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1. Introduction

Non-destructive testing (NDT) and evaluation (NDE) are commonly referred to as the
vast group of analysis techniques used in civil, medical, and industrial sectors to evaluate
the properties of materials, tissues, components, or structures without causing any damage.
NDT/NDE are vital to ensure the integrity of critical parts and social safety. Automation
offers many benefits for NDT to cope with increasing demands, including improved
reliability and higher inspection speeds. Additionally, robots enable inspection positions
that are not easily accessible to human operators to be reached and enable humans to be
removed from potentially dangerous environments. However, the perceived complexity
and high costs have limited the adoption of automation for NDT. As a result, the full
potential that could be derived from the seamless integration of robotic platforms with
sensors, actuators, and software has not been fully explored; it could still revolutionise the
way automated NDT is performed and conceived. Robots are often operated by predefined
tool paths generated through offline path-planning software applications. The recent
advancements in electronics, robotics, sensor technology and software pave the way for
new developments in automated NDT and data-driven autonomous robotic inspections
in several sectors. This Special Issue aimed to attract the latest research outcomes in
the field of robotic NDT. It comprises eleven high-quality papers. Five papers relate
to inspection systems based on robotic fixed-base manipulators. Three research articles
are associated with in-process inspection in manufacturing applications (robotic wire-arc
welding and additive manufacturing). Four papers report research advancements in mobile
robotic-enabled sensing. The remaining two papers focus on novel developments in data
visualisation and analysis.

2. Overview of Contribution

Among the five papers related to inspection systems based on robotic fixed-base
manipulators, three are associated with in-process inspection in robotic wire-arc welding
and additive manufacturing. Zhang et al. [1] introduce a novel seam tracking technique
for robotic welding. The method is proven effective, providing a reference for future
seam tracking research. Vasilev et al. [2] present the development and deployment of
an advanced multi-robot system for automated welding and in-process NDE. Complete
external positional control is achieved in real time, allowing on-the-fly motion correction
based on multi-sensory input. This approach can enable in-process weld repair, leading to
higher production efficiency, reduced rework rates, and lower production costs. Zimermann
et al. [3] introduce a synchronised multi-robot Wire + Arc Additive Manufacturing and
NDE cell aiming to achieve in-process defect detection, enable possible in-process repair,
and prevent the costly scrappage or reworking of completed defective builds. A novel
high-temperature-capable, dry-coupled phased array ultrasound transducer roller-probe

Sensors 2022, 22, 7654. https://doi.org/10.3390/s22197654 https://www.mdpi.com/journal/sensors1



Sensors 2022, 22, 7654

device is used for the NDE inspection. The dry-coupled sensor is tailored for coupling with
an as-built high-temperature surface at an applied force and speed.

The other two papers on fixed-base robotic arms introduce a novel algorithm for
complete-surface-finding [4] and an automated system for the real-time eddy current inspec-
tion of nuclear assets [5]. The work presented in the first article enables the robot-assisted
ultrasonic testing of unknown surfaces within a single pass, a significant advancement
toward fully autonomous inspection systems. The latter paper introduces a system capable
of delivering an eddy current array to detect stress corrosion cracking on a nuclear canister.
The variation in the lift-off of the eddy current array is innovatively minimised using a
force–torque sensor, a padded flexible probe, and a feedback control system.

Four papers focus on mobile robotic applications. Zhang et al. [6] introduce a flexible
design and defect detection method for a multi-sensor, wall-climbing robot used to inspect
petrochemical tanks. The results show that the robot can move safely and stably on a vertical
tank surface and complete precise automatic detection. Rubiales et al. [7] present a crawling
mechanism using a soft-tentacle gripper integrated into an unmanned aerial vehicle for
pipe inspection in industrial environments. The objective was to allow the aerial robot to
perch and crawl along a pipe, minimising energy consumption and performing contact
inspection. This paper introduces the design of the soft limbs of the gripper and the internal
mechanism that allows movement along pipes. The other two papers in this group relate
to underwater robotic inspection applications. Wang et al. [8] present a novel method for
use in deep-sea plankton community detection in marine ecosystems using an underwater
robotic platform. This paper demonstrates that moving plankton can be accurately detected
and isolated from complex dynamic backgrounds in deep-sea environments. Cetin et al. [9]
present an experimental robotic setup with a Stewart platform and a robot manipulator
to emulate an underwater vehicle–manipulator system. The hardware-based emulator
setup consists of a robotic manipulator mounted on a parallel manipulator, known as a
Stewart Platform, and a force–torque sensor attached to the end-effector of the robotic arm
interacting with a pipe. Such a complete setup is useful to use when carrying out fast and
numerous experiments, circumventing the difficulties in performing similar experiments
and data collection with actual underwater vehicles in water tanks.

Robotic inspection systems can acquire substantial data volumes. As a result, the
research into robotic NDT/NDE must also embrace some efforts to introduce new data
visualisation and analysis approaches. That is the case with the two remaining papers
of this Special Issue. Mineo et al. [10] introduce an image alignment method to facilitate
the visualisation and analysis of robotic thermographic inspections of parts with complex
geometries. This work bridges a technology gap, making thermographic inspections more
deployable in industrial environments. The proposed image alignment approach can find
applicability beyond thermographic non-destructive testing. Finally, Avdelidis et al. [11]
propose a two-step process for the automation of defect recognition and classification from
visual images. This can be used with unmanned aerial vehicles carrying an image sensor to
automate the procedure and eliminate human error.

3. Conclusions

Robotic NDT is a fast-evolving field which exploits the constant advancements in
electronics, robotics, sensor technology, software, and network interfaces. This Special
Issue is a collection of eleven high-quality publications that provide a picture of some of
the most commonly investigated topics in robotic-enabled sensing. In-process inspection in
robotic manufacturing applications, real-time and data-driven robotic sensing, and mobile
terrestrial, underwater, and aerial robotic inspection platforms are well represented. The
authors have also proposed innovative solutions to improve the visualisation and analysis
of large robotically collected datasets. The advancements in robotic NDT help us face new
societal challenges, which the industrial sectors have encapsulated under so-called Industry
4.0. Robotic NDT must develop with the development of new tools, including autonomous
robotics, virtual-twin simulations, the Internet of Things, cybersecurity, cloud computing,
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augmented reality, and big data. For this reason, this Special Issue is not the conclusion of a
path but the prelude to upcoming collections of research outcomes.
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Abstract: The seam tracking operation is essential for extracting welding seam characteristics which
can instruct the motion of a welding robot along the welding seam path. The chief tasks for seam
tracking would be divided into three partitions. First, starting and ending points detection, then,
weld edge detection, followed by joint width measurement, and, lastly, welding path position
determination with respect to welding robot co-ordinate frame. A novel seam tracking technique
with a four-step method is introduced. A laser sensor is used to scan grooves to obtain profile data,
and the data are processed by a filtering algorithm to smooth the noise. The second derivative
algorithm is proposed to initially position the feature points, and then linear fitting is performed to
achieve precise positioning. The groove data are transformed into the robot’s welding path through
sensor pose calibration, which could realize real-time seam tracking. Experimental demonstration
was carried out to verify the tracking effect of both straight and curved welding seams. Results
show that the average deviations in the X direction are about 0.628 mm and 0.736 mm during the
initial positioning of feature points. After precise positioning, the average deviations are reduced to
0.387 mm and 0.429 mm. These promising results show that the tracking errors are decreased by up to
38.38% and 41.71%, respectively. Moreover, the average deviations in both X and Z direction of both
straight and curved welding seams are no more than 0.5 mm, after precise positioning. Therefore,
the proposed seam tracking method with four steps is feasible and effective, and provides a reference
for future seam tracking research.

Keywords: welding robot; seam tracking; laser sensor; feature point extracting; complex welding seam

1. Introduction

Mechanical robots have become crucial for modern welding owing to high-volume
profitability since manual welding yields low production rates [1]. Robotic welding brings
different favorable circumstances, for instance, it has made strides in efficiency, weld
quality, adaptability and workspace use, and it diminishes work costs in addition to
focused unit cost [2].

Be that as it may, most welding robots still work in the working mode of “teach and
playback” and their adaptability is not enough when the welding object or other conditions
are changed [3]. Since welding as an empirical process is influenced by numerous factors,
such as the mistakes of pre-machining, fitting of work pieces, and in-process defects, can
result in variation in welding seam. However, welding robots in teach and playback

Sensors 2021, 21, 3067. https://doi.org/10.3390/s21093067 https://www.mdpi.com/journal/sensors5
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mode have no such capacities and typically weld a weldment with many defects and
poor penetration [1].

There are generally three stages in robotic welding: (i) preparation—calibration,
robot programming, and weld parameter, work-piece setting, (ii) welding—seam tracking,
alternation of weld parameters in real time, (iii) analysis—weld quality inspection [4]. The
seam tracking operation is essential for extracting weld seam characteristics which can be
fed into the controller of welding robot to instruct the motion of the robot along the welding
seam path. Seam tracking technology with laser vision sensing has the advantages of no
contact, fast speed, and high precision, which are the keys to realizing welding automation
and intelligence [5,6].

In order to fulfill the required welding accuracy for robotic welding, a seam tracking
algorithm that enables the robot to plan its path along the actual welding line is necessary.
Therefore, many studies have been conducted on automatic seam tracking using sensors
such as tactile, touch, probe, vision sensors [7,8], laser sensors [9,10], arc sensors [11,12],
electromagnetic sensors [13,14], and ultrasonic sensors [15,16]. The sensors have a very
important role in robotic seam tracking; the chief tasks would be weld starting and ending
points detection, weld edge detection, joint width measurement.

A basic laser sensor consists of three parts: laser diode, CCD camera, and filter. The
laser diode could produce a stripe or dot which would be scanned by the camera. The
CCD camera is always fixed at an angle to the laser to capture properly the projection
of laser on the work piece [17]. The welding seam tracking system based on laser vision
combines laser measurement and computer vision technology. It has the advantages of rich
information acquisition, obvious welding seam characteristics, and strong anti-interference
ability [18,19], which are suitable for real-time tracking systems. The mathematical model
of transforming the laser feature points pixel coordinate to the three-dimensional coor-
dinate of the welding feature points by designing the mechanical structure of the sensor
was proposed [20].

Chen et al. [21] proposed a feature points positioning method that only needs two
profile scans, which can effectively calculate the initial position of the weld. Chang et al. [22]
filtered, derived and convolved the weld profile data, and located the feature points by
finding the local maxima. Wang et al. [23] established welding seam profile detection
and feature points extracting algorithms based on a NURBS-snake and visual attention
model, and verified their effectiveness. Mastui et al. [24] introduced an adaptive welding
robot system controlled by laser sensor for welding of thin plates with gap variation in
single pass.

In a flexible welding process, Ciszak et al. [25] developed a low-cost system for
identifying shapes in order to program industrial robots for a welding process in two
dimension. The programming of industrial robots was to detect geometric shapes proposed
by humans and to approximate them. Based on this, the robot could weld the same profiles
on a two-dimensional plane. This is time-consuming as many welding robot applications
are programmed by teach and playback, which means that they need to be reprogrammed
each time they deal with a new task. Hairol et al. [26] suggested an alternative approach
that can automatically recognize and locate the butt-welding position at starting, middle,
auxiliary, and end point under three conditions which are (i) straight, (ii) saw tooth, and
(iii) curve joint. This was done without any prior knowledge of the shapes involved. As an
automatic welding process may experience different disturbances, Li et al. [27] proposed a
robust method for identifying this seam based on cross-modal perception so as to precisely
identify and automatically track the welding seam.

Wojciechowski et al. [28] proposed the method of automatic robotic assembly of two
or more parts placed without fixing instrumentation and positioning on the pallet, which
could support a robotic assembly process based on data from optical 3D scanners. The
sequence of operations from scanning to place the parts in the installation position by an
industrial robot was developed. Suszynski et al. [29] presented the concept of using an
industrial robot equipped with a triangulation scanner in the assembly process in order to
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minimize the number of clamps that could hold the units in a particular position in space
based on the proposed multistep processing algorithm.

These efforts have brought about many improvements in the feature points of the
target weldment. However, there are certain limitations in the positioning accuracy due
the factors such as the change of the welding type (especially oriented to complex welding
seam) or the surface defects of the welding.

Due to these circumstances, we here introduce a novel seam tracking technique with a
four-step method. First, a laser sensor is used to scan the groove of the weldment to collect
profile data; then the data are processed by a filtering algorithm to smooth the noise; next,
the second derivative algorithm is proposed to initially locate the feature points based on
linear fitting to accurately locate the feature points; finally, according to the results of the
sensor pose calibration, the three-dimensional coordinates in the base coordinate system
of the welding robot are calculated from the two-dimensional coordinates of the image
feature points, and the path planning is completed, with both the line and curve of the
Y-shaped groove being targeted as well. The proposed seam tracking technique is tested
and verified by way of experimental investigation.

Our proposed seam tracking technique with a four-step method utilizes edge detection
and curvature recognition techniques based on laser scan data. The offset of the welding
robot’s motion with respect to the welding seam is measured by a laser sensor. By adding
a differential point searching method, the feature points of the cross-section of the welding
seam are found. Comparing to other seam tracking algorithms, we show the improvement
of the required welding accuracy oriented to complex welding seam through theoretical
proof, simulation, and experiments.

This paper is organized as follows: Section 2 presents the seam tracking system
composition; Section 3 introduces the seam tracking methodology with four steps; Section 4
shows the results of the experimental investigation based on the proposed seam tracking
technique; Section 5 gives the conclusion and perspective.

2. Seam Tracking System Composition

The experimental platform composition of the six-axis robot arm for seam tracking
system is detailed in Figure 1. As evident in Figure 1, this experimental platform is mainly
composed of the motion execution mechanism with six degrees of freedom, laser vision
sensor, D/A conversion module, and industrial computer, robotic controller, welding
equipment, i.e., welding power supply and wire feeding device, etc.

The execution mechanism is composed of two welding robots, and each of them has
six degrees of freedom. The offset of the welding robot’s motion with respect to the welding
seam is measured by a laser vision sensor. Through robotic welding experiments, images
of molten pool morphology and welding geometry under different welding parameters
can be obtained. The main tasks for seam tracking would be weld starting and ending
point detection, weld edge detection, joint width measurement, and weld path position
determination with regard to welding robot co-ordinate frame.
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Figure 1. Diagram of seam tracking system.

3. Seam Tracking Methodology with Four Steps

In this paper, we introduce a novel seam tracking technique with a four-step method:
scanning, filtering, feature points extracting, and path planning. Firstly, the profile infor-
mation is obtained by scanning the groove with a laser sensor; then, the data are filtered to
smooth the noise; next, the feature points are extracted by the combination of the second
derivative algorithm and linear fitting; finally, the data of the feature points are converted
into the welding seam path of the robot, guiding the welding torch to move and realize the
real-time tracking of the welding seam. The flowchart of the proposed four-step method is
revealed in Figure 2.

    

Figure 2. Flowchart of the four-step method for (a) scanning; (b) filtering; (c) feature points extracting; and (d) path planning.

3.1. Scanning and Filtering

The purpose of scanning is to obtain the original data of the weldment groove profile,
which is the basis for realizing seam tracking [30]. The laser sensor obtains the distance
information of the measured object based on the principle of triangulation and then
processes the scan data to obtain the profile feature of the measured object. While scanning,
the sensor is fixed at the end-effector of the robot and parallel to the welding torch to ensure
that the line laser is perpendicular to the measured object [31], covering the groove to the
greatest extent, and at the same time, the welding robot is constantly moved to obtain the
overall shape of the welding seam.
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The combination of limiting filter and Gaussian filter is used to process the groove pro-
file data obtained by scanning. The former is used to remove the pulse interference caused
by accidental factors. The latter is used to smooth the data [32]. The data are processed
using limiting filtering by comparing the absolute value of the difference between two
adjacent sample values and the size of the threshold. Its principle can be expressed as [33]:

y =

{
yn |yn − yn−1| ≤ ΔT
yn−1 |yn − yn−1| > ΔT

, (1)

where yn and yn−1 are the current and last sampled signal values, respectively, and ΔT
represents the specified threshold.

Gaussian filtering is a type of linear smoothing filtering method that selects weights
according to the shape of the Gaussian function. It is very effective in suppressing the
noise that obeys the normal distribution [34], and the Gaussian function has good proper-
ties of symmetry, differentiability, and integrability. The function can accurately identify
the discontinuous points of the signal, which is very beneficial for the subsequent fea-
ture points extracting. The expression of the one-dimensional Gaussian function can be
described as [35]:

f (x) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , (2)

where μ is the mean value, which determines the position of the function, and σ is the
standard deviation, which determines the magnitude of the distribution.

3.2. Feature Point Extracting

The feature points of the weldment are generally the corner points of the groove sec-
tion, and its information can reflect the overall situation of the groove profile [36], so feature
point extracting is required. This is done according to the cross-sectional characteristics of
the weldment groove, combined with the related properties of the function discontinuities
listed in Table 1. The groove feature points could be classified as follows: A, B, E, F, which
are the first type of feature points, and C, D, which are the second type of feature points, as
shown in Figure 3.

Table 1. Properties of discontinuous points of function.

Discontinuous Points Type Amplitude First Derivative Second Derivative

The first continuity Step mutation extremum
The second continuity non-existent /

 

Figure 3. Classification of groove feature points.

Based on the above analysis, the feature points can be located by determining the
types of feature points contained in the groove section, and then deriving them to find the
extreme points.
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3.2.1. Initial Positioning of Feature Points

The preliminary positioning method of the groove feature points is as follows: First,
the original data are processed by filtering, and then the first derivative is obtained by the
forward difference method and the extreme points are found to determine the first type
of feature points, as compared in Figure 4. The abscissa and the ordinate, respectively,
represent the X and Z axes of the sensor coordinate system.

  

Figure 4. Initial positioning of feature points for (a) the first type of feature points; and (b) all feature points.

It can be seen from the above figures that the maximum point of the first-order guide
falls between the line segment BC and DE, and fails to accurately correspond to B and E.
This is because the groove of the weldment under actual conditions needs to be machined,
and its blunt edge is not a vertical line in an ideal state, but a diagonal line. Therefore,
the second type of feature points are transformed into the first type, and the first-order
derivative can be continued to differ, and the second-order derivative can be obtained
and the point with the highest value can be found to locate all the feature points, as
shown in Figure 4. So far, the six characteristic points of the trapezoidal groove have been
preliminarily determined, and their location information is listed in Table 2.

Table 2. Results of initial positioning.

Feature Points A B C D E F

X/mm −5.67 −3.37 −3.02 0.72 1.11 3.59
Z/mm −1.35 2.89 6.03 6.01 3.15 −1.02

3.2.2. Precise Positioning of Feature Points

Due to the defects on the surface of the weldment, as given in Figure 5, the feature
points obtained through preliminary positioning are b and c, while the true feature point
should be a, which is clearly a deviation. Therefore, on the basis of preliminary position-
ing, linear fitting is performed on each segment of the groove to accurately locate the
feature points.
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Figure 5. Defects on the surface of the weldment.

Suppose any straight-line equation to be fitted is y = ax + b, and the calculation of
equation parameters can be written as [37]:

[
a
b

]
=

⎡⎢⎢⎣
n
∑

i=1
x2

i

n
∑

i=1
xi

n
∑

i=1
xi n

⎤⎥⎥⎦
−1

·

⎡⎢⎢⎣
n
∑

i=1
xiyi

n
∑

i=1
yi

⎤⎥⎥⎦, y =

{
yn |yn − yn−1| ≤ ΔT
yn−1 |yn − yn−1| > ΔT

(3)

where a is the slope, b is the intercept, (xi, yi) is the point passing through the straight line,
and n is the number of points.

The fitting results are shown in Figure 6, and the relevant parameters of the straight
line are illustrated in Table 3.

 

Figure 6. Fitting results.

Table 3. Parameters of fitting straight line.

Fitting Straight Line 1 2 3 4 5 6 7

SSE 0.08 0.44 0.39 0.15 0.50 0.15 0.21
R-squared 0.85 0.99 0.95 0.87 0.97 0.99 0.81

Among them, SSE is the sum variance, which calculates the sum of squared errors
between the fitting data and the corresponding points of the original data. The smaller the
value, the better the fitting affects; R-squared is the coefficient of determination, which is
used to characterize the quality of the fitting [38]; the closer its value is to 1, the better the
fitting affects. It is easy to know that the fitting effect of each straight line is better. The
results of precise positioning of the feature points are listed in Table 4. So far, the feature
points extracting of the profile for the trapezoidal groove section would be completed.

Table 4. Results of precise positioning.

Feature Points A B C D E F

X/mm −5.73 −3.31 −3.04 0.78 1.10 3.76
Z/mm −1.39 3.07 5..98 5..99 3.22 −1.18
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3.3. Path Planning

Because the data measured by the laser sensor are based on their own coordinate
system, it is necessary to convert the feature points to the base coordinate system of the
welding robot through pose calibration [39].

The relationship between two coordinate systems of the robot is depicted in Figure 7.
The sensor calibration is to determine the transformation matrix E

ST of {S} relative to {E}.

 
Figure 7. Relationship between two coordinate systems.

This paper uses the multipoint method for calibration [40]. The main steps are as follows:

1. Select a point P on the weldment, make the end of the welding torch this point, and
record the position of P in the {B} coordinate system BP = (xB, yB, zB, 1)T, as shown in
Figure 8a.

2. Move the robot so that the laser line of the sensor passes through this point, and
record the position of P in the {S} coordinate system SP = (xS, 0 zS, 1)T, as shown in
Figure 8b.

3. Switch the current tool coordinate system of the robot to {E}, record the pose data of the
robot at this time, and from the Euler rotation equation, B

ER can be expressed as [41]:

B
ER =

⎡⎣ cos α − sin α 0
sin α cos α 0

0 0 1

⎤⎦ ·
⎡⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤⎦ ·
⎡⎣ 1 0 0

0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ =

⎡⎣ R11 R12 R13
R21 R22 R23
R31 R32 R33

⎤⎦, (4)

where α, β, γ are the rotation angles of the X, Y, and Z axes of the tool coordinate system
{E}, respectively.

  

Figure 8. Laser sensor calibration for (a) base coordinates; and (b) sensor coordinates.
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Then, B
ET can be simplified to

B
ET =

[ B
ER EP

0 0 0 1

]
, (5)

where EP = (xE, yE, zE)T, that is, the position of point P in the tool coordinate system {E}
after the coordinate system is switched.

According to the transformation relationship of point P in space:

BP = B
ET · E

ST · SP, (6)

where the definition of each parameter in the formula is consistent with the above.
Since E

ST contains 12 unknowns, at least 3 different fixed points need to be selected to
solve the problem. The calibration results in this paper are as follows:

E
ST =

⎡⎢⎢⎣
0.998 −0.423 −0.590 75.098
−0.014 0.278 −0.026 6.693
0.002 0.865 −0.814 303.131

0 0 0 1

⎤⎥⎥⎦, (7)

At this point, the pose calibration of the sensor is completed. For any known points
SQ in its coordinate system, the formula to transform it into the robot base coordinate
system can be written as

BQ = B
ET · E

ST · SQ, (8)

where BQ and SQ are respectively the position of point Q in the coordinate system {B} and
the coordinate system {S}; E

ST is the calibration result of Equation (4); the definition and
calculation of E

ST follow step 3.

4. Experimental Procedures

Experimental demonstration had been carried out at the proposed seam tracking
method with four steps to guide the movement of the welding torch under actual testing
conditions. Figure 9 reveals the prototype of whole experimental system, which mainly
includes ABB IRB 1410 welding robot, IRC5 controller, LS-100CN laser sensor, Ehave CM350
welding power supply, RS-485 communication module, and an industrial computer.

 

Figure 9. A prototype of the experimental system.

In this paper, two typical weldments with materials of A304 stainless steel are selected
as the welding objects, the physical prototypes of two typical welding grooves are illus-
trated in Figure 10, and the groove parameters of the weldment with straight line and
curve are listed in Table 5.
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(a) (b) 

Figure 10. Two typical welding grooves for (a) straight line; and (b) curve.

Table 5. Groove parameters of weldment.

Welding Type Dimension/mm Thickness/mm Slope Angle/◦ Blunt Edge/mm

Straight line 100 × 60 8 45 2.5
Curve 130 × 70 10 60 3

When scanning the welding groove, the laser sensor is set to the trigger mode, and
the welding robot is constantly moved to obtain the overall shape characteristics of the
welding seam. The process of scanning two typical welding grooves by the laser sensor is
represented in Figure 11.

  
(a) (b) 

Figure 11. Two typical welding grooves scanned by laser sensor: (a) straight line; (b) curve.

Before the experiment, we mark the starting and ending points of the welding path on
the weldment, and then the straight and curved grooves are respectively taught a section
of motion trajectory in the model of “teach”, as shown in Figure 10. The red point is the
teaching point, which is the position of the end point of the robotic welding torch. Multiple
teaching points are connected to form a welding trajectory, and the pose data of the teaching
trajectory in the welding torch coordinate system will be recorded simultaneously, which
is used as a reference to calculate the experimental deviation.

During the experiment, if the straight groove is taken as an example, let us first move
the end-effector of the robot, i.e., the welding torch, along the teaching trajectory. When it
reaches reference point L1, as shown in Figure 10a, the laser sensor will be turned on to scan
the welding groove and collect data. At the same time, the current tool coordinate system of
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the welding robot will be switched to the end coordinate system, the position and posture
data of the end coordinate system are obtained in real time through the API interface of the
welding robot, and the sampling period is consistent with that of the laser sensor.

The welding robot continues to move. When the end of the welding torch moves to
reference point L2, as shown in Figure 10a, the laser sensor will be turned off, the data
transmission of the API interface is stopped, the data collection is completed. According
to the feature points of the groove, the center point of the welding torch is calculated;
according to the position and posture data of the end coordinate system obtained by API
interface, the trajectory reference point is calculated. Through the calibration matrix of laser
sensor (Formula (7)), the position data of the welding torch center point is transformed
into the welding robot end coordinate system, and then through the calibration matrix of
welding torch, it is transformed into the welding torch coordinate system.

After the above process, the groove data collected by the laser sensor are transformed
into the center point data of the robotic welding torch, and the end coordinate system data
collected by the API interface are transformed into the trajectory reference point data. The
experimental results of two different welding grooves of straight and curved lines with
both initial positioning and precise positioning using the proposed seam tracking method
are compared in Figure 12.

  

  

Figure 12. Experimental results of (a) straight line with initial positioning; (b) straight line with precise positioning; (c)
curve with initial positioning; and (d) curve with precise positioning.

The accuracy of the feature points positioning method is evaluated by comparing
the deviation between the calculated welding center point and the actual welding torch
end point. Among them, the average deviation d (mm) represents the average value of
the difference between each welding center point and the end point of the welding torch;
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the deviation degree p (%) indicates the deviation degree of the deviation in this direction
relative to the entire groove. The average deviation d (mm) and deviation degree p (%) can
be written as:

dx =
1
n

n

∑
i=1

(
xtcp(i) − xt(i)

)
, dz =

1
n

n

∑
i=1

(
xtcp(i) − zt(i)

)
, (9)

where dx and dz are the average deviation in the X and Z directions, respectively. xtcp(i) and
ztcp(i) are the coordinates of the welding center point, xt(i) and zt(i) are the coordinates of
the trajectory reference point, respectively. n is the number of points.

px =
dx

l
, pz =

dz

h
, (10)

where px and pz are the deviation degrees the in X and Z directions, respectively. l is the
total length of the groove, and h is the depth of the groove.

The comparative results of different positioning methods for feature points are de-
picted in Table 6. As can be seen from the figures and table, the average deviations dx (mm)
of the two different welding seams of both straight line and curve in the X direction are
relatively large when only initial positioning is carried out. After precise positioning, the
average deviations are reduced to 0.387 mm and 0.429 mm, respectively. Experimental
procedures show promising results, in that the average deviations display a significant
decrease by 38.38% and 41.71%, respectively.

Table 6. Error analysis results.

Welding
Type

Initial Positioning Precise Positioning

dx/mm dz/mm px/% pz/% dx/mm dz/mm px/% pz/%

Straight line 0.628 0.214 6.688 2.665 0.387 0.230 4.121 2.864
Curve 0.736 0.185 7.838 2.304 0.429 0.251 4.569 3.126

It is worth noting that the average deviations in both X and Z direction of two different
welding seams of both straight line and curve after precise positioning are no more than
0.5 mm; this value is defined by Kovacevic et al. [42] and could fulfill the minimum accuracy
requirements of robotic welding. Therefore, it is suggested that the proposed seam tracking
method with four steps is feasible and effective, and provides a reference for future seam
tracking research.

5. Conclusions

A novel seam tracking technique and experimental investigation of robotic welding
oriented to complex welding seam are proposed in this study. Conclusions are as follows:

• A set of seam tracking systems based on laser sensing and visual information ex-
traction is designed, and the method involving scanning, filtering, feature points
extracting, and path planning is proposed to realize high-precision seam tracking;

• The groove information is collected through the laser sensor and the data are fil-
tered, and the corresponding three-dimensional coordinate value in the sensor co-
ordinate system is calculated using the two-dimensional coordinates of the image
feature points;

• The accuracy problem of feature point positioning when the weldment surface has
defects is solved. Experimental results show that the average deviations of both
straight line and curve of welding feature points after precise positioning is less
than 0.5 mm;

• The experimental errors are mainly caused by the calibration error of the sensor coor-
dinate system and the calculation error of the feature points extracting algorithm. In
addition, increasing the resolution of the sensor could further improve the measure-
ment accuracy.
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Abstract: The growth of the automated welding sector and emerging technological requirements of
Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The
higher production rates of automated welding have increased the need for fast, robotically deployed
Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection.
This paper presents the development and deployment of a novel multi-robot system for automated
welding and in-process NDE. Full external positional control is achieved in real time allowing for
on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system
are demonstrated at three different stages of the manufacturing process: after all welding passes
are complete; between individual welding passes; and during live-arc welding deposition. The
specific advantages and challenges of each approach are outlined, and the defect detection capability
is demonstrated through inspection of artificially induced defects. The developed system offers an
early defect detection opportunity compared to current inspection methods, drastically reducing the
delay between defect formation and discovery. This approach would enable in-process weld repair,
leading to higher production efficiency, reduced rework rates and lower production costs.

Keywords: non-destructive evaluation; robotic NDE; robotic welding; robotic control; in-process
NDE; ultrasonic NDE; ultrasound

1. Introduction

The automated welding industry has been valued at USD 5.5 billion in 2018 and is
expected to double by 2026, reaching USD 10.8 billion [1] with industrial articulated robots
predicted to replace current traditional column and boom systems and manual operations.
This growth has been driven by key high-value manufacturing sectors including automo-
tive, marine, nuclear, petrochemical and defence. Paired with the technological demands
of Industry 4.0 [2], the need for the development of intelligent and flexible sensor-enabled
robotic welding systems has become paramount.

The wide adoption of automated manufacturing systems has subsequently raised the
demand for automatically deployed and adaptive Non-Destructive Evaluation (NDE) in
order to keep up with the faster production lines, when compared to manual manufacturing
processes [3]. Developments in automated NDE are driven by industrial demand for fast
and reliable quality control in high-value and high-throughput applications. In general,
automatic systems provide greater positional accuracy, repeatability and inspection rates
when compared to human operators, therefore, resulting in faster inspection speeds and
reduced manufacturing costs. The ever-improving capabilities of such systems, on the
other hand, lead to an overall increase in asset integrity and lifecycle, resulting in further
long-term savings. Safety is another key advantage of automated NDE systems, as they
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can be deployed in hazardous environments, dangerous conditions and sites where human
access is limited or not possible [4,5], thus improving working conditions and reducing the
risks of workplace injuries and harmful substance exposure [6].

Single-axis scanners offer the ability for axial or circumferential scans of pipes and
are suitable for on-site inspection of assets such as oil and gas pipelines. Such scanners
can be guided by a track, or can be free-rolling where a projected laser line is used by the
operator to positionally align the scanner with the weld [7,8]. Mobile crawler systems offer
a higher degree of positional flexibility through a two-axis differential drive and can mag-
netically attach to the surfaces of assets enabling vertical deployment [9]. In addition, their
compact size makes them well suited for remote applications with constrained access [4].
One particular challenge with such crawlers is accurately tracking their position, which is
achieved through a combination of drive encoders, accelerometers, machine vision and
in often cases expensive external measurement systems [10]. Multirotor aerial vehicles
can deliver visual [11], laser and, more recently, contact ultrasonic [12] sensors in remote
NDE inspection scenarios, where a magnetic crawler could not be deployed. While um-
bilical/tether cables are used commonly with mobile crawlers, they pose a challenge for
the manoeuvrability and range of aerial systems. As a result, the power source, driving
electronics and data storage for NDE sensors need to be on board the multirotor and, there-
fore, must be designed according to its limited payload capabilities. These systems can
typically position and orient sensors in four axes (X, Y, Z and yaw) with recently developed
over-actuated UAVs aiming to overcome this in support of omnidirectional contact-based
airborne inspection [13].

Fixed inspection systems offer a higher degree of positional accuracy, compared
to mobile systems. Gantries and cartesian scanners operate in a planar or boxed work
envelope and are suited for components with simple geometries. Articulated robotic arms,
on the other hand, operate in a spherical work envelope and enable the precise delivery of
sensors in six Degrees of Freedom (DoF) with pose repeatability of under ±0.05 mm and
maximum linear velocities of 2 m/s [14]. They are widely used in industry thanks to their
flexibility and reprogrammability, and their positional repeatability makes them suited for
operations with well controlled conditions such as component dimensions, position and
orientation. Seven DoF robots are also available, with the additional seventh axis in the
form of a linear track or a rotational joint allowing a wider range of robot poses to reach
the same end-effector position, enabling the inspection of more complex structures.

As specified in the international standards for ultrasonic NDE of welds [15–17], joints
of metals with a thickness of 8 mm or above are to be tested with shear waves, inserted
through contact angled wedges, where the induced ultrasonic beam must have a normal
angle of incidence with the weld interface. The ultrasonic probe must be moved across the
surface of the sample in a way that provides full coverage of the weld joint. Alternatively,
a sweep of multiple beams across a range of angles can be induced via beamforming
through a Phased Array Ultrasonic Transducer (PAUT) [18], forming a sectorial scan.
Moreover, PAUT probes enable the acquisition of all transmit–receive pairs through Full
Matrix Capture (FMC), which offers the advantage of retrospective beamforming and
reconstruction of the weld area through the Total Focusing Method (TFM) [19,20].

NDE is a particular bottleneck when considering high-value automated welding, as it
is traditionally performed days after manufacturing when the parts are allowed to cool
down [15,16], to ensure cooling-related defects are found. As such, any defects that are
detected in the welds and do not pass an acceptance criteria [17] would either require the
part to be sent back for repairs or, in some cases, would lead to scrapping the component
altogether. Apart from adding to the overall production process inefficiency, this problem
also results in higher production costs and longer, less consistent lead times. This, paired
with the fact that welds of thicker components, large bore pipes and Wire + Arc Additive
Manufacture (WAAM) parts [21] require days and, in some cases, weeks to complete,
increases the need for fast in-process NDE inspection. By integrating the inspection into the
manufacturing process, an early indication of potential defects can be obtained, effectively

20



Sensors 2021, 21, 5077

addressing the production and cost inefficiencies by allowing for defects to be qualified
and potentially repaired in-process.

Current state-of-the-art robotic NDE systems and automated welding systems rely on
robot controllers for calculating the kinematics and executing the motion, which are usually
programmed by users manually jogging the robot to individual positions through a teach-
ing pendant. Furthermore, emerging sensors, such as optical laser profiles and cameras can
be utilised and deployed to provide real-time path correction. However, the deployment of
application-specific sensors is highly dependent on the commercially available software
provided by industrial robot manufacturers and the supported communication protocols.
Therefore, it would be particularly beneficial to bypass the internal motion planning of a
robotic controller and to apply external real-time positional control, based on additional
sensor inputs, effectively shifting the path planning and sensor integration to another
controller. In particular, the Robot Sensor Interface (RSI) [22] communication protocol
could be leveraged in order to provide such an external positional control capability.

RSI was developed by industrial robot manufacturer KUKA for influencing a pre-
programmed motion path through sensor input in order to achieve an adaptive robotic
behaviour. The protocol is based on an interpolation cycle, which executes in real-time
intervals of 4 ms for KRC (KUKA Robot Controller) 4 controller-based robots, and 12 ms for
legacy KRC 2-based robots. During this, an XML string with a special format is transmitted
over a UDP (User Datagram Protocol) link between the robotic controller and an external
sensor or system. In [3], RSI was used in conjunction with a force-torque sensor to maintain
constant contact force between a composite wing component and an ultrasonic roller probe,
effectively accounting for any discrepancies between the CAD model of the part and the
as-built geometry. This method, however, required that the motion path is pre-set within a
robotic program, making use of the built-in KUKA trajectory planning algorithm. In [23], a
custom trajectory planning algorithm was developed and embedded on a KRC 4 controller
through a real-time RSI configuration diagram. This gave the capability to dynamically
set and update the target position over Ethernet and the layer of abstraction based on
a C++ Dynamic Link Library (DLL), made it possible to utilise the toolbox in various
programming environments, e.g., MATLAB, Python and LabVIEW. Although providing a
fast response time, the toolbox did not have a provision for real-time motion correction
based on sensory input and was fully reliant on the KRC for execution.

This paper presents the development of a sensor-enabled multi-robot system for
automated welding and in-process ultrasonic NDE. Table 1 shows a comparison between
this work and state-of-the-art commercial robotic NDE systems, i.e., Genesis Systems
NSpect [24], TWI IntACom [25], Tecnatom RABIT [26], FRS Robotics URQC [27] and
Spirit AeroSystems VIEWS [3]. A novel sensor-driven adaptive motion algorithm for
the control of industrial robots has been developed. Full external positional control was
achieved in real time allowing for on-the-fly motion correction, based on multi-sensory
input. A novel multi-robot welding and NDE system was developed, allowing for the
flexible manufacture of welded components and the research into, and deployment of,
NDE techniques at the point of manufacture. Thus, the automatic high-temperature PAUT
inspection of multi-pass welded samples at three distinct points of the welding manufacture
has been made possible, for the first time: inspection of the hot as-welded components;
interpass inspection, between welding pass deposition; and live-arc inspection, in parallel
with the weld deposition. Through the insertion of artificially induced defects, it has been
demonstrated that in-process ultrasonic inspection is capable of early defect detection,
drastically reducing the delay between defect formation and discovery. Furthermore,
the developed system has enabled the real-time control of the welding process through
live-arc ultrasonic methods. Conventional PAUT and FMC are made possible through a
high-speed ultrasonic phased array controller, allowing for the use of advanced image
processing algorithms, producing results which cannot be achieved using conventional
ultrasonics. The work presented herein has directly supported and enabled further research
into in-process weld inspection, across sectors, with the aim of producing right-first-time
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welds. As a result, it is envisaged that future High Value Manufacturing (HVM) of welded
components will have an increased component quality, process efficiency, and reduced
rework rates, lead-time inconsistencies and overall costs.

Table 1. Comparison between state-of-the-art commercial robotic NDE systems and this work.

NSpect IntACom RABIT URQC VIEWS This Work

Automated robotic NDE

Adaptive motion

FMC capture

Real-time trajectory control

Sensor integration independent
from robot controller

NDE integrated with manufacture

High temperature inspection

Where denotes yes and denotes no.

2. Experimental System

2.1. Hardware

The automated welding and NDE system depicted in Figure 1 is based around a
National Instruments cRIO 9038 [28] real-time embedded controller. The cRIO features a
real-time processor and a Field-Programmable Gate Array (FPGA) on board, which enables
fast, real-time parallel computations. Eight expansion slots for additional Input/Output
modules enable direct sensor connectivity in addition to the Ethernet, USB and other
interfaces, featured on the cRIO. The expansion modules used were the NI 9476 Digital
Output, NI 9263 Analogue Output, NI 9205 Analogue Input, NI 9505 DC Motor Drive and
an NI 9214 Thermocouple module.

 

Figure 1. Sensor-enabled multi-robot welding and in-process NDE system.

22



Sensors 2021, 21, 5077

Automation was implemented through two 6 DoF industrial manipulators, controlled
in real time through RSI over an Ethernet connection. A KUKA KR5 Arc HW with a
KRC 2 controller was employed as the Welding Robot (WR), while a KUKA AGILUS
KR3 with a KRC 4 controller was employed as the Inspection Robot (IR). The welding
hardware comprised of a JÄCKLE/TPS ProTIG 350A AC/DC [29] welding power source
and a TBi Industries water-cooled welding torch, mounted on the welding robot end
effector. The welding arc was triggered through a 24 V digital signal connected to the
power source, while the arc current was set through a 10 V differential analogue line.
The power source featured process feedback in the form of measured arc current and
arc voltage, also transmitted through differential analogue lines. A JÄCKLE/TPS 4-roll
wire feeder, with an optical encoder was powered and controlled via the NI 9505. Its
rotational speed was measured and controlled using Pulse Width Modulation (PWM)
and was related appropriately to the desired control metric of linear wire feed rate. A
Micro-Epsilon scanCONTROL 9030 [30] laser profiler was utilised for weld seam tracking
and measurement, while an XIRIS XVC 1100 [31] high dynamic range weld monitoring
camera provided visual feedback of the process.

The workpiece temperature was measured through permanently attached thermocou-
ples, which were used to maintain the workpiece within a desired interpass temperature
range. The thermocouples were also utilised for monitoring the temperature gradient
across the workpiece, which is a crucial requirement for temperature compensation of the
ultrasonic images. A high-temperature PAUT roller probe was attached to the flange of the
IR driven by a PEAK LTPA [32] low-noise ultrasonic phased array controller. The band-
width and storage of the cRIO were only sufficient for inspection with conventional UT
probes, therefore, the LTPA had to be directly connected to the host PC when using phased
array probes. The bandwidth challenge could be addressed by substituting the cRIO with
a high-performance NI PXI real-time controller. Finally, the Graphic User Interface (GUI)
was deployed on the host PC, facilitating the user input, process monitoring and control.
The high-level system architecture is shown in Figure 2, where the hardware components
are represented by blue blocks, the software tasks are represented by green blocks and the
communication links are shown as arrows.

Figure 2. Sensor-enabled multi-robot welding and in-process NDE system architecture. Overall
process control was implemented on the NI cRIO, while the GUI and PAUT acquisition and storage
were executed on a host PC.
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2.2. Software

All software was developed in the cRIO native LabVIEW environment which enabled
rapid prototyping, due to the wide range of supported communication protocols and
software libraries. The software architecture was built using the JKI state machine [33] and
parallel real-time Timed Loops, ensuring program flexibility while also providing reliable
and fast response times. Three parallel state machines were responsible for executing the
program sequence, controlling the Welding Robot (WR) and controlling the Inspection
Robot (IR), respectively.

2.2.1. Real-Time Robotic Control

The real-time robotic control strategy employed full external positional control of the
robots. This was achieved through a correction-based RSI motion, meaning that the robot
controller did not hold any pre-programmed path, and the robot end-effector position was
updated on-the-fly through positional corrections. At every iteration of the interpolation
cycle, the current position and timestamp of the internal clock are sent by the robot
controller as an XML string. An XML string response is returned by the cRIO, mirroring
the timestamp to keep the connection alive, and providing positional corrections in each
axis, which determine where the end-effector will move to over the next interpolation cycle.
There are two types of positional corrections—absolute, where the new position is given
with respect of the robot base, and relative, where the new position is given with respect to
the current position. For example, an absolute correction of 1 mm in the X-axis will move
the end-effector to the absolute coordinate X = 1 mm, while the same relative correction
will move the robotic end-effector by 1 mm in the positive X-axis direction irrespective of
its current position. Relative corrections were chosen for this body of work as the smaller
magnitude of corrections sent to the robot controller made them safer for use during the
development and testing stage.

