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Editorial

Ecosystem Observation, Simulation and Assessment: Progress
and Challenges

Peng Hou

Satellite Environment Application Center, Ministry of Ecology and Environment, Beijing 100094, China;
houpcy@163.com

Ecosystems provide supply, regulation, culture and support services for human-being,
and overall support human survival and sustainable development. As an open, dynamic
and integrated system, the internal components of an ecosystem are constantly realizing
the dynamic coordination of interaction to achieve a new balance through the process of
material and energy exchange and actualizing the mutual adaptation and self-evolution of
the ecosystem and the external environment. However, driven by multiple factors such as
climate change, population growth, urbanization, and exploitation of mineral resources,
global problems such as ecosystem degradation and biodiversity loss have affected the
sustainable development of human beings. It has become a hot spot in ecology research
to develop basic theories, model methods and technical means for ecosystem observation,
simulation and evaluation, for the quantitative analysis of the structure, process and
function of ecosystems, and for the improvement of the scientific understanding of the
changing characteristics and evolution laws of natural ecosystems.

1. Ecosystem Observation Progress

According to the spatial distribution of ecosystem characteristics, the parameters of an
ecosystem are measured on the spot by setting sample plots, quadrats, sample points and
sample belts in the field investigation. Alternatively, quantitative analysis is carried out
in the laboratory after ecological sample collection. By these representative investigation
methods, the overall observation of a regional ecosystem can be realized. This field survey
type exemplifies the earliest and most basic method of ecosystem observation. To obtain
more continuous times ecosystem observation data so as to better understand the ecosystem
process and its mechanism, the observation equipment is deployed at a fixed sample point
to observe positioning or site. For the same ecological parameter, different observation
methods can be selected according to different research purposes, such as the study of
methane emission intensity in wetlands [1,2].

Due to the limitation of the continuity and representativeness of observation data, the
long-term positioning observation data of a single site cannot reveal the universal law of
ecology. To take a mountain ecosystem as an example, the observation data from a certain
station on the sunny slope can be used to analyze the laws of the mountain’s sunny slope
ecosystem but cannot be used to analyze the laws of other mountain or shady slope ecosys-
tems. If we aim to determine a general law of mountain ecosystems, we must establish up
multiple observation stations across different mountains and ecosystems according to their
distribution. Positioning observation has developed from a single position to a network,
forming ecosystems observation networks on national, intercontinental and global scales.
In particular, the International Biological Program (IBP) launched in the 1960s and the
international symposium “Long-Term Ecological Research: Global Prospects” held in the
1980s played important roles in promoting the development of positioning observation
worldwide. Over 40 years, a national-scale ecosystem observation network has formed
which is represented by the United States, China, the United Kingdom, Japan, Canada
and Australia. This is joined by intercontinental-scale ecosystem observation networks,
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represented by the Asian Alux Observation System and European Integrated Carbon Obser-
vation System, and series of globe-scale ecosystem observation networks represented by the
International Long-Term Ecosystem Research Network, the Group on Earth Observations
Bio-diversity Observation Network, and the Global Terrestrial Observing System.

In addition to ground observation, remote sensing observation has become an indis-
pensable means of ecosystem observation. Since the launch of the first manmade satellite
in 1957, Earth observation has changed. The era in which humans can only make local
observations from the Earth’s surface, which spanned millennia, has ended. Up to now, the
spatial resolution of remote sensing observation includes kilometer-scale, meter-scale and
sub-meter-scale resolutions, the spectral resolution of remote sensing observation includes
multi-spectrum and hyperspectral resolutions, and the spectral resolution of remote sensing
observation includes ultraviolet, visible light, infrared, microwave resolutions, etc. The
increasing use of UAV (unmanned aerial vehicle) remote sensing platforms has significantly
improved remote sensing observation ability. Remote sensing observation has the unique
characteristics of large-scale synchronous observation, which significantly improves the
capability of researchers to observe the ecosystem in a spatially continuous or synchronous
manner. At the same time, based on historical images, we can carry out retrospective
monitoring and assessments of regional ecological change characteristics. Remote sensing
observation has been widely used in regional ecosystem change monitoring [3,4]. The use
of high spatial resolution UAV remote sensing observation technology can better monitor
and identify large animals, and significantly improve the efficiency and data accuracy
of biodiversity monitoring and investigation [5]. For hyperspectral remote sensing data,
refined spectral information can better identify ecosystem process indicators, such as soil
carbon or nutrients [6].

2. Ecosystem Simulation Progress

Ecosystem simulation is mainly realized through the ecological principles model.
Ecological model simulation is based on a good understanding of the ecological process,
structure and function. Based on the basic elements and key processes of the ecosystem, an
ecological model is put forward by the parameterized, digital and quantitative expression
of the complex ecosystem. As a consequence, it is unrealistic to aspire to describe the ecosys-
tem completely and accurately through model simulation. Simulation model construction
is the trade-off between model accuracy and simulation efficiency. In general, the fewer the
basic elements and key process nodes of the ecosystem, the higher the simulation efficiency
of the model but the lower the accuracy of the model. On the contrary, the simulation
efficiency of the model is low, but the model accuracy is high. If the ecosystem has more
basic elements and key process nodes then the simulated model will be closer to the real
and complex ecosystem.

Ecology is a wide range of contents, and there are many types of ecosystem mod-
els. Representative models include eco-geographic and biogeochemical models. Eco-
geographic models mainly simulate the spatial distribution of terrestrial ecosystem and
its relationship with geographical environment, as in a Holdridge life zone system model.
Ecosystem biogeochemical models, such as the CASA vegetation net primary productivity
model, CENTRY biogeochemical cycle model, or BIOME-BGC carbon and water flux model,
mainly simulate ecosystem processes and functions including net primary productivity,
carbon and nitrogen water cycle, nutrient circulation, etc. With the development of remote
sensing and geographic information system technology, the spatial and geographic devel-
opment trend of ecological models is obvious. At the same time, with the increasingly
obvious impact of climate change and human disturbance on the ecosystem, the model
simulation of the impact of climate change and human disturbance on the structure and
function of the ecosystem has received more attention.
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3. Ecosystem Assessment Progress

The main content of ecosystem assessment is the analysis of the spatio-temporal
change process of the ecosystem and of the interaction between the ecosystem and human
society, climate, hydrology, etc. The Millennium Ecosystem Assessment, carried out by the
United Nations organization, has promoted the development of integrated ecosystem as-
sessment in landmark fashion. Different organizations or countries have carried out many
comprehensive ecosystem assessment practices at different scales, such as global, regional
and national. The assessment framework models can be summarized into four categories:
First is the “Ecological Pressure–Policy Response” ecosystem assessment framework, rep-
resented by the DPSIR (Drivers–Pressure–State–Impact–Response) framework adopted
by the Global Environment Outlook of the United Nations Environment Programme.
Second is the “Ecosystem Services–Human Welfare” ecosystem assessment framework,
represented by the “Ecosystem Services–Material Supply Human Welfare-Change Driving
Force” adopted by the United Nations Millennium Ecosystem Assessment. The third is
the “Natural Benefit–Ecosystem Management” ecosystem assessment framework, repre-
sented by The Economics of Ecosystems and Biodiversity (TEEB) project plan promoted by
the United Nations Environment Programme. The fourth is the “Comprehensive Status–
Change Trend” ecosystem assessment framework, represented by China’s regular national
ecosystem survey and assessment.

In addition to the comprehensive assessment of ecosystems, there have been some new
research hotspots in ecosystem assessment focusing on global challenges and sustainable
development of human society. In terms of sustainable development, measured by progress
towards the 2030 Sustainable Development Goals proposed by the United Nations [7], the
coordinated development of ecological protection and social economy [8–10] has attracted
much attention. In the realm of climate change challenges, some researchers have assessed
ecosystem responses to climate change, especially the response of ecosystem services [11]
and production functions [12] to climate change. In terms of the challenges of biodiversity
and ecological degradation, the biodiversity conservation assessment [13,14] and imple-
mentation effectiveness assessment of ecological conservation and restoration policies or
measures [15–17] are becoming popular.

4. Challenges in the Future

Although people have made significant progress in the research and cognition of
ecosystems, the cognitive level remains very limited in the face of complex and comprehen-
sive ecosystems. There is no doubt that scientific research of ecosystems is needed.

The observation of ecosystem structure, process and function cannot be realized by
using any existing ecosystem observation means alone. In the future, it will be necessary to
build an intelligent ecosystem observation network by integrating three observation meth-
ods with the help of networks, IOT (Internet of Things), improving ecosystem observation
ability and realizing fine observation. At present, due to the relatively mature observation
technologies and methods for the main ecological parameters including vegetation and
hydrology, there are many observation and research methods for natural ecosystems such
as forests, grasslands and wetlands. However, for ecosystems that are not dominated by
vegetation, such as deserts and glaciers, the observation technologies and methods need to
be strengthened to better serve the challenges of climate change.

The ecosystem parameter data obtained by multi-observation means are multi-source
heterogeneous and differ in space–time scale. Developing a means to process data from
different observation methods and achieve the matching of a space–time scale is the most
important and basic objective in ecosystem research. The accuracy of spatio-temporal
matching of observation data directly affects the reliability and accuracy of ecosystem
research conclusions. However, due to the significant difference in data scales, such as
the spatial matching between the ground survey data in 1 square meter samples and the
satellite remote sensing data with tens of meters or kilometers of spatial resolution, the
current models and methods for processing these basic data still have great limitations. Of
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course, the scale problem not only exists in data processing, but persists across wide areas
of ecological research, such as evaluation and simulation, and represents a fundamental
topic in ecological research. For the same ecological problem, with different space-time
scales, the research conclusions may be inconsistent, and contradictory conclusions may
even appear. Spatial scale includes both spatial scope and spatial granularity (or resolution),
and time scale includes both time span and time frequency. A means of choosing and
determining the best space–time scale is the basis and key of ecological research. Other
scale concepts also constitute the object of ecological research: cells, tissues, organs, systems,
individuals, populations, communities, ecosystems and biosphere.

Ecological research is not only a scientific problem, but also a management problem
relating to the sustainable development of human beings. How to quantitatively analyze
the interaction between ecosystems and human society, ecosystems and climate change, es-
tablish a universal “natural ecology human society” ecological assessment framework, and
establish a high-accuracy “natural ecology climate change” ecosystem process model are
the major challenge ecosystem assessment. In the face of major challenges such as current
ecosystem degradation, biodiversity loss and climate change, many questions still require
scientific explanation and accurate answers. Examples of such issues include developing
a means to quantitatively understand and establish the driving effect of protection and
restoration measures on ecosystem change, the prediction of impacts of human disturbance
and destruction on ecosystems, the contribution of ecological protection and restoration
to mitigating climate change, the impact of ecosystem change on natural disasters, the
simulation and prediction of global large-scale ecological change, and the high-accuracy
simulation and evaluation of local scale ecological processes. The in-depth study and
solution of these problems are of great scientific significance to the sustainable use of nature,
the optimization and adjustment of ecosystem protection, and to restoration strategies for
human society.

Conflicts of Interest: The author declares no conflict of interest.
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Invasive Water Hyacinth (Eichhornia crassipes) Increases
Methane Emissions from a Subtropical Lake in the Yangtze
River in China

Wenchang Zhou 1,2,*, Shanshan Xiang 1,2, Yuhu Shi 1,2,*, Xiuhuan Xu 1,2, Huicui Lu 3, Wenhui Ou 1,2

and Jiawei Yang 1
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2 Hubei Honghu Wetland Ecosystem Research Station, Honghu 433200, China
3 Faculty of Forestry, Qingdao Agricultural University, Qingdao 266109, China
* Correspondence: zwclky@126.com (W.Z.); shiyuhu@126.com (Y.S.)

Abstract: Lakes represent an important source of atmospheric methane (CH4); however, there are few
studies on which lake-dwelling invasive aquatic plants generate CH4. Therefore, in this study, CH4

emissions were measured using a floating chamber and gas chromatography in a subtropical lake
in China. We considered four community zones of invasive plants (Eichhornia crassipes), emergent
vegetation (Zizania latifolia), floating-plant (Trapa natans) and open-water zones. The results indicate
that the flux of CH4 emissions varied between −5.38 and 102.68 mg m−2 h−1. The higher emission
values were attributed to lake eutrophication. Moreover, the flux of CH4 emissions in the invasive
plant zone was 140–220% higher than that in the open-water and the floating-plant zones. However,
there was no significant difference in CH4 emissions between the invasive plant and the emergent
vegetation zones. This may be due to a higher production of plants, as well as the rapid reproductive
rate of the invasive plants. Finally, CH4 emissions were positively associated with the air and water
temperature; however, the emissions were also negatively associated with water depth. Our results
suggest that invasive plants enhance freshwater CH4 emissions, thus contributing to global warming.

Keywords: methane emission; lakes; water hyacinth; climate change; greenhouse gases

1. Introduction

Despite the fact that lake ecosystems cover approximately 3.7% of the Earth’s conti-
nental land area [1,2], they are believed to be a major source of the greenhouse gas (GHG)
methane (CH4) [3,4]. The greenhouse effect of CH4 is approximately 28-fold higher than
that of CO2 for the century-long time scale, accounting for approximately 20% of total
global warming [3,5]. The CH4 concentration in the atmosphere, which is mainly caused by
human activity, has increased by 150% since pre-industrial times and continues to increase.
This may further enhance global warming to a greater extent [5,6].

Top-down and bottom-up estimates for global CH4 emissions are 576 and 727 Tg yr−1,
respectively, of which CH4 emissions from freshwater wetlands (including lakes and rivers)
account for 308 Tg yr−1 [5]. CH4 emissions between and within lakes exhibit high spa-
tiotemporal variability [7,8], and it is estimated that CH4 emissions from lakes account for
8–48 Tg yr−1, with approximately 50% of the flux being attributed to tropical/subtropical
regions [3,9]. Although several studies have determined the CH4 emissions from these
lakes are largely the result of a warming climate, invasive alien plants, pollution and enclo-
sure aquaculture [10–13], there are few studies on the contribution of human activity (e.g.,
introduction of alien plants) to CH4 emissions from lakes. In addition, these studies suggest
that current and future increases in CH4 emissions will intensify climate change [12–14];
therefore, it is necessary to further explore CH4 emissions from lakes.
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The free-floating water hyacinth (Eichhornia crassipes) is one of the world’s most
invasive aquatic plants. It causes significant ecological and socio-economic effects [15].
As an ornamental plant originating from tropical South America, this invasive water
hyacinth weed was introduced into China in the 1900s [16], and it has subsequently been
extensively cultivated as animal feed since the 1950s. It is distributed widely in the aquatic
ecosystems of the Yangtze River in China [16]. The water hyacinth commonly forms dense,
interlocking mat-forming floating aquatic plants on the water surface. This results from
a rapid reproductive rate, complex root structure and a doubling of its biomass within
five days [10,15,17,18]. The water hyacinth mats prevent the transfer of oxygen from the air
to the water’s surface and block the light required for photosynthesis by phytoplankton
and submersed vegetation [15,18]. The water hyacinths on the water surface can prevent
light penetration into the water column below [18], which decreases the temperature (water
and sediment) [19,20]. Finally, changes in these factors affect the spatiotemporal variability
of CH4 production and emissions from the lake and impact whole-lake emission estimates
on an annual basis [3,7,10]. Therefore, it is important to study the influence of the invasive
water hyacinth weed on CH4 emissions in these lakes.

Hong Lake is the seventh largest shallow lake in China and the largest natural lake
in Hubei Province, which is located within the middle reaches of the Yangtze River [21].
Because of the abundant natural resources in Hong Lake, rapid socio-economic develop-
ment has caused the lake to undergo a variety of environmental changes over the past few
decades, including a shrinking water area, deterioration of water quality and a decline in
biodiversity [21–23]. Several studies have confirmed that CH4 emissions from the invasive
Spartina altrniflora weed have significantly increased compared with the CH4 emissions
from the native plant community [24–26]. Banik et al. [27] also reported that the invasive
water hyacinth has clearly increased CH4 emissions from the freshwater ecosystems in
India, which were estimated to reach 1.2 Tg yr−1. Conversely, Attermeyer et al. [10] re-
ported that CH4 emissions from invasive water hyacinth zones were reduced compared
with those from open-water zones. This was caused by the oxidation of CH4 catalysed
by methanotrophic bacteria. Therefore, the influence of invasive aquatic plants on CH4
emission rates in freshwater ecosystems requires further examination.

In the present study, we focused on the effects of the invasive water hyacinth on CH4
emissions in a shallow lake in subtropical China. CH4 emissions in the shallow lake were
measured with floating chambers and a gas chromatography method. In addition, to reveal
the scope of its influence, we analysed the relationship between ecological factors (water
depth, temperature and dissolved oxygen from water) and CH4 emissions.

2. Materials and Methods

2.1. Study area Description

The study was conducted at the Hong Lake Natural Reserve (113◦12′–113◦26′ N,
29◦40′–29◦58′ E) towards the middle reaches of the Yangtze River. Hong Lake has a surface
area of 344 km2 with an open-water area of 308 km2, a littoral area of 36 km2 and a mean
water depth of 1.5 m [21,28]. Hong Lake was listed as an internationally important wetland
in the Ramsar convention in 2008 and was entered into the China Wetland Ecosystem
Research Network in 2014. The region is characterised by a north subtropical humid
monsoon climate, with a mean annual temperature of 15.9 ◦C–16.6 ◦C. The minimum and
maximum mean monthly temperatures were 3.8 ◦C in January and 28.9 ◦C in July and/or
August, respectively. The annual average evaporation is 1000–1300 mm and the mean
annual precipitation is 1174 mm, 74% of which occurs between April and October [21].

According to the change in water depth and the vegetation type from the littoral zone
to the open water, four zones in the study region were selected to monitor CH4 emission
flux between April and October of 2021 (Figure 1). The first site (OPs) was the open water
of the lake in which no vegetation grew. The second site (ECs) was an area invaded by an
alien species of water hyacinth (E. crassipes), which covered 100% of the area. The third
site (TNs) was covered by the floating plant Trapa natans (T. natans), with a total vegetation
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coverage of 95%. The fourth site (ZLs) consisted of the emergent aquatic plant Zizania
latifolia (Z. Latifolia), with a total vegetation coverage of 90% and sparse areas containing
Nelumbo nucifera and T. natans.

 

Figure 1. The study was conducted at Hong Lake in the middle reaches of the Yangtze River.

2.2. CH4 Measurements

CH4 flux measurements were taken at four sites in Hong Lake from April to December 2021.
The measurements were carried out using floating chambers [29], which included three plastic
opaque chambers (height above the water level 30 cm, volume 28.8 L) made of acrylic organic
glass. The outside of the chamber contained a rubber plastic film to prevent an increase in the
inner temperature of the chamber (Figure 2). In addition, the open-end of the chamber was
fitted with a cystosepiment and tyre as floating equipment. The headspace of the chamber was
equipped with a fan to mix the air and one sampling port and a temperature sensor. Before
sampling, three chambers were placed upside down 50 to 100 cm apart on the water surface.
Gas samples were drawn from each chamber every 5 min for 15 min with 60 mL polypropylene
syringes equipped with three-way stopcocks and then transferred to a gas bag.

 

Figure 2. The measuring chambers at the invasive water hyacinth site (ECs) of Hong Lake.
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Within one week, the CH4 concentration of all samples was determined by a gas
chromatography instrument (Agilent, 7890A, GC system, Agilent Co., Wilmington, DE,
USA) equipped with a flame ionisation CH4 detector from the Institute of Hydrobiology,
Chinese Academy of Sciences. The fluxes were calculated using linear regression based on
the concentration change as a function of time. 91% of all fluxes had a r-squared value of
0.70 or above (of which, 53% had a r-squared value of 0.9 or above). CH4 flux at each site
was calculated using the following equation:

F =
dc

dt
× M

V0
× T0

T
× V

A
× 60 (1)

F, flux at the time of chamber closure (mg m−2 h−1);
dc/dt, time derivative (slope) CH4 concentration change over time (ppm min−1);
M, molecular mass of CH4 (g mol−1);
V0, ideal gas mole volume (0.0224 m3 mol−1);
T0, absolute temperature (273.15 K);
T, absolute temperature inside of chamber at sampling (K);
V, chamber volume (m3) above the water surface;
A, chamber area (m2).

2.3. Measurement of Environmental Factors

The water depth at each site was measured with a ruler and bamboo during sampling.
The air temperature was measured using a digital thermometer (TM-902C, Factory of
Lihuajin Instrument, Guangzhou, China). Conductivity, water temperature, pH and DO
concentration at a water depth of 10 cm were measured using a portable multi-parameter
water quality meter (Multi 3630 IDS, WTW Co., Munich, Germany).

At each site, the plants were sampled in September 2021 to measure biomass. Three
50 cm × 50 cm plots were randomly selected for these measurements. The plant samples
were oven-dried at 70 ◦C for 48 h, and then weighed. In addition, three soil samples at
each site were collected at a depth of 10 cm, and all soil samples were transferred to the
laboratory, air-dried indoors and then dried at 70 ◦C for 48 h. The samples were milled
and passed through a 0.125 mm sieve to determine the organic carbon concentration (SOC,
g kg−1) using the wet oxidation method with K2CrO7, and the soil pH was measured using
the potentiometric method. In addition, total nitrogen (TN) concentration (g kg−1) was
measured using the Kjeldahl method with H2SO4 digestion. The total phosphorus (TP)
concentration of the soil was determined by colorimetry by alkali fusion with NaOH.

2.4. Statistical Analysis

The significant differences in CH4 fluxes at the four sites were analysed using SPSS
software (18.0 version) based on Bonferroni’s test as obtained by one-way analysis of vari-
ance. The relationship between CH4 fluxes and environmental variables was determined
using Pearson’s rank correlation. p < 0.05 was considered statistically significant.

3. Results

3.1. Environmental Factors

The mean air temperature at the ECs, OPs and ZLs sites from April to December was
not significantly different (p > 0.05), with mean values of 26.5 ◦C, 25.5 ◦C and 26.9 ◦C,
respectively, whereas the mean air temperature at the ECs and ZLs sites was significantly
higher (p < 0.05) than that of the TNs site (mean value of 24.7 ◦C, p < 0.05) (Figure 3a).
The mean water temperature at the ECs, OPs and ZLs sites was not significantly different
(p > 0.05), with mean values of 23.5 ◦C, 23.2 ◦C and 23.2 ◦C, respectively, but it was higher
(p < 0.05) than that at the TNs site (23.0 ◦C) (Figure 3b). The mean water depth at the
ECs, OPs, TNs and ZLs sites was 151, 192, 141 and 97.8 cm, respectively, and significant
differences were observed (p < 0.05); however, there were no significant differences (p > 0.05)
between the ECs and TNs sites (Figure 3c). The mean pH of the water at the ECs site
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(7.9) was significantly lower (p < 0.05) than that at the OPs and TNs sites (8.5 and 8.2,
respectively), and higher (p < 0.05) compared with that at the ZLs site (7.5) (Figure 3d).
The mean DO at the ECs site (7.0 mg L−1) was significantly lower (p < 0.05) than that
at the Ops site (8.6 mg L−1), but significantly higher (p < 0.05) than that of the ZLs site
(3.2 mg·L−1). There were no significant differences (p > 0.05) between the ECs and TNs
sites (mean value of 7.6 mg L−1) (Figure 3e). The mean conductivity of water at the ECs site
(352.5 μS cm−1) was significantly higher (p < 0.05) than that at the OPs (339.5 μS cm−1) and
TNs sites (347.6 μS cm−1); however, there were no significant differences (p > 0.05) between
the ECs and ZLs sites (355.5 μS cm−1) (Figure 3f).

Figure 3. The spatial dynamics of environmental factors, including (a) air temperature, (b) water
temperature, (c) water depth, (d) pH, (e) dissolved oxygen concentration and (f) water conductivity
in the four community study zones.

The vegetation biomass at the ECs site was significantly higher (p < 0.05) than that
at the Ops site, but lower than that at the ZLs site, and higher than that at the TNs site,
whereas there were no significant differences among the ECs, TNs and ZLs sites (p > 0.05)
(Table 1). The soil pH in the ZLs site was significantly lower than that of the Ops site
(p < 0.05), and no significant differences were observed for the others (p > 0.05). The SOC
and TP concentration in the top 10 cm of the soil at the ZLs were significantly higher
than those at the OPs and ECs (p < 0.05); however, there were no significant differences
between the ZLs and TNs sites (p > 0.05). Finally, the carbon-to-nitrogen ratio and the TP
concentration were not significantly different between the sites (p > 0.05) (Table 1).

3.2. CH4 Emission Fluxes

Temporal variations in CH4 emission fluxes were recorded at the four sites, and the
peak values occurred in the spring and/or summer, whereas the lowest values occurred in
winter. The CH4 emission fluxes at the ECs, OPs, TNs and ZLs sites ranged from 0.15 to
102.68, 0.12 to 59.75, −5.38 to 43.14 and 0.06 to 90.19 mg m−2 h−1, respectively (Figure 4).
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Table 1. The physicochemical characteristics at the four sites.

Sites
Vegetation Soil

Types Biomass (g m−2) pH SOC/g kg−1 TN/g kg−1 C:N Ratio TP/g kg−1

Open water (OPs) — No grown
vegetations 8.12 ± 0.05 a 16.63 ± 1.54 a 1.33 ± 0.14 a 12.54 ± 0.21 a 0.64 ± 0.01 a

Invasive plant (ECs) E. crassipes 270.02 ± 20.64 a 7.96 ± 0.04 ab 29.10 ± 1.71 a 2.42 ± 0.05 a 12.01 ± 0.65 a 0.63 ± 0.01 a
Floating plant (TNs) T. natans 211.08 ± 17.63 a 7.57 ± 0.29 ab 46.47 ± 11.31 ab 3.44 ± 0.78 ab 13.37 ± 0.49 a 0.61 ± 0.01 a

Emergent aquatic
plant (ZLs)

Z. latifolia, N. nucifera,
T. natans 618.30 ± 187.50 a 7.03 ± 0.07 b 56.63 ± 2.84 b 4.49 ± 0.30 b 12.61 ± 0.17 a 0.67 ± 0.01 a

Note: different lowercase letters indicate a significant difference exists among the three sites. Significance level: 0.05.

Figure 4. Seasonal variations in CH4 emission fluxes at the four sites.

Mean CH4 emissions at the ECs, OPs, TNs and ZLs sites from April to December were
23.16, 9.68, 7.08 and 19.48 mg m−2 h−1, respectively (Figure 5). The highest CH4 emissions
were observed at the ECs site. These differences indicate that the invasive plant, E. crassipes,
exerts an enormous influence on CH4 emissions at Hong Lake. A one-way analysis of
variance showed that there was a significant difference in CH4 emissions between the ECs
and TNs sites (P = 0.03), slight differences between the ECs and OPs sites (p < 0.1) and no
significant differences between the ECs and ZLs sites (p > 0.10).

3.3. Dependence of CH4 Fluxes on Environmental Factors

CH4 emission fluxes at all four sites were significantly positively correlated with air
and water temperature (Figure 6a, p < 0.01), and significantly negatively correlated with
water depth (Figure 6b, p < 0.01). The CH4 emission fluxes had no significant correlation
with the DO concentration in the water (Figure 7, p > 0.05).
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Figure 5. Mean CH4 emission fluxes at the four sites (* indicated the significant levels at 0.05).

Figure 6. The correlation between CH4 emissions, temperature (air and water) and water depth.
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Figure 7. The correlation between CH4 emissions and dissolved oxygen concentration.

4. Discussion

In this study, CH4 emission fluxes at Hong Lake ranged from −5.38 to 102.68 mg m−2 h−1

(Figure 4). The results indicate that this shallow lake releases a large amount of CH4 into the
atmosphere, but the flux values matched the ranges recorded in other lakes in tropical and
subtropical regions (ranging from −1.7 to 326 mg m−2 h−1) [27,30]. Moreover, Gondwe and
Masamba [31] reported that the maximum diffusive CH4 emission rates in tropical wetlands
varied between 0.24 and 293 mg m−2 h−1, with a mean of 23.2 mg m−2 h−1. The CH4 flux at
Hong Lake was one to two orders of magnitude higher than that at Dong Lake in the Yangtze
River in China (ranging from 0.06 to 5.53 mg m−2 h−1) [32], and higher than that at lakes in
North America (ranging from 0.002 to 0.826 mg m−2 h−1) [29,33] and a reservoir in the boreal
region (ranging from 18 to 36 mg m−2 h−1) [34]. A hydro-electric reservoir in French Guyana
released CH4 at flux intensities ranging from 8 to 35 mg m−2 h−1 [35].

Over the last five decades, Hong Lake has been extensively altered by flood regula-
tion, irrigation, fish aquaculture and water supply demands [23]. This has resulted in a
deterioration of water quality and caused the TP and TN to exceed their protective targets
(TP ≤ 0.05 mg L−1 and TN ≤ 1.0 mg L−1) [21]. According to a report in 2004, approx-
imately 80% (250 km2) of the lake has been used for large-scale aquaculture since the
1990s [36]. In 2017, the area used for aquaculture decreased to 40% of the lake area as a
consequence of wetland protection and a restoration project at Hong Lake beginning in
2004 [21,23]. Based on our measurements, the TP at the lake was 0.088 mg L−1 in August
and 0.239 mg L−1 in November 2021, which could have altered the CH4 emissions of the
lake [3]. Many studies have found that eutrophic lakes release more CH4 emissions into
the atmosphere [14,37,38]. Zhou et al. [37] reported that emission values ranged from
0.1 to 351.9 mg h−2 h−1 for shallow lakes in the Yangtze River Basin and were related to
more enriched waters. Pickard et al. [12] also reported that severe pollution in urban lakes
resulted in higher CH4 emissions, including a large amount of untreated sewage input,
with the highest flux recorded at 335 mg m−2 h−1.

We consulted internal data from the Administration of the Hong Lake National Na-
ture Reserve, beginning with the water hyacinth weed invasion in the 1990s. The cover-
age of the invading hyacinth increased from approximately 1300 ha in 2009 to 6000 ha
in 2014, but decreased to 1200 ha in 2017 because of a project to remove water hyacinth
from the lake. To date, it covers approximately 300 ha of the lake (Figure 8). The invasive
water hyacinth weed exhibited high growth rates and a mean net CO2 exchange (−3.4 to
−5.4 g C-CO2 m−2 d−1, negative values indicate ecosystem CO2 uptake) compared with open
water (2.3 to 5.1 g C-CO2 m−2 d−1, positive values indicate ecosystem efflux) [39]. However,
the extensive water hyacinth coverage of the lake surface resulted in the eutrophication of
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the lake [40]. Furthermore, the large water hyacinth mats prevented the transfer of oxygen
from the atmosphere to the water and decreased oxygen production by other plants and
algae [10,15]. This changes other ecological factors, such as the DO concentration in water
and sediment temperature of the lake [19,20], which may be linked to CH4 production and
emissions from the lake [10]. In the present study, CH4 emission fluxes at the ECs site were
139–227% higher on average than those at the OPs and TNs sites, and were approximately
20% higher than that at the ZLs site, although there was no significant difference between the
ECs and ZLs sites (Figure 5). Our results are consistent with those of previous studies [27]. For
the ECs site, higher CH4 release rates during sampling may be explained by higher biomass.
Wang et al. [30] found that the vegetation in the inundated area played an important role in
CH4 production and represented ”hotspots” of CH4 fluxes in water systems. Table 1 shows
that the plant biomass in the ECs and the ZLs sites was higher than that in the OPs and TNs
sites, and the former two sites had increased CH4 release into the atmosphere. In general,
numerous studies indicate that vegetation is a key factor of CH4 release in wetlands and is
attributed to primary production, which supplies organic matter to the sediment and induces
the production of CH4 by methanogenic bacteria [41,42]. For example, Furlanetto et al. [43]
reported that higher CH4 emissions in eutrophic lakes were attributed to higher organic matter
concentration, resulting from higher primary production rates. Other studies indicated that
CH4 emissions were positively correlated with net primary production in two lakes [3,32].
Our results reveal that the invasive plants strongly enhance freshwater CH4 emissions through
an increase in plant productivity, thus contributing to global warming. Therefore, to reduce
CH4 emissions, we suggest the extensive removal of water hyacinth in lakes through wetland
protection and restoration projects.

Figure 8. The area covered with water hyacinth in Hong Lake.

CH4 is produced in sediment under anoxic conditions by methanogens and is released
into the atmosphere through three pathways, including ebullition, diffusion and plant-
mediated emissions [3,44,45]. Two studies showed that lower DO concentrations in water
overlaying the sediment in the lake and marsh resulted in higher CH4 production [46,47]
and greater CH4 emissions [10,48]. In the present study, the mean DO concentration at
the four sites of the lake, from highest to lowest, was as follows: OPs > TNs > ECs > ZLs
(Figure 3e). Thus, lower DO concentrations were observed in surface water with areas
covered by macrophytes, which may have caused an increase in CH4 emission fluxes at
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the ZLs and the ECs, compared with the TNs and Ops (Figures 4 and 5). The results
indicate that CH4 emissions had no significant correlation with DO concentration in the
lake water, but the emissions decreased with increasing DO concentration in the lake water
(Figure 7). For example, Bolpagni et al. [49] reported that the oxygen saturation in a stand
of T. natans was lower than that in control areas that were devoid of plants, indicating
vegetation could lead to a reduction in anoxic conditions and an increase in CH4 emissions,
although the aerenchyma in the plants may contribute to the transport of CH4 from the
water column into the atmosphere. In contrast, Attermeyer et al. [10] reported that the
lower DO concentrations in the surface water of areas covered by E. crassipes led to a
significantly lower flux of CH4 emissions compared with that of open water, because the
CH4 in the surface water beneath the vegetation was oxidised by methanotrophic bacteria.
Thus, the effect of DO concentrations in water on CH4 emissions requires further study.

Air and water temperatures are important factors that limit the seasonal variation in
CH4 emissions [6,8,32,50]. It is well-established that methanogenesis in lake sediments
increases exponentially with temperature because of the increased microbial activity at
higher temperatures [10,51,52]. Figure 4 shows that the highest CH4 emission fluxes
occurred in June and July (Summer) at the three sites (ECs, OPs and TNs), whereas the
lowest were seen in December (Winter). Figure 6a indicates that CH4 emissions increase
exponentially with air and water temperatures in Hong Lake (N = 40, p < 0.01), but R2 was
much lower. Although the highest CH4 emissions occurred in April (Spring) for the ZLs
site, the results suggest that other factors affect the CH4 emissions at Hong Lake, such as
water depth, plant growth and the availability of organic matter in sediments [6,45,53].

Water depth or the water table level in wetlands is usually a major factor affecting
the spatial and temporal variation in the CH4 emission flux [42,48,53]. We observed a
negative correlation between CH4 emission fluxes and water depth at all sites; however, R2

was also much lower (Figure 6b). The results are consistent with the findings of several
previous studies [8,53]. Because Hong Lake is a shallow lake with a mean water depth of
1.5 m [28], the variation in water depth in the lake from April to December ranged from
48 cm to 293 cm (Figure 3c). However, emergent plants, including Z. latifolia and N. nucifera
plants, which were more dominant in the ZLs site compared with the other three sites,
could extend their root systems into deeper and more anaerobic sediment and transport
CH4-rich gas into the atmosphere [53].

5. Conclusions

In this study, we determined how the invasive water hyacinth weed affects CH4
emissions in subtropical Chinese lakes. The results indicate that CH4 emissions in the
zones invaded by water hyacinth were 20%–220% higher than those in the exotic-plant-
free areas, because of the higher productivity of the invasive water hyacinth. The CH4
emission fluxes at Hong Lake ranged from −5.38 mg m−2 h−1 (a sink of atmospheric CH4)
to 102.68 mg m−2 h−1 (a larger source of atmospheric CH4). In addition, the results indicate
that CH4 emissions exhibited a weaker correlation with water temperature, water depth
and dissolved oxygen concentration. Therefore, it is essential to further intensively study
the CH4 emissions of lakes in tropical and subtropical regions.
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Abstract: Reservoirs are an integral part of the global carbon cycle and generally considered to be
methane (CH4) emission hot spots. Although remarkable research achievements have been made
concerning CH4 ebullition from inland waters, such as rivers, lakes, and ponds, few have been
devoted to CH4 ebullition from plateau reservoirs. The present study focused on CH4 ebullition
from the Dahejia Reservoir located in the upper reaches of the Yellow River. We analyzed the
spatial and temporal characteristics of CH4 ebullition flux across the water-atmosphere interface
between July and August 2021. We also evaluated the influence of microbes on CH4 ebullition
flux. The results showed that (1) CH4 ebullition was the dominant mode of CH4 emissions in
the study site, which contributed to 78.85 ± 20% of total CH4 flux. (2) The mean CH4 ebullition
flux in the nighttime (0.34 ± 0.21 mg m−2 h−1) was significantly higher than that in the daytime
(0.19 ± 0.21 mg m−2 h−1). The mean CH4 ebullition flux first decreased and then increased from
the upstream (0.52 ± 0.57 mg m−2 h−1) to the downstream (0.43 ± 0.3 mg m−2 h−1) of the Yellow
River. (3) Sediment microbes affected the CH4 ebullition flux primarily by changing the microbial
community abundance. The regression analysis showed that CH4 ebullition flux had a significantly
linear negative correlation with microbial abundance in sediments. The redundancy analysis further
showed CH4 ebullition flux was significantly positively correlated with the abundances of Firmicutes
and Actinobacteria, and negatively with that of Proteobacteria and Chloroflexi. Among abiotic
variables, CH4 ebullition flux was closely related to total phosphorus, total organic carbon, pH and
nitrate nitrogen.

Keywords: CH4; ebullition flux; plateau reservoir; microbes

1. Introduction

Global warming has been deteriorating since the age of industrial revolution. From
1750 to 2021, the atmospheric methane (CH4) concentration increased from 722 ppb to
1889 ppb, by 162% [1]. CH4 is one of the three primary greenhouse gases. On the centennial
scale, the warming potential of CH4 is maximally 28 times that of carbon dioxide [2]. In
the past century, CH4 has accounted for roughly 20% of the global temperature increase.
CH4 is not only an important food and energy source in the freshwater food web, but
also occupies an irreplaceable place in the carbon cycle of aquatic ecosystems [3]. The
increase in atmospheric CH4 concentration has undergone three stages on the temporal
scale. The first stage is the growth stage (8.4 ± 0.6 ppb year−1) and the second is the stable
stage (0.4 ± 0.5 ppb year−1). The third stage, which is believed to have started in 2007, is
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another rapid growth stage (7.9 ± 0.6 ppb year−1) [4]. The increasing atmospheric CH4
concentration has caused a series of environmental safety problems, such as aggravating
climate change, glacier melt, and permafrost thaw. However, the natural or human factors
that are dominant in the above processes, remains unknown and attracts growing academic
interest.

Currently, most estimates of CH4 balance are usually carried out by replacing the total
CH4 emissions with CH4 diffusion, while ignoring CH4 ebullition [5]. The global freshwater
ecosystem emitted 93.1 Tg CH4 into the atmosphere every year, with CH4 ebullition
accounting for about 59% (55.3 Tg CH4) [6]. Under extreme conditions, CH4 ebullition may
be several dozen times that of emissions by diffusion [7]. The most intensively studied
influence factors of CH4 emission fluxes from inland water bodies include meteorological
factors (wind speed, atmospheric pressure), water quality factor (pH, dissolved oxygen,
nutrient salts), hydrological factors (water depth, water velocity, water temperature), and
ecosystem productivity [8–10]. In addition to environmental factors, CH4 ebullition flux is
also influenced by microbes. The global aquatic ecosystem emitted 576 Tg CH4 every year,
most of which was produced by methanogens, but more than half of which was oxidized
to carbon dioxide by methanotrophs. In marine ecosystems, more than 90% of CH4 was
consumed by methanotrophs [11–13]. Therefore, mitigation of CH4 emissions from aquatic
ecosystem requires more attention to the relevant microbes [14].

The Qinghai-Tibet Plateau has been substantially influenced by global climate change,
and the influence pattern is considered more complex than in many other places in the
world. Global climate change has brought significant changes to the ecosystem composi-
tion, including hydrology, soil, climate, and biology [15,16]. Although the Qinghai-Tibet
Plateau shows a lower temperature than that of many tropical zones, there are abundant
psychrotolerant methanogens, indicating sustained metabolic activity even during the
cold season [17]. In addition, low atmospheric pressure due to the high altitude facili-
tates significantly CH4 ebullition emissions from the lakes and rivers of the Qinghai-Tibet
Plateau [18,19]. Unlike natural aquatic ecosystems such as lakes and rivers, the water level
of plateau reservoirs fluctuates more greatly and frequently due to human control [20].
The corresponding changes in hydrostatic pressure and alteration of redox conditions
in the reservoir ecosystem have prompted CH4 production and emissions [21]. These
things considered, reservoir fluids are in a static state and associated with longer hydraulic
retention time and lower dissolved oxygen concentration in water bodies and sediments
compared with natural aquatic ecosystem [22]. Therefore, the CH4 supersaturation and
ebullition are common occurrences in reservoirs. A growing body of evidence has shown
that water bodies in the Qinghai-Tibet Plateau are CH4 emissions hotspots [19,23]. A more
accurate estimate of global CH4 emissions is hardly possible without the basic data from
the Qinghai-Tibet Plateau. In the present study, we first analyzed the spatial and temporal
characteristics of CH4 ebullition flux across the water—atmosphere interface between July
and August 2021. We then evaluated the influence of biotic and abiotic factors on CH4
ebullition flux, in the hope of laying the foundation for in-depth investigation of CH4
ebullition flux in plateau reservoirs.

2. Study Sites

The Dahejia Reservoir (102◦45′8.80′′ E, 35◦50′10.44′′ N) of the Yellow River is located
in the hinterland area inhabited by Chinese ethnic minorities (Figure 1). Sitting along
the trunk stream of the Yellow River at the junction between Guanting Town of Huzhu
Tu Autonomous County in the Qinghai Province and Dahejia Town of Jishishan Bonan,
Dongxiang and Salar Autonomous County, the Dahejia Reservoir is the twelfth cascade
hydropower station under the hydropower development plan for the Longyang Gorge-
Qingtong Gorge subregion of the Yellow River. The geomorphology around the reservoir is
featured by the alternation between gorges and plains. The terrain is flat with conspicuous
gullies on the two banks. The reservoir is 75 to 120 m wide during the flat water period.
The water depth is mainly controlled by the upstream hydropower station and fluctuates
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widely, ranging from 1.8 to 5.6 m. The study site has a continental climate. Located deep in
the northwest inland and far from the sea, the Dahejia Reservoir has large diel and annual
temperature ranges, with little rainfall throughout the year and large evaporation. Due to
high frequency of harsh weather events in winter, including Siberian high and cold waves,
the average minimum temperature over the years is as low as −11.6 ◦C. The precipitation
in this region increases as temperature increases in spring. The local precipitation further
increases in summer and autumn as the Pacific subtropical high extends towards the west.
Precipitation in these two seasons makes a greater contribution to annual precipitation
compared with spring and winter, accounting for about 70%. The subregion surrounding
the reservoir is dominated by cultivated plants, which are occasionally interspersed with
natural vegetation, including coniferous forests, brush, grassland, and meadow. Light gray
calcareous soil is the predominant soil type in the study site. Despite the high land use
diversity, the land utilization level remains low [24].

Figure 1. Location map of the study site. Twelve sampling points were subdivided into four
subregions: River (1–3), Middle (4–6), Lake (7–9), and Down (10–12).

3. Materials and Methods

3.1. CH4 Fluxes Monitoring

The study site extended from 2 km upstream to 1 km downstream of the Dahejia
Reservoir. From upstream to downstream of the reservoir, the study site was subdivided
into four subregions: River, Middle, Lake, and Down, as shown in Figure 1. In each
subregion three sampling points were set up, and there were 12 sampling points in total.
From July 29 to 31, 2021, CH4 fluxes across the water-atmosphere interface were monitored
on the diel scale for River, Lake, and Down subregions at a time interval of six hours.
From August 1 to 18, 2021, 12 sampling points were monitored during the daytime. CH4
fluxes across the water-atmosphere interface were measured using the static chamber-gas
chromatography-based method [17]. Using the headspace equilibrium technique [25], the
concentration of CH4 in water samples was measured on a gas chromatography (Agilent
7890B, Santa Clara, CA, USA) equipped with a flame ionization detector.

Total CH4 flux (Ft, μmol m−2 d−1) was monitored using a static chamber and calcu-
lated according to the equation below [17]:

Ft =
nt − n0

At
(1)
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nt and n0 are CH4 gas concentrations in the static chamber at time t and the initial moment
0 (mol), respectively. A is the surface area of the static chamber above water (m2). t is the
monitoring duration (min).

The CH4 diffusion flux (Fd, μmol m−2 d−1) is calculated using the thin-boundary layer
method [26]:

Fd = k ×
(

Cwater − Cequilibrium

)
(2)

k is the gas diffusion rate (cm h−1); Cwateris the dissolved CH4 concentration in the water
body (μmol L−1); Cequilibriumis the equilibrium concentration of CH4 in the water body un-
der actual conditions (μmol L−1). CH4 saturation in the surface water (%) is Cwaterdivided
by Cequilibrium. CH4 ebullition flux (Fe, μmol m−2 d−1) is defined as the total CH4 flux
minus the diffusion flux.

3.2. High-Throughput Sequencing

High-throughput sequencing was conducted by Beijing Biomarker Technologies using
the Illumina NovaSeq 6000 system [27]. After microbial total DNA extraction from the
sediments with a FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA), we
carried out real-time PCR, followed by product purification, quantification, and homog-
enization. A sequencing library was built and subjected to a quality check. If the library
was eligible, it was then sequenced using the Illumina NovaSeq 6000 sequencing platform
(Illumina, San Diego, CA, USA). The sequencing data analysis consisted of the following
steps: (1) raw read processing: the raw reads were subjected to preliminary screening, with
the low-quality reads filtered out and leaving only the high-quality ones. (2) operational
taxonomic unit (OTU) clustering and species annotation: Usearch was employed for OTU
clustering at 97% identity threshold, and the number of OTU was determined [28]. Thus,
the high-quality reads were denoised and clustered into OTU. Then, based on the sequence
compositions of OTU, we obtained the species abundance for different taxonomic ranks
(phylum, class, order, family, genus, and species).

3.3. Collection and Measurement of Environmental Data

A Van Veen grab sampler with a mouth measuring 1/40 m2 was used to collect
sediments at a depth of 0–15 cm at the specified sampling sites. The sediments were passed
through a 2 mm sieve, placed into a 20 mL centrifuge tube, and transported back to the
laboratory in a car refrigerator at 4 ◦C (PHILIPS TB5301, Amsterdam, The Netherlands).
The colorimetric method was used to measure the total phosphorus, total nitrogen, nitrate
nitrogen concentrations with Autoanalyser-3 (Seal Analytical, Norderstedt, Germany). The
total dissolved carbon of the sediment was measured by a total organic analyzer (Shimadzu
Corp, Kyoto, Japan). In the meantime, environmental parameters were acquired at about
0.5 m below the water surface at each sampling site using HQ40d portable water quality
monitor (Hach, Loveland, CO, USA), including dissolved oxygen, water temperature, pH,
salinity, and total dissolved solid. Water samples were collected using a 2 L stainless steel
water sampler into a 1 L water sample bottle. They were used to determine the water quality
indicators. The water depth and velocity were directly measured with doppler velocity
meter (BOYIDA LSH10-1QC, Xiamen, China). The wind speed, air temperature, and air
pressure were measured at 1 m above the water surface using a portable anemometer (Testo
480, Lenzkirch, Germany).

3.4. Statistical Analyses

Correlation analysis and one-way analysis of variance (ANOVA) were carried out
using SPSS 24.0. A p-value smaller than 0.05 was statistically significant. Three dupli-
cate samples were collected to determine the above parameters and indicators, and the
results were expressed as mean ± standard deviation. R-3.6.3 was run to carry out redun-
dancy analysis (RDA) of the correlation between the primary microbes and environmental
variables, and statistical graph plotting.
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4. Results

4.1. The CH4 Ebullition Flux Was Higher in the Nighttime than in the Daytime

Table 1 shows the dissolved CH4 concentration, saturation, and contribution of CH4
ebullition flux in the surface water of the Dahejia Reservoir in the daytime and the nighttime.
The diel variation range of CH4 concentration in the surface water of the Dahejia Reservoir
was 0.11–0.43 μmol L−1. In the daytime, the CH4 concentration fell within the range of
0.26–0.43 μmol L−1; in the nighttime, it varied within the range of 0.11–0.37 μmol L−1. An
independent-samples T-test showed no significant differences in the mean CH4 concen-
tration in the daytime (0.34 ± 0.06 μmol L−1) and the nighttime (0.28 ± 0.08 μmol L−1)
(p > 0.05). Both in daytime and nighttime, the dissolved CH4 concentration was signifi-
cantly higher than the equilibrium concentration in the water body. The CH4 saturation
in the surface water of the Dahejia Reservoir varied within the range of 81–6885%. In
the daytime, the CH4 saturation fell within the range of 157–6885%; in the nighttime, it
fell within the range of 81–5189%. An independent-samples T-test showed that the mean
CH4 saturation in the daytime (1732 ± 2803%) and the nighttime (1433 ± 2378%) was not
significantly different (p > 0.05). The contribution of CH4 ebullition flux in the daytime to
total CH4 flux at the reservoir varied within the range of 16.47–92.92%; In the nighttime, it
varied within the range of 80.35–100%. An independent-samples T-test showed that the
mean contribution of CH4 ebullition flux in the nighttime (95.65 ± 7.97%) was significantly
higher than that in the daytime (68.01 ± 26.23%) (p < 0.05).

Table 1. Dissolved CH4 concentration, saturation, and contribution of CH4 ebullition flux in the
Dahejia Reservoir at different time.

Time
CH4 Concentration

(μmol L−1)
CH4 Saturation

(%)

Contribution of
CH4 Ebullition Flux

(%)

Daytime
(06:00–18:00) 0.34 ± 0.06 a 1732 ± 2803 a 68.01 ± 26.23 a

Nighttime
(18:00–06:00) 0.28 ± 0.08 a 1433 ± 2378 a 95.65 ± 7.97 b

a,b Values having different subscript letters in the same column are significantly different from each other (p < 0.05).

Figure 2 shows the temporal characteristics of CH4 diffusion and ebullition flux across
the water—atmosphere interface of the Dahejia Reservoir in the daytime and the nighttime.
According to our measurements, the diel variation range of CH4 diffusion flux across the
water—atmosphere interface was 0–0.14 mg m−2 h−1. In the daytime, the CH4 diffusion
flux fell within the range of 0.01–0.14 mg m−2 h−1; in the nighttime, it varied within
the range of 0–0.1 mg m−2 h−1. An independent-samples T-test showed no significant
differences in the mean CH4 diffusion flux in the daytime (0.06 ± 0.05 mg m−2 h−1) and the
nighttime (0.02 ± 0.04 mg m−2 h−1) (p > 0.05). The diel variation range of CH4 ebullition
flux across the water—atmosphere interface was 0.03–0.69 mg m−2 h−1. In the daytime, the
CH4 ebullition flux fell within the range of 0.03–0.69 mg m−2 h−1; in the nighttime, it varied
within the range of 0.07–0.6 mg m−2 h−1. An independent-samples T-test showed that
the mean CH4 ebullition flux in the nighttime (0.34 ± 0.21 mg m−2 h−1) was significantly
higher than that in the daytime (0.19 ± 0.21 mg m−2 h−1) (p < 0.05).
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Figure 2. Diel differences in CH4 diffusion flux (a) and ebullition flux (b). (The black lines represent
the median and white dots indicate the mean; lower and upper edges represent 25th and 75th,
respectively; whiskers represent confidence intervals of 1.5 times the interquartile range; black dots
indicate outliers).

4.2. Spatial Variation of CH4 Ebullition Flux from Upstream to Downstream

Table 2 shows the dissolved CH4 concentration, saturation, and contribution of CH4
ebullition flux in the surface water of the Dahejia Reservoir in different subregion. As shown
by Table 2, the CH4 concentration in the surface water varied spatially within the range of
0.12–0.47 μmol L−1. Specifically, in the River subregion, Middle subregion, Lake subregion,
and Down subregion, the CH4 concentration in the surface water fell within the ranges
of 0.39–0.42 μmol L−1, 0.18–0.28 μmol L−1, 0.3–0.47 μmol L−1, and 0.12–0.24 μmol L−1,
respectively. ANOVA revealed that the mean CH4 concentration in the River subregion
(0.4 ± 0.03 μmol L−1) and the Lake subregion (0.39 ± 0.09 μmol L−1) was significantly
higher than that of the Middle subregion (0.23 ± 0.05 μmol L−1) and the Down subregion
(0.19 ± 0.06 μmol L−1) (p < 0.05). The CH4 saturation varied spatially within the range of
2297–8951%. In the River, Middle, Lake, and Down subregions, the CH4 saturation fell
within the ranges of 6645–7246%, 3314–4730%, 5904–8951%, and 2297–4617%, respectively.
ANOVA revealed that the mean CH4 saturation in the River subregion (6695 ± 779%)
and the Lake subregion (7720 ± 1565%) was significantly higher than that of the Middle
subregion (3310 ± 808%) and Down subregion (3514 ± 1164%) (p < 0.05). The dissolved
CH4 concentrations in the surface water of all subregions of the Dahejia Reservoir were
all significantly higher than the equilibrium concentration of CH4 in the atmosphere. The
contribution of CH4 ebullition flux in the River subregion to total CH4 flux at the reservoir
varied within the range of 52.98–88.7%; for the Middle, Lake, and Down subregions, it
varied within the range of 96.3–99.43%, 43.69–79.05%, and 63.67–94.61%, respectively. Thus,
the Dahejia Reservoir was an emission source of CH4.

Table 2. Dissolved CH4 concentration, saturation, and contribution of CH4 ebullition flux in the
Dahejia Reservoir in different subregion.

Subregion
CH4 Concentration

(μmol L−1)
CH4 Saturation

(%)

Contribution of
CH4 Ebullition Flux

(%)

River 0.40 ± 0.03 a 6695 ± 779 a 70.84 ± 25.25 a

Middle 0.23 ± 0.05 b 3310 ± 808 b 98.27 ± 1.73 b

Lake 0.39 ± 0.09 a 7720 ± 1565 a 61.58 ± 17.69 a

Down 0.19 ± 0.06 b 3514 ± 1164 b 75.39 ± 16.78 a

a,b Values having different subscript letters in the same column are significantly different from each other (p < 0.05).
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Figure 3 shows the spatial characteristics of CH4 diffusion flux and ebullition flux across
the water—atmosphere interface in different subregions of the Dahejia Reservoir. The CH4
diffusion flux across the water—atmosphere interface in the Dahejia Reservoir varied within
the range of 0–0.21 mg m−2 h−1. Specifically, the CH4 diffusion flux in the River, Middle, Lake,
and Down subregions varied within the range of 0.11–0.12 mg m−2 h−1, 0–0.01 mg m−2 h−1,
0.04–0.13 mg m−2 h−1, and 0.04–0.21 mg m−2 h−1, respectively. ANOVA showed that the
mean CH4 diffusion flux in the Down subregion (0.11 ± 0.09 mg m−2 h−1) was significantly
higher than that of the Middle subregion (0.01 ± 0.01 mg m−2 h−1) (p < 0.05). However,
the mean CH4 diffusion flux of the Lake subregion (0.07 ± 0.05 mg m−2 h−1) was not
significantly different from that in the River subregion (0.11 ± 0.01 mg m−2 h−1) (p > 0.05).
As shown above, the mean CH4 diffusion flux was higher in the upstream and downstream
of the reservoir. The CH4 ebullition flux varied within the range of 0.08–1.12 mg m−2 h−1.
Specifically, the CH4 ebullition flux in the River, Middle, Lake, and Down subregions varied
within the range of 0.12–0.92 mg m−2 h−1, 0.08–1.12 mg m−2 h−1, 0.08–0.15 mg m−2 h−1, and
0.17–0.76 mg m−2 h−1, respectively. ANOVA showed that the mean CH4 ebullition flux in the
River subregion (0.52 ± 0.57 mg m−2 h−1), Middle subregion (0.51 ± 0.54 mg m−2 h−1), Lake
subregion (0.11 ± 0.04 mg m−2 h−1), and Down subregion (0.43 ± 0.3 mg m−2 h−1) were not
significantly different (p > 0.05). From upstream to downstream, the mean CH4 ebullition flux
first decreased and then increased, with the minimum found in the Lake subregion. Taken
together, ebullition was the primary mode of CH4 emission in the Dahejia Reservoir.

  
Figure 3. CH4 diffusion flux (a) and ebullition flux (b) in different subregions (Symbols are similar
to Figure 2).

5. Discussion

5.1. Influence of Abiotic Factors on CH4 Ebullition Flux

We carried out the Spearman’s rank correlation test for all data (Figure 4). The results
showed that CH4 ebullition flux was significantly positively correlated with total CH4 flux
(R = 0.94, p < 0.05). This finding demonstrated the considerable contribution made by
CH4 ebullition flux to total CH4 flux. In other words, ebullition was a primary mode of
CH4 emissions from the reservoir. In the present study, we found that CH4 ebullition flux
was significantly negatively correlated with total organic carbon in the water (R = −0.66,
p < 0.05) and total phosphorus in the sediment (R = −0.72, p < 0.05). Total organic carbon
and total phosphorus have been identified as two limiting factors for primary productivity
of the ecosystem [29,30]. The changes in ecosystem productivity may promote carbon
dioxide generation and inhibit methane production in the Dahejia Reservoir. CH4 ebullition
flux was significantly positively correlated with sediment pH (R = 0.79, p < 0.05). It has
been reported that pH variation resulted in changes in carbon source and sink of the
aquatic ecosystem [31]. The higher the pH, the smaller the carbon dioxide emissions will
be, which reduces the environmental pH. Within the suitable range of pH for methanogens,
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the lower the pH, the higher the activity of the methanogens and the greater the amount
of CH4 produced [32]. CH4 ebullition flux was significantly negatively correlated with
nitrate in sediment (R = −0.76, p < 0.05). Relevant studies have shown that nitrate nitrogen
promoted nitrous oxide generation and emissions, but had a negative correlation with CH4
emissions [33]. Nitrous oxide is involved in CH4 oxidation as electron receptors and can be
used for methane oxidation coupled to denitrification. [34,35]. Therefore, an excessively
high level of nitrate nitrogen inhibits CH4 production. We found no significant correlation
between the other environmental variables and CH4 ebullition flux. This was possibly
because we only studied the warm season.

