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Evaluating the Use of a Similarity Index (SI) Combined with near Infrared (NIR) Spectroscopy
as Method in Meat Species Authenticity
Reprinted from: Foods 2023, 12, 182, doi:10.3390/foods12010182 . . . . . . . . . . . . . . . . . . . 21

Louwrens C. Hoffman, Prasheek Ingle, Ankita Hemant Khole, Shuxin Zhang, Zhiyin Yang,

Michel Beya, et al.

Characterisation and Identification of Individual Intact Goat Muscle Samples (Capra sp.) Using
a Portable Near-Infrared Spectrometer and Chemometrics
Reprinted from: Foods 2022, 11, 2894, doi:10.3390/foods11182894 . . . . . . . . . . . . . . . . . . . 29

Magdalena Gajek, Aleksandra Pawlaczyk, Elżbieta Maćkiewicz, Jadwiga Albińska, Piotr
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Editorial

Advances in Spectrometric Techniques in Food Analysis and
Authentication

Daniel Cozzolino

Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation,
St. Lucia Campus, The University of Queensland, Brisbane, QLD 4072, Australia; d.cozzolino@uq.edu.au

The demand from the food industry and consumers for analytical tools that can assure
the quality (e.g., composition) and origin of foods (e.g., authenticity, fraud, provenance)
in both the supply and value chains has increased over the past decades. Although there
have been advances and improvements in analytical instrumentation and techniques that
have excellent diagnostic capabilities, most of the existing routine methods of analysis are
considered time-consuming and expensive. These issues have encouraged developments
in the application of a wide range of spectrometric techniques, involving, among others, the
utilization of vibrational spectroscopy combined with data analytics (e.g., chemometrics).

This Special Issue, “Advances in Spectrometric Techniques in Food Analysis and
Authentication”, has compiled novel and recent applications of spectrometry-based tech-
niques, including NIR, MIR, NMR, as well as other analytical techniques (e.g., ICP-MS
and GC-MS) combined with chemometrics methods, to target issues associated with
food analytics and authentication along the food supply and value chains (e.g., fraud,
provenance, traceability).

In this Special Issue, Gajek and collaborators [1,2] have shown how the combination
of chemometrics with ICP-MS data can be used to authenticate whisky samples. Chavez-
Angel and collaborators have also described how vibrational spectroscopy (e.g., Raman
and infrared) and thermal analysis can be combined to authenticate extra virgin olive
oil [3]. The classification of coffee samples was also reported by combining both NIR and
MIR spectroscopy with chemometric methods [4]. The utilization of spectral fingerprints
was evaluated as a potential tool to screen the adulteration of traditional and Bourbon
barrel-aged maple syrups [5]. The use of portable NIR instrumentation was also reported
to discriminate and characterize individual goat muscles [6] and to differentiate meat
species using a similarity index [7]. The use of a liquid–liquid microextraction method to
enhance the flavor of seafood using GC-MS analysis [8], the analysis of saliva using MIR
spectroscopy obtained from a sensory study [9], and the determination of the saponification
value of fats and oils using 1H-NMR were also reported [10] in this Special Issue.

Overall, these applications have highlighted the importance of combining rapid
analytical methods with chemometrics to improve our knowledge and understanding
about foods.

Funding: This research received no external funding.
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Conflicts of Interest: The author declares no conflict of interest.
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Rapid Food Authentication Using a Portable Laser-Induced
Breakdown Spectroscopy System

Xi Wu 1, Sungho Shin 1, Carmen Gondhalekar 1,2, Valery Patsekin 1, Euiwon Bae 3, J. Paul Robinson 1,2

and Bartek Rajwa 4,*
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3 School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
4 Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
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Abstract: Laser-induced breakdown spectroscopy (LIBS) is an atomic-emission spectroscopy tech-
nique that employs a focused laser beam to produce microplasma. Although LIBS was designed
for applications in the field of materials science, it has lately been proposed as a method for the
compositional analysis of agricultural goods. We deployed commercial handheld LIBS equipment to
illustrate the performance of this promising optical technology in the context of food authentication,
as the growing incidence of food fraud necessitates the development of novel portable methods for
detection. We focused on regional agricultural commodities such as European Alpine-style cheeses,
coffee, spices, balsamic vinegar, and vanilla extracts. Liquid examples, including seven balsamic
vinegar products and six representatives of vanilla extract, were measured on a nitrocellulose mem-
brane. No sample preparation was required for solid foods, which consisted of seven brands of
coffee beans, sixteen varieties of Alpine-style cheeses, and eight different spices. The pre-processed
and standardized LIBS spectra were used to train and test the elastic net-regularized multinomial
classifier. The performance of the portable and benchtop LIBS systems was compared and described.
The results indicate that field-deployable, portable LIBS devices provide a robust, accurate, and
simple-to-use platform for agricultural product verification that requires minimal sample preparation,
if any.

Keywords: authentication; LIBS; spectroscopy; food fraud

1. Introduction

Food fraud, including economically motivated adulteration (EMA), is defined by
the US Food and Drug Administration (FDA) as an act in which a valuable ingredient or
component of a food product is intentionally omitted, removed, or replaced by a substitute.
EMA occurs, as well, when a substance is added to food in order to enhance its appearance,
taste, or perceived value [1–3]. Food fraud may involve the deliberate and intentional
substitution, addition, tampering, or misrepresentation of food, food ingredients, qualities,
or food packaging [2,4].

According to the Food Fraud Database (Decernis LLC, Washington, DC, USA), com-
mon examples of affected foods include coffee, cheese, olive oil, herbs and spices, seafood,
meat, poultry, alcoholic beverages, honey, fruit and vegetable juices, and cereals. As of
2017, the greatest number of food fraud incidents was associated with dairy products [5–7].
The quality of dairy products in general, and cheeses in particular, was the most frequently
reported issue in terms of safety (presence of pathogenic microorganisms), fraud incidences
(fraudulent documentation), and adulteration (presence of wood pulp) [7–11]. Many highly
valued artisanal cheeses are identified by protected designation of origin (PDO), which
helps protect small manufacturers (and local economies) by guaranteeing the authenticity

Foods 2023, 12, 402. https://doi.org/10.3390/foods12020402 https://www.mdpi.com/journal/foods3
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of their products and supporting quality maintenance [12]. Hence, in this study, we selected
European Alpine-style cheeses, in addition to coffee, powdered spices, vanilla extract, and
balsamic vinegar, to demonstrate the efficacy of our approach [13–16]. A rapidly growing
number of reports on food fraud further emphasize the importance of the topic [17].

Rapid classification and authentication of food ensure that fraudulent products do not
reach the market or are quickly and efficiently withdrawn. Vibrational spectroscopy, fluo-
rescence spectroscopy, hyperspectral imaging, PCR-based approaches, mass spectrometry,
and liquid chromatography are the currently used technologies for detecting food adulter-
ants specifically and food fraud in general [18–23]. Regrettably, each of these approaches
requires extensive sample preparation, costly laboratory equipment, highly skilled techni-
cians, and, in some instances, multiple chemical reagents. Regardless of which method is
used, there is a considerable time factor associated with the analytical steps.

Laser-induced breakdown spectroscopy (LIBS) has previously been explored as an
analytical approach for assessing food integrity [22,24–30], and it is considered to be a
promising and exciting method by experts [28,31]. It is a technique that directs a high-energy
laser pulse to the surface of a material, resulting in the generation of plasma above this
surface and the subsequent emission of optical radiation characteristic of the elements, ions,
and molecules that originally comprised the sample [28,32,33]. Analyses of the plasma’s
optical emission can be used to determine the elemental makeup of the source material [34].
The advantages of LIBS include multi-element detection ability, speed of sampling, and
compatibility with a variety of samples (solids, liquids, and gases) [22,33]. In addition,
LIBS requires minimal sample preparation and can be used in tandem with other analytical
techniques, such as mass spectrometry and Raman spectroscopy [35,36]. LIBS has been
used to evaluate milk, infant formula, butter, honey, bakery products, coffee, tea, vegetable
oils, water, cereals, flour, potatoes, palm dates, and various types of meat [27,34,37–49].
Moncayo et al. [50] employed LIBS for the authentication of red wines and the localization
of their geographic origin. Bilge, et al. [45] discriminated between beef, chicken, and pork
meats using LIBS. LIBS was used to identify kudzu powder from different habitats [51],
establish the geographical origin of rice [24,52,53], and identify olive oil [54–56].

Herein, the purpose of this study was to determine whether LIBS was a viable choice
for identifying food products in various forms (liquid, solid, and powder food samples),
using classification models to detect food fraud cases (mislabeling). Two LIBS systems
were evaluated to establish the analytical capabilities of LIBS: a benchtop laboratory-based
system and a portable device. To our knowledge, this is the first study to use portable
LIBS systems for classification analysis of these high-value food goods with the goal of
ensuring their authenticity. This is critical since the long-term efficacy of LIBS-based
food authentication depends on the availability of portable diagnostic equipment capable
of preventing food fraud across the commercial distribution chain, especially for highly
valued commodities.

2. Materials and Methods

2.1. Types of Food Samples and Sample Preparation

LIBS is often used on solid samples like metal and plastic that can be recycled. How-
ever, food samples in general and liquid food samples in particular present some extra
challenges. Because of this, we chose several types of food samples, including liquids,
solids, and powders, to represent a wide range of product categories (Table 1).

Table 1. Summary of food samples tested in the study.

Food Forms Liquid Solid Powder

Products Balsamic vinegar Vanilla extract Coffee beans Cheeses Spices
Varieties or

brands
6 6 7 16 8

Testing methods NC membrane NC membrane Surface shots Surface shots Surface shots
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2.1.1. Liquid Samples
Balsamic Vinegar

Six types of balsamic vinegar were acquired and tested in the study. These examples
were chosen to represent the major brands with distinct protected designations of origin,
including three different brands of Modena balsamic vinegar from Italy, barrel-aged bal-
samic vinegar from Napa Valley (Nap, CA, USA), and Gran Deposito Aceto Balsamico
di Modena (Italy), as well as a sample of home-produced barrel-aged balsamic vinegar
generously provided by Prof. Andrea Cossarizza (the University of Modena and Reggio
Emilia, Italy). A list of the brand names of balsamic vinegar used in the study is provided
in Table A1 in Appendix A.

For the measurements of liquid samples in the study, a method utilizing nitrocellulose
paper was used. Ten microliters of a sample were deposited onto a 6 × 6-mm nitrocellulose
square. Four independent samples of each product were analyzed. There was uneven
sample distribution exhibited on the nitrocellulose paper from two samples due to their
viscosity. One-to-one dilution with deionized water (DI) was used to resolve it. Samples
containing only 10 μL of MilliQ on nitrocellulose squares were used as negative controls.
Each nitrocellulose square was measured at different locations 25 times to account for
variability and augment the representative dataset.

Vanilla Extracts

A total of six vanilla extract samples were acquired for this study from local stores
(West Lafayette, IN). Among them were four vanilla extracts from different geographic
locations, represented by different brands, and one vanilla syrup; the remaining one was an
imitation vanilla extract composed using artificial flavors. Brand names of the six vanilla
products measured in the study are listed in Table A2, Appendix A.

A method similar to that used for measuring the balsamic vinegar (nitrocellulose) was
employed for the vanilla extract samples. Briefly, 10 μL of each sample was deposited on a
6 × 6-mm nitrocellulose square and dried at room temperature for 30 min. Each brand was
represented by four nitrocellulose-based samples. Due to the high viscosity of the vanilla
syrup, one-to-two dilutions with DI water were prepared. As before, 10 μL of DI water on
nitrocellulose squares served as the negative control. Each nitrocellulose square was shot
25 times at multiple locations.

2.1.2. Solid Samples
Cheeses

Fifteen types of European Alpine-style cheese purchased from iGourmet, a web-based
food delivery service, were shipped as refrigerated 5- to 10-oz. blocks (from 141.75 to
283.5 g). Separately, American Gruyère-style cheese was purchased from a local Kroger
supermarket. This product is referred to as Wisconsin Gruyère cheese in the study. A total
of 16 types of cheeses are listed in Table A3, Appendix A.

Cheeses were stored at 4 ± 1 ◦C until analysis. Approximately 1 cm of the outside
of the cheese block was cut and discarded to prevent the use of dried material. For
LIBS measurement, cheese samples were cut into rectangular slices of uniform thickness
(approximately 10 mm wide, 10 mm long, and 2 mm thick) using a stainless-steel blade.
For each time point, four replicate specimens were cut from each type of cheese block. The
blade was rinsed and cleaned with ethanol and dried between each cut of the same cheese
and between each cut of different cheeses.

Water activity (aw) was determined for the sixteen Alpine-style cheeses every two
weeks for 42 days of storage in a refrigerator. The purpose was to establish data regarding
the impact of storage on the LIBS-based product classification. In short, grated cheese
samples (0.5 g) were placed in plastic dishes, covered, stored at 4 ◦C, and assayed in
duplicate at 25 ◦C on an AquaLab 4TE Dew Point Water Activity Meter (AquaLab, Pullman,
WA, USA). The precise dewpoint temperature of the sample was established by an infrared
beam focused on a small mirror. The temperature at the dewpoint was then converted into

5
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water activity. Prior to analysis, the machine was calibrated using a certified AQUA LAB
standard (Lot no. 20805392, 0.920 aw NaCl, 2.33 mol/Kg in H2O). The aw of the cheese was
measured at 0 (T1), 14 (T2), 28 (T3), and 42 (T4) days, along with the LIBS measurement. The
aw data were expressed as the mean of three repetitions in three independent measurements.
Utilizing commercially accessible software, data were analyzed using 2-way ANOVA and
Tukey’s multiple comparisons test (OriginPro, OriginLab Corporation, Northampton, MA,
USA). Comparisons were considered significantly different at a p-value < 0.05.

Coffee Beans

In this study, seven varieties of coffee were tested directly without the need for grinding
or milling. Whole coffee beans were stored in the original sealed package until the test
and resealed after use. The names of the coffee varieties tested in the study are listed in
Table A4, Appendix A.

Four randomly selected coffee beans of each type were measured from both the front
and back sides. To avoid additional variability caused by the movement of the beans when
hit by the laser, the coffee beans were fastened with tape to a sample holder. The location
of the beans was adjusted for multiple LIBS interrogations to cover as much area on the
bean surface as possible.

2.1.3. Powdered Food Samples
Spices

Six different types of spices were chosen and purchased from the retail outlets.
Table A5 in Appendix A provides the brand names of the spices evaluated in the study.

Most of the ground spices used in this study are fine powders, although the classic
nutmeg is roughly milled powder. The red pepper comes as flakes, which splash easily
when hit by laser shots. Therefore, we employed a sample holder when performing the
measurements.

2.2. Benchtop and Handheld LIBS Systems Setup

The custom-built benchtop LIBS system is shown in Figure 1a and consists of a Nano
SG 150-10 pulsed Nd:YAG laser (Litron Lasers, Bozeman, MT, USA). The laser had a pulse
width of 4 ns; a pulse energy of 62 mJ was used in this study. The ablation laser’s spot
size was approximately 700 μm. Details on the optics used to direct the alignment and
the ablation laser beams were described previously [57,58]. Emissions were detected by
an AvaSpec-Mini-VIS-OEM spectrometer (Avantes, Apeldoorn, the Netherlands), which
has a 350–600-nm spectral range with 0.33-nm resolution. Target samples were placed on
a motorized XYZ stage. The stage height was adjusted so that the crosshairs of the two
lasers assisting in sample positioning were visible at the surface of the samples. A digital
delay pulse generator controlled the triggering of the ablation laser, motorized stage, and
spectrometer. The delay between the ablation pulse and spectrometer data acquisition was
1.17 μs.

The Z-300 LIBS Analyzer (SciAps, Inc., Boston, MA, USA) is a commercially available
handheld LIBS system. The laser, spectrometer, optics, argon gas cartridge, electronics,
and control module were housed in a gun-shaped enclosure, as illustrated in Figure 1b.
Measurements were performed when the sample window (3 cm by 3 cm) was covered with
samples, followed by laser activation. The LIBS analyzer uses a pulsed laser, 5–6 mJ/pulse,
and 1- to 2-ns pulse width. The laser spot size was 100 μm. The spectral range was
approximately 190–950 nm. The settings for rastering location and repetition rate were
controlled in the Profile Builder software (SciAps, Inc.) as needed.

All measurements were taken at 25 different locations across a 5 × 5 rastering array of
four different specimens representing each individual food product. The measurements
of cheeses were repeated at multiple time points (Figure 2). Each spot was ablated with
a single laser shot. Accordingly, 100 spectra per food type per time point were analyzed

6
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for classification. LIBS measurements were performed using both benchtop and handheld
systems for each type of food sample involved in the study.

Figure 1. Schematic diagram of LIBS system setup; (a) benchtop system and (b) handheld system.

Solid foods

Liquid foods Powdered 
foods

Cheeses Coffee

Variety 1

Spice 1

Brand 1Brand 1

Variety 1 Variety 2 Variety n Variety 2 Variety n

Spices

Spice 2 Spice n

Balsamic 
vinegar

Vanilla 
extract

Brand 2 Brand n Brand 2 Brand n

All tested 
food 

specimens

All tested 
food 

specimens

Specimen 3Specimen 2Specimen 1

Shot 1 Shot nShot 2

T1 T2 T3 T4

Specimen 4Specimen 3Specimen 2Specimen 1

Shot 1 Shot nShot 2

Specimen 4

Figure 2. Diagram illustrating the variety of food examples and the testing procedures employed
in the presented experiments. Each food product was represented by multiple specimens, each of
which was interrogated repeatedly by LIBS. Please note that only cheeses were sampled at multiple
time intervals.

2.3. Classification Procedures

Raw spectra were filtered to eliminate low signal-to-noise instances due to faulty
sample positioning or similar technical problems. Spectral normalization and a median
filter were applied to reduce the effects of variations in emission intensity coming from
plasma fluctuations. Subsequently, every spectral feature was used in multiple ANOVA
models as a dependent variable in order to select the features associated with large effect
sizes (η2) [59]. This was followed by the training of a regularized multinomial logistic
regression elastic net model (ENET), which provides multivariate feature selection as
well as classification (prediction) [60,61]. ENET combines LASSO and ridge regression
techniques. Although the use of the ENET approach in LIBS data analysis has been reported
before [62], despite its advantages, it is still a very uncommon method for this field, which
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traditionally relies on well-established chemometric techniques such as PLS-DA [63–66].
Importantly, in the n�p setting, it retains the sparse features of LASSO regression and the
stability of ridge regression. Note that the number of selected features per food type could
differ for each ENET model. The ENET prediction quality was evaluated using 10-fold
cross-validation.

3. Results

3.1. LIBS Measurements

Table 1 summarizes all the food products measured in the study. We tested three
different forms of high-value regional foods (liquid, solid/semi-solid, and powder) by
both benchtop and handheld LIBS, including 16 hard cheeses, seven coffee varieties, six
vanilla/vanillin extracts, and six different powdered spices. Additionally, we monitored
changes in the water activity of the cheese samples at four sampling time points. It is
known that water-activity measurement is an important method for predicting the shelf
life of food products. By measuring and controlling the water activity of foodstuffs, it is
possible to monitor and maintain the physical stability of foods and optimize their physical
properties. Therefore, the water activity of cheeses is an indicator informing us about the
shelf-life status of the product. Figure 3 illustrates the evolution of water activity in the test
cheeses during a period of refrigerated storage.

Figure 3. Changes in water activity in 16 types of tested cheeses over six weeks of refrigerated storage
measured at four time-points.

All the food samples were measured by the benchtop LIBS system covering a spectral
window from 200 to 600 nm. The corresponding data obtained from the handheld LIBS
device covered a spectral range of 190 to 950 nm. The typical LIBS spectra of (a) coffee bean,
(b) vanilla extract, (c) balsamic vinegar, and (d) spice samples, measured using benchtop
and handheld LIBS systems, are shown in Figures 4 and 5, respectively. The spectra of each
food category represent an average of all the measurements. For example, Figure 4b is an
averaged spectrum of 600 (six vanilla extracts × 100 spectra/vanilla extract) measurements.
The data in Figure 5 are spectral results obtained after automatic data processing executed
in the handheld device, whereas Figure 4 represents the raw data from the benchtop system.
The main emission lines from the essential elements for food analysis, selected as inputs
of ENET, have been labeled in Figures 4a and 5a. The detected elemental emission bands
are identified with the aid of the spectroscopic data included in the NIST Atomic Spectra
Database [67]. CN band, Ca ionic, Ca atomic, C2 band, P ionic, and Na atomic peaks, which
are dominantly detected in biomaterials, can be seen in Figure 4.
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Figure 4. Averaged raw LIBS spectra of (a) coffee, (b) vanilla extract, (c) balsamic vinegar, and
(d) spice samples collected using the benchtop LIBS system.

Figure 5. Averaged raw LIBS spectra of (a) coffee, (b) vanilla extract, (c) balsamic vinegar, and
(d) spice samples collected using the handheld LIBS system.
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Although there was a minor difference in peak values depending on the food products,
the same emission peaks were found in all the tested food samples. Similarly, there were
only minor differences in the handheld LIBS results, as shown in Figure 5. However,
additional peaks, such as C, Mg, H, K, and O peaks, were detected owing to the broader
spectral range (190–950 nm) of the handheld device. This broader spectral range contributed
to improving the classification accuracy of the coffee bean, vanilla extract, and balsamic
vinegar samples.

Figures 6 and 7 show the averaged LIBS spectra of the cheese samples, measured
using the benchtop and handheld LIBS systems at four different time points. Note that each
spectrum is an average of 1600 (16 cheese types × 100 spectra/cheese type) measurements
under the same conditions. The measurements were conducted every 14 days. The cheese
specimens were instantly stored in a vacuum pack and refrigerator after each measurement.
Emissions of the identical elemental components in various LIBS spectral fingerprints of the
cheese samples led to a significant degree of resemblance. Some minor differences in peak
intensities appeared at different time points. As an example of changes over time, Table 2
compares the integrated peak intensity of Na I 589.0 nm in Frantal Emmental Cheese (C10)
at each sampling time point. Integrated peak intensity was calculated by integrating the
peak area study after sum-to-one normalization. It was shown that the averaged integrated
intensities of the Na I emission peak were similar at four different sampling time points,
implying relatively uniform product preservation within time periods.
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Figure 6. Averaged raw LIBS spectra of cheese samples measured on four different dates using the
benchtop LIBS system. Note that every measurement was conducted every two weeks.

Table 2. The averaged integrated intensity of emission peak Na I 589.0 nm at four different sampling
time points in Frantal Emmental Cheese (C10). The values in parentheses represent the relative
standard deviation (RSD).

Time Point Benchtop LIBS Handheld LIBS

T1 0.0060 (17.4%) 0.0071 (11.3%)
T2 0.0062 (10.6%) 0.0063 (15.3%)
T3 0.0056 (10.0%) 0.0067 (16.3%)
T4 0.0054 (18.6%) 0.0074 (18.3%)

10



Foods 2023, 12, 402

Figure 7. Averaged raw LIBS spectra of cheese samples measured on four different dates using the
handheld LIBS system. Note that every measurement was conducted every two weeks.

3.2. Classification Using the Elastic Net Approach

Table 3 reports the ENET classification accuracy of five different food products mea-
sured using the benchtop LIBS system and the handheld LIBS system. The training (and
accuracy evaluation) was performed via 10-fold cross-validation. As can be seen in the
tables, cheese samples were sampled and measured by two LIBS systems at four time
points. Thus, separate classifiers were developed and applied to the dataset containing
measurements from each of the four time points. As mentioned before, prior to the algorith-
mic training, univariate feature selection via ANOVA was applied to the data to minimize
the subsequent training time. The accuracy of the model was found to be excellent, reaching
94.5 ± 1.51% for vanilla extract and 99.30 ± 0.70% for spices in the benchtop system, and
92.70 ± 2.30% for coffee beans, 98.30 ± 0.69% for vanilla extract, and 90.80 ± 1.88% for
balsamic vinegar in the handheld system.

Table 3. ENET classification accuracy of five different food products measured by the benchtop and
handheld LIBS systems at four different time points.

Food Products
Classifier Accuracy

Benchtop LIBS Handheld LIBS

16 cheeses
T1 85.80 ± 1.57% 81.20 ± 1.51%
T2 82.20 ± 1.53% 83.00 ± 1.34%
T3 87.60 ± 1.99% 84.70 ± 1.79%
T4 84.10 ± 1.93% 84.20 ± 1.71%

6 coffee varieties 85.00 ± 1.94% 92.70 ± 2.30%

6 vanilla extracts 94.50 ± 1.51% 98.30 ± 0.69%

6 balsamic vinegars 88.20 ± 2.10% 90.80 ± 1.88%

8 powdered spices 99.30 ± 0.70% 84.50 ± 1.94%

The classification of coffees and balsamic vinegar showed slightly lower accuracy
in the benchtop system compared to the handheld system. This suggests that the broad
spectral range of the handheld system may be the most dominant factor in the classification
of coffee beans and balsamic vinegar using LIBS. However, the classification accuracy of
spices in powder form was lower using the handheld system, pointing to the spectral
resolution as the decisive factor. Additional studies are required to evaluate these types of
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samples further, particularly with respect to the preparation methods for powders. The test
results for vanilla extracts show comparable classification accuracy in both LIBS systems.

The classification performance for cheese samples measured at different storage time
points was also assessed. There were no observable differences in the measurements
obtained during different periods. The classification accuracy of those measurements
did not present significant differences either. Note that every three sample replicates
were averaged and analyzed to establish the classification performance results. Slightly
higher classification accuracy of cheese samples was shown in the benchtop system than
in the handheld device. It is likely that more sensitive detection in the visible and near-
visible range (350–650-nm wavelength) could be the critical factor for classifying cheeses
using LIBS.

3.3. Food Fraud Detection

In the final step of our study, we simulated two realistic food-fraud detection scenarios
in which a specific sample with a different origin and/or composition than the rest of
the set was to be identified and detected. In the first simulation, we aimed to identify
Wisconsin Gruyère-style cheese manufactured in the USA from pasteurized milk. In the
second scenario, we attempted to identify imitation vanilla taste (vanillin) among natural
vanilla extracts. In the first scenario, we envisioned three classes (unpasteurized European
cheeses branded as “Gruyère” vs. other unpasteurized European Alpine-style cheeses vs.
Wisconsin Gruyère-type cheese produced from pasteurized milk), whereas, in the second
scenario, there are only two classes (real vanilla extract vs. imitation vanilla flavor). We
used multiple repeated independent instances of 5 × 2 cross-validation runs to evaluate the
system. For the cheese detection scenario, the accuracies of the benchtop (90.17 ± 1.04%)
and the portable platforms (90.95 ± 1.05%) were virtually identical (see Table A6). Similarly,
the benchtop and the portable systems operated equally well in detecting the imitation
vanilla (99.66 ± 0.47 and 99.38 ± 0.58%, respectively). See Table A7 in Appendix A for the
result of the individual classification runs.

4. Discussion

4.1. Sample Preparation

Solid specimens were successfully analyzed without any processing. Grinding samples
into powder and pressing them into a pellet is a popular preparation method for solid
foods [68,69]. For instance, Iqbal et al. [70] reported that samples were finely powdered
and vacuum-dried at 370 K for 10 h. The sample was then compressed for 20 min at 30 T
hydraulic pressure into pellets that were 3 mm thick and 1.3 cm in diameter. However, the
preparation of pellets or tablets is an important limiting factor and cannot be easily used
for in-situ analysis. In contrast, in our experiments, solid food samples like Alpine cheeses
and coffee were tested without any preparation. The samples were immobilized for an easy
location adjustment to ensure coverage of the whole sample surface by laser shots during
the collection of complete elemental profiles.

Regarding measurement preparation for powders (spices), we utilized a custom
sample holder to confine the samples. To overcome blowing off and scattering during
laser-matter interaction, a layer of powdered material was applied to a double-sided piece
of tape that covered and adhered to the bottom of the sample holder.

To prevent splashing and the formation of surface ripples caused by the shock wave
of LIBS, as well as to achieve a lower limit of detection, better repeatability, and greater
sensitivity when working with liquid food samples, the formation of a gel using commercial
collagen is commonly performed, followed by drying in an air-assisted oven [50,71,72].
However, the dry gel emission signals cannot be simply subtracted, and additional chemo-
metric spectral treatments are necessary. In our study, we employed a nitrocellulose
paper-based sample-preparation approach that is highly compatible with liquid food sam-
ples owing to its porous structure, hydrophilic property, and minimal effect on the sample
spectra. This approach has been successfully used by other researchers when utilizing
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LIBS to measure the presence of metals in water or oil [73–76]. Moreover, this method is
simpler and more efficient than the commonly used gel-formation technique [77]. The
characteristic peaks of the nitrocellulose membrane do not interfere with the elemental
profiles of foods and can be easily distinguished from the LIBS spectral matrix. This is
the first report on the use of nitrocellulose membranes with LIBS for the classification of
liquid food samples. Compared to the commonly used methods, our approach requires
little or no sample preparation. It is simple, rapid, and cost-effective. Consequently, it
is more practical and compatible with envisioned usage scenarios involving wholesalers,
food inspectors, and customs officers that examine traded agricultural products. However,
we must stress that the viability of using nitrocellulose paper may depend on the viscosity
of the sample. We have not tested a sufficient range of liquid products to endorse this
method unreservedly.

4.2. Water Activity

Most of the 16 types of cheese showed a small but statistically significant difference
in water-activity values between the beginning of storage and 42 days later. However,
despite these small changes in water activity, the classification of cheeses with LIBS systems
remained stable and robust. Interestingly, one recent LIBS application was to measure
the moisture content in cheese, using oxygen emission normalized by CN emission as the
indicator [78]. Another study performed by Ayvaz et al. [79] investigated the potential of
using LIBS with partial least squares regression to determine the chemical quality-control
parameters for cheese samples, such as moisture, dry matter, salt, total ash, total protein,
and pH. In general, our results indicate that small variations in aw are unlikely to be
limiting factors for the use of LIBS in authentication, provided that the classification system
is paired with an appropriate feature-selection strategy.

4.3. Spectral Classification

As anticipated, the LIBS spectra of all the analyzed food items exhibit remarkably
similar spectral characteristics due to their comparable elemental composition. Clearly, the
significant resemblance between these spectra makes their classification challenging, at
least visually. For the differentiation and classification of food samples based on their LIBS
spectra, it is therefore required to employ statistical machine-learning approaches.

We chose ENET as the primary tool for analyzing LIBS spectra due to its embedded
feature selection capability, which is crucial given the usage of high-resolution spectra
and a restricted number of food samples [60,61]. The ENET method classifies products
using LIBS while identifying the most relevant chemical constituents that support the
classification results. It is important to note, however, that features identified by ML
algorithms may not always represent identifiable elemental peaks and may also come
from “background”. Matrix effects play a big role in how complex samples (like food) are
measured by spectroscopy, and multivariate approaches may exploit the matrix effects
when fingerprinting is performed [80].

To the best of our knowledge, relatively few published studies apply LIBS supported
by machine-learning algorithms to discriminate/classify food samples based on their
geographical origins or detection of adulteration. As for liquid food samples, three research
reports have indicated that LIBS techniques paired with machine-learning approaches
were employed with success for the discrimination/classification of several olive oils
according to their acidity and geographical origin [54–56]. The olive oils tested in these
studies are distinct in geographical origin and oil quality, i.e., extra virgin olive oil quality
or typical commercial edible oils. Oil samples were placed in shallow, uncovered glass
Petri plates such that a focused laser beam could reach their free surface to generate
plasma. In these studies, classification accuracy rates of more than 90% were achieved,
indicating the promise of this method. Considering the limitations and difficulties of
working with aqueous samples, researchers developed a liquid-to-solid transformation
of red wine using a dry collagen gel to increase the analytical performance. The LIBS
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technique combined with neural networks provided a classification procedure for the
quality control of red wines with PDO [50]. Furthermore, the identification of milk fraud,
as well as the adulteration ratios, were reported using LIBS coupled with visual clustering
following principal component analysis (PCA) [29].

Previous studies reported using the combination of LIBS and chemometric and/or
machine-learning methods to identify coffee varieties [16] and detect adulteration of wheat,
corn, and chickpeas in Arabica coffee [68]. The samples were ground and pressed into
pellets for LIBS measurements. Zhang et al. tested multiple classifiers (including support
vector machines, neural networks, and partial least squares (PLS) regression), some of which
provided an accuracy of around 80% [16]. In our study, we achieved a higher classification
accuracy by employing the elastic net approach. In the other study, all major and minor
elemental composition differences present in the LIBS spectra of coffee were identified using
traditional chemometric techniques such as PCA and PLS [81]. In contrast, in our study,
the most critical spectral features associated with elemental differences were identified
using the embedded feature selection ability of the ENET model. These findings confirmed
that the combination of LIBS and the ENET classifier has the potential to be used as a
routine technique for determining coffee bean authenticity and detecting adulteration. It is
becoming increasingly important to employ chemometrics and machine-learning methods
in food authentication systems [82–84]. The fact that ENET allows for simultaneous feature
selection (providing insights into the elemental composition), as well as classification,
demonstrated that it is a method exceptionally well-suited for this food analysis task.

As far as we know, this study is the first time that LIBS and chemometric methods
were used together to classify 16 types of cheese. The results showed that this combination
could be a useful and practical way to find food fraud in cheese products without a lot of
sample preparation. Also, this is the first study to utilize LIBS assisted by machine-learning
methods to efficiently classify powdered spices using direct analysis, i.e., without making
pellets. Thus, our results demonstrated that LIBS, aided by suitable statistical methods,
can be an effective technique for verifying the quality and safety of spices and similar
powdered products.

It is astonishing that there are discernible spectral differences between closely related
cheeses. One probable explanation is that artisanal Alpine-style cheeses are produced
seasonally in particular regions, and the bacteria responsible for cheese ripening and matu-
ration are distinctively associated with geographical location and changing seasons [85–89].

Even though our classification experiments show a remarkably high degree of accuracy,
it is important to note a critical limitation. For each example presented, the tests assume a
supervised learning environment with an exhaustively defined training set. In other words,
we assume that all classes are known beforehand (including the classes describing possibly
fraudulent or inferior products). This cannot be guaranteed in many instances, resulting
in the so-called non-exhaustive learning problem, which necessitates simultaneous class
discovery and classification [90]. We plan to address this issue in future research using our
prior experience with non-exhaustive training sets, such as those emerging in food safety
applications [91].

5. Conclusions

The LIBS technique, paired with supervised statistical learning methods, has been
evaluated in real-world applications as a rapid and robust classifier of high-value food
items based on their distinctive spectral fingerprints. This study aimed to demonstrate
that an existing field-deployable LIBS device originally built for material science applica-
tions may provide a rapid, easy, and inexpensive authentication platform for agricultural
products where minimal or no sample preparation is required. To achieve this purpose,
our study utilized new, easy, and cost-effective sample preparation techniques for liquid
and powdered food samples. Utilizing nitrocellulose paper for liquid food samples im-
proved the quality of the spectra and allowed us to avoid the typical sample splashing
caused by LIBS-generated shock waves. The LIBS signal of nitrocellulose paper is readily
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distinguished from the spectra of tested food samples. It has also been demonstrated that
accurate analysis of solid foods such as cheeses and entire coffee beans may be performed
using LIBS without any sample preparation.

Overall, the results point to the feasibility of rapid identification of various high-value
foods by LIBS accompanied by supervised classification methods, using not only lab-based
benchtop instruments but also portable, field-deployable units.
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Appendix A

Additional tables containing information about all the tested food samples and the
detailed results of the food fraud simulation study are described in Section 3.3.

Table A1. Tested balsamic vinegar samples.

Code Balsamic Vinegar Samples

B1 Balsamic Vinegar of Modena
B2 Balsamic Vinegar of Modena (Colavita)
B3 Barrel-aged Balsamic Vinegar (Napa Valley Harvest)
B4 Gran Deposito Aceto Balsamico di Modena (Giuseppe Giusti)
B5 Gold Quality Balsamic Vinegar of Modena (Trader Joe’s)
B6 Prof. Andrea Cossarizza’s private collection balsamic vinegar

Table A2. Tested vanilla samples.

Code Vanilla Samples

V1 Pure vanilla extract (Kroger, Cincinnati, OH)
V2 Imitation vanilla flavor (Kroger, Cincinnati, OH)
V3 Pure vanilla extract (McCormick & Company, Baltimore, MD)

V4 San Luis Rey pure vanilla (La Vencedora e Hijos SA de CV, San
Luis Potosi, Mexico

V5 Vanilla syrup (1883 Maison Routin, La Motte Servolex, France)
V6 Simple Truth Madagascar vanilla extract (Kroger, Cincinnati, OH)
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Table A3. Tested Alpine-style cheese samples.

Code Alpine-Style Cheese Samples

C1 Abondance AOP
C2 Appenzeller
C3 Austrian Alps Gruyère
C4 Berggenuss
C5 Brenta
C6 Charles Arnaud Comté AOP 6 Month Aged
C7 Charles Arnaud Comté AOP Reserve 12 Months Aged
C8 Comté AOP Grande Reserve 24 Months Aged
C9 Comté AOP Reserve 10 Month Aged

C10 Frantal Emmental
C11 Gruyère AOP
C12 Hoch Ybrig
C13 Kaltbach Cave Aged Emmental AOP
C14 Kaltbach Cave Aged Swiss Gruyère AOP
C15 Parpan Alpkaese
C16 Wisconsin Gruyère Alpine-Style Cheese

Table A4. Tested coffee samples.

Code Coffee Samples

F1 Italian Dark Roast (OLDE Brooklyn Coffee, Brooklyn, NY)
F2 Guatemalan Antigua Blend (Copper Moon Coffee, Lafayette, IN)
F3 Lavazza Super Crema (Luigi Lavazza SpA, New York, NY)

F4 Despierta tus Sentidos (Nespresso USA Inc., Long Island City,
NY)

F5 Café Cubano Roast (Mayorga Organics, Rockville, MD)
F6 Artisan Blend (Koffee Kult, Hollywood, FL)
F7 Shot Tower Espresso (Verena Street Coffee Co., Dubuque, IA)

Table A5. Tested spices samples.

Code Spices Samples

S1 East Indian ground nutmeg (McCormick & Company, Baltimore,
MD)

S2 Classic ground nutmeg (McCormick & Company, Baltimore, MD
S3 Ground mustard (Kroger, Cincinnati, OH)
S4 Smidge & Spoon crushed red pepper (Kroger, Cincinnati, OH)
S5 Cayenne pepper (Spice Islands, Ankeny, IA)
S6 Ground cumin (McCormick & Company, Baltimore, MD)
S7 Private Selection ground cumin (Kroger, Cincinnati, OH)
S8 Simple Truth organic ground turmeric (Kroger, Cincinnati, OH)

Table A6. Result of testing three cheese categories (Alpine-style cheeses identified as “Gruyère”
manufactured from unpasteurized milk, other Alpine-style cheese produced from unpasteurized milk,
Wisconsin Alpine-style cheese produced from pasteurized milk). The table reports 10 independent
5 × 2 cross-validation runs.