Welding and inspection robot paths are inputted by the user as individual points in
a table through the GUI, where each row corresponds to a point in the path, while the
columns hold the cartesian coordinates for each axis. Additional columns in the welding
path table provide control over the process while approaching the target, i.e., an “Arc On”
Boolean determines if the WR should be welding, and a “Log On” Boolean enables the
data logging. More sophisticated data can also be included as additional columns, for
example, to choose the welding parameters through a lookup table containing the settings
for root, hot, filling and cap passes, therefore allowing the user to enter the parameters
from a relevant Welding Procedure Specification (WPS) document alongside the robotic
path. When considering simpler geometries such as a plate or pipe butt-weld, the robotic
paths can be manually entered as individual point coordinates; for example, a straight-line
weld would only require two points—the start and the end of the weld. For more complex
geometries this can be generated by Computer Aided Manufacture (CAM) or robotic path
planning software and imported into the software [34–36].

2.2.2. Trajectory Planning

An on-the-fly calculated trajectory planning algorithm running at the RSI interpolation
cycle rate was implemented as demonstrated in Figure 3. A relative positional correction is
sent to the KRC at each iteration of the interpolation cycle, consisting of a linear motion
component dL and an adaptive motion component dA. The Linear Motion Controller
(LMC) is responsible for executing a straight-line trajectory between the current end-effector
position PC and a target position PT’. It is based on a linear acceleration–cruise–deceleration
curve with the setpoint cruise speed V entered by the user. The Adaptive Motion Controller
(AMC) generates an instantaneous adaptive correction dA in response to the sensory input
and process requirements. The absolute adaptive correction DA, which is the cumulative
total correction that has been applied by the AMC, is summed to the current target position
PT taken from the robot path table to form PT’.
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Figure 3. Trajectory planning and on-the-fly sensor-based motion correction algorithm.

Figure 4a shows the operation of the LMC with an example linear trajectory along the
X-axis between a starting point PS and a termination point PT. The linear motion velocity
vector VL at an arbitrary point P0 along the path is always directed towards the target
point PT and is therefore parallel and coinciding with the PSPT vector. Furthermore, as
the PSPT vector is aligned with the X-axis in Figure 4, the VL vector only consists of an
X-axis component. In Figure 4b, an example AMC output dA, consisting of a sinusoidal
oscillation in the Y-axis, is summed with dL before sending the positional correction to the
KRC, resulting in a weaving motion between PS and PT. However, as the linear motion
vector VL is always directed towards the target PT, a Y-axis component is introduced at
all points that do not lie on the PSPT vector, which results in a distorted trajectory. The
effects of this distortion become stronger and more evident closer to PT as illustrated by
VL0 and VL1 in Figure 4b. In order to avoid the distortion in the LMC trajectory caused by
the instantaneous correction dA, the absolute adaptive correction DA is summed with PT
to give PT’. This offsetting of the target point ensures that the LMC-generated trajectory
remains linear as shown in Figure 4c. As a result, a trade-off between target point accuracy
and adaptive correction is inherently introduced in the system.

Figure 4. (a) Example linear motion generated by the LMC; (b) trajectory distortion introduced by
instantaneous adaptive correction dA; (c) target point offsetting through absolute adaptive correc-
tion DA.
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The demonstrated weaving motion is useful in various scenarios; for example, in
welding, when mimicking the motion of manual welding techniques. Such a weaving
motion is generally not achievable through a robotic teach pendant and requires path
planning software. The software would normally create the path through a number of
fundamental linear and circular motions, which would require a full trajectory recalculation
if any of the parameters such as the travel speed, amplitude or frequency of weaving need
to be modified. In contrast, as the weaving motion is calculated in real time, its parameters
and driving function can be readily changed and updated on-the-fly. This approach can be
applied to multiple axes at the same time and can be implemented with multiple sensors.
For example, most modern automated welding power supplies offer the ability to monitor
the arc current and arc voltage in real time, which can be utilised for process control.
The measured arc voltage in the Gas Tungsten Arc Welding (GTAW) process is directly
correlated to the distance between the welding torch and the workpiece, and as such is
suitable for adaptive motion. When welding a workpiece that is assumed to be flat, but
has surface height variations, the offset between the welding torch and the sample surface
would vary along the weld as shown in Figure 5a, resulting in an inconsistent arc voltage
and, therefore, inconsistent weld properties. The measured arc voltage was used as the
control variable of a Proportional–Integral–Derivative (PID) control loop, the output of
which was an instantaneous adaptive correction applied in the Z-axis. This allowed for
Automatic Voltage Control (AVC), subsequently maintaining that the welding torch to
workpiece distance is constant as illustrated in Figure 5b. The demonstrated approach can
be applied for a variety of scenarios with equipment such as laser profilers, force-torque
sensors and machine vision cameras among others.

Figure 5. (a) Open-loop welding of a sample with an uneven surface through a linear trajectory; the
welding torch to sample distance changes along the weld; (b) closed-loop welding of a sample with
an uneven surface through an adaptive trajectory; on-the-fly adjustment of torch offset is achieved
through the measured arc voltage; the welding torch to sample distance is constant along the weld;
the end point PT is shifted to PT’ as a result of the adaptive motion.
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2.2.3. Welding Sequence

All relevant process parameters and ultrasonic measurements were timestamped,
positionally encoded by the robot position and logged in a binary format for subsequent
analysis. Before any welding, the WR performed a calibration using the laser profiler
in order to measure and locate the weld groove. This was performed only once, as the
workpieces were fixed to the table using 6-point clamping and their location was not
expected to shift with respect to the WR. In applications where an initial scan of the weld
groove is not practical, or where the weld groove is expected to shift, the welding system
has the capability to utilise the laser profiler output for real-time seam tracking, through
the AMC. All multipass welding and inspection trials were performed on 15 mm thick
S275 structural steel plates, bevelled to form a 90◦ V-groove. The plates were butt-welded
by the WR over a total of 21 passes deposited over 7 layers, as shown in Figure 6.

Figure 6. Multipass weld specification for 15 mm thick S275 steel bevelled with a 90◦ V-groove; a
total of 21 passes are deposited over 7 layers; all linear dimensions are in millimetres.

3. Ultrasonic Inspection

The system was developed with the aim to perform ultrasonic inspections at three
distinct points of the welding process: post-process, when all welding is completed; inter-
pass in-process, between distinct welding passes; and live-arc in-process, in parallel with
the weld deposition. Despite the distinct advantages and disadvantages of each approach,
they would all fundamentally lead to early defect detection.

3.1. Post-Process UT

The accuracy and positional repeatability of robots can be leveraged for post-process
NDE by performing continuous repeated inspections of the as-built component. This allows
for the development of any defects such as cold cracking to be monitored by comparing
successive ultrasonic images. Due to the elevated sample temperature introduced by
the welding process and any post-heat treatment, a high-temperature capable ultrasonic
probe assembly was necessary. An Olympus 5L64-32 × 10-A32-P-2.5-HY array (5 MHz,
64 element, 0.5 mm element pitch, 10 mm element elevation) was used in conjunction with
an SA32C-ULT-N55S-IHC angled wedge (suited for shear wave inspection in steel centred
around 55◦). The wedge is manufactured out of the material ULTEM and so is capable of
short-term contact temperatures of up to 150 ◦C. High-temperature ultrasonic couplant
was used between the transducer and wedge. Before touching down on each inspection
position, the ultrasonic wedge was dipped in a custom-designed tray containing the same
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high-temperature ultrasonic couplant to ensure good acoustic propagation between probe
and sample. Figure 7 shows the detection and growth monitoring of a hydrogen crack that
was artificially induced in the Heat Affected Zone (HAZ), adjacent to the weld toe, through
localised water quenching [37].

Figure 7. Continuous post-weld ultrasonic imaging of artificially induced hydrogen crack. The crack was initiated 10 min
after all welding passes were deposited and its growth was observed in time. The location of the crack was in the HAZ
adjacent to the weld cap toe.

The elevated temperature of the sample after it is manufactured must be taken into
account when performing NDE as the speed of sound in the material varies with temper-
ature. As the sample cools down, this causes imaging anomalies in both amplitude and
position. In [38], a Tungsten rod was introduced in the weld to form a static reflector of
known size and location [39]. The weld was repeatedly inspected at regular time intervals
for a period of 22 h, and the position and amplitude of the inserted reflector were extracted
to form a thermal compensation curve. The sample temperature at the inspection location
decreased from 164 ◦C at 2 min after welding to 28 ◦C at 75 min after welding. As a result,
the reflected amplitude increased significantly from 25% to 62% of full screen height, and
the defect indication’s position shifted by 3 mm on the reconstructed sector scan image.
These data were utilised to correct the position and amplitude of an artificially induced
crack. The crack initiation was successfully detected 22 min after the weld completion, and
it was observed to be growing over a total of 90 min.

3.2. Interpass In-Process UT

Interpass ultrasonic NDE allows for the detection of weld flaws through inspection
between individual welding passes or layers and provides an opportunity for in-process
repair, as only a small amount of material would need to be removed in order to excavate
and repair the defects. This is particularly advantageous for the manufacture of components
that are typically challenging to repair after all welding passes have been deposited, e.g.,
thick multipass welds and WAAM parts. A key challenge of interpass welding inspection
is the complex sample geometry which changes as the weld is deposited and therefore
differs from the as-built geometry [40]. Figure 8 shows that the unwelded portion of the
V-groove in a multipass weld causes a number of reflections and artefacts in the ultrasonic
images, as demonstrated at three distinct stages of the sample manufacture. As the weld is
deposited, the sample geometry reflections change in shape and size, until they disappear
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upon completion of the weld joint. Hence, appropriate signal processing and masking are
required to effectively remove the false positive indications from the sample geometry.

Figure 8. Ultrasonic sectorial scan of 90◦ V-groove multipass weld; (a) before welding the groove edge is detected as a
reflector (green marker); (b) after 7 passes are deposited, the size of the groove edge indication is reduced (blue marker);
(c) after all welding passes are deposited, the groove edge is no longer detected.

The high interpass temperatures required to maintain the weld integrity (typically
up to 250 ◦C) have driven research into the development of a novel, high-temperature
capable PAUT probe [41]. The probe features a 5 MHz, linear 64-element PAUT transducer
immersed in water and enclosed in a moulded high-temperature silicone rubber tyre,
capable of operating at temperatures up to 350 ◦C. Coupling between the probe and the
sample was achieved through a constant compressional force and high-temperature gel
couplant as demonstrated in Figure 9. The novel probe has allowed for the interpass
detection of artificially induced defects inside a partially filled multipass weld such as the
one shown in Figure 10, where a Tungsten rod with a diameter of 2.4 mm and length of
30 mm was included in the weld.

 

Figure 9. Interpass in-process UT inspection with a novel high-temperature PAUT roller probe.
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Figure 10. Interpass ultrasonic image of artificially induced defect (Tungsten rod with 2.4 mm diame-
ter) (red marker) with a false positive indication from the unwelded groove edge (green marker).

As a result of the moving heat source in welding, thermal gradients in both the direc-
tion of welding and perpendicular to the direction of travel are introduced in the workpiece,
ultimately resulting in ultrasonic image distortion. Furthermore, the dynamic nature of
multipass welding essentially results in a different thermal gradient after each welding pass.
An in-process thermal compensation procedure was proposed in [42] involving the parallel
manufacture of a second, identical sample with an embedded Tungsten pipe, serving as an
in-process calibration block. The reflection from the known in size and location pipe was
used to calibrate for the effects of the temperature gradients and it was demonstrated that
the approach provided more accurate results, compared to a traditional calibration on a
sample with a side drilled hole at a uniform temperature. For the most accurate calibration
and thermal compensation results, however, the sample temperature would need to be
precisely known through a combination of measurement and weld modelling [43]. It is
important to also note that interpass inspection could increase the component manufacture
duration, as it is deployed sequentially with the welding deposition. In addition, increasing
the interval between welding passes could lead to excessive sample cooling and the loss of
interpass temperature. Therefore, the UT acquisition and image processing speed must
be taken into account when considering the deployment of interpass NDE for welding
applications.

3.3. Live-Arc In-Process UT

In-process UT deployed during the welding deposition offers rapid feedback for the
welding process and allows not only measurement, but also control of the welding process.
In [44], a pair of air-coupled ultrasonic transducers were used to induce guided Lamb
waves through a section of 3 mm thick plate butt joint while it was deposited. Figure 11
shows that the solidification of the weld was monitored in real time through live-arc in-
process UT. This method has shown promise as the rate of change of the received Lamb
waves’ amplitude was found to be correlated to the weld penetration depth. In [45], a
split-crystal ultrasonic wheel probe was attached to the welding torch and was utilised
for thickness measurement of samples with a varying loss of wall thickness, as shown
in Figure 12. The measured thickness was used to control and adapt the welding arc
current, torch travel speed and wire feed rate on-the-fly. It was demonstrated that the
approach provided sufficiently low latency and high accuracy for real-time welding process
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control and, as a result, provided a better performance of welding samples with thickness
variations, compared to a traditional open-loop automated welding system.

 

Figure 11. Live-arc in-process weld UT with non-contact Lamb waves.

Figure 12. On-the-fly adaptive welding control through live-arc UT sample measurement.

Current work in the University of Strathclyde is focused on addressing the challenges
associated with deploying PAUT probes during the weld deposition (Figure 13). The next
generation of PAUT probes will be dry coupled, which would remove the risk of unwanted
weld contamination by the ultrasonic gel that can cause porosity [37] and would reduce
the variation in coupling between the probe and the workpiece.
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Figure 13. Live-arc PAUT inspection experiment.

4. Conclusions and Future Work

A novel sensor-enabled robotic system for automated welding and ultrasonic inspec-
tion was developed and evaluated. The system architecture was based around an NI cRIO
real-time embedded controller which enabled real-time communication, data acquisition
and control. A real-time external robotic control strategy for adaptive behaviour was
developed, allowing for on-the-fly sensor-based trajectory corrections. The inspection
capabilities of the system were demonstrated in three different scenarios:

1. Post-process continuous UT—the initiation and growth of cold crack defects was
observed and measured through a continuous inspection at regular intervals after the
multipass weld was completely filled.

2. Interpass in-process UT—the challenges due to the complex sample geometry of the
unfilled weld groove were demonstrated and the inspection results showed the defect
detection capabilities through artificially induced defects.

3. Live-arc in-process UT—the deployment and application of three different ultrasonic
sensors during live-arc welding deposition was outlined and the challenges and
results were discussed.

Current work on masking the bevel edge reflections will remove false positives arising
from the unfilled weld groove and thermal gradient compensation would enable the
accurate locating and sizing of weld defects. Future developments of the PAUT probe will
allow for a completely dry coupled inspection, eliminating the coupling and contamination
challenges posed by the ultrasonic couplant. It is envisaged that future welding and live-arc
in-process systems would possess the capability for automatic in-process defect detection,
which would in turn significantly reduce the delay between the development and detection
of a defect, offering the potential for in-process weld repair.
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Abstract: The demand for cost-efficient manufacturing of complex metal components has driven
research for metal Additive Manufacturing (AM) such as Wire + Arc Additive Manufacturing
(WAAM). WAAM enables automated, time- and material-efficient manufacturing of metal parts. To
strengthen these benefits, the demand for robotically deployed in-process Non-Destructive Evaluation
(NDE) has risen, aiming to replace current manually deployed inspection techniques after completion
of the part. This work presents a synchronized multi-robot WAAM and NDE cell aiming to achieve
(1) defect detection in-process, (2) enable possible in-process repair and (3) prevent costly scrappage
or rework of completed defective builds. The deployment of the NDE during a deposition process is
achieved through real-time position control of robots based on sensor input. A novel high-temperature
capable, dry-coupled phased array ultrasound transducer (PAUT) roller-probe device is used for the
NDE inspection. The dry-coupled sensor is tailored for coupling with an as-built high-temperature
WAAM surface at an applied force and speed. The demonstration of the novel ultrasound in-process
defect detection approach, presented in this paper, was performed on a titanium WAAM straight
sample containing an intentionally embedded tungsten tube reflectors with an internal diameter
of 1.0 mm. The ultrasound data were acquired after a pre-specified layer, in-process, employing
the Full Matrix Capture (FMC) technique for subsequent post-processing using the adaptive Total
Focusing Method (TFM) imaging algorithm assisted by a surface reconstruction algorithm based on
the Synthetic Aperture Focusing Technique (SAFT). The presented results show a sufficient signal-to-
noise ratio. Therefore, a potential for early defect detection is achieved, directly strengthening the
benefits of the AM process by enabling a possible in-process repair.

Keywords: non-destructive evaluation; in-process robotic NDE; Wire + Arc Additive Manufacture
(WAAM); ultrasound testing; total focusing method

1. Introduction

In 2019, the global metal Additive Manufacturing (AM) market size was valued at
2.02 billion € and was predicted to grow by up to 27.9% annually until 2024 [1]. AM
technology plays a critical role in the latest industrial revolution, Industry 4.0, where there
is a demand for smart factories capable of fabricating high-quality customized products [2].
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One such AM technology, called Wire + Arc Additive Manufacturing (WAAM), is a rapidly
developing metal AM technology, based on a directed energy deposition process [3],
which promises an automated fabrication of structurally complicated three-dimensional
(3D) near-net shaped components [4]. The process is aiming to achieve superior cost-
efficiency by reducing energy usage, material waste and time as compared to traditional
subtractive manufacturing methods [5]. The technology has attracted the attention of
sectors such as aerospace and naval engineering, due to their interest in weight reduction
and increased geometrical complexity of solid metal components [6]. Moreover, WAAM
offers the potential to build products using otherwise expensive materials such as titanium
alloys, steel or nickel-based super-alloys [4].

Conventionally, the quality assurance of WAAM is performed by Non-Destructive
Evaluation (NDE) after the full built completion via manually deployed methods such
as ultrasound testing [7], eddy-current [8] or X-ray based imaging [9]. These techniques,
however, require complex and time taking manipulation between workstations and often
pre-processing or machining of the components [9], affecting the production throughput
and therefore overall cost if a defect is discovered. Hence, in order to maintain the benefits
of the already highly automated WAAM process, the demand for automatically deployed
flexible NDE integrated in-process is high [10].

The detection of defects, in-process, facilitates the potential for real-time repair or
early scrapping of parts, preventing the manufacturer from time-taking deposition of costly
material over defective layers. Moreover, the deployment of automated NDE offers greater
benefits such as positional accuracy, repeatability and high rates of inspection as compared
to human NDE operators [11].

Recently published research has presented an important advancement in the field of
automated in-process NDE of arc-based welding processes [12–14], which are manufactur-
ing methods with similar applicable attributes and challenges to WAAM. The development
of a multi-robot welding cell demonstrated the possibility of robotic welding and auto-
mated ultrasound NDE [15]. Full automation was achieved by a novel sensor-enabled
robotic system based around a real-time embedded controller which enabled: (a) real-time
communication, (b) data acquisition and (c) control of the process. Moreover, a UDP
(User Datagram Protocol) communication protocol established through the Robot System
Interface (RSI) [16], developed by industrial robot manufacturer KUKA, was used for the
sensor-based robotic motion correction that could influence the pre-programmed robot’s
path through the sensor’s feedback on the fly. The motion corrections were executed based
on a novel developed motion software operating in real-time intervals (4 milliseconds
intervals for KUKA Robot Controller (KRC) 4). Therefore, it was reported possible to utilize
the cell for automated ultrasound inspection in three modes: (1) post-process continuous,
(2) inter-pass in-process or (3) live-arc in-process. Further, the use of Force-Torque (FT)
sensor-driven robotic motion for automated NDE of complex geometries was explored
in [10]. The FT sensor facilitated path correction required for contact-based scanning of
the aircraft wing cover through an as-built surface geometry that was inconsistent with
geometry in the original CAD model. Therefore, the research faced similar automation
challenges, associated with transducer deployment on the estimated pre-programmed path,
applicable to possible automated NDE deployment on near net-shaped WAAM.

The ultrasound-based in-process NDE of welds at elevated temperatures was made
possible by the development of novel, phased array ultrasound transducer (PAUT)-based,
high-temperature and dry-coupled roller-probes [15,17]. Thanks to its design, based on a
PAUT coupled through a water delay line and a flexible silicone rubber, the roller-probe
was reported capable of withstanding temperatures of up to 350 ◦C, which made this device
well suited for in-process NDE of arc-based manufacturing processes, where the resistance
to elevated temperatures is highly desired [17]. This was a significant advancement in
ultrasound NDE transducer development, given a typical commercial PAUT can only
operate up to around 60 ◦C, while commercial delay lines can offset this limit to the
temperatures only up to around 150 ◦C for a short period of time [18].
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Further, the roller-probe technology has also been developed to couple with an as-built
surface of WAAM components without the use of liquid couplants [19]. However, when
considering the roller-probe inspection approach, new challenges emerged, as the as-built
WAAM component features a non-flat and varying surface geometry (in both the scanning
and the traverse direction) resulting in high contact forces being required to assure full
compliance of the roller-probe tyre to the surface. Hence, the design must facilitate the
transmission of the maximum possible ultrasonic energy without suffering signal losses.
This resulted in the alteration of the internal liquid delay line with a heat-resistant solid
core (delay line) made of Polyetherimide Polymer.

The key advantage of the novel WAAM roller-probe NDE approach is the removal
of the post-deposition processing stages, which often included waiting for the sample to
cool down, machining operations and manipulation between workstations. The inspection
would then be performed through a flat surface either using direct gel-coupled contact
with the sample or in water immersion tanks using gantry systems [7,20,21].

Owing to the novel WAAM dry-coupled roller-probe ultrasound NDE concept, the
research has presented a possibility to detect Lack of Fusion (LoF) defects as small as
5 × 0.5 × 0.5 mm (width, length and height), through an as-built surface of the WAAM
wall [22]. The ultrasound data acquisition called Full Matrix Capture (FMC) enabled the
collection of raw time-domain data without consideration of any refractive boundaries
or couplant conditions as the imaging was executed at the post-processing stage [23].
The developed ultrasound post-processing algorithms, based on the Synthetic Aperture
Focusing Technique (SAFT) and Total Focusing Method (TFM) made it possible to overcome
complications associated with multiple refractions present at a non-flat surface of WAAM
and internal components of the roller-probe [24]. These algorithms, also called the SAFT-
TFM package, were based on Delay and Sum (DaS) computational logic, where at first
the Time of Flight (ToF) elapsed, between a PAUT element and a targeted image pixel,
was calculated. Subsequently, the signal response from the corresponding time sample of
an elementary A-scan was summed to the pixel. ToF calculation was repeated for every
transmit–pixel–receive combination, thus, a fully focused image of the WAAM interior was
formed. This novel ultrasound NDE approach was, however, presented on static inspection
of WAAM components and was not yet deployed in-process on high-temperature builds.

Therefore, in this paper, the authors present an experimental multi-robot cell designed
for WAAM deposition and automated in-process dry-coupled ultrasound NDE using a
custom WAAM roller-probe. Within the cell, the plasma-arc WAAM process was controlled
by the deposition software while a full external control of the NDE process was achieved
by the sensor-enabled adaptive motion control package adapted to in-process WAAM
NDE. The automated high-temperature WAAM roller-probe was deployed within a dwell
time, set for inter-layer cooling, while sufficient coupling with the as-built surface of
WAAM during the inspection was assured by the FT sensor. In this work, a titanium
WAAM straight component (wall) with embedded tungsten reflectors was deposited to
evaluate the performance of the in-process NDE approach. The use of tungsten tubes as
cylindrical artificial reflectors, with known diameter, for ultrasound inspection technique
calibration and evaluation has found its application in the fields of in-process welding
inspection [12,13] as well as ultrasound inspection of WAAM [25]. An advantage of the
tungsten can be realized by the possibility to manufacture inclusions, closely simulating
defects such as Lack of Fusion (LoF) or keyholes, at the desired location [26]. During
the in-process NDE, the position encoded FMC data were acquired using a high-speed
ultrasound phased array controller. The SAFT-TFM package, then, enabled the highly
accurate detection of artificial reflectors presented on an amplitude C-scan image. C-
scan imaging provided a top-view over an interior of the WAAM component and was
found effective for data review from a large inspection volume [27]. Thus, for the first
time, a volumetric in-process ultrasound NDE of as-built WAAM was achieved, directly
supporting research on producing right-first-time WAAM parts.
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2. The Architecture of the WAAM + NDE Cell

2.1. Hardware

The automated robotic WAAM and NDE system depicted in Figure 1 was designed
based on 2 × 6 Degrees of Freedom (DoF) industrial robotic manipulators (KUKA KR90
R3100) employed as a WAAM deposition robot and as an inspection robot. Additionally,
as a part of the deposition robot, a horizontal rotary positioner (KUKA DKP-400V3) was
also located within this cell and utilized as a rotational tooling mainframe and substrate
clamping device. The deposition hardware, physically mounted on a deposition robot’s
end-effector, featured a water-cooled plasma-arc welding torch (controlled by: EWM-
TETRIX 552 AC/DC SYNERGIC PLASMA AW welder) integrated into a deposition device
with a local shielding [28], as seen in Figure 1a. The local shielding device was an aluminum
enclosure with multiple gas outlet channels fitted, that provided an additional supply of the
argon shielding gas on a high-temperature WAAM to prevent atmospheric contamination
that could result in oxidation of the fresh deposit. Further, a wire-feed outlet with adjustable
height was fitted on the deposition device, positioned to supply feedstock into the melt
pool. The wire supply was controlled by an automatic wire feeder (EWM T drive 4 Rob
3 Li, EWM) that was attached directly to the deposition robot’s arm as well. Lastly, the
deposition head was equipped with a high dynamic range welding camera (Xiris XVC-1000)
used to remotely assess the deposition quality.

 

Figure 1. Implemented (a) WAAM deposition cell with plasma arc process, and (b) Roller-Probe
based NDE.

An inspection robot, seen in Figure 1b was equipped with an FT sensor (FTN-GAMMA-
IP65 SI-130-10, Schunk, Germany) mounted on the end effector. A WAAM roller-probe
was, then, attached to an FT sensor serving as an end effector to the robot flange. The
roller-probe, depicted in detail on Figure 2, was driven by a high-speed phased array
ultrasound controller LTPA (PEAK NDT, United Kingdom) mounted directly on the robot
arm. Further, the communication between all hardware was achieved by a network switch
(Zyxel Gigabit ethernet switch) enabling control of the WAAM process and NDE via a
single ethernet connection plugged into the PC.
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Figure 2. The internal structure of the roller-probe (left) and assembled device (right).

2.2. Software Setup
2.2.1. Deposition

In this work, the deposition robot was controlled by a pre-installed PC with a WAAM-
Ctrl (WAAM3D, Milton Keynes, UK) [29] application, streaming the deposition commands
(robot paths, deposition parameters) directly to the deposition robot via RSI over an ethernet
connection. The tool-path plan was generated using WAAMPlanner Software (WAAM3D,
UK) [30], where the desired component was imported as a Computer-Aided Design (CAD),
sliced into layers according to the pre-defined layer height, segmented into a set of indi-
vidual building blocks from which the series of tool-paths was generated. Depending on
the variables, such as material, geometry or deposition process, the deposition parameters
were given to a WAAMPlanner and the post-processed file was generated, translating the
information to a ready-to-stream xml file.

2.2.2. NDE Software

The NDE inspection was guided by a software platform developed in the LabVIEW
programming environment [31], which offers reliable communication between instruments
and fast prototyping, through several available toolboxes and libraries. The Graphic User
Interface (GUI) is presented in Figure 3, where the platform consisted of parallel state machines
responsible for executing the program in sequence, controlling the inspection robot kinematics
through the FT sensor feedback and ultrasound data acquisition in real-time.

The real-time corrections (every 4 milliseconds) of the robot’s motion, based on linear
interpolation, and control used for the in-process NDE work were based on a flexible
robotic motion framework presented in [15] and developed for in-process inspection and
automated NDE purposes. During the inspection, real-time adjustments of the inspection
robot velocity, acceleration and contact force were available. Position-determined triggers
were implemented to automatically switch between inspection and travel speed of the
inspection robot, enabling/disabling the FT sensor-driven motion and data acquisition
when needed. The Z-axis force control through the FT sensor was used to maintain sufficient
contact with the WAAM component while the operator maintained the ability of real-time
adjustments of the kinematics. In this work, the Z-axis motion corrections, associated with
maintaining a steady force at the inspection speed, were calculated by the KRC based on the
RSI configuration diagram. The X and Y translation, and A, B and C rotation-axes motion
correction always remained in control of the initial inspection path-planning, while the
appropriate motion corrections were calculated within the developed motion framework
in 4 ms intervals and streamed through the RSI.

Further, taking the advantage of real-time communication with the inspection robot,
the timestamped position of the inspection robot during an inspection was encoded to each
FMC frame acquired. The FMC data were then processed within a MATLAB environment
using a SAFT-TFM algorithm package, enabling positionally accurate analysis.
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Figure 3. LabVIEW GUI for NDE process control and monitoring.

3. Experimental WAAM Manufacturing

3.1. WAAM Wall Path Planning and Deposition Parameters

To demonstrate the WAAM and NDE cell concept, and evaluate its performance, a tita-
nium (Ti-6Al-4V) WAAM wall was chosen and designed for fabrication. The experimental
wall was set to be 300.0 mm in length, 25.0 mm wide and a height given as 25.0 mm. How-
ever, knowing the nature of the WAAM process delivering near net-shaped components [4],
extra material volume post-deposition was expected. Moreover, the height of the wall was
not considered important since the goal was to evaluate the inspection of WAAM’s interior
with a specific volume. Therefore, the built process was stopped when the wall was found
sufficiently high for in-process NDE demonstration to be performed.

The path planning designed in WAAMPlanner, seen in Figure 4, consisted of an
oscillating deposition strategy [32], where a single bead, with a square zig-zag pattern, was
deposited per layer. Relevant deposition parameters can be seen in Table 1 below.

 

Figure 4. Deposition Path Planning for Layer 1 of an experimental WAAM wall.
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Table 1. Deposition Parameters.

Deposition Parameters

Current 150 Amps

Wire-feed speed 2.5 m/min

Robot Velocity 0.005 m/s

3.2. WAAM Wall Deposition

Figure 5a displays a deposition setup where an experimental wall was built on a Ti-6V-
4AL substrate plate, 12.0 mm thick, clamped to the tooling which was mounted on a rotary
table of the horizontal positioner. The plate was clamped using welding clamps to prevent
bending caused by heat-induced residual stress [33], typical for arc-based manufacturing
processes such as welding [34].

 

Figure 5. Deposition clamping setup and a substrate plate with a deposited 1st layer (a) and deposi-
tion process with an active torch (b).

This clamping set-up has created a challenging and restricting working envelope;
hence, the first stage of manufacturing was calibration and verification of the path motion
by a dry run. At this step of WAAM part fabrication, the robot traveled through the
produced deposition paths without an active torch or wire feed. Therefore, the correct
positioning of the robot could be assured, knowing that the deposition head would not
collide with the clamping. This was extremely important, especially during the deposition
of the first few layers, after which the deposition head was high enough not to collide with
welding clamps.

Following, Figure 5b shows an active deposition of the 1st layer, while the completed
pass on the substrate plate is visible in Figure 5a image. It is worth mentioning, that the
height of the first layer was measured to be 3.5 mm.
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3.3. Ultrasound Reflector Planting

To evaluate the NDE defect detection capability, artificial reflectors were embedded
into the experimental wall. In this work, tungsten tubes with parameters specified in
Table 2 were utilized for this purpose. Two tubes were embedded into layer 3 by producing
slots using a portable grinding machine. The tubes were located approximately 55 mm
from each other. Tube 1 was placed parallel to the wall, in the approximate centre of the
bead. Tube 2, on the other hand, was embedded in the transverse direction to the wall as
seen in Figure 6a.

Table 2. Tungsten Tube parameters.

Tungsten Tube

Tube length 30 mm

Internal diameter 1 mm

Outer diameter 3 mm

 

Figure 6. Tungsten tube embedding into layer 3 (a) and a subsequently deposited layer 4 covering
tubes (b).

Further, Figure 6b depicts the wall after layer 4 where the tungsten rods were fully
covered by the freshly deposited titanium. No significant inconsistencies (defects) in the
surface quality that could cause a potential failure of the building process were observed
once layer 4 was completed. However, a minor material built up was observed which was
corrected after the subsequent layer deposition.

4. In-Process NDE of the Experimental WAAM Wall

4.1. Ultrasound Inspection Parameters

The ultrasound data were acquired using a roller-probe featuring a solid delay line
housed in a silicone rubber tyre. The PAUT, with specifications found in Table 3, was
positioned to sit on the top of the delay line.
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Table 3. PAUT parameters.

Array Parameters Value

Element Count 64

Element Pitch 0.5 mm

Element Elevation 10 mm (unfocused)

Element Spacing 0.1 mm

Centre Frequency 5 MHz

The FMC data were collected using an LTPA phased array controller with 200 V
excitation voltage and a fixed hardware gain of 60 dB. The time-domain matrix of the signals
was formed by 3000 data samples for each transmits–receive pair at a sampling frequency
of 50 MHz. During the data post-processing stage, the following acoustic velocities for
longitudinal ultrasound waves were used for refraction and time-of-flight computations:
(1) Delay line = 2480 m/s, (2) Rubber = 1006 m/s and (3) Titanium = 6100 m/s. These values
were obtained by ultrasound pulse-echo measurements of the individual roller–probe’s
components and titanium coupons cut from a previous trial and heated to 150 ◦C.

4.2. In-Process NDE

To demonstrate the ultrasound in-process NDE capability on the titanium wall with
embedded tungsten tubes, producing an air gap inside the WAAM, two subsequent layers
were deposited to build a six-layer-high component. The deposition of two additional
layers enabled a natural surface profile common for plasma WAAM deposition [4], without
any significant negative influence from previous grinding and tungsten tube embedding.

Figure 7 shows a completed deposition of the experimental wall after layer six with a
measured height of approximately 21 mm with an average layer height of approximately
3.5 mm. A width of 28 mm and a length of 305 mm were also measured.

Figure 7. Completed experimental wall and its dimensions.

As suggested by the literature [32], there is an optimal inter-pass dwelling time to allow
for cooling of Ti-6Al-4V WAAM built using the oscillation deposition strategy. Therefore,
the in-process NDE can be integrated into the build process to leverage this inter-pass
dwelling time to complete the inspection of the last pass without delaying the built process.
Accordingly, a dwell time of 9 min was set to allow inter-pass cooling during the deposition
of the experimental wall as suggested by [35]. This time was set to avoid the formation of
coarse αGB phase grain microstructure, and thus, achieve optimal mechanical properties of
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this hypothetical component. Moreover, the time was found sufficiently long for in-process
NDE to be performed without causing costly delays in the production process.

Before starting the NDE, the surface temperature was taken using a handheld ther-
mometer. The surface temperature of the WAAM was measured and ranged to be between
180–230 ◦C along the wall, which was much lower than the operational limit of the roller-
probe (resistant up to 350 ◦C).

The NDE was initiated within the first 2 min of the deposition robot’s retraction to
its home position. Figure 8 shows a step-by-step inspection diagram, where at first, the
inspection robot’s end-effector approached the wall with a travel speed of 50 mm/s until
the position 5 mm above the predicted as-built surface of WAAM was reached.

 

Figure 8. Inspection diagram showing the process and the sequence of robotic motions during
an inspection.

The second stage in the diagram shows a contact establishment with the WAAM
specimen. This was accomplished by an automatic trigger that recognized the robot’s
position (5 mm above the expected surface), which was followed by a change of robot
speed to an inspection speed (in this work = 2 mm/s) and initiation of FT sensor-driven
motion. A command to maintain a constant force of 130 N was sent to the inspection robot
from LabVIEW via RSI; thus, the Z-axis position correction was no longer managed by a
LabVIEW motion framework, but the kinematics corrections were calculated and applied
by the KRC. The force applied to the component was set to a maximum force given by the
FT sensor operational limit.

During the descending of the inspection robot on the surface of WAAM, the LabVIEW
program was set to wait for 2 s, before sending coordinates of the next position. This “wait”
command enabled the inspection robot to position itself on the surface with the required set
stable force and without further freedoms in the X-Y plane that could result in inconsistent
contact with a specimen.

Stage 3 of the inspection was initiated by sending coordinates of the next target position
(in this scenario = the end of an inspection, +300 mm in the X-axis direction) and enabling
encoded FMC data acquisition. The FMC data were acquired while the inspection robot
traveled along the path with a steady force by correcting its Z-axis position to maintain a
given force value with the experimental wall.
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Once the end of the path was reached, the termination of the inspection was triggered
by the change of the inspection robot’s Z-axis targeted position. This was given as the
Z-axis target position offset larger than 5 mm above the predicted WAAM surface. The
trigger was used to disable the sensor-driven motion and the ultrasound data acquisition.
The process was concluded by retracting the inspection robot to its home position according
to the path planning.

The inspection volume from the experimental wall was set to 300 mm, therefore the
time elapsed to inspect the component equaled 150 s with an additional approximate 60 s
that included the approach to the specimen and the robot retraction back to a home position.
It is worth mentioning, that the entire inspection took significantly less time than the period
set for a dwelling (9 min), which complemented the objectives required for the in-process
NDE of WAAM in this scenario. The total number of positions encoded FMC frames
acquired was 200, giving a sample density of 1.5 per mm (sampling frequency = 0.75 Hz).

4.3. Ultrasound Data Post-Processing: TFM Imaging and C-Scan

After the completion of the in-process NDE, the ultrasound data were processed using
a SAFT-TFM algorithm described in [22]. The TFM frames (B-Scan) were computed for
a 25 mm × 19 mm region at 6 pixels/mm resolution, which is compatible with the 2 dB
Amplitude Fidelity criterion of ASME V [36]. This window represented an internal volume
of the desired component between the baseplate and a region 2 mm beneath the surface
or just above the interface of layers 5 and 6, where potential defects would be expected.
Moreover, this work was focused on the detection of tungsten tubes, therefore there was
no interest in detecting and analyzing possible generated true defects from the WAAM
process, since the calibration for these defects has not yet been developed.

To achieve a full C-scan, the computation was initiated by the ultrasound surface
reconstruction using a SAFT surface imaging and surface finding algorithm. Afterward, the
curves representing the WAAM surface contours were augmented into the 3-layer adaptive
TFM algorithm to produce the TFM frames before their normalization. Normalizing all
the frames used to construct the C-scan aided to visualize the entire image on the same dB
scale. Using the raw unnormalized frames, the C-scan was formed by populating a new
2-dimensional array’s columns with maximum detected amplitudes from all TFM frame’s
columns from n number (n = 200) of TFM frames.

The size of the C-scan presented in this paper was set to 150 × 200 pixels (Number
of pixels in the horizontal axis of the TFM frame × the number of frames). The resulting
C-scan image was normalized and plotted on a dB scale from the peak amplitude to an
averaged noise level (0 to −12 dB), giving the best visual contrast between a signal from
tungsten tubes and interference from the base noise levels.

5. In-Process Inspection Results and Discussion

In this section, the results of an in-process NDE are presented and discussed. The
outcome of the in-process inspection is depicted in Figure 9a, where the signal from
Tube 1 and Tube 2, with an internal diameter of 1.0 mm was successfully detected. At
a first glance, stronger signal levels are observed from a longitudinally placed 30 mm
long Tube 1. Noteworthy that a matching signal extension of approximately 30 mm
along the inspection travel direction is also well noticeable. Tube 2, embedded in the
traverse direction, shows visually weaker signal strength where the energy from the
tube is represented by a concentrated signal in the centre of the corresponding frames
approximately 100 mm from the inspection start point.

Following a visual analysis of the results, a maximum amplitude along an X-axis was
presented in Figure 9b. Based on this plot, a Signal-to-Noise ratio (SNR) of up to 12 dB
was achieved from the scanning of Tube 1 while an SNR of 10 dB was seen for Tube 2.
Considering the dry-coupling condition, these SNR values were found sufficiently high
for the indications to stand out from the background noise and be readily detected by
the operator.
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Figure 9. Results showing: (a) C-scan obtained from computed TFM frames and (b) extracted
maximum amplitude along X-axis.

Further analysis shows signal strength variations from Tube 1 signal along the scan
path where an SNR drop of only 4 dB was observed. This local signal strength loss can be
associated with the possible changes to the contact quality between the rubber tyre and the
non-flat wave-like surface profile of WAAM. This means the signal strength propagating
into the specimen was fluctuating with the varying profile of WAAM. Further losses of
SNR, especially for Tube 2, could be associated with a lack of compensation for the thermal
gradient that affects an ultrasound wave velocity during propagation, as also pointed out
in [12,37]. This means the image signal amplitude is negatively affected due to the loss of
focusing precision during TFM image forming.

6. Conclusions and Future Work

In this paper, a design and demonstration of a novel multi-robot cell for WAAM and
ultrasound in-process NDE was presented. The architecture, based on two robotic industrial
manipulators featuring a deployed plasma arc WAAM process and high-temperature PAUT
roller-probe was introduced along with a software control package, merging manufacture
and NDE into a single continuous process.

The in-process NDE capability was demonstrated on a dry-coupled ultrasound in-
process inspection of the Ti-6Al-4V WAAM wall with embedded tungsten tube reflectors,
with an internal diameter of 1.0 mm. Using the FMC data acquisition, a C-scan image of the
experimental wall was computed by deploying a SAFT-TFM package. The results of the
in-process inspection showed successfully detected embedded tubes, with distinguishable
SNR of up to 12 dB.

Therefore, this work demonstrated the ability to detect defects just after the point of
generation, which can pave the way for possible in-process repair processes to be deployed
in the future. It can also be concluded that the presented research enables the further
amplification of WAAM benefits by the deployment of flexible and automated NDE.

The future development is aimed at improving the speed of image forming, by the
employment of graphics processing units. Moreover, the performance evaluation is targeted
at transduction and automated deployment in various scenarios such as (1) inspection
of geometrically complex WAAM components, (2) an investigation of probe deployment
while the torch is active elsewhere and (3) at varying robotic NDE speeds. For the in-process
defect detection and characterization area, the key aims are based on the development of
thermal gradient compensation capabilities, which can further enhance defect detection
and accuracy of the inspection approach.

Lastly, the research aims to develop a defect calibration procedure for various ma-
terials and a wide range of natural defects to enable automated defect detection and
characterization that can further enhance the automation of the WAAM.
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Abstract: Robotised Non-Destructive Testing (NDT) has revolutionised the field, increasing the
speed of repetitive scanning procedures and ability to reach hazardous environments. Application
of robot-assisted NDT within specific industries such as remanufacturing and Aersopace, in which
parts are regularly moulded and susceptible to non-critical deformation has however presented
drawbacks. In these cases, digital models for robotic path planning are not always available or
accurate. Cutting edge methods to counter the limited flexibility of robots require an initial pre-scan
using camera-based systems in order to build a CAD model for path planning. This paper has sought
to create a novel algorithm that enables robot-assisted ultrasonic testing of unknown surfaces within
a single pass. Key to the impact of this article is the enabled autonomous profiling with sensors
whose aperture is several orders of magnitude smaller than the target surface, for surfaces of any
scale. Potential applications of the algorithm presented include autonomous drone and crawler
inspections of large, complex, unknown environments in addition to situations where traditional
metrological profiling equipment is not practical, such as in confined spaces. In simulation, the
proposed algorithm has completely mapped significantly curved and complex shapes by utilising
only local information, outputting a traditional raster pattern when curvature is present only in
a single direction. In practical demonstrations, both curved and non-simple surfaces were fully
mapped with no required operator intervention. The core limitations of the algorithm in practical
cases is the effective range of the applied sensor, and as a stand-alone method it lacks the required
knowledge of the environment to prevent collisions. However, since the approach has met success in
fully scanning non-obstructive but still significantly complex surfaces, the objectives of this paper
have been met. Future work will focus on low-accuracy environmental sensing capabilities to tackle
the challenges faced. The method has been designed to allow single-pass scans for Conformable
Wedge Probe UT scanning, but may be applied to any surface scans in the case the sensor aperture is
significantly smaller than the part.