Figure 4. The correlations between CH4 fluxes and physicochemical variables. Spearman’s rank
correlation coefficients are presented in the boxes in different colors. Blue represents positive correla-
tion, red indicates negative correlation, and white means no correlation. The asterisks (*) mean the
correlations are statistically significant (p < 0.05). (Abbreviation: Ft, total CH4 flux; Fd, CH4 diffusion
flux; Fe, CH4 ebullition flux; WS, wind speed; AT, Air temperature; TPW, total phosphorus in water;
COD, chemical oxygen demand; TOCW, total organic carbon in water; TNW, total nitrogen in water;
WV, water velocity; WT, water temperature; TDS, total dissolved solid; DOW, dissolved oxygen in
water; WpH, water pH; WD, water depth; SMC, sediment moisture content; TNS, total nitrogen
in sediment; TPS, total phosphorus in sediment; SpH, sediment pH; TOCS, total organic carbon in
sediment; NNS, nitrate nitrogen in sediment).

5.2. Sediment Microbes Affected the CH4 Ebullition Flux

CH4 emissions from reservoirs implicate complex interactions between various factors,
among which physicochemical variables only account for a certain proportion of CH4
ebullition. CH4 production and emissions from inland waters are largely associated with
microbial activities [36]. To clarify the influence of microbial community composition and
structure in sediments on CH4 ebullition flux, we first performed a regression analysis
between total microbial abundance in sediments and CH4 ebullition flux. The results of the
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analysis are shown in Figure 5. CH4 ebullition flux had a significantly negative correlation
with the total microbial abundance in sediments (R2 = 0.499, p = 0.009).

Figure 5. Regression analysis of CH4 ebullition flux and the logarithm of microbial community
abundance in sediments. The red line represents the fit of a linear regression through the observed
data.

We further analyzed the influence of the abundance of different species on CH4
ebullition flux. The microbial communities in sediments in different subregions were
subjected to detrended correspondence analysis (DCA). The gradient lengths along the
four axes were 0.1564, 0.0092, 0.0024, and 0, respectively, all of which were below 3.
Therefore, we conducted a redundancy analysis (RDA) for the data. The results are shown
in Figure 6. The explanation degrees of RDA1 and RDA2 for CH4 ebullition flux were
96.68% and 0.56%, respectively. The two collectively explained 97.24% of CH4 ebullition
flux. Firmicutes and Verrucomicrobia were the main bacteria contributing to structural
differentiation of microbial communities in sediments at the sampling points 1 and 3.
Acidobacteria, Gemmatimonadetes, Epsilonbacteraeota, Chloroflexi, and Nitrospirae were
the main bacteria contributing to structural differentiation of microbial communities in
sediments at the sampling points 7, 8, and 9. Actinobacteria was the main contributor to
structural differentiation of microbial communities in sediments at the sampling point 6.
Bacteroidetes and Proteobacteria were the main contributors to structural differentiation of
microbial communities in sediments at the sampling points 4 and 5 in the Middle subregion
and at the sampling points 10, 11 and 12 in the Down subregion.

Total CH4 flux and ebullition flux were positively correlated with the abundance
of Firmicutes, Actinobacteria, and Verrucomicrobia, and negatively with Proteobacteria,
Chloroflexi, Gemmatimonadetes, and Nitrospirae. The dissolved CH4 concentration and
CH4 diffusion flux were positively correlated with the abundance of Firmicutes and Verru-
comicrobia, and negatively with that of Bacteroidetes and Proteobacteria. Proteobacteria,
Actinobacteria, Bacteroidetes, Gemmatimonadetes, and Nitrospirae actively participate
in organic matter decomposition. These bacteria play crucial roles in the Earth’s bio-
chemical cycle of carbon, or even in sulfur cycle [37–39]. As shown in Figure 6, CH4
ebullition flux and diffusion flux were negatively correlated with the abundance of Nitro-
spirae. Most species belonging to the Nitrospirae are nitrifying bacteria and are widely
present in freshwater ecosystems. These bacteria can convert nitrites into nitrates and
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compete with methanogens for substrates [40]. It has been reported that nitrous oxide
and CH4 emissions are negatively correlated with each other [33]. Due to the joint action
of methanotrophs (typically Methylocaldum species) and denitrifying bacteria (typically
Thauera species), nitrous oxide reduced CH4 production while accelerating its oxidation.
Besides, as the temperature rose, there would be a transition from the predominance of
reduction of nitrous oxide to CH4 oxidation [41]. Furthermore, the CH4 ebullition flux
and diffusion flux were also negatively correlated with the abundance of Proteobacteria.
This is because Proteobacteria competes with methanogens for substrates, which promotes
carbon dioxide and nitrous oxide emissions simultaneously. A large number of studies
have shown that the relative abundance of Proteobacteria had a significantly positive
correlation with carbon dioxide and nitrous oxide emissions [35,42]. The higher the abun-
dance of Proteobacteria and Bacteroidetes in soil, the higher the carbon dioxide emissions
would be [43]. It has been found that as primary producers, Epsilonbacteraeota is not only
backbones of the ecosystem, but also participates extensively in the carbon and nitrogen cy-
cles [44]. These bacteria use hydrogen or reductive sulfides as energy sources and produce
nitrogen via the denitrification pathway, where nitrates act as electron receptors. Besides,
Epsilonbacteraeota fixes carbon dioxide via the reductive tricarboxylic acid cycle (rTCA)
to achieve autotrophic growth [45]. As analyzed above, composition changes of microbial
communities in sediments are important biotic factors influencing CH4 ebullition flux.

Figure 6. Redundancy analysis of the correlation between CH4 fluxes and abundance of sediment
microbes. Red arrows represent sediment microbial communities, black arrows indicate CH4 fluxes,
and blue dots represent sampling points (1–12).

5.3. Comparison of CH4 Ebullition Flux at Reservoirs in Different Climate Zones

Table 3 shows the results of in-situ monitoring of CH4 ebullition flux at several
reservoirs in tropical, subtropical, and frigid zones. The CH4 ebullition fluxes at reservoirs
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in frigid zones are generally lower than those in tropical and subtropical zones. This is
because the lower the latitude and the higher the temperature, the higher the microbial
activity and the faster the CH4 production will be [46]. The CH4 ebullition flux varies
significantly across the reservoirs, especially for tropical and subtropical reservoirs. The
reasons for the variability include reservoir age, drainage subregion, land use pattern,
eutrophication, and primary productivity [47,48]. Recent studies have shown extensive
CH4 ebullition flux in cold region of the north, a phenomenon that tends to be ignored
and has been rarely discussed [49]. CH4 is very likely to accumulate in reservoirs located
in cold regions. An explosive growth of CH4 flux is common in melt season [50]. As
global warming gets worse, the melting of permafrost rich in organic matter leads to
an increase in CH4 emissions from the local water bodies [17]. For reservoirs in frigid
zones, the maximum CH4 ebullition flux can reach up to 115.59 mg m−2 h−1. Dahejia
Reservoir is also located in the subtropical zone, like Samuel Reservoir in Brazil and Pengxi
River/Reservoir in the Three Gorges Reservoir Area, China. The CH4 ebullition flux is
of the same order of magnitude at the three reservoirs. However, the Dahejia Reservoir
is located in the Qinghai-Tibet Plateau, where the climate more resembles that in the
frigid zone. Therefore, the CH4 ebullition flux in the Dahejia Reservoir is closer to that
in Porttipahta Reservoir in Finland (0.4 mg m−2 h−1) and Miaowei Reservoir in tropical
China (0.33 ± 0.56 mg m−2 h−1). Compared with the existing reports at home and abroad,
the CH4 ebullition flux across the water—atmosphere interface in the Dahejia Reservoir
is at a moderate level. The contribution made by CH4 ebullition flux to total CH4 flux is
comparable to that at other reservoirs at home and abroad.

As for the temporal and spatial characteristics on the reservoir scale, Grinham et al.
observed a significant difference in CH4 ebullition flux in the daytime and nighttime [51].
However, we did not observe a similar pattern of variation for the Dahejia Reservoir. From
the upstream to the downstream of the reservoir, Yang et al. found that ebullition was
the dominant mode of CH4 emissions in the upstream of the Xin’anjiang Reservoir, while
diffusion was dominant in the downstream [52]. Mcclure et al. showed that the CH4
ebullition flux decreased from the upstream to the downstream of the Falling Creek Reser-
voir [53]. We observed a similar variation for the Dahejia Reservoir, except that the CH4
ebullition flux in the Down subregion was significantly increased. Bai et al. reported similar
findings for the Three Gorges Reservoir during the low water period. That is, the CH4
ebullition flux was higher in the downstream (167.173 mg m−2 h−1) than in the upstream
(12.23–123.05 mg m−2 h−1) [54]. As analyzed above, CH4 ebullition flux has displayed sig-
nificant temporal and spatial heterogeneity, either on the global or the reservoir scale. In the
context of global climate change, the temperature rise in the Qinghai-Tibet Plateau is twice
as much as the global average during the same period [55]. Moreover, the precipitation
and air temperature vary consistently in the plateau region. Both have been increasing
over the years. The increase in precipitation will accelerate organic matter decomposition,
while that in air temperature can lead to eutrophication. They work synergistically to
promote the geochemical cycling of carbon in water bodies [56]. The uniqueness of the
plateau environment plus the action of several other factors has aggravated the spatial
and temporal heterogeneity in CH4 ebullition. However, our study was geographically
confined to the Dahejia Reservoir, and the findings may not be applicable to CH4 ebullition
from reservoirs over the entire Qinghai-Tibet Plateau. It is necessary to choose more repre-
sentative reservoirs in the Qinghai-Tibet Plateau to clarify the spatial and temporal features
of CH4 ebullition and the associated influence factors.
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Table 3. CH4 ebullition flux from global reservoirs.

Reservoir
CH4 Ebullition Flux

(mg m−2 h−1)

Contribution of
CH4 Ebullition Flux

(%)
Note

Thirparappu [57] 114.47 95.07 Tropical
Miaowei [58] 0.33 ± 0.56 62.26 Tropical

Gatun Lake [59] 525.56 97.7 Tropical
Falling Greek [53] 0.67 ± 0.31 72.17 Subtropical
Xin’anjiang [52] 2.73 ± 2.02 92.86 Subtropical

Itaipu [60] 0.025 7 Subtropical
Samuel [60] 0.57 55.88 Subtropical

Pengxi River [7] 0.84 70 Subtropical
Saar River [61] 5.31 ± 7.46 97 Temperate zone

Eguzon [62] 0.24 ± 0.56 9.8 Temperate zone
Northern Québec [63] 0.1 83 Frigid zone

Porttipahta [6] 0.4 17.09 Frigid zone
Lokka [63] 115.59 83.63 Frigid zone

Dahejia 0.31 ± 0.29 86.11 This study

6. Conclusions

It should be noted that since global warming has been deteriorating, the uncertainty
of CH4 ebullition from reservoirs located in the Qinghai-Tibet Plateau will increase consid-
erably [17,19]. We studied CH4 ebullition flux from the Dahejia Reservoir located in the
upper reaches of the Yellow River and analyzed the spatial and temporal characteristics of
CH4 ebullition flux, the contribution made by CH4 ebullition flux to total CH4 flux, and
the influence factors during the warm season (from July–August 2021). We arrived at the
following conclusions:

1. CH4 ebullition was the dominant mode of CH4 emissions at the study site and
contributed to 78.85 ± 20% of total CH4 flux.

2. The CH4 ebullition flux in the nighttime (0.34 ± 0.21 mg m−2 h−1) was significantly
higher than that in the daytime (0.19 ± 0.21 mg m−2 h−1).

3. The CH4 ebullition flux first decreased and then increased from upstream to down-
stream. In the River, Middle, Lake, and Down subregions, the CH4 ebullition flux
was 0.52 ± 0.57 mg m−2 h−1, 0.51 ± 0.54 mg m−2 h−1, 0.11 ± 0.04 mg m−2 h−1, and
0.43 ± 0.3 mg m−2 h−1, respectively.

4. Among abiotic variables, the CH4 ebullition flux was closely related to total phos-
phorus, total organic carbon, pH and nitrate nitrogen. Among biotic factors, CH4
ebullition flux had a significant negative linear correlation with microbial abundance.
The redundancy analysis showed that the CH4 ebullition flux was significantly posi-
tively correlated with the abundances of Firmicutes and Actinobacteria and negatively
with that of Proteobacteria and Chloroflexi.

Although we had studied the CH4 ebullition flux of the Dahejia Reservoir on the diel
scale, our study still had the following limitations due to limited time and manpower.
We had discussed the diel and spatial variations of CH4 ebullition flux across the water-
atmosphere interface in the Dahejia Reservoir of the Yellow River. In the future, we need to
further investigate the monthly, seasonal, and interannual variations of CH4 ebullition flux
in the study site, especially the variations in the cold season. Specifically, we will include all
microbes in the water bodies of the reservoir into our study. Microbial genome data will be
collected in a more comprehensive manner by metagenomic high-throughput sequencing,
so as to precisely quantify CH4 ebullition.
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Abstract: Mangrove wetlands play a key role in global biodiversity conservation, though they
have been damaged in recent decades. Therefore, mangrove habitats have been of great concern
at the international level since the latter half of the 20th century. We focused on the key issue of
the dynamics of mangrove habitats. A comprehensive review of their typicality and status from
the global perspective was evaluated before the landscape dynamics of the mangrove habitats at
the five sites were interpreted from Landsat satellite images covering 20 years, from 2000 to 2020.
Ground-truthing was undertaken after comparing the results with the other published international
mangrove datasets. We reached three conclusions: Firstly, within the period from 2000 to 2020, the
mangrove area in Dongzhaigang increased by 414 ha, with an increase of 24.6%. In Sembilang NP,
Sundarban, Kakadu NP, and RUMAKI, the mangrove area decreased by 1652 ha, 16,091 ha, 83 ha, and
2012 ha, with a decrease of 1.8%, 2.7%, 0.9%, and 3.9%, respectively. Secondly, other types of wetlands
play a key role in degradating the mangrove wetlands in all of five protected areas. Thirdly, the rate
of mangrove degradation has slowed dramatically based on the five sites over the past two decades,
which are generally consistent with the findings of other researchers.

Keywords: mangrove conservation; wetland habitat; landscape changes; ecology & hydrology

1. Introduction

Mangroves are distributed in tropical, subtropical, and some temperate coasts and
often in regions with high population density and intensive human activities. Mangroves
provide essential ecosystem services, such as coastal protection, pollution control, and
cultural values to hundreds of millions of people [1,2]. However, mangrove habitats have
been drastically degraded due to various factors over the past few decades, such as climate
change, urban expansion, aquaculture, mining, and logging [3,4]. Global mangrove area has
decreased by 35–50% in the past half-century (equivalent to an annual loss of 1% to 2%) [5].

International organizations and governments have taken actions to protect mangrove
wetlands. In 2015, the United Nations included the mangrove ecosystem as an important
factor in achieving sustainable development [6]. As early as 1996, India implemented a
project to restore mangrove wetlands along the east coast through a partnership between
the Environment Foundation and the government [7]. In 2002, the State Forestry Adminis-
tration of China began a series of mangrove conservation and restoration projects. In 2020,
the Chinese government again launched Special Action Plan for Mangrove Protection and
Restoration (2020–2025)” [2]. To prevent the continued degradation of mangrove ecosys-
tems, the Indonesian government has also focused on implementing a community-based
mangrove management program [8].

Many researchers have investigated mangrove wetlands’ long-term change. The FAO
published the global status of mangrove degradation in 2007 and reported that the global
mangrove wetland area decreased by 20% from 1980 to 2005. Goldberg et al. [9] showed
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an average annual loss rate of 0.13% (2000–2016) of the global mangrove area. Global
Mangrove Watching Version 3.0 [10] showed a global average annual mangrove loss rate
of 0.21% (1996–2010) and 0.04% (2010–2020), respectively, and that the mangrove area in
Australia has been declining. However, Lymburner et al. [11] indicated that the mangrove
area in Australia maintained an increasing trend between 2000 and 2010. Most studies
reported that the rate of mangrove decline has started to decrease, but inconsistencies still
existed in some of the results. In addition, the existing studies have mainly focused on the
area change of mangrove ecosystems, while the change in landscape characteristics has
been under-investigated.

Mangroves are one of the world’s most threatened and vulnerable ecosystems, with
climatic factors and human activities as the primary degradation factors [12]. Climatic
factors include precipitation, temperature, sea levels rise, natural disasters, etc. Human
activities can be divided into agricultural encroachment, urban expansion, environmental
pollution, coastal aquaculture, etc. [13–15]. Friess et al. [16] suggested that the intertidal
mangroves are a dynamic ecosystem, where the range and habitat quality were undergoing
rapid changes. Since their first appearance in the geological record 75 million years ago,
climate and sea level change have entirely changed the spatial distribution of mangroves.
However, climate change contributes less to mangrove degradation [17]. With economic
development, human activities have become the most important factor for mangrove
degradation. Unplanned shrimp farms and urban development mainly cause mangrove
deforestation, but the fundamental problem is inappropriate systems and regulations in
the past [18,19]. Water pollution caused by offshore oil extraction may also impact the
degradation of mangroves [20]. These studies suggest that the factors driving mangrove
change are complex and vary from region to region.

The rapid development of remote sensing technology has provided technical support
to realize mangrove monitoring on a large scale. Hamilton and Casey [21] established
new global data sets of the 21st-century continuous mangrove coverage by integrating the
World Forest Change Database, the World Mangrove Database, and the World Terrestrial
Ecosystem Database. Giri et al. [22] obtained the global mangrove distribution dataset
in 2000 from the Global Land Survey (GLS) dataset and Landsat images, which were
interpreted by using a hybrid supervised classification and unsupervised classification
method. Goldberg et al. [9] used a random forest classification approach to map the extent
of global mangroves from 2000–2016 based on Landsat images. Bunting et al. [10] used
synthetic aperture radar data to generate GMW version 3.0, which is valuable for analyzing
global mangrove changes.

Despite international conservation policies and ambitious global restoration goals, de-
forestation is still occurring at a large scale, especially in Asia and Africa. At the same time,
the rapid development of remote sensing technology provides support for the dynamic
monitoring of mangroves [23,24]. Our objective is to select mangrove reserve wetlands
within five continents over 20 years, use remote sensing and Geographic Information Sys-
tem (GIS) techniques to analyze and evaluate the loss/gain and landscape characteristics
of mangrove wetlands, and compare current mainstream mangrove data to obtain actual
mangrove change trends.

2. Materials and Methods

2.1. Selection of Study Sites
2.1.1. Principles for Selecting Study Sites of Mangrove Importance

There are 298 Ramsar-listed sites worldwide, playing key roles as international man-
grove habitats. Among them, some sites also play additional key roles in UNESCO Bio-
sphere Plan or in the UNESCO Natural Heritage. These mangrove habitats have different
functions and regional features. The following principles were considered to select repre-
sentative sites in our study.
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(1) Site importance. To select those sites which are listed in the list of Ramsar wetlands of
international importance, the UNESCO marine heritage list, and the UN biosphere
list as much as possible;

(2) Geographical representativeness. The selected sites present different regional char-
acteristics and cover wide geographical regions of mangrove spatial distribution as
much as possible, and the site network should cover Asia, Oceania, and Africa, linking
the Indian Ocean and the Pacific Ocean;

(3) Difference in functional roles of mangrove habitats. The selected sites can present
different functional roles of mangrove habitats, such as Storing carbon, biodiversity
protection, tsunami risk reduction, coastal line protection, and tourism service;

(4) Different challenges or problems on the sites. The selected sites are facing different
challenges or national or international issues from economic development, environ-
mental change, urbanization, etc.

2.1.2. The Final Scheme of the Study Sites of Mangrove Importance

The selected five sites are shown in Figure 1 and Table 1. The serial number was then
finally fixed as A to E. The Sundarban mangrove, including Sundarbans Reserved Forest
(Bangladesh) and Sundarban Wetland (India), is the largest mangrove wetland, while
Bangladesh takes the largest protection ratio of the national mangrove area [25]. Indonesia
has around 20% global mangrove and is one of the countries with the largest mangrove
wetlands. However, it has lost nearly half mangrove area due to aquaculture development
according to a research report from Richards and Friess [12].

Figure 1. The map of the finally selected sites for the study. (A): Dongzhaigang; (B): Sembilang NP;
(C): Sundarban; (D): Kakadu NP; (E): RUMAKI.
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Table 1. The check list of five study sites to be finally selected.

Serial Site Name Geo-Location Area (hm2)
UNESCO
Heritage

Ramsar
List

Biosphere
List

Country and
Region

Major Threats

A Dongzhaigang 19◦58′ N
110◦34′ E 5400 N Y N China, Eastern

Asia
Aquaculture;

Urban expansion

B Sembilang
National Park

01◦57′
S 104◦36′ E 202,896 N Y Y Indonesia,

Southeast Asia Aquaculture

C

Sundarban
Wetland/

Sundarbans
Reserved Forest

21◦46′ N
88◦42′ E 1,024,700 Y Y N Bangladesh/India,

South Asia
Cropland

encroachment

D Kakadu National
Park

12◦40′ S
132◦45′ E 1,979,766 Y Y N Australia, Oceania Natural disasters

E
Rufiji-Mafia-

Kilwa Marine
Ramsar Site

08◦07′ S
39◦37′ E 596,908 Y Y N Tanzania, Eastern

Africa Deforestation

2.2. Study Sites Introduction

As China’s earliest and largest mangrove nature reserve, with an area of 5400 ha,
Dongzhaigang Mangrove Nature Reserve is densely populated, surrounded by many
villages and vast paddy fields. A mangrove restoration project has been underway since
2010 after this site’s apparent loss of mangrove habitats. Dongzhaigang Mangrove Nature
Reserve has been listed in the UNESCO World Heritage Sites Tentative List since 1996.

Sembilang Nation Park (Sembilang NP) has the largest mangrove habitats (88,046 ha)
in the Indo-Malayan region [26]. Over 43% of mangrove species in Indonesia are found
here. Sembilang NP has been acknowledged as a part of the UNESCO World Network of
Biosphere Reserves since 2018.

The Sundarban mangrove wetland is the world’s largest contiguous forest wetland
system (579,446 ha). It locates in the deltas of the Ganga–Brahmaputra–Meghna rivers. It is
the most diverse mangrove forest in the world and about 78 species of mangroves have
been found at this site [27]. More than 12 million people live in and around the Sundarbans,
of which 2.5 million depend almost entirely upon the mangroves for their livelihoods [28].

Kakadu National Park(Kakadu NP) is renowned for its exceptional beauty and unique
biodiversity, with various landforms, habitats and wildlife. The mangrove habitat is a
major ecosystem within Kakadu NP [29]. Kakadu NP was inscribed on the World Heritage
List as a dual cultural and natural heritage in 1981.

Rufiji-mafia-kilwa marine ramsar site (RUMAKI) is located in the three districts of
Rufiji, Mafia, and Kilwa, covering the most extensive mangrove habitat (48,991 ha) on the
East African coast. According to the List of Wetlands of International Importance, RUMAKI
is a good representative wetland for East Africa, for containing multiple and ecologically
interconnected wetlands [30].

Five wetlands face different threats. Since the 1990s, the governments of China
and Indonesia have encouraged the conversion of mangroves into aquaculture ponds to
increase food security. Thus, aquaculture is a major driving factor in the degradation of
Dongzhaigang and Sembilang NP. Because Dongzhaigang is close to the urban area and the
tourism industry is relatively developed, urban expansion is another primary driver [31,32].
Development started late in Sundarban mangroves, and local governments and residents
need to be aware of the conservation of mangrove wetland ecosystems. In addition, the
presence of petroleum resources in the reserve and oil pollution from their exploitation
are significant factors in mangrove degradation [14,33]. Australia is a developed country,
and mangrove wetlands in protected areas are less affected. However, natural disasters
(e.g., droughts, tsunamis) occur from time to time along the Australian coast, and this is
a major factor in mangrove loss [29,34] Tanzania is developing. The inhabitants of the
reserve use mangroves as economic forests to sustain their livelihoods, and indiscriminate
deforestation is a major factor in the loss of mangroves in this reserve [35,36].
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2.3. Data Preparing and Pre-Processing
2.3.1. Images Collection and Band Synthesis

Google earth engine (GEE) enables users to call a large number of remote sensing
images online and perform calculations [37]. In this study, we used GEE to select Landsat
and Sentinel images that meet cloud cover requirements (<15%) and eliminate images
acquired at high tide level through visual interpretation. Too much cloud cover is not
conducive to subsequent interpretation, and the high tide level will cover many mangroves.
If there is no image meeting the requirements, we use all remote sensing images in the year
to synthesize the maximum value of the NDVI index and the median value of the bands in
this case (Figure 2). The detailed information of the used remote sensing images can be
checked from Table 2.

Figure 2. Flow chart of data collection and analysis procedures.
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Table 2. The data source information of the remote sensing images used in five sites.

Serial Year Sensor Number

A

1990 Landsat 5 6

2000 Landsat 5/7 6

2010 Landsat 5/7 6

2020 Sentinel-2 40

B

2000 Landsat 7 42

2010 Landsat 7 16

2020 Sentinel2 146

C

2000 Landsat 7 2

2010 Landsat 5 2

2020 Landsat 8 2

D

2000 Landsat 7 2

2010 Landsat 5 2

2020 Landsat 8 2

E

2000 Landsat 7 4

2010 Landsat 5 4

2020 Landsat 8 74

2.3.2. Mangrove Dataset Collections

Some published mangrove data sets were evaluated carefully for selecting study sites
and referring to our monitoring of the dynamics of mangrove habitats in the past 20 years.
Among them, the most valuable data sets include the Global Mangrove Forests Distribution,
v1 (2000, GMFD), the Global Mangrove Watch (GMW), and the 10 m GLOBAL MAN-
GROVE CLASSIFICATION PRODUCTS OF 2018–2020 BASED ON BIG DATA (GMCP).
The technical indicators are listed in Table 3.

Table 3. The basic information of free download data sources.

Data Set Pixels The Dates of Production Data Format Precision Citation

GMFD 30 m 2000 Grid 90.75% Giri et al. [22]

GMW 24 m 1996, 2007, 2008, 2009, 2010, 2015, 2016 Shape 95.25% Bunting et al. [10]

GMCP 10 m, 100 m 2018–2020 Shape, Grid 91.62% Xiao et al. [38]

2.4. Manual Modification for Mangrove Boundary and Landcover Dataset Synthesis

The mangrove extent provided by GMW is slightly inaccurate at five specific sites and
does not provide the mangrove extent for 2000 and 2020. Then, we manually modified the
mangrove boundary by referring to the selected or synthesized remote sensing images and
the collected mangrove dataset with a high reference value in this study (Figure 2). Then,
we mosaicked the Globalland30 and our manually modified mangrove datasets to obtain
a landcover dataset, which contains nine land use types (Mangrove, Forest, Grassland,
Cropland, Water, Bareland, Shrubland, Urban Area, and Other Wetlands) to subsequently
analyze the conversion between mangroves and other land-use types. The Globalland30
dataset is available at http://www.globallandcover.com/home.html?type=data (accessed
on 1 January 2014) [39]
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2.5. Accuracy Assessment

In order to verify the developed mangrove dataset, we merged the nine land cover
types into three types: mangrove, water, and others. Balanced number of validation
samples were generated for each type. For instance, the area proportion of the water body
and mangrove is very low in Kakadu NP, and we appropriately increased the validation
samples in the area where the water body and mangrove forest are located in the typical area,
rather than simply generating random test points according to the uniform distribution.
Otherwise, most test points were distributed in other land types, such as forests and
grassland. Fewer samples of test points in water and mangrove will result in accuracy
errors. We determined the actual land use types represented by the sample points with the
help of Google Earth, other mangrove datasets, and Sentinel data [22,38].

2.6. Landscape Pattern Change Analysis and Mangrove Change Analysis

We used ArcGIS software to statistically analyze the land cover dataset during differ-
ent periods, including conversion between mangrove habitats and other land-use types,
mangrove degradation direction, and changes in mangrove landscape patterns for different
periods (Figure 2). We counted four landscape indexes using ArcMap10.2: Number of
Patches (NP), Area of Maxsum Patch (MAXP); Mean Area of Patches (MPS); Total Area
of Patches (CA). MPS reflects an average condition and demonstrates the degree of land-
scape fragmentation and heterogeneity in the landscape analysis. NP reflects the total
number of patches in the landscape pattern, and generally, a larger NP indicates a higher
degree of fragmentation. The four parameters can comprehensively reflect the degree
of fragmentation of the landscape and other ecological information of the landscape. To
show the degradation of mangroves more visually, we mapped the direction of mangrove
degradation by mangrove to other land-use types.

3. Results

3.1. Accuracy Assessment

The accuracy assessment results are shown in Table 4. Both the mangrove accuracy and
overall accuracy are above 95%, which meets the standards for analyzing landscape changes.

Table 4. Accuracy assessment table.

Serial
2000 2010 2020

Mangrove Overall Mangrove Overall Mangrove Overall

A 98.3 96.6 96.7 95.4 97.5 96.7

B 97.2 95.1 97.5 95.4 97.1 95.2

C 98.0 97.0 98.1 97.2 98.4 97.4

D 97.1 96.1 97.2 95.9 97.5 96.3

E 97.4 95.2 97.5 95.4 97.8 95.8

3.2. Landscape Pattern Change of the Mangrove Habitats from 2000 to 2020

The landscape matrix of the changed mangrove habitats in the five sites was generated
using the landcover dataset. The detailed dynamic information of the mangrove habitats
from 2000 to 2020 can be checked in Table 5. From 1990 to 2000, the NP of the mangrove
habitats in Dongzhaigang tripled from 27 to 87 ha; but the MPS decreased from 71 to 20 ha,
nearly 70%. This indicates that the process of mangrove habitat fragmentation was very
severe. Fortunately, the fragmentation of mangrove wetlands in the other four protected
areas, except for Sundarbans, decreased or remained the same from 2000. The fragmentation
process of Sundarbans mangrove only gradually stopped in 2010.
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Table 5. Landscape matrix of the changed mangrove wetlands in five sites (ha).

Seria Index 1990 2000 2010 2020

A

NP 27 87 41 64

MAXP 742 247 683 505

MPS 71 20 42 33

CA 1930 1683 1733 2097

B

NP - 1279 881 913

MAXP - 32,746 20,435 20,255

MPS - 70 100 96

CA - 89,698 87,965 88,046

C

NP - 4859 6666 6788

MAXP - 26,154 23,251 23,102

MPS - 123 86 85

CA - 595,537 575,700 579,446

D

NP - 1003 918 979

MAXP - 1140 1140 1137

MPS - 9 10 9

CA - 8965 8942 8882

E

NP - 1668 1312 1185

MAXP - 6909 6801 6793

MPS - 31 38 41

CA - 51,003 49,748 48,991
“-”: no data; The Dongzhaigang data are partially cited from the Ph.D. thesis of Jia (2014) with corrections and
slightly adjusted classification.

3.3. Mangrove Habitats Change Analysis from 2000–2020 at Five Sites
3.3.1. Analyzing the Dynamics of Mangrove Habitats in Dongzhaigang

The mangrove habitats area decreased by 12.8% from 1990 to 2000 before increasing
from 2000 to 2020. The mangrove area increased by 24.6% from 2000 to 2020 according to
the statistical data (Figure 3). The degradation of mangroves has been presented from 1990
to 2020. However, the degradation area had been decreasing (Figures 4 and 5). The highest
percentage of mangroves was converted to other wetlands (mainly aquaculture) from 1990
to 2000, but the highest percentage of mangroves was converted to forest from 2000 to 2010.
In addition, there were larger areas of mangrove wetlands that had been encroached on by
cropland (Figure 6). The degraded area of mangroves was already much lower than the
new area of mangroves from 2010–2020, which should be attributed to mangrove planting
and conservation policy of the local government. Mangrove degradation mainly occurred
in the landward direction from 1990 to 2010, and mangrove degradation mainly occurred
in the seaward direction from 2010–2020 (Figure 6). Comparing the landscape matrices
between 1990 and 2000, it was obvious that the lost mangrove habitat was replaced by the
pond, which might be used for fishery purposes. The area of mangrove habitat increased
obviously after 2000, attributed to mangrove planting supported by the local government.
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Figure 3. The dynamics of the mangrove habitats in five sites. (A): Dongzhaigang(1990−2020);
(B): Sembilang NP; (C): Sundarban; (D): Kakadu NP; (E): RUMAKI (2000−2020).

3.3.2. Analyzing the Dynamics of Mangrove Habitats in Sembilang NP

Mangrove habitats are mainly dispersed in the central part of Sembilang NP (Figure 7).
Mangrove area decreased by a total of 1733 ha from 2000 to 2010 with a 10-year decrease
ratio of 1.9%, though it increased a total of 81 ha from 2010 to 2020. It indicated that the
protection of mangroves in the latter 10 years was significantly more effective than that in
the former, which not only curbed the previous trend of decreasing mangrove wetland area
but also contributed to a slight increase of the mangrove habitats (Figure 3). Degradation
occurred primarily at the landward edge of the northern mangroves, mainly degraded to
forest and other wetlands, however, the increase in mangrove area also came mainly from
forest and other wetlands (Figures 8 and 9). In the southeast coastal region of the reserve,
there are other farming ponds that have not yet been retired.
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Figure 4. Landscape thematic maps in Dongzhaigang from 1990 to 2020.

Figure 5. Transfer direction between the different land-use types in Dongzhaigang ((left): 1990−2000,
(middle): 2000−2010, (right): 2010−2020).
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Figure 6. Maps of spatial–temporal distribution of mangrove degradation in Dongzhaigang from
1990 to 2020.

3.3.3. Analyzing the Dynamics of Mangrove Habitats in the Sundarban

The degradation of mangroves in Sundarban was concentrated in the northern (near
the boundary) and the eastern part of the reserve. Mangroves were mainly degraded to
cropland and other wetlands in the first ten years, and to wetlands during the second ten
years. The degraded area was drastically reduced and more dispersed (Figures 10 and 11).
Mangrove habitat area decreased by a total of 19,837 ha from 2000 to 2010, with a 10-year
decreased rate of 3.3%. The decrease rate is higher than the other four sites in the same
period. The degraded area in 2000–2010 was significantly larger than that in 2010–2020
(Figures 3 and 11). A total of 3746 ha increased with an increased rate of 0.7% from 2010
to 2020, indicating that the downward trend at the beginning of the 21st century was
significantly contained, and the protection and restoration of mangrove habitats in the past
ten years have achieved remarkable achievements (Figure 3).
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Figure 7. Landscape thematic maps in four sites from 2000 to 2020 (B): Sembilang NP, (C): Sundarban,
(D): Kakadu NP, (E): RUMAKI.
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Figure 8. Transfer direction between the different land-use types in Sembilang NP ((left): 2000–2010,
(right): 2010–2020).

 

Figure 9. Maps of spatial–temporal distribution of mangrove degradation in Sembilang from 2000 to
2020. (a) first degradation detail picture; (b) second degradation detail picture; (c) third degradation
detail picture.
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Figure 10. Transfer direction between the different land-use types in the Sundarban ((left): 2000–2010,
(right): 2010–2020).

 

Figure 11. Maps of spatial–temporal distribution of mangrove degradation in the Sundarban from
2000 to 2020. (a) first degradation detail picture; (b) second degradation detail picture; (c) third
degradation detail picture.

3.3.4. Analyzing the Dynamics of Mangrove Habitats in Kakadu NP

Mangrove habitats are mainly located in the northern part of Kakadu NP, along the
Van Diemen’s coastline. Forest and grassland are the most prominent landscape types
in Kakadu NP, while mangrove habitats account for a relatively small area (Figure 7).
Mangrove habitat area decreased by only 23 ha from 2000 to 2010, with a 10-year decrease
rate of only 0.3% and decreased by 60 ha from 2010 to 2020, with a 10-year decrease rate of
0.7%, doubling the rate of reduction over the former 10-year period (Figure 3). As a whole,
Kakadu NP was second only to Dongzhaigang in terms of the conservation effect from 2000
to 2010, and the total decrease of mangrove habitats area (83 ha) and decrease rate (0.9%)
were lower than those of the other three sites. Unfortunately, mangrove habitats at other
sites have shown an increasing trend over the last decade (except for sites in Tanzania),
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while mangroves within Kakadu NP have continuously decreased. Mangrove wetlands are
mainly degraded to other wetlands, followed by forest and water (Figures 12 and 13).

 

Figure 12. Maps of spatial–temporal distribution of mangrove degradation in Kakadu NP from
2000 to 2020. (a) first degradation detail picture; (b) second degradation detail picture; (c) third
degradation detail picture.

Figure 13. Maps of other land contributing to mangrove transfer out percent (TOP) in Kakadu NP
(D) and RUMAKI (E) from 2000 to 2020 (e.g., a total of 100 ha of mangroves are transferred out, of
which 50 ha are other wetlands, the corresponding TOP = 50%).
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3.3.5. Analyzing the Dynamics of Mangrove Habitats in RUMAKI

Mangrove habitats within RUMAKI were dispersed north to south along the mafia
channel, degraded mainly to cropland, other wetlands, and grassland (Figures 7 and 13).
The extent of degradation was concentrated more in 2010–2020 compared to that in
2000–2010 (Figure 14). Mangrove habitat area decreased by 1255 ha with a 10-year decrease
of 2.5% from 2000 to 2010, and by 757 ha with a 10-year decrease of 1.5% from 2010 to
2020 (Figure 3). It was still relatively higher compared to other regions except Kakadu
NP, although the decrease proportion of mangrove habitats has slowed down in the past
ten years.

 

Figure 14. Maps of spatial–temporal distribution of mangrove degradation in RUMAKI from 2000 to
2020. (a) first degradation detail picture; (b) second degradation detail picture; (c) third degradation
detail picture.

3.3.6. Comparison of Mangrove Habitats Changes from 2000 to 2020 in Five Sites

Dongzhaigang (China) is the only reserve where the mangrove area expanded between
2000 and 2020 at a rate of 24.6%. Several other reserves experienced different degrees of
mangrove habitat loss. RUMAKI (Tanzania) has the most significant loss among the five
reserves, but the loss proportion is at most 4.0%. The mangrove habitats in Sundarban
(India) have experienced a shift from rapid degradation to positive growth. The degradation
rate of mangrove wetlands in Kakadu NP (Australia) has remained the lowest (Figure 15).
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Figure 15. Comparison of the dynamics of mangrove habitats in five sites from 2000 to 2020.
(A): Dongzhaigang; (B): Sembilang NP; (C): Sundarban; (D): Kakadu NP; (E): RUMAKI.

4. Discussion

4.1. Driving Forces of Mangrove Degradation in the Five Protection Areas

The driving forces of mangrove degradation are mainly divided into climatic factors
(precipitation, temperature, sea level rise, natural disasters, etc.) and human activities
(agricultural encroachment, urban expansion, aquaculture, etc.) [13–15]. Dongzhaigang
is close to the urban area, and urban expansion and aquaculture were the main factors
of mangrove wetland degradation. The Chinese government increased the protection of
mangrove habitats and implemented mangrove restoration projects after 2000; thus, the
mangrove wetlands were effectively restored [2]. The Indonesian government formulated
and implemented a policy to vigorously develop the aquaculture industry in order to
achieve economic development after the 1980s, which led to aquaculture being the most
critical factor in the degradation of mangrove forests in Semmelang NP [40,41]. The
Sundarban mangroves is the largest contiguous mangrove forest in the world, and the
northern part of the reserve is adjacent to farmers’ settlements. Farmers entering the reserve
might develop the mangrove wetland into farmland for their livelihood, which becomes
the most significant human activity factor for mangrove degradation [42,43]. Kakadu
NP is the only mangrove reserve in a developed country with more stringent legislation
and regulations for mangrove protection. However, the mangrove wetlands in reserve
are mainly exposed to natural disasters because the northern part of Australia is highly
influenced by climatic factors [11,43]. The laws on mangrove habitats protection made
in Tanzania cannot be effectively implemented, and mangroves are used as a source of
timber and woodland destroyed by local residents. On the one hand, the local population
is considered by the government to be the destroyer of mangroves; on the other hand, the
impoverished population has to rely on mangrove raiding for their livelihood. Poverty-
induced agricultural encroachment is a major factor in mangrove degradation in this
study area [44].
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4.2. Comparison with Other Studies

The State of the World’s Mangroves 2022 [45] notes a global mangrove loss of 5245 km2

from 1996 to 2020, with an average annual decline rate of 0.34%; a global mangrove
loss of 327 km2 from 1996 to 2010, with an average annual decline rate of 0.21%; and a
global mangrove loss of 66 km2 from 2010 to 2020, with an average annual decline rate of
0.02%. The results are consistent with our findings, indicating that the rate of mangrove
degradation has slowed down significantly after 2010. Dongzhaigang lost 62% of its
mangrove area from 1973 to 2000, but achieved rapid growth after 2000, and the mangrove
area recovered to the 1980 level by 2020 [2]. Correspondingly, our results indicate that
the mangrove habitats of Dongzhai lost more than 10% from 1990 to 2000 and achieved a
24% increase from 2000 to 2020, a rate that is much higher than that of the entire East Asia
region (Table 6). The State of the World’s Mangroves 2022 [45] indicates that aquaculture
has made Southeast Asia the fastest-degrading region for mangrove wetlands (1996–2020:
4.8% degradation proportion). However, our results show that RUMAKI in East Africa
has the highest rate of mangrove loss among the five typical reserves, which is a side
indication that mangroves in the Sembilang NP is better protected. The State of the World’s
Mangroves 2022 shows an overall degradation rate of 3.0% (1996–2020) in South Asia,
and our results show a degradation rate of 2.7% (2000–2020) for mangrove habitats in the
Sundarbans mangroves in South Asia, which is consistent with each other and the changes
in degradation rates are uniform: the area of mangrove habitats started to increase after
2010. Unfortunately, the results are contrary to those of Giri et al. [42]. This may be an
error in the mangrove extent interpretation process, and the authors consider mangrove
degradation in protected areas to be insignificant and a case of dense population–nature
symbiosis. The results of Bunting et al. [10] show that the average annual rate of loss of
mangrove habitats in Australia is 0.23% (1996–2010) and 0.1% (2010–2020), while our results
showed that the rate of mangrove loss within Kakadu NPark was 0.03% (2000–2010) with
an increasing trend after 2010, suggesting that mangrove habitats within Kakadu NP is
better protected.

Table 6. Changes in mangrove area by region (Leal & Spalding, [45]).

Region
Mangrove Area (ha) Proportion of Change (%)

1996 2010 2020 1996–2010 2010–2020 1996–2020

Eastern Asia 257.2 223.6 227.7 −13.1 1.8 −11.5

Southern Asia 9960.7 9710.4 9661.1 −2.5 −0.5 −3.0

Southeastern Asia 50,678.8 48,440.9 48,222.3 −4.4 −0.5 −4.8

Australia & New Zealand 10,945.0 10,562.5 10,466.9 −3.5 −0.9 −4.4

Eastern Africa 7883.3 7688.6 7610.0 −2.5 −1.0 −3.5

4.3. Limitations

The tide levels could have an impact on the interpreted mangrove extent. Although
we obtained synthetic NDVI and band information using the annual maximum and annual
median methods, we were still unable to eliminate the inaccuracy caused by the high
tide level conaealing the seaward mangroves. In addition, a comparison of conservation
effectiveness cannot be made based solely on an analysis of the changing characteristics
of mangrove ecosystems within protected areas. The conservation effect can be reflected
better if comparing the change of mangrove wetlands inside and outside the protected area.
Hence, it will be our next research direction.
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5. Conclusions

(1) The dynamics of the mangrove habitats. From 2000 to 2020, the mangrove area in
Dongzhaigang increased by 414 ha, with an increased percent of 24.6%. The mangrove area
in Sembilang NP, Sundarban, Kakadu NP, and RUMAKI decreased by 1652 ha, 16,091 ha,
83 ha, and 2012 ha, with a decrease of 1.8%, 2.7%, 0.9%, and 3.9%, respectively.

(2) Direct driving factors of mangrove habitats. Other types of wetlands play a key
role in degradating the mangrove wetlands in all five protected areas. The increase of
mangroves in Dongzhaigang is a result of the local government-supported conservation
scheme for returning ponds to forests and plantations. Agricultural encroachment is the
other factor in reducing of mangrove areas in Sundarbans. Natural disaster is another
factor to degrade the mangrove wetland in RUMAKI.

(3) The rate of mangrove degradation has slowed dramatically over the past two decades,
based on five sites, which are generally consistent with those of other researchers. Among
the five typical reserves, the mangrove area in Dongzhaigang is the only one to have
expanded. The mangrove area in the other four locations has fallen to a lesser level, with
the greatest decrease not surpassing 4%.

Recommendations

Our research did not cover mangroves in the Americas, and we hope to scale up to the
global scale and encrypt more representative mangrove sites in the future.
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Abstract: As the largest alpine peat swamp wetland distribution area in the world, the Zoige has
important ecological functions, including water conservation and biodiversity maintenance. In the
past 20 years, the regional ecological protection and restoration measures continuously strengthened
under the leadership of the local government have led to gradual improvements in the ecological
environment of the region. In this study, multisource satellite remote-sensing image data were used
to carry out quantitative monitoring and assessment of the main ecological elements (vegetation
and water), as well as the regional leading ecosystem service function in the Zoige. Combined
with local ecological protection management policies and measures, we analyzed the characteristics
and effectiveness of ecological protection. We compared the ecosystem change trends of the Zoige
reserve and the county, from 2001 to 2020, and found that the fractional vegetation cover (FVC) of
Zoige county has increased at a rate of 0.25%/year. The growth rate was highest between 2015 and
2020, and the growth rate of FVC in the Zoige Wetland National Nature Reserve is approximately
1.89-fold that of the whole county. The water area also shows similar variation characteristics. On the
whole, the water conservation capacity of the Zoige showed a significant increase from 2001 to 2020.
We used high-resolution satellite remote-sensing images to capture the details of land use changes
brought about by local ecological protection policies and measures, and together with macroecological
indicators, we reflected on the effectiveness of regional ecological protection measures. We observed
that the ecological effects of nature reserves are more direct and rapid, and the amount of water
conservation within the nature reserve is about 1 × 104 m3/km2 higher than that of the surrounding
grasslands. Satellite remote-sensing images can not only capture the multiscale change information
of ecological indicators, such as vegetation and water, in a timely manner, but can also help us to
identify the effectiveness of conservation measures by distinguishing and analyzing the causes of
these changes.

Keywords: Zoige wetland; nature reserve; fractional vegetation cover; water conservation;
ecological conservation

1. Introduction

Wetlands represent the transitional zone between terrestrial and aquatic ecosystems,
and possess a unique ecosystem and functional characteristics [1,2]. At present, changes in
vegetation and water bodies are basic factors that reflect the status of and changes in wet-
land ecosystems, and are key indicators of wetland shrinkage and restoration monitoring
based on satellite remote sensing [3,4].

The Zoige wetland is located on the eastern edge of the Qinghai Tibet Plateau and
is listed as an “International Important Wetland” by UNESCO [5,6]. It is an important
water conservation area in the upper reaches of the Yellow and Yangtze Rivers, with the
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largest plateau peat swamp in the world [7]. It is a key area for biodiversity protection
both in China and worldwide [8]; it is also an important habitat for wildlife species, such
as the black-necked cranes and white-tailed sea eagles, and is highly sensitive to climate
change [9,10]. The Zoige Wetland National Nature Reserve was established in 1998 and
covers an area of 1665.70 km2. The alpine swamp wetland ecosystems, black-necked cranes,
and other rare animals are especially targeted for protective measures.

Owing to the joint impact of climate change and human activities, the Zoige wetland
has been shrinking since the 1950s, resulting in the decline in the groundwater level, land
degradation, reduction in biodiversity, and increased carbon emissions. Relevant research
has mainly focused on regional climate change analysis [11–13], wetland area change
monitoring [14], grassland degradation, land desertification [15–17], soil organic carbon
change [18,19], and ecosystem services and health [20,21]. Most of these studies were
published before 2016, and the conclusions were mainly based on the continuous degrada-
tion of the ecological environment. There is still a lack of analysis on the effectiveness of
conservation measures.

Since the 1970s, China has successively launched a series of ecological protection
and restoration projects, including the Natural Forest Protect Projection, the Grain for
Green program, and the Returning Rangeland to Grassland, which have increased regional
ecological functions [22,23]. Since 2003, ecological protection and restoration projects,
such as grassland restoration and desertification land management, have significantly
increased in the Zoige area [24–26], and a series of restoration and rectification works of
nature reserves have been carried out in succession. In the past 30 years, the growth rate
of regional desertification land has significantly slowed [17,25]. The project of returning
grazing land to grassland in the county has had significant benefits: the vegetation height
in the project area has elevated by 69.1% on average, compared with that in the nonproject
area [26].

From the perspective of satellite remote sensing, we used the main elements of the
ecosystem (vegetation, water bodies, etc.) and the service function of water conservation,
as indicators to analyze the changing characteristics of the ecological environment in Zoige
county and nature reserves [27]. Simultaneously, combined with high-resolution remote-
sensing images and field investigations, we attempted to link the direct image evidence of
ecological restoration with the above-mentioned remote-sensing indicators of ecological
change, thus further elaborating the obvious ecological benefits brought about by ecological
protection and supervision.

2. Materials and Methods

2.1. Study Area

Zoige county (102◦08–103◦39′ E, 32◦56–34◦ N) is located in the northern part of the
Northwest Sichuan Plateau, which is the core area of the Zoige wetland. The topography is
low in the middle and high in the surrounding areas. It belongs to the Aba Tibetan and
Qiang Autonomous Prefecture of Sichuan province, and has a total area of 1.04 × 104 km2

and an average altitude of 3471 m (Figure 1). The regional altitude difference is largely
attributed to the depth of the river. The study area has a plateau cold temperate humid
monsoon climate, with an annual average temperature of 1.1 ◦C, and annual precipitation
of 650 mm [28]. However, in recent years, there has been an obvious trend of warming and
drying [29].

2.2. Vegetation Data Acquisition and Calculation Method

Fractional vegetation cover (FVC) reflects the vegetation coverage of a certain area, and
is an important indicator for measuring the quality of vegetation and ecosystem change [30].
Based on the remote-sensing cloud platform of Google Earth Engine and the Moderate Res-
olution Imaging Spectroradiometer (MODIS) 13Q1 normalized difference vegetation index
(NDVI) product (https://ladsweb.modaps.eosdis.nasa.gov, (accessed on 5 June 2021)), we
used the pixel dichotomy model to calculate the vegetation coverage [31,32]. The MODIS
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13Q1 NDVI product has a temporal resolution of 16 days with 23 cycles of data per year. In
this study, FVC data for 23 periods were generated annually, and then aggregated into the
average annual FVC. The specific formula of FVC is as follows:

FVC =
NDVI − NDVIs

NDVIv − NDVIs
(1)

where NDVIv and NDVIs are the NDVI pixel values of pure vegetation and bare land,
respectively. With the NDVI value statistics, we determined the cumulative frequency of
1% NDVIs and cumulative frequency of 99% NDVIv [33].

 
Figure 1. Topographical map of Zoige County.

2.3. Water Data and Acquisition Methods

Water information in this study mainly included open water surfaces, such as rivers
and lakes. Using information based on the Google Earth Engine platform, long time-series
Landsat remote-sensing image data (https://ladsweb.modaps.eosdis.nasa.gov, (accessed
on 24 May 2021)) corresponding to the study area and study period were directly called
through the database, from which the vegetation, water, and dry naked index were calcu-
lated [34]. Each index is calculated as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

(2)

MNDWI =
ρGreen − ρSWIR
ρGreen + ρSWIR

(3)

AWEI = ρBlue + 2.5 × ρGreen − 1.5 × (ρNIR + ρSWIR1)− 0.25 × ρSWIR2 (4)

DBSI =
ρSWIR1 − ρGreen
ρSWIRI1 + ρGreen

− NDVI (5)

where NDVI is the normalized vegetation index, MNDWI is the improved normalized
difference water body index, AWEI is the automatic water body extraction index, DBSI is
the dry bare index, ρBlue is the blue band, ρGreen is the green band, ρNIR is the near-infrared
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band, ρred is the red band, ρSWIR1 is the short-wave infrared band 1, and ρSWIR2 is the
short-wave infrared band 2.

Secondly, the regional water body area was extracted by combining the remote-sensing
water body index and the basin relative elevation setting, and the non-water-body infor-
mation was filtered by combining the vegetation index and drought exposure index [34].
Among them, 30 m spatial resolution digital elevation model (DEM) products came from
the geospatial data cloud platform (http://www.gsclod.cn, (accessed on 24 May 2021)).

Finally, the annual data product of flood frequency (the ratio of the number of times
a place is submerged to the number of effective observation) was constructed using an-
nual multiperiod water body data to determine the flood frequency [34,35]. Then, the
human–computer interaction method was used to determine the data threshold of flooding
frequency, which could maximize the avoidance of seasonal water and noise (the threshold
in the study is 70%), and obtain the stable water distribution of the study area in the
current year.

2.4. Ecosystem Function Assessment

Water conservation means that ecosystems (such as forests, grassland, etc.) intercept
infiltrate, accumulate precipitation through their unique structures and water interactions,
and control water flow and the water cycle through evapotranspiration. We used the water
balance equation to calculate water conservation capacity [36]:

TQ = ∑j
i=1(Pi − Ri − ETi)× Ai × 103 (6)

where TQ is water conservation (m3), Pi is rainfall (mm), Ri is surface runoff (mm), ETi is
evapotranspiration (mm), Ai is the type i ecosystem area (km2), i is the type i ecosystem in
the study area, and j is the number of ecosystem types in the study area.

Rainfall data were obtained from a TerraClimate dataset with a spatial resolution of
1 km (https://climate.northwestknowledge.net/TERRACLIMATE/index, (accessed on
10 June 2021)). Evapotranspiration data were the result of the MODIS MOD16A3 product,
with a spatial resolution of 1 km (https://ladsweb.modaps.eosdis.nasa.gov, (accessed on
24 June 2021))). The surface runoff was obtained by multiplying the rainfall by the surface
runoff coefficient, and the surface runoff coefficient was obtained from the literature [36].
The ecosystem area was derived from data comprising remote-sensing surveys and assess-
ments of the national ecological status, which mainly included forest, shrub, grassland,
garden, and wetland types [37].

To avoid the influence of the interannual precipitation fluctuations, based on the
calculation of annual water conservation, we took the average every five years to represent
the regional water conservation capacity in different periods. Then, we comprehensively
analyzed the change characteristics of water conservation function over the past 20 years.

2.5. Change Trend Analysis Method

For trend analysis, we used the Theil–Sen median method, a trend analysis method for
nonparametric statistics. The calculation method of the Sen trend degree is as follows [38]:

β = mean
( xj − xi

j − i

)
, ∀j > i (7)

where xj and xi are time series data, a β greater than 0 indicates an increasing trend in the
time series, and a β of less than 0 indicates a decreasing trend in the time series.

The Mann–Kendall trend test is a nonparametric statistical test method for which
measured values do not need to follow a normal distribution. The trend is not required
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to be linear, and is not affected by missing values and outliers [39,40]. The statistical test
method used is as follows:

Zc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S−1√
Var(s)

S > 0

0 S = 0
S+1√
Var(s)

S < 0

(8)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(9)

sgn
(

xj − xi
)
=

⎧⎪⎨
⎪⎩

1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi = 0

(10)

Var(s) =
n(n − 1)(2n + 5)

8
(11)

where sgn is a symbolic function, xj and xi are sequential data sets, and n is the length
of the data samples. Zc followed a standard normal distribution. If Zc > Z(1−α)/2, there
is a significant trend change. Z(1−α)/2 is the corresponding value of the standard normal
function distribution table at confidence level α. The confidence level α was set at 0.05.

3. Results

3.1. Vegetation Change Characteristics

The spatial distribution of fractional vegetation cover in Zoige county is shown in
Figure 2. The FVC of the county in 2020 was 57.56%. Areas with large FVC (>70%) were
mainly distributed in the eastern Zoige forest ecosystem, while areas of low FVC (<20%)
were distributed in the northwest of the county where sandy, urban, and rural land were
concentrated.

 

Figure 2. Spatial distribution of fractional vegetation cover (FVC) in Zoige in (a) 2001, (b) 2010, and
(c) 2020.

In 2020, the average FVC of the nature reserve was 53.22%. Because the terrain was
relatively flat, the grassland in the area was evenly distributed. Although the average
vegetation coverage in the nature reserve was 4% lower than that of the whole county, the
vegetation coverage of grassland ecosystems inside the reserve was 1% higher than that
outside of the reserve.

Between 2001 and 2020, the FVC in Zoige demonstrated an overall upward trend, with
an increase of 5.38% in 2020 compared with 2001. In particular, the rate of increase from
2015 to 2020 was significant compared with previous years (an increase of 1.35%). The
average annual increase in FVC in this period was approximately 1.64-fold higher than that
of the previous 15 years (2001–2015; Figure 3).
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Figure 3. Interannual variation in fractional vegetation cover (FVC) in Zoige county and the nature
reserve from 2001 to 2020.

It can be seen that the FVC of the Zoige Wetland National Nature Reserve also demon-
strated an increasing trend, consistent with the changing trend of the whole county, and
reflecting the overall improvement in vegetation growth. The mean FVC in the protected
area was smaller than the average FVC of the whole county, mainly due to the existence of
a forest ecosystem in the east of the county. However, from 2015 to 2020, the FVC in the
reserve significantly improved, and was approximately 1.35-fold larger than the increase of
the county value. This suggests stronger ecological resilience in the reserve.

From 2001 to 2020, the FVC in Zoige county increased at an annual rate of 0.25%; the
FVC of 95.23% of the county increased, of which 63.6% of the area experienced significant
increases (Figure 4). The rapidly increasing area was concentrated in the east, where forest
and grassland met, and the nature reserve is located. Across the county, the area of FVC
decrease accounted for 4.5%, mainly distributed in the northwest, where urban and rural
land was concentrated. By comparing high-resolution remote-sensing images, some illegal
facilities in the reserve were demolished (Figure 5).

