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accuracy of the integration algorithm, while an excessive increment will lead to an overestimation and
thereby compromise the results. It is important to point out that increasing the frequency of the EF
feedback can relieve some of these accuracy issues. However, this will also dramatically increase the
testing duration and potentially lead to a greater rate of test error.

Figure 14. Time history curves of story drift with different integral gains.

 

(a) (b)

(c)

Figure 15. Comparison of the EF feedback and EF command: (a) KP = 0.05, KI = 0.001; (b) KP = 0.05,
KI = 0.0065; (c) KP = 0.05, KI = 0.01.
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The time histories of the inter-storey displacement with a varying KP of 0.05, 0.01, 0.90 and 1.00,
and a fixed KI of 0.0065 are shown in Figure 16. As the proportional gain KI increases, the results from
the PI controller deviates from the theoretical results—something similar can be seen in the comparison
of the EF feedback and EF command as shown in Figure 17. The excessive actuating displacement may
arise due to an excessive proportional gain—which can cause the overshooting and oscillation of the
EF feedback that produces unrealistic hysteretic responses. Wu et al. [49] analyzed the EFC method
for real-time substructure testing and found that an extensively small proportional gain often led to
a time-lag problem of actuator response. This, in turn, introduced negative damping into the numerical
substructure model and affected the test results. Increasing the proportional gain can accelerate the EF
response, which reduces the time lag in the EF response as well as the negative damping. In contrast,
an oversized proportional gain can easily lead to oscillation phenomenon in the EF feedback, and
distorted results. In conclusion, the KP = 0.05, KI = 0.0065 was adopted in this study.

 

Figure 16. Time history curves of story drift with different proportional gains.

 

Figure 17. Comparison of the EF feedback and EF command when KP = 0.9, KI = 0.0065.

4. Experimental Validation

Using the previously mentioned method, a series of hybrid simulation tests were carried out on the
test model under the following peak ground accelerations: 35 gal→70 gal→110 gal→220 gal. Figure 18
shows the time histories of the inter-story displacement under different peak ground accelerations.
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Note that in Figure 18d, only the results for the duration of 6.26 s are present. This was because after
the peak displacement, the test model entered the descending stage in the hysteretic curve and the test
was artificially terminated when the restoring force recovered to zero at t = 6.26 s. From Figure 18, we
can see that the structural responses are controlled by the first mode. As the peak ground acceleration
increases, the whole displacement time history becomes increasingly sparse. This suggests that the
stiffness of each story, as well as the whole structure, has been degraded. Figures 19 and 20 show
the experimental results with a peak ground acceleration of 220 gal. More experimental results will
be shown in other study on the structural seismic performance. Figure 19 shows the comparison
of the displacement time histories between the EF feedback and EF command. The comparison
suggested a good agreement, which indicating that the proposed EFC method performed well. As seen
in Figure 20, when the substructure response enters the descending path of the hysteretic curve,
the ultimate load of the substructure under the pulling force of the first and second floor is reached.
This demonstrates that the EFC can effectively simulate the degrading behavior of the substructure
following the ultimate load in the hybrid simulation test.

(a) (b)

 
(c) (d)

Figure 18. Time history curves of story drift with different peak accelerations: (a) 35 gal; (b) 70 gal;
(c) 110 gal; (d) 220 gal.

(a) (b)

Figure 19. Cont.
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(c)

Figure 19. Comparison of the EF feedback and EF command for (a) the first floor; (b) the second floor;
(c) the third floor.

(a) (b)

(c)

Figure 20. Relationship of the inter-story restoring force and story drift in the physical substructure
under the peak ground acceleration of 220 gal for (a) 1st floor; (b) 2nd floor; (c) 3rd floor.

5. Conclusions

This paper presents an application of the EFC for the multy degree of freedom hybrid simulation
test combined with the elastic nonlinear numerical substructure model. The following conclusions
may be drawn from the results:

(1) The EFC method with implicit integration algorithm was successfully used to the HS test of
a twelve-story pre-cast reinforced concrete shear wall structure model. And non-subdivision
strategy for the displacement inflection point of numerical substructure is used to easily realize
the simulation of the numerical substructure and thus reduce the measured error. The testing
results of the descending stage can be conveniently obtained by the EFC based HS method.
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The physical test results show that the EFC based HS method has the good performance in both
reliability and accuracy.

(2) A moderate increment in the integral gain can enhance the EF feedback speed as well as the
accuracy of the integration. However, an excessively large value may lead to problems of
overshooting, and compromise the results. Increasing the proportional gain can accelerate the
EF response, reduce the time-leg effect, and decrease damping. Likewise, an excessive value
can cause oscillation in the EF feedback while also distorting the results. The displacement
control problem can be effectively addressed through reasonable arrangements of the equivalent
force controllers.
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