Keywords: NDT; free-form surface profiling; autonomous robotic systems

1. Introduction

Enabling robotised scanning processes is the harnessing of prior knowledge to fully
traverse surfaces. For mobile or static-base robots completing NDT scans, knowledge of
positions that have not been scanned is essential to ensure completeness of an inspection
process that guarantees component integrity. Currently, this is ensured by planning a path
over a known surface or part, that is then either verified of modified by an operator to
ensure completeness.

Paths for parts equipped with an accurate CAD model can be produced automatically
with commercial software. For parts without an accurate digital-twin, such as legacy parts
or components with moulding errors, an operator has had to define a path on the robot’s
teach-pendant manually to capture its unique profile.
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For one-off scans or for scanning parts with unique moulding errors, this process
voids the high speed and repeatability benefits available to robotised NDT. In these cases,
robotic platforms must be able to flexibly scan parts through online path planning, and
to provide the same guarantee of completeness in surface coverage that is achieved by a
human operator manually inspecting the part.

Recently, NDT has been enabled to define a 2-scan process. The first scan reconstructs
the part for path planning of a subsequent scan with NDT equipment. The second scan
can then commence, fully covering the known surface that is within reach of the robot.
Methods of reconstructing part surfaces in the initial scan have been widely researched
with respect to both Photogrammetry and in the field of machining.

In the field of Photogrammetry, automated robotised methods for free-form surface
profiling have developed significantly. Processes involving 3D or 2D cameras have evolved
from requiring user-inputted positions [1] to fully automated 3D model reconstruction
techniques. Automated photogrammetry has been applied to a wide range of scales, from
fine-detail model reconstruction using robotic arms [2,3] to large-scale reconstruction using
autonomous robots with wide-aperture sensors [4]. A recent example of photogrammetry
enabling a 2-pass scan within NDT utilising Structure-from-Motion (SfM) [5].

These methods have relied on multiple volumetric inspections of a complex object
using wide field-of-view sensors such as traditional RGB or RGB + Depth (RGB/D) cameras.
This work has considered surface profiling in the case of limited-range sensors, such as line-
scanners or ultrasonic devices that have a field of view many magnitudes smaller than the
inspected surfaces. In the case of laser scanners, a volumetric pre-scan is not safe for human
operators working nearby. Volumetric scanning of curved objects cannot guarantee surface
discovery in the case of water-coupled ultrasound devices without lengthy re-scanning
processes due to beam divergence and scattering.

Within the field of machining, validation of machining quality or accurate part pro-
filing when there is no available CAD model has been implemented using Coordinate
Measuring Machines (CMMs). CMMs utilising limited field-of-view sensors for full-
surface profiling have also been thoroughly investigated [6]. Their use has relied on
spline-surface approximations to predict surface positions [7–9], or planar raster-tangent
path planning [10]. These methods all require saturation of user-sampled positions, user
input to define surface tangents, or rely on tangents defined by a gantry constrained raster-
ization pattern. The spline-surface approximation method has been successfully applied
to ultrasonic-sensor surface discovery [11]. This method requires that the surface can be
defined by a global spline, as opposed to an atlas of piece-wise smooth splines. This is dis-
advantaged when inspecting objects with discontinuities such as holes, as these cannot be
captured by a global b-spline representation. Surfaces with global b-spline representations
are also known as doubly ruled surfaces.

In aiding accurate offline path planning for Eddy-Current inspections, CMM machin-
ery and software were applied within a manual pre-scan procedure to generate a CAD
model [12].

This work has sought to completely remove the reliance on operator inputted infor-
mation regarding the target surface, except for its maximal curvature. The authors have
further aimed to completely automate the surface-profiling process, unconstrained by sen-
sor type, robotic platform, or spline representations of the surface. The only requirement
on sensor information is that the position of the surface relative to the sensor and the
normal-direction of the surface are recoverable at each scan position. Approximate normal
direction extraction requires discovery of at least 3 accurate local surface points.

Enabling full surface discovery requires a search process and memory structure to
discover and store potential surface points for later traversal.

A candidate heuristic process are Flood Fill Algorithms (FFAs) that propagate through
maps or networks in order to discover all positions within a connected surface or graph.
The pseudo-code for two dimensional pixel maps has been presented in Algorithm 1 and
accompanied by Figure 1.
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Algorithm 1 Flood Fill algorithm on the plane.

1: FFA on the plane
2: Begin at Pixel P1
3: Open-List = {P1};
4: Points-Found = {};
5: while |Open-List| > 0: do
6: Pa = Open-List.back()
7: Points-Found.insert(Pa);
8: Open-List.delete(Pa);
9: for direction ∈ {′UP,′ DOWN′,′ LEFT′,′ RIGHT′} do

10: Pb = Pa + direction
11: if Pb is new point AND not boundary point then
12: Open-List.insert(Pb);
13: end if
14: end for
15: end while

First iteration Last iteration

Green: Found-points
Blue: Open-list
Black: Boundary points

Figure 1. Colour Flood-Fill on the plane.

This work has generalised planar FFA heuristics to three-dimensional surface traversal,
inventing the Complete-Surface Finding Algorithm (CSFA). Whereas FFAs require a pre-
known data structure, the novel CSFA requires only curvature information about the target
surface to ensure complete coverage when applied to sensors of arbitrary dimensions
and sensitivity.

Simple stack-based FFA and scanline heuristics are of particular interest in the simula-
tion section. Scanline implementations choose a preferred direction of motion for search
until a boundary position is reached. When a boundary position is discovered, the less-
preferable step is then taken until a free path is found in the preferred direction of motion.
The resultant path is a traditional rasterization pattern, which is widely utilised within
NDT path planning operations.

FFAs have been applied in various contexts, due to their simplicity and versatility. In
the context of image processing, FFAs have seen ongoing widespread use in commercial
products as a time-efficient method for filling a bounded region with a given colour [13].
The principle of the bucket-fill programme has been inverted to aid segmentation algo-
rithms in 2D and 3D contexts from a user-inputted mask [14–16]. In recent years FFAs
have aided machine-learning programmes in object recognition through automatic mask
generation [17]. Mixed mapping and network theoretic implementations have been imple-
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mented to guide image reconstruction. First, FFAs were shown to be as effective as quality
guided algorithms [18], and subsequently used to enhance nearest neighbour node quality
optimisation methods in various fields [19–21].

Further, FFA variants have been extensively implemented in robotic path planning
and control. Discretised potential field variants such as modified CFill and Flood-Field
Methods (FFMs) have been shown to have greater time efficiency in comparison to Potential
Field Methods (PFMs) [22,23]. FFAs have gained interest in the context of optimal path
planning for 2D platforms [24,25], that has demonstrated flexibility through effective
integration with optimal motion planners such as the A* algorithm [26]. These concepts
have evolved in application to optimal motion planning in 3D space for UAVs with an
exhaustive search pattern [27]. Further FFA integration and heuristic mirroring has shown
to enhance traditional path planning algorithms [28,29]. The above Flood-Fill methods
have been implemented on data either with a pre-defined link structure or with a full
exploration in each potential direction. For unknown surface profiling constrained by
costly rearrangement procedures and a limited field of view, these procedures are either
non-applicable or significantly sub-optimal.

2. Method

The aim of this paper has been to generate a complete set of points that describe
the full surface by utilising the simple operations presented in Algorithm 1. To embed
planar FFA operations within a 3D context requires the local position and normal direction
information at each position.

A point source has been placed with a given stand-off from the surface in the normal
direction, and a ray is then generated to intersect with the surface from which the tangent
directions have been extracted. The 3D analogue of moving in the 2D principle directions
is given by approximating the local surface covered by the sensor array with a tangent
plane, defined by the observed points and approximate normal direction. Given a surface
normal, the principal axes corresponding to ‘UP’ and ‘DOWN’ directions have been
calculated through the Gram–Schmidt orthonormalization process [30]. Given a normal
vector −→n = [nx, ny, nz] = [ni], and principle directions −→e 1 = [1, 0, 0], −→e 2 = [0, 1, 0] and−→e 3 = [0, 0, 1], the smallest component −→x has been selected as basis direction;

−→x = {−→e i if |n[i]| = min
k∈[1,2,3]

|n[k]|}. (1)

The chosen basis direction has then been orthonormalised with the surface normal
through the Gram–Schmidt process. The next basis direction −→y is taken by cross product
of normal and tangent vectors. The basis directions [−→x ,−→y ] have formed the cardinal
directions that planar FFA’s utilise of ‘DOWN’ and ‘RIGHT’. The point source traverses the
surface in an analogue implementation of the traditional planar FFA, displayed in Figure 2.
If no data or insufficient data is available at a given position, the current search point is
marked as being in the ambient space with no additional points hypothesised, representing
the 3D analogue of a 2D boundary position.

The approximate local surface normal direction can be extracted from at least three
distance measurements from a single position with a 2D sensor array. Well-calibrated 1D
linear sensors arrays would require two measurement values within a small displacement
range, and single-element 0D sensors would require data from at least three positions. The
algorithm may be applied to any sensor capable of a surface-tool stand off measurement.

The authors have further adapted the simple embedded stack-based FFA implementa-
tion to produce a scanline variation that generates automatic rasterization patterns within
post-processing. For surfaces with uni-directional curvature, this has been achieved by
retaining the order of the extrapolated X, Y basis directions. Retaining order on surfaces
with significant curvature in two directions, such as the sphere or bowl requires including
a ‘preferable direction’ reference. This is so that when X and Y surface–tangent directions
change their order during traversal, preference is given to the one that lies within a con-
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sistent plane in 3D space. On these surfaces, an irregular rasterization pattern emerges
without preference vector. Irregular rasterization is not necessarily a negative feature,
since for many robots and applications, there is an axial movement limit imposed that
prevents multiple circular passes. This has been demonstrated in the results section, while
rasterization is achieved in post-processing, online searches will require additional search
positions that do not observe the target object in order to define boundary positions.

•

Ray-emitting sensor

Z-axis

X-axis, ‘UP’
Y-axis, ‘RIGHT’

Figure 2. Flood Fill analogue in three dimensions. Grey lines represent iso-lines on the surface.

Finally a continuous surface must be discretised to ensure program closure, requiring
a 3D analogue to 2D pixels. This structure allows positions that have been checked to
be logged as seen. An Octree structure composed as a collection of boxes, or leaves has
been chosen as it is less susceptible to numerical point-collisions present with a hash-table
structure [31].

In order to assure full surface discovery, it is required that a step determined by the
local information moves to a different Octree-node on the surface. Movements in 3D space
under a set of changing basis directions may not align to a granular space oriented to the
standard X, Y, Z bases. The undesirable effect of stepping within the same leaf may be
prevented by moderating the Octree-leaf widths relative to the operator-specified step
size d.

To ensure that each step defines a new leaf, the maximum potential length step within
a leaf must be less than or equal to the step size. For leaf width w and step size d, the
maximum step size, along the leaf’s diagonal can be restricted with Equation (2).

w ≤ d√
3

. (2)

On high-curvature surface sections the surface will inflect within each Octree leaf,
reducing the Cartesian arc-length from one observed position to another. An upper bound
for the arc-length reduction for curved surfaces needs to be defined to ensure that each
step along the surface defines a new leaf.

Arc-length reduction due to the projection of a line along a curved surface is bounded
by the surface’s curvature, which defines how a local linearisation deviates from the true
surface profile. This term has been defined for a small step-vector

−→
dx by the Second

Fundamental Form (SFF) denoted II [32];

Arc-length difference ≈ −→
dxT II

−→
dx/2. (3)

The principal curvatures of the surface are eigenvalues of the SFF, and so the maxi-
mum possible inflection of a curve bound to the surface is in the direction of maximum
principal curvature.
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If the maximal principle curvature over the surface is κmax, then an upper bound on
the minimal required leaf-width for a step size d may be derived;

w/d ≤ |1 − |κmax|d/2|√
3

. (4)

Dynamic discrete sampling may apply this principle to calculate minimal necessary
Octree leaf-widths and step sizes in highly curved regions [33]; however, in this paper we
restrict the analysis to uniform leaf-widths.

Flat surfaces have an over-sampling value of w = d/
√

3 (in units of d), since the
maximal principal curvature is 0. This has returned Equation (2), since the step-size in
ambient space is equivalent to that of the surface projection, the step taken always contained
within the same spatial plane. An example of detrimental point-aliasing when curvature is
not considered has been presented in the results section.

Finally, in the case of surfaces with a significantly restricted width, the step size should
be limited to less than half of the minimum surface width.

The complete algorithm when simultaneously considering a pulse-echo test has been
described in pseudo-code in Algorithm 2.

Algorithm 2 Pseudo-code for the novel CSFA.

1: Input: Maximum expected curvature κ, step-size d, and maximum Cartesian reach
ΔX,

2: Octree = GenerateWorkSpace(κ, d, ΔX),
3: Operator moves sensor to surface,
4: GetData() →surface position and normal vector P1, N1,
5: Open-List = {P1}
6: Points-Found = {}
7: while |Open-List| > 0 do
8: Pa = Open-List.back()
9: Open-List.delete(Pa)

10: if 0 <
∣∣JΩ

a {= InverseKin(Pa)}
∣∣ then

11: Move to Ja = minmotion JΩ
a

12: GetData() → Pa, Na, data
13: if !data.empty() then
14: Sensor.zdirection → Na,
15: GetUTdata(),
16: Octree.insert(Pa)
17: GramSchmidt(Na) → {‘UP’, ‘DOWN’, ‘LEFT’, ‘RIGHT’}
18: for direction ∈ {‘UP’, ‘DOWN’, ‘LEFT’, ‘RIGHT’} do
19: Pb = Pa + direction
20: if Pb /∈ Octree then
21: Open-List.insert(Pb);
22: end if
23: end for
24: end if
25: end if
26: end while

The CSFA process results in a single-pass process that reduces the overall number of
steps, displayed in Figure 3.
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Current Scanning process Scanning with CSFA

Pre-scan
The part is scanned with

photogrammetric equipment to build a
digital twin for path planning.
Or the robot is jogged to key
way-points along the part.

Simultaneous surface discovery
and scanning.

Path planning on the profiled surface or
implementing points jogged-to
within a path following script.

Now the path is in place,
scan the surface.

Figure 3. The one-step process enabled by the CSFA removes the necessity of accurate digital-twins and world-frame
calibration, or lengthy robotic jogging procedures.

3. Robotic Path Planning

For robotic arm platforms, sections of the surface may lie out of reach, or a given
motion may be impossible to execute due to a kinematic singularity [34]. These issues
are incurred by a break in the correspondence between Cartesian space and the robot’s
fundamental coordinates, the possible joint-positions and link structure. In overcoming
the spatial limitations of the robotic manipulator, oriented target-points were converted to
configuration space coordinates. As a proof of concept investigation for the deployment
of the novel CSFA, test pieces were chosen to test the algorithm’s ability to ensure full
coverage on curved and complex surfaces while minimising the risk of collision. Collision
avoidance in the test cases were achieved by placing a motion-length limit. To maintain
full coverage in the case of required back-tracking, any motion above this joint-space limit
would cause the robot to move safely through a known point above the part. In the case
of a convex part, point-to-point motion was considered admissible within one step if the
subsequent point did not require motion in the current point’s normal direction of more
than the sensor-surface stand off. Since the algorithm requires an initial position to be
defined along the surface, an initial configuration is given at the start. The path-planner
then proceeded to choose the next in Cartesian space, and selected the candidate robotic
configuration with the smallest joint-motion. If the selected point induced a configuration
motion larger than the allowed threshold, the point was pushed back into the Open-List
and another chosen until a suitable point was found or only large-motions were possible.
In the latter case, the point with the smallest joint-wise motion was chosen. The robot
was then sent joint-wise position command motions, avoiding kinematic singularities and
ensuring the reachability of target points.
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4. Results

Tests on shapes with key non-linear aspects have demonstrated the method’s total
coverage of generalised locally differentiable surfaces. The shapes chosen have been
selected on the basis of surface irregularities that present challenges to full scanning.
Surfaces with cut-outs that are not captured by a global surface spline representation
demonstrated the advantage of the algorithm in handling machined parts, or in piece-
wise spline produced parts. These are not handled by the nearest available algorithm.
Additionally, curved and doubly-curved surfaces were chosen to validate the suitability
of the linearisation approximation method. In this section, surfaces chosen demonstrate
complete coverage of locally smooth parts and parts with cut-outs. By demonstrating on
positive, negative and zero curvature surfaces individually, the iterative and non-recursive
algorithm has been validated for all locally smooth and holed surfaces. The process
has been implemented in C++, utilising Simon Perrault’s Octree structure [35]. Robotic
simulations have been generated using RoboDK software with the Universal-Robotics
UR10e as a demonstrative platform, with mesh simulations presented in MeshLab.

The CSFA has demonstrated ease in generating raster-motions on aerofoil components
with varying step-sizes, displayed in Figure 4. Due to the relative flatness of the surface,
a raster pattern was achieved. For more curved surfaces, there will be over-sampling of
the space.

(a) (b)

Figure 4. Demonstration of rasterizing a curved aerofoil component. The robotic path is traced in
yellow, demonstrating the raster-like path obtained. (a) Sampling distance: 3 mm. (b) Sampling
distance: 10 mm.

The method has been demonstrated to avoid surface-holes, re-scanning areas previ-
ously uncaptured in early-scan stages, displayed in Figure 5. The stack based memory
of positions to check allowed effective full-surface discovery in the presence of irregular
geometries. Figure 5 demonstrates that the CSFA has a clear advantage over gantry-based
delivery platforms, covering complex surfaces without visiting the holed regions while
still capturing the whole surface without needing the planar limits of the plate as input.

Repeatedly holed surfaces present multiple points of return, demonstrated in Figure 6.
The CSFA process makes a linear approximation of the surface in the neighbourhoods

of discrete points. Displaying the algorithm on surfaces of positive and negative curvature,
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as in the sphere and bowl, demonstrates that it is robust in cases of local non-flatness. This
is displayed in Figure 7.

(a) (b)
Figure 5. The scan initially misses sections of the pipe due to the shape’s cross-sectional hole.The
missed points are picked up at the end of the scan as there is memory of surface-positions to check.
Points found are marked in blue, the robotic path traced in yellow. (a) Initial scan-pass. (b) End-of-scan.

Figure 6. A complex flat plate holed with differently sized voids. The robotic path in yellow backtracks
to allow for full surface discovery, shown by blue crosses, in the presence of surface-discontinuities.

(a) (b)
Figure 7. Points discovered while simulating a scan on a bowl and sphere of radius 150 mm with a
sampling distance of 3 mm. (a) Concave shape sampling. (b) Sphere sampling.

The irregular rasterization pattern may be seen in Figure 8. Unlike for surfaces of
only one direction of curvature such as in Figure 4 or Figure 5, rasterization for double-

57



Sensors 2021, 21, 7692

curvature surfaces is irregular. This incurs inefficient motions compared to traditional
spiral-rasterization patterns.

Figure 8. Sampling on a concave shape. The robotic path, that can form irregular patterns without a
preferred direction, is shown in yellow. Discovered points on the bowl are shown as blue crosses.

A horizontal rasterization pattern of subsequent circles resembling traditional spiral-
ized patterns may be imposed by using a preferred direction vector; however, they can
result in large re-arrangement procedures seen in Figure 9.

Figure 9. Sub optimal horizontal rasterization of a concave surface. Yellow trace lines demonstrate
costly re-arrangement procedures to discover all the points shown in blue.

Curvature considerations are also demonstrably necessary for full surface coverage
of components. Without over-sampling the space based on known surface curvature, full
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coverage is not guaranteed since taking a step will not necessarily take the algorithm to a
new Octree-leaf. In turn, the algorithm stops prematurely as it aliases the points before
and after the step within the Octree map. The effect of this is displayed in Figure 10.

Figure 10. Points in bold display the extent of discovery with no over-sampling regime. Sampling
rate: 1 mm, radius of bowl: 150 mm.

5. Experimental Results

Complete coverage of locally differentiable surfaces has been shown in simulation
when there are no limitations due to the robotic platform or sensor. Two key test pieces
were identified to validate the algorithm’s practicality in deployment. These were a surface
of doubled-curvature and a surface with a cut-out. The doubly curved surface has been
chosen to show that with the correct step size, sensors with small ranges may complete
the search process, and that the approximation found for the surface normal is a suitable
one. Moreover, since the important quantity in Octree sampling to guarantee completeness
is the ratio of curvature to step size, the doubly curved surface shows that the heuristic
presented is applicable to surfaces of all curvatures, given a step size that does not hinder
sensor-surface coupling. The part with a section cut out further validates the approach
when the surface is not globally represented by a global b-spline, as is necessary within
the nearest algorithm. Since the algorithm utilises an iterative and non recursive heuristic,
by demonstrating the process on these surfaces it is also demonstrated to work on curved
surfaces with varying curvature and with cut-outs. It is important to note that the hardware
chosen for completing the scanning process is the limiting factor, as smaller sensors are
necessary to complete scans on objects that have extreme curvatures.

Experimental testing of the CSFA utilised three flange-mounted Panasonic HG-C1030-
P lasers, connected to an Arduino board for real-time data collection. The laser’s viewing
range was 30 mm ± 5 mm, limiting the feasible step size over highly curved surfaces,
as height variations of over 5 mm over the step would remove the possibility of further
surface discovery. The laser’s repeatability did not affect motion planning, as it was in the
range of 10 μm. The lasers were held within a 3D-printed cradle displayed in Figure 11.
An external laptop collected data from the Arduino and Universal-Robots UR10e robotic
platform simultaneously. Connecting through a COM port and Ethernet-enabled TCP/IP
connection, respectively, position data and commands were received and sent to the robot.
The CSFA, data interpretation, and inverse kinematics solutions were coded in C++. The
external laptop had an Intel Core i5 processor with the program built and run from a Visual
Studio programming environment. Results were imaged using Meshlab.

To represent a non globally smooth b-splineable surface, laminate plates were placed
into a planar pattern with a cut out displayed in Figure 12a alongside the point-cloud of
collected data displayed in Figure 12b. Full discovery of the target surface demonstrates
the applicability of the CSFA in cases where a direct path along the surface to every point
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is not possible. The recollection of hypothesised points to visit allows traversal around
corners, completely scanning regions with no direct path to one another.

Figure 11. The tri-laser holder, attached to the UR10e flange. The design with rotational symmetry
around axis 6 of the robot minimised the footprint of the tool.

(a) (b)
Figure 12. Automatic online profiling and scanning of an object with non-smooth shape. After a new point is found, the UT
probe is applied to collect data. (a) Non-smooth shape created from arranged plates. (b) Resultant point cloud collected by
the tri-laser and projected to the World-Frame using the live Joint-position of the robot.

A curved mock-aerofoil segment provided additional experimental data displaying
application to a use-case commonly seen within NDT in Figure 13. The total time taken
for this use-case was 7 min 30 s for 3 cm spaced collection points. Providing a real-world
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use-case for NDT, the full surface discovery of a doubly-curved surface with no-prior
path planning provides the proof of concept for single-pass profiling of a complex surface
and validation for the linearised surface approximation, while the part is relatively small
compared to the robot’s reach, the strength of this example is in the surface’s extreme
curvature. This use-case validates the application to surfaces commonly seen as complex
within NDT.

Figure 13. Point Cloud of a complex doubly-curved surface profiled in real time, aligned to the CAD
model in post-processing.

Finally, the proof of concept for simultaneous non-contact surface profiling with the
tri-laser platform combined with Conformable-Wedge-Probe scanning is presented. The
process is two-step; the tri-laser discovers the surface, displayed in Figure 14a, the tool
reversed and the Conformable Wedge Probe applied to the discovered position, displayed
in Figure 14b.

In deployment, sensor ranges provided the most significant challenge. Since the tool’s
base had a diameter of 5 cm, the curvature of parts observed within that region had to
not exceed the viewing range of the laser-sensors in order to ensure the tool and part did
not collide.

The main source of risk to deployment was an incorrect laser-tool calibration. During
early testing, the sensor’s beam had an orientation offset that with larger step-sizes often
risking collisions with the part. Scanning the planar part with a re-printed tool that
corrected the laser-flange alignment, and calibrated using the four-point method, the
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standard deviation of points from the horizontal plane was 0.81 mm with mean signed-
error of O

(
10−16 mm

)
.

(a) (b)
Figure 14. Automatic online single-pass profiling of a surface. (a) Initial non-contact surface discovery
and profiling with the tri-laser. (b) Subsequent application of the Conformable-Wedge coupled
UT device.

Further, while demonstrations were limited by the lack of a collision avoidance schema,
these experiments have proven the algorithm’s capability in autonomous scanning pro-
cesses, and applicability to robotic NDT. The main challenge facing industrial deployment
of robotic NDT where parts have no accurate digital-twin is the flexibility of the robotic
platforms in use, and their ability to define complete surface coverage. We have proven the
ability of this algorithm to overcome this issue in realistic contexts.

6. Discussion

The authors have successfully implemented an adaptation of the FFA for full coverage
of free form surfaces. The implementation has been demonstrated on positive and negative
curvature surfaces, highlighting how the linearised approximation is not a detriment to
overall surface following capabilities of the algorithm.

In post-processing, the CSFA has been shown to output a raster-path along arbitrar-
ily locally differentiable surfaces. For doubly-curved surfaces, the rasterization pattern
becomes irregular and there is an over-sampling of points. However, the method ensures
total coverage of the part which is preferable in NDT to sparse sampling. The potential
applications of the algorithm are not limited to automatic rasterization procedures. The
Octree memory method would allow fully automated discovery and scanning of structures
with any robotic platform, such as mobile robots traversing a large structure. Further,
the traversal method can be applied with any limited-aperture sensor, enabling a gener-
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alised surface-movement strategy when sensor data is limited. Finally, the discrete-point
approach allows the method to capture surfaces that cannot be globally splined. The
limitation in the case of significant surface discontinuities such as part-edges is that the
process will not necessarily find the other side of the part, discovery determined by the
sensor’s range and aperture size relative to the discontinuity. In practical deployments
the sensor range was the key limitation, limiting the sensors step size due to the surface
curvature so as to continue full surface discovery. Practical demonstrations applied to com-
plex cut-out surfaces and realistic doubly curved aerofoil mock-ups show the real-world
application with limited-range laser sensors. Proof of concept for wedge-probe coupled
UT applications provide the NDT specific aims of this paper of removing the need to path
plan for full-surface scanning.

For complex surfaces such as aerofoils or machined plates with cut-outs, the algorithm
demonstrated is safe for deployment. For more complex shapes such as external pipe-
scans, limited knowledge of the environment is necessary to prevent collisions. Future
work will deploy the algorithm using low-cost environmental sensors to prevent collisions
and path planning such as Rapidly exploring Random Trees (RRT) algorithms to scan
complex components.

Future works investigating online surface profiling will further consider options to
remove the necessity for user-inputted curvature estimates and step-sizes entirely. Adapta-
tions to specific sensor types for surface profiling shall also be considered.
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Abstract: Inspection of components with surface discontinuities is an area that volumetric Non-
Destructive Testing (NDT) methods, such as ultrasonic and radiographic, struggle in detection
and characterisation. This coupled with the industrial desire to detect surface-breaking defects of
components at the point of manufacture and/or maintenance, to increase design lifetime and further
embed sustainability in their business models, is driving the increased adoption of Eddy Current
Testing (ECT). Moreover, as businesses move toward Industry 4.0, demand for robotic delivery of
NDT has grown. In this work, the authors present the novel implementation and use of a flexible
robotic cell to deliver an eddy current array to inspect stress corrosion cracking on a nuclear canister
made from 1.4404 stainless steel. Three 180-degree scans at different heights on one side of the
canister were performed, and the acquired impedance data were vertically stitched together to show
the full extent of the cracking. Axial and transversal datasets, corresponding to the transmit/receive
coil configurations of the array elements, were simultaneously acquired at transmission frequencies
250, 300, 400, and 450 kHz and allowed for the generation of several impedance C-scan images.
The variation in the lift-off of the eddy current array was innovatively minimised through the use
of a force–torque sensor, a padded flexible ECT array and a PI control system. Through the use
of bespoke software, the impedance data were logged in real-time (≤7 ms), displayed to the user,
saved to a binary file, and flexibly post-processed via phase-rotation and mixing of the impedance
data of different frequency and coil configuration channels. Phase rotation alone demonstrated an
average increase in Signal to Noise Ratio (SNR) of 4.53 decibels across all datasets acquired, while
a selective sum and average mixing technique was shown to increase the SNR by an average of
1.19 decibels. The results show how robotic delivery of eddy current arrays, and innovative post-
processing, can allow for repeatable and flexible surface inspection, suitable for the challenges faced
in many quality-focused industries.

Keywords: non-destructive evaluation; robotic NDE; automated eddy current testing; eddy cur-
rent arrays

1. Introduction

The global Non-Destructive Testing (NDT) market size was valued at USD 6.3 billion in
2021 with a predicted compound annual growth rate (CAGR) of 13.66% from 2022–2029 to
hit a total market value of USD 16.66 billion [1]. This high level of growth can be attributed
to the rise of “NDT 4.0”, in which greater connectivity across the manufacturing supply
chain is sought through the integration of connected sensors of which NDT techniques play
a role [2]. To deliver this level of interconnectivity, it is now commonplace to see automated
robotic delivery of NDT [3–6].

Sensors 2022, 22, 6036. https://doi.org/10.3390/s22166036 https://www.mdpi.com/journal/sensors65
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The vast majority of the NDT market is based on volumetric inspection of high-value
infrastructure and components, such as automotive/aerospace components or public rail
infrastructure, primarily through the use of radiographic and ultrasonic testing. Due to
this popularity, the automation of volumetric techniques is the most mature in the NDT
industry. Further growth in the automation of volumetric NDT is expected to lag behind
other NDT techniques, as innovation has shifted towards more novel and complex deliv-
ery of volumetric NDT as well as incorporating advanced imaging and post-processing
techniques. Examples of these trends include performing the volumetric inspection at the
point of manufacture for high-value components [7–12], performing aerial UAV-based vol-
umetric inspection [13–16], optimising the amount of data gathered [17,18], and deploying
machine/deep learning in the analysis of the datasets generated [19–21].

By contrast, the automation of surface inspection is far less mature and from 2022–2029 it
is predicted to have the highest CAGR of any NDT technique due to the increased adoption
of Eddy Current Testing (ECT) [1]. Of the ‘big 5′ NDT techniques, eddy current, magnetic
particle, and penetrant testing were shown to be able to detect surface-breaking flaws, where
others in the ‘big 5′ (ultrasound and radiographic) struggle [22].

Eddy currents are induced in a sample according to Faraday’s Law of Induction [23]
when a coil carrying an alternating current produces an alternating magnetic field and the
conductive sample lies within this magnetic field. The induced eddy current in the sample
is of the opposite phase to that of the coil and sets up its own magnetic field to oppose that
of the coil. The eddy current density, J(z), decays exponentially with depth z in an isotropic
material, and the sensed impedance is directly proportional to the current density [24]:

J(z) = J0 exp
(
− z

δsd(1 + i)

)
(1)

In the presence of a defect, the current density is altered and this change in current
density can be sensed as a change in impedance. The magnitude of the eddy current
density decays exponentially and when it falls to 1/e of its surface value, the depth at
which this occurs is known as the standard depth of penetration, δsd. The standard depth
of penetration is dependent on the frequency of the voltage in the coil, the magnetic
permeability, and the electrical conductivity of the component, and is widely viewed as the
deepest depth a meaningful change in impedance can be sensed. Due to the exponential
decay associated with eddy currents, they are ideally suited to detecting surface-breaking
defects. This is in direct contrast with ultrasound where the front wall echo typically masks
any shallow defects within a component. With correct eddy current probe design and
frequency selection, an eddy current can be created that has a standard depth of penetration
greater than or equal to the thickness of some thin-walled components, such as the canisters
used in the storage of low-level nuclear waste.

Magnetic particle testing is restricted to the use of ferromagnetic metals and requires
the component to be magnetized/de-magnetized frequently. While penetrant testing is
not restricted to any material but requires the component to be coated in a penetrant and
developer, which is frequently undesirable. Both magnetic particle and penetrant testing
are subject to great operator error and do not produce discrete data points as a sensor is
rastered across the component’s surface making automation unfeasible. However, these
drawbacks do not exist for ECT, and hence ECT is well suited for automation. As society
moves towards Industry 4.0, automation is becoming increasingly important in surface
inspection in the immediate future.

In comparison to volumetric techniques, ECT does not suffer from the health and safety
concerns associated with radiographic inspection. Additional technical requirements may
also prohibit the use of other inspection modalities. For example, multi-angle accessibility
requirements and part size limitations may make computed tomography radiographic
testing unfeasible. While for ultrasonic inspection, environmental factors may deter the use
of a couplant. ECT has a significant advantage as single-sided access is all that is required,
and no couplant is needed to perform an inspection.
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Reuse and sustainable business practices are the main drivers behind the increased
adoption of ECT, as detecting surface-breaking flaws that occur in operation is becoming
increasingly important to prolong the safe operation of key assets for industries such
as nuclear and aerospace. Furthermore, due to the lower market size, robotic delivery
of ECT is far less common with only a few primitive integration efforts being reported
in the literature [25–28]. To keep pace with the high throughput demands of modern
production/maintenance lines, increased robotic deployment of ECT is necessary and vital
to capitalise on this demand.

This paper presents, for the first time, the automated deployment of an eddy current
array, via a flexible robotic cell complete with force–torque control, to scan a canister typical
of the ones used in the storage of spent nuclear fuel. Table 1 shows a comparison between
previously published papers that feature robotically deployed eddy current inspection
and this work. Real-time adaptive control of a 6-axis robotic arm (KUKA Quantec Extra
HA KR-90 R3100, Augsburg, Bavaria, Germany [29]) and an external rotary stage (KUKA
DPK-400 [30]) with force–torque compensation was accomplished using a framework
described in the author’s previous work [31]. Force–torque compensation allowed for
constant lift-off of the eddy current array during the inspection. This was intentionally
carried out as it was shown that robotically delivered eddy current inspection offers far
less noise when compared to that of manual eddy current inspection [32]. A commercial
32-element padded eddy current array from EddyFi (Part No: ECA-PDD-034-500-032-N03S,
Québec, QC, Canada [33]) with a centre frequency of 500 kHz and an operating frequency
range of 100–800 kHz, along with a 64-element Eddyfi Ectane 2 controller [34] were used
to perform 180-degree rotary scans of a 1.4404 stainless steel nuclear grade canister with
known stress corrosion cracks. Extensive software infrastructure coupled with the Eddyfi
Ectane 2 Software Development Kit (SDK) allowed for the impedance data to be logged
and analysed in real-time. All data were stored in a proprietary binary file format to allow
for further post-processing in MATLAB.

Table 1. Comparison between previously published robotically deployed eddy current inspections
and this work.

Mackenzie et al.,
2009 [25]

Summan et al.,
2016 [26]

Morozov et al.,
2018 [27]

Zhang et al.,
2020 [28]

This Work

Adaptive Motion � � � � �
Eddy Current Array � � � � �
Image Compensation � � � � �

Where � denotes yes and � denotes no.

This infrastructure allowed for the acquisition and real-time analysis of impedance
data. Novel image post-processing techniques, such as phase rotation and mixing, were
shown to increase the Signal to Noise Ratio (SNR) of the resulting C-scan images by an
average of 4.56 and 1.19 decibels, respectively. It is envisaged that studies such as this will
progress eddy current testing to match the level of flexibility and quality enjoyed in the
post-processing of ultrasonic datasets [35,36].

2. Experimental System

NDT is crucial to safety-conscious industries such as nuclear [37]. Traditionally, the
inspection of nuclear assets is highly resource-intensive and complex. The inspection
challenge is complicated further when the asset lifetime exceeds the original design intent.
This problem is one that is currently being faced in the UK, where government policy
has shifted from favouring reprocessing to long-term storage of nuclear assets [38]. Spent
nuclear fuel due for reprocessing is now being stored long term as reprocessing facilities
are closed down. Some sites store low-level waste in canisters made from 0.9 mm thick
1.4404 stainless steel. These canisters range from 130–150 mm in diameter and are ~300 mm
in length. To allow for effective cooling, the canisters are stored in facilities that are partially
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open to the environment. Given the coastal location of the UK, stress corrosion cracking is
a concern. Due to the points mentioned above, canisters with intentionally induced stress
corrosion cracks were scanned with an eddy current array and the acquired impedance
data were analysed within this study.

2.1. Hardware and Experimental Summary

Figure 1 shows the experimental hardware used in the automated deployment of the
eddy current system. A nuclear canister with a matrix of 16 stress corrosion cracks shown
in Figure 2 is held within a mechanical chuck on top of a KUKA DPK-400 external rotary
stage that has an angular resolution of 0.009◦. The padded Eddyfi eddy current array (Part
No: ECA-PDD-034-500-032-N03S) is mounted in a bespoke 3D-printed housing which is in
turn secured to an IP-65 rated gamma force–torque sensor from ATI Industrial Automation
(Apex, NC, USA) [39]. To move the sensor to the height of interest for the inspection, the
eddy current array, 3D-printed housing and force–torque sensor assembly, are mounted to
the flange of a KUKA KR-90 robot. Both the KR-90 and DPK-400 external rotary stages are
controlled via a KRC 4 controller [40].

Figure 1. Eddy current inspection hardware.

In order for the eddy current array to be pressed onto the canister surface in the
direction of the canister’ centre, a calibration tool was manufactured to teach the KR-90
robot a new base coordinate system. The calibration tool was made so that it would align
the centre of the chuck to the centre of the rotary stage. Additionally, the calibration tool
allowed for the centre of the tool along with 4 concentric radial calibration points at 150 mm
in 90◦ increments to be taught to the KR-90 robot. By teaching the KR-90 robot these points,
it was able to know where the centre of the canister and rotary stage was relative to its
own coordinate system, and ensure motion was performed relative to this point. This effort
guaranteed that the eddy current array was always pressed against the canister surface
in the direction of the canister’s axial centre and helped establish good electromagnetic
coupling during the automated inspection.
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Figure 2. Canisters with a matrix of 16 stress corrosion cracks. Depositions of 5 μL droplets of sea
water, 3.03 g/L of MgCl2, 15.2 g/L of MgCl2 and 30.03 g/L of MgCl2 were used to induce the cracks
in the top row, left, central and right columns, respectively.

The eddy current array is deployed to the height of interest in the Z-direction of the
canister via a variable set by the user on the Graphical User Interface (GUI) of a LabVIEW
program using a framework similar to previously published work [31]. Force and torque in
and around all three axes shown in Figure 1 are sensed via the force–torque sensor and are
transmitted to a LabVIEW program via the robot controller using the Kuka Robot Sensor
Interface (RSI) [41]. The transmission of the force and torque characteristics allowed for:
(1) the adaptive motion of the eddy current sensor during inspection; (2) the balancing of
the eddy current probe and the subsequent triggering for the acquisition of the impedance
data to begin; and (3) the triggering of the rotary stage to begin movement. It is important
to note that the force–torque sensor was calibrated with all hardware mounted prior to any
automated inspection through a program provided by the manufacturer. The calibration
enabled the net force and torque values being applied to the eddy current array and
mounting assembly to be correctly sensed and subsequently transmitted to the LabVIEW
control program for adaptive motion to be performed.

The KR-90 robot presented the eddy current array onto the surface of the nuclear
canister at the user-specified height, and a target force and torque of 10 N and 0 Nm were
met in the Y-direction and X-axis, respectively, for 3 s. Once this time period had passed,
the balancing of all coils within the eddy current array was performed when the probe was
stationary. After a further 3 s, the impedance data acquisition along with the rotary stage
movement was triggered.

During the inspection, a PI control system was used to monitor and correct both the
force in the Y-direction and the torque around the X-axis at the previously mentioned target
force and torque values. It was found that P- and I-values of 0.1 and 0.0 gave an adequate
control response. Control of the eddy current probe’s orientation in this manner allowed
for minimal variations in the lift-off of the eddy current array throughout the inspection
providing excellent coupling. Other previously published literature has shown that lift-off
can be reduced via advanced signal processing and elaborate probe design [42]. These
efforts are often particularly involved and particular to one sample/defect type. As a result,
these lift-off compensation strategies are complex to deploy and benefit from. The approach
in this paper of utilising a force–torque sensor in combination with a padded ECT array
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provides experimental flexibility and passively compensates for any lift-off variation at the
point of acquisition giving wide-reaching benefits.

The acquisition of the impedance data was stopped when the rotary stage had completed
the angular movement requested by the user from within the LabVIEW program. A singular
scan can be summarised by the following process:

1. A connection with the eddy current Ectane device is made.
2. The eddy current array is set up with the following parameters:

a. Probe type;
b. Probe configuration (axial and/or transversal—See Section 2.2);
c. Frequencies;
d. Voltages;
e. Gain;
f. Repetition rate.

3. The robot and external rotary axis are set up with the following parameters:

a. Linear speed of the KR-90 robot;
b. Approach speed of the KR-90 robot;
c. Angular movement of the canister/external rotary stage;
d. Angular speed of the canister/external rotary stage;
e. Target force for the KR-90 robot to apply the array onto the canister.

4. The KR-90 robot places the probe against the canister and the target force is reached.
5. The target force is maintained for 3 s.
6. The balancing of the eddy current array is performed.
7. Wait a further 3 s.
8. The acquisition of impedance data and rotary stage movement is triggered.
9. Once full angular motion is complete, the acquisition of impedance data is stopped.
10. The KR-90 robot moves the eddy current array to a predetermined safe position.
11. The acquired impedance data are saved to a binary file for post-processing in MATLAB.

2.2. Eddy Current C-Scan Acquisition

Figure 3 shows a generic eddy current array layout along with illustrations of the
transmit and receive pairings for the axial and transversal configurations. Depending
on the probe geometry, there may or may not be an equal number of transversal and
axial transmit and receive pairs. Each pairing in each configuration generates a data
point of complex impedance data. The probe is linearly scanned perpendicular to the coil
columns as noted in Figure 3, and the data points are logged into a complex 2D array. The
resulting complex arrays can then be post-processed, and the vertical component of the
post-processed complex array can be plotted in a C-scan format to show any defective
signals with maximum Signal to Noise Ratio (SNR).

As can be seen in Figure 3b for the axial configuration, coils in the array are excited
in one column and reception of the impedance data is performed across the array in the
second column. Conversely, the transversal configuration documented in Figure 3c shows
coils being excited and reception of the impedance data being performed within the same
vertical column of coils.

The coil firing sequence is changed between the axial and transversal configurations to
achieve greater sensitivity to differing defect orientations. With reference to the coordinate
system in Figure 3, a larger change in impedance would be observed for a defect that is
aligned with the X-axis for a transversal configuration over that of an axial configuration.
This is due to the defect more severely intercepting the eddy current that exists between
the two transmit and receive coils in the transversal configuration over that of the axial
configuration. This greater compression of the eddy currents caused by the defect presence
will have a large effect on the electromagnetic field and by proxy the sensed change in
impedance. The opposite can be said to be true for a defect aligned in the Y-direction. For
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further reading, Ye et al. [42] provide a thorough theoretical and experimental investigation
of this phenomenon.