Figure 4. Cont.
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Figure 4. Changes in trend of fractional vegetation cover (FVC) in Zoige county from 2001 to 2020:
(a–c) are the remote-sensing image comparison maps and vegetation coverage change time-series
map of three typical ecological engineering implementation points. High-resolution remote-sensing
images are from Google Earth and Chinese GF-1 satellites.

 

Figure 5. Comparison of remote-sensing images of demolition points of typical illegal facilities
(high-resolution remote-sensing images from Chinese GF-1 and GF-2 satellites).

From 2015 to 2020, the rate of FVC increase escalated in both Zoige county and the
reserve. The growth rate of the reserve (0.68% per year) was greater than that of the county
as a whole (0.36%/a), reflecting the positive effects of targeted vegetation protection.
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3.2. Water Body Change Characteristics

Remote-sensing data revealed that the water area of Zoige county in 2020 was 71.8 km2,
and mainly comprising the Yellow, Baihe, and Heihe Rivers in the west, along with the
Huahu and Cuorewajian Lakes, and surrounding water bodies in the northwest.

The average water area of Zoige county from 2001 to 2020 was approximately 42.77 km2.
It exhibited an increasing trend. The water body area was lowest in 2002 (29.7 km2). In
2020, the water body area was approximately 32.66 km2 larger than that in 2001, an increase
of 83.44% (Figure 6). By comparing high-resolution remote-sensing images, we noted that
the area of some water bodies in Zoige county has surged (Figure 7).

 
Figure 6. Changes in the stable water area in Zoige county from 2001 to 2020.

Figure 7. Spatial distributions of water area in Zoige county in 2020 and Landsat remote-sensing
images of the Huahu Lake.

Viewed by stages, the water body area in Zoige county was basically stable from 2001
to 2015, and continued to increase after 2015. From 2015 to 2020, the county’s water body
area rapidly increased, reaching nearly 1.83 times the level of early 2001.

3.3. Characteristics of Water Conservation Function

From 2016 to 2020, the mean annual water conservation capacity of Zoige county was
approximately 21.2 × 104 m3/km2, and high-value areas were mainly distributed in the
southern herbaceous swamp and lake area and eastern mountainous forest area (Figure 8).
The mean annual water conservation capacity in the Nature Reserve from 2016 to 2020 was
19 × 104 m3/km2.
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Figure 8. The mean value of water conservation in Zoige county (2016–2020).

From 2001 to 2020, the mean annual water conservation capacity of the county was
18.41 × 104 m3/km2, and showed a decreasing and then increasing trend (Figure 9). Water
conservation capacity in the county increased from 19.8 × 104 m3/km2 in 2001–2005 to
21.2 × 104 m3/km2 in 2015–2020, an increase of 15.23%.

Figure 9. Annual change of water conservation in Zoige county from 2001 to 2020.

From 2001 to 2020, water conservation in Zoige county increased at a rate of
0.25 × 104 m3/km2/year, and 84.55% of the region exhibited an increasing trend. Areas
with the fastest growth rates were mainly located in the northern part of the reserve and
the forested areas in the eastern part of Zoige county. Overall, water conservation in 15.02%
of the county decreased, and the areas with the fastest decrease were mainly distributed in
the west and south of Zoige county (Figure 9).
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Between 2001 and 2020, the annual average water conservation of the nature reserve
was 16.89 × 104 m3/km2; water conservation of the reserve increased at a rate of approxi-
mately 0.2 × 104 m3/km2/year, with 80.9% of the area experiencing an increasing trend.
The reserve consisted of mainly grassland ecosystems. Although the average water conser-
vation in the entire reserve was slightly lower than that in the whole county, the average
water conservation in the grasslands of the reserve was about 1 × 104 m3/km2 higher than
that of the surrounding grasslands (Figure 10).

 

Figure 10. Variation trend in water conservation of Zoige county from 2001 to 2020.

4. Discussion

The purpose of this study was to make full use of satellite remote-sensing images with
different resolutions to try to capture the changes in the ecosystem in Zoige from different
scales, in order to corroborate changes in statistical analysis indicators and determine the
intuitive characteristics of surface information. Furthermore, the objective of this study
was also to analyze and evaluate the causes of ecosystem changes at the regional scale, and
help us put forward specific and quantitative measures for regional ecological protection
and restoration. Remote sensing has proven to be both feasible and effective. However, the
existing indicators still require improvement.

The FVC describes key parameters of land surface vegetation, and reflects the struc-
tural characteristics of vegetation [30]. For grassland ecosystems, FVC is the basic index
that reflects changes in ecological status. Here, we used FVC to monitor and evaluate the
basic vegetation status of Zoige county. Furthermore, it was utilized to describe the regional
ecological protection status by comparing high-resolution images of grassland and sand
variations. However, FVC has obvious limitations in identifying the succession direction of
the vegetation community. For example, FVC cannot directly reflect the characteristics of
forage productivity, nor can it reflect the quantitative characteristics of dominant forage.
Therefore, for future monitoring and evaluation of grassland ecosystem restoration, as well
as for desertification control effectiveness analysis, it will be necessary to continuously
carry out long-term tracking of ground communities in the Zoige area, especially in the
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grassland ecosystem restoration area. Additionally, it is necessary to comprehensively
evaluate the effectiveness of regional ecological protection in terms of quantity, productivity,
and grassland quality.

Due to the influence of climate warming and humidification, glacier melting and
surface runoff have increased to a certain extent, which has contributed to the increase
in the area of regional lakes and other water bodies, and consequently to the amount of
water conservation [35,41]. We used Landsat satellite imagery to extract the water body
area with a spatial resolution of 30 m. However, water bodies of subpixel size are widely
distributed in the peat swamp area, which is not only an important indicator of regional
water conservation function, but also very important for climate change research, including
regional greenhouse gas change monitoring [41]. Therefore, to carry out a more refined
regional ecological function assessment of the Zoige wetland, it will be necessary to perform
higher-resolution identification of water information. In the future, we will explore the
driving effects of human activities and climate change on ecological conditions.

Water conservation is the dominant ecosystem function in the Zoige area. As an
internationally important wetland, the Zoige wetland is also a habitat for rare species such
as black-necked cranes, and the function of maintaining biodiversity is also worthy of
attention. Therefore, in the future, we will also evaluate ecosystem protection effectiveness
and develop technical methods for researching regional biodiversity based on satellite
remote-sensing images [41].

5. Conclusions

From 2001 to 2020, the changes in vegetation and water bodies showed that the
ecological status of Zoige improved, especially within the last five years (2015–2020).
The vegetation coverage of the county showed an increasing trend; about 95.23% of the
county experienced increasing vegetation coverage. During 2015–2020, the growth rate of
vegetation coverage was 1.64 times higher than that of the previous 15 years (2001–2015).
In the last five years, the water area increased by 77.35%, which is the fastest period of
increase in the past two decades.

Local land desertification control, wetland restoration, restrictions on illegal construc-
tion in nature reserves, facility demolition, and other protective measures not only reflect
the local government’s determination and willingness to protect the ecological environment,
but also to improve the quality of the environment. Based on an interannual comparison
of high-resolution satellite images, some land desertification control areas in the county
have been restored to green. For example, the vegetation coverage of typical patches
for desertification control had increased by about 5–10% since the implementation of the
project in 2016. Some dried lakes and marshes have also been significantly restored. For
example, multiphase remote-sensing images showed that the water body of Huahu Lake in
the reserve has increased, and the surrounding land has become more swampy.

Nature reserves generally represent areas with good ecological background and fragile
ecology. Driven by regional ecological protection policies, the protection effects of nature
reserves will be more prominent and direct (for example, faster vegetation restoration,
priority of water body restoration, greater force of human interference reduction measures,
etc.) In addition, nature reserves can play a leading and exemplary role in the protection
of the overall ecological function of the region. Taking the water conservation function of
grassland ecosystem as an example, the amount of water conservation within the nature
reserve was about 1 × 104 m3/km2 higher than that of the surrounding grasslands.

In the future, with the continuous enrichment in satellite remote-sensing data sources,
especially with the increase in high-resolution images, it will be possible to extract high-
spatial resolution and long time series of vegetation, water and other information, which
will be very useful to improving the accuracy of regional ecological protection and assess-
ment, and even replace most of the ground investigation and engineering implementation
assessment tasks. Information pertaining to regional ecological function changes will be
further refined with this new technology.
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Abstract: Algorithm design and implementation for the detection of large herbivores from low-
altitude (200 m–350 m) UAV remote sensing images faces two key problems: (1) the size of a single
image from the UAV is too large, and the mainstream algorithm cannot adapt to it, and (2) the number
of animals in the image is very small and densely distributed, which makes the model prone to
missed detection. This paper proposes the following solutions: For the problem of animal size, we
optimized the Faster-RCNN algorithm in terms of three aspects: selecting a HRNet feature extraction
network that is more suitable for small target detection, using K-means clustering to obtain the anchor
frame size that matches the experimental object, and using NMS to eliminate detection frames that
have sizes inconsistent with the size range of the detection target after the algorithm generates the
target detection frames. For image size, bisection segmentation was used when training the model,
and when using the model to detect the whole image, we propose the use of a new overlapping
segmentation detection method. The experimental results obtained for detecting yaks, Tibetan sheep
(Tibetana folia), and the Tibetan wild ass in remote sensing images of low-altitude UAV from Maduo
County, the source region of the Yellow River, show that the mean average precision (mAP) and
average recall (AR) of the optimized Faster-RCNN algorithm are 97.2% and 98.2%, respectively,
which are 9.5% and 12.1% higher than the values obtained by the original Faster-RCNN. In addition,
the results obtained from applying the new overlap segmentation method to the whole UAV image
detection process also show that the new overlap segmentation method can effectively solve the
problems of the detection frames not fitting the target, missing detection, and creating false alarms
due to bisection segmentation.

Keywords: HRNet; MMdetection; large herbivores; UAV remote sensing image; overlapping seg-
mentation

1. Introduction

The term ‘herbivores’ refers to animals that live on the roots, stems, leaves, and seeds
of grass [1]. Large herbivores have a large body size and consume huge amounts of grass,
and their interaction with grassland plays a crucial role in maintaining the grassland
ecosystem [2]. With the increase in protection efforts, the population of wild herbivores
in the source region of the Yellow River has gradually increased, and the phenomenon of
competition between wild herbivores and farm livestock for pasture has become increas-
ingly prominent, even having some impact on the local grassland ecosystem and animal
husbandry production [3]. Traditional grassland animal husbandry is facing development
bottlenecks such as overgrazing, grassland degradation, and seasonal imbalance, which
seriously threaten the service function of grassland ecosystems [4]. The key to solving
these problems is to: find out the quantity and distribution of various large herbivores
over time so as to provide a scientific basis for maintaining the balance between grassland
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and livestock, including wild animals and farm livestock; formulate scientific and effective
grassland resource utilization plans; and maintain the cycle of the grassland ecosystem [5].
Animal survey is of great significance. In this paper, the large herbivores, including the
large wild herbivores and the large domestic herbivores, were detected.

Animal survey methods include ground survey methods, satellite remote sensing
survey methods, and aerial remote sensing survey methods (including manned aerial
vehicle survey methods and unmanned aerial survey vehicle methods) [1]. The ground
survey method takes a long time, and some animals are difficult for humans to approach.
The satellite remote sensing survey method has the problems of the flight height being
impossible to set according to real-time needs, the data resolution being low, and it being
unable to identify a single animal. The manned aerial vehicle survey method has the
problems of a high cost and high noise. Compared with these, the unmanned aerial vehicle
survey method (UAV survey method) has the advantages of fast image acquisition, flexible
and convenient operation, and low cost and risk, providing an effective and reliable tool
for regional wildlife surveys [6]. Therefore, we detected large herbivores from the images
obtained by UAV.

In recent years, machine learning, especially deep learning, has made many break-
throughs in target recognition, and the related detection algorithms have been gradually
applied to the target detection task of images [7]. At present, target detection algorithms
with good detection effects include Faster-RCNN, SSD, YOLO, and R-FCN [8]. Faster-
RCNN [9] and R-FCN [10] generally accept 1000 × 600 pixel VOC data set images or
1388 × 800 pixel COCO data set images, SSD [11] usually uses 300 × 300 or 512 × 512
pixel input images, and YOLO [12] uses 416 × 416 or 544 × 544 pixel input images. The
standard size of the UAV remote sensing images obtained in this paper was 6000 × 4000
pixel, meaning that the UAV images to be detected did not match the image size required
by the model. Compared with the YOLO algorithm and the SSD algorithm, Faster-RCNN
has a higher accuracy in small-target detection and the stages of feature extraction, detec-
tion, and classification are separated, meaning that they can be improved and optimized
separately [13]. Therefore, we improved the Faster-RCNN algorithm in this paper. Aiming
at the problem of the size of a single image being too large, a new solution is proposed:
equal segmentation in training, overlapping segmentation in model detection, discarding
the detection frame close to the edge, and then non-maximum suppression (NMS).

In addition, the proportion of large herbivores in UAV images is often very small,
and the detection accuracy of small targets is often low due to the small proportion of
images, the insignificant number of texture features, the insufficient semantic information
of shallow features, the lack of high-level feature information, and other reasons [1]. We
replace the feature extraction network in the Faster-RCNN algorithm with a feature ex-
traction network that is more suitable for small-target detection. The feature extraction
network used in the target detection algorithm is used to reduce the data dimension and
extract effective features for subsequent use. Classical feature extraction networks include
the following: the LeNet network [14], which applied the convolutional neural network
to practical tasks for the first time; AlexNet [15], which used dropout to prevent over
fitting and proposed a ReLU activation function; the VGG network [16], which used the
idea of modularization to build the network model and applied a convolution layer using
multiple smaller convolution filters to replace a convolution layer with a larger convolution
filter; the ResNet network [17], which used a residual network to avoid the problems of
gradient explosion and gradient disappearance caused by model deepening, meaning that
the number of network layers can become very deep; GoogLeNet [18], which proposed
the Inception module and used multiple branches and convolution kernels; the ResNext
network [19], which combined Inception and ResNet; and SENet [20], which proposed
a channel domain attention mechanism. HRNet [21] maintains the high-resolution rep-
resentation by connecting high-resolution to low-resolution convolution in parallel and
enhances high-resolution representation by repeating multi-scale fusion across parallel
convolution, making it more suitable for the detection of small targets. Therefore, we
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selected the HRNet network as the feature extraction network in this paper. In addition,
we used K-means clustering to obtain an anchor frame size that matches the experimental
object and filtered out detection frames with sizes that do not fall within the range after the
algorithm generated the detection frames so as to further improve the detection accuracy
of large herbivores in UAV images.

2. Data and Relevant Technical Principles

2.1. Data Sources

Maduo County, the study area, belongs to the Golog Tibetan Autonomous Prefecture
and is located in the south of the Qinghai Province at the north foot of Bayankala mountain.
The land cover type of Maduo County is mainly grassland, and there are small areas of
swamps, lakes, bare rock gravel, sandy land, rivers, etc. [22]. Maduo County is located in
the Qinghai Tibet Plateau and belongs to the Qinghai Tibet Plateau climate system. It is
a typical continental climate type on the plateau. The large wild herbivores in the study
area include the Tibetan wild donkey, Tibetan gazelle, and rock sheep, whereas the large
domestic herbivores in the area include the domestic yak, domestic Tibetan sheep, and
horse [23]. In this paper, the Tibetan wild donkey was selected as a representative species
of large wild herbivores, whereas the yak and Tibetan sheep were selected as representative
species of large domestic herbivores to detect large herbivores in UAV images.

The UAV remote sensing image data used in this paper were obtained and provided
by Shao Quanqin research group of the Institute of Key Laboratory of Terrestrial Surface
Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences. The remote sensing image acquisition platform of the UAV
was an electric fixed-wing UAV (Figure 1). The fixed-wing UAV has the advantages of
strong wind resistance, fast flight speed, high operation efficiency, and long endurance
time, and it is suitable for information collection in large areas. The camera carried is a Sony
ILCE-5100. A dual-camera system was used for aerial photography. The images were taken
in Maduo County from 9–18 April 2017. The aerial shooting time was 7:00–11:00 every day.
Those days were sunny or cloudy. There were 16 aerial sorties and 14 effective sorties. The
shooting height was 200–350 m and the resolution was 4–7 cm. In total, 23,784 images were
obtained, with an effective shooting area of 356 km2 (high resolution, large heading, and
lateral overlap), and the effective utilization area was 326.6 km2 (excluding corners). In this
paper, images taken on 9 April and 15 April were used to detect large herbivores including
yaks, Tibetan sheep, and Tibetan wild asses.

Figure 1. Figure of an electric fixed-wing UAV.

2.2. Data Preprocessing

In this paper, the images obtained by the UAV were used for detection. With the help
of python, each UAV remote sensing image was divided into 100 small images with heights
of 600 pixels and widths of 400 pixels. Bisection segmentation may cause a target to be
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divided into two halves; in order to ensure the quality of model training, when selecting
the segmented images for training samples, images containing half an animal were not
selected. In order to enhance the robustness, 50 small images of Tibetan sheep, 50 small
images of Tibetan wild donkeys, and 50 small images of yaks without half an animal were
randomly selected to create the training samples. These images included 308 Tibetan sheep,
210 Tibetan wild asses, and 130 yaks. The production and selection methods applied to the
test samples used for evaluation were the same as those applied to the training samples. In
order to ensure the robustness of the evaluation, all test images were randomly selected
and none of the test images or training images were the same image.

After randomly selecting all images that did not contain half an animal from the
cropped images, they needed to be labeled to generate the training data set. The software
tool LabelImg was used to label Tibetan sheep, yaks, and Tibetan wild donkeys. The
labeling process is shown in Figure 2. In this process, a corresponding XML format file was
established for each image, in which the category of each target animal in the image and its
corresponding location information were recorded.

Figure 2. Diagram of the training sample creation process (the boxes composed of green points and
red lines are the ground truth frames of large herbivores we annotated).

In the training process of a deep learning model, the more model parameters and the
less data there are, the more likely the model is to experience the problem of over fitting [24].
Increasing the amount of data is the most effective way to solve the problem of over fitting.
We observed targets on the ground from the angle of the UAV, where the observation angle
was almost vertical. Therefore, we could use data enhancement to simulate the posture
of various animals from an overhead view to expand the data. By observing the posture
and behavior of large herbivores, we: expanded the training samples to 9 times the original
through 90-, 180-, and 270-degree rotation; horizontally, vertically, and diagonally mirrored
the image; and changed light and shade so as to improve the generalization ability of the
model. In order to reduce the workload of annotation, after the randomly selected training
samples were annotated, we performed data enhancement operations on the image and its
corresponding XML annotation file at the same time, and then converted the data into the
required COCO format and input them into the network for training.

2.3. Faster-RCNN Algorithm

Faster-RCNN is a two-stage target detection algorithm where VGG16 is used as the
feature extraction network. VGG16 includes 13 convolution layers and 3 full connection
layers, and the convolution kernel size is 3 × 3 [25]. The VGG network conducts several
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down sampling processes in the process of extracting feature information, resulting in the
small targets in the feature map having basically only single digit pixel sizes, resulting in a
poor detection effect for small targets. The reasoning speed reaches 5 fps on GPU (including
all steps) [10]. The algorithm process can be divided into four steps. (1) Feature extraction
network. We input the image into the feature extraction network to extract feature maps.
(2) Region Proposal Network (RPN). The RPN generated 9 anchors with 3 box areas of
1282, 2562, and 5122 pixels and 3 aspect ratios of 1:1, 1:2, and 2:1 at each position of the
feature map [26] and sampled 256 samples in all anchor boxes to train the RPN network,
in which the ratio of positive to negative samples was 1:1. On the one hand, it judged
whether the category of anchor boxes belonged to the foreground or background through
softmax; on the other hand, it calculated the regression offset of the bounding box to obtain
an accurate candidate box and eliminate candidate boxes that were too small or beyond the
boundary. After screening, the RPN finally retained 2000 candidate frames and projected
them onto the feature map to obtain the corresponding feature matrices. (3) Region of
interest pooling (ROI pooling). The feature matrices obtained from the RPN layer were
mapped into uniform size feature vectors by ROI pooling. (4) Classification and regression.
The feature vectors obtained by ROI pooling were transmitted to the classifier through the
full connection layer to judge the category. Additionally, the more accurate positions of the
detection frames were regressed by the regressor. The flow chart is shown in Figure 3.

Figure 3. Flow chart of the Faster-RCNN algorithm.

2.4. MMdetection

We used the MMdetection toolbox to optimize the Faster-RCNN to complete the
detection of large herbivores in UAV images. MMdetection [27] is an open-source deep
learning target detection toolbox based on pytorch from Shangtang technology. It adopts
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modular design to connect different components, and can easily build a customized target
detection framework. It supports many classical target detection algorithm models, such
as RPN, Fast-RCNN, Faster-RCNN, SSD, RetinaNet, etc., as well as toolkits of various
modules. All basic box and mask operations now run on GPU, which has the characteristics
of a slightly higher performance, faster training speed, and less video memory, which is
conducive to experiments. Therefore, this paper improved the Faster-RCNN algorithm
with the help of the MMdetection toolbox.

3. Improvement of Faster-RCNN Algorithm

In view of the problems mentioned above (in that the original Faster-RCNN model
has low small target detection accuracy, the UAV single image is too large, and its size
does not match the size required by the Faster-RCNN), this paper mainly improved the
Faster-RCNN target detection algorithm in terms of the following aspects: (1) Replacing
the feature extraction network: We selected HRNet, which is more suitable for small target
detection, as the feature extraction network. The design details are shown in Section 3.1.
(2) Optimizing the Region Proposal Network: We used the K-means algorithm to cluster
the target size and set the anchor frame size and proportions suitable for large herbivores
to improve the Region Proposal Network. The design details are shown in Section 3.2.
(3) Post-processing optimization: After the detection frames were generated by the Faster-
RCNN algorithm for classification and regression, post-processing was carried out, and
NMS was used to eliminate the detection frames with scores lower than 0.5. By observing
the results, we found that there were some cases where the background was incorrectly
detected as a target, and the size of these backgrounds was usually different from the target.
In this paper, we optimized the post-processing process by eliminating the detection frames
that were inconsistent with the size range of the detection target. The details are shown in
Section 3.3. (4) New detection method of overlap segmentation: When using the trained
model to detect a whole UAV image, if a whole remote sensing image is evenly divided
into small images directly, it may cause the problem of false alarm or missed detection. In
this paper, we proposed a method of overlapping segmentation, removing the detection
frame close to the edge, and then NMS. The details are shown in Section 3.4.

3.1. Replacing the Feature Extraction Network

The convolutional neural network near the input can extract the edges and corners,
then the later convolutional neural network can extract the local details of the object, and
the convolutional neural network near the output can extract the abstract object structure.
The convolution layer usually contains five pooling layers to alleviate the problem of
over fitting and reduce the amount of computation. Five down sampling will reduce the
resolution of the feature map by 32 times. However, the length and width of the large
herbivores to be detected only account for 5–50 pixels. After multiple instances of down
sampling, the animals will disappear in the feature map or only have a very simple feature
representation. Therefore, the conventional feature extraction network is not suitable for
too-small targets.

In this paper, HRNet (High-Resolution Net) was used as the feature extraction network.
HRNet was originally proposed by Sun K and used in human posture detection tasks [21].
It tends to generate high-resolution feature maps. Its advantage is that it not only maintains
high-resolution feature maps, but also maintains the information interaction between
different resolution feature maps in a unique parallel way. In this way, a high-quality
feature map is generated, which not only covers the semantic information of feature maps
at different levels, but also maintains the original resolution. The main structure of the
network is shown in Figure 4. It can be seen from the figure that the network is divided
into four stages, of which the third stage has three sizes of feature maps and the fourth
stage has four sizes of feature maps. Each stage has a feature map of one size greater than
the previous stage, and the feature maps of different levels repeatedly interact with each
other in different stages. After reaching the last stage, there will be convolution streams
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with four resolutions. HRNetV1 only outputs the highest resolution feature map, which is
often used for human posture estimation. Its output representation is shown in Figure 5a.
HRNetV2 connects all low-resolution feature maps with the highest resolution feature map
after up sampling, which is commonly used for semantic segmentation and face key point
detection. Its output representation is shown in Figure 5b. HRNetV2p [28] is a new feature
pyramid formed by down sampling the output representation of HRNetV2. It is predicted
separately on each scale and is commonly used for target detection. Its output expression
is shown in Figure 5c. In this paper, HRNetV2p was used as the feature extraction network,
and the HRNet mentioned in this paper used as the feature extraction network refers to
HRNetV2p. The down sampling shown in Figures 4 and 5 was realized by many 3 × 3
convolution filters with stride 2, and the up sampling was realized by the nearest neighbor
algorithm and 1 × 1 convolution, as shown in Figure 6.

Figure 4. Schematic diagram of the HRNet network.

Figure 5. Output representation of different versions of HRNet: (a) output representation of HRNetV1;
(b) output representation of HRNetV2; (c) output representation of HRNetV2p.

As can be seen from Figures 4–6, HRNet improves the resolution of feature maps
and enriches the semantic information contained in feature maps by means of feature
map fusion at different levels, which is similar to the idea of Feature Pyramid Networks
(FPNs). FPNs [29] improve the detection effect of multi-scale targets by building feature
pyramids and integrating feature maps of different levels, but HRNet was realized through
a unique parallel mode. The high-resolution subnet of HRNet started as the first stage,
gradually adding high-resolution to low-resolution subnets to form more stages and con-
necting the multi-resolution subnets in parallel. Through multiple multi-scale fusion, each
high-resolution to low-resolution feature map repeatedly received information from other
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parallel representations so as to form rich high-resolution feature maps. Therefore, HRNet
is more conducive for the detection of smaller targets. In this paper, HRNetV2p was used
as the feature extraction network.

Figure 6. Up sampling and down sampling methods.

3.2. Optimizing the Region Proposal Network

The Region Proposal Network module of the original Faster-RCNN generates 9 anchor
frames with 3 box areas of 1282, 2562, and 5122 pixels and 3 aspect ratios of 1:1, 1:2, and 2:1
at each position of the feature map [27]. We selected the correct detection boxes from these
anchor frames and adjusted their position and size to finally complete the detection of the
target. The size of large herbivores in the UAV images ranged from 5 pixels to 50 pixels. The
anchor frame size generated by the original algorithm was not suitable for large herbivores.
In this paper, the size of each training sample was calculated by reading the coordinates
(xmin) and (ymin) in the lower left corner and (xmax) and (ymax) in the upper right corner
of the target in the annotation file. Then, the K-means algorithm was used to cluster the
sizes of all training samples to obtain the sizes of six clustering centers. The clustering
results are shown in Figure 7, in which the abscissa is the height of the annotation box and
the ordinate is the width of the annotation box.

Figure 7. Results of K-means clustering on the size of large herbivores.

The red pentagram is the final six cluster centers, with coordinates of [21.25, 16.27],
[15.03, 20.54], [12.95, 12.38], [19.83, 26.99], [32.08, 32.08], and [26.72, 19.88]. The aspect ratios
were 1.31, 0.73, 1.05, 0.96, 0.73, 1, and 1.39, respectively. It can be seen from the results
of K-means clustering on the size of large herbivores that the aspect ratio was roughly
clustered around 0.73, 1, and 1.35. We set the scale of detection frame to 0.75, 1.0, and
1.35 and set the basic size of anchor frame to 4 and the step sizes to 4, 8, 16, 32, and 64,
so that the algorithm generated 15 anchor frames at each position on the feature map
generated by HRNet.

80



Diversity 2022, 14, 624

3.3. Post-Processing Optimization

In the classification and regression phase of the original Faster-RCNN algorithm, after
the detection frames were generated, the detection frames needed to be filtered again to
eliminate some wrong detection frames. By observing the detection results, it was found
that no matter whether the feature extraction network was replaced or the anchor frame
size was modified, there were false detections in the detection results where snow was
recognized as Tibetan sheep, rock, or shadow or where other backgrounds were recognized
as Tibetan wild donkeys. Additionally, the size of these false detected backgrounds was
usually inconsistent with the target. As shown in Figure 8, too-small and too-large detection
frames were usually formed by the false detection of some confusing backgrounds. After
screening, the detection accuracy could be improved. Therefore, we optimized the post-
processing stage. With the help of python, we calculated that the size range of the target
was between 5 pixels and 50 pixels. So, we eliminated the detection frames with a score of
less than 0.5 and the detection frames with lengths or widths less than 3 pixels and lengths
or widths greater than 55 pixels at the same time, so as to reduce the number of false alarms
during detection. After screening, the detection accuracy could be improved.

Figure 8. An example of where a detection frame obtained by mistakenly detecting snow as Tibetan
sheep needs to be removed (the red boxes in the figure are the detection result boxes of the original
Faster-RCNN model).

3.4. New Detection Method of Overlap Segmentation

As the whole UAV image was too large, its size did not match the size required by
the model. During training, we divided the image equally for training. When using the
model to detect the whole UAV image, it was also necessary to divide the image into small
blocks. After the detection frames of each block were obtained, these detection frames were
mapped to the original image. The method of bisection segmentation was usually used
for detection, but if a whole remote sensing image was evenly divided into small images
for detection, this may cause the problem of false alarms or missed detection. As shown
in Figure 9, if a yak is divided into two halves in the segmentation, both parts of the body
may be detected or not detected, resulting in false alarms or missed detection.
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Figure 9. Example diagram of bisection segmentation that may cause false detection or false alarms.

Aiming at the problem of the detection method of bisection segmentation causing
false alarms or missed detection, Adam van Etten proposed overlapping segmentation
when improving the YOLO algorithm for satellite image detection [30]. Large-scale remote
sensing images were overlapped and segmented, and then the NMS algorithm was used to
eliminate the detection frame of repeated detection of a target. However, in some cases,
this method would still detect a target repeatedly. As shown in Figure 10, a yak cut into a
small half was detected in the upper right corner of the left figure, and the whole yak was
detected in the right figure. It can be seen from the figure that the intersection of the two
frames was relatively small. The NMS algorithm cannot suppress the redundant detection
frames in the left figure, resulting in the problem of the multiple detection of a single target.

In order to further reduce the incidence of false alarms and missed detection, we
proposed a detection method of overlapping segmentation and then discarding the de-
tection frame close to the edge. The slice size was 600 pixels high and 400 pixels wide.
For two adjacent slices, we made them overlap 100 pixels. The naming method of the
slice was: Upper left row coordinates_Upper left column coordinates_Slice height_Slice
width.jpg. For example, 1000_1800_600_400.jpg means that the slice is located in the third
row and seventh column of the original image, and the slice size was 600 × 400 pixels.
After each slice was detected, the detection frame within 50 pixels of the edge of each slice
was discarded first, meaning that there will be no false alarm caused by a target being cut
in half that cannot be filtered out by NMS. As shown in Figure 11, the detection frame with
the center point in the orange area was directly eliminated. However, if the detection frame
within 50 pixels of the edge of all slices was directly screened out, the detection frame of
the edge of the original UAV image would also be removed. In order to avoid this situation,
the edge detection frame was retained according to the slice name. For example, if the
row coordinate of the upper left corner was 0 and the column coordinate of the upper left

82



Diversity 2022, 14, 624

corner was 0, all detection frames with a center row coordinate between 0 and 350 pixels
and a column coordinate between 0 and 550 pixels would be retained. Then, the position of
the detection frame in the original image was obtained according to the slice name, and
then the target detection frame of the original UAV image was obtained and mapped to the
original image after NMS for all the detection frames.

Figure 10. Conventional overlap segmentation method (the green boxes in the figure are the detection
result boxes of the original Faster-RCNN model using the original overlapping segmentation method).
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Figure 11. Overlapping segmentation method proposed in this paper (the green boxes in the figure
are the detection result boxes of the original Faster-RCNN model using the original overlapping
segmentation method).

4. Experimental Verification and Analysis

4.1. Experimental Configuration

All experiments described in this paper were carried out on the Linux platform, using
the Ubuntu 20.04 system. The computer was configured as RTX3080, the V2 version of
the MMdetection toolbox was used, and the programming language used was python.
Data clipping, data enhancement, K-means clustering, size statistics of large herbivores,
the elimination of detection frames that do not meet the range, the elimination of detection
frames with the center within 50 pixels of the edge after overlapping segmentation, and
NMS were all realized using python. The optimizer selected was SGD (Stochastic Gradient
Descent). By default, the Faster-RCNN algorithm in the MMdetection toolbox uses eight
GPUs, where each GPU processes two pictures, and the learning rate is 0.02. In this paper,
two GPUs were used, each GPU processed two pictures, and the corresponding setting of
the learning rate was 0.005. In total, 24 epochs were trained. The learning rate increased
linearly in the first 500 iterations, the learning rate reduced at 18 to 22 epochs, and the
momentum was set to 0.9. The weight attenuation was generally two to three orders of
magnitude different from the learning rate. In this paper, the weight attenuation was set to
0.0001 [31]. After the image input, the size of the resize was set to 600 × 400—that is, the
size of the input image was not changed.

4.2. Experimental Design and Evaluation Index

In order to verify the effectiveness of several improved methods used in this paper for
the detection of large herbivores in UAV images, we designed four groups of experiments.
In experiment 1, VGG16, ResNet50, ResNet101, and HRNet were, respectively, used as
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feature extraction networks for model training in the framework of Faster-RCNN so as to
verify the impact of different feature extraction networks on the model training accuracy
and the superiority of HRNet as the feature extraction network in small-target detection. In
experiment 2, the Faster-RCNN algorithm was used as the framework, and HRNet was
used as the feature extraction network. Different anchor frame sizes and proportions were
used to train the model and the effect of modifying the anchor frame size according to the
K-means clustering results was compared and verified. In experiment 3, Faster-RCNN
was used as the framework and HRNet was used as the feature extraction network. NMS
was used to eliminate detection frames that did not meet the scope under the conditions
of modifying the anchor frame size and not modifying the anchor frame size in order to
verify the impact of post-processing optimization on the experimental effect. In experiment
4, the whole UAV image was detected using bisection segmentation, original overlap
segmentation, and the new overlap segmentation method proposed in this paper, and the
experimental results were compared and analyzed.

The commonly used evaluation indicators for target detection are precision and recall.
Precision refers to the proportion of the number of correct targets in the detection results,
as shown in Formula (1). The recall rate refers to the proportion of the number of correct
test results in the total number of targets to be tested, as shown in Formula (2) [32].

Precision P =
TP

TP + FP
(1)

Recall R =
TP

TP + FN
(2)

In this paper, TP represents the number of large herbivores that were correctly detected,
FP represents the number of large herbivores that were incorrectly detected, and FN
represents the number of large herbivores that were not detected. However, the precision
and recall are in conflict under certain circumstances. This paper used each category of AP
(average precision), the whole category of AR (average recall), and mAP (mean average
precision) as evaluation indicators [33]. AP is the area under the curve of the precision–
recall curve, AR is the maximum recall of a given number of detection results per image,
and mAP is the average of all categories of AP.

When evaluating the accuracy of a target detection algorithm, different IoU values are
usually selected to judge the correctness of the detection frame predicted by the algorithm.
IoU represents the intersection and union ratio between the detection frame predicted by
the algorithm and the ground truth, as shown in Formula (3).

IoU =
area

(
Bop ∩ Bgt

)
area

(
Bop ∪ Bgt

) (3)

where Bop represents the prediction box, Bgt represents the ground truth, area (Bop ∩ Bgt)
represents the intersection of the prediction box and the ground truth, and area (Bop ∪ Bgt)
represents the union of the prediction box and the ground truth. The higher the IoU value
is, the more accurate the detected box will be and the smaller the difference between the
box and the ground truth will be. In this paper, PR curves constructed under different
IoU values were compared. Finally, a threshold with an IoU of 0.5 was selected. If the IoU
between the detection frame and the ground truth was greater than 0.5, the detection frame
was considered to be the correct prediction frame.

4.3. Comparative Experimental Results and Analysis of Improved Faster-RCNN Algorithm
4.3.1. Experimental Results and Analysis of the Original Faster-RCNN Algorithm Using
Different Feature Extraction Networks

A feature extraction network is used to extract or sort out effective features for subse-
quent use and plays an important role in the accuracy of a model. In order to verify the
impact of different feature extraction networks on the accuracy of the model: we used the
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MMdetection toolbox; took Faster-RCNN as the framework; and used VGG16, ResNet50,
ResNet101, and HRNet as the feature extraction networks, respectively, to train the model.
The precision–recall curves (PR curve) of the four feature extraction network experiments
are shown in Figure 12.

Figure 12. The PR curves of the original Faster-RCNN algorithm constructed using different fea-
ture extraction networks: (a) the PR curve of the VGG16 feature extraction network experiment;
(b) the PR curve of the ResNet50 feature extraction network experiment; (c) the PR curve of the
ResNet101 feature extraction network experiment; (d) the PR curve of the HRNet feature extraction
network experiment.

From the PR curves of the four feature extraction network experiments, it can be seen
that, when taking the same IoU, the accuracy and recall rate of the HRNet feature extraction
network were generally higher than those of the VGG16 feature extraction network, the
ResNet50 feature extraction network, and the ResNet101 feature extraction network. The
precision and recall of the four feature extraction networks were the highest when IOU was
0.5. The category AP, full category AR, and mAP of the four feature extraction networks
when IoU was 0.5 are shown in Table 1.

Table 1. Experimental results of the original Faster-RCNN algorithm using different feature extraction
networks when IoU was 0.5.

Feature Extraction Network
AP

AR mAP
Yak Tibetan Wild Ass Tibetan Sheep

VGG16 0.893 0.903 0.756 0.887 0.851
ResNet50 0.908 0.951 0.832 0.921 0.897
ResNet101 0.944 0.96 0.811 0.925 0.905

HRNet 0.952 0.973 0.868 0.942 0.931
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By comparing the results of the four feature extraction networks, it was found that:
the VGG16 network used by the original Faster-RCNN had a low accuracy; ResNet50,
ResNet101, and HRNet had higher accuracies than VGG16; and the AP and AR of ResNet101
were slightly higher than those of ResNet50. It was found that the overall accuracy of
HRNet was higher than that of VGG16, ResNet50, and ResNet101. The VGG network and
ResNet performed five down sampling operations on the feature map when extracting
features, which seriously affected the detection accuracy of the algorithm for small targets
and overlapping targets [34], whereas HRNet realized the efficient detection of small targets
and overlapping targets by generating a high-resolution feature map with a large amount
of semantic information so as to achieve a high accuracy.

4.3.2. Experimental Results and Analysis of Optimizing Region Proposal Network

In the RPN module of the original Faster-RCNN algorithm, the anchor frame size
was preset. In this paper, the objects needing to be detected were all small targets, so the
original size and proportions were not necessarily suitable for the data set used in this
paper. Therefore, in this paper we used K-means clustering to obtain the anchor frame
size matching the detection target. To verify whether modifying the anchor frame size
according to the results of K-means clustering can improve the experimental accuracy,
we selected HRNet as the feature extraction network and set different anchor frame sizes
according to the results obtained in Section 3.3. We set the anchor frame sizes to 8 and
4 and the anchor frame ratios to 0.5, 1.0, 2.0, and 0.75, 1.0, 1.35, respectively. The strides
used in the four groups were 4, 8, 16, 32, and 64, and the PR curves of the four groups are
shown in Figure 13.

It can be seen from the PR curves of the four groups of experiments that the precision
and recall of the model were improved no matter whether the size or proportions of the
anchor frame were modified. When the size and proportions of the anchor frame were
modified at the same time, the precision and recall of the model were the highest, whereas
the precision and recall of the four groups of experiments were the highest when the IoU
was 0.5. The AP of each category and the AR and mAP of all categories in the four groups
of experiments when IoU was 0.5 are shown in Table 2.

It can be seen from the experimental results that modifying the size and proportions
of the anchor frame can improve the experimental accuracy. By modifying the size of the
anchor frame, mAP was increased by 0.012; by modifying the proportions of the anchor
frame, mAP was increased by 0.035; and by modifying the size and proportions of the
anchor frame at the same time, mAP was increased by 0.037.

Figure 13. Cont.
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Figure 13. Modified anchor frame size experimental PR curves: (a) the PR curve of the experiment
with anchor frame foundation size of 8, and proportions of 0.5, 1, and 2; (b) the PR curve of the
experiment with anchor frame foundation size of 8, and proportions of 0.75, 1, and 1.35; (c) the PR
curve of the experiment with anchor frame foundation size of 4, and proportions of 0.5, 1, and 2;
(d) the PR curve of the experiment with anchor frame foundation size of 4, and proportions of 0.75, 1,
and 1.35.

Table 2. Test results before and after modifying the size and proportions of the anchor frame when
IoU was 0.5.

Anchor Frame Size Anchor Frame Scale
AP

AR mAP
Yak Tibetan Wild Ass Tibetan Sheep

8 0.5, 1.0, 2.0 0.952 0.973 0.868 0.942 0.931
8 0.75, 1.0, 1.35 0.962 0.966 0.902 0.947 0.943
4 0.5, 1.0, 2.0 0.972 0.977 0.948 0.974 0.966
4 0.75, 1.0, 1.35 0.985 0.963 0.955 0.980 0.968

4.3.3. Test Results and Analysis of Post-Processing Optimization

After the algorithm generates the predicted detection frames through classification and
regression, it is necessary to filter the detection frames and eliminate some wrong detection
frames. The original Faster-RCNN algorithm will eliminate the detection frames with
scores of less than 0.5. In the UAV images used in this paper, the size of large herbivores
was between 5 pixels and 50 pixels, and the detection frames with too small or large
lengths or widths generally presented a confusing background. Therefore, on the basis of
eliminating the detection frames with scores of less than 0.5, we also eliminated detection
frames with lengths or widths less than 3 pixels or with lengths or widths greater than
55 pixels. As for whether using NMS to eliminate anchor frames that do not fall within
the range can improve the experimental accuracy, we used the HRNet feature extraction
network to perform four groups of experiments under the conditions of modifying the
anchor frame size and not modifying the anchor frame size. The PR curves of the four
groups of experiments are shown in Figure 14.

From the PR curves of the four groups of experiments, it can be seen that the experi-
mental accuracy can be improved by using NMS to eliminate detection frames that do not
fall within the range, whether or not the anchor frame size was modified. The experimental
accuracy of the four groups of experiments was the highest when IoU was 0.5. The AP
of each category and the AR and mAP of all categories in the four groups of experiments
when IoU was 0.5 are shown in Table 3.
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Figure 14. The PR curves of the experiment of using NMS to eliminate the detection frames with sizes
that did not meet the range: (a) the PR curve of the experiment performed without eliminating the
non-conforming detection frame by NMS, with the anchor frame foundation size of 8 and proportions
of 0.5, 1, 2; (b) the PR curve of the experiment performed eliminating the non-conforming detection
frames by NMS, with the anchor frame foundation size of 8 and proportions of 0.5, 1, 2; (c) the PR
curve of the experiment performed without eliminating the non-conforming detection frame by NMS,
with the anchor frame foundation size of 4 and proportions of 0.75, 1, 1.35; (d) the PR curve of the
experiment performed eliminating the non-conforming detection frames by NMS, with the anchor
frame foundation size of 4 and proportions of 0.75, 1, 1.35.

Table 3. Test results before and after using NMS to eliminate the detection frames that did not fall
within the scope when IoU was 0.5.

NMS Anchor Frame Size Anchor Frame Scale
AP

AR mAP
Yak Tibetan Wild Ass Tibetan Sheep

No 8 0.5, 1.0, 2.0 0.952 0.973 0.868 0.942 0.931
Yes 8 0.5, 1.0, 2.0 0.964 0.962 0.902 0.958 0.942
No 4 0.7, 1.0, 1.35 0.985 0.963 0.955 0.980 0.968
Yes 4 0.7, 1.0, 1.35 0.971 0.978 0.967 0.982 0.972

It can be seen from the experimental results that whether the anchor frame size was
the original size or the modified size, using NMS to eliminate the detection frames that did
not fall within the range can improve the experimental accuracy. Among these, when the
size and proportions of the anchor frames were modified at the same time and NMS was
used to eliminate the detection frames that did not fall within the scope, the detection effect
was the best. The mAP was 0.041 higher than that achieved before the improvement, and
the APs of yaks, Tibetan wild donkeys, and Tibetan sheep were also improved.
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4.3.4. Experimental Results and Analysis of Different Segmentation Methods

When training the model, we divided the image equally. When using the model to
detect the whole UAV image, we also needed to divide the image into small blocks, and
map back to the original image after obtaining the detection frames of each block. In order
to verify the effectiveness of the proposed new overlapping segmentation method, we used
the best model trained by modifying the size and proportions of the anchor frame and
used NMS to eliminate the detection frames that did not fall within the range to detect the
whole UAV image. The bisection segmentation, the original overlapping segmentation, and
the overlapping segmentation method proposed in this paper were used to test the image.
Figure 15 shows the result of detection conducted using bisection segmentation, Figure 16
shows the result of detection conducted using the original overlapping segmentation
method, and Figure 17 shows the result of detection conducted using the new overlapping
segmentation method.

Figure 15. Result diagram of detection performed using bisection segmentation (the red boxes in
the figure are the detection result boxes detected by the improved Faster-RCNN model using the
bisection segmentation method).

It can be seen that after the image was detected by bisection segmentation, there were
a large number of cases where the detection frame did not fit the target because the animal
was divided into two halves, and there were also cases where the same target was detected
twice. Using the original overlap segmentation method for detection reduced the incidence
of situations where the detection frame did not fit the target and false alarm, but there
were still cases where the target was detected twice because the coincidence degree was
not high and it could not be suppressed by NMS, as shown in Figure 16. The overlapping
segmentation detection method proposed in this paper can completely avoid the false
alarms and missed detection events caused by the segmentation of animals, and it can
prevent cases where the detection frame does not fit the target. In the detection result
diagram obtained using the new overlap detection method, except that two backgrounds
were mistakenly detected as yaks and one background was mistakenly detected as Tibetan
sheep, the remaining large herbivores were correctly detected.
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Figure 16. Result diagram of detection performed using original overlapping segmentation (the red
boxes in the figure are the detection result boxes detected by the improved Faster-RCNN model using
the original overlapping segmentation method).

Figure 17. Result diagram of detection performed using new overlapping segmentation (the red
boxes in the figure are the detection result boxes detected by the improved Faster-RCNN model using
the new overlapping segmentation method proposed in this paper).
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5. Conclusions

The size of UAV images is large and the proportion of large herbivores is very small.
The current mainstream target detection algorithms cannot be directly used to identify large
herbivores in UAV images. With the help of the MMdetection toolbox, after comparing
different feature extraction networks, we selected HRNet, which has excellent performance
in small- and medium-sized target detection, as the feature extraction network. Then we set
a suitable anchor frame size and proportions for large herbivores according to the results of
K-means clustering, and used NMS to eliminate the detection frames that did not fall within
the range to improve the Faster-RCNN algorithm. The following conclusions were drawn:

(1) Compared with the VGG16 network, ResNet50 network, and ResNet101 network,
it was proven that the HRNet feature extraction network is more suitable for the
detection of large herbivores in UAV images.

(2) According to the results of K-means clustering, the size and proportions of the anchor
frame were adjusted. AR was increased by 0.038 and mAP was increased by 0.037.
This shows that setting sizes and proportions of anchor frames that are suitable for
the target according to the results of K-means clustering can improve the accuracy.

(3) Using the results of K-means clustering to adjust the size and proportions of anchor
frames and using NMS to eliminate the detection frames that did not fall within
the range at the same time, the AP of yaks, Tibetan wild donkeys, and Tibetan
sheep reached 0.971, 0.978, and 0.967, respectively, values which were 0.019, 0.005,
and 0.099 higher than those obtained before the two improvements, whereas the
mAP reached a value that was 0.972, and 0.041 higher than that obtained before the
two improvements.

(4) We used the detection method of overlapping segmentation first, removing the detec-
tion frame within 50 pixels of the edge, and then NMS could realize the high-precision
detection of the whole UAV image, and there were no cases where the detection frame
did not fit the target or where false alarms or missed detection were caused by the
animals being divided into two halves.

In this paper, after using the improved Faster-RCNN algorithm, the mean average
precision (mAP) and average recall (AR) were improved to varying degrees. Several
optimized methods used in this paper can be used to detect small targets in other large-
scale images. The optimized model reached a high level of precision and could be used to:
more accurately count the number of large herbivores; estimate the proportions of wild
herbivores and farm livestock; and further provide a scientific basis for maintaining the
balance between grass and livestock, including wild animals and farm livestock. However,
the anchor frame size designed according to this data set may not be suitable for use in
other data sets. Then, we can further optimize the algorithm by adaptively calculating the
K-means clustering results according to the data set to modify the anchor box size, and
adaptively calculate the size range of the ground truth frames, and eliminate too-large
and too-small detection frames. In addition, this method can be applied to more complex
scenes, such as UAV images in different phases, more target types, and more easily confused
distractors, in order to check the generalization ability of the scheme.
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Abstract: Hyperspectral inversion techniques can facilitate soil quality monitoring and evaluation. In
this study, the Yellow River Delta Wetland Nature Reserve was used as the study area. By measuring
and analyzing soil samples under different vegetation types and collecting soil reflectance spectra,
the relationships between vegetation types, soil depth, and the changes in soil total carbon (TC), total
nitrogen (TN), and total phosphorus (TP) contents were assessed. The spectral data set was changed
by spectral first derivative processing and division of the sample set according to vegetation type.
The correlation between soil carbon, nitrogen, and phosphorus contents, and soil spectra was also
analyzed, sensitive bands were selected, and the partial least-squares (PLS) method, support vector
machine (SVM) method, and random forest (RF) model were used to establish the inversion model
based on the characteristic bands. The optimal combination of spectral transformation, sample set
partitioning, and inversion model was explored. The results showed significant differences (p < 0.05)
in soil TC, TN, and TP contents under reed and saline alkali poncho vegetation, but not between
soil element contents under different stratifications of the same plant species. The first derivative
reflectance had higher correlation coefficients with soil TC, TN, and TP contents compared with the
original reflectance, while the sensitive bands and quantities of the three elements differed. The
division of the sample sets according to vegetation type and the first derivative treatment can improve
the prediction accuracy of the model. The best combination of sample set plus FD plus RF for TC,
TN, and TP in reed soil and sample set plus FD plus SVM for TC, TN, and TP in saline alkali pine
soil provides technical support to further improve the prediction accuracy of TC, TN, and TP in
wetland soil.

Keywords: soil nutrient; hyperspectral; inversion model

1. Introduction

Soils are unparalleled in terms of their complexity and dynamics, and they contain
minerals, organic matter, innumerable microorganisms, and varying amounts of air, water,
and essential nutrients [1–3]. Soil carbon, nitrogen, and phosphorus are important elements
required for plant physiological processes in terrestrial ecosystems, and they have a great
impact on the structure and function of ecosystems, along with being important indicators
of soil nutrient levels [4–7]. The soil whole carbon content is an important indicator of
the soil carbon pool, while soil nitrogen and phosphorus are indicators of soil nutrient
elements [8–10].

To understand the key role played by soils in global material cycling, a quantitative assess-
ment of the soil carbon, nitrogen, and phosphorus contents and their management is needed [11].
However, the traditional methods of soil element quantification are laborious and expensive,
and a large number of samples is required to maintain the statistical robustness of the analy-
sis [12,13]. Therefore, traditional estimation methods pose critical analytical and environmental
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challenges. Reflectance spectroscopy techniques serve as alternatives to laboratory practices that
require more analysis time and use large amounts of hazardous reagents [14]. The principles
of reflectance spectroscopy in soil science are related to the variability of material surfaces and
their optically active components [15]. For example, soil elements, such as carbon, nitrogen,
and phosphorus, have a significant impact on the form and nature of soil reflectance spectra
and can be estimated quickly [16–19]. Recently, the use of hyperspectral techniques to obtain
information on soil elemental content has gained popularity and become a reliable method
for exploring soil-related issues [20–22]. In the process of modelling inversion, scholars have
found that different models perform differently because of the differences in computational
principles; hence, it is necessary to construct different models to compare the inversion effects
to determine the best inversion model [23–25]. Owing to the redundancy of hyperspectral
data, a mathematical transformation of spectral data or of the extraction of sensitive bands via
principal component analysis and the correlation coefficient method can improve the modelling
accuracy [26–28]. Naveen et al. collected soil hyperspectral data from mangrove and salt
marsh wetlands and established a partial least-squares regression model between the spectral
information and soil carbon and nitrogen variables in an attempt to determine the best band for
soil variable inversion [29]. Meanwhile, Zhang et al. used several mathematical transformation
methods to screen out the sensitive bands of soil carbon and nitrogen. Based on the sensitive
bands, the authors established a hyperspectral inversion model of the coastal wetland surface
soil carbon and nitrogen contents and achieved a better prediction accuracy [30]. In addition,
the partitioning of the hyperspectral sample also has an important impact on the predictive
power of the model [31,32]. Taking coastal wetland soil as the study object, Wei et al. established
partial least-squares regression and support vector machine (SVM) prediction models based on
three different sample set division methods and found that different sample set partitioning
methods also impact modelling accuracy [33].

Previous studies have focused on different models and different data processing
methods to carry out research, and although some studies have used the division of sample
sets, there remains a lack of research that incorporates the influence of surface vegetation
into the division factors of sample sets. Surface vegetation is the primary factor influencing
soil elemental carbon, nitrogen, and phosphorus contents, while apoplastic material and
root secretion during vegetation growth cause differences in soil physicochemical properties
under different vegetation types, and the level of soil carbon, nitrogen, and phosphorus
contents causes differences in soil spectral properties. Therefore, when targeting samples
of soil carbon, nitrogen, and phosphorus contents of different vegetation types, this study,
through different data processing methods and models, proposes a strategy to divide the
sample set according to the surface vegetation, and it determines whether dividing the
sample pool according to different types of vegetation types could improve the model’s
prediction accuracy. The objectives of this study are to: (1) investigate and analyze the
differences in soil total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents
under reed and saline alkali pong communities in coastal wetlands of the Yellow River
Delta; (2) compare and analyze the effects of different data processing methods, different
sample set division methods, and different models on soil carbon, nitrogen, and content
prediction; and (3) evaluate the reliability of soil carbon, nitrogen, and phosphorus content
prediction using hyperspectral techniques.

2. Materials and Methods

2.1. Study Area

The study area is located in the Yellow River Delta Wetland Nature Reserve in Shan-
dong Province (37◦35′ N–38◦12′ N, 118◦33′ E–119◦20′ E) (Figure 1). The Yellow River Delta
is the largest estuarine delta nature reserve in China. It is a representative example of estu-
arine wetland ecosystems worldwide and has been included in the list of internationally
important wetlands by the Ramsar Convention [34]. The terrain of this area is flat, with
an altitude of 2.0–15.0 m. The total research area is approximately 2902 km2, and the land
use types mainly include cultivated land, wetlands, and saline-alkali land [35]. The Yellow
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River Delta belongs to a warm, temperate, semi-humid, continental monsoon climate zone,
with significant temperature differences between the four seasons. The annual average
temperature is 11.7–12.6 ◦C, the extreme maximum temperature is 41.9 ◦C, and the extreme
minimum temperature is −23.3 ◦C; the frost-free period is 211 d, and the average annual
rainfall is 530–630 mm [36].

Figure 1. Location of the study area and sampling sites.

2.2. Data Collection

Sampling was conducted in October 2021, and the sampling sites were randomly
distributed within the study area. A total of 80 sampling sites were selected, of which 42
were Suaeda salsa ponies and 38 were Phragmites australis. Three layers of soil were collected
from each sampling site, and the sampling depth was 0–60 cm, divided into three layers
(0–20 cm, 20–40 cm, and 40–60 cm). A total of 240 soil samples were collected, of which
126 were collected from the P. australis ponies and 114 were collected from the S. salsa. The
minimum quantity of each soil sample was 500 g. The soil samples were dried naturally in
a cool, dry, and ventilated area and then ground and sieved through a 100-mesh sieve after
removing impurities (e.g., plant roots and stones). The screened soil was divided into two
parts: one part was used for the determination of soil carbon, nitrogen, and phosphorus
using traditional chemical methods. The soil organic carbon (SOC) content was determined
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via potassium dichromate-ferric sulfate titration, soil TN content was determined using
the semi-micro Kjeldahl method, and soil TP content was measured using the sulfuric
acid-perchloric acid digestion-molybdenum antimony colorimetric method. Soil spectral
reflectance data were collected using an ASD FS4 portable geospectrometer (Analytical
Spectral Devices, Inc., Boulder, CO, USA) equipped with a soil spectral probe in the
wavelength range of 350–2500 nm with a sampling interval of 1 nm. The soil samples were
sieved and placed in a 1.0 cm deep glass Petri dish such that the soil surface was flat and the
probe was kept perpendicular to the soil surface during measurements. Reference white
plate calibration was performed before each spectral test.

2.3. Data Set Division

Firstly, the significant difference analysis of soil carbon, nitrogen, and phosphorus
contents between different vegetation types and soil layers was conducted to determine
whether the classification of the sample set was reasonable based on the results. Different
classification criteria of the sample data sets will cause differences in modelling effects [37].
Therefore, in this study, all soil spectra obtained were classified into two categories: the
soil spectra of P. australis and the soil spectra of S. salsa, based on the different surface
vegetation. From this, three sample libraries could be established: a sample library of P.
australis soil spectra containing 114 spectral data, a sample library of S. salsa soil spectra
containing 126 spectral data, and a total sample library of 240 soil spectra not classified
according to surface vegetation. Based on the three sample libraries, subsequent pre-
processing and modelling validation were conducted to investigate the effect of dividing
the soil sample set according to the surface samples on the modelling effect.

2.4. Pre-Processing Methods

Viewspec Pro software was used to extract the spectral data. First, the spectral curve
was modified through the parabola correction function to avoid the jumping of connection
points in spectral acquisition, and then the Savitzky–Golay smoothing filter with 10 points
was used to smooth the spectral reflectance curve in order to eliminate the reflectance error
caused by background noise during spectral data acquisition.