Experiment Run
Accuracy [%]

Benchtop Handheld

1 89.1 91.3
2 91.5 92.3
3 89.4 89.4
4 90.5 91.8
5 90.8 89.9
6 89.8 90.8
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Table A6. Cont.

Experiment Run
Accuracy [%]

Benchtop Handheld

7 91.6 91.3
8 90.8 89.6
9 88.4 92.3
10 89.8 90.8

90.17 (1.04) 90.95 (1.05)

Table A7. Result of detecting imitation vanilla (vanillin) among real vanilla extracts. The table reports
10 independent 5 × 2 cross-validation runs.

Experiment Run
Accuracy [%]

Benchtop Handheld

1 99.4 98.8
2 100 98.8
3 100 100
4 98.9 100
5 100 99.0
6 99.4 98.6
7 100 99.2
8 100 100
9 98.9 99.4
10 100 100

99.66 (0.47) 99.38 (0.58)
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Abstract: A hand-held near infrared (NIR) spectrophotometer combined with a similarity index (SI)
method was evaluated to identify meat samples sourced from exotic and traditional meat species.
Fresh meat cuts of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius), and
beef (Bos taurus) sourced from a commercial abattoir were used and analyzed using a hand-held NIR
spectrophotometer. The NIR spectra of the commercial and exotic meat samples were analyzed using
principal component analysis (PCA), linear discriminant analysis (LDA), and a similarity index (SI).
The overall accuracy of the LDA models was 87.8%. Generally, the results of this study indicated
that SI combined with NIR spectroscopy can distinguish meat samples sourced from different animal
species. In future, we can expect that methods such as SI will improve the implementation of NIR
spectroscopy in the meat and food industries as this method can be rapid, handy, affordable, and
easy to understand for users and customers.

Keywords: exotic species; similarity index; meat; NIR; chemometrics

1. Introduction

Red meat represents a significant proportion of the humans’ daily diet as it provides
nutrients such as protein, vitamins, and minerals, which are essential to maintain a healthy
life [1–5]. Different sources of red meats are available and used as a supply of protein
such as pork, beef, and lamb as well as wild species in some countries [4–8]. With the
growing consumption of red meat and meat products, the consumer is more aware of
issues associated with meat safety such as authenticity [3,9–11].

The most recent issues associated with both meat authenticity and fraud involved the
replacement of high-value ingredients with not-expensive ones such as horse (e.g., horse
meat scandal) [3,12–16]. In other cases, authenticity is associated with the consumption of
certain species proscribed by religious reasons (e.g., pork in Muslim countries). The meat
industry is also driven by the need to supply the consumer with a consistent high-quality
product at an affordable price [4]. Consequently, these issues have increased awareness
about authenticity and fraud in the meat industry [3].

Authentication and the recognition of species have been a major threat for the modern
meat industry, as it decreases the quality and safety of the meat products [17,18]. Testing of
animal meat species is essential for evaluating quality and safeguards the consumer against
fraudulent activities [17,18]. This is also of importance to guarantee integrity throughout
the supply and value chains. Different analytical methods are available and used for
meat identification and authentication, including manual inspection, chromatographic
methods (e.g., chromatography mass spectrometry), electrophoretic separation of proteins,
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molecular-biology-based methods, electronic noses, and vibrational spectroscopy (e.g., near,
mid, and Raman spectroscopy) [17–19]. Some of these methods are subjective (e.g., manual
inspection), tedious, time consuming, and inconsistent, while other such as molecular
biology-based methods (e.g., DNA based techniques, polymerase chain reaction (PCR), real-
time PCR, and multiplex PCR), although precise, are slow and expensive [17–19]. Despite
these issues associated with the use of traditional methods, vibrational spectroscopy is
still considered an emerging technology, which has been proved to be a dynamic and
developing method in evaluating and monitoring the authenticity of animal species.

One of the main drawbacks on the utilization of NIR spectroscopy by the food and
meat industry is the need of chemometrics to analyze the data collected to make meaningful
decisions about the quality and safety of the meat. Chemometrics techniques such as prin-
cipal component analysis (PCA), discriminant analysis (DA), soft independent modelling
of class analogies (SIMCA), and artificial neural networks (ANN) are commonly used to
unravel and interpret the spectral properties of the sample, allowing for the classifica-
tion of samples without the use of direct chemical compositional information [19]. These
chemometric techniques have been shown to be able to classify foods, including meat,
based on spectral data. However, these advanced chemometrics methods can be difficult to
understand and to apply under industrial conditions.

Unlike chemometrics, other qualitative methods, particularly those based on similarity,
can be applied to analyze NIR data using “spectral similarity” techniques [20–22]. A simple
approach for comparing two spectra is the so-called “similarity index” (SI) method, as
described by different authors [20–22]. The SI method has been used and described to
identify pure chemicals (e.g., sugar solutions) [20], to compare and authenticate wines [21],
as well as to analyze tobacco leaves [22]. The SI method is created using the measurements
of the absorbance for every wavelength of the first spectrum, defined as X variable, where
the second spectrum is defined as Y variable. The correlation coefficient (r) is used to
compute a similarity index which can be used to test for identity between the samples. In
this study, NIR spectra are obtained from a meat sample from a given animal species, then
a second meat sample from the same or different animal species is taken, and then the two
are correlated to confirm or not the authenticity of the meat sample.

This paper details the application of a similarity index (SI) combined with the near
infrared (NIR) spectra of meat samples collected using a hand-held spectrophotometer as a
rapid, inexpensive tool to authenticate meat samples sourced from traditional and wild
meat species.

2. Materials and Methods

Samples of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius),
and beef (Bos taurus) were obtained from chilled carcasses after 24 h slaughter and sourced
from a commercial slaughterhouse (Queensland, Australia). The fresh meat samples were
first cut in small pieces with a knife, and thoroughly hand mixed before being minced.
Then, samples were minced using a Tabletop mincer (MEFE 360MC120, 18,000 rpm) fitted
with a round mincer plat with 4 mm diameter holes (Mitchell Engineering Food Equipment,
Clontorf, Queensland, Australia) which was washed and dried between samples. Four
replicates for each species were created (4 animal species × 4 biological replicates = 16).

The near infrared spectra of the minced meat samples were collected using a hand-
held NIR spectrophotometer (Micro-NIR 1700. Viavi, Milpitas, CA, USA) operating in
the wavelength range between 950 and 1600 nm (10 nm wavelength resolution). The
spectra collection and instrument set up were controlled using the proprietary software
provided by the instrument manufacturer (MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA).
The spectral data acquisition settings were set at 50 ms integration time and an averaging
of 50 scans (MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA). Between samples, a reference
spectrum was collected using Spectralon®. The total number of samples used/scanned
was 96 (4 animal species × 4 biological replicates × 6 scans).
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The NIR data were exported into The Unscrambler (version X, CAMO, Oslo, Norway)
for data analysis and preprocessing. The NIR spectra was preprocessed using the Savitzky-
Golay second derivative (21 smoothing points and second polynomial order) prior to
spectra interpretation and chemometric analysis [23]. Principal component analysis (PCA)
was used to analyze the data and to evaluate the differences or trends associated with the
animal species analyzed. The PCA model was developed and validated using full cross
validation (leave one out) [24–26]. Linear discriminant analysis (LDA) was also used to
classify meat samples according to the animal species.

In this study, the Similarity Index (SI) method was used to identify and authenticate
the meat species analyzed. The SI is specifically targeted to applications whereby only two
spectra are being compared (e.g., beef1 vs. beef2). In this index, the r2 is calculated as the
coefficient of determination between the absorbance values from the two spectra at each
wavelength across the entire wavelength range. This can be easily determined by use of
the correlation function in Excel. The inverse relationship with r2 means that SI is very
sensitive to small changes in r2, and SI can range in values from 1 (totally different spectra)
to infinity ∞ (identical spectra) [20].

SI = 1/(1 − r2)

3. Results and Discussion

As the first step, we have interpreted the main features of the NIR spectra of the meat
samples analyzed. Figure 1 shows the average of the second derivative NIR spectra of the
meat species (e.g., beef, camel, emu, and lamb) analyzed using a hand-held instrument. The
second derivative of the NIR spectra of the meat samples showed bands around 985 nm
associated with the O-H overtones of water, at 1180 nm (C-H and C=O), at 1205 nm corre-
sponding to a stretching–bending, second overtone of C-H bonds related to lipids [6,9,27].
Additionally, a shoulder around 1350 nm and at 1428 nm O-H stretch first overtone, an
O-H combination, and an O-H bend second overtone were noted. These three bands are
mainly associated with water content [6,9,27].

Figure 1. Average second derivative NIR spectra of lamb (Ovis aries), emu (Dromaius novaehollandiae),
camel (Camelus dromedarius), and beef (Bos taurus) minced samples analyzed using a portable NIR
instrument.

A PCA was also performed to observe any trends in the NIR spectra associated with
the different meat animal species analyzed. The PCA score plot derived from the analysis
of meat samples is shown in Figure 2. The first four principal components (PC) explained
99% of the total variability in the NIR spectra of the meat samples analyzed (PC1 66%, PC2
25%, PC3 5%, and PC4 3%). A separation between meat samples according to the animal
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species was observed when PC2 vs. PC4 were plotted (Figure 2). The PCA loadings for
the first and fourth principal components are reported in Figure 3. The highest loadings in
PC2 were observed around 1087 nm (O-H), 1217 nm and 1297 nm (C-H), and at 1428 nm
(O-H), while the highest loadings in PC4 were observed at 1050 nm, around 1210 nm (C-H),
and 1360 nm (C-H), associated with the presence of lipids (e.g., fatty acid profile) and
protein content [6,9,27]. The use of PCA allowed for the identification of differences in the
NIR spectra of the meat samples according to the animal species analyzed. These results
showed that there is relevant information (e.g., chemical properties) in the NIR spectra that
can be used to separate the different animal meat species analyzed.

Figure 2. Principal component score plot of NIR spectra of lamb (Ovis aries), emu
(Dromaius novaehollandiae), camel (Camelus dromedarius), and beef (Bos taurus) minced samples ana-
lyzed using a portable NIR instrument.

Figure 3. Principal component loadings derived from the analysis of minced meat samples.
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In addition to the PCA, the NIR spectra of the meat samples were analyzed using
linear discriminant analyses (LDA). The second derivative described in the materials
and methods was used as a preprocessing method before LDA. The LDA (using 9 latent
variables) confusion matrix obtained from the analysis of the meat samples is shown in
Table 1. The overall accuracy of the models was 87.8%. It was observed that 92%, 89%, 86%,
and 84% of the camel, emu, beef, and lamb meat samples, respectively, analyzed using NIR
spectroscopy were correctly classified.

Table 1. Linear discriminant analysis confusion matrix of meat samples analyzed using near infrared
reflectance spectroscopy. In brackets are the percentages of correct classification.

Camel Emu Beef Lamb

Camel 34 (92%) 0 0 3

Emu 0 33 (89%) 3 0

Beef 4 0 32 (86%) 1

Lamb 2 0 3 31 (84%)

After both PCA and LDA analysis, the similarity index (SI) was calculated. As defined
in the previous section, similar samples will have a correlation very close to one (r = 1.0).
The SI calculated in this study was considered a more sensitive measure of similarity in
comparison with other methods as reported by other authors [20]. In this way, an SI will
differ between 1.0 for totally different spectra (e.g., different meat species) and infinity for
identical species. In this study, the SI calculated according to previous reports [20,21] was
chosen as the indicator of similarity between the same species of meat (e.g., beef1 vs beef
2) [20,21]. The results of the SI for the comparison of the meat samples analyzed using the
whole NIR spectra (950 to 1600 nm) are shown in Figure 4, Panel A. The results showed that
an SI value > 350 corresponds to a r2 value > 0.997. This result was considered adequate
to either identify the different meat species or the similar ones. Therefore, this value was
set as the minimum value for similarity, meaning that the meat samples from the same
animal species will have at least a value equal or higher than 350, where meat samples
having values below this limit were considered different. It was also observed that the SI
successfully matched all identical meat samples corresponding to the same species (e.g.,
beef vs. beef; lamb vs. lamb, etc.).

Panel A 

 

Figure 4. Cont.
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Panel B

Figure 4. Similarity index calculated for the minced meat samples of lamb (Ovis aries), emu
(Dromaius novaehollandiae), camel (Camelus dromedarius), and beef (Bos taurus) analyzed using a
portable NIR instrument. (Panel A): whole range (950 to 1600 nm); (Panel B): lipid and protein
range (1200 to 1400 nm).

Figure 4, Panel B shows the results for the SI calculated using the NIR range between
1240 and 1400 nm associated with the C-H bonds, related to the range corresponding to
lipid and protein contents [6,9,26]. The trends observed were similar to those described
in Figure 4, although the threshold has changed to SI > 750 in most of the samples and
mixtures analyzed. However, for the meat samples obtained from lamb, the threshold
was lower. This can be also due to differences in fat content. Overall, it can be stated that
if a sample has a similarity index over 350, the samples can be considered as identical.
In instances where the spectra are to a lesser extent easily separated, further research is
needed to determine what number is best to be used as the SI.

The utilization of the similarity index method applied to the NIR spectra of meat sam-
ples has been proven to be an alternative tool to other classification methods to distinguish
samples from the same animal species from different ones (e.g., traditional vs. wild meat).
However, research into the overall use of the SI method should also be extended to observe
the effects of mixtures, breeds, etc., as it seems the SI is dependent on the data set and
experimental conditions. As described above, this simple approach (SI) for comparing
two spectra has been described by other authors using different food matrices [20–22].
Overall, the results from this study were comparable with those studies that have analyzed
liquid samples such as wine, tobacco leaves, and sugars [20–22]. In addition, the results
obtained in this study from the application of the SI are comparable to those obtained
using classical chemometrics methods such as LDA (Table 1). The main advantage of using
SI over classical chemometric methods (e.g., LDA, PCA) is that this index can be easily
understood by the nonexpert where various operators in the industry with a diverse skill
base can use this method to trace the origin of the meat. In addition, an SI system must be
able to be integrated and operated using readily available equipment (e.g., portable NIR
instruments). Ultimately, the use of an SI can be inexpensive and can be implemented on
commonly used software such as Excel®.

4. Conclusions

In this study, the use of an SI method to compare the NIR spectra of different animal
species was evaluated. The SI method has shown that it can be used as an alternative to
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other classification methods available such as linear discriminant analysis. Overall, these
results indicate that SI combined with NIR spectroscopy can distinguish meat samples
sourced from different animal species (e.g., traditional vs. wild meat species). In future, we
can expect that methods such as SI will improve the implementation of NIR spectroscopy in
the meat and food industries as an authentication tool that is quick, handy, and affordable
for customers.
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Abstract: Adulterated, poor-quality, and unsafe foods, including meat, are still major issues for
both the food industry and consumers, which have driven efforts to find alternative technologies to
detect these challenges. This study evaluated the use of a portable near-infrared (NIR) instrument,
combined with chemometrics, to identify and classify individual-intact fresh goat muscle samples.
Fresh goat carcasses (n = 35; 19 to 21.7 Kg LW) from different animals (age, breeds, sex) were used
and separated into different commercial cuts. Thus, the longissimus thoracis et lumborum, biceps femoris,
semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned
(900–1600 nm) using a portable NIR instrument. Differences in the NIR spectra of the muscles were
observed at wavelengths of around 976 nm, 1180 nm, and 1430 nm, associated with water and fat
content (e.g., intramuscular fat). The classification of individual muscle samples was achieved by
linear discriminant analysis (LDA) with acceptable accuracies (68–94%) using the second-derivative
NIR spectra. The results indicated that NIR spectroscopy could be used to identify individual
goat muscles.

Keywords: carcass; chemometrics; classification; goat meat; infrared

1. Introduction

Meat identification and authentication is one of the applications for which near-infrared
(NIR) spectroscopy is considered a valuable tool, as reported by different authors [1–7]. The
utilisation of NIR spectroscopy has been reported by different researchers to have great
success in identifying and differentiating between different meat species (e.g., beef, pork,
lamb, and chicken) as well as authenticating different homogenized meat muscle samples
from the same or different animal species [1–8]. The detection of adulterated, unauthentic,
poor-quality, and unsafe meats is still a major task for the meat and food industries [9]. The
meat industry as well as consumers have driven efforts to introduce innovative and reliable
detection techniques that can ensure the authenticity, quality, and safety of both meat and
meat products along the supply and value chains [3,5,10,11].

It has been recognised that the so-called classical analytical techniques are expensive,
laborious, time-consuming, and not appropriate to the modern challenges facing the food
and meat industries. Therefore, the demand to guarantee the authenticity and safety of
both meat and meat products has increased the interest in developing rapid analytical
techniques in food and meat industries [2–5]. Among these rapid techniques, vibrational
spectroscopic techniques, such as NIR, mid-infrared (MIR), and Raman spectroscopies,
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are useful for the determination of meat quality and authenticity because of their intrinsic
characteristics (e.g., rapid, reliable, non-destructive, green, relatively inexpensive) [2–5].

Although NIR spectroscopy has been applied to different commercial and exotic meats
(e.g., beef, lamb, pork, chicken, kangaroo, game, etc.) [12–14], not many reports were found
that evaluated the use of this technique to analyse goat meat samples. Only one study has
been reported that assessed the ability of NIR spectroscopy to characterise and authenticate
the composition of goat meat samples [15]. The authors of this study evaluated the use of
NIR spectroscopy to estimate protein, moisture, connective tissue, ash, and fat contents
in two goat muscles, Longissimus thoracis (LT) and L. lumborum (LL), with great success
(coefficient of determination > 0.70) [15].

Although the focus has been on the adulteration of meat using cheaper alternative
species, few studies have evaluated the adulteration of expensive fresh meat cuts with
cheaper cuts in the same animal species [16]. Typically, the more expensive cuts in a carcass
differ in quality and composition from the inferior cuts or muscles. It is therefore of value
to the industry to be able to distinguish between different muscles in a mixture of meat
products (e.g., high- vs low-value muscle or commercial cuts), thereby providing proof
of provenance and quality; a fillet steak sold as a high-value product due to its inherent
quality characteristics is indeed derived from the Psoas major muscle and not from some
inferior muscle.

Thus, the aim of this study was to evaluate the use of a portable near-infrared (NIR)
instrument combined with linear discriminant analysis (LDA) to identify, as well as classify,
individual and intact goat muscle samples.

2. Materials and Methods

2.1. Samples

Fresh goat carcasses (n = 35) from different breeds and sexes (male, female), production
systems (including commercial farms), and two different experiments were analysed after
being slaughtered in a commercial abattoir in Queensland (Australia). The samples were
obtained from two different experiments, where in experiment 1, both male and female
goat animals were slaughtered, while in experiment 2, only male goats were analysed. The
breeds used in these studies were Boer, Boer crosses, and Australian rangeland goats. The
goat carcasses were weighed after 24 h (range of 6 to 28 Kg cold carcass weight) and cut in
different commercial cuts (e.g., back leg, chump, flap, loin, rack, shoulder), as described by
other authors [17]. In this study, the carcasses were weighed, whereafter the muscles in each
commercial cut were anatomically dissected. In total, six muscles were dissected and collected
for each of the goat carcasses, namely longissimus thoracis et lumborum (LTL), biceps femoris (BF),
semimembranosus (SM), semitendinosus (ST), supraspinatus (SS), and infraspinatus (IS). The total
number of muscle samples collected and scanned was 210 (35 goats × 6 muscles each).

2.2. Near-Infrared Spectroscopy

The NIR spectra of the individual goat muscle samples were collected using a portable
NIR instrument (Micro-NIR 1700. Viavi, Milpitas, CA, USA) operating in the wavelength
range of 950–1600 nm (10 nm wavelength resolution). The spectra collection and instru-
ment set-up were controlled using the proprietary software provided by the instrument
manufacturer (Viavi Solutions, 2015, Milipitas, CA, USA). The spectral data acquisition
settings were set at a 50 ms integration time and an average of 50 scans (MicroNIR Prov 3.1,
Viavi, Milpitas, CA, USA). For every 10 samples, a reference spectrum was collected using
Spectralon®. Each muscle was scanned in triplicate, and the average of these spectra was
used in further chemometric analysis.
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2.3. Chemometrics and Data Analysis

The NIR data were exported into The Unscrambler (version X, CAMO, Norway) for
data analysis and pre-processing. The NIR spectra were pre-processed using the Savitzky–
Golay second derivative (21 smoothing points and second polynomial order) prior to
spectra interpretation and chemometric analysis [18]. In this study, principal component
analysis (PCA) and linear discriminant analysis (LDA) were used to analyse and classify
the muscle samples according to their origin (e.g., type of muscle or breed). The LDA
models were developed using the second-derivative NIR spectra and the muscle types as
input variables. Models were developed using full cross-validation (leave one out) [19,20].
In addition, the Kennard–Stone approach was used to select samples to be allocated into
a calibration and validation set. The ability of the LDA models to classify samples was
evaluated using the percentage of correct (%CC) and incorrect (%IC) classifications using
the validation set [19,20].

3. Results and Discussion

3.1. Spectra Interpretation

Figure 1 shows the NIR raw spectra of all muscle samples analysed. The raw NIR
spectra of the muscles showed three main bands around 976 nm, 1176 nm, and 1428 nm.
These bands were associated with third (976 nm) and second (1428 nm) overtones stretching
of the O-H bond of water [12,21], while the band around 1176 nm might be associated
with the C-H stretching second overtone, associated either with intramuscular fat or lipid
content [22–24]. An effect of scatter can be observed in the NIR raw spectra of the muscle
samples, mainly due to the presence of water. Therefore, the second derivative was used to
improve the interpretation of the NIR spectra of the muscle samples analysed (Figure 2). In
addition, the average of the second derivative of the NIR spectra of each of the individual
muscle samples analysed is also reported in Figure 3. The NIR absorbances throughout
the wavelength range of the individual muscle samples analysed overlapped where main
throughs (bands) were observed at 976 nm, 1167 nm, 1341 nm, and 1420 nm. A possible
explanation for this overlapping might be related to the similarities in the anatomical
location, as well as similar functionality of some of the muscles analysed [14,22]. For
example, both ST and SS tended to differentiate from the other muscles around 976 nm
(water content) and 1167 nm [12,21]. In addition to the differences between ST and SS, BF
tended to differentiate from the other muscles at 1416 nm (water content). A change in the
NIR spectra could also be observed around 1200 nm, which is associated with lipids and
proteins, in muscles such as ST, SS, and IS. Other authors have also reported that differences
between muscles (e.g., in chicken) can be observed in absorbances around 980 nm related
to the O-H second overtone (water), at 1202 nm related to the C-H second overtone (lipids),
and at 1456 nm related to the O-H first overtone (water) [22–24]. The band around 970 nm is
related to the third overtone stretching of an O-H bond associated with water content [12],
while the band around 1143 nm corresponds to the second overtone C-H stretching bonds
associated with intramuscular fat and lipids [22]. It is known that the proximate chemical
composition of meat is influenced by the sex of the animal, where male animals typically
have lower fat and higher moisture content than females [14,25]. Considering that muscles
from different goat ages and sex groups were utilized in this study, we can infer that
some of the differences observed in the NIR spectra can be associated with the intrinsic
differences in intramuscular fat, lipids, and moisture content between animals (age and
sex) and muscles (anatomical position and functionality). It has also been observed that
some of the muscles overlapped around 1392 nm, associated with the second overtone C-H
stretching bond that is related to the lipid content of the samples [22]. Within an animal,
muscles are known to differ in their chemical composition, including their moisture and
intramuscular fat content [25].
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Figure 1. Near-infrared raw spectra of all different intact goat muscle samples analysed.

Figure 2. Near-infrared second-derivative spectra of all different intact goat muscle samples analysed.

Figure 3. Near-infrared second-derivative average spectra of each of the intact goat muscle sam-
ples analysed.
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3.2. Principal Component Analysis

Figure 4 shows the PCA score plot and loadings derived from the second-derivative
NIR spectra of the intact goat muscle samples analysed. The PCA analysis showed that
94% of the variance in the NIR spectra of the individual muscle samples is explained by the
first three principal components (PC1 57%, PC2 32%, and PC3 5%). Although it is not clear
from the figures, similar muscle samples tend to cluster together. This trend can also be
observed when PC2 vs PC3 are plotted. Muscles such as SM tend to form a tight cluster,
while BF and LTL are scattered along the different PCs. Overall, it is difficult to observe a
clear separation between the muscle samples when all the samples are analysed together.
The highest loadings in PC1 explained the separation between samples and were observed
around 976 nm (O-H), 1180 nm (C-H), and 1428 nm (O-H), associated with water content.
The highest loadings in both PC2 and PC3 were similar to those observed in PC1, although
some shifts in the wavelength were noticeable. The highest loadings in PC3 were observed
at 1112 nm, 1180 nm, 1242 nm, and 1397 nm; both bands at 1242 nm and 1397 nm were
associated with fat or lipid content [22].

Panel (A) PC1 vs. PC2. 

 

Panel (B) PC2 vs. PC3. 

Figure 4. Cont.
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Panel (C) Loadings. 

 
Figure 4. Principal component scores plot (panel (A,B)) and loadings (panel (C)) of intact goat
muscles analysed using near-infrared reflectance spectroscopy.

3.3. Classification

The classification results using LDA based on the second-derivative NIR spectra of
the individual muscle samples are reported in Table 1. The LDA confusion matrix showed
that muscle samples were correctly classified in the range of 63% to 94%, depending on the
type of muscle. The poor classification rates were observed for LTL (63%), ST (74%), and
SM (71%). For the LTL, 13 samples were misclassified, while 10 and 8 were misclassified
for ST and SM, respectively. On the other hand, good to very good classification rates
were obtained for BF (82%), SS (94%), and IS (85%), respectively. For BF, six samples were
misclassified, while for SS and IS, there were only two and five samples misclassified,
respectively. These differences might be attributed to the anatomical and physiological
differences among muscles and can also be explained by differences in fibre orientation,
muscle chemical composition, physiology, anatomical function, and texture [22,25]. Al-
though the mean second derivative of the NIR spectra appears relatively similar for the
different muscle samples analysed, the spectral properties were different, allowing for the
discrimination between different muscles.

Table 1. Linear discriminant analysis confusion matrix for the classification of individual goat
muscle samples analysed intact by near-infrared reflectance spectroscopy. Results correspond to the
validation. In bold is the correct number of samples classified.

LTL BF ST SM SS IS

LTL 22 1 0 6 1 5
BF 0 29 0 3 2 1
ST 0 1 26 1 2 5
SM 1 6 1 25 1 1
SS 0 0 0 0 33 2
IS 0 0 0 2 3 30

LTL: longissimus thoracis et lumborum, BF: biceps femoris, SM: semimembranosus, ST: semitendinosus, SS:
supraspinatus, IS: infraspinatus muscles.

We also attempted to discriminate muscles according to genotype (e.g., Boer buck,
Boer cross, and Australian rangeland). When all muscle samples were analysed together, a
classification rate ranging between 52 and 58% was achieved. Thus, comparisons between
Boer buck and Australian rangeland, Boer cross, and Australian rangeland, as well as Boer
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cross and Boer buck, were made separately. Muscle samples were classified correctly with
an 80% rate when Boer buck and Australian rangeland were compared. For the other two
groups, although an improvement in the classification rate (correct classification around
70%) was achieved, the muscles belonging to the Boar cross were not correctly classified.
This might be explained by the fact that Boer buck and cross goats are more genetically
similar compared with the Australian rangeland animals. The results of this study indicated
that NIR spectroscopy was able to identify the origin of the muscles using intact samples
(thus, there is no need for homogenization). These results indicate that NIR use can also be
extended to other species and muscles as a high-throughput tool to identify the origin of
the meat.

4. Conclusions

This study reported the use of a portable NIR spectrometer combined with chemo-
metrics to characterise and identify different goat muscle samples. Differences in the NIR
spectra of the muscles were observed around 970 nm, 1242 nm, 1397 nm, and 1428 nm
associated with water and fat content (e.g., IMF). The classification of individual muscle
samples showed that samples could be classified with accuracies ranging from 68% to 94%
using the second-derivative NIR spectra. Muscles that are in the same anatomical location,
such as the IS and SS, were correctly classified by NIR spectroscopy. Overall, the results
of this study indicated that NIR spectroscopy could be used to characterise and identify
different intact goat muscle samples. In future, we can expect an improvement in the
NIR models by incorporating samples from other commercial and production conditions,
as well as different genetics. The findings of this research might be extended to other
species and types of muscles produced and sold within a commercial facility with the
several advantages NIR provides, such as the low cost and the fact that this technique it is
non-destructive.
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Abstract: Two hundred and five samples of whisky, including 170 authentic and 35 fake products, were
analyzed in terms of their elemental profiles in order to distinguish them according to the parameter
of their authenticity. The study of 31 elements (Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb,
Sb, Sn, Sr, Te, Tl, U, V, Ca, Fe, K, Mg, P, S, Ti and Zn) was performed using the Inductively Coupled
Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectrometry
(ICP-OES) and Cold Vapor-Atomic Absorption (CVAAS) techniques. Additionally, the pH values of all
samples were determined by pH-meter, and their isotopic ratios of 88Sr/86Sr, 84Sr/86Sr, 87Sr/86Sr and
63Cu/65Cu were assessed, based on the number of counts by ICP-MS. As a result of conducted research,
elements, such as Mn, K, P and S, were identified as markers of whisky adulteration related to the age
of alcohol. The concentrations of manganese, potassium and phosphorus were significantly lower in
the fake samples (which were not aged, or the aging period was much shorter than legally required),
compared to the original samples (in all cases subjected to the aging process). The observed differences
were related to the migration of these elements from wooden barrels to the alcohol contained in
them. On the other hand, the sulfur concentration in the processed samples was much higher in
the counterfeit samples than in the authentic ones. The total sulfur content, such as that of alkyl
sulfides, decreases in alcohol with aging in the barrels. Furthermore, counterfeit samples can be
of variable origin and composition, so they cannot be characterized as one group with identical or
comparable features. Repeatedly, the element of randomness dominates in the production of these
kinds of alcohols. However, as indicated in this work, the extensive elemental analysis supported by
statistical tools can be helpful, especially in the context of detecting age-related adulteration of whisky.
The results presented in this paper are the final part of a comprehensive study on the influence of
selected factors on the elemental composition of whisky.

Keywords: authentication; adulteration; fake; whisky; elemental analysis; ICP-MS; ICP-OES; CVAAS;
spirits; principal component analysis; alcohol aging; isotope ratios

1. Introduction

Extremely fast development of trade and international exchange of products and food
mobility brought an unprecedented variety of food products to consumers. However,
nowadays, consumer awareness regarding the quality and authenticity of the food they
buy and consume was raised significantly. Moreover, a study conducted over a decade
ago indicated that as many as 82% of the customers considered geographical origin as a
quality indicator before purchasing food products [1]. Literature reports clearly suggest that
numerous cases of food adulteration have been reported, including the use of substances
that pose a threat to the health and life of consumers. Examples of such activities can be
given as follows: mixing melamine and wheat gluten to increase the protein content [2],
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contamination of paprika powder with lead oxide [3], addition of red lead (Pb3O4) to
cayenne pepper to achieve a vibrant color [4]. In turn, honeys are often adulterated to
increase their shelf-life and nutritional value, by adding glucose–fructose syrups, corn
syrups, invert sugar syrups or by admixing with imported honeys of poorer quality [5,6].
Thus, food authenticity is an important matter in the case of quality control and assurance
of food safety. The authentication of food concerns many aspects, including misleading
about origin, mislabeling and adulteration, which is defined as a process by which the
quality or the nature of a given product is reduced due to the addition of a foreign or an
inferior substance and removing a vital element [7,8].

The need for precise and valid analytical techniques for food investigations is increas-
ing because of the continuously rising food deception around the world [9–11]. Fortunately,
a range of potential analytical techniques for the authenticity termination and traceability
of food products is extensive. Among them, the following methods can be distinguished:
spectroscopic techniques [12–15] (including those based on isotopic ratios [16,17]), sep-
aration techniques [6,18], neutron and proton-based nuclear techniques [19], as well as
advanced DNA-based techniques [10,20]. Elemental analysis has long been used in research
connected with food authenticity, including discrimination of geographical origin [7], or-
ganic versus conventional cultivation [21] or free range to compare with conventionally
farmed products [22]. Numerous literature reports indicate that elemental fingerprinting
also proved its usefulness for the differentiation of origin of wine [15,23], olive oil [24],
honey [6,25], coffee [26], tea [27], cheese [28], vegetables and fruits [29] and also spices and
food additives [30]. Food products consist of numerous compounds, including carbohy-
drates, peptides, lipids, fatty acids, amino acids, organic acids, nucleic acids and other
small molecules (aromas, dyes, preservatives and other exogenous compounds) [31]. Due
to the complexity of the ingredients in the food, using chromatographic methods it makes
possible to obtain unique molecular fingerprints, which has a huge potential in differen-
tiation during the authentication process [30]. Separation techniques were used for food
authentication and geographic identification of the following: apple juice [32], kiwifruit
juices [33], wine [34], honey [6], saffron [35], tomatoes [36], ginger [37], whisky [38–42] and
fruit spirits [43]. Moreover, the isotopic ratios were successfully used in food authentication
because stable isotope ratios are dependent on the climatic and soil conditions, as well
as geographical origin of food ingredients [30]. The isotope ratios mostly investigated in
food authentication are 2H/1H, 13C/12C, 15N/14N, 18O/16O, 34S/32S, 84Sr/86Sr, 87Sr/86Sr,
88Sr/86Sr 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb [44,45]. Literature reports indicate that
techniques based on the measurement of isotope ratios are most often used for authentica-
tion of cheeses [46], sweet cherries [47], lentils [48] bell pepper [49], wheat [50], wine [51,52]
and vodka [53].

Due to the great popularity and high price, premium whisky is one of the most
frequently counterfeited alcoholic beverages. The process of counterfeiting whisky usually
involves blending a cheaper version of whisky belonging to the same category as the
genuine brand, mixing a cheap local alcohol with the original brand of whisky or using a
cheap local alcohol with added flavorings and coloring as a genuine product [54]. Another
possibility of counterfeits in the case of whisky is the use of a different type of barrel, as
well as a much shorter aging period compared to the manufacturer’s declarations. The
most important quality characteristics, particularly in the case of premium brands, are
the maturation period and the history of the casks in which whisky was matured. Thus,
during the authentication process of whisky, a number of facts have to be taken into
consideration. The water, the cereals, the use of peat smoke during grain malting and
the equipment applied in the distillation process will have an influence, to a greater or
lesser extent, on the final product. During the aging of the raw distillate in the barrel,
significant changes take place in the chemical composition of the alcohol, which results
in the “softening” of the product [42,55]. As previously noted, the analytical techniques
most commonly used to authenticate and identify the geographical origin of whisky are
chromatographic methods [38–42]. They allow finding characteristic compounds and
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determine aroma profiles, which can then be used to define the quality and authenticity of
the tested whisky [56]. Especially the analysis of esters, which have the greatest impact on
the aroma of the alcohol, enables an assessment of the aging process and, as a result, the
verification of the authenticity of the age of whisky [57,58].

Taking into account the number of scientific studies dealing with the authentication
and identification of the origin of food products, most of articles refer to wines; then fruit,
vegetables and cereals; and, finally, meats, oils and fats. The available scientific data show
that less than 10% of all publications devoted to food authentication concern the analysis
of beverages (including spirit, beers, soft drinks and mineral waters) [30]. To the authors’
knowledge, very few papers on metal analysis in whisky are available [59–62]. However,
the use of the elemental profile to establish authenticity and provenance is extremely rare
in the literature [60]. In the first part of the scientific study (The Elemental Fingerprints of
Different Types of Whisky as Determined by ICP-OES and ICP-MS Techniques in Relation
to Their Type, Age, and Origin [61]), the extensive elemental characterization of whisky
samples was performed, including distinguishing alcohol samples based on their origin,
type and age using statistical analysis and chemometric tests. The authors in this paper have
not discussed the issues related to the authenticity of products or its possible identification.

The main purpose of this work was to assess the authenticity parameter based on an
extensive elemental analysis supported by appropriate statistical and chemometric tests.
It should be emphasized that in this study wide range of measurements were carried out
with the use of 3 analytical techniques (ICP-MS, ICP-OES and CV-AAS) to determine the
concentrations of 31 elements in 205 whisky samples (170 authentic and 35 fake samples).
Additionally, the pH value was measured for each of the analyzed alcohol samples, and
the collected semi-quantitative data were used to determine the isotope ratios.

2. Materials and Methods

2.1. Samples

In this study, a total of 205 whisky samples were analyzed, including 170 samples
of original products, which were discussed in the first part of the publication (The Ele-
mental Fingerprints of Different Types of Whisky as Determined by ICP-OES and ICP-MS
Techniques in Relation to Their Type, Age, and Origin [63]), as well as 35 samples of
unidentified identity, called fake products, which were used as a reference group for the
authenticity studies. Among the 35 samples, 9 different sources of their origin can be
distinguished. The source of origin is understood to mean the producer or the place where
the product was manufactured. These alcohols were distributed on various scales as analog
of whisky products. To the authors’ knowledge, fake alcohols were not matured in wooden
barrels or this stage was significantly reduced. However, the counterfeits whisky products
were from sources that remain anonymous. The analysis was performed using the ICP-MS,
ICP-OES and CVAAS techniques.

The information about whisky products categories was coded, and the manufacturers’
names are not given in this paper. Basic characteristics of the tested samples are included
in Table 1.

Table 1. Characteristics of the tested set of samples.

n Authentic Fake

170
35

Number of Samples from a Given Source
S1–7 S2–9 S3–6 S4–2 S5–3 S6–4 S7–2 S8–1 S9–1

Total 205
S1–S9 code of source of origin (e.g., S1—source no 1).
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2.2. Samples Preparation and Equipment

• ICP-OES, ICP-MS and CV-AAS

The sample preparation procedures and the measurement conditions are described in
detail in the publication Elemental Fingerprint of Different Types of Whisky Determined by
ICP-OES and ICP-MS techniques in Relation to Their Type, Age and Origin [61] and in our
preliminary study (Multielemental Analysis of Various Kinds of Whisky [63]). Moreover,
all validation procedures were analogous to those described in the first part of the paper.

• pH-Metr

Basic 20+ pH-meter (CARISON INSTRUMENTS S.A., Barcelona, Spain) was used to
measure the pH values of the tested whisky samples. The pH-meter consists of a magnetic
stirrer with automatic temperature stabilization and a combined electrode with glass and
a silver chloride electrode placed in one holder. Before the measurement, the necessary
calibration process was performed using buffers at pH 4.01, 7.00 and 9.21 (HACH Company,
Düsseldorf, Germany). Measurements were carried out during a three-day analytical cycle.
Three replicates were performed for each sample, and the average result was taken as the
final result. After analyzing 20 samples, calibration was repeated.