Figure 3. Eddy current array transmit and receive configurations. (a) Generic Eddy current array
layout with two vertical columns of coils. (b) Axial transmit and receive configuration where x (in blue)
corresponds to the transmit/receive pair centres of the excited eddy current channels in the test part.
(c) Transversal transmit and receive configuration where x (in green) corresponds to the transmit/receive
pair centres of the excited eddy currents in the test part resulting from the first/odd column of coils, and
where x (in orange) corresponds to the transmit/receive pair centres of the excited eddy currents in the
test part resulting from the second/even column of coils.

It is also evident from Figure 3 that the centres of excitation are not aligned between
the axial and transversal datasets in the X-direction. Moreover, for each coil column within
the transversal dataset, the data centres are also misaligned. As alluded to in Section 2.2,
this positional misalignment is corrected within the LabVIEW program and ensures that
the resulting complex array for each dataset has the same spatial grid.

Key to the positional compensation is the acquisition rate of the eddy current array
and the angular speed of the rotary stage so that each acquisition point aligns with an
integer number of divisions of half the array coil column pitch, Δx. The acquisition rate
and number of divisions between half of the array column pitch are set by the user, and
the coil pitch is defined by the geometry of the array. These three variables are used to set
the angular speed of the rotary stage. For example, if an eddy current array has a column
coil pitch of Δx = 7 mm, an acquisition rate of 50 Hz, and 50 divisions, the linear speed
would need to be

(
7
2 × 1

50

)
/
(

1
50

)
= 3.5 mm/s. This linear speed can then be converted

to rotational speed by dividing the diameter of the canister at 150 mm to give the angular
speed of the rotary stage at 1.34 deg/s. Whilst individual datapoints are not positionally-
encoded, the positional location is extrapolated from setting the angular speed relative to
the eddy current probe geometry and acquisition rate as mentioned above. By doing so, it
ensures that data are acquired at both the axial and transversal data centre points on the
X-axis as the array is linearly scanned.

In order to ensure a common spatial grid, the first and last impedance data points
corresponding to a distance of half the coil pitch are discarded within the axial complex
array. By discarding the first set of data points that cover half the coil pitch, the axial
complex array in the X-direction is synched with the first/odd column of the transversal
dataset. Moreover, by discarding the last set of data points that cover half the coil pitch,
the axial complex array in the X-direction is synched with the second/even column of the
transversal complex array. This discarding of data is shown graphically in Figure 4a. The

71



Sensors 2022, 22, 6036

resulting data is then linearly interpolated in the Y-direction to align with the Y-coordinates
of the transversal complex array.

Figure 4. Illustration of complex impedance data positional compensation performed between axial
and transversal configurations. (a) Axial complex array positional compensation. (b) Transversal
complex array positional compensation.

The transversal C-scan array is similarly compensated by separating out the first/odd
and second/even columns into separate arrays. Impedance data corresponding to a
distance of a full coil pitch is discarded from the start of the odd array. Conversely, the
opposite operation is performed on the even array where impedance data corresponding
to a distance of a full coil pitch is discarded from the end of the array. This process is
graphically illustrated in Figure 4b. Once all data are discarded, the odd and even arrays
are interleaved together to make one C-scan array that is on the same positional grid as the
axial C-scan array.

Once all data were collected and positionally compensated, oversampling is under-
taken in the vertical direction of the array. No oversampling is performed in the horizontal
scan direction as this is controlled adequately by setting the rotational speed and acqui-
sition rate of the robot as described in the previous paragraphs. The oversampling is
performed via linear interpolation of the raw impedance data. It was found that this linear
interpolation was fast to implement and produced negligible errors with a maximum error
of 2.12% and an average of 0.55% across both the axial and transversal datasets at 250 kHz.

By performing data compensation in this manner, a common spatial grid is established
for each dataset configuration, enabling like-for-like comparison and further advanced
post-processing techniques such as mixing of datasets.

2.3. Software Infrastructure

Extensive software infrastructure to control the eddy current Ectane device, as well
as receive and process the acquired impedance data in real-time was developed and is
documented in Figure 5. Literature has previously well documented the robotic software
infrastructure required [31,43] and as a result, the work presented herein will focus on the
eddy current software development effort.
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Figure 5. A flow chart showing the data transfer between different software and hardware elements.

In total 3 programs were developed: (1) A C program that houses the Eddyfi Ectane
2 SDK; (2) A LabVIEW program that receives, post-processes and plots impedance data in
real-time as well as saving the data in a binary file format; and (3) A MATLAB reviewer
program that reads in the binary file for further post-processing.

Both the C and LabVIEW programs are state machines. States within the C program
are evaluated through a switch statement within the main while loop. In addition to the
main while loop, the C program contains two threads that each have local host Transmission
Control Protocol (TCP) connections. The first listens for standardised comma-separated
string commands from LabVIEW and the other sends 32-bit impedance data from the
Ectane device to the LabVIEW program. The same infrastructure with reverse logic is
mimicked within the LabVIEW program through JKI state machines [44]. The standardised
comma-separated string that is sent from LabVIEW is carried out in the following format:

state, IPAddress, configuration, acquisitionRate, gain, 
freq1, voltage1, freq2, voltage2, freq3, voltage3,  
freq4, voltage4, freq5, voltage5 

As can be seen, there are 15 variables housed within the standardised string command. The
first of which is the state that the C program should execute, and these are summarised below.

1. Do Nothing;
2. Connect to Device;
3. Set Up;
4. Balance;
5. Acquire Data;
6. Stop Data;
7. Disconnect from Device.

The second is the IP address of the Ectane device in order for the C program to
connect to the Ectane device. Third is the configuration of the probe (i.e., will axial and/or
transversal datasets be acquired? What probe is being used?). Next is the acquisition rate
and gain of all Ectane channels. The final ten are the voltages and frequencies of each Ectane
channel. As the Ectane device can acquire 5 datasets at different voltages and frequencies
each of these must be specified even if some are unused.
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The raw impedance data are received in the LabVIEW program as a series of 32-bit
numbers and are immediately queued to be sequentially analysed in two additional threads.
Using a 6 core, 2.6 GHz Intel i7-8850 H processor, it was found that the queueing of the
received data was performed in 1 ms. As previously, these threads are implemented via
two JKI state machines.

The first thread takes each 32-bit number and separates out the first and last 16-bits of
data as these correspond to the imaginary and real impedance components. Additionally,
the first thread reformats the impedance data into geometric order as the coils are pulsed in
a pseudo-random fashion to prevent crosstalk caused by mutual inductance. Moreover, the
first thread compensates for offset in coil excitation in the X-direction. Further details of
this coil excitation compensation are provided in Section 2.2. It was found that this process
was executed in 1 ms on a 6 core, 2.6 GHz Intel i7-8850H processor.

The second thread within the LabVIEW program is responsible for interpolation in
the Y-direction between axial and transversal dataset configurations, oversampling, basic
mixing of different datasets and live plotting of the impedance magnitude. As before,
further details of this Y-direction interpolation and mixing of datasets are provided in
Sections 2.2 and 2.4, respectively. Likewise, it was found that this process was executed in
5 ms on a 6 core, 2.6 GHz Intel i7-8850H processor. It is noted that the timings reported
should be representative of any array used as the software infrastructure is built for the
maximum number of elements, channel pairings, and number of frequencies.

This multi-threaded approach is illustrated in Figure 6 and provides data acquisition,
positional compensation, and interpolation of impedance data whilst displaying various
impedance magnitude C-scans in real-time to the user, all within the LabVIEW software
environment with minimal 7 ms lag. The user can then select a directory to store the
acquired data in a binary file format for future post-processing and analysis.

Figure 6. Illustration of the multi-threaded C and LabVIEW programs.

2.4. Image Enhancement of Impedance Data

It was shown in the literature that the impedance plane of the acquired data can
be complex to interpret and variations in probe lift-off and wobble can commonly be
mistaken as signals from defects [45,46]. Therefore, great care was taken in this work to
minimise these adverse effects. Methods such as optimal probe design [47], multi-frequency
excitation [45], and phase rotation [46] were shown to reduce such effects. Due to this work
utilising commercial off-the-shelf (COTS) equipment, only multi-frequency excitation and
phase rotation were performed. Multi-frequency excitation of 4 separate frequencies was
conducted as the data were acquired and mixing of the datasets as described in Section 2.4.2
was performed in post-processing. Additionally, phase rotation was performed on the
acquired C-scan datasets. All post-processing was performed via the MATLAB review
application mentioned in Section 2.3.
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2.4.1. Phase Rotation

The signature of adverse effects such as lift-off and wobble experience a phase differ-
ence in the response caused by a defect on the impedance plane. It is therefore common to
phase rotate the data so that the response from the lift-off aligns with the horizontal axis of
the display impedance plane, and plot C-scan images of the resulting vertical component
of the impedance [48]. Due to the phase difference observed between the lift-off variations
and that of a defect, the resulting C-scan will show any response from a defect clearly.

Mathematically, this is described in Equations (2) and (3). Equation (2) describes
the resulting acquired impedance array from Section 2.3, and Equation (3) describes the
mathematical operation performed to phase rotate the data by an angle, θ. This can be
carried out at the point of acquisition or in post-processing. For this study, the decision was
taken to phase rotate the data in post-processing to maintain maximum flexibility with the
acquired data.

Z = R + iX (2)

Zrot = Z(cos(θ) + isin(θ)) = (R + iX)(cos(θ) + isin(θ)) (3)

2.4.2. Mixing Eddy Current Datasets

As the impedance data were acquired onto a common spatial grid, mixing of datasets
recorded under differing configurations or frequencies can be performed by superimposing
the impedance C-scan data. This is graphically illustrated in Figure 7.

 

Figure 7. Illustration of mixing datasets Z1 and Z2 impedance data to make Zm mixed data.

Two differing mixing methodologies were performed with the first being a simple
sum and the second being a selective sum and average. As the name implies, the simple
sum summates complex impedance datasets on a pixel-wise basis. For the selective sum
and average, data above a defined noise floor were summated and everything below was
averaged. The noise floor was defined as being 5 times the RMS values reported across a
non-defective section of one of the impedance datasets to be mixed.

3. Results

Three 180-degree scans of the canister shown in Figure 2 were undertaken with both
transversal and axial datasets being simultaneously acquired at frequencies of 250, 300,
400, and 450 kHz with an amplitude of 2 volts for each frequency channel, 30 dB of gain,
an acquisition rate of 40 Hz, and a rotational speed of 1.72 deg/s. Each scan covered an
area of 7687.1 mm2 (array height of 32.625 mm × half the circumference of a 150 mm
canister equating to 235.62 mm) making the final stitched image representative of an area
of 23,061.3 mm2. The interpolation was set to five, and the increments between half a coil
pitch were specified at 20, giving a spatial resolution of 0.225 mm and 0.0563 mm in the
vertical and horizontal directions, respectively. Positions were chosen for each scan so that
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they were acquired one array coil above each other with no overlap. The impedance data
for all three scans were vertically stitched together and axial channel C-scans of the vertical
impedance component from the impedance vector are shown in Figure 8. One of the stress
corrosion cracks in the centre of the far-right column is highlighted. To the right of each
C-scan, the impedance plane Lissajous for the highlighted defect is also shown along a
horizontal cursor passing through the maximum intensity of the defect indication in the
C-scan. It can be seen, that the impedance plane response of the same defect for different
frequencies varies drastically in amplitude and phase due to the differing interaction depth
of the eddy currents with the defect [46].

Figure 8. Axial vertical impedance component C−scan images at 250, 300, 400, and 450 kHz on a dB
scale alongside impedance plane plots of the response from the highlighted defect.

Additionally, Figure 8 also shows that at 250 kHz and 450 kHz, the impedance plane
contains a large horizontal component and as such the resulting image contains a large
amount of noise. In order to compensate for this effect, the impedance data at each
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frequency were phase rotated so that the SNR of the highlighted defect was maximized –
see Figure 9.

Figure 9. SNR vs. Angle of phase rotation for the axial dataset acquired at 250 kHz.

Figure 10 shows C-scan images of the optimised phase rotated axial data, while Table 2
denotes the SNR increases for both axial and transversal datasets at all frequencies recorded
for the target defect. The increase in SNR for all defects is visually evident in Figure 10, and on
average, the SNR was increased by 4.56 decibels for the targeted defect. This result illustrates
the effectiveness that phase rotation can have on increasing the image performance of C-scans
and the benefit of being able to flexibly perform such a task in post-processing.

Table 2. SNR Values of original and phase rotated data.

250 kHz 300 kHz 400 kHz 450 kHz

Original SNR
[dB]

Phase Rotated
SNR
[dB]

Original SNR
[dB]

Phase Rotated
SNR
[dB]

Original SNR
[dB]

Phase Rotated
SNR
[dB]

Original SNR
[dB]

Phase Rotated
SNR
[dB]

Axial 25.02 30.23 20.19 31.22 29.86 31.27 21.11 31.27
Transversal 30.62 32.19 27.43 32.23 31.72 32.28 30.47 32.20

To further enhance image quality and reveal more about the nature of the defect, a
mixing of different datasets, as described in Section 2.4.1, was performed. The optimised
transversal and axial datasets at 250 and 450 kHz were mixed together, as the dissimilar fre-
quencies would produce differing eddy current penetration depths and thus be influenced
in differing manners. Equation (4) mathematically describes the penetration depth of an
eddy current for a given material, where f is the frequency of the voltage being excited in
the array coils in hertz (Hz), μ is the magnetic permeability of the component under test in
henries per meter (H/m), and σ is the electrical conductivity of the component under test
in siemens per meter (S/m).

δ =
1√

π f μσ
(4)
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Figure 10. Phase-rotated axial vertical impedance component C−scan images at 250,300,400 and
450 kHz on a dB scale alongside impedance plane plots of the response from the highlighted defect.

For stainless steel, with an electrical conductivity of 1.08 × 106 S/m, and a relative
magnetic permeability of 1.0025, a frequency of 250 kHz would produce a penetration depth
of 0.967 mm, while a frequency of 450 kHz would produce a penetration depth of 0.721 mm.

The resulting mixed C-scan image is shown in Figure 11. Table 3 documents the SNR
of the highlighted defect. As is shown in Table 3, the SNR of the defect for the simple sum
approximates to be the average across all four datasets that contributed to the mixed image,
and as such it can be said the imaging performance has not been improved by this mixing
methodology. Interestingly, this is a result that is also observed in ultrasound when fusing
multi-modal Total Focused Method (TFM) images [49]. By contrast, the selective sum and
average technique were able to boost the SNR by an average of 1.19 dB, demonstrating an
increase in imaging performance.
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Figure 11. Mixed vertical impedance component C−scan.

Table 3. Mixed Image SNR.

250 kHz 450 kHz
Mixed Data
Simple Sum

Mixed Data
Selective Sum

Phase Rotated
SNR [dB]

Phase Rotated
SNR [dB]

Phase Rotated
SNR [dB]

Phase Rotated
SNR [dB]

Axial 30.22 31.27
31.85

Transversal 32.19 32.20 32.66

It is acknowledged that in this study, SNR is the only metric being used to evaluate the
eddy current detection system. A better metric would be a physical parameter related to the
geometry of the defect itself (i.e., crack extent, crack depth) and whether this is better reflected
in the mixing of datasets. As reported in the literature, this is a highly complex inversion
problem, with successful inversions demonstrated on only simple geometries [50–53] or overall
dimensions such as the depth or extent on complex defect geometries [54,55]. In all these
studies, the defects were manufactured to specified geometries before eddy current testing
which is somewhat removed from a real inspection scenario where prior knowledge of the
defect geometry is not known. In addition, the sizing algorithms used vary drastically from
defect to defect making the inversion of defect size somewhat deterministic and not well suited
to automated deployment and analysis with which this paper is concerned. While the current
system and signal processing cannot currently invert physical defect size, it was shown on
another sample and different probe that is better suited to low-frequency operation, that the
system is able to detect embedded defects ~3 mm below the inspection surface.

To understand more about the physical geometry of the highlighted stress corrosion
crack, a macrograph was taken at 96 times zoom and is shown in Figure 12. It can be
seen that the defect under inspection is a multifaceted stress corrosion crack. Due to its
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multifaceted nature, the interaction with the induced eddy current will be highly complex
and therefore inversion of the physical geometry would be highly challenging. It is expected
that for a simple linear defect, such as a fatigue crack, mixing of datasets would lead to
benefits in defect characterisation even if the SNR was adversely affected. This issue is
subject to future work and will be investigated by the authors at a later date.

Figure 12. Photo of crack matrix and micrograph (a) Photo of crack matrix with the defect of interest
highlighted in a red circle. (b) Micrograph of the defect of interest at 96× zoom with desaturated background.

4. Conclusions

This paper demonstrates for the first time how eddy current inspection with full
image post-processing functions can be robotically deployed, showing a significant step
closer to Industry 4.0 applications. Variations in the lift-off of the eddy current array were
compensated for by the use of a PI control system and a force–torque sensor ensuring
excellent low-noise coupling throughout the inspection. Extensive software infrastructure
was developed that allowed for the eddy current data to be post-processed to enhance the
generated images and reveal more about the nature of the defects under inspection.

The capability of the eddy current inspection system was demonstrated by inspecting
a nuclear canister with a matrix of 16 stress corrosion cracks. Three 180-degree scans
were conducted, gathering axial and transversal datasets at four different frequencies
simultaneously—250, 300, 400, and 450 kHz—detecting 15/16 stress corrosion cracks. In
the resulting data, one defect was highlighted, and various post-processing techniques were
employed to increase the image quality. It was shown that, by phase rotation alone, the SNR
could be increased by an average of 4.56 decibels. Dataset mixing was also attempted, and
it was shown that a selective sum and average could boost the SNR by an average of 1.19
decibels. The multifaceted nature of the stress corrosion crack under inspection created a
complex eddy current interaction, making it difficult to invert the physical geometry of the
crack. It is expected that for simpler defect geometries a benefit in defect characterisation
would be observed through dataset mixing.

This work demonstrated the detection of defects in real-time via eddy current data
and showed the ability to further post-process the acquired data to enhance image quality.
The benefit of being able to post-process the acquired data in such a manner should not be
understated, and it is hoped that similar studies such as this can be used to further develop
the post-processing of eddy current data to the standard achieved in ultrasonic NDT.

In future work, the authors plan to improve and progress this study by performing
eddy current characterisation on multi-angled known defects and comparing the results
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to simulated datasets; exploring the use of machine learning to automatically classify and
characterise defects; and lastly, exploring the fusion of ultrasonic and eddy current datasets.
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Abstract: Recently, numerous wall-climbing robots have been developed for petrochemical tank
maintenance. However, most of them are difficult to be widely applied due to common problems
such as poor adsorption capacity, low facade adaptability, and low detection accuracy. In order to
realize automatic precise detection, an innovative wall-climbing robot system was designed. Based on
magnetic circuit optimization, a passive adaptive moving mechanism that can adapt to the walls of
different curvatures was proposed. In order to improve detection accuracy and efficiency, a flexible
detection mechanism combining with a hooke hinge that can realize passive vertical alignment was
designed to meet the detection requirements. Through the analysis of mechanical models under
different working conditions, a hierarchical control system was established to complete the wall
thickness and film thickness detection. The results showed that the robot could move safely and
stably on the facade, as well as complete automatic precise detection.

Keywords: wall-climbing robot; passive adaptive mechanism; magnetic circuit optimization; flexible
detection method

1. Introduction

With the rapid development of industries, an increasing number of spherical and cylindrical
tanks have been used to store industrial products in the petrochemical field. Different degrees of
damage in storage tanks have gradually emerged due to the open environment and natural aging,
and regular maintenance has been adopted to ensure the safety of operation. However, traditional
maintenance methods require a large number of humans and resources that are inefficient, costly,
and dangerous [1–5]. Thus, developing a reliable and flexible wall-climbing robot has become a hot
spot in the field of tank maintenance, as such a robot can realize the high precision detection of different
detection modules under high risk and in complex petrochemical tanks [6–10].

At present, the adsorptive, moving, and detection mechanisms of wall-climbing robots
have been extensively studied. Some typical robot systems have been developed and applied in
various fields. The adsorption mechanism is the primary condition to ensure robot movement
on a facade. Wall-climbing robots have different adsorption mechanisms for different working
surfaces and moving modes. Numerous studies have revealed the following five adsorption modes:
permanent magnet, electromagnetic, negative pressure, molecular force, and mixed adsorption [11–17].
Navaprakash et al. [18] used the principle of negative pressure adsorption to design an adsorption
mechanism and verified its safe and stable adsorption on non-magnetic facades through software
simulation. Chen et al. [19] designed a wall-climbing robot that uses a rotational-flow suction unit
to realize climbing rough walls and overstepping small obstacles. Demirjian et al. [20] designed a
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caterpillar wall-climbing robot based on bionic principles that uses binder materials and breaks with
traditional adsorption concepts. Seriani et al. [21] used wall-climbing robots on both sides of a wall
to adsorb each other so as to realize the safe adsorption and stable movement on a non-magnetic
wall. Wang et al. [22] optimized the magnetic circuit through the finite element analysis method and
designed a new type of permanent magnet wheel with the same magnetic pole array arrangement
that considerably improved the adsorption efficiency of the magnet. Wen [23] proposed an adjustable
variable magnetic adsorption mechanism to realize the stability detection of a robot on the outer walls of
storage tanks. Eto et al. [24] innovatively designed a two degrees-of-freedom (DOF) rotating magnetic
attachment mechanism that maintains the optimal adsorption state of the magnet through passive
adjustment and realizes safe and stable adsorption on different walls. Xiao et al. [25] designed a new
steady-state permanent magnet adsorption operation mechanism to accomplish stable adsorption on
complex facades. Fan et al. [26] combined electromagnetic and internal force compensation principles
to realize the fast, controllable adsorption and separation of wall-climbing robots.

Many research institutions have developed a large number of wall-climbing robots for industrial
applications based on the above adsorption mechanisms by combining mobile mechanisms and
detection methods. By integrating viscous materials and a wheel-legged moving mechanism,
Amirpasha et al. [27] innovatively proposed a wheeled foot-climbing robot that can achieve large
obstacle crossing and wall transition. Wang et al. [28] creatively designed a bipedal, three-DOF
wall-climbing robot to realize the detection of wind fan blades. Huang et al. [29] designed a crawler
robot for ship detection by integrating a caterpillar structure and the magnetic adsorption mechanism
that could realize the large-area detection of complex walls. Zhang et al. [30] designed a wall-climbing
de-rusting robot for ship welds based on the visual recognition method of three-line laser structural
light. Zhang et al. [31] developed a crawler wall-climbing robot to remove coatings based on high
pressure water jet technology. In addition, numerous wall-climbing robots have been developed for
petrochemical maintenance and other fields [32–37]. Mizota et al. [38] proposed a control method
for the compliant motion of a wall-climbing robot based on propelling wave theory to realize stable
and flexible movements on a façade by wall-climbing robots. Wu et al. [39] innovatively proposed
a coordinated control method based on task trajectory tracking to realize the compliant detection
of robots. Zhang [40] used an intelligent perception system to compliantly control a robot and to
realize autonomous adaptive full-range detection over complex terrain. Song et al. [41] proposed
an intelligent discrete trajectory tracking control algorithm based on the improved Dual-Heuristic
Dynamic Programming (DHP) algorithm to solve the circular trajectory movement of a robot on a
vertical wall.

Numerous wall-climbing robots have been developed and applied for petrochemical maintenance.
However, current research is generally in the bottleneck state due to the limitations of reliable
adsorption, surface adaptability, and detection devices, and the following three problems should be
urgently solved. (1) Permanent magnet adsorption mechanisms have low magnetic energy utilization
and adsorption capacity due to the limited transfer mechanism analysis of the multimedium magnetic
circuit. (2) Moving the existing wall-climbing robots smoothly on curved surfaces with changeable
morphologies is difficult due to insufficient studies on the passive flexible adaptive moving mechanism.
(3) Achieving the vertical alignment of a probe for different detection modules while sticking to the
facade is difficult for existing detection mechanisms, thus affecting detection effects and accuracy

Here, a wall-climbing detection robot that can realize multimode non-destructive testing on
different walls is proposed on the basis of the above-mentioned problems. A high performance
permanent magnet wheel was designed on the basis of magnetic circuit optimization to solve the
safety adsorption problem, and the rapid demagnetization structure of the wheel was designed to
facilitate the robot’s removal from the wall after detection. Different from the traditional wall climbing
mechanism with rigid connection, the wheels in this paper were flexibly connected with the moving
mechanism to form a pseudopodia robot that could adapt to curved surfaces and move flexibly on the
surfaces of spherical and cylindrical storage tanks. In order to improve the detection accuracy and
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efficiency of existing testing equipment, a flexible adaptive detection mechanism with multi-DOFs is
proposed to passively adapt to wall surfaces by integrating a hooke hinge mechanism. A dynamic
model of the wall-climbing robot was established on the basis of different working conditions to solve
the momentum distribution problem of wheels under different motion modes. Through different
process controls, the robot can use ultrasonic and eddy current probes to detect the thicknesses of wall
and paint film, respectively. Experiments were conducted on a 5-mm-thick cylindrical tank surface to
test the structure and detection capability of the robot. The experiments showed that the robot can
move flexibly and stably on different facades. Simultaneously, the robot can accurately detect the
thicknesses of walls and paint films by carrying different detection probes that can replace manual
work to a certain extent.

The remainder of this paper is organized as follows. Section 2 introduces the structure of the
detection robot, which mainly includes the magnetic adsorption moving mechanism and the passive
flexible detection mechanism. Section 3 establishes mechanical analysis models for different working
conditions and motion modes to determine the minimum adsorption and driving forces of safe and
stable motions. Section 4 introduces the hardware composition of the control system and flexible
detection process control flow with multiple detection capabilities. Section 5 presents the experimental
process and analysis results. Section 6 provides several conclusions drawn from this research.

2. Introduction to Detection Robot

A wall-climbing detection robot adapted to different curvature walls was developed while
considering the varied morphology of petrochemical tanks. The robot mainly comprised an adaptive
moving mechanism, magnetic adsorption wheels, and a flexible detection mechanism with multi-DOF.
The working environment of the robot comprises facades with different curvatures. Thus, solving the
problems of the safe adsorption and stable movement of the moving mechanism, as well as the
flexible adaptation and accurate measurement of the detection mechanism, was necessary. Therefore,
a wall-climbing robot with flexible detection was developed. This robot can steadily adsorb and
complete different detection tasks on different facades to meet the requirements of petrochemical tank
detection. A high performance magnetic wheel structure that can be quickly demagnetized is also
proposed. This structure coordinates the design of the multi-DOF moving mechanism to passively
adapt to different curvature walls to ensure safe and stable movement. A flexible detection mechanism
was designed in accordance with the operational requirements of the different detection modules by
integrating rope pulling and a hooke hinge mechanism to realize the self-adaptive vertical alignment
of the probe to adapt to different detection techniques. The detection robot can realize the precise
movement and action of different detection process flows through a state control strategy and finally
complete the wall detection tasks. The specific structure of the robot is shown in Figure 1.

Figure 1. Overall structure of the wall-climbing detection robot.
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2.1. Magnetic Wheel

2.1.1. Structural Design of the Magnetic Wheel

The permanent magnet adsorption mechanism is the crucial point in the design of a wall-climbing
robot, because it is directly related to the safe absorption and stable movement on a wall surface.
The robot movement is stable and the safety factor is large when the magnetic wheel adsorption
capability is strong. However, the friction between magnetic wheels and the wall surface increases
with the adsorption force and the resistance to be overcome in the movement is large, thus leading to a
high driving torque. Simultaneously, detachment from the wall becomes difficult for the magnetic
wheel after completing an avoidance detection task. Therefore, designing a lightweight wheel with
strong adsorption was the pivotal technical problem to be solved in this paper. A new method using
the combination of fan-shaped permanent magnet and yoke iron as the excitation source is proposed to
improve the utilization rate of the magnet. At the same time, in order to detach the robot from the wall
after completing the task, a fast demagnetization method was designed by using the lever principle.
The specific structure is shown in Figure 2.

 
Figure 2. Magnetic wheel structure with fast demagnetization.

In the process of the adsorption force production of the magnetic wheel, most magnetic sensing
lines come from a small part of the magnet close to the wall surface. Therefore, a radial magnetized
fan magnet (Nd2Fe14B) was selected as the excitation source to reduce the weight and provide a
strong adsorption force. Yoke iron was used to collect magnetic induction lines because of its high
permeability that can reduce magnetic flux leakage and improve the utilization ratio of magnetic
energy. Figure 2 shows that the fan magnet was placed in the suspension of the wheel, which could
rotate relative to the wheel hub. When the output shaft transmits motion to the hub through a key,
the permanent magnet always remains relatively still with the wall and does not rotate with the hub,
which not only maintains a constant adsorption force but also avoids relative motion with the wheel.
Actively reducing the adsorption force between the magnetic wheel and the wall, that is, the magnetic
wheel demagnetization, is necessary to facilitate the robot detachment from the wall after the detection
task. A small tangential force can be used in the adsorption state to force magnet rotation relative
to each other, which can reduce the adsorption force between the magnet and the wall. Thus, a fast
demagnetization mechanism was designed on the basis of the lever principle, which could facilitate
magnet rotation around an output axis, thus completing the demagnetization.

2.1.2. Optimization of Magnetic Wheel

The magnetic wheel structure was optimized to obtain a high performance and lightweight
magnetic wheel. The adsorption force of a magnetic wheel whose outside diameter and width are
fixed is affected by the air gap h, the thickness of yoke iron H, and the shape of the magnet (the inner
radius Rin and angle of the magnet θ). The electromagnetic field analysis software Ansoft was used

88



Sensors 2020, 20, 6651

to analyze the magnetic field strength of the permanent magnet and to determine the relationship
between magnetic wheel parameters and the magnetic field strength to realize the lightweight of the
magnetic wheel and ensure the reliability of adsorption. This analysis provided a reference for motion
assessment and improved the magnetic utilization rate.

According to the principle of a single variable, the relationship between wheel adsorption force
F and variable can be obtained by changing the air gap h, inner radius Rin, and angle of magnet θ.
The simulation results are shown in Figure 3.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Influence of magnetic wheel parameters on the adsorption force: (a) The relationship
between the adsorption force and the air gap height under different inner radius of the magnet, (b) the
relationship between the adsorption force and the air gap height under different yoke iron thicknesses,
(c) the relationship between the adsorption force and the air gap height under different magnet center
angles, and (d) description of magnetic wheel structure and size.

The magnetic wheel adsorption force was found to be inversely proportional to the distance from
the wall according to the information in the three above-mentioned figures; the adsorption force further
away from the was found to be worse. Figure 3a shows that an increase in the inner radius Rin could
lead to a contained high magnetic energy, a high magnetic field intensity that could be excited, and a
strong adsorption force. Figure 3b indicates that the capability of the yoke iron to collect magnetic
induction lines was found to increase with the yoke iron height H. This phenomenon complicates
the magnetic saturation production and enhances the utilization ratio of magnetic energy products
to improve magnetic field strength and adsorption force. Figure 3c reveals that the effective transfer
area between the magnet and the wall surface was found to increase with the angle of the magnet
θ, which improves the adsorption performance of the magnet. Considering the volume limitation
of the wheel, the shape of the magnet was optimized in accordance with the functional relationship
between the magnetic field strength and the geometric parameters of the magnetic wheel (h, Rin, θ,
and H). Continuous nonlinear programming has the capability of using the response surface method
to approximate the finite element response characteristics, which is very suitable for solving the
optimization problem of finite variables. Therefore, the continuous nonlinear programming in Ansoft
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Maxwell was adopted to optimize the three parameters of the magnetic wheel. The iterative process is
complex and tedious but is commonly used; thus, comprehensively describing the solution process
is unnecessary. Finally, a permanent magnet wheel with good performance was designed, and the
specific mechanism size is shown in Table 1.

Table 1. Comparison of magnetic wheel characteristics before and after optimization.

Variate Inner Radius Rin (mm) Angle of Magnet θ (◦) Yoke Iron Height H (mm)

Before optimization 25 70 6
After optimization 20 80 5

The magnetic wheel adsorption experiment was conducted on an arc facade to test the adsorption
capability of the magnetic wheel. The adsorption capacity of the wheel was tested in horizontal, vertical,
and oblique states. The actual adsorption force was obtained by reading the maximum pull value of the
magnetic wheel in the adsorption state on the wall through the dynamometer (the pull value of the wheel
when it leaves the wall is the instantaneous maximum pull value). The influence of gravity in all cases
was removed in the data recording process. The specific values are shown in Table 2.

Table 2. Adsorption force of the magnetic wheel under different conditions.

Times Horizontal Vertical Oblique

First time 121 N 124 N 120 N
Second time 119 N 122 N 123 N
Third time 123 N 129 N 123 N

The actual adsorption force of the magnetic wheel could be obtained as 120 N by averaging
the above values. The adsorption capacity can meet the requirement of safety adsorption of
wall-climbing robot.

Thus far, a wheeled adsorption mechanism was innovatively designed. A lightweight permanent
magnet wheel with strong adsorption capability was obtained through magnetic circuit optimization
design and multivariable simulation optimization. The actual adsorption capacity of the magnetic
wheel under different working conditions was then measured by experiments, and the adsorption
performance of the magnetic wheel was verified.

2.2. Passive Adaptive Moving Mechanism

A detection robot works on a circular or spherical facade, and the adaptability of the moving
mechanism to the complex wall is directly related to the movement safety and stability. Achieving the
adaptability of small curvature tanks is difficult for traditional moving mechanisms, which will
easily lead to slipping and instability, thus affecting work efficiency and operation safety. Moreover,
realizing the stable movement of a robot on a wall becomes a problem. The possible instability of the
detection robot was analyzed to solve this problem, which mainly includes the following two points.
(1) A single front wheel is forced to leave a wall surface when a detection robot encounters an obstacle.
Another wheel on the same side with a similar connection also leaves the surface due to the rigidity of
the robot. This phenomenon directly leads to a sharp decline in the adsorptive capacity of the robot on
the wall surface, thus making the robot prone to instability. (2) A robot’s movement on the curved
surface leads to an incomplete fitting of the angle between wheels and the wall. Ensuring enough
adsorption force is difficult, and the decrease in contact area easily causes instability. Different from
the traditional wheeled moving mechanism, we combined multi-DOF deformation concept to design
an innovative moving mechanism with the ability for surface passive adaptation. The close contact
between wheels and the wall was realized by passively adapting the fuselage component, thus ensuring
the safe operation of the moving mechanism. The specific mechanism is shown in Figure 4.
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(c) 

Figure 4. Pseudopodia flexible moving mechanism: (a) Moving mechanism structure, (b) obstacle
crossing process, and (c) surface adaptation process.

A passive adaptive moving mechanism was designed in this paper to improve the adaptability
of robots to facades and ensure their safe and stable movement. Figure 4 shows that the moving
mechanism comprises the wheel frame, support frame, and cam mechanism. The wheels on the left
and right sides are connected with the hand frame through the axes A1 and A2, respectively, and can
rotate about the axes. The cam mechanism is fixed on the front and rear sides of the support frame
by springs. The elastic deformation of the spring pushes the cam to move, which drives the wheel
frame rotation around the axes C1 and C2; thus, both wheels fit vertically to the wall. Hence, the robot
can be safely adsorbed on different curvature walls. The driving motors adopt diagonal arrangement
and transfer power by using a synchronous belt to ensure the driving torque and simplify the control.
Figure 4b shows that the right wheel frame rotates around axis A1 when the unilateral wheel of the
robot encounters obstacles to ensure that each wheel can be reliably adsorbed on the wall surface.
This phenomenon avoids the first instability situation. Figure 4c shows that the cam mechanism is
passively adjusted to drive the wheel frames on both sides moving to rotate around the axes C1 and C2

when the robot operates on the circular arc wall. Therefore, the magnetic wheel can closely contact the
wall surface, which ensures stable and safe movements. Through the design of the above structure,
the wheels on both sides of the robot can be flexibly adjusted with multi-DOF to ensure that each
wheel can contact closely to different curvature walls and meet safety adsorption requirements.

2.3. Detection Mechanism

Nondestructive testing has always been highly recommended in the detection methods of
petrochemical storage tanks. Ultrasonic and eddy current sensors are needed during the maintenance
of petrochemical storage tanks to complete the thickness measurements of the wall and paint film.
Different detection tasks require different technological processes, and the relative position between
the detection device and the wall surface directly affects the detection effect and accuracy. Therefore,
keeping the probe vertically aligned and close to the wall surface is necessary, while active and
accurate real-time control increases the difficulty of control. Different from a traditional rigid detection
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mechanism, an underactuated passive adaptive detection mechanism was designed by integrating a
hooke hinge mechanism to meet the precise detection requirements of different walls. The vertical
alignment of probes is realized by the passive adaptation of the hooke hinge mechanism, and the probe
is pressed tightly to the wall surface by the spring to meet the detection requirements. The specific
architecture is shown in Figure 5.

 
Figure 5. Flexible detection mechanism.

Figure 5 shows that the detection mechanism is fixed on the robot through the substrate.
Hooke hinge structures enable a detection mechanism to have three DOFs, which can help detection
mechanisms be perpendicular to kinds of complex wall surfaces. The torsion spring is installed on the
rotary shaft of the hooke hinge mechanism. This hinge can provide torque force to press the probe
on the wall surface to ensure the detection effect and improve detection accuracy. The hooke hinge
mechanism is connected with the DC motor rocker arm through a wire rope. The DC motor rotates
to lower the probe in the detection state. On the contrary, the DC motor rotates in reverse to lift the
probe away from the wall in the non-detection state. The detection mechanism can be manually fixed
into an L-shape by the locating pin after the removal of the wall-climbing robot from the wall surface.
The holding mechanism in the hooke hinge mechanism is used to fix the detection probe, and different
detection modules can be conveniently replaced to complete different detection tasks. In addition,
eight stainless steel beads are installed uniformly on the probe holding mechanism to convert sliding
friction into rolling friction to avoid damage to the detection wall. The above structure ensures close
contact between the end of the detection mechanism and the surface. Therefore, detection efficiency
can be guaranteed.

3. Mechanical Analysis

The weight and adsorption force of a robot directly affect the safety and movement flexibility
when it runs on different facades. A robot must meet the safety requirements of different working
conditions and movement modes in the process of continuous detection to realize the full domain
detection of petrochemical storage tanks. Here, the critical failure states of the designed robot were
analyzed through a mechanical model under different working conditions to obtain the minimum
adsorption force of the magnetic wheel and ensure the safe and stable movement of the wall-climbing
robot on a facade. Dynamic models were also established for different motion modes, and the robot
and each wheel were analyzed to achieve the optimal momentum distribution and optimize the
motion performance.
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3.1. Statics Analysis

In the process of facade movement, a wall-climbing robot is prone to dangerous states, such as
static sliding, vertical overturning, horizontal overturning, and oblique overturning. These states affect
movement safety and flexibility. Thus, mechanics analysis on a robot must be conducted to determine
the minimum adsorption force to ensure safe and stable movement. Here, a mechanical model was
established for mechanics analysis, as shown in Figure 6.

 
(a) 

 
(b) 

 
(c) 

Figure 6. Static model of robot: (a) Vertical state, (b) horizontal state, and (c) oblique state.

Force and moment balance equations were established for the above states based on classical
mechanics theory. In order to simplify the calculation process, we proposed the concept of safety
factor to compensate for relatively small disadvantages such as cable weight and severe environment.
The following static model of the robot was obtained.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1

F f i = sG

4∑
i=1

FNi = 4FMag
∑

i=1,3
(FNi − FMag)l + sGhc = 0

2∑
i=1

(FNi − FMag)B + sGhc = 0

. (1)

The meanings of the letters in the formula are shown in Table 3:

Table 3. Parameters in the mechanical model.

Symbol Comment Symbol Comment

F f i Friction of the robot G Weight force of the robot
FNi Support force of the wheel s Safety parameter

FMag Adsorption of the wheel μ Static friction coefficient
l Length of robot B Width of robot
ω Angular velocity of turning state hc Centroid height of the robot

The critical condition for the robot to be in a safe and stable state is that all magnetic wheels are
on the wall surface, that is, constraints of support force and friction are present and the maximum
static friction should be larger than the gravity component. Therefore, the value range of magnetic
wheel adsorption force can be obtained as follows: FMag ≥ sG/4μ.

Figure 6c shows that when the robot is inclined to adsorb on the wall surface, the robot may flip
around the AB or CD axes in this state. Gravity (G) can be decomposed into G sin β and G cos β along
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the direction of AB and CD. G sin β and G cos β were found to be less than G. Therefore, the calculated
critical value of the safety adsorption force is less than the threshold of adsorption force when the robot
is vertical and horizontal, as calculated above.

Therefore, the minimum adsorption force required by the robot was obtained to maintain
static stability.

3.2. Dynamics Analysis

Dynamic analysis was conducted to obtain the optimal driving torque of each motor for the stable
movement of the robot in different motion modes. The analysis of various motion modes revealed that
the driving torque of other operation modes is less than or equal to that required for vertical upward
straight or turning motion. Therefore, the dynamics analysis model of the robot was established in the
two situations, and the best driving torque was obtained.

3.2.1. Dynamic Analysis in the Vertical Upward Movement

Dynamic analysis is similar to static analysis when running vertically upward. However,
the existence of acceleration and the difference in the friction coefficient should be considered.
Assuming that each wheel performs pure rolling motion without sliding, the mechanical model was
obtained, as shown in Figure 7.

 
(a) 

 
(b) (c) 

Figure 7. Dynamics model of the robot: (a) Side view of the vertical upward state, (b) main view of the
vertical upward state, and (c) force analysis diagram of each wheel.

Rolling resistance was found to be generated due to the deformation of the rubber layer of
the wheel, and its deformation was found to be small. Therefore, the moment of rolling resistance
compared with other torsional moments could be ignored. The rolling resistance compared with other
forces could also be disregarded due to the small rolling resistance coefficient. In order to enable the
robot to overcome gravity and move stably, Formula (2) was established according to the principle of
force balance, and then the required motor torque was solved.

2
Tt

Rw
− sG =

sG
g

a. (2)

By simple derivation of Formulas (1) and (2), the required torque of the motor was calculated as follows:

Tt ≥ (
1
2
+

a
2g

)sGRw. (3)

The meaning of the letters in the formula is shown in the following Table 4:
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Table 4. Parameters in the mechanical model.

Symbol Comment Symbol Comment

Vs Velocity of the center of mass Vl Velocity of the left two wheels
Vr Velocity of the right two wheels Rw Radius of magnetic wheel
R Radius of gyration α Angular acceleration of robot
TP Moment of resistance of wheel Tt Motor output torque

3.2.2. Dynamic Analysis in Steering

In this research, the wall-climbing robot as found to be able to achieve steering via different speeds
of the wheels on each side. The angular speed and steering radius were, respectively, determined by
the speed and direction of the wheels on both sides, as shown in Figure 8.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Dynamic analysis in steering: (a) Large radius turning state, (b) small radius turning state,
and (c) dynamic analysis of each wheel.