To highlight the correlation between the spectral reflectance and soil elements, two
spectral mathematical transformations, original spectral reflectance (OR) and first derivative
reflectance (FD), were used. The first derivative processing of the spectrum can decompose
the overlapping mixed spectrum, expand the spectral characteristic difference between
samples, and facilitate the determination of the spectral sensitive band (SB) [38]. The first
derivative (FD) conversion formula is:

FDR(λı) =
R(λı+1)− R(λı−1)

Δλ
(1)

where λı is the wavelength of each band, FDR(λı) is the first derivative spectral value at
wavelength λı, and Δλ is the wavelength value from the band I to band i plus 1.

In addition, owing to data redundancy in many hyperspectral data bands, to improve
the model’s accuracy, the original spectral reflectance (OR) and first derivative reflectance
(FD) were used as independent variables, while Pearson correlation analysis was performed
with soil carbon, nitrogen, and phosphorus contents, separately; this process was imple-
mented based on R software. Since the correlation between the raw spectral reflectance
and soil carbon, nitrogen, and phosphorus contents was poorly calculated, the band with
the first derivative spectral reflectance correlation coefficient of > 0.3 was selected as the
sensitive band.

2.5. Model Establishment and Verification

The three soil spectral sample libraries were divided into two groups: one group was
the sample set for the model building construction, while the other was the validation set
for verifying the accuracy of the model built. The ratio of the number of samples in the
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modelling set to the number of samples in the validation set for each sample library was
2:1 by soil. The hybrid sample library was modelled and validated based on the original
spectral reflectance and first derivative spectral reflectance, respectively; the P. australis and
S. salsa soil sample libraries were modelled and validated based on the original spectral
reflectance, first derivative spectral reflectance, and sensitive band spectral reflectance.
In this study, three models—random forest, support vector machine, and partial least-
squares regression—were selected for hyperspectral inversion of soil carbon, nitrogen, and
phosphorus contents. SVM is a popular machine learning technique with relevant learning
algorithms for the analysis, classification, and regression analysis of the data provided.
PLSR is an operational method based on principal component analysis that facilitates
data dimensionality reduction. RF is an integrated learning algorithm for classification
and regression and is constructed by combining the results of various decision trees and
bagging the original dataset to select samples. The model construction in this study was
implemented using Wake 3.8 software, where the model was first trained by a modelling
set and then tested for accuracy using a validation set. The accuracy and stability of the
models were assessed using the coefficient of determination (R2), root-mean-square error
(RMSE), and residual prediction deviation (RPD). The larger the R2, the smaller the RMSE,
indicating a higher model estimation accuracy; otherwise, the accuracy of model estimation
was poor [39]. The RPD values reflect the calibration model’s ability to predict the chemical
data. Regarding the RPD statistic, an RPD of <1.4 indicates that it is insufficient for
applications, values ranging from 1.4–2.0 indicate approximately quantitative predictions,
and a value of >2.0 indicates excellent prediction [40].

3. Results

3.1. Characterization of Carbon, Nitrogen, and Phosphorus Contents of Soils in the Yellow
River Delta

One-way ANOVA implemented in SPSS was used to test the significance of the
carbon, nitrogen, and phosphorus contents in the soil under the two coastal wetland plants
and under different soil layers, respectively. The results in Figure 2 show a significant
difference (p < 0.05) between the soil TC and TP contents under P. australis and S. salsa,
while no significant difference was observed in soil TN. Uniformly, there were no significant
differences in the soil carbon, nitrogen, and phosphorus contents between the soil layers
for either P. australis or S. salsa. The trend of the soil carbon, nitrogen, and phosphorus
contents of S. salsa basically followed the pattern of decreasing with the deepening of the
soil layer, while the second soil layer (20–40 cm) of P. australis had the lowest TC and TN,
and TP increased with the deepening of the soil layer.

Based on the results of the significance tests of the soil TC, TN, and TP under different
vegetation types, P. australis and S. salsa can be divided into separate layers for their
respective modelling predictions, while there is no significant difference between the
carbon, nitrogen, and phosphorus contents of the different soil layers, and hence, the three
layers of soil spectral data can be mixed for analysis and processing.

99



Diversity 2022, 14, 862

  

  

  

Figure 2. Total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents of the inter-root
soils of two plants, S. salsa and P. australis (depth 1 = 0–20 cm, depth 2 = 20–40 cm, and depth
3 = 40–60 cm). Notes: different capital letters (A, B) represent significant differences in the soil
elements under the different vegetation types, and lowercase letters (a) represent nosignificant
differences in the soil elements in the different soil layers of the same vegetation type.

3.2. Spectral Data of the Two Wetland Plant Soils

The spectral reflectance curves of all soil samples under the two vegetation types in
the wavelength range of 350–2500 nm are shown in Figure 3, where the general trends of
the measured spectral reflectance curves of the soil samples under the different vegetation
types are the same. The soil spectra under both vegetation types showed distinct soil
spectral absorption peaks near 1400, 1750, and 2300 nm, but the depths and areas of the
absorption peaks were different. Comparing the spectral reflectance curves of S. salsa and
P. australis, the reflectance curves of P. australis soils were more concentrated, indicating
that the structural components of the P. australis root soils were relatively stable.
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Figure 3. Spectral reflectance curves of P. australis and S. salsa.

3.3. Correlation Analysis

The correlation coefficients were calculated between the soil TC, TN, and TP contents and
the soil original spectral reflectance and first derivative reflectance, respectively (Figure 4). The
soil correlation coefficient curves of the two vegetation types showed similar trends, but the
maximum correlation coefficients differed.

 

Figure 4. Correlation between the original reflectance (OR) and first derivative reflectance (FD) of P.
australis (PA) and S. salsa (SS) and the soil total carbon (TC), total nitrogen (TN), and total phosphorus
(TP) contents.
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Among them, the soil TC and TN are negatively correlated with spectral reflectance,
while the soil TP is positively correlated with spectral reflectance. Compared with the
original spectral reflectance, the correlation coefficients of the first derivative reflectance
were higher, while those between the soil TC, TN, and TP contents and the first derivative
reflectance showed a positive and negative crossover, with more peaks and valleys, and
the maximum correlation coefficients were greatly improved compared with the original
spectra. As the correlation coefficients between the first derivative reflectance and the soil
carbon, nitrogen, and phosphorus were much higher than the original reflectance, the first
derivative reflectance of each element was used to establish a new database of sensitive
bands for each element.

3.4. Mixed Species Modelling Effects

The P. australis and S. salsa sample data were mixed and then divided into sample
and validation sets. Prediction models based on the original spectral reflectance and first
derivative spectral reflectance data were established using PLSR, RF, and SVM models.
Comparing the models obtained using these three methods (Figure 5) revealed that the
modelling accuracies of the PLSR and RF were relatively higher than that of the SVM.
Additionally, the R2 values of the PLSR models were >0.82, with most values being >0.90.
However, the modelling accuracy of SVM was relatively low. Except for the R2 of the TN
prediction model based on first derivative processing, which reached 0.99, the other R2

values were <0.80. The prediction model based on the first derivative processing of the
spectral reflectance was significantly more accurate than the prediction model based on the
original spectral reflectance data, except for the SVM models for TC and TN.

   

   

   

Figure 5. Modelling results of the carbon, nitrogen, and phosphorus levels in inverted wetland soils
using three models: partial least-squares regression (PLSR), random forest (RF), and support vector
machine (SVM). OR: original reflectance; FD: first derivative reflectance.

Among the three modelling methods, the PLSR and RF models had the best mod-
elling and prediction accuracies, whereas the SVM model had a relatively poor prediction
accuracy.
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3.5. Effect of Sample Set Division and Sensitive Band on Modelling
3.5.1. Random Forest Regression Models

The RF model had a high prediction accuracy for the soil TC, TN, and TP (Figure 6).
The modelling and verification of these three models were great, with high stability and
accuracy. The prediction accuracy of the soil TC, TN, and TP in the models was high. The
R2 of the TC model was at least 0.84, and the RMSE was 0.053 g/kg. The accuracy of soil
TN prediction in the model was slightly better than that of TC, with a lowest R2 of 0.90 and
an RMSE of 0.006. When modelling the soil TP, the model accuracy was the highest, with
the highest R2 (reaching 0.92), while the RMSE was 0.002. Considering model accuracy, the
RF model was reliable and excellent in predicting the results of the soil TC, TN, and TP.

  

  

Figure 6. RF modelling results for P. australis and S. salsa. OR: original reflectance; FD: first derivative
reflectance; SB: sensitive band.

3.5.2. Partial Least-Squares Regression Models

The PLSR model could accurately model and predict the soil carbon, nitrogen, and
phosphorus contents (Figure 7). The modelling accuracy of the PLSR model based on the
original spectral reflectance and first derivative spectral reflectance was very high, with an
R2 of >0.95. The PLSR model based on the sensitive bands performed equally well in most
cases, but the R2 value of the PLSR model for the P. australis rhizosphere soil TP was only
0.37; thus, the model was not reliable. Comparing the models constructed using the three
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spectral data types, the model accuracy of the PLSR model based on the first derivative for
both P. australis and S. salsa was very high, with an R2 of 0.99. The PLSR model based on
the sensitive bands was less stable than the PLSR model based on the other two spectral
data types.

 

 

Figure 7. PLSR modelling results for P. australis and S. salsa. OR: original reflectance; FD: first
derivative reflectance; SB: sensitive band.

3.5.3. Support Vector Machine Regression Models

The SVM model had good prediction effects for the soil TC, TN, and TP. The prediction
accuracy among the different elements decreased in the following order: TC, TN, and TP
(Figure 8). The prediction effect for the soil TC was the best, where the highest R2 was 0.90
and the lowest was 0.82. The prediction of the soil TN was slightly less accurate, where the
highest R2 was 0.82 and the lowest was 0.71. The prediction of the soil TP was the worst,
with the highest R2 being 0.78 and the lowest being 0.33. Consequently, the reliability of
the model predictions was low. Comparing the models of the three spectral data, we found
that the R2 of the SVM model based on the sensitive bands was improved compared with
that of the SVM model based on the original spectral reflectance, and it was significantly
improved compared with that of the SVM model based on the first derivative spectral
reflectance. However, the usage of the sensitive bands reduced the R2 of the model when
modelling the contents of TC and TN in the P. australis root soil.
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Figure 8. SVM modelling results for P. australis and S. salsa. OR: original reflectance; FD: first
derivative reflectance; SB: sensitive band.

3.6. Accuracy of the Prediction Models

In this study, the R2, RMSE, and RPD were used to evaluate the stability and accuracy
of retrieving the soil carbon, nitrogen, and phosphorus contents of two dominant plant
species using different spectral processing methods and different models. As shown in
Table 1, among the three models, the RF model had the best inversion results for the soil
carbon, nitrogen, and phosphorus contents. Both the modelling and verification effects
were better than those of the other two models, while the PLSR model was slightly better
than the SVM model in the other two models. Among the inversion models for soil TC,
TN, and TP, the model for TC had the highest prediction accuracy, where its R2 was the
highest (0.57) and its RPD was 1.46, indicating that the prediction results of the model were
reliable. The prediction effect of TN was slightly worse than that of TC, where the lowest
R2 value was 0.47. The inversion effect of each model was largely reliable. The inversion
effect of TP was the worst: its lowest R2 was 0.29 and its RPD was less than 1.4. However,
some of these prediction models are unreliable. By comparing the prediction effects on
different plant root systems, it was found that the prediction effect for the P. australis root
soil nutrient elements was slightly better than that for the S. salsa soil.
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Table 1. Accuracy of the prediction models for P. australis (PA) and S. salsa (SS) total carbon (TC),
total nitrogen (TN), and total phosphorus (TP).

Index

PLSR RF SVM
Model Test

RPD
Model Test

RPD
Model Test

RPD
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

TC

PA
OR 0.97 0.020 0.79 0.078 2.11 0.94 0.051 0.87 0.054 2.69 0.85 0.094 0.77 0.074 1.37
FD 0.99 0.004 0.86 0.064 2.31 0.95 0.045 0.91 0.046 2.90 0.85 0.102 0.80 0.084 0.98
SB 0.99 0.001 0.89 0.052 2.95 0.96 0.042 0.92 0.043 3.19 0.83 0.098 0.79 0.083 1.09

SS
OR 0.95 0.016 0.57 0.060 1.46 0.84 0.053 0.67 0.047 1.56 0.82 0.099 0.79 0.039 1.78
FD 0.99 0.015 0.62 0.056 1.58 0.96 0.023 0.81 0.037 1.93 0.87 0.024 0.85 0.033 2.37
SB 0.99 0.005 0.63 0.057 1.55 0.96 0.010 0.87 0.031 2.27 0.90 0.023 0.88 0.028 2.76

MIX
OR 0.90 0.035 0.67 0.119 1.12 0.88 0.050 0.73 0.109 0.91 0.71 0.089 0.64 0.104 0.76
FD 0.98 0.002 0.65 0.122 1.04 0.96 0.027 0.86 0.092 0.97 0.70 0.096 0.61 0.113 1.37

TN

PA
OR 0.96 0.003 0.58 0.008 1.99 0.90 0.006 0.85 0.006 2.26 0.71 0.012 0.61 0.011 0.82
FD 0.99 0.001 0.76 0.008 1.88 0.94 0.005 0.92 0.005 2.92 0.82 0.011 0.68 0.010 1.04
SB 0.99 0.001 0.87 0.006 2.74 0.95 0.004 0.94 0.004 3.43 0.75 0.011 0.64 0.010 0.91

SS
OR 0.98 0.001 0.47 0.006 1.40 0.94 0.003 0.64 0.005 1.23 0.76 0.004 0.71 0.004 1.22
FD 0.99 0.001 0.62 0.005 1.34 0.97 0.001 0.76 0.004 1.80 0.78 0.002 0.73 0.004 1.58
SB 0.99 0.001 0.66 0.005 1.46 0.96 0.001 0.78 0.004 1.85 0.80 0.002 0.76 0.004 1.68

MIX
OR 0.82 0.003 0.71 0.010 1.36 0.87 0.005 0.48 0.012 0.74 0.76 0.008 0.72 0.010 1.29
FD 0.97 0.001 0.64 0.011 3.33 0.96 0.002 0.70 0.009 1.03 0.99 0.004 0.78 0.008 1.36

TP

PA
OR 0.97 0.001 0.52 0.004 1.41 0.93 0.002 0.62 0.003 1.33 0.49 0.004 0.44 0.004 1.10
FD 0.99 0.001 0.60 0.004 1.49 0.97 0.002 0.70 0.003 1.18 0.57 0.004 0.50 0.004 1.17
SB 0.37 0.004 0.29 0.005 0.75 0.92 0.002 0.76 0.003 1.73 0.63 0.003 0.53 0.004 1.20

SS
OR 0.95 0.002 0.45 0.006 1.18 0.94 0.003 0.52 0.005 1.00 0.59 0.005 0.52 0.005 1.19
FD 0.99 0.001 0.53 0.005 1.21 0.96 0.001 0.64 0.004 1.34 0.64 0.003 0.61 0.004 1.11
SB 0.90 0.002 0.69 0.004 1.74 0.94 0.001 0.73 0.004 1.81 0.78 0.003 0.74 0.004 1.95

MIX
OR 0.90 0.002 0.47 0.007 1.00 0.93 0.002 0.40 0.006 0.47 0.71 0.002 0.39 0.005 0.48
FD 0.96 0.001 0.49 0.006 0.93 0.97 0.001 0.31 0.006 0.30 0.70 0.002 0.33 0.006 0.72

4. Discussion

4.1. Soil Nutrient Differences

Changes in the soil nutrient contents are the result of a combination of environmental
and biological factors, with the former dominated by the altitude gradient, temperature,
and soil texture and the latter dominated by vegetation type and soil animal activity. Soil
nutrient elements vary in their concentrations and forms of existence, among which the soil
organic carbon content is primarily influenced by the decomposition and transformation
rate of apoplastic matter, and it is also highly affected by surface vegetation growth [41].
The soil TN content is also closely related to the soil organic carbon content, whereas
soil nitrogen is mainly fixed by rhizobia. The soil TP content varied greatly among the
sample types. A likely cause of such variation is that soil phosphorus content is affected by
multiple soil ecochemical processes, such as weathering and the leaching enrichment of
phosphorus-bearing ores [42].

As shown in Figure 2, the distribution trends of the root soil nutrients displayed
differences between the P. australis and S. salsa samples. The C, N, and P contents in the root
soil of S. salsa in saline land decreased with increasing soil depth; however, the root soil of P.
australis showed the opposite trend. Noticeably, the C, N, and P contents in the deepest soil
(20–40 cm) were the highest. This phenomenon may have been caused by the combined
effects of the degree of soil flooding and the morphological differences between P. australis
and S. salsa [43]. The C content of P. australis root soil was higher, which was likely due to
the fact that P. australis has much more biomass than S. salsa and that the residual organic
matter in the soil is higher. The N and P contents in the root soil system of S. salsa were
higher than those in P. australis, which may be caused by the long-term flooding of the soil
near the sea and the high contents of N and P in the soil pore water.
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4.2. Differences in the Element Contents Retrieved from the Hyperspectral Data

Hyperspectral technology is used to identify substances and determine their chemical
compositions and relative contents according to their spectral reflectance. Earlier studies
have reported that the visible spectrum is created by the outer electronic transition, whereas
the near-infrared spectrum is mainly affected by molecular vibrations, which potentially
reflect the compositions and structures of molecules [44]. This basic principle is applied
during the quantitative analysis of target substances using hyperspectral technology. While
no two substances have the same spectral characteristics, this approach ensures that similar
substances will have similar spectral characteristics. Noticeably, during the collection of
the soil spectral information, the presence of soil moisture and clay minerals was the main
cause for the occurrence of spectral absorption peaks [45,46]. The complex structure and
composition of soil often leads to a large number of interference factors in the spectral
information [47]. To avoid these unwanted spectral peaks, unified drying and grinding
steps are used, which reduce the impacts of soil moisture and soil structure on the spectral
reflectance, thus improving the signal-to-noise ratio and contributing to modelling and
inversion in the next step.

The contents of soil C and N are considered soil properties that have a direct impact on
reflectance [48]. The multiplicity and ensemble frequencies of molecular vibrations are the
main sources of differences in spectral reflectance; therefore, spectral analysis is commonly
used for the analysis of organic matter containing C-H, N-H, O-H, and other groups. The
vast majority of soil N is in the organic-bound state and displays a strong correlation with
the C content. Therefore, hyperspectral technology can be used to establish a model of the
C and N soil contents for rapid estimation, as well as to achieve a high prediction accuracy.
In our study, the prediction accuracy of the TP content prediction models for all types of
samples and treated soils was lower than that for soil TC and soil TN. This situation was
consistent with the results of the correlation analysis. The poor accuracy of the prediction
models and correlation analysis was likely caused by the low P content in the soil, which is
known to increase the difficulty of prediction [49].

4.3. Preprocessing Transformations

Hyperspectral data have very high spectral resolutions; thus, while they provide
information, most are redundant. Therefore, it is necessary to remove this redundant
information to reduce its impact on the establishment of soil TC, TN, and TP content
prediction models. In our study, three types of soil spectral reflectance data, namely original
spectral reflectance, first derivative spectral reflectance, and first derivative sensitive band
spectral reflectance, were selected. The soil nutrient contents of TC, TN, and TP were
estimated using three modelling methods—PLSR, RF, and SVM, respectively—and the
model prediction accuracy was also improved or largely similar in this study compared with
the results of the previous study (Table 2). The correlation analysis indicated that the first
derivative processing of spectral reflectance significantly improved the correlation between
the spectral reflectance and soil nutrient content compared with the original spectral
reflectance, and this result is consistent with the conclusions of other recent studies [50].
Table 1 and Figures 4–6 show the prediction results of the prediction models based on the
three spectral reflectance data. In general, the accuracy of the prediction model based on
the sensitive band was higher than that of those based on the original spectral reflectance
and first derivative spectral reflectance. However, there were exceptions, such as the
prediction model of soil TP content, which displayed a decline in accuracy. This was likely
caused by the spectral reduction in the signal-to-noise ratio [51]. The process of extracting
sensitive bands removed some information related to soil phosphorus. In addition, the
prediction model based on the first derivative spectral reflectance had better accuracy than
the prediction model based on the original spectral reflectance, which suggests that the
conversion of spectral variables could effectively eliminate the impacts of environment,
soil, and other factors on the spectral information.
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Table 2. Comparison of soil carbon, nitrogen, and phosphorus between other research results and
this paper.

Element Accuracy Spectral Data Model Author
Accuracy in the
Present Study

C R2 = 0.95 First derivative RF Wang S. et al., 2022 [52] R2 = 0.91
C R2 = 0.44 Untransformed PLSR Mondal B. P. et al., 2019 [53] R2 = 0.67
C R2 = 0.81 Smoothed reflectance PLSR Ribeiro S. G. et al., 2021 [49] R2 = 0.89
C RPD = 2.52 Untransformed PLSR Anna P. et al., 2020 [54] RPD = 2.11
N R2 = 0.76 Untransformed RF Lin X. L. et al., 2022 [55] R2 = 0.85
N R2 = 0.35 Untransformed PLSR Pechanec V. et al., 2021 [56] R2 = 0.71
N R2 = 0.94 Untransformed SVM Xu S. X. et al., 2021 [23] R2 = 0.72
N R2 = 0.81 Smoothed reflectance PLSR Li H. Y. et al., 2019 [57] R2 = 0.87
P R2 = 0.34 Untransformed PLSR Malmir M. et al., 2019 [58] R2 = 0.47
P R2 = 0.54 Untransformed PLSR Lu P. et al., 2013 [59] R2 = 0.47

4.4. Differences in the Prediction Accuracy of the Different Models

RF is an integral machine learning algorithm that is used for classification and regres-
sion. It was constructed by combining the results of various decision trees and bagging
the original dataset to select samples. SVM is a popular machine learning technology. This
supervised learning model contains related learning algorithms that are used to analyze,
classify, and conduct regression analyses on the supplied data. PLSR integrates various
analyses, such as correlation, principal component analysis, and multiple linear regression,
to identify the primary control factors affecting the dependent variable (soil C, N, and P
contents) from the high-dimensional data while reducing the dimensionality of spectral
analysis, which makes the constructed model more robust [60].

By comparing the results in Table 1 and Figures 5–8, we found that the best inversion
model for the soil nutrient content was the RF model. Compared with the other two models,
the modelling R2 was higher, and the RMSE was lower. The R2 of the PLSR model was
much higher than that of the SVM model during modelling; however, there was little
difference between the PLSR and SVM models during validation. This could have been
caused by overfitting during modelling by the PLSR, resulting in high modelling but low
validation accuracy.

5. Conclusions

To explore the spatial distribution characteristics of soil carbon, nitrogen, and phos-
phorus contents of different plant roots in the Yellow River Delta and to predict soil carbon,
nitrogen, and phosphorus potential using hyperspectral techniques, stratified soil sam-
pling was conducted for two vegetation types. In addition, soil samples were subjected
to traditional chemical measurements and spectral data collection. While studying the
distribution characteristics of TC, TN, and TP soil nutrients based on the measured values,
a rapid inversion of soil total carbon, nitrogen, and phosphorus contents and real-time
monitoring of the soil quality were established based on the original spectral reflectance
and first spectral reflectance of the soil. Our findings are as follows:

(1) There was a significant difference in soil total carbon and phosphorus contents be-
tween the two vegetation types, and no significant difference in soil carbon, nitrogen,
and phosphorus contents between the different strata under the same vegetation type
was observed. Therefore, the influence of vegetation type should be considered prior
to making modelling predictions.

(2) The trends of soil correlation coefficient curves were similar for different vegetation
types, while the maximum correlation coefficients differed. The first derivative re-
flectance had a large increase in correlation coefficients compared with the correlation
coefficients between the original spectral reflectance and soil carbon, nitrogen, and
phosphorus contents.
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(3) The first derivative treatment and division of sample sets according to vegetation
types improved the modelling accuracy. The best prediction method for the TC, TN,
and TP contents of the P. australis soils was to divide the sample set plus FD plus RF,
while that of the S. salsa soils was to divide the sample set plus FD plus SVM.
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Abstract: Sustainable Development Goals (SDGs) target 11.a is a good vision for the coordinated
development of the economy, society and environment in urban agglomerations. However, there was
an extreme lack of indicators, data or case studies for SDG target 11.a, since it is a vague “process
target”, which is not conducive to the implementation of SDG target 11.a. It is important to propose
a quantitative, convenient, and local policies relevant method to promote the realization or to test
the implementation effects of SDG target 11.a. Combined with socio-economic data and land use data,
this study uses the methods of comprehensive evaluation model, coupling and coordination degree, and
comparative advantage degree methods to study the pattern evolution, coordination characteristics and
advantageous areas of production–living–ecological (PLE) functions in the Guangxi Beibu Gulf Urban
Agglomeration (GBG_UA) from 1995 to 2019. The results showed that, (1) considering the spatiotemporal
distribution of PLE functions, the study area has a relatively stable ecological function as well as fluctuating
production and living functions. Considering the coordination characteristics of PLE functions, high–high
and low–low clustering effects were observed, and primary coordination maintained the highest proportion,
accounting from 55.26% in 1995 to 71.05% in 2019, indicating the SDG target 11.a level in the GBG_UA was
poor. Considering the advantageous areas for PLE functions, the region mostly comprises single-function
advantageous areas and a few multifunction advantageous areas, including 20 single-function advantage
counties (accounting for 52%), 15 dual-function advantage counties (accounting for 39%), and three multi-
function advantage counties (accounting for 7.8%), which indicates the lack of diversified land use structures
in this region. (2) Optimization suggestions for the coordinated development and realization of SDG target
11.a for the GBG_UA were provided. Suggestions were made based on the radiation and driving role of
Nanning city to guide the coordinated development of surrounding counties (districts). Suggestions were
also made to improve the design of the integrated transportation network as well as to optimize allocation
according to the resource endowment of land and to realize an upgraded ecology as well as agricultural
products and services. (3) The evaluation of PLE functions is a quantitative and convenient method that can
optimize national and regional development planning and test the implementation effects of SDG target 11.a.
This study offers foundational knowledge for the realization of SDG target 11.a in the GBG_UA and provides
a reference for the research and implementation of SDG target 11.a in other regions around the world.

Keywords: production–living–ecological (PLE) functions; coordination characteristics; SDG target
11.a; Guangxi Beibu Gulf urban agglomeration (GBG_UA)
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1. Introduction

The Sustainable Development Goals (SDGs) were first proposed at the 2012 Rio Earth
Summit [1]. In total, 193 countries around the world jointly signed “Changing our future:
2030 Agenda for Sustainable Development” in September 2015. The SDGs framework could be
regarded as the blueprint that promotes sustainable development of Member States, which
commit to the harmony of ecological environment and social economy. They address the
global challenges we face, including poverty, inequality, climate change, environmental
degradation, peace and justice, and the SDGs have become a global research hotspot in
recent years. In July 2017, the United Nations General Assembly adopted the global indica-
tor framework, which included 17 goals, 169 targets and 232 indicators [2], in which Goal
11 proposed to “Make cities inclusive, safe, resilient and sustainable”. Urban agglomerations
include urban, peri urban, and rural areas that, are gathering areas for human activities.
For example, comprising 29.12% of the national land area, Chinese urban agglomerations
concentrate 75.19% of the total population, 80.05% of the GDP, 82.37% of the total social
fixed asset investment and 91.19% of the national fiscal revenue [3]. Nevertheless, there are
still many problems regarding the development of urban agglomerations, such as rapid
economic development, the rapid expansion of urban construction, the crowding out of
ecological space, prominent resource and environmental problems, and the deterioration
of the human living environment [4–6], as such, SDG target 11.a proposed to “Support
positive economic, social and environmental links between urban, peri urban and rural areas by
strengthening national and regional development planning”, and SDG target 11.a is a good
vision for the coordinated development of economy, society, and environment in urban
agglomerations [7].

There have been many studies on the goal, targets and indicators of SDG11. For
example, in terms of theory, Caprotti et al. discussed important policy and practical
opportunities as well as challenges of the new urban agenda [8]; Mccarton et al. explored
the key components needed to achieve safe, resilient and sustainable cities and communities
in the EU [9]; and Lawanson et al. revealed that paucity of data, weak institutional capacity
as well as poor governance strategies are major impediments to mainstreaming SDG11
in Lagos, Nigeria [10]. In terms of indicators and data, Cochran et al. took EnviroAtlas
as an example to show and analyze how earth observation indicators can help fill the
gaps in SDG monitoring data [11]. Ni et al. constructed an indicator system for the
SDG 11.1–11.7 targets in the urban dimensions in China; however, SDG target 11.a−11.c
targets were not included [12]. In terms of case studies, Patel took Cape Town as an
example to explore the role of urban experimentation in helping cities cope with the data
and governance challenges faced in the implementation of SDG 11 [13]. Abubakar et al.
assessed the implementation of SDG11 in Nigeria at the national level [14]. However, there
is an extreme lack of indicators, data or case studies for SDG target 11.a, which is not
conducive to the implementation of SDG target 11.a.

There are two kinds of targets that are included in SDG 11: one kind are the so-called
“outcome targets”, which are marked by numbers, e.g., 11.1, 11.2, 11.3, etc., the others are
so-called “process targets”, which are marked with letters, e.g., 11.a, 11.b, etc. [15]. The
indicators of “outcome targets” are clear and quantifiable, but those of “process targets” are
not, they are vague. Klopp and Petretta investigated the relationship between indicators,
complexity, and the politics of measuring cities, emphasizing the need to reduce the
vagueness of indicators to avoid fuzziness in local implementation [16]. Thus far, only
Erblin et al. have developed a set of SDG target 11.a indicators to assess the quality of
spatial governance and planning in Europe [15]. However, this method requires many
indicators that are difficult to obtain, and this method is based on the European context.
Hansson et al. suggested that domestic actors should be allowed to select indicators “that
fulfil the criteria of easy measurement or collection, appropriateness, convenience and
relevance to current conditions and national and local development policies, priorities
and programmes” [17]. As a result, it is urgent to find quantitative, convenient, and local
policies relevant evaluation method and case study for SDG target 11.a.
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Land is the carrier of all human activities, and land use is multifunctional [18]. Opti-
mizing management options from the perspective of multifunctional land use can promote
sustainable land management [19]. In the European project “Sustainability Impact Assess-
ment: Tools for Environmental Social and Effects of Multifunctional Land Use in Europe
Regions (SENSOR)”, land-use functions are classified into three main functions: economic,
social and environmental functions [20]. In China, it has been proposed that all human
land relations are embodied and included in the utilization of production function, living
function, and ecological function [21], which are called production–living–ecological (PLE)
functions. China wanted to “promote intensive and efficient production space, appropriate living
space and beautiful ecological space” in 2012, and further emphasized that policies should
“firmly follow the civilized development path of production development, affluent living and good
ecology” in 2017. This represents the planning framework for the coordinated development
of PLE functions, which means supporting a positive production function (economy), living
function (social), and ecological function (environmental) links by land spatial planning at
the national, provincial, prefectural, district, and county levels. Therefore, the coordination
of PLE functions is consistent with the national and local development policies, and it
can be quantitatively evaluated and has strong operability. Therefore, evaluating of PLE
functions is of great significance when formulating reasonable local development planning
locally, constructing positive economic, social and environmental links and serving SDG
target 11.a.

In recent years, great progress has been made in the evaluation of PLE functions.
Since pattern evolution can grasp the spatial distribution patterns and development trends
of PLE functions, the coordination characteristics reveal the degree of interaction and
game process of PLE functions, and advantageous areas show the natural resources and
economic social development of each space unit, PLE functions can be comprehensively
evaluated by these indicators. The comprehensive evaluation model [18,22,23], coupling
and coordination degree [24–26] and comparative advantage degree [27] were used to study
the function value, pattern evolution, coordination characteristics and advantageous areas
of PLE functions, and the results showed that these methods were very effective, which
provided a good technical basis for our study. Although PLE functions play an important
role in the SDGs, the existing studies on PLE functions are lack of connection with the SDGs,
which is not conducive to providing decision-making services for sustainable development.

Overall, the objectives of this research were as follows:

(1) Propose a quantitative, convenient, and local policies relevant evaluation method for
SDG target 11.a based on evaluating of PLE functions.

(2) Take the Guangxi Beibu Gulf Urban Agglomeration (GBG_UA), which is one of
the new urban agglomerations constructed in China as an example, and analyze
the pattern evolution, coordination characteristics, and advantageous areas of PLE
functions from 1995 to 2019 and offer foundational knowledge for the development
planning and realization of SDG11.a.

(3) Put forward the optimization of the development planning of PLE functions in the
GBG_UA and promote the realization of SDG target 11.a locally. At the same time,
this study aims to provide a reference for the research and implementation of SDG
target 11.a. in other regions around the world.

2. Materials and Methods

2.1. Study Area

The GBG_UA is located between 20◦26′ N and 24◦02′ N, and between 106◦33′ E and
110◦53′ E (Figure 1), and is one of the new urban agglomerations in the south of China [28],
with 6 prefecture-level cities and 38 counties (districts) being included in the area. The
terrain is high in the west, north, and east; inclines in the middle and south; and there are
karst mountains in the west. Complex hills and small basins have formed in the middle of
continuous mountains, and piedmont plains, river alluvial plains and deltas are formed
in the south. The GBG_UA has a large amount of forest land and farmland, so it has
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a high ecological level and a good agricultural industrial foundation, and it has great
potential to provide ecology, agricultural products and services [29]. The development
intensity of the GBG_UA is low, and there is a relatively large stock of land resources that
can be developed into construction land. Located in the tropical and subtropical zone,
the study area is affected by high temperatures, abundant heat, and rich rainfall. The
agglomeration is in the largest bay in southern China and ranks first in China for the
quality of its ecological environment. It has plenty of ports, a long coastline, and oil and
gas, agricultural, forestry, and tourism resources. The region has a flat terrain, a large
environmental capacity, and a strong population and economy carrying capacity. The cities
in the GBG_UA have profound historical and humanistic origins. In recent years, major
planning, resource development and utilization, industrial layout, and public services have
been integrated, and the integrated development of the GBG_UA has a solid foundation,
strong momentum, and huge potential.

Figure 1. The land cover of the Guangxi Beibu Gulf urban agglomeration.

2.2. Data Sources

The data used in this paper mainly include land use maps and socioeconomic data,
which are used to establish the evaluation system for the PLE functions in the GBG_UA.
The details are as follows. (1) Land Use Data: The land use data for the study area
from 1995 to 2019 were derived from remote sensing monitoring data such as Landsat
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TM/ETM+ and HJ-1A/1B with a spatial resolution 30 m × 30 m. There are six first-
class types including farmland, forest land, grassland, water body, impervious and bare
areas, and 25 s-class land use types, including forest land, shrub forest, sparse forest
land, other forest land and grassland with high, medium, and low coverage in the land
use data, and its classification accuracy degree is greater than 90% [30]. The data are
from the Resource and Environmental Science and Data Center of Chinese Academy of
Sciences (https://www.resdc.cn, accessed on 1 June 2021), the Ministry of Ecology and
Environment’s Center for Satellite Application on Ecology and Environment, and the China
National Environmental Monitoring Center. (2) Socioeconomic Data: The socioeconomic
data for the study area from 1995 to 2019 are mainly derived from the Statistical Yearbook
of Guangxi Zhuang Autonomous Region, the Statistical Yearbook of Nanning City, the
Statistical Yearbook of Beihai City, the Statistical Yearbook of Qinzhou City, the Statistical
Yearbook of Fangchenggang City, the Statistical Yearbook of Chongzuo City, the Statistical
Yearbook of Yulin City, and from the socioeconomic statistical communiques of cities and
counties. (3) Administrative Division Data: The administrative division data are derived
from the National Geomatics Center of China (http://www.ngcc.cn/ngcc, accessed on 1
June 2021).

2.3. Methods
2.3.1. Theoretical Foundation Establishment

SDG target 11.a demands coordinated development of economy, society, and envi-
ronment, which guarantees human land relations safe and sustainable. All human land
relations are embodied and included in the utilization of PLE functions [21]. Produc-
tion function supports the development of regional industries and provides industrial
products, agricultural products, and service products [21,31]. Living function supports
residence, consumption, leisure and entertainment [21,31]. Ecological function involves
climate regulation, soil conservation, and guaranteeing regional ecological security [21,31].
The interrelations of PLE functions are tradeoffs and synergies [32]. The production func-
tion provides economic support for promoting quality of life and maintenance of ecology,
the ecological function is the beautiful and healthy foundation for living and production,
and the living function supports labor for production. However, the excessive develop-
ment of living and production function will destroy the ecological environment, and then
deteriorate the living function, leading to a vicious circle.

In summary, PLE functions should develop in a coordinated way, specifically, produc-
tion is efficient and intensive, living is rich and comfortable, and ecology is beautiful and
healthy, and achieve SDG target 11.a finally (Figure 2). This study establishes the relation-
ship table of PLE functions coordination levels corresponding to the implementation stage
of SDG target 11.a (Table 1).

Figure 2. Schematic diagram of research ideas.
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Table 1. Link between PLE functions coordination and SDG target 11.a.

Coordination Level of PLE Functions SDG Target 11.a Characteristic

Imbalance Extremely poor production, or the over development of production function has led to the serious
extrusion of other functions, such as poor living conditions or serious ecological pollution.

Primary Coordination Production has initially developed, life has gradually improved, or the ecology is fragile.

Intermediate Coordination Gradually transformed into an intensive and efficient production mode, and began to pay
attention to repair the ecological problems caused by production or living activities.

Good Coordination Production developed and ecological restoration has achieved good results, and the overall living
environment has been greatly improved.

High-quality Coordination PLE functions promote each other, there is a positive link betweem PLE functions, and they
realize the orderly sustainable development of urban agglomerations.

2.3.2. Building the Evaluation Index System of PLE Functions

The rationality for index system construction is the basis of function evaluation. The
principles for index selection include: (a) Typicality and Comparability: there are great
differences in the development level of each county in the GBG_UA. When selecting the
indices, they should not only be typical, but also comparable. The indices should highlight
the differences in the characteristics of PLE functions between each county, so that the
evaluation results can be comparable and reflect the differences in the PLE functions of
the counties. (b) Operability and Accessibility: As there are many indices that affect the
PLE functions, in order to avoid a one-sided pursuit of diversity and comprehensiveness,
operable, available and representative indices should be selected.

In this study, 20 indices were selected in terms of land use and socioeconomic types
based on the actual use of PLE functions in the GBG_UA. Thus, a function evaluation index
system was built for the PLE functions (Table 2).

Table 2. Evaluation index system for the production–ecological–living spaces functions in the
Guangxi Beibu Gulf urban agglomeration.

Target Layer Guideline Layer Index Layer (Unit) Weight

Production
function

Economic development

Regional GDP (CNY ten thousand) 0.0932
Fiscal revenue (CNY ten thousand) 0.0758

Total fixed investment (CNY ten thousand) 0.0937
Percentages of the output value of secondary and tertiary industries (%) 0.1034

Agricultural production

Output values of agriculture, forestry, animal husbandry and fishery (CNY
ten thousand) 0.1227

Cultivated land area (km2) 0.1236
Grain output (tons) 0.0745

Industrial production
Industrial and mining production space area (km2) 0.1102

Total output value of industries above designated scale (CNY ten thousand) 0.0997
Number of designated-scale industrial and mining enterprises (EA) 0.1031

Living function

Living carrying
GDP per capita (CNY per person) 0.1598

Total retail sales of consumer goods per capita (CNY per person) 0.1515
Residents’ saving balance per capita (CNY per person) 0.1490

Living service

Living space area (km2) 0.1571
Urbanization rate (%) 0.1083

Number of schools (EA) 0.1463
Number of medical beds (EA) 0.1280

Ecological
function

Ecological supply
Ecological space area (km2) 0.1712

Forest coverage rate (%) 0.1793
Percentage of waters area (%) 0.1721

Ecological maintenance
Proportion of days with excellent air quality (%) 0.1625

Water quality compliance rate (%) 0.1691
Harmless treatment rate of domestic waste (%) 0.1458

Note: The space area indices in relation to the PLE functions described in the table are derived from land use types
(where the living space area includes urban living spaces and rural residential land area, whereas the ecological space
area covers forest land, grassland, and water body). Other data are calculated based on the statistical yearbooks.
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2.3.3. The Evaluation Model for PLE Functions

There are many methods that can be implemented to measure the weight of indices,
such as the analytic hierarchy process, expert scoring method and other subjective weight
determination methods [33,34]. Generally, the subjective weight determination method is
greatly affected by the subjectivity of the evaluator or consultor and has limitations. The
objective weighting law mainly analyzes the importance of the indices in the whole system
through the correlation between indices, to determine the weight of the indices, such as
through the entropy method and principal component analysis [35,36]. This paper uses the
entropy method to measure the weight of the indices.

First, the indices are subject to dimensionless standardization. The entropy method
was then used to measure the weight of each index for target layer [37,38]. Finally, a
comprehensive evaluation model was used to evaluate the functions at the target layer.
Assume that there are m counties under evaluation (including all counties at different times)
and n evaluation indices. The matrix formed by the original data is X = (Xij)m×n, where xij
is the initial value of the jth index of evaluation object i. The formulas are as follows:

Pij =
{(

xij − min xj
)
/
(
maxxj − xij

)}
(1)

fij = pij/
n

∑
i=1

pij (2)

Hj = −k ∑n
i=1

(
fij × ln fij

)
(3)

wj = ej/ ∑m
j ej (4)

V =
m

∑
i=1

wj × Pij (5)

where V is the function evaluation value; Pij is the standardized value of the index; wj is the
weight value of index j; ej = 1 − Hj is the information utility value; Hj is the information
entropy of the index j; fij is the index weight; Xij is the initial value of the index; and max xj
and min xj are the maximum and minimum of the initial value of the index, respectively.

2.3.4. The Coupling and Coordination Levels

The coupling and coordination level model [38] describes the functional synergy and
promotional relationships between PLE functions, which can be calculated as follows:

C =

[
V1 × V2 × V3

(V1 + V2)(V1 + V3)(V2 + V3)

] 1
3

(6)

The coupling and coordination levels are mainly used to reflect the interaction among
elements and cannot reflect the appropriateness of each element’s ratio. Therefore, the coor-
dination level is required to reflect the coordinated development level of the elements [39].
The formula is as follows:

T = αV1 + βV2 + γV3, (7)

D =
√

CT (8)

where V1, V2, and V3 are the evaluation values of production function, living function, and
ecological function, respectively; and D is the coordination degree, which is the geometric
mean of coupling level C and comprehensive development level T. In this research, three
types of spaces are considered to be equally important; thus, the three weight coefficients α,
β, and γ are equal to one third.
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2.3.5. Comparative Advantages

In our study, an index that measured the level of comparative advantages was used to
describe the relative advantages [40] that could identify the functions with comparative
advantages among the three functions for each area. The formula for calculating the level
of comparative advantages is as follows:

RCAij =
(
Xij/Yi

)
/
(
Xωj/Yω

)
(9)

where Xij represents the jth function value of county i; Yi represents the sum of all function
values of county i; Xwj represents the sum of all the jth function values of all of the counties;
and Yw represents the sum of all function values of all counties. Agricultural and industrial
production functions essentially differ in their land space use. Thus, they are separated
from the comprehensive production functions and are calculated separately in this study. A
revealed comparative advantage (RCA) value of close to 1 indicates a significant degree of
superiority, whereas a RCA value of >1 indicates a comparative advantage. The larger the
value, the stronger the advantage. An RCA value of <1 indicates no comparative advantage.
Therefore, the smaller the value, the weaker the advantage.

3. Results

3.1. Pattern Evolution of PLE Functions
3.1.1. Production Function Evolution and Analysis

Considering the temporal changes from 1995 to 2019, the production function of
Nanning city showed a continuous upward trend, whereas that of the other prefecture-
level cities fluctuated up and then down (Figure 3). From 1995 to 2000, the production
functions of the six cities in the study area showed an upward trend with gentle growth.
From 2000 to 2009, due to the impact of the external economy, the production function of
the cities other than Nanning city declined, whereas that of Nanning city showed gentle
growth, which indicated the high stability of its production function. From 2009 to 2019,
with the exception of Nanning city, whose production function showed gentle growth,
the production function of the other cities tended to be stable. This indicates that, as
the requirements for high-quality development increased during the 12th and 13th Five-
Year Plan periods, as more energy-consuming industries transformed, their industrial
functions were not demonstrated any further. Nanning city’s industrial development was
mainly based on new industries, such as research technology; thus, its production function
continued to grow.

 

Figure 3. Changing production function trends in the Guangxi Beibu Gulf urban agglomeration from
1995 to 2019.
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Considering spatial distribution characteristics, the high-value areas with production
functions are mainly distributed in Nanning city, which has gradually become the core
area for production functions in the GBG_UA (Figure 4). The high- and low-value areas are
distributed with diminishing functions toward their outer edges of the urban agglomeration.
That is, the areas with a higher functional value are based around middle-value areas, which
then gradually become low-value areas. The production function of the areas adjacent
to Nanning city is also relatively high. This indicates that Nanning city, which also has
a political function as the capital of Guangxi Zhuang Autonomous Region and boasts
advanced tertiary industry, excellent research technologies, and a favorable investment
environment, has started to demonstrate its capacity to radiate its functions as a central city
in the region. The low-value areas are mainly distributed in the northern area of the region.
Due to the harsh terrain of the Shanglin, Mashan, and Shangsi counties, most of these
areas are hills and mountains that are not suitable for production functions. Additionally,
the Mashan and Shanglin counties suffer from poor traffic conditions and have a weak
foundation for agricultural and industrial production, which restrict their production
functions. This has led to the formation of low-value area clusters.

Figure 4. Production function evaluation results in the Guangxi Beibu Gulf urban agglomeration
from 1995 to 2019.

3.1.2. Living Function Evolution and Analysis

From 1995 to 2019, the living function of the six prefecture-level cities in the study
area showed a cross-fluctuation trend featuring an “up–down–stable” pattern (Figure 5).
From 1995 to 2000, the living functions of the cities of Nanning, Beihai, Fangchenggang,
and Qinzhou showed an upward trend, whereas those of the cities of Yulin and Chongzuo
declined. From 2000 to 2005, the living function of the six cities in the Guangxi Beibu
Gulf declined slightly. In contrast to the production function, the living function of the
other prefecture-level cities, with the exception of Nanning city, improved from 2005 to
2009, during which the guiding role of the living function among all of the functions was
improved as production function declined. From 2009 to 2019, the living function in the
study area declined slightly and only the cities of Chongzuo and Nanning witnessed a
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slight improvement. Through a comparison of the changes in the living functions and the
evolution of the living space pattern, the living space area continued to grow, but its layout
was not optimized, thus leading to a decline in the living function.

 

Figure 5. Changing living function trends in the Guangxi Beibu Gulf urban agglomeration from
1995–2019.

Figure 6 shows transitions in several main directions while also considering the
evolution of high-value areas with a living function, which were mainly distributed in the
urban area of Nanning city in 1995, but that shifted focus along the borders between the
cities of Nanning, Qinzhou, and Beihai in 2000, and then extended in a V shape between
the cities of Nanning, Beihai, and Yulin in 2005. In 2009, this pattern showed a scattered
living space distribution and from 2015 to 2019, there was a slight improvement in the
living function. Most of the high-value areas are concentrated in Nanning city and extend
toward Beihai city. Overall, the living functions of the Nanning and Beihai cities are much
better than they are in the other prefecture-level cities. The counties and districts in the
northwestern area of the study area are relatively backward, where their capacity for social
and living functions in addition to service levels have yet to be improved, which leads to a
low living space quality.

3.1.3. Ecological Function Evolution and Analysis

From 1995 to 2019, the ecological function of the GBG_UA demonstrated small changes
and high stability compared with the changes in the production and living functions
(Figure 7). From 2009 to 2019, Beihai city, which had a relatively low ecological function,
also showed a significant improvement. From 2015 to 2019, the expansion of living and
production spaces in Nanning city slightly weakened the city’s ecological function. Consid-
ering the land use type of the study area from 1995 to 2019, most of the ecological space in
the study area was forest land with a high ecological service value, which always accounted
for >50% of the entire land space. Therefore, this region largely enjoyed a relatively stable
ecological function.
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Figure 6. Living function evaluation results in the Guangxi Beibu Gulf urban agglomeration from
1995 to 2019.

 

Figure 7. Changing ecological function trends in the Guangxi Beibu Gulf urban agglomeration from
1995 to 2019.

As shown in Figure 8, in terms of the distribution characteristics of the ecological space
function, the high-value areas with an ecological function are mainly distributed in hilly
and mountainous areas where there are few human activities, especially in those areas com-
prising the Hundred Thousand Great Mountains. The spatial distribution characteristics for
the ecological function in the study area are highly correlated with the ecological landscape
distribution. The main landscapes in the areas covered by forests and waters enjoy a
strong ecological function. In relative terms, there is a certain gap between the ecological
function of Beihai city and that of the other prefecture-level cities. However, in recent years,
Beihai city has become a city with a beautiful and comfortable living environment based
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on its subtropical coastal tourism resources. Both its ecological environment and function
have improved.

Figure 8. Ecological function evaluation results in the Guangxi Beibu Gulf urban agglomeration from
1995 to 2019.

3.2. Coordination Characteristics of PLE functions

Drawing on the literature [41–45] and the equal interval method, five coordination
levels for the study area were identified: imbalance, primary coordination, intermediate
coordination, good coordination, and high-quality coordination. The results of the coupling
and coordination levels of the study area for the six periods from 1995 to 2019 were obtained
(Figure 9).

Considering spatial distribution (Figure 9), the areas with good coordination were
mainly the districts and counties of Nanning city, which were stable throughout the study
area. This finding indicates that during the research period, the land that was available
for PLE functions in Nanning’s urban area was arranged reasonably, its urban plan was
prepared scientifically, and its land use management policies were implemented well.
The imbalanced areas gradually spread from north to west and formed a concentrated
contiguous area by 2019. The main counties and cities in the imbalanced areas mostly
comprised mountainous terrain, which restricted productive areas, such as in Mashan and
Shanglin counties, and in emerging economic areas, such as in the Ningming and Dongxing
counties, which indicates the impact of the industrial layout on the coordination level of
PLE functions. Meanwhile, the original and traditional agricultural foundation could not
satisfy the requirements of high-quality production, leading to an imbalance in the PLE
functions. The simultaneous growth of high-quality coordination and primary coordination
showed that the coordination of PLE functions in the GBG_UA was developing toward
two extremes, the rates of high-quality coordination and imbalance were increasing, and
primary coordination maintained the highest proportion, accounting from 55.26% in 1995
to 71.05% in 2019 (Figure 10). Only 18.42% of the study area were in good condition in SDG
target 11.a, and the rest were in poor condition.
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Figure 9. Distribution of land coordination level in the Guangxi Beibu Gulf urban agglomeration
from 1995 to 2019.

 
Figure 10. County statistics of land coordination level in the Guangxi Beibu Gulf urban agglomeration
from 1995 to 2019.
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3.3. Advantageous Areas in PLE Functions

To some extent, the complexity of PLE functions shows the potential of the national
land space. An administrative unit is called a single-function advantageous area when it
has one advantageous function, a dual-function advantageous area when it has two advan-
tageous functions, and a multifunction advantageous area when it has three advantageous
functions. According to the calculation results for the spatial function advantages (Table 3),
statistics were obtained for the advantageous areas of the GBG_UA and the results are
shown in Table 4.

Table 3. Land function advantage results in the Guangxi Beibu Gulf urban agglomeration.

Administrative
District

Agriculture
Advantage

Industry
Advantage

Living
Advantage

Ecological
Advantage

Advantage Type

Xingning 1.553 1.473 1.011 0.395 Production–Living
Qingxiu 1.417 1.387 1.139 0.385 Production–Living
Jiangnan 1.591 1.653 0.998 0.297 Production

Xixiangtang 1.493 1.364 1.123 0.363 Production–Living
Liangnqing 1.502 1.632 0.851 0.530 Production
Yongning 1.677 1.623 0.944 0.314 Production
Wuming 1.489 1.447 1.011 0.450 Production–Living
Longan 0.841 0.798 0.638 1.603 Ecological
Mashan 0.835 0.466 0.497 1.921 Ecological
Shanglin 0.563 0.281 1.144 1.475 Living–Ecological
Binyang 1.085 0.755 0.965 1.099 Production–Ecological

Hengzhou 1.143 0.751 1.007 1.016 Production–Living–Ecological
Haicheng 0.233 1.005 2.110 0.278 Production–Living

Yinhai 0.336 0.491 1.434 1.204 Living–Ecological
Tieshangang 0.210 1.020 1.792 0.638 Production–Living

Hepu 0.685 0.615 1.383 0.970 Living
Gangkou 0.088 1.503 1.090 1.265 Production–Living–Ecological

Fangcheng 0.482 0.649 0.551 2.008 Ecological
Shagnsi 0.596 0.280 0.549 2.111 Ecological

Dongxing 0.265 0.487 0.738 2.022 Ecological
Qinnan 0.418 1.361 0.972 1.245 Living–Ecological
Qinbei 0.511 0.890 1.183 1.175 Ecological

Lingshan 1.012 0.657 1.234 0.897 Production–Living
Pubei 0.758 0.641 0.843 1.506 Ecological

Yuzhou 0.414 0.708 1.624 0.839 Living
Fumian 0.847 0.584 0.527 1.823 Ecological

Rongxian 0.653 0.567 0.926 1.519 Ecological
Luchuan 0.922 1.047 1.018 1.010 Production–Living–Ecological

Bobai 1.011 0.590 0.986 1.205 Production–Ecological
Xingye 0.768 0.663 0.932 1.390 Ecological
Beiliu 0.748 0.758 1.111 1.160 Living–Ecological

Jiangzhou 0.925 0.845 0.731 1.421 Ecological
Fusui 0.967 1.199 0.812 1.134 Production–Ecological

Ningming 0.873 0.406 0.497 1.925 Ecological
Longzhou 0.673 0.400 0.607 1.938 Ecological

Daxin 0.815 0.337 0.587 1.896 Ecological
Tiandeng 0.860 0.094 0.408 2.181 Ecological
Pingxiang 0.217 0.338 1.028 1.805 Living–Ecological

Note: Agriculture advantage and industry advantage represent production advantage.
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Table 4. Statistical table for the number of land function advantage areas in the Guangxi Beibu Gulf
Urban agglomeration.

Advantage Type
Number of

Administrative District
Name of Administrative District

Production 3 Jiangnan, Liangqing, Yongning
Living 2 Yuzhou, Hepu

Ecological 15
Longan, Mashan, Fangcheng, Shangsi, Dongxing, Qinbei,
Pubei, Fumian, Rongxian, Xingye, Jiangzhou, Ningming,

Longzhou, Daxin, Tiandeng

Production–Living 7 Xingning, Qingxiu, Xixiangtang, Wuming, Tieshangang,
Lingshan, Haicheng

Production–Ecological 3 Fusui, Binyang, Bobai
Living–Ecological 5 Beiliu, Shanglin, Yinhai, Qinnan, Pingxiang

Production–Living–Ecological 3 Hengzhou, Gangkou, Lunchuan

According to Table 4, the land comprising the GBG_UA is dominated by single-
function advantageous areas, which account for 52% of the total area. Of these areas, the
advantageous areas for production, living, and ecological functions comprised 7.8%, 5.2%,
and 39%, respectively. The proportion of advantageous areas with an ecological function
was the highest, which indicates the Guangxi Beibu Gulf’s great advantage in terms of its
ecological function. There are 15 dual-function advantageous areas, which comprise 39%
of the total counties (districts). The multifunction advantageous areas comprised 7.8% of
the total counties (districts) and were concentrated in counties and districts dominated by
industry and agriculture.

To further explore the spatial distribution of the advantageous functional areas of the
GBG_UA, we generated a spatial distribution map (Figure 11). As shown in Figure 10,
the advantageous production function areas are significantly adjacent to the advanta-
geous production–living areas and are concentrated in the central part of the study area
include the Jiangnan, Liangqing, Yongning, Xingning, Qingxiu, Xixiangtang, Wuming,
and Tieshangang districts, and Lingshan county. The administrative units with an advan-
tageous living function include the Yuzhou, Hepu, Yinhai, and Qinnan districts, Beiliu
and Pingxiang cities, and Shanglin county, among others. These areas were located in the
southeastern part of the study area.

The GBG_UA has many counties and districts with widely distributed advantageous
ecological functions. The administrative units with obvious ecological function advantages
include the Long’an, Mashan, Shangsi, Pubei, Rongxian, Xingye, Ningming, Longzhou,
Daxin, and Tiandeng counties; the Fangcheng, Qinbei, Fumian, and Jiangzhou districts; and
the city of Dongxing, with 15 counties being included in total. In addition, a concentrated
contiguous ecological area called Shiwan Mountains was formed in the southwestern
Guangxi Zhuang Autonomous Region and has obvious ecological function advantages.
The advantageous ecological function areas in the GBG_UA comprise a relatively high
proportion of the available land space, which indicates the great potential of the study area
to provide ecological products and services.
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Figure 11. Distribution of land function advantage areas in the Guangxi Beibu Gulf urban agglomeration.

4. Discussion

4.1. The Effectiveness of Our PLE Study

Our study provided a new idea that links the PLE functions coordination with SDG
target 11.a. The study of coordinated degree of PLE functions can contribute to the achieve-
ment of SDG 1.1.a, which offer useful support for decision makers. In order to achieve
SDG target 11.a, on the one hand, decision makers can refer to the coordination degree
of PLE functions before planning. On the other hand, decision makers can also use the
coordination degree of PLE functions to evaluate the effect of planning implementation
afterwards. Although the coordination of PLE functions does not directly calculate the
value of SDG target 11.a, their characteristics can reflect a realization of SDG target 11.a
(Table 1), helping to reduce the vagueness of SDG target 11.a [1,16]. Our research can help
decision makers better understand the coordination of PLE functions and provide them
with useful knowledge for SDG target 11.a. Furthermore, research on typical areas of China
was carried out by this study according to the international science program of SDGs, the
methodology and analytical framework could be easily applied worldwide for supporting
the SDG target 11.a and promoting land planning as well as management. This is of great
significance for regional development planning and sustainable development in China and
is also referential for other countries.

Comparing the evaluation results of PLE functions with the previous research results
conducted by Pang et al. and Shen et al. in GBG_UA regions [46,47], it is found that
although the evaluation methods or indices are not exactly the same between the studies,
the results are highly consistent, such as a relatively higher production function in Nanning
and a stable ecological function in the study area. Thus, we believed that the evaluation
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results of this study are reliable. Compared with previous studies, this study used PLE
functions to further evaluate the SDG target 11.a level, so this study is more suitable to
consider the implementation of the international plan.