2.3. Data Analysis

The STATISTICA 12.5 (New York, NY, USA) software was employed for raw data
processing. The first step was to check the normality of the distribution of the studied
variables. In this order, Kołmogorow–Smirnow tests were applied. On the basis of the
tests, the hypothesis of normal distribution was rejected for all studied elements and
isotope ratios, as well as pH-value (for the significance level α = 0.05). Then, the existence
of statistically significant differences was checked. For this purpose, the Kruskal–Wallis
non-parametric test was used. In the final phase, data were investigated by multivariate
chemometric analysis. To increase the interpretability of the results, principal component
analysis (PCA) was applied.

3. Results and Discussion

3.1. Level of Metals in Analyzed Whisky Samples

In this study, the concentration of 31 elements in 205 whisky samples and products
of unknown identity was determined. A total of 170 samples are authentic products, the
concentrations of which were listed in the first part. The remaining 35 items are false objects
and the obtained results for this group regarding their elemental profile were given in this
paper. The ICP-MS technique was used to determine the concentration of the following
elements: Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, U and
V, while elements, such as Ca, Fe, K, Mg, P, S, Ti and Zn, were measured with the ICP-OES
technique. The CVAAS technique was used to determine the total mercury content.

In terms of 35 samples of counterfeit products, some of the obtained results were
below the quantification limits. The Hg concentration was below the limit of quantification
in each case. Te was not determined in 31 samples. Ag was not determined in 19 samples,
P in 15 and Fe in 13. Sb and Bi were not detected in 12 samples, while Cd and Ti in
9 samples. Zn was not found in six samples; Mo and Tl in four; and Al, V, Sn and Pb in
three samples. U was not identified in two independent samples, while Li, Be and B were
not quantified in one sample.

In the first part of the publication, the basic statistical parameters of authentic products
(170 samples) were summarized. Therefore, in Table 2 the same type of the information
was given, such as the mean, median, minimum and maximum, but for the group of
counterfeit products (35 samples). In each case, due to the rejection of the hypothesis
of normal distribution, in order to assess statistically significant differences between the
groups under consideration, the non-parametric Kruskal–Wallis test was applied.
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Table 2. Basic statistics for determined elements for all counterfeit samples (n = 35) [μg/L].

Element n Mean Median Min Max Element n Mean Median Min Max

Ag

35

1.280 <LOQ <LOQ 8.600 Sb

35

0.540 0.300 <LOQ 3.000
Al 168.4 163.3 <LOQ 470.7 Sn 13.89 9.810 <LOQ 34.70
B 3794 2397 <LOQ 19.02 Sr 133.0 53.72 14.146 765.1
Ba 199.6 189.0 117.3 378.0 Te 0.060 <LOQ <LOQ 1.100
Be 0.130 0.110 <LOQ 0.500 Tl 0.210 0.030 <LOQ 2.100
Bi 3.220 0.600 <LOQ 25.80 U 0.360 0.190 <LOQ 3.100
Cd 6.110 0.760 <LOQ 65.90 V 1.680 0.910 <LOQ 10.40
Co 9.920 5.260 1.409 42.20 Ca 35.73 22.91 1994 271.1
Cr 182.5 112.3 54.57 770.3 Fe 174.7 29.98 <LOQ 2735
Cu 2383 56.86 1.922 33.21 K 97.09 10.88 <LOQ 670.6
Li 67.12 19.25 <LOQ 825.4 Mg 5370 1577 465.4 33.07

Mn 76.75 51.39 2.377 438.7 P 7352 74.29 <LOQ 56.79
Mo 11.07 1.590 <LOQ 108.4 S 20.89 14.68 197.6 231.7
Ni 62.71 39.86 2.418 411.0 Ti 43.49 25.35 <LOQ 316.8
Pb 12.84 11.21 <LOQ 35.60 Zn 2987 274.8 <LOQ 39.82

The average contents of median values for the elements in the alcohol samples of
unidentified origin decreased in the following order: Ca > K > S > B > Mg > Zn > Ba >
Al > Cr > Sr > P > Fe > Cu > Ni > Mn > Ti > Li > Sn > Pb > Co > Mo > V > Cd > Bi > Sb >
U > Be > Tl > Ag > Te > Hg. The order of elements for authentic samples was similar with
the general trend from macro to micro elements. However, it should be noted that in the
case of original products, elements, such as P and Cu, are listed higher in this order, while
S lower than the presented order for non-original samples.

The authors of this paper referred to the internal national standards that define the
maximum permissible content of selected metals (Cd, Pb) in high-percentage alcohols [64],
which were presented in the first part of the manuscript, decided also to check potential
exceedances of heavy metals (Cd and Pb) in fake whisky samples. In the mentioned
standards, the maximum lead content was set at 0.3 mg/L, and the cadmium one at
0.03 mg/L. This time, there were only exceedances in the case of cadmium. The exceedances
of the maximum allowable concentrations concerned three samples (F10, F11 and F12),
which came from a common source. The values recorded for Cd in these cases ranged from
32.25–65.90 μg/L.

3.2. Comparison of Elemental Profiles of Authentic and Counterfeit Whisky

In this experiment, a set of counterfeit and authentic samples was analyzed to reveal
the possible differences between them, as well as to detect and identify the elemental fin-
gerprint group of genuine and fake whisky. Apart from the above-mentioned 30 elements
(Hg was omitted because its concentration in each sample was below the limit of quantifi-
cation) and the pH value, in the analysis, the values of Sr and Cu isotope ratios were also
used. These ratios were calculated based on the number of counts for each of the isotope as
a result of the semi-quantitative analysis. In the case of Sr isotopes, the interference from
Rb was corrected. For copper, an analysis was performed on the basis of the 63Cu/65Cu
isotope ratio. In turn, for Sr, the following isotopic ratios were used: 88Sr/86Sr, 84Sr/86Sr,
87Sr/86Sr, as these are the parameters most frequently used in food authentication [45].

On the basis of the Kruskal–Wallis test, the existence of statistically significant differ-
ences in the concentration of the following elements was demonstrated: Be, Ca, Cu, Li, Mg,
Mo, S, Sn, Sr and pH value (Table 3). In all mentioned cases the level of significance (p) was
less than 0.05.
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Table 3. Contents of selected elements (with statistically significant differences) in the measured fake
and authentic alcohol samples (n = 205) [μg/L].

Element Code N Mean Median Min Max Std. Dev.

9Be
A 170 0.100 0.092 <LOQ 0.300 0.050
F 35 0.130 0.120 <LOQ 0.500 0.100

59Co
A 170 4.530 2.468 0.406 74.90 7.870
F 35 9.920 5.260 1.409 42.20 10.10

63Cu
A 170 473.7 216.0 16.25 5252 736.4
F 35 4021 56.86 1.922 33,212 7367

7Li
A 170 21.36 12.27 0.474 399.5 35.40
F 35 67.12 19.25 <LOQ 825.4 140.8

95Mo
A 170 1.790 1.066 <LOQ 32.30 3.320
F 35 11.07 1.590 <LOQ 108.4 30.30

60Ni
A 170 24.01 12.96 3.201 301.3 33.68
F 35 62.71 39.86 2.418 411.0 73.70

118Sn
A 170 9.800 4.672 <LOQ 44.50 11.31
F 35 13.89 9.810 <LOQ 34.70 11.00

88Sr
A 170 47.18 45.81 15.84 119.2 19.80
F 35 133.0 53.72 14.15 765.1 168.8

Ca 393.366
A 170 14.66 9185 723.8 175.4 17.98
F 35 35.73 22.91 1994 271.1 50.19

Mg 279.553 A 170 1487 1046 208.5 11.55 13.93
F 35 5370 1577 465.4 33.07 764

S 180.731
A 170 7126 4648 296.7 69.91 8654
F 35 20.89 14.68 197.6 231.7 39.56

pH value A 170 3.63 3.63 1.95 6.20 0.68
F 35 4.71 4.39 2.79 8.70 1.50

Comparing the median values of the two groups under consideration (fake and
authentic whisky samples) in each case, except for copper, higher values were noted for
products with unidentified identity. Although the highest content of copper was recorded
in the fake sample (33.21 μg/L), the median and mean values of the samples belonging
to the group of authentic products were much higher. However, it should be noted that
in the group of false samples there were five objects with a much higher concentration
of copper. These were samples coded as F4 and F5 and from F9 to F11 with a copper
content in the range from 12.89 to 33.21 μg/L. As emphasized in the first part of the work,
the presence of copper in alcohol is undoubtedly related to the material of the apparatus
used in the production process, and more specifically during distillation. Therefore, the
alcohols coded as F4, F5, F9, F10 and F11 have most certainly been distilled in copper
stills, resembling the high-quality single malt whisky. As it was underlined in the previous
paper, differentiation of the authentic samples may be influenced by several overlapping
parameters. Moreover, counterfeit samples can be of variable origin and composition, so it
is impossible to characterize them as one group with identical or comparable attributes.
When the influence of overlapping parameters was eliminated, in the case of authentic
samples, the increasing concentration of V, Cr, Ni, Sr, Sb, Bi, Zn, Mg, K and P with the age of
the analyzed samples was revealed (despite the lack of statistically significant differences).
A similar result was recorded for the comparison of authentic and false objects in this
study. Despite the lack of statistically significant differences, higher values of both the
median and mean of Mn and P and the median value for K were recorded for the genuine
samples, which were maturated (minimum 3 years). Thus, it is possible to clearly indicate
the influence of aging on the levels of phosphorus and manganese and potassium, as these
elements can be selected as markers for the identification of products with adulterated
maturation. The chemical composition of wood is the explanation for the higher content
of the above-mentioned elements in the authentic samples in relation to the false ones.
Unadulterated whisky is matured in oak barrels, usually incinerated from the inside. The
presence of phosphorus and potassium is directly related to the oxides formed during
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the firing of wooden barrels for aging alcohol. On the other hand, phosphorus, as a
macroelement necessary for plant development, may accumulate in various parts of plants
when migrating from the soil. The main form of phosphorus in soil is phosphates, including
manganese phosphates [65,66]. In addition, manganese compounds are used as wood
preservatives, which may also affect the content of this element in alcohol stored in oak
barrels [67]. Thus, the longer the alcohol stays in contact with wooden barrels, the greater
the migration of these elements into the product. It is true that the aforementioned average
concentration of copper was higher in authentic samples, i.e., those subjected to the aging
process, however, the content of this element should be associated with the equipment
used for production rather than with the age parameter.

Among the elements listed in Table 3, for which the existence of statistically significant
differences has been demonstrated, the presence of sulfur should be commented on. As
reported in the literature data, sulfur volatile compounds generated during the whisky
production process influence their quality to a large degree [68]. The selected alkyl sulfides
(dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS)) have
been recognized as age markers for whisky, as the level decreases with the time the alcohol
spends in the barrel [69,70]. Comparing the mean and the median values of the groups of
false and authentic samples, it is clear that the concentration of S in the set of counterfeit
samples (not subjected to aging or with a falsified aging period) was an order of magnitude
higher than in the original ones (which in each case were samples aged by at least 3 years).
Thus, both the concentration of sulfur compounds, as evidenced by the literature, and the
total sulfur content, as shown in this study, decrease with the aging of alcohol.

Also, the much higher pH value in the case of fake samples, as compared to the
authentic ones, is worth emphasizing. This applies to both the mean and the median
values. Although the set of authentic samples is much more numerous than the samples
of unidentified identity, the pH values obtained in this group were much more similar
and were in the acidic pH range. The counterfeit alcohol samples, on the other hand, had
the pH ranging from 2.79 to 8.70, i.e., from acid to alkaline. Adherence to strict standards
in the whisky production process ensures that certain physical and chemical parameters
of alcohol are maintained within a given brand, including the characteristic pH value of
the product. The large discrepancy in the results of the pH value in a small group of fake
samples (including samples from a common source) suggests a lack of compliance with
production standards and certain randomness during the production of this type of alcohol.

The comparison of the Cu and Sr isotope ratios of the genuine and false sample groups
did not provide significant information allowing their better differentiation.

In the next step, the projection of cases on the factor plane for reduced data set was
made. Since the significant influence of aging on the elemental profile of whisky had
already been proven in earlier work, the age parameter was eliminated. Therefore, during
the comparison of false and genuine samples, only the original samples were taken into
account, which were aged for the legally required period (3 years).

As shown in Figure 1, quite a good separation between genuine and counterfeit
samples using PCA was achieved. The vast majority of authentic samples are accumulated
in one area of the graph (around the point of intersection of the coordinate axes), while
the points belonging to the false samples are scattered over throughout the plot. This
area contains over 70% of alcohol samples with unidentified identity. Despite the much
smaller number of counterfeit samples, their large diversity in composition makes it
impossible to characterize them as one group with similar physicochemical characteristics.
Repeatedly, other authors have indicated that it is extremely difficult to find a marker
occurring only in fake samples [42,71–75]. Most often, the problem arises from the type
and nature of the adulterations. Depending on whether the adulteration concerns a lower
alcohol content than the standard required [73] or on the addition of esters, aldehydes or
organic acids [71,72], in order to reflect the age, taste, smell and quality of a given brand, a
different and individual approach should be taken. Nonetheless, under such conditions,
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nontargeted screening followed by chemometric analysis can be a powerful instrument to
uncover deviations from typical authentic whisky fingerprints.

 

Figure 1. PCA score plot of 3-year-old authentic (A) and fake (F1–35) whisky samples.

Figure 1 resembles an analogous projection presented in the work of Stupak et al. [42].
The authors of the aforementioned work separated the samples of counterfeit and original
whisky on the basis of selected markers measured with chromatographic techniques. In
this case, in the PCA plot, all points belonging to the group of genuine products (both
single malt and blended) were clustered in one common area, while objects belonging to
the fake samples are dispersed across the graph.

3.3. Counterfeit Whisky Analysis

In the next steps, only samples marked as fake (35) were discussed separately with
division to their sources of origin (1–9). On the basis of the Kruskal–Wallis test, the existence
of statistically significant differences in the concentration of the following elements was
demonstrated: B, Bi, Cd, Co, Fe, Mn, Mo, Ni, Pb, Sb and Zn. In each case, the level of
significance (p) was less than 0.05. The most important statistical information connected
with the division of fake samples against the sources is included in Table 4. It is worth noting
that statistically significant differences for each of the elements, every time concerned, the
source of the counterfeit whisky samples was marked as the number 2 (indicated as red
color on Figure 2). Moreover, taking into account the median value for all elements listed
in Table 5 (except Sn), the lowest concentrations were recorded for source 2.

Table 4. Groups with statistically significant differences.

Statistically Significant Differences Elements

Source 6–Source 2 B
Source 3–Source 2 Fe; Mn; Mo; Sn
Source 1–Source 2 Bi; Cd; Co; Ni; Pb; Zn
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Table 5. Contents of selected elements (with statistically significant differences) in the measured fake
alcohol samples (n = 35) [μg/L].

Element
No. of
Source

N Mean Median Min Max Std. Dev.

11B

1 7 2064 2238 <LOQ 3289 1055
2 9 1803 1704 190.7 3758 1158
3 6 2503 2728 1704 3059 657.0
6 4 9078 8413 5970 13.52 3318

209Bi

1 7 12.75 10.35 9.387 25.77 5.870
2 9 <LOQ <LOQ <LOQ <LOQ <LOQ
3 6 0.847 0.419 <LOQ 3.543 1.347
6 4 2.300 2.705 <LOQ 3.790 1.618

111Cd

1 7 26.05 11.06 3.204 65.90 28.11
2 9 0.019 <LOQ <LOQ 0.128 0.042
3 6 2.690 2.166 <LOQ 7.325 2.857
6 4 0.724 0.659 0.171 1.410 0.510

59Co

1 7 26.09 23.90 13.77 42.21 9.000
2 9 3.840 3.436 1.409 7.613 1.895
3 6 7.218 5.584 3.698 12.53 4.056
6 4 5.985 4.690 3.504 11.06 3.430

55Mn

1 7 39.55 37.18 16.85 73.94 18.72
2 9 14.12 5.192 2.377 64.16 20.26
3 6 143.4 81.27 64.16 438.7 147.1
6 4 49.89 31.59 6.299 130.0 58.44

95Mo

1 7 1.280 1.560 <LOQ 2.130 0.840
2 9 0.289 0.242 <LOQ 0.988 0.339
3 6 56.68 59.58 1.982 108.4 56.76
6 4 2.953 2.424 1.218 5.750 1.947

60Ni

1 7 79.75 57.46 34.79 136.2 43.85
2 9 13.77 10.21 2.419 30.11 10.04
3 6 110.4 47.66 19.14 411.0 150.9
6 4 75.36 74.30 69.34 83.49 6.114

208Pb

1 7 29.65 30.75 22.99 35.60 4.430
2 9 3.677 1.186 <LOQ 21.89 7.008
3 6 10.72 13.38 3.569 13.42 4.308
6 4 12.09 12.43 6.553 16.95 5.358

118Sn

1 7 4.330 4.737 <LOQ 8.600 2.860
2 9 17.09 19.97 9.310 20.41 4.627
3 6 29.63 29.59 23.42 34.65 3.617
6 4 8.257 4.651 <LOQ 23.73 10.55

Fe 238.204

1 7 49.00 47.75 <LOQ 90.67 33.67
2 9 0.036 <LOQ <LOQ 0.316 0.105
3 6 669.7 233.2 <LOQ 2735 1035
6 4 7.496 <LOQ <LOQ 29.98 14.99

Zn 213.856

1 7 11.01 5668 4353 39.82 12.80
2 9 90.47 0.144 <LOQ 429.3 152.5
3 6 859.7 725.1 111.2 1891 704.8
6 4 4189 77.29 <LOQ 16.60 8276

<LOQ—limit of quantification

In the analyzed set of fake samples, nine different, independent sources were distin-
guished and according to this criterion a division was made and what is worth mentioning
is the fact that within these separated groups, alcohol samples of a completely different
nature were observed. This means that they were produced by one manufacturer, but
some of them are “raw” products, i.e., distillates that have not undergone any treatment
to change their color or taste, whereas others are finished products intended for sale and
consumption. However, the tendency that can be noticed in the projection of the cases
on the factor plane for the fake products presented in Figure 2 is the grouping of samples
within a common source. Each group has been marked with a different color. Sources 8 (F2)
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and 9 (F1) are represented by single samples. Sample F1 (source 9) is distinguished by the
highest values of Li, Mn, Sr and Ba in relation to the other counterfeit samples, hence its
extreme position on the graph presented below. Within the source 1 (marked in green),
a cluster of items from F30 to F32 can be distinguished. These are samples of the same
alcohol coming probably from one production batch but taken from three independent
bottles. It should be mentioned that this alcohol has been enriched with wood extracts in
order to give it the characteristic whisky aromas. The other samples in this group are of
a completely different nature. Moreover, samples F9–12 and F30–32 contain the highest
concentrations of Cd in the tested set of false ones. For items F10–12, the permissible level
of this element has been exceeded. The samples from sources 2, 4, 5 and 7 in Figure 2 form
the most central, individual clusters. An interesting group is consisted of the samples from
source 3 marked in yellow in Figure 2. Points F3, F22 and F24 are samples of high-strength
distillates. In turn, samples F20, F26 and F34 are flavored products, which are made from
these distillates. They have been enriched with sugar and fruit juices. These products were
supposed to resemble whisky-based fruit liqueurs.

 

Figure 2. PCA score plot of fake whisky with division on 9 different sources of samples.

4. Conclusions

Mn, K and P are elements with higher concentrations recorded in the case of authentic
samples. Their presence is directly related to the aging period of alcohol and can be
indicated as markers for the identification of fraudulent activity in this respect. Another
indicator certainly associated to the whisky maturation process in barrels is S. In products
that were not aged or the aging period was much shorter than legally required (fake
samples), the concentration of this element was much higher, compared to the original
samples (in all cases subjected to the aging process). Counterfeit samples can be of variable
origin and composition, so they cannot be characterized as one group with identical or
comparable attributes. Often, the element of randomness dominates in the production
of such alcohols. The use of unsuitable ingredients or production equipment, as well as
inadequate knowledge in this field, cause the lack of repeatability of the taste and smell
characteristics of alcohol beverages. This is evidenced by, for example, the failure to meet
the standards for the maximum content of heavy metals in high-percentage alcohols. The
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adulteration of food products, including whisky, may be of various characters. It can
refer to a reduced percentage of alcohol or the addition of various organic compounds to
improve the visual and flavor properties. Therefore, the identification of the falsification of
a different nature requires the use of a wide range of analytical techniques and often an
individual approach.

The results presented in this article constitute the final part of a broad characteristic of
the elemental composition carried out for 205 whisky samples. As our research revealed,
the elemental analysis supported by statistical tools may provide beneficial information, es-
pecially in the context of the differentiation of alcohol samples in regard to such parameters
as type, origin and detecting age-related adulteration of whisky.
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Abstract: This study aims to generate predictive models based on mid-infrared and Raman spectral
fingerprints to characterize unique compositional traits of traditional and bourbon barrel (BBL)-
aged maple syrups, allowing for fast product authentication and detection of potential ingredient
tampering. Traditional (n = 23) and BBL-aged (n = 17) maple syrup samples were provided by a
local maple syrup farm, purchased from local grocery stores in Columbus, Ohio, and an online
vendor. A portable FT-IR spectrometer with a triple-reflection diamond ATR and a compact benchtop
Raman system (1064 nm laser) were used for spectra collection. Samples were characterized by
chromatography (HPLC and GC-MS), refractometry, and Folin–Ciocalteu methods. We found the
incidence of adulteration in 15% (6 out of 40) of samples that exhibited unusual sugar and/or volatile
profiles. The unique spectral patterns combined with soft independent modeling of class analogy
(SIMCA) identified all adulterated samples, providing a non-destructive and fast authentication of
BBL and regular maple syrups and discriminated potential maple syrup adulterants. Both systems,
combined with partial least squares regression (PLSR), showed good predictions for the total ◦Brix
and sucrose contents of all samples.

Keywords: maple syrups; adulteration; FT-IR; Raman; GC-MS; bourbon barrel aged

1. Introduction

Native Americans are widely recognized as the first to discover the sweet sap dripping
from the broken bark of sugar maple (Acer saccharum), which is the only ingredient of
natural maple syrup products [1,2]. Maple syrup has a reputation for being a nutritious,
classical sweetener and having a unique taste and flavor. According to the United States
Department of Agriculture (USDA), the US production of maple syrup in 2019 totaled
4.37 million gallons with an estimated value of USD 135 million [3].

Pure maple syrups produced in North America comprise 68 ± 4% sucrose, 0.43 ± 1.11%
glucose, 0.30 ± 0.54% fructose, a small amount of amino acids, various phenolic com-
pounds, a trace amount of organic acids, including malic and fumaric acids, minerals, and
salts [4]. Maple syrup is superior to other sweeteners because of its rich phenolic and
phytohormone contents, which possess antioxidant properties and produce low glycemic
and insulinemic responses [5].

Barrel aging is a process in which wine or spirits are stored and aged in wooden
barrels. Chemical reactions take place during the aging process in which wine or spirits
are absorbed into the wood constituents, including volatile compounds that contribute
to the smell property and non-volatile compounds that correlate with color and mouth-
feel properties [6]. In recent years, aging maple syrup in bourbon barrels has become
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popular and creates more value than traditional pure maple syrup. Bourbon barrel (BBL)-
aged maple syrup is produced by aging traditional maple syrup in oak bourbon barrels
for several weeks to months to develop richer bourbon flavor without adding any other
ingredients [7]. In addition, in the process of aging, it is crucial to control the strength
of extracted bourbon flavor to be neither too weak nor too strong to overshadow the
maple flavor [7].

Maple syrup manufacturing is rather costly since it is regulated by law, specifying
that the only ingredient in maple syrup is the maple sap [1]. Although sap contents may
vary from different maple trees, in general, 1 L of traditional maple syrup is produced by
concentrating around 35 L of maple sap to 66 ◦Brix [1]. Therefore, maple syrup could be
potentially adulterated by adding inexpensive cane, beets, or corn syrup to the boiling
sap or by blending the maple syrup with corn syrup due to financial incentives [1]. Since
the taste of a small amount of cane sugar or corn syrup added to maple syrup is almost
undetectable, the inclination to increase yields by fraudulent means can be substantial [8].
In addition, the even higher price of BBL-aged maple syrups may prompt the potential
counterfeit of the aging process by having a minimum aging activity or by using an
unqualified aging barrel that does not contain adequate bourbon residuals.

Traditional authentication methods, including chromatography, mass spectrometry,
and stable isotope ratio analysis, have been applied to maple syrup studies [4,9]. Stuckel
and Low developed a methodology to fingerprint oligosaccharides in maple syrup and to
detect adulteration of high-fructose corn syrup and beet medium invert sugar via anion-
exchange HPLC [10]. Carro et al. [9] authenticated maple syrup samples by using carbon
stable isotope ratio analysis. An improved method of stable carbon isotope ratio mass
spectroscopy was established by Tremblay and Paquin [11] with the isolation of malic acid
to detect the addition of beet and cane sugar in maple syrup.

However, these methods are time-consuming and cost-prohibitive for most maple
syrup manufacturers due to the requirements of expensive instrumentation and trained
personnel [12]. Advances in the miniaturization of vibrational spectroscopy instruments
combined with powerful chemometrics can overcome those problems by offering fast
product authentication, non-destructive and real-time analysis [12]. Fourier transform
infrared spectroscopy (FT-IR) is a vibrational spectroscopy technique that measures the
absorbance and transmittance of infrared light. Raman spectroscopy is another type of
vibrational spectroscopy using an intense light beam, such as a laser, to excite the sample
molecules by inducing Raman-active vibrational modes and measuring inelastically scat-
tered photons [13]. Since FT-IR measures the absorption of light, it is effective in measuring
colored and fluorescence samples. At the same time, the presence of fluorescence creates
optical noise for Raman measurements, which easily obscures the spectral fingerprint of the
sample [14]. In addition, Raman scattering is based on polarizability changes in functional
groups during molecule vibration [15]. Therefore, nonpolar bonds tend to give an intense
Raman signal, while water in samples could be virtually disregarded due to a weak Raman
signal [15]. Based on the reasons above, FT-IR and Raman are often used as complementary
technologies for broader chemical identification. However, limited studies have employed
vibrational spectroscopy for the authentication of maple syrups, and there is a gap in knowl-
edge on the performance of portable/handheld devices for the detection of adulteration
in maple syrups. Paradkar and others [8] reported the use of benchtop FT-IR, NIR, and
FT-Raman systems to detect corn syrup adulteration in maple syrup. Mellado-Mojica and
others [16] used FT-IR to contrast the carbohydrate composition of maple syrups against
other sweeteners. In addition, chemometrics or multivariate analysis techniques have been
proven to be successfully applied in the study of food matrices [17,18].

The objective of this research was to evaluate portable mid-infrared and Raman
devices in generating predictive models for the non-destructive and fast fingerprinting of
traditional and BBL maple syrups, allowing for product authentication and detection of
potential ingredient tampering. This is the first study that characterizes a premium maple
syrup aged in oak bourbon barrels, as there is no standard of identity or any other study
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reporting on this novel product. The use of miniaturized vibrational spectroscopies in
maple syrup authentication can provide the industry with field-deployable devices for
quality control and for preventing adulteration with cheaper ingredients.

2. Materials and Methods

2.1. Samples

Traditional and BBL maple syrup samples were kindly provided by a local maple
syrup farm in Jefferson, OH (n = 12 (traditional), n = 8 (BBL)) and were purchased from
local grocery stores in Columbus, OH (n = 7 (traditional), n = 5 (BBL)) that consisted of
traditional maple syrups (n = 19), including dark, amber, and golden grades, and BBL-aged
maple syrup (n = 13). In addition, table syrups (corn n = 2, cane n = 2, and mixture,
consisting of cane, maple, and agave syrups n = 1) (n = 5) were purchased from grocery
stores in Columbus, OH, USA for generating training models. An independent external
validation set, consisting of traditional (n = 4) and BBL (n = 4) maple syrups, was purchased
from an online vendor (Amazon.com, Inc. Seattle, WA, USA). All samples were stored in
the refrigerator at 4◦C and were equilibrated at room temperature before spectroscopic
measurements and reference analyses.

2.2. Reference Analyses
2.2.1. ◦Brix

◦Brix of each sample was measured with the heat-controlled refractometer (RX 5000i
ATAGO, Bellevue, WA, USA). The syrup sample (~0.3 mL) was carefully pipetted onto the
prism of the refractometer without creating any air bubbles, and measurement at 22 ◦C
was recorded.

2.2.2. High-Performance Liquid Chromatography

Concentrations of sucrose, fructose, and glucose were measured with high-performance
liquid chromatography (HPLC) (Shimadzu, Columbia, MD, USA). The HPLC was equipped
with a SIL-20AHT autosampler, a CTO-20A oven, an LC-6AD pump, a CBM-20A controller,
and a RID-10A refractive index detector. The syrup sample (~0.5 g) was weighed into a
15 mL centrifuge tube and diluted with (~7 mL) HPLC grade water. The actual weights
of syrup and water were recorded. The mixture was vortexed for 40 sec and was filtered
through the 0.2 μm filter (Phenomenex®, Torrance, CA, USA), and then filled into an HPLC
vial. Isolated sugars were segregated by a Rezex RCM-Monosaccharide Ca+ 300 × 7.8 mm
column (Phenomenex®). Sugars were eluted under the isocratic condition at 80 ◦C, using
HPLC grade water as a mobile phase at a 1 mL/min flow rate for 20 min. LC Solutions soft-
ware (Version 3.0, Shimadzu, Columbia, MD, USA) was used to integrate chromatograms
automatically. The standard curve with concentration ranges from 10 to 50 mg/mL (>99%
purity, Fisher Scientific, Fair Lawn, NJ, USA) was plotted to calculate each sugar content.

2.2.3. Total Phenolics

Total phenolic contents of maple syrups were determined with Folin–Ciocalteu (FC)
method described by Waterhouse with some modification [19]. The syrup sample (~0.8 g)
was weighed into a microcentrifuge tube and diluted with deionized (DI) water (~0.4 mL).
The actual weights of syrup and water were recorded, and the diluted sample was vortexed
for 40 s. The diluted sample (50 μL) was pipetted into a 96-well plate, followed by 200 μL DI
water and 20 μL FC reagent. The mixture was mixed thoroughly by pipetting and incubated
for 7 min at room temperature. The sodium carbonate solution (100 μL) was added to the
mixture and incubated for 2 h under dark conditions at room temperature. The equilibrated
sample’s absorbance was measured at 765 nm. A standard curve constructed with gallic
acid standard with concentration ranges from 125 to 800 μg/mL was used to quantify total
phenolics. Results were expressed as micrograms of gallic acid equivalent (GAE) per 1 mL
of distilled water.
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2.2.4. Gas Chromatography—Mass Spectrometry

The volatile composition of the samples was identified using gas chromatography–
mass spectrometry (GC-MS) (Agilent 7820A GC connected to a 5977B MS, Agilent Tech-
nologies, Santa Clara, CA, USA). A total of 1 g maple syrup sample was placed into a 20 mL
clear screw-tread glass headspace vial (Restek, Bellefonte, PA, USA), and the vial was sealed
with an 18 mm screw-tread PTFE/silicone septa vial cap (Restek, Bellefonte, PA, USA). The
vial with the sample was placed onto a heating plate at 40 ◦C for 30 min to equilibrate the
volatile compounds. A preconditioned SPME fiber (50/30 μm DVB/CAR/PDMS coated)
(Supelco, Sigma-Aldrich, Bellefonte, PA, USA) assembly was inserted in the vial through
the septa of the cap, and the volatiles were trapped by the fiber for 15 min. After the
trapping, fiber assembly was removed from the vial and directly inserted through the
GC-MS injection port. Compounds were desorbed at 250 ◦C for 1 min in splitless mode,
followed by a 30 s purge flow (50 mL/min) to clean the fiber. A quality control (QC) sample
was prepared by pooling 100 μL of each sample to monitor the performance of the method
and identify qualified peaks. 2,3-hexanedione (Sigma-Aldrich, St. Louis, MO, USA) was
prepared at 10 ppm concentration with distilled water and used as an internal standard (IS)
to correct the variation through the run. A 40 μL of IS solution was added to each sample.
The volatile compounds were separated on a DB-Wax column (60 m × 250 μm × 0.25 μm)
(Agilent Technologies, Santa Clara, CA, USA). The oven was held at 60 ◦C for 5 min then
ramped to 130 ◦C at 5 ◦C/min. This was followed by the second ramp of 5 ◦C/min to
240 ◦C, where it was held for 8 min. The MS acquisition was performed in scan mode
between masses 25–300 m/z at a 2.7 scans/s rate. Data were extracted in the Agilent
Masshunter Quantitative Analysis software. The spectral background was corrected, and
only peaks that had a signal-to-noise (S/N) ratio higher than the detection limit (S/N > 5)
were conserved. All compounds were tentatively identified using the NIST 14.L database
by a Mass Spectral Library search.

2.2.5. Statistics of Reference Analysis

All reference laboratory analyses were performed in duplicate, and their range,
minimum, maximum, mean, and standard deviation (SD) are determined. In addi-
tion, the standard error of laboratory (SEL) was calculated according to the method of
Kovalenko et al. [20].

2.3. Vibrational Spectroscopy
2.3.1. Mid-Infrared Analysis

The mid-infrared data were collected with portable FT-IR spectroscopy (Agilent Tech-
nologies, Santa Clara, CA, USA) attached with a triple-reflection diamond Attenuated Total
Reflectance (ATR) crystal. The ATR crystal has a sampling surface of 2 mm diameter and a
200 μm active area and provides ~6 μm depth of penetration. In addition, the FT-IR system
is also attached with a deuterated triglycine sulfate (DTGS) detector and a Zinc Selenide
(ZnSe) beam splitter. Spectra were collected from 4000 to 700 cm−1 with a resolution of
4 cm−1. Sixty-four spectra were co-added in each sample collection to increase the signal-
to-noise ratio. A spectral background was taken in between every measurement to reduce
the environmental changes. Approximately 0.2 g of syrup sample was directly applied to
the sampling surface of the ATR crystal, confirming that full coverage of the sample was
achieved. Spectra for each sample were collected in triplicate, and collected spectral data
were documented by Agilent MicroLab PC software (Agilent Technologies, Santa Clara,
CA, USA).

2.3.2. Raman Analysis

About 3 mL of syrup sample was filled in a quartz cuvette (Hellma Analytics, Mul-
heim, Germany) with a 10 mm light path and measured with a compact benchtop Raman
spectrometer WP 1064 (Wasatch Photonics, Durham, NC, USA). The Raman spectrometer
was coupled with a laser operating at 1064 nm and an Indium Gallium Arsenide (InGaAs)
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detector. Spectra were collected from 350 to 1500 cm−1 with a resolution of 4 cm−1. In
addition, three scans were co-added and averaged to increase the signal-to-noise ratio of
the spectrum, which has an integration time of 3 s. A spectral background was taken in
between every measurement to reduce the environmental changes. The spectral collection
was performed in triplication for each sample, and collected spectral data were documented
by EnlightenTM software (Wasatch Photonics, Durham, NC, USA).

2.4. Multivariate Data Analysis

FT-IR and Raman spectra were exported and analyzed using Pirouette® multi-variate
statistical analysis software (version 4.5, Infometrix Inc., Bothell, WA, USA). The mean
spectrum of the three replicates was used for the statistical analysis. The collected FT-IR and
Raman data were preprocessed with mean-centering to reduce micro multicollinearity and
transformed with the Savitzky–Golay (SG) algorithm (35-point polynomial filter) in soft
independent modeling of class analogy (SIMCA) and partial least squares regression (PLSR)
models [21]. The SG algorithm was used to resolve overlapping spectroscopic signals and to
improve their properties, also surpassing the instrument noise [22]. A 35-point smoothing
filter was found as an optimal window length for our data set. The optimum window
length was chosen to resolve essential details in the collected spectra and lessen signal
noise. Mean centering and SG algorithms were chosen after evaluating the preprocessing
quality of the spectral data with other options, including smoothing, normalization, and
divide by; however, they were all outperformed by the combination of mean-centering and
SG. An additional data transformation step of normalization (2-norm × 100) was applied
in the case of PLSR analysis.

2.4.1. SIMCA

Classification analyses of maple syrups were performed using a supervised pattern
recognition classification method SIMCA, which uses the previous understanding of the
category membership of samples to classify new unrevealed samples in one of the known
classes based on the pattern of measurements [23]. The cross-validation (leave-out-out)
was used to assess the performance of the training model by analyzing the misclassification
and generalization error [24]. The performance of the SIMCA model was also assessed
with class projections, discriminating power, misclassification, and interclass distances
(ICD), which interpret the quantitative similarity or dissimilarity of different classes and
are widely accepted as samples that can be well differentiated when ICD >3 [24].

2.4.2. PLSR

The quantitative PLSR method was used for developing predictive training models of
◦Brix and sucrose contents by combining features from multiple linear regression and PCA.
Cross-validation (leave-one-out) was used for internal validation of the training model.
All syrup samples (n = 37) were randomly separated into calibration (~80% of the total
samples) and external validation (~20% of the total samples) sets to evaluate the robustness
of the trained models. Triplications of the same sample were used either in the training set
or in the external validation set. The performance of the PLSR model was assessed with
a correlation coeffect of cross-validation (Rcal) and predictions (Rval), standard error of
cross-validation (SECV) and predictions (SEP), outlier diagnostics, leverage, and residual
analysis [25]. Samples with high residuals and leverage were re-analyzed and excluded
from the model if needed.

3. Results and Discussion

3.1. Characterization of Maple Syrup Samples

Reference analysis results for total soluble solids (◦Brix), sugar (sucrose, fructose, and
glucose), and total phenolics for all samples, including traditional maple syrup, bourbon
barrel (BBL)-aged maple syrup, and table syrups (corn, cane, and mixture—consisted of
cane, maple, and agave syrups) are summarized in Table 1.
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Table 1. Reference analysis results of total soluble solids, sugar (sucrose, fructose, and glucose), and
total phenolics in traditional, bourbon barrel (BBL)-aged maple syrup and commercial table syrups.

Traditional Maple Syrup
(n = 19)

BBL Maple
Syrup

(n = 13)

Table Syrups
(n = 5)

◦Brix

Minimum 65.51 65.39 39.63
Maximum 67.65 68.69 78.27

Mean 66.57 66.56 67.64
SD 0.55 0.87 14.32

Sucrose
(%, g/100 g)

Minimum 22.02 60.13 3.51
Maximum 67.60 69.42 51.49

Mean 57.56 63.72 21.75
SD 14.78 2.73 17.77

Fructose
(%, g/100 g)

Minimum 0.00 0.00 12.62
Maximum 17.14 0.00 14.36

Mean 2.01 0.00 13.31
SD 4.86 0.00 0.76

Glucose
(%, g/100 g)

Minimum 0.00 0.00 9.75
Maximum 17.06 0.00 14.11

Mean 2.31 0.00 12.34
SD 5.48 0.00 1.86

Golden and
Amber
(n = 10)

Dark
(n = 5)

BBL Maple
Syrup
(n= 13)

Table Syrups
(n = 5)

Total
phenolics

(μg GAE/mL) a

Minimum 115.64 387.01 317.37 NA c

Maximum 338.94 582.39 713.40 NA
Mean 271.15 479.53 458.25 NA

SD 64.93 72.85 124.78 NA
p-Value <0.001 b NA

a Total phenolics, expressed as micrograms of gallic acid equivalent (GAE) per 1 mL of distilled water. Three
unusual maple syrups were excluded from this analysis due to containing of interferences. b p value, based
on one-way ANOVA test; there were significant differences in total phenolics between three types of products
(p < 0.05). Based on post hoc LSD, all samples were significantly different, except for BBL and dark maple syrup
(p = 0.69). c Table syrups were excluded from total phenolic analysis.