Figure 8 shows the relationship between the rotation speed of wheels on both sides and the
turning radius: ⎧⎪⎪⎨⎪⎪⎩

ω =
Vl

(R+B/2) =
Vr

(R−B/2)
α =

.
ω

. (4)

The turning radius formula of the robot could be easily obtained according to the speed of the
wheels on both side:

R =
Vl + Vr

Vl −Vr
· B

2
. (5)

When R > 0.5B, the center of rotation is outside the robot (as shown in Figure 8a); when R < 0.5B,
the center of rotation is inside the robot (as shown in Figure 8b). The condition of R > 0.5B was taken
as an example for force analysis. The horizontal to the vertical rotation of the wall-climbing robot was
taken as the model to analyze the strained condition. The torque balance formula with point O as the
center of rotation, as shown in Formula (6), was established to solve the required output torque of the
motor. A mechanical model of the following turning states was obtained:

Tt

Rw
(R +

B
2
) +

Tt

Rw
(R− B

2
) −

4∑

i=1

F f i
l
2
= Jα. (6)

In combination with Formulas (4)–(6), Formula (7) could be obtained:

Tt ≥
Jα+ 2μFMagRwl

2R
. (7)
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The dynamics of the two motion modes of the robot, vertical upward motion and turning motion,
were analyzed, and the equations were solved to find the motor torque range suitable for the stable
operation of the robot.

4. Control System

This chapter introduces the hierarchical control system built by an industrial personal computer
(IPC) as the upper computer, which uses IPC to realize the planning of the whole detection process and
completes the detection task through the hierarchical control of each functional module. The control
system mainly includes the precise motion control system of the flexible moving mechanism and
the active adjustment control system of the flexible detection mechanism. Limited by the severe
environment, wired control is used for remote controls to ensure the stability and accuracy of
interactive information transmission. In addition to the basic function of flexible movement on the
wall, the detection robot also needs to perform different detection modules for different detections.
The robot can measure the thicknesses of the wall and paint film by, respectively, using ultrasonic and
the eddy current probes. RS485 communication is adopted to complete the high-speed transmission of
real-time detection information to realize multimodule and multimode coordinated detection, and the
detection workflow is realized by using a distributed control system to monitor the close cooperation
between the components. The specific control system structure is in Figure 9.

 
Figure 9. Hardware composition of the control system.

The robot is controlled remotely by external input devices, such as buttons in the control box.
Control instructions are transmitted to the motors on both sides of the moving mechanism through the
RS485. The motion pattern of the robot can be changed by adjusting the rotation speed and direction of
the wheels on both sides. Simultaneously, inertial navigation information is used to adjust the running
state of the motor to facilitate accurate movement. The distance between the detection device and
the wall surface can be actively adjusted by controlling the motor steering in the flexible detection
mechanism. The passive adaptability of the robot is used to ensure that the probe is perpendicular
to the wall. Data obtained by probes are transmitted back to the main control unit in real-time via
RS485 and displayed digitally. The robot can measure the thicknesses of the wall and paint film by,
respectively, using ultrasonic and the eddy current probes. An air compressor and a diaphragm pump
may be required during wall thickness measurement when using ultrasonic sensors to spray the
coupling fluid near the probe to assist the robot in completing the wall thickness detection.

The control system of a wall-climbing robot is the key to motion and detection. The control
can be divided into three parts: initialization, movement control, and detection control. The motion
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control realizes the flexible movement of the robot on the wall based on the feedback of the inertial
sensor and the active remote control of the user. The detection control is allocated in accordance with
different detection modules, which can be called for specific requirements. For example, measuring the
position of marking points is necessary when the robot conducts the eddy current detection of paint
film thickness while continuous monitoring and the coordination of coupling liquid when the robot
conducts ultrasonic detection to wall thickness. The specific control flow chart is shown in Figure 10.

Figure 10. Robot detection workflow. (A) in the figure represents film thickness detection. (B) in the
figure represents wall thickness detection.

The detection process can be analyzed as follows from the flow in Figure 10.

1. The robot is powered on to perform self-check and reset.
2. The user selects the detection mode:

A: Film thickness detection.
B: Wall thickness detection.

3. Different detection modes enter different detection processes:

A: Film thickness detection:

(1) The motors are driven to help the robot reach the initial detection point.
(2) After the robot reaches the predetermined position, the DC motor in the flexible

detection mechanism rotates forward to lower the detection probe. The probe
cooperates with its passive adaptation mechanism to realize the vertical alignment
of the probe.

(3) After the sensor in the flexible detection mechanism confirms the detection position,
the probe collects the paint film thickness information and transmits it back to the
main control unit.

(4) The DC motor reverses to lift the probe, and the robot completes the current
position detection.

(5) The main control unit checks the presence of a termination signal: if no termination
signal is present, then the robot moves to the next detection point and repeat steps
2–5; if the termination signal is obtained, then the detection task is stopped.

B: Wall thickness detection:
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(1) Motors re driven to help the robot reach the initial detection point.
(2) After the robot reaches the predetermined position, the DC motor in the flexible

detection mechanism rotates forward to lower the detection probe. The probe
cooperates with its passive adaptation mechanism to realize the vertical alignment
of the probe.

(3) The diaphragm pump sprays coupling fluid on the detection area to assist the
detection task.

(4) The probe collects wall thickness information and returns it to the main control unit.
(5) The main control unit checks the presence of a termination signal: if no termination

signal is present, then the robot continues to run and repeat steps 3–5; if a
termination signal is obtained, then the diaphragm pump stops spraying coupling
fluid and the DC motor reverses to lift the probe to stop the detection task.

4. The robot completes the detection task and resets.

5. Experiment

The authors of this paper designed a flexible and adaptive wall-climbing robot for film and
wall thickness detection on curved wall surfaces by combining the magnetic wheel, flexible moving
mechanism, and multi-DOF detection unit mentioned above. The key technical parameters of the
robot are shown in Table 5.

Table 5. Keys technical parameters of the robot.

Items Parameters

Weight 11 kg
Load capacity 9 kg

Maximum speed 10 m/min
Boundary dimension 400 × 400 × 300 mm

Communication mode Wired (RS485)
Detection modes Film/Wall thickness detection

This chapter discusses the movement and detection performance tests of the wall-climbing robot to
verify the rationality and feasibility of the above-mentioned structure, control system, and the correctness
of the mechanical theoretical analysis. The experimental facility mainly comprised the robot system and a
cylindrical façade. Figure 11 shows a vertical circular steel plate, with a radius of 8 m and a wall thickness
of 5 mm, which was used to simulate the tank environment. The detection robot system included the
robot body, the control box, and auxiliary equipment. The air and diaphragm pumps of the auxiliary
device provided coupling fluid for ultrasonic thickness detection. Operators controlled the movement
and detection of the robot through the control cabinet to complete the detection task of the wall surface.

Figure 11. Experimental scene.
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5.1. Movement Performance Test

Experiments on the vertical arc steel plate were conducted to test the stable adsorption and flexible
precise movement capability of the robot. The performance of the robot was analyzed by monitoring
the rotation speed of each wheel and the change in the position of the robot’s center of mass during its
vertical upward and horizontal circumferential movement on the arc plate. Among them, the wheel
speed information was obtained by detecting the encoder information of the wheel motor, and the
position information of the robot was obtained by the inertial navigation module mounted on the
moving mechanism. The details are shown in Figure 12.

 
(a) 

 
(b) 

Figure 12. Experimental of wall motion: (a) Vertical upward climbing motion test and (b) horizontal
circumferential motion test.

The robot could move safely and stably without slipping, falling, and other instabilities during
the experiment. This finding indicated that the robot has good adsorption performance and adaptive
capability. The synchronous belt is used to drive wheels on the same side. Therefore, the four-wheel
robot could be simplified to the form of two wheels on right and left. The data in Figure 12a reveal
that the rotation speed of the wheels on both sides during the vertical upward movement remained at
0.09 m/s despite slight fluctuations, and the position of the mass center did not deviate significantly in
the horizontal direction. The data in Figure 12b show that the rotation speed of the wheels on both
sides remained at 0.15 m/s in the horizontal circular motion of the robot, and the center of mass did
not deviate significantly in the vertical direction. The above experimental data prove the steady and
accurate robot movement on the circular steel plate.

A turn right movement experiment was conducted on the vertical circular arc wall to verify the
movement flexibility. The robot was controlled to move from vertically upward to horizontally to the
right, and the wheel rotation speed and the change of the mass center were detected in this process.
The steel plate used in the experiment was expanded along the perimeter to intuitively understand the
motion state, and the change curve of the mass center was drawn. The details are shown in Figure 13.

99



Sensors 2020, 20, 6651

Figure 13. Turn motion test from vertical to horizontal.

The robot did not lose its stability and completed the right turning movement from the vertical
direction to the horizontal direction in the above experiment. The left and right wheel rotation speeds
were, respectively, set at 0.15 m/s and 0.09 m/s; therefore, the expected theoretical turning radius was
0.8 m. The figure above reveals that the rotation speed of the wheels on both sides slightly fluctuated
up and down around the theoretical value. The adjusted trajectories show that the robot completed the
turn, albeit with some deviation due to gravity.

5.2. Detection Accuracy Test

The wall-climbing detection robot could carry different detection equipment to detect a wall
surface. Measurements of the paint film and wall thicknesses were taken as examples to conduct
experiments to verify its detection capability. First, the test of film thickness was conducted. Mark points
were set every 50 mm on the steel plate as the detection target points, and a handheld instrument
was used to collect the detection information as the standard value. Then, the experiment data were
automatically detected and recorded after setting the detection mode and the advance distance of the
robot. The specific experimental process and two groups of test data are shown in Figure 14.

 

Figure 14. Measurement experiment of film thickness.

The robot could move accurately and complete the corresponding detection process during
the experiment, thus finally achieving the measurement and data recording of paint film thickness.
A comparison of the two above-mentioned sets of data revealed that the thickness of the paint
film automatically detected by the robot was 80 um, which was close to that detected manually.
Allowable error bands (±0.5 um) were set with industrial testing requirements after consulting relevant
testing manuals, and all the measured values of the marking points were found to be within the
allowable error band. The maximum error was 0.3 um, appearing at the eighth marker, which also met
the detection requirements.
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An auxiliary device was necessary for the thickness detection of steel plates to provide the coupling
liquid for the detection robot. The thickness of the steel plate was measured at the continuously
changing splicing steel plate, and experiments of manual measurement and automatic continuous
measurement were also conducted. The specific experimental process and two groups of test data are
shown in Figure 15.

 
Figure 15. Measurement experiment of wall thickness.

During the experiment, the robot could effectively complete the detection process and conduct
automatic detection continuously. Similarly, allowable error bands (±0.2 mm) that met the requirements
of industrial testing were set for wall thickness measurement. Figure 15 intuitively shows that the
robot could continuously detect the thickness of the steel plate, and its thickness changed from 5 to
8 to 5 mm, which was similar to the manual measurement result and met the detection requirements.
The two kinds of test data considerably fluctuated at the welding seam due to the influence of welding
quality and position deviation of measurement points. Thus, the detection accuracy problem at the
welding seam was temporarily disregarded. Stable data could be collected at other locations, and the
test results met the test requirements. The maximum error of measurement was +0.2 mm, which was
also within the required error range and met the detection requirements.

The above experiments revealed that the designed wall-climbing robot could adapt to the curved
wall and move safely, smoothly, and flexibly on the wall. Vertical alignment detection could be realized
by carrying ultrasonic and eddy current probes and by cooperating with the passive adaptation of the
multi-DOF flexible detection mechanism, and the detection tasks of wall and paint film thicknesses
could be effectively completed. The experimental results showed that the robot could complete the
task of accurate wall stability detection and realize the automatic surface detection of petrochemical
storage tanks in the degree of movement.

6. Discussion and Conclusions

A wall-climbing detection robot that can adapt to tanks with different radii of curvature was
designed to address the increasing maintenance and testing requirements of petrochemical storage
tanks. The robot realizes the non-destructive detection of the wall surface and its safe operation
through human remote and automatic controls. Different from the traditional adsorption mechanism,
the fan-shaped permanent magnet, which added a yoke to collect the magnetic induction line, is used
as the excitation source in this robot. This adsorption mechanism reduces the weight of the magnetic
wheel, improves the utilization rate of magnetic energy, and ensures reliable adsorption. In order to
solve the problem that the existing adsorption devices are difficult to detach from a wall after completing
detection, an innovative fast demagnetization mechanism was designed by using the lever principle.
Considering that the traditional rigid moving mechanisms are difficult to adapt to different tank wall
environments (different curvatures and various obstacles), a flexible adaptive moving mechanism
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with multi-DOFs was innovatively designed. The multi-DOFs flexible deformation of the moving
mechanism can adapt to a wall surface, which ensures a close fit between magnetic wheels and the wall
surface. A flexible detection mechanism that was designed on the basis of the hooke hinge mechanism
can quickly change detection equipment to meet the technical requirements of film and wall thickness
detections. Through the passive adaptation of a multi-DOFs hooke hinge mechanism, the detection
probe can always be perpendicular to the center and close to the wall surface, thus meeting the
requirements of accurate detection. Considering various working conditions, the minimum adsorption
force and the optimal driving force range of straight line and turning motion were calculated by
establishing the mechanical model, which ensured the flexible and stable movement of the robot on
an arc facade. Finally, the precise coordination control of each component is performed by the wired
control to complete the detection task while considering the limitation of the severe environment.

The wall-climbing detection robot was found to be able to move stably on a façade by conducting
experiments on a facade with a thickness of 5 mm and a radius of 8 m, which verified the adsorption
capacity of the magnetic wheel. The robot could complete large-radius and in-situ turning movements,
which verified the wall surface adaptability of the robot’s moving mechanism. Through multisensor
information fusion and multicomponent cooperation, the robot could complete the detection tasks
of wall and paint film thickness detections by ultrasonic and eddy current sensors, respectively.
The detection results also confirmed these findings. The experiment proved that the robot can complete
the automatic wall detection task for petrochemical storage tanks.
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Abstract: This paper presents a crawling mechanism using a soft-tentacle gripper integrated into an
unmanned aerial vehicle for pipe inspection in industrial environments. The objective was to allow
the aerial robot to perch and crawl along the pipe, minimizing the energy consumption, and allowing
to perform contact inspection. This paper introduces the design of the soft limbs of the gripper and
also the internal mechanism that allows movement along pipes. Several tests have been carried out
to ensure the grasping capability on the pipe and the performance and reliability of the developed
system. This paper shows the complete development of the system using additive manufacturing
techniques and includes the results of experiments performed in realistic environments.

Keywords: UAVs; inspection; soft robotics

1. Introduction

The use of unmanned aerial vehicles (UAVs) has grown exponentially during the last
decade. This growth has been associated with technological improvements, such as those
in navigation systems and perception sensors.

Nowadays, there is an increasing interest in the use of UAVs for inspection and
maintenance. At the moment, most inspection and maintenance tasks are carried out
manually which exposes the operators to many dangerous situations. This paper focuses
on facilities where there are tons of tubes and pipes that are required to be inspected, as
can be found in the oil and gas sector.

In oil and gas production plants, some components degrade. The excessive corrosion
of pipelines can lead to accidents, catastrophic failures, impact the environment, and affect
plant availability. To prevent this situation, inspection processes such as wall thickness
measurements are performed to ensure that plants have safe operating condition, or
provide alerts for corrective actions if needed. These activities manually performed by
operators. The main problem is that the structures to be inspected are in elevated locations
at high temperatures or with toxic materials. This comes at a considerable cost to ensure
the safety of inspection personnel and production outages.

By using UAVs, the operators are capable of inspecting inaccessible or dangerous
zones without facing any risk. Furthermore, embedding sensors and cameras on the UAV
allows them to perform more complex inspections. However, these operations using UAVs
are still performed by manual control. The future of these applications relies on current
research into the automation of these aerial systems.

For the accurate contact inspection of pipes with drones, landing gear is beneficial
because it allows static contact to enable the UAV to perform measurements by coupling to
pipes without causing any damage. Moreover, we are proposing a system that should also
allow the robot to crawl along the pipeline. The soft gripper that is proposed in this paper
is capable of having the necessary strength to hold onto the pipes, and move along them
without causing damage.
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Then, in addition to saving energy, compared to UAVs that can only fly, our hybrid
(flying and crawling) locomotion system presented in this paper does not require the ability
to accurately land on the inspection point because it can crawl after landing to be positioned
where desired. The proposed system also has other benefits, compared to conventional
crawlers, since its flying capability allows it to access places which would pose challenges
for a human operator.

The idea is to use soft materials for the landing gear attached to the UAV as this is a
safer alternative than other methods used in the state of the art. The use of soft materials
in this area is a novelty when integrated into aerial robots. The problem is the difficulty
of designing a lightweight gripper that is at the same time compact, energy-efficient
and reliable.

Soft materials increase the adaptability of the holding system, while ensuring lower
damage to the structures. This is an ideal solution for typical pipe inspection tasks in
industrial facilities.

The ultimate goal is to have a system capable of crawling through pipes and inspecting
them with ultrasonic sensors and make non-destructive testing (NDT) inspections. This
kind of solution is very interesting for the industry and related service providers, as they
can save costs, time and prevent undesirable accidents.

The rest of this paper is divided into five parts. The second section reviews the previ-
ous work. The third section describes the soft landing gear system, including the design,
manufacturing process, and the operation flow of the landing gear and the soft limbs. The
fourth section discusses the validation of the proposed system and the experiments carried
out to validate its functioning. In the fifth section, the flight tests with the final setup is
described and evaluated. Finally, our conclusions are drawn in the sixth section.

2. Related Work

Soft devices are currently being used in many areas of robotics because they provide
advantages that the more traditional systems do not have, such as adaptability, compliance,
better interaction with the environment and multi-functional end-effectors. Some examples
of bio-inspired systems that can be used to interact with people are lightweight compliant
arms with soft muscles that are pneumatically activated [1] and a pneumatic actuator can
also be used to try to imitate the movements of a fish [2]. There are also soft grippers with
muscles that are pneumatically activated to work in industrial environments interacting
with humans [3].

There are many examples of materials and technologies, such as dielectric elastomer
actuator (DEA), silicone-based elastomers, 3D-printed flexible actuators, or pneumatic
actuators [4–7]. The main limitations associated with these soft-based actuators tend to be
related to the complexity of the manufacturing process.

Other authors’ examples are the high-contraction ratio pneumatic artificial muscle
(HCRPAM) [8,9], prosthesis and grippers for manipulation [10], robots with elastomer
actuators [11] and horticultural manipulation applications [12]. However, the main disad-
vantages of these actuators are the weight and space required by the pneumatic systems,
which have motors and compressors with relatively high dimensions and weight.

Soft robotics are starting to be used in UAVs aiming to develop systems with capabil-
ities to manipulate delicate objects, and to interact with people while flying. The use of
soft materials is explored in [13] to become collision-resilient and increase its robustness. A
special folding mechanism was investigated in [14]. DEA artificial muscle has also been
used to try to simulate flapping wings, insects [15], or using a flexible membrane based on
origami folding to preserve structural integrity during collisions [16]

The soft and compliant nature of the actuators ensures that soft robots are able to
provide a safe interaction between the system and the facility to be inspected. Despite
being lightweight structures, they are capable of achieving a high degree of freedom and a
high force-to-weight ratio.
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A large variety of robots have been designed to inspect pipes internally [17,18]. In fact,
the most popular method of inspection is intelligent pigging [19,20], which makes use of
devices equipped with sensors that navigate inside the pipes carried by the pipeline’s fluid.

Robots have also been used to inspect pipes externally, usually called crawlers [21].
These robots commonly use magnetic wheels or tracks to move along the surface of pipes.
This is very useful because the crawler can go underneath the pipe to make measurements,
detecting possible leaks or corrosion. They are able to move freely over smooth surfaces,
but in general, they cannot overcome obstacles and are limited to magnetic metal pipes.

The main locomotion alternative to these magnetic crawlers consists of an annular
structure equipped with wheels, which obtain their adherence from a vacuum sucker.

UAVs can reach inaccessible areas faster than human operators or crawler robots.
However, their flight endurance is very limited, and these robots are mainly used nowadays
to perform visual inspections on structures by using different types of cameras (color, stereo,
infrared), lasers, or other sensors. Authors in [22–24] proposed the use of UAVs to detect
gas leaks and to monitor and map pipes. However, these solutions only allow for the
visualization of surface damages.

Most recent research focused on the development of aerial robots that are able to not
only perceive but also interact with the environment. This can be achieved by using robotic
arms with several degrees of freedom (DOFs) that are attached to the UAV to interact
and perform contact inspections [25,26]. These robots enable a new kind of application in
which robots will be able to not only inspect but also perform the maintenance tasks at the
industrial facilities [27]. These types of systems are called aerial robotic manipulators or
aerial manipulators (AMs).

As related with previous perching mechanisms for UAVs, in [28], a single soft gripper
was embedded at the bottom of a UAV to perch on pipes for inspection and maintenance
tasks. Similar approaches have been taken in the rigid landing gripper of [29], the semi-soft
perching system developed in [30] and the bio-inspired UAV with a soft landing gear that
[31] used to land. However, these designs did not tackle the problem of moving along the
pipe. The system presented in this paper allows crawling over the pipes to inspect them,
saving time of flight.

3. Soft Landgear

In this section, the design of the landing gear and its characteristics are described. The
section is split into two parts: the first one focuses on the description of forward-motion
mechanism, while the second one focuses on the design and mechanical properties of the
soft limbs.

The complete mechanism gear has been designed to allow the robot to crawl over the
pipe. A compact and functional design that can be used for a variety of pipes because of
the flexibility of the limbs is shown. Figure 1 shows the complete CAD design.

The gripper is manufactured with three different materials, which are: TPU, PLA
and ecoflex. TPU (thermoplastic polyurethane) is a linear elastomeric polymer that can be
used for 3D printing. Its greatest qualities are the flexibility and durability of the material.
Polylactic acid (PLA) is a common plastic material in 3D printing. Finally, ecoflex is a cure
silicone rubber compound. The advantages of ecoflex are that it mixes its components in
equal parts to obtain a smooth and moldable silicone that can gain any shape and greatly
increases the adhesion.
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Figure 1. CAD design of the complete system.

3.1. Forward-Motion Mechanism

The forward-motion mechanism is a rigid core designed to be manufactured in PLA
(as mentioned earlier). Additionally, all of the electronics are placed in this part because
the rigid casing is more robust to possible impacts.

It has been designed to be flat on the upper side to make it easier to attach to different
drones. This attachment is done with an embedded electromagnet. This special device is
able to switch the magnetic field so that it can be enabled or disabled with a pulse. This
can be used, for example, in situations where gas is detected or in emergency cases. This
functionality is further explained in our previous work [32].

The mechanism is composed of two pieces: a fixed part that is attached to the drone
and a mobile part that generates the forward movement. These two parts are symmetrical.
The objective is to make a compact and robust design with the lowest possible weight
so that it can be easily transported by the UAV, while the center of gravity does not
significantly change when the UAV is moving.

Figure 2 shows the configuration of all the components. Three servomotors are
responsible for all of the movements. Two of the servos are used to fold the soft limbs,
which will be described later in Section 3.2. The other servo actuates as an endless screw
that produces the forward movement. To restrict the torsion of the endless screw, two
linear guides are located at the extremes of the rigid parts, which are attached with two
8 mm bars.

The lower part of the landing gear is a half-cylindrical section for the better adaptation
to the pipes where it lands. The reference pipe size for this circular section is 160 mm, but
the system can work in a diameter pipe range between 100 and 300 mm. On the sides, the
system has two flaps protruding from the structure to attach the soft limbs.
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Figure 2. CAD view of the forward-motion system. The arrangement of the three servos, the worm
gear, the linear bearings at the ends of the case and the guides to contracting the soft limbs can
been seen.

3.2. Soft Limb Design

This section presents the design of the soft limbs. The points of interest of the soft-
tentacle gripper are its capabilities of adapting to pipes of any diameter and absorbing the
impact on the pipe while landing.

Each limb is made out of TPU. This rubber-like material provides the gripper with
enough rigidity to retain its shape and maintain the exerting forces, but also enough
elasticity to bend and adapt to different pipe shapes.

Another benefit of this material is that it can be used by a 3D printer, making it possible
to easily iterate and develop different limb shapes. Finally, the tip of the limb is coated with
silicone to increase the grip force of the system and obtain a softer contact with the pipe.

The main property of the gripper is that it is intrinsically compliant, allowing it to
easily adapt to variations on the diameter of the pipe. Furthermore, weight is a crucial
variable in aerial systems, where any additional payload means less flight time and it also
affects the maneuverability of the UAV. Therefore, the landing system to be 3D printed
has been designed to keep the weight to a minimum. Finally, the soft approach also offers
more safety in the case of crashes.

The selection of the shape of the limbs has been decided after various tests and
simulations, by observing the limb’s deformation and finding the best adaptive shape for
the pipe. In the studies carried out, the properties of the TPU material were analyzed. An
example of simulation for the deformation of the limb is shown in Figure 3.

Figure 3. The left-hand image shows a study of the deformation for non-linear materials and the
right-hand image shows a study of the stress.
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To obtain a good grip and have the highest diameter range, the stiffness of the joint
had to be taken into account. The stiffness formula for each joint is ji = EI/L, where E
and I are two constant parameters: E is the Young’s modulus (the one used for the TPU is
100 N/mm2), and I is the cross-sectional moment of inertia. L is the length between the
nylon thread and the flexible segment. Figure 4 shows the final shape of the limb.

Figure 4. The image shows the final impression of the limb and the different angles chosen in
its design.

The first tests were made with j1 = j2 = j3 = j4, where j1 is the closest joint to the
UAV and j4 is the joint that is farthest away. This means that all lengths (L) were equal
and, therefore, the same stiffness was generated at each joint of the soft limb. With this
configuration, the limb started to bend first on the tip, which implied that it was not
adjusting properly to the pipe, as shown in the left-hand example of Figure 5.

Figure 5. Example of the bad fold of soft limb and good fold when changing ji parameters.

After this first attempt, the lengths Li were changed, making them higher in the joints
that are closer to the UAV, and reducing it progressively in the joints next to the tip; i.e.,
j1 < j2 < j3 < j4. With this approach, the tentacles bend better toward the shape of the
pipe, increasing the grip of the system. The resulting stiffness generates the fold pattern
that is shown in the right-hand example of Figure 5.

The following equation describes the recursive formula for the joint’s stiffness [33].
The equations in (1) indicate the curvature generated by the limb joints:
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These equations have been used to determine the joint deflections required to grip
a circular cross-section of a particular radius R formed with θi = α angles. Figure 6
shows an example of how the limbs adapt to the circular section of a pipe, showing the
different parameters used for the calculation. This design radius is considered to be optimal.
Nevertheless, due to the softness of the framework, the gripper can envelope pipes of
larger and smaller radius. Equations can be used to solve θi, giving as a result:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cos(α) = R+H
R+H+δ

tan(α) = α+Li−1/2
R+H

cos(θi) =
Li
2a

tan(θi) =
2δ
Li

(2)

θi = tan−1(
2(L2

i + Li−1 + Li)(R + H)

Li(4(R + H)2 − L2
i )

) (3)

By solving Equation (2), the system obtains δ and substitutes δ into tan(θi) and Equa-
tion (3) is obtained.

Figure 6. Model used to determine limb deflection in a pipe. H is the height of the limb, L is the
length of the link, R is the radius of the pipe, θ is the deflection of the joint, and α is the angle between
the contact points of two consecutive links.

Finally, by knowing each θi = α angles for each joint, we can obtain βi, the bending
angle, from the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S = tan(α)R
βi + 2ψi = 180
cos(ψi) =

S/2
Z

sin(βi/2) = S/2
Z

(4)

Figure 7 shows all the parameters used to solve the system of Equation (4):

Figure 7. Model for the determinate used to determinate the β angle.
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The conclusion was that to obtain the best fit possible of the limbs to the pipe, the
shape of the limbs should suffer a progressive deformation from the base to the end of
the limb. Table 1 shows the selected angles obtained for the selected radius R, the tendon
tension Ft and the dimensions of the limbs.

Table 1. Final dimensions of the limb shape profiles.

Angle β1 β2 β3 β4

degrees 132 136 168 175

length l1 l2 l3 l4

millimeters 14 16 90 180

3.3. Complete Locomotion System

This subsection explains that all of the components conform to the locomotion system,
and how they work. The locomotion system consists of three servomotors, which are
embedded into the frame of the soft landing gear (as explained earlier).

Two of the servomotors are used to bend the soft limbs. The third is used to perform
the linear displacement of the landing gear, which is made with an endless screw. Figure 8
shows the sequence of movements made by the soft land gear.

The first step to select the servomotors is to calculate the required minimum torque.
The complete system weighs 3.25 kg, thus each limb will must exert ∼0.81 kg at its tip.
Each motor has two limbs. For that reason, the final servo should exert at least 1.625 kg. By
making this assumption, we grant that the gripper can hold the complete weight of the
UAV in the worst scenario. Nevertheless, in most situations, this required strength will be
lower, as part of the weight is held by the pipe, and the gripper only needs to prevent the
UAV slipping laterally.

As shown in Figure 8, the motion runs as follows: two servomotors are hooked in
pairs with the soft limbs using nylon threads, which allows them to open and close the
limbs depending on the direction of the rotation of the motor. The third servomotor is
responsible for the forward movement, using an endless screw that is connected to the
motor at one end and to a nut at the opposite end. When the motor turns in one direction,
the soft landing gear moves.

Figure 8. Example of movement sequence of the soft landing gear: (in stage one), it grips to the pipe;
(in stage two), it opens the front limbs (blue case); (in stage three), it moves forward; (in stage four),
it closes the front limb (blue case); (in stage five), it opens the rear limbs (black case); and finally, (in
stage six), it moves the rear part.
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3.4. Soft Limb Manufacturing Process and Assembly

This subsection will describe how we manufactured the limbs that are installed on
the landing gear. Once the design has been carried out and has fulfilled the specifications,
the manufacturing process of the limbs begins. One of the most important challenges is
to be able to manufacture a soft part in a 3D printer, while making it easy to replicate and
ensuring that the process is accurate.

All of the designs are made with TPU and a pair of PLA stiffeners, all produced on a
3D printer. These limbs are printed with different infill and printing patterns. The limbs
were tested in the complete setup, until the one with more flexibility was selected. It was
tested with a 10 percent infill which was very flexible and did not maintain the desired
curvature when it was pulled by the nylon, then it was tested with a 20 percent infill which
was very stiff and hardly allowed the limb to bend when it was in tension. The limb with
an infill of 15 percent and a square printing patron was chosen as the optimal case.

Once the process of the impression of the TPU limb was finished, a PLA stiffener
must be added to the tip to ensure that the tip does not deform. A stiffener is used to
prevent losing strength at the tip when the nylon threads are contracted. After this, the
different nylon strands that exert the force to deform and obtain the circular shape of the
pipe, should be added to the limbs. These nylon threads are attached to the servomotor of
the corresponding locomotion system and is then hooked at the end of the limb with the
help of the PLA stiffeners at the end of the limb.

Finally, ecoflex is added. This elastomer is very flexible and rough. Ecoflex is applied
to the tips of the limbs to improve adhesion to the pipe. To incorporate ecoflex with the
TPU, molds were created using PLA with the shape of the limb tip and then were filled
with ecoflex. The soft limb was then introduced into the molds, obtaining the silicone on
the TPU. The ecoflex was cured for eight hours to obtain its physical qualities, and after
this time, it was demolded. Figure 9 shows the final result of the operation.

Figure 9. The final result when joining TPU with ecoflex. It can be seen that ecoflex is only applied to
the tip to increase the adhesion in this area.

With all the parts manufactured, everything is assembled as follows. There are two
parts. The first is the fixed part, where the two motors are located. One motor is responsible
for closing and opening the limbs and the second motor operates the worm screw. This
part has two holes at the top where the couplers are inserted. These are joined with metal
bars. The second is the mobile part, which incorporates in its interior only a motor to drive
the limbs. It also contains some superior holes where the linear bearings are inserted so
that this part can be moved through the metallic bars. It also contains a nut in the frontal
part where the screw without end will be connected.

The last step of the construction of the soft landing gear is to join these two parts with
the worm screw and the metal bars. The metal bars are added to give consistency and to
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carry the weight of the landing gear so that the worm screw is not exposed to too much
stress. It should be added that the motors in charge of opening and closing the limbs have
a reel that is fixed to it and a bearing. The reel takes care of rolling up the nylon threads,
and these threads pass along the limb and stay attached to the stiffeners.

4. Soft Land Gear Validation

This section presents the validation tests of the mechanical behavior of the soft landing
gear. Experiments have been carried out to measure the force exerted by the limbs using
different pipe sizes. The deformation when the limbs close over the pipe and the maximum
slope ranges that the system can withstand without falling (laterally) are also studied.

It should be noted that the results in this section demonstrate the reliability of the
design, as well as the actual capabilities of the gripper. These results can be extrapo-
lated for manufacturing other customized landing gears for different pipe sizes and other
payload requirements.

4.1. Pull Force

In this section, a comparison is made between various servos, checking the force that
can be exerted both experimentally and theoretically. Then, one must choose the one that
meets the design expectations and has the least weight and dimensions.

At first, the grip force is evaluated via experiments closing the claw on a test bench
and measuring the force with a dynamometer. The dynamometer is hooked to the claws
and pulled upwards to give real force exerted by the servomotor.

For those tests, the base of the limb was fixed and a force was applied at the tip. This
force is equal to that exerted by the nylon on the limb.

The servomotor voltage that is given as an example of the datasheet is validated with
experiments, comparing the force output for a dynamometer applying this voltage with
the theoretical force obtained in the datasheet.

A comparison has been made with three servos, the Feetech FS5103B, the Feetech
SCS15 and the Feetech FT6325M. According to the technical specifications, the first servo
has a voltage operation ranging from 4.8 to 6, the second has a voltage operation ranging
from 6 to 8.4 and the third also has a voltage operation ranging from 6 to 8.4, whilst the
force range obtained for each servo is as follows: for the first, the force ranges from 0.5 to
0.7 kg; for the second, the force ranges from 2.2 to 2.9 kg; and for the third, the force ranges
from 2.8 to 3.6 kg.

Figure 10 shows that the theoretical force is greater than the experimental force, which
was expected, due to the normal mechanical losses. This loss is lower than the 4%, being
bigger with lower voltages and lower with higher voltages. It is observed that the servo
1 graph does not perform the specifications while the second and third graphs do, and the
third one more than complies with the specifications. Finally, the second one is chosen as it
meets the design requirements and the servo has a lower weight.

After analyzing this information, we chose to use the Feetech SCS15 servomotors
because they have enough force to move the landing gear and hold on to the pipes. In
addition, they have a serial bus connection in which the three motors can be connected
at the same time with the same bus and each motor can also be selected according to the
motor ID. In Section 4.1, we will explain why this servo was selected.
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Figure 10. Comparison between the theoretical force and the real force performed by the soft
limbs according to the voltage applied to the servos. The orange line represents the theoretical
measurements and the blue line represents the experimental measurements obtained.

4.2. Contact Pressure

This section introduces the experiments for measuring the pressure exerted by the
soft landing gear on two pipes of 140 mm and 160 mm diameter. In these experiments,
force-sensing resistors (FRS sensors) have been distributed all over the soft surface. These
sensors have a resistance that changes when a force is applied to it. This measurement can
be mapped to forces and extrapolated to pressure over the surface. In these experiments,
we tried to understand the behavior of the soft limbs and the pressure areas, where the soft
train exerts less pressure on the pipes, which exert more pressure. Several experiments
were carried out to calculate the pressure of each limb. Once the experiments were carried
out, the data were collected and averaged to later be processed and obtain the pressure
map. This process was done for both 160 mm and 140 mm pipes.

Figure 11 shows that more pressure is exerted in the base of the soft train and also in
the tips of the limbs. The areas where less pressure is exerted are the intermediate areas
due to formed folds.
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Figure 11. The upper image shows the lower part of the landing gear to which the pressure study is
made. The lower left-hand image shows the pressure map made on a 140 mm-diameter pipe and the
lower right-hand image shows the pressure map made on a 160 mm-diameter pipe.

The same behavior is observed in both studied cases, in the pressure graph made on
the 160 mm-diameter pipe and in the 140 mm-diameter pipe. The difference between these
two graphs is that the general pressure recorded on the 140 mm pipe pressure graph is
lower; that is, in general, there is less pressure at the end of the extremities and at the base
of the soft train than on the 160 mm pipe.

4.3. Maximum Lateral Angle

A study was also conducted to determine the range of the angle at which the soft
train can be attached to the pipe without separating from it. For this test, a test-bench was
installed in which a smooth PVC pipe of 160 mm diameter was placed and the maximum
inclination angle concerning the vertical of the pipe was checked. The soft train together
with the UAV was able to hold on to it with a maximum angle of 30 ◦C. Figure 12 shows
the maximum angle at which the soft gripper can hold the contact to the pipe.

This experiment also tested the movement of the soft train and verified that the promi-
nences arranged at the base of the train can pass over the pipe joints and their irregularities.

Figure 12. The maximum angle at which the landing gear can be grabbed with the drone on the pipe.
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4.4. Crawling Gait Analysis

Finally, to analyze the repetitiveness of the movement of the system, a gait analysis
using a motion capture (MoCap) system was carried out.

The MoCap system allowed us to record in real time the position of markers in a
controlled movement. Three reflective markers have been placed at each limb, which are
located at each joint where the limb is bent in Figure 13.

Figure 13. Placement of markers on a pair of soft limbs.

Knowledge of the position of the markers can be used to validate the motion on the
pipeline. When the limbs are extended, the markers line up. As the limbs begin to bend,
the markers move inward, forming a semicircle. Then, the displacement begins. First, the
forward pair of limbs open and move forward. In the next step, the opposite happens: the
front limbs are closed and the rear limbs open, which moves the mechanism forward. The
motion must be linear on the pipe. Slippage is corrected by changing the center of gravity
of the UAV by making adjustments when joining the soft landing gear to the main UAV
platform to ensure the position of the center of gravity.

The recording of the position of the markers and the time can also be used to obtain
the speed of the landing gear along the pipe. Thus, it has been obtained that the average
speed is 4 cm/s.

Moreover, the position of the three markers on the limbs can also be used to obtain
the radius of the circumference when closing the limbs. For the case studied, the radius is
84 mm.

Finally, it can be concluded that the movement made by the soft landing gear on the
pipe is always the same, obtaining the same circumference radius. This also allows us to
correct the center of gravity to prevent slipping, and to ensure that the UAV and the soft
landing gear are centered on the pipe.

Figure 14 illustrates the motion of the marker points in two limbs.
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Figure 14. Closing sequence on the pipe and the limbs’ deformation.In the first picture, the tentacles
are open. In the second, they begin to close. Finally, in the third picture, the limbs are completely
close, adapting to the shape of the pipe.

5. Experimental Test

This section describes the experimental setup of the whole working system, including
the flying platform.

The soft landing gear was validated on a DJI FlameWhell 550 multirotor platform. This
platform was chosen due to its versatile design. One of the advantages of the developed
landing gear system is that it can be adapted to any type of multi-rotor system thanks to its
modular design. It can also land on pipes of different diameters, and once landed, it can
crawl along the pipe to perform both visual and contact inspection.

The motor controller board is in charge of supplying the necessary power for the
motors to work and to control the motor sending the information through the data bus.
An AVR-based board is used to control the landing and crawling on the pipe through the
controller board, which executes the program that sequentially opens and closes the soft
limbs to generate the movement of the system.

The AVR-based board is connected to an Nvidia tx2 onboard computer, which is in
charge of sending the order received from the pilot and execute the high-level behavior
software. However, this point is not the subject of this paper. It can also be used to integrate
more sensors, including cameras. All these components are powered through specific
voltage converters that regulate the power of each device from the battery.

The AVR-based board sends the information by serial communication to the motor’s
controller. This asynchronous Rx–Tx protocol has been used because it allows us to have
two lines: one for transmitting to the motors and the other for receiving data such as the
position, the speed, or which motor is working in each step. Figure 15 shows all of the
components that we have used.

Figure 15. Setup including in the flying platform.

This UAV has two operation modes: manual and autonomous. In the manual mode,
an operator sends the commands to move through the pipe. These commands are received
by the Nvidia tx2 and transmitted to the AVR-based board via USB. The operator can select
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between either opening and closing the limbs, or either moving the soft train forward or
backward. In the autonomous mode, the AVR-based board sends a sequential program to
the motors so that they carry out a movement. A linear sequence of opening front limbs,
moving forward, closing front limbs, opening rear limbs and moving forward is performed.
This mode should be activated once the UAV is attached to the pipe.

Tests were carried out to verify the functionality of this unit. The first experiments that
were performed on the pipe were the ones in which the soft landing gear moves through it.
Once this stage was tested, the landing gear was installed on the multi-rotor system, in this
case a DJI f550 which has a Pixhawk 2 for the control of the multi-rotor, an Nvidia tx2 as an
onboard computer, a camera connected to it to locate and position the UAV on the pipe,
and a gas sensor which is a safety sensor to detect a gas leak and preventing putting the
installation at risk—which is further detailed in [32]. Figure 16 shows the scheme of the
proposed system.

Figure 16. System scheme used.

Multiple experiments have been carried out to demonstrate that the system works
under different conditions, including indoor and outdoor experiments with wind, which
makes it more difficult to maneuver and land the UAV. The soft landing gear grips firmly
to the pipe and helps center the multi-rotor to the pipe while landing. The grip is fast and
safe and does not damage or scratch the pipe at any time, though the landing gear is strong
enough to hold on to the pipe and move along it without needing to be stabilized with the
UAV propellers. Figure 17 gives an example of the soft train attached to a pipe with and
without the multi-rotor UAV.
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Figure 17. The image on the left-hand side shows the first experiment performed with the landing
gear alone on the pipe. The picture on the right-hand side shows the complete system and how it is
attached to the pipe.

The gripper system worked in all of the tests, demonstrating its reliability and ability to
overcome joints between pipes while moving. It can also be attached to irregular surfaces.

As proof of concept, an ultrasonic sensor was attached to the soft landing gear to
acquire non-destructive information about the thickness of a typical steal pipe. Figure 18
shows the assembly and the components used for the inspection. The ultrasonic sensor is
placed at the front of the landing gear and has a motor to move the sensor up and down. It
is important to make the right pressure so it can take the measurements.

Figure 18. The image shows the complete system with an ultrasonic sensor and the flaw detection com-
puter.

6. Conclusions

A novel design of a soft-tentacle gripper for UAVs to crawl on pipes was presented.
How the soft gripper was manufactured with 3D printing and molding techniques

for the silicone-based material was also described. This manufacturing process is highly
repeatable and reliable.

The design of the UAV landing gear is unique and is capable of crawling on pipes
without damaging them. It also provides a fast coupling and decoupling of the pipe. It can
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move through welds and joints, without losing adhesion and without jamming. The soft
mechanism also adapts to pipes of different diameters or even to non-cylindrical pipes.

The soft gripper was designed to be as lightweight as possible, easy to transport and
easy to change. The system also has low-cost implementation and is easy to reproduce
using additive manufacturing techniques.

The system has been validated with real tests landing and crawling on the pipes with
an automatic system.

This system can be combined with various sensors to perform inspections, an example
of which is the use of an ultrasonic sensor. This type of sensor combined with this soft
landing gear is very useful for inspecting pipes located at high altitudes. This saves in
terms of inspection costs and time and increases the safety of workers.

This research paper represents the first step to create a fully autonomous hybrid flying
and crawling contact inspection robot that is able to operate in an environment with many
obstacles.

Future work will focus on the development of a faster locomotion system with more
degrees of freedom. Furthermore, a standard ultrasonic transducer will be introduced in
the base of the crawl system in order to realize flaw detection over the pipe and to detect
anomalies.
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CAD Computer-aided design
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Abstract: Variations in the quantity of plankton impact the entire marine ecosystem. It is of great
significance to accurately assess the dynamic evolution of the plankton for monitoring the marine
environment and global climate change. In this paper, a novel method is introduced for deep-sea
plankton community detection in marine ecosystem using an underwater robotic platform. The
videos were sampled at a distance of 1.5 m from the ocean floor, with a focal length of 1.5–2.5 m. The
optical flow field is used to detect plankton community. We showed that for each of the moving
plankton that do not overlap in space in two consecutive video frames, the time gradient of the
spatial position of the plankton are opposite to each other in two consecutive optical flow fields.
Further, the lateral and vertical gradients have the same value and orientation in two consecutive
optical flow fields. Accordingly, moving plankton can be accurately detected under the complex
dynamic background in the deep-sea environment. Experimental comparison with manual ground-
truth fully validated the efficacy of the proposed methodology, which outperforms six state-of-the-
art approaches.