In this research, we have studied production, living and ecological functions, among
which ecological functions are related to ecosystem services. Ecosystem services can offer
various kinds of benefits for human survival, such as food supply, water conservation,
soil conservation, climate regulation and biodiversity protection, and are an essential part
of sustainability frameworks [48]. The importance of ecosystem services for SDG has
been studied and demonstrated [49,50], and ecosystem services were taken to evaluate
the implementation effect of SDG. Although the PLE study did not calculate the value of
each type of ecosystem services in detail, it assessed the ecological functions, production
functions and living functions in a macro perspective, involving the win–win development
of human social system and natural system in a broader perspective.

4.2. Suggestions for the Optimization of PLE Functions

From 1995 to 2019, the number of high-quality coordination counties belonging to
urban agglomeration increased (from 0 to 7), and the number of imbalance counties also
increased (from 1 to 2), which shows that the coordination of the PLE functions presents
a polarized development in the GBG_UA. Primary coordination maintained the highest
proportion, accounting from 55.26% in 1995 to 71.05% in 2019, indicating the achievement of
SDG target 11.a in the GBG_UA was poor. The transportation, industry, and social services
of the GBG_UA should be planned in a unified way, taking advantage of the expansion
trend of Nanning city [51], a high-quality coordinated city; emphasizing the driving and
radiating role of Nanning city; and affecting the surrounding counties (districts) with good
coordination or intermediate coordination to realize high-quality coordination. As for
the imbalanced areas, such as Tiandeng county and Fumian district, we can see from the
functions value and dominant functions that their production and living functions are
low and their ecological functions are high. This indicates that a new ecological industrial
structure system should be built, and that can deeply tap into the ecological value and
benefits of the area to create green ecological products, and to support the coordinated
development of the PLE functions.

The main problem in the utilization of land space with production advantageous func-
tions is the contradiction between environmental protection and economic development.
Therefore, while promoting the rational utilization of production space and living space, we
should also emphasize the protection of the ecological environment and the development
of ecological industry. For example, while developing port logistics and fisheries, the
Tieshangang district should also pay attention to the protection of mangroves [52], delimit
protection zones, and carry out blue carbon action and a carbon sink economy.

For living function advantageous areas, we should emphasize their geographical
advantages and further improve the short board of production and ecological functions. We
should pay attention to the joint development of the surrounding high production function
cities and collaborate with them with the help of the driving role of the surrounding
big cities. For example, Chongzuo city, which is located on the main channel of the
“Nanning–Langshan–Hanoi–Guangning” economic corridor, the most convenient channel
for China to ASEAN, and Yulin city, which comprises the industrial transfer and processing
base in eastern China, should be included in the development of co-urbanization and
transportation in the GBG_UA, and to strengthen traffic planning.

On the basis of environmental protection, we should emphasize the value of ecology
and realize that ecological benefits can be transformed into economic benefits. Further
improving the level of ecological utilization, breaking the state of negative protection and
realizing the improvement of the production function should be emphasized. The study
area has unique geographical conditions and many characteristic and precious species, such
as grapefruit in Rong county, wild camellia produced in Shangsi county (which represents
90% of the world’s supply), and chili padi in Tiandeng county, and it is advisable to
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delimit characteristic functional areas and to provide policy support to create high-quality
ecological industries and to realize an ecological back-feeding economy.

4.3. Limitations and Future Work of the Study

There are many indicators affecting PLE functions. This study selects some represen-
tative indicators according to previous studies, but there will inevitably be deficiencies.
The evaluation index system will continue to be improved in the future. Besides, we will
jump out of the restrictions of administrative regions and look for high resolution remote
sensing inversion data that can indicate various indicators, to better reflect the details of
spatial differences. This paper evaluated PLE functions and SDG target 11.a from 1995 to
2019, but the future trends are unknown. The development scenario simulations can solve
this problem [53]. In the future, we will simulate PLE functions and SDG target 11.a under
multiple scenarios for the year 2030. Policy makers will be aware of which scenarios can
help to realize SDGs, so as to formulate demand-oriented development plans.

5. Conclusions

Based on land use data and socioeconomic statistical data, this study used a compre-
hensive evaluation model, coupling and coordination degree, and comparative advantage
degree to analyze the pattern evolution, coordination characteristics and advantageous
areas of PLE functions in the GBG_UA from 1995 to 2019. Our study could offer useful
support for the related land management agencies, help policy-makers to assess regional
procedures toward achieving SDG target 11.a and inform them the coordinated develop-
ment economy, society, and environment. The main conclusions are as follows:

(1) When considering the spatiotemporal distribution of PLE functions, the study area has
a relatively stable ecological function, a good ecological foundation, and fluctuating
production and living functions.

(2) When considering the coordination characteristics of PLE functions, high–high and
low–low clustering effects were observed. The coordination level has developed
toward two extremes, and primary coordination maintained the highest proportion,
accounting from 55.26% in 1995 to 71.05% in 2019, indicating the achievement of SDG
target 11.a in the GBG_UA was low.

(3) Considering the advantageous areas for PLE functions, the region mostly comprises
single-function advantageous areas and a few the multifunction advantageous areas,
including 20 single-function advantage counties (districts), 15 dual-function advan-
tage counties (districts), and three multi-function advantage counties (districts), which
indicates the lack of diversified land use structures in this region and that development
planning should be formulated in combination with the local functional advantages.
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Abstract: The degree of coordination between ecosystem services and the level of socioeconomic
development has essential implications for regional sustainability. The coordinated development of
ecology and economy is a major theoretical and practical problem for the Qinba Mountains, which
is once one of the 14 contiguous destitute areas in China. Based on the land use and cover change
(LUCC) data interpreted by medium-resolution remote sensing images, this study adopted the
modified equivalent factor method to calculate ecosystem service value (ESV) and its temporal and
spatial variation in the Qinba Mountains. A comprehensive index system was constructed to measure
the socioeconomic development level and to reveal the coupling relationship between the ESV and
socioeconomic development. The results show that: (1) for 2000–2015, the ESV in these areas was
increasing, the proportion of forest ESV was the largest, and it increased significantly. (2) The level of
socioeconomic development was constantly improving, and the differences within the region were
gradually emerging. (3) Except for the Hantai District, which has been in a highly uncoordinated
state, the degree of coordination between ESV and socioeconomic development has improved year
by year, and most counties were in a state of medium coordination, or above. The results contribute
to a scientific basis for decision making regarding ecological environmental protection and green
economic development in the Qinba Mountains, and have positive significance for promoting the
construction of ecological civilization and sustainable development in the study area.

Keywords: ecosystem service value (ESV); socioeconomic development; coupling coordination
degree; entropy weight method; Qinba Mountains

1. Introduction

The ecological environment is the basis of human dependence. With the rapid popu-
lation growth, food shortages, resource depletion and other global problems, ecosystem
function degradation, environmental quality decline, and other phenomena emerge end-
lessly, and many negative economic development benefits are highlighted [1,2]. Coordinat-
ing the balance between economic development and ecological environmental protection,
improving ecosystem services, has become the only way to construct ecological civilization
and the sustainable development [2–4]. Ecosystem services are the benefits that humans
obtain directly or indirectly from an ecosystem [5]. As a bridge between natural and so-
cioeconomic processes, ecosystem services provide a new theoretical basis for studying the
coupling of human and natural systems [1,6,7].

There have been several explorations and practices conducted on the impact of so-
cioeconomic activities on ecosystem services at home and abroad. International research
on ESV and socioeconomic development stems from the rise in “ecological economics,”
focusing on the complex interaction between the economy and the environment, as well
as the characteristics of spatial relationships [8–10]. Grossman et al. (1991) proposed the

Diversity 2022, 14, 1105. https://doi.org/10.3390/d14121105 https://www.mdpi.com/journal/diversity133
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environmental Kuznets curve (EKC) [11], which became an important tool to analyze the
direct relationship between regional economic development and the environment [12].
With the EKC model, Cristina et al. (2016) [13] analyzed the research status of the economic
value of ecosystem services in Spain and clarified the importance of economic assessment
in the study of ESV. Constanza et al. (1997) [14] proposed the evaluation method of ESV,
which made the principle and method of ESV estimation clearer in the scientific sense. This
method, which is more intuitive, easy to use, and requires less data, is widely applied to eco-
logical and economic problems at the global and regional scales [15,16]. In addition, there
are other methods to study the relationship between environmental quality and economic
development. Destek et al. (2018) [17] used the ecological footprint to characterize the
ecological environment and studied the relationship between the ecological environment
and economic development in European countries. Medeiros et al. (2020) [18] analyzed
the trade-off between economic and environmental factors through multi-objective pro-
gramming to further optimize land use in the Midwest of Brazil.

Related research in China is relatively late. After Xie et al. (2008, 2015) [19,20] im-
proved the calculation and evaluation methods of ESV based on Constanza’s research [14],
considerable exploration and empirical work on coupling and coordination between ecol-
ogy and economics has been conducted by scholars from various disciplines, includ-
ing geography, ecology, and forest management [21]. The research areas involve ad-
ministrative regions [22] and river basins [23,24], as well as economic belts and urban
agglomerations [25–27], etc. The main concerns are the environment and the economy [28],
ESV of forest and tourism economy [29], urbanization and ecosystem services [30,31], etc.
For example, Sun et al. (2015) [32] explored the relationship between economic growth
and ESV in the Beijing-Tianjin-Hebei region, conducting an in-depth analysis on the degree
of coupling and coordination between the two and the economic benefits of the ecosystem.
With the help of Xie et al.’s research results (2008, 2015) [19,20], Zhu et al. (2022) [33] revised
and obtained the equivalent factor table of ESV in the Guanzhong region, and used the
coupling degree model to explore the coupling relationship between ESV and economic
development in this region. Chen et al. (2018) [34] measured the construction of ecological
civilization by coupling the three subsystem indicators of ecological environment-economy-
society. Feng et al. (2022) [35] analyzed the degree of coupling and coordination between
different relocated population density and ESV variables. Wang et al. (2022) [26] calculated
the ESV and tourism urbanization degree of the Chang-Zhu-Tan urban agglomeration, and
analyzed the coordination relationship between them. Combined with multiple perspec-
tives, these studies illustrate the relationship between ecological protection and economic
development at different scales [36,37].

In summary, scholars at home and abroad have fundamentally the same cognition
direction regarding ESV. Most methods of calculating the ESV on a regional scale use equiv-
alent factor tables or value substitution. The research on the coupling relationship between
changes in ESV and socioeconomic development mainly focuses on economically active
areas, such as administrative regions, economic belts, and urban agglomerations. Relatively
little attention has been paid to the contiguous destitute areas. Socioeconomic indicator
systems are mostly confined to economic indicators, and there is a lack of comprehensive
indicators that reflect people’s living standards, social security, and socioeconomic scale
and structure. Therefore, this study took the Qinba Mountains, one of 14 contiguous desti-
tute areas in China, as the research object, and then revised the “Chinese land ecosystem
services value equivalent factor table,” discussing the temporal and spatial characteristics
of its ESV changes, combined with the comprehensive level of socioeconomic development.
The objectives of this study are: (1) to evaluate the comprehensive status of ESV and
socioeconomic development in contiguous destitute areas, (2) to reveal the spatial and
temporal heterogeneity of the coupling relationship between the ESV and socioeconomic
development, and (3) to explore the interaction mechanism and the dynamic relationship of
coupling and coordination between the ESV and socioeconomic development. This study

134



Diversity 2022, 14, 1105

can provide a reference for the development of ecological compensation policy and the
in-depth study of green development in contiguous destitute areas.

2. Materials and Methods

2.1. Overview of the Study Area

The contiguous destitute areas in the Qinba Mountains cover six provinces in Sichuan,
Hubei, Shaanxi, Henan, Chongqing, and Gansu. This paper takes the Southern Shaanxi
section of the Qinba Mountains, which is composed of the cities of Ankang, Hanzhong,
and Shangluo in Shaanxi Province, as the research object. There are 28 counties in total
(Figure 1), with a total area of 70,234.93 km2. In 2020, the population of the study area was
7,746,100, and the GDP was CNY 0.34 trillion (China yuan). The north side of the area
is made up of the Qinling Mountains, the south side is the Bashan Mountains, and the
middle part is the Hanjiang River, presenting the feature description that, “There is a river
in the middle of two mountains.” The terrain is dominated by hilly and mountainous areas
at a medium altitude; in terms of climate, the north subtropical humid climate and the
warm temperate humid climate are dominant, with cold winters and hot summers, and the
four seasons are distinct [38]. The average annual temperature is 12–18 ◦C, and the annual
rainfall is 700–1400 mm. The complex and diverse landforms and climatic environments
have nurtured the abundant animal and plant resources in the Qinling Mountains, which
is a key area for the protection of rare and endangered animals and plants in the country
and the world, including the Qinling, Daba, and Minshan-Hengduan biodiversity priority
areas. It is also an essential water source conservation area for China’s South-to-North
Water Diversion Project, playing an important strategic role in this endeavor.

Figure 1. Overview of the study area.

2.2. Methods

This study is mainly divided into three steps. First of all, the ESV of different land use
types in the Qinba Mountains from 2000 to 2015 was evaluated. Secondly, the socioeconomic
development level of different counties was estimated. Finally, the analysis of their coupling
coordination degree was conducted from 2000 to 2015 using the coupling and coordination
model. The framework of this study is presented in Figure 2.
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Figure 2. Framework of this study.

2.2.1. Calculation of ESV

(1) Calculation model of ESV

Xie et al. (2008) [19] formulated a table of equivalent factors of ESV per unit area of
different terrestrial ecosystems in China (Table 1). Then, this established method was devel-
oped and optimized again by Xie et al. (2015) [20]. The formula used to calculate ESV was:

ESV =
m

∑
i=1

n

∑
j=1

Ai × fij × Ea × r (1)

where ESV is the total value of ecosystem services (yuan); Ai is the area of type i land
ecosystem; fij is the equivalent value per unit area of the j type ecosystem service of the i
land ecosystem; Ea is the ecological ESV coefficient of the food production per unit area of
the regional farmland ecosystem; and r is the equivalent factor correction coefficient.

Table 1. Equivalent value per unit area of ecosystem services in China.

Categories Sub-Categories Farmland Forest Grassland
Water
Area

Unused
Land

Construction
Land

Supplying
services

Food production 1 0.33 0.43 0.53 0.02 0
Raw material 0.39 2.98 0.36 0.35 0.04 0

Regulating
services

Gas regulation 0.72 4.32 1.5 0.51 0.06 0
Climate regulation 0.97 4.07 1.56 2.06 0.13 0

Hydrological
regulation 0.77 4.09 1.53 18.77 0.07 0

Waste treatment 1.39 1.72 1.32 14.85 0.26 0

Supporting
services

Soil formation
and retention

1.47 4.02 2.24 0.41 0.17 0

Biodiversity
protection 1.02 4.51 1.87 3.43 0.40 0

Cultural
services Recreation and culture 0.17 2.08 0.87 4.44 0.24 0
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(2) Equivalent correction coefficient r

Due to the differences between ecosystems in different regions, relevant amendments
should be made when calculating specific regions. According to the biomass factor table of
farmland ecosystems in different provinces of China, developed by Xie et al. (2005) [39], the
regional correction of China’s ESV was expressed in the table, and the correction coefficient
of Shaanxi Province was 0.51. According to the relevant data from the Shaanxi Regional
Statistical Yearbook, the average grain yield of the Qinba Mountains in southern Shaanxi
from 2000 to 2015 was 3227.33 kg/hm2, which was 0.936 times that of the average grain
yield of 3446.47 kg/hm2 in Shaanxi Province during the same period. Therefore, the
farmland ESV coefficient was revised to 0.477 of the national average.

(3) ESV of a standard equivalent Et

Xie et al. (2008) [19] put the value of one equivalent factor as 1/7 of the national
average grain yield market price. Many studies directly used the average value of food
price over a certain year or several years to explore the evolution of ESV. However, there
will be corresponding changes in different periods due to different natural, social and
cultural conditions. The results obtained by calculating only the average value are quite
different from the actual situation. For eliminating the impact of inflation, we introduced the
consumer price index (CPI) accumulation coefficient to modify and develop the method for
evaluating the value equivalent factor in unit area [40,41]. The formula for Et is as follows:

CPI ′t = CPI0 × CPI1

100
× CPI2

100
. . .

CPIt

100
(t = 0, 1, 2, . . . , n) (2)

Et = Pt × Qt × 1
7
×

(
1 − CPI ′t − CPI0

CPI0

)
(3)

where CPI ′t is the CPI accumulation coefficient; CPIt is the CPI in the t year (this study takes
the CPI in 2000 as the benchmark, that is CPI0 = 100); Et is the economic value of a stan-
dard unit of ESV equivalent factor in the study area and the unit is yuan·hm−2; Pt is the unit
price of grain in the t year, the unit is yuan·kg−1; and Qt is the grain output per unit area,
and the unit is kg·hm−2. The calculation result is shown in the following table (Table 2).

Table 2. Equivalent value table of ecological services per unit area.

Years
National Grain

Price/(yuan·kg−1)
Unit Grain

Yield/(kg·hm−2)
Unit

Output/(yuan·hm−2)

Unit
Equivalent

Factor/(yuan)

CPI
Accumulation

Coefficient

Corrected Unit
Equivalent

Value/(yuan)

2000 0.967 5133 4964 709 100 339
2005 1.347 5897 7943 1135 107 505
2010 2.076 6353 13,189 1884 124 688
2015 2.326 7011 16,307 2329 142 646

(3) The method of Sensitivity test

To test whether the ESV is sensitive to the ESV coefficient and whether the evaluation
results are credible, this study introduces the coefficient of sensitivity (CS) in economics [42].
Through the adjustment method of increasing or decreasing the equivalent coefficient, we
compare the changes before and after the ESV, and judge the dependence of the total ESV
on the change of the equivalent coefficient. The equation is as follows:

CS =

∣∣∣∣∣∣
(
ESVj − ESVi

)
/ESVi(

VCjk − VCik

)
/VCik

∣∣∣∣∣∣ (4)

where CS is the coefficient sensitivity of a value, and a CS greater than 1 indicates that the
ESV is elastic to the ESV coefficient, showing low reliability; a CS less than 1 indicates that
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the former is not elastic to the equivalence coefficient, and the result can be considered
reliable. ESVj and VCjk represent the adjusted total value and equivalent coefficient of
ecosystem services, respectively. The former unit is yuan and the latter unit is yuan/hm2.
In the same way ESVi and VCik, respectively, represent the total value and equivalent
coefficient of ecosystem services before adjustment. k represents different land use types.

2.2.2. Calculation of Socioeconomic Development Level of the Qinba Mountains

This study refers to the previous findings [27,33], combined with the availability of
data, to weigh the level of the indicators of socioeconomic development, and finally chooses
GDP per capita and local fiscal revenue per capita to reflect the scale of socioeconomic
development; the proportion of the tertiary industry and the industrial added value in-
dicators per capita reflect regional economic structure; the per capita net income of rural
residents and the number of beds in health institutions per 1000 people reflect social secu-
rity; the urbanization rate and total per capita social consumer goods reflect people’s living
standards. The weight of each index is determined by the entropy weight method [43];
then, the socioeconomic development level score of each district and county in the Qinba
Mountains is calculated. The calculation process is as follows:

(1) Data standardization processing. Since the index data obtained from statistical
yearbooks or local websites is not uniform in nature, dimension, order of magnitude, etc.,
we cannot directly use data indicators for in-depth analysis. Therefore, the range method is
used to standardize the indicators.

(2) Calculate the entropy weight. The calculation formula of information entropy
is as follows:

Ej = −lnn−1
n

∑
i=1

pij ln pij (5)

where pij =
Yij

∑n
i=1 Yij

and at the same time, the condition of pij = 0 is satisfied, pijlnpij = 0,

and the range of entropy value should be satisfied that eij ∈ [0, 1].
The weight of each indicator is as follows:

Wj =

(
1 − Ej

)
∑n

i=1
(
1 − Ej

) (6)

where Yij is the index value after standardization using the range method, xij is the original
index value, minxij is the minimum value of each index, maxxij is the maximum value of
each index, n is the number of statistical indicators, Ej the information entropy of the jth
index, and Wj is the weight of the jth indicator. The calculation results of the weights of
each indicator are as follows (Table 3):

Table 3. Evaluation index system and weight of socioeconomic development level.

Index Weights

GDP per capita (yuan) 0.105
Local fiscal revenue per capita (yuan) 0.112
Proportion of the tertiary industry (%) 0.058

Industrial added value per capita (yuan) 0.106
Urbanization rate (%) 0.301

Total per capita social consumer goods (yuan) 0.091
Number of beds in health care institutions per 1000 people (sheets) 0.129

Per capita net income of rural residents (yuan) 0.097

(3) Calculate the comprehensive index score. After using the entropy weight method
to objectively determine the index weight, the socioeconomic development level of each
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district and county in the Qinba mountains are calculated according to the index weight.
Calculated as follows:

Si =
n

∑
j=1

wjYij (7)

2.2.3. Coupling and Coordination Model

(1) Calculate the coordination index. The coupling degree is used to reflect the de-
gree of interdependence between systems or elements [33]. The coordination index is an
indicator to measure the degree of interdependence between the two. In this study, the
coupling coordination index is used to measure the coupling coordination between ecology
and socioeconomic development level in the Qinba Mountains. The equation is as follows:

D =
√

C·T (8)

C = 2·
√
(U1·U2)/(U1 + U2)

2 (9)

T = a·U1 + b·U2 (10)

where D is the coordination index, D∈[0, 1]. The closer D is to 1, the more coordinated the
two systems or elements are; and the closer D is to 0, the lower the degree of coordination
between them is. C is the coupling degree, C∈[0, 1]. The closer C is to 1, the better the
coupling state between the two systems or elements, and the closer to 0, the worse the
coupling state between the two; T is the comprehensive coordination index of the two
systems or elements, U1 is the standardized ecosystem services, and U2 is the score of
socioeconomic development level; a and b are the undetermined coefficient, with a + b = 1.
Since the relationship between socioeconomic development and ecological protection is
mutually restrictive and interrelated, we use a value of 0.5 for both a and b, in line with
previous studies [31].

(2) Divide the types of coupling coordination. In order to more intuitively explain the
coupling development status between ESV and socioeconomic development, the coupling
coordination degree is divided into five levels by using the equal spacing method, combined
with the actual situation of the study area, and referring to the existing research [33] (Table 4).

Table 4. Types and levels of development of coupling and coordination between ESV and socioeco-
nomic development.

Coupling Coordination Degree (D) Coordination Level

0 ≤ D ≤ 0.2 Highly uncoordinated
0.2 < D ≤ 0.4 Basically uncoordinated
0.4 < D ≤ 0.6 Lowly coordinated
0.6 < D ≤ 0.8 Mediumly coordinated
0.8 < D ≤ 1 Highly coordinated

2.3. Data Sources

The data used in the study include food production data, land use data, and economic
indicators. The land use and cover change (LUCC) data, which can meet user mapping
accuracy demands at a scale of 1:100,000, is provided by the Data Center for Resources
and Environmental Science, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn,
accessed on 18 November 2016). Based on the consistent use of the same methods, this
database has been updated every 5 years using the Landsat TM/ETM (1990–2010) and
Landsat 8 (2015) remote sensing images, with a spatial resolution of 30 m and the com-
prehensive evaluation accuracy of more than 93%. The data of Shaanxi Province in 2000,
2005, 2010, and 2015 were downloaded, including data for farmland, forest, grassland,
water area, construction land, and unused land (Figure 2) [44,45]. The urbanization rate
is replaced by the proportion of construction land in county land use. The data on grain
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prices and other economic indicators are derived from the China Yearbook of Agricultural
Price Survey (2005, 2010, 2016) and the Shaanxi Regional Statistical Yearbook (2000–2016).

3. Results and Analysis

3.1. Evalution Analysis of ESV
3.1.1. Changes in Ecosystem Types

Table 5 shows the structure of land use types in the Qinba Mountains for 2000–2015.
The grassland area made up the largest proportion in the study area, accounting for
41.23% in 2015, followed by forest land and farmland, accounting for 31.85% and 25.63%,
respectively. For 2000–2015, the change in all kinds of the land area was relatively obvious.
The grassland area reduced significantly, decreasing by 395.00 km2, followed by farmland,
decreasing by 58.52 km2. The forest area increased significantly by 230.09 km2. The
proportion of construction land area increased continuously, from 0.53% in 2000 to 0.77%
in 2015, with a total increase of 167.60 km2. Due to the protection of water conservation
areas by the South-to-North Water Transfers Strategy, the water area increased year by year.
Overall, the area of all types changed greatly during 2000–2010, but the change was small
during 2010–2015.

Table 5. Changes in land use types in the Qinba Mountains from 2000 to 2015.

Land-Use Types
Percentage of Land Use Types (%) Change in Land Area (km2)

2000 2005 2010 2015 2000–2005 2005–2010 2010–2015 2000–2015

Farmland 25.72 25.39 25.70 25.63 −231.14 219.60 −46.98 −58.52
Forest 31.52 31.60 31.87 31.85 58.63 184.55 −13.09 230.09

Grassland 41.80 41.97 41.23 41.23 120.29 −514.95 −0.34 −395.00
Water area 0.42 0.43 0.48 0.49 5.89 33.77 3.29 42.96

Unused land 0.01 0.01 0.02 0.03 0.02 6.26 6.60 12.88
Construction Land 0.53 0.60 0.70 0.77 46.32 70.77 50.51 167.60

Figure 3 shows the spatial distribution of ecosystems in the Qinba Mountains for
2000–2015. Grassland, as the main component, was mainly distributed in the middle and
low mountains, while the forest land was distributed in the middle and high mountains,
and the farmland was mainly distributed in the river valley areas. The change in the
ecosystem was mainly distributed on both sides of the Hanjiang River and the Danjiang
River, mainly in the low mountain and hilly areas. Due to the rapid development of
urbanization (e.g., the urbanization rate of Hantai District increased from 6.20% in 2000
to 12.37% in 2015.), the ecosystems types in the flat top basins where the Hantai, Hanbin,
and Shangzhou districts are located, were undergoing positive changes. Land for urban
construction and rural development expanded by 167.60 km2 over the past 16 years,
occupying a large amount of arable land. Secondly, the implementation of ecological
restoration policies, such as the Grain for Green project and the South-to-North Water
Transfers from 2002 to 2008, has ensured the stability of the water conservation function in
this area. The forest area increased gradually, with an additional area of 230.09 km2 from
2000 to 2015, while grassland area gradually decreased, with a total decrease of 395.00 km2

in this period.
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Figure 3. Spatial pattern of ecosystems in the Qinba Mountains in (a) 2000, (b) 2005, (c) 2010,
and (d) 2015.

3.1.2. Temporal Changes in ESV

The ESV of the Qinba Mountains generally showed an upward trend, with a total
increase of CNY 34.623 billion for 2000–2015. In 2000–2005 and 2005–2010, the value of
ecosystem services increased evenly. The total ESV decreased slightly by CNY 4.777 billion
from 2010 to 2015. During this period, the ESV increased in farmland, forest, grassland,
water area, and unused land. Forest ESV increased the most, reaching CNY 19.514 billion,
followed by grassland and farmland, with a total increase of CNY 145.67 billion. Among
the five land use types, the ESV of forests accounts for the largest share of the total value,
reaching 55.77%, followed by grassland and farmland, accounting for 42.92%, and unused
land accounts for the smallest share. Except for unused land, water ecosystem service value
grows the fastest, followed by forest, farmland, and grassland (Table 6).

Table 6. Changes in the value of ecosystem services in different land types in the Qinba Mountains
from 2000 to 2015 (CNY 100 million).

Year Farmland Forest Grassland
Water
Area

Unused
Land

Construction
Land

Total

2000 48.25 210.51 115.95 4.57 0.00 0.00 379.28
2005 70.99 314.58 173.52 6.94 0.00 0.00 566.03
2010 97.97 432.39 232.39 10.52 0.01 0.00 773.28
2015 91.72 405.65 218.15 9.97 0.02 0.00 725.51

ESV increment 43.47 195.14 102.20 5.40 0.02 0.00 346.23
Average weight % 12.64 55.77 30.28 1.31 0.00 0.00 100.00

Growth rate% 90.09 92.70 88.14 118.16 438.20 0.00 /

The proportion and change rate of the value for each ecosystem service in 2000,
2005, 2010, and 2015 were calculated and integrated. Over the 16 years, the proportion
of each functional value fluctuated in a small range, and the proportion composition
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was relatively stable (Table 7). These data indicate that the functions of soil formation
and retention and biodiversity protection occupy the largest share of the composition,
followed by hydrological regulation, climate regulation, and gas regulation (Table 7). It is
worth noting that, although the four functions of soil formation and retention, biodiversity
protection, gas regulation, and climate regulation accounted for a large proportion, their
proportions showed a decreasing trend year by year for 2000–2015. From the perspective of
increment change in value, for 2000–2015, the value of nine ecosystem services all increased,
to a certain extent. Among these, the soil formation and retention and the biodiversity
protection function value increments were the largest; the value increase for each function
changed by nearly 50%, and for 2010–2015, the value increase of each function decreased
slightly. The change in the growth rate in each period is characterized by a gradual decline.
For 2010–2015, there was a small negative growth. Overall, the value of ecosystem services
changed significantly for 2000–2015. The forest is the most important ecosystem in the
Qinba Mountains. In 2015, the forest area accounted for 32.10% of all land use types, and
its ESV accounted for 55.77%.
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3.1.3. Spatial Patterns of Change in the ESV

For 2000–2005, the ESV change rate for each county was 48.46–50.50%; for 2005–2010,
the ESV change rate for each county was from 33.06% to 35.15%, and for 2010–2015, the ESV
change rate was from −7.75% to 6.01%. The change rate of ESV in the counties in the Qinba
Mountains over the past 16 years was above 80% for all counties, and the range of change
was between 84.29% and 93.29%; the change in the average ecosystem service value of each
county was 3606.26–6694.95 yuan/hm2, with large spatial heterogeneity. Among these, the
change rate of ESV in the whole area of Ankang City is relatively obvious, concentrated in
Hanbin, Shiquan, Ziyang, and Langao counties and other places in the central district of
Ankang City. The variability of Hanzhong and Shangluo cities is relatively small, while
Shangzhou and Lueyang counties show prominent changes, in comparison with other
counties. On the whole, the change in the counties in the Qinling Mountains is smaller
than those in the Bashan Mountains (Figure 4a). According to the average value of land
change (Figure 4b), the four counties in Ankang City showed little change, and the average
land change value in Hanzhong and Ankang cities, located in the Bashan Mountains, is
at a lower level, and the average land change values in Shangluo, Ankang City, and the
northern part of Hanzhong City in the Qinling Mountains is relatively large. Thus, the ESV
in the Qinling Mountains has a greater contribution to the region and is more stable than
that of the Bashan Mountains.

Figure 4. (a) Rate of change in ecosystem service value; (b) distribution of average ecosystem service
value in the Qinba Mountains from 2000 to 2015.

3.1.4. Sensitivity Analysis

By increasing or decreasing the ESV of each land type by 50%, the sensitivity index
of the ESV of each land type in four periods was obtained (Table 8). The sensitivity index
was less than 1, indicating that the ecosystem services value coefficient of each land type
in four periods was reliable. The sensitivity index of each type of land use, from large to
small, is forest, grassland, farmland, water area, and unused land. Among these, forest
land has the greatest impact and contribution on the total value of regional ecosystem
services, and unused land makes the lowest contribution. The sensitivity index of various
types of land differed little in the four periods of 2000, 2005, 2010, and 2015. The sensitivity
index of forest land and water area increased slightly over time, while that of grassland
decreased slightly.

144



Diversity 2022, 14, 1105

Table 8. Coefficient of sensitivity derived from equivalence coefficient adjustment.

Land Use Types 2000 2005 2010 2015

Farmland 0.127 0.125 0.127 0.126
Forest 0.555 0.556 0.559 0.559

Grassland 0.306 0.307 0.301 0.301
Water area 0.012 0.012 0.014 0.014

Unused land 0.000 0.000 0.000 0.000

3.2. Analysis of Socioeconomic Development Level
3.2.1. Time Change of Socioeconomic Development Level

The score for the socioeconomic development level of each county in the Qinba Moun-
tains for 2000–2015 was obtained using the comprehensive index method (Table 9). For
2000–2015, the socioeconomic development level of the Qinba Mountains increased signifi-
cantly. The average level of socioeconomic development in 2000 was 0.025, 0.111 in 2005,
0.287 in 2010, and 0.577 in 2015. Over the past 16 years, the level of socioeconomic devel-
opment has increased by 23 times. On the whole, from 2000 to 2015, the rapid economic
growth of the counties in the Qinba Mountains benefited from the introduction of various
national economic policies and ecological compensation measures. After 2000, the country
began to fully implement the Western Development Strategy, led by the state to increase
investment in the Western economy, laying the foundation for the rapid development of the
Western region economy. The government of the Qinba mountains seized the opportunity
to adjust the economic structure and change the mode of development, adopting the con-
cept of circular economy to promote regional development. Due to this, the socioeconomic
development of southern Shaanxi has achieved remarkable improvement.

Table 9. Scores of socioeconomic development levels of counties in the Qinba Mountains.

County
Si

2000 2005 2010 2015

Hanbin 0.018 0.098 0.301 0.583
Hanyin 0.022 0.082 0.294 0.602
Shiquan 0.030 0.086 0.315 0.569

Ningshan 0.028 0.114 0.300 0.557
Ziyang 0.010 0.180 0.289 0.521
Langao 0.026 0.112 0.280 0.582
Pingli 0.024 0.112 0.286 0.578

Zhenping 0.026 0.129 0.290 0.555
Xunyang 0.006 0.157 0.284 0.553

Baihe 0.019 0.074 0.309 0.597
shangzhou 0.006 0.085 0.299 0.610

Luonan 0.004 0.080 0.290 0.625
Danfeng 0.003 0.100 0.290 0.607

Shangnan 0.010 0.080 0.303 0.607
Shanyang 0.010 0.101 0.281 0.608
Zhen’an 0.162 0.213 0.154 0.471
Zhashui 0.021 0.074 0.339 0.566
Hantai 0.023 0.064 0.269 0.644

Nanzheng 0.034 0.077 0.248 0.641
Chenggu 0.009 0.104 0.270 0.617
Yangxian 0.001 0.084 0.349 0.567
Xixiang 0.005 0.056 0.328 0.611

Mianxian 0.015 0.072 0.320 0.592
Ningqiang 0.001 0.125 0.302 0.572
Lueyang 0.137 0.236 0.261 0.367
Zhenba 0.008 0.091 0.278 0.623
Liuba 0.006 0.159 0.270 0.566

Foping 0.041 0.158 0.236 0.565
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3.2.2. Regional Differences in Socioeconomic Development Level

The socioeconomic development level of the counties in the Qinba Mountains showed
a continuous upward trend for 2000–2015. However, the socioeconomic development
within the region is unbalanced (Table 9, Figure 5). In 2000, there was little difference
in socioeconomic level among counties in southern Shaanxi, except for Zhen’an County
of Shangluo City and Lyuyang County of Hanzhong City, which had outstanding so-
cioeconomic development levels, relying on local characteristic industries. In 2005, the
socioeconomic development level of Zhen’an and Lueyang county continued to maintain
their advantages. In addition, Ziyang and Xunyang counties in Ankang City relied on
local tea brands and industrial and mining enterprises to promote economic development.
Differences in the level of regional economic development have been highlighted. In 2010,
with the national policy of southern Shaanxi boosting the economy of southern Shaanxi, the
overall level of socioeconomic development of each county has improved, and Zhen’an and
Lueyang counties no longer have a noticeable advantage. Zhashui and Yang counties, as
well as other areas with beneficial transportation locations, have shown rapid development.
In 2011, the formulation of the circular economy policy in southern Shaanxi coordinated
the development of the inter-regional economy. In 2015, the economy developed rapidly
in various regions, and the internal differences were obvious. Hantai District was in a
dominant position, but Zhen ‘an and Lueyang counties were still in a catch-up position.
It was different traffic locations and resource advantages in different counties that led to
different economic development rates.

Figure 5. Socioeconomic development level of each county in the Qinba Mountains.

3.3. Coordination Analysis of ESV and Socioeconomic Development

The ecological and socioeconomic coupling coordination status of the study area
improved during 2000–2015, and the number of highly incoordinated and basically coordi-
nated counties decreases year by year, from the initial basically uncoordinated status to
the final mediumly coordinated status. In 2000, 72.40% of the regions showed a basically
uncoordinated status, and Hantai, Ningqiang, Yangxian, and Danfeng counties were in the
highly uncoordinated state. By 2005, most of the counties designated as basically uncoor-
dinated in 2000 had changed to a low coordination status, and the low coordination area
accounted for about 84.05%. Zhen’an, Hanyin, and Baihe counties were still in a basically
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uncoordinated state, and only Hantai District was left as a highly uncoordinated area.
In 2010, the medium coordination status was dominant, followed by the low coordination
status, accounting for 61.15% and 38.07%, respectively. In 2015, medium coordination
gradually replaced the low coordination status, and the medium coordination counties
accounted for as high as 83.05% of the area, Ningshan and Shanyang counties showed
a high degree of coordination, and the low coordination status (e.g., Foping, Shiquan,
and Hanyin counties) did not change (Figure 6). It is worth noting that during the four
periods, Hantai District has always shown a highly uncoordinated status. Further analysis
shows that the socioeconomic development of Hantai District was better from 2000 to 2015,
but its ESV showed negative growth. The rapid development of the economy led to the
deterioration of the environmental situation, and finally led to the imbalance of economic
and ecological development. On the whole, the ecological and socioeconomic coupling
coordination level of the study area has increased year by year.

Figure 6. Ecological and socioeconomic coupling coordination degree of various counties in the
Qinba Mountains in (a) 2000, (b) 2005, (c) 2010, and (d) 2015.

4. Discussion

The natural system is a fundamental condition for the coordinated development of
ecological protection and socioeconomic development. How to balance ecological and
environmental protection with socioeconomic development is an important issue to be
addressed in the construction of ecological civilization. Without a better ecological environ-
ment, the cost of blind economic development will lead to the degradation of ecosystem
functions, and the economic effect will drop sharply [46,47]. Therefore, to achieve the
sustainable development of ecology and economy in the Qinba Mountains, more attention
should be paid to continuing to implement the Grain for Green project, optimizing the
land use structure, and improving the efficiency of land allocation in future development,
according to local conditions. First of all, we should maintain the current coordinated devel-
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opment trend, promoting the development model of a green circular economy, such as in
Ningshan and Shanyang counties, and then promote sustainable development throughout
the Qinba Mountains. Faced with the problem of uncoordinated ecological and economic
development in the Hantai District, the change in regional land use has led to serious
ecosystem degradation [25,48]. It is necessary to fully consider the carrying capacity of
the regional ecological environment. In the two aspects of strengthening ecological and
environmental protection and adjusting the economic structure, we must strike a balance
between development and protection.

Compared with the same research content in the existing studies, the current coupling
studies focus on the urban agglomerations [26,33], economic belts [27,28], and other ar-
eas around the large towns or the economically active areas in the east. Relatively little
attention has been paid to the special geographical location of ecological function in con-
tiguous destitute areas. Compared with the ESV assessment study using the same study
area [49], the research results of the two in terms of the year-by-year change of ESV and
regional differentiation are basically the same, which proves that the results of this study
are reliable. This study further discusses the coupling relationship between ecology and
economy, in combination with the change in socioeconomic development level in the study
area. However, the value evaluation method based on the equivalent value factor also has
shortcomings and defects, such as over-reliance on data interpreted by remote sensing
satellite images [1]. Ecosystems are complex and diverse, and the food yield data cannot
fully explain the problem. For example different vegetation coverage, stand structures,
and the estimation of land type value of regional locations are not fully considered in the
assessment [50]. Moreover, the urban green space in the construction is neglected in the
calculation process. Whether this approach is scientific or not, it still deserves further study
and reflection. At the same time, ESV is affected by climate change and cultural and eco-
nomic factors [47,51], the assessment of ecosystem services is sometimes inaccurate [52,53].
In future studies, it will be necessary to use a more accurate computational model of the
ESV and to employ a variety of methods to correct it. We should also start with more
dimensions of ecological environment elements and more diverse socioeconomic develop-
ment data. Further research is needed to explore the mechanisms of coupling and mutual
feedback between ecology and economy. The relationship between economy and ecology
is both separate and interconnected. First of all, socioeconomic development will coerce
or facilitate ecosystem services. Secondly, weak ecosystem services can slow down or
inhibit social and economic development. Only by coordinating the relationship between
the two above can we achieve sustainable development [8,9,29,54]. The value realization
mechanism for ecological products should be established and improved to promote the
effective conversion of ESV. The coordinated development of the social-ecological systems
is an important condition for the sustainable development of contiguous destitute areas,
which have some capacity for self-organization and are affected by both human activities
and climate change. The variations in the relationship between the economy and ecology
show nonlinear and non-stationary complex dynamic features. The ecosystem is an im-
portant support for human well-being and socioeconomic development [6]. Only under
the premise of reasonable ESV and sustainable transformation can a regional economy
develop with high quality and attract more investment. Blindly pursuing the conversion
ESV can easily lead to problems such as the overburdening of the ecosystem’s carrying
capacity, etc. [55]. In short, we should focus more on development and protection.

5. Conclusions

(1) In terms of changes in ESV, changes in forest area have the greatest impact on ESV.
With the increase in forest area, the ecosystem service value of the study area also increased.
For 2000–2015, the forest area increased by 230.09 km2, and the value of ecosystem services
in the study area increased by CNY 19.514 billion.

(2) In the aspect of socioeconomic development, with the help of relevant policies, the
level of socioeconomic development in the study area has risen steadily, and the vitality of
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socioeconomic development has continued to improve. The socioeconomic development
level score rose from 0.025 in 2000 to 0.577 in 2015. In the course of development, there is
still the problem of unbalanced economic development within the region.

(3) In the coordinated development of natural ecology and socio-economy respect,
Hantai District has been highly uncoordinated. The coordinated development of the coun-
ties in the Qinba Mountains is in good condition, and the degree of coupling coordination
shows a trend of improvement. In 2015, 83.05% of the districts were mediumly coordinated,
and Ningshan and Shanyang counties were highly coordinated.
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Abstract: The long-term applications of different fertilizers (chicken manure, swine manure, and
organic fertilizer) on the microorganisms of a corn field were investigated. The microbial communities
during four periods (seedling, three-leaf, filling and mature periods) were comprehensively studied
with molecular biology technology. Results showed that most nutrient contents (organic matter,
nitrogen, phosphorus, and potassium) and levels of several heavy metals (As, Pb, and Cr) in the
chicken and swine manures were higher than those in the organic fertilizer. The alpha diversity
varied during the long-term fertilization, and the chicken manure was the best fertilizer to maintain
the abundance of microorganisms. The microbial community of soil changes over time, regardless of
the addition of different fertilizers. The correlations between environmental factors and microbial
communities revealed that nutrient substances (available nitrogen, available potassium, and NO3-N)
were the most significant characteristics with the chicken and swine manures, while organic matter
and nitrogen exhibited similar effects on the microbial structure with the organic fertilizer. The
Pearson correlations of environmental factors on genus were significantly different in the organic
fertilizer tests compared with the others, and Pseudomonas, Methyloligellaceae, Flavobacterium, and
Bacillus showed significant correlations with the organic matter. This study will provide a theoretical
basis for improving land productivity and sustainable development in corn fields.

Keywords: different fertilizers; long-term fertilization; microbial community; environmental factors;
correlation

1. Introduction

The application of manure as fertilizer to agricultural land is a common practice
around the world [1]. Livestock and poultry breeding is the pillar industry of China’s
agriculture. In order to ensure the effective supply of livestock and poultry products, this
industry has been developing intensively and on a large scale in recent years. The treatment
and disposal of a large amount of livestock and poultry manure produced by large-scale
breeding is an effective way to reduce livestock and poultry waste and to recycle resources.
Microorganisms, nutrients, heavy metals, and antibiotics change the soil environment
after livestock application, while the biomass, community diversity and composition, and
functional flora of soil microorganisms are affected as well [2].

Long-term or short-term livestock and poultry manure application or combined appli-
cation with straws and chemical fertilizers could affect the physical and chemical character-
istics of the soil, thereby significantly affecting the community structure, abundance, and di-
versity of farmland soil microorganisms. Qin et al. [3] found that long-term fertilization has
a significant impact on the bacterial community structure of black soil. Giacometti et al. [4]
also found that under a condition of long-term fertilization, the bacterial abundance of
farmland soil increased significantly with the increase in swine manure application, while
its community diversity significantly decreased. Xun et al. [5] showed that the short-term
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fertilization of swine manure improved soil nutrient content and had a significant impact
on soil microbial diversity. Li et al. [6] revealed that the application of chicken and swine
manure can effectively increase the diversity and abundance of soil bacterial communities
in farmland. The changes in amino-acid carbon sources and carbohydrates in the soil were
the main reasons that affected the soil microbial diversity changes. Hence, improving soil
microbial diversity helps enhance the stability of farmland ecosystem functions and their
resistance and resilience against environmental disturbances.

The changes in the microbial community after livestock manure application have
been widely studied. It was reported that an increase in soil nutrient content and the
introduction of exogenous bacteria affect the growth and reproduction of soil microor-
ganisms. An increase in soil nutrient content enhances the growth and reproduction of
eutrophic microorganisms in farmland soil, while it reduces the abundance of oligotrophic
flora [7,8]. Adding organic or inorganic fertilizers can reduce the relative abundance of
oligotrophic Acidobacteriain black and farmland soil in Northeast China [9]. However,
in one wheat-corn rotation system, the application of swine manure and straw or the
combined application of swine manure fertilizers inhibited the growth of soil dominant
bacteria, such as Bacteroidetes, Acidobacteria, and Gemmatimonadetes, in a short pe-
riod [10]. Changes in soil nitrogen content have a significant impact on soil high-abundance
bacteria. Short-term nitrogen application may reduce the abundance of Actinobacteriaand
Nitrospirae in farmland soil [11], while long-term nitrogen application is beneficial for the
deformation of the growth of Proteobacteria and Actinobacteria [12]. Actinomycetes are
more sensitive to the addition of exogenous nutrients. Meanwhile, untreated livestock and
poultry manure contain a large number of pathogenic microorganisms, such as Salmonella,
E. coli, Mycobacterium tuberculosis, etc. Most of them can survive in the soil for a long time
after entering the farmland, and some pathogenic bacteria such as E. coli can continue to
survive and reproduce after entering the soil. It is easy for them to enter the human body
through the food chain and cause food-borne diseases, which seriously threatens the health
of the soil environment [13]. However, comparisons between the microbial communities
with livestock manure and those with organic fertilizer in the long-term fertilization of corn
were rarely considered and need to be further studied.

In the applications of different fertilizers, the nutrients and pollutants have greater
impacts on the functional microbes and functional flora of the soil. Accordingly, the correla-
tions between environmental factors and microorganisms should be studied. When the
nutrients in fertilizers enter the soil, they affect the soil nutrient cycle and the decomposition
of organic matter [6]. Changes in soil nutrients after the application of manure also have a
great impact on the functional plants involved in the turnover of soil organic matter or the
utilization of carbon sources. Li et al. [14] studied the effects of adding livestock manure
on soil functional microorganisms and found that the application of chicken and swine
manure can effectively increase the carbon source utilization capacity of the soil microbial
community by changing the soil nutrients in the farmland. Guo et al. [15] evaluated the
effect of swine manure on the carbon conversion of soil during long-term application,
finding that it increased the diversity of soil microorganisms and improved the soil mi-
crobial organic matter turnover capacity and carbon source utilization rate. In addition,
after pollutants such as heavy metals and antibiotics in livestock manure enter the soil,
they can also reduce the abundance of ammonia-oxidizing bacteria, inhibit the nitrification
and denitrification of soil microorganisms, and reduce the utilization of carbon sources by
microorganisms, thereby affecting the biogeochemical cycles of nitrogen and carbon in the
soil [16]. Therefore, the comparison of nutrients, heavy metals, and their correlations with
microbial communities between different fertilizers was necessarily investigated.

In this study, different fertilizers such as chicken manure, swine manure, and organic
fertilizer were applied in the long-term fertilization of corn. The physical and chemical
characteristics and heavy metals of different fertilizers were analyzed. Moreover, the diver-
sity and richness of the microbial communities as well as the microbial compositions and
structures were comprehensively compared. In particular, the correlations between envi-
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ronmental factors and microbial communities with the applications of different fertilizers
were further investigated. This study will provide a theoretical basis for improving land
productivity and sustainable development in corn fields.

2. Materials and Methods

2.1. Experimental Location

This research experiment was carried out in Hongxing Village, Zhongxing Town,
Chongming Island (121◦09′–121◦54′, 31◦27′–31◦51′ N). This area is located at the mouth of
the Yangtze River and belongs to the northern subtropical region. The climate is mild and
humid. The annual average sunshine number is 2094.2 h, the annual average temperature
is 15.3 ◦C, the annual average rainfall is 1025 mm, and the relative air humidity is above
80%. The natural geographical condition of the region is suitable for the development of the
planting industry. The experimental base was established in 2010 and grows representative
crops in the Chongming District, mainly yellow corn and cauliflower. The plot selected for
this experiment covers an area of 300 m2, mainly corn planting plots.

2.2. Experimental Set-Up

Chicken manure (CM), swine manure (SM), and organic fertilizer (OF) were selected
as the experimental manures. The chicken manure was collected from a chicken farm,
while the swine manure and organic fertilizer were collected from a swine farm in Chong-
ming. The organic fertilizer was composted under aerobic conditions from swine manure,
mushroom, and straw wastes.

As a common crop in Chongming, yellow corn was selected as the planting crop in
this experiment. Direct sowing was conducted in all the experiments. The sowing time was
early April in 2020. The planting density was 52,500 plants per mu. Other cultivation and
management measures were the same as those in the field.

Ten treatments including nine fertilization treatments and one control treatment (CK)
were designed. Each treatment had a repetition of 3 times. The concentration gradient of
the manure application was set in accordance with the standard procedures in “Technical
Specifications for Returning Livestock and Poultry Manure to Field (GB/T 25246-2010)”,
which were 2 kg·m−2, 4 kg·m−2, and 6 kg·m−2. Different concentrations of the chicken
manure, swine manure, and organic fertilizer were applied as base fertilizers to the soil at
one time before sowing the corn and then plowed after spreading fertilization.

Thirty experimental plots (3 m × 3 m) were set up, and a 0.5 mm thickness imper-
meable membrane was used to block the plots. The buried depth of the impermeable
membrane was 30 cm to prevent mutual interference between the plots. At the same time, a
channel for on-site monitoring and sample collection was isolated between each plot, with
a width of about 20 cm. The layout of the experimental plots is shown in Figure 1.

2.3. Soil Sample Collection

The soil samples were collected in late April (seedling period), mid-May (three-leaf
period), early July (filling period), and late August (mature period) in 2020.According
to the “S” sampling method, five points were randomly selected from each sample plot
and rhizosphere soil samples were collected from each of the 5 points by using a sterile
stainless-steel soil drill (0–20 cm depth). Finally, the samples of five points were mixed
evenly. A PVC soil respiration ring base (soil collar) with a diameter of 20 cm and a height
of 12 cm was pre-embedded in each parallel plot on the site. After the corn was sowed,
it was embedded in the soil with a depth of 10 cm and the uppercut was 2 cm above
the ground. In order to avoid experimental errors, the roots of the corn plants should
be avoided when the base is embedded and placed in the gaps between the plants. In
order to eliminate the influence of green plant photosynthesis and surface litter on the
measurement, the day before each measurement, the plants and litter in the ring should be
removed, and the surface soil should not be disturbed. Soil samples of 500 g from each plot
were collected. After removing debris, earthworms, and plant residues in each soil sample,
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each soil sample was divided into two portions: the first portion was stored at 4 ◦C for the
analysis of physical and chemical characteristics, whereas the other was stored at −80 ◦C
for DNA extraction and microbial analysis.

Figure 1. The experimental site layout (CK: control; CM: chicken manure; OF: organic fertilizer;
SM: swine manure;PM represents swine manure).

2.4. Analysis Methods
2.4.1. Physical and Chemical Characteristics

The samples brought back to the laboratory were placed in the room for natural air
drying, and, after grinding, they were passed through 10-mesh and 100-mesh sieves and
placed in a refrigerator at 4 ◦C for further analysis. Organic matter (OM) and organic
carbon (OC) were measured using a total organic carbon analyzer (TOC-VCPH, Shimadzu,
Japan). Total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen
(AN), available phosphorus (AP), and available potassium (AK) were measured according
to the Standard Methods [17]. Metal ion concentrations such as lead (Pb), cadmium (Cd),
arsenic (As), mercury (Hg), and Chromium (Cr) were determined using an inductively
coupled plasma emission spectrometer (ICP-AES, Agilent, Santa Clara, CA, USA).

2.4.2. Microbial Community Characterization

Microbial DNA was extracted from sludge using the E.Z.N.A.® Soil DNA kit (Omega
Bio-Tek, Norcross, GA, USA) according to the manufacturer’s protocols and then pooled
together. DNA extracts were checked on 1% agarose gel, and DNA concentration and purity
were determined with a Nano Drop 2000 UV-vis spectrophotometer ( Thermo Scientific,
Wilmington, NC, USA). For the bacterial community, the bacterial 16S rRNA genes were
amplified using the universal bacterial primers 27F (5′-AGRGTTYGATYMTGGCTCAG-3′)
and 1492R (5′-RGYTACCTTGTTACGACTT-3′). The primers were tailed with PacBio
barcode sequences to distinguish each sample. The amplification reactions (20 μL volume)
consisted of 5 × 4 μL of FastPfu buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of forward primer
(5 μM), 0.8 μL of reverse primer (5 μM), 0.4 μL of FastPfu DNA Polymerase, 10 ng of
template DNA, and DNase-free water. The PCR amplification was performed as follows:
initial denaturation at 95 ◦C for 3 min, followed by 27 cycles of denaturing at 95 ◦C for
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30 s, annealing at 60 ◦C for 30 s and extension at 72 ◦C for 45 s, single extension at 72 ◦C
for 10 min, and end at 4 ◦C (ABI Gene Amp® 9700 PCR Thermocyclerm, Santa Clara, CA,
USA). The PCR reactions were performed in triplicate. After electrophoresis, the PCR
products were purified using the AM Pure® PB beads (Pacifc Biosciences, Menlo Park,
CA, USA) and quantified with a Quantus™ Fluorometer (Promega, Fitchburg, WI, USA).
The optimized CCS reads were clustered into operational taxonomic units (OTUs) using
UPARSE 7.1 with a 97% sequence similarity level. The most abundant sequence for each
OTU was selected as a representative sequence. To minimize the effects of sequencing
depth on alpha and beta diversity measures, the number of 16S rRNA gene sequences
from each sample was rarefied to 6000, which still yielded an average Good’s coverage of
99.09%. The alpha diversity indices were calculated in MOTHUR (http://www.mothur.org
(accessed on 9 September 2020)). The Pearson correlation coefficient was calculated to
evaluate the correlations between environmental factors and individual microorganisms
according to Ping et al. [18].

2.5. Statistical Analysis

Excel 2019, SPSS 24, and Origin 2017 were used for the data analysis and graphing. The
graphs in Figure 2 were built with Origin. The differences between the different treatment
groups were compared using the one-way analysis of variance method, while the multiple
comparison was performed using the LSD (Least Significance Difference) method (p < 0.05).

 

Figure 2. The Shannon and Ace indices of microbial community with different fertilizers (CK: control;
CM: chicken manure; OF: organic fertilizer; SM: swine manure).

3. Results and Discussion

3.1. Analysis of Physical and Chemical Characteristics

The physical and chemical characteristics of the different fertilizers are shown in
Table 1. The pH value of the organic fertilizer was the highest (7.42), and was significantly
higher than that of CM and SM (p < 0.05). The contents of OM, TN, AN, TK, and AK in
CM were the highest among the three fertilizers. The concentrations of TK and AK were
significantly higher than those in SM (p < 0.05), measuring 81.95% and 118.53% higher,
respectively. The highest contents of TP and AP appeared in the swine manure, and its TP
concentration was higher than that of CM (p < 0.05). OF had the lowest nutrient content,
and its OM, TN, TP, TK, AN, AP, and AK contents were significantly lower than those of
CM (p < 0.05), which were reduced by 34.71%, 37.05%, 45.04%, 1.86%, 80.99%, and 41.45%,
respectively. Similarly, the OM, TN, TP, AN, and AP contents of OF were significantly
lower than those of SM (p < 0.05), which were reduced by 43.38%, 32.91%, 57.50%, and
82.28%, respectively. It was reported that fresh swine manure usually has more soluble
phosphorus [19], which is in accordance with this study in which the concentrations of TP
and AP in SM were higher than those in CM and OF. Moreover, the chicken manure had
the highest nutrient content amongst the livestock manure, which was similar to the results
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of Ksheem et al. [20]. The nutrient content of OF is relatively low, which may relate to the
high temperature during the composting process [21,22].

Table 1. The characteristics of chicken manure, swine manure, and organic fertilizer.

Characteristics Chicken Manure Swine Manure Organic Fertilizer

pH 6.31 ± 1.23 b 6.60 ± 0.78 b 7.42 ± 0.93 a

Moisture (%) 64.2 ± 9.28 a 56.9 ± 6.01 b 40.8 ± 4.79 c

OM (g·kg−1) 844 ± 39.92 a 790 ± 18.80 a 551 ± 25.61 b

TN (g·kg−1) 34.3 ± 8.23 a 32.2 ± 3.08 a 21.6 ± 2.46 b

AN (mg·kg−1) 3.17 ± 0.47 a 2.73 ± 0.22 a 1.16 ± 0.23 b

TP (g·kg−1) 18.2 ± 0.23 b 29.10 ± 4.22 a 12.60 ± 1.27 c

AP(mg·kg−1) 3.02 ± 0.18 a 3.24 ± 0.35 a 0.574 ± 0.09 b

TK (g·kg−1) 3.73 ± 0.55 a 2.05 ± 0.39 b 2.05 ± 0.11 b

AK (mg·kg−1) 21.7 ± 5.43 a 9.93 ± 1.91 b 12.7 ± 2.09 b

Note: Different letters (a, b, c) indicate that there were significant differences between different fertilizers with
each characteristic (p < 0.05).