Traditional maple syrups and BBL maple syrups showed similar total soluble solids
(◦Brix) contents (Table 1). The ◦Brix values of maple syrups (65.4–68.7◦ with an average
of 66.6 ± 0.7◦) were within the range reported by Stuckel and Low (62.2–74.0◦ with an
average of 67.0 ± 1.6◦) [4] and Perkins (66–68◦) [26]. Sucrose, fructose, and glucose contents
of traditional and BBL maple syrups are summarized in Table 1. We found no significant
difference (p = 0.98, p > 0.05) in the sugar content between traditional and BBL maple syrups.
Most sucrose contents of maple syrups agree with the reported literature (51.7–75.6% with
an average of 68.0 ± 4.0%) [4], while four labeled as traditional maple syrup samples were
far below the range (22.0, 23.5, 36.1, and 50.6%). These same four samples have much
higher fructose (9.5–17.1%) and glucose (9.7–17.1%) contents than the literature reports
(fructose 0.3 ± 0.5%, and glucose 0.4 ± 1.1%) [4]. In Morselli’s study, fructose content in
maple syrup was undetectable, and glucose content ranged from 0–7.3% [27]. The glucose
to fructose ratio of 3 of the suspect samples was ~1:1, while the other had a 1:1.6 ratio.
Invert sugar in maple syrups can be produced from sucrose hydrolysis during thermal
processing or microbial contamination of the sap [26]. However, the abnormally high invert
sugar contents and low sucrose contents in the samples indicate the potential adulteration
of maple syrup with inexpensive table syrups. We evaluated commercial table syrup blends
that showed similar levels of fructose (13.3 ± 0.8%), glucose (12.3 ± 1.9%), and sucrose
21.7 ± 7.8%) content to the suspect maple syrups.

Figure 1 shows the representative HPLC chromatograms of traditional maple syrup,
suspicious maple syrup (which has high invert sugar and low sucrose content), BBL maple
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syrup and table syrup (specifically corn syrup). The sugar profiles of both traditional
and BBL maple syrups obtained by HPLC showed sucrose as the dominant sugar, while
the suspicious maple syrup had noticeably high fructose and glucose contents as well as
a detectable but low maltose content. In the literature, it has been stated that authentic
maple syrup should not have any detectable maltose content [1]. Furthermore, it has been
reported that syrup sweeteners, including molasses, high fructose corn syrup, and honey,
have wide maltose composition variability, from 3.0–14.4% [28].

Figure 1. Representative HPLC-RID chromatograms of sugar profiles for traditional maple syrup,
BBL maple syrup, suspicious maple syrup and corn syrup.

The total phenolic contents of traditional maple syrups and BBL maple syrups are
summarized in Table 1. In previous reports, total phenolic contents in maple syrups ranged
from 200–900 μg/mL, which agreed with our findings [29,30]. Since the FC method is
based on the reagent’s chemical reduction, the most problematic assay interference could
be the presence of reducing sugars and samples with high protein levels [19]. In traditional
maple syrups (except for suspicious ones) and BBL maple syrups, reducing sugars were
undetectable. In addition, according to the literature, protein contents in maple syrups
are in low concentration (~0–50 ppm) [1]. Therefore, the FC method can be considered
a suitable method for analyzing total phenolics in maple syrups. The suspicious maple
syrups were excluded from this analysis due to a high-level of reducing sugar (glucose and
fructose) content.

The total phenolic content of traditional maple syrups correlated with their color grade
and can be separated into golden and amber and dark groups. The dark traditional and
BBL maple syrups had significantly higher total phenolic content than the golden and
amber maple syrups (p < 0.001) according to one-way ANOVA and post hoc LSD tests.
Dark maple saps are collected in the later production season when the temperature is
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warmer (usually at warm springs) and sucrose is converted to invert sugar due to higher
microbial activity [1]. Higher invert sugar contents in maple saps result in a stronger
Maillard reaction during sap evaporation, giving darker color and stronger flavor in the
final maple syrup products. In addition, a higher cultivation temperature of plants and
higher activity of beneficial microbe/pathogen/insect feeding increase the total phenolic
compounds, which also explain higher phenolics in dark maple syrups [31]. The higher
phenolic content of BBL maple syrups could be associated with the aging process in the
barrels, resulting in volatile and non-volatile phenolic compounds from the oak wood
being absorbed [6] and contributing to their richer, more complex smell and flavor than
traditional pure maple syrups.

The unique volatile profile of all maple syrup samples was characterized by GC-MS
analysis, and two out of thirteen BBL-aged maple syrups were flagged as having a different
volatile profile than the other BBL-aged maple syrup samples. These two samples did not
have a different sugar and total phenolic profile than the other BBL samples. As shown
in Table A1, a total of 18 volatile compounds were tentatively identified using the NIST
14.L database through a Mass Spectral Library search and were shown to be present in
either maple or liquor products. The representative chromatograms for traditional maple
syrup, BBL and suspicious BBL maple syrup are shown in Figure 2. There are several
noticeable peak differences between BBL and traditional maple syrups. All authentic BBL
maple syrups have one unique peak that other traditional and suspicious BBL (n = 2) maple
syrups do not have, which corresponds to 1,1-diethoxy-2-methylpropane. Previous studies
found 1,1-diethoxy-2-methylpropane in aged bourbon whiskey [32]. Therefore, authentic
BBL maple syrups could absorb this volatile compound from the bourbon residue in barrels
during the long aging process. In addition, one of the suspicious BBL had a similar volatile
pattern as traditional samples in that they all had significantly lower contents in ethanol,
oxalic acid, isoamyl alcohol, furfural and phenylethyl alcohol than authentic BBL samples,
indicating that this suspicious BBL sample might have a minimum or no aging process, or
the aging barrel does not contain any bourbon residuals [33]. While the other suspicious
BBL sample had a similar volatile pattern as traditional samples, except for contents of
isoamyl alcohol and oxalic acid, which were even higher than authentic BBLs, indicating
that instead of aging, it might be added with bourbon flavor.

Figure 2. Representative GC-MS chromatograms of volatile compound profiles for BBL maple syrup,
suspicious BBL maple syrup and traditional maple syrup.

3.2. Spectral Information of Maple Syrup Samples

The characteristic FT-IR absorption spectra of traditional maple syrup, BBL maple
syrup, and corn syrup (as an example of table syrups) and their corresponding band
assignments for specific functional groups are shown in Figure 3a. Key absorbance signals
included the band at 2929 cm−1 associated with C-H stretching of the CH2 group in
carbohydrates [8]. The band at 1637 cm−1 may be mainly related to O-H bonding in water,
with minor contributions to C-O stretching in saccharides [34]. The band at 1415 cm−1

related to C-H bending [35] and the band at 1327 cm−1 related to O-H bending of the C-OH
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group might attribute to organic acids. The band at 1110 cm−1 was associated with C-O
stretching of C-O-C linkage, which could be the glycosidic linkage in sucrose. The bands
at 1042 and 990 cm−1 were associated with C-O stretching in the C-OH group and C-C
stretching in carbohydrates, and the band at 927 cm−1 was related to C-H stretching [8].
The broadband located around 3600–3000 cm−1 was mainly related to O-H bonds stretching
in water, which has been reported previously as the major infrared bands of water located
at 3490 and 3280 cm−1 for O–H stretching [36,37]. The range from 1200 to 800 cm−1 could
be assigned to the carbohydrates absorption region, mainly related to sucrose, fructose,
and glucose absorption bands [8,36].

Figure 3. (a)FT-IR spectrum band positions and corresponding wavenumbers of traditional maple
syrup, BBL maple syrup, and corn syrup at a frequency of 4000–700 cm−1 collected using a portable
five-reflections ZnSe crystal ATR system. (b) Raman spectrum, band positions and correspond-
ing wavenumbers of traditional maple syrup, BBL maple syrup and corn syrup at a frequency of
350–1500 cm−1 collected using benchtop Raman with 1064 nm excitation laser.

The characteristic Raman signal of traditional maple syrup, BBL maple syrup, and
corn syrup (as an example of table syrups) and their corresponding band assignments for
specific functional groups are shown in Figure 3b. The major bands in the Raman spectra
were centered in the range of 500–1500 cm−1. One major band at 522 cm−1 was associated
with the deformation of C-C-O and C-C-C [38], while another major band at 542 cm−1 is
related to an unassigned vibration [8]. The band at 590 cm−1 is associated with skeletal
vibration [38], and the band at 629 cm−1 corresponded with sugar ring deformation [28].
The minor band at 740 cm−1 could be due to C-C, C-O stretching in the carbohydrate
molecules [13]. The dominant peak at 835 cm−1 is responsible for C-C stretching, which
is an intense band found in sucrose [39]. The high Raman signal at 835 cm−1 band is
associated with the high sucrose content (~68%) in maple syrup [4]. Both peaks at 923 and
1067 cm−1 are responsible for the combination of vibration C-H bending, especially the
C-H bond at C1 position and COH bending [8]. The peak at 1127 cm−1 could be due to the
deformation of C-O-H, as well as the vibration of C-N, which is found in protein or amino
acid [28,38]. The band at 1265 cm−1 is associated with the deformation of C-C-H, O-C-H,
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C-O-H, and the vibration of Amide III, which is a peptide bond, and the band at 1460 cm−1

is related to the symmetric deformation in the plane of CH2 [38].
In both FT-IR and Raman spectra, corn syrup was easily differentiated from traditional

maple syrup and BBL maple syrup using only visual assessment due to maple syrups’
unique patterns. However, between traditional maple syrup and BBL maple syrup, the
spectral differences were not noticeable via visual evaluation due to their similarity. There-
fore, a supervised classification method (SIMCA) was used to analyze the spectral data and
to determine the class belongings, including traditional maple syrups, BBL maple syrups,
and suspicious samples.

3.3. Multivariate Data Analysis
3.3.1. SIMCA Classification Model of GC-MS

The GC-MS data of volatile compounds in traditional and BBL-aged maple syrup
samples were analyzed and grouped using the Soft Independence Modeling of Class
Analogy (SIMCA), and the class projection plot is shown in Figure A1. All the authentic
BBL maple syrups were successfully discriminated from the traditional maple syrups based
on their volatile composition, having an interclass distance (ICD) of 4.1. Furthermore,
authentic BBL samples were also successfully differentiated from the suspicious BBL maple
syrups (ICD = 2.2), and the classification pattern agreed with the GC-MS data that one of the
suspicious BBL grouped with traditional samples, while the other one did not fall into either
traditional or authentic sample group. Overall, the five most critical volatile compounds
that have the highest impact on SIMCA model discrimination are the order of ethanol,
isoamyl alcohol, isobutanol, oxalic acid, and acetoin, which are found to exist in bourbon
whiskey or maple sap [33,40]. Therefore, these compounds are significant in authenticating
qualified BBL maple syrups from suspicious BBL and traditional maple syrups.

3.3.2. SIMCA Classification Models of FT-IR and Raman Spectroscopy

Collected FT-IR and Raman spectra were analyzed using SIMCA classification analysis
to discriminate traditional and BBL maple syrups from suspicious maple syrups. The
multiple-class approach was applied for both FT-IR and Raman spectral data by having
two well-established classes existing (BBL and traditional maple syrups) in the training
model. The projection plots of training sets are shown in Figure 4a,c. The training sets were
developed using 11 BBL maple syrups (two suspicious BBL samples were excluded) and
15 traditional maple syrups (four suspicious traditional samples were excluded). All the
BBL maple syrups were assigned to class number 1, and traditional maple syrups were
assigned to a different class (#2). Suspicious maple syrups that were found according to the
HPLC and GC-MS analysis were assigned as non-target samples and were not represented
by the classes. For the FT-IR model, five factors were employed and explained 99.8% of the
variances. In the Raman model, six factors were used and explained 98.1% of the variances.
In this approach, the training models have ICDs of 4.8 and 2.5, classifying BBL maple
syrups into traditional maple syrups based on the FT-IR and Raman methods, respectively.

The SIMCA discriminating power plot interprets variables that have a predominant ef-
fect on the sample classification [41]. The fingerprint region of 800–1200 and 800–1000 cm−1

was used to discriminate BBL and traditional maple syrups using FT-IR and Raman spec-
trometers, respectively. For the FT-IR system, most of the model variance was explained by
intensity differences of bands located at 878 cm−1, which is closely related to the symmetric
stretching of the primary alcohol group, and 1034 cm−1, which is related to the C-O bond
stretching [42,43]. For the Raman system, most of the model variance was explained by
the band at 879 cm−1, which was also related to the alcohol group’s concentration [44].
Therefore, both FT-IR and Raman methods indicated that differences in compounds with
alcoholic groups could explain the variance between BBL and traditional maple syrups.
This finding agrees with our GC-MS results since ethanol, isoamyl alcohol, and isobutanol
are the top three compounds, assisting BBL maple syrups’ differentiation from traditional
maple syrups.
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Figure 4. Soft independent modeling of class analogy (SIMCA) projection plots of classification of
traditional and BBL maple syrups with (a) FT-IR and (c) Raman; prediction of external validation sets,
including authentic traditional and BBL samples and suspicious samples by (b) FT-IR and (d) Raman.

The performances of the supervised multiple-class FT-IR and Raman models were
evaluated through an independent external validation set, which comprised four traditional
and four BBL maple syrups, four suspicious traditional maple syrups, and two suspicious
BBL maple syrups. All four traditional and four BBL maple syrups in the external validation
set were tested with all reference analyses, and no abnormal pattern was found. The
projection plots of validation sets are shown in Figure 4b, d and displayed well-separated
clusters in both methods.

Both FT-IR and Raman models accurately predict all traditional and BBL maple syrups
in the correct class (n true positive = 8, n false negative = 0, sensitivity = 100%), except
for two traditional samples with one replication predicted as No Match in the Raman
model. In addition, all suspicious traditional maple syrups were predicted as non-pure,
and all suspicious BBL samples were predicted as traditional maple syrup, which was
consistent with our expectations (n false positive = 0, n true negative = 6, specificity = 100%).
Therefore, all traditional and BBL maple syrups were successfully authenticated by FT-IR
and Raman with the multiple-class approach based on their unique chemical composition,
and our results agreed with the reference analysis. Our FT-IR and Raman systems displayed
a better performance than previous studies of detecting cheap sweetener adulteration in
maple syrups, which had 88–100% correctness of discrimination with FT-IR and 98%
correctness of discrimination with Raman [8]. Since there is no previous peer-reviewed
study investigating BBL maple syrups’ characterization and no formal regulation about
the quality control of BBL maple syrups, a larger sample size of BBL maple syrup samples
is needed for generating a more comprehensive and representative prediction model in
the future.

3.3.3. Regression Models

It is important to monitor the ◦Brix and sucrose contents in maple syrup to ensure
product quality and stability [26]. Partial least square regression (PLSR) prediction models
were developed with FT-IR and Raman spectra and reference values of ◦Brix and sucrose
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contents (Figure A2). Performance statistics of the PLSR models developed using training
(n = 26) and external validation (n = 11) data sets are listed in Table 2. The number of
samples and the range in training models are not all the same due to outlier exclusion. Four
and five factors were selected to generate FT-IR and Raman training models, respectively,
according to the standard error of cross-validation (SECV) (leave-out-out) result from
carrying out the best quality of the models as well as to avoid possible overfitting.

Table 2. Statistics of partial least square regression (PLSR) models developed using a training (n = 30)
and an external validation (n = 7) data set based on FT-IR and Raman spectral data for estimating
Brix and sucrose contents in traditional maple syrups, BBL maple syrups, and table syrup samples.

Approach Sugar
Training Model External Validation Model

Range N a Factor SECV b Rcal Range N c SEP d Rval

FT-IR
◦Brix 39.3–78.7 30 5 0.56 0.99 65.2–78.4 7 0.88 0.98

Sucrose 3.3–66.2 30 4 1.68 0.99 18.4–65.3 7 1.66 0.99

Raman
◦Brix 39.9–78.5 29 5 1.00 0.98 65.0–78.7 7 1.23 0.96

Sucrose 3.5–66.6 30 3 1.69 0.99 17.5–65.1 7 1.67 0.99

a Sample number in the training models. b Standard error of cross validation. c Sample number in the external
validation models. d Standard error of prediction.

Our PLSR models showed strong correlations (Rcal > 0.98 and Rval > 0.95) in predicting
◦Brix and sucrose contents in traditional maple syrups, BBL maple syrups, and table syrup
samples. The standard error of prediction (SEP) values were 0.88% and 1.66% for FT-IR
validation models for ◦Brix and sucrose, respectively, and were 1.23% and 1.67% for Raman
validation models for ◦Brix and sucrose, respectively. Similar SECV and SEP were obtained,
indicating the robustness of the models. Standard errors of laboratory (SEL) for reference
methods of ◦Brix and sucrose were 0.21% and 0.62%, respectively. The SEL values were
compared with the prediction performances of the models (SEP), and we found that the
SEP values (Table 2) were always higher than those of SEL because the SEP includes not
only the sampling and analysis errors but also the spectroscopy and model errors [45]. The
SEP obtained for the FT-IR and Raman models were 2.7 times those of the SEL for sucrose,
representing good precision of the models [46]. Conversely, the models predicting ◦Brix
had a SEP/SEL ratio of 4.2 (FT-IR) and 5.9 (Raman), which were higher than the SEP/SEL
threshold of 2 [46] for acceptable precision compared to the referenced method. However,
our models show superior performance compared to reported ◦Brix predictions for honey
using FTIR (R2val = 0.86, SEP = 1.84%) and Raman (R2val = 0.87, SEP = 1.32%) [47,48].
Nickless et al. quantified the total sugar contents in Manuka nectar using FT-IR, reporting
Rval = 0.95 and SEP = 1.17% values [15].

The regression vector plots, shown in Figure A3, help to identify the functional groups
whose variance is the highest for correlating between reference values and spectral data.
The key FT-IR region for the ◦Brix and sucrose predictions was in the 1750–700 cm−1 range,
with distinguished bands centered at 1635 (OH bending vibration characteristic of absorbed
water) and the 1125 to 900 cm−1 related to C-O stretching and ring vibrational modes
of sugars [8,34]. The regression vector plots for Raman data indicated that the bands at
835, 990, 1100 cm−1 explained most of the variance for the Brix model, and the bands
at 424, 600, and 890 cm−1 explained for the Sucrose model. The scattering bands in the
vicinity of 424 and 600 cm−1 are associated with the deformation of C-C-O and C-C-C [38].
The bands near 990 and 1100 cm−1 are related to the deformation modes of saccharides
functional groups [28,38].

4. Conclusions

In summary, FT-IR and Raman techniques fingerprinted maple syrup products based
on their unique chemical composition, allowing for BBL and traditional maple syrup
authentication. Both FT-IR and Raman systems combined with SIMCA provided non-
destructive, fast, and accurate determination of quality traits in BBL and traditional maple
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syrups and detected potential maple syrup adulterants. Our results showed that 15% of
commercial maple syrup (traditional and/or BBL) samples that were tested and labeled
as “pure” exhibited unusual sugar and/or volatile profiles, and both FT-IR and Raman
equipment discriminated these suspicious samples from the pure ones. Furthermore, both
FT-IR and Raman, combined with PLSR, showed good predictions for all samples’ total
◦Brix and sucrose contents.
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Figure A1. Soft independent modeling of class analogy (SIMCA) projection plots of classification of
authentic BBL samples from suspicious BBL and traditional maple syrup samples by GC-MS.

Figure A2. PLSR calibration and validation plots for Brix (a,b), and sucrose (c,d) in traditional maple
syrups, BBL maple syrups, and table syrup samples utilizing 4500 FT-IR and Raman data, respectively.
Black circles represent calibration set samples; gray circles represent external validation set samples.
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Figure A3. PLSR regression vectors for Brix (a,b) and sucrose (c,d), utilizing 4500 FT−IR and Raman
data, respectively.
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Abstract: The Specialty Coffee Association (SCA) sensory analysis protocol is the methodology
that is used to classify specialty coffees. However, because the sensory analysis is sensitive to the
taster’s training, cognitive psychology, and physiology, among other parameters, the feasibility of
instrumental approaches has been recently studied for complementing such analyses. Spectroscopic
methods, mainly near infrared (NIR) and mid infrared (FTIR—Fourier Transform Infrared), have been
extensively employed for food quality authentication. In view of the aforementioned, we compared
NIR and FTIR to distinguish different qualities and sensory characteristics of specialty coffee samples
in the present study. Twenty-eight green coffee beans samples were roasted (in duplicate), with
roasting conditions following the SCA protocol for sensory analysis. FTIR and NIR were used to
analyze the ground and roasted coffee samples, and the data then submitted to statistical analysis
to build up PLS models in order to confirm the quality classifications. The PLS models provided
good predictability and classification of the samples. The models were able to accurately predict the
scores of specialty coffees. In addition, the NIR spectra provided relevant information on chemical
bonds that define specialty coffee in association with sensory aspects, such as the cleanliness of
the beverage.

Keywords: FTIR; NIRS; specialty coffee; PLS models

1. Introduction

Brazil is the world’s largest coffee producer. The recent export data report that Brazil
has shipped around 22.872 million bags (60 kg each) from July 2021 to January 2022.
Specialty coffees accounted for 17.4% of total Brazilian exports, with an average price of
USD 292.44 per bag, representing 23.4% of the total obtained with the shipments in January
2022 [1]. Specialty coffees, defined as high-quality products, are quite relevant for the coffee
industry given the higher prices attained in comparison to commodity coffees. While a
regular bag of regular green coffee costs approximately USD 200, specialty coffees can go
up to USD 1000 per bag.

The quality of a cup of coffee begins in the field. Several factors including coffee
species and variety, harvesting, post-harvesting conditions, blend elaboration, and roasting
parameters, have a significant influence on the flavor and aroma of the drink. The delicate
taste and aroma obtained from a cup of specialty coffee results from a complex combination
of physical transformations and chemical reactions that start on the seed and end on the
beverage preparation [2,3].
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The most common way to evaluate the quality of a green coffee is by cup tasting [3,4].
Several industries, including perfume, coffee and tea, wine, beer, and tobacco, often employ
trained personnel for sensory evaluation. In the specific case of coffee, such people are
called “Q-graders” and trained to define the sensory profile of different samples. Then,
according to the SCA (Specialty Coffee Association) protocol to evaluate coffee, they classify
samples by giving different scores [5].

The SCA protocols are based on objective assessment methods, including the presence
or absence of sweetness and defects, thus minimizing subjectivity compared to other
methodologies. In addition, Q-graders are considered excellent and accurate in giving the
scores related to quality, although some errors and inconsistencies regarding the description
of a coffee are reported [6].

Furthermore, sensory analysis can lead to a few problems. Bias that comes from the
preference and previous knowledge of a specific sample, as well as the influence of some
external factors [6] can affect the analysis. Additionally, the Q-grader´s health during the
cupping as well as modification on his (her) personal evaluation abilities over time can
also affect the results. Such issues can be minimized by using alternative evaluation tools
in order to make the coffee trading market more reliable [3,7]. Sensory analysis can also
be viewed as a sensitive and time-consuming technique, given the need for well-trained
personnel. Considering the economic relevance of specialty coffees in the world trade
market, finding alternative tools to confirm coffee quality is of utmost importance.

Many studies have shown the potential of spectroscopic methods in food analysis, with
near (NIR) and mid (FTIR) infrared among the most used methods [8]. The employment
of such techniques for coffee analysis has been widely reported [9]. Applications include
discrimination between coffee species and varieties [10], adulteration of roasted and ground
coffee [11–13], and identification of low quality (defective) coffee beans [14–16]. Given that
such low quality coffees have a significant effect on the sensory profile of the beverage,
spectroscopic methods can also be used to detect differences in sensory parameters. In
recent studies, our research group employed chemometrics to develop models for the
classification and discrimination between espresso coffee beverages based on generic
parameters (intensity and a few sensory aspects) informed by the manufacturers, and also
based on sensory analysis performed by a trained panel [7,17]. It was also possible to
develop models that classified coffees by cup quality parameters based on classification
criteria that are specific to Brazil [4]. Some recent results from another group also showed
the feasibility of mid-infrared and chemometrics to discriminate specialty coffees with
different roasting profiles [18]. Our latest study showed that FTIR can be successfully
used to discriminate specialty coffees classified by Q-graders [3], with models capable
of predicting classification scores with high accuracy (validation coefficients above 0.97).
Published studies confirm that both FTIR and NIR are promising techniques for coffee
quality evaluation. However, in the case of NIR, only qualitative discrimination was
performed with respect to coffee quality parameters given by Q-graders, without any
attempt to provide an actual score-based classification. Furthermore, a comparison of
spectroscopy-based techniques to evaluate specialty coffees has not yet been reported. Since
both FTIR and NIR have been shown as reliable techniques for coffee quality definition, a
comparison of these methods can indicate which method is more reliable. Although several
studies have been described and tested with both techniques, there is still a need for further
investigation, in order to improve the quality of predictive models to be applied for food
quality evaluation [19].

Therefore, in this study, the potential of NIR was evaluated for establishing sensory
characteristics of specialty coffees in terms of quantitative scores. Partial Least Squares
(PLS) Regression was employed to build models in order to predict and establish a SCA-
based sensory profile. NIR-based models were compared to FTIR ones that were developed
in a previous study [3]. To the best of our knowledge, this is the first study in the literature
that addresses such comparison for specialty coffee quality evaluation. Furthermore, this is
the first work showing that NIR can provide quantitative quality scores.
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2. Methodology

2.1. Roasting Tests and Sensory Evaluation

Arabica coffee samples submitted to dry (natural coffee) and wet (pulped natural
coffee) processing were employed in the present study. Detailed information regarding
sample provenance and quality scores (ranging from 81 to 91) is presented as Supplemen-
tary Materials (Table S1) and discussed in our previous study on FTIR analysis of specialty
coffees [3]. A summarized description of sample preparation is presented as follows. The
samples were roasted in accordance with the SCA protocol for coffee sensory analysis,
using an IKAWA® Sample Roaster Pro (London, UK). Individual samples consisted of
50 g of green coffee that were submitted to roasting at temperatures ranging from 170 ◦C
to 227 ◦C. The roasting time was 4 min 34 s. Roasting tests were performed in duplicate.
A total of 56 samples were obtained. These samples were ground using a Porlex Mini®

grinder (Porlex Grinders, Osaka, Japan) in order to obtain a fine and homogeneous grind
(particle diameter below 0.150 mm). The samples were then analyzed by six professional
Q-graders according to the SCA protocol. Twenty-four hours prior to cupping, the coffee
samples were submitted to a light/medium roast (#55 to #65 Agtron color scale). Once
the coffee was ground, fragrance and aroma was evaluated. Filtered water (93 ◦C) was
added to the sample cup (five per sample), let to rest for 4 min, and then the beverage
was tasted and evaluated according to the quality attributes established in the protocol [5].
Sample classification was based on global scores and aromatic descriptors established
by the protocol. It is noteworthy that, given that the goal of this study to evaluate the
performance of NIR in comparison to FTIR, the same set of samples was employed for
both techniques.

2.2. ATR-FTIR and NIR Analysis

After roasting and grinding, the samples were analyzed on a Shimadzu IRAffinity-1
FTIR Spectrophotometer (Shimadzu, Japan) with a DLATGS (Deuterated Triglycine Sulfate
Doped with L-Alanine) detector, using an ATR (Attenuated Total Reflectance) sampling
device. The spectra were recorded in the wavenumber range of 3100–800 cm−1 and a
total of 224 spectra were obtained (56 samples × 2 aliquots × 2 measurements). The NIR
measurements were conducted in a Red-Wave-NIRX-SD Spectrophotometer (StellarNet
Inc, USA) with 25μm diameter and RFX-3D reflectance base. Samples were transferred to
a petri dish and placed over this base. The spectra were recorded within 900 to 2300 nm,
16 nm resolution, and 8 scans. Each roasted and ground coffee sample was analyzed in
duplicate, totaling 112 spectra (56 samples × 2 measurements). The background spectra
was based on the RS-50 reflectance disk. Both FTIR and NIR analyses were performed
at room temperature (20 ± 0.5 ◦C) and all readings were based on roasted and ground
(D < 0.15 mm) coffee samples.

2.3. Data Processing and Statistical Analysis

The software employed for statistical analyses were MATLAB® software v7.9, 2009
(The MathWorks, Natick, MA, USA) and PLS Toolbox® 6.7.1, 2012 (Eigenvector Technolo-
gies, Manson, WA, USA). The ATR-FTIR and NIR spectra were used as chemical descriptors
in order to build the PLS models for prediction of the sensory analysis scores. The Kennard–
Stone algorithm was used to divide the 224 FTIR spectra from FTIR into calibration (70%)
and validation (30%) sets, and the same for the 112 NIR spectra. Orthogonal Signal Cor-
rection (OSC) and Mean Centering (MC) were applied for reducing the effect of noise,
enhancement sample-to-sample differences, and removal of redundant information. The
number of latent variables was defined according to the lowest RMSECV value obtained
by Random Subset cross-validation. Model performance was measured by calculating the
root mean square errors for both calibration (RMSEC) and validation (RMSEP) errors [3].
Selected models were the ones with the smallest RMSEC and RMSEP values [12].
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3. Results

3.1. ATR-FTIR and NIR Analysis

The spectra presented in Figure 1 represent the average FTIR spectra of four classes
of samples grouped according to their score of sensory quality: 81–83; 84–86; 87–89; 90+.
The two bands at the 2900–2850 cm−1 range are attributed to C-H vibrations of the bonds
present in lipid and caffeine molecules [16]. The marked 1750 cm−1 and 1650 cm−1 regions
are attributed to carbonyl (C=O) vibration and C=C bonds, attributed to carbohydrates and
lipids, respectively [20].

Figure 1. Average FTIR spectra obtained for roasted coffee (colors are related to sensory quality scores).

The bands in the 1650–1600 cm−1 range have been previously reported in association
with caffeine [4], and were employed in previous studies for quantitative analysis of this
substance. The 1680–1630 cm−1 range has been found to be associated with vibrations
in the carbonyl amide group [4] and also to the presence of trigonelline. The latter is
usually decomposed into pyrroles and pyridines during roasting. Pyridines are some of
the substances that are responsible for the characteristic aroma of roasted coffee [21].

A significant number of bands can be observed between 1500 and 900 cm−1. Carbo-
hydrates have several absorption bands in the region between 1400 and 900 cm−1, also
called “fingerprint region”, because it concentrates several relevant bands. The band at
1146 cm−1, has been linked to polysaccharides in previous studies, specifically to the C-O-C
stretching of the glycosidic link in the cellulose molecule [4]. Bands in this have also been
attributed to amino acids and proteins [22]. Nonetheless, an accurate chemical assignment
of bands in this region is still a challenge because of highly coupled vibration modes of
polysaccharide backbones [4]. The bands at the 1450–1150 cm−1 range have been reported
in association with the presence of chlorogenic acids [16,22]. The band at 930 cm−1 has
been previously reported in association with residues of 3,6-anhydro-galactopyranose [23]
resulting from the thermal degradation of polysaccharides, such as galactomannan and
arabinogalactan. The levels of chlorogenic acid and trigonelline as well as carbohydrate
content will change significantly with roasting, so variations in the fingerprint region of the
spectra are expected [14,24].

Figure 2 shows the average NIR spectra of the samples, with different colors being
associated with the sensory quality score. The most relevant bands present in the data
are as follows: 1100–1250 nm (associated to CH, C-H2, and CH3 overtones from proteins,
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lipids, caffeine, and organic acids), and 1300–1490 nm (first overtones of RN-H of proteins,
first overtones of OH of water and acids) [25]. The band in the 1900 nm region is associated
with the combination of O-H angular stretching and deformation, related to the presence
of water [26]. The region of 1208–1236 nm is the second bond overtone of C-H, C-H2, and
C-H3, as well as the 1700–1720 nm region, which is related to the first overtone of the same
carbon and hydrogen bonds, and C-H bonds linked to aromatic rings [26].

Figure 2. Full NIR spectra (1000–2000 nm) obtained for roasted coffee (colors are related to sensory
quality scores.

3.2. Partial Least Squares Regression (PLS)

Figures 3 and 4 show the plots of measured vs. estimated values obtained for the
models based on the spectra (estimated) in comparison to the quality scores provided
by the Q-graders (measured). The models’ parameters are shown in Table 1. The FTIR
model was built with two latent variables that were able to explain 99.71% and 81.2% of
the accumulated variance in the spectra and sensory data, respectively. Both the values
obtained for RMSEP and RMSEC were 0.23%, whereas calibration and validation coeffi-
cients were 0.99 and 0.97, respectively. In comparison, the NIR model used three latent
variables that explained 90.4% of spectra data variance and 54.05% of the score (sensory)
data. The RMSEC value was 0.50% and RMSEP value of 0.52%, and both the calibration
(Rc) and validation (Rv) correlation coefficients were 0.98. Although both NIR and FTIR
were able to provide good predictions, the FTIR results were slightly more accurate, given
the smaller values for RMSEC and RMSEP and slightly higher values for calibration and
validation in comparison to NIR. The potential of FTIR as a tool to classify specialty coffees
was reported by Belchior et al. [3]. The comparison of both techniques highlights the
efficiency of NIR as well. Nonetheless, despite its great potential in food analysis, the
interpretation of the spectra in NIR analysis is challenging due to its broadband nature,
which consists of overlapping overtone and combination bands [7,9]. The use of NIR-based
models represents a new approach in comparing the chemical data with the SCA protocol
for coffee classification. Although some studies have reported the use of NIR to evaluate
coffees [9,25,27], the discrimination between high quality samples as well as the compari-
son with the SCA classification shown in this study confirms the potential of this method,
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providing the coffee industry with a good perspective for using different spectroscopy tools
to evaluate coffee quality. Although previous studies [26,27] were able to show that NIR
can be used to predict specific coffee sensory parameters (body, acidity, flavor, aftertaste,
etc.), this is the first study that extends this application to quantifiable quality scores using
an internationally accepted sensory protocol, thus confirming the potential of this method
for coffee quality evaluation.

Figure 3. Experimental (black circles) vs. predicted values (pink triangles) obtained by the models
based on FTIR spectra.

Figure 4. Experimental (black circles) vs. predicted values (pink triangles) obtained by the models
based on NIR data.
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Table 1. Comparison of the PLS models for both FTIR and NIR techniques.

Model FTIR NIRS

Calibration set 149 74
Validation set 67 37

Latent variables 2 3
RMSEC 0.23 0.50
RMSEP 0.23 0.52

Rc 0.99 0.98
Rv 0.97 0.98

RMSEC = root mean square error of calibration; RMSEP = root mean square error of validation; Rc = calibration
correlation coefficient; Rv = validation correlation coefficient.

Figures 5 and 6 show the Variable Importance of Projection (VIP) scores of the models.
A VIP score is a measure of a variable’s importance in the PLS model and is calculated
as the weighted sum of squares of the PLS weights, taking into account the amount of
explained variance in each extracted latent variable (dimension). Thus, VIP scores above 1
are a typical rule for selecting relevant variables in a given model. An evaluation of the
FTIR VIP scores (Figure 5) indicates that the entire spectrum affected the coffee classification
in association with the SCA classification. The fact that bands in the whole wavenumber
range were relevant in terms of sample classification indicates that many substances that
are present in the coffee beverage have significant impact on the sensory profile. Besides
coffee being a complex food matrix, several variables that affect the coffee processing
chain processes (cultivation, harvesting, post-harvesting, storage, roasting, grinding, and
extraction) will impact the final product and affect sensory variations that can be perceived
by the Q-graders. Although roasting conditions are consistent and established in terms
of the SCA protocol, there still can be variations in the roasting profile (environmental
conditions, type of equipment, etc.) [28,29].

Figure 5. VIP Scores of the PLS models based on FTIR data.
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Figure 6. VIP Scores of the PLS models based on NIR data.

VIP scores obtained for the NIR model (Figure 6) show the bands 1176, 1749, and
1950 nm as the most relevant in predicting the coffee scores, being related to the second
overtones of CH, C-H2, and CH3, first overtones of CH and C-H2, first overtones of OH,
RCO2R, and CONH2, and second overtones of C=O [26]. These regions were assigned by
Ribeiro et al. [26] as related to the sensory characteristics of the attributes: taste, cleanliness,
and body of the beverage. The region comprised between 1156-1172 nm is attributed to
caffeine, and 1738–1755 nm to the presence of lipids in the samples. The region between
1937–1959 nm are related to the ACG and water content of the samples. The beverage
cleanliness, regarding the quality of body, is a relevant attribute evaluated in coffee and
responsible for higher scores, reinforcing the feasibility of NIR data in adding more confi-
dence to the results.

Schenker and Rothgeb [30] stated that the roasting process can be divided into three
stages: drying, Maillard reactions, and development. Therefore, the sensory profile of the
roasting coffee will be directly affected by roasting time because it is directly related to the
specific phase of the roasting process. This will affect the final coffee composition in terms
of several components and reactions, including chlorogenic acids and their derivatives,
sugar caramelization, organic acids, volatiles, lipid migration, and melanoidin production;
such composition will have a direct effect on the sensory profile [18,31,32]. Therefore, the
possibility of validating the sensory analysis performed by Q-graders by using spectro-
scopic methods is quite relevant. The results obtained in this study are promising for the
classification of specialty coffees and confirm the potential of both NIR and FTIR as fast
and efficient alternatives for the task at hand. Furthermore, the results are of high interest
to the coffee industry, bringing more confidence to the trading routine, given possible
inconsistencies between classification of the same samples by sellers and buyers.