Keywords: image motion analysis; image processing; optical flow; underwater robotic

1. Introduction

Plankton are organisms that live in oceans and fresh water [1] that play an important
role in the material and energy recycling within the marine food chain [2]. The study of
plankton community and plankton itself is indispensable for understanding of marine
resources and the impacts of climate change on ecosystems [3]. In addition, the number of
plankton is a key indicator of carbon and energy cycling [4], and of great significance to
species diversity and ecosystem diversity [5]. From the early 19th century to date, many
examples of large-scale sensor equipment were used to solve the challenge of getting
reliable high-resolution estimates of plankton abundance at depth [6]. Acoustic and
optical techniques for the in-situ observation of zooplankton are currently popularly
used for plankton distribution assessment. Although acoustic-based observation has
outstanding advantages of high observation frequency, it has inaccurate quantification and
usually requires the combination of optical image analysis or other traditional sampling
of zooplankton. In recent years, a series of advances were made in computer vision [7],
including hyperspectral imaging [8], principal component analysis of images [9,10], and
deep learning [11–13] for image classification [14]. As marine plankton is small and
uneven in size, it is difficult to describe it quantitatively, such as with inventory and
abundance statistics.
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At present, a lot of plankton detection methods are proposed that often rely heavily
on the use of sophisticated underwater instruments. J. Craig et al. [15,16] constructed an
ICDeep system, based on the Image Intensified Charge Coupled Device (ICCD) camera,
to assess the quantity of low-light bioluminescent sources in the marine environment.
Philips et al. [17] created a marine biological detector, where a Scientific CMOS (SCMOS)
camera was used to image the organisms before conducting statistical analysis of the
plankton abundance. With the development of the computer vision, multitarget tracking-
enabled automatic analysis was gradually applied to this field [18]. Kocak et al. [19]
proposed to use the active contour (snake) models to segment, label, and track images of
the snake model for the classification of the plankton. Luca et al. [20] also presented an
automatic plankton counting method, which mainly used the interframe difference and the
intersection of the bounding boxes to perform multitarget matching. The aforementioned
methods achieved some results in automatic analysis and counting. However, there are
still some challenges due to the particularity and complexity of plankton’s own form and
passive movement mode. Applying machine vision techniques to underwater images
or videos is a feasible way to study plankton at present. Underwater plankton imaging
has the capacity to detect patterns of the plankton distributions that we would be unable
to be tackled by sampling with nets. [21]. Therefore, we consider applying machine
vision technology to underwater images or videos is currently a feasible method for
studying plankton.

Underwater robots play an important role in various video surveillance tasks including
data collection. A mobile robot that can be fixed on a rotatable axis would be advantageous
because it provides 360◦ visual coverage instead of using a fixed image camera installed in
a predetermined direction. These mobile robots capture unprecedented shots of marine life
in dangerous environments inaccessible to humans. A submarine can push and control
the underwater robot to complete the collection of deep-sea data and store the data in the
computer for analysis. Some underwater robots are shown in Figure 1.

In this paper, we propose a deep-sea plankton detection method based on the Horn–
Schunck (HS) optical flow [22]. The optical flow is the instantaneous velocity of the pixel
movement of the moving object on the image plane. The advantage of the optical flow
method is that the motion vectors can be estimated by the optical flow vector accurately.
In this way, one can detect the plankton and easily analyze statistically its volume using
image processing and machine vision. The research on plankton can be specifically divided
into density, position, number, individual and total volume, etc. In the case where the
spatial position of plankton does not coincide in two consecutive frames, the presence
or absence of plankton should be determined according to the following conditions: the
time gradient maps at the plankton’s location in two consecutive optical flow fields will
be opposite to each other, and the horizontal and vertical gradients of the plankton at
that location are equal and their direction is the same. Since the connected components
are marked as the location of plankton, the number of connected components can be
regarded as the number of plankton. By using this method, we firstly count the number of
plankton in the video, followed by a statistical analysis. Various comparative experiments
are carried out to benchmark with other methods to fully demonstrate the effectiveness of
the proposed methodology.
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Figure 1. Underwater robot pattern: submarine can push and control underwater robot to complete collection of deep-sea
data, then store data in computer for analysis.

2. The Proposed Method

2.1. Principle

The deep ocean floor is clear and suitable for video acquisition with active lighting.
During the video acquisition process, the camera position and shooting angle change with
the movement of the submersible, making the plankton detection task a moving target
detection problem under complex and dynamic backgrounds. Two consecutive optical
flow field matrices derived from three consecutive video frames in a video are employed.
For fast-moving plankton (plankton does not overlap in space in two consecutive frames),
the two consecutive optical flow values at the position where the plankton is located are
opposite. In practice, the amount of grayscale change is often close to 0. Therefore, the two
consecutive optical flows are approximately opposite to each other, and we discuss this
situation by setting two thresholds in the experiment section. We use this property to map
out the location of the plankton. Figure 2, hereafter provides an overview of the proposed
method, which consists of three modules.
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Figure 2. Main processing blocks of proposed algorithm. Module 1 is for preprocessing, whilst Module 2 performs 3D
convolution on video frame to extract dense optical flow. Module 3 is a dual threshold setting to determine whether a
plankton is contained at a specific location or not(see Section 3.3).

As shown in the Module 1 of Figure 2, grayscale images are obtained by weighting
three channels of the input frames. In module 2, three convolution operations are per-
formed on two consecutive frames to produce three different gradients(see Figure 3), which
correspond to three different convolution kernels. The details of the convolution process
are shown in Figure 3 to illustrate this process. We find that the time gradients of the
two optical flow fields derived from three consecutive frames of images are opposite in
numerical value and direction in the corresponding positions of plankton in the middle
frame. In the following description, the time gradients of the two consecutive optical
flow fields are represented by ∇t and ∇′

t. The horizontal gradients of the two consecutive
optical flow fields derived from three consecutive frames are equal in magnitude and
direction in the corresponding positions of plankton in the middle frame. Similarly, the
vertical gradients are also equal. In the following description, the horizontal gradients of
the two optical flow fields are represented by ∇x and ∇′

x, the vertical gradients are ∇y
and ∇′

y. Finally, Module 3 is for dual thresholding, which is explained separately when
discussing the parameters later.
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Figure 3. Three convolution kernels corresponding in time and space. Two consecutive frames are
used to form a 3D matrix whose size is (height + 1)× (width + 1)× 2. Size of filter is 2× 2× 2. Result
of each operation is gradient of the pixel at upper-left corner of convolution kernel.

2.2. Proof

In the HS optical flow method, the constraint equation of optical flow can be estab-
lished as Equation (2) according to the premise of the optical flow method: invariance of
gray level [22]. Three first-order differences are used to replace the horizontal, vertical,
and time gradients. Let the gray value at plankton’s position in the middle frame be Ix,y,t,
where the subscripts x and y are the pixel index, and t is the time index. The position of
plankton changes with the movement of ocean current and the camera lens. As shown in
Figure 4, the plankton is small-sized, so its position in frame t doesn’t overlap in frame
t + 1. When it changes from position 1 to position 2, the gray value corresponding to
position 2 of plankton at frame t − 1 is the background gray value Ix,y,t−1. In a similar
way, when the position of plankton changes from position 2 to position 3, the gray value
corresponding to position 2 at frame t + 1 becomes the background gray value Ix,y,t+1.
Based on the characteristics of deep-sea underwater video, the background around the
plankton is invariant in time, i.e.,:

Ix,y,t−1 = Ix,y,t+1 (1)

(t‐1)th frame t‐th frame (t+1)th frame

position 1 position 2 position 3

Figure 4. Position of plankton in three consecutive frames.

∇xu +∇yv +∇t = 0 (2)

The time gradients at the plankton’s positions in the two adjacent optical flow fields are:

∇t =
1
2
(Ix,y,t − Ix,y,t−1 + Ix+1,y,t − Ix+1,y,t−1) (3)
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∇′
t =

1
2
(Ix,y,t+1 − Ix,y,t + Ix+1,y,t+1 − Ix+1,y,t) (4)

Based on Equation (1), the background gray value Ix,y,t−1 = Ix,y,t+1, ∇t = −∇′
t , the

time gradients of the two optical flow fields derived from three consecutive frames of
images are opposite in the corresponding positions of plankton in the middle frame.

The horizontal gradients of the plankton’s location in the two optical flow fields are:

∇x =
1
2
(Ix+1,y,t − Ix,y,t + Ix+1,y,t−1 − Ix,y,t−1) (5)

∇′
x =

1
2
(Ix+1,y,t+1 − Ix,y,t+1 + Ix+1,y,t − Ix,y,t) (6)

The same way, based on Equation (1), we can get that ∇x = ∇′
x, i.e., the horizontal

gradients of the two optical flow fields derived from three consecutive frames are equal in
the corresponding positions of plankton in the middle frame. In the same way, we can get
∇y = ∇′

y.
In fact, in the process of proof, the time and space gradients are estimated in a 2× 2× 2

cubic neighborhood by taking the mean.
Then, we iterate n times for gray gradient relaxation by setting the initial conditions

as v0 = v′0 = 0 and u0 = u′
0 = 0.

Δ = (
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (7)

un+1 = un −∇xΔ (8)

vn+1 = vn −∇yΔ (9)

The parameter α2 reflects the smoothness constraints of the HS optical flow algorithm;
Δ is an iteration factor in the process of the iterative algorithm; ∇x and ∇y are the horizontal
and vertical gradients, and u and v are the horizontal and vertical optical flow field
matrices, respectively.

The relationships of Equations (7)–(9) are represented by a series, where the number
of iterations is n. Let’s substitute Equations (7)–(9), the new formulas are as follows:

un+1 = un −∇x(
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (10)

vn+1 = vn −∇y(
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (11)

where un+1 and un are two horizontal optical flow fields before and after the n-th iteration,
vn+1 and vn are two vertical optical flow fields before and after the n-th iteration. We can
derive un+1 = −u′

n+1, vn+1 = −v′n+1. When n = 0, we have:

v1 = v0 −∇y(
∇xu0 +∇yv0 +∇t

α2 +∇2
x +∇2

y
) (12)

v′1 = v′0 −∇′
y(
∇′

xu′
0 +∇′

yv′0 +∇′
t

α2 +∇′2
x +∇′2

y
) (13)

v1 and v′1 are the two consecutive vertical optical flow field at the first iteration. If the time
gradients of the last two optical flow fields are opposite, that is ∇t = −∇′

t , we can get: v1 = −v′1.
When n = k, vk+1 = −v′k+1. That is, Equations (14) and (15) are opposite:

vk+1 = vk −∇y(
∇xuk +∇yvk +∇t

α2 +∇2
x +∇2

y
) (14)
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v′k+1 = v′k −∇′
y(
∇xu′

k +∇′
yv′k +∇′

t

α2 +∇′2
x +∇′2

y
) (15)

where vk+1 and v′k+1 represent the previous and the next vertical optical flow field matrix
at the (k + 1)th iteration, respectively.

When n = k + 1, we can show that vk+2 = −v′k+2

vk+2 = vk+1 −∇y(
∇xuk+1 +∇yvk+1 +∇t

α2 +∇2
x +∇2

y
) (16)

v′k+2 = v′k+1 −∇′
y(
∇′

xu′
k+1 +∇′

yv′k+1 +∇′
t

α2 +∇′2
x +∇′2

y
) (17)

By adding Equations (16) and (17), and substituting vk+1 = −v′k+1, ∇x = ∇′
x and

∇y = ∇′
y into Equation (16) and Equation (17), respectively, we have:

vk+2 = −v′k+2 (18)

Therefore, for fast-moving plankton, the values of the vertical optical flow field
matrices of the space position where the plankton is located are opposite from each other:
v = −v′, and the same applies horizontally: u = −u′.

2.3. The Volume of Plankton

Based on the above proof, one can calculate the number of pixels where plankton is
located, and then multiply the actual size of a pixel to obtain the area of plankton. The
resolution of the known image is height × width. According to camera internal reference, the
actual range of our field of view is about W m by H m. The calculation of the actual area is
given by:

S = N × (W/width)× (H/height) (19)

where N is the number of pixels, and S is the corresponding actual surface. A method of
approximate calculation is adopted here. Firstly, we can get the radius of a circle that has
the same area as the plankton, and then calculate the volume of the sphere based on that
radius. The advantage of this method is that we can get the 3D volume of an irregular
object only by its area [23]. In addition, we can predict the type of plankton based on the
estimated size, laying the foundation for the later identification of plankton types. The
volume can be calculated by:

V =
4
3
× π− 1

2 × S
3
2 (20)

The proposed method adds its own theoretical innovation on the basis of the original
optical flow method and was proved mathematically. In this way, the complexity and
passive motion patterns of plankton are well-solved, and the accuracy improves as the
above problems are solved.

3. Experimental Results and Analysis

The data capture was provided by the China National Deep Sea Center. The data
set was obtained by an underwater robotic nondestructive testing system carried by a
deep-sea manned submersible. The camera’s technical specifications are: resolution: 1080i
HDTV; minimum illumination: 2l ux; optical zoom: 10 times; digital zoom: 12 times;
aperture range: 3.2 mm–32 mm; video aspect ratio: 16:9 or 4:3. In this study, three
six-minute videos of the plankton community from appearing to disappearing from the
screen were selected, which were obtained from a submarine on the western Pacific sea
mountain slope, and the diving depths are 2741.88 m and 5555.68 m, corresponding to 76
and 77 dives, respectively. The reason why the three videos are selected is that plankton
appeared more frequently in them. Due to the complexity of the deep-sea environment
and the irregular camera movement, the background is complex and dynamic. In this case,
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using high-precision image processing technology to study the plankton community from
appearing to disappearing from the screen can effectively distinguish sedimentary clouds
and plankton community in images. Examples of deep-sea plankton images are shown in
Figure 5 and the details of data set including diving number, date, diving time, longitude,
latitude and depth are shown in Table 1.

Figure 5. Example images of deep sea plankton.

Table 1. Details of datasets including diving number, date, diving time, longitude, latitude,
and depth.

Diving Number Date Diving Time Longitude Latitude Depth

76 17 July 2014 8.95 h 155.32◦ E–155.34◦ E 15.50◦ N–15.52◦ N 2741.88 m

77 21 July 2014 10.33 h 154.58◦ E–154.59◦ E 15.70◦ N–15.72◦ N 5555.68 m

3.1. Number and Volume of Plankton

Processing the recorded video of a complete plankton community from appearing to
disappearing from the screen, the results obtained are shown in Figure 6. Figure 6a shows
the variation of the number of plankton in three six-minute videos, and Figure 6b shows
the variation of the volume of the corresponding three videos. The process of plankton
appearing in front of the camera to disappearing is shown in Figure 6c,d. In the first 30 s of
Figure 6c, the amount of plankton is small and the detection results are more accurate. We
can see that the amount of plankton rises in the last 30 s of Figure 6c. For dense particle
clouds, overlap, and hence, occlusion occurs frequently, which leads to relatively low
average accuracy and recall rates.

132



Sensors 2021, 21, 6720

(a)

(b)

(c) (d)

Figure 6. (a) Number of plankton in three six-minute videos. (b) Total volume of plankton in three six-minute videos.
(c) Number of plankton in a period. (d) Volume of plankton in a period.
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The actual volume curve of plankton in the video is shown in Figure 6b,d. We can
see that the volume curve and the quantity curve of plankton generally follow the same
trend. At the 40th second in Figure 6c, the plankton community moves away from the
camera and then comes back, resulting in a smaller scene and a smaller overall volume due
to perspective. So, we can see that the volume curve goes down and then goes up from
Figure 6d.

3.2. Comparison with Six Target Detection Methods

The proposed method is compared with six state-of-the-art methods for performance
evaluation. The results are shown in Figure 7, where Figure 7a represents some original
images of the video, including sediment clouds, plankton, and uneven backgrounds. Top-
Hat transform [24] is used to detect the location of the plankton in the image as shown in
Figure 7b, the weakness of this algorithm is that there are some missed cases. Figure 7c and
Figure 7d show the detection results of the frame difference method [25] and the motion
estimation and image matching method [26], respectively. We show the result from the scan
line marking method [27] in Figure 7e results from the simple block-based sum of absolute
differences flow (SD) method [28], and the Lucas–Kanade (LK) optical flow method [29]
are given in Figure 7f,g. The weakness of the above three methods is that there are a few
false positives, and both Figure 7c,e detected the sediment cloud in the background by
mistake. The result of Figure 7h is obtained using the proposed method. After comparing
with the manual ground truth, we find that the plankton detected by the proposed method
is more consistent with the original image in Figure 7a.

We take 20 images of the video, and the data are cleaned by manual counting to get
the ground-truth. Then, we compare the number of plankton, recall rate, precision rate,
and F1-score of the seven methods. When using 10 frames in the first 30 s of the video,
the amount of plankton is small and the detection results are more accurate, the average
accuracy rate is 0.901, the average recall rate is 0.955, and F1-score is 0.927. In addition, the
equations and related symbols are shown in Table 2 and Equations (21)–(23). The results
are shown in Tables 3 and 4. Taking 10 frames in the last 30 s of the video, the amount of
plankton is high. For dense particle clouds, overlap can easily occur, and hence, occlusion
occurs frequently, so the average accuracy and recall rates are relatively low, i.e., 0.895 and
0.943, respectively, and the F1-score is 0.918, The results are shown in Tables 5 and 6. In
addition, we randomly selected 10 frames from the video for testing. The experimental
results are shown in Tables 7 and 8. The performance of the proposed method is still very
good. We use bold font to highlight the best results in each category in Tables 4, 6, 8 and 9.

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2Precision × Recall
Precision + Recall

(23)

Table 2. Confusion Matrix.

Relevant Nonrelevant

Retrieved True Positives (TP) False Positives (FP)

Not Retrieved False Negatives (FN) True Negatives (TN)
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(a)

(b)

(g)

(f)

(e)

(c)

(d)

(h)

Figure 7. Location of plankton detected with seven different methods: (a) original image; (b) Top-Hat transform; (c) frame
difference method; (d) motion estimation and image match; (e) scan line marking method; (f) simple block-based sum of
absolute differences flow (SD); (g) Lucas–Kanade (LK) optical flow method, and (h) proposed method.

Table 3. In first 30 s, comparison of number of detected plankton using seven methods and
Ground-Truth.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10 Mean std

Top-Hat 10 12 9 15 17 18 18 22 24 22 16.7 4.9

Frame difference 20 22 18 22 21 17 19 15 17 14 18.5 2.7

Image match 26 24 23 21 24 17 15 15 16 16 19.7 4.1

Scan line marking 11 7 8 9 10 9 10 9 9 8 9.0 1.1

SD 17 13 11 11 13 13 12 10 12 10 12.2 1.9

LK 17 14 13 13 13 13 12 11 11 10 12.7 1.8

Proposed method 16 14 12 12 12 11 12 10 11 10 12.0 1.7

Ground-Truth 14 13 12 12 11 12 11 9 10 9 11.3 1.6
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Table 4. In first 30 s, comparison of recall rate, precision rate, and F1-score of seven methods.

The Ten
Frames:

1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.9 0.85 0.89 0.73 0.59 0.61 0.56 0.36 0.42 0.41 0.632

Recall 0.64 0.92 0.67 0.92 0.91 0.92 0.91 0.89 1 1 0.878
F1 0.75 0.88 0.76 0.81 0.72 0.73 0.69 0.51 0.59 0.58 0.73

Frame
difference

Precision 0.65 0.55 0.61 0.5 0.52 0.65 0.56 0.53 0.59 0.57 0.573
Recall 0.93 0.92 0.92 0.92 1 0.92 1 0.89 1 0.89 0.939

F1 0.77 0.69 0.73 0.65 0.68 0.76 0.72 0.66 0.74 0.69 0.712

Image
match

Precision 0.54 0.54 0.49 0.52 0.46 0.65 0.67 0.53 0.56 0.56 0.552
Recall 1 1 0.92 0.92 1 0.92 0.91 0.89 0.9 1 0.946

F1 0.7 0.7 0.64 0.66 0.63 0.76 0.77 0.66 0.69 0.72 0.7

Scan line
marking

Precision 0.82 0.86 0.88 0.78 0.9 0.89 0.9 0.89 0.89 0.88 0.869
Recall 0.64 0.46 58 0.58 0.82 0.67 0.82 0.89 0.8 0.78 0.704

F1 0.72 0.6 0.7 0.67 0.86 0.76 0.86 0.89 0.84 0.83 0.778

SD
Precision 0.76 0.92 0.91 0.91 0.77 0.85 0.83 0.8 0.75 0.8 0.83

Recall 0.93 0.92 0.83 0.83 0.91 0.92 0.91 0.89 0.9 0.89 0.893
F1 0.84 0.92 0.87 0.87 0.83 0.88 0.87 0.84 0.82 0.84 0.86

LK
Precision 0.76 0.86 0.85 0.85 0.85 0.85 0.83 0.73 0.82 0.8 0.82

Recall 0.93 0.93 0.92 0.92 1 0.92 0.91 0.89 0.9 0.89 0.921
F1 0.84 0.89 0.88 0.88 0.92 0.88 0.87 0.8 0.86 0.84 0.868

Proposed
method

Precision 0.81 0.93 1 1 0.92 1 0.83 0.8 0.82 0.9 0.901
Recall 0.93 1 1 1 1 0.92 0.91 0.89 0.9 1 0.955

F1 0.87 0.96 1 1 0.96 0.96 0.87 0.84 0.86 0.95 0.927

Table 5. In last 30 s, comparison of number of detected plankton using seven methods and
Ground-Truth.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10 Mean std

Top-Hat 22 17 17 16 13 12 13 12 9 18 14.9 3.6

Frame difference 28 28 30 24 30 15 28 28 27 24 26.2 4.2

Image match 22 22 25 26 31 27 32 28 31 24 26.8 3.5

Scan line marking 13 15 14 11 16 15 19 15 15 13 14.6 2.0

SD 16 21 22 23 23 23 22 23 20 17 21.0 2.4

LK 16 22 23 22 23 23 21 23 20 18 21.1 2.4

Proposed method 15 21 22 21 22 21 21 22 19 16 20.0 2.4

Ground-Truth 19 19 19 18 21 18 21 21 18 15 18.9 1.8

3.3. Discussion of Parameters

For each imaging system, there is a depth of field within which the closest field objects
and farthest field objects are all in focus. If we deploy the system in air, the light intensity
for the near field object and far field object should not be different in theory. However,
when deployed in seawater, the light intensity changes as the light propagates in the
water from near-field to far-field because of scattering caused by seawater and particles
in the seawater. Therefore, during the experiment, there are two situations that need to
be discussed. Firstly, ’grayscale invariance’ is one of the prerequisites of the HS optical
flow method, but in actual operation, the amount of grayscale change is often close to 0
but not equal to 0. Therefore, the threshold β1 is set to handle this situation, as shown in
Equation (24).
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Table 6. In last 30 s, comparison of recall rate, precision rate, and F1-score of seven methods.

The Ten
Frames:

1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.77 0.94 0.94 0.93 0.92 0.92 0.92 0.92 1 0.77 0.903

Recall 0.89 0.84 0.84 0.83 0.57 0.61 0.57 0.52 0.5 0.93 0.762
F1 0.83 0.89 0.89 0.88 0.7 0.73 0.7 0.66 0.67 0.84 0.827

Frame
difference

Precision 0.64 0.64 0.6 0.71 0.65 0.93 0.71 0.71 0.59 0.58 0.676
Recall 0.95 0.95 0.95 0.94 0.95 0.78 0.95 0.95 0.88 0.93 0.923

F1 0.76 0.76 0.74 0.81 0.77 0.85 0.81 0.81 0.71 0.71 0.78

Image
match

Precision 0.82 0.82 0.72 0.65 0.67 0.63 0.63 0.71 0.55 0.58 0.678
Recall 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.945

F1 0.88 0.88 0.82 0.77 0.79 0.75 0.76 0.81 0.69 0.71 0.789

Scan line
marking

Precision 0.92 0.93 0.93 1 0.94 0.93 0.95 0.93 0.93 0.92 0.938
Recall 0.63 0.74 0.68 0.61 0.71 0.78 0.86 0.67 0.78 0.8 0.726

F1 0.75 0.82 0.79 0.76 0.81 0.85 0.9 0.78 0.85 0.86 0.82

SD
Precision 0.94 0.85 0.82 0.74 0.87 0.74 0.91 0.87 0.85 0.82 0.841

Recall 0.79 0.94 0.94 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.893
F1 0.86 0.89 0.88 0.83 0.91 0.83 0.93 0.91 0.89 0.87 0.88

LK
Precision 0.94 0.82 0.78 0.77 0.87 0.74 0.95 0.87 0.85 0.78 0.837

Recall 0.79 0.94 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.928
F1 0.86 0.88 0.86 0.85 0.91 0.83 0.95 0.91 0.89 0.85 0.88

Proposed
method

Precision 1 0.85 0.82 0.86 0.91 0.81 0.9 0.91 0.95 0.94 0.895
Recall 0.79 0.95 0.95 1 0.95 0.94 0.9 0.95 1 1 0.943

F1 0.88 0.9 0.88 0.92 0.93 0.87 0.9 0.93 0.97 0.97 0.918

Table 7. Comparison of number of detected plankton from 10 randomly selected frames.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10

Top-Hat 19 34 1 47 45 3 3 0 0 2

Frame difference 281 260 10 159 143 15 13 8 10 12

Image match 78 129 12 106 120 16 15 11 9 14

Scan line marking 8 119 1 51 99 7 4 2 2 3

SD 172 195 0 83 124 1 5 1 1 9

LK 163 190 0 86 121 1 5 1 1 10

Proposed method 94 105 0 71 89 1 7 1 1 5

Ground-Truth 87 94 1 66 76 2 6 1 1 5

∣∣u + u′∣∣ < β1 or
∣∣v + v′

∣∣ < β1 (24)

Secondly, when there is no plankton and the optical flow happens to be small, if the
values of the optical flow are not the opposite but the sum still conforms to Equation (24),
the threshold β2 needs to be set to solve this situation, as shown in Equation (25).

− uu′ > β2 or − vv′ > β2 (25)

The best threshold value is obtained by traversing the range value, the scope of β1
is 0.05 to 0.35, step size is 0.05, the scope of β2 is 3–9, and the step length is 1. Then, the
original images and all those resulting from different thresholds are represented by vectors.
At last, we calculate the cosine similarity between two images, that is the calculation of
cosine distance between two vectors; the larger the cosine distance between the two vectors,
the more similar the two images are. The results are shown in Table 9.
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Table 8. Comparison of recall, precision, and F1-score of detected plankton from 10 randomly selected frames.

The Ten
Frames:

1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.95 0.88 1.00 0.94 0.89 0.67 1.00 0.00 0.00 1.00 0.733

Recall 0.21 0.32 1.00 0.66 0.53 1.00 0.50 0.00 0.00 0.40 0.462
F1 0.34 0.47 1.00 0.78 0.66 0.80 0.67 0.00 0.00 0.57 0.529

Frame
difference

Precision 0.28 0.35 0.1 0.38 0.49 0.13 0.38 0.13 0.10 0.33 0.267
Recall 0.92 0.96 1.00 0.91 0.92 1.00 0.83 1.00 1.00 0.80 0.934

F1 0.43 0.51 0.18 0.54 0.64 0.23 0.52 0.23 0.18 0.47 0.393

Image
match

Precision 0.90 0.70 0.08 0.57 0.58 0.13 0.33 0.09 0.11 0.29 0.378
Recall 0.80 0.96 1.00 0.91 0.92 1.00 0.83 1.00 1.00 0.80 0.922

F1 0.85 0.81 0.15 0.70 0.71 0.23 0.47 0.17 0.20 0.43 0.472

Scan line
marking

Precision 0.94 0.73 1.00 0.88 0.71 0.29 1.00 0.50 0.50 0.67 0.722
Recall 0.86 0.93 1.00 0.68 0.92 1.00 0.67 1.00 1.00 0.40 0.846

F1 0.90 0.82 1.00 0.77 0.80 0.45 0.80 0.67 0.67 0.50 0.738

SD
Precision 0.47 0.46 0.00 0.72 0.57 1.00 1.00 1.00 1.00 0.56 0.678

Recall 0.93 0.95 0.00 0.91 0.93 0.50 0.83 1.00 1.00 1.00 0.805
F1 0.62 0.62 0.00 0.80 0.71 0.67 0.91 1.00 1.00 0.72 0.705

LK
Precision 0.50 0.47 0.00 0.72 0.57 1.00 1.00 1.00 1.00 0.50 0.676

Recall 0.94 0.95 0.00 0.94 0.91 0.50 0.83 1.00 1.00 1.00 0.807
F1 0.65 0.63 0.00 0.82 0.70 0.67 0.91 1.00 1.00 0.67 0.705

Proposed
method

Precision 0.88 0.86 0.00 0.89 0.81 1.00 0.86 1.00 1.00 1.00 0.830
Recall 0.95 0.96 0.00 0.95 0.95 0.50 1.00 1.00 1.00 1.00 0.831

F1 0.91 0.91 0.00 0.92 0.87 0.67 0.92 1.00 1.00 1.00 0.820

Table 9. Select best threshold by comparing cosine distance between two vectors.

Threshold: 0.05 0.10 0.15 0.20 0.25 0.30 0.35

3 0.050 0.059 0.065 0.069 0.072 0.074 0.076
4 0.048 0.057 0.062 0.066 0.069 0.072 0.074

5 0.047 0.055 0.061 0.065 0.068 0.070 0.072

6 0.046 0.054 0.059 0.076 0.069 0.066 0.070

7 0.045 0.053 0.058 0.062 0.065 0.067 0.069

8 0.044 0.052 0.057 0.061 0.064 0.066 0.068

9 0.044 0.051 0.056 0.060 0.063 0.065 0.067

As shown in Figure 8, Figure 8a is the original image, Figure 8c represents the result
of using the threshold β2, and the one without the threshold β2 is shown in Figure 8b.

3.4. Time Complexity Comparison

The time complexity comparison of the proposed method and six state-of-the-art
methods is provided in Table 10. We select a one-minute video of 1440 frames and calculate
the computation time to measure the time complexity of difference methods. Although
the proposed method doesn’t have great advantage in term of the time complexity, it
outperforms other methods in accurate detection of plankton. In terms of the detection
efficiency, some experimental comparisons were carried out. Based on the same one-minute
video, the computation time and recall rate of the following four different strategies are
compared, respectively. We sample pixels at intervals of 1, and take interval frames from
full sequence at intervals of 1 frame. According to the results shown in Table 11, the
interval between pixels has a weak influence on the error of the result, where the recall rate,
precision rate, and F1-score are the closest to the original image’s result, and the detection
efficiency is improved by greatly reducing the calculation time.
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(a)

(b)

(c)

Figure 8. Comparison with or without threshold: (a) original image; (b) one without threshold β2,
and (c) result of using threshold β2.
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Table 10. Time complexity comparison of proposed method and 6 state-of-the-art methods in a 1-min video of 1440 frames.

Top-Hat Frame Difference Image Match Scan Line Marking SD LK Proposed Method

3478 s 176 s 13,149 s 4476 s 989 s 1070 s 1112 s

Table 11. Time complexity comparison of different sampling in a 1-min video of 1440 frames.

A Total of 116 Plankton
Take Interval Frames from full Sequence

Quantity Precision Recall F1 Calculation Time

Pixel interval sampling 81 0.86 0.6 0.71 137 s

All the pixels 30 0.83 0.23 0.36 618 s

A Total of 116 Plankton
Full Sequence

Quantity Precision Recall F1 Calculation Time

Pixel interval sampling 110 0.95 0.91 0.93 436 s

Full sequence 113 0.97 0.95 0.96 1112 s

4. Conclusions

Detection of plankton plays an important role in the exploration and research of deep-
sea areas. Variations in the quantity and spatial distribution of plankton determine the
function of the entire marine ecosystem. In this paper, we introduce a method for deep-sea
plankton community detection in marine ecosystem with an underwater robotic platform.
Compared with that of traditional methods, our method simultaneously improves the
precision and recall of plankton detection. The obtained results and the proved theory
provide a scientific basis for studying the material cycle and energy flow of deep-sea
ecosystems. For our future work, with a view to strengthening the proposed solution, we
aim to improve our plankton detection approach, and then conduct studies for plankton
recognition and identification of their species.
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Abstract: This study presents an experimental robotic setup with a Stewart platform and a robot
manipulator to emulate an underwater vehicle–manipulator system (UVMS). This hardware-based
emulator setup consists of a KUKA IIWA14 robotic manipulator mounted on a parallel manipulator,
known as Stewart Platform, and a force/torque sensor attached to the end-effector of the robotic
arm interacting with a pipe. In this setup, we use realistic underwater vehicle movements either
communicated to a system in real-time through 4G routers or recorded in advance in a water tank
environment. In addition, we simulate both the water current impact on vehicle movement and
dynamic coupling effects between the vehicle and manipulator in a Gazebo-based software simulator
and transfer these to the physical robotic experimental setup. Such a complete setup is useful to study
the control techniques to be applied on the underwater robotic systems in a dry lab environment and
allows us to carry out fast and numerous experiments, circumventing the difficulties with performing
similar experiments and data collection with actual underwater vehicles in water tanks. Exemplary
controller development studies are carried out for contact management of the UVMS using the
experimental setup.

Keywords: underwater vehicle–manipulator system; robotics emulator; contact management; remote
inspection; force control

1. Introduction

An underwater vehicle–manipulator system (UVMS) consists of an underwater robotic
manipulator mounted on an underwater vehicle typically used for subsea inspection and
surveillance [1–3]. Due to the inherent danger of manned subsea operations, the research
interest in underwater robotic systems has continuously increased as UVMSs have a wide
range of application areas—for instance, for object inspection, underwater welding, and
valve manipulation within the offshore industry [1,2]. The underwater robot manipulators
enhance capabilities of the underwater vehicles and reduce operational costs and danger to
human life for the essential subsea tasks requiring physical interaction. However, designing
robust controller for such a complex system is a challenge from a control point of view
due to the highly dynamic coupling between the manipulator and the floating vehicle. In
addition, the overall system needs to be robust against external disturbances, e.g., caused
by waves or tidal streams, while the end-effector of the manipulator is interacting with the
environment. These are also common problems for land-based mobile manipulators but are
particularly relevant to UVMSs as the base vehicle is floating. For testing and demonstration
purposes, here we consider underwater asset inspection/manipulation tasks which require
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maintaining a physical contact with the asset surface, where the exact location of the contact
on the surface or the exact trajectory followed on the surface is not critical. This is typically
the case with pipe thickness measurements, corrosion measurements, cleaning of surfaces
from biological structures, and placement of (e.g., magnetically attached) sensors/devices
on the surface.

In this study, it is assumed that vehicle motions, caused by environmental disturbances,
are unknown for the robotic arm controller while keeping the end-effector in contact with a
surface under disturbances. We have emulated environmental disturbances with realistic
data that we have collected from a physical underwater vehicle floating in a water tank
under the occasional impact of push movements. In addition, the physical interaction of
the manipulator end-effector with the surface acts as disturbances in the motion of the
vehicle. This is due to the physical coupling between the manipulator and the vehicle
and transmission of the interaction force to the base through robot links. The position
disturbance due to this force-impact has been computed and applied on the emulating
base platform. In this way, we have obtained a realistic emulation of the underwater
disturbance impacts on the robot base, by capturing the two main causes: water flow and
environment interaction. As a result, a simulation environment and a physical experimental
setup have been developed to interact with each other to replicate a UVMS in order to test
and validate the controllers in a dry-lab environment. A force/position control method
is adapted from our earlier studies [4] and an admittance based controller [5] that applies
virtual dynamics at the manipulator end-effector for perpendicular force interaction with
the unknown surface is implemented in this study. This admittance controller does not
require knowledge of the vehicle position/velocity, the stiffness of the environment or
manipulator base disturbance effects. We demonstrate the use of the setup to replicate
costly underwater experiments, through an evaluation of an admittance-based controller
in comparison to a PID based controller, both in simulations and in physical experiments
with the hardware-based emulator.

For the problem of physical contact and surface tracing using a UVMS in the underwa-
ter environment, the authors in [6] proposed an optimized redundancy resolution scheme
for operational space tracking control of the end-effector of a UVMS. In [7,8], the authors
used task-priority-based redundancy resolution methods where the primary task was de-
fined by the operational space position/velocity tracking and force tracking was proposed
as a secondary objective. In [9,10], the authors proposed force/position hybrid controllers
for the interaction of the end-effector of UVMS with an underwater environment. In [11],
an impedance control focused on task priority redundancy solution was developed for
contact force control of UVMS. However, these approaches do not consider the problems
related to the disturbance effects on the underwater vehicle motion, since they always have
access to the position data of the end-effector relative to an inertial base.

In [12–14], the problem of the physical interaction has been considered for the
aerial robots, and they developed variable impedance controllers based on force estima-
tions without using force sensors. For the general problem of hard contact interaction
of robot manipulators, the authors in [15–17] developed dynamic adaptive hybrid
impedance controllers.

In the surveys of underwater robotics [18,19], there are several simulators for the de-
velopment of underwater robotics. In the TRIDENT project [20], an ROS-based open-source
kinematic simulator, named UWSim, was developed for underwater robotics simulation.
In [21], Gazebo was integrated into the UWSim to simulate kinematics and dynamics of
underwater robots. In [22], the authors extended a Gazebo-based Unmanned Underwater
Vehicle (UUV) simulator by implementing the model of hydrodynamic effects. In [10],
the authors developed a hybrid simulator for underwater vehicles and manipulators with
the ability to accurately simulate hydrodynamic and contact forces of the UVMS with the
environment. However, these studies focused only on the development of software-based
simulation frameworks to simulate the dynamics or kinematics of underwater vehicles and
manipulators. However, due to the complexity of accurately modeling and simulating the
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physical disturbances and the interaction forces/torques with an environment, a hardware-
based emulation system with physical interaction provides more realistic means of testing
and validation for a UVMS. Therefore, in our study, in addition to the software-based
simulation, we have a hardware emulation of underwater robotics.

Briefly, we can summarize the main contributions of this study as follows: first, we
used realistic underwater vehicle movements transmitted in real time in the experimental
setup or pre-recorded in a water tank environment. Next, we simulated the water cur-
rent effect on floating base vehicle motion, considering both hydrodynamic and contact
interaction effects. We also used a physical robotic setup with a Stewart platform and a
robotic arm manipulator to emulate a UVMS. We then demonstrate the use of this system
to perform fast and numerous experiments to compare control schemes for underwater
asset inspection without lengthy and costly underwater experiments.

2. Realistic Real-Time Data Set and Transfer from Water Tank to the Land
Robotic Setup

In this study, a real Falcon underwater ROV is deployed at sea in a realistic environ-
ment. This vehicle is connected through 4G to the remote lab (approximately 160 km apart)
where its position and velocity (in 6 DOF) are used to drive a 6 DOF Stewart platform, see
Figure 1. This setup provides a good proxy for the real experiments without the need for
complex and expensive underwater hardware and integration.

As shown in Figure 1, the land robotic setup was located in the laboratory (in Edin-
burgh, UK) and real-time communication between the laboratory and the remote water
tank (in Blyth, UK) was established through 4G routers (DrayTek Vigor 2862). During the
exemplary studies, a time delay of about 0.3 s was observed. The ROV navigation data
were recorded during the experiments and are reproducible on the robotic setup to evaluate
future algorithm improvements.

Figure 1. Software and hardware implementations from a real demonstration between the Robotics
laboratory in Edinburgh, UK and the water tank in Blyth, UK.

3. Software-Based Simulation Platform

We have developed a UVMS simulation platform in Gazebo using an underwater
vehicle and environment proposed in [22]. The simulation platform consists of a 7 DOF
robot manipulator model (KUKA IIWA14) mounted on a 4 DOF underwater vehicle model
(Rexrov2) and a pipe as an interaction object in the underwater environment. The force
sensor attached at the end-effector of the manipulator allows us to measure the interaction
force which is used to generate joint motion commands during the surface inspection. In or-
der to move the Rexrov2 in the simulation, Gazebo uses the actual position measurements
of the real Falcon ROV in the water tank. Figure 2 shows the overall underwater simulation
platform; this platform was developed in Gazebo simulating a UVMS (a robot manipulator
mounted on the Rexrov2 vehicle) to perform a surface inspection on a pipe. This simulation
platform has been used in integration with the physical setup during the exemplary studies
for controller development of contact management.
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The simulator we developed is based on the UUV Simulator [22,23] consisting of
Gazebo/ROS plugins with the implementation of Fossen’s equations of motion for under-
water vehicles [24], 6 DOF PID controllers for ROV thrusters’ modules, ocean wave model
with hydrodynamics and hydrostatic effects, and the Rexrov2 vehicle model [25]. In this
way, our physical land robotic setup that will be explained next considers the impact of
(simulated) water dynamics and manipulator force interaction effects on the base vehicle,
along with other pre-recorded realistic position disturbances.

Figure 2. Simulating the UVMS using robotics simulation platform Gazebo. A KUKA IIWA manipu-
lator model mounted on a Rexrov2 vehicle carries out surface inspection on a pipe.

4. Physical Robotic Setup

Figure 3 shows the land robotic setup; this setup emulates a UVMS with a real KUKA
IIWA14 robot manipulator fixed on the Stewart parallel manipulator platform interacting
with a pipe. It is composed of a 7 DOF robot manipulator (KUKA IIWA14) to emulate
an underwater robotic manipulator, a 6 DOF base vehicle (Stewart parallel manipulator)
to emulate an underwater vehicle and an ATI Gamma NET FT force sensor attached to
the end-effector of the manipulator for the contact management. Since pipes are one of
the most common objects to be interacted within the offshore subsea environment [26,27],
a PVC vent pipe with a diameter of 500 mm and a thickness of 4 mm was placed in front
of the land robotic setup to emulate the underwater object that the UVMS’s end-effector
is supposed to inspect. In the exemplary studies, the real Falcon ROV’s actual position
data from the water tank was used to move the Stewart platform. It should be noted that
the actual position measurement of the Falcon ROV was only used to move the platform
and not to control the manipulator. Since the communication is unilateral and open-loop
control is implemented on the Stewart platform, the communication time delay between
the two locations did not impact the test and verification of control quality.
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Figure 3. Simulating the UVMS with a real KUKA IIWA14 robot manipulator fixed on the Stewart
parallel manipulator platform interacting with a pipe.

5. Interaction of Physical Robotic Setup-Realistic Data-Simulation Platform

Generally in a UVMS, once the end-effector of the manipulator contacts an object,
the interaction forces and torques at the contact point would result in reaction forces (and
torques) on a floating base vehicle that disturbs its position (and orientation) with respect
to the inspected object. Therefore, in our physical robotic setup, the interaction forces at
the end-effector of the (KUKA) manipulator should be accounted for and reflected to the
(Stewart) base platform as a position disturbance. In the simulation platform, we simulated
the position disturbance on the floating vehicle due to the real-time force interaction of
the end-effector, using the model of a Rexrov2 vehicle with dynamic parameters and PID
controllers on its thrusters [22,25]. Afterwards, we embedded these disturbances on top of
the previously recorded water wave disturbances (realistic data set) as shown in Figure 4.
While the water wave disturbances were pre-recorded, the disturbances due to interaction
were dynamically changing in real-time according to the actual interaction of the manipula-
tor in the physical robotic setup. For that purpose, first the force/torque (F/T) interaction
that would occur between the underwater manipulator base and vehicle are computed
using the end-effector F/T measurements, and then the resultant F/T on the center of mass
of the vehicle are computed and superimposed on the force and torque resulting from the
thrusters of the Rexrov2 in the simulator. The overall computed movement of the Rexrov2
in the simulator is added to the recorded realistic movement of Falcon ROV in the water
tank, and the result is finally transferred to the physical Stewart platform emulating the
vehicle movement in the dry-lab.