As can be seen in Table 2, the heavy metal contents of the three fertilizers did not exceed
the heavy metal concentration limit (NY525-2012) [23]. The concentrations of Cd and Hg
were not significantly different between the three fertilizers. The highest concentrations of
As and Pb were observed in CM, measuring at 0.64 mg·kg−1 and 19.2 mg·kg−1, respectively.
The As concentration in CM was 48.83% higher than that in SM (p < 0.05), while the Pb and
As concentrations were significantly higher than those in OF (p < 0.05), measuring 28.00%
and 357.14% higher, respectively. The As content in SM was also significantly higher than
that in OF, measuring 207.12% higher. The Cr concentration (25 mg·kg−1) was the highest
in SM, followed by CM. The Cr concentrations in CM and SM were significantly higher
than that in OF (p < 0.05), measuring 48.38% and 61.29% higher, respectively. The analysis
results showed that the heavy metals As, Pb, and Cr in the chicken manure or SM were
more abundant than in OF.

Table 2. Heavy metal concentrations in chicken manure, swine manure, and organic fertilizer.

Heavy Metal Chicken Manure Swine Manure Organic Fertilizer

Cd (mg·kg−1) 0.24 ± 0.02 a 0.27 ± 0.04 a 0.25 ± 0.00 a

Hg (mg·kg−1) 0.156 ± 0.04 a 0.173 ± 0.01 a 0.157 ± 0.01 a

As (mg·kg−1) 0.64 ± 0.09 a 0.43 ± 0.00 b 0.14 ± 0.00 c

Pb (mg·kg−1) 19.2 ± 0.04 a 13.3 ± 1.03 b 15.0 ± 1.21 ab

Cr (mg·kg−1) 23 ± 0.97 a 25 ± 2.73 a 15.5 ± 3.88 b

Note: Different letters (a, b, c) indicate that there were significant differences between different fertilizers with
each heavy metal.

3.2. Diversity and Richness of Microbial Communities in Long-Term Fertilization

In the microbial community analysis, the rarefaction curves (at a 97% sequence sim-
ilarity) of all the samples plateaued, demonstrating that the number of pyrosequencing
reads was enough to explain the large fraction of OTUs in the soil samples.

Alpha diversity indices can be used to quantitatively estimate different microbes in
a dataset and determine the total number of microbes. The Shannon and Ace indices
were selected to reflect the diversity and richness of soil microorganisms with different
fertilization treatments (Figure 2). The Shannon and Ace indices in the OF and CK soils
demonstrated no significant difference in different periods, indicating that the application
of organic fertilizer has little effect on the diversity and abundance of soil microbial commu-
nities. For the Ace index, there was no significant difference between the SM and CK soils
during the four periods, while the Shannon index of the SM soil was lower than that of
the CK soil during the four periods and reached a significant level in the first three periods
(p < 0.05), indicating that the swine manure reduced the diversity of the soil microbial
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community. However, it had a small effect on the microbial abundance. The application of
swine manure reduces the diversity of the soil microbial community, and the reduction in
the microbial community diversity leads to a reduction in the efficiencies of the ecosystem
functions [24]. The Shannon and Ace indices of the CM soil both increased with time,
although they were significantly lower than CK in the first two periods (p < 0.05); however,
by the mature stage, there was no significant difference between CM and CK. This reveals
that the chicken manure greatly increased the diversity and richness of microorganisms
during the four periods. In addition, the richness of CM in the last stage was significantly
higher than that of OF and SM (p < 0.05), indicating that the chicken manure was the best
fertilizer to maintain the abundance of microorganisms. Campbell et al. [25] also found that
from a long-term perspective, the application of chicken manure is conducive to improving
the diversity of soil microbial communities. An increase in microbial community diversity
is conducive to enhancing the stability of a soil ecosystem, making it more resistant and
able to recover in the face of environmental disturbances [26].

3.3. Microbial Composition and Structure in Long-Term Fertilization

The bacterial communities determined at the phylum and genus levels were further
analyzed by comparing populations among the samples. A total of 42 phyla were de-
tected, and the phyla with a relative abundance of less than 0.1% were merged into others
(Figure 3a). It can be seen in Figure 3a that Proteobacteria was the most abundant phylum
in all soils with different treatments, accounting for 27.95~39.84% of the total bacterial
counts in each sample. This result was consistent with previous studies of soil microbial
communities [27]. The main phyla present in these soil samples with different treatments
were quite similar, including Actinobacteria, Acidobacteria, Acidobacteria, Chloroflexi, Bac-
teroidetes, Firmicutes, Gemmatimonadetes, Rokubacteria, Patescibacteria, Planctomycetes,
Verrucomicrobia, Nitrospirae, and Latescibacteria, and their total abundance accounts for
97.86~98.68%.

Latescibacteria
Nitrospirae
Verrucomicrobia
Planctomycetes
Patescibacteria
Rokubacteria
Gemmatimonadetes
Firmicutes
Bacteroidetes
Chloroflexi
Acidobacteria
Actinobacteria
Proteobacteria

 
(a) 

Figure 3. Cont.
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Subgroup 6_norank Nocardioides Sphingomonas Bacillus Gemmatimonadaceae_uncultured
Rokubacteriales_norank Lysobacter Pseudomonas Pseudarthrobacter JG30-KF-CM45_norank KD4-96_norank
Gaiella MND1 Microvirga Gaiellales_norank MB-A2-108_norank S085_norank Anaerolineaceae_uncultured
SBR1031_norank Microscillaceae_uncultured Nitrospira A4b_norank Saccharimonadales_norank bacteriap25_norank
 Geminicoccaceae_uncultured Steroidobacteraceae_uncultured TRA3-20_norank  Alphaproteobacteria_norank RB41
Flavobacterium Methyloligellaceae_uncultured NB1-j_norank Flavisolibacter Bryobacter Knoellia
Latescibacteria_norank Xanthobacteraceae_uncultured Streptomyces Subgroup 7_norank JG30-KF-CM66_norank
Pontibacter Azospirillales_norank Sphingomonadaceae_uncultured SC-I-84_norank Roseiflexaceae_uncultured
Thiobacillus Haliangium TK10_norank Adhaeribacter Ellin6067

(b) 

Figure 3. The relative abundances of microorganisms on phylum (a) and genus (b) levels with
different fertilizers (CK: control; CM: chicken manure; OF: organic fertilizer; SM: swine manure;
T1: seedling period; T2: three-leaf period; T3: filling period; T4: mature period).

There were certain differences in the second dominant phyla of the soil in each treat-
ment group. At the seedling and three-leaf stage, the second dominant phylum of each
treatment group was Actinobacteria, accounting for 19.49–26.91% of the total bacterial
abundance. During the filling stage, the second dominant phylum was still Actinobacte-
riain the CK and SM tests, accounting for 25.26% and 25.84%, respectively. However, the
abundance of Acidobacteria was greatly increased in the CM and OF tests, measuring at
14.21% and 19.62%, respectively. It was reported that Acidobacteriais one of the dominant
bacteria in soil, and it is easy to accumulate in acid soil [28]. The decrease in soil pH
after the application of chicken manure and organic fertilizer may be the main reason for
the increased abundance in Acidobacteria. In the mature period, Acidobacteriabecame
the second dominant bacteria phylum in the soils of all the treatments, accounting for
16.30–20.48%. From the changes in the dominant microbial phyla in different periods, it can
be found that the microbial community of soil changes over time regardless of the addition
of different manure, which is consistent with the results of previous studies [29]. The
changes in microorganisms on the genus level were similar to those on the phylum level. It
can be seen in Figure 3b that the relative abundances of Subgroup 6_norank, Sphingomonas,
gemmatinonadaceae_uncultured, and Lysobacter were greatly increased in the mature period,
while Nocardioides and Bacillus were significantly inhibited.

Furthermore, the one-way analysis of variance was selected to analyze the differences
in the compositions of microorganisms between treatment groups at different periods
based on the relative abundances of phylum-level microorganisms. The effects of fertil-
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ization on the microbes in the soil with high abundance levels are highly consistent. The
application of CM, OF, and SM all increased the relative abundance of Firmicutes and
Bacteroidetes. Compared with CK, the relative abundance of Firmicutes in the soil of CM,
OF, and SM at the seedling stage was significantly higher (p < 0.05), measuring at 68.45%,
70.03%, and 49.77% higher, respectively. It was known that Firmicutes can be enriched
at a rapid multiplication rate in a growth environment where soluble organic matter and
nutrient concentrations are high [30]. Therefore, it was significantly enhanced with the
application of different fertilizers. During the entire growth period, the relative abundance
of Bacteroidetes in the fertilized soil was higher than that of CK. Bacteroidetes reached a
significant level in the seedling, filling, and mature stages (p < 0.05) with the OF fertiliza-
tion, and they reached a significant level in all periods (p < 0.05) in the CM tests. Similarly,
the relative abundance was significantly higher in the CK tests after the three-leaf stage
(p < 0.05). During the entire growth period, the relative abundances of Bacteroidetes with
the CM, OF, and SM fertilizations were higher than that in CK by 122.50%, 72.45%, and
55.33%, respectively. Bacteroidetes are eutrophic bacteria, and the increase in soil nutrients
after manure application is the main reason for the increase in their abundance [8].

The analysis of the relative abundance of bacteria can only show the affected phyla
and genera after fertilization, while the influence of fertilization on the bacterial structure
is difficult to judge. Therefore, a principal component analysis (PCA) was used to study
the similarities and differences in the microbial community structures between different
fertilization treatment tests on the OTU level [31]. It was apparent that the four types of
treatments during four periods can be divided into two categories (Figure 4). During the
corn filling period, the samples of different treatment groups were clearly distinguished,
indicating that the microbial community structures of the different treatment groups were
quite different at this time. Among them, the SM and CK sample points are closer, and the
OF and CM sample points are closer, indicating that the microbial community structures
of the SM and CK samples were quite similar during this period. However, the microor-
ganisms with OF are more similar to those with CM. This difference may be related to
the nutrient content of the soil. At the maturity stage, the sample points of the different
treatment groups are distinguished to a certain extent, but they are not clearly separated,
indicating the microbial community structures between the different groups were relatively
similar at this time. That was because the microorganisms continued to change over time,
and they became stable during the mature period, indicating that the microbial structures
were relatively sensitive to the change in temperature.

3.4. Correlations between Environmental Factors and Microbial Communities

In order to determine the interaction between environmental factors and microbial
communities, the RDA redundancy and Pearson correlation coefficient were used to evalu-
ate the effects of external factors on the microorganisms.

The RDA redundancy analysis showed that heavy metals such as, Cd, and Cr were
more influential than organic characteristics (OM, OC) in the control tests. However,
in the treatments with CM and SM, nutrient substances such as AN, AK, and NO3-N
became the most significant characteristics (Figure 5). That was because the nutrient
composition, especially nitrogen, was abundant in the livestock manures [32,33]. An
increase in nitrogen provides abundant substrates for microorganisms and stimulates the
growth and reproduction of soil bacteria, which has a greater impact on the community
structure. In addition, As was also a greatly affected factor in the CM and SM tests since
the concentrations of As in CM and SM were significantly higher than that in OF. In the
OF tests, organic (OM and OC) and nutrient characteristics (AN and NO3-N)exhibited
similar effects on the microbial structure, and the effect of heavy metals was relatively
less than in the other tests, which was in accordance with the characteristics of OF in the
previous section.

161



Diversity 2023, 15, 78

 
Figure 4. The PCA analysis of all treatment samples (CK: control; CM: chicken manure; OF: or-
ganic fertilizer; SM: swine manure; T1: seedling period; T2: three-leaf period; T3: filling period;
T4: mature period).

A Pearson correlation analysis can further verify the correlations between soil environ-
mental factors and dominant bacteria on the genus level. More significant correlation coef-
ficients were observed with the fertilizer treatments than with the control tests (Figure 6),
indicating that the addition of the fertilizers changed the environmental conditions of the
soil and produced a great variety of microorganisms. It was observed that NO3-N, AN, TP,
and AK significantly correlated with most genera in the CM tests (Figure 6a). Sphingomon-
adaceae, Saccharimonadales, Microscillaceae, Lysobacter, Chitinophagaceae, and Adhaeribacter all
exhibited positive correlations with TP, AN, and AK, while Roseiflexaceae, Pseudarthrobacter,
Nocardioides, Methyloligellaceae, Knoellia, Ilumatobacteracear, Geminicoccaceae, Gaiellales, Gaiella,
and Bacillus exhibited negative correlations with them. A similar result was observed in
the SM tests, such that NO3-N, AN, and AK were the most significant factors on genus
(Figure 6d). The Pearson correlations of environmental factors on genus in the OF tests
were significantly different compared with the other tests. It can be seen in Figure 6b
that OM and OC exhibited the maximum number of significant co-efficiencies, revealing
that organic compounds were the most significant factor in the OF tests. Pseudomonas,
Methyloligellaceae, Flavobacterium, and Bacillus exhibited significant correlations with the
organic matter; therefore, it can be deduced that they could rapidly grow and reproduce
with high levels of organic matter in the soil. It was indicated that members of the genus
Pseudomonas are a ubiquitous component of soil and rhizospheric ecosystems, where they
play multifarious roles, such as in the recycling of organic matter [34]. Methylotrophic bacte-
ria play a significant role in the biogeochemical cycle, and they are especially involved in
phosphorous, nitrogen, and carbon cyclingin soil ecosystems [35,36]. Pijanowsk et al. [37]
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revealed that Pseudomonas and Bacillus had the highest hydrocarbon biodegradation rates
in short-term experiments. 

 
 

(a) CK (b) CM 
 

 

 

 
 

(c) OF (d) SM 

Figure 5. The relationship of environmental factors and microorganisms with different fertilizers
(CK: control; CM: chicken manure; OF: organic fertilizer; PM: swine manure; T1: seedling period;
T2: three-leaf period; T3: filling period; T4: mature period; OM: organic matter; OC: organic carbon;
AN: available nitrogen; AK: available potassium; TP: total phosphorus).
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Figure 6. Cont.
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(c) CK 

 
(d) SM 

Figure 6. The Pearson correlation analysis of environmental factors and main genus of the CM (a),
OF (b), control (c), and SM (d) tests (CM: chicken manure; OF: organic fertilizer; OM: organic matter;
OC: organic carbon; TP: total phosphorus; AN: available nitrogen; AK: available potassium.* indicat-
eds (p < 0.1), ** indicateds (p < 0.05),*** indicateds (p < 0.01)).
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4. Conclusions

This study demonstrated that the microbial diversity varied during long-term fer-
tilization, and the chicken manure was the best fertilizer to maintain the abundance of
microorganisms. The microbial community of soil changes over time regardless of the
addition of different fertilizers. Proteobacteria was the most abundant phylum in all the
soils with different treatments. The second dominant phylum of each treatment group was
Actinobacteria at the seedling and three-leaf stage, while the abundance of Acidobacte-
ria was greatly increased with the chicken manure and organic fertilizer, becoming the
second dominant phylum in the filling and mature periods. The applications of different
fertilizers all increased the relative abundances of Firmicutes and Bacteroidetes. The corre-
lations between environmental factors and microbial communities reflected that nutrient
substances such as available nitrogen, available potassium, and nitrate became the most
significant characteristics in the chicken and swine manure tests, while organic matter and
ammonia exhibited similar effects on the microbial structure as with the organic fertilizer.
The Pearson correlations of environmental factors on genus in the organic fertilizer tests
were significantly different compared with the other tests. Pseudomonas, Methyloligellaceae,
Flavobacterium, and Bacillus exhibited significant correlations with the organic matter. These
results indicated that manure and organic fertilization directly affected soil bacterial diver-
sity and community composition. However, the response mechanism of soil bacteria to
organic fertilizer application is complex and needs further study to explain it satisfactorily.
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Abstract: The assessment of ecosystem services provides an intuitive source of information on the
benefits humans derive from ecosystems. The equivalent factor method was applied to calculate the
ecosystem service value (ESV) in combination with net primary productivity (NPP) calculated by the
process-based Carnegie–Ames–Stanford approach (CASA) model. This study evaluated grassland
ESV and its spatial evolution characteristics in China from 2001 to 2020 and revealed the impact of
climate factors. For 2001–2020, the annual grassland ESV ranged from 1.17 × 1012 to 1.51 × 1012 yuan
(renminbi, China yuan—the same below; $0.15 × 1012–$0.20 × 1012, US dollar), with an average of
1.37 × 1012 yuan ($0.18 × 1012). The spatial pattern of ESV per unit area of grassland was notably
characterized by an increase from northwest to southeast. However, the value of grassland ecosystem
services was relatively large (exceeding 10 × 106 yuan; $1.30 × 106) in northern and western provinces
and was the lowest (less than 0.2 × 106 yuan; $0.03 × 106) in eastern and southern provinces. In the
last 20 years, grassland ESV has increased in most areas of China and has decreased only in some
western and northern areas. Compared with the first 10 years, the average ESV of grassland in most
areas increased in the last 10 years, usually by less than 20%. However, it decreased in the western
and northern parts of China, mainly concentrated in the alpine meadow and alpine grassland of the
Qinghai–Tibet Plateau and the grassland around the Yili region of Xinjiang. Precipitation was the
main regulating factor of grassland ESV and had a positive impact in 79% grassland areas, especially
in northern China. Evapotranspiration and sunshine hours exhibited a marginal impact on ESV,
but temperature and relative humidity had no significant effect. Overall, this study contributes to
exploring the spatiotemporal patterns of grassland ecosystem service value and the impact of climate
factors in China, thereby providing reliable guidance for grassland ecosystem management.

Keywords: ecosystem service value (ESV); grassland; regulator; CASA model; equivalent factor

1. Introduction

Ecosystem services are the benefits human populations derive, directly or indirectly,
from ecosystem functions [1], including provision, regulating, supporting, and cultural ser-
vices [2], or supply, regulation and cultural services [3,4], or other categories from different
classification systems. These services can support human survival and development and
play an irreplaceable role in maintaining the dynamic balance of the earth’s life support
system and environment. However, in recent decades, due to the influence of human
activities and natural factors, nearly 60% of global ecosystem services have degraded to
varying degrees [2,5–8], which seriously threatens human security and health and has
become one of the main problems affecting human sustainable development.

As the world’s population increases, the demand for ecosystem supply services and
other services is increasing [9]. At the same time, governments and managers always
expect the maximization of ecosystem service value [10]. The ecological environment
has deteriorated seriously. The interweaving of these factors means that the evaluation of
ecosystem services ought to be paid increasing attention and become a research priority [11].

Diversity 2022, 14, 160. https://doi.org/10.3390/d14030160 https://www.mdpi.com/journal/diversity169



Diversity 2022, 14, 160

In particular, since the launch of the Millennium Ecosystem Assessment Project in 2001,
many countries have assessed ecosystem services at various scales. At the end of the 20th
century, some Chinese ecology and eco-economics scholars made a preliminary exploration
on the theory, method, and practical application of ecosystem service evaluation. Especially
since entering the 21st century, a large number of relative studies have emerged and some
valuable research results have been obtained [12]. This has greatly promoted the correct
understanding of ecological assets and the active implementation of ecological protection
measures. However, these studies have many deficiencies. For example, although many
studies focused on the effects of land use (e.g., Han et al., 2021 [13]) or the combined effects
of land use and climate change on ecosystem services (e.g., Schirpke et al., 2017 [14]), few
studies have addressed the specific effects of climate change or climate factors. In addition,
almost all existing studies were based on separate years and rarely involved continuous
time series.

Grassland is the production base of animal husbandry and the basis of herdsmen’s
life and cultural inheritance. On the one hand, grasslands provide multiple ecological
services, such as climate regulation, soil and water conservation, wind prevention and
sand fixation, soil improvement, and biodiversity maintenance [1,15]. On the other hand,
grasslands also have the ability to purify air, water, and soil pollutants through various
physical, chemical, and biological processes, which is conducive to ecosystem quality and
human health [16]. However, the long-term interference of human activities, coupled with
the influence of natural factors, such as climate change, have resulted in a decline in the
carrying capacity (e.g., the ability to support grazing) and the ability to resist natural risks
(e.g., drought) [17] of grassland ecosystems. As reported, about 50% of global grasslands
have been degraded [18–21], and temperate grasslands had lost more than 70% of their
natural cover by 1950 [2]. About 22% of China’s grassland was degraded before 2000 [22],
especially in the grassland of North China [23], while the degraded areas are still increasing
year by year [24]. As a result, the sustainable development of regional ecology, economy,
and society are directly affected. To some extent, this reflects the lack of understanding
of grassland ecosystem service status and function and potential economic value. Under
such a severe situation, it is of great practical significance to evaluate the economic value
of grassland ecosystem services in China for protecting and restoring the effectiveness of
grassland resources and making reasonable decisions for regional ecological protection and
economic development.

Over the past century, the earth’s climate has undergone significant changes character-
ized by global warming, which has had a significant impact on global ecosystems and their
important services [9]. Studies have shown that climate change has a negative impact on
59% of ecosystem services [25] and this impact is expected to increase rapidly around the
world in the future [26–29]. Climate change may profoundly affect the behavior patterns
and sensitivities of biotic/abiotic organisms, thereby promoting regulation, support, and
cultural services [29] or modifying the relationships and benefits related to ecosystem ser-
vices [30]. For grassland ecosystems, climate-induced changes had a significant impact on
the regulation and cultural services of grasslands in the French Alps, which even exceeded
the impact of grassland management decisions [31]. Drought and warming combined with
overgrazing led to desertification in some grassland areas in China [32]. The projected
future climate scenarios will also have a significant impact on grassland ecosystem services,
such as carbon stocks, in northern China [33]. For forest and other ecosystems, climate
change has also exhibited a profound impact on ecosystem services there (e.g., Gong et al.,
2017; Cui et al., 2021 [34,35]). Although it is well known that climate change is an important
cause of ecosystem service change [2,34,36], the exact influencing factors and driving effects
remain largely unclear. Therefore, studying the relationship between ecosystem services
and climate variation will help to better understand the driving mechanism of ecosystem
services change and lay a foundation for adaptation to climate change.

In view of this, this study constructed the index system and method of ESV evaluation
and comprehensively assessed the grassland ESV in China for 20 consecutive years. The

170



Diversity 2022, 14, 160

main objectives of this research were to find out (1) how the value of grassland ecosystem
services has evolved over time and space; (2) the long-term economic benefits and ecological
conditions of grassland in China; and (3) whether the climatic variation is a potential
regulator of ESV change and which variable is the dominant factor involved.

2. Materials and Methods

2.1. Study Area

China is located in the east of Eurasia and on the west coast of the Pacific Ocean. The
latitude is 3◦51′–53◦33′ N, longitude is 73◦33′–135◦05′ E, and the elevation is −100–8000 m.
It crosses five climatic and thermal zones of tropical, subtropical, warm temperate, middle
temperate, and cold temperate zones. The annual precipitation ranges from 50–2000 m.

China’s grassland area is approximately 4 million km2, ranking second in the world,
and accounting for more than 40% of the national territory [37]. Grassland in China
is mainly distributed in the northeast, northwest, and the Qinghai–Tibet Plateau. The
grassland is divided into high, medium, and low coverage grassland (Figure 1; [38]). High
coverage grassland refers to natural grassland, improved grassland, and mowed grassland
covering >50%. This kind of grassland generally has good water conditions and dense grass
cover. Medium coverage grassland refers to natural grassland and improved grassland
with coverage of 20–50%. Generally, this kind of grassland has insufficient water and sparse
grass cover. Low coverage grassland refers to the natural grassland with coverage of 5–20%.
This kind of grassland is characterized by a lack of water, sparse grass cover, and poor
animal husbandry utilization conditions.

Figure 1. The distribution of the study area.

2.2. ESV Evaluation Method

Xie et al. (2008) [39] showed that, since ecosystem services give different subjective
satisfaction to people in different social geographical environments, it will lead to different
marginal utility unit values. Therefore, based on Costanza et al. (1997) [1], Xie et al.
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(2003, 2008) [39,40] modified the value of each type of ecosystem service by extracting the
equivalent weight factors of ecosystem services in China according to a survey of 700 of
Chinese ecological experts. Meanwhile, after comparing a large number of results, Xie et al.
(2008) [39] confirmed that the unit prices of ecosystem services determined by him were
close to those estimated based on material quality, and the two were well comparable.
Subsequently, Xie’s method was widely used in China. Here, the equivalent factor method
modified by Xie et al. (2003) [40] based on Costanza et al. (1997) [1] was applied to
calculate the grassland ecosystem service value from 2001 to 2020 in China. The unit price
of ecosystem services determined by Xie et al. (2003) [40] is shown in Table 1.

Table 1. Ecosystem service value per unit area of grassland ecosystem type in China (yuan/hm2).

Categories Services Item (Sub-Categories) Unit Price/yuan (pi)

Regulating service Gas regulation 707.9
Climate regulation 796.4

Supporting service

Water conservation 707.9
Soil formation and protection 1725.5

Waste treatment 1159.2
Biodiversity protection 964.5

Provision service
Food production 265.5

Raw material production 44.3

Cultural service Recreation and culture 35.4

2.2.1. Model and Index System

The ESV evaluation equation [39,40], relevant indicators, and parameters are as follows:

ESV = ΣPi × A (1)

ESV is the total value of grassland ecosystem services in China. Pi is the revised unit
price of ecosystem services i of the grassland ecosystem. i = 1, 2, . . . , 9, respectively, repre-
senting nine ecosystem services: gas regulation, climate regulation, water conservation, soil
formation and protection, waste treatment, biodiversity protection, food production, raw
material production, recreation and culture; A is the area of grassland ecosystem in China.

The revised unit price of ecosystem services is adjusted by using biomass factors
as follows:

Pi = (b/B)pi (2)

where Pi is the revised unit price of ecosystem services i of the grassland ecosystem, the same
as above; B is the biomass per unit area of grassland in China, B = 1322 × 85% kg/(hm2·a); pi
is the unit price of ecosystem service i under the national average state in Table 1 put forward
by Xie et al. (2003) [40]; b is the biomass of the grassland ecosystem, b = NPP/(6 × 0.45).

The parameter setting and calculation process are as follows.
Biomass generally refers to the dry weight of all living biological organisms per

unit area, which is the dry matter accumulated by net productivity. At present, there
is no report on the relationship between grassland vegetation biomass and NPP at the
national scale of long time series in China. Grassland NPP is actually the biomass of
vegetation in a year. Therefore, the dry matter weight of grassland NPP was determined
as the annual biomass. According to Fang et al. (2010) [41], the average total biomass
of grassland in China was 479.56–773 g/m2. Piao et al. (2001) [42] obtained the average
aboveground and underground biomass of 98.0 and 602.5 g/m2, respectively (under-
ground/aboveground biomass was 6.14) using the model established by China Grassland
Resources Data in the 1990s. Yang et al. (2010) [43] calculated that the average aboveground
and underground biomass of grassland in China were 104.8 and 570.2 g/m2, respectively
(underground/aboveground biomass was 5.44). By integrating all of these multiple re-
search data, we calculated that the average aboveground and underground biomass were
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127.9 and 639.3 g/m2 (underground/aboveground biomass was 5.00). Therefore, the ratio
of underground/aboveground biomass is set as 5, that is, aboveground biomass accounts
for 1/6 of the total biomass.

The aboveground biomass of grassland vegetation is equal to the grass yield (air-dried
weight) minus the water content in air-dried grass. In this study, the moisture content of
the air-dried grass is 15% [44]. The yield of air-dried grass per unit area of grassland in
China is 1322 kg/(hm2·a) [44].

In addition, when the plant biomass (dry matter weight, unit: g) is converted to carbon
weight (unit: gC), the conversion coefficient is usually 0.45 [44]. The NPP unit in this
study is gC/m2. Therefore, when NPP is converted to dry matter mass, 0.45 is taken as the
conversion coefficient (divided by 0.45).

2.2.2. Assumptions

(1) Grassland area remained unchanged. Due to human disturbance and destruc-
tion, the area of major grassland pastoral areas has decreased by 0.4% in recent years in
China [45]. Meanwhile, due to the implementation of a large-scale ecological restoration
project—the Grain to Green Program (GTGP)—in the past 20 years, the area of artificial
grassland in China has been increasing. However, all of these changes in grassland area
caused by human activities constituted less than 1%. Therefore, in order to reveal the possi-
ble impact of climate change and eliminate the impact of land use type change induced
by human activities as much as possible, this study assumed that grassland area did not
change in different years, and therefore only 1-year land use type data were used.

(2) ESV based on biomass. Costanza et al. (1997) [1] showed that biomass not only
reflects the raw material production capacity of an ecosystem but also has an important
impact on other services of the ecosystem during the formation and accumulation of
biomass. Xie et al. (2003, 2008, 2015) [39,40,46] assumed that biomass can largely reflect the
differences in service capacity of different types of ecosystems. Therefore, it is assumed
that the intensity of an ecosystem service is linearly correlated with biomass, that is, the
greater the biomass, the stronger the ecosystem service capacity.

2.3. NPP Evaluation

The process-based Carnegie–Ames–Stanford approach (CASA) model, jointly devel-
oped by Stanford University, the Nature Conservation Society (TNC), and the World Wide
Fund for nature (WWF), is used to calculate vegetation NPP over 2001–2020. Compared
with the in situ NPP and MODIS-NPP, the performance of NPP according to the CASA
model was verified to be reliable. The CASA model is a satellite-based light use efficiency
model. The model expression and parameter setting were detailed in the work of Potter
et al. (1993), Luo et al. (2020), and Zhang et al. (2021) [47–49]. In brief, absorbed photosyn-
thetically active radiation (APAR) and actual light use efficiency (ε) are used to estimate
NPP; the equation is as follows:

NPP(x, t) = APAR(x, t) × ε(x, t) (3)

where NPP is the net primary productivity (gC/m2); APAR(x, t) represents the absorbed
photosynthetically effective radiation (MJ/m) absorbed by pixel x in the month t, which is
calculated from the normalized difference vegetation index (NDVI); and ε(x, t) represents
the actual light use efficiency of pixel x in the month t (gC/MJ).

Estimation of APAR

The effective solar radiation absorbed by vegetation and the absorption ratio of the
vegetation layer to the incident photosynthetically active radiation are used to estimate
APAR, using the following relation:

APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5 (4)
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where SOL(x, t) represents the total solar radiation (Gc/m2·month) at pixel x in month
t and FPAR(x, t) represents the absorption ratio of the vegetation layer to the incident
photosynthetic effective radiation. The constant 0.5 represents the effective solar radiation
that the vegetation can use as a (wavelength is 0.4–0.7 μm) proportion of total solar radiation.
FPAR is derived based on NDVI; the calculations for FPAR were detailed in the work of
(Potter et al., 1993; Luo et al., 2020; Zhang et al., 2021) [47–49].

Estimation of light use efficiency

Light use efficiency refers to the ratio of the chemical potential of dry matter formed
per unit area in a given time to the photosynthetic effective radiant energy projected onto
the same area during the same period. Environmental factors affecting the photosyn-
thetic capacity of plants, viz., air temperature, soil moisture status, and the difference in
atmospheric water and vapor pressures, etc., can regulate the NPP of vegetation.

ε(x, t) × Tε1(x, t) × Tε2(x, t) × Wε(x, t) × εmax (5)

where Tε1(x, t) and Tε2(x, t) indicate the stress effect of low temperatures and high tempera-
tures on light use efficiency; Wε(x, t) is the influence coefficient of water stress, reflecting
the influence of water conditions; and εmax is the maximum light use efficiency under ideal
conditions.

Tε1(x, t) = 0.8 + 0.02 × Topt(x) − 0.0005 × [Topt(x)]2 (6)

where Topt(x) is the optimum temperature for plant growth, representing the average
monthly temperature of a region measured in degrees Celsius when the NDVI values reach
the maximum in a given year.

Tε2(x, t) = 1.184/{1 + exp[0.2 × (Topt(x) − 10 − T(x))]} × 1/{1 + exp[0.3 × (−Topt(x) − 10 + T(x))]} (7)

When the average monthly temperature T(x, t) is 10 ◦C higher or 13 ◦C lower than
the optimum temperature Topt(x), then the monthly average temperature T(x, t) is equal to
2(x, t) and the optimum temperature Topt(x) is equal to half of 2(x, t).

W(x, t) = 0.5 + 0.5 × EET(x, t)/EPT(x, t) (8)

where EET is the actual regional evapotranspiration (mm) and EPT is the potential regional
evapotranspiration (mm).

2.4. Data Sources and Processing
2.4.1. Used Data

The data used for the NPP estimation by the CASA model include vegetation index,
land use/land cover, and climate (Table 2). Remote sensing data of mod17A3 annual NPP
and the monthly mod13A2 normalized vegetation index (NDVI) of global land vegetation
have been accessed for 20 years from 2001 to 2020 via the EOS/MODIS portal of NASA.
The land use type data for 2015 that were used were from the Data Center for Resources
and Environmental Sciences of the Chinese Academy of Sciences (RESDC) [38]. All the
climate data were from the high-resolution meteorological dataset downloaded from the
Chinese Meteorological Information Center (Table 2). GDP data came from the National
Bureau of Statistics. The data used for ESV calculations are shown in Table 2.

At present, both RMB yuan and US dollars were used in the research; RMB yuan was
usually used in domestic studies. In order to facilitate the comparison of domestic and
international research results, both the units of RMB yuan and US dollars were used in
this study. The 2007 benchmark price of 7.68 yuan/US $ was used according to Xie et al.
(2008) [39].
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Table 2. Input and output data of the model and data source.

Model/Output Input Data Data Source

ESV

Unit price Xie et al. (2003, 2008) [39,40]
Area RESDC (Xu et al., 2018) [39]

b Fang et al. (1996) [44]
B Fang et al. (1996) [44]

NPP CASA (as follows)

CASA/NPP
NDVI

The EOS/MODIS portal of NASA
(https://ladsweb.modaps.eosdis.nasa.gov,

accessed on 1 May 2021)

Climate data Chinese Meteorological Information Center
(http://cdc.cma.gov.cn, accessed on 1 July 2021)

Land use type RESDC (Xu et al., 2018) [38]

2.4.2. Data Analysis

All these spatial data were interpolated or resampled to a 1 km × 1 km resolution using
ArcGIS 10.0 (Esri, Redlands, CA, USA) before they were inputted into the models. The
spatial resolution of NPP and ESV values output by the model was 1 km × 1 km. According
to the test, the annual ESV and climate factor data conform to the normal distribution.
Therefore, Pearson’s rank correlation analysis was conducted to explore the relationship
between grassland ESV and climate factors across an annual range at the national scale.
p < 0.05 (i.e., 95% confidence level) was defined as the statistical significance level. All
statistical analyses were performed using the SPSS version 11.5 software package. All grid
data analysis and processing were carried out by ArcGIS10.0.

3. Results

3.1. The Temporal Distribution of Grassland ESV

The annual grassland ecosystem service values (ESVs) for the national total ranged
from 1.17 × 1012 to 1.51 × 1012 yuan ($0.15 × 1012–$0.20 × 1012), with an average of
1.37 × 1012 yuan ($0.18 × 1012) from 2001 to 2020 (Figure 2), accounting for 4.42% of GDP
(48.7 × 1012 yuan; $6.34 × 1012) (Figure 3). The grassland ESV has increased significantly
(p < 0.001, R = 0.892) over the last 20 years at the rate of 122 × 108 yuan ($15.89 × 108)
per year, with a peak occurring in 2020. In general, the mean annual grassland ESV was
substantially higher in the last 10 years (2011–2020, 1.44 × 1012 yuan; $0.19 × 1012) than in
the first 10 years (2001–2010, 1.30 × 1012 yuan; $0.17 × 1012), indicating that the grassland
ecological environment and service capacity have been generally improved over recent years.

y x
R

Figure 2. Interannual variation of the grassland ecosystem service value (ESV) for the national total
from 2001 to 2020.
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Figure 3. Ratio of grassland ecosystem service value to GDP in China from 2001 to 2020.

In terms of the four major ecosystem services, regulating service accounted for the
largest proportion of 52.6% (0.721 × 1012 yuan; $938.80 × 108), followed by supporting
service (42%, 0.575 × 1012 yuan; $748.70 × 108), provision service (4.8%, 0.066 × 1012 yuan;
$85.94 × 108), and cultural service (0.6%, 0.008 × 1012 yuan; $10.42 × 108) (Figure 4).

 
Figure 4. Contribution rate of the four grassland ecosystem services in China.

3.2. The Spatial Distribution of Grassland ESV

Spatially, the value of grassland ecosystem service per unit area in China increased from
northwest to southeast. The lowest values were less than 0.6 × 106 yuan ($7.81 × 104) per
square kilometer, mainly distributed in the desert steppe, alpine meadow, and alpine grass-
land of western and northern China. The relatively high values of more than 1.5 × 106 yuan
($19.53 × 104) per square kilometer were mostly observed in the savannas of southern China,
mainly distributed in Yunnan, Guangxi, Guangdong, and Fujian provinces (Figure 5).
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Figure 5. Spatial distribution of mean annual grassland ecosystem service value (ESV) from 2001 to
2020 in China.

However, the value of grassland ecosystem services in the northern and western
provinces of China was relatively greater. Inner Mongolia Province in North China, Qinghai
Province in Northwest China, and Tibet and Sichuan provinces in Southwest China had the
highest values of more than 10 × 106 yuan ($130 × 104). Eastern and southern provinces,
such as Zhejiang, Jiangsu, and Hainan, had the lowest ecosystem service values of less than
0.2 × 106 yuan ($2.60 × 104) (Table 3).

Table 3. The mean annual grassland ecosystem service value (ESV) during 2001–2020 in provinces
and cities of China.

Province/City ESV/104 yuan Province/City ESV/104 yuan

Hong Kong 1 Ningxia 44
Shanghai 0 Qinghai 1369
Hainan 12 Shaanxi 561

Guangxi 203 Henan 60
Guangdong 74 Shandong 77

Yunnan 824 Gansu 555
Guizhou 259 Shanxi 247

Fujian 194 Beijing 10
Hunan 68 Tianjin 1
Jiangxi 63 Hebei 231

Zhejiang 19 Liaoning 62
Chongqing 65 Jilin 48

Sichuan 1284 Inner Mongolia 1847
Hubei 68 Heilongjiang 271
Anhui 81 Xinjiang 857
Jiangsu 6 Taiwan 13

Tibet 1303

Over the past 20 years, the service values of the majority of grassland ecosystems in
China have shown an increasing trend (p < 0.05, or R > 0.445), especially in the warm shrub
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grass and alpine meadows to the south of Inner Mongolia. The values have decreased
only in very few grassland areas, mainly in the alpine meadow and alpine grassland of
Tibet Province and the alpine meadow and desert grassland around Ili in Xinjiang Province
(Figure 6).

Figure 6. Significance test of regression coefficient of annual grassland ecosystem service value
during 2001–2020 in China (R = ±0.445 represents the significance level p = 0.05).

The mean annual grassland ESV was mostly higher in the last 10 years than in the first
10 years of the 21st century, and the growth rate was usually less than 20%. The growth
rate of more than 80% was mainly distributed in such mountain areas as Kunlun Mountain,
Qilian Mountain, and Tianshan Mountain. However, compared with the first 10 years of
the 21st century, the mean annual grassland ESV in the last 10 years decreased in some
western and northern areas, mainly in the alpine meadow and alpine grassland of the
Tibetan Plateau and the surrounding grasslands of Ili areas in Xinjiang Province (Figure 7).

3.3. The Relationship of Ecosystem Service Value and Climatic Factors

As shown in Figure 8, over the past 20 years, precipitation (p = 0.030) and evapotran-
spiration (p = 0.004) in the grassland of China have shown significant increasing trends;
the temperature has exhibited a marginal increase (p = 0.062), confirming the background
of climate warming in recent decades; and the sunshine hours (p = 0.002) and relative
humidity (p = 0.014) have shown a significant decreasing trend.

In order to examine whether the grassland ESV is related to climatic factors, we plotted
variations in grassland ESV and temperature, precipitation, evapotranspiration, sunshine
hours, and relative humidity over 20 years. The results showed that grassland ESV was
significantly positively correlated with precipitation (p = 0.021), marginally positively
correlated with evapotranspiration (p = 0.082), and marginally negatively correlated with
sunshine hours (p = 0.091), but not significantly correlated with temperature (p = 0.189) and
relative humidity (p = 0.166).
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Figure 7. Percentage change of mean annual grassland ecosystem service value (ESV) over 2011–2020
relative to 2001–2011 in China.

 
Figure 8. The change trends of evapotranspiration (a), precipitation (b), relative humidity (c),
sunshine hours (d), and temperature (e) in the grassland of China from 2001 to 2020.

As shown in Figure 9, the area with a significant correlation between grassland ESV
and precipitation (p < 0.05) was the largest (31%, 30% positive and 1% negative), followed by
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sunshine hours (17%, 7% positive and 10% negative), relative humidity (15%, 13% positive
and 2% negative), evapotranspiration (12%, 5% positive and 7% negative), and temperature
(10%, 7% positive and 3% negative). Precipitation exhibited a positive impact on ESV in
79% of the grassland areas, especially in the semi-arid grassland areas of central and eastern
Inner Mongolia Province, central and northern Qinhai Province, southern Gansu Province,
and western Xinjiang Province. Sunshine hours had a negative impact on ESV in 57% of the
grassland areas, especially in the desert areas of the Qinghai–Tibet Plateau, the semi-arid
area of Loess Plateau, and the mountainous grassland area of Xinjiang Province.

  

  

 

 

Figure 9. Correlation between grassland ecosystem service value and five climate factors from 2001
to 2020 in China (R = ±0.445 represents the significance level p = 0.05).
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4. Discussion

4.1. Quantity and Evolution Characteristics of ESVs

Grassland ecosystems can provide abundant benefits for human beings. In our study,
the mean annual grassland ESV of 1.37 × 1012 yuan ($0.18 × 1012) accounted for 4.42% of
GDP from 2001 to 2020, which is a huge contribution of spiritual and material wealth. This
result is somewhat inconsistent with some previous findings (see Table 4). However, our
result does fall within the surveyed and estimated range of 0.87 × 1012–7.5 × 1012 yuan
that is considered more reliable for accounting [50]. The difference in results is mainly
attributed to the inconsistency of methods, the evaluation index system, and the research
period [51]. Different evaluation objects may also be another reason for inconsistent results
(see Table 4).

Table 4. Comparison of grassland ecosystem service value in different studies (i = 1, 2, . . . , n,
respectively, representing n ecosystem services).

Studies
Currency Used for ESV Evaluation Object

Calculation Method/Cited
yuan/1012 US $/1012 Value Grassland

Our study 1.37 0.18 Total Total Σ(ESVi per area × area)/Xie et al., 2008 [39]
Zhao et al., 2004 [52] 0.88 Indirect Total Σ(ESi × pricei)/a method cited for Each ES
Xie et al., 2001 [53] 0.15 Total Natural Σ(ESVi per area × area)/Xie et al., 2001 [53]

Chen et al., 2000 [54] 0.87 Total Total Σ(ESVi per area × area)/Costanza et al., 1997 [1]

Wang et al., 2007 [55] 0.03 Total Total Σ(ESVi per area × area)/Revised from Xie et al.,
2001 [53]

Jiang et al., 2007 [56] 1.7 Total Total Σ(ESi × pricei)/a method cited for Each ES
Xie et al., 2010 [50] (0.87–7.5) Total Total Survey and estimation
Liu et al., 2021 [51] 1.38 Total Total Σ(ESi × pricei)/a method cited for Each ES

In our study, the linear regression coefficient R2 of the annual average ESV is about 0.8,
indicating that the simulation results of the model are reliable, that is, the increasing trend
of ESV in the last 20 years is credible. However, the grassland ESV significantly decreased
in some areas. The decline may be directly related to the incomplete matching and uneven
distribution of hydrothermal conditions in these areas. All these results indicate that the
grassland ecological environment and its quality in China have generally been improved
and stabilized in recent years, but the regional development is unbalanced. Grassland
ecosystems have stronger potential restoration capacities than forests and other ecosystems,
whereas it is difficult to recover if damaged to some extent [57]. Therefore, we should
try our best to avoid the destruction of grassland and take measures of protection and
reconstruction for some key areas where the value of ecosystem services has declined.

4.2. Key Climatic Controlling Factors

In our study, precipitation significantly affected ESV and exhibited a positive effect
in 79% of grassland areas. Meanwhile, in 57% of grassland areas, the ESV was negatively
correlated with sunshine hours, especially in desert, semi-arid, and mountain grasslands.
These results indicate that precipitation is definitely the most important regulating and
stress factor of grassland ecosystems in China. This is mainly due to the fact that about 78%
of grassland in China is located in arid and semi-arid areas [58].

The temperature change in grasslands in China confirms that the climate has been
warming in recent decades. With the background of climate warming, grassland ESV in
China has been increasing significantly over the last 20 years. Even though the significant
correlation between grassland ESV and temperature only existed in northwestern alpine
grassland and southern tropical–subtropical grassland, and did not exist in some northern
grassland, this does not mean that climate change has no effect on northern grassland ESVs.
The northern grasslands are relatively drier and water is a more important limiting factor,
which may override the influence of temperature, since the effects of temperature and
water on vegetation growth in nature may be interactive or fluctuating [59]. Meanwhile,
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given that the data used were only 20 years old, climate change may influence grassland
ESV in the future, as projected by some studies [12,26–29,33].

4.3. Limitations

Our study has some limitations in the quantification of ESV. In terms of the equivalence
factor, on the one hand, it was mainly based on biomass [12,60–63], but biomass was not
always positively correlated with ecosystem services [64]; on the other hand, it mainly
depended on the cognitive level of ecological experts, without considering the spatial
heterogeneity of ecosystem services; therefore, the equivalent factor method has certain
subjective limitations. Moreover, the unit price of different types of ecosystem services was
constant, which does not reflect real life. Furthermore, some anthropogenic activity factors
affecting ESV other than climate factors were not considered, and the impact of extreme
weather events has not yet been reflected separately in this study. These limitations have
introduced greater or lesser amounts of uncertainty into the research results.

Land use change caused by human activities has a significant impact on ecosystem
service value [65,66]. Not accounting for the influence of human factors is indeed a
limitation of our study. However, changes in grassland area caused by human activities
were usually less than 1% in the last 20 years [45], which will not compromise the accuracy
of this study. At the same time, the reliability of NPP as determined by the CASA model
and the price of ESV in our study were verified, which ensures the correctness of our results.

In addition, this study has some advantages in quantifying the impact of climate
change and can achieve the purpose of determining the impact of key climate factors
on ESV change. Furthermore, our study can quantitatively demonstrate the long-term
evolutionary trends and regional differences in grassland ecosystem service value. These
can provide a good decision-making basis for the sustainable utilization of grassland
resources and climate change adaptation strategies.

5. Conclusions

(1) From 2001 to 2020, the average annual grassland ESV in China was 1.37 × 1012 yuan
($0.18 × 1012). The ESV per unit area of grassland increased from northwest to south-
east. However, the grassland ESV in northern and western provinces of China was
relatively higher and the highest values were more than 10 × 106 yuan ($1.30 × 106).

(2) In most grassland areas, ESV has shown an increasing trend in the past 20 years. At
the same time, the mean annual ESV was higher (usually less than 20%) in the last
10 years than in the first 10 years. By contrast, ESV has decreased in some grassland
areas of Tibet Province and Xinjiang Province.

(3) With regard to the four major ecosystem services, regulation service accounted for
the largest proportion of 52.6% (0.721 × 1012 yuan; $938.80 × 108), followed by sup-
porting (42%, 0.575 × 1012 yuan; $748.70 × 108), provision (4.8%, 0.066 × 1012 yuan;
$85.94 × 108), and cultural (0.6%, 0.008 × 1012 yuan; $10.42 × 108) services.

(4) Precipitation was the main regulator of grassland ESV across the 20-year period. It
had a positive effect on ESV in 79% of grassland areas. The ESV of grassland was
affected by evapotranspiration and sunshine hours to a certain extent, but not by
temperature and relative humidity.

All these results indicate that China’s grassland ecosystem service has provided a
huge amount of spiritual and material wealth for human beings. In general, the grassland
ecosystem has been improved on the whole and is in a stable state, while regional devel-
opment is unbalanced. Particular attention should be given to the areas with declining
ESVs. Climatic factors should be considered in the decisions about adaptation plans. These
results can not only provide an important reference for eco-environmental protection and
sustainable development policies, but also provide an inclusive and in-depth perspective
on the complex socio-ecological relationship between ecosystem management decisions
and human development.
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Abstract: Evaluating the responses of net primary productivity (NPP) to climate change is essential
for regional ecosystem management and adaptations to climate change. The Yangtze River Economic
Belt (YREB) is a key ecological functional area and hotspot of carbon sequestration in China due to
the high degree of forest coverage. We used a process-based ecosystem model to project terrestrial
NPP and analyzed the response to climate change over the 21st century in the YREB under two
representative concentration pathway (RCP) scenarios using the regional climate model. The results
show that the projection of NPP generally increased by 13.5% under RCP4.5 and 16.4% under RCP8.5
in the middle of the century, by 23% under RCP4.5, and by 35% under RCP8.5 in the late term of
the century compared with that from a reference period of current climate conditions (1985–2006).
The rate of NPP change under the RCP8.5 scenario is higher than that under the RCP4.5 scenario.
Similarly, the NPP is also projected to increase both with 1.5 and 2 ◦C global warming targets in the
YREB. The magnitudes of NPP increment are approximately 14.7% with 1.5 ◦C and 21% with 2 ◦C
warming targets compared with the current climate, which are higher than the average increments
of China. Although NPP is projected to increase under the two scenarios, the tendency of NPP
increasingly exhibits a slowdown after the 2060 s under the RCP4.5 scenario, and the growth rate of
NPP is projected to drop in more than 31% of regional areas with the additional 0.5 ◦C warming. In
contrast, under the RCP8.5 scenario, the trend in NPP keeps rising substantially, even above 2 ◦C
global warming. However, the NPP in some provinces, including Jiangxi and Hunan, is projected to
reduce at the end of the 21st century, probably because of temperature rises, precipitation decreases,
and water demand increases. Generally, the NPP is projected to increase due to climate change,
particularly temperature increase. However, temperature rising does not always show a positive
effect on NPP increasing; the growth rate of NPP will slow down under the RCP4.5 scenario in the
mid-late 21st century, and NPP will also reduce by the end of this century under the RCP8.5 scenario
in some places, probably presenting some risks to terrestrial ecosystems in these areas, in terms of
reduced functions and service decline, a weakened capacity of carbon sequestration, and reduced
agricultural production.

Keywords: vegetation NPP; projection; process-based ecosystem model; climate change; global
warming target; YREB

1. Introduction

Terrestrial ecosystems play a key role in the global carbon cycle, which absorbs ap-
proximately 20% and 30% of anthropogenic CO2 emissions worldwide [1]. The net primary
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productivity (NPP) of the terrestrial ecosystems is a critical indicator of the terrestrial
carbon cycle, as well as being an essential component for the survival of ecosystems that
contribute to ensuring the welfare of human beings [2,3]. Exploring NPP responses to
climate change and its feedback is crucial for understanding the terrestrial ecosystem dy-
namics and sustainable development. Terrestrial ecosystem models represent a common
framework and a useful method for the ecological research of climate processes, which
provide simulations not just for determining the outcomes of terrestrial ecosystems, but
also assessing the responses to future stresses [4]. Previous studies have confirmed that the
terrestrial NPP is highly sensitive to climate change and other environmental factors [5,6].
Continuous warming has profound effects on the NPP of terrestrial ecosystems, as shown
by observational evidence and modeling findings, demonstrating extensive influences on
ecosystem functions and services [1,7]. On the global scale, the gross primary productivity
(GPP) and NPP have provided evidence of changes, and are projected to increase or remain
unchanged, especially in mid-to-high-latitude areas [8,9]. However, on regional scales,
the estimations of NPP have varied widely among different studies, and the trends in
NPP have exhibited more divergence in different climatic zones [10,11]. Some studies
based on ecosystem models and remote sensing data found that the NPP increased on a
national scale or within certain typical ecosystem types in recent decades [12,13]; other
studies found that the trends of NPP deceased over time in some regions [14]. However,
estimations of average NPP ranged considerably on regional scales [15–17]. Furthermore,
the projections of NPP showed more inconsistencies in terms of magnitude, trends, and
spatial distribution, and were sometimes even controversial when projecting the responses
of NPP to future climate change [14,18]. Exploring the spatiotemporal patterns of NPP
and dominant factors concretely can develop an understanding about terrestrial carbon
sequestration and ecological risks to climate change on different scales; this is also required
for facilitating climate change adaptation and ecosystem management.

The Yangtze River is the third largest river in the world, and its development is
central to one of three ongoing national strategies of the One Belt and One Road initiative
in China, which a project of high international significance. However, it is also one of
the regions most sensitive to climate change, being deeply affected by the East Asian
Monsoon [19]. The annual average temperature of the Yangtze River Basin has increased
more than the global average. Furthermore, the average regional temperature is projected
to rise remarkably in the future according to the projections of climate models, as will the
frequency of the extreme climatic events occurrence [20,21]. On the other hand, this region
has the largest subtropical forest in the world, and the carbon sequestration of artificial
forests is considered to represent huge potential for achieving China’s carbon neutral target,
due to the sufficient water and thermal resources [22,23]. However, a range of ecological
and environmental problems, such as the shrinking area of natural forests, ecosystem
degradation, soil erosion, reductions in biodiversity, and rapid urbanization, have emerged
in the Yangtze River Basin since the 1950s [24,25]. To protect the fundamental ecological
barriers and a major grain-producing region of China, a series of guidelines have been
issued successively, e.g., “Grain for Green” (since 1990s), the “Outline for the Development
Plan of the Yangtze River Economic Belt (YREB)” (2016), and the “Environmental Protection
Plan for the YREB” (2017). The future of the YREB is proposed to orient towards ecological
priority and green development [26].

With the green development of the YREB clearly confirmed, more and more studies
have focused on changes in the ecosystems and its responses to environmental factors. Ke
et al. used the Carnegie–Ames–Stanford Approach (CASA) model to simulate the spatial
and temporal patterns of vegetation NPP in the Yangtze River Basin from 1982 to 1999, and
found that it exhibited a clear increasing tendency of NPP [27]. Zhang et al. estimated that
the forest NPP decreased from southeast to northwest by the Lund–Potsdam–Jena (LPJ)
model in 1981–2000 in the Yangtze River Basin [28]. However, the estimates of NPP varied
in magnitude and pattern, ranging from 262 to 687 g C/m2 a1, because of differences in
approaches, data, time frames, etc. [29,30]. As for the NPP changes in the future, research by
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Miao et al. suggested that terrestrial NPP will decrease in most of the Yangtze River Basin
under SRES B2 scenarios using the Atmosphere–Vegetation Interaction Model (AVIM) [30].
Other studies in China also suggested that the Yangtze River Basin is at high ecological risk
due to the decrease in ecosystem productivity caused by climate change [31]. However,
some studies on the region had projected an increasing tendency of terrestrial NPP [11,18].
In summary, the results of existing studies indicated that there are considerable variations
and high uncertainties, whether estimating NPP in recent decades or in projections of NPP
in the future in the YREB. According to the implementation of a new regional development
philosophy that began in the 1980s, it is also necessary to track the effects of ecosystem
programs and understand the dynamics of carbon sequestration in this region, exploring
the ecosystem responses and risks associated with climate change in the future.

In this study, terrestrial ecosystem NPP was estimated and projected by a process-
based ecosystem model with high-resolution data of vegetation types and Regional Climate
Model (RCM) results in 1971–2099, to explore the responses of the ecosystem to climate
change in the YREB, which is a significant river basin that covers diverse terrestrial ecosys-
tems in a typical subtropical monsoon region. The major objectives of this study are: (1) to
project the spatiotemporal patterns of terrestrial ecosystem NPP in the 21st century, (2) to
investigate the changing trends in NPP over different periods and with different global
warming targets; and (3) to explore the responses of NPP and potential risks to climate
change in the YREB.

2. Materials and Methods

2.1. Study Area

The YRBE is located in the middle of China, and covers nine provinces and two
municipalities, over an area of 2.05 billion square kilometers, accounting for 21% of China’s
landmass (Figure 1). The YREB has a very important ecological role in China, as well as
for the rest of East Asia. Approximately 40% of China’s available fresh-water resources
and more than one-fifth of the total wetland area are here [32]. Grain production, water
conservation, and carbon sequestration in the YREB account for 40.2%, 39.2%, and 37.7% of
China’s total proportions for terrestrial ecosystem services, respectively [33]. Subtropical
forests constitute approximately 45% of this region, which is considered an important
carbon sink in the Northern Hemisphere [23].

Figure 1. The geographical location and ecological pattern of the YREB of China.

2.2. Model Description and Validation

The Carbon Exchange between Vegetation, Soil, and Atmosphere (CEVSA) model
is a process-based terrestrial ecosystem mechanical model that simulates and quantifies
energy and the cycles of carbon, nitrogen and water [34]. There are three key modules
in the CEVSA model: the biophysical module, which calculates the canopy conductance
of plant, soil water supply, and evapotranspiration; the plant growth module, including
photosynthesis, autotrophic respiration, carbon allocation in organs, etc., which are key
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processes of plant growth; and the biochemical module, which simulates how carbon and
nitrogen transform and decompose between vegetation and soil. The major parameters and
processes of the CEVSA model have been validated and calibrated in different ecosystem
types. Gross primary productivity (GPP), NPP, ecosystem heterotrophic respiration (HR),
leaf area index (LAI), and net ecosystem exchange outputs by the CEVSA model have ex-
hibited high correlations with the observations by eddy flux tower data and plot-sampling
observation datasets of the China Ecosystem Research Network, and the value of remote
sensing estimated models [35,36]. The CEVSA model has been widely used to simulate the
responses of ecosystems to environmental factors on different scales [18,37]. In this study,
we used the latest vision of the CEVSA model—CEVSA2, which incorporates a nitrogen
influence module and updated data on nitrogen depositions. The details of the CEVSA2
model are described in Gu et al. (2017) [36]. Comparisons between the observed data of
vegetation carbon storage and soil carbon storage showed that the simulation results of the
improved CEVSA2 model have stronger agreement with the observed data [37].