4. Conclusions

Spectroscopy-based methods, FTIR and NIR, were shown to be appropriate tools for
confirming and predicting score classifications given by Q-graders to roasted specialty
coffee samples. The results are promising from the chemometrics standpoint, with mod-
els presenting high values for calibration and validation correlation coefficients for both
techniques, showing that NIR is also a good tool for predicting coffee quality. It is note-
worthy that, even with all samples being of high quality, it was possible to discriminate
the nuances in sensory profile. Although the analysis of the whole FTIR spectra of coffee
seems to be slightly more efficient from a scientific point of view, NIR spectra also provided
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robust results related to relevant chemical parameters that define specialty coffee, such
as the cleanliness of the beverage. NIR seems promising for routine analysis of specialty
coffees, given its simplicity and the possibility of using portable equipment. Therefore, both
techniques can be used to confirm and verify the coffee quality scores associated with the
Q-graders assessment. As a result, the coffee industry would increase confidence in trading
purposes, producing more consistent results. Nonetheless, further studies are needed
in order to increase model robustness and applicability, given the intrinsic variations in
coffee samples associated to geographical origin, edaphoclimatic conditions, cultivation,
and processing techniques as well as variations in roasting parameters. The variability in
roasting conditions and equipment in the case of commercially available roasted coffee
samples, and the fact that the present methodology was not validated for such conditions,
is noteworthy. One of the difficulties in using sensory analysis in the case of the coffee
beverage is the need for strict control of roasting conditions in order to guarantee that the
tasters will be able to perceive the flavors appropriately. The SCA protocol and the models
herein used will be able to correctly classify specialty coffees prior to roasting, but are
not suitable for samples that are already acquired as roasted coffees with varying degrees
of roast.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11111655/s1, Table S1: Coffee sample provenance; sensory
scores and description provided by the Q-graders.
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The Elemental Fingerprints of

Different Types of Whisky as

Determined by ICP-OES and ICP-MS

Techniques in Relation to Their Type,

Age, and Origin. Foods 2022, 11, 1616.

https://doi.org/10.3390/

foods11111616

Academic Editor: Daniel Cozzolino

Received: 5 April 2022

Accepted: 26 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

The Elemental Fingerprints of Different Types of Whisky as
Determined by ICP-OES and ICP-MS Techniques in Relation to
Their Type, Age, and Origin

Magdalena Gajek 1,*, Aleksandra Pawlaczyk 1, Krzysztof Jóźwik 2 and Małgorzata Iwona Szynkowska-Jóźwik 1
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Abstract: A total of 170 samples of whisky from 11 countries were analysed in terms of their
elemental profiles. The levels of 31 elements were determined by Inductively Coupled Plasma Mass
Spectrometry (ICP-MS): Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, U,
and V, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Ca, Fe, K, Mg, P, S, Ti,
and Zn and Cold Vapor-Atomic Absorption (CV-AAS): Hg techniques in those alcoholic samples. A
comparative analysis of elemental profiles was made on the basis of the content of chosen elements
with regard to selected parameters: country of origin, type of whisky (single malt and blended) and
age of products. One of the elements which clearly distinguishes single malt and blended types
of whisky is copper. Single malt Scotch whisky had a uniform concentration of copper, which is
significantly higher for all malt whisky samples when compared with the blended type. Analysis of
samples from the USA (n = 26) and Ireland (n = 15) clearly revealed that the objects represented by
the same product but originating from independent bottles (e.g., JB, JDG, BUS brands) show common
elemental profiles. On the other hand, comparative analysis of Scotch whisky with respect to aging
time revealed that the longer the alcohol was aged, (i.e., the longer it stayed in the barrel), the higher
the content of Cu and Mn that was recorded.

Keywords: whisky; elemental analysis; ICP-MS; ICP-OES; CV-AAS; spirits; PCA; metals

1. Introduction

Whisky (whiskey—alternate spelling is commonly used in Ireland and the USA—for
consistency, the former spelling is used in this paper) is one of the most popular high-
percentage alcoholic beverages made from grain in the world. In accordance with the
present definition, whisky is a kind of distilled spirit made from fermented grain mash.
Many types of whisky are associated with various types of production. In the case of
European products, the alcohol should be matured for at least 3 years in wooden barrels of
a volume not exceeding 700 L, and only water and caramel (for colouring) can be added to
the distillate. For example, similar requirements for the type of grain from which whisky is
produced are applied to both Scottish and Irish beverages. However, in Scotland, double
distillation is used, while in Ireland it is tripled. The possibility for adding exogenous
amylolytic enzymes in the mashing process for Irish whisky is another difference. In
turn, alcohol produced in the USA (American Bourbon) is most typically aged less than
4 years (e.g., 2 years for the European market). Furthermore, bourbon in the USA has to
be produced from a mixture of grains consisting of no less than 51% corn. The distillate
must contain no more than 80% pure alcohol. Moreover, maturation takes place in new
oak barrels, fired from the inside, which significantly differentiates this process from the
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one used in the production of European whisky, which is matured in previously used
barrels (after wine, bourbon, or beer maturation process). In the USA, the top producers of
bourbon have their distilleries in Tennessee and Kentucky. Alcohol branded as “Tennessee
whisky” is known to have been subjected to a 10-day purification process using a layer of
charcoal prepared from maple wood [1–3].

The analysis of whisky, both in terms of chemical composition characterisation and
authentication, mostly involves the employment of separation techniques, such as gas
or liquid chromatography, often coupled with flame ionization detection (FID) or mass
spectrometry (MS). It needs to be highlighted that these techniques are mostly applied
as a target type of analysis, where specific markers are traced and determined within the
whisky authenticity verification [4–8]. Apart from VOCs and other organic compounds that,
determined by the chromatographic methods, can be used as indicators for the identification
of origin, alcoholic beverages can be also tested for trace elements, which are derived from
the raw materials, production process equipment, storage vessels, and additives. Compared
with those on organic markers, studies on trace elements used for the identification of
counterfeit whisky are very limited. The first attempts to determine metals in whisky
samples were made in 1998. Anodic stripping voltammetry (ASV) and atomic absorption
spectroscopy (AAS) were applied at that time to measure and compare the levels of Zn,
Pb, and Cu in four whisky samples. The authors noted that the stripping method had an
important advantage over AAS in terms of lower detection limits. In the case of ASV, these
limits were 4, 18, and 100 times lower for Zn, Cu, and Pb respectively. This is a key problem
for heavy metals (Pb) since it is impossible to measure them using the AAS technique [9].
In 2002, Adam et al. [10] conducted trace elemental analysis on 35 Scotch whisky samples
to verify whether there were trace element fingerprints characteristic of different kinds of
Scotch whisky. A total of 31 samples of single malts, 1 sample of malt blend, 2 samples of
blended Scotch, and 1 sample of grain whisky were analysed. For only the measurement of
copper, an additional number of whisky samples was studied (6 blended Scotch whiskies,
11 single malt whiskies, and 1 rye whisky). The samples were taken directly from whisky
bottles purchased from a supermarket. The selected malts originated from 4 Scottish
regions: the Lowlands, the Highlands, Speyside, and Islay, and were aged between 6
and 20 years. For the determination of the selected metals, a graphite furnace atomic
absorption spectrometer (GFAAS) was employed. The authors of the paper stated that the
fingerprint of the metal concentrations in whisky could not be used as a criterion to identify
whiskies from different production regions. However, when the second set of samples
(42 malt whiskies and 8 blended whiskies) was analysed for copper, the concentration
of this element could have been, according to authors, used as a criterion to distinguish
blended or grain Scotch whiskies from malt whiskies. Much higher levels were observed in
the malt whiskies in comparison with the concentration of copper in the blended Scotch
whiskies or the pure grain whiskies. The authors concluded that the difference between
these levels was highly significant. It was suggested that the copper analysis itself could be
used as one of the markers to distinguish between blended and single malt Scotch whiskies.
The main sources for the presence of copper in whisky are the copper stills in which whisky
is distilled and the barrels in which the spirits are aged. Additionally, the authors indicated
a possible relationship between the copper content and the acidity of the alcohol. In 2017,
Shand et al. [11] made an attempt to use the elemental analysis of Scotch whisky performed
by total reflection X-ray fluorescence as a potential tool in the identification of counterfeits.
Elements such as Cu, Zn, Fe, Ca, S, Cl, K, Mn, P, Rb, and Br were selected because their
presence is associated with the whisky production process. Moreover, their concentrations
in most samples were above the limits of detection offered by TXRF. In total, 32 samples
were analysed, of which 17 were single malt whiskies produced in different regions of
Scotland (the Highlands, the Lowlands, Speyside, and Islay), 8 samples were blended scotch
whiskies, and 2 were grain whiskies. Additionally, 5 samples were counterfeit whiskies
from sources which remained anonymous. The samples were analysed without any special
preparation process. A total of 18 out of the 32 were also checked by ICP-OES (after earlier
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sample preparation by the evaporation to dryness and the addition of nitric acid). In order
to discriminate between the whisky samples in accordance with the indicated parameters,
the authors used multivariate analysis. The principal component analysis (PCA) indicated
that the counterfeit samples could be distinguished from the others on the basis of their
trace elemental profiles. The second component was especially important in separating
the counterfeit samples from the authentic Scotch whiskies. In turn, the third component
had the greatest impact on the separation of classes (Highland, Lowland, Speyside, Islay,
blended, grain, and counterfeit). The authors also observed statistically significant and
strong positive correlations between Rb, K, and Mn. However, there was no obvious
chemical or geochemical connection between these elements, which was underlined by
the authors. Additionally, the applied CA analysis showed the unambiguous grouping of
counterfeit samples. The linear discriminant analysis (LDA) made it possible in most cases
to correctly classify the studied whisky samples into appropriate groups. It was extremely
important, especially for the counterfeit samples.

Due to the fact that only a few, limited papers on metal analysis of whisky are available,
the main goal of the authors was to perform an extensive, elemental characterization of
whisky samples. Moreover, the possibility of using statistical analysis and chemometric
tests to differentiate and distinguish whisky samples, based on their origins, types, and
ages, was tested. Therefore, the present work presents an extremely rare approach to
the assessment of selected whisky parameters, based on extensive elemental analysis. It
should be emphasized that, in this study, a wide range of measurements was carried out
with the use of 3 analytical techniques (ICP-MS, ICP-OES, and CV-AAS) to determine the
concentrations of 31 elements in 170 whisky samples.

2. Materials and Methods

2.1. Samples

In total, 170 whisky samples (152 various brands of single malt and blended, high-
percentage alcoholic beverages) originating from 11 countries (Scotland, the USA, Ireland,
Poland, Japan, the United Kingdom, India, Azerbaijan, Slovakia, Wales, and Bulgaria) were
chosen for elemental analysis using the by Inductively Coupled Plasma Mass Spectrometry
(ICP-MS), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and
Cold Vapor-Atomic Absorption (CV-AAS) techniques. Alcohol samples selected in this
study consisted partially of brands of whisky widely available on the Polish market, which
can be found in the supermarkets. Some of the samples were obtained through official
whisky distributors. Some of them are distillates intended for concentration and are thus
not available for direct sale. The names of the whiskies are coded, and the manufacturers’
names are not given in this paper. The basic characteristics of the tested samples are
included in Table 1.

Table 1. Characteristics of the tested set of samples.

N Scotland USA Ireland Poland Others

Single
Malt—50

Single
Barrel—1

Single
Malt—3

Single
Malt—3 Japan—3 UK—1

Blended—56 Blended—25 Blended—12 Blended—7 India—3 Azerbaijan—1
Slovakia—3 Wales—1

Bulgaria—1
Total 106 26 15 10 13

2.2. Samples Preparation and Equipment

• ICP-OES and ICP-MS

The following measurement techniques were applied in this study: ICP-OES (Thermo
Scientific, ICAP 7000 series, Bremen, Germany) and ICP-MS (Thermo Electron Corporation,
X SERIES, East Lyme, CT, USA). These techniques required that the samples be prepared
in a decomposed form, which process was performed in a microwave system (Ultrawave
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system, Milestone, Via Fatebenefratelli, Italy). For this purpose, 4 mL of 69–70% HNO3
(Baker, Avantor Performance Materials Poland S.A., Gliwice, Poland) were added to 4 mL
of each of the samples. The acid was added in small portions due to the strongly exothermic
nature of the reaction. In the next step, microwave mineralization was employed. The
procedure was analogous to that used on the whisky samples described in our 2019
preliminary study [12]. After the mineralization process, the contents of the tubes were
quantitatively transferred to flasks with a volume of 25 mL. A standard of In with a
certified concentration was used as an internal standard to monitor signal stability (Merck,
Warszawa, Poland). For the measurement of the indicated elements, it was necessary to
prepare calibration curves based on a standard solution of CPAchem (Multi-element ICP
standard, Stara Zagora, Bulgaria), and some single-element standards of In (ICP class,
Merck, Darmstadt, Germany), Sb (ICP class, Merck, Darmstadt, Germany), Sn (ICP class,
Chem Lab NV, Zedelgem, Belgium), Ti (ICP class, Radian International LLC, Austin, TX,
USA), S (ICP class, Merck, Darmstadt, Germany), and P (ICP class, SCP Science, Québec,
Canada). The preparation of the standards was carried out by the subsequent dilution
method. The blank samples were prepared in the same way as the studied samples.

An ICP-MS analytical technique was applied to determine the levels of metals in
the whisky samples based on the following isotopes: 107Ag, 27Al, 11B, 138Ba, 9Be, 209Bi,
111Cd, 59Co, 52Cr, 63Cu, 7Li, 55Mn, 95Mo, 60Ni, 208Pb, 121Sb, 118Sn, 88Sr, 125Te, 203Tl, 238U,
and 51V. In turn, concentrations of Ca (393.366 nm), Fe (238.204 nm), K (766.490 nm), Mg
(279.553 nm), P (185.942 nm), S (180.731 nm), Ti (334.941 nm), and Zn (213.856 nm) were
determined by the ICP-OES technique. Information about the operating conditions for
the elemental analysis of the whisky samples performed using the ICP-OES and ICP-MS
spectrometers is presented in Table S1 in the Supplementary Materials.

A total of three replicates were made for each alcohol beverage sample and analytical
technique. The RSD, expressed as a percentage, even for elements measured at very low
levels, was in the range of 0.01–5.00%. The accuracy of the applied procedure was verified
based on the analysis of the certified reference material of TMDA 54.6 (a fortified lake-water
sample from the National Water Research Institute, Burlington, Halton, ON, Canada). The
obtained recoveries were close to 100%. The same procedure for verifying the accuracy of
the proposed method was described previously by Gajek et al. in 2021 [13].

The coefficient of linear regression for each analyte was in the range from 0.999 to
1.000. The sensitivity of the developed method was considered in terms of the limit of
detection (LOD) and the limit of quantification (LOQ). The two limits were based on values
of the standard deviation of the results obtained for a series of blank samples, according to
the following mathematical expressions: LOD = xśr · 3SD and LOQ = 3 · LOD [14]. The
obtained results are presented in Table S2 in the Supplementary Materials.

• CV-AAS

In this study, an automatic mercury analyser MA-3000 (Nippon Instruments Corpo-
ration, Tokyo, Japan) was applied to determine the total mercury content in the whisky
samples. The analytical procedure was analogous to the one described in detail in 2019 [12].

2.3. Data Analysis

Statistica 12.5 (New York, NY, USA) software was used for the statistical and multi-
variate analysis. In order to verify the normality of the distribution of the studied variables,
Kołmogorow–Smirnow tests were used. Kołmogorow–Smirnow tests are very helpful in
the verification process if a sample originates from a population with a specific distribution
based on the distance between the empirical distribution function of the sample and the
cumulative distribution function of the reference distribution. The application of these tests
for the significance level α = 0.05 showed that the hypothesis of a normal distribution for all
analysed variables (the concentrations of 30 elements) should be rejected. For this reason,
the Kruskal–Wallis non-parametric test was used to assess the significance of differences in
the determined levels of elements among particular groups according to the parameters
considered, such as country of origin, type, and year. The test determines whether the
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medians of two or more groups are different. The quantitative data were expressed in this
study in the form of the box and whisker plots with a median value chosen as a central
value. A total of 50% of the most common results are within the box, while the whiskers
are limited by the highest and lowest results obtained in this work. To increase the inter-
pretability of the results, multivariate analysis, namely principal component analysis (PCA),
was applied. PCA is the basis of multivariate data analysis based on projection methods.
The most important application of PCA is to represent multivariate data as a smaller set of
variables in order to observe trends, clusters, and outliers. This analysis may uncover the
relationships between observations and variables, and among variables themselves.

3. Results and Discussion

3.1. Levels of Metals in Analysed Whisky Samples

In this study, the levels of 31 elements in 170 whisky samples were determined. The
concentrations of Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te,
Tl, U, and V were measured by the ICP-MS technique, but to assess the level of Ca, Fe, K,
Mg, P, S, Ti, and Zn, the ICP-OES technique was used. The Hg content was analysed by the
CV-AAS technique. In the collected data set, some of the obtained results were below the
quantification limits. Te was not quantified in the majority of samples—157. Ag was not
detected in 102 samples, nor Sb in 90, nor Ti in 61. Fe was not detected in 53 samples, Zn in
48, P in 34, V in 33, nor Mo in 31 samples. Cd was not determined in 20 samples, Sn in 11,
Bi in 10, Tl in 9, nor K in 8 samples. U and Al were not detected in 5 independent samples,
B in 2, and neither Pb nor Be was quantified in 1 sample. In the case of mercury content,
all results were below the limit of quantification. Thus, this element was excluded from
further calculations.

The first step in the work of data processing was to check the hypothesis about the
type of distribution. For this purpose, the Kołmogorow–Smirnow test was used to verify
the distribution of all analysed samples at the accepted level of significance, p = 0.05. The
null hypothesis regarding the normal distribution for all variables was rejected. Therefore,
the nonparametric Kruskal–Wallis test was used to further analyse the data. The basic
statistical information on the studied variables such as the mean, median, minimum, and
maximum, has been placed in Table 2.

Table 2. Basic statistics for determined elements for all whisky samples (n = 170) [μg/L].

Element n Mean Median Min Max Element n Mean Median Min Max

Ag

170

4.270 <LOQ <LOQ 399.1 Sb

170

3.470 <LOQ <LOQ 227.9
Al 117.7 113.3 <LOQ 399.7 Sn 9.800 4.670 <LOQ 44.50
B 4388 4116 <LOQ 12.89 Sr 47.18 45.81 15.84 119.2
Ba 188.7 182.4 38.68 950.9 Te 0.040 <LOQ <LOQ 1.200
Be 0.100 0.090 <LOQ 0.300 Tl 0.110 0.040 <LOQ 2.600
Bi 1.310 0.870 <LOQ 19.80 U 0.260 0.230 <LOQ 0.900
Cd 1.260 0.720 <LOQ 16.00 V 2.210 0.960 <LOQ 57.30
Co 4.530 2.470 0.406 74.90 Ca 14.66 9185 723.8 175.35
Cr 153.4 111.1 10.70 666.1 Fe 166.6 88.03 <LOQ 1485
Cu 473.7 216.0 16.25 5252 K 18.50 12.45 <LOQ 149.30
Li 21.36 12.27 0.474 399.5 Mg 1487 1046 208.5 11,548

Mn 47.43 32.95 4.396 286.5 P 1637 313.7 <LOQ 30.11
Mo 1.790 1.070 <LOQ 32.30 S 7126 4648 296.3 69.91
N 24.01 12.96 3.201 301.3 Ti 25.68 12.72 <LOQ 288.3
Pb 15.82 10.61 <LOQ 450.9 Zn 1221 177.5 <LOQ 31,458

Despite the quality control of food products prior to their introduction into the market,
both reports in the literature and earlier research conducted by authors of this paper [13,15]
clearly indicate that the permissible standards can be exceeded. Based on the results ob-
tained for low-percentage alcoholic beverages, such as wines or ciders, cases where both
the international and national standards have been exceeded can be found in the literature.
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The results obtained for 180 samples of wine studied by Gajek et al., 2021 [15], revealed
that, in the case of 18 wine samples, the maximum levels of some metals (Cd—8 samples,
Pb—9 samples, and Cu—1 sample) were slightly exceeded according to the OIV stan-
dards [16]. A similar observation was found in a study by Woldemariam et al., 2011 [17],
where, especially in the case of lead, significant exceedances in wines (from the Czech
Republic—max content 1253 μg/L) were reported. On the other hand, in the case of the
analysis of cider samples [13], the authors emphasized that, for elements such as Cd and
Pb, the maximum obtained results exceeded only the standards for drinking water [18].
The standards for alcoholic beverages were maintained for both elements.

In terms of the elemental whisky analysis, none of the authors dealing with this topic
verified the potentially negative impact of exceeding the permissible maximum levels
of the selected metals. The authors of this paper referred only to the internal national
standards that define the maximum permissible content of the selected metals (Cd and
Pb) in high-percentage alcohols [19]. The maximum lead content was set at 0.3 mg/L,
and the maximum cadmium content at 0.03 mg/L. In this study, the permissible Pb level
was exceeded only for 1 out of 170 analysed whisky samples (the blended whisky from
Ireland—max content 450.9 μg/L). The limit value for Cd was not exceeded in any case.

3.2. Elemental Analysis for Country of Origin
3.2.1. General Characteristics

So far, numerous attempts have been made to correlate the chemical composition
of whisky with its origin. Most scientists have used chromatographic (GC and HPLC)
and spectrophotometric (UV–Vis) techniques along with complex mathematical models
to assess the correlation between an alcohol’s composition and its geographical origin.
In some cases, authors have stated that the conducted measurements did not provide
sufficient information to distinguish among whisky samples with regard to their countries
of origin [20]. On the other hand, other literature reports clearly suggest that it is possible to
distinguish Irish whisky from Scotch and bourbon on the basis of a few markers determined
by chromatographic techniques [21]. Other researchers, having only 11 samples of whisky
of various origin, were able to discriminate amongst all 5 of the alcohol groups under
consideration using the Headspace mass spectrometry technique [22]. So far, there are
single scientific studies in which researchers have made an attempt to distinguish whisky
origin using multi-elemental analysis. Adam et al., 2002 [10], stated that the fingerprint of
the metal concentration of whisky cannot be used as a criterion for identifying whiskies
from different Scottish production regions. The authors of this paper also presented
similar considerations in their preliminary research [12]. In the 20 tested samples of
whisky, originating from different countries (Scotland, the USA, and Ireland), no statistically
significant differences were found in any of the cases although the authors indicated that
some isotopes (48Ti, 138Ba, 66Zn, 90Zr, and 118Sn) created the characteristic “fingerprint” of
the Irish-made whisky sample. On the other hand, the copper content based on isotope
63Cu was considered as crucial in distinguishing the type of whisky (single malt and
blended).Additionally, it turned out to be impossible, based on the collected outcomes, to
distinguish between various production regions of Scotland (the Lowlands, the Highlands,
Speyside, and Islay). However, as the authors emphasize, the number of analysed samples
could be too small for the aforementioned comparison to be carried out correctly.

On the basis of the Kruskal–Wallis test, the existence of statistically significant differ-
ences in the concentration of the following elements was demonstrated: Ag, Be, Bi, Ca, Cd,
Cu, Fe, Li, Mn, P, Sb, Sn, Ti, V, and Zn (Table 3). In the case of all the mentioned elements,
the existence of statistically significant differences was confirmed based on the level of
significance (p), which was less than 0.05. The most important statistical information con-
nected with the division of samples by country of origin is included in Table S3 and Figure
S1A–P (Supplementary Materials). What should be highlighted is the fact that, for most of
the elements for which the existence of statistically significant differences were confirmed,
whisky originating from Scotland was listed in the majority of comparisons. Although
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whisky samples from Scotland were represented by the largest number of samples (106),
only in the case of Cu and Cd were the highest median values were observed for these
elements among all other studied groups. In turn, with the exception of Cu, Cd, Sn, Bi,
and Ca, for the rest of the mentioned elements (Li, Be, V, Mn, Ag, Sb, Zn, P, Fe, and Ti) the
whisky from the USA was characterized by the highest median values when compared
with samples from other countries. However, in most comparisons, copper was one of the
crucial elements presented.

Table 3. Groups for which statistically significant differences were reported.

Statistically Significant Differences Elements

SCT–USA Li; Be; V; Cu; Ag; Sn; Sb; Zn; P
SCT–IRL Mn; Cu; Cd
SCT–PL Sn

SCT–OTH Bi; Cu
USA–PL Ca

USA–OTH Bi; Fe; Ti; Cu
IRL–OTH Cu

SCT—Scotland; USA—United States of America; IRL—Ireland; PL—Poland; OTH—other countries.

Considering the order of concentrations of the studied elements for which statistically
significant differences were confirmed, only for the selected metals the same tendencies
can be observed; for example, for Fe and Ti, the following order for median values can be
noted: OTH > PL > SCT > IRL > USA. For Zn and V, on the other hand, the order was as
follows: SCT > OTH > IRL > PL > USA. In general, for elements such as V, Sn, Zn, Sb, and
P, the lowest values were determined in samples from Scotland, while the highest ones
were found for products from the USA. Not surprisingly, the lowest content of Cu was
characteristic for the whisky from the USA, whereas the alcohol from Scotland had the
highest level of this element. For the rest of the studied elements, no common order in
relation to the country of production can be indicated. The observed differences only prove
that samples from various countries have completely different elemental fingerprints.

3.2.2. Characteristics of Samples from the USA

In the next steps, the samples originating from different countries will be discussed
separately (USA—United States of America; IRL—Ireland; PL—Poland; OTH—other coun-
tries). The research objects from the USA consisted of 26 samples (each of the samples
was coded.) Almost all of the samples from the USA were blended products only one
of the tested samples was the single-barrel type of bourbon—BlaSB). Within this group,
12 independent brands were distinguished. The most numerous were the samples of the
JB brand, which included 6 products (where JB1, JB2, and JB3 were samples of the same
product, coming from different bottles, purchased in different stores during some period
of time). The JD brand, which included 5 products, was also represented by a quite large
group (where JDG1 and JDG2 were samples of the same product, coming from different
bottles, purchased in different stores during some period of time). Moreover, only one of the
studied group of samples was a product with an age declaration (JBB6YO). The remaining
products were aged for the minimum period of time required by law. The projection of
cases on the factor-plane which was made for this group clearly revealed one outlier point
(JDS, from the JD brand). This was a limited-edition sample of a well-known brand of
whisky from the USA. It should be emphasized that this sample was characterized by the
highest content of the following elements in relation to the group under consideration: Li,
Co, Ni, Cd, Sn, Tl, Bi, Zn, and P. In order to improve the readability of the graph and obtain
a more accurate scale, this point was omitted from Figure 1.
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Figure 1. Projection of the cases on the factor-plane for 25 samples (after scale change) from the USA.

The JDG1 and JDG2 (samples from independent bottles of JDG—marked in green)
objects from the same brand, JD, in the projection shown in Figure 1, were placed next to
each other. However, the remaining JD brand objects (namely JDA, JDNo7, and JDNo27)
were dispersed, and therefore, no common elemental features were observed for them.

Objects JB1, JB2, and JB3, being the same product but coming from independent bottles
(JB brand—marked in red), also very clearly created a common group in the presented
projection. Objects JB2 and JB3 were very close to each other, while object JB1 was slightly
shifted. This was probably due to the fact that the JB1 sample came from a bottle from a
completely different production batch (the oldest one from the point of view of the purchase
date). In relation to the group of objects JB1-3, the other JB brand objects were outlier points.
They differed in their aging period in the barrel (JB6YO) or in the addition of flavouring
substances (JBH and JBRS).

Although, in the case of the remaining brands represented by more than one sample
(e.g., Ole and WilT), it cannot be concluded that they formed common clusters characteristic
of the brands, it should be emphasized that these samples were located in one quadrant
(III) of the projection of cases on the factor-plane.

Additionally, the existence of statistically significant differences within the whisky
samples from the USA was checked by the non-parametric test. The samples were divided
according to the producers. Five groups were distinguished (JB, JD, Ole, WilT, and Oth,
with the Oth group containing the rest of the single objects). The existence of statistically
significant differences was revealed for Mg, Mn, Mo, Pb, and U. Among the mentioned
elements, no statistically significant differences were found for Cu contents since the level
of this metal was the lowest in samples originating from the USA. For magnesium, the
differences concerned the JD and Ole brands, as well as the JD brand and other samples.
Similarly, in the case of manganese, differences were noted for the JD brand and the group
of other samples. For molybdenum, the differences concerned the JB and Ole brands, as
well as the JB brand and other samples. For lead, a difference was found between the
JD and Ole brands, and for uranium between the JB and Ole brands. It should be noted
that the JD brand was distinguished by the lowest values of Mg and Mn in relation to the
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other groups. On the other hand, the JB brand was characterized by the highest Mo and
U contents in relation to the others. The most important statistical information connected
to the division of samples against the brands produced in the USA is included in the
Supplementary Materials (Table S4).

3.2.3. Characteristics of Samples from Ireland

Samples of whisky from Ireland included 15 subjects. Within this group, 6 independent
brands were distinguished. The most numerous were the samples of the Bus brand (where
Bus1, Bus2, and Bus3 were samples of the same product, coming from different bottles,
purchased in different stores during some period of time). The projection of cases on the
factor-plane which was made for this group clearly revealed three outlier points. Two of
them belonged to the Jam brand (each of these alcohols was aged in a different barrel.) The
last outlier is Southern Ireland’s blended whisky. The drink is a combination of 4-year-old
barley distillates with 3-year-old grain distillates. Again, in order to improve the readability
of the graph, these points were omitted from Figure 2.

Figure 2. Projection of the cases on the factor-plane for 12 samples (after scale change) from Ireland.

The conducted projection revealed that the objects derived from the same product
(Bus1, Bus2, Bus3—marked in red) have a uniform elemental profile, thanks to which,
they form a common group. These samples were characterized by the highest content
of barium compared to the other samples from Ireland. As with the products from the
USA, objects Bus2 and Bus3 were very close to each other, while object Bus1 was slightly
shifted. This was probably due to the fact that the JB1 sample came from a bottle from
a completely different production batch (and oldest in terms of time of its purchase).
BusGS84.2 and BusGS94.3 (marked in red) were samples of single-grain distillates from
the Bus brand. These distillates were high-percentage alcohols without an aging process.
These were unique samples obtained directly from the distillery, provided by one of the
Polish distributors. Again, it can be concluded that the samples of these alcohols had a
very consistent elemental profile. They were characterized by a higher content of copper,
chromium, and nickel than the others. The other 2 samples from the Bus brand were the
10-year-old single malt (Bus10YO) and the premium-class blend consisting of 75% malt
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whisky (BusBB). The 10-year-old single malt (Bus10YO) sample seemed to be particularly
interesting in terms of elemental composition. It was characterized by the highest values in
relation to the other samples from Ireland in terms of the following elements: V, Mn, Ni,
Cu, Sr, Sn, and P. As in the case of the JB brand from the USA, the sample with the declared
aging period was clearly the outlier. Similarly, in this case, the BusSM10YO object was the
only one of the Bus brand products with a declared aging period. This suggests that time
may be the most important distinguishing factor (as opposed to brand or origin).

Moreover, as in the case of the product from the USA, the samples from Ireland were
divided according to the producers (Bus, Jam, Tul, and Oth: the rest of the single objects).
On the basis of the Kruskal–Wallis test, the existence of statistically significant differences
in the concentration of B was demonstrated between the group of the products of the Jam
and Bus brands. The Jam brand was characterized by a higher content of this element. The
most important statistical information for B is included in the Supplementary Materials
(Table S5).

3.2.4. Characteristics of Samples from Poland

The set of whisky samples from Poland contained 10 objects, including 8 different
brands. Poland is certainly not a country associated with whisky production. However, in
recent years, due to rapidly growing consumption, products from domestic brands have
been appearing on the market. Most often, producers of vodkas, liqueurs, or mead, wanting
to expand their product range, have introduced whisky produced from local ingredients to
their portfolios. There are also beverages on the Polish market that are advertised as Polish
products but created in cooperation with manufacturers from other countries (most often
Scotland). Frequently, they are blended types of whisky made of Scottish barley malts and
Polish distillates from other cereals.

The conducted projection of the cases on the factor-plane revealed that the samples
from the same manufacturers (WolDS and WilFO) were grouped together (Figure 3). In
the case of samples from the WilFO distillery (marked in red), one was a single-grain
(WilFOSG), and the second was a single-malt wheat (WilFOSMW). However, the same
production method and distillation equipment ensured, in this case, a coherent elemental
profile. Moreover, both products from this brand were aged for a period of 3 years.
Characteristic features of the WilFO brand were the highest Sn and Pb contents compared
to other products from Poland. In turn, samples from the WolDS distillery (marked in navy
blue) are single rye whiskies. The main difference between them is the type of barrel in
which they were matured. The sample of WolDSRRF was aged in rum barrels, whereas the
whisky coded as WolDSRRPOF was matured in a barrel made of Polish oak. As in the case
of the previous brand, the maturation period was 3 years. It should be emphasized that the
WolDS brand is distinguished from the others due to its having the highest values of Mn
and Mg.

An interesting position in the compared group of samples was PolWS (a Polish single
malt whisky—marked in dark green). It was produced at home, but according to the
definition, it met all the requirements for this type of alcohol. This whisky was aged for
3 years in oak barrels, fired from the inside. What distinguished this sample was its having
the highest content of Sr, K, S, and P compared to the other Polish products. Potassium was
indicated by Gajek et al., 2021 [13], as an element which much greater content characterizes
home-made products.

Among the 10 analysed samples from Poland, 5 were single malt, single rye, or single
grain and were located in the projection of the cases on the factor-plane at the top of the plot
(quarters I and II). The remaining 5 samples were blended-type products. These points were
at the bottom of the projection (quarters III and IV). However, in the case of all 5 blended
samples, despite the fact that the manufacturer declared the Polish origin of these products,
it was extremely difficult to trace them back to their real origin.
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Figure 3. Projection of the cases on the factor-plane for the 10 samples from Poland investigated in
this study.

3.2.5. Characteristics of Samples from Scotland

The group of products from Scotland included 106 whisky samples (50 single malt
and 56 blended whiskies). The studied objects in this group of products were extremely
diverse in terms of price. They included both low-end products, commonly available in
supermarkets, and high-quality, single malt whiskies, including items not available for
commercial sale. In such a diverse group of samples, making comparisons analogous to
those we made for the samples from Ireland, the USA, or Poland, taking into account
the manufacturer, was extremely difficult (more than 60 independent producers were
investigated.) There were no statistically significant differences in any case in reference
to the brands. Due to the fact that the group of samples from Scotland was much more
diversified than those from other countries, the influence of additional parameters, such as
the type and age of alcohol, on the grouping of objects was taken into account. Therefore, in
the next steps, we verified the hypothesis about the influence of the type of Scotch whisky
(blended or single malt) and the aging time (divided into 3 groups based on maturation
period) of the single malt whisky from Scotland on the ability to distinguish samples.

3.3. Elemental Analysis for the Type of Scotch Whisky

In order to verify the differences in the types of whisky, namely single malt and
blended, only products originating from Scotland were taken into account. Therefore,
106 samples were analysed, including 50 single malt whiskies and 56 blended whiskies.
The non-parametric test showed the presence of statistically significant differences between
the content of such elements as: Al, Cr, Cu, Fe, K, Mg, Mn, P, S, Ti, Tl, Zn, and V (Table S6
and Figure S2A–K). Taking into account the median value for the following elements, in
this group, a blended whisky contained more Al, Cr, and Tl when compared with single
malt whisky. In turn, for the rest of the elements (Cu, Fe, K, Mg, Mn, P, S, Zn, and V), higher
amounts were observed in single malt whisky. Additionally, a projection of the cases on
the factor-plane for all samples originating from Scotland was carried out. As shown in the
graph, most of the single malt whisky samples were grouped on the left side. In turn, a
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vast majority of blended whisky samples was placed on the right side of the projection of
the cases plot (Figure S3). The outlier point (marked in orange) is a 26-year-old, extremely
rare, high-quality single malt whisky, which was not commercially available, and was
characterized by an increased content of the following elements: Mn, Co, Cu, Mg, K, and P.
The second outlier point (marked in green) was the sample of single malt whisky stored
in special, small barrels (octave barrels). Aging the alcohol in much smaller barrels of
about 65L will ensure a better integrity of the beverage with the wood. Despite the short
maturation period (3 years), the alcohol is much more “saturated” and richer in taste, (in the
case of the present study, this sample was characterized by higher levels of the following
elements compared to other samples from Scotland: Li, Co, Mo, Bi, and Zn.). In our
preliminary studies [12], we performed a semi-quantitative measurement of the following
21 isotopes: 44Ca, 45Sc, 47Ti, 48Ti, 51V, 52Cr, 54Fe, 55Mn, 60Ni, 63Cu, 66Zn, 88Sr, 90Zr, 95Mo,
101Ru, 107Ag, 111Cd, 118Sn, 138Ba, 208Pb, 209Bi, and total Hg content using the ICP-ToF-MS
and CV-AAS techniques. We tried to differentiate 20 whisky samples according to country
of origin, production region of Scotland, and type of whisky (single malt and blended). The
performed analysis revealed the existence of statistically important differences between
single malt and blended whiskies for Cr, Fe, Cu, Zn, and Ba. The median counts for
copper, chromium, and barium were higher for single malt whisky. In turn, for iron and
zinc, the blended whisky samples were characterized by higher counts of the mentioned
elements. In our previous study, the analysed samples from various Scottish production
regions differed in age, type, and brand. Most of the single malt samples were matured
whiskies, while the blended whiskies were mainly 3-year-old products. Unquestionably,
this parameter (age) could have affected the existence of statistically significant differences
in the whiskies’ contents of Cr, Fe, Cu, Zn, and Ba.

Admittedly, the projection of cases on the PCA plot, which was carried out in this
study earlier, did not show any grouping by brand or production region. Nevertheless, the
obtained PCA graphs potentially suggested a simultaneous overlapping of two parameters,
such as age and type. Thus, in order to evaluate the influence of the type of whisky on the
elemental compositions, the data set in this work was significantly reduced from 106 objects
to 71. Only samples with the same aging period (3 years) were included in the new tested
data set, which consisted of 54 blended whiskies and 17 single malt whiskies. In this case,
statistically significant differences were reported for such elements as Al, Cr, Cu, Fe, K,
Mg, Mn, S, Ti, Tl, and V. Therefore, in relation to the former comparison of all samples
from Scotland (106 objects), no statistically significant differences for P and Zn were stated.
This allowed us to conclude that these elements (P and Zn) could be related to the age
parameter since the influence of this factor was theoretically eliminated as a consequence
of the rejection of samples maturated for longer than 3 years.

As the authors of this article showed in the preliminary studies [12] conducted on a
much smaller number of objects, the origin of the traces of Cu (Figure 4) could be alembic,
which as a rule, is made of copper. This metal enters into a chemical reaction with a distillate
and somehow “extracts” sulphuric aromas from it. Moreover, literature reports suggest that
copper ions have such a profound effect on the flavour profile of all malt whiskies that has
been described as the “fourth ingredient”, after malted barley, water, and yeast. Moreover, it
was noted that systematic changes within the heating and cooling elements of pot stills can
affect copper solubility and hence spirit character [23]. The size of the alembic is extremely
important since the longer the distillate touches the copper elements, the softer it will
be. Malt whisky is produced in traditional copper stills in batch-type rectors, while grain
whisky, which in general contributes the most to the blended whisky, is run continuously
using more industrial-style patent stills. Therefore, malt whisky, being distilled in small
traditional pot stills, is naturally expected to contain more copper than other types of
whisky produced during column still distillation. The sample with the highest Cu content
(5252 [μg/L]) was the previously mentioned 26-year-old, single malt whisky. Adam et al.,
2002, also confirmed that the whisky had a uniform copper concentration and that the
mean copper concentration was significantly higher for all malt whisky samples than
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for grain and blended scotch whisky samples [10]. The aforementioned grain whisky
(with the largest share in blended whisky, especially in the lower price range) is produced
with column stills, which are made from stainless steel. This equipment comprises a tall
column structure attached above a boiling kettle, and it is designed so as to attain purer
vapours [24]. There are several types that are made only of stainless steel, but for the vast
majority of them, the composition includes elements such as chromium and nickel. One of
the few metals with higher levels in blended whisky was the already-mentioned Cr (from
one of the stainless-steel components) (Figure 5). The results obtained for chromium in
the blended type of whisky were in the range of 53.83–666.1 [μg/L], whereas for single
malt whisky, this range was much narrower (10.70–108 [μg/L]). As mentioned in the
introduction, the number of scientific papers on the elemental analysis of whisky, especially
those considering its type, is very limited. However, so far, a great deal of work has focused
on the analysis of volatile organic compounds eluted using chromatographic techniques [2].
The results show that Scotch grain whisky from a continuous column still distillation
contains very few congeners (substances other than the desired type of alcohol, ethanol,
produced during fermentation), while Scotch malt whisky produced via double pot still
distillation is much richer in them. For the remaining examined elements, despite the lack
of statistically significant differences, in most cases, higher concentrations were observed
in the single malt whiskies compared to the blended whiskies. Thus, this supports the
hypothesis that this type of whisky is richer in various ingredients. The presented results
may prove that the equipment used in the alcohol distillation process may have a significant
impact on the elemental profile of the final product.

