virtual avatar to test the complexities of perceived similarity.

The study’s limitation in understanding the effects of an individuated avatar on attrac-
tion is apparent. Since perceived attraction is a multifaceted construct, it typically requires
more interaction, building up from initial liking [58]. Future studies may investigate the de-
gree of attraction as a function of time or when participants interact with the individuated
virtual avatar. The perceived relationship also influences attraction; thus, future studies
need to address the relationship between the avatar (e.g., companion, butler, assistant) and
the participant carefully.

Nevertheless, through data categorization, we found that habitual expressions had a
main effect on the sum of perceived similarity and perceived liking (p < 0.05). Since the
interplay between perceived similarity and liking leads to attraction [64], these results
suggest that an individuated avatar may elicit attraction with prolonged interaction.

Additionally, the individualized virtual avatars had no significant effect on perceived
involvement. Although we provided the context that the virtual agent would be used as
part of a profile for a social networking service, we also acknowledge that many users do
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not use profiles similar to their appearance. Future studies should cluster the participants
based on who use or intend to use avatars with a similar appearance as an alter ego and
assess their perceived responses accordingly.

The perceived familiarity with a virtual avatar to which the participant’s facial appear-
ance was applied may be due to the participant’s repetitive exposure to their reflections
in mirrors or still photos of themselves. Repetitive exposure elicits familiarity [13]. On
the other hand, people may not be familiar with their habitual expressions during various
emotional states.

Finally, the study is limited in that the virtual avatars were designed based on only
positive emotional expressions. Future research on individualized virtual avatars should
also include negative or complex emotions.
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