2.3. Input Datasets

The gridded datasets included vegetation types, soil parameters, and climate processes,
and were inputted to the CEVSA2 model. All input datasets were processed to 10-day
averages and interpolated to 0.1 latitude × 0.1 longitude resolutions. Climate data were
interpolated with the thin disk spline algorithm in ANUSPLIN software [38]. Vegetation
types derived from Global Land Cover (GLC) data were downloaded from the website of
the European Commission and resampled to 16 vegetation function types for the CEVSA
model. The soil data and parameters were derived from a digitalized soil texture map
of China and a soil classifications map, provided by the Institute of Soil Science, Chinese
Academy of Science. Climate input data were used for the period of 1961–2099, which
constituted observational data for the simulation of ecosystem responses under current
climate condition, and climate change scenario data were used to project further ecosystem
responses. The observational data were based on daily dataset in situ measurements from
about 2400 meteorological stations from 1961 to 2005, which were provided by National
Meteorological Information Center. The climate change scenario data were obtained from
the BCC_CSM1.1 global climate model, driven by RegCM4.0, with a 25 km × 25 km original
spatial resolution, which was released by the National Climate Center of China [21]. The
climate projection datasets have been revised on the national scales for China and are
widely used to perform impact assessments of climate change across multiple different
disciplines [39,40]. In addition, annual mean CO2 concentration data for historical periods
were obtained from the Scripps Institution of Oceanography (SIO). The projections of
annual CO2 concentration varied according to climate scenarios available from the IPCC
Data Center. We used two representative concentration pathway (RCP) scenarios: RCP4.5
is a medium greenhouse gas emission scenario, whereas RCP8.5 is a high greenhouse gas
emission scenario.

Figure 2 illustrates the recapitulative characteristics of climate change in the YREB.
The annual mean air temperature was about 14.8 ◦C in the period 1986–2005. By the end
of the 21st century, the mean temperature is projected to be 15.9 or 17.9 ◦C under the
RCP4.5 or RCP8.5 scenario, respectively. The mean air temperature is projected to increase
substantially from 2006 to 2099 (Figure 2a). Precipitation will slightly increase, by 3.4%
compared with the present climate, towards the end of the 21st century (2070–2099) under
RCP4.5. Similarly, precipitation will increase by 2.3% under the RCP8.5 scenario (Figure 2b).
The atmosphere CO2 concentrations continue to increase, and are projected to continuously
increase during the period of 1960 to 2099. The CO2 concentration will increase strongly
under the RCP8.5 scenario; comparatively, it will increase moderately until 2070, and then
fluctuate under the RCP4.5 scenario. The magnitudes of CO2 concentration under RCP4.5
and RCP8.5 are estimated to be slightly over 500 and 900 ppm by the end of the 21st century,
respectively (Figure 2c).
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Figure 2. Annual variation in mean air temperature (a), precipitation, (b) and atmospheric CO2

concentration (c) during the periods 1961–2005/2006–2099 under the RCP4.5 and RCP8.5 scenarios in
the YREB.

2.4. Simulations and Analysis

Firstly, the equilibrium CEVSA2 model was performed by average climatic data and
average CO2 concentration in 1971–2000 until equilibrium status of the ecosystem was
achieved, which aimed to eliminate the impacts of the initial ecosystem conditions on the
simulation. Then, the dynamic model was run using transient climate data and the annual
atmospheric CO2 concentration during the period 1961–2099. The results of the dynamic
simulation from 1986 to 2005 were used as a referenced for the current climate, and the
outputs of 2020 to 2099 were analyzed to explore the spatiotemporal patterns and changing
trends in vegetation NPP over the 21st century.
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To show the spatiotemporal characteristics of vegetation NPP to climate change, we
defined the period of 2020–2049 as the mid-term 21st century and the period of 2070–2099
as the late-term 21st century. In addition, because of the concerns of the impacts of not
achieving global warming targets in key ecological regions, we also analyzed the impacts
of 1.5 and 2 ◦C global warming targets on terrestrial NPP in the YREB. Here, based on the
results from Jiang et al. (2016) [41], we extracted the projections of 1.5 and 2 ◦C warming
under RCP4.5 and RCP8.5 scenarios, respectively. All representative periods in this study
are shown in Table 1.

Table 1. The representative periods of the 21st century and the periods of 1.5 and 2 ◦C warming
under RCP4.5 and RCP8.5 scenarios.

Scenarios Mid-Term Late-Term 1.5 ◦C Warming Period 2 ◦C Warming Period

RCP4.5 2020–2049 2070–2099 2020–2039 2040–2059
RCP8.5 2020–2049 2070–2099 2017–2036 2030–2049

To indicate the responses of vegetation NPP to climate change in the YREB, the
percentage change of NPP (R) was defined as the normal value in different periods against
its value in the respective reference period. Here, NPPTP is the mean NPP during the
different target periods, and NPPRP is the mean NPP of the reference period. We adopted
linear fitting to show the trend in annual NPP spatial and temporal patterns according
to climate change under the two RCP scenarios. This was estimated using ordinary least
squares based on unitary linear regression. Differences in the NPP slope at different
warming targets were used to estimate the distinct responses of a further 0.5 ◦C increment
of warming and the potential risks of plant growth to global warming in the YREB.

3. Results

3.1. Estimated Vegetation NPP in the Current Climate

The spatial distribution of plant NPP varied markedly over the entire YREB region, as shown
in Figure 3. The annual NPP was estimated to be about 652.7 ± 177.2 g C m−2 year−1 during
the reference period, which is similar to the results obtained by Miao et al., who used AVIM
(674.1 g C m−2 year−1), and Luo et al., who used statistical data (687.4 g C m−2 year−1) [42], and
the estimate was higher than that in the simulation performed by Zhang et al., who used
the LPJ model (530.4 g C m−2 year−1), and the evaluation carried out by Wu et al., who
used remote sensing data (472.6 g C m−2 year−1). The annual NPP in the YREB is about
1.7 times greater than that of the whole country, the total NPP of the YREB comprises about
33% that of the whole country, although the land area only accounts for about 21% of the
total area. Spatially, the higher NPP values, above 750 g C m−2 year−1 in the YREB, are
mainly located in the middle and lower reaches, which account for about 35.5% of the total
area of the YREB, covering Jiangxi, Hunan, and Zhejiang provinces, and in some regions
of the upper reaches, such as Chongqing municipality, Sichuan Province, and southern
Yunnan Province. The lower NPP values, of less than 450 g C m−2 year−1, are distributed
in the northwest of the YREB, which accounts for approximately 13.8% of the total area;
these areas are mostly mountainous and plateau areas, including the northwest Sichuan
Province and the northern Yunnan Province. Temporally, the tendency of annual mean
NPP in the reference period showed significant growth (R2 = 0.71, p < 0.01), which was
consistent with the changing tendency of annual NPP on the national scale; however, the
growth rate in the YREB was approximately 1.3 times higher than that on the national scale.
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Figure 3. Spatial pattern of NPP in the reference period of 1986–2005 in the YREB.

3.2. Projected Vegetation NPP Due to Future Climate Change

Vegetation NPP is projected to continuously increase in the YREB in the 21st century. The an-
nual mean NPP will increase to 738.7 ± 190.7 g C m−2 year−1 and 805.6 ± 203.2 g C m−2 year−1

under the RCP4.5 scenario, and 756.6 ± 193.9 g C m−2 year−1 and 924.8 ± 241.6 g C m−2 year−1

under the RCP8.5 scenario in the mid-term and late-term 21st century, respectively. Annual mean
NPP was significantly correlated with the mean air temperature (RCP4.5: R2 = 0.72, p < 0.01;
ECP8.5: R2 = 0.93, p < 0.01) for both RCP scenarios (Figure 4). Meanwhile, the NPP growth rate
will clearly be higher under the RCP8.5 scenario than that under the RCP4.5 scenario, although
both NPP growth rates are higher than that in the reference period.

 
Figure 4. Effects on vegetation NPP and the growth rates of mean air temperature under different
scenarios in the YREB.
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The trends in annual NPP under the different scenarios indicate that there is a turning
point of NPP changing to temperature increase. Before the average temperature rises to
15.7 ◦C, the rate of NPP change under RCP4.5 is shown to be higher than that under RCP8.5.
As the mean air temperature continues to increase, NPP also keeps increasing under the
high emission scenario. However, when the mean temperature rises above 17.5 ◦C under
the RCP8.5 scenario, the value of NPP fluctuates at around 1000 g C m−2 year−1, and the
trend in NPP change also shows a remarkable slowing down.

Although global warming prompts vegetation NPP to increase remarkably, our results
also reveal that warming does not always have positive effects on the NPP. The interdecadal
NPP trend shows that the growth rate of vegetation NPP appears to decrease after 2060
under RCP4.5, and slows down after 2070 under RCP8.5 (Figure 5). In addition, the
atmospheric CO2 concentration shows a positive effect on vegetation NPP based on the
interdecadal trends of NPP; the NPP growth rate is consistently greater under higher
atmospheric CO2 concentrations, whether at the same warming level or in the same period.
Similarly, the magnitudes and growth rates of NPP under higher CO2 concentrations are
greater than those under low CO2 concentrations according to the interdecadal tendency of
annual NPP.

 
Figure 5. The annual mean NPP under the RCP4.5 and RCP8.5 scenarios during 2020−2099 in
the YREB.

3.3. Spatial Responses of NPP to Future Climate Change

Figure 5 shows the spatial patterns of NPP variations in the mid-term and late-term
21st century under the two studied RCPs against to the reference period. Spatially, the
increments of vegetation NPP in the mid-term period demonstrate a basic pattern of high
in the west and low in the east under different RCP scenarios. However, in the late term,
the spatial patterns of vegetation NPP show great difference under the RCP8.5 scenario.
Generally, the overwhelming majority of areas show an increase in plant NPP in the future;
fewer than 1% of the grids show a decrease in NPP, with the exception being that in the
late term under the RCP8.5 scenario.

In the mid-term 21st century, vegetation NPP is projected to increase all over the
region, the spatial patterns of NPP change will be similar for both RCP scenarios, and the
greatest increase in vegetation NPP will be located in the Yunnan and Sichuan provinces,
which both have lower NPP values under contemporary climate conditions (Figure 6). The
projected vegetation NPP will increases by about 13.5% and 16.4% under the RCP4.5 and
RCP8.5 scenarios, respectively. In the late-term 21st century, the magnitude of NPP change
in most areas of the YREB will be 20% greater than that in the reference period under the
same RCPs. Specifically, NPP will increase by 23% and 35% under the RCP4.5 and RCP8.5
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scenario, respectively. Similarly, the magnitude of NPP change is projected to be higher
under the RCP8.5 scenario than that under the RCP4.5 scenario. However, vegetation NPP
is projected to decline in some areas under the RCP8.5 scenario in the late-term 21st century,
which will be concentrated in the central–eastern region of the YREB, including Jiangxi,
Hunan, and Hubei, comprising 3.6% of the entire YREB area.

Figure 6. Spatial change patterns of NPP in the mid−term and the late−term 21st century under the
RCP4.5 and RCP8.5 scenarios compared with the reference period in the YREB.

3.4. Vegetation NPP Responses to Global Warming

As shown in Figure 7, the spatial change in vegetation NPP presents similar patterns
for both 1.5 and 2 ◦C global warming targets for different RCP scenarios. The magnitude
of vegetation NPP increases considerably more in the western YREB than that in the east.
Vegetation NPP is projected to increase strongly at both warming targets over the region;
fewer than 1% of grids showed it to decrease compared with the reference period. The
annual mean NPP is projected to increase to 730 ± 188.1 g C m−2 year−1 at 1.5 ◦C warming
and to 771 ± 198.3 g C m−2 year−1 at 2 ◦C warming. The increase in NPP is approximately
14.7% at 1.5 ◦C warming and 21% at 2 ◦C warming compared with the reference period.
Additionally, there is no significant difference in NPP variation under different scenarios,
although vegetation NPP will increase by approximately 6% more in the 2 ◦C global
warming period than in the 1.5 ◦C warming period. Generally, warming is projected to
promote NPP even at 2 ◦C warming targets, and the additional 0.5 ◦C warming shows
positive contributions to NPP increasing, especially under the RCP8.5 scenario.
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Figure 7. Spatial patterns of vegetation NPP at 1.5 and 2 ◦C global warming under the RCP4.5 and
RCP8.5 scenarios in the YREB.

Although plant NPP is projected to increase in most areas of the YREB with the
two global warming targets, the extra 0.5 ◦C warming will show a substantial impact on
the growth rate of vegetation NPP. Figure 8 shows the different NPP tendencies in the
1.5 and 2 ◦C warming periods under different scenarios. A further 0.5 ◦C of warming would
reduce the growth rate of NPP in about 31% of the regional areas under RCP4.5. Spatially,
the growth rate of NPP in about one-third of the YREB, including places such as Sichuan,
Yunnan, Guizhou, northern Hubei and Jiangsu, and northwestern Anhui, will be reduced
at an enhanced warming target. Conversely, the trend in vegetation NPP is projected to
keep growing in over 89% of the region at 2 ◦C warming under the RCP8.5 scenario. In
most places, such as northern Yunnan, northeastern Sichuan, and northern Jiangsu and
Anhui, there will be an even further increased growth rate of NPP at 2 ◦C warming.

Figure 8. Spatial patterns of NPP trends at 1.5 and 2 ◦C global warming targets under the RCP4.5
and RCP8.5 scenarios.
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4. Discussion

4.1. The Effects of Warming

Global warming is one of the most pervasive characteristics of climate change. Contin-
uous warming has been proven to increase terrestrial vegetation NPP in recent decades;
it was projected to increase in the 21st century in mid- and high- latitude regions, as well
as alpine regions [1,43]. Previous studies in China also indicated that the rising meant
air temperature was the dominant factor accounting for NPP changes on the national
scale [14,36]. Based on the projection of high-resolution regional climate models, warming
will also be widespread throughout the 21st century in the YREB (Figure 9). Our simulation
results show that vegetation NPP is projected to increases in most parts of the YREB. Fur-
thermore, the magnitude of NPP increments will be greater in the west than in the eastern
YREB, which is associated with the differences in mean air temperature due to the higher
altitude in this region. Our results are similar to those from research on alpine regions
in southwestern China, such as the Yunnan–Guizhou Plateau and the Western Sichuan
Basin [28]. The effects of different global warming targets on vegetation NPP also show
that a rising temperature will promote increased vegetation productivity, which will be
beneficial for terrestrial ecosystem carbon storage and achieving carbon neutrality on the
regional scale.

Figure 9. Mean air temperature change patterns in the mid–term and late–term 21st century compared
with the reference period under the RCP4.5 and RCP8.5 scenarios.

4.2. The Effects of Precipitation Changes

As one of the most abundant water resource regions in China, the water supply
for plant growth in the YREB is usually sufficient, and water resources rarely constrain
vegetation productivity [44]. Based on the projections of regional climate models, there are
no obvious trends in annual precipitation over the region (Figure 2b), although the variation
in precipitation exhibits reasonable spatial heterogeneity, with high uncertainty (Figure 10).
Precipitation is projected to increase in the west but generally decrease in the southern and
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central YREB, and coupled with temperature changes, the spatial hydrothermal patterns
will be greatly altered in this region.

Figure 10. Spatial pattern of annual mean precipitation changes in the mid-term and late-term 21st
century relative to the reference period under the RCP4.5 and RCP8.5 scenarios in the YREB.

The detrend fluctuation analysis showed that temperature and precipitation both
exhibit positive correlations with the interannual variability of NPP (IAV NPP) during
the period of 2021–2099 under RCP4.5, whereas under RCP8.5, only precipitation shows
a positive correlation with IVA NPP (Table 2). This suggests that precipitation has a
more dominant influence on IVA NPP than temperature, especially under higher emission
scenarios, which indicates that as plant demand for water supply increases with rising
temperatures, water resources may become a restricted factor for plant growth in this
region. Thus, enhanced warming due to anthropogenic CO2 emission promotes the growth
and productivity of plants, but a sufficient water supply is necessary; otherwise, it may
lead to stunted vegetation growth and reduced productivity. Vegetation NPP is projected
to decline in the central–southern region of the YREB under RCP8.5 in the late-term
21st century maybe for this reason. Studies on other areas of China also found that
declines in vegetation NPP will occur in water-deficit areas associated with rising air
temperatures [7,45]. Therefore, water availability to terrestrial vegetation is particularly
important in the YREB, especially so towards the end of 21st century. However, plant
growth and vegetation NPP are always affected by integrated climatic conditions and other
environmental factors; thus, the trends and fluctuation in NPP will respond in accordance
with certain regional features as well as species diversity and complexity.
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Table 2. The coefficients of detrended temperature and precipitation anomalies with IAV NPP under
the RCP4.5 and RCP8.5 scenarios in the different periods of 21st century. Statistically significant
correlations are marked with ** (p < 0.01) and * (p < 0.05).

2021–2049 2070–2099 2021–2099

RCP4.5
T 0.04 0.61 ** 0.39 **
P 0.55 ** 0.35 0.38 **

RCP8.5
T 0.27 −0.01 0.15
P 0.58 ** 0.52 * 0.52 *

4.3. Factors Other Than Climate

Except for temperature and precipitation, the elevated atmospheric CO2 concentra-
tions are a remarkable feature of climate change. The CO2 concentration will increase even
more under the high-emission scenario, and it will be more than twice the current level un-
der RCP8.5 by the end of the 21st century (Figure 2c). Previous studies have confirmed that
the fertilization effect of CO2 contributes to the increase in vegetation NPP, but high CO2
concentrations will indirectly have a negative impact on biodiversity, which may impact
the stability of terrestrial vegetation productivity; thus, the effects of rising atmosphere
CO2 levels are still highly uncertainty [8,46,47]. Our results show that annual NPP and
its changing rate under tRCP8.5 are greater than those under RCP4.5, especially at 4 ◦C
warming (Figure 9). Higher CO2 concentrations and warmer temperature bring further
increases in NPP, which means that the elevated CO2 concentrations will stimulate plant
growth as well as temperature increases [48]. Vice versa, the effect of rising air temperature
on vegetation would be limited without the cooperative influence of higher CO2 concentra-
tions. Our results suggest that the increase in CO2 concentration has a significantly positive
effect on NPP. Similar results by Zhu et al. (2018) [43] also indicated that the elevated
atmospheric CO2 concentration is the dominant factor on increasing NPP, particularly in
mid- and low-latitude regions.

Land use and land cover change (LUCC) present realistic pressures on terrestrial
ecosystems in addition to the impacts of climate change, and also have notable impacts on
species and productivity [49,50]. Anthropogenic LUCC is a substantial factor that impacts
terrestrial ecosystem functions and services associated with biodiversity and productivity,
especially in areas with extensive human activity [17]. In this study, the CEVSA2 model did
not consider the effects of LUCC, which would bring uncertainty in the projection. In the
YREB, urban and construction areas have continuously increased in recent decades [51,52].
Additionally, wetlands have been shrinking since the 1970s [53]. However, forestland and
grassland have shown an increasing tendency since the 1990s, due to a series of major
ecological conservation and restoration projects, such as “the Grain for Green Program”
and “Natural Forest Protection Projects”. Now, there are high forest coverage rates in the
YREB, significantly above the national average [25,51,54]. Some studies have suggested
that the increases in NPP due to climate change are not enough to offset the decreases
in plant NPP due to anthropogenic LUCC [55], although other studies have suggested
that LUCC has already brought benefits for vegetation and terrestrial ecosystems in the
YREB, for ecological restoration and protection projects in this region [26,56]. Furthermore,
these ecological projects have been implemented and the effects have continually been
improved, with the target of carbon neutrality. Therefore, ecosystem protection combined
with climate change would be more conducive to the promotion of vegetation NPP. Thus,
it would be expected that the terrestrial carbon storage in this region has great potential
to improve, especially for the forest ecosystem [57]. Another study found that the carbon
sequestration by terrestrial ecosystems in the YREB is projected to comprise about 42% of
China’s total capacity by the end of the 21st century; the magnitude will be higher because
of ecological policies and projects in this region [37]. However, LUCC intensively affects
ecosystems, including species, vegetation types, biodiversity, and productivity, and it is a
great challenge to simulate the effects of both anthropogenic LUCC and climate change in
ecosystem models [1]. Model development is ongoing and could consider LUCC effects by
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coupling a module of climate change with land use, and it could consider the impacts of
human management measures on terrestrial ecosystems, such as natural forest protection
and the management of nature reserves, in order to reduce uncertainties in modeling
vegetation growth on the regional scale.

5. Conclusions

In this study, we used a process-based ecosystem model, CEVSA2, driven by high-
resolution climate data, to project future vegetation NPP, analyze the spatial and temporal
changing patterns of NPP, and explore the responses of NPP to key climate factors in the
YREB. Our study indicates that global warming will promote vegetation NPP, and vegeta-
tion NPP will increase strongly in the 21st century in the YREB; it is estimated to increase by
about 14% under RCP4.5 and 16% under RCP8.5 in the mid-term, and 23% under RCP4.5
and 35% under RCP8.5 in the late-term. Generally, NPP is projected to be higher under the
RCP8.5 scenario than that under the RCP4.5 scenario, associated with the positive effects of
high atmospheric CO2 concentrations. NPP is projected to increase at both global warming
targets as well. The magnitude of the NPP increase will be approximately 15% at 1.5 ◦C and
21% at 2 ◦C global warming compared with the reference period, which are higher values
than those expected on the national scale. However, continuous warming does not always
result in positive contributions to vegetation NPP; the trends and variations in NPP change
show considerable differences for different warming levels and climate change scenarios.
In addition, precipitation exerts a more dominant role in NPP changes than air temperature
under the higher emission scenario, especially towards the end of the 21st century. Our
findings on vegetation NPP change and its responses to climate change suggest that climate
change may be beneficial for vegetation growth and the carbon storage of terrestrial ecosys-
tems in the YREB, but the projections of and responses to NPP exhibit high uncertainty and
complexity. Our research contributes a detailed modeling study on a significant river-basin
scale, which covers diverse terrestrial ecosystems and rich biodiversity. Our conclusions
contribute to the knowledge of sustainable forest management and terrestrial ecosystem
adaptations to climate change on river-basin scales and in subtropical monsoon zones.
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Abstract: Habitat suitability assessment is critical for wildlife population conservation and manage-
ment planning. The MaxEnt model is widely used in species habitat suitability modeling. In order to
investigate the habitat status of the black-necked crane in the Zoige grassland wetland ecological
function area, this study evaluated the habitat suitability of the black-necked crane using the MaxEnt
model with 152 occurrence records and 13 environmental variables. Based on the Akaike information
criterion corrected for the small sample size, the best optimal parameter combination (feature class
LQPHT, regularization multiplier 3.0) was selected. The results show that the Maxent model had
good accuracy with an area under the curve (AUC) value of 0.895. Distance to roads, average summer
precipitation, distance to lakes, and altitude are the dominant environmental variables affecting the
potential distribution of black-necked cranes, with the contribution rates of 31.6%, 29.8%, 14.3%,
and 8.2%, respectively. The suitable habitat area of black-necked cranes is mainly distributed in and
around the Zoige Wetland National Nature Reserve, accounting for 46.49% of the Zoige Grassland
Wetland National Key Ecological Function Zone. The potential distribution area has a tendency to
spread to Hongyuan County in the south of the functional zone, and the unsuitable habitat is mainly
distributed in the high-altitude area in the southwest of the functional zone. This study recommends
focusing on the distribution area of black-necked cranes around Zoige Wetland National Nature
Reserve and Hongyuan County to improve conservation strategies and strengthen protection efforts.

Keywords: Zoige grassland wetland; black-necked crane; species distribution model; MaxEnt; habitat
suitability assessment; model optimization

1. Introduction

Biodiversity refers to the diversity of all living things on earth and is the basis for
human survival and development. Furthermore, biodiversity conservation can enhance
human well-being. Habitat loss and fragmentation are the major cause of biodiversity
loss [1]. Habitats, as places where species can live and reproduce, can provide for individu-
als, populations, and communities to complete their cycle. Habitat suitability assessment
is a critical component of species conservation research and an important indication of
habitat quality [2,3]. The assessment of the habitat suitability of wildlife has become a
hot issue in the study of the changes in the global species spatial pattern [4–7]. Therefore,
understanding the habitat conditions of the studied species, that is, exploring and analyzing
the environmental variables affecting the distribution of species and identifying potential
geographic distribution areas, is required in order to provide scientific theories for effective
species conservation and protected area management planning [8].
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Species distribution models are important tools for studying the habitat suitability
of species, identifying potential species distribution areas, revealing possible influencing
factors, and providing an important scientific basis for biodiversity conservation [9,10].
Currently, there is extensive scientific literature on species distribution models [11]. Based
on whether species occurrence records are necessary when the model is created, habitat
suitability models are classified into three categories: mechanistic models, statistical models,
and niche models [7,10,12–14]. The commonly used model are ecological niche factor
analysis (ENFA) [15], random forest (RF) [16], Maximum Entropy Models (MaxEnt) [9,17],
generalized linear model (GLM) [18], generalized additive model (GAM) [18], and artificial
neural networks (ANN) [19]. Among them, the MaxEnt model relies on species occurrence
records and environmental variables and has broad applicability, allowing for less bias
and more accurate results [20–22]. At the same time, it can still obtain better results
when compared with other species distribution models and is widely used to assess the
distribution of wildlife habitats [17,23].

The black-necked crane (Grus nigricollis) is listed as a national I-class protected animal
by China and a near-threatened species (NT) by the International Union for Conservation
of Nature [24,25]. Only black-necked cranes inhabit the plateau, which is mainly found on
the Qinghai–Tibet Plateau and the Yunnan–Guizhou Plateau. So far, the total number of
black-necked cranes around the globe has reached 10,000–10,200 [26]. The majority of the
black-necked cranes overwinter in the low-altitude areas of the Qinghai–Tibet Plateau, the
Yunnan–Guizhou Plateau, Bhutan, and southern Tibet, and breed in the Zoige wetland at
the northeastern end of the Qinghai–Tibet Plateau [26]. With around 2600 black-necked
cranes [27], the Zoige Wetland is the largest swamp wetland on the Eastern Tibetan Plateau
and one of the most important nesting places for them [28]. The Zoige Wetland National
Nature Reserve was established to protect local biodiversity, while the Zoige Grassland
Wetland Ecological Function Zone was established to provide regional ecological security.
Although the black-necked crane population is increasing, it is also threatened by the
reduction in wetland area during the 21st century, as melting glaciers and permafrost
degradation caused by local economic development, as well as future global climate
change, may negatively affect shallow wetlands [29,30].

Researchers conducted surveys on the population abundance, distribution [31–33],
and migration patterns of black-necked cranes [34,35]. In terms of the behavioral ecology of
black-necked cranes, the feeding time during the overwintering period is mainly regulated
by humidity indirectly [36,37], and the breeding season is mainly distributed in meadows
and marsh meadows [38]. The study of Kong et al. suggested that the impact of predator
threat and human disturbance on black-necked cranes should be considered in future
tourism management, and a safe distance should be planned reasonably [39]. Human
disturbance, food, and water conditions are the key environmental variables impacting
the habitat quality of black-necked cranes in the Napa Sea wetland [40], according to
studies on their habitat choices. Furthermore, land-use change influences the feeding
and nocturnal habitat selection of black-necked cranes [41], and precipitation is another
key factor impacting their habitat [42]. The black-necked cranes distributed in the Zoige
Wetland are mainly influenced by altitude and autumn climate [43]. The distance from
the cultivated land, the distance from the water, and the dominant vegetation are the
main environmental factors affecting the distribution of black-necked cranes in the Caohai
National Nature Reserve, Guizhou, China [44].

Previous studies have mostly focused on the migration routes, population changes,
behavioral ecology, and habitat quality of black-necked cranes. At the spatial scale, the
focus has been on the global distribution of black-necked cranes, especially in China, but
most studies at the regional level have focused on the distribution, influencing factors, and
the conservation status of the wintering areas in Yunnan and Guizhou, with insufficient
attention to the breeding sites in Zoige, Sichuan [31–44]. The Zoige Wetland is the largest
breeding place for black-necked cranes, and it is a key element of their life cycle. To
conserve species and ecosystems, nature reserves are defined and zoned. Therefore, further
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research on the distribution and habitat of black-necked cranes in breeding grounds is
needed to narrow the gap with actual local conservation actions. Thus, in this study, we
selected the Zoige Grassland Wetland Ecological Function Area, which is located in the core
area of the Zoige wetland. The optimized maximum entropy model was used to predict the
distribution of the black-necked cranes, analyze the main environmental factors affecting
the distribution of black-necked cranes and their habitat distribution characteristics, and
provide a scientific basis for the formulation of future measures for the efficient conservation
and management of black-necked cranes.

2. Materials and Methods

2.1. Study Area

Zoige Grassland Wetland National Key Ecological Function Areas (Figure 1) (31◦51′—
34◦18′ N, 101◦6′—103◦38′ N), located in the center of the Zoige Wetland, the largest marsh
wetland on the Qinghai–Tibet Plateau, is an important part of the conservation land system
of the Qinghai–Tibet Plateau. Meanwhile, the area is one of the world’s most important
alpine marsh wetlands, with a unique role in global climate change and regional ecological
security [28,45]. There are about 2600 black-necked cranes in the entire Zoige wetland,
which has the largest breeding population of black-necked cranes in the world. The re-
gion’s unique geological, climatic, and hydrological natural conditions provide a favorable
environment for black-necked crane survival and reproduction. The functional zone is at
an altitude of 2442–4921 m, including Aba County, Zoige County, and Hongyuan County,
with a total area of about 28,500 km2. It is located in the watershed of the Yellow River and
Yangtze River system, with abundant wetland peat resources, which play an important role
in water conservation, hydrological regulation, and biodiversity maintenance of the Yellow
River basin [27]. The National Main Functional Zone Plan, which defined 25 national
key ecological functional zones, was promulgated and implemented in China in 2010 [46].
Among them, the Zoige Grassland Wetland National Key Ecological Function Zone is an
important water conservation type zone in China, serving as a demonstration environment
for people living in harmony with nature. The Zoige Wetland has an annual average
temperature of 0.7–1.1 ◦C, with January temperatures of −10.5–7.9 ◦C, July temperatures
of 10.9–11.4 ◦C, and annual average precipitation of 650–750 mm [47]. The Zoige wetland
primarily protects rare wild species such as black-necked cranes, white storks (Ciconia
ciconia), and the plateau swamp wetland habitat [48].

Figure 1. The presence data of black-necked crane.
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2.2. Collection and Processing of Sample Data

Species distribution data were obtained from the published literature [49], field survey
sites provided by Li et al. [50], and downloaded from the Global Species Diversity Informa-
tion Database (http://www.gbif.org, accessed on 1 April 2022) and China Citizen Science
Platform (http://www.birdreport.cn, accessed on 5 March 2022) [51,52], with record sites
prior to 2010 removed. To eliminate duplicate, geographically and temporally unclear
black-necked crane occurrence records and prevent covariance in environmental variables
from affecting the model’s accuracy, the SDM Toolbox was used, the GIS toolkit operating
based on Python, version 2.5, developed by the Brown Lab et al., in Durham, America.
Spatial filtering using the tool to ensure that only one point per grid (1 km × 1 km) was
retained, resulting in 152 occurrence records (Figure 1, Table S1).

2.3. Screening and Determination of Environment Variables

Wildlife habitats must have the ability to provide their habitat, water, and food, so
the distribution of wildlife is subject to a combination of climatic factors and human
activities. Based on the principles of habitat suitability evaluation, combined with the
previous studies analyzed above, the characteristics of the study area and the behavioral
and ecological characteristics of black-necked cranes [36–38,40–44], the paper identified
four major categories of factors related to the distribution of suitable habitats for black-
necked cranes: climatic conditions, geomorphic types, foraging conditions, and human
activities. First of all, in terms of climatic conditions, black-necked cranes return from
migration in March and prefer to nest and breed near wetland marshes or in the center of
shallow lakes, followed by a vital period of growth and development from June to August.
The spring and summer precipitation resources are sufficient for vegetation growth as well
as fish and shrimp spawning, which provides abundant food for the black-necked cranes.
Considering the changes in behavioral habits of black-necked cranes in different seasons,
factors such as average temperature and average precipitation from 2015 to 2020 were
selected (bio1–bio10). The data were obtained from the Chinese 1 km resolution monthly
precipitation dataset (1901–2020) of the National Tibetan Plateau Science Data Center [53].
Secondly, the geomorphic types (bio11–bio13) include elevation, slope, and aspect, and
the data were downloaded from the Resource and Environment Science and Data Center
(https://www.resdc.cn/, accessed on 4 March 2022). Thirdly, the foraging conditions
(bio14–bio15, bio19) included the normalized difference vegetation index (NDVI), distance
to rivers, and distance to lakes. The former data were obtained from the 2015–2020 NASA
MODIS product data MODIS09A1 (http://ladsweb.nascom.nasa.gov/, accessed on 3 June
2021), and the latter two data were obtained from the China National Catalogue Service
For Geographic Information (http://www.webmap.cn/, accessed on 22 January 2022).
Finally, human activities (bio16–bio18) include the distance from roads, the distance from
settlements, and land-use types. The first two data come from the National Geographic
Information Resource Catalog Service System (http://www.webmap.cn/, accessed on
22 January 2022), and the latter data come from the Satellite Environment Application
Center of the Ministry of Ecology and Environment of China. The environment variable
details and sources are in Table 1.

Table 1. Variables used for modeling.

Code Environmental Variable Source

Bio1 Average spring precipitation
Bio2 Average summer precipitation
Bio3 Average autumn precipitation
Bio4 Average winter precipitation
Bio5 Average precipitation
Bio6 Average spring temperature
Bio7 Average summer temperature
Bio8 Average autumn temperature
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Table 1. Cont.

Code Environmental Variable Source

Bio9 Average winter temperature

Bio10 Average temperature http://data.tpdc.ac.cn/, accessed on
2 March 2022 (Bio1-Bio10)

Bio11 Aspect (◦)
Bio12 Altitude (m)

Bio13 Slope (◦) https://www.resdc.cn/, accessed on
4 March 2022 (Bio11-Bio13)

Bio14 Distance to lakes (m)
Bio15 Distance to rivers (m)
Bio16 Distance to roads (m)

Bio17 Distance to settlements (m) http://www.webmap.cn/, accessed on
22 January 2022 (Bio14-Bio17)

Bio18 Land use http://www.secmep.cn/, accessed on
11 August 2021

Bio19 Normalized difference
vegetation index

http://ladsweb.nascom.nasa.gov/, accessed on
3 June 2021

Applying all of the environmental factors to the model modeling would result in
overfitting due to the possible correlation between them. Therefore, the study used the
ENMTools, version 1.0.6, developed by Warren et al., an R package for correlation analysis
of each environmental factor, which does not depend on the distribution data and is able
to obtain reliable results [54]. Figure 2 shows the environmental factor correlation heat
map after processing the correlation plot with the corrplot, an R package, version 0.92,
developed by Wei et al.; the minor environmental variables with |R| ≥ 0.9 between the
two environmental factors were excluded. Finally, the Jackknife method was used to
screen again to remove the environmental factors with zero contribution rate, and only
13 environmental factors (bio1–bio4, bio10–bio16, bio18–bio19) were retained.

 
Figure 2. Heat map for correlation analysis of environmental factors. The darker the blue and red
circles, the greater the correlation between the two environmental factors.
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2.4. MaxEnt Model Optimization and Selection

The MaxEnt model has strong applicability and can use the area enclosed by the
receiver operating characteristic curve (ROC) and the abscissa, that is, the AUC value, to
evaluate the model prediction accuracy [9,20–22]. Moreover, the MaxEnt model’s predic-
tions based on default parameters are conservative, and the complexity of MaxEnt can be
changed by altering the model parameter settings to predict the potential distribution of
species more reasonably [7,55]. The study utilized the Enmeval, version 2.0.3, developed
by Muscarella et al., an R package in R (v4.0.5) to optimize the MaxEnt model [56], which
contains feature combination (FC) and regularization multiplier (RM). The feature class
included Linear features (L), Quadratic features (Q), Product features (P), Hinge features
(H), and Threshold features (T). The regularization multipliers were set to 1–4 with a 1 in-
terval each, and the six feature combinations offered by the MaxEnt model (L, H, LQ, LQH,
LQHP, and LQHPT) were merged to generate 24 combinations. The Akaike information
criterion corrected for small sample size (AICc) was used as an indicator to determine the
RM and FC of the model [57].

The black-necked crane occurrence records and the above 13 environmental factors
were imported into the MaxEnt model, and the other settings were as follows: RM and FC
values under the optimal parameters were input, 10-fold cross-validation was selected, the
number of repetitions was 10, and the Jackknife method was chosen to test the importance
of each environmental factor, and the output results were Logistic format. The model
prediction results were examined using the area AUC under the ROC curve, and the value
of AUC was taken in the range of 0–1, and the closer the value was to 1, the higher the
model prediction accuracy. The AUC values are 0.5–0.6, unqualified; 0.6–0.7, poor; 0.7–0.8,
fair; 0.8–0.9, good; and 0.9–1.0, excellent.

2.5. Habitat Suitability Classification of Black-Necked Cranes

Species predictive distribution maps show species preferences for habitat as probabil-
ities (0–1), with the closer the value to 1, the more suitable the species distribution. The
selection of thresholds generally follows three principles: objectivity, equivalence, and
discriminative power [58]. The threshold is generally determined based on the omission
error or based on the sensitivity and specificity of the prediction results. The former does
not consider commission error, while the latter comprehensively considers omission error
and commission error. The model maximum training sensitivity plus specificity (MTSS)
belongs to the latter and satisfies the three principles of threshold selection [28]. MTSS and
balance training omission and predicted area and threshold value (TPT) were selected as
classification thresholds for suitable and low suitable habitats, respectively, to reclassify
the MaxEnt model outputs into unsuitable, low suitable, moderately suitable, and highly
suitable habitats [58–60]. Finally, the Reclassify tool of ArcGIS software, version 10.8, devel-
oped by Environmental Systems Research Institute, in RedLands, America, was used to
count and calculate the area of the corresponding distribution area for each class.

3. Results and Analysis

3.1. MaxEnt Optimal Model and Accuracy Evaluation

Based on 152 occurrence records and 13 environmental factors, this study used the
Enmeval package to invoke MaxEnt to predict the potential distribution area of black-
necked cranes. The model with the lowest AICc value (i.e., ΔAICc = 0) is considered the
best model out of the current suite of models [55,56]. When the model was the default
parameter, FC = LQHPT, RM = 1, ΔAICc = 296.00, and when the model parameter was
set to FC = LQHPT, RM = 4, ΔAICc = 0 (Table 2), the AICc value was the smallest and the
model with this parameter was the optimal model. Figure 3 shows the results of comparing
different parameters in the model. When the model parameters are set to FC = LQHPT,
RM = 4, compared with the default parameters, Mean.AUC is nearly the same (decreased
by 4.00%), but the difference between the AUC Values (Auc.diff.avg) decreased by 45.56%
and 10%, and the training omission rate (OR10) decreased by 60.07%, the latter two are
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lower than the default values, indicating that the optimized model reduced overfitting, so
FC = LQHPT, RM = 4 was set as the modeling parameter. The model was reconstructed
using the optimized parameters to simulate the suitable area for black-necked cranes, and
the model was repeated 10 times, obtaining a mean value of 0.895 for the test AUC (Figure 4),
indicating that the prediction accuracy of the MaxEnt model reached a good level.

Table 2. Evaluation metrics of MaxEnt model generated by Enmeval.

Type Feature Combination Regularization Multiplier ΔAICc Avg.diff.avg

Default LQPHT 1 296.00 0.0413
Optimized LQPHT 4 0 0.0225
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Figure 3. Performances of the maximum entropy model under different settings.

Figure 4. Performances of MaxEnt model under different settings.

3.2. The Influence of Environmental Factors on the Distribution of Black-Necked Cranes

The research used the Jackknife method to analyze the importance of 13 environmental
factors affecting the habitat selection of black-necked cranes (Figure 5). The results of the
contribution of environmental variables showed (Table 3) that distance to roads, average
summer precipitation, distance to lakes, and elevation may be the major environmental
factors affecting black-necked cranes, where the contribution rates were 31.6%, 29.8%, 14.3%,

209



Diversity 2022, 14, 579

and 8.2%, respectively, with a cumulative contribution rate of 83.9%; the secondary variables
affecting the distribution of black-necked cranes were average summer precipitation, slope
direction, NDVI, and the contribution rates were 5.6%, 2.5%, 2.3%, and 1.9%, respectively;
and the percentages of other environmental factors were around 1%, indicating that the
influence on the habitat suitability of black-necked cranes was small.

Figure 5. The importance of environmental variables evaluated by Jackknife testing.

Table 3. Contributions of the environmental variables to the MaxEnt model.

Variable Contribution/% Variable Contribution/%

Distance to roads (m) 31.6 Distance to rivers (m) 1.9
Average summer precipitation 29.8 Average winter precipitation 1.1

Distance to lakes (m) 14.3 Slope (◦) 1.1
Altitude (m) 8.2 Average autumn precipitation 0.8

Average spring precipitation 5.6 Land use 0.4
Aspect (◦) 2.5 Average temperature 0.3

Normalized difference vegetation index 2.3

3.3. Habitat Suitability Distribution of Black-Necked Cranes in Zoige Grassland Wetland
Ecological Function Zone

In the MaxEnt model results, MTSS = 0.304 and TPT = 0.0623, so the thresholds for
classifying more suitable and less suitable habitats for black-necked cranes are 0.304 and
0.0623, that is. 1–0.5 is the highly suitable habitat, 0.5–0.304 is the moderately suitable
habitat, 0.304–0.0623 is the low suitable habitat, and 0.0623–0 is an unsuitable habitat. To
obtain the suitable habitat distribution map of black-necked cranes in the functional zone
(Figure 6), the above thresholds were applied to reclassify the model outputs into different
habitat classes, and the area of each suitable distribution area was calculated separately.
The statistics reveal that the highly suitable habitat for black-necked cranes in the Zoige
grassland wetland ecological function zone is about 2356.17 km2, accounting for 8.27% of
the total function area, mainly in the Zoige National Nature Reserve in the northern part
of the function zone. Low suitable habitat covers approximately 7899.43 km2, accounting
for 27.72% of the total functional zone, mainly in Zoige country and Hongyuan country;
unsuitable habitat covers about 0.98 km2, accounting for 53.51% of the total functional zone,
mainly in Aba County, a high-altitude area in the southwest. Moreover, the study indicated
that the highly suitable habitat for black-necked cranes in the Zoige National Nature
Reserve was nearly 668.70 km2, accounting for 39.22% of the whole nature reserve area and
28.38% of the highly suitable habitat area in the total functional zone. The highly suitable
habitat is mainly in the Zoige National Nature Reserve, which is primarily composed
of marshes, wetlands, grasslands, lakes, and rivers. The reserve has abundant summer
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rainfall and is covered with small lakes, creating good foraging conditions for black-necked
cranes. Black-necked cranes prefer to be distributed close to water sources, which can
provide good nesting conditions. The moderately suitable habitat was approximately
475.04 km2, accounting for 27.86% of the whole nature reserve area and 15.87% of the
moderately suitable habitat area in the total functional zone. The moderately suitable
habitat was distributed in and around the nature reserve area, where there are undulating
hills that cause differences in precipitation and temperature. All suitable habitats for
black-necked cranes took up 97.48% of the whole nature reserve area and 46.49% of the
total functional zone. In contrast to the nature reserve, the land use types of Aba County
are mostly woodland and grassland in the southwest of the functional zone, which does
not meet the demands of black-necked cranes for foraging and breeding. The spatial
distribution of environmental variables affecting the distribution of black-necked cranes is
more concentrated in the nature reserve but is not consistent in the entire functional zone.
Therefore, the suitable distribution area of black-necked cranes is largely distributed in the
nature reserve area.

Figure 6. Map of the habitat suitability of black-necked crane in the Zoige Grassland Wetland
National Key Ecological Function Zone (I. Zoige Wetland National Nature Reserve).

4. Discussion

MaxEnt model optimization generally includes correction of sampling bias, selection of
environmental factors closely related to species distribution, and the optimization of model
parameters [55,59,61–63]. Firstly, for the correction of sampling bias, the spatial filtering
method used in this research ensures only one occurrence record in every 1 km × 1 km grid
to reduce the overfitting phenomenon existing in model modeling [22], but this method
may also overlook the ecological value of high-density areas of species distribution.

Second, habitat selection determinants for black-necked cranes may differ by region;
thus, we recommend choosing environmental factors that are closely related to the species’
distribution. Previous studies on the habitat selection of black-necked cranes show that
human disturbance, food, and water conditions are the significant environmental vari-
ables determining the habitat quality of black-necked cranes [40]. Black-necked cranes
distributed in the Zoige wetlands are mainly affected by altitude and autumn climate [43].
Distance to cultivated land, distance to water, and dominant vegetation are the impacting
environmental factors affecting the distribution of black-necked cranes in the Caohai Na-
tional Nature Reserve [44]. As a result, the research on black-necked crane habitat selection
should be adapted to the study area’s conservation situation and needs. After correlation
and Jackknife analysis, only 13 environmental components were maintained in this study
to reduce model overfitting. The results of the MaxEnt model prediction showed that the
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habitat distribution of black-necked cranes was mainly influenced by distance to roads,
summer precipitation, distance to lakes, and elevation. The distance to roads is closely
related to the distribution of black-necked cranes, and by observing the occurrence records
of black-necked cranes, their collection routes may be mostly distributed along the road,
resulting in a strong contribution of the distance to roads factor, so the prediction results
may be biased. The distribution of black-necked cranes is also mainly affected by spring
precipitation, summer precipitation, and the distance to lakes, indicating that water and
food are considered to be the main environmental factors, which is consistent with the
results of previous investigations [40,42]. Black-necked cranes return from migration in
March, preferring to nest and breed near wetlands and swamps or in the center of shallow
lakes. After that, June-August is a critical period for the growth and development of black-
necked cranes. The precipitation resources in spring and summer just provide sufficient
conditions for vegetation growth and fish and shrimp reproduction and provide a rich
food source for black-necked cranes [64]. However, the distance to cultivated land was
discovered to be the primary determinant for the distribution of black-necked cranes in
Dashanbao, Yunnan, and Caohai, Guizhou, China, because it makes up a significant portion
of these research areas and offers more food than other environmental factors [41,44]. The
majority of the swamp and lakes in our study region can offer the optimal environment
for black-necked cranes to breed. From previous studies on the habitat of black-necked
cranes, it can also be found that for other similar waterfowl, such as red-crowned cranes,
Cao et al. used the MaxEnt model to reveal that the distance to roads, fishponds, and
smooth cordgrass (Spartina alterniflora), and the distance to reed shoals and seepweed
shoals, as well, were the main factors that influenced the selection of a wintering habitat
by red-crowned cranes in the Yancheng Nature Reserve [65]. Na et al. found that habitat
composition, water depth, and distance to roads and ditches were the most important
habitat features for Red-crowned cranes in the Zhalong National Nature Reserve during the
breeding season [66]. This also demonstrates that water and food are considered to be the
main environmental factors in the distribution of waterfowl species. Black-necked cranes
are the only cranes that live on plateaus among the 15 species of cranes in the world, mainly
distributed in the Qinghai–Tibet Plateau and the Yunnan–Guizhou Plateau [26]. There-
fore, compared with other cranes, Black-necked cranes have evolved good physiological
adaptation characteristics and perfectly adapted to the living environment of high altitude
and low temperature, which can explain that altitude is the main environmental factor for
black-necked cranes distribution. In reality, the Zoige National Nature Reserve, the core
area of the high suitable distribution of black-necked cranes, is strictly controlled, while the
functional zone outside the nature reserve is a bit weaker and more vulnerable to human
activities. For a more targeted analysis of the suitable distribution of black-necked cranes,
it might be useful to further distinguish in detail the environmental variables affecting
the distribution of black-necked cranes in the nature reserve and in the functional zone
outside of the nature reserve, i.e., to select environmental factors separately for the nature
reserve and functional zone, and then to superimpose these two results. In the future, we
also need to supplement black-necked crane occurrence records to reduce data sampling
bias and simulate the real black-necked crane distribution to provide a more scientific and
theoretical basis for the nature reserve and functional zone planning and management.

Finally, in order to make the model findings more ecologically interpretable, a balance
of model complexity is required for optimizing the model parameters [22]. Adjusting
model complexity through FC and RM settings is a hot area in MaxEnt model research.
With different sample sizes and feature combinations, the results of FC selection will be
reflected in response curve plotting, making simple linear correlations or complex nonlinear
correlations between environmental variables and distribution, which can have an impact
on model fitting and prediction. Generally, simple models are simpler to understand
ecologically, but if too few features are selected, such as selecting only the L function, as the
sample size increases, the sampling bias will increase, resulting in a lower AUC value [67].
It is also argued that FC has little effect on the predictive ability of the model and that a
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complex model will only slightly increase the AUC value [63]. The setting of RM is in order
to balance the model fitting degree and extrapolation ability. When the RM value is set too
low, the model is more likely to overfit and raise the omission error; when the RM value
is set too high, the model becomes smooth, increases the misjudgment error, and loses
its ability to discriminate in unsuitable areas. In this paper, the AUC values after model
optimization are approximate to the default case, but the response curves obtained for
some environmental factors are not particularly flat. Moreover, the increase in RM expands
the error boundary range compared to the default setting. In practice, the selection of both
FC and RM needs further judgment, and more studies are needed to show the relationship
between the model parameter optimization results, sample size, and study subjects.

5. Conclusions

This study evaluated the habitat suitability of black-necked cranes in the Zoige grass-
land wetland ecological function area based on the optimized MaxEnt model and investi-
gated the key environmental factors and suitable ranges affecting their distribution. The
complexity and overfitting of the optimized model were minimized compared to the de-
fault parameters by optimizing two MaxEnt model parameters: FC and RM, establishing
24 combinations, and utilizing Akaike’s small sample corrected information criterion (AICc)
as an indication. The AUC value was 0.895, and the prediction results reached a good
level. MaxEnt model prediction results show that the habitat distribution of black-necked
cranes may be mainly influenced by distance to roads, summer precipitation, distance to
lakes, and elevation. The suitable habitat area for black-necked cranes accounts for 46.49%
of the total functional zone; with the suitable distribution area for black-necked cranes
mainly located in the Zoige National Nature Reserve in the functional zone’s north, the
potential distribution area tends to spread to Hongyuan County in the functional zone’s
south, and the unsuitable habitat is mainly distributed in the high-altitude area in the
southwest of the functional zone. The core distribution area is located in Zoige National
Nature Reserve, so the delineation of the nature reserve can better protect black-necked
cranes to some extent. The results of this study indicate that the summer precipitation
and the spatial distribution of water resources have a major impact on black-necked crane
distribution. It is recommended to strengthen the management of river and lake shorelines,
protect the water ecological environment, actively communicate with local residents to
raise their awareness of protection, and reasonably formulate the summer grazing intensity
standards for grasslands to ensure the energy required by the black-necked cranes dur-
ing the breeding and growth periods. In view of the impact of future climate change on
wetland ecosystems and biodiversity, it is also necessary to strengthen the assessment and
construction of protected area management capacity and to design evaluation indicators
and management effectiveness assessment tools [68]. It is suggested to regularly monitor
the population size of black-necked cranes and other wildlife, changes in the wetland area
and human disturbance, assess changes in habitat quality of black-necked cranes, and
adjust management activities in time to achieve conservation goals. At the same time, the
contradiction between protection and development is still prominent, so the study recom-
mends that attention be paid to the suitable distribution range of black-necked cranes on
the vulnerable edge of the Zoige National Nature Reserve and Hongyuan County, as well
as the impact of human activities on the distribution of black-necked cranes in these areas.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d14070579/s1, Table S1: Occurrence records used for MaxEnt Model of
black-necked crane in Zoige Grassland Wetland Ecological Function Zone.
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Abstract: The Xianghai National Nature Reserve of Jilin is located on the East Asian-Australian
migration route of birds and plays an important role for migratory waterbirds. To explore the
influence of restoration measures on migratory waterbird communities in Xianghai Reserve, we
conducted a waterbird survey in the spring and autumn during waterbird migration from 2010 to 2020.
The composition and spatial and temporal changes in waterbird communities were identified in the
reserve and the diversity changes in waterbird communities were analyzed. The results showed that
(1) the number of waterbirds increased significantly since restoration measures in 2012. Restoration
measures has clearly promoted an improvement in the species and number of waterbirds. The
number of waterbirds was approximately seven-times higher than that before restoration measures.
(2) The number of rare waterbirds increased in the reserve, and the number of Anseriform waterbirds
on the IUCN Red List of Threatened Species rapidly increased. (3) The diversity of the waterbird
community has shown some recovery in the reserve, but the variation in water level during some
periods led to a regular fluctuation in waterbird diversity. Restoration measures directly changed the
water surface area and the water depth in the reserve, which are important variables that influence
waterbird selection of wetlands as habitats. To effectively protect and manage important stopover
sites on the migratory routes of waterbirds, we suggest to rationally regulate the supplementary
water level of wetlands, optimize the hydrological pattern of wetlands, and strengthen the regulation
of wetland water levels.
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1. Introduction

Waterbirds are flocking species that depend on wetlands for survival, and they are
the most active component of wetland ecosystems [1]. Their community composition
and diversity directly reflect changes in wetland ecosystems and monitor changes in the
wetland environment as an objective biological indicator. [2]. Waterbirds have clear seasonal
migration patterns. A series of available wetland stopover sites along the migration route
are the basis for ensuring the success of waterbird migration [3,4]. These stopover sites are
an important source of energy resupply for waterbirds during migration and provide food
and habitat for different populations.

The Xianghai National Nature Reserve of Jilin is located in west of the Songnen Plain
on the migration route of East Asian-Australian migratory birds. It is a breeding place for
rare species such as Grus japonensis and Ciconia boyciana and a migration stopover site for
endangered waterbirds such as Grus leucogeranus. At the beginning of this century, as a
result of climate change and anthropogenic factors, wetland habitats were extensively lost
in this region. This loss seriously affected the breeding and migration of waterbirds [5]. To
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better protect waterbirds and wetlands, since 2012, the River-Lake Linkage Project has been
carried out to restore the hydrological conditions of lakes and marshes. However, there has
been no study on the influence of ten years of restoration on the number and diversity of
waterbirds in different wetland habitats. Therefore, the aim of this study was to analyze
the effectiveness of the restoration measures for the conservation of waterbird species. We
analyzed waterbird data for a total of 11 years before and after the restoration measures
from 2010 to 2020. We explored the dynamic characteristics of waterbird diversity in the
lake reservoir and marsh habitats in response to the restoration measures, which provide
a basis for the conservation of migratory birds in the East Asia-Australia flyway and the
scientific management of migratory stopover sites.

2. Materials and Methods

2.1. Study Area

The Xianghai Reserve is located in Tongyu of Jilin Province (Figure 1) (122◦5′~122◦31′ E,
44◦55′~45◦09′ N) and has a total area of 1050 km2. This reserve was included in the first
group of sites on the List of Wetlands of International Importance in China in 1992. The
reserve is an important stopover site for migratory waterbirds and a breeding place for
summer migratory birds in the Asia-Pacific region. The main objects of protection include
birds (e.g., Grus japonensis and Ciconia boyciana) and their habitats [6]. The reserve is situated
in a semiarid area with the continental monsoon climate of the northern temperate zone.
Most rainfall occurs in summer. The average annual precipitation is approximately 370 mm,
and the average annual evaporation is approximately 1890 mm [7].

Figure 1. Location of the study area and sample points.

Before the restoration measures, due to the unreasonable exploitation of wetland re-
sources, grassland resources, and water resources, a series of ecological and environmental
problems had arisen in the reserve, mainly manifested in the decrease of grassland area,
shrinkage of wetland area, increase of sandy and saline land area, etc. The restoration
measures were carried out in this region in 2012. The lakes, reservoirs, and seasonal and
dry marshes that were originally isolated were reconnected by the restoration measures in
the Xianghai Reserve. The lakes and reservoirs in the region are supplied with water by the
Tao’er River and the Huolin River and water to the surrounding marsh wetlands is sup-
plied through their connected waterways. After the restoration measures, the area of water
bodies and wetlands in the reserve increased, providing suitable habitat for the waterbird
community in the Xianghai Reserve. At the beginning of the restoration measures, the
annual water diversion in the region was approximately 4.00 × 107 m3 from 2012 to 2014.
The water diversion reduced to 1/3 of the initial diversion from 2015 to 2016. At the end of
the restoration measures, water diversion is consistent with the level at the beginning of
the restoration measures.
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2.2. Bird Survey Methods

A total of 14 observation sites set up based on the historical stopover sites of waterbirds
in the study area (Figure 1), including five reservoir habitats and nine marsh habitats [8].
The survey objects only include waterbirds that traditionally roost in or near water and
did not include Falconiformes, Accipitriformes, or Passeriformes that depend on wetlands for
survival. We classified the waterbirds in the area into four types based on their habitat pref-
erences: dabbling birds, diving birds, large waders, and small waders. The dabbling birds
mainly include Anatidae, Laridae, and Rallidae. The diving birds include Anseriformes, Gavia,
Podicipediformes, and Phalacrocoracidae. The large waders mainly include Ciconiiformes and
Gruiformes. The small waders mainly include most of the Charadriiformes and Scolopacidae.

Based on the migration pattern of waterbirds in the study area, waterbirds were
observed from March to May and September to November each year from 2010 to 2020.
The waterbird migration periods in spring and autumn were divided into three stages:
premigration, mid-migration, and post-migration. There were two observations in each
stage with an interval of 3~4 days. Binoculars (8 × 32x) and monoculars (20 × 60x) were
used to scan the sample area clockwise during the survey to record the species and number
of waterbirds. Direct counts were used for species with small numbers of individuals, and
species with large numbers of individuals or flocks were counted by units of 10, 20, or 50
birds [9]. Species classification and identification were based on the List of the Classification
and Distribution of Birds in China (3rd edition), edited by Zheng Guangmei [10]. The
endangerment level of waterbird species in the study area was determined according to
the Red List of the International Union for Conservation of Nature (IUCN).