Figure 4. Boxplot for the concentration of Cu obtained for 106 objects of Scotch whisky, divided into
two groups: blended (B) and single malt (SM).
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Figure 5. Boxplot for the concentration of Cr obtained for 106 objects of Scotch whisky, divided into
two groups: blended (B) and single malt (SM).

3.4. Elemental Analysis for Age of Single Malt Scotch Whisky

In order to verify the hypothesis on the potential impact of aging time on the elemental
composition of whisky, from the considered set of samples, 50 objects (Scottish single malt)
were selected, where the producer declared the age of the alcohol. The samples were
divided into the following groups: 3–9YO; 10–16YO; >16YO (where, in group 3–9 YO, there
were only aged products, the minimum period required by law, i.e., 3 years). Considering
the tested set of samples in terms of the age of whisky, the existence of statistically significant
differences based on Kruskal–Wallis tests only for the concentrations of Cu (3–9YO—10–
16YO and 3–9YO—>16YO) and Mn (3–9YO—>16YO) were found (Table 4 and Figure S4A,B
in Supplementary Materials). An upward trend was observed for both elements. This
means that, the longer the alcohol was aged, i.e., the longer it stayed in the barrel, the
higher the content of these elements that was recorded. The mentioned trend is visible
when taking into account both the median values and the other basic statistics (minimum
and maximum values). It should be emphasized that, in this study, high-quality, single
malt Scotch whisky was considered. It was previously proved that this type of alcohol
was characterized by a higher content of copper, as a direct consequence of the method of
production. The increase in the copper content correlated with the extended aging period
is certainly related to the fact that the products with longer aging periods analysed in
this study were the leading brands produced in Scottish distilleries. Thus (in accordance
with the manufacturers’ declarations), dedicated distillation stills with longer “necks” are
often used by leading brands in order to ensure special taste qualities. For the rest of the
elements determined in this study, again based on the median value in most cases (V, Cr,
Ni, Sr, Sb, Bi, Zn, Mg, K, P), despite the lack of statistically significant differences, the same
trend was observed as for Cu and Mn. In the previous whisky comparison (single malt and
blended), it was concluded that the differentiation of the samples may have been influenced
by several, overlapping parameters. Therefore, the authors decided to compare the results
only within the group of samples with the same aging period (3 years). Despite the lack of
statistically significant differences for the studied elements, the influence of aging on the
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increased concentrations of Zn and P was clearly visible. Both the mean and median values
for these elements increased in the following order: “3–9YO” < “10–16YO” < “>16YO”.

Table 4. Contents of selected elements (with statistically significant differences) in the measured
Scottish Single Malt Whisky (n = 50) [μg/L].

Age n Mean Median Min Max Std. Dev.

55Mn
3–9 YO 17 63.09 54.73 16.85 155.1 34.36

10–16 YO 28 76.93 69.25 22.04 223.1 42.41
>16 YO 5 133.7 94.17 73.37 260.1 76.67

63Cu
3–9 YO 17 558.2 543.0 143.2 1163 289.9

10–16 YO 28 982.0 766.6 172.8 2536 606.4
>16 YO 5 1809 836.7 663.9 5252 1950

As other authors have noted, the concentrations of oak-derived congeners in a given
cask of whisky increase with maturation time. Moreover, it is possible to create a graph
showing maturation congener concentrations against age. There are literature reports
of using near-infrared reflectance (NIR) as a predictive tool for Canadian whisky aging.
Natural 14C in atmospheric carbon dioxide is absorbed by metabolism into all plants,
including the cereals used for whisky manufacture. Analysis of the 14C levels in ethanol
concentrated from the whisky samples was used to estimate the year in which the cereal
was grown and then to relate this year with the age of maturation [25]. Chromatographic
analysis of selected acids and phenols in chosen samples of whisky (from 6 to 30 YO)
conducted by Ng et al., 2000 [26], brought a similar conclusion. The authors stated that,
in general, the samples of the oldest whisky contain the highest concentrations of the
analysed compounds.

In this work, an interesting relationship between the sulphur concentration and the
age of the analysed alcohol beverages samples was made and deserves attention. Sul-
phur volatile compounds generated during the production process of whisky, to a large
degree, influence their quality [27]. On the basis of the research carried out so far, alkyl
sulphides such as DMS, DMDS, and DMTS have been recognized as alcohol maturation
markers [28,29]. It has been proven that their levels decreased during maturation. In our
study, taking into account the median values of S, its levels clearly decreased with age,
which undoubtedly had a positive effect on the quality of alcohol. Thus, in our work, the
same relationships were proven as made by other authors regarding the S since the sulphur
compound levels determined by chromatographic techniques.

Additionally, a projection of the cases on the factor-plane for 50 samples originating
from Scotland with the producer’s declaration of the age of the alcohol was carried out.
Exactly as in the case of the single malt and blended whisky graph, the division of the plot
into two parts can be noticed. We can observe a strong tendency that “older” products
are on its left side, while the “younger” ones are mostly on the right side of the PCA plot
(Figure S5). As for the previous comparison (Figure S3), the same outliers can be identified
(i.e., the sample of the unique, 26-year-old whisky marked in orange and the sample of
the whisky aged in octave barrels marked in green). Thus, a conclusion can be drawn
only about general trends regarding the position of individual samples in the presented
projections of cases on the factor-plane, supported by the presence of statistically significant
differences. However, it should be emphasized that many parameters affect the possibility
of the potential differentiation of particular groups of samples from one another.

4. Conclusions

Taking into account the national standards defining the maximum permissible levels of
Cd and Pb in high-percentage alcohol products, it was found that the permissible level was
exceeded in the case of Pb for only one sample. The limit value for Cd was not exceeded
in any case. For the set of Scotch whisky samples (n = 106), the existence of statistically
significant differences was indicated for metals such as Al, Cr, Cu, Fe, K, Mg, Mn, P, S,
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Ti, Tl, Zn, and V between the groups of single malt and blended whiskies. Single malt
Scotch whisky had a uniform concentration of copper, and the mean copper content was
significantly higher for all malt whisky samples than for the blended type. The main source
of Cu could be alembic, which, as a rule is made of copper. Moreover, the presented results
suggested that the equipment used in the alcohol distillation process may have a significant
impact on the elemental profile of the final product.

The analysis of the samples from the USA and from Ireland (n = 26) clearly revealed
that the objects that were the same product but originated from independent bottles (e.g., the
JB, JDG, and Bus brands) showed similar elemental profiles. From the consumer’s point
of view, the elemental characteristics of whisky entirely produced in Poland from local
raw materials, including home-made products, may seem interesting. Alcohol produced at
home can be characterized by the highest content of Sr, K, S, and P as compared to other
products from Poland. In terms of the aging time of whisky, the existence of statistically
significant differences based on Kruskal–Wallis tests of the concentrations of Cu (3–9YO—
10–16YO and 3–9YO—>16YO) and Mn (3–9YO—>16YO) was observed. The conclusion
is that the longer the alcohol was aged, i.e., the longer it stayed in the barrel, the higher
the content of these elements that was recorded. Based on the comparison of three aging
periods only for single malt Scotch whisky, it can be concluded that, despite the lack of
statistically significant differences for Zn and P, the influence of aging on the increasing
concentration of these elements was clearly visible. Both the mean and median values for
these elements increased in the following order: “3–9YO” < “10–16YO” < “>16YO”. The
study of reduced data set (from 106 to 71 samples) for both type of Scotch whisky samples
(single malt and blended) also allowed to conclude that P and Zn could be related to the
age parameter. The influence of this factor was theoretically eliminated as a consequence of
the rejection of samples maturated for no longer than 3 years, no statistically significant
differences for these elements were stated. In this study, it has also been proven that levels
of sulphur decrease during maturation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11111616/s1, Figure S1A–P: Box & whisker plots of selected
elements (with statistically significant differences) in the measured whisky samples (n = 170) [μg/L];
Figure S2A–K: Box & whisker plots of selected elements (with statistically significant differences)
in the measured Scottish whisky (n = 106) [μg/L]; Figure S3: Projection of the cases on the factor-
plane for 106 samples from Scotland according to their type (single malt (SM) and blended (B));
Figure S4A,B: Box & whisker plots of selected elements (with statistically significant differences) in
the measured Scottish single malt whisky (n = 50) [μg/L]; Figure S5: Projection of the cases on the
factor-plane for 50 samples of single malt whisky from Scotland, Table S1: ICP-MS (Thermo Electron
Corporation, X SERIES, East Lyme, CT, USA) and ICP-OES (Thermo Scientific, ICAP 7000 series,
Bremen, Germany) parameters and measurement conditions; Table S2: Basic validation parameters
obtained for each analyte by using developed method (n, number of standards in three replicates, R2,
coefficient of determination); Table S3: Contents of selected elements (with statistically significant
differences) in the measured whisky samples (n = 170) [μg/L]; Table S4: Contents of selected elements
(with statistically significant differences) in the measured samples from USA division against the
brand (n = 26) [μg/L]; Table S5: Contents of B in the measured samples from Ireland division against
the brand (n = 15) [μg/L]; Table S6: Contents of selected elements (with statistically significant
differences) in the measured Scottish whisky (n = 106) [μg/L].
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Abstract: The determination of flavor compounds using headspace solid-phase microextraction (HS-
SPME) combined with gas chromatography–mass spectrometry (GC-MS) can be severely interfered
with by complex food matrices in food systems, especially solid samples. In this study, dispersive
liquid-liquid microextraction (DLLME) was applied prior to HS-SPME to efficiently reduce the matrix
effect in solid seafood samples. The method had high sensitivity (the quantification limits of maltol
and ethyl maltol were 15 and 5 μg/kg, respectively), an excellent linear relationship (R2 ≥ 0.996),
and the sample recovery rate was 89.0–118.6%. The relative standard deviation (RSD %) values
for maltol and ethyl maltol were lower than 10%. Maltol (from 0.7 to 2.2 μg/g) and ethyl maltol
(from 0.9 to 34.7 μg/g) in seafood were detected in the selected samples by the developed method.
Finally, DLLME coupled with HS-SPME effectively removed the influence of sample matrix and
improved the sensitivity of the method. The developed method was applicable in the analysis of
flavor enhancers in complex matrix foods.

Keywords: dispersive liquid-liquid microextraction; HS-SPME; flavor enhancer; seafood; GC-MS

1. Introduction

Maltol and ethyl maltol, which are derived from sucrose pyrolysis and food baking,
have a caramelized flavor, can enhance the flavor and sweetness of food [1,2], and are often
used as food flavor enhancers in seafood processing to cover up a fishy smell and improve
the flavor of products [3,4]. However, excessive consumption of flavor enhancers can have
adverse effects on health, such as dizziness and nausea [5,6]. Meanwhile, maltol can chelate
metal ions to form derivative complexes, which have certain toxicity to cells and affect
liver and kidney function [7]. Studies had shown that when maltol was fed to rats at a
daily dose of 1000 mg/kg, it caused kidney damage and even death [8]. Therefore, the
amount of maltol and ethyl maltol added into the diet should be strictly monitored and
an analytical method needs to be established that can improve detection sensitivity, and
therefore, accurately detect and control the content of flavor enhancers in food samples.

As compared with the HPLC-MS method [9–11], the GC-MS method, with its specific
advantages such as high separation resolution and reliable spectrum library search, has
been mainly applied to determinate volatile compounds [12–14]. Headspace solid-phase
microextraction (HS-SPME) has been a popular pretreat method applied to enrich volatile
compounds for further quantitation and quantification using the GC-MS method [15–17].
Although the headspace method can effectively remove the nonvolatile compounds injected
into a GC sample port [18], the enrichment of volatile compounds is severely interfered
with by sample matrix, which consequently induces low sensitivity and less robustness for
several volatile compounds [19,20]. Therefore, there is an urgent need to reduce the matrix
effect of headspace methods for determining volatile compounds using the GC-MS method.
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Traditionally, solid phase extraction (SPE) or liquid-liquid extraction (LLE) have been
applied to remove most sample matrix [21,22], however, these traditional methods are time-
consuming and consume large volumes of solvent [23,24]. As compared with traditional
methods, the dispersive liquid-liquid microextraction (DLLME) technique can reduce
solvent consumption and can concentrate analytes rapidly, which significantly improves
the extraction efficiency [25–27]. In addition, DLLME had been reported to significantly
reduce matrix interference in analyses of contaminants in wine [27,28], polycyclic aromatic
hydrocarbons (PAHs) in roasted cocoa beans [29], and acrylamide in coffee samples [30].
To the best of our knowledge, there are no reports on HS-SPME combined with DLLME
applied to detect flavor enhancers in seafood.

In this study, solid seafood was pretreated using DLLME/HS-SPME, and the fla-
vor substances (maltol and ethyl maltol) in seafood were detected and analyzed by gas
chromatography–mass spectrometry. The experimental parameters of DLLME and HS-
SPME were optimized, and the accuracy and performance of DLLME/HS-SPME/GC-MS
were further evaluated.

2. Materials and Methods

2.1. Chemicals

Maltol (99%) and ethyl maltol (99%) were purchased from Macklin (Shanghai, China).
The analytical grade organic reagents dichloromethane (CH2Cl2), chloroform (CHCl3), car-
bon disulfide (CS2), methanol, acetone, and acetonitrile were from Sigma-Aldrich (St. Louis,
MO, USA).

2.2. Preprocessing Method of DLLME/HS-SPME

Four types of seafood such as dried squid, instant squid larvae, instant kelp, and
instant small yellow croaker were selected as test samples. Two grams of each sample
was mixed with 10 mL of deionized water in a centrifuge tube. In order to extract maltol
and ethyl maltol sufficiently from a sample, the mixture was homogenized (6000 rpm) for
3 min with a high-speed homogenizer (XHF-DY, Scientitz, 84 Ningbo, China), and then
treated with ultrasound for 10 min (SB-800DT, Ningbo, China). After ultrasonic treatment,
the sample aqueous solution was centrifuged (4000 rpm) for 5 min. The supernatant was
collected, and then further treated using the DLLME technique.

Food matrix components (such as protein and fatty) interact with organic solvent in
DLLME to cause an emulsifying phenomenon, which reduces the volume of the separated
organic phase [31]. In DLLME, high preconcentration factor and sufficient volume of
precipitated phase must be ensured for further analysis after centrifugation. Generally, the
volume of dispersant and extractant are in the ranges of 50–3000 μL and 15–2000 μL,
respectively [31]. In this study, extractant (500 μL) and dispersant (1.5 mL) were mixed,
and then injected into the sample supernatant (2 mL). After centrifugation (6000 rpm) for
3 min, 200 μL of the lower organic phase mixed with 15 μL of cyclohexanone standard
(50 mg/L) was transferred into 20 mL headspace vials and further evaporated under vac-
uum conditions to eliminate the organic solvent. The dried sample was incubated at a
constant temperature, and then further extracted by head-space SPME (DVB/CAR/PDMS,
50/30 m). In this study, the optimal conditions for the DLLME treatment were selected
by comparing the effects of different extractants (dichloromethane, chloroform, and car-
bon disulfide), dispersants (methanol, acetonitrile, and acetone), extractant-to-dispersant
volume ratios (1:4, 2:5, and 1:2), and ratios of water sample volume to total volume of
dispersant and extractant (2:3, 4:5, and 1:1) on the extraction effect of flavor enhancers.
The optimal conditions for the HS-SPME treatment were selected by comparing the results
of different incubation temperatures (40 ◦C, 50 ◦C, and 60 ◦C), incubation times (10 min,
15 min, 20 min, and 25 min), and extraction times (10 min, 20 min, 30 min, and 40 min) on
flavor enhancer extraction.
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2.3. GC-MS Determination of Flavor Enhancers

The flavor substances in the samples were separated using a 7890B series gas chromato-
graph, and the target substances were quantified using a 5977B series mass spectrometer.
Chromatographic conditions of the 7890B were: the chromatographic column was an Agi-
lent 19091S-431UI-5MS capillary column (15 m × 250 μm × 0.25 μm), the sample injection
volume was 1 μL, and the injection port temperature was 250 ◦C. The temperature rise
program was 35 ◦C, containing for 0 min, rising to 220 ◦C at 5 ◦C /min, and then, rising
to 280 ◦C at 10 ◦C /min and containing for 2 min. The carrier gas was high purity helium
(99.9%), the flow rate was 1 mL/min, the column pressure was 12.04 psi, and the injection
port was in the undivided mode. The GC column was directly connected to an Agilent
5977 B series mass selective detector of ion source for the mass spectrometry analysis.
The EI source was used as the ion source, the analyte was ionized in the ion source at 70 eV
and 230 ◦C, and the scanning mass range was 40–400 amu [32].

The matrix effect (ME) in samples was calculated using the following equation:

ME% =
Peak area of standards in matrix − Peak area of standards in solvent

Peak area of standards in solvent
×100% (1)

2.4. Statistical Analysis

The mean and standard deviation of each experiment were calculated. Analysis of
variance (ANOVA) was used to determine significant differences (p < 0.05) between each
experiment using the SPSS software package (IBM SPSS Statistics 20).

3. Results and Discussion

3.1. Optimization of the DLLME/HS-SPME Conditions

To reduce the pretreatment time and to reduce the matrix effect on target compounds,
DLLME was used to eliminate matrix interference quickly and to improve the method’s
sensitivity before the HS-SPME/GC-MS analysis. In this study, the conditions of DLLME
were optimized using a single factor design experiment. The maltol and ethyl maltol
in the water phase were extracted by organic solvent. As shown in Figure 1a,b, the
extraction efficiency was increased when chloroform was performed as an extractant and
methanol were performed as a dispersant. Therefore, chloroform and methanol were the
best extractant and dispersants for DLLME in this experiment. Chloroform is the most
widely used extractant (approximately 42% of published studies use this solvent) [31].

  
(a) (b) 

Figure 1. Cont.
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 1. Optimization of conditions for pretreatment dispersive liquid-liquid microextrac-
tion/headspace solid-phase microextraction (DLLME/HS-SPME): (a) Different types of extractants
(dichloromethane, chloroform, and carbon disulfide); (b) different types of dispersants (methanol,
acetonitrile, and acetone); (c) different extractant volume to dispersant volume ratios; (d) different
aqueous volume to total volume of dispersant and extractant; (e) different incubation temperatures
(40 ◦C, 50 ◦C, and 60 ◦C); (f) different incubation times (10 min, 15 min, 20 min, and 25 min); (g) dif-
ferent extraction times (10 min, 20 min, 30 min, and 40 min), on the extraction efficiency of flavor
enhancers. Note: C1/C0, the peak area of flavor enhancers (maltol and ethyl maltol)/the peak area
of cyclohexanone standard. The superscript letters (A–D) in each histogram indicate significant
differences (p < 0.05) for the samples.

Similarly, the ratio of each phase in the solution would also affect the extraction
efficiency of target analytes. As shown in Figure 1c, the highest extraction efficiency of
maltol and ethyl maltol was obtained at 1:4 (the volume ratio of extractant to dispersant).
When the volume ratio of extractant to dispersant in the organic phase increased, the
extraction efficiency of maltol and ethyl maltol correspondingly decreased due to the
dilution effect. In addition, a decrease in organic phase volume ratio could effectively
increase the extraction efficiency of maltol and ethyl maltol (Figure 1d). However, the lower
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volume ratio of organic phase made it difficult to obtain the separated organic phase with
enough volume to pipette out. In this study, the volume ratio of the sample (2 mL) to the
organic phase was selected as 1:1.

The extraction time, incubating time, and extraction temperature in the HS-SPME
method were separately optimized. As shown in Figure 1e, the HS-SPME method was
most suitable for removing maltol and ethyl maltol from the DLLME extract when the
extraction temperature was 60 ◦C. Increasing the extraction temperature significantly
influenced the extraction of flavor substances. An increase in temperature could increase
the content of volatile compounds in the headspace, and therefore, increase extraction
efficiency, but excessive high temperature (>60 ◦C) could induce the desorption of volatile
flavor compounds on HS-SPME fiber [32]. Therefore, the best extraction temperature was
set at 60 ◦C. In addition, the incubation time and extraction time had significant effects on
the extraction efficiency of HS-SPME. When the incubation time (Figure 1f) and extraction
time (Figure 1g) were 20 min separately, the highest extraction efficiency of maltol and
ethyl maltol were obtained.

3.2. Verification of Pretreatment Effect of DLLME

In this study, the DLLME/HS-SPME/GC-MS method was evaluated with 1 μg/mL
maltol and ethyl maltol standards. As shown in Figure 2a, HS-SPME/GC-MS could effec-
tively detect volatile maltol and ethyl maltol. The chromatographic peaks obtained were
well separated (retention time was 13.3 min and 15.8 min, respectively) with symmetri-
cal peak shapes. As compared with the HS-SPME method, the signal intensity of maltol
(five times increase) and ethyl maltol (10 times increase) was improved significantly when
DLLME was coupled with HS-SPME (Figure 3a).

 
(a) 

  
(b) (c) 

Figure 2. Chromatograms of maltol and ethyl maltol pretreated by dispersive liquid-liquid microex-
traction combined with headspace solid phase microextraction (A, without DLLME treatment and B,
with DLLME treatment): (a) Chromatograms of maltol and ethyl maltol standard; (b) enlargement of
the chromatogram of maltol standard; (c) enlargement of the chromatogram of ethyl maltol standard.
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(a) (b) 

 
(c) 

Figure 3. Effects of different pretreatments (without DLLME treatment and after DLLME treatment)
on extraction efficiency of maltol and ethyl maltol: (a) Effect of DLLME treatment on the extraction
efficiency of maltol and ethyl maltol standards; (b) effect of DLLME treatment on the extraction
efficiency of maltol and ethyl maltol in the matrix (dried squid samples); (c) effect of DLLME treatment
on the extraction efficiency of maltol and ethyl maltol in the matrix with standards. C1/C0, the peak
area of flavor enhancers (maltol and ethyl maltol)/the peak area of cyclohexanone standard.

Complex matrix samples such as seafood contain a high content of oil and pro-
tein [33], which significantly interfere with HS-SPME enrichment of maltol and ethyl
maltol. Obviously, the signal intensity of maltol and ethyl maltol with sample matrix was
individually reduced by five and nine times as compared with the samples without matrix
(Figure 3c). However, the signal intensity of maltol and ethyl maltol with matrix was
significantly improved after DLLME pretreatment prior to HS-SPME (Figure 3b).

The calculated matrix effect in seafood was −81.12% for maltol and −88.72% for ethyl
maltol (Table 1). The enrichment factor of the DLLME method coupled with HS-SPME was
19 for maltol and 66 for ethyl maltol (Table 1). The results showed that DLLME improved
the efficiency of the HS-SPME/GC-MS analysis of volatile flavor compounds.

Table 1. Calibration range, limit of detection (LOD), and limit of quantitation (LOQ) for flavor enhancers.

Compounds Maltol Ethyl Maltol

Matrix effect (%) −81.12% −88.72%
Enrichment factor 19 66

Calibration range (μg/g) 0.25–25.00 0.05–40.00
Regression equation a y = 0.2806x − 0.0142 y = 0.6744x + 0.2082

R2 0.9975 0.9967
LOD (μg/kg) b 5.0 2.5
LOQ (μg/kg) c 15.0 5.0

Intraday precision
RSD (n = 3, %) 5.7 2.8

Interday precision
RSD (n = 3, %) 4.3 3.5

a y is the peak area of flavor substances and x is the concentration of flavor substances; b S/N = 3; c S/N = 10.
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3.3. Evaluation of the Analytical Method

The applicability of DLLME combined with HS-SPME/GC-MS in the analysis of flavor
enhancers (maltol and ethyl maltol) in seafood was evaluated based on linear range, sensi-
tivity, stability, and accuracy. The standard curves of maltol and ethyl maltol were obtained
by adding maltol standard (0.25–25 μg/g) and ethyl maltol standard (0.05–40 μg/g) into
dried squid substrate. As shown in Table 1, the method had an excellent linear relationship,
and the correlation coefficients (R2) of the calibration curves for maltol and ethyl maltol
were greater than 0.995. In this study, the limit of detection (LOD) values of maltol and
ethyl maltol were 5.0 μg/kg and 2.5 μg/kg, respectively. In addition, the limit of quan-
tification (LOQ) values were 15 μg/kg and 5.0 μg/kg, respectively. As compared with
the previously reported methods of solid-phase extraction and dispersed liquid-liquid
microextraction (DSPE-DLLME), ionic liquid (IL), and solid-phase extraction (SPE), the
LOD and LOQ of the developed method were relatively low (Table 2). Obviously, DLLME
coupled with HS-SPME was sensitive for determining maltol and ethyl maltol in complex
matrix samples.

Table 2. Comparison of the present method with other methods a.

Detection
Methods

Matrix Analytes LOD LOQ Reference

DSPE/DLLME-
HPLC-PDA

Ready-to-eat
seafood

Flavor enhancers
(maltol, ethyl maltol,

vanillin, methyl
vanillin, ethyl vanillin)

60–150 μg/kg 200–500 μg/kg [34]

IL-IC Biscuit, chocolate,
and milk powder

Spices (vanillin, ethyl
vanillin and
ethyl maltol)

20–45 μg/kg 70–150 μg/kg [35]

SPE-GC–MS Infant formula

Flavoring agents
(vanillin, methyl

vanillin, ethyl vanillin
and coumarin)

- 10 μg/kg [36]

DLLME/HS-
SPME/GC-MS Seafood Flavor enhancers

(maltol, ethyl maltol) 2.5–5.0 μg/kg 5–15 μg/kg This work

a—not mentioned.

The relative standard deviation (RSD) was detected to evaluate the stability and
repeatability of the DLLME/HS-SPME pretreatment method. Intraday precision and
interday precision were determined by adding a 5.0 μg/g mixed standard solution of maltol
and ethyl maltol to dried squid samples. As shown in Table 1, the intraday accuracy ranged
from 2.8 to 5.7% and the interday accuracy ranged from 3.5 to 4.3% for the DLLME/HS-
SPME method. The results indicated that the developed method was stable and reliable.

The recovery rate of this method was evaluated by adding three different concentra-
tions of maltol and ethyl maltol standard solutions to dried squid samples. The recovery
results showed that the pretreatment of instant dried squid by the DLLME/HS-SPME
method did not affect the accuracy of GC-MS detection of flavor substances. As shown
in Table 3, the recovery rate of maltol in matrix samples ranged from 89.0 to 118.6%, and
that of ethyl maltol in matrix samples ranged from 96.0 to 112.1%. The results suggested
the developed method was accurated for determining maltol and ethyl maltol in complex
matrix samples.

3.4. Determination of Maltol and Ethyl Maltol in Authentic Seafood

Four kinds of seafood (squid larvae, dried squid, seasoned kelp, and crispy yellow
croaker) were pretreated by DLLME, and then further detected and analyzed by HS-
SPME/GC-MS. As shown in Table 4, the contents of maltol and ethyl maltol in four kinds
of seafood ranged from 0.7 to 2.2 μg/g and from 0.9 to 34.7 μg/g, respectively. The results
showed that the method was suitable for the detection and analysis of flavor enhancers
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in marine products. According to the EU legislation, the added concentration of maltol to
food can range from 50 to 200 mg/kg [37]. The recommended maximum acceptable daily
dose for the human body is 2 mg/kg [1]. The addition amounts of maltol and ethyl maltol
in squid larvae, dried squid, seasoned kelp, and crispy yellow croaker were within the
maximum allowable addition range (200 mg/kg).

Table 3. Recovery of maltol and ethyl maltol in samples a.

Flavor Enhancers Spiking Level (μg/g) Recovery (RSD%)

Maltol
1.00 89.0 (4.2)
12.50 98.1(4.8)
20.00 118.6 (3.3)

Ethyl maltol
2.50 106.1 (6.8)

12.50 96.0 (1.1)
25.00 112.1 (4.4)

a Results shown represent % recovery with % RSD in parentheses, n = 3.

Table 4. Determination of maltol and ethyl maltol in seafood a.

Sample Maltol (μg/g) Ethyl Maltol (μg/g)

Squid larvae 0.7 (5.5) 1.1 (9.0)
Dried squid 1.4 (8.0) 34.7 (7.5)

Seasoned kelp 2.2 (4.6) 5.3 (3.8)
Crispy yellow croaker 0.7 (8.8) 0.9 (7.1)

a % RSD values were given in parentheses, n = 3.

4. Conclusions

In this study, flavor enhancers (maltol and ethyl maltol) in solid seafood were detected
by using DLLME combined with an HS-SPME/GC-MS analysis. The developed method
could significantly eliminate the matrix effect and could significantly improve the method’s
sensitivity. As expected, DLLME effectively broadened the HS-SPME applications for
volatile compounds determination in complex samples.
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Abstract: The saponification value of fats and oils is one of the most common quality indices,
reflecting the mean molecular weight of the constituting triacylglycerols. Proton nuclear magnetic
resonance (1H-NMR) spectra of fats and oils display specific resonances for the protons from the
structural patterns of the triacylglycerols (i.e., the glycerol backbone), methylene (-CH2-) groups,
double bonds (-CH=CH-) and the terminal methyl (-CH3) group from the three fatty acyl chains.
Consequently, chemometric equations based on the integral values of the 1H-NMR resonances
allow for the calculation of the mean molecular weight of triacylglycerol species, leading to the
determination of the number of moles of triacylglycerol species per 1 g of fat and eventually to the
calculation of the saponification value (SV), expressed as mg KOH/g of fat. The algorithm was
verified on a series of binary mixtures of tributyrin (TB) and vegetable oils (i.e., soybean and rapeseed
oils) in various ratios, ensuring a wide range of SV. Compared to the conventional technique for
SV determination (ISO 3657:2013) based on titration, the obtained 1H-NMR-based saponification
values differed by a mean percent deviation of 3%, suggesting the new method is a convenient and
rapid alternate approach. Moreover, compared to other reported methods of determining the SV
from spectroscopic data, this method is not based on regression equations and, consequently, does
not require calibration from a database, as the SV is computed directly and independently from the
1H-NMR spectrum of a given oil/fat sample.

Keywords: saponification value; 1H-NMR spectroscopy; tributyrin; dairy fat; vegetable oils

1. Introduction

One of the most common oil quality indices is the saponification value (SV); it is
defined as the amount of alkali (expressed as mg KOH/g sample) required to saponify a
defined amount of sample. It is conventionally determined through saponification of a
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known amount of oil/fat with excess KOH solution, followed by back titration of the excess
base with acid solution in the presence of phenolphthalein as an indicator. The amount
of base needed for saponification of the fatty acyl chains is then indirectly determined
from the excess base that remains unreacted. Since the amount (moles) of base reacted
is stoichiometrically equal to the amount (moles) of fatty acyl chains contained in 1 g of
oil/fat, SV is then dependent on the length of the fatty acyl chains from triacylglycerols.
Therefore, a small saponification value indicates long chain fatty acids on the glycerol
backbone in a sample; on the contrary, a high SV indicates triacylglycerols with shorter
fatty acyl chains. Consequently, SV becomes an easy approach to assess fatty acids’ chain
length of specific fats/oils.

For example, most of the common oils/fats of vegetable or animal origin (sunflower,
soybean, rapeseed, pork lard, beef tallow, chicken fat, etc.) contain almost only long chain
fatty acids (C18 and C16), having similar SV values (ranging from 168–196 mg KOH/g
oil) [1]. Some vegetable oils, such as the coconut and palm kernel oils, contain large
amounts of lauric (C12:0) and myristic (C14:0) acids; therefore, their saponification values
are significantly higher (235–260 mg KOH/g oil) [2–5]. Milk fat differs substantially from
other fats and oils in terms of the fatty acid profile (FAP), including relevant amounts
of short chain (C4–C6) and medium chain (C8–C12) fatty acids, which is subsequently
reflected in its high SV (213–227 mg KOH/g fat) [6,7]. Consequently, SV may be helpful in
the detection of the adulteration of dairy products with cheaper fats and oils, because the
addition of an oil/fat rich in C18 to a dairy product will result in a decrease in the SV.

Although easy and accurate, the reference method of SV determination requires spe-
cific glassware and harmful chemicals and is time consuming (according to the protocol, the
saponification step takes one hour to complete, because it is critical that the saponification
be complete prior to the final titration). In addition, several factors can cause errors in
the titration step including misjudging the color of the indicator near the end point, mis-
reading volumes or faulty technique. Therefore, a new, rapid and reliable method would
be preferred.

In this respect, spectroscopic methods coupled with multivariate data analysis have at-
tracted attention, being considerably faster and more practical from a procedural viewpoint.
For example, SV has been determined through Fourier transform infrared spectroscopy
(FTIR) coupled with multivariate analysis [8] with good accuracy, compared to the standard
method; however, the main drawback of the methods based on spectroscopic data is that
they require the existence of a large spectral base for the model calibration.

1H-NMR spectroscopy is a fast (the recording of a 1H-NMR spectrum takes approxi-
mately 2 min) and non-destructive technique that has widely been applied in the analysis
of edible oils. 1H-NMR spectra of fats and oils display signals assigned to both the un-
saturated moiety and to various methylene groups of the fatty acyl chains. These signals
may be used to calculate the average fatty acyl chain length of fat samples. The 1H-NMR
technique allows for full process automation, from the recording (due to the autosamplers)
to data processing. Small amounts of samples are necessary, which—if needed—can further
be recovered simply through solvent evaporation, after the spectra are recorded. Very
importantly, the 1H-NMR technique is also reliable, and several papers report the fatty acid
profile of fats and oils computed from 1H-NMR data in good agreement with chromato-
graphic data [9–13]. Skiera et al. briefly reported a rapid method for the determination of
the SV from NMR data based on the integral of the CH2 protons adjacent to the ester groups
(δH 2.2–2.4 ppm) and on the integral of the 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB) signal
at δH 7.7 ppm, used as an internal standard for quantitative NMR experiments. Five sam-
ples (with a single measurement per sample) were tested with the new method; the NMR
results were in agreement with the values obtained through the ISO method, consequently
pointing at the suitability of the NMR spectroscopy for the determination of the quality
indices of fats and oils [14].

Based on our previous expertise on NMR chemometrics to edible oils [13], the present
work reports a general algorithm for the calculation of the SV of fats and oils from the 1H-
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NMR data. The working model consists of a series of binary mixtures of tributyrin (TB) and
vegetable oils in various ratios to obtain a wide range of SV. In addition, to ensure an even
more variate composition also regarding the unsaturation, soybean and rapeseed oils—SO
and RO, respectively—were used to prepare the model samples. The average length of the
fatty acyl chains can be computed through chemometric equations from 1H-NMR data,
leading to the calculation of the average molecular weight of each sample and eventually
to the SV. The new method was evaluated in comparison with the conventional method
based on titration and was further applied to a series of edible fats and oils including butter
and cheese extracted fats. Compared to other reported methods of determining the SV
from spectroscopic data, the proposed method is not based on regression equations and,
consequently, does not require calibration from a database. SV may be computed directly
and independently from the 1H-NMR spectrum of a given oil/fat sample.

2. Materials and Methods

2.1. Reagents

CH2Cl2 (HPLC purity) and anhydrous MgSO4 were from Sigma–Aldrich, as well as
tributyrin (97%). The CDCl3 (isotopic purity 99.8%D) was also from Sigma–Aldrich.

2.2. Binary Oil–Tributyrin Mixtures

A series of binary mixtures of tributyrin (TB) and vegetable oils (RO and SO) in
various ratios was prepared to obtain a wide range of SVs. Owing to their different fatty
acid profiles, SO and RO were chosen as components for binary mixtures to obtain an
even more variate composition also with respect to the unsaturation, thus leading to more
reliable results. The specific composition of the RO-TB and SO-TB series is given in the
Supplementary Table S1.

2.3. Butter and Cheese Samples

Butter (n = 4) and cheese (n = 9) samples of bovine origin were obtained from Roma-
nian, Bulgarian and Moldavian dairy companies. Butter fat (BF) was extracted from butter
samples with CH2Cl2, dried on anhydrous MgSO4, followed by evaporation of the solvent.
Cheese fat was extracted according to ISO 1735|IDF 5:2004 protocol [15].

2.4. Oil and Fat Samples

Soybean, rapeseed and sunflower seeds were obtained from the National Agricultural
Research and Development Institute of Fundulea (NARDI Fundulea), Romania. The oil
was extracted from seeds according to the standard Soxhlet protocol [16]. Beef and sheep
tallow were extracted with CH2Cl2 from subcutaneous adipose tissue, dried on anhydrous
MgSO4, followed by evaporation of the solvent. Coconut oil was purchased from Trio
Verde S.R.L., Romania (distributor), and the palm stearin and palm kernel oil were from
Scintilla Silk, Romania (distributor).

2.5. Saponification Value

The saponification value was determined according to the ISO 3657:2013 standard
procedure [17].

2.6. 1H-NMR Spectra
1H-NMR experiments were recorded in a field of 6.9 T using a Bruker Fourier spec-

trometer (Bruker Biospin, Ettlingen) operating at an 1H Larmor frequency of 300.18 MHz.
The 1H-NMR experiments were using the standard zg30 pulse sequence and had the fol-
lowing parameters: 30◦ pulse, 5.37 s acquisition time, 6.1 kHz spectral window, 16 scans,
65K data points, 1 s delay time; all spectra were recorded at 25 ◦C. Fat samples (200 mg)
were dissolved in 0.6 mL CDCl3 and transferred to 0.5 mm NMR tubes of the type Norell
NOR508UP7-5EA (Sigma–Aldrich, Saint Louis, MO, USA). MestReNova 6.0.2-5475 soft-
ware (Mestrelab Research, Santiago de Compostela, Spain) was used to process the spectra.
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To eliminate operator errors, fixed integration limits were used to obtain the integration
values (Supplementary Materials Table S1). In addition, for each sample the F resonance
(given by the two protons adjacent to the ester group) was considered as a reference and,
therefore, calibrated to 2.000; consequently, the rest of the integrals were automatically
reported to the reference. According to the general rule for signals integration (i.e., from
baseline to baseline), partially overlapping signals were integrated altogether (i.e., A + B
and I + J, respectively). The NMR tubes were in-house quality checked as we previously
reported [18].