Overall, we measure the force at the tool-tip in the physical robotic setup and feed
this measurement into the simulation platform. The simulator computes the movement
of the base under this impact (the simulator considers the models of the robot arm [28]
and the base vehicle [23] along with the water dynamics [22,24]). We then merge the
simulator vehicle position with the designed disturbance effect (i: no disturbance, ii:
sinusoidal movement in each direction, iii: realistic underwater disturbance recorded on an
underwater vehicle; as will be explained in the following sections) and send the merged
position signal in a feed-forward way to the Stewart platform in the physical robotic setup.
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Figure 4. Block diagram of the floating base (Stewart platform) movement.

The closed-loop force/position controllers in the operational space are applied only
to the KUKA manipulator for the contact management. On the other hand, the floating
base (Stewart platform) is independently controlled by the open-loop position commands
provided from real position data of the Falcon ROV due to water wave disturbance and
simulated position data of the Rexrov2 due to contact interaction disturbance. All the
software implementation of the real-time controllers of the robotic setups, reading of the
F/T measurements of the sensor, interacting with the Gazebo simulator, and communi-
cating with the ROV in the water tank through 4G routers was conducted in C++ under
Ubuntu with the Robot Operating System (ROS) middleware running at 1 kHz. A marker
was attached to the end-effector through a compliant adapter. When the end-effector tool
contacts and makes a tracing movement on the pipe surface, the ATI’s Gamma F/T sensor
attached between the end-effector and the tool measures the forces and torques in 3 transla-
tional directions [x y z] and three rotational directions [α β γ] in the operational space at
the frequency of 1 kHz. The KUKA robot manipulator uses the KUKA Robot Controller
(KRC) that operates at 1 kHz as a client on a remote workstation. The Stewart platform is
connected to a real-time QNX control box running at 30 Hz which in turn connects to the
central control computer.

6. Exemplary Studies for Development of Contact Management Controllers

The experimental setup was evaluated with the force/position hybrid control architec-
tures of [4,5] for the contact management. The aim of the force controller is to ensure that
the end-effector of the robot manipulator is in contact with the environment perpendicu-
larly via applying a linear reference force in the z translational direction (a dynamically
changing direction always perpendicular to the unknown surface) and a zero torque in roll
(α) and pitch (β) rotational directions in the local (tool) frame. Additionally, the position
controller enables the end-effector to follow the desired motion in the x and y directions
in the local frame. In these hybrid control methods, the force and position controls are
designed independently in dynamically changing local frame directions according to the
shape of the surface to generate the end-effector velocity commands in each iteration. This
approach is an adaptation of the operational space formulation proposed in [29]. The con-
trol strategy in [4] is for fixed-based robot manipulators where a standard proportional
(P) controller was used to control perpendicular force interaction and surface trajectory
tracking. In [5], taking into account the unknown disturbance effect of the floating base
vehicle to the position of the robot manipulator, the control architecture is enhanced via an
admittance control approach.

The proposed system has been evaluated in three different application scenarios where
in each case the platform commanded to carry out distinct motions (i: no movement on
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the Stewart platform; ii: sinusoidal movement in each Cartesian direction with a position
change of 0.1sin(2πTt) m in x, y, z translational and 0.1sin(2πTt) rad in α, β, γ rotational
directions with T = 8 ms sampling period; iii: the actual Cartesian pose of a real ROV
submerged in a water tank). In scenarios II and III, Rexrov2’s position in the simulator is
also added to the movement of the Stewart platform to account for the disturbance effects
of hydrodynamics and contact interaction on base vehicle movement. In all scenarios,
the performance comparison between the admittance controller [5], the P force controller
in [4] and the PID force controller are presented. It should be noted that, when these
force controllers are separately implemented in the end-effector’s z translational, α and β
rotational directions, simultaneously the same PD position controller is implemented to the
end-effector’s x and y translational directions in all scenarios. For the admittance controller
for the perpendicular force contact interaction, the general inertia and damper coefficients
were chosen as 0.5 Kg and 100 Ns/m, respectively. For comparison purposes to the case of
force control, the PID control gains were used as KP = 0.05, KD = 0.5, and KI = 0.002.

6.1. Application Scenario-I

In the first experiment, the platform is fixed in the global frame for benchmarking.
The P, PID, and the admittance controllers are separately implemented on the manipulator
for force control. As shown in Figures 5a,b and 6a, the end-effector perfectly tracks the
pre-specified trajectory as projected on the 3D surface, and Figure 7c illustrates that it
continuously applies the desired force −2 N on the pipe surface.

Figure 5. Experimental results of the admittance controller in Scenario-I: (a) the 2D pre-specified
trajectory on XY plane versus the 2D projection of the 3D trajectory tracking, (b) the 3D actual
end-effector trajectory on pipe.
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Figure 6. Trajectory drawing pictures on the pipe (the admittance controller was implemented):
(a) fixed-based manipulator in Scenario-I, (b) floating-based manipulator in Scenario-II.
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Figure 7. Comparative results of the F/T measurements in Scenario-I: (a) the P controller, (b) the PID
controller, (c) the admittance controller.

6.2. Application Scenario-II

In this scenario, a pre-defined sinusoidal Cartesian position along with the Rexrov2
movement due to the hydrodynamic and contact interaction forces effecting the base is
commanded to the platform. The purpose here is to observe the manipulator behavior
when the vehicle is subject to a known (sinusoidal) disturbance movement (without the
complicated disturbance movement of realistic underwater data and without the impact
of force interaction of the manipulator). The P, PID, and the admittance controllers are
separately implemented on the manipulator for force control. Then, the results of the three
force control methods are compared; see Figures 6b and 8. The sinusoidal movement devi-
ates the end-effector trajectory from the intended raster movement. However, as expected,
the end-effector remains in contact with the pipe staying perpendicular to the surface
and applies a force in the z direction (Figure 9c), no matter how far it deviates from the
pre-specified trajectory in the x and y directions (Figures 6b and 8).
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Figure 8. Experimental results of the admittance controller in Scenario-II: (a) the 2D pre-specified
trajectory on XY plane, (b) the 3D vehicle movement as disturbance effects to the robot manipulator,
(c) the actual end-effector trajectory on pipe with respect to the global frame.

6.3. Application Scenario-III

In this scenario, the Stewart platform moves according to the actual Cartesian pose of
the real ROV in the water tank plus the Rexrov2 movement in the Gazebo simulator due
to the contact interaction disturbance. Here, as in the previous scenarios, the P, PID, and
the admittance controllers are separately implemented to the floating-based manipulator
system. Figures 10 and 11c show the 3D actual end-effector trajectories on the pipe for
the admittance controller. The movement of the Stewart platform produces a disturbance
effect to the base of the KUKA manipulator, but the admittance controller still keeps the
end-effector perpendicularly in contact with the pipe as shown in Figure 12c and completes
the trajectory tracking within the working space of the pipe surface. However, unlike in
the previous scenarios (I and II), the P and PID controllers fail to maintain continuous
end-effector contact in the presence of realistic disturbances. Since the Stewart platform
mimics the ROV motions through the water wave disturbance and contact interaction
disturbance, the actual trajectory tracking positions of the end-effector are different from
the pre-specified trajectory.
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Figure 9. Comparative results of the F/T measurements in Scenario-II: (a) the P controller, (b) the
PID controller, (c) the admittance controller.

6.4. Discussion

Before the evaluations, the PID gains were tuned in order to get the best performance
possible. The main challenge was to manage the trade-off between stability in contact and
fast recovery in case of loss of contact with the surface. For instance, when the system
lost contact between the end-effector and the pipe surface, a low P gain resulted in the
controller taking significant time to recover the contact. On the other hand, when the
robot’s end-effector was in contact with the pipe, a large P resulted in instability and
frequent cycles of loss-and-recovery of the contact. Therefore, by trial-and-error, the best
PID control gains that gave better results than the pure P controller were identified. While
the base of the robot manipulator is constantly in motion, the end-effector of the robot
manipulator with a highly sensitive force sensor is in constant interaction with an object
with an unknown surface and is constantly moving in all directions. Therefore, especially
during this interaction, which takes place perpendicular to the surface, the vibrations
that occur, as seen in Figures 6, 9 and 11, are caused by the measurements of the very
sensitive force sensor. As a result of the advantages of force controllers, these vibrations
are minimized.

In Scenario-I, since there is no disturbance on the base movement, the continuous
contact and the trajectory tracking of the end-effector is achieved as expected. The mean
square force errors ( f (z) − fd(z))2 and the standard deviations in the z perpendicular
direction are given in Table 1 for each experimental scenario. The case for Scenario-I
constituted a reference in order to compare the impact of disturbances on the base platform.
Both the P controller as proposed in [4] and the PID controller designed in this study
functioned as well as the admittance controller proposed in [5] (see Figure 7 and Table 1 (I)).
However, in Scenario-II, the results with the admittance controller were significantly
improved in comparison with the results with the P and PID controllers, (see Figure 9 and
Table 1 (II)).
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Figure 10. Experimental results of the admittance controller in Scenario-III: (a) the 2D pre-specified
trajectory on the XY plane, (b) the 3D vehicle movement as disturbance effects to the robot manipula-
tor, (c) the actual end-effector trajectory on pipe with respect to the global frame.

In the realistic Scenario-III, the controller needs to handle the movements of the base
that suddenly change in different directions during the movement of the actual ROV in
the water. From Figure 12 and Table 1 (III), it is observed that the deviation from the
reference value is significantly less with the admittance controller compared to the other
two controllers. In this scenario, various losses of contact with the pipe were observed with
all three controllers (see Figure 11). However, the total duration of the loss of contact is
much less with the admittance controller (even not observable on the marker trace on the
pipe in Figure 11c). It is clearly seen from Figure 11a,b that there are significant losses of
contact with the P and PID controllers.

As a result, as seen in Figure 12 and Table 1, when the P, PID, and admittance con-
trollers were compared, the admittance controller has less mean squared force error and
standard deviation than the P and PID controllers in fixed-based experimental (I) and
floating-based experimental scenarios (II and III). Most importantly, the disturbance effects
caused by the floating real ROV and the simulated ROV under the contact interaction
can be much better compensated by the admittance controller compared to the P and
PID controllers.
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Figure 11. Trajectory drawing pictures on the pipe for floating-based manipulator in Scenario-III:
(a) implementation for the P controller, (b) implementation for the PID controller, (c) implementation
for the admittance controller.
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Figure 12. Comparative results of the F/T measurements in Scenario-III: (a) the P controller, (b) the
PID controller, (c) the admittance controller.

Table 1. Mean and standard deviations of the squared force errors on the z-direction and the total loss
of contact duration from the first contact to the end of the trajectory for the P, PID, and admittance
controllers in experimental scenarios.

Application
Scenarios

Force
Controllers

Mean
[N]

Standard
Deviation [N]

Loss of Contact
Duration [s]

(I)

P 0.19 0.29 -

PID 0.14 0.22 -

Admittance 0.11 0.21 -

(II)

P 0.72 2.10 0.695

PID 0.28 0.41 0.156

Admittance 0.20 0.23 0

(III)

P 1.13 2.27 4.517

PID 0.68 2.05 2.274

Admittance 0.39 0.86 1.783

7. Conclusions

This study demonstrated that force/position control approaches for the physical inter-
action of the UVMS with underwater structures can be developed with the experimental
robotics setup in a dry laboratory environment that allows us to carry out fast and nu-
merous trial experiments. This experimental setup consists of three sub-setups. First,
we used realistic underwater vehicle movements transmitted to the system in real time
or pre-recorded in a water tank environment. Second, we simulated the water current
impact on the floating base vehicle movement considering both hydrodynamic and contact
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interaction effects. Third, we used a physical robotic setup with a Stewart platform and a
robotic arm manipulator to emulate a UVMS. We have demonstrated the use of this sys-
tem to conduct experiments to compare control schemes for underwater asset inspection,
without lengthy and costly underwater experiments. Particularly, we have shown that an
admittance control scheme performs better than conventional P and PID controllers for
contact and force level management in interaction with an unknown surface.
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Abstract: Increasing the efficiency of the quality control phase in industrial production lines through
automation is a rapidly growing trend. In non-destructive testing, active thermography techniques
are known for their suitability to allow rapid non-contact and full-field inspections. The robotic
manipulation of the thermographic instrumentation enables the possibility of performing inspections
of large components with complex geometries by collecting multiple thermographic images from
optimal positions. The robotisation of the thermographic inspection is highly desirable to improve
assessment speed and repeatability without compromising inspection accuracy. Although integrating
a robotic setup for thermographic data capture is not challenging, the application of robotic ther-
mography has not grown significantly to date due to the absence of a suitable approach for merging
multiple thermographic images into a single presentation. Indeed, such an approach must guaran-
tee accurate alignment and consistent pixel blending, which is crucial to facilitate defect detection
and sizing. In this work, an innovative inspection platform was conceptualised and implemented,
consisting of a pulsed thermography setup, a six-axis robotic manipulator and an algorithm for
image alignment, correction and blending. The performance of the inspection platform is tested on a
convex-shaped specimen with artificial defects, which highlights the potential of the new combined
approach. This work bridges a technology gap, making thermographic inspections more deployable
in industrial environments. The proposed fine image alignment approach can find applicability
beyond thermographic non-destructive testing.

Keywords: robotics; thermography; non-destructive testing; image alignment; image blending

1. Introduction

Non-destructive Testing (NDT) comprises highly multidisciplinary groups of analysis
techniques used throughout science and industry to evaluate materials’ properties and
ensure the integrity of components/structures without causing damage to them [1]. In civil
and industrial manufacturing, the increasing deployment of smart/composite materials
demands high integrity and traceability of NDT measurements, combined with rapid data
throughput. Traditional manual inspection approaches are insufficient in some scenarios
since they produce a manufacturing process bottleneck [2]. Therefore, there are fundamen-
tal motivations for increasing automation in NDT. Computer-Aided Design (CAD) has been
extensively used in engineering design phases. Computer-Aided Manufacturing (CAM)
also allows large components to be produced quickly through combinations of traditional
subtractive approaches and novel additive manufacturing processes [3]. As a result, large
components with complex geometries have become very common in modern structures.
NDT inspection is still often performed manually by technicians who typically must move
appropriate probes over the contour of the part surface. Manual scanning requires trained
technicians and results in a prolonged inspection process for large samples. Automation of
NDT is required to cope with the inspection of such structures. Robotic manipulation of
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NDT sensors also plays an essential role in inspecting parts made of composite materials.
A fundamental issue with composite components is that parts designed as identical can
have significant deviations from the CAD model. Composite parts suffer from inherent but
different part-to-part springiness out of the mould, which presents a significant challenge
for precision NDT measurement deployment. While manual scanning may remain a valid
approach for some specific areas of a structure, developing reliable automated solutions has
become an industry priority to drive down inspection times and costs. An industrial robot
is an automatically controlled, reprogrammable, multipurpose manipulator programmable
in three or more axes [4]. Many manufacturers of industrial robots have produced robotic
manipulators with excellent positional accuracy and repeatability. In the spectrum of robot
manipulators, some modern robots have suitable attributes to develop automated NDT
systems. They present precise mechanics, the possibility to accurately master each joint and
the ability to export positional data at high update rates. The key challenges to face when
developing a robotic NDT system include integrating the NDT instrumentation with the
robotic manipulator, creating a suitable robot inspection path for the part under inspection,
and developing software for NDT data collection and visualisation. These challenges
have been addressed by several applications of six-axis robotic arms for the inspection of
parts through automated ultrasonic techniques [5–7]. Robotic ultrasonic inspection has
become commonplace thanks to the research investments driven by the aerospace sector
in the suitability of ultrasonic techniques to inspect critical aerospace components. Some
works have presented robotic ultrasonic inspection systems capable of achieving high data
throughputs, accompanied by bespoke software for data visualisation and analysis [5,8].
Automated geometry mapping has also been demonstrated using robotically manipulated
metrology sensors [9].

Besides these techniques, other types of inspections have not reached the same level
of robotisation; this is the case for thermographic testing, also known as thermal imaging,
infrared (IR) thermography or simply thermography. It is an NDT imaging technique that
allows the visualisation of heat temporal patterns in an object or a scene and is based on
the principle that two dissimilar materials possessing different thermophysical properties
produce two distinctive thermal signatures that can be revealed by an infrared sensor, such
as an IR thermal camera [10–12]. Although a thermographic setup in reflection mode, with
a heat excitation source and an IR camera on the same side of the part under inspection, is
not well suited to detect defects located deep in the volume of a component, it presents
some advantages over ultrasonic-based inspections. It is contactless and full-field, meaning
that the whole area of a component detectable within the field of view of an IR camera
is inspected remotely at once. Schmidt and Dutta [13] proposed using industrial robots
as manipulators to perform active thermography in 2012. The robotic manipulation of
the thermographic instrumentation can enable the possibility of performing inspections
of large components with complex geometries by collecting multiple thermographic im-
ages at given positions. Despite preliminary investigations [13,14], the robotisation of the
thermographic inspection method has not been fully exploited to date due to the lack of a
suitable approach capable of aligning automatically-collected thermographic images. The
importance of consistent registration of NDT data in CAD models is highlighted in [15].
Aligning thermographic images for NDT analysis is not trivial since accurate and consistent
pixel blending must be guaranteed and is crucial to facilitate defect detection and sizing.
Inaccurate alignment and blending may create unreal artefacts in the composite thermogra-
phy image and cause false-positive flaw detection. In this work, an innovative inspection
platform was conceptualised and implemented, consisting of a pulsed thermography setup,
a six-axis robotic manipulator and a novel algorithm for image transformation, alignment
and blending. The performance of the inspection platform is tested on a convex-shaped
specimen with artificial defects, highlighting the potential of the new combined approach.

The remaining part of this work is organised as follows. Section 2 reviews the theo-
retical principles of thermographic inspection and provides scientific literature references.
Following a detailed clarification of the origin of the misalignment in robotically-acquired
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images and the limitations of existing image alignment algorithms, Section 3 describes
the novel image alignment and blending algorithm developed by this work. Section 4
introduces the automatic thermography setup used to validate the proposed method.
Section 5 presents the experimental results. The outcomes of this work and the method’s
performance and prospects are discussed in Section 6.

2. Thermography Principles

Thermography, as introduced above, can be deployed through different techniques [16].
The essential equipment for manual (not automated) thermography includes an IR camera,
a computer to record (and sometimes process) data and a monitor to display images. The
main classification of the thermographic techniques differentiates between passive and
active techniques. Passive thermography exploits the fact that materials and structures
may naturally be at different (higher or lower) temperatures than the background. For
example, the human body is generally at a higher temperature than the ambient; hence
it is easily detected by an IR camera without additional stimulation. Conversely, an
external stimulus is needed in active thermography to produce a thermal contrast in the
object’s surface. Active techniques are particularly suited to non-destructive testing since
an object containing internal defects (such as voids, delaminations and/or inclusions
of foreign material) will require the excitation of thermal disequilibrium to produce a
distinctive surface thermal signature detectable with an IR camera. In the realm of active
thermographic techniques, pulsed thermography (PT) has broad applicability in NDT.
When an object’s surface is heated through a short (a few milliseconds) energy pulse
of light radiation, a series of thermal waves with different amplitudes and frequencies
propagate inside the object medium in a transient mode. The surface temperature is
monitored under the principle that defective areas cool down (or heat up) at a different rate
than non-defective areas [17–19]. It is known that the thermal wave originating from the
energy pulse can be decomposed into a multitude of individual sinusoidal components and
that it is possible to link temporal and frequency domains. In pulsed phase thermography
(PPT), the PT is combined with the phase and frequency concepts of lock-in thermography
(LT), where specimens are subject to a periodical excitation [12,20–22]. Flash lamps generate
a heat pulse of high intensity and low duration. The subsequent temperature decay is then
acquired over a truncation window.

Once raw data are collected, there are multiple techniques to analyse the data. One
approach consists of calculating the Discrete Fourier Transform (DFT) to evaluate the ther-
mal response’s frequency content. The phase of specific harmonic content can finally be
obtained and presented as a phasegram, an image where the scalar value associated with
each pixel represents the phase. Any discontinuity in phase contrast is either caused by the
object geometry or indicates a potential flaw. In the PPT approach, whereas deeper anoma-
lies are expected to be better contrasted in low-frequency phasegrams, high-frequency
phasegrams probe better for superficial issues. The signal normalisation inherent in evaluat-
ing the phase is also expected to reduce the counter effects of non-uniform heat deposition
and environmental reflections [23]. It must be noted that the terms phasegram(s) and
thermographic image(s) are used as synonyms in the remainder of this paper.

3. Fusion of Multiple Thermographic Images

3.1. Misalignment Issue in Robotically-Acquired Images

Robotic NDT inspections generally occur in a well-structured environment, where
the part position is precisely registered with respect to the robot reference system. Great
care is dedicated to ensuring the robot tool path is accurately referenced to the sample
reference frame to ensure effective data collection during automated inspections [24].
Despite the efforts, a deviation between the actual tool path and the ideal tool path al-
ways remains due to the following reasons: (i) the physical tolerances in the robot joints;
(ii) the geometric deviations in the mounting support of the sensing instrumentation;
(iii) the residual inaccuracy in the calibration of the part position; (iv) the deviation between
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the actual sample geometry from the part digital counterpart. For these reasons, the resul-
tant data usually reveal some imperfect alignment when they are encoded through robot
positional feedback and plotted in the form of a single map. For robotic thermographic
inspections, the problem translates to evident misalignment of the thermographic images.
The issue may be mitigated through an external metrology tracking system (e.g., a six-DoF
laser tracker), capable of measuring the position of the sensing instrumentation with respect
to an absolute reference frame. However, such metrology systems are expensive and can
increase the overall complexity of robotic inspection systems. In robotic machine vision sys-
tems, the exact position of the camera with respect to the robot mounting point is calibrated
through the hand-eye calibration method [25], which is based on the knowledge of the
camera’s intrinsic parameters, such as focal length, aperture, field-of-view and resolution,
and on the capture of a calibration pattern (e.g., a checkerboard) from different viewpoints.
However, this method is not always applicable to thermographic cameras since they do
not usually have a visible-light imaging sensor (RGB sensor). A similar method based on
calibration patterns with different thermal infrared emissivity could be adopted to calibrate
IR cameras [26]. This work developed a practical solution consisting of correcting each
image’s plotting location and its prospective aberrations to obtain a misalignment-free full-
field view of the inspected sample. The remainder of this section explains the limitations
of available image-stitching algorithms and the theoretical foundations of the proposed
method herein.

3.2. Limitations of Existing Alignment Methods

Algorithms for aligning images and stitching them into seamless photo-mosaics are
among the oldest and most widely used in computer vision. The alignment of images
requires establishing mathematical relationships that map pixel coordinates from the
unaligned images to their aligned versions. Five parametric 2D planar transformations
have been defined [27] (see Figure 1). Each one of these transformations can be described
by a transformation matrix (τ(p)), with p being a vector of parameters. Pure translation
can be written as x′ = x + t or x′ = τ(p)·x =

[
I t

]·x, where x = {x, y, 1} is the vector
of coordinates of the untransformed image pixel and x′ denotes the coordinates of the
same pixel in the transformed image, I is the (2 × 2) identity matrix, and t =

[
tx ty

]′ is
the translation vector, containing two parameters (respectively, the translation along the
x-axis and the translation along the y-axis). The Euclidean transformation is written as
x′ = τ(p)·x =

[
R t

]·x, where R is the 2D rotation matrix. Thus, Euclidean transformation
depends on three parameters: tx, ty, and an angle θ (for the rotation matrix). Euclidean
distances are preserved. The similarity transformation, also known as scaled rotation,
preserves angles between lines. It is expressed as x′ =

[
sR t

]·x, where s is the scale
parameter that brings the parameter counter to four. It must be noted that s is a scalar
and the scaling operation is intended to be isotropic. The affine transform is written as
x′ = τ(p)·x = A·x, where A is an arbitrary 2 × 3 matrix with six parameters. Parallel lines
remain parallel under affine transformations. Projective transformation, also known as
perspective or homography, is expressed as x′ = τ(p)·x = H·x, where H is an arbitrary
3 × 3 matrix:

x′ =

⎡⎣h00 h01 h02
h10 h11 h12
h20 h21 1

⎤⎦·x (1)

Thus, perspective transformation requires eight parameters and preserves straight lines.
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Figure 1. The basic set of 2D planar transformations (Reprinted with permission from Ref. [28]. 2007,
now publishers inc).

Assuming the choice of a suitable motion model to transform each image, a typical
strategy to align a collection of images consists of aligning the images in pairs. In order to
align a pair of images, it is necessary to devise some methods to estimate the parameters
to apply the selected transformation to one image while the other is kept fixed. One
approach is to shift or warp the first image relative to the other and measure how much
the pixels agree. The first methods to quantitatively measure such agreement are often
called “direct methods”, based on pixel-to-pixel matching [29]. These methods are usually
slow since the number of pixel pairs to evaluate can be very large. Direct methods work by
directly minimising pixel-to-pixel dissimilarities; a different class of algorithms works by
extracting a sparse set of features and then matching these to each other [27,30,31]. Feature-
based approaches have the advantage of being more robust against scene movement,
are potentially faster, and can be used to automatically discover the adjacency (overlap)
relationships among an unordered set of images [32].

Although feature-based approaches work well to create panoramas of scenes with
enough distinguishable features, they are not suited to align multiple images for NDT
applications. Non-destructive testing aims to detect defects in parts and/or structures.
As such, besides the presence of intrinsic geometrical details (e.g., borders and corners),
most images may appear relatively featureless since the presence of defects is not the norm.
An attempt to use a feature-based alignment approach was presented in [33], where the
authors note the need to mark artificial points on the background of a test objective to
obtain the mapping matrix from two-dimensional (2D) thermal wave imaging data to the
3D spatial coordinate’s digital model. On the other hand, feature-based approaches can
also fail if plenty of spatially periodic features are present in the images, which can be
the case for industrial components due to stiffeners/stringers, heat dissipators and/or
fixturing holes. Direct methods are less prone to failure caused by a lack of image features
or abundance of periodicity since they can leverage any consistent low-contrast gradient
to find the optimum image transformation parameters. However, the scientific literature
does not show any solution readily available to work with the scalar information present
in each pixel of thermographic images. As stated above, thermographic images differ
from RGB or grayscale images since the pixel values may represent phases (expressed
in degrees or radians) and may be negative values. Moreover, the optimum solution to
align and stitch multiple thermographic images can not progress pairwise. Although it
can work only for images taken in a single row, like in the case of a horizontal panorama,
robotic thermographic inspection generally collects images through a raster tool-path,
with multiple images arranged in multiple passes. A pairwise image-stitching algorithm
would produce a visible drift between adjacent passes due to the progressive summation
of alignment errors.

3.3. Fine Pixel-Based Alignment Method

This work developed a direct method capable of simultaneously aligning multiple
images. The method is suitable to be used when the rough position of the camera (the
shooting pose of each image) is known. That is the case for robotically acquired images,
where the camera position is obtained from the robot’s positional feedback. Given a set of
images, knowledge of camera shooting poses allows skipping the search for the adjacency
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relationships among the set. Knowing the scale factor makes it possible to convert the
pixel index coordinates to real-world coordinates and identify the overlap between the
images. The scale factor can easily be calculated by measuring the size of a known object or
the known distance between two points in an image in terms of the number of pixels and
considering the actual length it represents. Therefore, the algorithm herein is specifically
targeted to perform a fine alignment of all images in the set. It is referred to as the
Fine Pixel-based Alignment Method (FiPAM). It must be noted that FiPAM is currently
suitable for aligning multiple mosaic images of a sample surface that curves only in one
direction. Although the constraint of single direction curvature is a significant limitation,
it does not impede using FiPAM for mosaic images of any surface belonging to the large
family of cylindrical surfaces intended as “generalised cylindrical surfaces” [34]. Under
that condition, all collected images can be transposed to a planar domain. Indeed, any
cylindrical surface can be represented in the plane by “unrolling” it on a flat surface. An
additional assumption is that the part surface captured within the camera field of view
is sufficiently close to a flat plane. In other words, the ratio between the local surface
curvature and the camera field of view must be small. Figure 2 illustrates a set of nine
images used to explain the theoretical foundations of FiPAM.

 

Figure 2. Schematic representation of a set of nine images used to explain the theoretical foundations
of FiPAM.

Direct methods find the optimum alignment between a pair of images by an iterative
search, where one image is transformed with respect to the other through one of the five
planar transformations. To use a direct method, a suitable error metric must first be chosen
to measure the goodness of the alignment. Given two images, with one image (I0(x)) taken
as a reference image sampled at discrete pixel locations (xk = {xk, yk, 1}), with k being
the pixel index, we wish to find the optimum transformation parameters that align it with
the second image (I1(x)), which is kept fixed. The error metric is defined as the sum of
squared differences (SSD) of the pixel values of I1 at the transformed pixel locations and
the reference values of I0. This kind of function has been successfully used in the image
processing literature, with different aims (e.g., inpainting [35]). Given a transformation
(τ(p)), with p being a vector of parameters, we have:

SSD(τ(p)) = ∑
k
[I1(τ(p)·xk)− I0(xk)]

2 (2)

The optimum set of parameters (p∗) can be found by solving a least-squares problem
of this SSD function. Since the transformation allows multiple degrees of freedom (DoFs)
for the image, this is a multi-parameter problem. Therefore, a suitable search technique
must be devised. The most straightforward technique would be to exhaustively try all
possible alignments (full search). In practice, this would be too slow and is not practicable.
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Several works have developed hierarchical coarse-to-fine search techniques based on image
pyramids [27] when the approximate image alignment is unknown. In this work, since
the approximate position of each image is assumed to come from the known camera pose,
it has been decided to limit the search space by setting lower and upper bounds for the
transformation parameters.

Regarding the set of images in Figures 2 and 3 illustrates all the overlaps between
image #4 and its neighbour images. Given a positive scalar value herein named “offset” (o),
it is possible to draw shrunk overlap areas whose boundary is at distance o from the bound-
ary of the original overlap areas. The actual value to use for o depends on the expected
maximum entity of misalignment caused by the inaccuracy in robotic manipulation of the
camera and by the deviations in the physical camera support. Assuming these offset areas
move with image #4 and the original overlap areas stick with the parent neighbour image,
the bounds of the transformation parameters guarantee that the offset overlap areas remain
within the original overlap footprints. Generalising Equation (2) to allow simultaneous
alignment of multiple images, FiPAM is based on the following SSD function.

SSD(p) =
n

∑
i=1

n

∑
j=1

∑
k

[
Ij(τi(p)·xk)− Ii

(
τj(p)·xk

)]2 with (j �= i) and
(
k ∈ Ki,j

)
. (3)

 

Figure 3. Illustration of all overlap areas between image #4 and neighbour images. The magnified
region serves to clarify the relationship between the overlap areas and the offset overlap areas.

Ki,j is the set of pixel indices that fall within the offset area, produced by the overlap
between the ith and the jth image. Assuming a set of n images, Equation (3) is the sum of
squared differences of the pixel intensity values of the jth image and the ith image. Crucially,
the overlap pixel locations of the jth image are transformed according to the transformation
matrix of the ith image (τi(p)) and the locations of the ith image are transformed according
to the transformation matrix of the jth image (τj(p)).

Now, it must be noted that the vector p includes all the parameters required in the
transformation matrices, and only a subset of it is used to compute a single transforma-
tion matrix (τi(p), with i = 1 : n). Moreover, the summation is not evaluated for j = i
(an image is always aligned with itself) and for combinations of i and j corresponding to
images that do not overlap, where Ki,j is an empty set. This formulation solves a typical
problem with pixel-based methods, which is the possibility that parts of Ii may lie outside
the boundaries of Ij. This advantage follows directly from the constraints applied to the
search space for the transformation parameters. Another aspect to discuss relates to the
fact that the transformed pixel indices can be fractional, so a suitable interpolation function
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must be applied to evaluate the image intensities (Ii and Ij). This work employs bi-cubic
interpolation, which yields better results than bilinear interpolants [36]. It must be noted
that Equation (3) does not require the image pixel values to be in a specific format. Thus, it
can work with the phase values of thermographic phasegrams and images with three RGB
colour channels, although it is also possible to first transform the images into a different
colour space.

The mathematical parametric formulation of all transformation matrices pictured
in Figure 1 was implemented in FiPAM. The formulation allows maximum flexibility in
choosing the most suitable transformation for each image, meaning that all images in a
set can be aligned using the same type of planar transformation, or each image can use
a transformation of a different type. In other words, each image can be transformed by
allowing different DoFs, which relate to a different number of parameters. Automating the
selection of the optimum transformation for each image is out of the scope of this work.
In practical situations, similarity or affine transformations produce satisfactory results
if the part surface captured within the camera field of view is sufficiently close to a flat
plane. Once the optimum transformation parameters are found, the aligned version of
the ith image is computed by transforming its original discrete pixel locations with the
following equation:

x′i = τi(p∗)·xi (4)

3.4. Image Blending

Aligning all images in a dataset is not sufficient to merge the images into a single com-
posite image. Indeed, multiple aligned images may present significant differences in pixel
intensities in overlapping areas. For RGB images, exposure differences are typically caused
by ambient light changes during image capture. In active thermographic imaging, the
same problem may be caused by the progressive increase of an object’s surface temperature
when it is subject to multiple heat pulses. Image blending is usually accomplished through
averaging the intensity of homologue/overlapping pixels or by using more sophisticated
methods, such as “Laplacian pyramid blending” [37] and “Gradient-domain blending” [38].
Although these blending methods work well and have been implemented in many variants
for consumer imaging (e.g., for panoramic image stitching), they cannot directly be used to
blend images originating from NDT inspections. Indeed, in NDT images, it is necessary
to retain the robustness of quantitative information (e.g., to perform pixel intensity com-
parisons) and avoid introducing any image processing artefacts. A typical challenge lies
in removing low-frequency exposure variations while retaining sharp intensity gradients
that may indicate the presence of small defects. In other words, it is necessary to prevent
blurring. In this work, image blending has been solved through a method that preserves
the valuable NDT information in each image. All pixel intensities in an image are offset
by a unique value to maintain gradients unaltered. To explain this approach, Figure 4a,b
provides an example of nine aligned images. The intensity discontinuity between any two
overlapping images has been purposely emphasised. These example images do not contain
high contrast features, which are typical for NDT images taken of a not-defected sample.

The idea is to shift the intensity of all pixels in an image vertically by a particular
corrective value. Thus, n being the number of images in the set, it is necessary to compute
a vector of n scalar optimum intensity correction values (c∗ =

[
c∗1, c∗2, . . . c∗i , . . . c∗n

]
) that

simultaneously correct all images in the set. These values may be positive or negative to
produce an increase or a decrease in image pixel intensities. Interestingly, this computation
can be formalised again through a least-squares problem of the following SSD function:

SSD(c) =
n

∑
i=1

n

∑
j=1

∑
h

{[
Ij(xh) + cj

]− [Ii(xh) + ci]
}2 with (j �= i) and

(
h ∈ Hi,j

)
, (5)

where Hi,j is the set of pixel indices that fall within the overlap between the aligned ith
and jth image. It must be noted that the formulation of this SSD function follows the same
approach used for the computation of the alignment parameters. The summation is not
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evaluated for j = i (no intensity self-correction is required) and for combinations of i and j
corresponding to images that do not overlap, where Hi,j is an empty set. Since intensity
correction is performed after the alignment stage, Equation (5) does not perform any image
transformation. Moreover, since the problem is limited to the computation of only one
scalar parameter per image, convergence to a solution for Equation (5) is obtained faster
than for Equation (3). Once the optimum intensity correction values are found, the matrix
of corrected pixel intensities for the ith image (̃Ii) is computed with the following equation.

Ĩi = Ii + c∗i (6)

 

Figure 4. Exemplification of image blending, used in FiPAM. (a) Aligned images with discontinuous
pixel intensities; (b) images after correction of discontinuities; (c) 3D plot of uncorrected pixel
intensities; (d) 3D plot of the corrected image set.

Once all images are aligned and their intensity is corrected, the final composite image
is obtained by applying the Laplacian pyramid blending, which allows a smooth transition
between images. The application of blending at the end of the procedure is admissible since
it does not introduce any image artefact when pixel intensity differences are low, which is
the case after the phase of image pixel correction.

4. Robotic Thermography Setup

4.1. Inspection System Integration

Figure 5 illustrates the automatic thermography setup used in this work. The robotic
manipulator was a KUKA KR10 R1100-2 arm [39], with a maximum payload of 11.1 kg
and a maximum reach of 1101 mm. The setup was designed to perform PPT inspection
in reflection mode, meaning that the flash lamp and the IR camera were always kept on
the same side of the part under inspection. A custom-built supporting bracket was used to
mount the flash lamp and the IR camera onto the robot and keep them in a fixed relative
position during the inspection. The support allowed adjusting the orientation of the flash
lamp to set the angular offset between the flash lamp illumination axis and the camera axis.
This adjustment is not active because an actuator does not vary it during the execution
of a robotic inspection path. However, keeping the camera focal distance constant for all
data collection poses in a path makes it possible to manually set the optimum angular
offset for any chosen camera focal distance before executing the inspection path. The
heat source was an Elinchrom Twin X4 Lamphead EL20181, capable of releasing a pulse of
4800 W/s with a duration of 5.56 ms (1/180 s), powered by two power supplies in a parallel
configuration [40]. The excitation source features a lightweight aluminium chassis, two twin
flash tubes and twin cables connected to two Elinchrom 2400 RX power packs. The presence
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of two flash tubes and two power packs allows shorter flash durations and faster recycle
times than a single flash tube connected to a single power pack, which is advantageous
for the robotisation of the thermographic inspection. The IR camera was a cooled FLIR
X6540sc IR-camera [41], equipped with a 50 mm F/2.0 lens; it has an adjustable acquisition
rate of up to 125 Hz at full frame. The camera detector consists of 640 × 512 pixels, cooled
by a Stirling thermodynamic cycle that uses an Indium-Antimonide fluid. The camera
was connected to the computer through the Gigabit Ethernet link for full bandwidth data
acquisition. The FLIR ResearchIR Max® software (version 4.40.1), running on the computer,
enabled the initial configuration of the camera and the reception of the thermographic
data during the robotic inspection. DFT was used to evaluate the frequency content of the
thermal response.

(a) 

 

(b) 

 

Figure 5. (a) Schematic representation of the robotic thermographic setup used in this work;
(b) Photo of the actual laboratory setup.

4.2. Sample

The sample was an epoxy specimen reproducing the curved geometry of a compressor
blade. The specimen was produced by pouring a mix of liquid epoxy resin and a hardener
into a mould. The resultant polymerised sample had one convex side, one concave side,
and a varying thickness. The curvature of both surfaces is constrained to one direction. Six
flat bottom holes (FBHs), three with square sections and three with round sections, were
machined on the concave side of the sample as artificial defects. Thus, the FBHs are not
visible from the convex side of the sample. Figure 6a,b illustrate the sample geometry, its
main dimensions, and the position and size of the FBHs. The sample was coated with
acrylic-based black matt paint to uniformise and enhance the surface emissivity, improving
the effectiveness of PT inspection. The sample was placed on the optical table at a registered
position within the working envelope of the robot arm, using a fixed custom supporting
base. The specimen was inspected from the convex side. Figure 6c shows the sample ready
for inspection. In order to validate the proposed alignment method, as will become clear
in the following sections, the robotic thermographic inspection was also performed by
wrapping the sample with a flexible plastic 3D printed grid (as shown in Figure 6d). The
grid square pattern had a 3 mm pitch and wire width of 0.6 mm.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6. (a) Picture of the sample with the indication of footprint dimensions; (b) picture of the back
wall with the indication of FBH locations and sizes; (c) sample placed on the supporting base without
grid; (d) sample with the grid.

4.3. Robot Path-Planning, Simulation and Control

Six-axis robotic arms have traditionally been used in production lines to perform
pick-and-place operations (e.g., palletising robots). In that scenario, where the exact tra-
jectory between any two consecutive poses is not too important, a robot can be manually
programmed by simply teaching the robot controller the coordinates of a few poses. Such
teaching is usually performed by manually jogging the robot to each desired pose to record
its coordinates. Then a robot programme is manually written to move the robot through
the recorded poses. More recently, accurate mechanical joints and control units have made
industrial robotic arms precise enough for finishing tasks in manufacturing operations [42].
As a result, software brands and robot manufacturers have developed many software appli-
cations to help technicians and engineers in programming complex robot tasks [43]. Using
such software platforms to program robot movements is known as off-line programming
(OLP). It is based on importing the 3D virtual model of the complete robot work cell, the
robot end-effector, and the sample(s) to be manipulated or machined. Such robotic OLP
software modules usually evolve from CAD/CAM applications, suited to programming
Computer Numerical Control (CNC) manufacturing machines.

Despite the abundance of OLP software solutions geared towards manufacturing
applications, limited solutions have been demonstrated for robotic NDT delivery [44,45].
Using commercial OLP software to generate appropriate tool paths for NDT purposes may
seem relatively straightforward at first glance, but there are several inadequacies:

• Many commercial software applications for robotic off-line programming are expen-
sive tools, incorporating a lot of functionality specific for CAD/CAM purposes and
machining features;

• Path-planning for automated NDT inspections is a very particular task. Conventional
OLP software has no accessible provision for tool-path customisation to accommodate
the requirements of NDT inspections;

• Commercially available OLP software does not provide capabilities for full synchroni-
sation between robotic movements and NDT data acquisition from sensor instrumen-
tation systems (e.g., the thermographic IR camera, in this case). Such synchronisation
is fundamental to enable the possibility of positional encoding of the NDT data to
create accurate NDT maps of an inspected part [45].
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In this work, robotic path-planning, simulation and control for automated thermo-
graphic inspection were enabled through developing a bespoke MATLAB-based graphic
user interface. Figure 7 shows a screenshot of the application taken during the path-
planning phase to inspect the sample described above. This software application imports
the digital models of the robot, the thermographic instrumentation and the sample, produc-
ing a virtual representation of the inspection setup. The application was mainly developed
to enable the automated thermographic data collection required for validating the data
alignment method introduced by this work. Although it has no ambition to be a fully-
developed software tool, it contains vital features to allow flexibility and future usability.
The digital sample model is positioned in the virtual scene according to the user-specified
coordinates for the sample reference frame with respect to the robot reference system. The
set of coordinates comprises the three Cartesian coordinates of the sample origin and the
three Eulerian angular coordinates of the coordinated axes. Although the application does
not allow easy replacement of the employed thermographic instrumentation, provision
has been made to enable customisation of the IR camera focal distance. Indeed, the in-
spection resolution depends on the camera’s distance from the sample surface for a given
camera lens with a fixed focal distance. Thus, changing the camera focal distance is greatly
important to allow accurate planning and simulation of the robotic task. The indication
of the camera focal distance enables the software to compute the robot tool centre point
(TCP) coordinates. The application allowed the creation of a raster inspection tool-path
for the sample, according to the user-specified maximum spacing between consecutive
image acquisition poses (25 mm) and offset from the sample edges (10 mm), resulting
in an inspection path consisting of 15 data acquisition poses arranged in three passes
(5 poses per pass). The TCP is kept on the part surface for all poses. The z-direction of the
tool reference frame follows the surface’s normal direction to keep the camera view axis
always perpendicular to the surface. Due to the curvature of the surface, the fact that the
IR camera view axis is kept perpendicular to the surface does not guarantee that all the
infrared rays emitted by the surface are perpendicular to the camera sensor. That aspect
can be neglected by reducing the part surface area imaged from a single camera position,
which is the main reason for employing robotic thermography. The surface area imaged
from each camera position is reduced by bringing the camera closer to the part and/or
cropping the camera’s full image frame (sub-windowing). The sub-windowing also allows
higher frame acquisition rates, resulting in a better temporal sampling of the thermal wave.