2.3. Habitat Landscape in Remote Sensing Interpretation

Landsat 5 and Landsat 8 images with a path-row number of 120–029, which were
captured on 2 July 2010, 8 July 2015, and 11 June 2020, were selected to interpret the
marsh wetlands and water body for the area of the Xianghai Reserve. OLI images that were
generated during the summer (from June to August) of each year were also selected to assist
with interpretation, as multi-temporal features can help distinguish objects. The object-
oriented segmentation method based on eCognition 9.3 was combined with a random
forest model to extract land cover information. Water level and water diversion data of the
study area were obtained from Xianghai Reservoir.

2.4. Data Analysis

Using a regression model, we examined the correlations between different physical
features of the wetlands such as water body area, and water level, and the waterbird
abundance, waterbird species richness, and diversity indices. We used the Shannon–Wiener
diversity index and the G-F index to analyze the diversity of waterbird communities in the
region [11].

Shannon’s Diversity Index was calculated using the equation:

H′ = −
S

∑
i=1

pi ln pi (1)

where pi is the proportion of proportion of bird number of species i in the total
bird abundance.

We used the Berger–Parker dominance index to judge the population size classes,
which can be calculated as follows [12].

I =
Ni
N

(2)

where Ni is the number of individuals of species i and N is the total number of all species in
the community. When I ≥ 0.1, species i is a dominant species, 0.01 ≤ I ≤ 0.1 indicates that
species i is a common species, and I < 0.01 indicates that species i is an occasional species.
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3. Results

3.1. Waterbird Species and Numbers
3.1.1. Species and Population Changes in Regional Waterbirds

We recorded a total of 110 waterbird species from 2010 to 2020 in the study area,
belonging to 10 orders, 17 families, and 50 genera.The main taxon was Charadriiformes
(40 species), accounting for 36.36% of waterbird species in the study area. Anseriformes,
Pelecaniformes, and Gruiformes had 36, 12, and 9 species, respectively, accounting for 32.72%,
10.91%, and 8.18% of the waterbird species in the study area. The proportions of the other
six orders were all less than 5%. Among the recorded waterbirds, the dominant species
were Anser fabalis and Aythya ferina. There were 17 common species (Anser albifrons, Anas
platyrhynchos, Grus leucogeranus, Grus monachal, etc.), most of which belonged to the family
Anatidae. The other species were occasional.

We analyzed the annual dynamics of the waterbird community in the Xianghai Reserve
from 2010 to 2020 based on the number of species and individuals for 10 orders (Figure 2).
The results showed that the number of waterbird species decreased in the study area from
2010 to 2012, increased from 2013, reached a maximum number of species in 2018, and
then showed a decreasing trend. The number of waterbird individuals showed the same
decreasing trend as the number of species from 2010 to 2012, increased annually from
2013 to 2016, decreased annually from 2016 to 2019, and suddenly reached a maximum in
2020. The change of regional water diversions influenced waterbird abundance and water
body area in the reserve. At the beginning of the restoration measures, the water body
area reached a maximum number, and then showed a decreasing trend year by year. We
investigated the differences in water diversion on waterbird abundance and water body
area through employing regression mode, which has a positive correlation with interannual
water diversion. When the water diversion maintained at 5.00 × 107 m3, the waterbird
abundance was at a stable level.

Figure 2. Annual dynamics of waterbird species and numbers in Xianghai Nature Reserve.

3.1.2. Changes in Waterbird Species and Numbers in Different Habitats

Anatidae waterbirds occupied the main part of the lake and marsh habitats in the
Xianghai Reserve. The dominant species Anser fabalis and Aythya ferina were distributed in
the marsh habitat (Table S1). The common species Anas poecilorhyncha, Mergellus albellus,
and Platalea leucorodia were distributed in both habitats. Gruiformes waterbirds such as Grus
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leucogeranus, Grus grus, and Fulica atra were mainly distributed in the marsh habitat and
less in the lake reservoir habitat.

The number of waterbird species in marsh habitats was consistently higher than that
in the lake reservoir habitats from 2010 to 2020 in the Xianghai Reserve (Figure 3). Since
2012, restoration measures have been carried out in the study area. At the beginning of the
restoration measures, the area of marsh habitat increased significantly. In the middle of
the restoration measures, the area of marsh habitat showed a decreasing trend (Figure 4).
With the increase in the marsh habitats, the proportion of waterbird species in marsh
habitats continued to increase from 2010 to 2013 and reached a maximum (63%) in 2013.
The proportion of species in marsh habitats decreased from 2016 to 2017 and from 2019 to
2020, which has a similar trend in marsh habitats change.

Figure 3. Proportion of species and number of waterbirds in different habitats in Xianghai
Nature Reserve.

Figure 4. Changes in the area of marsh in the Xianghai Nature Resreve.

The number of waterbirds in the reservoir habitat was higher than that in the marsh
habitat in 2010 (Figure 3). The proportion of waterbirds in the marsh habitat continued
to increase from 2011 to 2013 and reached a maximum (92%) in 2013. The proportion of
waterbirds in the marsh habitat fluctuated in other years, but overall, it was higher than
that in the reservoir habitat.

3.2. Rare Waterbirds
Changes in Rare Waterbird Species and Numbers in the Region

Among the 110 species of waterbirds that are distributed in the Xianghai Reserve,
17 species are on the IUCN Red List of Threatened Species, accounting for 15.4% of the total
waterbirds that are distributed in the reserve, which is much higher than the overall level
of threatened waterbird species in China (10.6%) [13]. There are two species of critically
endangered (CR) waterbirds (Grus leucogeranus and Aythya baeri), two species of endangered
(EN) waterbirds (Ciconia boyciana and Tringa guttifer), eight species of vulnerable (VU)
waterbirds (including Grus japonensis and Grus vipio), and six species of near threatened
(NT) waterbirds (including Aythya nyroca and Numenius arquata).
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We investigated the contact between the IUCN Red List of Threatened Species and time
through employing regression models (Figure 5). The proportion of dependent variable (Y)
impacts on independent variables (X) was explained by linear regression, which indicated
the number of protected birds increased year by year after the restoration measures in 2012.
In the Xianghai Nature Reserve, only the endangered waterbirds showed a decreasing trend.
Critically endangered waterbirds, vulnerable waterbirds, and near threatened waterbirds
showed the same trend, with their numbers increasing year by year. The number of
vulnerable waterbirds changed more dramatically than the other two categories.

Figure 5. Bird numbers in relation to their IUCN red list status. Note: CR denotes critically en-
dangered waterbirds; EN denotes endangered waterbirds; VU denotes vulnerable waterbirds; NT
denotes near threatened waterbirds.

3.3. Waterbird Diversity
3.3.1. Changes in Waterbird Diversity in Different Habitats

The Shannon–Wiener diversity of waterbirds in the reservoir and marsh habitats of the
Xianghai Reserve from 2010 to 2020 showed more dramatic interannual variation (Figure 6).
The marsh showed a trend of regular fluctuation with the lowest (and similar) values in
2012, 2016, and 2020 (2.01 ± 0.07) and the highest values in 2010, 2014, and 2018 (2.60~2.84).
The Shannon–Wiener diversity of the reservoir had a larger fluctuation with the highest
value (3.12) in 2016 and the lowest value (1.83) in 2020. The change trend of the Shannon
diversity index in the study area was similar to that of marsh habitat. After the restoration
measures in 2012, there was an overall rising trend. The trend of reservoir habitats was
opposite, showing a negative correlation.

Figure 6. Annual variation of species diversity index of waterbirds in different habitats. Note: Study
area denotes all data in the marsh and reservoir together.

The interannual variations of DG−F in the reservoir and marsh habitats of the Xiang-
hai Reserve from 2010 to 2020 are shown in Figure 6. In the marsh habitat, the indices
of DG−F showed overall increasing trends and reached their maximum values in 2018
(DG−F = 0.56). In the reservoir habitat, the indices of DG−F decreased from 2010 to
2012, showed an increasing trend from 2013, and reached their maximum value in 2019
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(DG−F = 0.54). In the study area, the index of DG−F was generally stable and maintained at
0.58~0.65 in all years. After the restoration measures in 2012, the overall trend was rising.

3.3.2. Changes in Diversity for Different Types of Waterbirds

The correlations of waterbird abundance, waterbird species richness, and Shannon-
Wiener indices of different types of waterbirds to water level fluctuations were analyzed
during 2010–2020 (Figure 7). Waterbird abundance showed a positive correlation with
the water level, and the wetland replenishment in the reserve promoted the increase of
waterbird populations. Waterbird species richness is negatively correlated with the water
level, and when the water level is too high it has a negative effect on waterbird species
richness in the reserve. Waterbird abundance and species richness in the study area were
maintained at relatively high levels when the water level was maintained at about 2 m.

Figure 7. Effects of water level changes on waterbird abundance, waterbird species richness, and
four waterbird guilds.

Dabbling birds and small waders showed a negative correlation with water level
fluctuations, and the water level increasing would lead to a decreasing trend in waterbird
diversity in these two waterbird guilds. Diving birds and large waders showed a positive
correlation with water level fluctuations, and the water level increasing was conducive to
promote the recovery of these two waterbird guilds. At the water level of about 1.5 m, the
Shannon–Wiener diversity of four waterbird guilds was relatively high, and the water level
at this time was conducive to the recovery of the waterbird population diversity.

4. Discussion

4.1. Waterbird Species and Numbers

The Xianghai Reserve is an important stopover site for migratory birds from East
Asia-Australia during their north–south migration, and a large number of migrating wa-
terbirds make a brief stopover here every spring and autumn. The dynamic changes in
waterbird species and numbers directly reflect the utilization and quality of habitat. Water
level change in wetlands is a key factor influencing waterbird foraging and habitat selec-
tion [14–16]. The species diversity of migratory waterbirds also changes with fluctuations
in wetland water level [17]. A series of restoration measures have been carried out in the
Xianghai Reserve since 2012. The water surface area increased and migrated to the north,
and the water level and vegetation composition have changed [18,19]. The number of wa-
terbird species decreased by 17 species before the implementation of restoration measures,
and the number of waterbirds continued to decline from 2010 to 2013. After restoration
measures in 2012, the number of species increased and remained stable, and the number of
waterbirds significantly increased. In the marsh habitat, the waterbird community trends
were the same as the overall trends in the study area, with significant recovery in waterbird
abundance and species richness after the restoration measures. The number of waterbirds
in 2016 was approximately seven times higher than that in 2012. The restoration measures
significantly contributed to the enhancement of waterbird species and numbers.
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The water level change significantly affected the number of waterbirds. The highest
proportion of waterbirds was found in shallow water habitats [20]. The waterbirds in the
Xianghai Reserve are mainly composed of Anseriformes, Gruiformes, and Charadriiformes,
whose main habitats are shallow mudflats and grass flats [21]. These taxa are concentrated
in the marsh habitats. During restoration measures, the change in water diversion can
directly affected the water level of the marsh habitat. Changes in waterbird abundance
and species richness in the study area mostly responded to fluctuating changes in water
levels (Figure 7). If the water level is too high or too low, the number and species of
waterbirds in the marsh habitat will be affected. When the water diversion decreased, and
the hydrological conditions changed from 2017 to 2020. The number of dominant and
common species such as Anseriformes and Charadriiformes greatly fluctuated and showed
a downwards trend. The increase in water diversion caused the waterbird population
to reach its peak since the restoration measures in 2020. The changes in the number of
waterbird species concentrated in the fluctuation of Charadriiformes from 2017 to 2020,
which are more sensitive to changes in water level and microhabitat than Anseriformes [22].
When the regional hydrological situation changed, the species and number of waterbirds
also greatly changed.

4.2. Changes in Numbers of Rare Species

Waterbirds on the IUCN Red List of Threatened Species such as Grus japonensis, Grus
leucogeranus, Cygnus cygnus, and Anser erythropus select plant tubers as their main food
source in the Xianghai Reserve [23]. Birds require an appropriate water depth to meet their
habitat needs [24]. Water depth is an important characteristic that affects the habitat of
tuber-eating birds. The hydrological situation has fluctuated since the restoration measures
that were carried out in Xianghai Reserve in 2012 (Figure 2). The increasing water level
contributed to both waterbird abundance and large wader’s diversity (Figure 7). The
regional wetlands and vegetation composition have changed [25]. Changes in regional
water levels will affect the composition of regional vegetation, which influence the avail-
ability of food sources for waterbirds. The traditional food source of Grus leucogeranus, the
Bolboschoenus planicalmis, grows only in shallow water, and when the water depth is too
high, the vegetation such as Phragmites australis and Typha orientalis, which are suitable
for growing in deeper water, increases. This will lead to a decrease in the amount of food
resources for Grus leucogeranus [26]. The increase in shallow marsh habitats (Figure 4)
in the region has provided more food resources for tuber-feeding birds, resulting in an
increase in the number of protected birds in the Gruiformes, Anseriformes, Charadriiformes,
and Pelecaniformes. As Anseriform species have a wider ecological niche, their numbers
rapidly increased.

Different groups of waterbirds have different habitat needs and make different habitat
choices. Wild geese mainly inhabit grassy areas [27]. Ducks prefer open water and shallow
marshes [28]. Charadriiformes have their main activity in mudflats. Compared with the
waterbirds of Anseriformes, Charadriiformes, and Pelecaniformes, large wading waterbirds (e.g.,
Grus japonensis and Ciconia boyciana) prefer natural habitats without human disturbance
and require larger wetland patches as habitats. Xianghai Reserve is a composite wetland
and consists of natural wetlands (marshes) and artificial wetlands (reservoirs and canals).
The area of marsh habitat in the region has increased, and the connectivity among wetland
patches has been enhanced since the restoration measures in 2012 [29]. Waterbirds of
national protection grade preferred shallow marshes and grassland habitats, and taxa such
as Anseriformes, Charadriiformes, and Gruiformes have migrated from reservoir habitats to
marshy habitats. The large wading birds (i.e., Grus japonensis and Ciconia boyciana) chose
marsh habitats with less human disturbance as their habitats. Therefore, the interannual
proportion of marsh habitats used was slightly higher than that of reservoirs.
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4.3. Changes in Waterbird Diversity

Water level, water area, vegetation composition, and wetland size are important
variables affecting waterbird habitat selection. The fluctuation of the water level in the
Poyang Lake area that is affected by the Three Gorges Project directly influences the
composition of vegetation in the area. The high water has a negative impact on the growth
of aquatic vegetation and the number and diversity of wintering waterbird populations [30].
The interannual water diversions in the area have directly changed the water level of the
wetland since the restoration measures. The high water will have a negative impact on
the diversity of waterbird populations in the region. Therefore, the overall waterbird
population diversity has recovered after the restoration of wetlands. However, the high
water during some periods has caused regular fluctuations in waterbird diversity.

Large-scale water replenishment was carried out through a water diversion project
for marsh habitats in the region from 2013 to 2015, resulting in changes in wetland area,
patch connectivity, and water level [31]. The area of marsh wetlands in the central region
of the reserve increased, and the stability of wetland patches increased from 2013 to
2015. With the improvement of wetland area, patch connectivity, and water levels, it
had a positive effect on the conservation of waterbird communities in the study area.
Waterbird abundance, waterbird species richness, and diversity all showed a significant
increasing trend (Figures 2 and 6). Compared with unrestored wetlands, restored wetlands
typically have higher waterbird abundance, waterbird species richness, and diversity [32].
At the beginning of restoration measures, the marsh habitat quality was restored, and
waterbird diversity showed an increasing trend from 2013 to 2014. In the middle of
restoration measures, the water level in the region increased from 2015 to 2016 due to a
high level of water diversion. When the water level is higher, the area of the water–land
transition zone is smaller [31]. The reduced waterbird habitat can lead to a decrease in
diversity in the marsh habitat. Water replenishment to the marsh habitat stopped from
2016 to 2018, the water level of the wetlands began to decrease, and the Shannon diversity
increased year by year. Compared with artificial wetlands, natural wetlands have higher
waterbird diversity. Artificial wetlands can also be used as alternative habitats for waterbird
populations [32]. Therefore, the reservoir habitat was an alternative to the marsh habitat
before water replenishment in the study area. The diversity of waterbird species was
relatively high. The waterbird populations shifted from the original reservoir habitat to the
marsh habitat after the restoration measures. The diversity of the reservoir habitat showed
a trend that was opposite to that of the marsh habitat.

When the diversity of biological communities is measured in a region, the G-F index
can compensate for the deficiency of the Shannon–Wiener index and reflect the diversity
among families and genera. The Shannon–Wiener diversity, DG−F in the study area showed
an overall increasing trend since 2012, indicating that the restoration measures had a
positive effect on the conservation of regional waterbird populations. The Shannon index
decreased and the indices of DG−F increased in the marsh habitat. This reflects the relatively
uniform distribution of waterbird species among families in marsh habitats. Therefore,
DG−F was relatively high. The decrease in the Shannon–Wiener diversity was due to a
single dominant species of waterbird, and the number of single species populations in the
region has been high since the restoration measures. The indices of DG−F in the reservoir
habitat showed an overall increasing trend after the restoration measure in 2013, indicating
an overall increase in the diversity among families and genera. The water replenishment of
the reservoir habitat by the restoration measures improved its quality and increased the
number of waterbird species in that habitat [33].

The main objects of the reserve are birds such as Grus japonensis and Ciconia boyciana
and their habitats. The Shannon diversity of large waders has been increasing annually
since the restoration measures in 2012. The restoration measures played a positive role in
the conservation of target species. The enhanced connectivity and aggregation of wetland
patches provided suitable habitats for Ciconiiformes and Gruiformes [34]. However, large
waders have declined in some years after restoration measures, which played a negative
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role in the conservation of target species (Figure 7). Diving birds showed an increasing trend
at the same time. Diving birds are mainly dominated by Podicipedidae, which is a typical
waterbird with a preference for deep water. Its numbers are positively correlated with water
level in some areas, whereas the numbers of other waterbirds are negatively correlated
with water level [20]. Therefore, the large number of Podicipedidae indicates a greater area
of deep water. This water level is unfavorable for other waterbirds. Different waterbirds
have different ecological niches due to differences in morphological characteristics and
feeding habits. For example, wading birds are concentrated in areas with water depths
of 15–20 cm [35]. The fluctuations in diversity indices of dabbling birds and wading
birds reflect the changes in the hydrological situation in the region since the restoration
measures. Therefore, based on the changes in the number and diversity of dabbling
birds, regional water diversion can be regulated to provide a suitable wetland water level
for the main protected species in the reserve and maintain their optimal habitat. The
annual water diversion in the region was approximately 5.00 × 107 m3 at the beginning
of project construction, from 2013 to 2014. The water diversion was reduced to one third
of the initial diversion from 2015 to 2016. When the water diversion was maintained at
4.00 × 107 m3 at the beginning of the restoration measures, the overall water level in the
study area was maintained at 1.5–2 m. This water level provided a suitable habitat for
waterbird communities in the study area, and waterbird abundance, waterbird species
richness, and diversity indices of the four waterbird guilds were all at high levels (Figure 7).
Waterbirds in the study area were effectively protected at this time.

5. Conclusions

The Xianghai Reserve is an important stopover site on the East Asia-Australia migra-
tory route. To better protect waterbird populations and wetlands, a series of restoration
measures were constructed to restore the habitat quality of stopover sites. The number
of waterbird species increased and remained at a relatively stable level in the reserve
since the restoration measures. The number of waterbirds increased by approximately
seven-fold compared with that before the restoration measures. The number of rare birds
on the IUCN Red List of Threatened Species has significantly increased with the most rapid
increase in Anseriform waterbirds. The diversity of waterbird populations has been restored.
The Shannon–Wiener diversity reached its highest value of 2.84 in 2018. However, it has
fluctuated at times. Changes in water diversions from the restoration measures will have
an impact on the water body area, marsh habitat area, and water depth in the study area,
ultimately leading to the changes in waterbird abundance, species richness, and diversity in
the region. When the water diversion was maintained at 5.00 × 107 m3, the increasing area
of marsh habitat provided more suitable habitats for waterbird populations. The regulation
of water diversion should consider rainfall and the water diversion of the previous year.
Continuous and large amounts of water diversion can also affect the quality of waterbird
habitat. Therefore, in the restoration measures, water diversion should reasonably regulate
wetland replenishment, optimize wetland hydrological patterns, and strengthen wetland
water level regulation to maintain suitable habitat quality for waterbirds.
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Abstract: Policies directly affect land-use change, which in turn, affects ecosystem services. In parallel
with the implementation of a full-scale development program for the western region, the Chinese
government has introduced a series of ecological protection and restoration strategies for development
and construction. This study conducted a quantitative spatial evaluation of the ecosystem service
value (ESV) of national nature reserves in the western region under this dual policy of development
and protection. On the basis of land-use data and related evaluation parameters, fluctuations in the
valuation of ecosystem services during 2000–2010 were analyzed in response to land-use changes
under the comprehensive policy. Results showed that the increases in the areas of forestland and
water bodies led to an increase of CNY 74.1 billion in the ESV from 2000 to 2010, equivalent to 2.02%.
Grassland with increased production capacity and water bodies were the main factors driving the
total ESV dynamics. Values of all ES increased significantly. Therefore, the ecological conservation
and restoration policy, along with the development policy, had a positive influence on ecosystem
services in the nature reserves in western China.

Keywords: ecosystem service value; full-scale development policy; ecological protection policy;
nature reserve; western China

1. Introduction

For a long time, the human impact on ecosystems has been mostly negative, owing
to an insufficient understanding of ecosystem services. The overexploitation of natural
resources by humans and the substantial discharge of pollutants into the environment has
led to continuous damage to, and weakening of, ecosystem services [1]. For one thing,
the negative impact of human activities, such as urbanization construction, deforestation,
and damaging forests to reclaim land, directly caused changes in land use, which in turn,
directly weakened the ecosystem service [2,3]. Furthermore, human activities, such as long-
term greenhouse gas emissions resulting in climate change, changing temperatures, and
precipitation, have also directly affected ecosystem structure and functions [4]. According
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5),
it is likely (probability above 95%) that human activities have caused most of the global
average surface temperature increase since the 1950s [5]. The trend of global warming has
led to a continuous increase in high temperatures and changes in precipitation. According
to the World Meteorological Organization, in 2018, extreme weather events such as high
temperatures and drought occurred in many areas across the globe; for example, the
temperature in the Arctic Circle reaching 32 ◦C, far higher than the average temperature
of 10 ◦C in the same period of the previous year [6]. Drought and high temperatures
have intensified wildfires in the northern hemisphere, and the extreme weather has had
significant negative impacts on human health, agriculture, and ecosystems [6]. Climate
change can, thus, affect ecosystem structure, composition, and function, and ultimately
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ecosystem service functions such as food production, water supply, flood regulation and
storage, soil and water conservation, and biodiversity conservation [7–11].

National policies influence and determine the impact of human activities on the eco-
logical environment. Since the 1950s, developed countries in Europe and North America
have implemented policies of returning farmland to forest, such as the Roosevelt Engi-
neering, Land Retirement, or Acreage Division and Conservation Reserve programs in
the USA, and the policy of returning farmland to forest combined with reducing income
in Britain [12–14]. These policy measures have transformed hundreds of thousands of
hectares of arable land into parks, forests, and pastures [15,16], providing a reference for
other countries to implement policies of returning farmland to forest. Additionally, some
countries have begun to build large-scale green corridors, trans-boundary protected areas,
or ecological networks between original protected areas to enhance biodiversity conser-
vation. The most influential examples include the European Ecological Network and the
Edmonton Ecological Network in Canada. The European Ecological Network also includes
Natural 2000, the Emerald Network, the European Green Belt, the Pan-European Ecological
Network, and other conservation planning projects, which have significantly improved the
effectiveness of ecological protection in those countries [17–20].

China is the largest developing country in the world and economic development has
long been the focus of its national policy. Over the past 40 years of reform and opening
up, the proportion of China’s total economic output to the world economy has increased
from 1.8% in 1978 to approximately 15% in 2017, making China the world’s second largest
economy [21]. China’s GDP growth rate (9.5%) was also significantly higher than the global
average annual growth rate (2.9%) over the same period [18]. However, owing to the
inherent vulnerability of China’s ecological environment, social and economic pressures
in the development process, and insufficient awareness of ecological and resource conser-
vation, China’s economic development came at the expense of abnormal consumption of
resources and severe ecology deterioration [22,23]. During the rapid economic develop-
ment, tremendous changes also occurred in the ecological environment. As a result of its
increasing awareness of ecological protection, the Chinese government has begun to carry
out various activities, such as ecological protection and restoration projects and ecosystem
management, to protect natural resources and enhance ecosystem service functions [24–28].

Nonetheless, the ecosystems in western China are still relatively fragile, with poor
natural conditions and low economic development. Owing to the fragile ecological en-
vironment, landlocked geographic location, as well as the non-preferential development
policies of the central government in the past and the unplanned land-use practices of the
local people, western China is currently underdeveloped and lags behind other regions
of the country [29]. To promote the coordinated development of the regional economy
and improve the ecological environment, the Chinese government implemented a strategy
for developing the western region in 2000, covering 12 provinces, and also implemented
a strategy to strengthen the protection and construction of the ecological environment at
the same time, in terms of development and construction [30]. Driven by this national
policy, projects such as the Natural Forest Protection Project, Grain for Green Program,
Beijing–Tianjin Sand Source Control Project, and Returning Grazing Land to Grassland
Project were implemented in the western region to improve the quality of the ecological
environment by actively increasing and restoring forestland and grassland and reducing
soil erosion and sandstorm hazards [31].

The first stage of the full-scale development policy targeting the western region has
been completed (2000–2010), and the second stage is now being implemented (2010–2020).
Under the comprehensive policies of full-scale western development and ecological pro-
tection construction, remarkable results in infrastructure and ecological construction were
achieved in the region. Currently, the evaluation of policy effectiveness mainly focuses on
economic growth, infrastructure construction, public health, and basic educations [32,33],
while that of ecological protection construction is focused on the new forest and grassland
area, soil erosion control area, the single ecological function of water conservation, nature
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conservation construction, and the ecosystem services of certain projects [34–38]. However,
the changes in the overall ecosystem service status under the comprehensive policy are
rarely studied.

To identify the ecosystem services changes in the western region during the first
implementation stage of the full-scale development policy driven by the comprehensive
policy of development and protection, the national nature reserves in the western develop-
ment region were taken as a study area to evaluate ecosystem service value (ESV) and the
changes during 2000–2010 based on remote sensing, meteorological, statistical, and other
relevant data. The main objectives were as follows: (1) quantify land-use changes after the
first implementation stage of the comprehensive development and protection policy in the
western region, (2) determine the ESV changes during the analyzed period, and (3) discuss
the ESV dynamics driven by the national policy.

2. Materials and Methods

2.1. Study Area

The study area (80◦25′–123◦11′ E, 21◦14′–52◦8′ N) was located in western China,
including 144 national nature reserves in Shaanxi Province, Gansu Province, Ningxia Hui
Autonomous Region, Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous
Region, Sichuan Province, Chongqing Municipality, Guizhou Province, Yunnan Province,
Guangxi Zhuang Autonomous Region, Qinghai Province, and Tibet Autonomous Region.
The total area was 875,498.35 km2, accounting for 13.01% of the total area of western China
(Figure 1).

Figure 1. Location of the study area in China.
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The region is vast in area, with a substantial span of latitude and longitude, and
complex and diverse terrains and landforms. The natural conditions are harsh and varied
and the topographic features are complex, with a high proportion of mountains and a
fragile ecological environment. Land desertification is a serious issue in the study area.
Natural resources, especially biodiversity resources, are abundant. The region is the source
of several major rivers, such as the Yangtze River, Yellow River, and Lancang River. There
are significant differences in the climatic conditions of the region. The northwest is dry
with little rainfall, the southwest is warm and humid, and the Qinghai–Tibet Plateau is cold,
while temperature varies greatly overall. The local ecological environment is relatively
fragile and rather poor. Important ecologically fragile areas include the Loess Plateau with
serious soil erosion and the Yunnan–Guizhou Plateau, which is one of the world’s largest
karst areas, with severe soil erosion.

2.2. Data Sources and Processing

The dataset of land use was extracted using ENVI 4.8 (Esri; Beijing, China) from
Landsat Thematic Mapper imagery for 2000 and 2005 and from environmental satellite
data for 2010 [39]. After completing the pretreatments, including band compositions, image
fusion, image enhancement, and a unifying coordinate system, the maximum likelihood
classifier of the supervised classification method was used to classify land use. The quali-
tative precision errors for deciphering the image in different years were controlled at the
90% level. The interpreted results were then compared with those of typical points from
field survey results and early land-use data. The overall interpretation accuracies of the
images from different years were over 90%. The total kappa coefficients were also above
the minimum acceptable (0.7). ArcGIS 10.2 (Esri; Beijing, China) was used to process and
analyze the land-use data with a background of raster images. According to the main
geographical features of the study area, the region was divided into 28 land-use types,
which were then classified under the seven primary land-use types listed in the resource
and environmental database established by the Chinese Academy of Sciences (Table 1). The
normalized difference vegetation index (NDVI) and meteorological data were obtained
from the Goddard Space Flight Center (NASA) and National Meteorological Information
Center [40,41], respectively. The dataset on vegetation was obtained from the GLC2000
database [42]. Data for the agricultural ecosystem net income from grain output per unit
area were obtained from statistical data [43,44].

Table 1. Land-use types in the national nature reserves of western China.

Type Concrete

Forest land Arbor, broad-leaved forest, coniferous forest, mixed forest, and
bush forest

Grassland Herbaceous green space, meadow, scrub-grassland and steppe
Wetland Herbaceous marshes, forest swamp, and shrub swamp

Farmland Dry fields and paddy fields
Water body Rivers, lakes, canal, ponds, reservoirs, glacier, permanent snow

Unused land Bare land, bare rock, desert, and saline-alkali land
Construction land Land used for mining, industry, residences, and transportation

2.3. Methods
2.3.1. Land-Use Changes

Land-use changes are crucial for ESV dynamics. The rate of land-use change was
calculated as:

Ri = (Ub − Ua)/Ua × 100% (1)

Rs = (Ub − Ua)/Ua × 1/T × 100% (2)
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where Ri and Rs represent the range of land-use change and dynamic rate of land-use
change (%), Ua and Ub represent the initial and final areas of a given land use (km2), and T
stands for the analyzed years, respectively.

2.3.2. Standard Equivalent

The standard equivalent refers to the economic value of the annual natural grain yield
of farmland with per unit national average yield. The equivalent factor of other ecosystem
services can be determined based on this equivalent combined with expert knowledge. It
can characterize and quantify the potential contribution of different types of ecosystems to
ecosystem services [45].

W = Sr × Fr + Sw × Fw + Sc × Fc (3)

where W represents the ESV of one standard equivalent (CNY·km−2); and Sr, Sw, Sc
represent the percentage of the sown area of rice, wheat, and maize in the total sown area
of the three crops in 2010 (%); and Fr, Fw, Fc represent the national average net profit per
unit area of rice, wheat, and maize in 2010 (CNY·km−2), respectively.

2.3.3. Equivalent Value Factors

On the basis of Costanza and Folke’s [46] theory and investigation by 500 Chinese
ecologists [45], the equivalent value factors method was widely used to assess the ecosys-
tem services [47–49]. However, the research of Costanza et al. focuses on the global scale
and lacks pertinence for China, while the latter is greatly influenced by subjective opinions,
and needs to be adjusted according to the conditions of China’s ecosystems [45]. Some im-
provements were made to make unit ecosystem services value evaluation more practicable
in China [39]. For instance, considering that ecosystem services generally have a positive
correlation with biomass [45], it is feasible to overcome the spatial heterogeneity of the
ecosystem services of a local area using a revision coefficient of net primary productivity
(NPP) closely related to ecosystem services [18,45]. The corresponding equation of the
equivalent value per unit area (Ei) is:

Ei =
ni
Ni

× E0 (4)

where Ei is the equivalent value per unit area in the study areas in year i, ni and Ni are the
average net primary productivity (NPP) values of the ecosystems in the study areas and the
country in year i, and E0 is the national average of equivalent value per unit area (Table 2),
respectively. The Carnegie-Ames-Stanford approach (CASA) was used to evaluate the NPP
value [50,51].

Because species resources in nature reserves are more abundant than in general areas,
another revision coefficient was necessary to calculate the equivalent value of biodiversity
conservation. The density of important species was adopted as the parameter for correc-
tion. A database of 3337 rare and endangered species in China was determined from the
International Union for Conservation of Nature (IUCN) endangered species level 3.1, the
Convention on International Trade in Endangered Species appendix, the IUCN Red List of
Threatened Species, a list of China’s endemic species, and lists of national key protected
wildlife species. According to the information on species protection in 861 nature reserves
in China, the distributions of 2157 rare and endangered species were established for the
nature reserves. Given that protection in national nature reserves accounted for 96.2%
of the objects and 99.7% of the area, the calculated value per unit area represented the
important species well [18]. The equivalent value per unit area of biodiversity protection in
nature reserves (Eb) was determined by Wang et al. [18] as:

Eb =
d
D

× Eb0 (5)
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where Eb stands for the equivalent value per unit area of biodiversity protection in nature
reserves, d and D stand for the density of important species in nature reserves and on a
national scale (species·km−1), and Eb0 is the national average equivalent value per unit
area of biodiversity conservation in China, respectively.

Table 2. Equivalent value per unit area of ecosystem services in China [45].

Freshwater
Supply

Gas
Regulation

Climate
Regulation

Environment
Purification

Hydrology
Regulation

Soil
Conservation

Nutrient
Circulation
Maintaining

Biodiversity
Conservation

Recreation
and

Culture

Forestland

Coniferous 0.27 1.7 5.07 1.49 3.34 2.06 0.16 1.88 0.82

Mixed 0.37 2.35 7.03 1.99 3.51 2.86 0.22 2.6 1.14

Broad-
leaved 0.34 2.17 6.5 1.93 4.74 2.65 0.2 2.41 1.06

Bush 0.22 1.41 4.23 1.28 3.35 1.72 0.13 1.57 0.69

Grassland

Steppe 0.08 0.51 1.34 0.44 0.98 0.62 0.05 0.56 0.25

Scrub-
grassland 0.31 1.97 5.21 1.72 3.82 2.4 0.18 2.18 0.96

Meadow 0.18 1.14 3.02 1 2.21 1.39 0.11 1.27 0.56

Wetland Wetland 2.59 1.9 3.6 3.6 24.23 2.31 0.18 7.87 4.73

Farmland
Dry 0.02 0.67 0.36 0.1 0.27 1.03 0.12 0.13 0.06

Paddy −2.63 1.11 0.57 0.17 2.72 0.01 0.19 0.21 0.09

Water body
Waterways 8.29 0.77 2.29 5.55 102.24 0.93 0.07 2.55 1.89

Glacier and
snow 2.16 0.18 0.54 0.16 7.13 0 0 0.01 0.09

Unused
land

Desert 0.01 0.11 0.1 0.31 0.21 0.13 0.01 0.12 0.05

Bare 0 0.02 0 0.1 0.03 0.02 0 0.02 0.01

2.3.4. ESV Evaluation

The ESV is mainly determined by land use and the equivalent value per unit area
as [18]:

ESV f = ∑
k

Uk × Eik f (6)

ESVk = ∑
f

Uk × Eik f (7)

ESV = ∑
k

∑
f

Uk × Eik f (8)

where ESVf, ESVk, and ESV are the ESVs of service function f, land-use type k, and ecosys-
tem in year i (CNY·km−1), respectively; Uk is the area of land-use type k (km−2); and
Eikf is the value coefficient for land-use type k with ES function type f (CNY·km−2),
where the value of ecosystem services for a standard equivalent value per unit area is
determined by the agricultural ecosystem net income from grain output per unit area
(CNY·km−2) [43,44,52].

To assess the effect of ESV variation on land-use change, the contribution rate (Ckt)
was estimated by Costanza et al. [38] as:

Ckh =
|ΔESVkh|

n
∑

k=1
|ΔESVkh|

× 100% (9)

where Ckt refers to the percentage of the absolute value of ESV variation of land-use type k
in the period h to the total amount of ESV variation of land-use type k in the period h (%),
and ΔESVkh refers to the ESV change of land-use type k in period h (CNY), respectively.
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3. Results

3.1. Land-Use Dynamics

Since the implementation of the full-scale development policy targeting the western
region, grassland has dominated the land use in the national nature reserves in western
China, accounting for more than 3/5 of the total area, followed by unused land and forest
land, accounting for more than 1/6 of the total area (Figures 2–4 and Table 3).

Figure 2. Land use in the national nature reserves of western China in 2000.

Figure 3. Land use in the national nature reserves of western China in 2005.

The most noticeable characteristics of land-use change in the nature reserves of western
China in the whole study phase (2000–2010) were increases in water bodies and decreases in
grassland. Especially in period I (2000–2005), the area of grassland declined by 1160.16 km2,
while the area of water bodies increased by 1474.98 km2 (2.87%). In period II (2005–2010),
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other area changes were relatively stable except for construction land, which increased by
23.41%. The areas of forestland, water bodies, and construction land showed an increasing
trend in both periods, while the areas of grassland, farmland, and unused land showed a
continuously decreasing trend (Figure 5).

Figure 4. Land use in the national nature reserves of western China in 2010.

Table 3. Land-use dynamics in the national nature reserves of western China.

Land-Use Type
2000 2005 2010

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Forestland 82,194.70 9.41 82,399.55 9.44 82,415.35 9.44
Grassland 565,771.61 64.79 564,611.45 64.66 564,418.54 64.64
Wetland 21,241.65 2.43 21,247.13 2.43 21,240.47 2.43

Farmland 5722.49 0.66 5614.51 0.64 5587.53 0.64
Water bodies 51,332.10 5.88 52,807.08 6.05 53,101.21 6.08
Unused land 146,264.00 16.75 145,773.76 16.69 145,520.99 16.67

Construction land 650.50 0.07 723.57 0.08 892.97 0.10
Total 873,177.05 100.00 873,177.05 100.00 873,177.05 100.00
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Figure 5. Dynamic rates of land-use types.

In 2000–2005, the areas of forestland, wetland, water bodies, and construction land in-
creased by 0.25%, 0.03%, 2.79%, and 10.10%, respectively, while the areas of grassland, farm-
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land, and unused land decreased by 0.21%, 1.92%, and 0.34%, respectively. In 2005–2010,
the areas of forestland, water body, and construction land increased by 0.02%, 0.55%, and
18.97%, respectively, while the areas of grassland, wetland, farmland, and unused land
decreased by 0.03%, 0.03%, 0.48%, and 0.17%, respectively. Furthermore, over the period of
2000–2010, the areas of forestland, water body, and construction land continued to increase
by 0.27%, 3.33%, and 27.15%, respectively, while the areas of grassland, farmland, and
unused land continued to decrease by 0.24%, 2.42%, and 0.51%, respectively.

3.2. ESV Dynamics

The results suggest that the total ESVs of the national nature reserves in western China
were CNY 3661.9, 3655.2, and 3736.0 billion in 2000, 2005, and 2010, respectively (Table 4).
Among the six ecosystem types, the ESVs of grassland were the highest because of the
dominant area, accounting for 45.83%, 45.13%, and 45.35% of the total ESV, respectively.
This was followed by water bodies and forestland. Although the area of forestland was
approximately 1.6 times as large as that of water bodies, the ESVs of water bodies were
approximately 1.2 times as large as the forestland because of the higher value coefficients
(3.6 times higher than forestland for the average total value coefficients) (Tables 2–4).
The ESVs of farmland were lowest because it occupied the smallest area. The ESVs of
unused land were close to the value of farmland, but farmland had higher value coefficients
(4.2 times higher than unused land for the average total value coefficients), although the area
of unused land was approximately 26 times larger than that of farmland (Tables 3 and 4).

Table 4. Ecosystem services values of each ecosystem in the national nature reserves of western China.

Land-Use Type

2000 2005 2010

ESV
(1010 CNY)

Percentage
(%)

ESV
(1010 CNY)

Percentage
(%)

ESV
(1010 CNY)

Percentage
(%)

Forestland 73.43 20.05 73.20 20.03 73.74 19.74
Grassland 167.83 45.83 164.97 45.13 169.42 45.35
Wetland 37.90 10.35 37.92 10.37 38.69 10.36

Farmland 0.65 0.18 0.64 0.17 0.63 0.17
Water bodies 85.53 23.36 87.90 24.05 90.23 24.15
Unused land 0.86 0.23 0.89 0.24 0.89 0.24

Total 366.19 100.00 365.52 100.00 373.60 100.00

In 2000–2005, the total ESV in the national nature reserves of western China declined
by CNY 6.7 billion (0.18%). The ESV declines in grassland, forestland, and farmland were
the main contributing factors, with reductions of CNY 28.6, 2.3, and 0.1 billion, or 1.70%,
0.31%, and 1.54%, respectively, while the ESVs of water bodies, unused land, and wetland
increased with CNY 23.7, 0.3, and 0.2 billion, or 2.77%, 3.49%, and 0.05%, respectively. In
2005–2010, the total ESV in the national nature reserves of western China increased by CNY
80.8 billion (2.21%). The ESV increases in grassland, water bodies, wetland, and forestland
were the main contributing factors, with increases of CNY 44.5, 23.3, 7.7, and 5.4 billion, or
2.70%, 2.65%, 2.03%, and 0.74%, respectively, while the ESV of farmland decreased by CNY
0.1 billion, or 1.56%. The ESV of unused land remained stable.

During 2000–2010, the total ESV in the national nature reserves of western China
increased by CNY 74.1 billion (2.02%). The ESV increases in water bodies, grassland,
wetland, forestland, and unused land were the main contributing factors, with increases
of CNY 47.0, 15.9, 7.9, 3.1, and 0.3 billion, or 5.50%, 0.95%, 2.08%, 0.42%, and 3.49%,
respectively, while the ESV of farmland decreased by CNY 0.2 billion, or 3.08%. The ESVs
of water bodies, wetland, and unused land increased in every period, while farmland
continuously decreased.

Grassland and water bodies were the main factors determining the total ESV dynamics
during 2000–2005, 2005–2010, and 2000–2010, with contribution rates of 94.70%, 83.77%,
and 84.43%, respectively (Figure 6). Grassland was the dominant factor for the total ESV
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decline during 2000–2005 and increase during 2005–2010, accounting for 51.83% and 54.97%
of the total variation, respectively. Water bodies were the main driving factor for total ESV
increase in 2000–2010, accounting for 63.11% of the total variation. Farmland and unused
land contributed least to the total ESV dynamics, together accounting for only 0.78%, 0.22%,
and 0.82% in 2000–2005, 2005–2010, and 2000–2010, respectively.
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Figure 6. Contribution rates of land-use types.

The ESVs of each ecosystem service are shown in Figure 7. The ESVs of biodiver-
sity conservation had the biggest proportion of the total ESVs in all periods (2000–2005,
2005–2010, and 2000–2010), accounting for 34.86%, 34.64%, and 34.62%, respectively. In
other words, biodiversity conservation was the most prominent function in the national
nature reserves, as expected, followed by hydrology regulation (accounting for 29.49%,
29.92%, and 29.98%, respectively) and climate regulation (accounting for 13.25%, 13.13%,
and 13.11%, respectively). The ESVs of nutrient circulation maintenance (0.46%) and recre-
ation and culture (accounting for 3.10%, 3.09%, and 3.08%, respectively) had the smallest
percentages. During 2000–2005, the ESVs of freshwater supply and hydrology regulation
increased, by 1.15% and 1.27%, respectively, while the other ESVs all decreased by 0.89%
on average. During 2005–2010 and 2000–2010, the ESVs of every ecosystem increased,
by 2.18% and 1.74% on average, respectively. Although the ESV for grassland registered
a substantial reduction during 2000–2005, that of water bodies registered a substantial
increase over 2005–2010, resulting in an overall ESV increase. The Wilcoxon signed-rank
test in SPSS 21.0 indicated that the ESVs of each ecosystem service increased significantly
from 2000 to 2010 (p = 0.008 < 0.05), showing that the total ESV registered a significant
increase in the national nature reserves in western China during 2000–2010.

Figure 7. Ecosystem services value of each ecosystem service function in the national nature reserves
in western China.
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3.3. ESV Spatial Variation

Among the 12 provinces in the western region of China, the national nature reserves
in Tibet and Qinghai Province had significantly higher total ESVs, accounting for approxi-
mately 36.79% and 25.73% of the total ESV of the national nature reserves in the western
region, respectively (Figure 8). In contrast, the total ESVs in the national nature reserves in
Ningxia and Guizhou Province were relatively low, accounting for only 0.31% and 1.31%
of the total ESV. The ESV quantities were directly related to the non-construction land area.
The highest proportion of non-construction land was in the national nature reserves in Tibet
and Qinghai Province, accounting for 42.83% and 23.99% of the non-construction land in
the national nature reserves in the western region, while the non-construction land area in
the national nature reserves in Ningxia and Guizhou Province only account for 0.51% and
0.30%, respectively. From 2000 to 2010, the ESV in the national nature reserves in Guangxi
increased the most significantly, with a growth rate of 40.36%, followed by Shaanxi and
Gansu, with a growth rate of 7.74% and 7.41%, respectively (Figures 9–11).
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Figure 8. Ecosystem services values of the national nature reserves in each province of western China.

Figure 9. Ecosystem services values in the national nature reserves of western China in 2000.
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Figure 10. Ecosystem services values in the national nature reserves of western China in 2005.

Figure 11. Ecosystem services values in the national nature reserves of western China in 2010.

4. Discussion

At present, ecosystem services value accounting can be divided into two main cat-
egories, namely, those based on the price of a unit service function and those based on
the equivalent factor of a unit area value. The function value method is used to obtain
the total value based on the amount of an ecosystem service function and the unit price
of the function quantity. This method simulates the ecosystem service function of a small
area by establishing the production equation between a single service function and local
ecological environment variables. However, the approach has many input parameters, a
complicated calculation process, and more importantly, it is difficult to unify the evaluation
method and parameter standards of each service value. The equivalent factor method is
based on quantifiable criteria used to construct the equivalent value of various service
functions of different types of ecosystems on the basis of distinguishing different kinds of
ecosystem service functions, and then evaluating them in relation to the distribution area
of the ecosystems [45].

Compared with the function value approach, which estimates the ESV based on
ecological processes with a series of predetermined functions or models, the equivalent
value factor method is more convenient and appropriate for evaluating the dynamics
of ESVs over large scales [49]. Furthermore, this method was widely used and, thus,
continuously improved and optimized [18,45,46,53]. Generally, nature reserves show an
advantage in species resources, particularly for rare species and biomass, and thus, a
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correction parameter is necessary. The management of nature reserves prohibits activities
such as tree felling, grazing, fishing, and gathering of herbs, and only a small number of
original residents can carry out a reduced number of production activities. The overall
role of food and raw material production is not important in nature reserves, and it has
only a slight influence on the total ESV. As such, we did not evaluate it. Compared with
the national unit ESV (39.69 × 105 CNY/km2) [49], the unit ESV in nature reserves was
relatively high (42.799 × 105 CNY/km2), showing that nature reserves provide more
ecosystem services owing to their higher levels of biodiversity and biomass. Based on the
results of a previous survey of biodiversity in nature reserves in China and the NPP data, the
equivalent factors of biodiversity conservation values and other ecosystem services were
adjusted to be more in line with the actual conservation of ecosystems and biodiversity
in nature reserves. The biodiversity conservation value of each unit area of different
ecosystems, namely, the value of other ecological services, was obtained through the
value calculation method. The value of biodiversity and the value of other ecological
services were combined with changes of land types to reflect the changes in the biodiversity
conservation function and other ecosystem services.

The accurate construction of the equivalent factor table is the core of the equivalent
factor method. Although the adopted equivalent factor table was improved through the
method of meta-analysis, the original equivalent factor table is still somewhat subjective
because it relies on expert opinion scores and cannot accurately and objectively reflect the
situation of ecosystem services. In addition, owing to the complexity of the ecosystems
and the impact of environmental and biological conditions, there are significant differences
in the size and type of their service functions. Therefore, it is objectively necessary to
distinguish the ecosystem types and service categories as finely as possible. However, the
lack of relevant research resulted in a lack of relevant parameters and results for some types
of ecosystem services. Thus, the secondary ecosystem classification had to be adjusted
and merged—for example, forest types in different zones were not distinguished—and its
impact on the evaluation results needs further research and analysis [45].

Implementing the strategy of full-scale western development and accelerating the
development of the western region is of great significance for expanding domestic demand
and promoting the coordinated development of China’s regional economy. After the
completion of the first stage, the GDP of the western region increased from CNY 1665.5
billion to CNY 6686.8 billion, giving an average annual increase of 11.9%. Development
included the construction of 972,000 km of new highways, the reconstruction and expansion
of 48 trunk/feeder line airports and 23 new airports, and the completion of large-scale water
conservancy projects to solve the drinking water and safety problems of 94.37 million rural
inhabitants, which greatly increased the economic and social development of the western
region [52]. However, the fragile ecological environment in the western region should be
considered in implementing the strategy of full-scale western development. Protecting
and improving the ecological environment is essential for the full-scale, sustainable, and
healthy development of the western region.

Western China is more economically undeveloped and ecologically fragile than central
and eastern China. The environmental problems in western China are the result of the
interactions between human and nature in the process of economic and social development.
Even in historical times, the ecosystems in western China were destroyed by the pressure
of population growth, resulting in the innate vulnerability of the ecosystems in western
China. Beginning in 1953, Five-Year Plans have been China’s most important programs
for economic and social development, with the early Five-Year Plans focusing on the
economic dimensions [54]. Large-scale economic construction was carried out in the
western region, and many industrial enterprises such as steel, coal, and oil were built,
which have consumed a substantial quantity of local natural resources. The exploitation
of western ecosystems, especially substantial deforestation and destruction of vegetation,
have directly had catastrophic consequences. A series of ecological and environmental
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problems continue to emerge, such as soil erosion, drying up of water sources, abnormal
climate, sandstorms, and biodiversity destruction [54].

During the ninth Five-Year Plan period, the Chinese government began to implement
the strategy of developing the western region. The western development strategy is divided
into three main stages of implementation: (1) the foundation stage (2000–2010), which aims
to adjust the structure and improve the infrastructure, ecological environment, science and
technology education; establish and perfect the market system, fostering growth industries;
make preliminary improvements to the investment environment in the western region;
control ecological and environmental degradation, develop a virtuous cycle of economic
operation and achieve a growth rate equivalent to the national average growth level; (2) the
accelerated development stage (2011–2030), which builds on the foundation stage to enter
a rapid stage of western development; cultivate characteristic industries; implement a
comprehensive upgrade of economic industrialization, marketization, ecology and profes-
sional regional layout; and achieve substantial economic growth; and (3) the modernization
stage (2031–2050), which strengthens some of the first development areas and integrates
them into the modern domestic and international economic system for self-development.
This stage will focus on accelerating the development of remote mountainous areas and
underdeveloped agricultural and pastoral areas, generally improving the production and
living standards of the people in western China and narrowing the gap in a comprehensive
way [55].

With the continuous development and improvement of the concept of ecological pro-
tection, the Chinese government’s ecological protection policy has made steady progress.
The tenth Five-Year Plan (2001–2005) began to coordinate the development of the economy,
society, and environment. During the eleventh Five-Year Plan (2006–2010), the government
proposed “building ecological civilization”, which attracted international attention. An
ecological civilization is based on respecting and preserving nature; aims at harmonious
coexistence between people, between people and nature, and between people and society;
and aims to establish sustainable modes of production and consumption. It guides peo-
ple onto a path of sustainable and harmonious development [56]. Priority areas for the
conservation of biodiversity and key ecological functions were defined during the twelfth
Five-Year Plan (2011–2015), leading to an unprecedented increase in the government’s
support for the conservation and improvement of the environment in the current thirteenth
Five-Year Plan (2016–2020), which has further accelerated the pace of investments toward
an ecological civilization [57].

In April 2022, the Chinese government included ecological civilization in the Consti-
tution, the country’s fundamental law, demonstrating China’s determination to promote
a new pattern of harmonious development between man and nature. China has imple-
mented a wide range of national policies for ecological protection, including policies on
afforestation, returning cultivated land to forest and grassland, forbidding grazing, zoning,
ecological migration, which has improved land-use structure and the growth conditions of
grassland vegetation, increased vegetation cover, total NPP, soil conservation, and water
yield, and reduced soil erosion [34,58–60]. All these play important roles in nature con-
servation and restoring China’s degraded ecosystems, especially in western China [61,62].
Over the past decade, the ESV in the study area has shown a trend of growth. On the basis
of the current analysis, the main reason for this is the increase in the ecological land areas,
such as forestland and water bodies, and the significant decrease in the farmland area,
which is closely related to the conversion of farmland to forest and other policies.

The water body land use includes waterways and glaciers, and the increase in water-
ways is the main factor for the increase in water body area. The natural conditions mean
that the western region is short of water resources and this shortage has become the main
factor restricting regional development. To meet the conditions of ecological civilization
construction and improve people’s livelihood, the Chinese government strengthened key
water source projects, water and soil conservation and ecological construction projects,
and water resource allocation projects in the western region, including comprehensive
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watershed management projects such as the Heihe, the Tarim, and the Shiyang river basins;
key soil and water conservation projects such as soil in northeast China, the Yangtze River,
the middle and upper reaches of Yellow River; and water resources projects such as the first
phase of the Tao Water Supply Project in Gansu Province, the Qingtongxia Irrigation area
in Ningxia, the south bank trunk channel, and the irrigation area of the second phase of
Qiapuqi Seawater Resources Project. These projects have greatly increased the water body
area in the western region [63]. According to the ESV research in China, waterways have
high ecosystem service functions, especially in hydrology regulation, freshwater supply,
environmental purification, biodiversity conservation, climate regulation, and recreation
and culture [45]. The expanded water body land use makes an important contribution to
the ESV increase in western China.

However, the ESV in the national nature reserves in some provinces in the western
region fluctuated and declined during the study period as a result of factors such as climate
change and human activities. On the one hand, the increase in construction land was an
important factor, such as in Sichuan, Yunnan, Guizhou. The area increase in construction
land in the nature reserves was mainly due to the construction of infrastructures, such as
corridors, roads, protection stations, posts, observatories, laboratories, and hydroelectric
power stations. The planning of village construction and post-disaster reconstruction in
nature reserves played another important role in the area increase in construction land.
The older houses of the original inhabitants in the nature reserves were built of wood and
were more vulnerable to the humid climate and frequent natural disasters (earthquakes,
landslides, mud-rock flows, etc.). With social economic development and the growth of
personal income, many rural houses were planned or rebuilt in nature reserves, resulting in
an increase in the area of construction land [18]. On the other hand, the decline of ecosystem
productivity caused by climate change and human activities also has a great impact on
ESVs, such as in Tibet, Inner Mongolia, and Shaanxi. In the process of global warming, the
plateau air and ground temperature increased significantly from 2000 to 2010, and NDVI
decreased in the growing season, resulting in the decline in NPP [64,65].

With increasing global change such as climate warming and loss of biodiversity,
achieving a harmonious coexistence between man and nature is a key issue that needs to
be solved urgently. In the process of economic and social development, human beings
should conform to the laws of nature, take measures in the light of local conditions to
address important ecological and environmental problems, and transform the ecological
environment from a vicious circle to a virtuous circle. Regions with an underdeveloped
economy and fragile ecological environment must avoid the concept of restoration after
destruction and adhere first to the practice of parallel economic development and environ-
mental protection. Therefore, they should not exchange the ecological environment for a
brief period of social and economic development, nor should they experience social and
economic stagnation to promote ecological environment recovery and reconstruction. It is
necessary to re-examine the rationality and appropriateness of human activities, actively
adapt human activities to climate change, reduce the fragility of the ecological environment,
and achieve a win–win situation of sustainable social and economic development under
the premise of protecting and building the ecological environment. According to the results
of the first phase of the western development strategy, the annual GDP growth rate of
the western region was 11.9%, higher than the national growth rate in the same period.
Breakthroughs were made in infrastructure development. A number of key projects were
completed, including the Qinghai–Tibet Railway, west–east gas transmission, west–east
power transmission, the western section of the main national highway, and large water
conservancy projects, and the task of transmitting electricity to townships and oil roads
to counties was completed. The substantial construction of transport infrastructure has
changed the situation in the western region, improving logistics and allowing more con-
venient travel for people [66]. At the same time, the ecological environment protection
measures adopted in the development and construction of the western region have greatly
promoted the improvement of the ecological environment. A series of ecological projects,
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such as the Natural Forest Protection Project, the return of farmland to forest, and the return
of grazing to grassland, have continued to expand the green area in the western region, the
ecological environment was improved, and the western ecological barrier was strengthened.
A total of 26.7 million ha of farmland was returned to forests, 92.7 million ha of forest
resources was effectively protected by the Natural Forest Protection Project, 8.5 million
ha of the Beijing–Tianjin sandstorm control project was managed, and atmospheric dust
release was reduced. The number of people living in poverty fell from 55.53 million in 2001
to 26.48 million in 2008 [66]. China’s western development strategy has achieved win–win
results in economic and social development and ecological and environmental protection.

5. Conclusions

The current study assessed the ESV and the changes in the nature reserves of western
China in 2000–2010. During this period, the area of forestland, water bodies, and construc-
tion land increased, while the area of grassland, farmland, and unused land decreased. The
total ESV increased by CNY 74.1 billion (2.02%), to which water bodies, grassland, wetland,
forestland, and unused land contributed the most. Grassland and water bodies were the
main factors of the total ESV dynamics. The ESV of each ecosystem service increased
significantly during 2000–2010 except farmland. Consequently, the ecological conservation
and restoration measures achieved good results in the national nature reserves of western
China after the first stage of western development.

Through the revision of the value equivalent factor method, this paper achieved
the rapid assessment of the ESV of regional nature reserves. The revised method was
easy to operate and can provide a reference for the evaluation of the effect of regional
ecological policy implementation. Through the evaluation, the ESV changes of national
nature reserves in western China after the first stage of the implementation of China’s
western development policy were analyzed, which has an important reference value for
understanding changes in the national nature reserves in western China under the policy.
However, limitations in the existing technology and methods resulted in a lack of relevant
parameters and results for some ecosystem services. Therefore, the secondary ecosystem
classification had to be adjusted and merged—for example, forest types in different zones
were not distinguished—and its impact on the evaluation results needs further research
and analysis.
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