2.7. Statistics

The experiments were run in triplicate (NMR) and in duplicate (ISO 3657:2013). The
results are expressed as the mean values ± standard deviation (sd). Tuckey’s test was
applied for the significantly different means (p < 0.05).

3. Results and Discussions

3.1. 1H-NMR Spectral Characterization of Fats and Oils

A typical 1H-NMR spectrum of an oil is illustrated for a rapeseed oil (RO) in Figure 1.
The corresponding peak assignment is explained in Table 1. Figure 1 also shows a com-
parison of the 1H-NMR spectra of tributyrin (TB) and two rapeseed oil–tributyrin binary
mixture: RO (30%) + TB (70%) and RO (60%) + TB (40%).

 
Figure 1. Comparative 1H-NMR spectral characterization of tributyrin (TB —), rapeseed oil (RO —)
and rapeseed oil–tributyrin binary mixtures: RO (30%) + TB (70%) — and RO (60%) + TB (40%) —.
Letters A–J were assigned to resonances according to letters in Table 1.
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Table 1. Chemical shifts and peak assignment of 1H-NMR spectra of milk fats. Adapted with
permission from Refs. [12,19]. Copyright 2004, Eur. J. Lipid Sci. Technol.; Copyright 2021, J. Dairy Sci.

Resonance * δ (ppm) Proton Compound

A 0.85 -CH2-CH2-CH2-CH3
All acids except butyric acid and
linolenic acid

B 0.96
-CH=CH-CH2-CH3 Linolenic acid

-OOC-CH2-CH2-CH3 Butyric acid (B’)

C 1.24 -(CH2)n- All fatty acids

D 1.64 -CH2-CH2-COO- All fatty acids

E 2.02 -CH2-CH=CH- All unsaturated fatty acids

F 2.26 -CH2-COO- All fatty acids

G 2.76 -CH=CH-CH2-
CH=CH-

n-6 (Linoleic) acid and n-3
(linolenic) acid

H 4.19 -CH2OCOR H in the sn-1/3 position of the
glycerol backbone

I 5.15 -CHOCOR H in the sn-2 position of the
glycerol backbone

J 5.29 -CH=CH- All unsaturated fatty acids
* Letters from A–J correspond to specific resonances according to Figure 1.

As reflected from Figure 1, certain signals (i.e., A, C, E and J) cannot be found in the
spectrum of tributyrin, because butyric acid is a short chain saturated fatty acid, lacking
allylic, bis-allylic and unsaturated protons. The butyric moiety displays the triplet B’
characteristic of the terminal methyl group in the structure of fatty acids, the signal D
of the protons in position β relative to the ester group, the triplet F generated by the
methylene groups adjacent to the ester group and the signals in the specific area of the
glycerol backbone (H and I). We have previously shown the assignment of NMR signals in
methyl esters of fatty acids as standards for vegetable oil characterization [20]. We have
also shown [19] that the resonance characteristic to the terminal methyl group of the fatty
acyl chains appears shifted downfield (0.96 ppm) only in the case of linolenic and butyric
acyl moieties (B and B’, respectively), compared to the rest of the fatty acyl chains (triplet
A, 0.85 ppm). It is therefore evident that as the amount of TB added to the vegetable oil
increases, all the resonances related to unsaturated specific groups (J) and those in the
vicinity of allylic and bis-allylic groups, (E and G) will decrease. The amplitude of signal C
also decreases with the addition of TB, as this resonance is dependent on the length of the
fatty acyl chains, being absent for TB.

The only signal that increases in intensity is the triplet B from 0.96 ppm, characteristic
for the terminal methyl group in butyric acid or linolenic acid. In rapeseed oil, the 0.96 ppm
resonance is due to the linolenic acyl moiety (signal B); as the percentage of added TB
increases, this resonance also increases in intensity due to the overlapping signal B’. As
expected, the unspecific signals present in all fats and oils, regardless of their specific fatty
acid profile (such as H and I from the glycerol moiety, as well as D and F adjacent to the
ester group), did not show modifications.

3.2. Algorithm for the SV Calculation from 1H-NMR Data

The general pattern of triacylglycerols (TAGs), as depicted in Figure 2, consists of a
glycerol ester backbone and three fatty acyl chains, each with a terminal methyl group and
various amounts of methylene and CH=CH double bonds.
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Figure 2. General representation of a triacylglycerol structure.

As reflected from Figure 2, triacylglycerols consist of a glycerol triple ester backbone,
common to all TAGs, the differences occurring in the hydrocarbon residues from fatty acyl
chains. Apart from the terminal methyl groups (-CH3), the hydrocarbon chains consist only
of methylene groups (-CH2-) and double bonds (-CH=CH-), the number of which differs
depending on the length of the chain and on the degree of unsaturation, being characteristic
for each individual fatty acid. For example, oleic acid contains fourteen methylene groups
(-CH2-) and a single double bond (-CH=CH-), and linoleic acid contains twelve methylene
groups (-CH2-) and two double bonds (-CH=CH-). Therefore, the average molecular
formula of a triglyceride can be rendered as:

C3H5(OCO)3(CH2)M(CH=CH)D(CH3)3

The integral of a resonance being the area under the resonance curve, in the next chemo-
metric equations the following suggestive notations were adopted for the integral values of
the corresponding resonances: A(A+B), AC, AD, AE, AF, AG, AH, and A(I+J), respectively.

The average number of methylene groups (M) and the average number of double
bonds (D) in the alkyl chain can then be calculated as:

M =
3
2
· AC + AD + AE + AF + AG

A(A+B)
(1)

D =
3
2
· A(I+J) − AH/4

A(A+B)
(2)

(i) The normalization factor 3/2 appeared as a consequence of the different number of
protons that generated the resonances involved in Equations (1) and (2), i.e., two
protons in the case of the resonances at the numerator and three in the case of the
resonances at the denominator;

(ii) Since resonances I and J appear partially overlapped, they cannot be integrated
separately. However, AI (corresponding to the single proton in the sn-2 position from
the glycerol moiety) can be indirectly computed as AH/4, given the proton ratio of
1:4 in the case of signals I and H, respectively. Consequently, AJ (corresponding to the
unsaturated protons (CH=CH) may be computed as a difference A(I+J) − AI;

(iii) Since resonances A and B appear partially overlapped, they cannot be accurately
integrated as separate signals; the integration was therefore performed according to
the general rule (i.e., from baseline to baseline), leading to the integral of the envelope
resonance (A+B).

The mean number of carbon atoms in the hydrocarbon chain (nC) and the average
number of hydrogen atoms in the hydrocarbon chain (nH) can be computed as:

nC = M + 2D + 1 (3)
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nH = 2M + 2D + 3 (4)

leading to the mean formulae of the hydrocarbon chain (CM+2D+1H2M+2D+3) and of the
triacylglycerol, i.e., C6+3 (M+2D+1) H5+3(2M+2D+3) O6.

As a consequence, the average molecular weight of TAGs becomes:

MTAG = 12 × [6 + 3(M + 2D + 1)] + 1 × [5 + 3(2M + 2D + 3)] + 16 × 6 (5)

The SV represents the amount of KOH (in mg) required for the saponification of 1 g of
fat [15]. Therefore, SV can be computed as:

SV (mg KOH/g fat) = 3 × ν× 56 × 103 (6)

where ν represents the number of TAG moles per gram of fat (ν = 1/MTAG), while (3 × ν)
is the number of moles of ester groups per gram of oil.

An example of SV calculation from 1H-NMR data is shown in the Supplementary
Materials (Table S2).

The SV values for the SO-TB and RO-TB series (both determined by the method based
on the 1H-NMR data and determined experimentally by the conventional ISO 3657:2013
method taken as reference) are presented in Table 2.

Table 2. SVs determined from the 1H-NMR data and through the standard (i.e., ISO 3657:2013)
method for the SO-TB and RO-TB series (95% confidence level).

SO-TB Series RO-TB Series

Sample TB (%)

SV * (mg KOH/g Fat)

Sample TB (%)

SV * (mg KOH/g Fat)

From
1H-NMR Data

According to
ISO 3657:2013

From
1H-NMR Data

According to
ISO 3657:2013

SO-TB-0 0 196 ± 2 aA 190 ± 0 aB RO-TB-0 0 196 ± 4 aA 192 ± 1 aA

SO-TB-10 10 230 ± 4 bA 225 ± 6 bA RO-TB-10 10 233 ± 3 bA 227 ± 3 bA

SO-TB-20 20 266 ± 2 cA 274 ± 3 cA RO-TB-20 20 272 ± 2 pA 266 ± 6 nA

SO-TB-30 30 302 ± 2 dA 294 ± 0 dB RO-TB-30 30 305 ± 4 dA 312 ± 10 lA

SO-TB-40 40 345 ± 3 eA 336 ± 12 eA RO-TB-40 40 341 ± 2 eA 334 ± 3 eA

SO-TB-50 50 387 ± 2 fA 374 ± 10 fA RO-TB-50 50 378 ± 2 qA 367 ± 9 fA

SO-TB-60 60 412 ± 1 gA 403 ± 1 gB RO-TB-60 60 414 ± 3 gA 411 ± 1 gA

SO-TB-70 70 447 ± 1 hA 434 ± 2 hB RO-TB-70 70 448 ± 1 hA 433 ± 13 hA

SO-TB-80 80 492 ± 2 iA 480 ± 3 iB RO-TB-80 80 486 ± 3 rA 474 ± 9 iA

SO-TB-90 90 535 ± 3 jA 530 ± 8 jB RO-TB-90 90 523 ± 2 sA 515 ± 0 mB

SO-TB-100 100 559 ± 2 kA 547 ± 2 kB RO-TB-100 100 560 ± 3 kA 551 ± 12 kA

SO-TB-15 15 250 ± 3 lA 241 ± 3 bA RO-TB-5 5 215 ± 2 tA 211 ± 0 oA

SO-TB-35 35 326 ± 3 mA 318 ± 4 lA RO-TB-25 25 286 ± 2 uA 292 ± 3 dA

SO-TB-55 55 413 ± 1 gA 403 ± 5 gA RO-TB-45 45 359 ± 3 vA 350 ± 4 pA

SO-TB-75 75 467 ± 3 nA 477 ± 4 iA RO-TB-65 65 429 ± 2 wA 435 ± 4 hA

SO-TB-95 95 540 ± 2 oA 527 ± 13 mA RO-TB-85 85 503 ± 3 xA 499 ± 1 qA

a–x Means with different letters within a column are significantly different (p < 0.05). A, B Means with different
letters within a row are significantly different (p < 0.05). * Determined in triplicate (NMR method) and in duplicate
(ISO method); values are reported as the mean ± sd.

As reflected in Table 2, the values obtained based on the 1H-NMR data were close
to the values determined by the conventional method, which reflects the accuracy of the
calculation algorithm.

The accuracy of the new method was assessed by calculating for each sample the SV
(NMR) deviation from the SV (ISO), taken as a reference and expressed as percentages
relative to the SV (ISO) (see details in Table S3). The mean percent deviation of SV (NMR)
from SV (ISO) was found to be 2%, which stands for a robust NMR algorithm. The accuracy
of the proposed method was also reflected by the SV (NMR) plotted against the SV (ISO)
in Figure 3. The concordance between the values obtained by the NMR method and the

113



Foods 2022, 11, 1466

titration values is reflected by values close to 1 for both the slope of the trendline (in the case
of perfect concordance, tg α = 1, corresponding to an angle of 45◦) and for the coefficient
of correlation R2. As reflected from Figure 3, values close to 1 were obtained for the two
parameters, indicating a good correlation between the two methods.

.
Figure 3. SV (NMR) plotted against the SV (ISO 3657:2013). Values for slope a and intercept b
reported as the mean ± sd. The NMR experiments were performed in triplicate; ISO determinations
were performed in duplicate.

3.3. Determination of the SV for Edible Oils and Fats

Subsequently, the algorithm for determining the saponification value was applied to a
series of commercial samples of vegetable oils and fats, butter, cheeses and spreadable fat
mixtures (margarine type). The results are presented in Table 3.

Table 3. SVs determined from 1H-NMR data and through the standard (ISO 3657:2013) method for a
series of edible fats and oils (95% confidence level).

No. Sample
SV * (mg KOH/g Fat)

From 1H-NMR Data According to ISO 3657:2013

Sunflower oil

1 Sunflower oil 1 194 ± 2 aA 188 ± 2 aA

2 Sunflower oil 2 195 ± 1 aA 189 ± 2 aA

3 Sunflower oil 3 194 ± 1 aA 188 ± 3 aA

4 Sunflower oil 4 196 ± 1 aA 188 ± 3 aA

5 Sunflower oil 5 195 ± 1 aA 189 ± 2 aA

6 Rapeseed oil 1 196 ± 1 aA 188 ± 3 aB

7 Rapeseed oil 2 196 ± 1 aA 188 ± 2 aB
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Table 3. Cont.

No. Sample
SV * (mg KOH/g Fat)

From 1H-NMR Data According to ISO 3657:2013

Rapeseed oil

8 Rapeseed oil 3 194 ± 1 aA 188 ± 1 aB

9 Rapeseed oil 4 195 ± 1 aA 188 ± 2 aB

Soybean oil

10 Soybean oil 1 195 ± 2 aA 189 ± 2 aB

11 Soybean oil 2 193 ± 2 aA 188 ± 2 aA

12 Soybean oil 3 194 ± 1 aA 187 ± 2 aB

13 Soybean oil 4 195 ± 1 aA 188 ± 2 aB

14 Soybean oil 5 194 ± 1 aA 188 ± 3 aA

Coconut oil

15 Coconut oil 1 249 ± 1 aA 240 ± 3 aB

16 Coconut oil 1 248 ± 1 aA 239 ±1 aB

Palm fat

17 Palm fat 1 236 ± 1 aA 230 ± 2 aA

18 Palm fat 2 237 ± 1 aA 230 ± 2 aB

Butter

19 Butter 1 242 ± 2 aA 232 ± 1 aB

20 Butter 2 245 ± 2 aA 234 ± 1 aB

21 Butter 3 245 ± 1 aA 235 ± 1 aB

22 Butter 4 239 ± 1 abA 231 ± 2 aB

23 Butter 5 241 ± 1 abA 231 ± 1 aB

Spreadable fat mixtures **

24 Spreadable fat mixture 1 228 ± 1 aA 217 ± 2 aB

25 Spreadable fat mixture 2 206 ± 2 bA 196 ± 1 bB

26 Spreadable fat mixture 3 222 ± 2 cA 217 ± 1 aA

27 Spreadable fat mixture 4 224 ± 2a acA 218 ± 1 aB

Cheese

28 Cheese 1 239 ± 2 aA 231 ± 2 aB

29 Cheese 2 242 ± 1 aA 234 ± 1 aB

30 Cheese 3 244 ± 2 baA 237 ± 1 baB

31 Cheese 4 238 ± 1 aA 231 ± 2 aB

32 Cheese 5 241 ± 2 aA 233 ± 3 aA

33 Cheese 6 241 ± 1 aA 234 ± 1 aB

34 Cheese 7 244 ± 2 bA 237 ± 1 baB

35 Cheese 8 244 ± 1 bA 237 ± 2 baB

36 Cheese 9 239 ± 1 aA 233 ± 2 aB

a–c Means with different letters within a column are significantly different (p < 0.05). A, B Means with different
letters within a row are significantly different (p < 0.05). * Determined in triplicate (NMR method) and in duplicate
(ISO method), respectively; values reported as the mean ± sd. ** Variable composition (various amounts of butter
and different vegetable oils).
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As reflected from Table 3, there was agreement between the SVs calculated from the
1H-NMR data and the SVs determined through the wet (ISO 3657:2013) method. However,
in the case of the oil and fat samples, the mean percent deviation of SV (NMR) from SV
(ISO) was 3%, higher than in the case of the oil–TB series (2%), which may be due to the
fact of their more complex composition compared to the binary mixtures.

Edible fats have variable SVs, depending on the species. As expected, vegetable oils,
such as sunflower, soybean and rapeseed, had similar SVs, ranging from 194 to 196 mg
KOH/g oil (as determined from the 1H-NMR data). These values are in agreement with
the fatty acid composition consisting of C18 fatty acids (i.e., linoleic C18:2 and oleic C18:1
as the main constituents, various amounts of stearic C18:0 and linolenic acid C18:3 in
small amounts) and modest amounts of C16:0 (palmitic) acid [21–23]. They are also in
agreement with similar SVs reported in the literature [21]. On the other hand, lauric fats,
such as coconut oil and palm fat, showed significantly higher SVs (mean values of 248.5
and 236.5 mg KOH/g oil, respectively) due to the fact of their specific fatty acid profiles
rich in lauric (C12:0), myristic (C14:0) and myristoleic (C14:1) fatty acids. In the case of the
coconut oil, its fatty acid profile is dominated by medium chain length fatty acids, with
lauric acid ranging between 30 and 50% [24–26], while myristic was also reported in high
levels (accounting for more than 20%) [24–26]. Palm fats are abundant in palmitic (C16:0)
acid [25,27], with large amounts of lauric and myristic acids (especially palm kernel oil [3]).
The high levels of C12 and C14 explain the marked increase in the SVs of coconut and palm
fats compared to the rest of the vegetable oils.

In the case of dairy products (i.e., butter and cheese fats), the average saponification
values were approximately 242 mg KOH/g fat in both cases. The SV results correlated with
their particular fatty acid profile, containing mainly long chain (C14–C18) as well as impor-
tant amounts of short (butyric, caproic) and medium (C8–C14) chain fatty acids [19,28]. It
is worth mentioning that milk fats contain high amounts (up to 32.4% [29]) of palmitic acid
(C16:0), whereas myristic (C14:0) and myristoleic (C14:1) acids occur in important amounts,
accounting for more than 10–12% altogether [30,31]. Consequently—although belonging to
the long chain fatty acids category—C14 fatty acids contributed to the global lowering of
the average molecular weight of the triacylglycerols of milk fats compared to vegetable oils
(mainly consisting of C16–C18 fatty acids). Altogether, the short and medium chain fatty
acids, myristic and palmitic acid levels explain the high SV in the case of dairy products.

On the other hand, spreadable fat mixtures, the analyzed samples consisted of mixtures
of butter with various amounts of vegetable fats. Given the variable composition of these
samples (depending on the producers’ recipes), an average SV cannot be calculated. The
spreadable fat mixtures have SV lower than those of butters and cheeses, due to the higher
amounts of C16 and C18 fatty acids from the oils and fat ingredients of vegetal origin.

4. Perspectives

Milk fat is one of the most expensive ingredients in the food industry [19,32,33];
therefore, it may be subject to fraudulent practices such as its partial replacement with
cheaper oils and fats. The addition of nondairy fats and oils to dairy fats will result in
lower SVs. Of course, an altered butter or cheese fat composition would be difficult to
detect through SVs if coconut oil (SV = ~249 mg KOH/g oil) combined with a common
C16–C18 oil (such as sunflower, rapeseed or soybean oil, with SV = ~193 mg KOH/g oil) is
used as an adulterant. On the other hand, except for the producing countries, coconut oil
is an expensive commodity [34] in the rest of the regions (for example, in Europe), which
makes it improbable as an adulterant. Consequently, SVs may be an indicator for dairy
products adulteration with other fats and oils of nondairy origin. Therefore, further studies
correlating the amount of vegetable fats added into dairy fats with the variation of the SV
may lead to the rapid detection of adulterated dairy products.
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5. Conclusions

All structural patterns of triacylglycerols were reflected as specific resonances in the
1H-NMR spectra of fats and oils. Chemometric equations leading to the mean molecular
weight of triacylglycerol species may be derived from the integral values of the 1H-NMR
signals, which may further be used to compute the number of moles of triacylglycerol
species per gram of fat, which will further lead to the calculation of the SV, expressed as
mg KOH/g of fat. Consequently, 1H-NMR spectroscopic data may be used to rapidly
compute the saponification values of oils and fats based on the resonances associated with
the fatty acyl chain lengths. The obtained 1H-NMR-based saponification values differed
from the conventionally determined SVs by a mean percent deviation of 2.3%, which is
sufficient to properly characterize various types of fats. Although the NMR method is
more expensive than the official method, as was proven both by us and other groups, one
can obtain more information (e.g., fatty acid composition and iodine number) in addition
to the saponification value from the same NMR analysis in a very short time. Thus, for
combined analyses both for advanced research and authentication purposes, SV by NMR is
a valuable alternative.
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calculated SV.
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Abstract: The substitution of extra virgin olive oil with other edible oils is the primary method for
fraud in the olive-oil industry. Developing inexpensive analytical methods for confirming the quality
and authenticity of olive oils is a major strategy towards combatting food fraud. Current methods
used to detect such adulterations require complicated time- and resource-intensive preparation steps.
In this work, a comparative study incorporating Raman and infrared spectroscopies, photolumines-
cence, and thermal-conductivity measurements of different sets of adulterated olive oils is presented.
The potential of each characterization technique to detect traces of adulteration in extra virgin olive
oils is evaluated. Concentrations of adulterant on the order of 5% can be detected in the Raman,
infrared, and photoluminescence spectra. Small changes in thermal conductivity were also found
for varying amounts of adulterants. While each of these techniques may individually be unable
to identify impurity adulterants, the combination of these techniques together provides a holistic
approach to validate the purity and authenticity of olive oils.

Keywords: edible oils; Raman; photoluminescence; FTIR; thermal conductivity; PCA; 2DCOS

1. Introduction

Olive oil is considered to be one of the best edible oils and an essential component in the
Mediterranean diet due to extraordinary organoleptic qualities and a large number of health
benefits. According to the Codex alimentarius of the Food and Agriculture Organization
of the United Nations (FAO) [1], olive oils are classified in three categories: virgin olive,
refined olive, and refined olive-pomace oils. These, in turn, are divided into different
grades depending on their organoleptic qualities, median defects, and color, among other
attributes. From the hierarchy list of grades among these categories, extra virgin olive oil
(EVOO) is considered to have the highest nutritional value with various health benefits.
Among its nutritional properties, EVOO possesses high antioxidant activity [2,3], exhibits
anti-inflammatory effects [3,4], improves the metabolism of carbohydrates in patients
with type-2 diabetes [5–8], reduces blood pressure and the risk of hypertension [7,9], and
improves vasodilation [10,11], to name a few. These many health benefits have boosted the
popularity of olive oil in recent decades [12], although this popularity has also brought
about other problems associated with the adulteration and/or deliberate mislabeling of
EVOO [13,14]. One of the principal motivations for olive-oil fraud is the large price gap
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between EVOO and other non-olive oils or even between EVOO and other types of olive
oils. Due to its relative scarcity and high production/selling price, unscrupulous processors
have been fined for adulterating EVOO with large amounts of cheaper oils. EVOO itself
is a vegetal fat with high levels of monounsaturated fatty acids (e.g., 78%) and low levels
of saturated acids (e.g., 14%), in contrast to cheap seed oils (e.g., sunflower, corn, and
soybean), which have high levels of polyunsaturated fats [1]. Consequently, adulteration
with other oils results in the loss of many of the healthy properties of EVOO.

There is a long list of properties that can be tested to ensure the quality of EVOO [15–17].
The standard and official methods to characterize EVOO are gas chromatography (GC) and
high-performance liquid-chromatography (HPLC). GC is mainly used to determine the
composition of the saponifiable fraction, which contains fatty acids and their derivatives, as
well as the unsaponifiable fraction, which contains waxes, aliphatic alcohols, tocopherols,
and phenolic compounds, among others. On the other hand, HPLC is mainly used to
determine the structure of triglycerides, the quantity of pigments such as chlorophylls
and carotenes, and other quality parameters (other than purity). Apart from these offi-
cial methods, there are a number of alternative and complementary methods that have
been suggested over the past decade. Among them, infrared and Raman spectroscopy are
gaining attention [18–22].

This work aims at evaluating the ability to detect traces of adulteration in EVOO with
three spectroscopic techniques: Raman, photoluminescence (PL), and Fourier-transform
infrared (FTIR) spectroscopies. In addition, we explore the use of thermal conductivity as a
potential new parameter to be used as a detection tool. Despite its relative measurement
simplicity, thermal conductivity has, to date, been overlooked as a figure of merit to
determine food purity. The combination of all of these techniques provides an easy method,
free of sample pre-processing, to ascertain the quality and authenticity of food.

2. Materials and Methods

Twenty samples of EVOO were intentionally adulterated using five different types
of edible oils: sunflower (La Masia, “masiasol”, Sevilla, Spain), high oleic (HO) sunflower
(Carrefour, “Aceite refinado de girasol”, Madrid, Spain), 95–5% soybean–nut blend (La
española, “Soy plus”, Jaen, Spain), corn (Coosol, “Maiz”, Jaen, Spain), and olive-pomace
(Carrefour, “Aceite refinado de orujo de oliva”, Madrid, Spain), in volume concentrations
of 5%, 10%, 20%, and 50%. A single type of EVOO (Salvatge “Les Garrigues”, Lleida, Spain)
was adulterated, and the oil was provided directly from the factory to guarantee its purity.
All samples were stored in a dry place protected from light to preserve their quality (see
Figure S1a, Supplementary Materials).

The Raman and photoluminescence spectra were recorded using the same equipment
(a T64000 Raman spectrometer using a liquid-nitrogen-cooled Symphony CCD manufac-
tured by HORIBA Jobin Yvon, Chilly-Mazarin, France) optimized in the visible regime
(400–800 nm). It was used in single-grating mode with 2400 and 300 lines per mm and
a spectral resolution of at least 0.4 cm−1 and 0.2 nm for Raman and photoluminescence,
respectively. The use of 2400 lines for Raman measurements provides a very high frequency
resolution at the cost of a small frequency window. On the other hand, 300 lines allow for a
larger spectroscopic window which is ideal for the broad PL signal. The measurements
were performed by focusing a diode laser (532 nm) onto a transparent quartz cuvette with
a 10× long working distance microscope objective (see Figure S1b,c, Supplementary Mate-
rials). The power of the laser was kept as low as possible (<0.5 mW) to avoid any possible
damage from self heating of the samples. For the photoluminescence measurements (also
known as fluorescence spectroscopy), all samples were measured using 3 accumulations
with the same integration time of 0.3 s with a fixed focal plane, to allow for direct compari-
son between each sample. For each sample, 5 to 10 spectra were recorded at positions on
the sample.

FTIR spectra were recorded (64 co-added scans) by a Hyperion 3000 infrared (IR)
microscope coupled to a Vertex 70 spectrometer manufactured by Bruker (Billerica, MA,
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USA) at the infrared beamline MIRAS of the ALBA synchrotron [23]. Data was recorded
with a liquid-nitrogen-cooled MCT detector. A 2–5 μL drop of oil was placed on the center
of a piece of ZnSe glass and pressured with a second slide to create a homogenous oil film.
The setup was used in the transmission configuration with a spectral resolution of 4 cm−1

with a Globar as the infrared light source. The IR light was focused onto the ZnSe slide
using a 30× Schwarzschild condenser and collected with a matching objective.

Principal component analysis (PCA) was used to treat the FTIR spectra using the soft-
ware Orange Data Mining [24]. For each sample, 50 spectra at different sample positions
were recorded and concatenated in a large matrix, as displayed in Table S1 in the supple-
mentary information. Prior to the calculation, baseline corrections, spectral normalization,
and Savitzky–Golay filters (for smoothing) and derivatives (to reduce scatter effects), were
applied to process the spectra (see Figure S2, Supplementary Materials).

The thermal conductivity (k) was determined by the bidirectional three-omega (3ω)
method [25,26] over the temperature range T = 298–400 K. The bidirectional 3ω method
is based on the measurement of a rise in temperature that is produced by an alternating
current (AC) passing through a metallic strip via the Joule heating effect. The metal line
is composed of four rectangular pads connected by pins to a narrow wire that is used
simultaneously as both a heater and temperature sensor (see Figure S1d, Supplementary
Materials). The two outer pads are used to apply the AC current while the inner pads are
used to measure the third component voltage (3ω-voltage), which contains the information
regarding the temperature rise ΔT. Metal heaters (Cr:Au, 5:95 nm) were deposited by
physical vapor deposition onto quartz substrates (5 × 5 × 0.5 mm3). For the measurement,
a drop of oil (~10 μL) was placed on top of the 3ω heater. First, an empty 3ω cell was
measured (reference). Then, a second measurement took place using the same cell after the
sample to be studied was placed on top of the heater. Assuming that heat transfer occurs
only across sample-heater-substrate interfaces, the total measured temperature change of
the heater (ΔTTotal) is given by [25]:

1
ΔTTotal

=
1

ΔTSample
+

1
ΔTSubstrate

(1)

where ΔTSample and ΔTSustrate correspond to the temperature fluctuations induced by the
sample (oil) and substrate (reference) located at the top and the bottom of the heater, respec-
tively. Lubner et al. [26] showed that the error associated with this interface assumption
(Equation (1)) can be as small as 1% if three experimental conditions are fulfilled: (i) the
ratio of the thermal diffusivities of the sample (αoil) and the substrate (αSub), αoil/αSub > 10−1;
(ii) the ratio of the thermal conductivities is in the range 10−2 < koil/kSubstrate < 1; and (iii) the
excitation frequencies are <100 Hz (low frequency limit). In our case, the room-temperature
thermal diffusivity of the oils fluctuated within the range of (0.5–0.8) × 10−7 m2 s−1 [27,28],
while that of the quartz fluctuated within the range of (0.8–1) × 10−7 m2 s−1 [29], i.e.,
1 > αoil/αSub > 0.5. The k of quartz is ~1.2–1.4 W m−1 K−1 [29,30], and the k of oils was
~0.15–0.17 W m−1 K−1 [31,32], i.e., koil/kSubstrate < 1. The frequency range used here was
(5–100) Hz, which falls within the low frequency limit.

The relationship between the temperature rise and the heat generation rate can be
expressed as [33,34]:

ΔT =
P

lπk

∫ ∞

0

sin2(xb)

(xb)2√x2 + iq2
dx (2)

q =
√

4π f /α=
√

4π f CV/k (3)

ΔT = ΔTX + iΔTY (4)

where ΔT is the complex temperature rise oscillation; b and l are the heater’s half width
(5 μm) and length (1 mm), respectively; q is the inverse of thermal penetration depth;
CV is the volumetric heat capacity; i =

√−1 is the imaginary number; f is the excitation
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frequency; and P is the AC power. The real and the imaginary parts are proportional to the
in-phase (‘X’) and quadrature (‘Y’) components of three-omega voltage.

Finally, the thermal conductivity of the oils was found by least square fitting of the in-
phase signal using k and CV as fitting variables. A detailed description of the bidirectional
technique and the full development of the equations can be found in the supporting
information of our previous works [35,36].

3. Results

3.1. Photoluminescence

The photoluminescence (PL) spectra acquired from pure and adulterated EVOO with
different amounts of olive-pomace oil adulterant is depicted in Figure 1a. PL spectra for all
of the different adulterated EVOO samples that were adulterated with different oils are
depicted in Figure S3a–e, Supplementary Materials. Pure adulterant oils (HO sunflower,
sunflower, corn, and soy–nut) do not present any PL activity under this 532 nm excitation.
In the case of pure olive-pomace oil, which is a common adulterant oil, the PL is very weak
with a clear blue shift in its PL peak relative to that of pure EVOO. Despite the fact that
both EVOO and olive-pomace oil are derived from olives, their PL spectra present large
differences from one another due to the low concentration of compounds with luminescent
properties, such as pigments (e.g., chlorophyll, carotenes, and derivatives), phenols, and
tocopherols in the adulterant oils [37]. For EVOO, the strong luminescence around 670 nm
and 720 nm is mainly associated to the photosystem of chlorophyll [38]. The first peak
is attributed to photosystem I (PSI) and the second peak is due to the combination of
photosystems I and II [38]. The strong photoluminescence can be seen even by naked eye
(Figure S1b,c, Supplementary Materials).

Figure 1. (a) Photoluminescence spectra of EVOO adulterated with different concentrations of olive-
pomace oil. (b) Integrated photoluminescence spectra of the different oil mixtures as a function of the
adulterant-oil concentration. The light-grey shaded region represents the 95% range of confidence
region around the best-fit line. (Inset) peak position of the PL spectra as a function of adulterant-
oil concentration.

The numerically integrated PL intensity of all of the spectra as a function of the
adulterant-oil concentration of different adulterant oils is shown in Figure 1b. The light-
grey shaded region represents the 95% range of confidence region around the best-fit line.
We note that the best-fit line passes through pure EVOO, but a clear linear decrease and vari-
ation in the integrated intensity is observed due to the negligible luminescent activity of the
adulterant oils. Additionally, we observe a small blue shift of the chlorophyll/pheophytin
peak as the concentration of adulterant oil increases (see inset Figure 1b). The origin of this
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blue shift is even more pronounced when comparing the PL spectra of pure EVOO with
pure adulterant oil, since the PL peak in pure adulterant oil sits at lower wavelengths (see
Figure S3, Supplementary Materials).

3.2. Raman Spectroscopy

The Raman spectra of pure EVOO, olive-pomace, HO sunflower, corn, and soy–nut
blend oils are depicted in Figure 2. Four common bands can be observed in all of the oils,
located at ~1265, 1305, 1440 and 1656 cm−1, which correspond to the common Raman
modes of unsaturated fatty acids such as: oleic (OA, C18:1), linoleic (LA, C18:2), and
linolenic (ALA, C18:3) acid [39]. These molecules are all 18-carbon carboxylic acids with
one, two, and three cis-double bonds, respectively. Each of the oils under study has a
comparable fatty-acid composition (see Table S2 in the supplementary information), which
leads to these common carboxylic acid peaks in their Raman spectra. These characteristic
Raman bands have already been previously studied by El-Abassy et al. and Lv et al. [39,40].
The attribution of each of the observed peaks to their associated vibrational mode for all
spectra in Figure 2 is summarized in Table 1. The remaining two Raman bands located
at ~1155 and 1523 cm−1, which are unique to EVOO, have previously been associated
with C–C and C=C stretching vibrations of the main polyene chain of carotenoids [41,42].
These additional two bands are not detected in any of the adulterant oils, including the
olive-pomace oil. As was the case with the photoluminescence, Raman spectroscopy clearly
distinguishes a spectroscopic difference between EVOO and all of the other edible oils,
including olive-pomace oil, which shares a common derivation from olives. The absence
of carotenoids in refined oils results from the degradation that they suffer during food
processing, storage, and thermal treatment. Thermal treatment during the refinement
process leads to the isomerization of the carotenoids and a consequent change in their
molecular structure [43].

Figure 2. Raman spectrum of pure EVOO, olive-pomace, sunflower, corn, and soy–nut oils.
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Table 1. Assignment of the Raman bands of the edible oils.

Frequency [cm−1] Vibrational Mode

1155 C–C stretching (carotenoid)
1265 =C–H bending scissoring
1305 C–H bending twisting
1440 C–H bending scissoring
1523 C=C stretching (carotenoid)
1656 C=C stretching

Figure 3a shows the normalized Raman spectrum of pure EVOO adulterated with
different amounts of HO sunflower. As the HO sunflower concentration increases, the
intensity at 1523 cm−1 (carotenoid peak) decreases. Similar results were also found for the
rest of the adulterant oils (see Figure S4, Supplementary Materials). A summary of these
results are shown in Figure 3b, which presents the ratio of the numerical integration of the
areas of the Raman peaks at 1523 cm−1 and 1656 cm−1. A clear decrease in I1523/I1656 ratio
can be observed as the adulterant oil content increases. This effect comes from the zero
Raman activity for carotenoids peaks shown by all adulterant oils studied here. Notably,
the Raman spectra can be directly measured from as-packaged oil without opening and
manipulating the oil, allowing for non-invasive verification even from an unopened oil
bottle (see Figure S5, Supplementary Materials). Similar to the PL, the addition of adulterant
oils leads to a decrease in the I1523/I1656 integral ratio. Qui et al. recently observed a similar
result using the I1523/I1656 ratio to determine the free-fatty-acid (FFA) content of olive oils
and found that this intensity ratio decreases linearly with FFA content, although the FFA
content was obtained from the nutrition label of each of the oils [21]. Thus, the I1523/I1656
integral ratio is an additional useful figure of merit to quantify EVOO purity.

Figure 3. (a) Raman spectra of EVOO adulterated with different concentrations of high oleic sunflower
oil. (b) Intensity ratio of the carotenoid peak (1523 cm−1, I1523) to the C=C stretching peak (1656 cm−1,
I1656) as a function of the adulterant oil concentration.

3.3. Fourier-Transform Infrared Spectroscopy

The IR spectra of pure EVOO, corn, soy, and olive-pomace oils are depicted in
Figure 4. For ease of visualization, the spectra were separated in two wavenumber ranges:
(3150–2800) cm−1 and (1500–1000) cm−1. The first window shows the characteristic IR
peaks resulting from hydrogen stretching functional groups, while the second window
shows other bond deformations and bending that are primarily associated with vibrations
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of CHi groups (with i = 1, 2, 3) and C–O bonds [44]. Unlike the PL and Raman results, the
FTIR spectra shows remarkable similarities between the spectra of the studied samples,
making them difficult to differentiate. Therefore, a deep analysis using principal component
analysis (PCA), a technique that allows for patterns and variations within a dataset to be
readily visualized, was performed to allow for facile differentiation of each of the spectrum
from one another. PCA analysis is relatively common in food chemistry, as optical spectra
tend to be very similar within particular foods and their associated derivatives. The results
of this analysis are displayed in the inset of Figure 4a,b. Our results showed that EVOO
and olive-pomace oils could not be differentiated from one another in FTIR spectroscopy,
as the PCA scores were almost identical. However, the PCA scores of corn, soy–nut oil, and
sunflower oils showed clear differences when compared with EVOO.

Figure 4. FTIR spectra of four oils: EVOO (pale green), olive-pomace (blue), corn (orange) and
soy (dark green) over two different wavenumber ranges focusing on the (a) hydrogen stretching
functional groups and (b) CHi (i = 1, 2, 3) functional groups present in each oil.

At the most superficial level, a quick differentiation of the IR spectra of the oils was
established via PCA, though a deeper analysis of the PCA scores of the adulterated EVOO
is possible. Figure 5 shows the subsequent PCA analysis of IR spectra of adulterated EVOO.
This rapid and simple PCA analysis highlights the impurities added to EVOO by showing
a shift in the scores of adulterated samples as the adulterant oil increases. The shift is
observed even with less than 5% of added adulterant (Figure 5a,b,d,e). Similar results have
been observed by Vanstone et al. [45], who demonstrated the potential of a combination of
near-infrared spectroscopy with PCA to detect EVOO adulteration at levels as low as 2.7%,
given an unadulterated reference sample (i.e., pure EVOO). However, we demonstrate
similar conclusions with FTIR in the mid-IR spectral range, which is advantageous as
molecular fundamental vibrational modes lie in the mid-IR, while spectral measurements
in the near-IR are measurements of molecular vibrational overtones. While the PCA alone
exhibits potential in its ability to discriminate similar spectra, the addition of a multivariable
regression model will be necessary to obtain true quantification of EVOO adulteration.
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Figure 5. PCA score plots of oil mixtures at the 3000 cm−1 and 1300 cm−1 window: (a,d) corn–EVOO,
(b,e) soy–nut–EVOO, and (c,f) sunflower–EVOO. The inset in (f) shows a zoom around the PCA
scores of the sunflower-based sample. The color gradient in each figure indicates the evolution of the
PCs from pure adulterant (darker colors) to smallest amount of adulterant (lighter colors).