 

Figure 7. MATLAB-based graphic user interface for robot path-planning, simulation and control.
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The application allows simulating the automated task workflow before sending the
path command coordinates to the connected robot. The connection between the computer
and the robot was managed through the Interfacing Toolbox for Robotic Arms (ITRA) [46].
The ITRA allowed synchronising the robotic camera manipulation and the data collection to
carry out the following steps, supported by the schematic representation given in Figure 5a:

1. The computer sends the command coordinates of one inspection pose to the robot
controller and waits for a digital acknowledgement from it, which signals the arrival
of the robot arm at the commanded pose;

2. While the robot is at a standstill, the flashlamp power supply is triggered;
3. In turn, the sample surface temperature rise resulting from the flashlamp heat pulse

triggers the IR camera data acquisition;
4. The computer acquires the raw camera data through the FLIR ResearchIR Max® software;
5. The previous steps repeat for the following inspection pose until all poses are visited.

Figure 8 shows the robotic inspection system at the first five path poses. A video of
the robotic data acquisition is available for download as Supplementary Material.

     
Pose #1 Pose #2 Pose #3 Pose #4 Pose #5 

Figure 8. Robotic inspection system during data acquisition for the first five poses.

5. Results

Figures 9 and 10 show the sets of thermographic images acquired with the tool path
presented in Section 4.3, using a camera focal distance of 550 mm. The camera acquired
the evolution of the thermographic field for 10 s at each pose (starting from one second
before the trigger of the flashlamp). DFT was used to evaluate the frequency content of
the thermal response at 0.6 Hz. All images have the same size (192 × 224 pixels). They
relate to the images captured from the sample with and without the grid. Thus, the same
robotic tool path was repeated twice to ensure repeatability in the acquisition poses. It
must be noted how the average pixel intensity varies from image to image within each
set; for example, image #4 and image #12 respectively present significant lower and higher
average intensity than the rest of the images in the first set, respectively. Furthermore, pixel
intensity is not repeatable since differences are evident across the two sets. Any pair of
corresponding images in the two sets present a visible difference in pixel intensity.

 

Figure 9. Set of phasegrams taken from the sample with the superposed grid.
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Figure 10. Set of phasegrams taken from the sample without the superposed grid.

Figure 11 highlights the initial estimate of the overlaps in each set of images. The
images were encoded with the camera shooting positions and scaled by the measured
resolution value. The known pitch of the grid (3 mm) was used to estimate the resolution of
the images, which was 150 μm/pixel (∼=4444 pixels/cm2). Figure 11a,b relate to the set of
images with and without the grid, respectively. There, the image pixels were plotted with
50% transparency to allow visualising the overlaps, which are more clearly illustrated in
Figure 11c. Following the notation introduced in Section 3.3, the presented FiPAM method
was employed using a value of 1 mm for the offset (o) between the image overlap areas
and the shrunk areas. This equates to assuming that the maximum distance between a pair
of corresponding pixels in neighbour images (the misalignment) does not exceed 1 mm,
which is the case for the sets of images at hand.

 

Figure 11. Plots of scaled and encoded images. (a) Set of images taken from the sample with the grid;
(b) Images taken from the sample without the grid; (c) Overlapping areas.

As stated above, the FiPAM algorithm contains the mathematical parametric formula-
tion of all five typical 2D image transformations (translation, Euclidean, similarity, affinity
and homography), allowing aligning all images in a set with the same type of planar
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transformation or using a different type of transformation for each image. Each image
can be given a diverse set of DoFs and treated in six different ways if no transformation
(no degrees of freedom) is included as an additional option, corresponding to a total of
615 ∼= 4.70·1011 possible diverse ways of applying FiPAM to our sets of fifteen images.

Figures 12 and 13 illustrate the results obtained with FiPAM, using the similarity
transformation for all images. The similarity transformation, which allows four DoFs
(horizontal translation, vertical translation, rotation and scaling), proved sufficient to
permit a fine alignment of all images in the given sets. In Figures 12a and 13a, whereas
the dotted blue line rectangles represent a fivefold scaled-down version of the original
images, the rectangles with a green line perimeter represent a twofold scaled-down version
of the aligned images, where the translation is magnified by a factor of 20 and the rotation
transformation is maximised by a factor of 40. These magnifications were introduced to
illustrate the computed alignment transformations for visualisation purposes. The infill
colour given to each aligned image is linked to the computed pixel intensity correction
through the indicated colour map. The resulting blended mosaic thermographic image
(460 × 800 pixels) is given in Figures 12b and 13b for the images with and without the
grid, respectively.

 

Figure 12. (a) Schematic illustration of similarity transformations and pixel intensity corrections
computed through the proposed method for the set of images relative to the sample with the grid.
(b) Resulting composite mosaic thermographic image.

 

Figure 13. (a) Schematic illustration of similarity transformations and pixel intensity corrections
computed through the proposed method for the set of images relative to the sample without the grid.
(b) Resulting composite mosaic thermographic image.

Although testing FiPAM with all transformation combinations is not viable, the
method was evaluated through a representative subset by employing each of the five
possible planar transformations for all images and changing the number of images to
align; this allowed varying the problem size significantly to evaluate the execution time
of FiPAM. The number of images considered for each type of transformation was: 2, 5,
10 and 15, corresponding to aligning the first two images, the five images collected in
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the first pass of the tool path, the images in the first two passes or all the images in the
set. As a result, the total number of DoFs considered in the alignment problem spanned
from four, for two images transformed through pure translation (two parameters per
image), to 120, for fifteen images transformed through homography (eight parameters
per image). FiPAM was implemented and evaluated through MATLAB (version 2020b),
running on a computer with an Intel® i7-6820HQ CPU (2.70 GHz, 4 Cores) and 32 Gb of
Random-Access Memory. The MATLAB implementation code developed in this work
is accessible at https://doi.org/10.5281/zenodo.6817052 (accessed on 11 July 2022). The
recorded execution times are plotted in Figure 14.

 

Figure 14. Execution times for alignment, pixel intensity correction and Laplacian blending.

6. Discussion

Traditional manual inspection approaches are insufficient in some scenarios. Therefore,
there are fundamental motivations for increasing automation in non-destructive testing.
Automation of NDT is required to cope with the inspection of large and/or curved geome-
tries. The key challenges to face when developing a robotic NDT system include integrating
the NDT instrumentation with the robotic manipulator, creating a suitable robot inspection
path for the part under inspection, and developing software for NDT data collection and
visualisation. Although these challenges have been addressed by several applications of
six-axis robotic arms for the inspection of parts through automated ultrasonic techniques,
other types of inspections have not reached the same level of robotisation, which is the case
with thermographic testing. This work bridges a technology gap, making thermographic
inspections more deployable in industrial environments. Furthermore, the proposed fine
image alignment method (FiPAM) can find applicability beyond thermographic NDT.

The results prove that FiPAM enables the proper merging of multiple thermographic
images into one single mosaic image, which is easier to analyse. This is accomplished
through three steps: simultaneous alignment of all images in a set, global optimum pixel
intensity correction, and image blending. The reported composite mosaic images, in
Figures 12b and 13b, obtained through computing similarity transformations and pixel
corrections for the images acquired in this work, show a significant reduction of the
original discontinuities. Whereas the scale of the composite image relative to the sample
with the grid is immediately retrievable from the known grid pitch (3 mm), a reference
20 mm long scale bar was added to the image relative to the sample without the grid. It is
straightforward to note that the sizes of the thermographic indications correspond to the
physical sizes of the artificial FBHs. The difference in thermographic pixel intensity for
FBHs of diverse sizes is coherent with the change in the aspect ratio between heat blocking
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and leakage surface, as described in [47]. Larger FBH diameter to depth ratios produce the
emergence of localised higher intensities in the IR image sequence.

Although FiPAM execution times are machine-dependent, the patterns presented in
Figure 14 provide a helpful guideline for understanding the general trends. As expected, the
execution times for alignment, pixel intensity correction and Laplacian blending increase
with the number of images. The alignment phase execution time also depends on the type
of transformations used for the images in the set. They influence the size of the least-squares
problem and the number of transformation parameters to find through the minimisation
of the SSD function in Equation (3). Thus, for a given number of images to align, using
the same type of transformation for all images, the execution time increases monotonically,
moving from translation to Euclidean, similarity, affinity and homography transformations.
Although all possible combinations are not assessed in this work, it is not difficult to
imagine intermediate execution times for generic combinations, where not all the images
get transformed by the same transformation type. As a rule of thumb, for a given number
of images, the alignment execution time should never exceed the time relative to the case
where all images get transformed through homography, since it corresponds to the biggest
problem with the maximum number of parameters. Fluctuations in alignment execution
times can be observed for patterns relative to translation and Euclidean transformations.
They are thought to be caused by the limited DoFs allowed by these transformations,
which can cause prolonged convergence times due to the difficulty of obtaining a good
image alignment. The execution times of the pixel correction and Laplacian blending
phases depend on the number of images. The minor differences associated with the used
transformation type are thought to be caused by the different overlaps of the aligned
images, which changes the number of pixel intensity differences to compute for the SSD
function in Equation (4).

The advantages of FiPAM, described in this work, should be clear by now. One
limitation of the current implementation is that FiPAM is suitable for aligning multiple
images of a sample surface that curves only in one direction. Although this limitation does
not impede using FiPAM for generalised cylindrical surfaces, future work should focus on
extending FiPAM to operate with images encoded in three-dimensional space.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22166267/s1, Video S1: Robotic thermographic data acquisition.
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Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CNC Computer Numerical Control
CPU Central Processing Unit
DFT Discrete Fourier Transform
FBH Flat Bottom Hole
FiPAM Fine Pixel-based Alignment Method
IR Infrared
ITRA Interfacing Toolbox for Robotic Arms
LT Lock-in Thermography
NDT Non-Destructive Testing
OLP Off-Line Programming
PPT Pulsed Phase Thermography
PT Pulsed Thermography
RGB Red, Green and Blue
SSD Sum of Squared Differences
TCP Tool Centre Point

References

1. Hull, J.B.; John, V. Non-Destructive Testing; Macmillan International Higher Education: London, UK, 2015.
2. Sattar, T.P. Robotic Non-Destructive Testing. Ind. Robot. Int. J. 2010, 37. [CrossRef]
3. Gibson, I.; Rosen, D. Brent Stucker, and Mahyar Khorasani. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg,

Germany, 2021; Volume 17.
4. Appleton, E.; Williams, D.J. Industrial Robot Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
5. Mineo, C.; Pierce, S.G.; Wright, B.; Cooper, I.; Nicholson, P.I. PAUT inspection of complex-shaped composite materials through six

DOFs robotic manipulators. Insight Non-Destr. Test. Cond. Monit. 2015, 57, 161–166. [CrossRef]
6. Cuevas, E.; Lopez, M.; García, M.; Ibérica, K.R. Ultrasonic Techniques and Industrial Robots: Natural Evolution of Inspection

Systems. In Proceedings of the 4th International Symposium on NDT in Aerospace, Berlin, Germany, 13–15 November 2012.
7. Bosse, J.; Thaler, B.; Ilse, D.; Bühling, L. Automated Air-Coupled Ultrasonic Technique for the Inspection of the Ec145 Tail Boom.

Available online: http://2012.ndt-aerospace.com/Portals/aerospace2012/BB/tu2b3.pdf (accessed on 11 July 2022).
8. Mineo, C.; Riise, J.; Summan, R.; MacLeod, C.N.; Pierce, S. Index-based triangulation method for efficient generation of large

three-dimensional ultrasonic C-scans. Insight Non-Destr. Test. Cond. Monit. 2018, 60, 183–189. [CrossRef]
9. Almadhoun, R.; Taha, T.; Seneviratne, L.; Dias, J.; Cai, G. A survey on inspecting structures using robotic systems. Int. J. Adv.

Robot. Syst. 2016, 13, 1729881416663664. [CrossRef]
10. Meola, C. Infrared Thermography Recent Advances and Future Trends; Bentham Science Publishers: Bussum, The Netherlands, 2012.
11. Holst, G.C. Common Sense Approach to Thermal Imaging; SPIE Optical Engineering Press: Washington, WA, USA, 2000; Volume 1.
12. Maldague, X. Theory and Practice of Infrared Technology for Nondestructive Testing; John Wiley & Son: New York, NY, USA, 2001.
13. Schmidt, T.; Dutta, S. Automation in Production Integrated Ndt Using Thermography; NDT Aerospace: Augsburg, Germany, 2012; p. 8.
14. Massaro, A.; Galiano, A. Infrared Thermography for Intelligent Robotic Systems in Research Industry Inspections: Thermography

in Industry Processes. In Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics; IGI Global: Hershey, PA,
USA, 2020; pp. 98–125.

15. Holland, S.D.; Krishnamurthy, A. Registration of Nde Data to Cad. In Handbook of Nondestructive Evaluation 4.0; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 369–402.

16. Maldague, X.; Moore, P.O. Non-Destructive Handbook, Infrared and Thermal Testing; ASNT Press: Columbus, OH, USA, 2001; Volume 3.
17. Martin, R.E.; Gyekenyesi, A.L.; Shepard, S.M. Interpreting the Results of Pulsed Thermography Data. Mater. Eval. 2003,

61, 611–616.
18. Balageas, D.L. In Search of Early Time: An Original Approach in the Thermographic Identification of Thermophysical Properties

and Defects. Adv. Opt. Technol. 2013, 2013, 314906. [CrossRef]
19. Ibarra-Castanedo, C.; Genest, M.; Servais, P.; Maldague, X.P.V.; Bendada, A. Qualitative and quantitative assessment of aerospace

structures by pulsed thermography. Nondestruct. Test. Eval. 2007, 22, 199–215. [CrossRef]
20. Maldague, X.; Marinetti, S. Pulse phase infrared thermography. J. Appl. Phys. 1996, 79, 2694–2698. [CrossRef]
21. Maldague, X.; Galmiche, F.; Ziadi, A. Advances in pulsed phase thermography. Infrared Phys. Technol. 2002, 43, 175–181.

[CrossRef]
22. Ibarra-Castanedo, C.; Maldague, X. Pulsed Phase Thermography Reviewed. Quant. Infrared Thermogr. J. 2004, 1, 47–70.

176



Sensors 2022, 22, 6267

23. BuSSe, G.; Wu, D.; Karpen, W. Thermal Wave Imaging with Phase Sensitive Modulated Thermography. J. Appl. Phys. 1992, 71,
3962–3965. [CrossRef]

24. Mineo, C.; Cerniglia, D.; Poole, A. Autonomous Robotic Sensing for Simultaneous Geometric and Volumetric Inspection of
Free-Form Parts. J. Intell. Robot. Syst. 2022, 105, 54. [CrossRef]

25. Zhang, Q.; Tian, W.; Hu, J.; Li, P.; Wu, C. Robot Hand-Eye Calibration Method Based on Intermediate Measurement System. In
Proceedings of the International Conference on Intelligent Robotics and Applications 2021, Yantai, China, 22–25 October 2021.

26. Schramm, S.; Osterhold, P.; Schmoll, R.; Kroll, A. Combining modern 3D reconstruction and thermal imaging: Generation of
large-scale 3D thermograms in real-time. Quant. Infrared Thermogr. J. 2021, 1–17. [CrossRef]

27. Paragios, N.; Chen, Y.; Faugeras, O.D. Handbook of Mathematical Models in Computer Vision; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2006.

28. Szeliski, R. Image alignment and stitching: A tutorial. Found. Trends Comput. Graph. Vis. 2007, 2, 1–104.
29. Keysers, D.; Deselaers, T.; Ney, H. Pixel-to-Pixel Matching for Image Recognition Using Hungarian Graph Matching. In Joint

Pattern Recognition Symposium; Springer: Berlin/Heidelberg, Germany, 2004; pp. 154–162. [CrossRef]
30. Zoghlami, I.; Faugeras, O.; Deriche, R. Using Geometric Corners to Build a 2d Mosaic from a Set of Images. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1997, San Juan, PR, USA, 17–19 June 1997.
31. Cham, T.-J.; Cipolla, R. A statistical framework for long-range feature matching in uncalibrated image mosaicing. In Proceedings

of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), Santa Barbara,
CA, USA, 25–25 June 1998; IEEE: Manhattan, NY, USA, 2002. [CrossRef]

32. Brown, M.; Lowe, D.G. Recognising Panoramas. In Proceedings of the 9th IEEE International Conference on Computer Vision
(ICCV 2003), Nice, France, 14–17 October 2003.

33. Meng, X.; Wang, Y.; Liu, J.; He, W. Non-destructive Inspection of Curved Clad Composites with Subsurface Defects by Combi-
nation Active Thermography and Three-Dimensional (3d) Structural Optical Imaging. Infrared Phys. Technol. 2019, 97, 424–431.
[CrossRef]

34. Albert, A.A. Solid Analytic Geometry; Courier Dover Publications: Mineola, NY, USA, 2016.
35. Fan, Q.; Zhang, L. A novel patch matching algorithm for exemplar-based image inpainting. Multimedia Tools Appl. 2017, 77,

10807–10821. [CrossRef]
36. Fadnavis, S. Image Interpolation Techniques in Digital Image Processing: An Overview. Int. J. Eng. Res. Appl. 2014, 4, 70–73.
37. Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. ACM Trans. Graph. 1983, 2, 217–236.

[CrossRef]
38. Levin, A.; Zomet, A.; Peleg, S.; Weiss, Y. Seamless Image Stitching in the Gradient Domain. In Proceedings of the European

Conference on Computer Vision 2004, Prague, Czech Republic, 11–14 May 2004.
39. KUKA. Kr 10 R1100-2. Available online: https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736

af377562ecaa/0000290003_en.pdf?rev=3e82b095d46c4a86b7e195cabdb980cb&hash=A4F0F7D35D9485B612F8BC455B5805E4 (ac-
cessed on 16 June 2022).

40. Elinchrom. Digital Rx. Available online: https://www.elinchrom.com/wp-content/uploads/download-center/73256_digital_
rx_manuel--en-de-fr.pdf (accessed on 16 June 2022).

41. FLIR. Flir X6540sc. Available online: http://www.flir.at/fileadmin/user_upload/Vertretungen/FLIR/X6900sc/Datasheets/X654
0sc_66701-0101-en-US_A4-1706-nbn.pdf (accessed on 16 June 2022).

42. Bogue, R. Finishing robots: A review of technologies and applications. Ind. Robot. Int. J. Robot. Res. Appl. 2009, 36, 6–12.
[CrossRef]

43. Pan, Z.; Polden, J.; Larkin, N.; Van Duin, S.; Norrish, J. Recent progress on programming methods for industrial robots. Robot.
Comput. Manuf. 2012, 28, 87–94. [CrossRef]

44. Haase, W.; Ungerer, D.; Mohr, F. Automated Non-Destructive Examination of Complex Shapes. In Proceedings of the
14th Asia-Pacific Conference on NDT (APCNDT), Mumbai, India, 18–22 November 2013.

45. Mineo, C.; Pierce, S.G.; Nicholson, P.I.; Cooper, I. Robotic path planning for non-destructive testing—A custom MATLAB toolbox
approach. Robot. Comput. Manuf. 2016, 37, 1–12. [CrossRef]

46. Mineo, C.; Vasilev, M.; Cowan, B.; MacLeod, C.N.; Pierce, S.G.; Wong, C.; Yang, E.; Fuentes, R.; Cross, E.J. Enabling Robotic
Adaptive Behaviour Capabilities for New Industry 4.0 Automated Quality Inspection Paradigms. Insight-Non-Destr. Test. Cond.
Monit. 2020, 62, 338–344.

47. Beemer, M.F.; Shepard, S.M. Aspect ratio considerations for flat bottom hole defects in active thermography. Quant. Infrared
Thermogr. J. 2017, 15, 1–16. [CrossRef]

177





Citation: Avdelidis, N.P.; Tsourdos,

A.; Lafiosca, P.; Plaster, R.; Plaster, A.;

Droznika, M. Defects Recognition

Algorithm Development from Visual

UAV Inspections. Sensors 2022, 22,

4682. https://doi.org/10.3390/

s22134682

Academic Editors: Yashar Javadi

and Carmelo Mineo

Received: 28 May 2022

Accepted: 20 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Defects Recognition Algorithm Development from Visual
UAV Inspections

Nicolas P. Avdelidis 1,*, Antonios Tsourdos 1, Pasquale Lafiosca 1, Richard Plaster 2, Anna Plaster 2

and Mark Droznika 3

1 School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield MK43 0AL, UK;
a.tsourdos@cranfield.ac.uk (A.T.); pasquale.lafiosca@cranfield.ac.uk (P.L.)

2 ADDIT, 17 Railton Road, Wolseley Business Park, Kempston, Bedford MK42 7PN, UK;
richardjamesplaster@gmail.com (R.P.); annaplaster@gmail.com (A.P.)

3 TUI Airline, Area 8, Hangar 61, Percival Way, London Luton Airport, Luton LU2 9PA, UK;
mark.droznika@tui.co.uk

* Correspondence: np.avdel@cranfield.ac.uk; Tel.: +44-(0)1234-754366

Abstract: Aircraft maintenance plays a key role in the safety of air transport. One of its most significant
procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually
and involves a high skilled human walking around the aircraft. It is very time consuming, costly,
stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a
two-step process for automating the defect recognition and classification from visual images. The
visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an
image sensor to fully automate the procedure and eliminate any human error. With our proposed
method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the
image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination
of different pretrained convolution neural network (CNN) models, which we retrained to fit our
problem. For achieving our goal, we created our own dataset with defect images captured from
aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to
train different pretrained CNNs with the use of transfer learning. We performed an initial training of
40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best
four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN
architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect
classification, an ensemble of different CNN models was used. The results show that even with a
very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100%
for the classification of the categories of missing or damaged exterior paint and primer and dents.

Keywords: defect recognition; aircraft inspection; deep learning; CNN; UAV; defect classification; AI

1. Introduction

Air transport is one of the most significant ways of moving people across the globe. In
2019, the number of air passengers carried worldwide was around 4.2 billion, an overall
increase of 92% compared with 2019 [1]. During COVID-19, most travelling was put
almost on a halt with the numbers decreasing significantly. In 2020, the total number
of passengers dropped significantly to around one billion (1034 million) [2]. As a result,
the need of reducing costs across the industry has become imminent. Around 10–15% of
the operational costs of an airline are around maintenance, repairs, and overhaul (MRO)
activities [3]. Currently, aircraft maintenance heavily involves visual tasks carried by
humans [3]. This is very time consuming, costly and introduces possibilities for human
errors. It is understood that automating these visual tasks could solve this problem [4–6].
For this reason, the use of climbing robots or UAVs to perform these tasks have been
attempted. Climbing robots usually use magnetic forces, suction caps, or vortexes to climb
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to the aircraft structure [7–9]. However, robotic platforms for inspection face difficulties
in achieving good adherence and mobility due to their lack of flexibility [7,10,11]. On
the other hand, UAVs have been proposed for the inspection [12–15] of buildings, wind
turbines, power transmission lines and aircrafts. UAVs could minimize inspection time
and cost as they can inspect quickly large areas of the aircraft and data can be transmitted
to a ground base in real time for processing. The key challenge of all the above automated
techniques is developing defect detection algorithms that are able to perform with accuracy
and repeatability. Several attempts have been made and most of them can be divided
into the following two categories: the ones that use more traditional image processing
techniques [5,16–18] and the ones that use machine learning [19–24]. In the first category,
image features such as convexity or signal intensity [5] are used. In [18], the authors
proposed a method using histogram comparisons or structural similarity. In addition,
in [16,17], the authors proposed the use of neural networks trained on feature vectors
extracted from contourlet transform. These techniques have very good accuracy in the test
data but are failing to effectively generalize and need continuous tuning. On the other
hand, algorithms using convolutional neural networks (CNN) have showed good results in
defect detection [19–21,25]. In [19,20], CNNs are used as feature extractors and then either
a single shot multibox detector (SSD) or a support vector machine (SVM) are used for the
classification. The use of faster CNN is also proposed for classification and localization [22].
In addition, the use of UAVs together with deep learning algorithms is proposed for the
tagging and localization of concrete cracks [26,27].

The main challenge of the machine learning algorithms is the requirement of a large
amount of data. Especially for the CNNs, the amount of data required can be in the scale of
thousands, especially if a model is not already pretrained. The existence of large datasets
in concrete structures has allowed CNNs to show excellent results in defect detection in
concrete structures. On the other hand, in aircraft structures, the results are promising but
are still not very accurate [18] or they deal with only the problem of defect recognition [20].
In this paper, we propose a two-step classification process of an ensemble of machine
learning classifiers for both defect recognition and classification. In this two-step process,
we are using pretrained CNNs to both recognize and classify a series of defects in aircraft
metallic and composite structures. In the first step, we are performing the defect recognition
and in the second step, the defect classification. By combining the results of different
classifiers, we can more effectively address the issue of small datasets and produce results
with an accuracy reaching 82% in the defect recognition step.

2. Dataset

One of the challenges in this study was the creation of datasets for training and testing
the classifiers. As most of the datasets of defects on aircrafts are not public available, we
needed to create our own. The datasets were created with the help and permission of
TUI© [28]. The images were taken during the scheduled maintenance of aircrafts in TUI’s
base maintenance hangar in Luton, UK. The imaging sensor used was a SONY RX0 II©
rugged mini camera. This model can be carried by a drone and is able to take images from
any angle. All the technical specifications of the camera, such as sensor size and type, focal
length, size of the sensor, are widely available and the effective resolution is 15-megapixels
with maximum resolution of 4800 × 3200 pixels. Images for the datasets were captured
and the following seven types of defects were investigated:

• Missing or damaged exterior paint and primer;
• Dents;
• Lighting strike damage;
• Lighting strike fastener repair;
• Reinforcing ratch repairs;
• Nicks, scratches, and gouges;
• Blend/rework repairs.
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In Figure 1, images of the defects are presented. Most of the obtained images contained
several defects, together with other elements such as screws, etc. In order to create the two
different datasets, further processing was needed to extract only the objects that we were
interested in from each of the images.

Figure 1. Images of different types of defects in aircraft structures. (a) Missing paint, (b) dents,
(c) lighting strike damage, (d) lighting strike fastener repair, (e) blend/rework repair (material
removed and then re-protected with exterior paint); (f) double patch repair.

The objects of interest were cropped through a semi-automated procedure to create
the datasets for the training. A Python script was developed so the user can select and
crop the area with the object of interest. The cropped image was saved in the new image
file. The name of the file was indicative of the category of the defect. This provided us the
capability to extract multiple images of interest from only one image, with and without
defects. The cropped images were grayscaled because we did not want the classifiers to
associate color with any defects during training. This was carried out because defects are
not color related and aircrafts are painted in different colors, depending on the company.
Images of the datasets can be observed in Figure 2.
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Figure 2. Sample images from the two datasets created for training the classifiers. (a) An image of a
dent, (b) a lighting strike fastener repair; (c,d) are images with objects that are not defects.

Following the above procedure, two datasets were created, one containing images
from each category of the defects described above and one contains images with and
without defects. The second dataset in the no-defect category has images of screws, gaps,
small plates etc., objects that the classifier will need to distinguish from the defects. Figure 2
shows images from the two datasets with and without defects.

The defect/no defect dataset, which we will refer as binary for simplicity, contains
1059 images, 576 of defects and 483 of non-defects. The other dataset, referred as the defect
dataset, contains 576 images of the 7 types of defects. Both datasets were relatively small
but gathering images was very challenging under the current circumstances (COVID-19
restrictions, flights reductions etc.). To try to overcome this, we carried out a custom split of
the images between training, and validation, with 88% for training, 9% for validation and
the rest for testing for both datasets. This was carried out to give the opportunity to the
classifiers to learn as much as possible from the dataset. For the binary dataset, the splitting
can be observed in Table 1 and for the defect dataset in Table 2.

Table 1. Dataset split for training, validating and testing the defect/non defect classifier.

Dataset Split Non-Defect Defect

Training 426 576
Validation 46 63

Testing 11 22

Table 2. Dataset split for training, validating and testing the defect classifier.

Dataset Categories Training Validation Testing

Missing or Damaged Exterior Paint and Primer 77 8 3
Dents 151 25 6

Reinforcing Patch Repairs 109 10 4
Nicks, Scratches and Gouges 57 6 3

Blend/Rework Repairs 82 10 3
Lighting Strike Damage 4 1 1

Lighting Strike Fastener Repairs 11 3 2
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3. Defect Classification Algorithms

As previously mentioned, one of the challenges of the classification problems in
applications in aerospace is the small amount of data available. In this paper, we tried to
address this by proposing a two-step classification approach with a combination of different
classifiers. In the first step, a classifier decides if the image contains a defect and if this is
true in the second step, the defect is classified by a different classifier. The classifiers are a
combination of pretrained CNNs on ImageNet [29], which we retrained with the use of
transfer learning [30]. In the first step, a DenseNet201 model is used and in the second, an
ensemble of different CNNs as can be observed in Figure 3.

Figure 3. Block diagram of the two-step process for defect recognition and classification.

Transfer learning refers to a technique of retraining a CNN that has already been
trained in very large dataset, such as Imagenet [29]. Even though the dataset that the CNN
is been initially trained in is irrelevant to the problem research, ref. [30] has shown that
the benefits of this technique are substantial. There are mainly two approaches on how
to implement transfer learning; in the first, only the convolutional layers of the trained
network are used as feature extractors [31] and then the features are fed to a different
classifier, such as support vector machines [31]. In the second approach, which is used in
this paper, the head of the neural network (fully connected layers) is replaced. The output
of the new connected layers will match the number of the categories of our classifier. The
new neural network is initially trained by keeping all the weights of the convolution layers
frozen/non trainable. Then, to fine tune the model, a number of the layers are unfrozen
and the training of the network is updated. The basic rule for unfreezing layers is, the less
the data, the less layers to unfreeze. In addition, because the initial/bottom layers of a
CNN extract more abstract features that can be used in any type of image, we unfreeze (for
training) the layers closer to the top of the network. Another point that needs attention
during both training rounds is not to update the weights of the batch normalization layers.
These layers contain two non-trainable weights, tracking the mean and variance of the
inputs that usually get updated during training. So, if we unfreeze these layers during fine
tuning, the updates applied will destroy what the model has learned.

The models were implemented using TensorFlow [32], as this is a well-established
deep learning library, widely used for both commercial applications and research. Because
TensorFlow contains around forty pre-trained networks, we needed to identify those that
fit better on our datasets. To achieve this, we trained each network for five epochs with the
convolutional layers frozen. To continue with fine tuning, we chose the best four pretrained
networks for each classifier. For the binary classifier, the models that performed better were
Mobilenet, DenseNet201, ResNet15V2 and InceptionResNetV2. For the defect classifier,
the four models with the best results were EfficientNetB1, EfficientNetB5, EfficientNetB4
and DenseNet169.

To improve the performance of the chosen models, we fine-tuned them for another ten
epochs. For fine-tuning, we unfroze the last 10% of the layers of each model and reduced
the learning rate by a factor of ten compared to the initial one. In addition, techniques of
reduce learning and early stopping were used. Both techniques are included in TensorFlow
libraries. In the reduce learning technique, the learning rate of the optimizer is reduced if
the validation loss has not improved for a certain number of epochs. Similar in the early
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stopping as the name suggests, training stops if our metric (in this case, validation loss) has
not improved for a certain number of epochs and the graph with the best weights is saved.
Both techniques were used to prevent overfitting.

In addition to the CNN, a random forest was trained. The initial idea was to use in the
first step both the CNN and the random forest but the overall benefit of this was low. For
training, the random forest we have extracted the features of Hu moments, color histogram
and Haralick. The overall accuracy of the random forest classifier was 76%.

4. Results

As discussed in the previous chapter, the initial training of five epochs has been carried
out for each of the pretrained models of TensorFlow. The results of the four best networks
for the defect recognition can be observed in Table 3.

Table 3. Performance of the 4 best out of 40 pretrained networks for the binary classifier after
5 epochs.

Model Validation Accuracy Testing Accuracy

Mobilenet 0.80 0.63
DenseNet201 0.84 0.81
ResNet152V2 0.74 0.88

InceptionResNetV2 0.79 0.85

The results of the best four networks for the defect classification can be observed in
Table 4.

Table 4. Performance of the 4 best out of 40 pretrained networks for the defect classifier after 5 epochs.

Model Validation Accuracy Testing Accuracy

EfficientNetB1 0.60 0.68
EfficientNetB5 0.63 0.68
EfficientNetB4 0.71 0.63
DenseNet169 0.70 0.60

As expected, due to the small number of images and due to the lack of fine tuning
especially for the defect classifier, the accuracy in both the validation and testing images
was relatively low. At this stage, no further analysis was carried out or any extra metrics,
such as confusion matrices or classification reports, as the purpose was to identify the best
CNNs for each of the datasets.

After this initial training, each of the networks were further trained, as discussed for
another ten epochs. The results of the training can be observed in Table 5.

Table 5. Performance of the 4 best pretrained networks for binary classifier after fine tuning for a
total of 15 epochs.

Model Validation Loss Validation Accuracy Testing Accuracy

MobileNet 0.39 0.79 0.63
DenseNet201 0.46 0.84 0.82

InceptionResNetV2 0.43 0.77 0.69
ResNet152V2 0.61 0.78 0.66

The same procedure was followed for the other set of classifiers for the defect classifi-
cation. The results can be observed in Table 6.
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Table 6. Performance of the 4 best pretrained networks for defect classifier after fine tuning for a total
of 15 epochs.

Model Validation Loss Validation Accuracy Testing Accuracy

EfficientNetB1 0.76 0.66 0.72
EfficientNetB5 0.52 0.85 0.82
EfficientNetB4 0.54 0.79 0.72
DenseNet169 0.82 0.71 0.82

To understand better the behavior of the CNNs while trained, the validation loss was
taken into account. This metric, together with the validation accuracy, can illustrate when
the CNN will start overfitting. Usually, when the validation loss does not improve, but the
validation accuracy does, overfitting occurs. This is also the main reason why we used the
techniques of reduce learning and early stopping.

To decide which of the above eight CNNs to use in the proposed system, further
metrics were produced. For each of the models, a classification report and a confusion
matrix was produced to measure the performance in the test data. A classification report
measures the values of precision, recall and F1-score [33]. Precision quantifies the number
of correct positive predictions. It is defined as the ratio of true positives divided by the sum
of true positives and false positives [33]. It shows how precise/accurate the model is. It is
very useful if the false positive cost is high, which in our case was not. If one misclassifies
a non-defect, it will produce an extra load of work for the inspector but it is not critical.
Recall is the ratio of correctly predicted positive predictions against all the predictions in
the actual class [33]. It is the ratio of true positives divided by the sum of true positives and
false negatives. In simple terms, recall shows how many of the predictions in the class are
actual positives. It is the metric we can use if there is a high cost of false negatives; in our
case, if we misclassify a defect as non-defect. The F1 score is calculated as the multiplication
of precision and recall, divided by the sum of precision and recall and then multiplied
by 2 [33]. The F1 score can be interpreted as the harmonic mean of both precision and
recall. The F1 score can also be interpreted as the average of precision and recall. It is a very
valuable metric, especially when both errors caused by false positives and false negatives
are undesirable.

Taking into consideration all the above, we created a classification report with the
above metrics for each of the models.

In Table 7, the combined classification reports can be observed for all four models for
defect recognition and in Table 8, the combined confusion matrices.

From the above tables, we can observe that DenseNet201 performs very well with
high precision. The results from the confusion matrix show that the model has predicted
correct eighteen out of the twenty-two images containing a defect and nine out of eleven
images for the no defect category.

Comparing InceptionResNetV2 and DenseNet201, we can observe that the first has a
better precision than DenseNet201 for the defect category by its recall value being much
lower. This is also reflected in the confusion matrix, where InceptionResNetV2 has more
false negatives. In addition, the F1 score for DenseNet201 is higher in both categories.
Because misclassifying a defect is critical in our application, we can state that DenseNet201
performs better.

From the above results, in can be observed that DenseNet201 has the best overall accu-
racy with 81.82%, the best precision and recall values for the defect class. In addition, it has
the least false negatives and the best F1 score for both classes. Another test we performed
was to combine the classifiers in an ensemble to investigate whether any improvements in
the metrics were possible. The ensemble of classifiers did not give better results, compared
to DenseNet201.
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Table 7. Combined classification reports for defect recognition classifiers.

MobileNet

Precision Recall F1 Score Sum of Images

Defect 0.83 0.68 0.75 22
No Defect 0.53 0.72 0.61 11
Accuracy 69.70%

ResNet15V2

Precision Recall F1 Score Sum of Images

Defect 0.88 0.68 0.76 22
No Defect 0.56 0.81 0.66 11
Accuracy 72.73%

InceptionResNetV2

Precision Recall F1 Score Sum of Images

Defect 0.93 0.68 0.78 22
No Defect 0.58 0.90 0.71 11
Accuracy 75.76%

DenseNet201

Precision Recall F1 Score Sum of Images

Defect 0.9 0.82 0.85 22
No Defect 0.69 0.82 0.75 11
Accuracy 81.82%

Table 8. Combined confusion matrices for defect recognition classifiers.

MobileNet

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 3 8

ResNet15V2

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 2 9

InceptionResNetV2

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 1 10

Actual Predicted Class Predicted Class

Defect No Defect
Defect 18 4

No Defect 2 9

The same procedure was followed for the defect classification models and the results
of the metrics and confusion matrices can be observed in Tables 9–16.
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Table 9. Classification report of Dense169 for defect recognition.

Dense169

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.22 0.66 0.33 3
Dents 0.67 0.33 0.44 6

Reinforcing Patch Repairs 1 0.5 0.66 4
Nicks, Scratches and Gouges 1 0.33 0.5 3

Blend/Rework Repairs 0.5 0.66 0.57 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 54.55%

Table 10. Confusion natrix for Dense 169.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing/Damaged Paint
and Primer 2 1 0 0 0 0 0

Dents 3 2 0 0 1 0 0
Reinforcing Patch Repairs 2 0 2 0 0 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 1 0 0 0 2 0 0

Lighting Strike 0 0 0 0 0 1 0
Lighting Strike Fast Repairs 0 0 0 0 0 0 2

Table 11. Classification report of EfficientNetB1 for defect classification.

EfficientNetB1

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.6 1 0.75 3
Dents 1 1 1 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 0 0 0 3

Blend/Rework Repairs 0.66 0.66 0.66 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 72.73%

Table 12. Confusion matrix of EfficientNetB1.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 0 6 0 0 0 0 0
Reinforcing Patch Repairs 1 0 2 1 0 0 0

Nicks, Scratches and Gouges 1 0 1 0 1 0 0
Blend/Rework Repairs 0 0 1 0 2 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2
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Table 13. Classification report of EfficientNetB4 for defect classification.

EfficientNetB4

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.5 1 0.66 3
Dents 0.83 0.83 0.83 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 1 0.33 0.5 3

Blend/Rework Repairs 0 0 0 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 63.64%

Table 14. Confusion matrix of EfficientNetB4.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 1 5 0 0 0 0 0
Reinforcing Patch Repairs 0 1 2 0 1 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 1 0 2 0 0 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

Table 15. Classification report of EfficientNetB5 for defect classification.

EfficientNetB5

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 1 1 1 3
Dents 1 0.83 0.90 6

Reinforcing Patch Repairs 0.16 0.25 0.2 4
Nicks, Scratches and Gouges 1 0.66 0.8 3

Blend/Rework Repairs 0 0 0 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 63.64%

Table 16. Confusion matrix of EfficientNetB5.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 0 5 1 0 0 0 0
Reinforcing Patch Repairs 0 0 1 0 3 0 0

Nicks, Scratches and Gouges 0 0 1 2 0 0 0
Blend/Rework Repairs 0 0 3 0 0 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

From the above matrices, the performance of the models for the defect classification is
relatively low. However, this is due to the number of images in the dataset and because
the dataset was unbalanced. To improve performance and ensure the predictions are more
consistent, we used the ensemble model. We combined all four models to create a new
model in which the input image is fed into all four models. The predictions of each of the
models are passed to a layer that is added at the end of the model. This final layer averages
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the predictions of the four models and returns array with the new values. This technique,
especially in our case where the performance of the models is similar, provides a more
consistent outcome for all the different classes. The results for the ensemble model can be
observed in Tables 17 and 18.

Table 17. Classification report of the ensemble model for defect classification.

Ensemble

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.6 1 0.75 3
Dents 1 0.83 0.90 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 0.5 0.33 0.4 3

Blend/Rework Repairs 0.33 0.33 0.33 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 68.18%

Table 18. Confusion matrix of the Ensemble.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 1 5 0 0 0 0 0
Reinforcing Patch Repairs 0 0 2 1 1 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 0 0 2 0 1 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

For the ensemble model, although in some categories it may have worse performance
than others, its overall performance is better. It has positive predictions for all the categories
in comparison with other models and its overall accuracy is above the average value of
the models.

Finally, we tested the whole pipeline of our algorithm. We first fed the test images
to the defect recognition model and then, if the image had a defect, we passed it to the
defect classifier. As a defect recognition model, we have chosen the DenseNet201 and for
the defect classification, the ensemble model. As we have used the same test dataset, the
results of the defect recognition model are the same as Tables 7 and 8 and for the ensemble,
similar to the Tables 17 and 18. However, by filtering through the first step, the images
that we achieved 100% accuracy for were the categories of the missing or damaged exterior
paint and primer and dents.

Although the results are promising, the overall accuracy of the defect classifier is low.
As previously mentioned, this is mainly due to the small number of images and because
the dataset is very unbalanced. Taking into consideration the accuracy for the defect
recognition classifier together with the number of images, we believe that by having around
five hundred images for each defect category, we will be able to improve significantly not
only the performance of the defect classifier but also of the overall process.

5. Conclusions

In this paper, we have presented the development of a two-step process for defect
recognition and classification of aircraft structures. A dataset was created from real aircraft
defects taken in TUI’s maintenance hangar. On the one hand, the lack of defects on aircrafts
made the creation of the dataset very challenging and on the other, the recognition of
defects is crucial for the safety of the passengers and crew. To overcome this, we proposed
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a two-step process method. Firstly, we recognized the defect and then we classified it. This
method has the advantage of using two different classifiers, one for defect recognition and
one for defect classification. By splitting the process of defect recognition and classification
in two, we improved the accuracy. This is because first, we can train the defect recognition
model with more data, thus making it more accurate. In addition, in this first step, we
perform with higher accuracy the most significant part of finding the defect. Secondly, we
use a dedicated classifier for defect classification. This gives the opportunity to the second
classifier to learn more effectively the differences between the different types of defects, as
it does not have to learn any of the non-defect images.

The results of the first step had an accuracy 81.82%, which is quite high considering
the small training dataset. In the second step, for the defects of missing or damaged exterior
paint and primer and dents, we achieved 100% accuracy.

Although the results are promising, future work will be carried out in increasing the
defect dataset, especially in adding more images in the very small categories to improve
the unbalanced dataset. In addition, the process will be combined with a UAV inspection
for real time recognition and classification
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