As the PCA of FTIR spectra did not show significant differences between EVOO
and olive-pomace, we applied two-dimensional correlation spectroscopy (2DCOS) to gain
greater insight into the FTIR spectra. The 2DCOS technique is a mathematical method
for analyzing changes in a signal produced by an external perturbation (e.g., a change in
temperature, pressure, pH, concentration of mixtures, etc.). To calculate the 2DCOS map
we used the concentration of olive-pomace oil as an external perturbation and the spectra
dataset was ordered from pure EVOO (0% of oil adulterant) to pure pomace (100% of oil
adulterant), i.e., 0, 5, 10, 20, 50, 100%. The raw spectra were baselined and normalized
using the most-intense band for each frequency window in Figure 4. The average spectrum
was used as a reference spectrum following the same procedure as reference [46]. The
2DCOS analysis was performed with the Mat2dcorr Matlab toolbox [47]. Figure 6 shows
the synchronous 2DCOS map at the 3000 cm−1 (Figure 6a) and 1300 cm−1 (Figure 6b) FTIR
frequency windows. The respective autocorrelation and FTIR-averaged spectra are shown
above each frequency window. Autocorrelation spectra are defined by a diagonal line
along the 2DCOS map and their bands are known as autopeaks. The autopeaks represent
real changes between the FTIR spectra that are produced by the external perturbation
(such as the addition of olive-pomace oil, in this case). The autocorrelation spectra show
three autopeaks located at 2844, 2900, and 2974 cm−1 in the 3000 cm−1 window and
only one autopeak around 1330 cm−1 for the 1300 cm−1 window. The comparison of
the auto correlation and FTIR spectra show that the larger changes among the spectra
occur at wavelengths where the FTIR spectra is very weak, which indicates why the PCA
analysis was not able to find significant differences between the olive-pomace oil and
EVOO. Furthermore, a 2DCOS analysis of pure EVOO oils was also performed using the
same data treatment (Figure S6, Supplementary Materials) to verify that the observed
variations are not artificial variations resulting from the data treatment such as background
subtraction and/or normalization. In this analysis, the same large variation in autopeaks are
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in fact observed around 2844 and 2900 cm−1, indicating that such variations are dependent
not only on real significant differences in oil concentration, but also on experimental
fluctuations. Notably, autopeaks around 2974 cm−1 are only present in the EVOO/olive-
pomace 2DCOS map. Consequently, while this type of data processing enables even such
small fluctuations to be used as identifiers for authentication between oils of similar origin,
additional processing and identification of 2DCOS peaks may first be required.

Figure 6. Contour map of the synchronous 2D FTIR correlation spectra of the EVOO–pomace
mixtures at the (a) 3000 cm−1 and (b) 1300 cm−1 frequency windows. The spectra above the 2D plots
provide the auto correlation spectrum (black solid lines) of each 2DCOS map. The average of the
FTIR spectra in each window is also included for comparison (grey dashed lines).

3.4. Thermal Conductivities

The temperature dependence of the thermal conductivity (k) of pure oils and of
three adulterated mixtures are shown in Figure 7a,b, respectively. A monotonic decrease
in the thermal conductivity as the temperature increases can be observed in all of the
studied samples. A similar temperature dependence was also reported by Turgut et al. [31].
Interestingly, the temperature dependence of the k of the EVOO–soy–nut oil mixture
follows the same temperature dependence as the pure EVOO, even at 50% of soy–nut oil
concentration. A comparative analysis of the k values at room temperature (Figure 7c) and
at 400 K (Figure 7d) demonstrate noticeable differences between each pure oil and between
EVOO and its adulterated mixtures. This highlights the ability of the k—which, to date,
has tended to be overlooked as a useful figure of merit in food authentication—to provide
information that enables the distinction of pure and adulterated oils, or, more generally,
other food products as well.
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Figure 7. (a) Thermal conductivity of pure oils as a function of temperature. (b) Thermal conductivity
of adulterated oils as a function of temperature. (c) Room-temperature thermal conductivity as a
function of adulterant oil concentration. (d) Comparison of the thermal conductivity at 400 K for
different pure oils or adulterated EVOO.

4. Discussion

In this work, the potential of four different characterization techniques to detect
traces of adulteration in EVOO were analyzed. Photoluminescence, Raman, and Fourier-
transform infrared spectroscopies demonstrated the successful detection of small traces
of adulteration on the order of 5%, while the thermal conductivity analysis showed small
but constant fluctuations as a function of adulterant oil concentration. Notably, we demon-
strated four different characterization methods that are able to rapidly assess the purity of
EVOO. Photoluminescence showed a linear decrease in the peak intensity and position as
the adulterant oil concentration was increased due to a decrease in the amount of chloro-
phyll and pheophytin, which are naturally present in EVOO but absent in the adulterant oils.
Raman spectroscopy also presented a clear difference between the spectra of EVOO and
adulterant oils (even in olive-pomace oil, which is also derived from olives) was also found.
Notably, two peaks at ~1155 cm−1 and 1523 cm−1 were detectable only in EVOO. These
modes are associated with the polyene chain of the carotenoids that are naturally presented
in EVOO but absent in the adulterants. A clear decrease in the intensity ratio between the
peaks at 1523 cm−1 (only presented in EVOO) and 1656 cm−1 (a common mode presented
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in all the studied oils) was observed as a function of the adulterant-oil concentration. While
a rough comparison between the IR spectra did not show appreciable differences, a statis-
tical analysis showed grouping of the spectra and distinguished a remarkable difference
in the PCA scores between pure EVOO and adulterated oils, demonstrating detection of
as low as 5% adulterant concentration via FTIR spectroscopy. It is important to note that,
while even PCA did not show significant differences between EVOO and EVOO–pomace
mixtures, a deeper analysis using a two-dimensional correlation treatment was sensitive to
small fluctuations around 2900 cm−1. This result is a nascent effort that demonstrates the
potential of 2DCOS analysis for the detection of EVOO adulterated with oils of very similar
origin. Finally, an appreciable fluctuation in the thermal conductivity of EVOO was ob-
served for different amounts of adulterant oils. Thermal conductivity has previously been
overlooked as a simple but useful figure of merit for assessing food authenticity, but is also
a useful manner in which purity can be ascertained. These results highlight the potential of
these techniques to detect adulteration, and indicate that the results of the current study
can be used as a starting point for the development of spectroscopic methods that allow for
the effective and efficient detection of adulteration in olive oils by aiding in identification
and classification. While each technique independently may fail to reliably capture small
amounts of adulteration in EVOO given the complexity and chemical variability in the
oils, a combination of all of them together provides a more holistic base for authentication.
For example, as was observed in the case of the FTIR spectra, it is difficult to differentiate
EVOO from olive-pomace oils, due to their common origin, though other techniques such
as Raman can clearly distinguish the two. Future subsequent development of multiple
sensors incorporating and combining these techniques will allow for the acquisition of
complete spectral data sets that are critical for precise EVOO authentication. Beyond the
authentication of EVOO, the combination of spectroscopic and thermal techniques has the
potential to facilitate simplified authentication throughout the food industry.
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Abstract: The aim of this study was to evaluate the ability of mid-infrared (MIR) spectroscopy
combined with chemometrics to analyze unstimulated saliva as a method to predict satiety in healthy
participants. This study also evaluated features in saliva that were related to individual perceptions of
human–food interactions. The coefficient of determination (R2) and standard error in cross validation
(SECV) for the prediction of satiety in all saliva samples were 0.62 and 225.7 satiety area under
the curve (AUC), respectively. A correlation between saliva and satiety was found, however, the
quantitative prediction of satiety using unstimulated saliva was not robust. Differences in the MIR
spectra of saliva between low and high satiety groups, were observed in the following frequency
ratios: 1542/2060 cm−1 (total protein), 1637/3097 cm−1 (α-amino acids), and 1637/616 (chlorides)
cm−1. In addition, good to excellent models were obtained for the prediction of satiety groups
defined as low or high satiety participants (R2 0.92 and SECV 0.10), demonstrating that this method
could be used to identify low or high satiety perception types and to select participants for appetite
studies. Although quantitative PLS calibration models were not achieved, a qualitative model for the
prediction of low and high satiety perception types was obtained using PLS-DA. Furthermore, this
study showed that it might be possible to evaluate human/food interactions using MIR spectroscopy
as a rapid and cost-effective tool.

Keywords: saliva; spectroscopy; satiety; satiation; chemometrics

1. Introduction

A wide range of instrumental and spectroscopic methods such as nuclear magnetic
resonance (NMR) [1,2], mass spectrometry (MS) [3], and vibrational spectroscopy (e.g.,
mid-infrared, Raman) [4,5], have been utilized to profile and analyze the biochemical and
chemical composition of saliva [6,7]. Vibrational spectroscopy, and in particular infrared
(IR) spectroscopy, has attracted the attention of researchers due to its high sensitivity, high
speed, and low cost. The utilization of vibrational spectroscopy has been reported in many
areas, including medicine, chemistry, forensic, and food sciences, for the measurement
of composition and functional properties [8–10]. During the last 20 years, advances in
instrumentation and computing have allowed for the evolution of diagnostic methodologies
based in vibrational spectroscopy including near infrared (NIR), mid-infrared (MIR), and
Raman spectroscopy of saliva and other biofluids [11–14].

It is well known that saliva relates to oral physiology and plays an important role
in both oral processing and sensory perception of food [15–18]. Several studies have
reported that salivary proteins are not only correlated with the fungiform papillae density
of tongues [19], but they also associated with food aroma compounds released during food
intake. Salivary proteins also have a role in the mediation of taste components in sensory
perception [17,18]. These factors have strong effects on oral food processing, influencing
food particle size, food-saliva interactions, and how nutrients are released during the
process of food intake [20]. Moreover, recent studies were focused on the effects of these
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factors (e.g., oral food processing, food particle size, and food sensory perceptions) on food
intake, satiation, and satiety [15,21,22]. A recent study [15] evaluated the relationships
between oral sensory exposure and hormones involved in longer oral processing and how
these relationships might have influenced satiation and food intake in humans [15,21,22]. It
is well known that saliva contains information not only about the composition of the food,
but also on the biological and physical properties where recently studies [23,24] reported
saliva might be associated with body composition and energy expenditure, which were
highly associated with satiety.

Satiation and satiety are defined as perceived fullness feelings during and after a
meal and they are considered the main driving forces responsible for the control of eating
behaviors in humans [25–27]. The roles of satiation and satiety are to modulate daily meal
portion sizes and frequency. Satiety has been proposed to be a key factor in controlling
food intake with impacts on an individual’s ability to manage their nutrition and body
condition (e.g., weight) [25–27]. Moreover, satiation and satiety are not only related to
food and energy intake, but they also influence psychological status (e.g., emotion and
mood) [28,29]. For example, uncontrolled hunger and psychological phenomena, such as
feelings of deprivation and cravings, are major difficulties and main reasons for the ultimate
failure of keeping a healthy diet [28,29]. Low satiety human phenotypes [30,31] were also
reported in the literature and defined as individuals who can recognize appetite sensations,
with both low appetite and low changes in appetite sensation. This research suggested that
low satiety individuals have lower self-reported satiety than the high satiety individuals.
Drapeau and colleagues [30] reported that low satiety phenotype individuals had a lower
blood cortisol response during meal intake. However, only limited physiological differences
were reported for this phenotype, as it was challenging to identify this phenotype before
the experiment.

The aim of this study was to assess the ability of mid-infrared spectroscopy to predict
satiety (and satiation) using the saliva collected from healthy participants. This approach
will open the possibility of utilizing rapid and low-cost methods, such as IR spectroscopy,
to evaluate human/food interactions (satiation and satiety) as well as to explore the tech-
nology as a screening method in other food and/or physiological studies.

2. Materials and Methods

2.1. Participants and Saliva Collection

A total of 52 healthy participants (31 female and male 21, with an average of 38.1 and
standard deviation of ±13.8 years) were recruited through an open advertisement posted
around Brisbane city (Brisbane, QLD, Australia). The selection criteria for participants were
based on the following parameters: aged between 18 and 70 years, lack of oral cavities or
dental diseases, no diabetes, not being pregnant or lactating at the time of the experiments,
and not being diagnosed with psychological diseases, such as depression. The ethics for the
research was approved by the Sub-Committee for Human Research Ethics of the University
of Queensland (approval number: 2019002688).

Unstimulated saliva, defined as the saliva that continuously bathes the oral cavity
without chewing and taste stimulation [32,33], was collected from each participant prior
to the satiation and satiety sensory experiment three times during three consecutive days.
On the experimental day, no food or drink (except water) were allowed after breakfast
(the recommended consumption time for breakfast was 7:00 a.m. for all the participants).
Participants were asked to arrive at the sensory lab around 10:00 a.m. after 3 h fasting.
Details about the protocols and methods used to collect the unstimulated saliva were
reported in a previous paper [34]. In short, a saliva collection suite was provided to each
participant, which included a cup of 10 mL mouth rinsing water, a saliva collection tube
stored in a beaker with filled with ice, and a spittoon. Participants were asked to rinse
their mouths properly with the provided water, spit the water into the spittoon, and avoid
swallowing the saliva for 2 min where they could expectorate saliva into the collection
tube every 30 s. The expectorated saliva samples were sealed, double wrapped with plastic
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bags, and transferred into the −80 ◦C freezer. In total 156 saliva samples were collected
(52 participants × 3 days).

2.2. Satiation and Satiety Measurements

Three types of plant-based foods were utilized during the satiation and satiety sensory
experiments: an apple (Royal Gala variety); a banana (Cavendish variety); and an avocado
(Hass variety). The selection of plant-based foods (e.g., vegetables, fruits) used in this
study was related to the fact that plant foods take up over two thirds of the everyday
diet recommendations worldwide. The key features of these plant-based foods included
high dietary fiber and cell wall structuring that tends to induce both strong satiation and
long-lasting satiety. The experiments were conducted on three different days (one food
type each day). The three plant-based foods were selected as they each provide a different
source of energy, such as soluble sugars for the apple, starch for the banana, and lipids
for the avocado). These differences might have induced different satiation and satiety in
the participants. The experimental design followed in this study not only balanced the
variations in nutrients and energy sources, but also allowed for the comparison of different
food types. Each food was cut into approximately 3 mm slices and served in a covered
plastic container (100 g portions in each container). Food was served ad libitum during
20 min for each participant. Participants could stop eating when they felt comfortably full.
The fullness ratings were determined as described in a previously published paper [35].
Participants’ fullness during the meal and for 150 min after the meal were self-evaluated
using a 20 cm labelled magnitude scale (LMS) [36]. Fullness ratings at the time points
were measured by the distance (cm) between the greatest imaginable hunger point and
the participant’s marked point on the scale. The total area under the curve (AUC) of the
perceived fullness over time was defined as satiation (AUC during the meal) and satiety
(AUC after the meal) [27]. The participants were separated into low or high satiety groups
according to the satiety values (AUC). The low satiety perceiver group were defined as
those having an AUC lower than 1100 AUC, whereas the high satiety perceiver group
contained the participants with an AUC that was higher than 1100.

2.3. Mid-Infrared Spectrum Collection for Saliva

The spectrum of the saliva samples was collected using an MIR spectrometer ALPHA
II (Bruker Optics, Ettilgen, Germany) (4000 cm−1 to 400 cm−1 region). The spectrometer was
equipped with a diamond-attenuated total reflection (ATR) crystal. Frozen saliva samples
were thawed at room temperature (25 ◦C) for half an hour and the thawed saliva samples
were homogenized using a vortex (2000 rpm for 20 s) prior to the MIR measurement.
The ATR crystal was fully covered with the homogenized saliva sample (approx. 5 μL).
Samples were immediately scanned, and spectra recorded. Each spectrum was computed
using an average of 24 co-added interferograms at a resolution of 4 cm−1. A spectrum of
air was used as a background prior to sample measurement and the spectrum of water
was also measured every 20 samples. The instrument was operated using the OPUS
software (version 8.5.29, Bruker Optics, Ettilgen, Germany). After each measurement, the
surface of the ATR crystal was cleaned utilizing a 70% w/w ethanol/water solution and
wiped with tissue paper between samples. A total of 156 saliva samples were collected for
further analysis.

2.4. Chemometric Analysis

Before chemometric analysis, the MIR data of the unstimulated saliva samples were
pre-processed using a baseline correction and Savitzky–Golay second derivative (second
polynomial order and 21 smoothing points) (The Unscrambler X, Camo, Oslo, Norway) [37,38].
The fingerprint region (1800 to 450 cm−1) was utilized to establish partial least squares
regression (PLS) models to predict satiety and satiation in the saliva samples using the
MIR spectra. Classification models for low and high satiety were also developed using
PLS discriminant analysis (DA) where samples belonging to the low satiety group were
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identified with the number 1 and samples from the high satiety group were identified with
the number 2. The threshold governed the choice to turn a projected probability or score
into a class label. In this study, the threshold was set to 1.5. The PLS and PLS-DA models
developed were validated using cross validation (leave-one-out) [39,40].

3. Results and Discussion

Figure 1A shows the average MIR spectrum of the collected saliva samples in the
fingerprint region (1800 to 600 cm−1) and compares the low and high satiety groups, as
well as the saliva collected from all participants where all the food types analyzed were
included. The effect of food types on the high or low satiety responses were observed in the
MIR spectra of the saliva collected. In both avocado and banana, the absorbances for the
low satiety perceiver samples were lower than the high satiety perceivers in the fingerprint
region (1800–600 cm−1). The low absorbances might have indicated that the low satiety
perceivers generally tended to produce more diluted saliva than the participants in the
higher perceivers group. The main differences in the absorption values were observed
between 1336–1364 cm−1 and were associated with the stretching vibrations of the carboxyl
groups COO and asymmetric C-N stretching, which corresponded with the amide III
group [5,41–44]. At 1270 cm−1 this band could be associated with CO groups corresponding
with the presence of esters, and around 1076 cm−1 was associated with the presence of
glycosylated proteins and phosphorus-containing compounds [5,41,42,44]. Peaks around
1437 cm−1 and 1473 cm−1 were associated with vibrations of δ(CH2) groups corresponding
with proteins, lipids, fatty acids, and polysaccharides. These peaks have also been reported
as biochemical indicators for triene conjugates and superoxide dismutase, which are present
in saliva [32]. The peak at 1542 cm−1 has been reported to be associated with amide II
(δNH, νCN) groups corresponding with salivary seromucoids [32]. The peak at 1647 cm−1

could be associated with amide I corresponding with albumin in the saliva, whereas the
peak at 1653 cm−1 has been reported to be associated with amide I proteins in an α-helix
conformation for salivary proteins [32]. The peak at 1717 cm−1 was associated with amide
I purine bases, DNA, and RNA [5,32,41,42,44].

It has been reported [32] that the ratios between specific absorption bands in the
spectra of saliva are correlated with salivary biochemical indicators (e.g., total protein,
α-amino acids, lactate dehydrogenase). Figure 1B–D shows the ratios between frequencies
at specific peaks when comparing high and low satiety perceivers for each of the three
food types analyzed. When sorting out the saliva-satiety data according to the specific
food types, differences could be identified. The low satiety perceivers had higher values
for ratios 1542/2060 cm−1, 1637/3097 cm−1, and 1637/1616 cm−1 for avocado (p < 0.05)
than the high satiety perceivers. Although differences in the same direction were found
for apple and banana, these were not statistically significantly different. Similar results
were reported by other authors where the ratio between 1542/2060 cm−1 was associated
with total proteins based on the amide II group band and SCN− thiocyanate in the saliva,
between 1637/3097 cm−1 and 1637/1616 cm−1, was associated with α-amino acids and
chlorides, respectively [32]. Although saliva from low satiety perceivers was more diluted
(more water), it had an apparently higher percentage of protein and amino acids compared
with other salivary organic components. The observed differences in the spectra of the
saliva might have indicated that compositional variations in human saliva may be a result
of underlying factors related to satiety perception types. One explanation could be that
the saliva of low satiety individuals was more watery or diluted, but the concentration
of proteins, α-amino acids, or chlorides, was higher compared to the high satiety saliva
samples [33].
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Figure 1. Mid-infrared spectra and ratios at specific frequencies of the unstimulated saliva samples
analysed to show differences between low and high satiety groups. (A) Fingerprint region of salivary
spectra comparing both food types and satiety perception types. The main reported absorption peaks
in the literature [5,32,33,41–46] were labelled with lower case and wavelength number (a1076 cm−1,
glycosylated proteins and phosphorus-containing components; b1239 cm−1, amide III/phospholipids;
c1336 cm−1, carboxyl groups COO and asymmetric C-N stretching; d1393 cm−1, asymmetric and
symmetric CH2 bending; e1437 cm−1, and f1473 cm−1, δ(CH2) groups corresponding to biochemical
indicators for triene conjugates and superoxide dismutase; g1542 cm−1, amide II (δNH, νCN) groups;
h1647 cm−1, amide I corresponding with albumin; i1653 cm−1, amide I proteins in α-helix; and
j1717 cm−1, amide I purine bases, DNA and RNA). (B) Avocado, (C) banana, and (D) apple; ratios at
specific frequencies calculated from the salivary spectra comparing the high and low satiety perceiver
groups. The capital letters (e.g., A and B) in the figures signify significant difference between satiety
perception groups.
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Table 1 shows the PLS cross validation calibration statistics for the prediction of satiety
and satiation using unstimulated saliva collected from healthy participants. The coefficient
of determination in cross validation (R2) and standard error in cross validation (SECV)
reported for the prediction of satiety in all samples was 0.62 and 225.7 AUC, respectively.
In contrast, poor calibration models were obtained for the prediction of satiation (R2 < 0.20)
in all samples. These results might have reflected the nature of the experiment in which
participants were asked to eat until comfortably full; although, there were differences in
satiation responses between individuals where the term ‘comfortably’ full was interpreted
differently by individuals. The lack of correlation with the MIR spectra suggested that
the different responses were unlikely to be due to differences in oral physiology, as was
reflected in the saliva composition. Calibration models were also developed for the different
food types used. The R2 and SECV obtained for the prediction of satiety after consuming a
banana was 0.63 and 188.1 AUC, respectively. However, poor PLS calibration models were
obtained for the prediction of satiety using saliva samples collected from either the apple
or avocado experiments (R2 < 0.20).

Table 1. Descriptive statistics, partial least squares regression cross validation statistics for the
prediction of satiety in saliva samples, and the PLS-DA cross validation statistics for the classification
of saliva as low or high satiety.

All Foods Banana Avocado PLS-DA

R2 0.62 0.63 0.20 0.92
SECV 225.7 188.1 237.5 0.10
Bias 4.72 −12.5 0.60 0.001

Slope 0.67 0.62 0.20 0.97
LV 7 8 1 11

Mean (AUC) 1363 1456 1368
SD 409 472 319

Range 3138–423 3138–707 2272–525

PLS-DA: partial least squares discriminant analysis; R2: coefficient of determination in calibration (R2); SECV:
standard error in cross validation; SD: standard deviation; LV: number of latent variables used to develop
the models.

The highest PLS loadings (Figure 2) for the prediction of satiety using all samples were
observed around 1750 cm−1, which was associated with phospholipid, lipid, and ester
groups [45,46], between 1665–1616 cm−1 was associated with amide I groups (proteins),
1286 cm−1 was associated with amide III groups, 1247 cm−1 was associated with PO2 of
phosphate, 1089 cm−1 was associated with the symmetric stretching of phosphate groups
of phosphodiester, 989 cm−1 was associated with C-O of ribose and C-C bonds, and
957 cm−1 was associated with polysaccharides [5,41–44]. Ni et al. [16] reported that the
MIR frequencies between 1766–1725 cm−1 and 1692–1632 cm−1 were the most important
when MIR calibrations were developed for the prediction of saliva flow, oral processing
time, and fungiform papillae density of tongue. Other authors have reported that these
oral physiology variables contributed to explaining satiety [15,22,47].

Previous studies have also reported on the prevalence of the low satiety phenotype
groups in humans [30,31]. These researchers indicated that the presence of this phenotype
group could be associated with stress and anxiety or lower blood cortisol responses to
the meal. As described in Section 2, in this study, two groups were defined based on
the satiety values (low and high). The R2 and SECV obtained for the prediction of the
low and high satiety group was 0.92 and 0.10, respectively. The PLS-DA results showed
that 100% and 98% of the saliva samples were correctly classified as low and high satiety
perceivers, respectively.

Overall, this study showed that the use of MIR spectroscopy provided a practical tool
to understand the complex relationships between human physiology and self-reported
responses based on human-food interactions. The results also showed that a relationship
between saliva composition and satiety existed, although the quantitative models for
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the prediction of satiety were not robust. However, the use of PLS-DA models allowed
reliable identification of saliva samples sourced from participants having low or high
satiety responses. These models also indicated that MIR spectroscopy could be used for
pre-selection or screening of participants in appetite sensory studies, reducing the time and
cost of these types of studies.

Figure 2. Partial least squares loadings derived from the calibration models used to predict satiety in
the saliva of all samples or in the banana samples.

Some of the underlying factors that might influence the performance of the calibration
models could be attributed to the fact that saliva itself was only one of many potential
factors that could be considered to evaluate the human status to predict appetite. The
human experience of appetite is not only decided by the human condition but is also
influenced by the environment and whether the experiment design and saliva collection
protocols were adequate to evaluate human–food interactions using MIR spectroscopy.
Another important factor to consider was the utilization of unstimulated saliva. In this
study, unstimulated saliva was used; however, it was possible that the use of stimulated
saliva (e.g., after exposure to a specific chemical or mechanical stimulus) would result
in alternate, or possibly more targeted, information on food-satiety interactions using
MIR spectroscopy.

4. Conclusions

Results from this study demonstrated the ability of MIR spectroscopy combined with
chemometrics (e.g., PLS) to predict satiety from resting (unstimulated) saliva samples.
Although quantitative PLS calibration models were not achieved, a qualitative model
for the prediction of low and high satiety perception type was obtained using PLS-DA.
Furthermore, this study indicated the possibility of evaluating the interactions between
saliva and food using MIR spectroscopy as a rapid and cost-effective tool.

Author Contributions: D.N., formal analysis, writing—original draft preparation, writing—review
and editing; H.E.S., supervision, writing—review and editing; M.J.G., supervision, writing—review
and editing; D.C., methodology, formal analysis, writing—original draft preparation, writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: Scholarship from the China Scholarship Council and the University of Queensland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

141



Foods 2022, 11, 711

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge funding from Hort Innovation (Australia). Dongdong
Ni acknowledges the award of a scholarship from the China Scholarship Council and the University
of Queensland. The sensory panel from the Health and Food Sciences Precinct (Coopers Plains,
Queensland, Australia) are acknowledged for their dedication and participation in this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gardner, A.; Parkes, H.G.; Carpenter, G.H.; So, P.W. Developing and Standardizing a Protocol for Quantitative Proton Nuclear
Magnetic Resonance (1H NMR) Spectroscopy of Saliva. J. Proteome Res. 2018, 17, 1521–1531. [CrossRef]

2. Figueira, J.; Jonsson, P.; Adolfsson, A.N.; Adolfsson, R.; Nyberg, L.; Ohman, A. NMR analysis of the human saliva metabolome
distinguishes dementia patients from matched controls. Mol. BioSyst. 2016, 12, 2562–2571. [CrossRef] [PubMed]

3. De Filippis, F.; Vannini, L.; La Storia, A.; Laghi, L.; Piombino, P.; Stellato, G.; Serrazanetti, D.I.; Gozzi, G.; Turroni, S.; Ferrocino, I.;
et al. The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and Vegan
individuals. PLoS ONE 2014, 9, e112373. [CrossRef] [PubMed]

4. Muro, C.K.; Fernandes, L.D.; Lednev, I.K. Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes.
Anal. Chem. 2016, 88, 12489–12493. [CrossRef]

5. Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR)
spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [CrossRef]

6. Pereira, J.L.; Duarte, D.; Carneiro, T.J.; Ferreira, S.; Cunha, B.; Soares, D.; Costa, A.L.; Gil, A.M. Saliva NMR metabolomics:
Analytical issues in pediatric oral health research. Oral Dis. 2019, 25, 1545–1554. [CrossRef]

7. Mikkonen, J.J.; Raittila, J.; Rieppo, L.; Lappalainen, R.; Kullaa, A.M.; Myllymaa, S. Fourier Transform Infrared Spectroscopy and
Photoacoustic Spectroscopy for Saliva Analysis. Appl. Spectrosc. 2016, 70, 1502–1510. [CrossRef] [PubMed]

8. Orphanou, C.M.; Walton-Williams, L.; Mountain, H.; Cassella, J. The detection and discrimination of human body fluids using
ATR FT-IR spectroscopy. Forensic Sci. Int. 2015, 252, e10–e16. [CrossRef] [PubMed]

9. Graca, G.; Moreira, A.S.; Correia, A.J.V.; Goodfellow, B.J.; Barros, A.S.; Duarte, I.F.; Carreira, I.M.; Galhano, E.; Pita, C.; Almeida,
M.D.; et al. Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: A possible avenue for early diagnosis of prenatal
disorders? Anal. Chim. Acta 2013, 764, 24–31. [CrossRef]

10. Khaustova, S.; Shkurnikov, M.; Tonevitsky, E.; Artyushenko, V.; Tonevitsky, A. Noninvasive biochemical monitoring of physiolog-
ical stress by Fourier transform infrared saliva spectroscopy. Analyst 2010, 135, 3183–3192. [CrossRef]

11. Bec, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [CrossRef] [PubMed]
12. Zlotogorski-Hurvitz, A.; Dekel, B.; Malonek, D.; Yahalom, R.; Vered, M. FTIR-based spectrum of salivary exosomes coupled

with computational-aided discriminating analysis in the diagnosis of oral cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 685–694.
[CrossRef] [PubMed]

13. Scott, D.A.; Renaud, D.E.; Krishnasamy, S.; Meric, P.; Buduneli, N.; Cetinkalp, S.; Liu, K.Z. Diabetes-related molecular signatures
in infrared spectra of human saliva. Diabetol. Metab. Syndr. 2010, 2, 1–9. [CrossRef] [PubMed]

14. Wongkamhaeng, K.; Poachanukoon, O.; Koontongkaew, S. Dental caries, cariogenic microorganisms and salivary properties of
allergic rhinitis children. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 860–865. [CrossRef]

15. Lasschuijt, M.; Mars, M.; de Graaf, C.; Smeets, P.A.M. How oro-sensory exposure and eating rate affect satiation and associated
endocrine responses-a randomized trial. Am. J. Clin. Nutr. 2020, 111, 1137–1149. [CrossRef]

16. Ni, D.; Smyth, H.E.; Gidley, M.J.; Cozzolino, D. Exploring the relationships between oral sensory physiology and oral processing
with mid infrared spectra of saliva. Food Hydrocoll. 2021, 120, 106896. [CrossRef]

17. Ployon, S.; Brule, M.; Andriot, I.; Morzel, M.; Canon, F. Understanding retention and metabolization of aroma compounds using
an in vitro model of oral mucosa. Food Chem. 2020, 318, 126468. [CrossRef]

18. Canon, F.; Neiers, F.; Guichard, E. Saliva and Flavor Perception: Perspectives. J. Agric. Food Chem. 2018, 66, 7873–7879. [CrossRef]
19. Gardner, A.; Carpenter, G.H. Anatomical stability of human fungiform papillae and relationship with oral perception measured

by salivary response and intensity rating. Sci. Rep. 2019, 9, 9759. [CrossRef]
20. Mosca, A.C.; Chen, J.S. Food-saliva interactions: Mechanisms and implications. Trends Food Sci. Technol. 2017, 66, 125–134.

[CrossRef]
21. Zijlstra, N.; de Wijk, R.A.; Mars, M.; Stafleu, A.; de Graaf, C. Effect of bite size and oral processing time of a semisolid food on

satiation. Am. J. Clin. Nutr. 2009, 90, 269–275. [CrossRef] [PubMed]
22. Hogenkamp, P.S.; Schiöth, H.B. Effect of oral processing behaviour on food intake and satiety. Trends Food Sci. Technol. 2013, 34,

67–75. [CrossRef]
23. Goloni, C.; Peres, F.M.; Senhorello, I.L.S.; Di Santo, L.G.; Mendonca, F.S.; Loureiro, B.A.; Pfrimer, K.; Ferriolli, E.; Pereira, G.T.;

Carciofi, A.C. Validation of saliva and urine use and sampling time on the doubly labelled water method to measure energy
expenditure, body composition and water turnover in male and female cats. Br. J. Nutr. 2020, 124, 457–469. [CrossRef]

142



Foods 2022, 11, 711

24. Pruszkowska-Przybylska, P.; Sitek, A.; Rosset, I.; Sobalska-Kwapis, M.; Slomka, M.; Strapagiel, D.; Zadzinska, E.; Morling, N.
Association of saliva 25(OH)D concentration with body composition and proportion among pre-pubertal and pubertal Polish
children. Am. J. Hum. Biol. 2020, 32, e23397. [CrossRef] [PubMed]

25. De Graaf, C.; Blom, W.A.M.; Smeets, P.A.M.; Stafleu, A.; Hendriks, H.F.J. Biomarkers of satiation and satiety. Am. J. Clin. Nutr.
2004, 79, 946–961. [CrossRef] [PubMed]

26. Gibbons, C.; Hopkins, M.; Beaulieu, K.; Oustric, P.; Blundell, J.E. Issues in Measuring and Interpreting Human Appetite
(Satiety/Satiation) and Its Contribution to Obesity. Curr. Obes. Rep. 2019, 8, 77–87. [CrossRef] [PubMed]

27. Blundell, J.; de Graaf, C.; Hulshof, T.; Jebb, S.; Livingstone, B.; Lluch, A.; Mela, D.; Salah, S.; Schuring, E.; van der Knaap, H.; et al.
Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010, 11, 251–270. [CrossRef]

28. Higgs, S.; Spetter, M.S. Cognitive Control of Eating: The Role of Memory in Appetite and Weight Gain. Curr. Obes. Rep. 2018, 7,
50–59. [CrossRef]

29. Beaulieu, K.; Blundell, J. The Psychobiology of Hunger—A Scientific Perspective. Topoi 2020, 40, 565–574. [CrossRef]
30. Drapeau, V.; Blundell, J.; Gallant, A.R.; Arguin, H.; Despres, J.P.; Lamarche, B.; Tremblay, A. Behavioural and metabolic

characterisation of the low satiety phenotype. Appetite 2013, 70, 67–72. [CrossRef]
31. Drapeau, V.; Hetherington, M.; Tremblay, A. Impact of eating and lifestyle behaviors on body weight: Beyond energy value. In

Handbook of Behavior, Food and Nutrition; Springer: Berlin/Heidelberg, Germany, 2011; pp. 693–706.
32. Bel’skaya, L.V.; Sarf, E.A. Biochemical composition and characteristics of salivary FTIR spectra: Correlation analysis. J. Mol. Liq.

2021, 341, 117380. [CrossRef]
33. Stading, M.; Johansson, D.; Diogo Löfgren, C.; Christersson, C. Viscoelastic properties of saliva from different glands. In

Proceedings of the Nordic Rheology Conference (NRC), Reykjavík, Iceland, 19–21 August 2009; pp. 109–112.
34. Stokes, J.R.; Davies, G.A. Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 2007,

44, 141–160. [PubMed]
35. Ni, D.; Gunness, P.; Smyth, H.E.; Gidley, M.J. Exploring relationships between satiation, perceived satiety, and plant-based snack

food features. Int. J. Food Sci. Technol. 2021, 56, 5340–5351. [CrossRef]
36. Zalifah, M.K.; Greenway, D.R.; Caffin, N.A.; D’Arcy, B.R.; Gidley, M.J. Application of labelled magnitude satiety scale in a

linguistically-diverse population. Food Qual. Prefer. 2008, 19, 574–578. [CrossRef]
37. Movasaghi, Z.; Rehman, S.; Rehman, I.U. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc.

Rev. 2008, 43, 134–179. [CrossRef]
38. Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36,

1627–1639. [CrossRef]
39. Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification, 2nd ed.; NIR: Chichester,

UK, 2002; Volume 6.
40. Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit

and vegetables: A review. Postharvest Biol. Technol. 2019, 148, 1–14. [CrossRef]
41. Rodrigues, R.P.; Aguiar, E.M.; Cardoso-Sousa, L.; Caixeta, D.C.; Guedes, C.C.; Siqueira, W.L.; Maia, Y.C.P.; Cardoso, S.V.;

Sabino-Silva, R. Differential Molecular Signature of Human Saliva Using ATR-FTIR Spectroscopy for Chronic Kidney Disease
Diagnosis. Braz. Dent. J. 2019, 30, 437–445. [CrossRef]

42. Rodrigues, L.M.; Magrini, T.D.; Lima, C.F.; Scholz, J.; Martinho, H.D.; Almeida, J.D. Effect of smoking cessation in saliva
compounds by FTIR spectroscopy. Spectrochim. Acta Part A 2017, 174, 124–129. [CrossRef]

43. Stuart, B.; Ando, D.J. Modern Infrared Spectroscopy: Analytical Chemistry by Open Learning; Wiley: Greenwich, UK, 1996.
44. Naseer, K.; Ali, S.; Qazi, J. ATR-FTIR spectroscopy as the future of diagnostics: A systematic review of the approach using

bio-fluids. Appl. Spectrosc. Rev. 2020, 56, 85–97. [CrossRef]
45. Derruau, S.; Gobinet, C.; Mateu, A.; Untereiner, V.; Lorimier, S.; Piot, O. Shedding light on confounding factors likely to affect

salivary infrared biosignatures. Anal. Bioanal. Chem. 2019, 411, 2283–2290. [CrossRef] [PubMed]
46. Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V. Age and Gender Characteristics of the Infrared Spectra of Normal Human Saliva. Appl.

Spectrosc. 2020, 74, 536–543. [CrossRef] [PubMed]
47. Zijlstra, N.; Mars, M.; de Wijk, R.A.; Westerterp-Plantenga, M.S.; Holst, J.J.; de Graaf, C. Effect of viscosity on appetite and

gastro-intestinal hormones. Physiol. Behav. 2009, 97, 68–75. [CrossRef] [PubMed]

143





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Foods Editorial Office
E-mail: foods@mdpi.com

www.mdpi.com/journal/foods





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6669-6 


	A9R14p7mds_1p26iqx_cmc.pdf
	Advances of Spectrometric Techniques in Food Analysis and Authentication.pdf
	A9R14p7mds_1p26iqx_cmc

